

PART I

Develop for Azure

3

CHAPTER 1

Azure Storage
Ecosystem: Overview
and Development with
Azure Blob Storage
Whenever I run an AZ-204 (Azure Developer Fundamentals) training

session, I always start with Azure Storage. Storage is not necessarily sexy,

and it’s not the first thing you often think about when getting ready to

study for an Azure exam. However, storage is the essential backbone to

pretty much anything you do in Azure.

Do you need to work with the Azure cloud shell? You’re going to need

a backing storage account. Would you like to host a virtual machine (VM)

in Azure? I bet you can already guess where your virtual disks are housed.

Would you like to create a Big Data pipeline that utilizes a data lake? How

about a simple Azure Function application? Perhaps you just need a place

to share documents quickly and easily, with versioning capabilities and

access restrictions. Maybe you would like to host a static website and/or a

CDN for your static web assets. These solutions, and many more, require

and/or leverage storage in some way.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_1

https://doi.org/10.1007/978-1-4842-9300-3_1#DOI

4

Even though storage isn’t likely the first thing on your mind (and may

actually be the one thing where you think “I got this”), it is still a great

place to start as a foundation for the rest of your learning. Additionally,

storage is typically one of the easiest topics to master. For these reasons,

it makes a great deal of sense to kick off with a review and exploration of

Azure Storage.

Over the next few pages, you’re presented with a high-level overview of

many of the major concepts regarding Azure Storage that you will want to

be in command of before sitting for the AZ-204 Exam.

 General Information about Azure Storage
Almost everything you will encounter in Azure has some sort of hierarchy

involved, and this will almost always play out in your development

experience. Additionally, many services in Azure require a unique Fully

Qualified Domain Name (FQDN). This is a name that is accessible from

anywhere on the Internet, such as microsoft.com or yourcompany.org. For

this reason, start to establish this pattern recognition now, as it will likely

play out in one or many scenarios as you build code samples. Additionally,

this knowledge of the hierarchy of services is a good thing to be in

command of when you sit for the exam.

Azure Storage has a hierarchy that typically looks something like

Account ➤ Type of Account ➤ Object. For example, Azure Blob Storage

will always have an account that contains one or more containers, and

each container has one or more binary large objects (blobs). A blob is

typically a serialized binary object referenced in code via a byte array

(byte[]). For example, any image or document serialized to a byte[] as

well as strings and fully-serialized JSON objects all store one binary object.

Consider the hierarchy presented in Figure 1-1, where each blob could be

something entirely different, such as an image file, a Word document, or

any other object as a byte[] of data.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

5

Figure 1-1. A hierarchical representation of a storage account with
a container, some blobs, and some potential table, queue, and file
storage implementations

Along with the hierarchy, the URL for each service is important,

because the public-facing URL for storage will make some of your data (set

by you) available over HTTPS protocols.

Since the Azure Storage account must have a unique FQDN across all

of Azure, you likely won’t be able to create an account with a name such as

myStorage, since someone else has likely already used that name.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

6

This would translate to https://mystorage.blob.core.windows.net.

With your FQDN, the pattern for accessing the URL is typically https://

your-account-name.storage-type.core.windows.net/some-resource,

where your-account-name is 3-24 lowercase characters that are either

a-z or 0-9 only. Figure 1-2 highlights how Azure will remind you when

your storage account name does not conform to the limitations of the

naming schema.

Figure 1-2. Creating a storage account with improper naming will
generate an error in the portal. It reminds you when your account
name is invalid

All storage accounts will contain access keys that can be used to

connect to the storage account via the Azure Storage Software Developer

Kit (SDK). Keys can be rotated. The connection string is a combination of

the unique FQDN for the account and the primary or secondary key (see

Figure 1-3).

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

https://mystorage.blob.core.windows.net
https://your-account-name.storage-type.core.windows.net/some-resource
https://your-account-name.storage-type.core.windows.net/some-resource

7

Figure 1-3. Reviewing a storage account on the Access Keys blade to
get the connection string. Note the ability to rotate the keys at will

 Types of Azure Storage
When it comes to storage, you might think mostly of blob storage.

However, there are four types of storage that you can utilize within a

storage account. The four types are Containers, Tables, Queues, and File

Shares, as highlighted in Figure 1-4.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

8

Figure 1-4. The four types of storage are highlighted in the left
navigation menu on the storage account

How you utilize storage is entirely up to you and your team. It’s

important to note that there really are few restrictions when it comes to

how you structure your storage account. You can have one account for

container storage, another for table storage, and another for file or queue

storage. You can also have one storage account that has some combination

of one or more of each type.

The bulk of the AZ-204 material covers developing solutions against

Azure Blob Storage. For the most part, therefore, you’ll home in on blob

storage in this review, but it’s still a good idea to start with a look at each of

the four types of storage, so you can ascertain the correct type of storage

for any solution that might be presented, either on real-world projects or

on the exam.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

9

 Azure Container (Blob) Storage
As a developer, a great deal of the work you do with storage will likely be

working with code against container (blob) storage. As mentioned earlier,

a binary large object (blob) is typically an object that has been serialized

to binary, leveraged as a byte array (byte[]), and then uploaded to or

retrieved from storage as an immutable blob. Later in the chapter, you

learn how to work directly with blob storage using code, and a challenge

will follow for you to implement a solution utilizing C# and Azure Blob

Storage.

In addition to understanding what a blob is, it is important to know

how Azure Blob Storage stores different types of blobs, because the way

blobs are stored determines the maximum size of the blob and how you

can interact with the blob. There are three types of blob storage that you

can select, and each type is important for various workloads.

Finally, it is important to understand that as you create a storage

account, you also need to create a container in which to store your blobs.

You can have many containers in a storage account, with different access

levels and different default tiers. (Figure 1-5 shows a potential storage

account with multiple containers.)

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

10

Figure 1-5. The storage account can have multiple containers. Each
container can have its own public or private access

Depending on your settings when you create the storage account,

some system containers will be generated, such as the $logs container

shown in Figure 1-5. These containers cannot be deleted. However, the

contents of a $ container are mutable/able to be deleted, but you should

do so with caution. The $logs container is where Azure Storage is logging

requests, so if you delete/modify the logs, you are essentially removing the

ability to trace through requests.

 Block Blobs

The main type of storage you’ll work with in typical code for interaction

with Azure Blob Storage is the block blob. The blob itself that you upload

is broken into chunks called blocks. This breaking up of the data is a

mechanism to allow the throughput of the blob to be optimized over the

network.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

11

When you upload a blob to Azure Blob Storage, you can choose the

size of the blocks, which can be anywhere from 64 Kilobytes (KB) in size to

100 Megabytes (MB) in size. The typical default for blocks is 4 Mebibytes

(MiB) in size. The maximum number of blocks that can be utilized is

50,000. Therefore, if you choose a size of 64 KB, the maximum size of your

blob in Azure Blob Storage is 64*50,000, which is 3,200,000 KB (or 3.2 GB).

If you choose the maximum size of 100 MiB, you get 100 MiB* 50,000,

which is 5,000,000 MiB, which translates to around 4.75 TiB (Tebibyte).

Recent updates to some tiers and preview versions put the block

maximum size to up to 4000 MiB, making the maximum size a massive

190.7 TiB. If you want more information about these limits, you can read

more at https://docs.microsoft.com/rest/api/storageservices/

Understanding-Block-Blobs--Append-Blobs--and-Page-Blobs.

The typical use case for block blobs will be for most of your typical

objects that you store in the container. This can include images, videos,

documents, and serialized objects. Figure 1-6 highlights some options

when uploading a block blob.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

https://docs.microsoft.com/rest/api/storageservices/Understanding-Block-Blobs--Append-Blobs--and-Page-Blobs
https://docs.microsoft.com/rest/api/storageservices/Understanding-Block-Blobs--Append-Blobs--and-Page-Blobs

12

Figure 1-6. Creation of a block blob with options selected for the
block size and initial tier. Callouts also note the ability to set a
folder path

 Append Blobs

The second type of blob storage that you can use is the append blob. The

append blob is also a block blob but is optimized for only adding blocks to

the end of the blob.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

13

This end-only optimization creates an ideal scenario for utilization

when writing to a log file, where you are continuously writing new

information that is appended, and the original information is unchanged.

The append blob cannot modify the existing blobs, as it is optimized

only to modify the blob by appending additional blobs to the end of the blob.

 Page Blobs

Page blobs are a specialized storage type that is optimized for storing

virtual disks. Typically, at this point, when you provision a new VM, you

will utilize a managed disk and not worry about any of this underlying

architecture, as Azure will now manage the storage of the disk for you.

However, you may encounter legacy VMs in Azure or scenarios where an

unmanaged disk was provisioned into a storage account. In any scenario,

to be correctly applied, the storage account for the disk, whether managed

or managed, should be stored as a page blob.

It is important to note that page blobs are stored in 512-byte pages.

When writing to page blobs, the write operations are happening in

512-byte chunks and can utilize an offset to hit the specific pages. The

maximum simultaneous write operation is 4 TiB. The maximum size for a

page blob is 8 TiB.

Managed disks are typically solid-state drives (SSDs) and are going to

reside in the premium tier to maximize throughput. An unmanaged disk

can leverage standard storage or premium storage, depending on your

need for throughput and the type of hard drive that is backing the compute

for your machine.

 Azure Table Storage
The second type of storage you may utilize is Azure Table Storage. If you

are looking for a way to take advantage of quick, easy, and inexpensive key-

value pair (KVP) NoSQL storage without utilizing a Cosmos DB account,

then Azure Table Storage is your answer.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

14

With a table storage account, you can utilize code to read and write

and work with structured NoSQL data, which can be referenced by key

and/or cluster index consisting of the primary key and row key. There are

some great advantages to this approach and also some limitations. You’ll

take a closer look at the capabilities of the Table API for Cosmos DB in the

next chapter, where you learn about a few of the benefits of switching to

the Table API.

Should you already have a table storage account or just want to avoid

using Cosmos DB, the good news is that now there is an SDK that lets you

easily work against either table storage or the table API for Cosmos DB.

Good candidates for utilization of table storage include storing simple

settings for users in your applications and using table storage to

de- normalize data and quickly and easily make this data available to many

applications.

Table storage is scalable, but you won’t get the robust global replication

you might need unless you move to Cosmos DB. In high-availability/

high-throughput scenarios, you can make a read-only replica of your table

storage in a secondary region, but you will only be able to write to the

primary region.

The URL for table storage will follow a common pattern that you’ll

see for each of the storage types. The Table Storage URL always looks as

follows:

https://<your-storage-account-name>.table.core.windows.

net/<table>

You’ll see the contrast to this in the next section for the Cosmos DB,

where table.core.windows.net becomes table.cosmosdb.Azure.com.

The hierarchy for table storage contains the top-level account,

followed by the table. Within the table, you will encounter the entities, and

within entities, properties. The properties are the NoSQL KVPs. When you

build your code, you will need to connect to the account with a connection

string, then leverage the table/entity/property.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

15

Entities in Azure Table Storage are limited to a maximum size of 1MB.

Each property will have some common properties and then the data

that can be anything you want it to be. The properties are a timestamp, a

row key, and a partition key.

 Designing Your Data

When it comes to working with data in a NoSQL document store, it is

important to know that you aren’t building relational data. As such, joining

data across documents is not generally possible and a need to do so would

be an immediate indication of a design flaw in the architecture.

Without a relational structure, what do you do with your data and

how do you optimize it in certain scenarios? The answer to this question

really depends on your application. Will you need to maximize for writing

or reading? Will there be a ton of ad hoc or disparate queries against the

data, or can you define a couple of queries that encompass the majority of

your needs?

Both table storage and Cosmos DB rely heavily on partitioning data by

utilizing the correct property as the partition key. Where the partition key

comes in is how to efficiently group that data for your solution. Indeed, a

Cosmos DB has the ability to do multiple indexes, where table storage only

has one index, so already you might be thinking that would be a better

place to store this data. You get a chance to dive deeper into structuring

NoSQL data for optimization in the next chapter.

For this examination of table storage, know that the index is always

the partition key and row key combined. With that knowledge, you can

be assured that the best performance comes for a query when both are

named directly, with no variability.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

16

 Azure Queue Storage
The third type of storage you need to be in command of is Azure Queue

Storage. As you learn more about cloud-native, microservices, and

serverless development, you will likely need a messaging solution to help

communicate among disparate components. One option for a messaging

solution is Azure Queue Storage. In a later chapter on messaging, you get a

chance to dive deeper into Azure Queue Storage and see how it compares

with the Service Bus Queue/Topic messaging service in Azure.

A couple of quick pieces of information about queue storage that you’ll

need to be aware of:

• You can store massive amounts of small messages in

the Azure Storage Queue.

• Messages automatically expire after seven (7) days.

 Azure File Storage
If you are like me and you see the word “File” followed by storage, you

might think something like “This must be where I put all my files.” Well,

you are correct and incorrect at the same time. Azure File Storage is a

solution that is designed to help a team migrate a Storage Area Network

(SAN) drive from an on-premises data center into the cloud. Azure File

Storage is not for storing the images and/or videos that you are hosting for

public or private consumption from your website.

Therefore, to distinguish the correct scenario for utilization of Azure

File Storage, it is important to remember that any file can also be a blob.

For example, images or videos for a website will likely be stored as blobs

in blob storage. If your scenario is creating a shared network storage

solution in Azure, or the purpose is replacing a shared storage solution like

Dropbox or OneDrive, then the correct solution is Azure File Storage.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

17

Another important aspect of Azure File Storage is the fact that

Server Message Block 3.0 (SMB 3.0) protocols utilize it. This means that

any existing solution you have can easily be pointed at the Azure File

Storage solution and the code and/or settings you configured for existing

applications should just work. In addition to SMB 3.0, Azure File Storage

also utilizes the Network File System (NFS) protocol.

When you create your file storage, you’ll need to choose which

protocol you want to use, as you can’t utilize both in the same file storage

instance. You can, however, have side-by-side file storage implementations

in the same Azure Storage account.

 Blob Storage
Table storage is covered in the next chapter and queue storage is covered

in Chapter 13. File storage is a bit outside of the scope of the AZ-204 Exam,

as file storage is typically more important for the administration and

solution architect paths. Therefore, the remainder of this chapter looks

exclusively at utilization of Azure Blob Storage, including how to work with

blob storage from C# code.

 Storage Account Performance Tiers
When you provision an Azure Storage account, you’ll need to configure

a number of options on it. One of the options you’ll need to choose is the

correct performance tier. The choice of tier will have a direct effect on

pricing and the overall throughput of the storage account. There are two

tiers from which to choose when creating storage—Premium and Standard

(see Figure 1-7).

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

https://doi.org/10.1007/978-1-4842-9300-3_13

18

Figure 1-7. The two choices for storage performance tier are
Standard and Premium

 Standard Tier
In general, standard storage is adequate for workloads that do not need

a maximized throughput (low latency). For example, serving files and

storing documents are great candidates for a standard account.

 Premium Tier
Workloads that require a lower latency or a private network will be better

served in a premium tier. Good use cases for a premium account include

storing and accessing SSD disks, streaming larger audio and video files

frequently, or building a private network endpoint to connect to storage

from other Azure resources over a private connection.

 Storage Account Redundancy
An additional choice when provisioning a storage account is the level of

redundancy that you want. Do you need to have resilience across regions?

Do you care to have resilience across zones within a region? Do you want

both? In addition to resiliency, do you also need the ability to read the

storage from a secondary region? These are the questions you need to

answer when selecting the storage redundancy.

In general, all storage account blobs in the hot tier have an SLA

of 99.9% (three nines). However, accounts with Read Access and Geo

Redundancy (GRS-RA) have a Service Level Agreement (SLA) of 99.99%

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

19

(four nines) for read operations. Additionally, cool and archive storage

have a lower SLA of just 99 (two nines) for everything but GRS-RA, and

GRS-RA has a guarantee of 99.9% (three nines) for read operations. Also

note that availability (SLA)—the ability to access the service in Azure—is

not the same thing as durability of the objects, which is the integrity of

the data without loss or corruption. Figure 1-8 shows the options for the

storage account. Note that the option for Read Access is a checkbox that is

only available when one of the geo-replication options is selected.

Figure 1-8. The options for storage data resiliency and redundancy
are presented, with GZRS-RA selected in this image

 Locally Redundant Storage (LRS)
Locally Redundant Storage (LRS) is the least expensive and least resilient

storage option. With LRS, you get redundant storage within the data center

across three fault domains (three disks on different racks), but you do not

get any additional redundancy. As this option is not replicated to any other

regions (or zones), there is no option for read access at this level of storage.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

20

Example scenarios where you might choose LRS are development and

test environments and any other solutions where high availability and

resiliency are not required. LRS guarantees at least 11 nines durability of

objects.

 Zone-Redundant Storage (ZRS)
Zone-Redundant Storage (ZRS) uses the availability zones within your

primary region. Since ZRS requires zones, this option is only available in

regions where redundant zones are available. With ZRS, your data spans

across at least three data centers that are physically separated by at least

ten miles. ZRS protects your access to data when one center needs to

undergo maintenance or when a disaster happens and doesn’t affect the

entire region. ZRS has a durability of 12 nines.

ZRS is a recommended option for production-ready accounts that

need to be highly available. As long as at least one data center in the region

is available, you’ll have access to your data.

ZRS can also be useful to ensure resiliency while staying within a

limited geographic region, which can be required in some compliance

scenarios.

 Geo-Redundant Storage (GRS)
Geo-Redundant Storage (GRS) is similar to LRS, as your data is once again

replicated to at least three fault domains in a single zone within your

primary region. Additionally, your data is also replicated to one data center

in a secondary region. Within the secondary region, your storage is also

replicated to three fault domains as LRS. GRS has a durability of 16 nines.

Scenarios for GRS include any solution that needs to be available in

case of a regional failure. Although the data is not available, if your primary

region fails, then the data in the secondary region can temporarily become

the primary region and your work can continue without interruption.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

21

 Geo-Zone-Redundant Storage (GZRS)
Geo-Zone-Redundant Storage (GZRS) is the next step in resiliency and

availability. As you might expect at this point, GZRS is similar to ZRS, but

also includes the failover (secondary) region. In this scenario, the primary

region replicates the data across at least three data centers. The secondary

region is again implemented as LRS, and the data in the secondary region

is not available for read/write operations unless the secondary region is

temporarily made primary during regional failures. GZRS has a durability

of 16 nines.

 Geo-Redundant Storage with Read Access
(GRS-RA)
Geo-Redundant Storage with Read Access (GRS-RA) gives you the ability

to have all of the benefits of GRS (including 16 nines durability) with the

additional ability to read the data from the secondary region.

 Geo-Zone-Redundant Storage with Read Access
(GZRS-RA)
Geo-Zone-Redundant Storage (GZRS-RA) is similar to GZRS and also gives

you the ability to read data from the secondary region.

 Read-Access Storage and Development
of Your Applications
With either the GRS-RA or GZRS-RA redundancy, your storage can be

read by applications from the secondary region. In order to achieve this

functionality, the primary URL for the storage account will be the same

as the original storage account but will contain -secondary as part of

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

22

the account. The storage account keys will work in either the primary or

the secondary region, so you can use this knowledge to configure your

applications to read from the secondary region.

 Blob Storage Tiers
Within a blob storage account, each individual blob can have one of three

tiers as an attribute to the blob. The tiers are Hot, Cool, and Archive.

Each of these tiers can exist in a single container, and containers can

have a default setting to be either hot or cool. If the default setting is hot,

then any blob uploaded to the container will be optimized for hot storage.

Service lifecycles can be used to move blobs from hot to cool, hot to

archive, cool to hot, and/or cool to archive. Moving a blob from archive to

either hot or cool requires some manual intervention.

One important point to remember is that while it may be the case in

many scenarios, moving between tiers is not a stair-stepping operation.

Blobs can be moved directly from hot to cool or directly from hot to

archive. Blobs can also be moved from archive to either cool or hot storage.

As expected, blobs can also be moved from cool to hot or archive storage.

When you create the storage account, you set the tier default, which

can be only cool or hot. Note that the default setting is not a requirement

for new blobs. When you upload a blob, you can specify a tier. Therefore,

the default storage tier will be leveraged for blobs that are uploaded

without specifically overriding the access tier (see Figure 1-9).

Figure 1-9. Creating an account presents a chance to set the default
to hot or cool tier as the default access level for new blobs

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

23

 Hot Storage
Hot storage is an optimization for your blob that minimizes the cost for

access and throughput. Since throughput cost is optimized, in the hot tier,

the cost to store blobs is higher.

Consider a scenario where you have a document or image that will be

accessed frequently throughout the day by multiple applications and/or

users. This might include blobs like your web images, documents that are

frequently reviewed, and other important, highly visible storage assets.

In this scenario, since the blob needs to be accessed often, your

maximized cost option is to keep the blob in hot storage.

 Cool Storage
Cool storage is an optimization for your blob that minimizes the cost of

storage while allowing access to the blob. Since the storage is optimized,

blobs in the cool tier are going to cost more to access. For this reason, you

want to utilize cool storage when your document may have limited use or

access but still needs to be readily available.

Consider a scenario where you have generated a monthly billing report

and you need to keep the billing reports available even when they aren’t

utilized much after the first 30 days. In this scenario, users may need to

review the document for historical purposes, but it’s unlikely that the

document would be reviewed more than once or twice in a longer period

of time. In this scenario, cool storage would be a great solution.

 Archive Storage
Archive storage is for the blobs you need to keep but don’t need to access

without special reasons for that access. There is no direct access to an

archive storage blob. To review or utilize the blob, you must first hydrate

the storage blob item back to the cool or hot storage tier. The hydration of a

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

24

blob from the archive tier to either the cool or hot tier can take a significant

amount of time. Prior to recent releases, this rehydration period was up

to 24 hours. Now there are options whereby you can pay more to get the

data more quickly. If you create a high-priority request and your data is

less than 10 GB, you may see it within an hour. For a standard request, you

should expect around 15 hours before rehydration is completed. You have

no other control other than to place the request for rehydration.

Scenarios for the use of archive storage include legal holds for

important documents to keep in case you need to validate a statement of

work or some other legal arbitration. Additional reasons to keep blobs in

archive storage could be backup operations and other automations that

ensure that you never lose state or data from a point-in-time, while also

maximizing your value for your storage expenditures.

As noted, archive is not available as a default setting. However, when

you upload a blob, you can set its access level to any tier, including archive

(see Figure 1-10).

Figure 1-10. New blobs can be uploaded with any of the three
access tiers

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

25

 Automation of Tier Placement
When you upload a blob into storage, if you don’t set the tier, then the

default tier for the container will be used. Typically, the default tier will be

the hot tier. In many cases, you will likely want to automate the lifecycle

of blobs so that administrators or developers don’t waste time checking

and manually moving blobs across tiers. For this reason, Azure Storage

accounts have the ability to create lifecycle management rules.

Creating a lifecycle management rule allows the blob to be

automatically moved to a different tier. There are two conditions you can

use to check for automatic handling, which are if conditions based on

the last modified date or the created date. You can use one of these trigger

conditions with a date window of “more than x days ago” to automate the

handling of the blob. Figure 1-11 shows a lifecycle rule on the container

that moves blobs to cool storage after 30 days.

Figure 1-11. A lifecycle access rule for blobs in the storage container
automatically moves blobs to cool storage 30 days after creation

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

26

Handling the blob involves one of three options, which are move to

cool storage, move to archive storage, or just delete the blob. Figure 1-12

shows the options when creating a rule.

Figure 1-12. Options for creating an automation rule include move
to cool storage, move to archive storage, and delete

 Storage Access
Containers within your storage account can have either public or private

access. You can also set a container to be private by default but allow

specific blobs to have public access. When you create your storage

account, you can set the ability to prevent any public access to containers

and blobs. If you set the account level to private, there will be no option to

make blobs or containers available for anonymous public access.

As you create your account, you also have options to create the storage

account in a private network. When you place an account in a private

network, only resources within that network or with configured access

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

27

through that network can access the storage account. The traffic on a

storage account with private access utilizes the Azure backbone and is

therefore more secure. If you do not utilize a private network, then traffic

for your storage account will typically go over the public Internet. Although

communication is encrypted and storage at rest is encrypted, you will

likely want to put sensitive accounts on a private network.

All blobs stored in container storage have the same URL pattern. The

pattern is the name of your storage account, followed by the blob storage

common URL, and then any information to identify the blob. This URL

always looks as follows:

https://<your-storage-account-name>.blob.core.windows.

net/<optional-folder/<blob-detail>.<blob-extension>

It is important to note that the storage account name is whatever you

created, but the folder structure is just a virtual identifier for the blob.

Unless you created a data lake storage (hierarchical), the “folders” are just

additional identifiers on the URL and every blob is stored at the same level

in the container.

Figure 1-13 shows options enabled for allowing public containers and

for allowing access via the key. Key access is required for working with the

SDK. Unchecking (disabling) either of these options will limit who can

access the blobs and how they are available.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

28

Figure 1-13. The options to allow public access and key access are
enabled by default during account creation

 Public Access
As mentioned, when a storage account is created, as long as the option

to make containers public is allowed, containers can be set to a default

access level of public. When a container is public, all blobs in the container

are public. Typically, this is used in a scenario where you want to allow

anonymous read access to assets, such as images or videos for a website.

 Private Access
In many scenarios you will want to ensure that blobs cannot be accessed

via anonymous requests. Setting private access will make sure that only

authorized users or applications can access your data.

As stated, the entire account can be locked into a private-only option

during creation, or you can ensure that access levels on a blob storage

container are set to private.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

29

 Shared Access Signature (SAS) Tokens
As mentioned, when a container is set to private access, there are a couple

of ways to access the data. One way is to utilize the account keys and

connection information and then utilize code with the Azure Storage SDK

to access the data. Another way is to issue Shared Access Signature (SAS)

tokens. The SAS token can be issued on an individual basis or can be

issued per a shared access policy. Figure 1-14 calls out the left-nav menu

items for each type of token at the container level.

Figure 1-14. The left-nav menu contains links to create the SAS
tokens individually or create a policy that can issue and revoke
multiple tokens en masse

When you create a token, you have the option to set things like the

duration and specific rights for the token, such as read, write, and delete

(see Figure 1-15). Tokens can be issued at the single-blob level or the

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

30

container level. Single-blob tokens are useful for individual access to only

one blob. Container-level tokens allow access to all blobs in the container

with the permissions set during creation of the token.

Figure 1-15. Creating tokens allows you to set various options
regarding the permissions, time of expiration, filtered IP addresses,
and access protocols

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

31

 Individual (Ad Hoc) Tokens

Individual tokens can be for a single blob or can be issued for an entire

container. With an active token that has read access, anyone with the link

can access the blob(s) that are exposed by the token for read but cannot

modify them.

Individual (ad hoc) tokens are not manageable in Azure Storage

once they have been created. For this reason, the only way to invalidate

an active ad hoc token is to regenerate the key with which the token was

created.

 Policy-issued Tokens

Policy-based tokens are valuable because they are not only going to

accomplish the access tasks as per any SAS token, but they are also issued

by a policy.

For this reason, if you have a lot of volatile tokens and you need to

rescind them for some reason, you can invalidate all tokens issued by

a policy. This is more powerful than individual tokens and can be safer

for business continuity for your customers, since keys don’t have to be

regenerated.

To create a token via a policy, you must first create the policy. Tokens

in the policy share lifecycle and access permissions. Once the policy is

created, return to the menu to issue tokens and, in the appropriate drop-

down menu, select the policy you want to apply. Figure 1-16 shows the

creation screen for creating a new access policy.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

32

Figure 1-16. Use the Access Policy menu to create a new policy for
issuing a group of SAS tokens

 Working with the Azure Storage SDK
To complete this chapter, you’ll want to gain a solid ability to work with the

Azure Storage SDK. Therefore, this chapter wraps up by looking at the code

that makes it possible to develop applications against Azure Blob Storage

using the Azure Storage SDK.

The easiest way to learn this material is to reference the Microsoft

Learn ecosystem and complete the learn modules. For many of the MS

Learn activities, you must have an active Azure subscription. If you do not

have a subscription, refer to Appendix A for information on how to get a

free Azure trial account.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

33

 Working with Azure Storage from Code
Using the .Net SDK
The rest of this chapter is a summary of the code and operations you need

to be in command of in order to work with Azure Storage. You can find all

code shown in the source files, which are located in the GIT repository for

this book.

 Creating the Account
As previously mentioned, when developing against Azure services with

an SDK, you will almost always need to be in command of the hierarchy.

For storage, you’ll first need to create an account. The account will need to

reside in a resource group in your subscription.

There are typically four ways to create resources in Azure—through the

portal, through the REST APIs, through automation templates like ARM or

Bicep, or through imperative commands using the Azure CLI.

 1. Connect to Azure.

 2. Navigate to the Storage Account blade and create a

new storage account.

 3. Use the Azure Portal, Azure CLI, or PowerShell to

create a storage account with:

 a. A unique name that’s 3-24 characters, lowercase or

0-9 only.

 b. Local Redundant Storage (LRS)

 c. Standard Tier (Gen Purpose V2)

 d. Ensure that enabling public access on containers

and storage account key access are checked

 e. Utilize the hot tier for the default on the account

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

34

The end result should be a new storage account in Azure. Navigate to

the Access Keys blade, as shown in Figure 1-17.

Figure 1-17. A storage account exists that allows you to connect to it
via the SDK using the connection string

Copy the connection string to the clipboard for use in code.

 Getting Connected to the Account
There are many languages you can use to work with an Azure Storage

account via the Azure Storage SDK. This book assumes a primary

approach with C# for snapshots of code, but you can also use Java, Python,

JavaScript, C++, Go, PHP, and Ruby. Instructions can be found at https://

learn.microsoft.com/azure/storage/common/storage-introduction.

 1. Create a console project in C#, either in Visual

Studio or Visual Studio code.

 2. Import the Azure.Storage.Blobs SDK libraries.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

https://learn.microsoft.com/azure/storage/common/storage-introduction
https://learn.microsoft.com/azure/storage/common/storage-introduction

35

 3. Implement a methodology to get the connection

string from a configuration file and place the

connection string in your user secrets.

 4. Create a folder called notes and place a file in that

folder called affirmations.txt. To the file, add

the following statement: "I'm going to pass the

AZ-204 Exam soon!"

 5. Set the TXT file properties to Content and

Copy Always.

 6. Use the following code to create the

BlobServiceClient for the connection:

 //get the connection string from config

 var storageCNSTR = _configuration["Storage:

ConnectionString"];

 //create blob storage client

 var blobStorageClient = new BlobServiceClient

(storageCNSTR);

 Creating a Container
With the application created and ready to connect, you can use this simple

code to create a container named images:

//create notes container

var exists = false;

var containers = blobStorageClient.GetBlobContainers().

AsPages();

foreach (var containerPage in containers)

{

 foreach (var containerItem in containerPage.Values)

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

36

 {

 if (containerItem.Name.Equals("notes"))

 {

 exists = true;

 break;

 }

 }

 if (exists) break;

}

if (!exists)

{

 blobStorageClient.CreateBlobContainer("notes");

}

var containerClient = blobStorageClient.GetBlobContainerClient

("notes");

 Uploading a Blob
Leverage the SDK to upload your text file:

//upload

var path = "./notes/affirmations.txt";

var blobClient = containerClient.

GetBlobClient("affirmations.txt");

var fileBytes = File.ReadAllBytes(path);

var ms = new MemoryStream(fileBytes);

blobClient.Upload(ms, overwrite: true);

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

37

 Listing All the Blobs
To get a list of all the blobs in a container, use the following code:

//list blobs

exists = false;

foreach (var blob in containerClient.GetBlobs())

{

 Console.WriteLine($"Blob {blob.Name} found!

{blob.Properties}");

 if (blob.Name.Contains("affirmations.txt"))

 {

 exists = true;

 }

}

 Downloading a Blob
To download a blob from storage, use the following code:

//get blob

if (exists)

{

 blobClient = containerClient.GetBlobClient

("affirmations.txt");

 Console.WriteLine($"Blob {blobClient.Name} exists at

{blobClient.Uri}");

 var downloadFileStream = new MemoryStream();

 blobClient.DownloadTo(downloadFileStream);

 var downloadFileBytes = downloadFileStream.ToArray();

 using (var f = File.Create($"{Environment.

CurrentDirectory}/notes/affirmations-download.txt"))

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

38

 {

 f.Write(downloadFileBytes, 0, downloadFileBytes.

Length);

 }

}

 Modifying the Blob Metadata
To work with blob metadata, leverage the container to get blobs and then

set the specific blob metadata:

// metadata

foreach (var blob in containerClient.GetBlobs())

{

 Console.WriteLine($"Blob {blob.Name} found!

{blob.Properties}");

 if (blob.Name.Contains("affirmations.txt"))

 {

 //add metadata

 blob.Metadata.Add("createdby", "yourname");

 blob.Metadata.Add("reason", "success");

 blob.Metadata.Add("filter", "important");

 //review metadata

 var metadata = blob.Metadata;

 foreach (var key in metadata.Keys)

 {

 Console.WriteLine($"Metadata {key} has value

{metadata[key]}");

 }

 }

}

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

39

 Deleting a Blob
To delete a blob, use the following code:

//delete blob

blobClient = containerClient.GetBlobClient("affirmations.txt");

blobClient.DeleteIfExists();

 Deleting a Container
To delete a container, use the following code:

//delete container

containerClient.DeleteIfExists();

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach the potential solution(s). You can find

answers to these questions in Appendix A at the end of this book.

 1) How do you access a specific private blob and all

private blobs in a container from the public URL?

 2) What are some scenarios where you might make

blobs public?

 3) Can you put an Azure Storage account inside a

private network?

 4) What is the maximum size of a blob?

 5) How do you move blobs from one tier to another?

 6) Describe the process of rehydration of a blob from

archive storage to any other tier?

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

40

 Complete the AZ-204: Develop Solutions
that Use Blob Storage Learning Path
To fully learn the material, I recommend taking the time to complete the

MS Learn modules for Azure Storage found here:

• Develop solutions that use Azure Blob Storage:

https://learn.microsoft.com/training/paths/

develop-solutions-that-use-blob-storage/

 Chapter Summary
In this chapter, you learned about storage in Azure and how to utilize the

storage SDK to work with blobs in Azure Container Storage.

After working through this chapter, you should be on track to be in

command of the following concepts as you learn about Azure and prepare

for the AZ-204 Exam:

• Know the four types of Azure Storage and what they

are for.

• Understand what the various tiers are for in Azure

Storage and how to optimize your utilization of each

tier based on your application’s needs.

• Understand how to automatically move blobs from one

tier to another within your storage account, or move

the blobs from one container or account to another

container or account.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

https://learn.microsoft.com/en-us/training/paths/develop-solutions-that-use-blob-storage/
https://learn.microsoft.com/en-us/training/paths/develop-solutions-that-use-blob-storage/

41

• Enable public and private access on blobs and

containers and work with SAS tokens and policies to

allow unique access to private blobs.

• Interact with Azure Blob Storage via the .NET SDK,

including working with properties and metadata.

In the next chapter, you will learn about working with Cosmos DB and

Azure Table Storage for NoSQL data storage.

Chapter 1 aZUre StOraGe eCOSYSteM: OVerVIeW aND DeVeLOpMeNt WIth
 aZUre BLOB StOraGe

43

CHAPTER 2

Develop Solutions
That Use Cosmos DB
About two years ago, I started learning about Cosmos DB and all the

nuances that it contains. Even after all this time and an additional

certification (DP-420), Cosmos DB is still an incredibly difficult topic

to understand, and can be even more tricky to fully leverage correctly.

Learning Cosmos DB is especially difficult for those who, like me, have

been developing solutions utilizing relational database systems for more

than just a couple of years.

Truth be told, relational developers like me love the structure of

relations. We love the consistency of normalization and the ease of

building high-performing queries that get our data quickly and efficiently

to render to our clients. We are confident that our stored procedures are

the only tool we need to manipulate the data, and, on rare occasions, we

can even use a trigger if we have no other choice.

The good news is that some of these concepts do translate (in a way)

into Cosmos DB. The bad news is that most operations are contradictory to

how relational developers think about normalization and relational data,

and that can make the barrier to Cosmos DB even greater.

Cosmos DB has a top-level account (like a server), with one or more

databases, which store data in one or more containers (which you can

think of a bit like a table). Cosmos DB has an Atomicity, Consistency,

Isolation, and Durability (ACID) transaction capability that you can

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_2

https://doi.org/10.1007/978-1-4842-9300-3_2#DOI

44

implement with the Cosmos DB SDK. You can even write stored

procedures and triggers—albeit utilizing JavaScript as the development

language.

For all of these reasons, in this chapter, I take the approach that you are

fairly new to Cosmos DB and need to know how to utilize it effectively with

code (for this exam and for some actual projects). I also present some of

the major concepts around the optimization of these mysterious Request

Units (RUs), and how they play out in both your analysis of your data

and your overall cost for utilizing Cosmos DB. Even if you aren’t a non-

relational database developer by trade, this chapter will help position you

for the knowledge around development with Cosmos DB.

In addition to those things, we also look at the specific pieces you need

to be in command of for working with Azure Cosmos DB for the exam,

and we compare working with Cosmos DB to working with Azure Table

Storage.

 Why Choose Azure Cosmos DB?
With the learning curve being somewhat steep, and the cost being another

prohibitive hurdle, there must be good reasons to choose Cosmos, right?

Among the benefits of choosing Cosmos DB, you get the best possible

throughput on your data with a 10ms guarantee for reads and writes on

99% of your requests. Additionally, Cosmos DB provides 99.999 (five nines)

availability on accounts with multi-region read and write capabilities.

Cosmos DB also gives your applications the ability to write to any

region or read from any region, all the while making sure to handle the

replication within Cosmos itself. This means you don’t have to do anything

but configure the account and the rest of the replication and failover is

taken care of for you.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

45

Finally, Cosmos DB has the ability to scale to massive levels of

throughput. Theoretically, you can get unlimited throughput if you

configure the account correctly. However, there are ultimately physical

and financial reasons that could prevent you from testing that theory (data

centers have a physical capacity limit and the cost of scaling to unlimited

throughput could be devastatingly astronomical).

All of this is to point out that even though there is a curve and a

number of things that need to be considered, the move to Cosmos DB is a

logical choice for today’s cloud-native applications.

 Azure Cosmos DB Hierarchy
As mentioned, there is a definitive structure to Azure Cosmos DB that gives

you a foundation to build upon. This structure allows the Cosmos DB SDK

to work in a similar manner to how the SDK utilized a structural approach

to composing objects in the storage section of the previous chapter.

At the top level, you’ll create a Cosmos DB account. In Azure, you can

now create one free Cosmos DB account per subscription, with 1,000 RUs

of manually provisioned throughput. Even if you don’t understand exactly

what that means, you can discern that it means you should be able to create

an account and learn how to work with Cosmos DB in code, even making

some mistakes, and likely not see a penny of expenditure on your Azure bill.

Once you’ve created an account, you’ll leverage a similar concept

to a database server with databases to create one or more databases

in your account. Within each database, you can create one or more

containers. Containers have items, which are the unstructured JSON

documents that contain the data. In addition to items, containers hold

the stored procedures, triggers, user-defined functions, conflicts, and

merge procedures. Depending on the API chosen for Cosmos DB, the item

structure differs internally based on the functionality implemented by the

chosen API. Figure 2-1 shows a sample of this hierarchy.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

46

Figure 2-1. The Cosmos DB hierarchy contains an account with one
or more databases, where each database has one or more containers,
and each container holds items, stored procedures, user-defined
functions, triggers, conflicts, and merges

 Choosing the Correct API
Azure Cosmos DB currently supports six API offerings that you need to

select from when creating an account. The offerings are based on specific

concepts or technologies, and you need to be able to determine which one

to choose in any given scenario.

The six APIs as of this writing are Azure Cosmos DB for NoSQL (also

known as SQL API), Azure Cosmos DB for Mongo DB, Azure Cosmos

DB for Apache Cassandra, Azure Cosmos DB for Table, Azure Cosmos

Chapter 2 Develop SolutionS that uSe CoSmoS DB

47

DB for Apache Gremlin, and Azure Cosmos DB for PostgreSQL. Before

diving too deeply into these different APIs, the recommendation for all

new development is to utilize Azure Cosmos DB for NoSQL. That being

said, each of these APIs exists to fill specific needs. When you create a

new Cosmos DB account, you need to choose the API for the account to

match the needs of your application and/or the skill set of your team (see

Figure 2-2).

Figure 2-2. The five APIs are presented for your selection during the
creation of an Azure Cosmos DB account

 Cosmos DB for MongoDB
The API for MongoDB (www.mongodb.com) is exactly like it sounds. You will

utilize this API any time it makes sense for you to have your application

based on MongoDB but store your data in Azure Cosmos. By utilizing the

MongoDB API, you can easily migrate your data and have plug-and-play

capabilities to work with your data using the same code that existed prior

to the migration.

Reasons to utilize this API are as described, with the migration of an

existing project and minimal application changes. Additional reasons are

for the creation of new projects that are multi-cloud and/or as part of a

team of seasoned MongoDB developers.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

http://www.mongodb.com

48

 Cosmos DB for Apache Cassandra
The Cassandra API (https://cassandra.apache.org/) is also exactly

like it sounds. You will utilize this API any time it makes sense for you to

have your application based on Cassandra, but store your data in Azure

Cosmos. Cassandra is a columnar based NoSQL store, which is different

from Azure Cosmos Core SQL and MongoDB.

Reasons to utilize this API are as described, with the migration of an

existing project and minimal application changes or on teams of seasoned

developers.

 Cosmos DB for Table
Azure Table Storage was briefly discussed in the first chapter. The reason

the Azure Table Storage API for Cosmos DB exists is so that you can easily

migrate existing table storage to Azure Cosmos with no changes to your

application. The same code that works against table storage will work

against the Azure Cosmos DB Table API.

Reasons to utilize this API are to migrate your existing table storage

solution to provide the additional ability to have global replication,

multiple write regions, and complex indexes for more proficient query

operations than what Azure Table Storage can offer.

 Cosmos DB for Apache Gremlin (Graph)
Gremlin is a graph-traversal language for Apache TinkerPop (https://

tinkerpop.apache.org/gremlin.html). In the typical Cosmos offering,

you can’t have graphs that can be traversed. An example of a graph that

needs to be traversed is finding friends of your friends. In a social network,

you have friends, and they also have friends (perhaps many are the same),

so the graph can be traversed through these complex relationships to

discern common friends or provide the ability to make recommendations

Chapter 2 Develop SolutionS that uSe CoSmoS DB

https://cassandra.apache.org/
https://tinkerpop.apache.org/gremlin.html
https://tinkerpop.apache.org/gremlin.html

49

as to friends you may know in the network. Another simple example is an

organization hierarchy where there are complex relationships between

employees, departments, and managers.

The reason to use the Gremlin API for Cosmos DB is to create

relationships in your data that can be queried and traversed as a graph.

 Cosmos DB for PostgreSQL
This offering gives you the ability to work with data from PostgreSQL

for distributed tables and highly scalable applications. This offering is

powered by the Citus open source extension for PostgreSQL. You can

count on the latest features being available for this offering within a few

weeks of them being released. Offerings include the ability to work with

JSONB and use native partitioning; they are also fully capable of working

with geographical locations in tables and queries.

 Cosmos DB for NoSQL
The Cosmos DB for NoSQL API is the recommended API for most

development. Although the name of the API includes SQL, this is not

anything like a relational SQL Server offering.

The reasons to use the Core SQL API are many, but the standard

recommendation from Microsoft is that you will mostly choose this

offering. Unless you are doing multi-cloud, have a team of seasoned

developers in another offering (MongoDB, PostgreSQL, or Cassandra),

need a graph, or need to migrate an existing app from one of those

technologies with minimal changes, Cosmos DB for NoSQL is the

recommended choice. For this reason, the rest of the chapter focuses on

the Cosmos DB for NoSQL offering.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

50

 Capacity Mode
When you create your Azure Cosmos DB account for Core SQL, you

get to choose one of two capacity modes. The first mode is Provisioned

Throughput. The second mode is Serverless. Figure 2-3 shows the optional

choices during account creation.

Figure 2-3. Creation of an Azure Cosmos Core SQL account allows
the option to select Provisioned Throughput or Serverless

 Provisioned Throughput
For most scenarios, you’ll likely choose Provision Throughput. When you

utilize this option, you will be reserving the RUs for your account. Because

these RUs are reserved, your cost for the monthly utilization of the service

will be predictable. Additionally, because of the reserved nature of the

account, you will be billed for the reserved RUs for the month, even when

you don’t do anything with the database.

When provisioning your RUs for the service, you can also select

options to automatically scale your account to respond to demand. This

ability to automatically scale allows you to set a baseline for your normal

operations but respond with additional throughput when necessary.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

51

If you are concerned about the cost, you can also select an option

to limit the total throughput on the account to prevent any accidental

changes that would cause your cost to skyrocket, even when auto-scaling is

utilized (see Figure 2-4).

Figure 2-4. The option to limit throughput on the account is checked

 To Share or Not To Share; That Is the Question

One of the more complex topics with Azure Cosmos DB is the idea of

throughput and RUs. In addition to the complexity of having to discern

how your account will be billed for utilization of storage, you also have to

think about how the throughput can be distributed or reserved for specific

databases or containers.

After choosing provisioned throughput, when it comes to provisioning

throughput utilization, you need to determine if you want to share the

throughput across all of the containers, or if you want to create a throughput

that is manually set and individually consumed by a single container.

Consider a scenario where you provision 1,000 RUs for a single database.

Inside the database are multiple containers. Each container can use up to

1,000 RUs, but the total consumption can’t exceed 1,000 RUs. This means that

in a shared scenario with uneven workloads, one or more containers could

become resource hogs and block other containers from being performant.

Consider that instead of sharing throughput, the solution provisioned

500 RUs for the main container, and then 250 RUs each for the remaining

two containers. In this scenario, the same amount of RUs would be

utilized (1,000), but the containers that were previously blocked would be

readily available. You should also recognize, however, that this means the

container that was hogging 1,000 RUs is now limited to 500 RUs unless the

container is allowed to automatically scale.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

52

 Serverless
In some scenarios, you may decide to utilize the Serverless offering. This

works best when you are going to be using Cosmos DB in a bursting

scenario. Perhaps you only need a few RUs in a month, and maybe they are

all on the last few days of the month. In this scenario, rather than paying

for Reserved Throughput, you might opt to use the Serverless offering.

A word of caution about this offering is worth noting, however.

Although this offering is based on consumption and is offered to help you

save money, incorrect utilization of this offering can result in even higher

costs than you would have incurred had you just provisioned the account

with reserved (provisioned) throughput. With the consumption model,

you’ll pay more per RU than you would have paid if they were reserved.

 Autoscaling
As with everything in Azure, the cloud should be elastic and able to

respond to your solutions as needed in a manner that gives you economies

of scale at will. With Cosmos DB, you can set autoscaling rules on

databases or containers to automatically respond to the critical needs of

your application.

 Global Distribution
One of the primary benefits of Cosmos DB is the fact that you can easily

allow Cosmos DB to be replicated globally. When the solution is replicated,

you will also need to select the correct consistency levels (covered in the

next section).

Along with the ability to be replicated in multiple regions, you can

select the option to allow multi-region writes. When you enable writing

in regions other than the primary region, you need to configure your

Chapter 2 Develop SolutionS that uSe CoSmoS DB

53

application to set the connection policy for multi-region writes, and

you also need to make sure to configure the policy to use multiple write

locations. Once deployed and set correctly, if you add replication regions

for read and/or write operations, the application will be able to find and

utilize the region that is closest to its deployed location. Adding replication

and distribution adds costs, as the account goes from being billed at

a single-region rate to a multi-region rate. In these scenarios, you will

pay additional costs for the ability to read from each region, and even

more to gain the ability to write to additional regions. More information

on cost calculation can be found at https://cosmos.azure.com/

capacitycalculator/. More information on configuring multiple write

regions in your applications can be found at https://learn.microsoft.

com/azure/cosmos-db/how-to-manage-database-account#configure-

multiple-write-regions. Figure 2-5 shows options selected for Geo-

Redundancy and Multi-Region Writes during account creation.

Figure 2-5. Geo-Redundancy and Multi-Region Writes are enabled
during the creation of the account

 Consistency Levels
Since the nature of Cosmos DB is to be distributed, it’s important to select

and configure how your solution will respond and deal with data as it is

replicated within the write region and out into any replicated regions.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

https://cosmos.azure.com/capacitycalculator/
https://cosmos.azure.com/capacitycalculator/
https://learn.microsoft.com/azure/cosmos-db/how-to-manage-database-account#configure-multiple-write-regions
https://learn.microsoft.com/azure/cosmos-db/how-to-manage-database-account#configure-multiple-write-regions
https://learn.microsoft.com/azure/cosmos-db/how-to-manage-database-account#configure-multiple-write-regions

54

Consistency is set at the account level and applies to all databases and

containers in the account. You can change the consistency throughout the

lifetime of your account as needed.

There are five consistency levels, with Strong being the most consistent

and Eventual being the least. The other three are Bounded Staleness,

Session (which is the recommended setting), and consistent Prefix. When

using Strong or Bounded Staleness, the cost of your operation is doubled

(for example, a query with a cost of 2 RUs is doubled to a cost of 4 RUs).

Overall, every consistency except for Eventual will preserve the order

of the writes to the database.

Table 2-1 shows a quick overview of the five consistency levels,

information about each, their effect on cost, and the ability to guarantee

that data delivery happens in order.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

55

Table 2-1. A Quick Summary of the Five Consistency Levels in Azure

Cosmos DB

Consistency
Level

Effect Effect on Cost Guaranteed
Order

Strong no dirty reads; all writes require

replication to all regions

Doubles the cost

of rus for each

query

Yes

Bounded

Staleness

Data is consistent to a set time

or number of versions

Doubles the ru

cost for each

query

Yes

Session read your own writes none Yes

Consistent

prefix

transactional availability (falls

to eventual when utilized in

multiple regions)

none Yes

eventual immediate read results but could

be stale. results could also be

out of order.

none no

 Strong Consistency
Strong consistency guarantees that there will never be any dirty reads of

data for any application in any region. The problem with this consistency

is that to make this promise, the data that is written cannot be read until

the replication has been propagated successfully around the globe, which

can lead to some noticeable latency for reads on recently written data.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

56

 Bounded Staleness
Like Strong consistency, Bounded Staleness is a highly accurate way

to review the data with very little chance of a dirty read. This option is

recommended when you need to guarantee order around the globe with

a minimum amount of latency. With this option, you set either a time

interval or a number of versions to force the read to take place. Whichever

option is hit first will trigger the ability to work with the data. As the system

is close to the trigger for time or versions, the system will ensure that writes

can be guaranteed by throttling down the ability to perform new writes.

While the data is written within the staleness window, different

scenarios will see different performance. Within the same region as the

write, applications get Strong consistency, even in the staleness window.

Other scenarios get Consistent Prefix consistency. If you are utilizing a

multi-region write and the client is writing to multiple regions, then during

the staleness window, you will have Eventual consistency.

 Session Consistency
Session consistency gives applications in session the ability to read their

own writes. The session consistency utilizes a session token to ensure

applications have the correct ability to get the correct data.

Session consistency is typically the default scenario for most

applications, as you’ll get the best trade-off between data consistency

and overall performance at this level, regardless of whether you are

replicating data.

 Consistent Prefix
Consistent prefix allows transactions to take place as a group and

become available at the same time, once the transaction is completed. If

a transaction is not used or the application is writing to multiple regions,

Chapter 2 Develop SolutionS that uSe CoSmoS DB

57

then the consistency will fall to Eventual. In other scenarios, the writes will

become available simultaneously. This is best visualized if you are using an

Azure Function to monitor the change feed. Perhaps a category name has

changed, and multiple documents need to be updated. In this consistency,

within a transaction, all of the documents will be updated and available

at the same time. Before they are available, all documents will show the

original category name. After the transaction completes, all documents

will show the new transaction name. Your solution is guaranteed to never

have some documents with the original category name and others with the

new category name.

 Eventual
Eventual consistency will give your solution the highest level of throughput

you can achieve. This performance, however, comes at the cost of data

having the possibility of being a dirty read. After some time, the data will

eventually be correct.

 Networking
As with most offerings, creating a Cosmos DB account allows you to select

how to connect to the Cosmos DB account.

The default connection is over All Networks, which is essentially the

public Internet. A second option allows you to create a public-facing

endpoint and set firewall rules and connect to a virtual network within

your Azure subscription. A final solution is to utilize a private endpoint.

The private endpoint also utilizes a private network in your Azure

subscription. Since this is on a private network, you can limit traffic to

Cosmos DB to internal or private IP addresses, preventing public access to

your Cosmos DB. These network options are highlighted in Figure 2-6.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

58

Figure 2-6. The connectivity method can be set to one of three
options. Choosing an option that requires a virtual network allows
you to configure the virtual network

Chapter 2 Develop SolutionS that uSe CoSmoS DB

59

 Backup Policy
As you provision your account, you can set rules for the automatic

backups. There are multiple configurations, including Periodic,

Continuous (7 days), and Continuous (30 days). Each offering has a default

or set backup interval and retention period. The maximum backup interval

is 24 hours, and the minimum backup retention is two days. With minimal

settings, there will be as few as just two copies of your data available.

The more backups you configure, the more cost you incur. An

additional consideration is where to store the backups. Options exist to

select Geo-Redundant backup storage (for multiple region storage) or you

can choose to store Locally-Redundant backup storage (for single-region

backups). See Figure 2-7.

Figure 2-7. The backup policy is easily configured during account
creation

Chapter 2 Develop SolutionS that uSe CoSmoS DB

60

 Encryption
All data at rest in Azure is encrypted. If you do nothing to change the

defaults, the encryption will be managed by Azure with an encryption key

managed by Azure. If you would like more control, you can enable the

option to utilize a customer-managed key. When you want to manage your

own encryption key(s), you must store them in the Azure Key Vault and

allow the service that needs the key to have the correct permission to read

from the Key Vault (see Figure 2-8).

Figure 2-8. Utilization of a customer-managed key requires a Key
Vault reference

 Partitioning
Partitioning is the most critical concept to understand about Cosmos

DB. Partitioning is also one of the most difficult concepts to understand

when it comes to Cosmos DB. Indeed, the entire chapter could have

focused solely on working with Cosmos DB partitioning. In the next few

Chapter 2 Develop SolutionS that uSe CoSmoS DB

61

pages, I attempt to get you squared away on the most important aspects

of partitioning. If you’re like me, or if you are strictly used to working with

relational data, you will likely find that this will be a good introduction,

but you’ll want to go deeper before implementing an entire production

solution.

To get started, I’d like you to envision a bowling alley. In the bowling

alley are many lanes, each with its own pins. For simplicity, assume this

bowling alley has eight lanes (choosing eight is entirely for envisioning the

solution and not at all to do with any limitations in Cosmos DB). At the end

of each lane are a number of pins. Once again, a typical bowling alley lane

has ten and only ten pins for an active first roll. When all the pins are ready,

there are eight lanes, with ten pins each, for a total of 80 pins spread evenly

in groups of ten across the eight lanes (see Figure 2-9).

Figure 2-9. A bowling alley has many lanes with equal
numbers of pins

When it comes to working with Cosmos DB, there are two types of

partitions. The two types are logical and physical partitions. The next

sections break these down by continuing to use Figure 2-9.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

62

 Logical Partitions
In the bowling alley, the pins are separated evenly across the different

lanes. If you will, imagine that each “pin” is really a JSON document that

holds data. The logical placement of these documents is spread evenly

across the lanes in Figure 2-9. Spreading the data evenly across logical

partitions is an ideal goal.

Separating the data logically into partitions means that you have set

your data in a way so as to optimize your read and write throughput and

resource utilization to achieve the best possible use case.

Imagine the problems that would exist if one lane in the bowling alley

suddenly had 50 of the pins, another had 30 pins, and the remaining 20

were spread across the last eight lanes. While a bowler might be able to

get a strike more easily in a lane with just three pins, the lanes that have

too many pins would be next to impossible to utilize for a normal game of

bowling.

In Cosmos DB, when your logical partitioning structure is bad, you

can end up with a hot partition. One cause of a hot partition can be that

the data is not evenly distributed and, therefore, the majority of queries

run against the data have to go against that one lane, thereby slowing

everything down. Figure 2-10 shows a bowling alley with lanes having

different numbers of pins placed, which is chosen to help envision uneven

data distribution in Cosmos DB.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

63

Figure 2-10. Pins in a bowling alley where some of the lanes have all
the pins and others have just a few is a simple way to view data that is
not partitioned correctly in the Cosmos DB database

No matter what, if you don’t know anything else yet, one thing you

must understand is that the logical partition is simply all of the data that

has the same partition key grouped together.

Along with that grouping concept, you must remember that JSON

documents don’t need the same properties (columns). For example, if

you have a partition key called LastName and three different documents

have LastName, they can be grouped together as a logical partition on the

LastName property, even if none of the other properties in the documents

are the same and the data is completely different and used to model

entirely different entities. Note that this partitioned data is also not

relational data, so you should not think of this as a field on which you join

data across documents. In a non-relational NoSQL Cosmos DB database,

you do not ever join data across documents, even if they have fields that

can be used as keys.

The fact that you can have data grouped in the same partition that

is completely unrelated but has a common field, along with the fact that

you don’t relationally join documents for queries even if they have a

Chapter 2 Develop SolutionS that uSe CoSmoS DB

64

shared key, are two reasons that it is incredibly difficult for a relational

database developer to initially grasp the concepts of Cosmos DB. I hope

that by pointing these out here, it helps to set the stage for you to grasp this

disparity more quickly than I did.

 Physical Partitions
In the bowling alley, the lanes are physically separated. In Cosmos DB, the

physical partitions are also separated across different SSD physical storage

and disk implementations within Azure data centers.

In the bowling alley, some machinery is handling pin placement. In

Cosmos DB, the pin placement (if you envision pins as JSON documents)

is handled based on how the Cosmos DB partitioning is set up. No matter

how you set things up, there are two limitations you need to always

remember that are directly related to physical partitions.

The first limitation is that any physical partition is limited to 10,000

RUs of throughput. Anything more than 10,000 RUs, and data must be split

across partitions. The second physical limitation is that the document

storage for a physical partition is 50 GB. If you have more than 50 GB of

data, then you know for a fact you are on multiple physical partitions.

With logical partitioning, data is grouped together to maximize query

throughput based on a common key field. However, if you set up the

partition incorrectly, then the query won’t perform well. For example,

imagine what it would be like if the pins were uniquely colored, and the

bowler, in order to get a strike, had to suddenly hit just the ten pins of a

specific color that exist in placements across multiple lanes. This scenario

is similar to what can happen when queries are utilized that span physical

partitions.

For those of us who are familiar with relational data, one of the

cardinal sins of querying data is called a table scan—where all the data

in the table must be read to get accurate results for a particular query.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

65

In Cosmos DB, one of the cardinal sins is a partition scan. In a cross-

partition scan, like the multiple pins in lanes, data is not correctly placed

in logical partitions as per the requirements of the query, and, therefore,

the query must hit all the partitions to get the correct data result sets.

For example, a partition that has high cardinality (discussed in some

following sections) will spread data (the pins) evenly across the partitions

(lanes). However, if each lane contains a field such as “favorite color,” then

a query trying to find all the data where the favorite color is green will not

perform well, since the data can (and likely will) exist in all the lanes.

One last thing you need to know about physical partitions is the

fact that you have absolutely no control over them. All of the physical

partitioning work is done by Azure and Cosmos DB. The only thing

that you can control is the logical partition. By structuring your logical

partitions correctly for your data, you automatically get the best physical

partitioning that is available for your solution. If you structure your

partitions poorly, your physical partitioning will also suffer as a result.

 Partition Keys
To enable the correct placement of data, it is the responsibility of the

Cosmos DB architect and/or developer to ensure that proper partition

keys are chosen. The ultimate “correct” result may be a hard pill to swallow

for relational database developers, because the logical partitioning of

unstructured data may feel completely contrary to the typical patterns of a

relational developer.

The most important aspect of choosing a partition key is how the

queries will be used along with the nature of the data. Is your database

read-heavy or write-heavy? Will you need to query against a secondary set

of data? Can you group data by a partition key even if the data would be in

different tables in a relational database? These things will play into your

design decisions.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

66

It’s also important to note that you cannot change the partition key of

a container once it is created. Therefore, if you make a mistake, or if you

need a different partition key, your only option is to create a new container

and migrate the data from the old container to the new container.

For the remainder of this discussion on partitioning, it would be

helpful to have some JSON data to simulate important points regarding

the structuring of logical and physical partitions using a partition key. Any

Cosmos DB account can generate some sample JSON documents by using

the Quick Start option from the Azure Portal (see Figure 2-11).

Figure 2-11. Any Azure Cosmos DB account can utilize the Quick
Start option to create a database with some items in place

Creating a sample database and running code to populate items but

not deleting them would generate and leave the following document (or

something similar) in place:

Chapter 2 Develop SolutionS that uSe CoSmoS DB

67

{

 "id": "Andersen.1",

 "partitionKey": "Andersen",

 "LastName": "Andersen",

 "Parents": [

 {

 "FamilyName": null,

 "FirstName": "Thomas"

 },

 {

 "FamilyName": null,

 "FirstName": "Mary Kay"

 }

],

 "Children": [

 {

 "FamilyName": null,

 "FirstName": "Henriette Thaulow",

 "Gender": "female",

 "Grade": 5,

 "Pets": [

 {

 "GivenName": "Fluffy"

 }

]

 }

],

 "Address": {

 "State": "WA",

 "County": "King",

 "City": "Seattle"

 },

Chapter 2 Develop SolutionS that uSe CoSmoS DB

68

 "IsRegistered": false,

 "_rid": "fqFkAIOeqP+BhB4AAAAAAA==",

 "_self": "dbs/fqFkAA==/colls/fqFkAIOeqP8=/docs/

fqFkAIOeqP+BhB4AAAAAAA==/",

 "_etag": "\"0000f903-0000-0700-0000-6343380f0000\"",

 "_attachments": "attachments/",

 "_ts": 1665349647

}

Note that this document has a partitionKey field, which is the same

as the LastName field.

Using this document, consider the bowling alley to envision logical

partitions (lanes) that now are being grouped, essentially by LastName.

Assuming that the partitionKey and LastName fields are always the same

would show you that there is likely to be a hot partition at some point. While

the early performance of this data won’t likely suffer, as the last names will

mostly be disparate with a small set of data, consider the data for an entire

state or the city of New York. Think about names like “Johnson,” “Williams,”

and “Smith,” which are the top three most common last names in the United

States. These groupings would become disproportionately larger than the

others as more names are added to the list. Eventually, the data may have to be

split over physical partitions as well, which could further stress the system.

 High Cardinality for Write-Heavy Workloads

Instead of using something that is not unique, such as just the last name,

consider a solution where the partitionKey would have mapped to the

last name and id (Anderson.1) of the document. In this case, every single

document would have a unique ID, which would lead to a high cardinality.

As data is written to the database, the logical partitions would be

evenly placed across the physical partitions (i.e., data as pins placed

evenly across all the lanes and each bowler’s pins are in their own lane as

Chapter 2 Develop SolutionS that uSe CoSmoS DB

69

expected) and the system would not have any issues with hot partitions

or cross-partition scans based on the unique ID as the partition key. In a

write-heavy scenario, this would be an ideal choice.

 Utilizing Your Query Filter as the Partition Key
for Read-Heavy Workloads

In scenarios where you need to perform filtered queries, rather than using

the ID, you would likely find better results by keeping the partition on the

field that will appear in the query. For example, if the main segregation of

data is the LastName, you will likely want to keep that as your partition key.

A better solution is to still have the filter and the partition key have a higher

cardinality to avoid the hot partition problem. As stated, however, this is

not always possible. Ideally, fields like username and email both give you

unique values that lend well to querying for data. However, lots of similar

data on the partition key may still need to have a high cardinality.

Assume you have millions of IoT devices out in the universe and you

utilize Cosmos DB to store the telemetry. Assume you need to find unique

data by day and by device. Utilization of the time as a partition key is a

really bad idea, because the data would all be from today so the logical

partition would be a hot partition. Utilization of the device is not going

to work because you might get more data from one device than you can

store in one partition across time spans, like a couple of days, a week, or a

month, which is a cross-partition scan.

The answer to this scenario is to use a synthetic partition key. With

a synthetic partition key, you can group similar data together with what

is essentially a composite key. For example, using the device ID and the

timestamp as one field stored will correctly partition by device and day,

and should solve the problems of hot partitions and cross-partition scans.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

70

 Indexing in Cosmos DB

What would happen, however, if your main use of this data is a query that

needs to read from the data where IsRegistered is true? Knowing what

you know already, the first problem (cross-partition queries) would exist if

you used the IsRegistered field as a partition. With only two values, this

is a terrible partition key. If the field is not a partition key, then any query

that needs to read from the data is going to perform a cross-partition scan.

The same issue exists when you need to order data. For example, what if

you need to select from the items but you need to order by LastName and

then by Address.State?

The answer for these scenarios is to build an index. As mentioned

in the previous chapter, this is one area where Cosmos DB can vastly

outperform table storage. With Cosmos DB, you can create composite

indexes on your data to optimize query performance. Indexing is mostly

outside of the scope of the AZ-204, so if you want to know more about

it, you can read about indexing in Azure Cosmos DB at https://learn.

microsoft.com/azure/cosmos-db/index-overview.

As a quick overview here, it’s important enough to know that all data

is automatically indexed in Azure Cosmos DB, on every property. The

data is then searchable based on the fields in the document and organized

as best as it can be by default for particular searches. When you create

an index, you essentially help define the exact places for Cosmos DB to

search when performing queries. For example, when needing to key on the

IsRegistered field, you could create an index to maximize the throughput

for queries that need to key on the IsRegistered field.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

https://learn.microsoft.com/azure/cosmos-db/index-overview
https://learn.microsoft.com/azure/cosmos-db/index-overview

71

 Cosmos DB Change Feed
The data in the Cosmos DB is not relational. As such, your data may be

duplicated in multiple documents. For example, consider a scenario where

you have a number of users, and they choose from one of three particular

settings for a theme on your website. The data is easily managed in

Cosmos DB, and the partition key is better for performance in this scenario

if the unique user ID is utilized. The choice of “theme” is just duplicated all

over the user profiles.

In a relational database, this theme would be an ID with a field for the

display name used in a drop-down list, with important properties of the

theme being stored in a relevant table, normalized as expected. In Cosmos

DB, the document nests the theme information per user. What happens

when you want to update the name of the theme site-wide? Or, what

about changing one of the critical properties of the theme, such as the

primary color? In this case, you need to update all of the non-relational,

denormalized data. This update will certainly go across documents on

multiple logical partitions and maybe even on multiple physical partitions.

Additionally, the way the data is used means you need to affect the name

of the theme anywhere it is nested as part of a document, which might be

more than just within the user profile documents.

When this happens, you’ll need to read important information

from the Cosmos DB change feed and then you use a process (typically

implemented in an Azure Function) to ensure that your data is updated

appropriately as a response to the change feed.

More information about the change feed can be found at https://

learn.microsoft.com/azure/cosmos-db/nosql/read-change-feed. You

can also look at the basic information on that link about using the change

feed processor. Additionally, if you really want to go deep with this, there

is a lab for the DP-420 Exam that covers a similar scenario as mentioned

previously, which can be found at https://microsoftlearning.

github.io/dp-420-cosmos-db-dev/instructions/17-denormalize.

html#prepare-your-development-environment. Although this level of

Chapter 2 Develop SolutionS that uSe CoSmoS DB

https://learn.microsoft.com/azure/cosmos-db/nosql/read-change-feed
https://learn.microsoft.com/azure/cosmos-db/nosql/read-change-feed
https://microsoftlearning.github.io/dp-420-cosmos-db-dev/instructions/17-denormalize.html#prepare-your-development-environment
https://microsoftlearning.github.io/dp-420-cosmos-db-dev/instructions/17-denormalize.html#prepare-your-development-environment
https://microsoftlearning.github.io/dp-420-cosmos-db-dev/instructions/17-denormalize.html#prepare-your-development-environment

72

knowledge may be overkill for the AZ-204 Exam, it can’t hurt you to know

how to do this and will likely be a fun challenge for you as a developer.

 Utilizing .NET with Azure Table Storage
and Cosmos DB via the Cosmos DB SDK
Now that the bases are covered with the inner workings of Cosmos DB,

it’s time to once again look at some code that will interact with the SDK to

work with Cosmos DB. In addition to Cosmos DB, this code portion will

also show table storage interaction. The best part of all of this is that the

same code that works against table storage will work against Cosmos DB. If

you are mostly concerned with the exam, remember that the ideal path is

to migrate your table storage offering to Cosmos DB via the Table Storage

API, so the primary focus is most likely to be working directly against

Cosmos DB. As a developer, however, you should know how to use both,

how to migrate from table storage to Cosmos DB, and when you should

choose one offering over the other.

 Azure Table Storage
To get started, create an Azure Table Storage account. If you don’t know

how to do this, follow the documentation at https://learn.microsoft.

com/azure/storage/tables/table-storage-quickstart-portal.

Once you have a table storage account, leverage the project called

WorkingWithAzureTableStorage found in the repository for this book

under the materials for Chapter 2. For these examples, I’m working against

the same storage account from the previous chapter, but you could easily

create a new storage account to work with the code.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

https://learn.microsoft.com/azure/storage/tables/table-storage-quickstart-portal
https://learn.microsoft.com/azure/storage/tables/table-storage-quickstart-portal
https://doi.org/10.1007/978-1-4842-9300-3_2

73

 Compose the Client

As with other offerings, remember that you must build the hierarchy. For

table storage, you need the account and connection string.

var storageCNSTR = _configuration["Storage:ConnectionString"];

You then need to get the table client to work with table storage:

var tableServiceClient = new TableServiceClient(storageCNSTR);

 Create a Table

To create a table in table storage, make sure you have the connection string

information and account in place and include the NuGet packages for the

Azure.Data.Tables. With these in place, run the following code (must be

in an asynchronous method):

//Create a new Table "Universities"

var tableClient = tableServiceClient.GetTableClient(

 tableName: "Universities"

);

await tableClient.CreateIfNotExistsAsync();

 Add an Item to Table Storage

Once you have the table in place, you can add a JSON document to the

storage. The JSON document’s structure for use in table storage is stricter

than is required for utilization in Cosmos DB. With table storage, every item

must have a RowKey and a PartitionKey defined. Additional properties

that must exist are an ETag and a TimeStamp. The ETag and TimeStamp fields

are used to help the Table Storage API know if the data is concurrent with

integrity. If another process modifies the data, the ETag will be different than

what is being sent for update or delete operations. In this way, the system

can know not to modify data when the field has been modified.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

74

Using a defined object that implements the ITableEntity interface

allows easy interaction with the table data. In the sample project, a class

is defined to model the University that implements the ITableEntity

interface.

var iowaStateUniversity = new University()

{

 RowKey = "iowa-state-university-ames-iowa",

 PartitionKey = "iowa-state-university",

 Name = "Iowa State University",

 Location = "Ames, Iowa",

 YearFounded = 1858

};

await tableClient.AddEntityAsync<University>(iowaState

University);

 Get an Item from Storage

With table storage, you can leverage LINQ to query. The best performance

will take place when getting the single entity utilizing the PartitionKey

and RowKey together:

var isu = await tableClient.GetEntityAsync<University>(iowaState

University.PartitionKey, iowaStateUniversity.RowKey);

However, you can use other methods to accomplish the same task or

get groups of items using LINQ. Note that both of these queries return a

collection, so they must be further filtered in order to get a single result:

var secondIsu = tableClient.Query<University>(x => x.Name.

Equals("Iowa State University"));

Chapter 2 Develop SolutionS that uSe CoSmoS DB

75

//or

var anotherIsu = tableClient.Query<University>

 (x => x.PartitionKey == "iowa-state-

university");

 Delete Items

To delete items, you can run yet another asynchronous statement utilizing

the Parti and RowKey of the item:

await tableClient.DeleteEntityAsync(iowaStateUniversity.

PartitionKey, iowaStateUniversity.RowKey);

You can further restrict this if you know the ETag, making sure you only

delete items that have not changed since you last read them.

 Azure Cosmos DB (Table API)
Working with Cosmos DB on the Table API is very similar to working with

table storage in the initial setup; however, the ability to utilize the more

robust ecosystem of Cosmos DB will allow your solution to work across

regions and additional complex indexing when necessary.

 Table Storage to Cosmos DB

To get started working with the sample code porting data from Azure

Table Storage to a Cosmos DB Table Storage API, create a Table Storage

API account to handle the migration of the code from using Azure Table

Storage, as discussed previously, to utilize Cosmos DB on the Table Storage

API. If you are unsure how to create a Cosmos DB Table Storage API

Container, refer to https://learn.microsoft.com/azure/cosmos-db/

table/how-to-create-container.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

https://learn.microsoft.com/azure/cosmos-db/table/how-to-create-container
https://learn.microsoft.com/azure/cosmos-db/table/how-to-create-container

76

Once the account is created, take the original table storage app and

change the connection string in the existing application to the new

connection string for the table storage API Cosmos DB account you just

created. The connection string can be found under the left-navigation item

called Connection String (see Figure 2-12).

Figure 2-12. The connection string for the new Table API Cosmos
Account is under the Connection String left-navigation menu item

Select Primary Connection String and use that in the code. Once the

new connection string is in place, run the exact same code that was used

for working with Azure Table Storage. The new Table API account should

work with no code changes! You can then review the data in the Cosmos

account using the Data Explorer (as shown in Figure 2-13).

Chapter 2 Develop SolutionS that uSe CoSmoS DB

77

Figure 2-13. The Table Storage is easily ported to Cosmos Table
API. The only change was to set the connection string to the new Table
API Cosmos account. Then the code just works

 Azure Cosmos DB (SQL API)
Working with Cosmos DB and the SQL API is the primary focus for

development and the recommended way to integrate your application

with Cosmos DB for all new development work. Working with Cosmos

DB on the SQL API follows the same types of patterns we’ve already

established in previous work. Create the account, then get the connection

string. Once you have that in place, you can easily integrate code.

As mentioned, there is a set of sample code that you can easily get from

any Azure Cosmos DB account. If you simply create a Cosmos DB account,

go to the Quick Start menu item (refer back to Figure 2-10), add the Items

container, then download the sample code.

In addition to that sample code, refer to the sample code called

WorkingWithAzureCosmosDB in the repository for this book under the

Chapter 2 materials.

Once you have the application, make sure to create a Cosmos DB SQL

API account. If you are unsure how to do this, follow the documentation

at https://learn.microsoft.com/en-us/azure/cosmos-db/sql/

quickstart-dotnet.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

https://doi.org/10.1007/978-1-4842-9300-3_2
https://learn.microsoft.com/en-us/azure/cosmos-db/sql/quickstart-dotnet
https://learn.microsoft.com/en-us/azure/cosmos-db/sql/quickstart-dotnet

78

Once you have the account created, get the Primary Key and Endpoint

URI using the portal. An easy way to find this is shown in Figure 2-14.

Using the portal, navigate to the Keys left-navigation menu in the account.

Figure 2-14. Getting the connection string from the portal using
the left-navigation Keys menu under the Azure Cosmos DB SQL
API account

Note that the connection string has both pieces of information, and the

SDK has you compose objects using the two individual pieces. Or, you can

just use the full connection string. Additionally, ensure you have the NuGet

package called Microsoft.Azure.Cosmos included in your project in

order to interact with the SDK correctly. For this example, ensure you are

using the package that references the SQL API. The sample code already

contains the proper references, but it’s always wise to double-check what

NuGet packages you are leveraging, because there are generally a number

of packages that are named in a similar manner. Sometimes Microsoft will

update to a new version and change the name as new iterations of .NET are

released. For example, in the past you might have leveraged Microsoft.

Azure.DocumentDB for similar operations, which is now deprecated since

the latest version is called Microsoft.Azure.Cosmos.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

79

 Connect to the Cosmos DB Account

To get started, create the client with the following code utilizing a using

statement:

using (CosmosClient client = new CosmosClient(endpointURI,

primaryKey))

Note that the remaining code for this section with operations against

the database must be inside of this client block. Like other solutions with

Azure and .NET, remember the composition hierarchy. Without a client,

you can’t perform operations like GetDatabase or GetContainer.

 Create and Delete Databases

You can easily create databases with the following code (inside the

client block):

var db = await client.CreateDatabaseIfNotExistsAsync

("Universities");

Deleting an existing database can be accomplished with this code:

var dbDeleteResponse = await client.

GetDatabase("Universities").DeleteAsync();

 Create and Delete Containers

In the hierarchy, the account is provisioned, then one or more databases,

then one or more containers per database. In the client block (account),

with reference to a database, you can create a new container as follows:

//Create Container:

var containerProperties = new ContainerProperties();

containerProperties.Id = "Public";

containerProperties.PartitionKeyPath = "/Name";

Chapter 2 Develop SolutionS that uSe CoSmoS DB

80

containerProperties.IndexingPolicy.Automatic = true;

containerProperties.IndexingPolicy.IndexingMode = IndexingMode.

Consistent;

var container = await client

 .GetDatabase("Universities")

 .CreateContainerIfNotExistsAsync

(containerProperties, 400);

Note that the container properties were set, giving an indexing policy

and partition key path in this creation. Throughput was provisioned to 400

RUs (see Figure 2-15).

Figure 2-15. The Database container is provisioned with 400 RUs

The PartitionKey can be validated from the Settings tab, as shown in

Figure 2-16.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

81

Figure 2-16. The partition key is set as expected from the code

Deleting a container works in a similar manner. Remember this code

must also be in the code that has the using statement to create the client in

order to work correctly:

//Delete Container

var containerToDelete = client.GetDatabase("Universities").

GetContainer("Public");

await containerToDelete.DeleteContainerAsync();

 Insert and Update Items

To insert and update items, you can use the Upsert command, or you can

use the Insert and Upsert commands in tandem. For this activity, all data

is based on a prebuilt class called University that is part of the sample

project.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

82

First, define two public universities, the University of Iowa (Iowa

City, Iowa, USA), and Iowa State University (Ames, Iowa, USA). Note: USA

is purposefully omitted in the following code to be updated in the next

command.

//Add Items

var isu = new University()

{

 Id = "iowa-state-university",

 Name = "Iowa State University",

 Location = "Ames, Iowa",

 YearFounded = 1858

};

var iowa = new University()

{

 Id = "university-of-iowa",

 Name = "University of Iowa",

 Location = "Iowa City, Iowa, USA",

 YearFounded = 1847

};

The Insert command requires checking for existence and trapping an

exception, and it looks like this:

//create requires you prove it doesn't exist first:

try

{

 var isuExists = await containerInfo.ReadItemAsync<University>

 (isu.Id, new PartitionKey

(isu.Name));

 Console.WriteLine("ISU Document existed, so not created");

}

Chapter 2 Develop SolutionS that uSe CoSmoS DB

83

catch (CosmosException cosmosEx)

{

 if (cosmosEx.StatusCode == System.Net.HttpStatusCode.

NotFound)

 {

 var ISUDocument = await containerInfo.

CreateItemAsync(isu);

 Console.WriteLine("ISU Document created");

 isu.Location = "Ames, Iowa, USA";

 await containerInfo.UpsertItemAsync(isu);

 }

}

Note the second part containing the Upsert:

isu.Location = "Ames, Iowa, USA";

await containerInfo.UpsertItemAsync(isu);

Alternatively, Upsert can be used to either Insert or Update as follows,

without the need to check for existence:

var iowaDocument = await containerInfo.UpsertItemAsync(iowa);

After the insert/update, you should be able to query to see the two

items in the database, as shown in Figure 2-17.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

84

Figure 2-17. The data exists after being added via code to the
database container for Public Universities

 Query the Data via Code

One of the most frustrating things I’ve encountered about working with

Cosmos DB is the query syntax and a few of its idiosyncrasies. Once you

learn it, the syntax and inner workings make perfect sense. However, there

is a very simple “gotcha” that I want to bring to your attention here. This is

an important thing to understand about the structure of the queries, and it

can save you hours of work.

Consider, if you will, the previous data. Suppose you only ran the data

as presented so far, leaving the container, the two items, and the database

intact. The query as presented in Figure 2-17 shows that the data exists:

SELECT c.Name, c.Location FROM c

Chapter 2 Develop SolutionS that uSe CoSmoS DB

85

Try the following queries on your own if you can. I also show you the

results so you can see them here if you just want to take my word for it. The

first query is as follows:

SELECT * FROM c

This query takes 2.28 RUs and returns both documents (see

Figures 2-18 and 2-19).

Figure 2-18. The SELECT * FROM c query returns all data as
expected

Chapter 2 Develop SolutionS that uSe CoSmoS DB

86

Figure 2-19. The SELECT * FROM c query runs in 2.28 RUs, which is
pretty much the ideal processing time you can get in Cosmos DB

This query is efficient and gets all the data. Compare it to the query we

ran earlier, which explicitly names the fields:

SELECT c.Name, c.Location FROM c

This query gets the two fields for both items and runs in 2.29 RUs,

which is pretty much the same as previously (RUs result shown in

Figure 2-20; original result shown in Figure 2-17).

Figure 2-20. The query with named fields runs in 2.29 RUs and gets
the same results with just the named fields as expected

Chapter 2 Develop SolutionS that uSe CoSmoS DB

87

Note specifically, however, that one query names the fields with an

alias, while another one just uses the asterisk to get all fields.

You might be saying “yes, that makes sense.” I agree with you. However,

the following syntax is much more strict than in a typical T-SQL query you

might be used to writing. For example, do you think the following query

will return data?

SELECT c.* FROM c

If you answered “no, it will throw a syntax error” then you win.

Figure 2-21 shows the result of this query.

Figure 2-21. The syntax error is shown for the SELECT c.*
from c query

In other words, if you want to use a wildcard asterisk, do not preface

that asterisk with an alias.

Now what do you think will happen if you run this query:

SELECT Name, Location FROM c

Chapter 2 Develop SolutionS that uSe CoSmoS DB

88

If you stated “An error that says Name and Location can’t be resolved,

thereby making me think the fields aren’t part of the document even

though they are…” then you get the point well here (see Figure 2-22).

Figure 2-22. The Name and Location fields are stated to be
unresolvable. This can be confusing since they are valid fields. The
problem is the lack of the alias

Once again, the syntax here matters. The reason I’m calling this out is

so you don’t write code from .NET and run one of these queries and spend

hours trying to determine what is wrong with your code only to realize it

was a syntax error in the query. These seemingly conflicting values that

work for the queries will make sense once you expect and/or experience

them. Before they happen to you, especially if you are used to T-SQL, they

may not be as apparent.

Now that you understand the syntax for the queries, it is time to finish

up the code for working with Cosmos DB from the SDK.

Using a Point Read

The best way to get a single item is to perform a point read. To do this, you

need to know the partition key and ID for the item. If the partition key is

the item, you are already there. If the partition key is not the item, use both.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

89

In this case, you need to get a point read on the specific university. This is

done by creating the partition key using the string value, as shown in the

following code:

var isuDoc = await containerInfo.ReadItemAsync<University>

 (isu.Id, new PartitionKey(isu.Name));

The result is a single document retrieved with the absolute best

performance and RU utilization possible.

Using the Query Item Iterator

There are two ways to work with data results. The Query Item Iterator is the

first. The next section leverages the LINQ version of the iterator.

To iterate results, utilize the query discussed earlier in code as follows:

//iterate all results

var query = new QueryDefinition("SELECT * FROM c");

using (var feed = containerInfo.GetItemQueryIterator<University>

(query))

{

 while (feed.HasMoreResults)

 {

 var allItems = await feed.ReadNextAsync();

 foreach (var item in allItems)

 {

 Console.WriteLine($"Next: {item.Name}, " +

 $"founded {item.

YearFounded}, " +

 $"is located in {item.

Location}");

 }

 }

}

Chapter 2 Develop SolutionS that uSe CoSmoS DB

90

This query returns results as expected, and iteration shows all the data

from the container.

Using the LINQ Version of the Iteration for Query Syntax

The query iterator with raw SQL is great, but in the real world you’ll likely

want to use the LINQ version of this code as follows:

//use LINQ

var universities = containerInfo.GetItemLinqQueryable

<University>();

using (var feed = universities.ToFeedIterator())

{

 while (feed.HasMoreResults)

 {

 var data = await feed.ReadNextAsync();

 foreach (var item in data)

 {

 Console.WriteLine($"LINQ result: {item.Name}, " +

 $"founded {item.

YearFounded}, " +

 $"is located in {item.

Location}");

 }

 }

}

 Delete Items from the Container

To complete this look at the code, the final thing that needs to be

addressed is deleting items from the container (deleting containers and

databases is addressed earlier).

Chapter 2 Develop SolutionS that uSe CoSmoS DB

91

To remove items from a container, use a point delete approach with the

ID and partition key, similar to the point read:

var dIowa = await containerInfo.DeleteItemAsync<University>

 (iowa.Id, new PartitionKey(iowa.Name));

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solution(s). You can find

answers to these questions in Appendix A at the end of this book.

 1) What is a logical partition in Cosmos DB? What are

some good and bad partitions for write-heavy and

read-heavy databases?

 2) What is a physical partition in Cosmos DB? What are

the physical partition limits?

 3) Can a Cosmos DB be accessed from a private

network?

 4) What is the maximum size of a Cosmos DB

document?

 5) How do you calculate an RU?

 6) When working with code against the Cosmos

Database, what are two ways to connect to the

account using keys?

 7) What does it take to migrate a table storage

application to a Cosmos DB Table API application?

Chapter 2 Develop SolutionS that uSe CoSmoS DB

92

 Complete the AZ-204: Develop Solutions
That Use Azure Cosmos DB
To fully learn the material, I recommend taking the time to complete the

MS Learn modules for Azure Cosmos DB found here:

• Develop solutions that use Azure Cosmos DB:

https://learn.microsoft.com/en-us/training/

paths/az-204-develop-solutions-that-use-azure-

cosmos-db/.

 Chapter Summary
In this chapter, you learned about working with Cosmos DB in Azure. The

discussion featured a number of important points regarding partitioning,

consistency levels, capacity, global distribution, migration of table storage

to a Cosmos Table API, and working with Cosmos DB from the .NET SDK.

After working through this chapter and the Microsoft Learn modules,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Understand the main API offerings for Cosmos DB, and

why each one is useful, with the ability to choose the

correct API.

• Understand the difference between Cosmos DB for

NoSQL and Cosmos DB for Table.

• Understand and work with partitions within

Cosmos DB.

• Utilize the correct consistency level in your solution.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

https://learn.microsoft.com/en-us/training/paths/az-204-develop-solutions-that-use-azure-cosmos-db/
https://learn.microsoft.com/en-us/training/paths/az-204-develop-solutions-that-use-azure-cosmos-db/
https://learn.microsoft.com/en-us/training/paths/az-204-develop-solutions-that-use-azure-cosmos-db/

93

• Interact with Azure Cosmos DB via the .NET SDK using

the correct SDK for the scenario.

• Work with the Azure Cosmos DB Change Feed.

In the next chapter, you start the next section on working with Azure

Compute by learning about implementing Infrastructure as a Service

(IaaS) solutions.

Chapter 2 Develop SolutionS that uSe CoSmoS DB

97

CHAPTER 3

Implement
Infrastructure as
a Service (IaaS)
Solutions
August 10, 2020. That date may not be very important to you, but for

anyone that lived in Nebraska, Illinois, or Iowa, it was a day they’ll never

forget. It was especially difficult on farmers. On that day, out of pretty

much nowhere, a land hurricane (known as a derecho—day-ray-cho)

wreaked havoc for about 700 miles in a swath of 40 or more miles from

top to bottom. An estimated 11 billion dollars in crops and other assets

were lost. Something else was lost—power and internet. In a matter of 20

minutes, it was like going back to the dark ages, as all pipelines in and out

were completely lost, and Internet was just gone. Do you know what still

worked? All of Azure on the East and West regions of the United States, as

well as the rest of their global regions.

Businesses that had only housed resources on premises in Des Moines

were likely not able to continue their day-to-day operations. Businesses

that had regional failovers and operations on any other valid region could

continue serving their customers outside of the region.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_3

https://doi.org/10.1007/978-1-4842-9300-3_3#DOI

98

Infrastructure as a Service (IaaS) is one of the primary ways that cloud

migration can enable your business and your applications to continue

working when the world is literally not working. Additionally, moving to

the cloud allows your business to take advantage of cloud benefits like the

economy of scale and leveraging operational expenditures over capital

expenditures. Finally, with your resources deployed in the cloud, you don’t

have to go into an office at 2am to fix a broken network card, a failed hard

drive, or a server that won’t reboot.

For this exam, the IaaS component is composed of four key Azure

infrastructure technologies and services. These four areas of concern are

Virtual Machines, ARM Templates, Azure Container Registry, and Azure

Container Instances. For purposes of brevity of the chapters and organization

of the material, this chapter covers the virtual machines and ARM templates.

Chapter 5 covers the Azure Containers ecosystem, focusing on the exam

topics of the container instances and registries. As an update to this statement,

from the time I originally wrote this until the time I'm doing the final proof,

the exam has been updated. As of April 2023, the focus has shifted towards the

containers ecosystem. In the official path you are no longer asked to train for

virtual machines and ARM/Bicep Templates. An additional module on Azure

Container Apps has been added. Even though the exam doesn't necessarily

require this material, it is still worth your time as a developer to know how to

do the things in this chapter. That being said, if your sole purpose is to prepare

for the exam you can likely skim through this chapter quickly. If your end goal

is the AZ-204 followed by the AZ-400, I would recommend you pay attention

to this material in more detail as the infrastructure piece may still be a critical

part of creating a robust DevOps solution.

 Virtual Machines
Regarding the exam, there are a few things you need to be aware of

regarding virtual machines. The next few pages cover the issues with some

screenshots and discussions around the utilization and deployment of

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

https://doi.org/10.1007/978-1-4842-9300-3_5

99

machines. I recommend that you try working through this on your own

subscription as well, just to get the practice.

The main topics you need to understand are the resilience and

redundancy of the Azure Data Centers for infrastructure deployments,

specifically around virtual machines. Additionally, you need to understand

the networking components enough to know how to provision, limit, and

change access to the machine (especially around ports 22, 80, 443, 3389).

While you shouldn’t technically have to memorize ports, any

developer who has ever done a manual deployment to an on-premises

machine should know at least three of those without having to think

about what they are. Port 22 is for Secure Shell Protocol (SSH), which is

the primary port for connecting to a Linux virtual machine. Port 80 is for

Hypertext Transfer Protocol (HTTP) and port 443 is for Hypertext Transfer

Protocol Secure (HTTPS). Both 80 and 443 are utilized for connecting to

websites and other public endpoints via the Internet. Finally, port 3389

is for Remote Desktop Protocol (RDP), which allows you to connect to a

Windows virtual machine.

I will also say a developer should know about either port 1433 or port

3306, or both. Both of these ports are critical for database interaction

on standard server deployments, with port 1433 being the main port to

communicate with MS SQL Server and 3306 being the main port for a

standard MySQL deployment.

In addition to ports for networking, a developer should also

understand simple concepts around load balancing to distribute traffic,

which allows you to ensure that a fleet of machines can handle load,

typically for what might be called a server farm.

A final concept that you need to be aware of with Azure Virtual

Machines is the Desired State Configuration (DSC). With DSC, you

can ensure that a machine has specific capabilities enabled or features

installed. For example, ensuring that IIS is installed on a Windows Server

deployment. DSC is also useful to minimize configuration drift, which

allows you to ensure that a machine maintains a specific state, restoring

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

100

features that were improperly disabled, or removing features that should

not have been enabled automatically.

To get started learning about these concepts, first you need to take

a step back to the Azure Fundamentals Exam (AZ-900) material around

Azure Data Centers. The most important concepts can be found in this

unit on Microsoft Learn: https://learn.microsoft.com/training/

modules/describe-core-architectural-components-of-azure/.

 Azure Physical Architecture
For purposes of learning, imagine that an Azure Data Center is a physical

building or set of buildings on physical land in a major city, such as

Des Moines, Iowa. Because this is a physical building, Microsoft has

implemented and employed security measures and personnel to ensure

that no unauthorized access is taking place at this building. When thinking

about defense-in-depth, the outer layer of security is always the physical

barriers. Additional concerns like power and maintenance are all handled

by Microsoft and/or agents of Microsoft. With all of this, Azure can offer

virtualized hardware and the consumers don’t have to worry about any of

the physical aspects of the deployment.

Inside the data center, there are racks of bare-metal servers, each with

power and networking requirements. It is upon this backbone that you will

deploy your virtual machine workloads to host your applications. You can

also utilize this hardware to create a standardized image that all of your

developers utilize every day for performing their daily work.

 Fault Domains

To understand how you can achieve the greatest resilience, it’s important

to understand how the bare-metal servers work to distribute your

virtualized workloads. The first concept to understand is a fault domain.

You can think of a fault domain as a rack of servers sharing the same

network and power sources. In this fault domain, you have many servers

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

https://learn.microsoft.com/training/modules/describe-core-architectural-components-of-azure/
https://learn.microsoft.com/training/modules/describe-core-architectural-components-of-azure/

101

and many virtual machines on these servers. If someone trips over the

power cord, unplugs the network connection, or a hardware failure

happens, this fault domain is unable to continue backing virtual machines

until the issue is resolved. Patching and/or updating with Windows

Updates is yet another scenario that temporarily restricts the fault domain.

In a basic deployment of a virtual machine with no hardware

infrastructure resiliency, your virtual machine is deployed on one single

fault domain, within one physical data center for one region in Azure. Your

SLA for uptime for connectivity in this scenario is typically three nines (99.9

percent). This means out of each day you should have connectivity for all but

about 1.5 minutes. If the region your deployment is in becomes unreachable,

you’ll have a longer time before you get back to operational status.

 Update Domains

In scenarios where you need to have the ability to connect to a machine

but also allow for patching and Windows Updates to work, you need

to place multiple machines in separate update domains. You can have

multiple update domains on the same fault domain, and you can have

update domains on different fault domains.

To utilize update domains for virtual machines within an Azure Data

Center, you need to create an availability set.

 Availability Zones

Within the Azure Region where at least three physical buildings that are

a minimum of ten miles apart exist, you can create deployments utilizing

availability zones.

To visualize this, imagine there are data centers for the Central

U.S. region in Kansas City, Chicago, and Minneapolis. When you deploy

your virtual machine (or other resources) utilizing an availability zone,

your primary zone is one of the three locations. If the city where your

resources are deployed loses power or Internet, your solution continues to

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

102

work via one of the other two locations. In this scenario, the only time you

should not have availability is when the entire region is unavailable.

 Azure Regions

As a global solution, regions provide the ability to place resources closer to

your customers. This can be a physical closeness or a closeness in terms of

latency. Either way, when you need the best availability or resiliency, you’ll

utilize multiple regions in your solution.

For virtual machines, a common scenario is to have a primary region

where the machine is always available. A secondary region is created by

implementing an Azure Site Recovery services vault. In this scenario,

the backup machine can easily become the primary machine in case of

regional failure. The switch over can be either manual or automatic. The

regional failover machine also serves as a backup in case of corruption on

the primary region machine.

Azure Regions are typically paired together with regions at least 300

miles apart for the best redundancy solutions.

 Azure Sovereign Regions

Although it’s not likely super important to the AZ-204 Exam, it’s important

to know that there are multiple Azure Cloud offerings. Typically, you’ll

be working on the public cloud. However, if you are working for the

U.S. Government, you might be utilizing the Azure U.S. Government cloud.

If you are in Germany, another private cloud exists for sovereignty. China

also has a sovereign region.

Sovereign regions are completely isolated from the public cloud and

from one another. Therefore, by design, you should not be able to directly

communicate with resources between different sovereign regions.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

103

 Deploying an Azure Virtual Machine

Deploying a virtual machine in Azure is straightforward. On the portal, you

choose the subscription, resource group, and region for the deployment of

the machine. You also need to give the machine a name.

 Creating a Virtual Machine: The Basics

Windows machines are limited to 16 characters, while Linux machines

can be named with up to 64 characters. The recommendation is to utilize

a naming schema that illuminates the region, workload, and machine

number to make it easier to identify what the machines are doing. Names

like uscwebvm001 and noreudatavm025 are examples that help you note the

regional deployment, workload, and machine number. Figure 3-1 shows

the start of creating a new virtual machine.

Figure 3-1. Creation of a virtual machine starts with the
subscription, resource group, name, and region

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

104

 Availability Options

The next fields on the Basics tab allow you to determine your availability

options, with choices for “No Infrastructure Redundancy Required,”

“Availability Zone” (Regional Separation Across Zones), “Virtual Machine

Scale Set” (Zone and Fault Domain Redundancy), and “Availability Set”

(Fault Domain Redundancy). For this deployment, no redundancy is

selected. In a production scenario for a unique machine, you’ll want to

choose Availability Zone or Availability set (see Figure 3-2). If you have a

fleet of identical machines (i.e., a server farm), you’ll want to select the

virtual machine scale set. As an added piece of information, Kubernetes

clusters with nodes backed by virtual machines utilize virtual machine

scale sets for the cluster nodes due to the ability to easily scale out on

identical machines.

Figure 3-2. The availability options for a virtual machine help
you provision with the amount of redundancy and resiliency that is
appropriate for your workload

 Security, Image, and Architecture

For this demonstration, the machine will utilize the standard security type

and a Windows Server 2019 image (to simulate a production web server

with IIS). Azure Spot discounts give you an ability to leverage reserved

resources that are essentially not being used. They are very limited,

however, when resources are in high demand, as is generally the case in a

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

105

scenario like the first months of COVID-19 lockdowns, when all the world

started working from home. During that time, you were not able to utilize

spot instances because there were no resources available. Figure 3-3 shows

the selections for Security Type, Image, Architecture, and Spot Discount.

Figure 3-3. Selecting the security type, image, architecture, and
leaving the spot discount unchecked

 Virtual Machine Size

Another area to understand well are the workload sizes that are

preconfigured by Azure. Each group has a specific purpose, and the goal is

to help you create virtual machines that meet your needs and that are also

cost effective.

Groups exist for general purpose workloads (D-Series), Batch

(Burstable) workloads, (B-Series), High Memory (E-Series), GPU

(F-Series), Storage (L-Series), and a few others (see Figure 3-4).

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

106

Figure 3-4. The various machine sizes are grouped according to
potential workloads to aid with selection of the size for your machine

Each offering allows you to select a number of vCPUs, RAM, disks, and

IOPs. As you look through the offerings, you get estimated costs for the

month. The cost is what you would pay if you left the machine running

24/7 for the whole month. You can save money by deprovisioning the

machine when not in use. No matter how much you use it, you will pay

some costs for storage, so a typical work machine might see 60-80 percent

of the estimate, when shut down on nights and weekends.

Once you’ve selected the size for your machine, you’ll see the

estimated price, and then you’ll need to enter a valid username and

password combination for the administrator (see Figure 3-5).

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

107

Figure 3-5. The size is selected, and a username and password are
entered for the administrator

 Port Rules

In order to access the machine, ports need to be open. The default

deployment state opens port 3389, but additional options exist for 80, 443,

and 22. To be most secure, select None for public inbound ports, perhaps

even closing off port 3389 (you can easily enable it later if you need to).

If this machine is going to be exposed for web traffic, you can open ports

80 and/or 443 here. For SSH connections, you can open port 22. Any

additional port configuration can only be configured after the machine is

deployed. Figure 3-6 shows the options for port selection at this point.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

108

Figure 3-6. During creation, on the Basics tab, options exist to open
one or more ports for the machine

For this deployment, no ports are opened during creation. After

deployment, browsing to the networking blade will allow you to set the

ports directly in inbound rules on the Network Security Group (NSG)

for the VM.

 Hybrid Licensing

One of the ways Azure lets organizations save money with virtual machines

is to deploy and utilize existing licenses. On a Windows Server 2019 image,

you must have a license. If you have corporate licenses, you can save 40-70

percent of the cost. If you do not check the box, the cost of the license is

baked into your machine cost.

 Disks

Currently you can utilize disks in one of two ways—managed or

unmanaged. At this point, unless you have a serious reason not to, you

should utilize managed disks.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

109

Managed disks are automatically configured and deployed in Azure

Storage for you by Azure and are encrypted by default. You can utilize your

own key for encryption if you desire to do so. If you choose your own key,

you must store the key in Azure Key Vault. Premium SSD Disks for virtual

machines are only available as managed disks. If you want a standard

hard drive, which you can deploy as managed or unmanaged, you can still

choose one at the time of this writing. Unmanaged disks must be managed

by you, so you need to create storage for the disk. Additionally, unmanaged

disks are not encrypted by default, so you also need to ensure the disk is

encrypted.

As you create your VM, about 12-15 resources are created. One option

now available is to enable a pseudo-grouping of these resources. In the

past, the only way to clean up a machine was to delete all the resources

manually (or delete the resource group they were in). Now you can check

a box for resources like the Network Interface Card (NIC) card and disks to

associate with the VM for lifecycle management.

During disk creation, you can also choose to add disks for storage to

attach to your machine. Figure 3-7 shows the disk selection screen.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

110

Figure 3-7. Creating the disk(s) for the virtual machine

 Networking

When a virtual machine is created, it must exist on a virtual network in

Azure. Rules around IP addresses and virtual network interactivity in Azure

are outside of the scope of the AZ-204 Exam; however, any good developer

who is also responsible for DevOps should understand that the network

allows resources to communicate privately. For example, if you want to

create an additional VM for the data server (or a load balancer and a data

server farm), the Web VM and the Data VM will need to be on networks

that can communicate. This is typically done via subnets in the same

virtual network but can also be done with Virtual Network Peering.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

111

For the AZ-204 Exam, the number one concern is communication

with the outside world. In other words, you should be ready to answer

the question: How will your users connect to this machine? Once again,

you have the choice to open ports 22, 80, 443, and 3389 for various

connection options. Once again, you do not get the option to do any other

port designations during the creation of the machine, but additional port

changes can happen at any time after the machine is deployed.

The network rules can be configured against the machine directly

using the NIC card attached to a Network Security Group (NSG). Every NIC

card must have one NSG, but an NSG can have many NIC cards. NSG rules

can also be applied to a network subnet, so a VM can actually be behind

two sets of port rules. If both the subnet and the NIC have an NSG, then

both of these NSGs must open the appropriate ports. If either blocks traffic,

then the machine cannot be reached on the port. This is bidirectional for

outbound ports as well. Figure 3-8 shows the Networking tab with a new

virtual network, a default subnet, a public IP, the basic (new) NSG for

the machine, and ports locked down so no access to this machine will be

possible until the NSG is updated later.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

112

Figure 3-8. Creation of the networking portion of the
virtual machine

At the bottom of the Networking tab are options to associate the public

IP and the NIC when the VM is deleted, as well as enable accelerated

networking, which can give better throughput to the machine. Finally,

options are provided to select a load balancer or an application gateway to

be the entry point for public traffic.

A common scenario is to select an Azure Application Gateway for layer

7 route-based traffic direction for web applications and web APIs. For

typical IP-based layer 4 routing, the Azure Load Balancer is a valid choice.

Either option allows provisioning a gateway to a farm of machines for

round-robin or other load-balancing strategies (see Figure 3-9).

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

113

Figure 3-9. The final selections from the Networking tab

 Management

On the Management tab, you get to choose if you want to assign a

managed identity for the machine. You can also set options to log in with

an Azure AD account.

Additional options exist to enable auto-shutdown, backup, disaster

recovery, and patching selections. The auto-shutdown script is nice if

you have a machine that should not be left running all the time and could

potentially be left on by mistake, such as a developer machine or a test

server that doesn’t need to run on nights and weekends.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

114

Figure 3-10. These options allow you to select additional
management options during deployment

 Monitoring

On the Monitoring blade, you can select to enable Boot Diagnostics and

OS Guest diagnostics, as well as where to store the data.

Another monitoring tool exists that is not available here during

deployment but can be added to a deployed machine, called Virtual

Machine Insights (VM Insights). Similar to Application or Container

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

115

Insights, VM Insights is an agent you deploy to the machine to report

metrics to Azure. By default, Azure will give you critical metrics about a

VM whether you deploy VM Insights or not, but VM Insights can give you

additional metrics and workbooks to visualize your VM metrics in more

detail with ease. Once the machine is deployed, you can configure and

deploy VM Insights. Figure 3-11 shows the monitoring options during

deployment from the portal.

Figure 3-11. Monitoring options for diagnostics can be configured
during deployment

 Advanced

You can take additional actions at the time of deployment around your

virtual machine. You can add extensions like the Azure Pipelines Agent,

the Custom Script Extension, Azure Performance Diagnostics, Network

Watcher Agent, PowerShell Desired State Configuration, OpenSSH for

Windows, Chef VM Extension, Octopus Deploy Tentacle Agent, a number

of security and monitoring tools, and many more (see Figure 3-12).

You can deploy applications if you have preconfigured applications for

VM Deployment. You can also execute a custom PowerShell script such as:

Install-WindowsFeature -name Web-Server -IncludeManagementTools

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

116

Figure 3-12. Advanced options for deployment of a virtual machine—an
extension for Microsoft anti-malware is included for deployment

 Final Checks

After the machine is configured for deployment, you get a review screen

(shown in Figure 3-13) that allows you to validate the settings and shows a

final, estimated price. You can review and then create the machine at will.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

117

Figure 3-13. The final review screen is shown, ready to create the
virtual machine

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

118

 Restricting and Allowing Network Access
to a Virtual Machine
With the machine deployed, currently there is no access to the machine.

As a seasoned web developer, it’s highly likely that you’ve remoted into

a machine before to deploy applications and/or configure settings on

a machine, or to review the IIS logs for potential attacks and additional

errors. With that in mind, you likely want to enable RDP access over port

3389 or SSH on port 22.

To set networking rules around the machine, including enabling

RDP on 3389 and/or SSH on port 22, on the blade for the machine select

the Networking left-navigation offering to review the NSG rules for the

machine NIC. Once again, in some scenarios, you need to also configure

a subnet NSG, and you should be prepared to navigate this challenge with

the subnet and NIC options for port access and what that means for traffic

flow to and from your machine when both have rules configured.

On the Networking tab, you can set an inbound port rule (see

Figure 3-14) and add your own IP address as the source. Additional sources

can be other resources within your Azure subscription like an Application

Security Group, or any other resource on the private network. For example,

a Bastion server or another virtual machine (sometimes called a jump

box) might be deployed into the private network to connect to the virtual

machine via the private IP address. Note that all NSG rules have defaults at

the lowest priority (highest numbers possible) that cannot be removed.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

119

Figure 3-14. The Network security group rules are shown with the
ability to add inbound rules, review effective rules, add outbound
rules, application security groups, and load balancing

The rules at this level are much more configurable for all ports,

and a number of common services are preconfigured for selection (see

Figure 3-15).

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

120

Figure 3-15. Inbound rules can utilize pre-built configurations or
can be customized for any valid port range

You then select the action for Allow and set a priority. The lower the

number for the priority, the higher the precedence. For example, priority

400 is very high and overrides any rule with a priority number greater

than 400. Name the rule here (you can’t rename it later). Give the rule a

meaningful description. Figure 3-16 shows the remaining configuration.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

121

Figure 3-16. The Allow action is selected and priority is set to 400.
The rule has been named and a description has been added

To serve web traffic, enable port 80 for inbound traffic and set the

priority to something like 500 (see Figure 3-17).

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

122

Figure 3-17. The network security rules are shown, allowing RDP
and HTTP traffic to the web

 Effective Security Rules

As mentioned a few times previously, it’s important to know what traffic

can get to and from your machine. The networking blade has one more

tab that is interesting, and it is the Effective Security Rules. In the Effective

Security Rules, you can drill into the Associated NSGs (see Figure 3-18).

Figure 3-18. The Effective Security Rules blade

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

123

This tab helps you discern what traffic can get to your machine (see

Figure 3-19). Any associated NSGs are shown here.

Figure 3-19. The Effective Security rules are shown

 Implementing Desired State Configuration
on an Azure Virtual Machine
The final thing that is important for developers to know about virtual

machines around the scope of the AZ-204 Exam is the concept of the

Desired State Configuration (DSC) for Azure Virtual Machines. The DSC

is the number one tool to use for ensuring that your fleet machines have

appropriate configurations (i.e., IIS Enabled, Containerization Capability,

etc.). Additionally, DSC can be utilized to prevent configuration drift,

ensuring that resources that are not supposed to be enabled are not.

During the deployment, I purposefully left off the IIS deployment

script. However, consider the scenario where the machine needs to host a

web application via IIS. In order to host the application, the machine must

enable IIS. This is easily done by remoting to the machine and running a

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

124

PowerShell script or just turning it on via additional Windows features. But

what happens if someone turns it off? What about the scenario where you

have 100 fleet VMs. Do you really want to go to each one to enable IIS? Of

course you do not.

The following interaction to enable IIS using DSC with an Azure virtual

machine is well-documented here: https://learn.microsoft.com/

powershell/dsc/quickstarts/website-quickstart?view=dsc-1.1. For

purposes of brevity, this book simply enables IIS. The documentation also

shows how to deploy a default page to the web server.

Creating a DSC configuration on an Azure Virtual Machine is a four-

step process. First, you must create an Azure Automation Account (see

Figure 3-20).

Figure 3-20. In order to utilize DSC, you need an Azure Automation
Account. The State Configuration (DSC) left-navigation menu then
allows you to create DSC configurations and associate machines to
the configurations

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

https://learn.microsoft.com/powershell/dsc/quickstarts/website-quickstart?view=dsc-1.1
https://learn.microsoft.com/powershell/dsc/quickstarts/website-quickstart?view=dsc-1.1

125

Next, you must create a PowerShell script. For example, create a simple

file called EnsureIIS.ps1 with the following script:

configuration EnsureIIS

{

 Node IsWebServer

 {

 WindowsFeature IIS

 {

 Ensure = 'Present'

 Name = 'Web-Server'

 IncludeAllSubFeature = $true

 }

 }

 Node NotWebServer

 {

 WindowsFeature IIS

 {

 Ensure = 'Absent'

 Name = 'Web-Server'

 }

 }

}

You then upload the script (see Figure 3-21) and create a manifest from

the script Managed Object Format (MOF) file, as shown in Figure 3-22.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

126

Figure 3-22. Compiling the script

Figure 3-21. Uploading a script to the Automation Account DSC on
the Configurations tab

Creating the MOF file is as easy as selecting your script and compiling

it, as shown in Figure 3-22.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

127

Finally, you add nodes that you want to manage by connecting to the

VM Node and selecting the configurations to apply (see Figure 3-23).

Figure 3-23. Ensuring the node is set as a webserver

After the DSC is created and applied, the node will show up as

compliant (as in Figure 3-24).

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

128

Figure 3-24. The node is now compliant

Browsing to the public IP also proves the node is compliant, as shown

in Figure 3-25.

Figure 3-25. The node now exposes the default IIS page, proving
the web server tools are enabled and the route on port 80 is open as
expected

 Azure Resource Manager (ARM) Templates
and Bicep for Infrastructure as Code (IaC)
In addition to Infrastructure as a Service (IaaS), developers also need to

have some experience with Infrastructure as Code (IaC). The tools you

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

129

want to be in command of are traditional ARM templates and the newer

Bicep templates. It’s also important to understand how the ARM resources

work in Azure.

Whenever you deploy anything into Azure—whether the deployment

is manual via the portal, imperative via PowerShell or the Azure CLI,

or automated via template deployments—the final result is that the

commands are all essentially sent to the ARM REST API for execution. The

advantages of using a template are maximum efficiency coupled with less

chance for error.

Using the portal is great for one-off deployments, but repeating

operations in the portal is more than tedious, it’s a waste of time. Using an

imperative approach is nice if you like declaring everything individually

and then deploying in a procedural approach, but using scripts may have

errors that aren’t known until runtime and may have more errors with

dependencies and configurations than anticipated. Using templates

allows you to declaratively deploy an entire environment using parallelism

whenever possible. Additionally, templates are fully evaluated before

execution for potential errors. It’s easy to set dependencies in templates.

You can even use a main template to orchestrate deployments using

additional templates.

 Template Structure
The ARM template structure contains five major sections. Of these five

sections, you should be able to recognize and use three of them regularly.

The five major sections are Parameters, Variables, Resources, Functions,

and Outputs. When working with templates, you will almost always use

Parameters and Variables. You will always use the Resources section.

Optionally, you might create a function, but using functions is fairly rare.

The Outputs section is useful if you need to create a value during the

deployment for use elsewhere in your solution, typically for use in another

template as part of an orchestration.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

130

 VS Code for Templates
Before diving deeper, when working with ARM and Bicep templates,

I highly recommend utilizing VS Code. The extensions for ARM (see

Figure 3-26) are found at https://marketplace.visualstudio.

com/items?itemName=msazurermtools.azurerm-vscode-tools. The

extensions for Bicep (see Figure 3-27) are found at https://marketplace.

visualstudio.com/items?itemName=ms-azuretools.vscode-bicep.

You’ll also find a few simple shortcuts that allow you to create a template

in a matter of minutes. Couple that with the fact that the stubbed-out

structure is free from errors and you have a powerful tool to get up and

running quickly.

Figure 3-26. The ARM extension in VS Code

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

https://marketplace.visualstudio.com/items?itemName=msazurermtools.azurerm-vscode-tools
https://marketplace.visualstudio.com/items?itemName=msazurermtools.azurerm-vscode-tools
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-bicep
https://marketplace.visualstudio.com/items?itemName=ms-azuretools.vscode-bicep

131

Figure 3-27. The Bicep extension in VS Code

 ARM Templates
To get started, simply open VS Code with the ARM template extension

installed, then create and save a file called azuredeploy.json. In that file,

type arm! and then select the first item by checking the box to generate a

new template (see Figure 3-28).

Figure 3-28. Starting a new ARM template by typing arm! in an
azuredeploy.json file using VS Code

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

132

Typing arm! activates the ARM extension within VS Code and

generates a new starter template for creation of an ARM template. Once

the file is generated, you’ll have the following template (the schema may

vary based on new versions released after this writing):

{

 "$schema": "https://schema.management.azure.com/

schemas/2019-04-01/deploymentTemplate.json#",

 "contentVersion": "1.0.0.0",

 "parameters": {},

 "functions": [],

 "variables": {},

 "resources": [],

 "outputs": {}

}

The major sections are included as expected. The schema determines

the API version to use. For purposes of simplicity, delete the functions

and outputs sections from this template to get a basic shell for a simple

template.

 Resources

The main section of any ARM template is the Resources section. In this

section, you’ll declare all of the resources you want to deploy. You will also

set any dependencies in this area. You can also use this area to link to other

templates or nest another template.

To create a storage account resource, expand the resources array and

type storage. Then select the option to stub in a storage account resource

(see Figure 3-29).

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

133

Figure 3-29. Creating a storage account resource is accomplished
using the arm-storage template

The ARM template can be deployed at this point, but if anyone else in

the world (outside of your subscription and resource group) has created

a storage account called storageaccount1, then this template would fail.

The template will also fail if you try to create a storage account with an

invalid name (it must be between 3-24 characters, all lowercase, or 0-9).

Change the name to something like mystorYYYYMMDD, where you replace

YYYYMMDD with the current date. Additionally, change the SKU name to

Standard_LRS and the tier to Standard if you want to avoid premium

charges.

 Validating ARM Templates

Because there are several things that can go wrong with a template

deployment, it is possible to validate the template before attempting to

deploy it.

As mentioned, if your storage account name is incorrect or the

deployment can discern that it will fail to run to completion, then the

validation of the template will let you know right away when something

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

134

is wrong. The problem could be syntax-related—meaning you have

something incorrect in the template itself—or it could be an issue like a

conflict in the resources.

The main way to see if a template is going to work and what it will do is

to utilize the What-if command. Using the What-if command will validate

the template and also tell you what will happen. Instead of What-if, you

can also use the Confirm option, which will show you the What-if and

then let you choose to continue or cancel the group deployment.

New-AzResourceGroupDeployment -Whatif -ResourceGroupName "your-

resource- group" -TemplateFile "azuredeploy.json"

PowerShell has a command called Test-AzResourceGroupDeployment

that you can also use, which can be used to simply validate the template

and parameters to ensure there are no major errors.

 Deploying ARM Templates

Once the template is validated, you can deploy it. Optionally, you can live

dangerously and skip validation (which will happen during deployment

anyway).

Open a shell in your browser to the Azure Portal by navigating to

https://shell.azure.com. Make sure you are in the Bash terminal (you

can do this in PowerShell too, but the syntax is slightly different).

To complete the following deployment, create a resource group for the

new storage account and set the name of the resource group in a variable.

Upload the azuredeploy.json file to create a basic storage account to your

Azure subscription using the Upload/Download icon on the shell.

Once the file is uploaded, ensure that everything is in the correct folder

(Note: You may need to move the file because the upload will be at the root of

your home directory.) With everything in place, run the following commands

(also found in the deployarmstorage.sh script in the resources for this

chapter) to deploy the template using the Azure CLI (see Figure 3-30):

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

https://shell.azure.com

135

touch deployarmstorage.sh

code .

Once the code editor is opened, add the following lines to the script,

making sure to replace the generic resource group name with your

resource group name:

rg=<your-rg-name>

az deployment group create -g $rg --template-file

azuredeploy.json

Save the file and exit the code with Ctrl+Q. If you forget to save, you’ll

be prompted to do so. This will close the code editor. Next, run the script

with the following command:

bash ./deployarmstorage.sh

Once the deployment is completed, you will see output in the form of

JSON that shows the new storage information, and you can easily review

the account in the Azure Portal (see Figure 3-31).

Figure 3-30. You can run deployments from your local machine or
via the Azure Portal

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

136

Figure 3-31. The storage account is created as expected from the
execution of the ARM template

 Parameters

In the template, the parameters and variables are empty. Perhaps you

want to allow the deployment to change from one execution to another.

For example, perhaps you’d like to make the name and the location into

parameters. Parameters can have default values, a set of predefined

options, and can be moved into a parameters file to easily configure a

group of parameters.

Returning to VS Code, add parameters in the parameters section by

typing param and selecting the new-parameter option (see Figure 3-32).

Figure 3-32. Use the VS Code extension to easily add parameters to
your ARM templates

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

137

Change the name of the parameter to name. Create a second parameter

called location. For the name, do not specify any other changes. For

the location, add an attribute called defaultValue with a value of

[resourceGroup().location]. See Figure 3-33.

Figure 3-33. The Location and Name parameters are added to the
template

Next, leverage the parameters in the template by replacing the hard-

coded name and location values in the resource for the storage account

with the key string [parameters('parametername')]. The square braces in

the JSON string are special and Azure knows to evaluate the text internal to

the square braces as a function. The resource should now be as follows:

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

138

"resources": [

 {

 "name": "[parameters('name')]",

 "type": "Microsoft.Storage/storageAccounts",

 "apiVersion": "2021-04-01",

 "tags": {

 "displayName": "storageaccount1"

 },

 "location": "[parameters('location')]",

 "kind": "StorageV2",

 "sku": {

 "name": "Standard_LRS",

 "tier": "Standard"

 }

 }

]

Save and upload the file to Azure or just copy/paste the new file into

the Azure location and rerun the template command. This time you will

be prompted for the name (see Figure 3-34), since the name value is

parameterized and no default value is provided.

Figure 3-34. When a parameter exists with no default value, you
must provide the value during deployment

 Variables

In this case, you’ve parameterized the name and allowed the location to be

a parameter or to be set to the default location. What if you wanted to also

create a default name but reuse this template to create different storage

accounts? This can be done with a combination of parameters and variables.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

139

Update the name parameter to have a default name value of mystor.

Clearly this won’t be unique, so running the deployment would likely fail.

Sometimes you’ll want to group resources together or have an ability to

append a unique string to make a value unique.

In VS Code, in the variables section, type var to get the prompt

to create a new variable. Select the new variable shortcut to create

a new variable. When the variable is created, change the name to

storageAccountName and set the value to [concat(parameters('name'),

uniqueString(resourceGroup().id))]. Leverage the value in the

resource name by changing it to [variables('storageAccountName')]

(see Figure 3-35).

Figure 3-35. The storage name is now default and unique, but can
still be set by the deployment if desired

Make sure the updated code is in the Azure shell and run the command

again without a name. This time the deployment works as expected. Additional

runs would also work, as would explicitly naming the storage account.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

140

 Outputs

In some scenarios, you’ll want to get the values back from the template

for use in further deployments. Since the account name is unique and

generated during deployment, you could return the value from the

template for use elsewhere.

In VS Code, add the Outputs section back to the bottom of the

template under the resources, before the closing squiggly brace. In the

outputs section, type new and use the shortcut to get a new output (see

Figure 3-36).

Figure 3-36. The outputs section has a helper to create a new output

Name the output storageAccountName and set the value to the storage

account variable:

"outputs": {

 "storageAccountName": {

 "type": "string",

 "value": "[variables('storageAccountName')]"

 }

 }

Any template that called this template could utilize the outputs value

to further work with automation.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

141

 Functions

Functions are utilized to perform repeated actions. For example, if

multiple variables needed that unique string, one option is to build a

user-defined function in the template that takes the value for the variable

and concatenates it with the unique string to get the value. In this example

from Microsoft Learn, https://learn.microsoft.com/azure/azure-

resource-manager/templates/user-defined-functions#use-the-

function, the code is doing this exact operation by replacing the previous

example with a function and referencing the function call in the name

of the resource. You can create and leverage a similar function in this

template if you want to try it out yourself.

 Bicep Templates
Like ARM templates, Bicep templates are IaC and they give you the ability

to declaratively provision a group of resources. Indeed, if you have never

worked with ARM, it is now recommended that you just learn Bicep. The

good news is that you can easily write Bicep and then translate to ARM via

a simple PowerShell command. A similar command exists to go from ARM

to Bicep.

At the time of this writing and when I took the exam, Bicep wasn’t

really on the list of things you need to know. Going forward, I’d be

surprised if it doesn’t show up in the list of potential things you should be

aware of.

The good news is that Bicep is much easier than ARM because it is

human-readable and generally easy to use. Like ARM templates, you

create resources and you can define parameters, variables, and even link to

other Bicep templates (modules). Using VS Code, you can easily leverage

the extension to quickly build a Bicep file that can be deployed to Azure.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

https://learn.microsoft.com/azure/azure-resource-manager/templates/user-defined-functions#use-the-function
https://learn.microsoft.com/azure/azure-resource-manager/templates/user-defined-functions#use-the-function
https://learn.microsoft.com/azure/azure-resource-manager/templates/user-defined-functions#use-the-function

142

Another thing about Bicep is that it is extremely similar to Terraform,

which is one of the, if not the most, popular ways to automate

infrastructure in multi-cloud and other non-Azure scenarios (so it is likely

that you might know Terraform but not ARM or Bicep). In that case, Bicep

will definitely be your best option.

Whether you learn Bicep or ARM for this exam, the concepts are the

same. You must remember precedence (you can’t create a container for

blob storage without a storage account, and you can’t create an app service

without an app service plan). You must also remember the limitations

around uniqueness of naming and any other naming restrictions. If you

know that, either Bicep or ARM will help you build robust IaC solutions.

 A Quick Bicep Example

To wrap up this look at IaC, I present the code from a basic Bicep file that

does the same thing the ARM template in the previous example did. The

following template will use parameters to create a unique storage account.

You can review and compare the following syntax with what was done for

the ARM template. If you’d like a deeper dive into learning Bicep, leverage

this Learn module: https://learn.microsoft.com/training/paths/

fundamentals-bicep/.

Here is the code for the Bicep deployment:

param name string = 'mystor'

param location string = resourceGroup().location

var storageAccountName = '${name}${uniqueString(resourceGro

up().id)}'

resource storageaccount 'Microsoft.Storage/

storageAccounts@2021-02-01' = {

 name: storageAccountName

 location: location

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

https://learn.microsoft.com/training/paths/fundamentals-bicep/
https://learn.microsoft.com/training/paths/fundamentals-bicep/

143

 kind: 'StorageV2'

 sku: {

 name: 'Standard_LRS'

 }

}

You can also find that code in the resources for this chapter in the

azuredeploy.bicep file. Once you have the file uploaded to the correct

folder, run the command highlighted in Figure 3-37.

Figure 3-37. Utilizing the AZ CLI to deploy a Bicep template is
similar to working with ARM templates

 Final Thoughts about Template Deployments
To complete the look at IaC, it’s important to know that there are two

deployment modes. Almost all the deployments you will do are going to be

of the Incremental type. These deployments were all incremental. In some

cases, you may choose to do a Complete deployment. Using a Complete

deployment is a dangerous operation, so you need to be certain when you

want to perform a Complete deployment. For this reason, the default is

set to Incremental, which is also why all the previous deployments were

Incremental.

 Incremental Deployments

As mentioned, most of your template deployments will be Incremental.

In an Incremental deployment, Azure looks at the incoming template. If a

resource exists in the template, the resource is created in Azure if it doesn’t

already exist. If the resource already exists, the resource is evaluated. If

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

144

anything in the template is configured differently from the resource in

Azure, then the resource will be modified to match the specifications

as laid out in the template. This is a safe operation, as it’s essentially an

“Upsert” of resources to match the defined requirements in the template.

In an incremental deployment against a resource group in Azure, any

resources not named in the template are completely ignored. All existing

resources named are not deleted, but are modified if needed or left alone if

configured as per the template. New resources named in the template are

deployed as expected.

 Complete Deployments

In some scenarios, such as a production environment, you may desire to have

zero configuration drift. In other scenarios, you may want to clean up resource

groups that have had some modifications that may not have been desired. An

easy way to accomplish this is with a complete template deployment.

In a complete deployment against a resource group in Azure, any

resources that exist in the resource group that are not named in the

template are deleted. Any resources named in the template are modified

or inserted as needed in the resource group. This is a potentially dangerous

operation because resources not named will no longer exist after the

deployment is finished.

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solution(s). You can find

answers to these questions in Appendix A at the end of this book.

 1) What is a VM Availability Set? What is a VM Scale

Set? How are VM Scale Sets and VM Availability Sets

different? When would you use one over the other?

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

145

 2) What are some of the main groups of VM compute

configurations?

 3) Which Azure disks are managed? Which

are potentially unmanaged? What are some

considerations to remember when utilizing an

unmanaged disk?

 4) How do you limit traffic to and from a VM in Azure?

What are some common ports to be aware of?

 5) What resources in Azure are necessary to deploy a

VM with a desired configuration? What are the steps

to ensure a VM has a feature enabled?

 6) What are the main sections of an ARM template?

How do you create and work with variables?

 7) Working with Bicep, how do you configure a

deployment for a new resource? How do you use

variables?

 8) What is the difference between an Incremental and

a Complete template deployment?

 Optional Training: Complete
the Original First Two AZ-204: Implement
Infrastructure as a Service Solutions
Modules (no longer a the learning path
for AZ-204 as of April 2023)
To fully learn the material, I recommend taking the time to complete the

MS Learn modules for Implement Infrastructure as a Service solutions

found here:

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

146

• Provision virtual machines in Azure: https://learn.

microsoft.com/training/modules/provision-

virtual-machines-azure/

• Create and deploy Azure Resource Manager templates:

 https://learn.microsoft.com/training/modules/

create-deploy-azure-resource-manager-templates/

 Chapter Summary
In this chapter, you learned about provisioning virtual machines for

Infrastructure as a Service and working with Bicep and ARM templates for

Infrastructure as Code.

After working through this chapter, you should be on track to be in

command of the following concepts as you learn about Azure and prepare

for the AZ-204 Exam:

• Work with Infrastructure as a Service, specifically

creating and managing Azure Virtual Machines.

• Utilize ports for allowing inbound and outbound

network traffic via Network Security Groups.

• Utilize Azure Automation to implement Desired State

Configuration for virtual machines.

• Create and utilize ARM and Bicep templates to

provision resources.

• Work with parameters and variables in ARM and Bicep

templates.

• Understand the difference between Complete and

Incremental deployments.

• Validate ARM templates.

In the next chapter, you learn about working with Azure App Service

for hosting web applications.

Chapter 3 Implement InfrastruCture as a servICe (Iaas) solutIons

https://learn.microsoft.com/training/modules/provision-virtual-machines-azure/
https://learn.microsoft.com/training/modules/provision-virtual-machines-azure/
https://learn.microsoft.com/training/modules/provision-virtual-machines-azure/
https://learn.microsoft.com/training/modules/create-deploy-azure-resource-manager-templates/
https://learn.microsoft.com/training/modules/create-deploy-azure-resource-manager-templates/

147

CHAPTER 4

Create Azure App
Service Web Apps
Traditional architecture requires a virtualized PC and IIS, Tomcat, or some

other hosting agent. In those scenarios, you are responsible for making sure

the operating system is patched. You must maintain the network where the

virtual machine is deployed, and you must ensure that you’ve properly built

regional failovers and backups into your business continuity and disaster

planning. When you deploy your solution, you must maintain any SSL

certificates and ensure that your network traffic is handled correctly.

What if you could forego most of that and deploy a website with baked-

in disaster recovery, resiliency, backups, and even SSL certificates, hosted

in the correct environment, with the ability to scale at will and deployment

slots for modern deployment patterns like blue-green deployments?

The benefits of using Azure App Services are exactly what you can

gain, along with speed of deployment. The Azure App Service is a platform

as a service offering in Azure. This allows you to get up and running with

ease; your main job is maintaining the code, handling or automating

deployments correctly, and choosing if you want to scale manually or

with automatic rules. Additionally, a couple of other choices allow you

to determine how many deployment slots you can utilize, as well as the

option to go for a shared hardware solution or an isolated plan if you want

to ensure that your application is the only application running on the

backing hardware.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_4

https://doi.org/10.1007/978-1-4842-9300-3_4#DOI

148

 Before Getting Started
This chapter demonstrates the major features of the Azure App Service

for which you need to be ready to answer questions on the exam, as well

as work with the solutions in real life. To aid in the demonstrations used

in this chapter, there is an application that utilizes .NET 6 and ASP.Net

MVC. You are welcome to work with this code (found in the repository for

this book or on my GitHub). For additional practice, you can try deploying

other solutions with different technology stacks. It is also incredibly easy

to create your own applications with the .NET CLI (for more information,

review the material at https://learn.microsoft.com/dotnet/core/

tools/dotnet-new).

 Creating an Azure App Service
Deploying an Azure App Service (app service) can be easily accomplished

via the Azure Portal, using imperative commands with the Azure CLI and/

or PowerShell, via ARM or Bicep templates, or via direct commands to the

REST API.

All Azure App Services belong to an App Service Plan, which

determines the overall compute for the services in the plan. If multiple

app services are deployed to the plan, they share the compute thresholds

of the plan, which can lead to issues if one of the hosted services becomes

a resource hog. For this reason, it’s a good idea to not mix workloads

within an App Service Plan for production scenarios. Instead, spread your

workloads into specific plans to ensure the best availability and utilization

of the provisioned resources.

Chapter 4 Create azure app ServiCe Web appS

https://learn.microsoft.com/dotnet/core/tools/dotnet-new
https://learn.microsoft.com/dotnet/core/tools/dotnet-new

149

 App Service Plans
App Service Plans can be created as stand-alone deployments. If your

overall goal is to deploy an app service, you can typically deploy the App

Service Plan along with the app service deployment.

 Pricing Tier

Choosing the correct App Service Plan ensures that you maximize your

utilization of the hardware while also managing your expenditures. If you

are just one developer or in a very small shop, you might choose to deploy

this as a free app service. A couple of other developments and shared

solutions exist where you can slightly increase your expenditures and gain

benefits like the ability to have a custom domain or have some deployment

slots. Figure 4-1 shows how the testing and shared plans break down when

creating an App Service Plan.

Figure 4-1. The App Service Plan options for test include Free,
Shared, and Basic

Chapter 4 Create azure app ServiCe Web appS

150

In the Free plan, no custom domain is available, so the website

is only available at the default https://{your-app-service-name}.

azurewebsites.net. None of these dev/test plans offer deployment slots.

The B1 plan is more expensive, but it can scale to three instances, whereas

the other two plans cannot scale to meet demand.

In the production tier, the Standard (S1) plan is the first tier to offer

deployment slots. From there—depending on how much memory and

compute time you want, how many instances you want to scale to, and

how many deployment slots you want—you can choose from a number of

options, as shown in Figure 4-2.

Chapter 4 Create azure app ServiCe Web appS

151

Figure 4-2. The Standard and Premium plan offerings vary based on
how much compute, how many slots, and how many instances you
want to scale to during peak workloads

The S1 plan is adequate for small production workloads, and it is

the first plan to offer deployment slots, so the tier used to demonstrate

concepts in this book deploys an S1 instance (see Figure 4-3). Outside of

slots and scale, a free tier application could be used for the purposes of

learning and testing.

Chapter 4 Create azure app ServiCe Web appS

152

Figure 4-3. An App Service Plan with the Windows operating system
is selected. Choosing Linux might be a better choice depending on
your workload and technology stack

Additional offerings not shown are in the Isolated tier. You should

take a look at the various offerings, so you have a good feel for some of

the differences. The main difference with an Isolated instance is the

Chapter 4 Create azure app ServiCe Web appS

153

knowledge that your application is the only application on the physical

hardware. Other plans share physical hardware to leverage the cost savings

of sharing infrastructure with other Azure tenants.

In order to create an Isolated App Service Plan, you first need to create

an App Service Environment (ASE). App Service Environments can be

used for other deployments as well as the app service, including Azure

Functions and Azure Logic Apps. ASEs are also great for high-throughput

and scale workloads.

 Operating System

Another consideration when deploying an Azure App Service Plan is the

operating system to host the application. For most deployments, you

can currently leverage the Linux operating system. Java, the LAMP stack,

MEAN/MERN, and .NET can all run on Linux at this point. App Service

Plans that are hosted on Linux are also ideal for containerized workloads.

In some scenarios, you may want to leverage the Windows operating

system, such as when you are deploying a traditional .NET Framework

application.

If you deploy your App Service Plan first, you need to choose the

appropriate operating system during the creation of the app service in

order to see your plan. If you are doing the plan deployment at the same

time as the site deployment, you only need to choose the operating

system once.

 Redundancy

Zone redundancy can be used on premium and higher plans. With Zone

redundancy, you can set the ability to use the zonal architecture of Azure.

When you choose this option, the minimum amount of app services that are

active is three. Three instances are required in order to have one instance

available in each of the different redundancy zones within a region. The

Free, Shared, Basic, and Standard plans do not support zone redundancy.

Chapter 4 Create azure app ServiCe Web appS

154

 App Services
Whether you deploy your App Service Plan first or during the App Service

deployment will be up to you. Either way, the main resource you want for

hosting your web applications is the Azure App Service. The next sections

review the options for the App Service deployment.

 Name Your Application

In order to deploy your application, you must choose a name. Since

the application is going to have a fully-qualified domain name, your

application name must be unique to the world. There are a couple of other

naming considerations due to the nature of FQDNs. For example, you can’t

start or end with a dash, and don’t try to use any special characters, as only

64 alphanumeric characters and dashes are allowed (see Figure 4-4).

Figure 4-4. The creation of an app service requires a name that is
unique and can be utilized as a fully-qualified domain name tagged
with *.azurewebsites.net

Once you deploy your application, the name will be part of the

overall domain. Every app service shares a common base domain that

includes your unique application name. For example, a website named

az204examref20251231 after deployment would have this URL: https://

az204examref20251231.azurewebsites.net.

Chapter 4 Create azure app ServiCe Web appS

https://az204examref20251231.azurewebsites.net
https://az204examref20251231.azurewebsites.net

155

 Publish Type

After choosing your application name, you need to pick the way you will

publish your code. The options are Code, Docker Container, or Static Web

App, as shown in Figure 4-5.

Figure 4-5. Choices for publish type

 Code

Choosing Code is the traditional approach. In the code deployment, you

can FTP your application, publish directly from Visual Studio, or set up

automated deployments to pull from GitHub, BitBucket, Azure DevOps

Repos, or another public, external Git repository.

 Docker Container

Choosing a Docker Container deployment requires that your code be built

into an image that can run in a container. You can publish your images to

Azure Container Registry or Docker Hub. From there, setting the image

to use for your App Service is easily configured, as is choosing the exact

image and version tag for the image.

 Static Web Application

When you deploy a static web application, you can choose either a

Free or a Standard plan. The main difference is the number of staging

environments you can have as well as the size of your application. Both

plans allow for custom domains. Only the Standard plan has an SLA and

allows for a private endpoint.

Chapter 4 Create azure app ServiCe Web appS

156

Deployment of a Static Web Application is based on your Git

repository. Pointing your application to the branch of your choice allows

for automated deployments every time you check changes into the branch.

 Runtime Stack

The runtime stack configuration for your application allows you to

specify the backing technology. Choices here include .NET, Java, Python,

JavaScript/Node, Go, and Ruby. Based on your stack choice, the app

service will automatically be provisioned with necessary technologies to

host your application.

 App Service Plan

Once again, either create a new plan at this point or utilize one that you

have previously provisioned. As a reminder, the App Service Plan can host

many different app services, but the best production scenarios will likely

be based on the workload.

If you need to create a new App Service Plan, you can easily just click

the Create New link and set the name. You’ll need to choose the correct

Sales Keeping Unit (SKU) for SKU and Size. If you choose an existing plan,

only the plans from the operating system will be available, but the SKU

and Size will match the plan chosen when the plan was created. Figure 4-6

shows the choices for Runtime Stack, Operating System, Region, App

Service Plan, and SKU and Size.

Chapter 4 Create azure app ServiCe Web appS

157

Figure 4-6. The choices for stack, operating system, region, and the
plan and SKU

As this plan has been provisioned with the standard S1 SKU, the

options for Zone Redundancy are automatically disabled and cannot be

enabled (see Figure 4-7).

Figure 4-7. Zone Redundancy is disabled when the App Service Plan
is not at least at the Premium level

Chapter 4 Create azure app ServiCe Web appS

158

 Deployment

Deployment of an app service can happen in many ways. Current solutions

typically leverage Continuous Deployment (CD), directly from GitHub,

BitBucket, or Azure DevOps. Traditional solutions might utilize some

manual deployment, as do manual deployments from an external public

Git repository.

Automated Deployments

During the provisioning of the application, you can enable CD against

GitHub. When you do this, you need to connect your Azure account to

GitHub, and then choose the organization, repository, and branch for the

code that will be deployed. Once the application is provisioned, a GitHub

action is built that includes the necessary YAML to build and deploy your

application.

The default YAML will not run unit tests. Additionally, the default

YAML will utilize a Windows build agent when using a Windows runtime

stack. If your code is .NET 6 or higher for a web project, you will at a

minimum want to switch to an Ubuntu build agent, since the action

will run orders of magnitude more efficiently on an Ubuntu build agent

as opposed to a Windows build agent. It’s important to remember that

you should ensure your project will build on Ubuntu, because there

may be circumstances where that is not the case. Figure 4-8 shows

the configuration to deploy directly from GitHub using an action built

by Azure.

Chapter 4 Create azure app ServiCe Web appS

159

Figure 4-8. The automated deployment is set to utilize an existing
GitHub repository

Automated deployment can also be configured after the application

is provisioned. When an application has not been set for CD during

provisioning, visiting the Deployment Center blade gives you options for

utilization of the four major Git locations, as well as the ability to use an

external Git repository (see Figure 4-9).

Chapter 4 Create azure app ServiCe Web appS

160

Figure 4-9. You can configure CI/CD after an app service has been
deployed

Manual Deployments

When Automated deployment is not an option or was not configured,

manual options for deployment exist. The first option is to provision

utilizing FTPS.

On the Deployment Center blade in the app service, under the FTPS

credentials, you can find your endpoint, username, and password for

deploying an application (see Figure 4-10).

Chapter 4 Create azure app ServiCe Web appS

161

Figure 4-10. The FTPS credentials can be retrieved for manual
deployment from the Deployment Center

Additional manual options for deployment exist, including right-

clicking and publishing from Visual Studio or VS Code. In those scenarios,

you need to connect to your Azure account and then you can easily create

a publish profile or publish your build from your machine. While this is

possible, it’s not a recommended production solution due to security

concerns and other DevOps principles that you would be missing out on

by building an automated deployment.

 Networking

The next blade for the App Service deployment is the Networking options.

Here, only one option is available, and that is to enable network injection.

Essentially, without enabling any Internet limitations, your app service

will be hosted on the public Internet. You can change any settings after

deployment to make the application only able to be reached via a private

endpoint, or to ensure that traffic only happens on a private network

within your Azure tenant.

Chapter 4 Create azure app ServiCe Web appS

162

Here, if you enable network injection, you need to leverage an existing

network or create a new one. This traffic is for inbound and/or outbound

traffic, allowing your app service to connect to resources within your

network. Enabling this option allows you to set up private endpoints and/

or direct outbound traffic to a subnet in one of your Azure networks, as

shown in Figure 4-11.

Figure 4-11. The Networking options allow you to configure private
inbound and outbound traffic to and from your app service

Chapter 4 Create azure app ServiCe Web appS

163

To be clear, I’m not enabling any network traffic in my deployment,

which is easily accomplished by leaving the network injection set to Off.

 Monitoring

The most overlooked and most important aspect of the app service

deployment is likely to be the monitoring of the application.

Enabling Monitoring, as shown in Figure 4-12, requires that you

provision Application Insights, and you’ll want to back that with a Log

Analytics workspace. When you do this, you will have the ability to

run Kusto Queries (KQL) against your logs to do spelunking into your

application when things go wrong or to access other interesting metrics.

Figure 4-12. Monitoring with Application Insights is enabled on the
application

In .NET, a simple setting and NuGet package allows you to instrument

your applications for App Insights, which also allows you to write custom

telemetry very easily from your applications. App Insights can also be

configured to run from the JavaScript on your client side of the application.

Chapter 4 Create azure app ServiCe Web appS

164

Application Insights also gives you a number of additional tools you

can use to see information about the utilization your website or just to

perform simple health checks. More information on Application Insights is

covered in Chapter 10.

 After Provisioning
After provisioning your application, a number of configurations and

settings will be essential to managing your application.

 Deployment Slots
One of the most critical aspects of a production app service is the ability

to deploy to application deployment slots. Utilization of slots gives you the

ability to deploy production-ready code to a non-production location for

quick integration and user testing.

 Create a Deployment Slot

After your website is provisioned, when slots are available, you can create

new slots (see Figure 4-13). Each slot gets its own public-facing URL, which

is the name of your application plus a dash and the slot.

Chapter 4 Create azure app ServiCe Web appS

https://doi.org/10.1007/978-1-4842-9300-3_10

165

Figure 4-13. The staging slot is added to the application. The slot gets
its own URL and even has its own ability to be administered

 Swap Slots

A bit later in this chapter, you’ll examine the configuration settings for

things like environment variables and connection strings. When you

consider configuration, note that slots can have settings that are always

going to be at the slot level and others that can move with the deployment.

For example, an environment variable that denotes a non-production slot

would be sticky to the staging slot and will never move to production. A

connection string that is the same in multiple slots could just move with

the slot or be sticky with the slot. A key to a production API or a production

database connection string that should be accessible only from production

would need to be sticky to the production slot.

You can then point your repository to deploy to the slot, and when the

time is right, you can press a button or automate the swap of the staging

slot to production. If things go wrong, a simple press of the button swaps

the slots back to their original places, as shown in Figure 4-14.

Chapter 4 Create azure app ServiCe Web appS

166

Figure 4-14. You can swap slots, as shown with the staging and
production slots in this example

 Simple Traffic Load-Balancing/Routing

One last benefit of swapping slots is the ability to direct part of the traffic

to the slots. This is not as robust as a full routing solution can be, but it is

a very quick way to direct a small percentage of traffic to the slot. While

you have no control over which requests are routed, you can at least

know that a percentage of traffic is hitting the next version of the site and

you can get some immediate feedback if there are errors before sending

the next version to the live placement with 100 percent of the traffic (see

Figure 4-15).

Chapter 4 Create azure app ServiCe Web appS

167

Figure 4-15. The ability to route traffic by percentage to the slots is
possible from the app service without having to deploy or leverage a
full routing solution

 Automated Deployment Using the Deployment Slot’s
Publish Profile

Now that you have a public-facing deployment with slots, you can change

your pipeline to deploy to Azure. DevOps work is a bit outside of the scope

of the AZ-204 Exam, but it’s still a great idea to know your deployment

options in case some scenario might show up in the exam or at your

place of work or for a client. For purposes of brevity, this book only covers

deployment pipelines from GitHub actions, but you can easily translate

this to your provider of choice.

When enabling a deployment from GitHub to your app service, the

default setting is that Azure created a GitHub action that utilizes your

App Service publish profile. This action leverages a secret that stores your

publish profile at GitHub. The target for the deployment also names the

Production slot (see Figure 4-16).

Chapter 4 Create azure app ServiCe Web appS

168

Figure 4-16. The deployment pipeline is triggered by the push to the
main branch and has a workflow_dispatch trigger that allows the
pipeline to be manually triggered

To determine the publish profile for the application, you can go to

the app service and download the publish profile (shown in Figure 4-17),

which is a bunch of XML with information about your application and

permissions to deploy to it. This XML is exactly what is stored in your

GitHub secrets.

Figure 4-17. The publish profile can be retrieved from the App
Service Overview blade

Unfortunately, or perhaps mercifully, depending on your stance, the

publish profile for your slot is not the same as your production slot. The

name of the slot is added to the settings and a different password is also

Chapter 4 Create azure app ServiCe Web appS

169

used. For this reason, it is not sufficient to just switch your YAML to point

to the “staging” slot (see the error in Figure 4-18). You must also update the

publish profile.

Figure 4-18. The slot has its own publish profile, so you must
download that and store it in GitHub secrets

You can either overwrite the initial secret, or you can create a new one

and put the new publish profile in the new secret, then leverage the new

secret from the YAML. For purposes of demonstration, I store my staging

publish profile in a secret called STAGING_PUBLISH_PROFILE at GitHub (see

Figure 4-19).

Chapter 4 Create azure app ServiCe Web appS

170

Figure 4-19. Store the publish profile in a secret to utilize from the
YAML in the pipeline

After adding the secret, I ensure that the slot is set to Staging to match

my slot name and that I’ve leveraged the correct secret, as shown in

Figure 4-20.

Chapter 4 Create azure app ServiCe Web appS

171

Figure 4-20. The application publish profile variable is updated and
the slot is set to match my slot by name

You’ll also notice that I switched my deployment agent to ubuntu-

latest for the performance reasons mentioned earlier. After making the

changes, my application correctly deploys into the staging slot in my app

service in Azure. If you want more information about working with YAML

pipelines, you can find some resources at https://docs.github.com/

actions/quickstart.

 Additional Services
In order to make an application work, you often need to deploy additional

resources. A few of these resources include Azure Storage, Azure Cosmos

DB, Azure SQL, and/or Azure App Configuration.

Chapter 4 Create azure app ServiCe Web appS

https://docs.github.com/actions/quickstart
https://docs.github.com/actions/quickstart

172

 Deploy an Azure SQL Instance

Azure SQL is not really part of the AZ-204 Exam, but it is yet another

topic that you should understand enough to work with it, should you

be presented with a question on the exam or encounter any real-world

scenario.

For this application, a very simple and inexpensive database is

required to back authorization (see Figure 4-21).

Figure 4-21. The Basic Azure SQL Server costs less than five dollars
per month and is very limited but sufficient for learning

Chapter 4 Create azure app ServiCe Web appS

173

A couple of quick notes:

• You need to enable your IP address on the server

firewall if you want to run queries within the portal or

from SSMS on your machine.

• You need to enable the ability for other Azure services

to connect to this server. Failure to allow other services

will likely result in errors when making calls to the

database due to access denied and/or server not found

timeouts (see Figure 4-22).

Figure 4-22. The Networking settings allow you to set the server
firewall to allow Azure services and your local IP address. If you fail
to do this, you can easily do this from the portal on the Server blade
under the Server Firewall settings

Chapter 4 Create azure app ServiCe Web appS

174

After creating the database, you need to get the connection string for use

in the next section. If you want to create other resources to connect to, you

need to get connection information or environment variable information

for those resources, and you can then utilize the resources by configuring

connection information in the configuration section. Chapter 8 goes deeper,

with a couple of configurations for the Azure App Service and Azure Key Vault.

 Configuration
With the application deployed and a database or other resources ready to

go, a number of settings can be configured from the Configuration blade

on the app service. It’s important to remember that some settings can be

configured to be sticky for both the production and staging (which could

have been copied if the slot was created after the setting was added). Other

settings can be configured to be slot specific.

 Application Settings and Connection Strings

There are two types of application settings to be concerned with. The

two types are Application Settings and Connection Strings. Application

Settings are typically environment variables and they replace values you

would find in the appsettings.json file that are not connection strings.

The Connection Strings are typically for the database connection string

and can also be used for things like a storage account connection string.

Before going too much further, I’d be remiss if I didn’t mention the

pain of setting these configuration settings from the portal. Most settings

require a triple-save to take effect. This means you must first set the value

and then choose Add or OK. Then you must choose Save, and finally, you

must confirm the save. I cannot tell you how many development hours I’ve

lost because I never chose Save and didn’t navigate away from the page to

receive the warning about the changes being unsaved. Although a triple

save won’t likely be something you would encounter on your exam, always

keep this on your radar when you are working with configuration settings.

Chapter 4 Create azure app ServiCe Web appS

https://doi.org/10.1007/978-1-4842-9300-3_8

175

Connection Strings

During this first look at the app service, I’ll set the configuration for the

database to be connected to both the staging and the production slots.

They will share the same database as configured (see Figure 4-23). This

is accomplished by visiting both the production and staging slots, going

to their configuration, and then scrolling down to the connection strings

section to set the connection string. In this app, the connection string is

named DefaultConnection.

Figure 4-23. The configuration is set for the database on the App
Service Connection Strings section in the Configuration blade

Chapter 4 Create azure app ServiCe Web appS

176

Note that the Deployment Slot Setting is checked here. This will make

the setting sticky to the slot. Even though the values will be the same,

this would easily allow you to use a different connection string for each

environment in the future. Also, with them being the same, there is no

need to swap it with the code, as both will be set to work equally well.

Application Settings

The application that is deployed has a couple of custom variables that can

be set to easily see their values and settings from the Application Settings

blade. These variables have a stub in the appsettings.json file and you

can also leverage them from a user secrets file if you run the code locally.

The variables are for showing a simple value and a secret value and will

be populated from various places throughout the book to enhance the

learning around how to retrieve values from different places such as the

Configuration blade, an Azure App Configuration (see Chapter 8), and

Azure Key Vault (also covered in Chapter 8).

In Azure, configuring the two App settings values on the Configuration

blade will allow them to be easily shown. These entries can be used for

proving which environment the application is in, or any other relevant

information. When you read about using Key Vault and Azure App

Configuration in Chapter 8, you’ll get another look at injecting the secret

value from a more secure location as well as sharing the shared value

across applications.

On the Azure Portal configuration for the app service for both slots, I’m

adding a setting for SimpleWebShared:MySimpleValue and SimpleWebSh

ared:MySecretValue. These values are added to the application settings

for the deployed app service, and they can override the values from the

appsettings.json file. The really great thing is you can have different

values in different environments, so the deployment slot matters and the

Chapter 4 Create azure app ServiCe Web appS

https://doi.org/10.1007/978-1-4842-9300-3_8
https://doi.org/10.1007/978-1-4842-9300-3_8
https://doi.org/10.1007/978-1-4842-9300-3_8

177

text can remain for each slot, even when the application is swapped to a

different slot. The Shared value will state the environment. The Secret will

state where the secret is coming from. Figure 4-24 shows the settings on

the production slot.

Figure 4-24. The production slot sets the environment variables for
the shared values. Both are configured as deployment slot settings

With the application settings and connection strings in place, you can

now view both applications. Users can be registered to the default ASP.

NET Identity provider baked into the application, and the deployment slot

environment variables will show their respective values (see Figure 4-25).

Chapter 4 Create azure app ServiCe Web appS

178

Figure 4-25. The applications are deployed and working as expected.
Users can be registered and environment variables are sticky to
their slots

 General Settings

In addition to environment variables and connection strings, sometimes

you’ll need to change a few of the general settings for an application. There

are a number of things that you can configure here, and when it comes

time to take the test you should remember this page in case you are asked

to tweak some settings.

The most important general settings are Stack and Version. Depending

on what technology stack you are using, you can set the values here. You

would have configured this typically during deployment, but in case things

change, you can update them here (see Figure 4-26).

Chapter 4 Create azure app ServiCe Web appS

179

Figure 4-26. The application configuration General Settings tab
allows configuring the stack and version for your application

In addition to the stack, you can set the platform settings for the

application. This section includes the bitness (32- or 64-bit), and for

different settings like the Managed pipeline version, the FTP State and

HTTP Version, as well as whether you’ll allow web sockets. The next major

setting of interest is the Always On setting. In standard and better SKUs,

you can set Always On to the “On” value. When you do this, there is never

a warm-up time for the first visit to your application, even if no one has

accessed the site in some time. This Always On setting is not available on

free SKUs. The setting is highlighted in Figure 4-27.

Chapter 4 Create azure app ServiCe Web appS

180

Figure 4-27. The first part of the platform settings, with the
interesting setting for Always On highlighted

Additional settings exist for ARR Affinity, HTTPS Only (which should

always be on at this point), and a Minimum TLS Version. Remember that

by default, SSL is baked in and you don’t need to do anything to leverage

HTTPS for your app service (see Figure 4-28).

Figure 4-28. The remaining platform settings, with the interesting
setting for HTTPS Only set to On

Chapter 4 Create azure app ServiCe Web appS

181

The next-to-last setting on this page includes the ability to allow

remote debugging. When turned on, you’ll also need to set the version of

Visual Studio that will be attached to the app service for debugging.

The final settings are for configuring and utilizing client certificates.

When set to Ignore, nothing is needed or done here. The Optional setting

allows you to have SSO as a sign-on option, but also can be authenticated

via a client certificate. For Allow, all requests must be authenticated and

a client certificate can be used but the user can still fall back to SSO for

your organization or application. When set to Require, all users must have

a client certificate to connect to the application. Figure 4-29 shows the

remaining options for the general settings on the application.

Figure 4-29. The final settings for the General Settings tab

 Default Documents

If you’ve ever worked with IIS and set up a website, you’ll likely remember

the default documents settings. This setting in Azure is no different.

The Default Documents settings simply employs a list of potential files

you could drop as your start page for your application. You can generally

just leave this page alone, as most default documents are listed for almost

all the web technologies. If you need a different start-up page, you can add

it here as well (see Figure 4-30).

Chapter 4 Create azure app ServiCe Web appS

182

Figure 4-30. The Default Documents settings. Unless you need to
change this page, you can generally ignore it

 Path Mappings

In more traditional web applications, there might have been scenarios

where you had to handle some requests. In Java, this was typically done

with Servlets. In .NET, this has been done with page-handlers. On the

Path Mappings page, you can set customer handler mapping. You can also

create virtual applications and directories.

Another reason you might come to this page outside of routing for

handlers is to add a mounted Azure storage account. While this is currently

in preview as I write this book, you can now mount storage directly to the

app service for utilization within your application. Figure 4-31 shows the

settings available on the Path Mappings blade.

Chapter 4 Create azure app ServiCe Web appS

183

Figure 4-31. The path mappings options

 Scaling
At this point, your application is deployed, you have the configuration

settings in place, and you have automated your deployments. You are

now ready to go live, so you flip the switch and traffic starts flowing to

your website. Everything is running great during your normal workloads.

However, there are a couple of things that happen that cause you

some pain.

The first thing that happens is that, every Monday morning when work

resumes, your application gets a massive influx of traffic due to backorders

over the weekend. Additionally, there are times when items are placed on

discount. When popular items go on sale, your site gets quite a bit more

traffic. Although some traffic loads can be predicted or anticipated for

Chapter 4 Create azure app ServiCe Web appS

184

things like holiday sales or clearance events, there is no set schedule for

general sales on items, so you must be able to respond to demand in a

dynamic fashion for these scenarios.

Of course this is the exact reason you deployed in a standard or better

SKU, because you knew there would be a need to scale your application.

But when it comes to scaling, should you scale out or scale up? How do

you know when to scale in or down? Should the scaling be automated or

should you have someone manually push the trigger?

Perhaps you read that and don’t really know what scaling out/in versus

up/down means. Essentially, scaling up and down is one instance with

more or less power. Scaling in and out is the same power (compute) with

extra instances deployed. Behind the scenes, this is likely compute power

backed by VMs in Azure in the data center. However, the only thing you

need to worry about is the number of instances currently deployed to serve

your customers. Azure will take care of the infrastructure for you, since this

is a platform service.

As there are two types of scaling, you can choose which type to

configure on the App Service blade. Scaling up allows you to change the

SKU set on the App Service Plan. Scaling out allows you to set the number

of instances when the plan allows for multiple instances. Note that, once

again, these settings are plan specific, not app service specific. This is

because the compute is based on the plan, not on the app service(s)

deployed within the plan.

 Autoscaling

In almost every production scenario, you’ll likely want to utilize

autoscaling. After all, the whole point of going to the cloud is to make it so

you don’t have to take calls at 2am because servers are down due to not

enough capacity.

Chapter 4 Create azure app ServiCe Web appS

185

When you click the Scale Out (App Service Plan) option, you can

choose Manual Scale or Custom Autoscale. If not set previously, the scaling

is likely manual. Choosing the Custom setting allows you to build rules for

automatic scaling.

Scaling can take place based on a metric, which is the best choice

for handling dynamic scenarios. Your metric can be things like CPU

utilization, HTTP queue length, TCP operations, socket counts, and data

throughput. Choose the metric that makes sense for your scenario, in this

case, likely CPU utilization or perhaps HTTP queue length. You then set

the threshold to trigger an autoscale. This is all done by creating a rule (see

Figure 4-32).

Chapter 4 Create azure app ServiCe Web appS

186

Figure 4-32. Creating a rule for automatic scaling requires choosing
a metric and then setting thresholds to trigger the scaling event

Chapter 4 Create azure app ServiCe Web appS

187

What do you think would happen if this were the only rule you created?

If you think about this, you’ll likely quickly realize you will scale out, but

you will never scale in.

For this reason, there are two rules to remember when creating scaling

rules. The first rule is to always create your rules in pairs. If you create a

scale out rule, you must also create a scale in rule if you want to respond

to demand efficiently and bring the instance count back in when not

necessary.

The second rule of creating autoscaling is to remember to utilize

thresholds that don’t create a scenario where you would scale back up after

scaling down immediately. This is done by utilizing thresholds that are

far enough apart that they can’t create an auto-cycle scenario, where the

solution continually scales in and then right back out. For example, utilize

a 70 percent scale out rule and a 30 percent scale in rule. If an instance is

running at 75 percent, a new instance is added. Suppose the workload is

40 percent on each for some time. If you scaled back in, 40 percent + 40

percent = 80 percent, and your app service would have to immediately

scale back out. Therefore, 30 percent +30 percent = 60 percent, and your

app service would be able to remain at one instance until the CPU goes

above 70 percent again (see Figure 4-33).

Chapter 4 Create azure app ServiCe Web appS

188

Figure 4-33. Two rules are set to make sure that the app service can
effectively scale out and back in

Another setting exists on the Custom Autoscaling blade. As you likely

want to ensure that your application is always effective, you can set a

minimum number of instances. You can also set a maximum number

of instances to ensure that you don’t scale out uncontrollably. When

these instance counts are effectively set, you will be ensured that your

application is always running with a number of instances somewhere in

your predefined range.

There is one other option that is a bit tricky. The Default instance

count setting. For this setting, assume a scenario where, for some reason,

the metric on which you are basing your scaling rules is unreadable. In

this scenario, it’s not certain whether you should scale in or scale out. If

this scenario happens, then Azure will ensure you have at least the default

number of instances running. Once the metric can be read, the normal

thresholds and scaling in and out will happen based on the rules and

ranges you have predetermined. Figure 4-34 shows a potential setup for

this scenario.

Chapter 4 Create azure app ServiCe Web appS

189

Figure 4-34. Instance limits and a default are set for the autoscaling
of this app service

In addition to metrics, you can use a schedule to scale. On a schedule,

you set the start and end dates for the scaling. This would be highly useful

to scale the app service during the Monday morning rush and for holiday

sales (see Figure 4-35).

Figure 4-35. Autoscaling can be set via a schedule to handle known
and predicted periods of increased workloads

 Manual Scaling

Manual scaling allows you to set a number of instances that immediately

takes effect. The benefits of this ability include the fact that you can quickly

scale out if you don’t have a rule and are experiencing unresponsive web

pages due to traffic or other issues. The main drawback to this approach is

that any autoscaling rules will immediately override any manual scaling as

soon as they are evaluated.

Chapter 4 Create azure app ServiCe Web appS

190

The standard app service SKU has a maximum of ten instances. You

won’t be able to autoscale or manually scale past your maximum number

of instances. The Manual Scale setting is shown in Figure 4-36.

Figure 4-36. The Manual Scale setting can instantly set the number
of active instances

 Additional Settings and Configurations
In addition to the issues already covered, there are a few other things to

know as I close this look at Azure App Services. This final section hits on

a few of the remaining critical points and leaves a couple of remaining

blades for you to examine on your own should you desire to do so.

 Networking

One of the remaining critical sections is the Networking blade. While

default app services deployed to the public web are great and you won’t

really need this page, for those who are deploying to a more restricted

scenario or a scenario where load-balancing and additional traffic hops

are important, the Networking blade will help you see important settings

for your app service.

Chapter 4 Create azure app ServiCe Web appS

191

 Inbound IP Address

The first important setting is for inbound traffic. Specifically, your inbound

IP address. Every app service gets one, and only one, inbound IP address.

This address will not change unless you delete the application or delete or

renew the SSL bindings for the application (see Figure 4-37).

Figure 4-37. The inbound address; other options exist for managing
inbound traffic to your application

Additional capabilities exist to lock down access just like you can

do for a deployed VM with an NSG. On the app service, you can set the

rules for your public-facing website and the backing management page

Chapter 4 Create azure app ServiCe Web appS

192

(yourwebsite.scm.azurewebsites.net). The management page is where

you can see the files that are deployed, as well as run other commands

against the web application. This page can also be reached via the left-

navigation menu for Advanced Tools on the App Service blade in the portal

in Azure.

 Outbound IP Addresses

Like the inbound traffic, you can also control the outbound traffic. This

is important because you may have to open firewall rules for each of the

outbound IP addresses. The outbound IP addresses can change when you

delete and re-create an application or if you move to one of the higher P2,

P3, or Isolated tiers from a lower tier (see Figure 4-38).

Figure 4-38. The outbound IP addresses on the Networking blade for
an app service

Chapter 4 Create azure app ServiCe Web appS

193

 Certificates and TLS/SSL

Additional settings can be configured regarding the TLS/SSL settings for

your application. For example, in the past, you could easily require HTTPs

only and set the minimum TLS version from the TLS/SSL Settings page.

This page is likely going away in the future, as the Certificates page is now

in preview and the settings just mentioned were available under the app

service configuration.

On the TLS/SSL settings options, you can also add Private and Public

certificates and buy a new certificate. Finally, once you have a certificate,

you can add the host and thumbprint. These operations are all moving

to the Certificates blade, where the certificates will be managed. You

can bring your own certificates generated by the app service, you can

host certificates in Key Vault, or you can just upload the certificate to the

Certificates blade (see Figure 4-39).

Figure 4-39. The Certificates blade

 A Few Things Not Covered in this Chapter

This study of App services could continue for another 40 pages, but at this

point the major things you need to be in command of have been covered.

There are just a few other concepts you can look at on your own. A few of

Chapter 4 Create azure app ServiCe Web appS

194

the remaining blades are self-explanatory, while others might require a bit

of research. The following left-navigation items are worth exploring for a

few minutes:

• Backups

• Custom Domains

• Resource Health

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solution(s). You can find

answers to these questions in Appendix A at the end of this book.

 1) What is the relationship between App Service Plans

and App Services? Can an App Service have more

than one App Service Plan? Can an App Service

Plan have more than one App Service? What are

some considerations when the relationship goes

beyond 1:1?

 2) Where do you choose which operating system will

be utilized? Where do you configure the choice for

code vs. container vs. static?

 3) Which plan is the entry-level plan that offers

scaling? Which plan is the entry-level plan for

deployment slots? Which plans can have a custom

domain for hosting? What is the minimal plan level

to implement private networking?

 4) What are some considerations for creating

autoscaling rules?

Chapter 4 Create azure app ServiCe Web appS

195

 5) Can an App Service Plan and the app service be

deployed into different regions?

 6) How do you implement security around the

application regarding HTTP/HTTPS, TLS levels, and

certificates? How do you enforce certain security

levels for clients? Can you deny traffic that is not

utilizing HTTPS?

 7) Where can you go to check the status of your website

deployments?

 8) How do you create custom variables and settings?

Where should you set environment variables?

Where should you add connection strings?

 Complete the Azure App Service Web Apps
Learn Modules
To fully learn the material, I recommend taking the time to also complete

the MS Learn modules for Create Azure App Service web apps found here:

• Create Azure App Service web apps: https://learn.

microsoft.com/en-us/training/paths/create-

azure-app-service-web-apps/

 Chapter Summary
In this chapter, you learned about working with the Azure App Service for

hosting web applications. A number of the major services within the app

service ecosystem were addressed and you should be well positioned to

utilize app services and understand the components that make Azure App

Service so popular for hosting web solutions.

Chapter 4 Create azure app ServiCe Web appS

https://learn.microsoft.com/en-us/training/paths/create-azure-app-service-web-apps/
https://learn.microsoft.com/en-us/training/paths/create-azure-app-service-web-apps/
https://learn.microsoft.com/en-us/training/paths/create-azure-app-service-web-apps/

196

After working through this chapter and the Microsoft Learn module,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Create and provision App Services, utilizing various

App Service Plans.

• Implement basic CI/CD in GitHub actions/how to

deploy your code.

• Leverage the correct App Service Plan for testing, and

understand where plan offerings gain features like

deployment slots and the ability to scale.

• Utilize metrics to configure automatic scaling of your

web solution.

• Utilize environment variables and connection strings.

In the next chapter, you learn about working with the Azure Container

ecosystem, including the Azure Container Registry, Azure Container

Instances, and Azure Container Apps.

Chapter 4 Create azure app ServiCe Web appS

197

CHAPTER 5

Azure Container
Ecosystem: Azure
Container Registry,
Azure Container
Instances, and Azure
Container Apps
If you have been working in Microsoft technologies for some time, you

may have little exposure to containers. In some cases, it’s possible that

you’ve never been exposed to containers at all. Additionally, you might

be in a scenario where you feel that you will never need containers. If this

describes you, this chapter can help you realize the power and potential of

containerized applications.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_5

https://doi.org/10.1007/978-1-4842-9300-3_5#DOI

198

Other developers may have been working with containerized

applications for a long time at this point. For such developers, this chapter

might be more of a review than anything, and just enough to help you

know the major pieces of the Azure Container Ecosystem that you are

expected to be familiar with for the AZ-204 Exam.

 Four Important Things to Know
About Containers
In any event, it’s important to understand a couple of things about containers: .

 1. Containers are for everyone.

 2. Containers are not “microservices” or “cloud-

native applications,” but they are often utilized

in microservice architectures and cloud-native

applications.

 3. Containers are agnostic to their hosting platform.

 4. Containers can have a steep learning curve (much

like GIT).

 Containers Are for Everyone
At this point, you can host applications in a container from just about every

major tech stack. Additionally, they are generally lightweight and easy to run,

and they can provide a more stable hosting environment for your application.

 Containers Are Not Microservices or
Cloud-Native Applications
It’s important to note that containers are not “microservices” and cloud-

native applications do not have to be containerized. That being said, a lot

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

199

of the time these terms are used to refer to containerized applications.

Indeed, you can host code in an Azure Function as a microservice.

You can also have cloud-native serverless applications that do not

utilize containers. However, containers do work well for cloud-native

applications, and they are a very rewarding choice due to the ability to

run tools according to their own needs without interfering with other

applications.

 Containerized Applications Are Agnostic to Their
Hosting Platform
As long as your hosting provider can run containers, you can run your

application, regardless of the underlying operating system, in a VM or on a

platform service, and even across a multi-cloud scenario. This is typically

accomplished by having the Docker runtime installed on the host, and the

container runs inside the Docker runtime. Therefore, any host that has

Docker can host containers.

 Containers and the Container Ecosystem Have
a Steep Learning Curve
There is a fairly steep learning curve when it comes to working with

containers. However, this learning curve is no different than having to

learn how to configure a VM with IIS or build networking and hosting for

an on-premises application, or even learning GIT.

In the end, the cost of learning is recouped when you get the flexibility

to deploy to any VM that has a hosting runtime or in any cloud platform

that can run containers. The power and flexibility of containers is easily

leveraged in cloud solutions.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

200

 Hosting Containers in Azure
There are a number of ways to host containers in Azure. For the AZ-204

Exam, a couple of key technologies need to be examined. This chapter

looks at the ability to utilize the Azure Container Registry (ACR) for hosting

images. Additionally, you’ll see how easy it is to quickly host a container on

a public-facing URL with Azure Container Instances (ACI). You’ll also take

a quick look at two other major container technologies in Azure—Azure

Kubernetes Service (AKS) and Azure Container Apps (ACA).

Before diving into the specifics of Azure, however, let’s take a short look

at the tools you need to get up and running with containers. Complete

training on working with containers, the commands for Docker, and other

critical concepts for container development are outside of the scope of this

book, so if you need that level of training, consider going through some

introductory training from docker.com’s getting started tutorial, found at

https://docs.docker.com/get-started/.

 Windows Subsystem for Linux (WSL)
Assuming that most of you reading this book aren’t on a Mac or Linux

would be foolish. However, if you are on Mac or Linux, it’s generally

much easier for you to get up and running with Docker to utilize Linux

containers.

For those of you who are on a Windows machine, you will want to

make sure that you have the Windows Subsystem for Linux installed.

For almost every scenario, when developing with containers, you should

endeavor to use Linux containers. For more information on getting

WSL on your Windows machine, you can review this link: https://

learn.microsoft.com/windows/wsl/install. The time to use Windows

containers is useful in scenarios such as when you are running legacy

Windows solutions such as the .NET Framework 4.8 (or earlier).

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://docs.docker.com/get-started/
https://learn.microsoft.com/windows/wsl/install
https://learn.microsoft.com/windows/wsl/install

201

No matter what machine you are on, as long as you are not working for

a large organization with more than 250 employees or making more than

$10 million USD in revenue, I recommend utilizing Docker Desktop, which

can be found at https://www.docker.com/products/docker-desktop/.

If you do not qualify for the free Docker Desktop, consider another tool

like Rancher Desktop, which can be found at https://rancherdesktop.io/.

Either way, having a visual tool to help with your container development is a

great way to get going without needing to know all the low-level commands

directly, especially when you are new to containers.

 Docker
All containers are just a running version of an image. For a container to

work, however, it must have a runtime in which it operates. One of the

benefits of containers is that they are platform agnostic. It does not matter

if the box has a Windows OS, Ubuntu, or some other version of Linux, or

macOS. No matter what, if the machine is running Docker, your containers

will just work.

If you install Docker and Docker Desktop, you’ll have the ability to easily

run your containers. On Windows machines you can even switch between

Linux and Windows containers. Even so, you should always endeavor to

use Linux containers unless that is not possible (for example, the .NET

Framework 4.8 and previous versions require Windows containers). All .NET

core versions will run on Linux containers. In general, Linux containers are

more efficient. In addition to being more efficient, the container ecosystem

is native to Linux whereas the Windows ecosystem typically requires more

configuration. For example, running containers on a Windows Server is not

as straightforward as running containers on Ubuntu.

You can typically install Docker from a package manager like

HomeBrew or Chocolatey. On Linux, simple commands to install Docker

get you up and running with containers in no time. If you’ve never

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://www.docker.com/products/docker-desktop/
https://rancherdesktop.io/

202

installed Docker before, follow the instructions on getting Docker Desktop

from https://docs.docker.com/desktop/.

When your installation is completed, you can see your Docker version

by typing the docker -v command or by reviewing it in Docker Desktop

(see Figure 5-1).

Figure 5-1. The Docker version can be queried with a simple
command or by looking at the version in Docker Desktop

 Images
Once Docker is up and running on your machine, you will create an image

for your application. The image is created by utilizing a Dockerfile. The

Dockerfile has all of the important information about the application,

including build instructions, any dependency information, and additional

information about the ports to connect to the container as well as any

networking or database information.

After creating your code, you configure the Dockerfile, and then you

can create an image with this simple build command:

docker build -t your-image-name .

You must include the final period or the build of the image will not

succeed. Building the image results in an image of the application. Each

image then can be hosted in one or more containers. Figure 5-2 shows

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://docs.docker.com/desktop/

203

the command for building an application to an image called my-simple-

website. The command used is

docker build -t my-simple-website .

Note that the trailing . is expected as part of the command. Also note

that this command would work on either Dockerfile, whether you are

utilizing the .NET 6 or .NET 7 version of the project. If you want to use

both, of course you will want to use a different name for each image, or

perhaps a version tag in the image name at a minimum.

Figure 5-2. The command to build an image from a Dockerfile

After building the image, you can list the image by using the docker

images command. This shows the image name in the list of images as well

as in the Images tab in Docker Desktop (see Figure 5-3).

Figure 5-3. The images are listed using the docker images command

 Containers
Once you have built your image, the next step is to run the image in a

container. As mentioned, the same image can run in many containers. This

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

204

is where the power of containerization can be leveraged. To run multiple

versions of a website, you need multiple VMs hosting each website, or at a

minimum, you need to manage a number of virtual directories.

On a traditional VM, multiple sites might also interact and interfere

with one another. For example, if you have a Java application and a

.NET application, you need both runtimes. You also could have multiple

versions of each runtime. To host both applications, you may need an

Apache Tomcat server and IIS. Putting all of this on one machine with one

OS means any time either of the application runtimes or hosting engines

require a reboot, all of the applications would be down. With containers,

putting multiple versions and runtimes side-by-side is no concern at all.

When one container needs to be updated, you just update the image, stop

the existing container, and then spin up a new container. There is also no

concern for any side effects of the various potential conflicts for interaction

between the runtimes or the runtime versions.

To run the container, you need to use a command to put any

information into the container that you want to leverage during the

runtime. You also need to point the ports from your host machine to the

ports exposed by the Dockerfile. Typically, this is run with at least ports

in a command such as docker run -dp <local-port>:<entry-port-

exposed> <image-name>:<version>.

In the example code for this book, the app also has two environment

variables, so those can be added into the command. If you build the

Dockerfile for either the .NET 6 or the .NET 7 version with the name my-

simple-website, then the final command to run the sample app is as

follows:

docker run --env SimpleWebShared__MySimpleValue='ENV: Simple

Shared Value' --env SimpleWebShared__MySecretValue='ENV: Simple

Secret Value' -dp 8080:80 my-simple-website

The creation of the container and resulting running container

information is shown in Figure 5-4.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

205

Figure 5-4. The container is created with the docker container run
[options] image-name command, and the resulting container is
shown from Docker Desktop and by running the docker container
ls command

The container is now hosted and running and can be reached via

port 8080 on the localhost. Additionally, the environment variables were

injected at the time of the container creation. It’s important to note that

these environment variables are immutable. If they needed to change, you

would need to run a new container and destroy the old one. Also note that

listing the containers is easily accomplished with the docker container

ls command and containers are easily managed in Docker Desktop, as

shown in Figure 5-4.

After you create the container, the hosted site is easily reviewed by

navigating to the localhost on the mapped port per the creation command,

as shown in Figure 5-5.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

206

Figure 5-5. The exposed port is mapped and the site is visible by
navigating to the public port on the localhost

Now that there is an image that is tested and working, you can utilize

the image in the various platform solutions in Azure.

 Azure Container Registry
The first major technology in Azure that you need to be familiar with is the

Azure Container Registry (ACR). A container registry is a place where you

can centralize your custom images to be utilized by other developers and

services. Similar to how you push your code to a centralized GIT repository

like GitHub, you will push images to the container registry. Developers and

services can then pull the image and utilize it locally or within the service’s

hosting environment. In a similar manner to how you can tag commits as a

release, you can create multiple versions of an image and tag each version

so that different versions of the image can be run in local containers or by

services in Azure, just by utilizing the version number.

DockerHub is one of the most popular image container registries,

and you can easily use DockerHub from within Azure on various Azure

services. DockerHub can also store images as public or private images,

with individual repositories for each image. One limitation of DockerHub,

however, is that you can’t utilize a private network within Azure so your

images would be on the DockerHub ecosystem. Even if you make your

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

207

repositories private, you still need to have communication outside of your

network and your images are not completely under your control.

Within Azure, you can create one or more Azure Container Registries.

Within Azure, your images can easily be kept private, and you do not

have to connect to a third-party solution to utilize the images in the

Azure Container Ecosystem. Furthermore, with the ACR you can leverage

Role-Based Access Control (RBAC) from within your subscription, easily

granting permissions like push or pull to individuals or groups. Your ACR

can also be provisioned in a private network and configured with no ability

to reach your code from outside of your Azure network.

 Service Tiers
Azure Container Registry has three tiers available for use—Basic, Standard,

and Premium. As with any Azure service offering, when it’s time to sit for

the AZ-204 Exam, it’s always a good idea to know when you would want or

need to choose each specific tier.

 Basic

The Basic tier is best utilized for development and simple testing

workloads. Basic tiers have the same capabilities as the other tiers, but

you are limited when it comes to storage capacity and overall throughput

to the registry. Additionally, Basic tier ACRs are limited to a single region,

cannot leverage availability zones, and have no ability to utilize any private

networking capabilities.

Storage for your images in the ACR in the Basic tier is limited to start

with about ten gigabytes (10 GB) and can be expanded to a maximum of

about twenty terabytes (20 TB) overall. This amount of storage is not too

bad for the basic tier for basic workloads. For example, the image size for

the sample default web is around 220 MB for either runtime.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

208

Throughput in the Basic tier is limited to 1,000 read and 100 write

operations per minute. Upload and Download are capped at 10 and 30

Mbps, respectively. Finally, the Basic tier only allows for two webhooks.

 Standard

The Standard tier is similar to the Basic tier, but the amount of storage and

throughput is increased, as are various other settings. As with the Basic tier,

the Standard tier cannot be utilized outside of one region, cannot leverage

availability zones, and no networking capabilities are enabled at this tier.

Storage in the Standard tier is limited to start with about 100 GB and

can also be expanded to the upper limit of around 20 TB. Read throughput

is limited to 3,000 operations and write is limited to 500 operations per

minute. Upload and download are limited to 20/60 Mbps, respectively. The

Standard tier can have up to ten webhooks.

 Premium

The Premium tier is the only choice when you need to utilize private

networking. Additionally, the Premium tier allows for leveraging regional

availability zones or multi-regional scenarios. Premium is also the only tier

where you can create your own encryption keys for your images.

With the Premium tier, you get nearly 500 GB of included storage with

the same ability to expand to nearly 20 TB of total storage. In the Premium

tier, your image pull/push operations can be completed at 10,000 read

operations and 2,000 write operations per minute, respectively. Download

and upload throughput are also maximized in the Premium tier at 50 Mbps

up and 100 Mbps down. You can have up to 500 webhooks on your ACR in

the Premium tier.

Finally, there is currently an additional feature to scope permissions

for access similar to Shared-Access Signature (SAS) tokens for storage, with

permissions and time limitations at the repository level in public preview

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

209

for the Premium tier. While the public preview tier doesn’t guarantee this

feature will make it to general availability, that would be the next step

should the feature be fully released.

 Additional Information

Additional information regarding the ACR service tiers can be found at

https://learn.microsoft.com/azure/container-registry/container-

registry-skus.

 Image Storage
As mentioned, if you want to store your image in availability zones or

multiple regions, you’ll want to leverage a Premium tier container registry,

as the Basic and Standard tiers don’t have this capability.

One of the nice things about the container registry is that no matter

what tier you use, your images are encrypted at rest. If you want to enable

the ability to use your own encryption key, you need to deploy in the

Premium tier.

 Deploy an Azure Container Registry
Deploying a new container registry is very easy to do, once you know which

features you want. As outlined, Basic is great for development and Standard

will likely be sufficient for production workloads. If you want networking or

redundancy, choose Premium. For this book, I deploy as a Basic tier registry.

To get started, search for container registries in the Azure Portal, then

start the process of creating a new container registry.

As with any service, you need the subscription, a resource group, and

the region to which you want to deploy. You must also set the public-facing

URL for the repository. This repository name is limited to [a-zA-Z0-9]* with a

minimum of 5 characters and a maximum of 50 characters (see Figure 5-6).

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://learn.microsoft.com/azure/container-registry/container-registry-skus
https://learn.microsoft.com/azure/container-registry/container-registry-skus

210

Figure 5-6. The container registry is created with a valid name and
SKU in a region on your subscription

Since the Basic tier doesn’t allow for networking or changing any

encryption settings, there is nothing else to configure unless you are using

a tagging strategy. Clicking Review+Create. Create deploys the container

registry.

 Push an Image to the Container Registry
Once the registry is created, you can set your local machine to push images

to the registry with a few commands. Detailed instructions can be found

on your container registry in the Quick Start blade, as shown in Figure 5-7.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

211

Figure 5-7. Instructions to push to your container registry can be
found on the Quick Start blade in your deployed registry

If you are an owner of the Azure subscription or at least the Azure

Resource Group where the ACR is provisioned, or if you have the correct

RBAC permissions (such as AcrPush), then you can likely get by with just

logging into Azure. If the registry is locked down, however, you might

need to use the administrator login. Roles for the registry are shown in

Figure 5-8.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

212

Figure 5-8. There are additional roles that can be assigned to Azure
AD users for specific permissions on the registry

 Log in to Your Registry from Your Local Machine

Begin by logging into Azure with the az login command and then run

the command to log in to the docker login <yourrpositorynamehere>.

azurecr.io registry. If you’re prompted for a username and password,

you’ll have to get them from your Access Keys blade, as shown in

Figure 5-9.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

213

Figure 5-9. The Access Keys with the administrator login enabled
allow you to log in from your local machine to your container registry

When you log in, you won’t see your password, but it will tell you that

you logged in successfully, as shown in Figure 5-10.

Figure 5-10. The login is successful using the administrator login
from the registry

 Tag Your Image with Your Registry Name
and a Version Number

Next, you’ll want to tag the image with your registry name. You should also

put a version number on the tag (see Figure 5-11). The tag command is

just docker tag <image-name> <registry-name>.azurecr.io/<image-

name>:<version>.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

214

Figure 5-11. In order to push your image to the Azure Registry you
need to tag the local image correctly. This figure shows the image
being tagged and then tagged a second time with a version number

I’ve tagged this image twice so that I can push to the default latest

version as well as a stamped version (v1) with this release of the image.

 Push Your Tagged Image to the Registry

Once the image is tagged, you can push it to the registry. To push the

image, run the docker push <tagged-image-name>:<version> command

(see Figure 5-12).

Figure 5-12. The tagged images can be pushed to the Azure
Container Registry with the docker push command

With the image pushed, you can review it in the ACR by clicking the

Repositories blade, as shown in Figure 5-13.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

215

Figure 5-13. The image is successfully pushed to the ACR with the
latest and the v1 versions

 Automated Build Tasks
In some scenarios, you might want to utilize the ability to build your

images in Azure in the ACR. You can set triggers for changes to GIT

branches or, if you have an image hierarchy when the base image is

updated, you can ensure that the dependent images are built.

In addition to build tasks, there are also tasks to send information

regarding billing and costs for the registry, as well as tasks like running unit

tests or automating a workflow around your container.

If you want more information on how to set up a build that is utilized

when the code for the image is updated at GitHub, you can find a tutorial

at https://learn.microsoft.com/azure/container-registry/

container-registry-tutorial-build-taskh.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://learn.microsoft.com/azure/container-registry/container-registry-tutorial-build-taskh
https://learn.microsoft.com/azure/container-registry/container-registry-tutorial-build-taskh

216

 Azure Container Instances
The next major technology you want to be in command of for the AZ-204 is

the Azure Container Instances (ACI). Like Azure App Service, the ACI is a

platform service that allows you to deploy a containerized solution quickly

and easily, without having to worry about setting up an infrastructure.

Creating and working with an ACI deployment is incredibly easy, and

you can do it from the portal, with the AZ CLI from within the portal, or

from your local machine. When creating with a script or using the AZ CLI,

you need to configure all the options at the time you are ready to deploy.

There are two important notes that you should remember about

the ACI. The first is that when you deploy, your image will be hosted in

the ACI as a container, and it will be immutable. That means that any

environment variables must be set at the time of deployment, and any

changes require destroying and re-creating the container. The second note

is that immediately after deployment, you’ll have a public-facing URL for

the hosted application. However, the public-facing URL will not leverage

HTTPS by default. If you want to leverage HTTPS, you need to set that up

yourself.

 Deploy from the Container Registry
With the AZ-204 Exam being for developers, it’s likely that you’ll need to be

in command of the AZ CLI and/or PowerShell commands to accomplish

tasks in Azure. For this reason, this section first deploys an ACI using the

AZ CLI, and then it shows you how this can easily be done from the portal.

 Deploying with the AZ CLI

In the portal from the cloud shell, you can easily deploy an ACI with your

image from your ACR using the AZ CLI commands (the script can be found

in the materials for this chapter). Figure 5-14 shows the script execution in

the portal.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

217

Figure 5-14. The AZ CLI can be used to deploy a new ACI instance
using an image from your repository

For additional reference, the script follows:

#rg:

rg=az204-exam-ref-containers-ecosystem

#aci name:

name=mysimpleweb-clideploy

#image to deploy:

img=az204examref20251231.azurecr.io/my-simplewebsite:v1

#public DNS

dns=mysimplewebCLIDeploy

#create the ACI

az container create --resource-group $rg --name $name

 --image $img --dns-name-label $dns --ports 80 --environment-

variables 'SimpleWebShared__MySimpleValue'='CLI: Shared Value'

'SimpleWebShared__MySecretValue'='CLI:Secret Value'

Once the solution is deployed, the Fully-Qualified Domain Name

(FQDN) and Public IP Address (PIP) will be shown in the output (see

Figure 5-15).

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

218

Figure 5-15. The PIP and FQDN are shown in the successful output
from the CLI deployment

You can then use either the PIP or the FQDN to review the solution

from any public web browser, as shown in Figure 5-16. You can also browse

to the deployed resource and get its public URL there. Using the portal is

examined in the next section.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

219

Figure 5-16. The website is up and running as a valid ACI after
deployment and is reached via the FQDN or the PIP from the
deployment information

 Deploying from the Portal

Deploying from the portal is quick and easy. You select the common items

of subscription, resource group, and region. You also need to name the

ACI, which must be all lowercase letters or numbers and can have dashes

as long as the dash is not the first or last character. The maximum name

length is 63 characters. In the portal, you can easily select your image from

the container registry using the provided drop-downs (see Figure 5-17).

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

220

Figure 5-17. The container instance is easily created with simple
drop-downs in the portal

Remember not to just create this ACI right away. If you want to

configure other settings like the environment variables, you need to do that

before you deploy or you will be out of luck and will need to delete the ACI

and redeploy it.

Networking

On the Networking blade, you can configure the settings for public

or private networking, the DNS label, and the ports to expose (see

Figure 5-18).

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

221

Figure 5-18. The Networking blade allows configuration for the
public or private access, the DNS label, and the ports to expose

Restart Policy and Environment Variables

On the Advanced blade, you can configure the Restart Policy to restart On

Failure, Always, or Never (see Figure 5-19).

Figure 5-19. The Restart Policy can be On Failure, Always, or Never

The environment variables are also configured on the Advanced

tab. As you create the variables here, you can mark them as secure. All

that means is that they will be obfuscated from viewing and logging (see

Figure 5-20).

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

222

Figure 5-20. The Environment Variables can be configured on the
Advanced tab and can be marked as secure

From the Advanced tab, you can run a command on the start of the

container and utilize your own encryption key if you want. With everything

configured, you can then deploy and review the site from either the PIP or

the FQDN found on the Overview blade, as shown in Figure 5-21.

Figure 5-21. The FQDN and the PIP can be found on the Overview
blade once the container instance is deployed

You can then review the site from any public browser by visiting either

the FQDN or the PIP (see Figure 5-22).

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

223

Figure 5-22. The deployment from the portal is shown, with similar
results as the CLI deployment

 Container Groups
In some instances, one container might not be enough to serve your

application. Perhaps you would like to sidecar another container to host a

database or a logging solution for your application.

When you have a solution that has a couple of containers that need to

share a lifecycle, you can utilize container groups with the ACI. The containers

are then grouped together under the same DNS and public IP address. The

container group can also share storage and networking so that they can

communicate with one another and persist some information in storage.

To deploy a container group, you need to use an Azure Resource

Manager (ARM) template, a Docker Compose file, or a YAML manifest

file. The YAML manifest file is similar to how you might deploy solutions

with Kubernetes and is a solid choice for creating a container group. The

Docker Compose file requires leveraging your container registry and is

likely the easiest way to deploy a container group.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

224

 Group Deployment via a YAML File

In order to leverage the deployment with a YAML file, you first need

to configure the YAML file. You then deploy the container group using

the AZ CLI.

If you would like to try a sample where you can deploy a container

group to the ACI using a YAML file, there is a great tutorial on this in the

Learn documents at https://learn.microsoft.com/azure/container-

instances/container-instances-multi-container-yaml.

 Group Deployment via Docker Compose

In order to leverage the deployment with Docker Compose, you must have

a container registry. Then you configure the deployment with a Docker

Compose file. You use the Docker Compose file to build and push the

image to your ACR. You then have to create an Azure Context; you can

then use the Docker Compose with your context to deploy the container

group application to the ACI.

If you want to try a sample where you can deploy a container group

to the ACI using Docker Compose, there is a great tutorial on this in the

Learn documents at https://learn.microsoft.com/azure/container-

instances/tutorial-docker-compose.

 Persistent File Shares
In order to work with state or store information past the lifecycle of the

container, you need to mount some type of shared network storage. With

ACI, you can use Azure File Storage to mount a persistent storage solution.

First, you create the storage account, then when you deploy your

solution with the CLI, you can add the connection information for the file

storage as part of the deployment. This command, from https://learn.

microsoft.com/azure/container-instances/container-instances-

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://learn.microsoft.com/azure/container-instances/container-instances-multi-container-yaml
https://learn.microsoft.com/azure/container-instances/container-instances-multi-container-yaml
https://learn.microsoft.com/azure/container-instances/tutorial-docker-compose.
https://learn.microsoft.com/azure/container-instances/tutorial-docker-compose.
https://learn.microsoft.com/azure/container-instances/container-instances-volume-azure-files#deploy-container-and-mount-volume---cli
https://learn.microsoft.com/azure/container-instances/container-instances-volume-azure-files#deploy-container-and-mount-volume---cli

225

volume-azure-files#deploy-container-and-mount-volume---cli,

shows the container create cli command with values for mounting the

persistent storage:

az container create \

 --resource-group $ACI_PERS_RESOURCE_GROUP \

 --name hellofiles \

 --image mcr.microsoft.com/azuredocs/aci-hellofiles \

 --dns-name-label aci-demo \

 --ports 80 \

 -- azure-file-volume-account-name $ACI_PERS_STORAGE_

ACCOUNT_NAME \

 --azure-file-volume-account-key $STORAGE_KEY \

 --azure-file-volume-share-name $ACI_PERS_SHARE_NAME \

 --azure-file-volume-mount-path /aci/logs/

 Containers in Azure App Services
App Services were covered in detail in the last chapter. However, using

containers in App Services is also something that you might need to

be familiar with for the exam. Even so, knowing that the next step in

the container ecosystem is to leverage app services is a great thing for

your career.

As mentioned, utilizing ACI is great to get up and running and for

simple container workloads. However, there were a couple of simple

limitations, including lack of a built-in HTTPS certificate and an inability

to reset the container with a new environment variable. While app services

are not going to be your go-to choice for large container workloads that

require a lot of orchestration, they are a great middle ground that can be

much less expensive than a full Kubernetes instance and a bit more robust

than container instances.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://learn.microsoft.com/azure/container-instances/container-instances-volume-azure-files#deploy-container-and-mount-volume---cli

226

By utilizing an App Service Linux plan, you can easily deploy your

containers from your container registry (see Figure 5-23).

Figure 5-23. Utilization of a container from an Azure App Service is
easily configured in the portal on a Linux App Service Plan

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

227

Figure 5-24. Wiring up your app service from your container registry
is easy with the Azure App Service

As with ACI, you simply need to select the image from your ACR along

with the tag and you can then deploy directly to the app service utilizing

the image from your registry.

As with any app service, you can easily configure inbound and

outbound network traffic or just host on the public Azure Internet

backbone. Monitoring your app is slightly more involved with containers

than in a traditional application in app services. If you want to leverage

Container Insights and Application Insights, you need to make sure to add

the Application Insights SDK to your container.

Once your application is configured, you have the full ability

to leverage the benefits of a deployed app service and the ease and

convenience of hosting your container for deployment. Along with

this, you can leverage the ability to have slots, built-in HTTPs, and

configurations that can “orchestrate” the containers a bit. You’ll

immediately note that your application is now hosted with a default

HTTPS setting so there is no concern, even though your container only

exposed port 80. Azure App Service takes care of the SSL binding for you

(see Figure 5-25).

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

228

Figure 5-25. The SSL is automatic with Azure App Service, so your
application is already behind the HTTPS protocol

With ACI, if the environment variable changes, you must destroy

and rebuild the ACI. With app services, just set the new value in the

configuration, as shown in Figure 5-26.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

229

Figure 5-26. The App Service configuration can easily inject
environment variables into your hosted containers

Save the changes; the app service will then manage the lifecycle of the

container with the new environment variable (see Figure 5-27).

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

230

Figure 5-27. The variables are injected and the site restarts without
having to be totally destroyed and re-created

 Additional Services
This final section of the chapter is completely optional. As of the time of

this writing, there should not be any deep need to know how to work with

Azure Container Apps (ACAs) or Azure Kubernetes Service (AKS).

Indeed, these topics are extremely complex and already have books

written on each of the individual services. As each service is presented,

additional resources will be given if you are interested in learning more

about one or both of the services. The learning curve for these solutions

is incredibly steep and it is a substantial jump for traditional Windows

developers with little-to-no container experience.

However, the trend in the industry seems to be clearly leading in this

direction. As solutions become more platform-agnostic, containerized

solutions are proving to be highly desirable. As with anything,

containerized solutions have some issues that arise when applications

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

231

scale to production workloads. While container instances and even app

services can host containerized applications, more powerful solutions

need to be utilized to orchestrate hundreds to thousands of active

containers with varying levels of resource needs and different access for

users via roles and routes.

Azure Kubernetes Service (AKS) was the leading tool for orchestration

of containers (managing lifecycle, running health check probes, and

ensuring deployment across a pool of servers). AKS is still likely to be the

number one choice for container orchestration in Azure. However, Azure

Container Apps is a new player in this space, and it promises to give you

the ability to utilize the power of Kubernetes without having to know how

to actually do Kubernetes.

 Azure Kubernetes Service
Kubernetes has a number of key components, and this book in no way is

going to be sufficient to explain them all to you. Instead, consider this a

high-level overview or baseline understanding so that you can at least have

a general idea of what Kubernetes is trying to do for your applications and

your organizations.

To begin, consider the traditional network and application. You would

have your own VMs for your Web and Data layers. These would be in pools

behind load balancers, public and private. Additionally, you’d have firewall

and routing rules so that only some users can get through and they would

be directed to your applications according to the request they make.

Kubernetes is essentially the same thing, only it’s all configured in

the Kubernetes service with YAML files. You create namespaces to group

applications together. You create an ingress to route the public traffic to

various services like a load balancer, which then can direct traffic to nodes

within the pool (backed by VMs that you don’t have to manage). The

containers then are hosted on these nodes in things called pods. Each of

these pods can be one or more containers. There are health checks and

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

232

liveness probes that you can get by default or configure to ensure that your

app is started and that it is responsive. You configure how many versions of

the app you want with replica sets and you can be assured that Kubernetes

is going to keep that many active, healthy containers up and running. If

one goes bad, Kubernetes just blows it away and starts a new one without

you having to manage it.

You can easily change configurations by interacting with the service

via a CLI tool called kubectl and you can easily scale in/out with rules.

You can also have a ridiculously large number of backing VMs so that you

can handle the workload of your entire organization in one Kubernetes

cluster. You can also split your workloads into separate clusters if you want

to ensure that applications/clients cannot possibly interact or harm other

applications/clients.

In summary, AKS is simply all the power of traditional infrastructure

in the cloud with simple configurations that allow you to leverage massive

scale effectively and easily, designed for orchestration around your

containerized applications.

If you want more about AKS, you can find out more at https://learn.

microsoft.com/training/modules/intro-to-kubernetes/.

 Azure Container Apps
Kubernetes is great, but Kubernetes is also hard. I know I just made

it sound like a breeze, but there really are some tricky parts to it, like

configuring an ingress correctly, mapping services for load balancers to

applications, and other initial configurations.

If you want all the power of Kubernetes but want to leverage it in a way

that gives you a managed service where you don’t have to do a lot of the

underlying configuration, then you should consider working with Azure

Container Apps.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://learn.microsoft.com/training/modules/intro-to-kubernetes/
https://learn.microsoft.com/training/modules/intro-to-kubernetes/

233

With just a few lines of code, you can get up and running and have

a serverless cloud-native solution without a lot of the learning curve

required for Kubernetes, while still getting a lot of the benefits that come

with a full Kubernetes deployment.

If you want to know more about Azure Container Apps, you can

read more at https://learn.microsoft.com/azure/container-apps/

overview. Additionally, the learn module for this unit contains a simple

introductory exercise to learn about Container Apps, specifically around

Deploying, AuthZ and AuthN, Secrets, and Dapr.

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solution(s). You can find

answers to these questions in Appendix A at the end of this book.

 1) Which runtime is required to host containers?

 2) What is the purpose of the Azure Container Registry

(ACR)? How do you interact with the ACR from your

local machine?

 3) What do the following terms mean: Dockerfile,

image, and container? How does each play a part in

the containers ecosystem?

 4) Can you change the variables in a running container

instance? Can you change the variables of a

container hosted in Azure App Service? What about

Kubernetes or Azure Container Apps?

 5) Can you have an Azure Container Instance running

on a private network?

 6) How do you authenticate against the ACR? Can you

get granular per-user control over individual images

within an ACR?

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://learn.microsoft.com/azure/container-apps/overview
https://learn.microsoft.com/azure/container-apps/overview

234

 7) Can the ACR run automated builds and

deployments for your images?

 8) Can a container instance communicate with other

Azure services such as an Azure SQL Server?

 9) Can a container instance host multiple containers?

 Complete the Three AZ-204: Implement
Containerized Solutions Modules
To fully learn the material, I recommend taking the time to also

complete the three MS Learn modules for Implement Containerized

Solutions found here:

• Manage container images in Azure Container Registry

https://learn.microsoft.com/etraining/modules/

publish-container-image-to-azure-container-

registry/

• Run container images in Azure Container Instances:

https://learn.microsoft.com/training/modules/

create-run-container-images-azure-container-

instances/

• Implement Azure Container Apps: https://learn.

microsoft.com/en-us/training/modules/implement-

azure-container-apps/

In addition to these two modules, I also recommend taking a

look at the following modules and documents to get your feet wet on

the remaining technology solutions for containerized/cloud-native

applications in Azure:

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://learn.microsoft.com/etraining/modules/publish-container-image-to-azure-container-registry/
https://learn.microsoft.com/etraining/modules/publish-container-image-to-azure-container-registry/
https://learn.microsoft.com/etraining/modules/publish-container-image-to-azure-container-registry/
https://learn.microsoft.com/training/modules/create-run-container-images-azure-container-instances/
https://learn.microsoft.com/training/modules/create-run-container-images-azure-container-instances/
https://learn.microsoft.com/training/modules/create-run-container-images-azure-container-instances/
https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/
https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/
https://learn.microsoft.com/en-us/training/modules/implement-azure-container-apps/

235

• Deploy and run a containerized web app with

Azure App Service: https://learn.microsoft.

com/training/modules/deploy-run-container-

app-service/

• https://learn.microsoft.com/azure/container-

apps/quickstart-portal

• Deploy a containerized application on Azure

Kubernetes Service: https://learn.microsoft.com/

training/modules/aks-deploy-container-app/

 Chapter Summary
In this chapter, you learned about working with containers and utilizing

the two main services for the AZ-204 Exam—the Azure Container Registry

and the Azure Container Instances. In addition to these two services, you

also saw how to deploy a container to an Azure App Service for additional

power. The final part of the chapter introduced you to two technologies

that are not necessarily on the exam but need to be on your radar—Azure

Container Apps and Azure Kubernetes Service.

After working through this chapter and the Microsoft Learn module,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Work with .NET code in a container.

• Create an image and a container locally.

• Deploy an Azure Container Registry.

• Publish an image to the Azure Container Registry.

• Control access to images within the ACR using RBAC.

• Utilize versioning in your images.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

https://learn.microsoft.com/training/modules/deploy-run-container-app-service/
https://learn.microsoft.com/training/modules/deploy-run-container-app-service/
https://learn.microsoft.com/training/modules/deploy-run-container-app-service/
https://learn.microsoft.com/azure/container-apps/quickstart-portal
https://learn.microsoft.com/azure/container-apps/quickstart-portal
https://learn.microsoft.com/training/modules/aks-deploy-container-app/
https://learn.microsoft.com/training/modules/aks-deploy-container-app/

236

• Publish an Azure Container Instance by using the

image from an ACR.

• Publish an Azure App Service by leveraging an image

from an ACR.

• Publish an Azure Container Apps instance that

leverages an image from a Container Registry.

In the next chapter, you learn about working with Azure Functions as

a solution to deploy standalone code, simple APIs, and microservices into

your Azure subscription.

Chapter 5 aZUre CONtaINer eCOSYSteM: aZUre CONtaINer reGIStrY, aZUre
CONtaINer INStaNCeS, aND aZUre CONtaINer appS

237

CHAPTER 6

Implement Azure
Functions
Do you want to write code for a microservices solution without having to

utilize containers? Are you looking for a quick and easy API solution that can

be public or private? Would you like to break up your monolithic application

and get portions of your solution hosted independently with the ability to

update the code quickly without having to wait for entire development cycles

to complete? Maybe you just want to move some server-based solutions to

the serverless cloud for quick file processing or other code-heavy solutions

that can stand alone. If so, Azure Functions is a great option for you!

Azure Functions are easy to use and test. You will find the barrier

to entry lies more in the ability to get your organization to buy into the

viability of Azure Functions as a solution, rather than creating and using

the actual solutions.

At a high level, you can get started building serverless solutions by

writing code directly against SDKs or by leveraging bindings to integrate

with other Azure services quickly and easily, including Blob Storage, Azure

Service Bus, and Azure Cosmos DB.

This chapter looks at the basics of Azure Functions and explains how

to start working with them via code. It also discusses triggers, using tools to

test your function apps, and bindings to other Azure services. You’ll then

finish up with a look at Azure Durable Functions and the various patterns

you need to be in command of before sitting for the AZ-204 Exam.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_6

https://doi.org/10.1007/978-1-4842-9300-3_6#DOI

238

 A Quick History of Azure Functions
Azure Functions were originally created to be stateless with a maximum

runtime of five minutes. In the original implementations, if you created

an Azure Function, it would automatically die after five minutes. This was

both a limitation of the execution environment and a safety feature to

ensure that you didn’t accidentally run up a gigantic bill with an infinite

loop in a function that never died. The stateless nature of an Azure

Function was designed to make sure that nothing had to be persisted

across the execution of functions.

All of this worked great, and this is technically still the backbone of

Azure Functions. If you create an Azure Function app without doing

any additional settings, you will be utilizing these same constraints and

operational features as per the original design of Azure Functions.

As modern development continues to evolve and cloud migration

has been gaining steam for many years, operational features that have

become necessary to serverless workflows are now additional features in

Azure Functions. The major changes came with the release of Durable

Functions, which allow functions to run from just a few seconds to infinity,

and created some other useful workflows that you’ll learn about later in the

chapter. The other feature added by Durable Functions is persistent state,

which exists even through the restart of an Azure Function application.

Both non-durable and durable functions can exist in the same function

app, as the durable nature of a function is defined by the code of the

function and not any settings in the Azure service itself.

One limitation you need to be aware of is that, except in very early

versions of Azure Functions prior to version 2, all functions in an Azure

Function app must be in the same language. Therefore, unless you

are working on a legacy Azure Function app, if you need some of your

functions to run Java, others to run JavaScript, and even others to run .NET,

you need to create a new function app for each language.

Chapter 6 Implement azure FunCtIons

239

There is a final thing that can trip up development on function apps

early on. If the code is developed in the portal (you can write function code

from your browser in the portal), you should not try to work with the code

from a local development machine, and working as a team on the solution

can get tricky. If your team is developing the function app locally and

utilizing GitHub or Azure Repos (or another SCM solution), you should

not expect to be able to also utilize the portal for development for that

solution. Once you’ve wired up your app with automated deployments,

the portal will display a message that states, “Your app is currently

in read only mode because you have source control integration

enabled”.

For the most part, you’ll likely want to develop locally and utilize

source control with automated deployments, but it can be nice to test

a few things just by developing them in the portal. There are additional

considerations that you will do in the portal as well, such as setting

integrations for bindings. The integrations can be modified in the portal

regardless of whether the solution was built in the portal or from a local

machine utilizing source code. Bindings are discussed in detail later in the

chapter.

 Creating an Azure Function
Getting started with Azure Functions is simple, but it requires a couple of

steps if you are going to develop locally and publish to the cloud. The first

step is to create a function app in your Azure subscription. After creating

the function app, you need to develop the code locally and publish

to Azure.

As mentioned, options exist to develop directly in the cloud via the

portal, but it's likely desirable to develop mostly from your local machine

(especially when working with others). Therefore, this book focuses on

local app development. If you want to see more about development

Chapter 6 Implement azure FunCtIons

240

from the Azure Portal, you can review an example from Microsoft Learn:

https://learn.microsoft.com/azure/azure-functions/functions-

create-function-app-portal. Looking through that example is worth

your time to also get a quick look at some simple debugging and testing

from the portal.

The rest of this chapter deploys an Azure Function app in the portal

but uses local development tools to build the solution. Eventually a GitHub

Action will be utilized to deploy the application to Azure. The code created

in this chapter is available with the materials for this book for you to review

and try on your own.

 Name the Function App
As with many of the other services so far, the function app must have a

unique public-facing domain name that is comprised of the name of your

application with .azurewebsites.net added to the end.

The name of the application must be between 2 and 64 characters,

can’t start or end with a hyphen, and must contain only alpha-numeric

characters and/or hyphens (see Figure 6-1).

Figure 6-1. Naming a new Azure Function app

 Publish
The options to publish your application include choosing Code or a

Docker Container. For this book, the application will use code, but you can

also work with a Docker container.

Chapter 6 Implement azure FunCtIons

https://learn.microsoft.com/azure/azure-functions/functions-create-function-app-portal
https://learn.microsoft.com/azure/azure-functions/functions-create-function-app-portal

241

If you choose to use a Docker deployment, the portal deployment is

a bit confusing. You will just deploy with the sample QuickStart using a

single container, then after deployment, choose the Registry source and

other important information about your image, as shown in Figure 6-2.

Figure 6-2. Deploy your Azure Function with the Docker option and
then configure the deployment after the resource has been provisioned

Chapter 6 Implement azure FunCtIons

242

 Runtime Stack
As with other services, you have a number of choices for your runtime

stack, with available options of .NET, Node.js, Python, Java, PowerShell, or

a Custom Handler.

Once you choose the stack, you have to choose an appropriate version

for the stack and then pick an appropriate region for your deployment (see

Figure 6-3).

Figure 6-3. The runtime stack, version, and region are set on the
Basics tab for the deployment

 Operating System (OS)
The operating system for your deployment is another choice you have to

make, so you need to make sure the OS you choose can host your solution.

The system will recommend a choice for you based on your choice of

runtime stack. With most of the offerings, you could choose Linux. For

this deployment, I’m just going to stick with the recommended choice

of Windows. One thing about Linux OS is that you cannot work with the

portal to modify functions. Therefore, if you want to work on a function in

the portal, you have to choose Windows. For a .NET 6/7 solution, you can

use either Windows or Linux. If your solution is utilizing Python, Node.js,

or Java, Linux is likely your first choice.

Chapter 6 Implement azure FunCtIons

243

 Hosting Plans
As with Azure App Services, Azure Functions need a hosting plan. The

default plan is the Consumption tier, which has a minimal fee for storage

and offers up to a million requests against your functions before you incur

any charges. The Consumption tier is typically called the “serverless”

tier—it’s listed as Consumption (Serverless) in the options. The great thing

about this plan is that it is extremely inexpensive. Indeed, you can get up

to a million requests per month without paying for the resource. You will

see a nominal fee for the backing storage account, however. As long as you

don’t go crazy, that storage fee is generally negligible. One drawback for

the consumption plan is that the consumption tier does not have an option

to keep the solution warm, so there can be some side effects or latency

concerns if the app hasn’t been used in a while.

When an application has to “warm up” before it can serve requests,

this is known as a “cold start.” Typically, a cold start happens when an

app has been idle for around 20 minutes; however with a function app,

this can actually happen for any request. In some instances, therefore,

as the request may have to wait for the application to start, a 404 error

can potentially happen if the request times out while the function app

is warming up, even when the request is to a valid endpoint. For heavy

workloads, or when a cold start is unacceptable, the consumption plan is

likely not the correct choice for your solution. In these cases, you have a

couple of other options.

The first option is the Premium plan, which offers a shared hosting

solution that is production worthy and gives you additional options like

the ability to use a virtual network and the ability to host multiple function

applications. The Azure Functions Premium plan is much more expensive,

and you pay by execution time against the CPU and memory. Typical

prices are listed on the pricing page: https://azure.microsoft.com/

pricing/details/functions/#pricing.

Chapter 6 Implement azure FunCtIons

https://azure.microsoft.com/pricing/details/functions/#pricing
https://azure.microsoft.com/pricing/details/functions/#pricing

244

Another type of deployment can be used for your function application,

which is to just deploy an App Service plan. As with the App Service, an

App Service plan can be selected to give additional power and tools for

your use. One of the main benefits of an App Service plan is the ability

to utilize the Always On option that exists for typical production-ready

app service plans, meaning that you’ll never encounter any issues with

cold starts. Pricing and available resources are determined by the App

Service plan, so although you are paying for this service no matter what,

you will have a more predictable bill on this plan than on a Premium or

Consumption plan.

There are two final options for hosting, which you may need to be

aware of for the exam. The first is the ability to host a function application

in Kubernetes, where everything from compute to cost is dictated by the

Kubernetes deployment. The second option is the ability to create an App

Service Environment (ASE) and use that environment to host the function

application.

For learning purposes and for many scenarios, the correct choice is to

utilize the Consumption tier, as shown in Figure 6-4.

Figure 6-4. The Consumption tier is extremely popular due to the
low cost and low barrier of entry for working with serverless Azure
Functions

 Backing Storage
Every Azure Function app must have a backing storage account. When the

backing storage is created, a number of services are automatically created

within the storage account to service the function app. Additionally,

Chapter 6 Implement azure FunCtIons

245

the storage account is where your deployed solution is stored. Figure 6-5

shows the creation of the backing storage during the function app creation

in the portal.

Figure 6-5. All Azure Function apps must have a backing storage
account to service the application, which can be previously existing or
created new during deployment

The backing storage account must be a general purpose storage

account with the ability to support Blob, Queue, and Table storage. This

account is necessary to keep track of important operational considerations

such as monitoring and logging of executions and managing the triggers.

Additionally, the function app uses queues to manage long-running

processes, and to resume executions when the process is interrupted. The

backing storage is also responsible for state management.

Since the storage is so important for a function app, it is considered

bad practice to have more than one function app using the same storage

account (even though you can do this), and the general recommendation

is to create a one-to-one relationship between storage accounts and

function apps. For more information on storage considerations with

Azure Functions, you can review this learn document: https://learn.

microsoft.com/azure/azure-functions/storage-considerations.

Chapter 6 Implement azure FunCtIons

https://learn.microsoft.com/azure/azure-functions/storage-considerations
https://learn.microsoft.com/azure/azure-functions/storage-considerations

246

 Networking
If you need to utilize a private network, you have to choose the Premium

tier, an Azure App Service plan that allows for networking, or the Isolated/

ASE options for hosting. The Consumption tier function app is hosted on

the public Azure backbone (see Figure 6-6).

Figure 6-6. Consumption function apps cannot utilize a
private network

 Monitoring
Azure Application Insights give powerful tools for instrumenting and

error logging. As with the Azure App Service, utilizing Application Insights

gives you the ability to not only get the typical information about an Azure

Function Application, but also allow you to further instrument your code

for additional logging and tracing (see Figure 6-7).

Chapter 6 Implement azure FunCtIons

247

Figure 6-7. The Monitoring option includes the ability to easily
enable a new or existing Application Insights instance within the
same region as the Azure Function app

 Deployment Options
Until recently, it was not possible to enable CI/CD on an Azure Function

app. Recent changes have made this possible as of around October

of 2022. If you want to enable GitHub Actions during provisioning of

the application, you can wire up your GitHub account and choose the

organization (which is either a full team or can also be just your own

GitHub account), repository, and branch from which to deploy.

Often, it is easier to just deploy the function application and then later

come back to the Deployment Center and wire up the CI/CD after you’ve

created code at GitHub for the function application. Figure 6-8 shows

keeping the option disabled during deployment. I’ll be circling back to this

once the application is deployed and the code is created to enable the CI/

CD via the Deployment Center from the provisioned function app.

Chapter 6 Implement azure FunCtIons

248

Figure 6-8. Deployment is not enabled during provisioning in this
example. If you already have code ready to go, you would be able to
enable this option and connect to the correct source to automatically
create a CI/CD GitHub Action

In addition to using the built-in deployments, a GitHub Action YAML

script is included with the resources for easily deploying the solution to

your own function app by creating an empty action in GitHub and filling in

the variables. If you choose to use the script, you can either utilize Azure to

create the script and replace the contents, or you can download the Publish

Profile for the function app, put the XML into a GitHub Secret, create a new

action manually, and then set the variables appropriately in the script.

Chapter 6 Implement azure FunCtIons

249

 Slots
After the Azure Function app is deployed, you can configure the

deployments and you will also note that even on the Consumption plan,

the Azure Function app gets the ability to have two slots. If you need more

than two slots, you must utilize an Azure App Service plan, such as the

Standard tier or better, where you can get five or more slots depending on

the SKU you choose for deployment.

Figure 6-9 shows a staging slot on the consumption plan created for

the Azure Function app as deployed. During creation of the staging slot,

you also need to enable the ability to use slots. Doing this gives a warning

that you will have to reset any secrets.

Figure 6-9. The creation of a slot is easily accomplished, and the
consumption tier allows for up to two total slots. Enabling the
utilization of slots gives you the power for modern deployments in
your function app solutions

Chapter 6 Implement azure FunCtIons

250

 Creating the Application Code
To examine the remaining features of the Azure Function application, it

will be highly beneficial to utilize code and create a couple of functions as

you work through the material.

For this book, I’m focusing on C#.NET and therefore the application

will be written in that runtime language. The functionality of most of this

code is basic enough that you should be able to port it to your language of

choice should you want to deploy with another runtime language such as

Java, JavaScript, or Python.

 Create the Function App
In this book, I’ll be using Visual Studio, but you can easily work with

Azure Function apps in VS Code if you prefer. For VS Code, make sure that

you have the Azure Tools extensions and any Azure Function Runtime

extensions that you might need. The Learn modules for the AZ-204 Exam

(see the link at the end of the chapter) include a quick walkthrough on

creating a function app with VS Code.

For this example, I open Visual Studio and choose an Azure Function

app project. I just store the code locally, and after creating a simple

function, I push to GitHub for CI/CD deployment with a GitHub Action

(see Figure 6-10).

Chapter 6 Implement azure FunCtIons

251

Figure 6-10. Visual Studio has a template for the Azure Function
App Project type, which is used to create a new Function App project

 Function Apps and Functions
It’s important to note that in order to run code in an Azure Function, the

function code must be contained within an Azure Function application.

Therefore, the function app can have many Azure Functions in it, and

each Azure Function can have one (and only one) parent function app.

The function app is deployed as a single unit, so all of its functions are

deployed at the same time. This means that even if you only change one of

the functions, the entire application is deployed to Azure to affect changes.

Chapter 6 Implement azure FunCtIons

252

 Triggers
When creating any function, whether in the portal or in local development

within a function app, every Azure Function must have a trigger. The

relationship for functions to triggers is one-to-one (1:1).

With Azure Functions, there are a limited number of types of triggers

that can be used, and the most popular types are the HTTP trigger, a Timer

trigger, an EventGrid trigger, a Service Bus trigger, a Blob trigger, or a

Cosmos trigger.

For purposes of close examination, the main groupings of triggers are

essentially an HTTP trigger from any web source, an Azure service-based

trigger, or a Timer trigger.

 HTTP Triggers

For this application, the first function utilizes an HTTP trigger. HTTP-

triggered functions are easy to test because they can be wide open to

the Internet with anonymous access. You can also lock them down with

a single key for all calls to the function, or, in more complex scenarios,

you can utilize a key but also lock down the function app to only allow

authorized access (with or without a function key).

When creating the function app in Visual Studio, every function gives

you the option to choose your trigger. Figure 6-11 shows the choice of an

HTTP trigger from among other options.

Chapter 6 Implement azure FunCtIons

253

Figure 6-11. The first function is created with an HTTP trigger
for easy testing and utilization via a simple HTTP endpoint for the
function

It is important to note that HTTP functions can only have one new

request per second, so if you get a flood of requests, your function app

could get bogged down or start responding with a 429 to the requestor.

If you need to consider a throttling strategy, Azure API Management

(covered in Chapter 11) is a viable solution. You can also consider

the option of limiting requests in the host.json file for the Azure

Function app.

Chapter 6 Implement azure FunCtIons

https://doi.org/10.1007/978-1-4842-9300-3_11

254

 Timer Triggers

Timer triggers are exactly what you might think based on the name of the

trigger. In this option, you can use CRON syntax to set the operation of the

function to be triggered automatically on a schedule.

It is important to note that Timer triggers also have some request

limits, and poor planning or long-running executions can create some

concurrency issues with the execution of timer-based triggers, so you’ll

want to ensure that you have checks and balances in place to prevent

issues on a timer-based trigger.

 Azure Service-Based (or Third-Party) Triggers

The final type of trigger encompasses the rest of the triggers. Essentially,

most Azure services and a few third-party services can be used to trigger

an Azure Function. In some cases, you need or want to have bindings set

so that the function can then take the information from the trigger and use

it to perform the duty of the function.

For example, a Blob trigger might cause an Azure Function to fire, and

the function will need to leverage Blob Storage to read a file for processing.

To do this, you can write code against the SDK in the function, but a

binding would make it very easy to work against the Azure service (see the

section entitled "Bindings" for more information).

Another example might be a Cosmos DB triggered function. This

function might be utilized to help monitor and work with the Cosmos

data utilizing the Cosmos DB change feed. When changes happen in

one Cosmos document, the result can ripple through other documents.

The change feed in Cosmos is set to make sure that the data is correctly

updated across all documents. This is incredibly important since Cosmos

is not a relational database and a lot of denormalized data needs to be kept

in sync. Utilization of a Cosmos DB trigger with the change feed to execute

code from an Azure Function is the workflow of choice for this scenario.

Chapter 6 Implement azure FunCtIons

255

 Authorization Levels

Every Azure Function must be set to have one of five authorization levels.

They are Anonymous, Function, Admin, System, and User. You can create a

function with any of the five options, and you can easily change the option

after creation of the function via the declaration of the function in code.

Anonymous

As implied by the name, a function with anonymous access will have

a public-facing endpoint that can be called by any request without an

additional filtering to block the request.

Function

When you choose to utilize the Function authorization level, the function will

still have a public-facing endpoint, but all requests to the endpoint must pass

a secret token, either via the query string or through the request headers.

Failure to utilize the token in one of these two ways will result in a 404 error.

It is also important to make a security callout here. Utilization of a

function token is not an entirely secure solution. While using a token

does ensure that simple requests to the endpoint would be blocked, this

solution is only as secure as your worst player who has knowledge of the

function token.

When using a Function token, all of your clients will share the same

function key and, as soon as the token is leaked or posted online, the

function is no more secure than an anonymous function. If this happens,

you can at least rotate the keys to help mitigate this solution, but then,

once again, you must distribute this new key to any clients. Until they

update their processes, they cannot utilize your function. When you need

a more secure solution, the Azure API Management service will quickly

be the service of choice. (API Management is covered in more detail in

Chapter 11.)

Chapter 6 Implement azure FunCtIons

https://doi.org/10.1007/978-1-4842-9300-3_11

256

The deployment of the first function in this demonstration utilizes

function-level authorization (see Figure 6-12).

Figure 6-12. The function is created with function-level
authorization

Admin

The admin authorization level means that a shared admin token can be

used to access this function and any other functions in the Azure Function

app (host-level). This is essentially the master key for the application and

should be treated as you would treat any secret that you do not want to

expose to the public.

Once again, for reasons mentioned, utilization of a single token,

especially one with access to all the functions, should not be considered a

secure solution.

System

The system authorization level is primarily internal to Azure. This is

typically used to work with extensions and APIs in Azure, such as the

durable tasks extension, or to handle triggers into the function from

systems like the Event Grid.

User

The user authorization level allows for individual roles and identities to

execute functions.

Chapter 6 Implement azure FunCtIons

257

 The Default HTTP Trigger Function
For purposes of quick examination and learning, the sample function

app for this chapter has retained a simple HTTP triggered function. This

function has no input or output bindings (see the next section). The

function can be easily triggered via an HTTP endpoint with function-level

authorization.

The function has a simple name—Function1—and the name is

restated as a C# attribute on the function declaration. In the declaration,

you’ll note the trigger is an HttpTrigger, and the AuthorizationLevel is

Function (set from an enumeration with five options).

The function declaration also declares HTTP verbs like get and post,

with a default route set to null. What this means is that you can alter

the request to only work on GET or POST verbs, and you can also respond

to both, as in the case of this function. The route being null means that

there are no other considerations other than the default endpoint of the

function name.

If you want to further qualify the request with route paths, you can do

that by changing null to the path. For example, Route = “api/subgroup/

{id:int?}” would only allow the function to respond to the request if the

route matches that pattern, including an optional integer ID for further

segregation.

The input parameters for the request body (HttpRequest req) and

an ability to log to the function runtime (ILogger log) are also present in

the default signature for the default function. The following code snippet

shows the default function declaration in more detail:

public static class Function1

{

 [FunctionName("Function1")]

 public static async Task<IActionResult> Run(

Chapter 6 Implement azure FunCtIons

258

 [HttpTrigger(AuthorizationLevel.Function, "get",

"post", Route = null)] HttpRequest req,

 ILogger log)

 {

Immediately following the declaration is the use of the logger and

the request body/query string information passed in. The function then

determines if the user has passed a variable in the query string or the

request body for the value name. If so, the name is displayed in an output

message. If not, the output message states that the function was triggered

successfully, but a name was not provided and should be passed in the

body or the query string for the request.

log.LogInformation("C# HTTP trigger function processed a

request.");

string name = req.Query["name"];

string requestBody = await new StreamReader(req.Body).

ReadToEndAsync();

dynamic data = JsonConvert.DeserializeObject(requestBody);

name = name ?? data?.name;

string responseMessage = string.IsNullOrEmpty(name)

 ? "This HTTP triggered function executed successfully. Pass

a name in the query string or in the request body ..."

 : $"Hello, {name}. This HTTP triggered function executed

successfully.";

return new OkObjectResult(responseMessage);

Chapter 6 Implement azure FunCtIons

259

 .NET 7 Changes

As I’m working through the final edits for this book, .NET 7 has been released,

and the default function is different. They’ve changed a number of things

in the latest release. One important change is the introduction of isolated

functions. When you create your application now, you can choose to run in an

Isolated Worker. If you are going to deploy .NET 7 (or in the upcoming .NET 8),

at the time of this writing you must choose to deploy as isolated functions.

The ability to use isolated functions allows you to run your functions

in a version that is different from the host application version. This also

means your functions are executing in a different thread than the host

process, which should result in fewer conflicts. Additionally, due to this

new functionality, you can now run code from the .NET Framework

(version 4.8) in your Azure Functions.

With these changes also comes new code for the default function

template. The Isolated .NET 7 function includes a factory for logging with

dependency injection, and the code for Function1 just returns a simple

message: “Welcome to Azure Functions!”.

private readonly ILogger _logger;

public Function1(ILoggerFactory loggerFactory)

{

 _logger = loggerFactory.CreateLogger<Function1>();

}

[Function("Function1")]

public HttpResponseData Run([HttpTrigger(AuthorizationLevel.

Function, "get", "post")] HttpRequestData req)

{

 _logger.LogInformation("C# HTTP trigger function processed

a request.");

 var response = req.CreateResponse(HttpStatusCode.OK);

Chapter 6 Implement azure FunCtIons

260

 response.Headers.Add("Content-Type", "text/plain;

charset=utf-8");

 response.WriteString("Welcome to Azure Functions!");

 return response;

}

 GetTopMovies Function

Another simple HTTP Trigger function is included in the starter

application. You do not need it for this chapter, but it will be leveraged

in Chapter 11 when working with APIM. Feel free to uncomment this

function as well or leave it commented; it is up to you. If you are creating

from scratch, consider ignoring this function for now.

 Deploy the Function App
You have two options for deployment, which are to deploy manually or by

utilizing automated CI/CD.

 Right-Click and Publish from Your Local Environment

It is entirely possible to deploy your solution quickly and easily to Azure

by using the Publish tools in either Visual Studio or Visual Studio Code. If

you do not want to utilize CI/CD then this is a viable option. It is not very

likely that you would be required to know CI/CD in detail for the AZ-204

Exam, as that is more of a topic for the AZ-400 Azure DevOps Expert Exam.

Therefore, feel free to publish from your local machine to save time, or wire

up the CI/CD from GitHub. Either way, as long as your code publishes, you

will be able to learn appropriately.

Chapter 6 Implement azure FunCtIons

https://doi.org/10.1007/978-1-4842-9300-3_11

261

Assuming that just about everyone can utilize the right-click and

publish option without much trouble, I’ve chosen not to highlight it

here. If you need more information, you can find a tutorial at https://

learn.microsoft.com/azure/azure-functions/functions-develop-

vs?tabs=in-process#publish-to-azure. Furthermore, if you run into

trouble using GitHub Actions or another CI/CD process, you may find

that deploying with the right-click and publish method ensures that your

project is working, and the problem is in the deployment.

 Deploying with CI/CD

A better solution for deployment of your application is to deploy to GitHub

and utilize GitHub Actions to deploy it. The sample code project for this

chapter has the final version of all the code shown and used in this chapter.

For simplicity, the starter package has everything commented out, so the

additional functions for Durable Functions and EventGrid trigger don’t

cause you initial deployment issues. It is important to note that if you

switch to .NET 7, you’ll also need to update FUNCTIONS_WORKER_RUNTIME

in the local.settings.json file in the project and in the Function

Configuration in Azure to use dotnet-isolated instead of dotnet.

Adding your code to GitHub is outside of the scope of this book and

it is assumed you can manage this on your own. If you need help, refer to

documentation at https://docs.github.com/repositories/creating-

and-managing-repositories/creating-a-new-repository. You can

easily make your own project or just use the sample project if you want to

practice working with Azure.

Once you have created your repository, go back to the function

app and configure the repository for automated deployment from the

Deployment Center blade. Doing this will generate a deployment via

GitHub Actions.

For the purpose of further examination of the concept of modern

deployments (outside of the scope of the AZ-204 but good for every

Chapter 6 Implement azure FunCtIons

https://learn.microsoft.com/azure/azure-functions/functions-develop-vs?tabs=in-process#publish-to-azure
https://learn.microsoft.com/azure/azure-functions/functions-develop-vs?tabs=in-process#publish-to-azure
https://learn.microsoft.com/azure/azure-functions/functions-develop-vs?tabs=in-process#publish-to-azure
https://docs.github.com/repositories/creating-and-managing-repositories/creating-a-new-repository
https://docs.github.com/repositories/creating-and-managing-repositories/creating-a-new-repository

262

developer to know), you can wire the deployment to a staging slot (slots are

discussed in Chapter 4). Figure 6-13 shows the deployment selections from

within the portal on a staging slot that was created in the function app.

Figure 6-13. Deploy from GitHub using the built-in deployment
functionality

One additional thing to note is that even the Consumption function

app gets two total slots, so you can do this without having to purchase a

more expensive offering. You also don’t have to use GitHub, as you can

also easily deploy your code from BitBucket or Azure Repos or potentially

another external Git repository (such as GitLab).

Chapter 6 Implement azure FunCtIons

https://doi.org/10.1007/978-1-4842-9300-3_4

263

When you save the settings, a new GitHub Action is created for you and

the code is automatically deployed. This default deployment does include

the use of the publish-profile (the XML settings can be downloaded

from the Manage Publish Profile link, also shown in Figure 6-13 but not

highlighted—it’s at the top right). The publish profile is an XML file that

contains all the information to deploy a function app. To utilize it in the

action, you need to download the file, then copy the XML from inside the

file and place it in a GitHub Action Secret. More information on working

with GitHub Action Secrets can be found at https://docs.github.com/

actions/security-guides/encrypted-secrets.

The default deployment in the generated YAML also builds on a

Windows agent. Switching to an Ubuntu agent tends to lead to a more

efficient build in your actions (see Figure 6-14). The YAML file is stored

in your GitHub repository in the .github/workflows folder. The sample

code also contains a default workflow that you can update and utilize from

your own repository with your own publish profile, which is stored in your

GitHub Secrets for the Actions on your repository.

Figure 6-14. The Ubuntu agent is orders of magnitude faster than the
Windows agent to build and deploy .NET to Azure

 Test the Function App
To work with the function in Azure, once the function app is deployed,

you can easily trigger the function for testing from within the portal. To do

this, navigate to your deployed function app, select the staging slot if you

are using a slot or the production slot if you are not using slots, select the

Chapter 6 Implement azure FunCtIons

https://docs.github.com/actions/security-guides/encrypted-secrets
https://docs.github.com/actions/security-guides/encrypted-secrets

264

functions, and then drill into the Function1 function. Once in the function,

select the Code + Test option, as shown in Figure 6-15.

Figure 6-15. The Azure Functions can be easily tested from within the
portal using built-in tools when the trigger is an HTTP trigger [Note:
at the time of this writing there is a bug in the portal for Isolated
Functions and you can't use the Test/Run for Isolated functions. You
can still run them from their function URL or via PostMan or cURL
requests].

Once in the function for Code+Test, choose Test/Run to open the

dialog for testing. This function can be done as GET or POST, so you can

leave POST selected. For the Key, select Default (Function Key). If you are

working with .NET 6, add a query parameter with Name set to name and

Value set to az204examRef. Then choose the Run button. Figure 6-16 shows

the result of executing the function in a .NET 6 Function App from within

the portal with the query string parameter name set as directed.

Chapter 6 Implement azure FunCtIons

265

Figure 6-16. The function is tested from the portal and easily
triggered. Also note the output for the logging is shown as the
function runs

Additionally, for testing, you can just navigate to the public-facing

endpoint with the function key and/or you can trigger this function easily

from a tool such as PostMan or via a simple cURL request. Remember

that if you update the route, you need to reflect the full route from your

PostMan or cURL. Also note that currently if you are working with an

Isolated Worker Runtime, you may find that you won’t be able to test in

the portal. If that is the case, you should still be able to make calls to the

functions via PostMan or cURL, or by just placing the function URL into a

browser and navigating to the function endpoint.

Chapter 6 Implement azure FunCtIons

266

 Bindings
Bindings in Azure have two directions: Input and Output. When you create

an Azure Function with an HTTP Trigger, by default, there are no bindings

set. However, you can create a function that utilizes bindings or you can

add input and output bindings after the function has been created. You

may have noticed the previous function has a binding for the httpTrigger

(see Figure 6-17). This is stored in a file called function.json in the portal.

Figure 6-17. The binding for the function is stored in the function.
json file on the Azure Portal

Chapter 6 Implement azure FunCtIons

267

When it comes to the AZ-204 Exam, you should be prepared to look

at different function.json files and/or in code signatures of function

app functions and be able to discern binding information, including type

and purpose, such as whether the binding is an input binding, an output

binding, or both.

The interesting thing about bindings is that they make it so you don’t

need to write the plumbing to connect to services. Instead, you can just

utilize the incoming bindings to get information. For example, getting a file

that is uploaded to Blob Storage is fairly straightforward. You could wire up

a Blob trigger and utilize that, but working with code seems to work better

if you utilize the EventGrid trigger, and then wire up the event from Blob

Storage via the EventGrid trigger. When you do this, you can use a Blob

Storage input binding to easily get information about an uploaded blob.

 Create a Function with an Input Binding
to Blob Storage

If you are using the sample code, you can simply uncomment the

ProcessExcelToCosmos function. If you are building from scratch, create

a new function called ProcessExcelToCosmos using the EventGrid trigger

type (see Figure 6-18).

Chapter 6 Implement azure FunCtIons

268

Figure 6-18. Create a new function utilizing the EventGrid trigger

After creating the function, add the blob binding to the function

declaration. You can then utilize the blob in the function with code as follows:

[FunctionName("ProcessExcelToCosmos")]

public static void Run([EventGridTrigger]EventGridEvent

eventGridEvent,

 [Blob(blobPath: "{data.url}", access: FileAccess.Read,

 Connection = "myStorageConnection")] Stream

fileToProcess,

 ILogger log)

{

 log.LogInformation(eventGridEvent.Data.ToString());

 log.LogInformation($"FileInfo: {fileToProcess.Length}");

}

Chapter 6 Implement azure FunCtIons

269

Push the function to GitHub to deploy to Azure, and then swap

so that this code makes it to the Production slot. While that deploys,

consider the signature of this function. Instead of an HttpTrigger, you

have an EventGridTrigger. This trigger type indicates that the way this

function will be fired is when the event grid sends a notification that the

event has been fired. Additionally, there is an input binding for the Blob

Storage based on the path, with read access. Of particular concern is the

myStorageConnection variable. For this to work, the function app must

have that variable configured correctly. To run locally, you also need to add

this to your local user secrets.

Of course, you need a storage account with a container that you can

upload files into. Create a storage account and get the primary connection

string for the storage account. To make sure this works in both slots, you

need to also add the configuration setting to the production slot for the

myStorageConnection connection string (found under the Access Keys

blade in your storage account), which would ideally be a second storage

account so that you can trigger it independently for each environment. For

purposes of this learning, wiring up events to the production slot only is

sufficient, as wiring them up to both production and staging would just be

repeating the same actions. Adding your storage account connection string

to the function app on either the main deployment or the staging slot is

easily accomplished, as shown in Figure 6-19, where the setting is added as

an application setting.

Chapter 6 Implement azure FunCtIons

270

Figure 6-19. Make sure to set the connection string information for
your Azure Storage Account where the file will be uploaded so the
function app can connect to the storage account

With the application deployed and the Event Grid Trigger function

set to the Production slot and the connection string set in the application

settings, you can now create the EventGrid subscription. For this, you need

to go to the storage account where you will upload the sample data Excel

sheet (found in the resources for this chapter). On the Storage Account

blade, click Events, and then click the +Event Subscription button, and

although it may seem like the right thing at this time, do not click the Azure

Function option (see Figure 6-20).

Chapter 6 Implement azure FunCtIons

271

Figure 6-20. Setting an Azure Function as the target for an Event
subscription from within the Azure Storage Account

On the Create Event Subscription blade, enter the following details:

• Name: az204-exam-ref-blob-events

• Event Schema: Event Grid Schema

• Topic Type: Storage Account (already set)

• Source Resource: <your storage account>

(already set)

• System Topic Name: az204-exam-ref-events

• Filter to Event Types: Blob Created

Chapter 6 Implement azure FunCtIons

272

For the Endpoint details, select the Azure Function option,

then use the provided selections to find your function that has an

EventGridTrigger (as in Figure 6-21).

Figure 6-21. Utilize the Create Event Subscription blade to set the
subscription for responding to blob-created events in your storage
account and triggering your Azure Function

Confirm and then create the subscription. You’ll see it listed in the

events for the storage account once it is set correctly (see Figure 6-22).

Chapter 6 Implement azure FunCtIons

273

Figure 6-22. The event subscription is listed in the Events blade for
the storage account

To test that everything is working, navigate to the deployed function

and then open the Monitor tab to watch the logs for trigger and processing

events. In another window, upload your file to your Blob Storage container

and watch the function app respond (as shown in Figure 6-23).

Figure 6-23. The function app responds to the event. The input
binding for the Azure Function allows the Blob Storage to be easily
accessed to get the file as a stream

When you dropped the file into Azure Storage, Azure Monitor fired

an event to monitor and respond to the blob-created event. Because

you also set the event grid to watch for this event and handle it, you can

now publish that event to subscribers to further process the information.

The function binding for the event grid lets you set the function as the

subscriber, and the EventGridTrigger on the function is fired, which

Chapter 6 Implement azure FunCtIons

274

propagates information to the function. The function has an input binding

on the Blob Storage, and with the information about the file passed by the

event, the function can retrieve the file for read access, parse the file, and

work with the data to eventually push it into Cosmos DB.

 Modify the Function to Parse and Push Data to Cosmos
DB with an Output Binding

To work with the file, you can utilize the stream from the incoming blob

and then parse it out and put the information into Cosmos. To do that,

you need an object to build and map the parsed data, and a Cosmos DB

account with a container. You also need to set up a Cosmos DB output

binding to put the data into Cosmos.

Before deploying any changes, make sure you have a Cosmos DB

database you can use, with a database named SampleDataItems and a

container named Items, which has a partition key of /Title. Get the

connection string for the Cosmos DB instance. You need the name of the

database and the container for the binding information, as well as the

connection string setting (found under the Keys blade in your Cosmos

DB instance), which is similar to the connection string setting for the Blob

Storage.

Put the connection string value into your Azure Function on the

configuration page in a key named myCosmosConnection. On the function

app’s Configuration blade, you’ll then have both settings in the application

settings. Additionally, you need to add the setting to your local user secrets

to run the function locally.

The sample application has the remaining additional code, including

the output binding for the Cosmos DB in the function declaration, which

adds the Cosmos DB binding to the existing function declaration:

[FunctionName("ProcessExcelToCosmos")]

 public static async Task

Run([EventGridTrigger]EventGridEvent eventGridEvent,

Chapter 6 Implement azure FunCtIons

275

 [Blob(blobPath: "{data.url}", access:

FileAccess.Read,

 Connection = "myStorageConnection")] Stream

fileToProcess,

 [CosmosDB(

 databaseName: "SampleDataItems",

 collectionName: "Items",

 ConnectionStringSetting =

"myCosmosConnection")]

 IAsyncCollector<SampleDataItem>

sampleDataItemDocuments,

 ILogger log)

 {

This code adds the output binding to Cosmos DB, making the

connection using the connection string entered into the application

settings. The fields for databaseName and collectionName give you

the ability to tell the binding exactly what database and container

to target for operations against the Cosmos DB instance. The

sampleDataItemDocuments will essentially be a list of all the data from

Excel modelled into the SampleDataItem type and can be pushed into

cosmos vial the IAsyncCollector<T> binding.

Additionally, the code to easily write all the documents from the

parsed data is as follows:

var parseResults = ParseFile.ParseDataFile(ms);

foreach (var pr in parseResults)

{

 log.LogInformation($"Adding {pr.Title} to cosmos db output

documents");

 await sampleDataItemDocuments.AddAsync(pr);

}

Chapter 6 Implement azure FunCtIons

276

The best part of all of this is that, thanks to the output binding, you

don’t have to write any SDK code and it just works. If you didn’t have the

output binding, you could utilize the Cosmos DB SDK directly, but you’d

need to configure the code similar to code in Chapter 2—first establishing

the connection, then getting the database and container clients set, and

finally performing Insert/Upsert operations.

This simple example illustrates the power of using input and output

bindings with your Azure Functions. The input binding allows direct

interaction with the Blob Storage without writing SDK code. The output

binding allows direct interaction with Cosmos DB without writing

SDK code. The output and documents from Cosmos are highlighted in

Figure 6-24.

Figure 6-24. The function handles the Blob Storage-created event,
parses the file, and loads the data into Cosmos DB using an EventGrid
trigger, an input binding for Blob Storage, and an output binding for
Cosmos DB

 The function.json File
With the input and output bindings in place and the Event Grid trigger

to handle the Blob Storage-created event, there are now a number of

important details to review in the function.json file in Azure.

Chapter 6 Implement azure FunCtIons

https://doi.org/10.1007/978-1-4842-9300-3_2

277

Navigate to the function.json file that is available on the Function

blade in the portal under the Code + Test option. Reviewing the file shows

the following JSON:

"bindings": [

 {

 "type": "eventGridTrigger",

 "name": "eventGridEvent"

 },

 {

 "type": "blob",

 "connection": "myStorageConnection",

 "blobPath": "{data.url}",

 "access": 1,

 "name": "fileToProcess"

 },

 {

 "type": "cosmosDB",

 "connectionStringSetting": "myCosmosConnection",

 "databaseName": "SampleDataItems",

 "collectionName": "Items",

 "createIfNotExists": false,

 "useMultipleWriteLocations": false,

 "useDefaultJsonSerialization": false,

 "name": "sampleDataItemDocuments"

 }

],

As you can see, the important information here shows the trigger and

the two bindings for the blob and Cosmos DB bindings. One problem

here is that for some reason the binding direction does not go along with

.NET projects, and this can cause some confusion. The code is working,

but the function.json file should have direction values for the input and

Chapter 6 Implement azure FunCtIons

278

output parameters. If you look at the Integration blade for the function,

you will likely see a warning “The following bindings are missing

the required direction property and may have been placed

incorrectly...”, as shown in Figure 6-25.

Figure 6-25. Function binding direction is missing on autodeployed
.NET Function apps

The bindings are shown on the Integration blade as well, but are not

assigned (see Figure 6-26).

Figure 6-26. The bindings are present, but are not correctly
associated with the function by direction of in and out

Chapter 6 Implement azure FunCtIons

279

The text that is in the image is the text quoted previously. I realize it

might be difficult to read in this text, but the blade shows that the bindings

aren’t found and the two bindings are listed in the Unknown box.

You can fix this by allowing your code to be modified and then diving

into the debug console. To do this, first you need to make sure you aren’t

in write-only mode. If you have a setting on your function app called

WEBSITE_RUN_FROM_PACKAGE with a value of 1 (see Figure 6-27), then

you are in write-only mode, because you right-clicked and published.

If you want to modify this file, you need to remove that. To be honest, if

you are doing this, you should not try to modify this file, as the package

deployment will be off track. If you have deployed from CI/CD via GitHub

or another solution, this setting is not present in your function app. I’ve

published from GitHub so I can show how to modify this file in this book.

Figure 6-27. If you are manually deploying you may have an entry
for WEBSITE_RUN_FROM_PACKAGE. If this is present, you can’t
modify the files in the KUDU command debugger. You can try to
change this to 0 and modify the files, but it will likely not work very
well after you do that

If you deployed with CI/CD, navigate to the Debug Console, which

is found by going into the Kudu tools. To get there, navigate to the root

of your Azure Function app in your browser and place .scm between the

name of your function app and azurewebsites.net (such as https://

az204-exam-ref-functions-20251231.scm.azurewebsites.net/) and

Chapter 6 Implement azure FunCtIons

https://az204-exam-ref-functions-20251231.scm.azurewebsites.net/
https://az204-exam-ref-functions-20251231.scm.azurewebsites.net/

280

then choose the Debug Console ➤ CMD. Navigate into your site folder,

then the wwwroot folder, then the function folder, then finally select

the function.json file. Once you're in the function.json file, add the

direction parameters for the bindings, as shown in Figure 6-28.

Figure 6-28. Manually fixing the direction parameter in the function.
json file

Completing this modification and saving the file will allow the

Integration page to work as expected (see Figure 6-29).

Chapter 6 Implement azure FunCtIons

281

Figure 6-29. The Integration page now works as expected, showing
the input and output bindings in the correct locations

The changes are temporarily great because that is how the solution

should work, but the solution is working even without the changes.

Unfortunately, this issue seems to be a bug in the portal for Azure that has

been ongoing. What’s worse is that the next time you change the code and

redeploy the application, the bindings will once again lose their directional

indicator in the portal. Therefore, there is no reason to worry about

updating the binding direction for the purposes of the functionality of the

application, but now you know how to update the binding direction should

you choose to do so.

For the AZ-204 Exam, it’s important you are fully aware of the

importance of bindings and their directions, so this was a good chance

to see this concept up close and personal. No matter what, you need to

understand that the function.json file should always show the direction

of the bindings, and you should be able to discern the purpose and

direction of a binding based on the JSON in that file because of these

settings. Each function.json file is the settings file for the specific

function itself, and defines the things like the bindings, the triggers,

and other settings related to the trigger and status of the function. For

example, you can set schedule information on a Timer trigger, connection

information for Blob Storage and Cosmos DB as shown in this chapter, and

you can even set a flag to disable the function completely in the function.

json file.

Chapter 6 Implement azure FunCtIons

282

 WebJobs vs. Functions
Azure App Services have an option that is similar to a function app in

Azure. The option on an app service is the Azure WebJob. To keep this

section very short and simple, WebJobs are housed within an existing app

service and are capable of doing most of the things that Azure Functions

can do. In fact, Azure Functions are built on top of WebJobs. Utilization of

the Event Grid trigger in the previous app required the WebJobs extension.

WebJobs can run like CRON jobs and can run similar to a Windows

service in a manner that runs essentially infinitely. Original Azure

Functions were not designed to do this. Azure Functions can return output

and take the best parts of WebJobs and allow you to build independent

units of work around the functions. This also allows for more flexibility

when it comes to choice of programming language and independent

development lifecycles and scaling for the function app.

 Durable Functions
As mentioned, durable functions were invented to make it possible to write

Azure Functions that maintain state and that don’t have a limited scope on

the amount of time that they can execute.

The remainder of is chapter focuses on the purpose, creation, and

utilization of Azure Durable Functions.

 Task Hubs
Each durable function must be part of a task hub. In the task hub, you have

all of the functions for a single durable function application. Everything

about the task hub is handled in Azure Storage. You must have a different

task hub name for each of your durable function applications. You can

Chapter 6 Implement azure FunCtIons

283

therefore share the same backing storage account across multiple durable

function applications as long as they have different names. The task hub

name is declared in the host.json file.

Each function app has its own host.json file. The host.json file is

the main for the entire function app to allow for configuration. Whereas

the function.json file is specific to the function for which it is associated,

the host.json file contains the settings for the entire function app. As

the function app is utilizing Application Insights, that information is also

included so that all functions can leverage the insights without having to

individually configure the settings.

Since the host.json file can store settings for all functions, it’s easy

to ensure that the function app has a unique extensions:durableTask:

hubName value. The task hub name can also wreak havoc when you have

slots. To make the task hub name work with slots, the easiest solution

is to put the entry into the host.json file as a variable, and then set the

task hub name in the application configuration for both the function and

the production slots. The host.json file would then look similar to the

following:

{

 "version": "2.0",

 "logging": {

 "applicationInsights": {

 "samplingSettings": {

 "isEnabled": true,

 "excludedTypes": "Request"

 }

 }

 },

 "extensions": {

 "durableTask": {

Chapter 6 Implement azure FunCtIons

284

 "hubName": "%mytaskhub%"

 }

 }

}

Because the sample application needs to work out of the box, I

hardcoded the AZ204ExamRefFunctionsDT value into the host.json file

in the provided resources. If you are deploying to slots, you will want

to change that setting now to reflect the previous entry, then use the

continuing information to complete the process of making it unique for

each slot.

With the settings in place, after deployment, make sure to update

the staging slot and the production slot with an appropriate unique

value in the application configuration. A good value is something like

examreftaskhubproduction (see Figure 6-30).

Chapter 6 Implement azure FunCtIons

285

Figure 6-30. The task hub name is configured on each slot as an
environment variable named mytaskhub

 Storage Resources
When you deploy an Azure Function app with durable functions, a number

of resources are automatically provisioned to back the durable function

app. These include:

• One or more control queues

• One work-item queue

• One history table

• One instances table

Chapter 6 Implement azure FunCtIons

286

• One storage container containing one or more

lease blobs

• A storage container containing large message payloads,

if applicable

• (Reference: https://learn.microsoft.com/training/

modules/implement-durable-functions/4-durable-

functions-task-hubs)

These resources are how the solution knows what the current state of

the entities are, how orchestrations can be restarted when the app restarts,

and how the system knows which tasks have been executed and which are

yet to be completed (via history and queues).

 Durable Orchestrations
When working with durable functions, you may have a need to keep

state or you might be creating an entire workflow for a step-by-step

process. Durable orchestrations can be procedural or simple interactions

with entities in state. You can trigger one or more functions either

synchronously or asynchronously. With the flexibility of durable functions,

you can have processes that run for a few seconds or for as long as you

need them to. With the ability to persist state, you can also expect your

entities to hold state even when the function app has been restarted.

 Durable Function Types
When working with durable functions, it’s important to understand the

purpose of each of the major parts of the durable-function ecosystem. By

understanding what each type within the ecosystem is for, you can easily

start to build out the durable functions.

Chapter 6 Implement azure FunCtIons

https://learn.microsoft.com/training/modules/implement-durable-functions/4-durable-functions-task-hubs
https://learn.microsoft.com/training/modules/implement-durable-functions/4-durable-functions-task-hubs
https://learn.microsoft.com/training/modules/implement-durable-functions/4-durable-functions-task-hubs

287

 Orchestrator Functions

Orchestrator functions are the brains of the operations. When you want to

run any of the design patterns around durable functions, the orchestrator

is going to be the function you start and then you will utilize the pattern

from within the orchestrator. Orchestrator functions can easily interact

with the other types in the durable function ecosystem, including Activity

functions, Clients, and Entities.

Every run of any orchestration needs an instance ID. If unset, the

orchestration ID will be a GUID that is automatically generated. However,

most of the time you will provide your own orchestration identity. The

orchestration identity allows your context to be unique to the task hub so

each run can be tracked, reported, logged, and executed to completion.

Orchestrator functions are triggered by Orchestrator Trigger Bindings.

 Activity Functions

In a long-running orchestration or just a short function that needs to

be executed by an orchestrator, you can use Activity functions. Activity

functions called by an orchestrator are guaranteed to execute at least once.

Activity functions run with a parameter for the DurableActivityContext.

You can only pass one parameter to your activity functions, so if you need

to pass more than one, you have to pass a complex object.

 Entity Functions

Just like a class in your normal code, you need something to hold state. The

Entity function is designed to work with properties and state to persist past

the execution of a function. You can use code to call to an entity function

from the orchestrator function or from a client function.

Entity functions are triggered by an Entity Activation Trigger.

Chapter 6 Implement azure FunCtIons

288

 Client Functions

Client functions can be utilized to trigger orchestrator and entity functions.

The client function interacts with the task hub to get messages to then

trigger either orchestrator or entity functions.

The client function can be any regular function with any regular trigger

type. Inside the client function, you can interact with the client or the

entity function with the durable client binding.

 Patterns
For the AZ-204 and in real-world applications, there are a number of

patterns that you need to be in command of. These patterns typically apply

to specific scenarios, but you will also find ways to adapt them or combine

them for your applications.

 Function Chaining

The first pattern with durable functions is the Function Chaining pattern,

which is how you can process functions in a serial (chain) pattern.

To make the Function Chaining pattern work, you set any regular

function to call the orchestrator function for the chain. Uncomment the

ChainFunctionOrchestrator function in the sample files or create the

orchestrator function by creating a new function and using the Durable

Functions Orchestration option if you are creating your project from

scratch (see Figure 6-31).

Chapter 6 Implement azure FunCtIons

289

Figure 6-31. The Durable Functions Orchestration function type
can be easily created and it contains a sample function utilizing the
Function Chaining pattern

Within the orchestrator function, you can chain as many function

calls as needed to complete your work. The default Orchestrator Function

builds a complete sample for you. The signature of the function is as

follows:

[FunctionName("ChainFunctionOrchestrator")]

public static async Task<List<string>> RunOrchestrator(

 [OrchestrationTrigger] IDurableOrchestrationContext context)

{

Chapter 6 Implement azure FunCtIons

290

The body of the function has repeated calls to a function in a chain:

outputs.Add(await context.CallActivityAsync<string>(nameof(Say

Hello), "Tokyo"));

These functions are called asynchronously by default. Note that you

can pass only one parameter to the function, and you wouldn’t have to call

the same function as in this example. Each consecutive call can call any

function with an ActivityTrigger.

Also notice the starter function has the following signature:

[FunctionName("ChainFunctionOrchestrator_HttpStart")]

public static async Task<HttpResponseMessage> HttpStart(

 [HttpTrigger(AuthorizationLevel.Anonymous, "get", "post")]

HttpRequestMessage req,

 [DurableClient] IDurableOrchestrationClient starter,

 ILogger log)

{

Which utilizes the IDurableOrchestrationClient. The orchestration

client can call to the orchestrator function or entity functions. In this case,

the call is to the orchestrator function:

string instanceId = await starter.StartNewAsync("ChainFunctionO

rchestrator", null);

 Fan-out/Fan-In

Another common pattern is to process workloads in parallel. In the Fan-

Out/Fan-In pattern, you create an orchestrator function that uses parallel

tasks to call to multiple functions to run in parallel.

When the functions are all complete, you can either end the

orchestration or you can call to a final function. For example, you might

want to process files in bulk batches. Perhaps you set a batch size of ten

and you then start the orchestration. The first function gathers each of

Chapter 6 Implement azure FunCtIons

291

the next ten files to process and then orchestrates a run of a function to

process each of the files as ten parallel file processing functions. When

they are all completed, a final function can be triggered, or the process can

terminate.

In this example, you would have returned something like a string for

each file to process and conglomerate that into a list of string. For the

trivial example that follows, a simple int is returned to set the number

of “files” that need to be processed, a worker function does some work,

and the end result sums it all up. Your workload in the real world might

keep track of how many files were processed based on the return from the

original function, and you might not need to sum anything up.

To create this example function, you can uncomment the function

code in the sample application, or you can just create a new orchestration

trigger function called FanInFanOutOrchestrator and replace the code as

follows:

[FunctionName("FanInFanOutOrchestrator")]

public static async Task<int> RunOrchestrator(

 [OrchestrationTrigger] IDurableOrchestrationContext context

 , ILogger log)

{

 // Initialize: Get a number of work items to process in

parallel:

 var workBatch = await context.CallActivityAsync<int>("First

Function", 0);

 log.LogInformation($"Starting the fan out/in orchestration

with {workBatch} workload function calls");

 //use parallel tasks to fan out and call n operations

simultaneously

 var parallelTasks = new List<Task<int>>();

Chapter 6 Implement azure FunCtIons

292

 for (int i = 1; i <= workBatch; i++)

 {

 Task<int> nextWorker = context.CallActivityAsync<int>("

WorkloadFunction", i);

 parallelTasks.Add(nextWorker);

 }

 log.LogInformation("Parallel Tasks completed!");

 // Aggregate all N outputs and send the result to Final

Function.

 await Task.WhenAll(parallelTasks);

 //get the total from all execution calculations:

 var total = parallelTasks.Sum(w => w.Result);

 log.LogInformation($"Total sent to final function: {total}");

 await context.CallActivityAsync("FinalFunction", total);

 return total;

}

You also need to set an environment variable named

NumberOfWorkerFunctions to make sure that the function executes at least

one time—set the value to any integer for testing.

The workload functions don’t have to be the same, even though this

illustration is calling the same workload function. For this illustration,

the code is completed by writing a couple of additional functions—the

FirstFunction, the WorkloadFunction, and the FinalFunction. These

functions are called by the orchestration to show the fan-out/fan-in

operation in detail.

[FunctionName(nameof(FirstFunction))]

public static int FirstFunction([ActivityTrigger] int starter,

ILogger log)

Chapter 6 Implement azure FunCtIons

293

{

 //do some setup work here, other startup function tasks

 var numberOfWorkersToProcess = starter;

 try

 {

 bool success = int.TryParse(Environment.GetEnvironmentV

ariable("NumberOfWorkerFunctions")

 , out numberOfWorkers

ToProcess);

 }

 catch (Exception ex)

 {

 log.LogError("The environment variable

NumberOfWorkerFunctions is unset!", ex);

 }

 log.LogInformation($"Current number of workers

{numberOfWorkersToProcess}.");

 return numberOfWorkersToProcess;

}

[FunctionName(nameof(WorkloadFunction))]

public static int WorkloadFunction([ActivityTrigger] int

nextWorkload, ILogger log)

{

 //do the work

 var computed = nextWorkload * 2;

 log.LogInformation($"Current detail {nextWorkload} |

Computed: {computed}.");

 return computed;

}

[FunctionName(nameof(FinalFunction))]

Chapter 6 Implement azure FunCtIons

294

public static int FinalFunction([ActivityTrigger] int total,

ILogger log)

{

 //complete the work here

 log.LogInformation($"Final Function [value]: {total}.");

 return total;

}

[FunctionName("FanInFanOutOrchestrator_HttpStart")]

public static async Task<HttpResponseMessage> HttpStart(

 [HttpTrigger(AuthorizationLevel.Anonymous, "get")]

HttpRequestMessage req,

 [DurableClient] IDurableOrchestrationClient starter,

 ILogger log)

{

 // Function input comes from the request content.

 string instanceId = await starter.StartNewAsync("FanInFanOu

tOrchestrator", null);

 log.LogInformation($"Started orchestration with ID =

'{instanceId}'.");

 return starter.CreateCheckStatusResponse(req, instanceId);

}

Once everything is working, you can open each function for

monitoring in the portal, kick off the first function, and see all of them

execute successfully (see Figures 6-32 through 6-35).

Chapter 6 Implement azure FunCtIons

295

Figure 6-32. The orchestration is triggered to start the fan-out process

Figure 6-33. The fan-out orchestrator triggers multiple worker
functions.

Chapter 6 Implement azure FunCtIons

296

Figure 6-35. The final function is executed and the sum is calculated
from the prior runs

Figure 6-34. The worker functions execute in parallel

 Async HTTP APIs

Another pattern that is useful is the Async HTTP APIs pattern. In this

scenario, you are likely making a call to a long-running process and

need to go idle until that process has completed. Once the process

completes, you would then want to continue with your orchestration

or set some process indicator as complete. For more information

regarding implementation of the Async HTTP APIs pattern, review

the documentation at https://learn.microsoft.com/azure/azure-

functions/durable/durable-functions-http-features?tabs=csharp.

Chapter 6 Implement azure FunCtIons

https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-http-features?tabs=csharp
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-http-features?tabs=csharp

297

 Monitor

In some instances, you need to provide regular polling to find out if a

process or workload has completed. Unlike the Async pattern, this pattern

does poll against an endpoint to check for some sort of status indicator.

More information about the monitor pattern can be found at https://

learn.microsoft.com/azure/azure-functions/durable/durable-

functions-monitor?tabs=csharp.

 Human Interaction

The Human Interaction pattern is useful when you have a scenario that

requires approval and you need to make sure the approval is handled

within a set amount of time. When the approval has not been handled in

a set amount of time, the solution can escalate to another function path or

notify another party for approval. For more information about the Human

Interaction plan, review this document: https://learn.microsoft.

com/azure/azure-functions/durable/durable-functions-phone-

verification?tabs=csharp.

 Aggregator

The final pattern at the time of this writing is the Aggregator pattern. This

pattern is useful for aggregating information over a period of time. This pattern

utilizes a durable entity to store the state, such as a billing scenario where you

need to track usage or some other metric for clients for the month. The state

can be persisted in an entity and utilized to keep track of the information

for each client for the current month. Information about the pattern can be

found at https://learn.microsoft.com/azure/azure-functions/durable/

durable-functions-overview?tabs=csharp#aggregator.

Chapter 6 Implement azure FunCtIons

https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-monitor?tabs=csharp
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-monitor?tabs=csharp
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-monitor?tabs=csharp
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-phone-verification?tabs=csharp
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-phone-verification?tabs=csharp
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-phone-verification?tabs=csharp
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-overview?tabs=csharp#aggregator
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-overview?tabs=csharp#aggregator

298

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solution(s). You can find

answers to these questions in Appendix A at the end of this book.

 1) What is the purpose of the host.json file? What

is the purpose of a function.json file? What

information can be determined from each?

 2) What is a Function trigger? What kinds of triggers

are available? How can each be utilized?

 3) What plans are available for Azure Function apps

and what are some of the considerations for each?

Can you use slots in function apps? Can you put

your function app on a private network?

 4) What is an input binding? What is an output

binding? What are some advantages to working with

bindings?

 5) What is an Isolated Worker runtime and how does it

change the operations of a function app?

 6) What are the various authentication modes for

an Azure Function? What are some security

considerations for each mode?

 7) What is the difference between a regular Azure

Function and a Durable Azure Function? What are

the types of Durable Functions and when can each

be used?

 8) What are the patterns associated with Durable

Functions and what is an example of each pattern?

Chapter 6 Implement azure FunCtIons

299

 Complete the AZ-204: Implement
Azure Functions
To fully learn the material, I recommend taking the time to also complete

the MS Learn modules for Implement Azure Functions found here:

• Explore Azure Functions: https://learn.microsoft.

com/training/modules/explore-azure-functions/

• Develop Azure Functions: https://learn.microsoft.

com/training/modules/develop-azure-functions/

• Implement Durable Functions: https://learn.

microsoft.com/training/modules/implement-

durable-functions/

 Chapter Summary
In this chapter, you learned about working with Azure Functions, including

the concepts of triggers and bindings. A practical example then showed

you how to work with Blob Storage and Cosmos DB. You then learned

about the purpose of durable functions with orchestrations and the various

design patterns associated with durable function workloads.

After working through this chapter and the Microsoft Learn modules,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Work with Azure Functions, including creating and

deploying to Azure.

• Understand what triggers are available and how to

use them, including HTTP, EventGrid, and Schedule

(Timer).

Chapter 6 Implement azure FunCtIons

https://learn.microsoft.com/training/modules/explore-azure-functions/
https://learn.microsoft.com/training/modules/explore-azure-functions/
https://learn.microsoft.com/training/modules/develop-azure-functions/
https://learn.microsoft.com/training/modules/develop-azure-functions/
https://learn.microsoft.com/training/modules/implement-durable-functions/
https://learn.microsoft.com/training/modules/implement-durable-functions/
https://learn.microsoft.com/training/modules/implement-durable-functions/

300

• Leverage input and output bindings from Azure

Functions.

• Work with Azure Durable Functions.

• Understand the different aspects/types of durable

functions, such as Orchestration, Entity, and Activity.

• Know the patterns associated with Azure Durable

Functions, such as fan-out/fan-in, function chaining,

and the various monitoring/polling and continue

patterns for long-running processes.

In the next chapter, you learn about working with authentication and

authorization in your Azure solutions.

Chapter 6 Implement azure FunCtIons

303

CHAPTER 7

Implement User
Authentication
and Authorization
Identity, access, and authorization within Azure applications has never

been something to take lightly. As threats have continued to increase and

security concerns have become paramount, one could argue that this topic

is the most important aspect of any of the topics on the exam and in your

day-to-day development work.

Getting started and working with identity, for all its complexities and

importance, is very well done, which makes the developer experience

enjoyable. You don’t have to be too worried about doing it wrong, as for the

most part it won’t work unless you do it correctly, and with just a couple of

simple steps you can set it up correctly.

To get started, it’s important to understand a couple of critical

security considerations when working with Azure regarding signing in to

your account. These considerations are multi-factor authentication and

unusual sign-in attempts.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_7

https://doi.org/10.1007/978-1-4842-9300-3_7#DOI

304

 Multi-Factor Authentication (MFA)
Over the past five to ten years, information protection and user

authentication have become much more robust and easier to manage

via tools like Microsoft Sentinel, Microsoft Defender, and the general

Microsoft Identity and M365 solutions available to organizations.

One of the most critical aspects of user security is multi-factor

authentication. While the possibility of not utilizing MFA still exists, you

should expect that it will not be an option to skip or disable MFA in the

next few years.

MFA exists to help solve the problem of authorizing the correct user.

Typically this is accomplished with something you know (like a password)

and something you have (like a phone or a Rivest-Shamir-Adleman—

RSA—hardware dongle) that can generate a verifiable code. Sometimes

you can leverage a text message or phone call to perform MFA, although

those methods are generally not as secure. This is because it is a lot easier

to intercept a phone call or socially engineer an improper response to

the challenge, or the user might accidentally approve the request without

thinking about it, which is generally easier and more common than it is to

generate a key that matches a specific encryption algorithm.

 Conditional Sign-in/Risky Sign-in Detection
Another key concept that Azure has implemented is the ability to detect

unusual or risky sign-in attempts. This can be configured by administrators

or might be automatically triggered in some instances.

Typically, an organization might lock down IP addresses or regional

access to help prevent users from signing in from unauthorized locations.

For example, only allowing logins from the North American region would

mean that no users physically located outside of Mexico, the United States,

or Canada would be able to log in using your Azure credentials.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

305

However, this might also be as strict as you typically logging in from a

physical building in one city, then traveling a few hundred miles away and

attempting to log in. Microsoft might detect your unusual sign-in and issue

additional challenges for you to log in to your account.

 Authentication and Authorization
Before starting with identity and access, it’s important to define the

difference between authorization and authentication.

To visualize the difference, think about the government-issued license

that allows you to drive. If you don’t have something like a driver’s license,

think about a passport. Either way, there are specific pieces of information

on them that validate who you are. For example, when you take the AZ-204

Exam, you need a photo ID of some sort. When you are taking the exam

from a remote location, I highly recommend using a passport if possible. If

not, you need your government issued ID (i.e., your driver’s license) and a

credit card or other validation to prove who you are. One look at the ID and

it will be clear that your name and photo are shown, which can be used to

authenticate that you are the person you say you are. If the photo or the

name does not match, you can’t be authenticated.

In other words, Authentication (AuthN) is the concept of proving you

are who you say you are. In Azure and application terms, this might be

your login with a password and two-factor authentication.

Once you are authenticated, you are able to validate that you should

be viewing the subscription, driving the car, or taking the test. However,

additional permissions are generally required in order to proceed with

more advanced operations. This additional access is provided by rules for

Authorization (AuthZ) on your user or application credentials.

For example, specific drivers’ licenses have additional permissions

to drive large vehicles, and even further permissions allow driving large

vehicles with hazardous chemicals in tow. Not just anyone has permission

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

306

to drive around with a cargo that could spill and cause environmental

or health emergencies. The driver must first prove they know what they

are doing and become authorized with a Commercial Driver’s License

(CDL), which is required in the United States to drive specific vehicles

above a certain size on business-related trips. Additionally, a Hazardous-

Materials (HazMat) authorization can be added to the CDL, which means

that in addition to the regular driver’s license and the ability to drive

specific commercial vehicles, the specific identified (authenticated) driver

is authorized to drive a large commercial vehicle hauling hazardous

materials that could pose an ecological or biological threat if spilled or

mishandled.

 Primary Authorization Roles in Azure
All Azure subscriptions and resource groups have four key authorization

roles that you need to be in command of (among others, at a minimum

you need to know these well). The four key roles are:

• Reader

• Contributor

• User Access Administrator

• Owner

 The Reader Role
The first authorization role is the Reader role. In this role, the authenticated

user becomes authorized to read the resources at the resource-group level

or the subscription level. Readers can only view resources and settings

for the resources. Readers cannot modify, change, delete, or provision

resources. Readers cannot change anything about permissions on

anything in the subscription.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

307

 The Contributor Role
The second role assignment is the Contributor role. This authorization tier

gives users the ability to read and modify resources within the resource

group(s) or subscriptions to which they have been granted access as a

contributor. Contributors can also deploy new resources to any group or

subscription on which they are granted authorization. Contributors cannot

change any permissions or assign any new roles to users within the groups

or subscriptions on which they are authorized.

 The User Access Administrator Role
The third role assignment is the User Access Administrator role. In this

role, an authorized user can grant and revoke role access to other users.

This can be at a resource-group level or across the subscription. User

access administrators cannot do anything with resources within an Azure

subscription outside of assigning permissions for reader/contributor/

owner/custom/additional roles.

 The Owner Role
The fourth role assignment is the Owner role. This role is essentially

God mode on the resource-level assigned. A user can be the owner of a

subscription, where they have full control over the subscription, including

user access, resource management, additional role creation, and other

powerful abilities such as canceling the subscription. In other scenarios,

a client or contractor might be an owner of just a resource group, so

that the authorization gives that user tools to do their work just for the

resource group while making sure they do not have permission to modify

other settings in the subscription. This role assignment is highly useful

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

308

for governance as well, as you can lock down the group and subscription

with policies and be confident the owner of that group cannot change

policies and will be limited to only deploying resources approved by your

governance strategy.

 Requiring Authentication
In Azure, you’ll quickly find that a number of the public-facing resources

can be easily locked down for authentication. When you enable

authentication on the application, the users who browse to your public-

facing resource must first validate who they are in order to proceed to the

application.

By default, a public-facing resource, such as the Azure App Service,

does not have any authorization turned on. This means your initial

deployment is wide open to the entire public Internet (unless you

provisioned on a private network). Once you enable authorization, users

cannot utilize your application. This authorization is outside of the scope

of any roles and/or user registrations in your application, but you can

utilize the Microsoft Identity platform within your application as well.

You’ll get a chance to dive deeper with a closer look at authorization in

Azure on a web application later in this chapter.

For example, an Azure App Service, as deployed in Chapter 4, is

currently wide open to the public Internet (hosted at a public URL such as

https://az204examref20251231.azurewebsites.net/) (see Figure 7-1).

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

https://doi.org/10.1007/978-1-4842-9300-3_4
https://az204examref20251231.azurewebsites.net/

309

Figure 7-1. The Azure App Service can be accessed from the public
Internet when deployed with default settings

With no further changes, this application can be locked down to users

in the tenant with a simple configuration change. On the App Service

blade in the portal, on the left side, is a navigation item for Authentication.

When you click the button for Authentication, you have an option to add

an identity provider, as shown in Figure 7-2.

Figure 7-2. The Authentication has an option to add an identity
provider

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

310

 Identity Providers
An identity provider is any service that manages credentials for a

person, service, or other object. As long as that person/service/object

can be referenced as a unique digital presence, then the identity can be

authenticated. Furthermore, that identity can be authorized to have rights.

It is entirely possible for you to provide your own identity solution.

However, in most cases, you will be better off leveraging a pre-built identity

solution. For example, ASP.NET MVC has ASP.NET identity baked in. This

is an authentication and authorization base than can stand on its own, and

you don’t have to write anything.

As you’ll see later in this chapter, however, there are many times you

want to integrate the identity of your users from another platform, such as

Microsoft, Facebook, Apple, GitHub, or another solution that serves as a

valid identity provider.

Within Microsoft, the identity is managed using Microsoft Graph.

Specifically, for Azure solutions, you’ll utilize Azure Active Directory

(Azure AD). Microsoft Graph provides information about what “scopes”

within the identity your application needs access to. For example, you

might choose the user scope to get just the email address, or you might go

deeper into the graph and find deeper information such as the channels

in Teams that a user has access to. The concept of Microsoft Graph and

scopes are both addressed later in the chapter.

Other providers also have a similar feature to Microsoft Graph, along

with scopes for permissions that your application needs to effectively work

with the user.

 Integrated Providers
When adding an identity provider, you have a number of default providers

from which to choose. Most of these are well-known. For example,

Microsoft, Apple, Facebook, GitHub, Twitter, and Google can all be

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

311

easily used for authentication to view the application. It is important

to remember that this is only the first step for authentication and

authorization in the application. The application has no current ability to

leverage this authentication by default for further authorization. Identity

providers are shown in Figure 7-3.

Figure 7-3. The identity provider can be easily selected for the Azure
App Service

Choosing Microsoft as the identity provider is the easiest way to get

started, as the application will just work with your tenant and doesn’t

require any additional configuration at a third-party site. Using something

like Google or Facebook will likely require you to set up an application in

their unique developer tools portal and to wire up the generated app ID

and secret from that environment to work with your tenant in Azure.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

312

 Creating a New App Registration
After selecting Microsoft, you need to create a new app registration and set

the name and supported account types. App registrations are covered in

more detail shortly, including how to create them from the Azure CLI. For

this first look, you’ll create the new application for an Azure App Service.

It’s important to note that the app registration can be used for many types

of applications in addition to the Azure App Service apps, including Azure

Functions, Desktop Apps, and Web APIs.

 Supported Account Types
You can leverage the platform for your single tenant only, any Azure

account, any personal Microsoft account, or a combination of any Azure

directory and personal accounts. Depending on who you want to let in,

this is a very important choice. In this option, only users from my Azure

AD directory (including guest users) will be allowed to authenticate on the

web application (see Figure 7-4).

Figure 7-4. Adding an identity provider starts by creating an
app registration and selecting which account types are allowed to
authenticate

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

313

These account types will leverage OAuth 2.0 in order to connect to and

interact with the Microsoft identity platform.

 Authentication Settings
For the authentication settings, you can choose to still allow

unauthenticated access, which might be necessary—perhaps for a single-

page application (SPA) or a public-facing home page that you want the

world to be able to access without signing in. The additional settings

determine what happens when unauthenticated users visit the main site.

The 302 will redirect them to an authorization endpoint, allowing the

users to sign in, grant permissions to their account via scopes (scopes are

discussed in the next section for permissions), and then proceed to the

application. The 401 will block further access (no chance to log in), as will

a 403 or a 404. You can also store the application tokens to allow Azure to

manage the refresh of your authentication tokens on your application. For

most scenarios, utilize the token store (see Figure 7-5).

Figure 7-5. The authentication settings allow you to require
authentication and determine how to handle traffic from users or
other applications that are not signed in

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

314

 Permissions
For all app registrations at this time, permissions are handled in Microsoft

Graph. If you have a legacy Azure application, you might encounter some

permissions in an older system; however, most applications have likely

been migrated to Microsoft Graph at this time. By default, the minimal

scope for authentication is selected, which requires users to consent to let

your application read their profile through the User.Read permission. In

general, your application should only request the scopes that are needed

to do the work required of the application. If you request too many scope

permissions, users might become wary of giving consent.

You can add permissions at any point; however, changing permissions

requires users to sign in again and authorize any additional scopes you’ve

added, so you should not do this often. Some permissions that are elevated

also require an administrator to approve the ability to authenticate with

those permissions. On some permission strategies, the application needs

to know about all of the available permissions at creation. Other times, you

might come back and add scopes. How you approach these scope requests

is entirely dependent on your application and your Azure authorization

strategies.

For simplicity, selecting just User.Read is easiest to get started. If you

want to look at others, you can click the + Add Permission button. If you

do this, ensure that you don’t accidentally remove User.Read. Additional

interesting permission scopes that you might request for interactions with

your user might include Email, Files, Calendar, Schedule, Teams, or one of

many other options (see Figure 7-6).

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

315

Figure 7-6. Requesting additional permissions (scopes) for the user
to authorize, thereby allowing your application to have more access to
user information

Caution reviewing additional permissions and clicking discard
will actually remove the User.Read permission. If you do this, make
sure to add the User.Read permission back before proceeding.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

316

 Delegated Permissions
There are two types of permissions that you can choose from when

working with scopes in Microsoft Graph. The first type of permissions are

delegated permissions. These permissions allow your application to run

and send requests as the signed-in, authenticated user. The User.Read

permission is one of the delegated permissions.

 Application Permissions
Application permissions allow you to set permissions for the application

to run without a signed-in user. These permissions are useful for a service

layer or other middleware solution that needs to perform activities

regardless of user presence.

 Required Sign-In
Now that the app registration is created and your application requires

authentication, visiting the site requires users to sign in. An anonymous

request will be met with an immediate redirect to log in, as shown in

Figure 7-7.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

317

Figure 7-7. The application will no longer allow anonymous access.
Navigating to the site requires the user sign-in to authenticate and be
able to access the application

Note that in the dialog shown in Figure 7-7, there is information about

the application, your sign-in information, and the scopes to which the

application wants to access. If the application has a number of scopes, this

list could be very long, which might scare off some users. For this reason,

and in the spirit of least privilege, it is generally best to keep the list of

required scopes as minimal as possible.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

318

 Consent on Behalf of Your Organization
If you are the administrator of the Azure subscription, you may also see a

checkbox to Consent on behalf of your organization. Checking this box will

automatically consent for all users in the organization, and they will not

need to accept the permission scopes as presented.

If any scopes are added later, the users must accept scope changes at

their next login. Once again, an administrator can delegate consent for the

entire organization.

One final note is that you can accept the scopes back in the

Authentication tab for the application. Navigating back and selecting

Edit on the identity provider for the Authentication section allows you to

modify permissions. When the organization admin can accept scopes for

all users, a checkbox will appear and you can check Grant Admin Consent

for Default Directory. Checking this box will allow the administrator

to accept the scopes for all users in the current tenant directory (see

Figure 7-8).

Figure 7-8. Admin consent can be granted from within the
Authorization section of the application

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

319

Once the administrator grants permissions, users will not be presented

with a login dialog and any user signed in to the tenant can review

the application. If a user is not signed in to the tenant or the request is

anonymous, it will still require an authorized user to sign in to view the

website.

 Leverage the Microsoft Identity
in Your Application
With the authorization requirement now in place on the Azure App

Service, it is very straightforward to start working with the identity for your

logged-in user as part of the Azure App Service.

Unfortunately, using the same app registration utilized for

Authorization onto the platform service will not work. To remedy this

situation, another app registration is required. Once this is created, you

need to make a small code change and configure a couple of secrets.

Then the Application will allow for user authorization from the signed-in

Azure user.

One of the awesome features of the Azure App Service is the fact that

the headers for your user claims are passed directly to the application. As

your users authenticate, the OAuth tokens are stored and refreshed in a

token store in Azure Storage, and the identity information is sent through

the headers into the application.

 Create an Additional App Registration
For this app registration, name the application something global like

AuthorizeMicrosoftTenantUsers. Select the option for Accounts in Any

Organizational Directory (…) and then enter a Web Redirect URI of your

application localhost with a port, followed by /signin-microsoft.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

320

While it seems tedious to do this for yet another endpoint, the two

endpoints conflict when in the same app registration and the authorization

will not work for your application (see Figure 7-9).

Figure 7-9. The second application registration is completed for the
user authorization into the web application for registration on the
app itself

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

321

 Add a Redirect URI to the App Registration
For the sign-in to work, the app registration needs to know where to

redirect the OAuth workflow. In the previous step, the redirect for localhost

was created, but an additional redirect is needed for the production app

and another one for any slots as well. Get the URL of the production app

and staging slot and append the same /signin-microsoft to the end of

the URLs. Then add them as additional redirects under the Authentication

blade on the app registration (see Figure 7-10).

Figure 7-10. The User Authorization endpoint is added for the sign-
in redirect on the production web application

Get the Application (client) ID for this app registration from the

Overview blade. You need it for authorization in the .NET Web application

(see Figure 7-11).

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

322

Figure 7-11. The Application (client) ID is critical to allow the
authorization to work successfully

 Add a Client Secret to the App Registration
In addition to the application ID, you also need a client secret for the

authorization to work. You will then store the Client ID and the Client

Secret in your local user secrets. After deployment, you’ll need to configure

these in the app service for the solution to work as expected. Under

Certificates & Secrets in the App Registrations blade, select + New Client

Secret. Name the secret something like WebAuth and then add it with an

expiration of an appropriate amount of time. When the secret is created,

immediately record the value of the secret (this is the only time you can

see it). The Secret ID is irrelevant; you only need the secret value (review

Figure 7-12).

Figure 7-12. The client secret is created for use in the
authorization code

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

323

 Add a NuGet Package

To make the Microsoft Authentication work in your .NET application,

you need to add the Microsoft.AspNetCore.Authentication.

MicrosoftAccount NuGet package to the project. Make sure to add the

appropriate version to your application for the runtime of the application,

whether that is 6, 7, or another version.

 Add the Authentication Code to the Application
With the settings configured, you can now add the code to the application

to ensure that the application can register users and utilize authorization

on that user for specific roles in the application.

The following code must be uncommented or added to the solution in

the Program.cs file to enable Microsoft authorization:

builder.Services.AddAuthentication().

AddMicrosoftAccount(options => {

 options.ClientId = builder.Configuration["MicrosoftSignIn:

ClientId"];

 options.ClientSecret = builder.Configuration["MicrosoftSign

In:ClientSecret"];

});

The best place to add the code is after this line of code: builder.

Services.AddDatabaseDeveloperPageExceptionFilter();

In addition to adding the code, you must add the client ID and the

client secret to the user secrets file, with entries to match the expected

code to work from your local machine. Once deployed, you also need

to have these values set in your app service configuration (or some

combination that may include Azure Key Vault and/or Azure App

Configuration).

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

324

"MicrosoftSignIn": {

 "ClientId": "your-client-id",

 "ClientSecret": "your-client-secret"

 }

 Add Configuration Values to App Service
and Slot
Make sure to add both values to both the Production and Slot App

Configuration sections on the Azure App Service. If you fail to do this, the

application will not load after deployment.

 Register the Users
Run the application and validate that you can register your user identity

with the application. Once that’s done, you are able to leverage your user

identity for authorization within the application.

Make sure to push all the changes and deploy the application. Don’t

forget to swap slots to get the latest version to production. You can then

test your authorization schema on your deployed instance. The flow

should prompt for the users to log in, similar to Figure 7-13.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

325

Figure 7-13. The login process is complete, and utilization of your
identity via Microsoft Identity in the web application should now
be working

 Service Principals
In contrast to a user identity, an identity known as a service principal might

be utilized for assigning Role Based Access Control (RBAC) permissions,

authentication, and other authorized activities within your Azure tenant.

One drawback to a service principal is that anyone with the key and

secret for a service principal can leverage it as a form of pass-through

authentication (operating as the service principal, not as yourself).

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

326

Service principals are automatically created when an app registration

is created. Once the service principal is created, the App Registration blade

can be used to further modify the service principal.

One common use of a service principal is for deployment to Azure

from a GitHub Action or from an Azure DevOps pipeline. In some

cases, you may need to run an action that will deploy an entire volatile

environment and then publish the application. In other cases, simply

publishing the application will be enough. Even though you can publish

the application via the publish profile, you may want to add the additional

security for deployment of your application via a service principal.

 Leverage a Service Principal in GitHub Actions
To be clear, the actual implementation from GitHub Actions is a bit beyond

what you will likely encounter on the AZ-204 Exam. However, creating a

service principal for access to your Azure tenant from GitHub Actions can

be accomplished using the Azure CLI, and may be something you’ll need

to be in command of.

To set up a deployment from GitHub into your Azure tenant, begin by

running the following command in the Azure CLI to generate a service

principal (the create_service_principal.sh script is found in the

resources for this chapter, also shown in Figure 7-14):

rg=az204-exam-ref-authnauthz

subId=$(az account show --query 'id' --output tsv)

appName=deployment-sp-20251231

az ad sp create-for-rbac \

--name $appName --role contributor

--scopes /subscriptions/$subId/resourceGroups/$rg

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

327

Figure 7-14. The script can be easily run to create a new service
principal in Azure

Note For this to work for a specific preexisting application, make
sure to leverage the correct resource group when creating your
service principal.

Once the script is completed, the output will show the important

information about the app registration. You can save it from the output

(shown in Figure 7-15), or you can always just get information that matters

from the App Registration blade in the portal.

Figure 7-15. The output of the CLI command includes the important
information about the service principal

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

328

 Add Federated Credentials
In order for the deployment from a pipeline to work, you have to set up

a secret in the App Registration. To do this, navigate in the portal to the

newly created app registration. On the App Registration blade for the

service principal/app you just created, select the left-navigation item for

Certificates & Secrets. Here you will set any certificates and secrets for the

app, including the Federated Credentials required to execute deployments

from a GitHub Action (see Figure 7-16).

Figure 7-16. The blade is shown to add secrets and certificates,
including Federated Credentials, which are required for authorization
from a GitHub Actions pipeline

When adding a Federated Credential, you have many options,

including GitHub Actions, Kubernetes, or even any other OpenID connect

provider (see Figure 7-17).

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

329

Figure 7-17. Federated Credentials can be used for a deployment
scenario or access from other services

In the GitHub Actions connection, set information that will connect

your specific account and repository for this Federated Credential. The

Entity Type and Environment Name are critical to your GitHub Action to

be able to deploy via this service principal. The critical path information is

captured in the final Subject Identifier value (see Figure 7-18).

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

330

Figure 7-18. The Federated Credential is correctly configured for the
application service principal

The rest of the deployment is handled by the YAML in the GitHub

Action and is outside the scope of the AZ-204 Exam. However, the YAML

would need to look similar to the following for deploying an ARM template

to the resource group using the authorization created previously:

- name: 'Az CLI login'

 uses: azure/login@v1

 with:

 client-id: ${{ secrets.AZURE_CLIENT_ID }}

 tenant-id: ${{ secrets.AZURE_TENANT_ID }}

 subscription-id: ${{ secrets.AZURE_SUBSCRIPTION_ID }}

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

331

 # Deploy ARM template

 - name: Run ARM deploy

 uses: azure/arm-deploy@v1

 with:

 subscriptionId: ${{ secrets.AZURE_SUBSCRIPTION_ID }}

 resourceGroupName: ${{ secrets.AZURE_RG_NAME }}

 template: ./azure-deploy-dev-env.json

 parameters:

 webAppName=az204ref-${{ env.CURRENT_BRANCH }}-dev

Note that you would need to set secrets for the client ID created for the

service principle (the Application ID on the App Registration blade) along

with your tenant and subscription information. Again, this is outside of the

scope of the AZ-204 Exam, so this is here just to help enhance the purpose

of the client ID/app registration/service principal.

 Managed Identities
Another common use for a service principal is to grant one or more

deployed infrastructure or platform services access to other services in

Azure. This can be accomplished with a type of service principal also

known as a managed identity. Managed identities are the recommended

resource used to grant specific permissions for one or more resources via

RBAC to other resources within the Azure tenant.

One of the most common scenarios where managed identities are

utilized is to allow an application to get secret information from Azure Key

Vault and/or Azure App Config. This scenario is also covered in detail in

the next chapter on implementing secure cloud solutions. In that chapter,

you also learn more about managed identities.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

332

 Authorization Flows
Another important concept that you need to be in command of for the

AZ-204 Exam is the ability to discern the correct authorization flow for

your solution. Each of these authorization flows is examined in the next

few sections.

 Authorization Code
In the Authorization Code flow, a user typically starts by logging in to your

web application. This application then sends a request to the authorization

endpoint, which causes the user to redirect to the login endpoint and

enter their credentials (and give any consent to scopes if necessary). The

authorization endpoint then sends a token back to the web app to work on

behalf of the user. The web app then sends the authorization token along

with the application client ID and secret to the token endpoint, where

everything is validated. Upon validation, the validated access token is sent

to the web app and the app can then make requests with the access token.

More information about this flow (including a nice diagram of the

flow) can be found at https://learn.microsoft.com/azure/active-

directory/develop/v2-oauth2-auth-code-flow.

This workflow scenario is similar to utilization of authorization on the

web application described earlier, where the users now have to log in to

the Azure tenant in order to be able to access the application.

 Client Credentials
In the client credentials authorization flow, an administrator preconfigures

the authorization for the application and generally issues the client credentials

flow for use between services or applications. This workflow allows the service

to then be able to operate without a user present. More information about this

workflow can be found at https://learn.microsoft.com/azure/active-

directory/develop/v2-oauth2-client-creds-grant-flow.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-auth-code-flow
https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-auth-code-flow
https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow
https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-client-creds-grant-flow

333

This scenario is similar to utilization of a system-managed identity to

allow an application to get secrets from Key Vault. The administrator sets

the RBAC permissions against the managed identity and the application

can get information regardless of the level of authorization for the user,

or without a user being present in the case of services, WebJobs, or

background processes.

 Device Code
The Device Code workflow allows you to authorize a device on your

solutions from another device. The easiest way to envision this process

is any time you’ve utilized Amazon Prime, Hulu, YouTube, or another

streaming service on your Smart TV and the service gave you a code

that was displayed on the screen. You then logged in to the service from

your laptop or smartphone and authorized the TV to utilize the service

from your account. This type of authorization is also highly useful in IoT

scenarios.

You can read more about the device code authorization flow at

https://learn.microsoft.com/azure/active-directory/develop/v2-

oauth2-device-code.

 Implicit
The Implicit workflow is going away, so you won’t want to use this

on future applications. This workflow requires cookies on the client

machine and is/was highly useful for working with single-page JavaScript

applications to allow your solution to be more secure by not having refresh

tokens that could be intercepted. The recommended flow is to migrate

your SPA solutions to utilize the Authorization Code workflow.

You can read more about the implicit workflow as well as view the

official workflow diagram at https://learn.microsoft.com/azure/

active-directory/develop/v2-oauth2-implicit-grant-flow.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-device-code
https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-device-code
https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-implicit-grant-flow
https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-implicit-grant-flow

334

 Integrated Windows
The Integrated Windows workflow is used with domain-joined machines,

allowing them to authenticate with the Azure Active Directory. In this

workflow, the token is granted to the machine and then the applications

on the machine can leverage the user credentials. This is accomplished

without any interaction from the user.

You can read more about the workflow and view an awesome

visualization of this workflow at https://learn.microsoft.com/azure/

active-directory/develop/msal-authentication-flows#integrated-

windows-authentication-iwa.

 Interactive and Non-Interactive
The difference between interactive and non-interactive workflows is

whether or not a user is prompted for interaction. This could be signing

in or providing additional information to resolve MFA or risky sign-on/

conditional sign-on challenge questions.

In the non-interactive workflow, the system tries to do things without

input from the user with regards to authorization. In a non-interactive

workflow, if things require interaction then the interaction can be sent for

input from the user.

The recommended approach is to try to work without interaction from

the user and only utilize user interaction when necessary. This scenario

typically utilizes token caching to avoid interaction with the user as much

as possible.

 On-Behalf-Of
In the On-Behalf-Of flow, a middleware application needs to act as the

user to a third-party or other solution. In this scenario, the client calls to

the application endpoint and the application then leverages the same

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

https://learn.microsoft.com/azure/active-directory/develop/msal-authentication-flows#integrated-windows-authentication-iwa
https://learn.microsoft.com/azure/active-directory/develop/msal-authentication-flows#integrated-windows-authentication-iwa
https://learn.microsoft.com/azure/active-directory/develop/msal-authentication-flows#integrated-windows-authentication-iwa

335

user credentials as the client’s logged-in user. This is done by getting the

user access token and executing on behalf of the user. The application

doesn’t need to have any specific roles, and therefore only the access

and permissions available to the client user are available to the executing

middleware.

More information and a visualization of this workflow can be found at

https://learn.microsoft.com/azure/active-directory/develop/v2-

oauth2-on-behalf-of-flow.

 Username/Password
The Username/Password workflow is also known as Resource Owner

Password Credentials (ROPC). In this workflow, the password for the

user is managed by the application. This workflow is therefore not very

secure and you should try to avoid using it as long as another viable

solution exists.

More information and a visualization of this workflow can be found at

https://learn.microsoft.com/azure/active-directory/develop/v2-

oauth-ropc.

 Shared Access Signatures
Shared Access Signatures (SAS) are a critical part of giving temporary or

delegated access to items in Azure Storage. SAS tokens were mentioned

and discussed in Chapter 1 on Azure Blob Storage. SAS tokens are also

critical when working with Event Hub and Service Bus in the final chapters

of this book. The following is a general summary of what you need to know

about SAS tokens in the scope of the AZ-204 Exam:

• Individual tokens generated off the account key

cannot be revoked (the key can be rotated, however,

invalidating the SAS token).

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://learn.microsoft.com/azure/active-directory/develop/v2-oauth2-on-behalf-of-flow
https://learn.microsoft.com/azure/active-directory/develop/v2-oauth-ropc
https://learn.microsoft.com/azure/active-directory/develop/v2-oauth-ropc
https://doi.org/10.1007/978-1-4842-9300-3_1

336

• Tokens have scope and permissions, as well as start and

expiration dates.

• You should be able to discern the exact specifications

from the token, including the type of storage, start

and end dates, and permissions authorized by an

SAS token.

• Tokens have a signature that is based on the key and

token settings. Users trying to use an URL hijack attack

on your tokens will not succeed, as the signature will

not match.

• You can create policies at the account level to issue

tokens en masse. This is both more secure and more

manageable from an administrative viewpoint.

• Policies set the permissions, start and end dates, and

what services are accessible for all tokens.

• You can revoke all tokens in a policy at once if there is

a need to do so without having to rotate your account

access keys.

• For Event Hub and Service Bus, you create SAS tokens

to allow for publish, consume, and/or management

permissions around your topics and subscriptions.

 Identity and Authorization in Applications
The remainder of this chapter covers the utilization of the Microsoft

Authentication Library (MSAL) and the Microsoft Graph SDK.

It is important to note that in order to work with either the MSAL

library or the Microsoft Graph SDK, you must have an app registration set

up in Azure.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

337

 Create the App Registration
If you are going to test this code with a desktop application or a console

application, you should set up your application to have one public

client with a redirect to http://localhost. This is not intuitive, since

your application will be a desktop/console application without any web

interaction.

Name your application, set the supported account types, and then

create a public client/native redirect URI with the value of http://

localhost, as shown in Figure 7-19.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

338

Figure 7-19. The app registration for testing is easily configured with
a public client and a redirect URI of http://localhost

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

339

Once the application is registered, you need to note the application

(client) ID and your tenant ID. Those will be two key values for working

with code to integrate with Microsoft Identity in your code.

 Working with the Microsoft Authentication
Library (MSAL)
The solution files for this activity can be found in the repository for this

book and are adapted based on materials found at https://learn.

microsoft.com/azure/active-directory/develop/desktop-app-

quickstart?pivots=devlang-uwp. However, key components of working

with MSAL to get a user logged in are highlighted here. This application

code is very minimal, but it is enough to get you authenticated in Azure

and retrieve an authorization bearer token for your user account.

One notable piece of information is that you need the NuGet package

for the Microsoft.Identity.Client.

 Build the Application

The first step for this solution is to build the application using

PublicClientApplicationBuilder. Utilize the following code to initialize

the application variable:

//create the application:

var msalAPP = PublicClientApplicationBuilder

 .Create(clientId)

 .WithAuthority(AzureCloudInstance.AzurePublic,

tenantId)

 .WithRedirectUri("http://localhost")

 .Build();

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

https://learn.microsoft.com/azure/active-directory/develop/desktop-app-quickstart?pivots=devlang-uwp
https://learn.microsoft.com/azure/active-directory/develop/desktop-app-quickstart?pivots=devlang-uwp
https://learn.microsoft.com/azure/active-directory/develop/desktop-app-quickstart?pivots=devlang-uwp

340

Note that this code creates the client application based on the client

ID and the tenant ID. What’s interesting is the authority location—

AzureCloudInstance.AzurePublic. The scope dictates which cloud

to use, as there are many sovereign cloud regions to choose from (see

Figure 7-20).

Figure 7-20. The authority can be one of many public or
sovereign clouds

 Set the Scopes

Once you have created the application, you need to set the scopes for the

permissions you are requesting. As with the choices earlier, there are many

permissions (scopes) that you can leverage here, but the more you choose,

the more consent you need from the user. For this application, the scopes

are User.Read and Email, as shown in this code:

//set the scopes for user permissions:

string[] scopes = { "user.read", "email" };

When selecting scopes, you can choose delegated (user permissions)

or application permissions. Typical user permissions allow you to do

things with the users’ account information. Application permissions are

for things like agreements and interacting with other Azure Services (see

Figure 7-21).

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

341

Figure 7-21. Scopes can be user-based or application-based and
give access to abilities for the authorized application against the user
account or other Azure services

 Get Your Access Token

When the application runs, with the msalAPP and scopes ready to go, the

code can easily get the access token with the following code:

//get the token

var result = await msalAPP.AcquireTokenInteractive(scopes).

ExecuteAsync();

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

342

 Print the Token

You would not really want to print the token, but for this application, it

won’t hurt just to see it. This token is your full credential, so protect it as

such. The token is already in the result variable, so just debug and review it

or print it:

//print token

Console.WriteLine($"Your Token: {result.AccessToken}");

 Run and Grant Permissions

With the code completed, run the solution and grant permissions, as

shown earlier and again in Figure 7-22.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

343

Figure 7-22. The application asks for credentials and consent for the
requested scopes when it is run

The token prints as expected, as shown in Figure 7-23.

Figure 7-23. The access token is retrieved as expected

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

344

 Working with the Microsoft Graph SDK
In the same application, you can easily implement a couple of changes to

get information using the Graph SDK.

To get started, the app registration will need one thing configured. For

this application, the code will use a Device Code authorization flow, and

therefore the app registration needs to allow public client flows. To do

this, enable it in the portal by going to the app registration, then selecting

the Authentication blade. Then scroll down and select Yes for Enable the

Following Mobile and Desktop Flows, as shown in Figure 7-24.

Figure 7-24. Enabling public client flows so the device code
authorization will work from the console app for Microsoft Graph

Additionally, you need to bring in NuGet packages for Microsoft.

Graph, Microsoft.Graph.Core, and Azure.Identity for this to work as

expected.

 Build the Application

Building the application utilizes the exact same code:

//create the application:

var graphAPP = PublicClientApplicationBuilder

 .Create(clientId)

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

345

 .WithAuthority(AzureCloudInstance.AzurePublic,

tenantId)

 .WithRedirectUri("http://localhost")

 .Build();

 Set the Scopes

Scopes are set exactly the same for this interaction:

//set the scopes for user permissions:

string[] scopes = { "user.read", "email" };

 Create Device Code Credential

This workflow uses the Device Code credential. In this workflow, you have

to navigate to the device code endpoint and then enter a code to continue.

The credential is created by first composing credential options with the

tenant and client IDs. Then create the credential with the options as a

parameter:

//create the DeviceCodeCredential

var credentialOptions = new DeviceCodeCredentialOptions() {

TenantId = tenantId, ClientId = clientId };

var credential = new DeviceCodeCredential(credentialOptions);

Figure 7-25 shows the device code login request from the application.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

346

Figure 7-25. Using the device code flow requires navigating to a
browser and entering a code, then logging in to your account

 Create the Graph Service Client

Once the credentials are set, you can create the client with a single line of

code, passing the credentials and the scopes to the client constructor:

// Create a graph service client

var gsc = new GraphServiceClient(credential, scopes);

 Get the Me Object

Finally, a simple call to the graph service client for the Me object will

allow the code to get information about the logged-in user from

Microsoft.Graph:

var myInfo = await gsc.Me.Request().GetAsync();

Console.WriteLine($"{myInfo.GivenName} ${myInfo.Surname}");

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

347

Figure 7-26 shows the expected output.

Figure 7-26. The graph client gets information about the logged-in
user and the app prints it, as expected

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solutions. You can find

answers to these questions in Appendix A at the end of this book.

 1) What is authentication? What is authorization? How

are they different? Which one must exist for the

other to work?

 2) What are the various ways a user can satisfy MFA

sign-in requirements? Are some more secure than

others? When MFA is turned on, in what scenarios

will the user always receive a second challenge for

sign-in?

 3) What are the four primary roles that can be used for

subscription and/or resource group management?

Which role should you give to a guest on your

subscription? What about a guest on a specific

resource group? What if the guest needs to modify

resources in a specific resource group?

 4) What is the purpose of an identity provider? What is

a scope?

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

348

 5) What are the various authorization flows? What is an

example of each?

 6) What is a service principal? Can you sign in to Azure

using a service principal?

 7) What are the various boundaries for Azure Cloud

Offerings? What is a sovereign region? Can you cross

boundaries with an Identity?

 Complete the AZ-204: Implement User
Authentication and Authorization
To fully learn the material, I recommend taking the time to also complete

the MS Learn modules for implementing user authentication and

authorization found here:

• Explore the Microsoft identity platform: https://

learn.microsoft.com/training/modules/explore-

microsoft-identity-platform/

• Implement authentication by using the Microsoft

Authentication Library: https://learn.microsoft.

com/training/modules/implement-authentication-

by-using-microsoft-authentication-library/

• Implement Shared Access Signatures: https://learn.

microsoft.com/training/modules/implement-

shared-access-signatures/

• Explore Microsoft Graph: https://learn.microsoft.

com/training/modules/microsoft-graph/

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

https://learn.microsoft.com/training/modules/explore-microsoft-identity-platform/
https://learn.microsoft.com/training/modules/explore-microsoft-identity-platform/
https://learn.microsoft.com/training/modules/explore-microsoft-identity-platform/
https://learn.microsoft.com/training/modules/implement-authentication-by-using-microsoft-authentication-library/
https://learn.microsoft.com/training/modules/implement-authentication-by-using-microsoft-authentication-library/
https://learn.microsoft.com/training/modules/implement-authentication-by-using-microsoft-authentication-library/
https://learn.microsoft.com/training/modules/implement-shared-access-signatures/
https://learn.microsoft.com/training/modules/implement-shared-access-signatures/
https://learn.microsoft.com/training/modules/implement-shared-access-signatures/
https://learn.microsoft.com/training/modules/microsoft-graph/
https://learn.microsoft.com/training/modules/microsoft-graph/

349

 Chapter Summary
In this chapter, you learned about working with user access for

authentication and authorization, as well as identity management. You

also learned about working with identity in Azure with Microsoft Graph

and MSAL using .NET.

After working through this chapter and the Microsoft Learn modules,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Authenticate and authorize users with the Microsoft

identity platform

• Understand basic RBAC via Azure Active Directory,

including the four main roles

• Work with Shared Access Signatures (also covered in

Chapters 1, 12, and 13)

• Work with MSAL and Microsoft Graph via .NET using

an app registration with the appropriate client and

tenant IDs

In the next chapter, you learn about implementing secure cloud

solutions with Azure Key Vault, the Azure App Service, and integration

with managed identities and RBAC for users and platform service

authorization within Azure.

Chapter 7 Implement User aUthentICatIon and aUthorIzatIon

https://doi.org/10.1007/978-1-4842-9300-3_1
https://doi.org/10.1007/978-1-4842-9300-3_12
https://doi.org/10.1007/978-1-4842-9300-3_13

351

CHAPTER 8

Implement Secure
Cloud Solutions
Assuming you worked through the other chapters, it is likely that you have

deployed resources to Azure, specifically around the Azure App Service.

If you didn’t work through the previous chapters, it’s still likely that you

have a pretty good handle on working with Azure App Services if you are

planning to sit for the AZ-204 Exam. If so, then you are in a good place to

start putting the finishing touches on the solution with some security and

interaction within Azure Services.

If you didn’t work through previous chapters or are fairly new to

working with Azure App Services, review Chapter 4 on creating Azure App

Service Web Apps before reading this chapter. Specifically, deploying the

application from that chapter will position you with code for working with

the Azure platform services targeted in this chapter.

As a TL/DR on that, if you get the starter files for this chapter and deploy

to an Azure App Service, you will be ready to go. For the App Service, I

recommend using an S1 Tier with slots so you can see the secrets and settings

in various environments. However, if you want to do this with an F1 tier

for cost considerations, you can do so and just utilize the secrets from your

single Production slot. Of course the free tier will not have slots so you won't

have any slot swapping or deploying to staging in that scenario.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_8

https://doi.org/10.1007/978-1-4842-9300-3_4
https://doi.org/10.1007/978-1-4842-9300-3_8#DOI

352

As another reminder, the solution files leverage an Azure SQL Server

for Identity and Entities, so you need to ensure that is also set up with

the correct connection string information in the App Service Connection

Strings settings.

As you work through this chapter, you’ll get a chance to enhance

the default web application to add integration with the Azure App

Configuration, and then ultimately to leverage secrets from the Azure Key

Vault. Both platform services require authorization and Role Based Access

Control (RBAC). As you’ll see later in the chapter, the Azure Key Vault will

also utilize additional policies for various levels of access to secrets within

the vault.

Through the sample application code, you will see how to connect

your user and the provisioned app service to the Azure App Configuration.

You’ll also learn about managed identities, where you’ll see how to

connect your web applications and developers to get secrets from

your Azure Key Vault or settings from the app configuration on an as-

needed basis.

The three services and resource types mentioned previously are the

main learning goals for this section of the AZ-204 Exam. By the end of

this chapter, combined with the identity information from the previous

chapter, you will be in a very good place to develop secure applications

within Azure.

As Azure Key Vault and Azure App Configuration both require the

utilization of managed identities for authorization, the first thing you need

to be in command of is what managed identities are and how to use them

in your Azure tenant.

 Managed Identities
Within Azure, there are two different types of managed identities for use in

your solutions. The first type of managed identity is the system-assigned

identity. The second type is the user-assigned identity.

Chapter 8 Implement SeCure Cloud SolutIonS

353

 System-Assigned Identities
System-assigned managed identities are useful when you have a one-

to- many relationship where you have one application that needs to

have RBAC permissions on one or more other services. System-assigned

identities are enabled on the Identity blade for the service (such as App

Service, Function Apps, Azure App Config, Cosmos DB, and Virtual

Machines).

Once you’ve enabled an identity on an Azure service, that identity

can be used as a principal within Azure to administer role-based access

to other services. With system-assigned identities, if you delete the

service, the identity will also be deleted, thereby removing any associated

permissions since no identity remains for authorization.

Creating a system-managed identity for a resource is simple, as is

shown in Figure 8-1.

Chapter 8 Implement SeCure Cloud SolutIonS

354

Figure 8-1. It’s easy to turn on an identity for any Azure service from
the Service blade, under the Identity left-navigation item

After creating the system-managed identity, the app service will

then be able to connect to other resources in Azure with appropriate

permissions via RBAC.

Later in the chapter, a system-managed identity such as the one

created previously, will be required to authorize the app service for

permissions in both the Azure App Configuration and Azure Key Vault. If

you want, you can go ahead and create the managed identity now on your

Azure App Service.

Chapter 8 Implement SeCure Cloud SolutIonS

355

 User-Assigned Identities
User-Assigned identities are useful when you have a many-to-many

relationship between resources and services in Azure and the permissions

that they need.

For example, consider a fleet of virtual machines (VMs) that are

serving your database layer for a critical line-of-business application. In

this scenario, you might need to authorize all VMs to have access to read

secrets from Key Vault for working with encrypted columns or possibly

your applications may need to interact with Azure Storage or another

Azure service. Since each machine needs the exact same permissions,

creating one-off system-assigned identities would be tedious and error-

prone. Additionally, any new machine would need to also create each

permission individually for every system-managed identity. Therefore,

creating a user-assigned identity is ideal in this scenario. With a user-

assigned identity, you can create the identity and assign all permissions to

the single identity, then just associate the shared user-assigned identity to

each appropriate resource.

To use a user-assigned identity, you must first generate a new user-

assigned identity, which you might do with the Azure CLI. The following

script could be used to generate an identity:

rg=az204-exam-ref-securesolutions

name=fleetVMSIdentity

az identity create --name $name --resource-group $rg

You could then assign the identity to appropriate resources by selecting

the managed identity in the portal on each resource, or by running another

script to assign the identity to the appropriate resources.

User-assigned identities have a lifespan that is not dependent

on the resources to which they are assigned. Even if every VM in this

scenario were deleted, the identity would live on, as would its associated

permissions in the Azure tenant. Therefore, if you are cleaning up

Chapter 8 Implement SeCure Cloud SolutIonS

356

resources that use this identity and all of the associated resources are

deleted, you must also delete the user-assigned managed identity resource

to prevent the identity and permissions from remaining orphaned and

active in your tenant, which could pose a security risk.

This book does not go deeper into creating user-managed identities.

The official Microsoft Learn material for this chapter does include the

“Implement Managed Identities” learning module, which has extensive

information on utilizing user-managed identities with virtual machines,

and is therefore a great place to learn more about user-managed identities.

 Azure Key Vault
Keeping information secret is paramount in modern applications. It

is commonly accepted that information—such as connection strings,

passwords, third-party API keys, and other critical secrets—should never

be directly placed into your source code or checked into your repository at

GitHub or any other remote repository.

Additional security considerations are also present with certificates

used for secure communication and authentication over the web via

Secure Socket Layer (SSL) communications and Transport Layer Security

(TLS). These certificates have to be protected and also need to be

maintained.

A final area of concern are the keys used to encrypt documents, drives,

Azure resource data, and columns in databases. These encryption keys are

also critical to both protect and maintain.

Azure Key Vault is an Azure resource that is designed to provide

a secure, centralized location for managing your keys, secrets, and

certificates.

When creating an Azure Key Vault, you need to name the vault a

unique name for use as part of the domain name in the pattern https://

your-vault-name.vault.azure.net. All of the resources in the vault will

have a URI from this domain.

Chapter 8 Implement SeCure Cloud SolutIonS

https://your-vault-name.vault.azure.net
https://your-vault-name.vault.azure.net

357

As with any other resource, you also need to choose the subscription,

resource group, and region for the deployment of the vault (see Figure 8-2).

Figure 8-2. Creating a vault begins with the subscription, resource
group, and vault name

 Centralized Storage
While it is possible to localize secrets and thereby keep them off of

developer machines and out of your Git repositories, some solutions do

not centralize this functionality. Even if the solution is centralized, it is not

necessarily secured with full RBAC to prevent unauthorized access.

With Azure Key Vault, you can create a solution where only a few

trusted members of your organization ever have direct access to the value

of a secret, certificate, or key. This is a great thing for both the team and the

developers. Additional controls can be put in place with the centralized

storage solution to ensure that rotation of keys has a minimal impact on

any applications or resources that rely on the key, secret, or certificate.

Chapter 8 Implement SeCure Cloud SolutIonS

358

The centralized location of the Azure Key Vault provides an extra layer

of protection knowing that a custom solution was not implemented for a

specific application that could be lost or compromised if the codebase is

corrupted or stolen.

Another consideration for centralized storage is the removal of any

specific knowledge requirements to manage the secrets. For example,

if all of your secrets are stored in the etcd vaults for your Kubernetes

clusters (all Kubernetes clusters have a default key-value store called etcd

available to them where secrets can be stored specifically for the cluster),

then anyone who needs to administer the secrets would also need to have

an underlying knowledge of Kubernetes, and would also need to know

how to manage secrets in the cluster utilizing the cluster’s etcd backing

store. In contrast, with Azure Key Vault, an administrator can know little

or nothing about Kubernetes and still be able to manage the secrets for the

organization effectively, and the containers within the Kubernetes clusters

just need to communicate with Azure Key Vault effectively to utilize the

secrets.

 Azure Key Vault Tiers
There are two tiers that you can select from when creating an Azure Key

Vault. The first tier is the Standard Key Vault, and the second tier is the

Premium Key Vault. Unlike most offerings in Azure, the pricing for both

tiers is similar, so your selection will mostly come down to what you want

to do with the Key Vault service. Selecting the tier is available when you

create the vault, as shown in Figure 8-3.

Chapter 8 Implement SeCure Cloud SolutIonS

359

Figure 8-3. The Pricing tier is selected during creation of the key vault

 Standard Key Vault

The Standard Key Vault is used to provide protection for your keys,

certificates, and secrets using a software-based encryption key.

 Premium Key Vault

The Premium Key Vault can provide the software-based encryption key

and can also utilize Hardware Security Modules (HSMs) to back the

encryption. While this is greatly simplified and not all-encompassing, you

can think of this as something like a specific serial number from a tamper-

proof, isolated hard drive that is leveraged for generating encryption keys.

Without this additional security measure available, the decryption of the

information cannot be performed. Only when the HSM is available for

validation can the key be decrypted.

 Data Retention
With Key Vault, you can select the ability to retain data for a specific number

of days, and you can also specify whether you want extra protection to

prevent accidental purging of data. The default settings are 90 days of

retention with purge protection disabled. Minimum retention is 7 days.

You should be advised that enabling purge protection means you can’t

completely delete a vault or any of its data for that minimum number of

days, since the purge protection will prevent the data from getting deleted

Chapter 8 Implement SeCure Cloud SolutIonS

360

until the soft-delete minimum number of days have passed. Additionally,

you cannot change the policy to disable purge protection once the vault is

created with purge protection enabled (see Figure 8-4).

Figure 8-4. A vault is created with a minimum of 7 days of retention
time and when purge protection is enabled it cannot be disabled

Although Figure 8-4 shows the purge protection on, when you are

on a trial subscription or just creating a temporary resource for learning

purposes, I recommend leaving the setting on Disable Purge Protection so

that you can clean up your resources when you are done testing/learning.

 Access Policy
The Access Policy is the most important functionality of the Key Vault

for allowing other resources and users to review, modify, or delete

information from the vault. There are two permission models to choose

from—Vault Access Policy and Azure Role-Based Access Control.

If you want to manage access policies directly within the vault, or when

you just want to manage vault secrets for an application, then select the

Vault Access Policy. If you want to allow direct access to manage vault

secrets across multiple vaults or provide the ability to set various levels

of access for different resource groups, subscriptions, or management

groups, then use the RBAC-Based Access Control. Choosing the Azure

RBAC Access Control will eliminate the ability to define any access or

policies when creating the vault.

Chapter 8 Implement SeCure Cloud SolutIonS

361

When creating the vault with a vault access policy, you can set the

permission model and you can also give specific access for resources like

virtual machines, ARM templates, and Disk Encryption.

Additionally, during the vault creation, you can set access policies for

user principals as well as system- or user-managed identities. By default,

the subscription owner will be listed with permissions on Keys, Secrets,

and Certificates. While you can add other principals with access here, you

can also manage policies after vault creation (see Figure 8-5).

Figure 8-5. The Key Vault is created with a vault access policy and
default policies and access

Chapter 8 Implement SeCure Cloud SolutIonS

362

 Network Access
As with other Azure resources, you can create the Key Vault with public

access, or you can only allow access to the vault via your private Azure

networks. You can also utilize the private endpoint to allow a private

connection to the Key Vault on your network.

If you do create a private endpoint, you need to have created your

virtual network with a DNS Zone, and then you can set the endpoint to be

integrated into a private DNS zone for routing your traffic. Failure to create

the private zone means you need to add routing rules to any resources

directing traffic and/or add a host file to resolve the endpoint for network

routing (see Figure 8-6).

Figure 8-6. Creating a private endpoint for the vault recommends
utilizing a prebuilt virtual network and DNS zone to work properly

For ease of creation for this demonstration, no private networking or

endpoints are used. The vault shown in this chapter is created with public

access enabled. See Figure 8-7 for more information.

Chapter 8 Implement SeCure Cloud SolutIonS

363

Figure 8-7. The Key Vault is created with public access enabled on all
networks

Chapter 8 Implement SeCure Cloud SolutIonS

364

 Data Encryption
By default, all information that you place into the Azure Key Vault will be

encrypted at rest. In addition to the default encryption, Azure Key Vault

only allows traffic via secure connections and will automatically detect if a

transport message has been modified while in transit.

 Keys, Secrets, and Certificates
As you may have discerned from the previous paragraphs, there are three

types of information that you can protect in an Azure Key Vault. They are

Keys, Secrets, and Certificates.

 Keys

Many Azure services offer the choice of using an Azure-managed

encryption key or, if you want to provide your own, a user-managed key.

In any scenario where you want to provide your own encryption key, you

need to do this via the Azure Key Vault. For example, later in the chapter,

you’ll see how to create an Azure App Configuration resource, which can

be set to allow for a user-managed key, just like the one created in this

section.

Keys are also useful when you want to use solutions like the Always-

On encryption in a SQL database. You can create an encryption key within

your Azure Key Vault and then use that key when encrypting columns from

any SQL Table. As with all the other resources, keys will have a URI, so you

need to use an appropriate and allowed name.

Keys can be generated with the Rivest Shamir Adleman (RSA) or

Elliptic Curve Cryptography (ECC) algorithm. Depending on which

algorithm you choose, you can also choose the key size or curve name.

Either type provides an optional activation date and an optional expiration

date. The key can also be set as enabled or disabled. Additionally, you

Chapter 8 Implement SeCure Cloud SolutIonS

365

can put tags on the keys to group them logically for your own records. In

general, they both have equivalent protection, but ECC uses a shorter key,

which can lead to better performance.

A final option lets you create an automatic rotation policy, but you

need to remember to choose this option with caution. A rotation policy

is great for Azure resources that will automatically utilize the new key,

but this could cause some significant management for applications or

databases that wouldn’t just automatically accept the new key. During

rotation, you can set the automation to be enabled or disabled. You also set

the amount of time the policy will be valid and configure the rotation time.

Figure 8-8 shows the blade to create a rotation policy.

Figure 8-8. The rotation policy can be created to rotate the key for a
specific policy length at specified intervals if desired

Chapter 8 Implement SeCure Cloud SolutIonS

366

Generating a key without a rotation policy for use in encrypting

database columns is shown in Figure 8-9.

Figure 8-9. An encryption key is created for use in always-on
encryption

Once created, the key can be easily managed in the Azure Portal,

and users or services can access the key via the vault policies (policy

management is explained later in the chapter).

Chapter 8 Implement SeCure Cloud SolutIonS

367

 Secrets

Secrets are likely the most common resource that application developers

need to work with in an Azure Key Vault. Secrets include any information

in your application that needs to be configured but protected, such as

connection strings, API keys, IP addresses, or any other volatile secret

information. Secrets are stored as text and can be easily versioned.

You can create secrets in the portal, via automation, through the REST

API, or via the Azure CLI. Using the Azure CLI to create secrets is part of

the official material in the Microsoft Learn modules, and you should make

sure to run through that information to be familiar with the commands.

In this book, you learn how to create a secret using the portal, as shown in

Figure 8-10.

Chapter 8 Implement SeCure Cloud SolutIonS

368

Figure 8-10. A secret is created in the Key Vault with the name
my- production- secret

As with the key, the secret can have an optional start and end date and

can be set to enabled or disabled during creation. The secret can also be

tagged for organizational purposes.

Chapter 8 Implement SeCure Cloud SolutIonS

369

Once the secret is created, it can be viewed through commands or via

the portal by authorized users, but the value is immutable. If the value

needs to change, a new version of the secret needs to be created. You can

allow secrets to be used with multiple versions of the secret active at the

same time. Each version of the secret will have its own URI based on the

version number of the secret. If no version number is specified, then the

most-recently-created secret is selected. Previous versions of the secret

must be specified by version in the URI for utilization. To get the full secret

identifier, browse to the secret in the vault and then select the version.

Each version gets its own secret identifier (see Figure 8-11).

Figure 8-11. Each version of a secret has its own secret identifier and
can be retrieved in the portal

Chapter 8 Implement SeCure Cloud SolutIonS

370

To invalidate a secret with no expiration date, set the secret as disabled

via commands or from the portal. A secret set to disabled or with an

expiration date in the past can no longer be retrieved for utilization by

applications or systems within Azure. (Figure 8-12 shows the original

secret set to disabled.)

Figure 8-12. A vault secret is shown with multiple versions where
only the latest version is enabled

 Certificates

The final type of data stored in a Key Vault are certificates. These

certificates can be used for things like your domain SSL certificates or for

application signing certificates. Additionally, you can store certificates for

use in public client authorization (such as IoT, web, or other devices that

need to connect to your Azure solutions).

While you will likely be adding official certificates created at a certificate

authority to your vault, you can also generate a self-signed certificate within

the Key Vault for use in testing and other non-public scenarios.

Chapter 8 Implement SeCure Cloud SolutIonS

371

To create the certificate, you must give it a valid name (as with

other vault resources). Additionally, you must provide a full “X.500”

distinguished name for the certificate, add any DNS names to the

certificate as required, give it a validity period, and set the content type for

the certificate (see Figure 8-13).

Figure 8-13. A self-signed certificate is easily generated in the Azure
Key Vault

Additional options exist to auto-renew the certificate once the

expiration date is approaching and more options for an advanced policy

configuration can be added. Advanced policy configuration allows

for things like changing the key size, reusing the key, choosing the key

generation algorithm, and making the key exportable (see Figure 8-14).

Chapter 8 Implement SeCure Cloud SolutIonS

372

Figure 8-14. Additional options for certificate generation can be
optionally configured when necessary

Chapter 8 Implement SeCure Cloud SolutIonS

373

Note that it can take a few minutes to generate a new certificate

in Azure.

 Access Policies
When utilizing the Azure Vault Policies to manage your access, you

need to know exactly which policies are necessary and for which user or

applications.

Policy management allows you to give specific permissions on one or

more of the storage types to any principal. You can get as granular as you

need to at the permissions level within the vault policies. It is important

to note, however, that this policy assignment means that any principal

with the policy set to allow access can do this for all of the keys, secrets, or

certificates in that vault. For example, the policies cannot be configured for

specific secrets so an application with permission to “get” a secret can get

any secret in the vault, not just one specific secret.

Therefore, if you need to segregate applications from secrets, the safest

approach is to create separate vaults for the various security levels. For

example, you might create a vault for each environment, so that there is

never any concern that a test application is reading a production value.

 Create an Access Policy

When you’re managing access through the vault policies and it’s time to

give access to one of your secrets, certificates, or keys, you must create

the appropriate access via a new policy. Start by navigating to the Access

Configuration blade in the vault. Once on the Configuration blade, you can

change your permission model or grant default access to a few resources

as was available during creation. To create policies in the vault policies

strategy, just click the Go to Access Policies button. Here you will see all of

your current access policies. Click the Create button to start creating a new

policy (see Figure 8-15).

Chapter 8 Implement SeCure Cloud SolutIonS

374

Figure 8-15. Use the Access Policies blade to create new policies

Earlier in the chapter you saw the creation of a managed identity for

the App Service named az204examref20251231. To give this app service

the ability to get (read) secrets, click the + Create button, then select Get

from Secret Permissions, as shown in Figure 8-16.

Chapter 8 Implement SeCure Cloud SolutIonS

375

Figure 8-16. Adding the Get permission for secrets on the Vault
Access Policy

On the Principal tab, type the name of the app service you want to

authorize (remember that the app service won’t show up until it has a

system-managed identity assigned). When selecting the principal, make

sure to select the entry that has the ID that matches the managed identity

that was created on the app service. Figure 8-17 shows selecting the correct

principal lined up with another window to validate that the Client ID

matches.

Chapter 8 Implement SeCure Cloud SolutIonS

376

Figure 8-17. The Identity Object ID is validated and used to choose
the correct principal for association with the policy

On the next screen, you can choose an application one is if not already

chosen. Here, the application is already chosen so the policy can move

through creation.

You might have also noticed that only the Get permission was granted.

Why not grant the List permission as well? It’s critical to note that the Get

permission will allow the application to get any secret from this vault, so

long as it has the correct secret URI. If the application knows the name of

a secret, it can request the value of the secret. Without the permission to

List, the application must explicitly know the names of any secrets that it

will leverage. If you grant the List permission, you open a huge security

risk in your application, because the application could iterate all of the

vault secrets and get any values that are present for any secret. Therefore,

you should not grant the List permission when all that is needed is access

to one to a few secrets to which the application can be directly aware of

by name.

Chapter 8 Implement SeCure Cloud SolutIonS

377

Once the application (or any principal) is granted access, the specific

principal and permissions will show up on the Policies blade, as shown in

Figure 8-18.

Figure 8-18. The policies that exist are listed on the main blade for
the Access Policies, including the recently created permission for the
app service

 Connect to Azure Key Vault From Azure
App Service
With the access policy set, it is fairly easy to connect to the Key Vault from

the Azure App Service. In order to do this, you don’t even need to make

any code changes.

Previously in the book, the app service was deployed and configuration

values were set for the app service called az204examref20251231. In that

app service, two configuration values were created—one for SimpleWebSha

red:MySimpleValue and another for SimpleWebShared:MySecretValue.

As a quick refresher, these values are just pulled into the front page on

the default application, and you can easily see the current values from the

configuration when browsing to the application (see Figure 8-19).

Chapter 8 Implement SeCure Cloud SolutIonS

378

Figure 8-19. The application renders the values from the
configuration, as previously deployed

 Configure the Application to Read
From Key Vault
As stated, this will only work when you have created a service principal as

a system-managed identity on the app service and then have given the app

service the authorization to get secrets from the Key Vault.

Previously in the Key Vault, a secret was created with two versions and

only the latest version was left in the enabled state. Using the URI of the

secret, which is something similar to https://az204-examref-20251231.

vault.azure.net/secrets/my-production-secret/4d4f..., the

configuration can now be set to read from the Key Vault.

On the Configuration blade for the application, for the secret value,

changing the value to read from your Key Vault secret is as easy as

placing the following value into the value already set in the App Service

Configuration settings:

@Microsoft.KeyVault(SecretUri=https://<your-vault-name-here>.

vault.azure.net/secrets/<your-secret-name-here>/<secret-

version- number-here>)

Chapter 8 Implement SeCure Cloud SolutIonS

https://az204-examref-20251231.vault.azure.net/secrets/my-production-secret/4d4f…
https://az204-examref-20251231.vault.azure.net/secrets/my-production-secret/4d4f…

379

Once you set the secret to read from the Key Vault, click the Save

button to make the changes take effect. When the changes are applied,

you will get a visible indication in the Configuration section if you have the

correct URI and access permissions. You may have to wait a minute and

click Refresh to see it. Figure 8-20 shows the indicator when either the URI

or the access permissions are not set correctly.

Figure 8-20. Access to the Key Vault secret is not configured correctly
so the page shows a red X next to the Key Vault Reference

As of this moment, the secret will not display and you’ll instead see the

full link to the Key Vault setting. You will get a chance to leverage the secret

later via the Azure App Configuration and Key Vault.

If you want to enable this right now to see direct connection to the

Azure Key Vault, you just need to add the access policy in the Key Vault for

the managed identity of your web application.

Navigate to the Identity blade on your application and copy the Object

(principal) ID to your clipboard (see Figure 8-21).

Figure 8-21. Getting the object (principal) ID for the identity to use
in a Key Vault Policy in the next step

Chapter 8 Implement SeCure Cloud SolutIonS

380

To complete the association, navigate to the secret in the Key Vault

and select Access Policies; then select + Create to add a new policy (see

Figure 8-22).

Figure 8-22. The Access Policies blade is open with the + Create
option highlighted. Use this to start creating a new policy

In the Create an Access Policy blade, select the Get option from the

Secret Permissions list. Then click Next, as shown in Figure 8-23.

Chapter 8 Implement SeCure Cloud SolutIonS

381

Figure 8-23. The Get permission is selected for the secrets only

On the Principal tab, enter the Object (Principal) ID that you copied

from the app service. Select the object that matches that Object (Principal)

ID. Click Next, then continue through to create the association, as shown

in Figure 8-24.

Chapter 8 Implement SeCure Cloud SolutIonS

382

Figure 8-24. The policy is created to map the Get secret credential
to the managed identity for the app service. This will allow the app
service to read the secret value

With everything in place, the solution should now show a green

checkmark for the secret in the App Service Configuration settings (see

Figure 8-25). If, for some reason, there are problems, try restarting the web

Chapter 8 Implement SeCure Cloud SolutIonS

383

application to see if it can pick up on the connection. Also, you will need to

double-check all of your settings to ensure you don’t have any typos or any

unsaved blades.

Figure 8-25. The Key Vault secret is able to be retrieved and the green
checkmark indicates successful configuration

When things are working, the reference will show as a green

checkmark next to the Key Vault Reference text. Then you can review the

application and see the secret value, as shown in Figure 8-26.

Figure 8-26. The value is retrieved from the Azure Key Vault once
permissions and settings are configured without having to make any
changes to code

 Azure Application Configuration
Most modern applications require secrets for things like the database

connection string and third-party API keys. Additional settings may be

required to toggle features on and off, or to provide general environment

settings that aren’t necessarily secrets, such as a path for images or other

public documents.

Chapter 8 Implement SeCure Cloud SolutIonS

384

 Centralized Configuration
The Azure Application Configuration is a resource in Azure that lets

you share settings across multiple applications. In Chapter 4, you saw

how to set environment variables in the local configuration for an app

service. Sometimes you will need to share those settings across multiple

applications or share the same setting but have slightly different setting

values across environments like development and production.

For these scenarios, the Azure App Configuration lets you centralize

the management of environment variables, database, and other shared

secrets and environment-specific configuration values with a shared key.

An important caveat to call out immediately here is that App

Configuration is not designed to protect secrets or sensitive information. If

you have a secret such as a password or connection string or a third- party API

key that needs to be protected, the best solution is the Azure Key Vault. Using

the Key Vault via the App Configuration is the best solution for protecting

your secrets and for sharing the configuration settings to get the secret across

applications. You will get a chance to see how to leverage Key Vault via the

App Configuration from your app service in the last section of this chapter.

 Azure Managed Service
The Azure App Configuration is a platform service in Azure, so utilizing

this service gives you a guaranteed SLA for availability, the ability to back

up your solution for regional failover and resiliency, and RBAC control for

access to the app configuration values.

 Creating a New Azure App Configuration
To create a new app configuration in the portal, navigate to the

App Configuration blade and select + Create. As always, select your

subscription and resource group, as well as the location for the resource.

Chapter 8 Implement SeCure Cloud SolutIonS

https://doi.org/10.1007/978-1-4842-9300-3_4

385

To name the configuration, once again you must find a unique name that

can be a public-facing URL.

The next step is to choose the correct tier, either Free or Standard. The

Free tier is limited in throughput and can only house one configuration,

whereas the Standard tier has much more throughput and an unlimited

number of configuration resources. Additionally, the Free tier does not

have an SLA and the Standard tier has an SLA of three nines (99.9 percent).

Figure 8-27 includes the start of creating an app configuration.

Figure 8-27. Starting to create a new app configuration resource

During creation, if you choose the Free tier, you can’t select any backup

replication or recovery options. If you select the Standard tier, you can

choose to utilize Geo-Replication and set recovery options, such as how

long to retain data (up to seven days). In the Standard tier, you can also

enable purge protection, similar to the creation of the Key Vault. Finally,

and perhaps most importantly, if you want to have your data encrypted,

you need to utilize the Standard tier.

Chapter 8 Implement SeCure Cloud SolutIonS

386

A Standard tier app configuration cannot be scaled down to a Free tier,

but you can scale a Free tier up to Standard tier at any point.

 Networking

As with other services, the app configuration can have a public endpoint

or can be accessed via a private endpoint. During creation you can select

an automatic detection where the app configuration will be public- facing

unless a private endpoint is present. After creation, simply choose enabled

or disabled for the ability to connect via a public endpoint (see Figure 8-28).

Figure 8-28. The app configuration can be configured for public
access and private endpoint access, or just for private endpoint access

Once the networking is configured, you can tag and create the resource

as desired.

 Data Encryption
As with Key Vault, the app configuration values are encrypted both in

transit and at rest when deployed in the Standard tier. Your application

configuration values are therefore protected against unauthorized access

and attacks like man-in-the-middle and packet sniffing.

Chapter 8 Implement SeCure Cloud SolutIonS

387

 Create a System-Managed Identity
To be able to work with encryption and for later use to connect to Key Vault

(or other Azure resources), you need to ensure the app configuration has

its own system-managed identity. As with the App Service and other Azure

resources, creating a system-managed identity is easily accomplished on

the Identity blade for the app configuration, as shown in Figure 8-29.

Figure 8-29. Creating a system-managed identity on the app
configuration is done in the same manner as for the app service,
although this time from the App Configuration blade

 Customer-Managed Key

On the Encryption blade, you can choose to manage the encryption with a

customer-managed key. In order to make this work, you need an Azure Key

Vault, the app configuration must be Standard tier and have a managed

identity, and the Key Vault must have a policy allowing the managed

identity to get, wrap, and unwrap keys.

Chapter 8 Implement SeCure Cloud SolutIonS

388

To connect to Key Vault so you can get secrets when using the app

configuration, add the appropriate permissions for the app configuration

to the Key Vault policies for Key permissions (see Figure 8-30).

Figure 8-30. The Key Vault is set to allow the app configuration to
use a key from the vault for encryption of the app configuration data
at rest and in transit

Once the policy is active, you can create the connection for the app

configuration to Azure Key Vault for encryption on the Encryption blade,

as shown in Figure 8-31.

Figure 8-31. The key is set to utilize the customer-managed key from
Key Vault

Chapter 8 Implement SeCure Cloud SolutIonS

389

Attempting to save these changes might cause an error if the Key Vault

is not configured for soft delete and purge protection. Upgrading the vault

gives you the ability to save the changes, as shown in Figure 8-32.

Figure 8-32. With the vault upgraded, the customer-managed key
can be used for data encryption

Note In order to utilize customer-managed keys for encryption,
the vault must be configured to ensure that soft delete and purge
protection are enabled. updating the Key Vault for purge protection is
a one-way operation and cannot be undone once updated.

Utilizing the customer-managed key gives you full control over the

rotation strategy for the key.

 Keys and Values
Within the app configuration, you can start creating your configuration

settings for use in your applications. This is done with Keys and Values.

Typically, the Key will be the flat string that you also utilize in your app

secrets file on your machine, using colons to group the data together. For

example, you might group keys similar to the following entries:

WebApp:ConnectionString:SqlServer

WebApp:ConnectionString:Cosmos

Chapter 8 Implement SeCure Cloud SolutIonS

390

This grouping of keys allows for ease of maintenance on configuration

settings, either in your local user secrets or as the key for the entry in

the Azure App Configuration. In your appsettings files, you can use

the previous groupings, or you might choose to expand them to a more

familiar JSON look, as follows: (Note that this is for the user-secrets.json

or appsettings.json files only, not the app configuration.)

"WebApp" {

 "ConnectionString": {

 "SqlServer": "some connection string...",

 "Cosmos": "another connection string..."

 }

}

When you create keys in the Azure App Configuration, you can choose

from a typical key-value pair or from a key-vault reference. The key-value

pair (shown in Figure 8-33) allows for simple creation, but should not be

utilized for secrets.

Chapter 8 Implement SeCure Cloud SolutIonS

391

Figure 8-33. Creating a key-value in the app configuration to replace
the configuration value for the app service simple shared, non-
secret value

Chapter 8 Implement SeCure Cloud SolutIonS

392

 Labels

One major benefit of the Azure App Configuration is the ability to label

your entries. Labels allow you to create an application that can read from

the same configuration value across environments. As the environment

setting is changed, the appropriate label is read, and the application

correctly connects to the environment-specific resource or displays the

correct environment information to the user.

For reasons of brevity, this chapter doesn’t include a label. However,

you can learn more about using labels from Azure App Configuration

at https://learn.microsoft.com/azure/azure-app-configuration/

howto-labels-aspnet-core?tabs=core5x.

 Feature Flag Management
If you’ve started down the path of modern application deployments

or you are in an environment where moving to production is a regular

occurrence, you have likely leveraged feature flags to ensure that your

application does not deploy to production with new functionality that is

not fully implemented. In other scenarios, you may also be looking at a

canary deployment or ring deployments where you want to manage the

ability to have only a subset of your users working against new features

until they are fully vetted.

Even though this is a chapter on application security, this is really your

only chance to take a look at the Azure App Configuration, so I wanted to

talk about these feature flags briefly at this time.

Feature flags give you the ability to deploy to production quickly and

easily with your application code in any state, while also making sure

features are not reachable until you are ready for users to see the new

functionality.

Chapter 8 Implement SeCure Cloud SolutIonS

https://learn.microsoft.com/azure/azure-app-configuration/howto-labels-aspnet-core?tabs=core5x
https://learn.microsoft.com/azure/azure-app-configuration/howto-labels-aspnet-core?tabs=core5x

393

Azure App Configuration is the tool of choice in Azure to manage these

scenarios around feature flags.

Within App Configuration, when you navigate to the Feature Manager

blade, you can start creating features that can be easily toggled and

configured as expected.

 Create a Feature Flag

In the Feature Manager, select + Create to create a new feature flag. Check

the Enable box and give the flag a valid name such as az204-feature-

flag-demo. This flag name will be referenced in code, so keep that in mind

when creating it.

Additional options exist to create feature filters. This is where you can

get very specific as to the deployment settings, including the geographic

locations or specific devices, targeting a percentage or specific group, and

making this available only during specific time windows.

Figure 8-34 shows a simple feature flag creation without any custom

filters. You can learn more about using filters at https://learn.

microsoft.com/azure/azure-app-configuration/howto-feature-

filters-aspnet-core.

Chapter 8 Implement SeCure Cloud SolutIonS

https://learn.microsoft.com/azure/azure-app-configuration/howto-feature-filters-aspnet-core
https://learn.microsoft.com/azure/azure-app-configuration/howto-feature-filters-aspnet-core
https://learn.microsoft.com/azure/azure-app-configuration/howto-feature-filters-aspnet-core

394

Figure 8-34. A feature flag is easily created in the Azure App Service.
Feature filters are optional and can be used to specify more precise
targets for the feature to be accessible

 Feature Flag Configuration

Most configurations in Azure can be configured in bulk. The feature flag

configuration is no different. When you are in the Feature Manager, you can

select the Advanced Edit option on any feature, and you will get the JSON

representation for the feature. For example, a feature that is not enabled for

50 percent default targeting could have the following JSON representation:

{

 "id": "az204-feature-flag-filtered",

 "description": "A filtered feature flag",

Chapter 8 Implement SeCure Cloud SolutIonS

395

 "enabled": false,

 "conditions": {

 "client_filters": [

 {

 "name": "Microsoft.Targeting",

 "parameters": {

 "Audience": {

 "Users": [],

 "Groups": [],

 "DefaultRolloutPercentage": 50

 }

 }

 }

]

 }

}

If you want more information on working with feature flags, you can

review this tutorial: https://learn.microsoft.com/azure/azure-app-

configuration/quickstart-feature-flag-aspnet-core?tabs=core6x.

 Connecting an App Service Web Application
to an Azure Application Configuration
In the previous sections, an Azure App Configuration was deployed and

the simple shared value for configuration was set to map to the same

setting currently deployed in the previously deployed Azure App Service.

As with the utilization of settings from the Azure App Service to Azure

Key Vault, a few things need to be configured correctly on the permissions

front. Additionally, using the Azure App Configuration requires a

code change to allow the app service to correctly connect to the app

configuration and read values.

Chapter 8 Implement SeCure Cloud SolutIonS

https://learn.microsoft.com/azure/azure-app-configuration/quickstart-feature-flag-aspnet-core?tabs=core6x
https://learn.microsoft.com/azure/azure-app-configuration/quickstart-feature-flag-aspnet-core?tabs=core6x

396

 Configure the Security Settings
To get started, the Azure App Service must have a managed identity. This

should be done already, as it was necessary for connecting to the Azure

Key Vault. To complete the setup, you need to make sure three things are

configured—the role for the app service against the app configuration,

the configuration setting in the app service, and a code change to

the application to allow for connecting to and reading from the app

configuration.

 Add a New Role Assignment

Navigate to the Azure App Configuration and select the Access Control

(IAM) blade. On this blade, select + Add Role Assignment to begin the

process of adding the app service to the correct role.

On the Add Role Assignment blade, select App Configuration Data

Reader, as this role will give the application the ability to read values

from the app configuration’s key-values and key-vault references (see

Figure 8-35).

Chapter 8 Implement SeCure Cloud SolutIonS

397

Figure 8-35. Add the App Configuration Data Reader role for a new
role assignment

On the Members blade, utilize the managed identity for the app

service. For this service, you can select directly from the available managed

identities (see Figure 8-36).

Chapter 8 Implement SeCure Cloud SolutIonS

398

Figure 8-36. Add the managed identity to the role assignment

Review and assign the role for the App Configuration Data Reader to

your app service. Note that you also need to assign the role to any slots you

are utilizing.

 Update the Azure App Service Configuration

This update is going to be a bit different than the standard updates prior

to this update. Typically, you would utilize an endpoint for a specific

configuration URI or a Secret URI. To make Azure App Configuration

work, however, you just point the value for the configuration to the app

configuration endpoint and the code will do the rest of the work. Find

the endpoint for your app configuration and return to the app service to

update the settings.

In the Azure App Service, on the Configuration blade, change the value

for the SimpleWebShared:MySimpleValue key to point to the endpoint for

Chapter 8 Implement SeCure Cloud SolutIonS

399

the deployed Azure App Configuration resource (found on the Overview

blade). This endpoint will be similar to https://<your-app-config>.

azconfig.io (see Figure 8-37).

Figure 8-37. The configuration value points to the endpoint for the
Azure App Configuration resource

Make sure to save the settings and ensure that the value is updated by

navigating away from the configuration settings on the app service and

returning to the blade to validate that the changes were saved (unsaved

changes generate a warning when you navigate away from the blade).

 Update the Application Code to Connect to Azure
App Configuration

The final step to make this connection work is to update the application

code and redeploy it to your app service. Currently, if you saved changes in

the previous step, the app service configuration variable was updated, and

the value was set to read from the app configuration resource. Additionally,

the app configuration has granted data reader rights to the application.

The value is not displayed, however, without a code change. (Navigating to

the page currently displays the URL of the app configuration, as shown in

Figure 8-38.)

Chapter 8 Implement SeCure Cloud SolutIonS

400

Figure 8-38. The secret is not shown yet, only the URL for the app
config. This is because the code change is not yet in place

In the default application provided for use in this study, navigate

to the Program.cs file and find the section commented out for the

ConfigureAppConfiguration section.

In this section, uncomment the block so that the configuration settings

will be leveraged correctly. Do not yet uncomment the lines for the

config where the Key Vault settings are utilized (that will come in the next

section). If you are writing the code yourself, the code you need to add is as

follows:

builder.Host.ConfigureAppConfiguration((hostingContext,

config) =>

{

 var settings = config.Build();

 var env = settings["Application:Environment"];

 if (env == null || !env.Trim().Equals("develop",

StringComparison.OrdinalIgnoreCase))

 {

 //requires managed identity on both app service and

app config

 var cred = new ManagedIdentityCredential();

 config.AddAzureAppConfiguration(options =>

 options.Connect(new Uri(settings["AzureApp

ConfigConnection"]), cred));

 }

Chapter 8 Implement SeCure Cloud SolutIonS

401

 else

 {

 var cred = new DefaultAzureCredential();

 config.AddAzureAppConfiguration(options =>

 options.Connect(settings["AzureAppConfig

Connection"]));

 }

});

Note that this code checks your local device to see if you have a setting

for Application:Environment set to develop. If you want to connect from

your local machine, make sure to add that setting to your usersecrets.

json file (do not put in the appsettings.json file or it will be pushed to

your Azure deployment). In your local secrets, you also need to put the

actual connection string to the app configuration and your developer

identity (default Azure credential) needs to have the appropriate rights

on the app configuration resource as a App Config Data Reader (see

Figure 8-39).

Figure 8-39. To run from a local development environment, some
secrets must be added to the application secrets for environment and
the Azure App Configuration connection string

Chapter 8 Implement SeCure Cloud SolutIonS

402

Note the app Configuration connection string can be retrieved from
the portal on the access Keys left-navigation menu item. unlike the
app service, which just leverages the endpoint, the local device must
use the entire connection string.

An additional change is needed to make sure the code compiles. You

must uncomment the using statement for using Azure.Identity at the

top of the Program.cs file. The package is already imported to the default

project, otherwise you would also need to get the package from NuGet.

It is a good idea to run the project locally to ensure the code

changes build and run and that the app configuration code is

correctly implemented without the Key Vault references at this point.

Troubleshooting in Azure might be less than trivial to discern errors if the

problem is something with the build or access to the app configuration.

Once you are sure that the settings can be read from your Azure App

Configuration in your local environment, publish your changes to deploy

to Azure and remember to swap the changes to production if you are

using slots.

 Review the Application
The application will currently not load because the configuration is going

to look for a different key in the app service configuration that does not

yet exist. Update the app service configuration and add a new setting

called AzureAppConfigConnection as per the code you just added to the

application. Then set the value to the endpoint for the App Configuration

as you did for the simple value key previously (see Figure 8-40).

Chapter 8 Implement SeCure Cloud SolutIonS

403

Figure 8-40. The app service config needs this final application
setting to make sure the code can correctly connect to the app
configuration in Azure per the code settings

With all the changes to the code made and the settings configured

correctly, your application should now be displaying the default text for the

simple, non-secret value from the Azure App Configuration on your main

page (see Figure 8-41).

Figure 8-41. The application now shows the value from the app
configuration via the settings and code changes applied in this section

If you continue to get a 500.30 – ASP.Net Core app failed to

start message, you can be certain something is incorrect in your Program.

cs file with the implementation of the app configuration code. Make sure

Chapter 8 Implement SeCure Cloud SolutIonS

404

to double-check all of the code. If you’re using the default solution, ensure

that you didn’t enable the Key Vault reference yet. Conversely, if you set

configuration values to read from the Key Vault, you must include the Key

Vault code portion or your code will not work.

It should also be noted in Figure 8-41 (and likely what you are seeing)

that the Key Vault value is still being read from your app service. This is

because it was set earlier and is directly connected to the Key Vault. In

the next section, you learn how to update your application so that the app

service is reading the values from either the app configuration or the Key

Vault via the app configuration.

 Connect to Azure Key Vault Through Azure
Application Configuration
Connecting to the Azure Key Vault via the Azure Application Configuration

requires all of the security settings configured in the previous examples. In

order to read from the Key Vault, the app service and the app configuration

both need to have Get access on the secrets at the Vault, which means

the App Service and the App Configuration both need to have a

managed identity configured. The code also needs to read from the app

configuration as per the settings in the previous example.

Additionally, to complete this activity, the app configuration must

add a reference to the Key Vault secret, and the code must be updated to

leverage the Key Vault secret. In order to run the application locally, the

developer also needs to be able to read from the Key Vault secrets. For

this reason, consider a development and a production label that gives the

developer access to only the development secret.

Chapter 8 Implement SeCure Cloud SolutIonS

405

 Make the Code Change
To expedite this example, start with the code change. In the application,

uncomment the lines of code that reference the Key Vault and comment

out the original code that connects without the .ConfigureKeyVault

setting (or just delete the two lines in each block that leverage the app

configuration without the Key Vault reference).

For reference, the new code should be as follows (commented code

deleted for brevity and clarity):

if (env == null || !env.Trim().Equals("develop",

StringComparison.OrdinalIgnoreCase))

{

 var cred = new ManagedIdentityCredential();

 config.AddAzureAppConfiguration(options =>

 options.Connect(new Uri(settings["AzureAppConfig

Connection"]), cred).ConfigureKeyVault(kv => {

kv.SetCredential(cred); }));

}

else

{

 var cred = new DefaultAzureCredential();

 config.AddAzureAppConfiguration(options =>

 options.Connect(settings["AzureAppConfigConnection"])

 .ConfigureKeyVault(kv => {

kv.SetCredential(cred); }));

}

Make sure the code can be built successfully on your local machine,

and then push your changes for deployment. The setting is not yet in the

Azure App Configuration, so testing locally is not currently possible.

Chapter 8 Implement SeCure Cloud SolutIonS

406

 Update Azure App Configuration
In the Azure App Configuration, add a new Key Vault Reference setting.

For this setting, name the key exactly as the original secret was named:

SimpleWebShared:MySecretValue. For the key, select the appropriate

secret from the drop-down menu and select either the latest or the current

version. Utilization of the latest will allow for rotation without concern (see

Figure 8-42).

Chapter 8 Implement SeCure Cloud SolutIonS

407

Figure 8-42. The configuration is set with the Key Vault reference to
reveal the secret

Chapter 8 Implement SeCure Cloud SolutIonS

408

By now the code should have deployed, so perform the swap if you are

using slots. Feel free to test locally from your development environment

as well. If the application fails locally, make sure your Azure principal is

set with Get permission on the Key Vault. If the application fails at the

Azure App Service, ensure that your Program.cs file is correctly leveraging

credentials for Key Vault and app configuration.

Finally, to see this in action, you must disable the App Service

configuration setting that is currently reading from the Key Vault to

ensure you are getting the value only through the app configuration.

As with the value for SimpleWebShared:MySimpleValue, update Simple

WebShared:MySecretValue, replacing the current value of @Microsoft.

KeyVault(SecretUri=....) with the public endpoint of the App

Configuration (exactly the same as the value for SimpleWebShared:

MySimpleValue). Once that is done, save everything and wait for the

app service to restart. Finally, review your application to ensure that

you have the ability to leverage the Key Vault through the Azure App

Configuration from your app service.

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solution(s). You can find

answers to these questions in Appendix A at the end of this book.

 1) What are the two types of managed identities? When

would you use each type?

 2) Which type of managed identity must be manually

deleted? Which type is tightly coupled to a single

instance of a resource? Which can be reused across

multiple resources?

Chapter 8 Implement SeCure Cloud SolutIonS

409

 3) What are the three types of information that can

be stored securely in an Azure Key Vault? What is a

common use for each type of information stored?

 4) How can you prevent your Azure Key Vault from

being deleted by accident? What about keys?

 5) Can you have multiple versions of a secret active at

the same time?

 6) What are two ways a secret can exist in the vault but

also be unusable?

 7) What is the purpose of an access policy in Azure Key

Vault? Can you get fine-grained access-level control

to individual secrets?

 8) Why might a developer choose to implement the

Azure App Configuration?

 Complete the AZ-204: Implement Secure
Cloud Solutions
To fully learn the material, I recommend taking the time to also complete

the MS Learn modules for Implement Secure Cloud Solutions found here:

• Implement Azure Key Vault: https://learn.microsoft.com/

training/modules/implement-azure-key-vault/

• Implement managed identities: https://learn.

microsoft.com/training/modules/implement-

managed-identities/

• Implement Azure App Configuration: https://learn.

microsoft.com/training/modules/implement-azure-

app-configuration/

Chapter 8 Implement SeCure Cloud SolutIonS

https://learn.microsoft.com/training/modules/implement-azure-key-vault/
https://learn.microsoft.com/training/modules/implement-azure-key-vault/
https://learn.microsoft.com/training/modules/implement-managed-identities/
https://learn.microsoft.com/training/modules/implement-managed-identities/
https://learn.microsoft.com/training/modules/implement-managed-identities/
https://learn.microsoft.com/training/modules/implement-azure-app-configuration/
https://learn.microsoft.com/training/modules/implement-azure-app-configuration/
https://learn.microsoft.com/training/modules/implement-azure-app-configuration/

410

 Chapter Summary
In this chapter, you learned about creating secure cloud solutions with

Azure. To build secure solutions, you learned about creating managed

identities for authorization of Azure resources within the Azure tenant.

You then learned about Key Vault and how to leverage a vault to store keys,

certificates, and secrets. Finally, you saw how the Azure App Configuration

can be used to share settings across your Azure tenant, and you learned

how to work with the Azure App Configuration in your .NET applications.

After working through this chapter and the Microsoft Learn modules,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Create secure applications using keys, secrets, and

certificates in the Azure Key Vault, either directly in

your code, via the AZ CLI, via configuration settings,

and/or via the Azure App Configuration.

• Implement access policies for Key Vault keys, secrets,

and certificates.

• Share configuration data in the Azure App

Configuration.

• Utilize feature flags with the Azure App Configuration.

• Determine which managed identity to use in specific

scenarios, how to implement both types (system and

user) of managed identities and which ones have

independent lifecycles and abilities to be shared across

resources.

In the next chapter, you learn about caching and content delivery for

your Azure solutions with the Azure CDN and Azure Cache for Redis.

Chapter 8 Implement SeCure Cloud SolutIonS

413

CHAPTER 9

Implement Caching
for Solutions
Up to this point, every request made on your website is going directly to

your Azure App Service instance. This includes all of the dynamic content

such as calls to authenticate the user. This also includes the delivery of

all of the content that is static, such as the images, Cascading Style Sheets

(.css) files, and JavaScript (.js) files.

In addition to static content, your solution must make a database call

every time some content that rarely changes is leveraged.

Both scenarios are fine with smaller workloads, but if the workload

increases on the database or the number of calls to the static content

grows, you may have to implement options to keep your solutions

responsive. For these and similar scenarios, there are ways that you can

optimize your content delivery within the Azure ecosystem.

In this chapter, you take a look at two critical services in Azure for

delivering static content and cached content to provide an optimal

workflow. You’ll see that the number of database calls can be greatly

reduced by utilizing Azure Cache for Redis (Redis Cache) and the delivery

of static content can be handled by distributing assets to the Azure Content

Delivery Network (CDN).

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_9

https://doi.org/10.1007/978-1-4842-9300-3_9#DOI

414

 Benefits of Caching
With these scenarios in mind, it’s easy to discuss a couple of the benefits

that you will get by leveraging caching of content or data in your solutions.

 Data Stored in Local Memory
One major benefit of caching is the ability to have data stored in local

memory for the application. In the previous scenario, data that is fairly

constant with little change should not be fetched repeatedly from the data

store. However, the implementation did not leverage caching and therefore

needs to make a database call every time the data is requested by a client

application.

When your solution caches the data, you can retrieve data from your

local memory without having to go back to the database repeatedly,

thereby reducing the workload on your database server.

 Retrieve and Mutate Data Quickly
Another benefit of caching data or content is the ability to get and

manipulate the localized version of the data quickly.

In certain scenarios, you could allow the user to manipulate the state

of the data or content. Rather than waiting for the data to post, update, and

then be confirmed, this solution can manage the data in the cache and

then update it using an asynchronous operation.

This ability to work in memory and manage state or content locally

means your solution might be able to eliminate many bottlenecks

involving reading and writing to other services.

Chapter 9 Implement CaChIng for SolutIonS

415

 Server Offload, High Throughput
Not having to make a round trip to the centralized provider (like Azure

Storage or Azure SQL) can make your application more responsive due to

no latency and no waiting for queries to complete.

By utilizing cache, you can remove the burden of calls that ordinarily

have to be handled by the centralized servers since the data or content can

be leveraged from cache.

 Benefits of Delivering Static Content via the CDN
Along with caching your data and content in memory, it is also possible

to leverage a Content Delivery Network (CDN) to quickly serve the

information or content. Using a CDN has a number of potential benefits,

discussed next.

 Higher Throughput

Once your data is cached at a CDN, your solutions don’t need to make

requests back to the centralized location. In most scenarios, edge or point-

of- presence (PoP) nodes are available that are geographically distributed

closer to the client users.

It is important to call out the fact that as humans we often think

of “closer” as a physical distance. While it’s true that most of the time

the nodes that are physically closer to a user will also provide the best

throughput, there are scenarios where delivery from a node that is

physically farther away results in a lower latency. In these scenarios,

even though the distance is greater, it is the lowest latency that should be

thought of as “closer.”

Chapter 9 Implement CaChIng for SolutIonS

416

 Resiliency

Once you’ve implemented a CDN solution, your content is essentially

resilient to failure due to the distributed nature of the CDN. Even if

the default region where your images or other static content is stored

goes down, as long as the data has been cached at the edge nodes, the

application can still render the data to the client (provided the application

is still available).

 Server Offload

As with the caching solution, the CDN allows for many requests that would

ordinarily need to be handled at the central server to be offloaded to the

edge nodes. This can free up resources and allow your solutions to be more

responsive to the user.

 Azure Content Delivery Network (CDN)
In order to prepare for the AZ-204 Exam, it’s important to be familiar with

the Azure Content Delivery Network (CDN). This section walks through

the main features of the Azure CDN and explains how you can create a

profile and leverage storage from a CDN endpoint.

 CDN Profiles
To work with the Azure CDN, you need to create a CDN Profile. You can do

this either by setting up a storage account and then leveraging CDN from

the storage account, or by creating a standalone CDN profile. For an even

more robust solution, you can deploy an Azure Front Door instance.

Chapter 9 Implement CaChIng for SolutIonS

417

 Limitations

CDN Profiles are limited in a few ways, including the total number of PoP

nodes and how many custom domains you can point to a single profile.

You can therefore create multiple profiles if needed. Additionally, profiles

can only be associated with one of the available tiers, so if you want to

leverage different tiers or providers, you need multiple profiles.

 Azure Front Door CDN
Although the Azure Front Door is not necessarily part of the current

AZ-204 Exam material, the utilization of a Front Door solution is important

when it comes to utilizing static content on a CDN in Azure. Since the

Front Door is a bit out of scope, this section just takes a quick look at the

service creation, but you won’t deploy or use it in this study. Instead,

you’ll see how to deploy a classic Microsoft CDN Profile. If you want to

dive deeper, consider starting at https://learn.microsoft.com/azure/

frontdoor/create-front-door-portal.

The Azure Front Door gives you the best production-level solution that

also has much more robust security and traffic routing capabilities as part

of the Front Door service. The Front Door service is a bit more expensive

than just utilizing a CDN from storage, but the benefits far outweigh the

costs in a production solution.

To get started, you create a new Front Door deployment by navigating

to the Front Door and CDN Profiles blade. There, you can select + Create

to add a new profile. Once you are looking at the offerings, you can see

options for the Front Door as well as the Explore Other Offerings panel

(see Figure 9-1).

Chapter 9 Implement CaChIng for SolutIonS

https://learn.microsoft.com/azure/frontdoor/create-front-door-portal
https://learn.microsoft.com/azure/frontdoor/create-front-door-portal

418

Figure 9-1. The Front Door and CDN Profiles Create operation is in
progress with choices for the Front Door or other offerings

Chapter 9 Implement CaChIng for SolutIonS

419

At the time of this writing, when you choose the Explore Other

Offerings panel, you will see the classic Front Door as well as the

traditional Azure CDN offerings from Microsoft, Verizon, and Akamai (see

Figure 9-2).

Figure 9-2. The other offerings include the traditional (classic)
offerings for Front Door and Azure CDN

 Creating a Microsoft Standard CDN Profile
Continuing with the creation process, make sure to utilize the Azure CDN

Standard as shown in Figure 9-2 by clicking the Create button on that

blade. The Basics blade then requires a subscription, resource group, and

region. Additionally, you must set a name for the profile (see Figure 9-3).

Chapter 9 Implement CaChIng for SolutIonS

420

Figure 9-3. Creating a CDN Profile

The final step is to choose one of the product offerings, as shown in

Figure 9-4.

Figure 9-4. The product offerings are available for selection during
the CDN Profile creation

Optionally, you can create a new CDN endpoint during the initial

creation, but you can always add endpoints later. Once the profile is

Chapter 9 Implement CaChIng for SolutIonS

421

deployed, it can be leveraged for creating new CDN endpoints and caching

content globally for use in your solutions. If you’re following along, go

ahead and create the CDN Profile now.

 Product Offerings
Whether you are using the Front Door creation or just want to deploy a

classic Azure CDN Profile, you have four product offerings from which to

choose. They are shown in Figure 9-2 and Figure 9-4, and are Microsoft

Standard, Verizon Standard, Verizon Premium, and Akamai Standard.

The offerings do have some differences, with the most notable

differences being the size of files you can use (Akamai is better with

smaller files) and the ability to implement solutions with URL redirect,

mobile device rules, header settings, and caching rules, as well as a couple

of additional options that are only available at the Premium tier.

 Create an Endpoint
In order to work with the CDN once it’s deployed, you need at least one

endpoint. The endpoint is a resource that provides content to be delivered,

often from your subscription but optionally from another service or

endpoint outside of your Azure subscription. Endpoints can be one of the

following:

• Storage (Azure Storage)

• Storage static website (storage-based static site)

• Cloud service (another Azure Cloud Service)

• Web App (Azure App Service Web Apps)

• Custom origin (any public origin, including non-Azure

sources)

Chapter 9 Implement CaChIng for SolutIonS

422

Endpoints are easily created in the portal. On the CDN Profile blade,

select + Endpoint. When the Endpoint blade comes up, you need to

configure it with a name, then select from one of the origin types listed

previously.

For this demonstration, I chose Storage and selected a storage account

that I previously created. I also only include the /images folder. The

settings are shown in Figure 9-5.

Figure 9-5. Creating the endpoint for the CDN Profile

Chapter 9 Implement CaChIng for SolutIonS

423

Creating an endpoint can take a few minutes and propagating the

data can take up to ten minutes. Once the endpoint is working, blobs

that were accessible via the storage endpoint should now be accessible

from the CDN endpoint. For example, an image (found at https://www.

pexels.com/photo/photo-of-moon-47367/) with this path https://

az204storage20251231.blob.core.windows.net/images/pexels-

pixabay-47367.jpg is now available at https://az204cdn20251231.

azureedge.net/images/pexels-pixabay-47367.jpg. Essentially, the

blob storage endpoint is just replaced with the CDN endpoint for serving

the image.

 Caching Rules
Caching rules are used to define the lifecycle of your cached content as

well as how you handle requests—specifically if you want to consider the

query string or not.

There are ways to implement rules for the solution as provided by each

provider. Rules can be global or custom.

For the Microsoft CDN, the rules are done in the Rules engine, and for

the other offerings, they are available in similar tools. You can easily create

rules from the Rules Engine blade in the Azure CDN (see Figure 9-6).

Chapter 9 Implement CaChIng for SolutIonS

https://www.pexels.com/photo/photo-of-moon-47367/
https://www.pexels.com/photo/photo-of-moon-47367/
https://az204storage20251231.blob.core.windows.net/images/pexels-pixabay-47367.jpg
https://az204storage20251231.blob.core.windows.net/images/pexels-pixabay-47367.jpg
https://az204storage20251231.blob.core.windows.net/images/pexels-pixabay-47367.jpg
https://az204cdn20251231.azureedge.net/images/pexels-pixabay-47367.jpg
https://az204cdn20251231.azureedge.net/images/pexels-pixabay-47367.jpg

424

Figure 9-6. CDN endpoints can have rules configured for many
things, including overrides on TTL

 Global Caching Rules

Global caching rules affect all of the cached content on a single endpoint.

If a global caching rule is present, it takes precedence over every other

directive other than a custom caching rule for lifecycle management of the

cache objects.

Typical uses for global caching rules would be to set a default Time-To-

Live (TTL) for the cache, ensuring that items go stale after an expiration

date. In Figure 9-6, the default TTL of seven days is overridden to 14 days.

This is for all cached items on this endpoint.

 Custom Caching Rules

Custom caching rules allow you to configure specific rules based on the

route or extension for content. As these rules are typically more specific,

they take precedence over global caching rules.

Typical use of custom rules would be to allow content that rarely

changes or is larger in size to have a longer lifecycle. For example, a folder

with documents that only get updated at the start of a new fiscal year may

Chapter 9 Implement CaChIng for SolutIonS

425

be allowed to cache for a longer duration since the data won’t be stale for

an entire year. In Figure 9-6, a rule is created to expire the cache on mobile

devices after 30 minutes.

 Query String Caching

If you’ve been in web development for some time, you’ve likely enjoyed

the scenario where a JavaScript or CSS file was updated and deployed, but

client browsers have cached the file locally, and therefore the users don’t

get the expected content. Having been in that scenario, you likely have

utilized a solution where the file is appended with a query string that has

some sort of version number or timestamp.

For example, site.css might be site.css?v1.0 and site.js might be

site.js?v20251231. The reason for the query string is to force the clients

to download the script or styles on the next deployment by changing the

version number. By changing the query string, the content appears to be

new on the client and the browser automatically fetches the new version of

the file.

CDN query string caching is essentially for this type of scenario, with

a couple of baked-in options that you can configure via rules. The rules

are: ignore query strings, bypass caching for query strings, and cache every

unique URL. Figure 9-7 shows the configuration for the endpoint.

Figure 9-7. Setting the caching rules to cache every unique URL

Chapter 9 Implement CaChIng for SolutIonS

426

Ignore Query Strings

If you create the rule to ignore query strings, you essentially cache

the object by the default route and any version or other query string

information is not considered when evaluating content for updating.

Even though the query string is ignored here, the content still adheres

to the predetermined TTL.

Bypass Query String Caching

If you set the rule to bypass the query string caching, then no caching will

take place and all of the requests for the content will go to the server. Since

there is no caching here, there is no concern with stale or expired content

and no need to configure TTL on the content.

Cache Unique Query Strings

Caching unique query strings is similar to the solution for the changing

files. In this solution, however, consider that this path and query string

combination is not just for static files that need to be versioned, but could

be for caching the result or content for specific routes with filters set by the

user. If there are a number of possible content results for a path based on

these filters, you will definitely want this option.

 Time to Live (TTL)
Time to live is how you make sure that content doesn’t just live forever on

the edge nodes. By default, Azure has a TTL of seven days on content. You

can modify this to be more or less than the seven days. If you don’t set a

TTL or you set the TTL to 0, then the default of seven days will apply.

Additional scenarios also affect the default storage. For example, large

files default to expire after just a single day, while other considerations

like live or on-demand video—which is typically buffered—can have the

buffered data cached for an entire year by default.

Chapter 9 Implement CaChIng for SolutIonS

427

 Purging Content
Even with TTL and versioning, sometimes your best solution is to clear

out the nodes and start over, or to just delete some content that is no

longer needed.

Purging the content can be done for all content or for specific content

as needed. This operation can be accomplished via code in .NET or by

running commands utilizing the Azure CLI. Additionally, you can purge

the endpoint content via the portal, as shown in Figure 9-8.

Figure 9-8. You can easily purge endpoint content from the portal

 Point of Presence (PoP)
The Azure CDN works by having edge nodes distributed geographically

for serving the cached static content. When you create your Azure CDN

Profile, you get the ability to manage the nodes. These nodes are called

Point of Presence (PoP) nodes. Often the PoP nodes are referenced as edge

nodes. PoP nodes are set in specific cities for each geographic region.

Chapter 9 Implement CaChIng for SolutIonS

428

 Order of Operations

When utilizing the Azure CDN, it’s important to understand how the

content is cached and how the client gets the data. This is mostly intuitive,

but bears enough weight to make sure it’s very clear. The order of

operations is the following:

• Step 1: The user makes a request to the page that

requires cached content.

• Step 2: The PoP node checks if it has the content.

If not (i.e., this is the first request or the TTL has

expired), then the PoP requests the content from the

central source.

• Step 3: The content is sent to the PoP from the

central source.

• Step 4: The PoP caches the content locally.

• Step 5: The PoP returns the content to the client, who

can see the content as requested.

• Step 6: Second and consecutive requests within the

TTL for the document are made to the application.

• Step 7: The PoP has the content and returns from

the cache to the client without making a request to

the server.

If you want to see a detailed diagram of this flow, review this Microsoft

Learn document and scroll down just a bit: https://learn.microsoft.

com/azure/cdn/cdn-overview.

Chapter 9 Implement CaChIng for SolutIonS

https://learn.microsoft.com/azure/cdn/cdn-overview
https://learn.microsoft.com/azure/cdn/cdn-overview

429

 Pre-Loading Content
As explained in the PoP section, the first request for static content requires

a call to the server to get the content. In some scenarios, you may want to

mitigate the latency caused by this request to the server.

To avoid the scenario where a user or client request has to wait for

content to be propagated to the edge node via the request, you can

manually force the data to be present on the node by pre-loading the

content. For some endpoints, you can navigate to the edge node in the

portal and load the content manually.

 Geo-Filtering Content
Another nice feature of the CDN is the ability to configure geo-filtering for

the CDN content. This is a simple solution that allows you to configure

a single allow or deny rule. For example, you might only allow content

delivery for a single country, or for a group of countries via this rule. In

contrast, you might leave it open to all but a few countries (see Figure 9-9).

Figure 9-9. The geo-filtering rule allows configuration of an allow or
deny list of locations

Chapter 9 Implement CaChIng for SolutIonS

430

 Interact with the Azure CDN via .NET Code
Working with the Azure CDN from code is not trivial, in that you must

have active credentials, you will likely need to create an app registration

and authenticate via that registration, a storage account origin, and you

must utilize the Azure.ResourceManager.Cdn library to work with the CDN

Profiles and Endpoints from code.

If you want to review how to work with the CDN from code, you can

review this resource: https://github.com/Azure/azure-sdk-for-net/

blob/main/sdk/cdn/Azure.ResourceManager.Cdn/samples/Sample1_

ManagingCdnOriginGroups.md.

Additionally, the MS Learn Modules for this section include additional

sample code for you to review, although, at the time of this writing, the

samples on MS Learn currently utilize the Microsoft.Azure.Management.

Cdn.Fluent library, which is marked as deprecated.

 Caching for Optimization
The static content in a CDN clearly has some advantageous effects on

optimization for delivery of content that doesn’t change often. When

it comes to content that does have the potential to change or is from a

dynamic source, such as user input or database tables, caching data or

settings can be a great addition to optimize your solutions.

Before diving into Azure Cache for Redis, which is a focal point of

the AZ-204 Exam, it’s important to note that Redis Cache is not the only

caching solution. In fact, you can create an in-memory cache with the

.NET IMemoryCache object.

The IMemoryCache object can be injected into controllers and utilized

to cache user settings or data from a database table just as easily as using

Redis Cache. However, Redis Cache can provide some additional benefits

as it’s more than just a basic caching solution. For example, IMemoryCache

Chapter 9 Implement CaChIng for SolutIonS

https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/cdn/Azure.ResourceManager.Cdn/samples/Sample1_ManagingCdnOriginGroups.md
https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/cdn/Azure.ResourceManager.Cdn/samples/Sample1_ManagingCdnOriginGroups.md
https://github.com/Azure/azure-sdk-for-net/blob/main/sdk/cdn/Azure.ResourceManager.Cdn/samples/Sample1_ManagingCdnOriginGroups.md

431

objects can’t execute in transactions, and IMemoryCache objects will be

stored in the application memory, which could be limited or cause some

other performance issues.

If you want to learn more about working with IMemoryCache, you can

review this Microsoft Learn document: https://learn.microsoft.com/

aspnet/core/performance/caching/memory?view=aspnetcore-7.0.

 Redis Cache
Redis Cache is a standalone solution that is developed and sold by Redis

Labs. It is available as an open source solution, which can be utilized

without cost, and as an Enterprise solution, which provides additional

features and also has a cost associated with it. Redis also has its own

cloud solution where you can purchase a Redis Cache instance on the

Redis cloud if you want to work with Redis but host outside of Azure for

some reason.

In addition to the Redis cloud, you can also set up your own Redis

servers and maintain them. Configuring and supporting an Enterprise

server is not trivial, but is also not outside the ability of most IT

professionals.

Utilizing Azure Cache for Redis will merge the best of both worlds, with

a preconfigured solution that is managed by Azure with all of the power

and capabilities of a complete Redis Cache solution.

 Azure Cache for Redis
Azure Cache for Redis is the recommended solution for a robust caching

solution within Azure, and you need to be familiar with the service and

how to implement .NET code against Azure Cache for Redis as part of the

AZ-204 Exam.

Chapter 9 Implement CaChIng for SolutIonS

https://learn.microsoft.com/aspnet/core/performance/caching/memory?view=aspnetcore-7.0
https://learn.microsoft.com/aspnet/core/performance/caching/memory?view=aspnetcore-7.0

432

Azure Cache for Redis is a preconfigured solution that has several tiers

that offer various throughput and distribution options, as well as the ability

to leverage Redis modules.

Provisioning Azure Cache for Redis is easily accomplished in the portal

and typically takes about 15 minutes to fully provision and deploy across

the Azure ecosystem.

 Cache Types
When deploying the Azure Cache for Redis instance, after selecting your

subscription, resource group, and region, you need to provide a valid

unique name that will be accessible via the public endpoint of your name

followed by redis.cache.windows.net. With all of that configured, you

need to choose the appropriate cache type.

Figure 9-10 shows the creation of an Azure Cache for Redis instance

at the Basic tier with the option C0. This is the least expensive and lowest

performance tier you can buy in Azure.

Figure 9-10. Deploying the Basic C0 tier Azure Cache for Redis
instance

Chapter 9 Implement CaChIng for SolutIonS

433

The following choices exist for creating an Azure Cache for Redis

instance: Basic, Standard, Enterprise, and Enterprise Flash. Within each

cache type, there are tiers that allow your solution to have various levels of

throughput, memory, distribution, and resiliency.

 Open Source Redis

The cache types available that utilize the open source version of Redis

Cache are Basic, Standard, and Premium. All distinct data from this section

is available at https://azure.microsoft.com/pricing/details/cache/.

Basic Cache

The Basic Cache type is the entry-level version of Azure Cache for Redis.

You will only use this for development and testing purposes. This tier

has no resiliency, as it is implemented on only one virtual machine. If

that single machine is down, you have no access to your cache. As such,

there is no SLA for this version of Azure Cache for Redis. This basic

implementation can have from 250 MB to 53 GB of memory. The basic

cache instance can connect a maximum of 256 clients with a maximum of

20,000 connections. You can also connect to this cache via an Azure private

link network connection. There is no capability to use this cache type on a

virtual network (see Figure 9-11).

Chapter 9 Implement CaChIng for SolutIonS

https://azure.microsoft.com/pricing/details/cache/

434

Figure 9-11. The Basic tier only allows for implementation with
a public endpoint or a private endpoint for network isolation. You
cannot deploy to a virtual network at this tier

Additional options exist for all tiers when deploying. In Figure 9-12, the

options are shown to choose the version of Redis to implement. Typically,

you would use the latest version. Additionally, you can expose the instance

via a non-TLS port. The reason this option exists is to allow Redis tools to

connect to the instance. Unless you need to directly connect with a Redis

tool or a client that doesn’t work with TLS, you should leave this option

unchecked.

Figure 9-12. The Advanced options offer the ability to leverage an
older version of Redis and enable a non-TLS port

Chapter 9 Implement CaChIng for SolutIonS

435

Standard Cache

Azure Cache for Redis in the Standard tier offers the same throughput,

networking, private link, memory, and connection offerings as the Basic

tier. The standard cache is implemented in multiple virtual machines,

however, so this is the first tier that offers an SLA, which is three nines (99.9

percent). With the implementation of multiple virtual machines, you get

replication and failover, but you do not get any zone redundancy within

regions in the standard cache. Additionally, this tier does not offer any geo-

replication or the ability to exist on a virtual network.

Premium Cache

Azure Cache for Redis in the Premium tier has quite a bit more power than

the previous offerings. At the Premium level, you get the same replication

and failover as with Standard, but you are now implemented on much

more powerful virtual machines, and you get zone redundancy and geo-

replication in an active-passive configuration. Most importantly, this is

the only offering where you can create the instance on a virtual network

in Azure.

The SLA for this tier is also just three nines, but the memory size is

higher, from 6 GB to 120 GB of memory. This tier can also leverage up

to 7,500 clients with 40,000 active connections. Finally, this tier can take

advantage of Redis data persistence and Redis cluster functionality.

 Enterprise Redis

Azure Cache for Redis at the Enterprise level allows you to leverage the full

benefits of Redis Enterprise. At this level, there are two offerings within

Azure—Enterprise and Enterprise Flash.

Chapter 9 Implement CaChIng for SolutIonS

436

Enterprise Cache

Azure Cache for Redis Enterprise gives you all of the benefits of an Azure-

managed service with a fully-implemented and managed installation of

Redis Enterprise. At this tier, you get an SLA of five nines (99.999 percent).

This tier also gives you full ability to have replication and failover, zone

redundancy, and geo-replication in an active-active configuration. You

also get the ability to leverage Redis data persistence and clustering. The

memory size is 12-100 GB and the connection limits are 50,000 clients,

with up to 200,000 active connections.

The main benefit of this tier on the Enterprise level is the ability to

leverage Redis modules. These modules are powerful tools to handle

additional workloads. For example, you can leverage RediSearch to

gain powerful query tools into your cache. You may also leverage

RedisTimeSeries to do things like take a time-series analysis of data that

is being pushed into Redis in an IoT streaming scenario. Other modules

include RedisJSON and RedisBloom, both of which are available on

this tier. Redis on Flash (storing your data into a database on persistent

storage) is not available on this tier. You cannot utilize this tier in a virtual

network.

Enterprise Flash Cache

Azure Cache for Redis in the Enterprise Flash version is a lightweight

implementation of Redis Enterprise built for storing massive amounts

of data at an affordable price, which is available with the Redis on Flash

module from Redis Enterprise. In this offering, you get persistence to a disk

instead of just volatile RAM. This persistence is typically less expensive

and much more durable. However, there can be some performance

implications of utilizing persistent storage instead of just having data

in-memory.

Chapter 9 Implement CaChIng for SolutIonS

437

Like the regular Enterprise offering, you get an SLA of five nines, all

the same replication and redundancy offerings and configurations, the

same amount of connections, and the ability to leverage RediSearch and

RedisJSON. RedisBloom and RedisTimeSeries are not available on this tier.

You also cannot utilize this tier in a virtual network. Limits on this tier are

much higher for memory, ranging from 384 GB to 1.5 TB due to the ability

to offload to persistent storage.

 Caching Patterns
As you are implementing cache and preparing for the AZ-204 Exam,

there are a couple of caching patterns that you need to be aware of and

potentially able to implement at a minimal level. Redis Cache and Azure

Cache for Redis give you a great ability to implement these patterns in your

solutions.

 Data Cache (Cache-Aside)

Caching your data is probably the most common use of any cache

implementation, whether you are using Redis or not. In one of the

examples later in this chapter, you see an implementation of the Cache-

Aside pattern using Azure Cache for Redis.

To implement this pattern, you generally need to write code to read

and write data to and from cache while also keeping it fresh with the

database. For example, any form that takes an address for someone from

the United States typically requires all 50 states, as well as potentially D.C.,

Puerto Rico, and any other U.S. territories to be available in a drop-down

list. The likelihood of this data changing throughout the year is about

.0000001 percent (this is a made-up number, of course). Considering that

the data doesn’t change often, if ever, it doesn’t make sense to query all the

way to the database every time a page needs to render the data. For this

reason, the first call to get the data makes the call to the database and then

Chapter 9 Implement CaChIng for SolutIonS

438

adds information to the cache. From then on, the second and consecutive

calls will just leverage the data from the cache, easing the burden on your

database servers and also increasing the responsiveness of the pages to the

clients.

When data does change, your code needs to make sure to invalidate

the cache so that the next request will refresh the data. Additionally, cache

typically has a time-to-live (TTL) that can be configured as data is written

to the cache. If the TTL expires, then the next request will refresh the data.

 Content Cache

As you saw earlier with the CDN, you can choose to cache content that is

static so that the server doesn’t need to continually serve this content to

the user. This Content Cache pattern is the same whether using the CDN

or using a service like Azure Cache for Redis.

The interesting thing to remember about Redis Cache is that you can

store cache items as binary byte arrays, which could provide for better

performance and consume less size and throughput while giving you full

control of all the bits. You can also serialize objects to JSON and store that

data, which can be highly useful as a type of NoSQL store.

 Session Store

In the web development world, sessions are mostly a necessary evil. The

stateless nature of the web combined with our ever-present desire to store

state leads to things like needing to manage if a user is signed in or perhaps

give the user an ability to configure individual settings for a site. In these

scenarios, a cookie typically can be used, and the cookie then either stores

the settings or a session token; the user information for a client can then be

validated by sending this session token along with any request.

With Azure Cache for Redis, you can leverage the idea of session

storage and eliminate the need for cookies on a client machine. This

implementation can also be useful for things like managing the active

Chapter 9 Implement CaChIng for SolutIonS

439

user credentials. With Azure Cache for Redis, you can also get similar

functionality to the implementation of a Cosmos DB, so those same

types of implementations might also be useful for things like storing user

choices for settings and configuration or potentially tracking user actions

throughout the site.

 Messaging

The messaging pattern is the ability to disconnect operations from

the client to the server. This pattern allows for the client to operate

independently of any backend processing. Additionally, this pattern allows

either side to scale at will and only when necessary.

When a solution is not decoupled, you must have backend processing

in place at the correct level to handle load as requests come in from

the frontend. If your frontend gets a spike, your backend must handle

it accordingly. If the level of load cannot be handled, the frontend can

become unresponsive to the user. Giving the frontend the ability to operate

and take requests as fast as possible can be the difference between a few

dollars and a few million dollars in sales, depending on what you sell and

how many sales you would lose if the system were too slow.

By creating a message queue, you can take incoming requests as fast

as possible and then process them on the backend when available. This is

typically called “temporal decoupling.” Additionally, the frontend or the

backend can scale independently so that they can process workloads in a

cost-effective manner without causing problems for the user.

In Chapter 13, you look at using Service Bus and Azure Storage for

message queueing solutions within the Azure ecosystem. There you learn

more about the internal workings of messages and how to interact with

them in Azure.

Another example of this implementation could be to leverage a

message queue within your Azure Cache for Redis implementation. You

would need to write the appropriate code to issue commands against

Chapter 9 Implement CaChIng for SolutIonS

https://doi.org/10.1007/978-1-4842-9300-3_13

440

your Redis queue. If you are interested in looking into this in more detail,

consider reviewing this document: https://learn.microsoft.com/

azure/architecture/solution-ideas/articles/messaging.

 Transactions

Most seasoned developers should be in command of the idea of a

transaction, executed by starting the transaction, issuing commands,

and then committing the transaction when there are no errors and data

integrity is maintained.

Utilizing transactions from Azure Cache for Redis is possible, which

allows you to create batch transactions against your cache instance. This

can be highly useful to make sure to keep things synchronized. In the case

where something can’t be performed, you don’t end up with cached data

that is not accurately representing data from an underlying data store.

 Networking
As mentioned, in the various types of cache, only the Premium tier allows

you to utilize a private network within Azure for caching your data. All

other tiers require that you connect via a private endpoint if you want to

ensure that your network traffic is isolated.

Utilizing a private network ensures that your data is not available over

the public Internet, which can be considered more secure. This could be

an important requirement for compliance and can be used to ensure that

interaction with the cached content works only from other solutions on the

same network.

Chapter 9 Implement CaChIng for SolutIonS

https://learn.microsoft.com/azure/architecture/solution-ideas/articles/messaging
https://learn.microsoft.com/azure/architecture/solution-ideas/articles/messaging

441

 Clustering
In typical instances of Azure Cache for Redis, data is placed on a single

node, and as long as that node is available, you can get your data.

Clustering gives you the ability to place your data on multiple nodes,

and essentially split your data across the nodes. This is a very beneficial

practice for resiliency of your data, as more nodes means better availability

and potentially better throughput to the end user. An additional

consideration here is that sharding your data leads to a greater ability to

scale your solutions.

When I’m training AZ-204 live, I always like to show one potential

concern with the ability to cluster data. The concern is the overall cost.

Earlier, an instance was provisioned that runs a little less than $20 per

month. However, at the Enterprise level, costs are much higher, as shown

in Figure 9-13.

Chapter 9 Implement CaChIng for SolutIonS

442

Figure 9-13. Enterprise Azure Cache for Redis can be much more
expensive with increased options

Chapter 9 Implement CaChIng for SolutIonS

443

To be clear, it’s not the cost that is concerning here: the cost is based on

getting some super powerful enterprise-level features. What’s concerning

is when you start to shard this out and choose to do this on up to ten

nodes. You pay the same price for each node, and you can do the math

on the numbers multiplied by ten, per month. Again, this is not to say you

wouldn’t have a use case where that performance is necessary, but more to

just be that little warning voice: make sure you don’t just randomly deploy

to ten nodes, because you will be paying for each node.

 Redis Commands
There are several common commands that you will want to be aware of as

you prepare to implement Azure Cache for Redis and also as part of your

journey toward the AZ-204.

To make this section useful and memorable, the commands are

presented alongside code that implements the commands, and a sample

project is available for you to practice the commands.

The following sections give you a quick overview of some of the

commands available for use against a Redis Cache, which can also be

found in the comprehensive list at https://redis.io/commands/. As

the interaction for the .NET client will happen via the StackExchange.

Redis NuGet package, you may also find the documentation at https://

github.com/StackExchange/StackExchange.Redis/blob/main/src/

StackExchange.Redis/Enums/RedisCommand.cs.

Despite all of the commands available, you just need to work with a

few of them to be ready for most usage scenarios and the AZ-204 Exam.

Before getting started with commands, you have to connect to the Azure

Cache for Redis instance.

Chapter 9 Implement CaChIng for SolutIonS

https://redis.io/commands/
https://github.com/StackExchange/StackExchange.Redis/blob/main/src/StackExchange.Redis/Enums/RedisCommand.cs
https://github.com/StackExchange/StackExchange.Redis/blob/main/src/StackExchange.Redis/Enums/RedisCommand.cs
https://github.com/StackExchange/StackExchange.Redis/blob/main/src/StackExchange.Redis/Enums/RedisCommand.cs

444

 Working with Redis Cache via .NET
To work with the cache, you must compose an object and connect to the

database, and then you can issue commands. To connect to the database,

you must have a connection string. The connection string is easily found in

the portal on the provisioned instance via the Access Keys blade, as shown

in Figure 9-14.

Figure 9-14. The connection string information is easily found in the
Access Keys blade in the Azure Portal for the deployed Azure Cache for
Redis instance

 Redis Connection String Information

The instance has a Primary and a Secondary key, both of which can be

recycled easily. The connection string is the name of the deployed cache

(i.e., az204examref-20251231.redis.cache.windows.net) followed by

the typical Redis access port of 6380, then the password (which is just the

primary or secondary key), then a setting to ensure SSL is set to true by

Chapter 9 Implement CaChIng for SolutIonS

445

default and a setting to abort connections if the cache is unreachable set

to false by default. For example, something like this with a valid name and

password for your instance:

your-instance-name.redis.cache.windows.net:6380,password=your-

primary- or-secondary-key,ssl=True,abortConnect=False

The practice project expects you to put the connection string into your

user secrets file with JSON, as follows:

"AzureSettings": {

 "RedisCache": {

 "ConnectionString": "your-connection-string"

 }

}

With that in place, you can execute the creation of the database object

and connect to it.

 Create the Connection Multiplexer and Connect

To connect to the database, you need to make sure your project has

included the StackExchange.Redis NuGet package (already included in

the sample application).

Always remember that most things in Azure require a hierarchy and

Azure Cache for Redis is no different. Here, first you create the connection

object as a ConnectionMultiplexer, then connect it to a single command

in the pattern ConnectionMultiplexer.Connect(your-connection-

string). The connection multiplexer allows for reusing connections

(similar to a database connection pool). In the sample application, reading

from the user secrets, the ConnectionMultiplexer object can be created as

follows:

Chapter 9 Implement CaChIng for SolutIonS

446

private static Lazy<ConnectionMultiplexer> redisConnection= new

Lazy<ConnectionMultiplexer>(() =>

{

 var redisConnectionString = _configuration["AzureSettings:

RedisCache:ConnectionString"];

 return ConnectionMultiplexer.Connect(redisConnection

String);

});

 Create the Database Object

With the connection object, you can easily get a reference to the database:

var db = redisConnection.Value.GetDatabase();

This object stored in the db variable is of type StackExchange.

Redis.IDatabase. The IDatabase object db can use synchronous and

asynchronous commands.

 Run the Commands

Once you have the database object, you can run commands. The following

commands are important enough for the exam to be mentioned here,

but this is not an all-inclusive list. It is also important to note that these

commands may not be part of your exam and your exam may potentially

contain a command not listed in these examples.

PING/PONG

The first command you should run is the PING command, which should

elicit a PONG response (see Figure 9-15).

Chapter 9 Implement CaChIng for SolutIonS

447

// Simple PING command

var cacheCommand = "PING";

Console.WriteLine("\nCache command : " + cacheCommand);

Console.WriteLine("Cache response : " +

db.Execute(cacheCommand).ToString());

Figure 9-15. The PING/PONG command is executed to prove access
to the cache is working as expected

StringSet

To store information in the cache, you can simply send information as a

string, including the key and the value with the method StringSet, passing

the key and value as the first and second parameters to the method.

For example, the cache key of "Message" and the string "Hello! The

cache is working from a .NET console app!" can be stored with the

following code:

var key = "Message";

var msg = "Hello! The cache is working from a .NET

console app!";

Console.WriteLine("Cache response : " + db.StringSet(key, msg).

ToString());

The output is shown in the next command.

Chapter 9 Implement CaChIng for SolutIonS

448

StringGet

To get information from the cache as a string, simply call the StringGet

method with the key as the first and only parameter.

var msgValue = db.StringGet(key);

Console.WriteLine($"Message Retrieved: {msgValue}");

The output for StringSet and StringGet per the code examples is

shown in Figure 9-16.

Figure 9-16. The StringSet and StringGet methods allow the storage
and retrieval of key-value pairs in the Azure Cache for Redis instance
via the StackExchange.Redis NuGet package

Store Serialized JSON

With the same commands, you can easily take this to the next level and

store serialized JSON for use in your applications. The following code

illustrates this option (note that all code necessary is included in the

sample project, including a SecretAgent class):

SecretAgent agentBond = new SecretAgent("007", "James Bond", 36);

db.StringSet("a007", JsonConvert.SerializeObject(agentBond));

Console.WriteLine("Agent Info:");

var cachedAgentBond = JsonConvert.DeserializeObject<SecretAgent

>(db.StringGet("a007"));

Console.WriteLine(cachedAgentBond);

Console.WriteLine($"Name: {cachedAgentBond.Name}");

Chapter 9 Implement CaChIng for SolutIonS

449

This code functionality can be seen in Figure 9-17.

Figure 9-17. Serialized JSON is easily stored as a string in the Redis
Cache instance

List All Clients

You may be required to discern which clients are connected to your Azure

Cache for Redis instance. To do this, you can get a full list of all clients and

iterate it with the following code (the output is shown in Figure 9-18):

var clientList = db.Execute("CLIENT", "LIST").ToString().

Replace("id=", "|id=");

Console.WriteLine($"Cache response : \n{clientList}");

var clients = clientList.Split("|");

foreach (var client in clients)

{

 if (string.IsNullOrWhiteSpace(client)) continue;

 Console.WriteLine("Next Client:");

 Console.WriteLine(client.Replace("|id=", "id="));

}

Chapter 9 Implement CaChIng for SolutIonS

450

Figure 9-18. The clients connected are iterated via code

Additional Commands Not Shown

In addition to the commands shown, you could take some time to try other

commands against your Azure Cache for Redis instance. Look through

the commands listed on the db object to see commands for batching\

transactions, using hashes to set and get, resetting and removing keys, and

using streams to add, get, and remove.

 Cache-Aside in an ASP.Net MVC Application
Working with Azure Cache for Redis from a traditional MVC application is

a bit more involved than you might think it would be based on the previous

commands. The reason it is more difficult than expected is because getting the

Redis Cache constructed for utilization an injectable object requires a bit more

work from a connection helper class. Some of this work is technically out of

scope for the AZ-204 Exam, but I’ve decided to include it because I believe it is

useful for any .NET developer working on traditional web solutions.

To conclude this chapter, modifications to the sample web project

used in previous chapters will enable Azure Cache for Redis and utilize the

Cache-Aside pattern to store information for the United States. If you’ve been

working along, feel free to utilize the code you already have in place. If you

skipped to this chapter, make sure you provision an Azure App Service and

utilize the Chapter 9 starter files. Note that the starter files have everything

commented out so that there won’t be any conflicts for things like Key Vault

and/or App Configuration settings that were created in the previous chapters.

Chapter 9 Implement CaChIng for SolutIonS

https://doi.org/10.1007/978-1-4842-9300-3_9

451

 Utilize User Secrets

To make this work with the .NET MVC project, you need to set the

connection information in your local user secrets (usersecrets.json) file.

You then need to place the connection string information into your Azure

Key Vault, your Azure App Configuration, or just into the configuration of

the app service before deploying the solution. Ideally, you would protect

your information other than the Redis instance name by putting the

connection information into an existing Key Vault (refer to Chapter 8 for

information on working with the Key Vault).

The settings you need are the same connection string information

retrieved for the previous application and the instance name for easily

leveraging it in code. The two settings necessary are shown here, with the

recommendation that you store the first two in your Key Vault.

"Redis": {

 "ConnectionString": "your-cache-name.redis.cache.windows.

net:6380,password=your-primary-key,ssl=True,abortConnect=

False",

 "RedisInstanceName": "your-cache-name"

}

Set the connection information locally for testing and utilize Key Vault

from the app service or app config in Azure (see Figure 9-19).

Figure 9-19. The Connection String information should be leveraged
from the Azure App Service via a secret stored in Key Vault

Chapter 9 Implement CaChIng for SolutIonS

https://doi.org/10.1007/978-1-4842-9300-3_8

452

With Azure, if you don’t have an Azure Key Vault, be extremely careful

where you store this information, as this connection string is valid for

connecting to your cache for any application from any source. You can also

rotate the keys after you complete the training if you’re concerned about

having exposed the secret.

 Inject Redis Cache into the Application

Included in the sample application is a class called RedisConnection.

The RedisConnection class is from the official samples found at https://

github.com/Azure-Samples/azure-cache-redis-samples/blob/main/

quickstart/aspnet-core/ContosoTeamStats/RedisConnection.cs. This

connection object allows the connection multiplexer to be configured and

used as a singleton within the .NET application.

In the Program.cs file, uncomment the code for working with Redis. In

the project, notice there is a second controller for working with the states.

This StatesCachedController is configured to leverage a provisioned

Redis Cache instance. Review the Program.cs code.

After configuration, the Program.cs file should have code that gets

the connection string information and the instance name from the

configuration file or settings based on the two keys:

Redis:ConnectionString

Redis:InstanceName

Additionally, the code to inject the StackExchangeRedisCache and the

singleton for the connection is now turned on:

builder.Services.AddStackExchangeRedisCache(options =>

{

 options.Configuration = builder.Configuration.GetConnection

String(redisCNSTR);

 options.InstanceName = redisInstanceName;

});

Chapter 9 Implement CaChIng for SolutIonS

https://github.com/Azure-Samples/azure-cache-redis-samples/blob/main/quickstart/aspnet-core/ContosoTeamStats/RedisConnection.cs
https://github.com/Azure-Samples/azure-cache-redis-samples/blob/main/quickstart/aspnet-core/ContosoTeamStats/RedisConnection.cs
https://github.com/Azure-Samples/azure-cache-redis-samples/blob/main/quickstart/aspnet-core/ContosoTeamStats/RedisConnection.cs

453

//Direct access to the cache

builder.Services.AddSingleton(async x => await RedisConnection.

InitializeAsync(connectionString: redisCNSTR));

Review the Controller Code

After uncommenting the code as directed, the StatesController.cs file

should now have two methods—one to AddOrUpdateCache and the other to

GetStatesFromCache. These two methods utilize serialized JSON and the

methods StringSetAsync and StringGetAsync:

private async Task<List<State>> AddOrUpdateStatesInCache()

{

 var states = await GetStates();

 var statesJSON = JsonSerializer.Serialize(states);

 //add to cache

 _redisConnection = await _redisConnectionFactory;

 await _redisConnection.BasicRetryAsync(async (db) =>

 await db.StringSetAsync(STATES_KEY,

statesJSON));

 return states;

}

private async Task<List<State>> GetStatesFromCache()

{

 _redisConnection = await _redisConnectionFactory;

 var result = (await _redisConnection.

BasicRetryAsync(async (db) =>

 await db.StringGetAsync(STATES_KEY))).

ToString();

 if (string.IsNullOrWhiteSpace(result))

 {

Chapter 9 Implement CaChIng for SolutIonS

454

 return await AddOrUpdateStatesInCache();

 }

 var data = JsonSerializer.Deserialize<List<State>>(result);

 return data;

}

A third method to InvalidateStates is used to clear the cache using

the KeyDeleteAsync method:

private async Task InvalidateStates()

{

 _redisConnection = await _redisConnectionFactory;

 await _redisConnection.BasicRetryAsync(async (db) => await

db.KeyDeleteAsync(STATES_KEY));

}

Each of the original controller methods to interact with states data is

updated to work against the cache and only make calls to the database as

required.

 Run the Code

To prove this works as expected, open SSMS, turn on SQL Profiler, and

watch as your database is accessed only when necessary. You will still be

able to interact with the data as required on any page, but the requests

won’t happen after the first query to get all states until the state data is

invalidated by a change from the user.

Note that the states are accessible on the States controller, which

doesn’t have a link. If you want to add a link, feel free to do so, or just go to

the home link and navigate to https://localhost:7137/States (change it

to your own port or URL if somehow different). The result is a Cache-Aside

implementation on states that doesn’t require multiple database calls once

the first call is made until the state data is edited and saved or states are

added or deleted (see Figure 9-20).

Chapter 9 Implement CaChIng for SolutIonS

455

Figure 9-20. The states data is now implemented in the Azure
Cache for Redis instance and is leveraged from the .NET Core MVC
Application

Additional Resources

This code is adapted from a talk I did a while back for the Redis User Group. To

prepare for that talk and to build that code, I leveraged a number of resources.

If you want to, you can review all of my information on this public GitHub link,

which includes detailed information about where I got the sample code and

additional Learn modules that I utilized to build this solution:

https://github.com/blgorman/UsingRedisWithAzure/blob/main/

RedisNotes.md

Chapter 9 Implement CaChIng for SolutIonS

https://github.com/blgorman/UsingRedisWithAzure/blob/main/RedisNotes.md
https://github.com/blgorman/UsingRedisWithAzure/blob/main/RedisNotes.md

456

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solution(s). You can find

answers to these questions in Appendix A at the end of this book.

 1) What are some benefits of caching?

 2) What is a CDN? How do you implement a CDN

in Azure?

 3) What types of information are ideal candidates to

host on a CDN?

 4) How does a CDN work in relation to user requests,

serving data, and Time-To-Live (TTL)?

 5) What are some reasons you would choose to use

IMemoryCache instead of Redis Cache? Why might

you choose Redis over IMemoryCache?

 6) What offerings are available for Redis Cache? Which

can be implemented on a private network? Which

offerings leverage Redis modules (RediSearch, etc.)?

 7) What are some of the basic commands to work

with Redis?

 8) How do you interact with Redis Cache from

.NET code?

Chapter 9 Implement CaChIng for SolutIonS

457

 Complete the AZ-204: Integrate Caching
and Content Delivery Within Solutions
To fully learn the material, I recommend taking the time to also complete

the MS Learn modules for Integrating Caching and Content Delivery

within solutions found here:

• Develop for Storage on CDNs: https://learn.

microsoft.com/training/modules/develop-for-

storage-cdns/

• Develop for Azure Cache for Redis: https://learn.

microsoft.com/training/modules/develop-for-

azure-cache-for-redis/

 Chapter Summary
In this chapter, you learned about working with the Azure CDN and Azure

Cache for Redis to optimize your solutions and deliver content efficiently

by caching static content.

After working through this chapter and the Microsoft Learn modules,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Work with Azure Cache for Redis, including how to

leverage TTL and expiration of THE cache, as well

as how to set, update, and purge cache data via the

StackExchange.Redis NuGet package.

• Understand different caching patterns, including

Cache-Aside, Session Store, Messaging, and utilization

of transactions.

Chapter 9 Implement CaChIng for SolutIonS

https://learn.microsoft.com/training/modules/develop-for-storage-cdns/
https://learn.microsoft.com/training/modules/develop-for-storage-cdns/
https://learn.microsoft.com/training/modules/develop-for-storage-cdns/
https://learn.microsoft.com/training/modules/develop-for-azure-cache-for-redis/
https://learn.microsoft.com/training/modules/develop-for-azure-cache-for-redis/
https://learn.microsoft.com/training/modules/develop-for-azure-cache-for-redis/

458

• Leverage the Azure Cache for Redis to store key-value

pairs and understand the limitations of using keys

within Redis, specifically remembering to use a key that

is small but effective at describing/grouping the data.

In the next chapter, you learn about supporting and troubleshooting

your Azure solutions using metrics, queries, dashboards, ping tests, and

log data with Application Insights, Kusto Queries, dashboards, and the

Azure Log Analytics Workspace.

Chapter 9 Implement CaChIng for SolutIonS

459

CHAPTER 10

Troubleshoot
Solutions by Using
Metrics and Log Data
Your application is deployed, and everything seems to be going well

for many days. Suddenly, you start getting calls from your users due

to errors with the application. If only you had some way to be notified

when pages are not responsive, files are missing, network traffic isn’t

responding, databases aren’t working, or servers are overloaded. The

good news, of course, is that you do have a way to know this information,

and it’s generally very easy to implement. In fact, some things are already

implemented for you just by deploying your solutions to Azure.

However, what is the best approach for you when things do start to go

poorly? If you’ve set everything up correctly, you can utilize metrics and

logs together to send alerts and do postmortem queries to both be notified

when a problem is happening in real-time and to review the logs from

your solution within Azure to determine what was going on leading up to,

during, and even after the event.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_10

https://doi.org/10.1007/978-1-4842-9300-3_10#DOI

460

Additionally, you can use instrumentation like Application, Container,

or VM Insights and visualization tools like Power BI, Grafana, and/or Azure

Dashboards to make timely and effective decisions for scaling, responding

to problems, or other implementations like discerning the usage patterns

of your clients.

In this chapter, you learn about the tools and services available within

Azure for instrumentation and monitoring your solutions via Application

Insights from within a .NET application. You also discover how Azure logs

events and other information to Log Analytics. Additionally, you see how

to create availability tests and display relevant metrics and queries in a

dashboard.

 Azure Monitor
Azure Monitor is the backbone of the entire monitoring and alerting

solution in Azure. Within Azure, every event that takes place, from

powering on a virtual machine to deleting a storage account to restarting

an Azure Function App, is uniquely logged. These logged events can

then be queried for analysis. Without even doing anything additional on

your subscription, most solutions have a number of baked-in metrics for

making critical decisions around the performance of the service. These

default metrics are typically leveraged when creating autoscaling rules. In

addition to events and default metrics, your applications can track custom

telemetry by instrumentation with the Application Insights SDK, which

can be accomplished from either the server-side code or client-side scripts.

After data is collected into logs (stored in a Log Analytics Workspace),

the Azure Monitor ecosystem provides tools to query the logs in the

portal, which allows you to create powerful visualizations on the data.

Finally, with the same telemetry that is useful for autoscaling scenarios,

the telemetry can be utilized to send alerts to stakeholders or can be

monitored to trigger remediation actions for known issues.

Chapter 10 troubleshoot solutions by using MetriCs and log data

461

Within Azure Monitor, there are four main types of information, two of

which are generally critical for any solution. The four types are as follows:

• Metrics

• Logs

• Traces

• Changes

Of these metrics, the two that your solutions will likely leverage the

most for performance and issue analysis are metrics and logs.

 Metrics
Metrics are numbers that can be calculated and represent the state of a

service or provisioned resource at a specific point in time. Whenever a

solution is deployed in Azure, regardless of anything else you do, there are

typically some default metrics that will be logged within Azure Monitor,

and all you need to do is discern what interesting information you want to

review in order to utilize metrics.

For example, a deployed virtual machine will automatically have

metrics around things like memory and CPU utilization. The utilization

could be the exact current utilization percentage at this moment, or

it could be the average utilization percentage over the last hour. The

importance and concern around metrics will always be up to you and

your team, but in almost every scenario you would need, Azure is already

logging the data. Figure 10-1 shows a graph that highlights the average

CPU utilization for a VM over the past ten minutes.

Chapter 10 troubleshoot solutions by using MetriCs and log data

462

Figure 10-1. Metrics are gathered on any deployed virtual machine
with no additional configuration necessary

Once again, the metrics are already present, the only thing that was

necessary was creating an interesting view of those metrics. The example

in Figure 10-2 shows the number of requests that were good and bad

against the Key Vault instance deployed in Chapter 8.

Figure 10-2. Metrics are gathered on resources without any
interaction. Here, requests against a Key Vault instance are tracked
without any configuration

Chapter 10 troubleshoot solutions by using MetriCs and log data

https://doi.org/10.1007/978-1-4842-9300-3_8

463

 Logs
Logs are verbose pieces of information that are generated within Azure

or by custom telemetry from your solutions. In a log entry, information

is typically gathered to specify the type of information along with details

about what happened during the telemetry event.

Within Azure, the Log Analytics Workspace is the place where logs are

conglomerated. You can then drill into the logs for your Azure subscription

and run custom queries to determine what happened during an event

or specific sets of information, like the number of exceptions that have

occurred for a new deployment in the first hour of operation. Figure 10-3

shows exceptions in the scope of Application Insights that occurred more

than an hour ago.

Figure 10-3. Logs contain information that can be queried based on
interesting concerns

In Figure 10-4, the cryptography exception is expanded to show that

logs keep track of quite a bit more information than just a simple metric.

Chapter 10 troubleshoot solutions by using MetriCs and log data

464

Figure 10-4. The log entries contain a great deal of information
about each logged event

 Traces
Traces are typically used to track user interaction with pages or additional

instrumentation that you want to record based on page flow or any other

information that might help diagnose errors.

Traces are implemented via instrumented code and can be added

to a single app or can be instrumented across microservices or other

disconnected/distributed workflows. Figure 10-5 shows messages being

logged from the Azure App Service when the solution is instrumented to

utilize the TrackTrace() command.

Chapter 10 troubleshoot solutions by using MetriCs and log data

465

Figure 10-5. Application Insights telemetry can utilize the
TrackTrace() command to log additional information from user
interactions or application operations

 Changes
Change Analysis is utilized to view the logged events that have happened

on your Azure subscription that have mutated the state of any resource.

For example, Figure 10-6 shows changes on the Azure subscription for

the state of a virtual machine as it was shut down and deallocated (shown

as the top two changes that are tracked in Figure 10-6).

Chapter 10 troubleshoot solutions by using MetriCs and log data

466

Figure 10-6. A virtual machine logs all state changes as part of the
Azure Monitor ecosystem

 Different Components of Azure Monitor
As you’ve seen, Azure Monitor has several useful tools that are baked in

without having to do any sort of additional configuration. Since these

tools are baked in, there is no additional cost associated with them.

However, if you are concerned about cost, be aware that logging events

and telemetry into Log Analytics does have an associated cost. Therefore,

if you start logging terabytes (TBs) of data, you will incur fees associated

with the ingestion of that data. Along with the default telemetry recorded

in Azure Monitor for any Azure subscription, there are additional tools and

services that you can utilize to enhance your solutions for monitoring and

troubleshooting. These tools are as follows:

• Insights

• Visualizations

• Analytical tools

• Alerts and autoscaling

• Integrations and automation

Chapter 10 troubleshoot solutions by using MetriCs and log data

467

 Insights
Within Azure Monitor, there are several tools for instrumentation that give

additional insights into various platform solutions. These insights are as

follows:

• Application Insights

• Virtual Machine Insights

• Container Insights

• Network Insights

Typically, utilizing these insights requires additional work and/or

instrumentation to record the additional metrics and logs. For example,

later in this chapter, you see how easy it is to leverage Application Insights

from a .NET application. Although it is not trivial, you can also utilize

Container Insights to monitor your Kubernetes and Azure Container

Instances. Virtual Machine Insights can be installed via the portal, as

shown in Figure 10-7. Network Insights are typically ready to go with your

networks and help you validate things like IP Flow and client connections

via Network Security Groups (NSGs).

Chapter 10 troubleshoot solutions by using MetriCs and log data

468

Figure 10-7. Virtual Machine Insights can be easily installed on a
virtual machine from the Azure Portal

Once you’ve decided to enable insights, you need to create a collection

rule. For VM Insights, you can place your VM Insights in a Log Analytics

Workspace, or you can use the Default Azure Monitor space (see

Figure 10-8). Application and Container Insights are best stored in a Log

Analytics Workspace as well.

Chapter 10 troubleshoot solutions by using MetriCs and log data

469

Figure 10-8. Configuration of the VM Insights creates the logging and
directs to the log store of your choice

You can review the machines that are currently being monitored under

the Azure Monitor Insights, as shown in Figure 10-9.

Chapter 10 troubleshoot solutions by using MetriCs and log data

470

Figure 10-9. Azure Monitor has a number of blades in the portal to
easily review resources that are instrumented with insights

 Visualizations
Every metric and log that is recorded can be visualized in charts or graphs

in the portal. Alternatively, the metric or log data can be listed with the

information the entry contains in the portal (and can be found via Kusto

Queries). However, sometimes it’s important to get all the information

quickly and make it readily available for your users to make informed

decisions quickly. In those scenarios, you’ll likely want to leverage one or

more of the more powerful visualization tools.

Tools for visualization include but are not limited to the following:

• Azure Workbooks

• Azure Dashboards

• Power BI

• Grafana

Chapter 10 troubleshoot solutions by using MetriCs and log data

471

You get a chance to see the creation of an Azure Dashboard later in the

chapter, in the Kusto Queries section. The visualization tools are discussed

in more detail in the last part of this chapter.

 Tools for Analysis
For analysis, you’ll leverage one of the three main built-in services with

Azure Monitor. These analysis services are as follows:

• Metric Explorer

• Log Analytics

• Change Analysis

The Log Analytics blade is a major part of this chapter and is discussed

a few times in upcoming sections. You’ve already seen the Change Analysis

screen when talking about the deallocation of a virtual machine. Similar to

the Insights view, Monitor has a Metrics blade that lets you set scope and

determine any metrics for the subscription (see Figure 10-10).

Figure 10-10. The Metrics blade in Azure Monitor lets you select
any scope in your subscription and home in on a specific resource for
visualizing the data

Chapter 10 troubleshoot solutions by using MetriCs and log data

472

 Ability to Respond
With metrics available, you can set thresholds to monitor your solutions

and respond when things are not handling load appropriately. This can be

done by creating autoscaling rules.

In another scenario, perhaps you want to notify your development

team when something is happening that is of concern. For example,

perhaps you want to send an alert when a solution has recorded too many

exceptions in the past hour. This scenario is examined later in the chapter

in the Kusto Queries section.

 Integrations
In more advanced scenarios, you might need to mitigate some issue by

running a custom block of code or performing a workflow to send an email

or kick off other processes. In these scenarios, you can leverage an Azure

Logic App to perform operations to mitigate and/or remediate a problem,

send an email, or perform other automated responses to problems or

threats.

In addition to Azure Logic Apps, you might build integrations with

Azure Functions or even make a call to a third-party API endpoint when

certain key performance indicators are met or are failing to be met.

Typically, these integrations are handled via a custom alert. For the alert

action, rather than sending an email or SMS, the alert triggers the Azure

Function or Logic App.

Utilization of an Azure Logic App to mitigate conditions or respond

to an alert is not covered in this text, so if you want more information

about how to do this, you can review this Microsoft Learn link: https://

learn.microsoft.com/azure/azure-monitor/alerts/alerts-logic-

apps?tabs=send-email.

Chapter 10 troubleshoot solutions by using MetriCs and log data

https://learn.microsoft.com/azure/azure-monitor/alerts/alerts-logic-apps?tabs=send-email
https://learn.microsoft.com/azure/azure-monitor/alerts/alerts-logic-apps?tabs=send-email
https://learn.microsoft.com/azure/azure-monitor/alerts/alerts-logic-apps?tabs=send-email

473

 Utilizing Application Insights
One of the primary concerns for the AZ-204 Exam is your ability to

leverage Application Insights from within a .NET application. The first

thing you need to do is “instrument” the code by adding the Application

Insights tools into your application. For .NET, this is easily accomplished.

A demonstration of this is covered in the section on implementing

Application Insights.

With the instrumentation in place, you need to be aware of how to

utilize code to log information, exceptions, and/or create your own custom

tracking events.

The next section covers the basic creation and utilization of

Application Insights. It’s important to note that the sample application

already has some insights in place and is likely already logging telemetry

to your Azure App Service. Unless you specifically set the solution to

provision without Application Insights, the telemetry necessary is already

present in the application. Additionally, your app service deployment

should have configured your instrumentation key into the Azure App

Service Configuration Application settings (see Figure 10-11).

Chapter 10 troubleshoot solutions by using MetriCs and log data

474

Figure 10-11. The app service configuration is already set during
deployment unless you deployed without Application Insights

While this is perfect for your trusted production application, what

about insights from your development machine? The interesting thing

about Application Insights is that the telemetry can be logged from any

host, even if the host is outside of Azure—as long as the application is

instrumented correctly (an example is shown in the next section).

To do this, you need to deploy a new Application Insights instance

in Azure to store telemetry data from your development machine so that

the development telemetry is not contained in the same place as your

production telemetry. At this point, you should utilize the workspace-

based Application Insights and you can create a new Log Analytics

Workspace or share an existing one. Figure 10-12 shows the Creation blade

of a new Application Insights instance for tracking developer machine

metrics.

Chapter 10 troubleshoot solutions by using MetriCs and log data

475

Figure 10-12. The Application Insights for developer machine
metrics is configured for creation

Once the instance is created, navigate to the resource, get the

connection string and instrumentation key from the Overview blade, and

record that information for use in your application. These settings will be

manually configured into the application user secrets on the developer

machine.

Chapter 10 troubleshoot solutions by using MetriCs and log data

476

 Implementing Application Insights in .NET
To implement the Application Insights SDK for instrumentation, you

can easily just right-click the project in Visual Studio and select Add ➤

Application Insights Telemetry (see Figure 10-13).

Figure 10-13. Adding the Application Insights instrumentation to a
.NET application is easily accomplished in Visual Studio

While you can select a local version and just utilize local Application

Insights, I’ve personally found it easier to configure directly to Azure on

the dependency connection dialog, especially when it comes to then

deploying into Azure, as there is no doubt that the insights are being

recorded in Azure. Additionally, working in Azure means your insights will

be persistent and able to be queried in the Azure Portal (see Figure 10-14).

Chapter 10 troubleshoot solutions by using MetriCs and log data

477

Figure 10-14. The Connect to Dependency blade has options
for local or Azure-based insights. I recommend you choose Azure
Application Insights here

With the Azure option selected, the next screen requires you to log in

to your Azure account, and, once logged in, you will then select the specific

Application Insights to which you want to connect your application. Here,

I select the DefaultWebDeveloperInsights that was created previously, as

shown in Figure 10-15.

Chapter 10 troubleshoot solutions by using MetriCs and log data

478

Figure 10-15. Log in and then select the correct Application Insights
instance

On the Connect to Azure Application Insights dialog, leave the default

settings (see Figure 10-16).

Chapter 10 troubleshoot solutions by using MetriCs and log data

479

Figure 10-16. The final dialog lets you set the connection string
directly into the user secrets file

Note even though the solution says it will leverage the Secrets.
json file, for unknown reasons you’ll get your instrumentation key
set into your appsettings.json file as well. be sure to move
this setting to the secrets file and remove any other configuration
information in the user secrets file generated around application
insights. do not to push any secrets to github or azure devops by
accident.

Chapter 10 troubleshoot solutions by using MetriCs and log data

480

 Ensuring Application Insights Telemetry
Is Injected
To get the Application Insights telemetry injected into the application, first

you need to ensure that you’ve added the instrumentation SDK, which

should also bring in any missing NuGet packages. Additionally, make sure

you moved the configuration information from the appsettings.json file

into the user secrets file. With that in place, add the following line of code

to the Program.cs file (this is already present in the sample application for

this book):

builder.Services.AddApplicationInsightsTelemetry(builder.Config

uration["ApplicationInsights:ConnectionString"]);

Once that code is in place and you have the entry in your user

secrets, you can test your application. Before doing that, note how the

telemetry client is injected into controllers now that Application Insights is

configured as a service for your web application (see Figure 10-17).

Figure 10-17. The telemetry client is injected into the controller

Within the controller are a couple of methods to show how you can

easily leverage Application Insights from the code. The first is in the

Index method, where both secrets are traced using _telemetryClient.

TrackTrace("...").

Chapter 10 troubleshoot solutions by using MetriCs and log data

481

The second and third telemetry instrumentation statements are for

tracking an event and tracking an exception in the DemoLiveInsights

method. The code is as follows:

public IActionResult DemoLiveInsights()

{

 _telemetryClient.TrackEvent("EventTracked: Demo Live

Insights Viewed");

 try

 {

 throw new Exception("All exceptions can be easily

tracked!");

 }

 catch (Exception ex)

 {

 _telemetryClient.TrackException(ex);

 }

 return View();

}

With the code in place, along with injection, you can review the

information in Live Metrics in Azure, even when you are utilizing the code

from your local development machine.

 Reviewing Live Metrics
When an application is properly instrumented with Azure Application

Insights, you can review the live metrics in real-time in Azure. To view

live metrics, start the local application, then navigate in the portal to the

Application Insights blade for the developer insights instance.

Chapter 10 troubleshoot solutions by using MetriCs and log data

482

 Requests

The Live Metrics view has several metrics automatically configured and

available, including Request Rate, Request Duration, and Request Failure

Rate for incoming requests.

 Dependencies

For outgoing requests, note that Figure 10-18 validates the default outgoing

requests are shown for Dependency Call Rate, Dependency Call Duration,

and Dependency Call Failure Rate.

 Exceptions

The Live Metrics view also includes a view of the exception rate, along with

information about the health of the application. See Figure 10-18.

Chapter 10 troubleshoot solutions by using MetriCs and log data

483

Figure 10-18. The Live Metrics include a number of line charts
showing active information on the web solution

 Page Views/Server Performance

Just below the Live Metrics navigation item, the Performance navigation

item lets you see the overall performance of the server and even see the

performance of specific operations. You can use this to determine any

bottlenecks in your network traffic, or potentially you might notice a route

that is getting an extraneous number of executions and look for any bugs

that might be calling the route too many times (or perhaps find options to

cache the result of the route). Figure 10-19 shows the Performance blade

for your review.

Chapter 10 troubleshoot solutions by using MetriCs and log data

484

Figure 10-19. The Performance blade shows active routes and
performance information for the server

If you are interested in specific page views, you can utilize the Events

navigation item under the Usage section and filter to the Any Page View

option under the Who Used drop-down. The User Flows section is also

nice if you want to see how users are interacting with your site and what

happens before and after pages are visited or events are fired.

 User/Session Counts

Additional information on the Application Insights blade allows you to

drill in and see the number of active users and sessions. This information

isn’t super exciting on a single developer machine, but you can imagine

how useful this might be on a production application (see Figure 10-20).

Chapter 10 troubleshoot solutions by using MetriCs and log data

485

Figure 10-20. The users and sessions can be viewed in the
Application Insights blade

 Live Tracking of Trace, Event, and Exceptions

Another benefit of the live tracking of your application is you can

instantly review any trace, event, and exception information that is being

instrumented from your code. In the sample application, navigation to the

home page will generate a couple of traces to log information about the

configuration values retrieved. On the Demo Live App Insights blade, you

can quickly and easily see the logging of events and exceptions. The live

metrics are instantly shown as they occur, as shown in Figure 10-21.

Chapter 10 troubleshoot solutions by using MetriCs and log data

486

Figure 10-21. Live Metrics instantly shows events, exceptions, and
trace logs for review

 Client-Side JavaScript and AJAX Requests
In many scenarios, you’ll need to instrument your application from the client

side to enhance your monitoring. This is especially useful in a Single Page

Application (SPA). To do this, you need to add a simple script to the client side

of your application and include your instrumentation key in the JavaScript.

You can find more information about using Application Insights from

the client-side at https://learn.microsoft.com/azure/azure-monitor/

app/javascript?tabs=snippet#snippet-based-setup.

 Performing Availability Tests
Availability tests are critical to determining if a problem is occurring before

getting the influx of calls from users because pages are unresponsive.

There are a number of tests that you can utilize, and for the AZ-204 Exam

and in your day-to-day work, it’s likely important to discern which type of

test you would want to implement for various scenarios. All tests are found

under the Availability blade, which is under the Investigate heading in your

Application Insights instance (see Figure 10-22).

Chapter 10 troubleshoot solutions by using MetriCs and log data

https://learn.microsoft.com/azure/azure-monitor/app/javascript?tabs=snippet#snippet-based-setup
https://learn.microsoft.com/azure/azure-monitor/app/javascript?tabs=snippet#snippet-based-setup

487

Figure 10-22. The Availability blade in the Application Insights
instance contains the ability to create tests for availability on your
deployed applications

 URL Tests (Classic Test)
The simplest availability test just pings the URL that you specify. If no

response is received, the test fails. You configure how often to test and how

many failures to get in a row before sounding the alarm (see Figure 10-23).

Chapter 10 troubleshoot solutions by using MetriCs and log data

488

Figure 10-23. Creating a simple URL PING test

 Standard Test
In many scenarios, you need to validate health in addition to availability.

For example, consider an API endpoint that is returning data from a

database. Perhaps you want to validate that the data is included in the

Chapter 10 troubleshoot solutions by using MetriCs and log data

489

response. In another scenario, you might need to get various results based

on information you pass in the header of the request. In these scenarios,

you can utilize a standard test. Standard tests can also be used to validate

SSL validity.

 Custom Testing with TrackAvailability()
A third type of test can be used for tracking availability via custom code.

This test can be more complex because you control the code, so this test

requires a code change.

In the appkication's code, you can create a call to your telemetry

object’s TrackAvailability method. This allows you to trace the

availability of a specific route or method with much greater detail as to the

information involved in the request.

You can learn more about these tests at https://learn.microsoft.

com/azure/azure-monitor/app/availability-azure-functions.

 Application Map
Once an application has Application Insights telemetry, Azure will

automatically start graphing resource dependencies. After the application

is utilized for a few minutes and dependencies are leveraged, the

Application Map can be an invaluable resource for reviewing the network

traffic and identifying any bottlenecks. Figure 10-24 shows the Application

Map after a few requests are made and the user logs in to the website.

Chapter 10 troubleshoot solutions by using MetriCs and log data

https://learn.microsoft.com/azure/azure-monitor/app/availability-azure-functions
https://learn.microsoft.com/azure/azure-monitor/app/availability-azure-functions

490

Figure 10-24. The Application Map tracks dependency information
automatically once an application is configured correctly for
Application Insights

 Kusto Queries
Within Azure there are a couple of times that using Kusto Queries is

expected. The most important place this is used when preparing for

the AZ-204 Exam is in Log Analytics to gather information about your

applications from insights. If you get deeper into security and study for

other security exams, Kusto will be used for scenarios like threat-hunting

in Microsoft Defender (see this link for more information: https://learn.

microsoft.com/microsoft-365/security/defender/advanced-hunting-

query-language?view=o365-worldwide).

Kusto can be an incredibly frustrating language for traditional

T-SQL developers because everything will feel a bit backwards as to the

composition of a query. For example, a time-series event that happened

Chapter 10 troubleshoot solutions by using MetriCs and log data

https://learn.microsoft.com/microsoft-365/security/defender/advanced-hunting-query-language?view=o365-worldwide
https://learn.microsoft.com/microsoft-365/security/defender/advanced-hunting-query-language?view=o365-worldwide
https://learn.microsoft.com/microsoft-365/security/defender/advanced-hunting-query-language?view=o365-worldwide

491

within the last hour in T-SQL would be something like WHERE timeField >

DATEADD(hh, -1, GETDATE()). In Kusto, the query is something similar

to this:

traces

| where timestamp > ago(1h)

Note that the timestamp is part of the event, and the query is looking

for traces that happen since “1 hour ago until now”.

To run queries, you want to be set to the scope of the Application

Insights instance where the events, traces, and exceptions are happening.

On the Insights instance, select the Logs navigation item to run queries.

There are two types of queries that perform differently based on their

usage: log-based and pre-aggregated time-series.

 Log-Based Metrics
Log-based metrics require a query to gather the data and are therefore

a bit slower due to fetching data and conglomerating it as the query is

executed.

 Pre-Aggregated Time-Series
Pre-aggregated time-series metrics are conglomerated as they happen, so

these queries are highly performant.

 Creating an Alert Based on a Query
Typically, you will create alerts in Azure to handle notification of problems

within a solution or group of solutions. These alerts are part of the Azure

Monitor ecosystem. You can create alerts on any events within Azure, and

alerts require three things.

Chapter 10 troubleshoot solutions by using MetriCs and log data

492

• A signal

• An action group to notify

• How to notify the action group

 Signals

Signals are the condition to monitor. One signal can be a metric threshold,

such CPU utilization above 85 percent or memory utilization above 75

percent. Another signal might be based on a query, for things like too

many exceptions in the last hour. Yet another signal might be based on

a custom log entry, where the alert is fired because a critical failure has

occurred.

 Action Groups

Action groups are simple groups that need to be notified based on

common concerns. This could be a set of web administrators for a web

solution, database administrators for database alerts, and could even be

for security concerns. Based on the type of alert, the action group allows

the appropriate users to get notifications.

 Notification Methods

When a signal fires, the action group is notified. The notification methods

are configured in the action group, but it’s important enough to separate

this out to know the ways notifications can be sent. Notifications can

currently be sent via the following methods:

• Email

• SMS

• Push notifications

Chapter 10 troubleshoot solutions by using MetriCs and log data

493

Additionally, notifications or responses can be configured to

accomplish further tasks associated with the alert, such as:

• Trigger an Azure Function

• Trigger an Azure Logic App

• Place information into your IT Service Manager

ticketing system (ITSM)

• Send an event to the Azure Event Hub

• POST information to a webhook

• Run an Azure Automation Runbook

For this example, a custom query is created to generate an alert.

 Create the Query

Open the Logs blade in the Application Insights and create the following

query to test that it is valid:

exceptions

| where timestamp > ago(4h)

| count

Note that you may need to trigger some exceptions if none are showing

up. Assuming the count is greater than zero, you can create an alert rule.

Click + New Alert Rule in the Query Editor, as shown in Figure 10-25.

Chapter 10 troubleshoot solutions by using MetriCs and log data

494

Figure 10-25. Creating a new alert rule from a valid query

 Set the Alert Condition

Most of the information will fill in automatically when you create the rule

this way, but if you were creating the rule from scratch, you’d have to add

the query on this blade.

The Measure alert condition will be set to the count, with an

aggregation type of Total. You can set the granularity to make sense for

this alert. Perhaps the best implementation is to aggregate results every

30 minutes and then run the montor to fire only every 30 minutes to avoid

noise in your alert channels, while potentially keeping the costs down.

Truly, the costs around an alert are not individually excessive. (They are

usually around $0.10/alert, but can range to a higher number based on

frequency and the types of operations in the alert signal.)

For testing, set the aggregation and evaluation values to five minutes.

For the operator, set the value to Greater Than, and put a threshold value

of five as well, so if there are more than five exceptions in the previous four

hours, every five minutes you’ll get an alert (see Figure 10-26).

Chapter 10 troubleshoot solutions by using MetriCs and log data

495

Figure 10-26. The alert signal is the query, and the evaluation is
configured with an estimated cost of $1.50 per month

 Create the Actions

To get the action set, you need to create and select an action group, and

you need to determine who is in the action group and what the notification

channel will be.

Set the Basics

For the basics, configure the name and display name in the subscription

and resource group for the correct region (see Figure 10-27).

Chapter 10 troubleshoot solutions by using MetriCs and log data

496

Figure 10-27. The action is configured on the Basics tab

Set the Notifications

On the Notifications tab, select the type of notification, such as email/SMS

message/push/voice, and then name the notification type. On the blade,

enter any email and/or SMS information (see Figure 10-28).

Chapter 10 troubleshoot solutions by using MetriCs and log data

497

Figure 10-28. The notifications are configured for the new alert

Configure the Actions

In addition to email/SMS, you can configure additional options as

mentioned earlier. For this alert rule I’m not creating any additional

actions. Now that you’ve seen this operationally, you should be in

command of the idea of what it takes to utilize these alerts with various

actions like triggering an Azure Function or Logic App, sending an event to

the Event Hub, or posting to another webhook endpoint (see Figure 10-29).

Chapter 10 troubleshoot solutions by using MetriCs and log data

498

Figure 10-29. Configuring additional actions is optional but can be
a very powerful tool for monitoring your solutions in Azure

With the options selected, complete the creation of the action group.

Once the group is created, it will be associated with the rule you are in the

process of creating (see Figure 10-30).

Figure 10-30. The alert rule is configured with the newly created
action group

Chapter 10 troubleshoot solutions by using MetriCs and log data

499

 Details

When configuring the Details section, you can choose a specific severity

level from 0 (critical) to 4 (verbose) and then name the rule and give it a

description. Make sure to also set your region for the rule. Additionally,

you can configure advanced options around the rule and give metadata

around the rule for your own custom properties. Figure 10-31 shows the

configuration of the rule before creation.

Figure 10-31. Configuring the rule is completed

Chapter 10 troubleshoot solutions by using MetriCs and log data

500

Complete the rule, and you should start getting some email and/or

SMS notifications after about ten minutes or so, provided you have greater

than five exceptions in the last four hours. The SMS and email alerts are

both shown in Figure 10-32.

Figure 10-32. Alerts are sent to SMS and email as expected

 Visualization Tools
The last thing that you need to be in command of for the AZ-204 Exam

when it comes to monitoring your solutions is how to visualize the data.

Throughout this chapter you’ve seen some of the charts and logs that can

be utilized, but what do you do when you need to get a single pane of glass

to view all the information that is critical to you at once? You need to create

some sort of business dashboard.

Chapter 10 troubleshoot solutions by using MetriCs and log data

501

 Power BI
The tool that might be the most integrated into your current workflows and

team ecosystems is likely Power BI. Power BI is a Microsoft solution, and

you can get a free trial to learn how to use Power BI for building powerful

dashboards if you want to try it out. You should not need to know how

to create a Power BI dashboard for this exam, but it will likely be more

important to understand how to build visualizations as you move toward

the AZ-400 Exam for DevOps if that is your next step.

 Third-Party Solutions/Grafana
As an alternative to Power BI, you could consider creating dashboards in

a third-party solution such as Grafana. Once again, this is a bit beyond the

scope of the AZ-204 Exam.

 Workbook
A third option in Azure is to create an Azure Monitor Workbook. Creating

a workbook is typically outside of the scope of the AZ-204 Exam, but

is important enough to review, and would likely be within scope for

the AZ-400 DevOps Exam and the AZ-305 Architect Exam. For more

information on creating a workbook, review the following link: https://

learn.microsoft.com/azure/azure-monitor/visualize/workbooks-

create-workbook.

If you click Pin To and select Workbook and then send the time and

query as parameters and part of the workbook, you can easily create a

workbook similar to the one shown in Figure 10-33.

Chapter 10 troubleshoot solutions by using MetriCs and log data

https://learn.microsoft.com/azure/azure-monitor/visualize/workbooks-create-workbook
https://learn.microsoft.com/azure/azure-monitor/visualize/workbooks-create-workbook
https://learn.microsoft.com/azure/azure-monitor/visualize/workbooks-create-workbook

502

Figure 10-33. A workbook can easily be created for viewing data

One nice thing about the workbook is it obfuscates the query and can

be set to auto-refresh at specified intervals.

 Azure Dashboard
A final option for creating a visualization is within an Azure Dashboard.

This is the easiest way to create a visualization for Azure Monitor and is

baked into your Azure subscription.

 Create a Dashboard Based on a Query

To get started, return to the logs for the Application Insights and create

the same query as before, but change the query to traces instead of

exceptions. Change the timestamp to > ago(1h).

With the query set, select Pin To and then select Azure Dashboard.

Select Create New and Shared, then name the dashboard something like

Traces for Default Web (see Figure 10-34).

Chapter 10 troubleshoot solutions by using MetriCs and log data

503

Figure 10-34. The query is pinned to a new shared dashboard

Publish the dashboard, then navigate to it under the Shared

dashboards for the subscription. You will see your query results on the

dashboard. You can now add queries to this dashboard or wire up metrics

from any Application Insights to create a powerful single-pane-of-glass

view to monitor your solution (see Figure 10-35).

Chapter 10 troubleshoot solutions by using MetriCs and log data

504

Figure 10-35. The Azure Dashboard shows the results of the query

 Complete the AZ-204: Instrument Solutions
to Support Monitoring and Logging
To fully learn the material, I recommend taking the time to also complete

the MS Learn module for Instrument Solutions to Support Monitoring and

Logging found here:

• Monitor App Performance: https://learn.

microsoft.com/training/modules/monitor-app-

performance/

Chapter 10 troubleshoot solutions by using MetriCs and log data

https://learn.microsoft.com/training/modules/monitor-app-performance/
https://learn.microsoft.com/training/modules/monitor-app-performance/
https://learn.microsoft.com/training/modules/monitor-app-performance/

505

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solution(s). You can find

answers to these questions in Appendix A at the end of this book

 1) What types of information can be monitored? Do

you have to do anything to get monitoring in your

Azure subscription?

 2) What are the major components of Azure Monitor?

 3) Do your web solutions automatically get

monitoring? If so, is there additional monitoring

you can implement? If so, how do you do this for a

typical .NET application?

 4) What types of information can be utilized with

Application Insights? What are some of the other

types of insights available and what are they for?

 5) What is an availability test? How do you create a test

to check if your website is responding?

 6) What is the purpose of the Application Map?

What do you have to do to get it to work with your

solutions?

 7) What is a Kusto Query? How do you run a custom

Kusto Query? How do you use a custom query to

trigger an alert?

 8) What are the three main aspects of creating an alert?

Do alerts always cost the same? What are some of

the actions for notification/remediation/tracking of

alerts that you can take?

Chapter 10 troubleshoot solutions by using MetriCs and log data

506

 9) What are some of the main ways to visualize

information from Azure Monitor? Are there any

default visualizations that you can leverage?

What are the benefits of creating more robust

visualizations?

 10) Where in Azure can you create visualizations? What

are some additional tools that allow you to create

visualizations?

 Chapter Summary
In this chapter, you learned about instrumenting your solutions with

Application Insights to allow your team to troubleshoot your application

performance, create a dashboard that lets you quickly see your app

performance, use Kusto Queries to look for issues in your app, perform

URL PING tests, and review the Application Map.

After working through this chapter and the Microsoft Learn modules,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Instrument your applications to use Azure Application

Insights.

• Leverage the Azure Log Analytics Workspace with

Kusto Queries to query log data for display on

dashboards.

• Know which types of dashboards and tools you can

use and which scenarios to use them in (the difference

between metrics and logs, static and dynamic

dashboards).

Chapter 10 troubleshoot solutions by using MetriCs and log data

507

• Utilize Application Insights to trace through your

application resources, view request metrics, and find

bottlenecks with the Application Map.

• Create and utilize standard and URL PING tests to

determine the ongoing health of a website. Create and

utilize an alert when the site is not healthy.

• Create and utilize alerts, specifically how do you create

them and how do you notify users (both how and

where do you do this).

In the next chapter, you learn about implementing an API solution to

group your APIs for proper customer access on a single application URL,

while obfuscating the backend details from the customers with Azure API

Management.

Chapter 10 troubleshoot solutions by using MetriCs and log data

511

CHAPTER 11

Implement API
Management
Consider the scenario in your organization where you have multiple

function apps, app services, and/or containerized solutions exposed on

multiple public-facing endpoints. In this scenario, clients must be aware

of your entire API offerings, and you really don’t have a lot of control over

how they interact with these various APIs.

 Overview
API Management (APIM) is a tool that is designed to help you bring

all your APIs together under one façade. With APIM, you can give your

clients only one public-facing URL, and you can completely decouple

your backend operations from their requests, meaning that you are free

to update the APIs as necessary and the client may never know anything

about where or how the information is retrieved—they simply make the

same call they’ve always made.

Additional benefits of the APIM implementation are discussed as you

journey through this chapter. Some of these benefits are the reduction of

attack surface, the ability to version your APIs, and the ability to group and

control access to all your APIs into one centralized management solution.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_11

https://doi.org/10.1007/978-1-4842-9300-3_11#DOI

512

 Prerequisites
If you are going to work through this chapter, make sure you’ve deployed

the Azure Function App as per Chapter 6. The code for the Azure Function

App is included with the resources for the book, both in Chapter 6 and in

this chapter. Alternatively, you can create a much simpler app that just has

a couple of functions for use in this chapter if you haven’t worked through

Chapter 6 or just want to practice creating a simple function app.

For this chapter, you need two functions: Function1 and

GetTopMovies. Function1 is just the default function created with any

Azure Function App (using .NET 6 or previous) that takes the parameter

for name in the query string or in the request body. If you use the newer

.NET 7, it will be just fine as well, but you won’t have any parameter for

name in Function1 for .NET 7. GetTopMovies is just a function that returns a

list of movies (or really, any list of objects as JSON; see Figure 11-1).

Chapter 11 Implement apI management

https://doi.org/10.1007/978-1-4842-9300-3_6
https://doi.org/10.1007/978-1-4842-9300-3_6
https://doi.org/10.1007/978-1-4842-9300-3_6

513

Figure 11-1. This chapter focuses on a function app with at least two
functions. Here, the GetTopMovies function is tested to validate the list
of movies is returned

To make this as simple as possible, the resources for this chapter use

the completed function app from Chapter 6 and a starter function app

using .NET 6 and a starter function app using .NET 7. All of the solutions

contain the necessary start conditions, as mentioned. Your main job,

therefore, is to make sure you have one of them deployed. For extra

practice, you can choose to deploy all of them and make API endpoints to

each one. Each project also contains a YAML file if you want to automate

your deployment, or you can right-click and publish to your Function App

at Azure.

Chapter 11 Implement apI management

https://doi.org/10.1007/978-1-4842-9300-3_6

514

One final note here. As of the writing of this chapter, functions that

utilize the Isolated Worker Process cannot be tested from within the

portal. This seems to be a known bug that is not getting addressed. If you

deploy the .NET 7 Isolated Function App, you can still run the functions by

accessing the URL for the function, you just may not be able to test them

in the portal. I’ve also tried to call out differences, but in case I missed any

or it isn’t clear, the default function in .NET 6 has a querystring or body

parameter for name that toggles the response to show the name or ask for

the name. The default function for .NET 7 just responds with Welcome to

Azure Functions and that is all it does.

 Resource Group
In contrast to previous chapters, this chapter starts by deploying a new

APIM instance. When you deploy the APIM, you need to have a preexisting

Application Insights instance.

For this reason, begin this provisioning process by creating a resource

group. Name the resource group something like az204-exam-ref-apim

and set the group to the region of your choice. For practice, consider

performing this step using the Azure CLI with a command like az group

create --name az204-exam-ref-apim --location centralus. When

completed, validate that you have the group as expected (see Figure 11-2).

Chapter 11 Implement apI management

515

Figure 11-2. The resource group was created as expected

 Log Analytics Workspace
Assuming you will want to utilize Application Insights, you need a Log

Analytics Workspace to store the data from the Application Insights. Create

a new Log Analytics Workspace named something like az204-exam-

ref-apim-analytics. Ensure the workspace is created (similar to the

deployment shown in Figure 11-3).

Figure 11-3. The Log Analytics Workspace was created as expected

Chapter 11 Implement apI management

516

 Application Insights
Create a new Application Insights instance that is workspace-based and

leverage the Log Analytics Workspace created earlier (see Figure 11-4).

Figure 11-4. An Application Insights resource is provisioned prior to
provisioning the APIM instance

 Creating an APIM Instance
A couple of the examples for policy and the developer web application

will require an instance that is on the Developer tier. Deploying at any

tier other than the Consumption tier will require about 45 minutes. A

Consumption tier application will take about five minutes to deploy at

the most.

If you don’t mind skipping a couple of the examples and/or you just

need to move quickly through this, or if you want to minimize costs, you

can deploy at the Consumption tier. You will not be able to throttle by

subscription key and you won’t get a public-facing Developer Portal for

your APIM at the Consumption tier. Everything else should pretty much

work in a similar manner to the Development tier deployment.

Chapter 11 Implement apI management

517

 APIM Basics Tab
On the Basics tab, select your subscription and resource group, along

with a region. For the resource name, use a unique name such as az204-

exam- ref-apim-development. While you should use your organization

name and email, you can put anything you want in those two fields (see

Figure 11-5).

Figure 11-5. The basic configuration is complete other than the tiers

 APIM SKUs (Tiers/Offerings)

There are a number of tiers that you can choose from on the APIM

deployment. As mentioned, the Consumption tier is relatively inexpensive

and deploys in a matter of a couple of minutes. The other tiers have

additional offerings and considerations, and they take about 45 minutes

to deploy.

Chapter 11 Implement apI management

518

For this demonstration, I’m using a Development tier. If you want

to select the Development tier and move on (rather than wait for the

deployment to complete), submit to deploy the APIM, then come back

to review the different options on the tiers. Pricing tiers are shown as the

available options in Figure 11-6.

Figure 11-6. The pricing tiers are shown as the available options
when creating a new APIM instance

Consumption (99.95 Percent SLA)

The Consumption tier is the serverless offering for APIM that allows you

to have around a million free calls to the service and then runs about four

cents per 10,000 calls after that. At this tier, you get a bit of an SLA, but you

don’t have the ability to be on a private network or have any isolation.

The reason the Consumption tier can get up and running so quickly is

that it is on a shared gateway, and therefore doesn’t have to provision and

deploy a new gateway.

Developer (no SLA)

The Developer tier is really meant for testing and prototyping a solution

and is not intended to be used for production. There is no SLA on this tier,

and it costs about seven cents per hour to run a developer tier APIM. The

Developer tier is the first tier that gets a Developer Portal for creating a

Chapter 11 Implement apI management

519

public-facing page with information about your APIs and the ability to

request a subscription to utilize the APIs. The Developer tier is limited to

500 requests per second.

Basic (99.95 Percent SLA)

The Basic tier is the entry-level production tier that uses a shared gateway.

This tier cannot be isolated on a private network and has no ability

to leverage Azure AD on the Developer Portal. This tier costs 21 cents

per hour. The basic tier can scale to two instances, which allows for a

throughput of 1,000 requests per second.

Standard (99.95 Percent SLA)

The Standard tier is designed for small to medium production workloads

and runs at $0.95 per hour. The standard tier can scale to four instances

and has a throughput of 2,500 requests per second. Azure AD can be used

with the Developer Portal at this tier.

Premium (99.95 or 99.99 Percent SLA)

The Premium tier is for medium to large production workloads and runs

at $3.83 per hour. This tier can scale to 12 units per region, and it is the

first production-ready tier to offer options for utilization of availability

zones and private networking. The Premium tier has a throughput of

4,000 requests per second and runs on a self-hosted gateway. The ability

to utilize a self-hosted gateway allows for secure connection to hybrid

networks (on-premises) and multi-cloud networks.

 APIM Monitoring Tab
On the Monitoring tab, select your predeployed Application Insights, as

shown in Figure 11-7.

Chapter 11 Implement apI management

520

Figure 11-7. The Monitoring tab gives you the ability to implement a
preexisting Application Insights instance

 APIM Scale Tab
At the Developer and Consumption tiers, no scaling is possible. On

higher tiers, you can create additional units (at additional cost, of course).

Additional units provide additional hardware for your APIM solution

to handle more requests per second (this increases your throughput).

Figure 11-8 shows how you can choose up to ten “units” on the

Premium tier.

Chapter 11 Implement apI management

521

Figure 11-8. The higher tiers allow additional units to be provisioned
for scaling your workloads to increase the number of requests per
second that your APIM solution can handle

 APIM Managed Identity
You can (and likely will) want to create a managed identity for the APIM

instance. This can be accomplished after deployment, however. For this

reason, skip through the Managed Identity tab when deploying and assign

the Managed Identity when it is needed.

Chapter 11 Implement apI management

522

 APIM Virtual Network Tab
Virtual networks and private endpoints are not supported on the

Consumption tier. On the Basic and Standard tiers, you can set up private

endpoints but cannot leverage a private network. For both Premium and

Developer tiers, a private endpoint or a private network can be utilized in

your solutions (see Figure 11-9).

Figure 11-9. The networking options are limited in tiers other than
Developer and Premium

 APIM Protocol Settings
The protocol settings allow you to configure additional options for

connecting with and utilizing traffic (or securing traffic) to and from your

APIM. Unless you need additional functionality, just leave the additional

protocol settings unchecked (see Figure 11-10).

Chapter 11 Implement apI management

523

Figure 11-10. The protocol settings can be left to the default settings

Go ahead and start the deployment of the APIM instance. As

mentioned, this may take a significant amount of time for the non-

Consumption tiers to establish public gateway access. When completed,

validate that your APIM instance is up and running as expected (see

Figure 11-11).

Chapter 11 Implement apI management

524

Figure 11-11. The API Management deployment is completed and
up and running as expected

 The API Gateway
Deploying the APIM instance creates an API Gateway into your solution,

which is one centralized façade. With this gateway, you get layer 7 routing

so you can direct traffic by route to various backend services. This is

incredibly important for APIs because the bulk of the work is based on

the route provided. If the gateway only gave layer 4 routing, then the

only thing that could be used to direct traffic would be the IP address,

which wouldn’t work for a route-based API call. With the gateway in

place, the clients simply have to manage the single point of entry and

then any unique routes they have been authorized to utilize via products

and/or subscriptions in the API Management solution (products and

subscriptions are covered later in the chapter).

Chapter 11 Implement apI management

525

 Entry Point for All Requests
Since the clients have only one public URL to remember, they don’t have to

manage a number of individual endpoints. This makes their integrations

with your solutions much easier for your clients and your team to manage.

While the clients only have one entry point, you also have just a single

control plane on which you need to manage their access.

When the client request comes in, based on the URL and any

authentication you have in place, your solution then routes their requests

to the appropriate services and returns the data from the solution to

the client.

Essentially, the API Gateway acts as a reverse proxy. By allowing your

solutions to easily send data to the clients while also managing what access

clients have in the solution, you can be assured that you are also protecting

other data from incorrectly being accessed by your clients.

 Gateway Routing
As stated, the API Gateway operates on layer 7 routing, so the requests can

be directed based on the path, not just on IP address (which would be a

limitation of layer 4 routing).

 Benefits of a Centralized Gateway
The centralized gateway means that you only have one entry point to

manage access and the client only has one entry point to which they send

requests. This is a benefit for both you and your clients, as you can easily

allow or deny requests as appropriate, and the client doesn’t have to

manage multiple endpoints.

Chapter 11 Implement apI management

526

 Route Aggregation

Another benefit of this solution is the ability for the client to make one call

and your solution to be able to make multiple calls to different backend

services, conglomerate the data, and return the result.

For example, instead of the client needing to call to three calculation

functions individually, the client calls to one endpoint, which could

leverage a backend service like an Azure durable function that implements

a fan-out pattern. When the request fans back in and the data is

summarized, the client gets the result and doesn’t have any concern about

the various services needed to create the desired result.

 Decouple Backend Services from Clients

With the use of APIM, your backend services are now completely

independent of the client. As mentioned, the client just calls to the façade,

and your APIM manages the routing of the traffic. This could be to a

legacy service or to the latest version of a new implementation. The client

is agnostic to the backend services, and they are able to be interchanged

without breaking client applications.

 SSL Termination (SSL Offload)

Although SSL termination is more likely a concern for network

administrators, as a developer you may be put in charge of managing the

SSL for a solution. With multiple backend services that are public-facing,

each would need SSL management. With APIM, you can have the entry-

point on SSL and then all the backend services can send traffic without SSL

since the traffic is on the Azure backbone once it’s routed from inside the

APIM instance.

Chapter 11 Implement apI management

527

 Reduced Attack Surface

With multiple public services, you also have multiple security concerns.

While you will still have plenty of security concerns even with an APIM

solution, the fact that you no longer have to manage multiple public entry

points can give you a lot more control and ability to monitor your solutions

for security risks.

 Logging and Monitoring

The centralized nature of this solution also means that all requests can be

easily logged and any issues that happen in the service can be monitored

and mitigated.

 Response Caching

With response caching, you can reduce the latency for calls to your APIs by

caching responses so that the second and consecutive calls to the endpoint

don’t need to call to the backend service. An additional benefit of this is

not just the latency improvements, but the reduced workload on your

backend services.

 Validation of Tokens and/or Certificates
With APIM, your solution can create additional security by requiring the

clients that connect to utilize JSON Web Tokens (JWT) for authorization or

you can implement a full client/server certificate authorization solution.

Chapter 11 Implement apI management

528

 Administering APIs in the Azure Portal
Hopefully your APIM solution is deployed by now or at least is getting close

to being available. In the next few sections in this chapter, you’re to learn

how to create and work with the various moving pieces of APIM to create a

solution that exposes only the appropriate data to various clients. To follow

along, make sure you have a completely deployed APIM instance.

 APIs
At the heart of the APIM solution is the ability to have one or more APIs.

Each of these APIs will expose various operations via endpoints to the

clients.

 Create an API

To get started, navigate into your APIM instance and select the APIs blade.

On the APIs blade, select + Add API. Within the portal, under Create from

Azure Resource, select Function App to start the process of creating an API

that leverages an Azure Function App (see Figure 11-12).

Chapter 11 Implement apI management

529

Figure 11-12. Start the process of creating an API from an Azure
Function App

When the Create from Function App dialog comes up, choose the

Browse button to select your Azure Function App. In the Import Azure

Functions section, find the function app deployed to your subscription

from Chapter 6 or from the discussion at the start of this chapter. Note that

once you select the function app, all of the available functions are listed.

For this first API, just select the Function1 function and leave the rest

unchecked (see Figure 11-13).

Chapter 11 Implement apI management

https://doi.org/10.1007/978-1-4842-9300-3_6

530

Figure 11-13. Import the Azure Function called Function1

If you aren’t seeing your Azure Function, note that there is a nice

informational block at the top of the settings that makes a profound

statement about the fact that API Management requires Azure Functions to

use the HTTP trigger with either a Function authorization or Anonymous

authorization.

With the function selected, when you return to the dialog box, change

the Display Name to Public. For the URL suffix, change the value to public

(see Figure 11-14).

Chapter 11 Implement apI management

531

Figure 11-14. Setting the values to map this single function to a
public offering

Click the Create button to create the API. This will generate the Public

API and you will see the Function1 entry. With the GET option selected,

choose the Test blade in the top-center area of the APIM API blade (see

Figure 11-15).

Figure 11-15. Starting the test to validate that the solution is working

Chapter 11 Implement apI management

532

Click the Send button to see your function call being made as

expected. Notice the output is asking for the name to be part of the query

string or the body. Also note the route for this function is https://your-

apim-url.azure-api.net/public/Function1 (or similar). Figure 11-16

shows these details.

Figure 11-16. The APIM endpoint is able to execute the function as
expected

You’ve now created your first API. Repeat the process and create a new

API for customers at an endpoint called customers. In the new Customers

API, make sure to select both Function1 and GetTopMovies as operations.

The end result of this change within your solution should look similar to

what is shown in Figure 11-17.

Chapter 11 Implement apI management

https://your-apim-url.azure-api.net/public/Function1
https://your-apim-url.azure-api.net/public/Function1

533

Figure 11-17. The Customers API is created with additional methods

Test the GetTopMovies function to ensure the data is returned as

expected.

 Products
Products within APIM give you the ability to create offerings for clients that

allow them to leverage one or more APIs via the product.

For example, you can have a product that only exposes the Public API,

and you can have a product that exposes the Public and the Customers

API. In this scenario, the Public API is unnecessary since the same

endpoint is exposed in the Customers API, but you’ll get a chance to group

into a product anyway for practice and understanding.

Chapter 11 Implement apI management

534

 Create a Product

To get started, under the Products blade, click Add to create a product.

For the display name on this product, call it Everyone. Give the

product a description such as Any API that is free should be grouped

into this product. Check the Published tab and uncheck the Requires

Subscription box. Leave everything else as is, but under the APIs at the

bottom, choose the + symbol and add the Public API to this product (see

Figure 11-18).

Chapter 11 Implement apI management

535

Figure 11-18. Creating the Everyone product with the Public API in a
scenario where no subscription is required

Chapter 11 Implement apI management

536

Drill back into the Public API and then select GET for Function1. On

the Settings blade, uncheck Subscription Required. Essentially, this public

endpoint is now open to the world, and the Everyone product is just a nice

way to group public access for endpoints together. However, you can also

see that both APIs and products have the ability to require subscriptions

(see Figure 11-19).

Figure 11-19. Remove any subscription requirement from the GET
method of the Public API’s Function1

Get the URL for the GET operation on the Public API and run it in a

browser or from PostMan or curl. When everything is configured correctly,

you should be able to get results, even without an Azure function key (see

Figure 11-20).

Chapter 11 Implement apI management

537

Figure 11-20. The endpoint for the public façade is working with no
authorization or subscription required

If you tried to access the endpoint on the GetTopMovies function from

the Customers API, you’d get an error about no subscription key, as shown

in Figure 11-21.

Figure 11-21. You can’t access the Customers API without a
subscription key

To get ready for subscriptions, first create a second product called

Clients with a description of Paying Customers and give it access to both

APIs (Customers and Public). Make sure the product is published and that

it requires a subscription (see Figure 11-22).

Chapter 11 Implement apI management

538

Figure 11-22. The Clients product is created, and it exposes both the
Public and the Customers APIs

 Subscriptions
As noted, even having APIs exposing endpoints through products will not

be enough to allow access to the API endpoint. To get full access, clients

must utilize a subscription key that will be sent in the request headers.

You can create one or more subscriptions on any product. The one

thing to note is that all subscriptions must have a unique base name, but

the public name can be reused. For example, in Figure 11-23, a common

display name of Standard is chosen but the name of the product is tagged

with the unique prefix of the product name as ClientsStandard so that the

name of this subscription will be unique across all products.

Chapter 11 Implement apI management

539

Figure 11-23. Creating a subscription in the Clients product

 Create Two Subscriptions

In the Clients product, click Subscriptions. By default, a subscription

is already created. However, the best practice here is to create a

new subscription for each subscription level. At the top, click + Add

Subscription. Name the subscription ClientsStandard and give it a

display name of Standard. Then select the Administrator and Do Not Send

(see Figure 11-23).

Complete the operations to create the subscription. Repeat the

operation to create a second subscription called ClientsPremium with

a display name of Premium. Once both subscriptions are created, click

Show/Hide Keys in the ellipses on the far right. Record the primary key for

both subscriptions somewhere on your computer (such as in a new text

document in Notepad) that you can easily reference later for Copy/Paste

operations.

 Send a Request

For this next part, you need to be able to send a request and you need to

add a request header to make the call work with the subscription. You can

send the request however you are comfortable, as long as you can inject

the header.

Chapter 11 Implement apI management

540

My favorite tool for testing is PostMan. In PostMan, I can place the

public URL of the request and then inject my headers easily. If you used

the API endpoint for customers again and tried the GET method of

GetTopMovies, PostMan would look like Figure 11-24.

Figure 11-24. The original request via PostMan is denied due to the
missing subscription key, just as was shown from the browser earlier

To either of the subscription keys you recorded, add a new header

into the request called ocp-apim-subscription-key and the value of

the subscription key. The request should now return results, as you are

successfully using the subscription key (see Figure 11-25).

Chapter 11 Implement apI management

541

Figure 11-25. The ocp-apim-subscription-key header allows your
request to work with the subscription key in the Standard or Premium
level on the Clients product in the APIM instance

 Developer Portal
The Developer Portal allows client developers to explore your public-

facing APIs and subscribe and get a key or request approval to get a key.

Click the Developer Portal link at the top of the APIs blade above

all the APIs (note, if you are on the Consumption tier, then you won’t

have a Developer Portal). You will be brought to a Content Management

System (CMS), where you can administer how clients will view your portal

website. Click the airplane icon and then choose the Publish Website

operation (see Figure 11-26).

Chapter 11 Implement apI management

542

Figure 11-26. The Developer Portal allows you to create a client
experience for accessing APIs. First you must publish the site

 Public API Documentation
With the site published, you can navigate to it. On the APIM instance, on

the Overview blade, get the URL for the Developer Portal and navigate to it

(don’t be surprised if this page looks awful right now).

Find the link to Explore APIs. When you click the APIs, you should at

least see the APIs that you created (see Figure 11-27).

Chapter 11 Implement apI management

543

Figure 11-27. The APIs for your solution are listed on the
Developer Portal

 Groups
Groups exist by default in the Developer Portal for Administrators,

Developers, and Guests. By utilizing groups, you can easily set boundaries

on who can see which products for requesting subscriptions.

 Expose APIs via Products to Groups

Review the page from an incognito window. You will only see the Echo API

listed. This is because all of the products and APIs created have been set to

Administrator only. You can change the access control under the products

to show additional APIs if you want to expose them to the public. Changing

the access control here is likely not what you want to do, but for learning

purposes, adding guests to the product will let anyone see your offerings

(see Figure 11-28).

Chapter 11 Implement apI management

544

Figure 11-28. The access control is set to allow everyone to be able to
get access to the subscriptions for the Clients product

 Register Developers

Reviewing the solution in the incognito window now will show all the APIs,

and a Subscribe button will be shown (see Figure 11-29).

Chapter 11 Implement apI management

545

Figure 11-29. The client developer can request a subscription to be
generated for their use against this product

This APIM instance was purposefully left open. In the real-world, you’d

perhaps allow anyone to automatically get a subscription to the Everyone

product, but the Clients product would require invite or approval only.

Getting a subscription would require signing up and logging in to the site.

Once that’s done, a request would be automatically approved and that user

would get a subscription key for use against the APIM instance.

 Default Groups

As you saw, the three default groups will always exist and they cannot be

changed. They are Administrators, Developers, and Guests. Default groups

cannot be removed from the solution.

Chapter 11 Implement apI management

546

Administrators

Administrators are exactly what you would expect them to be. Any

subscription owner is part of this group. Additional members can be added

and the admin email set at the deployment of the APIM instance is also

automatically an administrator.

Developers

Any users who have registered with the Developer Portal are set as

developers. In the previous example, had you created a user sign-in from

the incognito window, you could have then removed Guests from the

product and only the signed-in developer or administrator would see the

API products.

Developers can also be managed from the Active Directory for some

tiers, and the Administrator can also create and register developers.

Guests

Any anonymous user is treated as a guest on the Developer Portal. This is

why the Echo API that is available to guests was immediately available in

the incognito window, and why adding the Guests group allowed you to

see the Clients product.

 Custom Groups

As with any solution at Azure, you can create your own groups for

management in the Developer Portal. Once you add your custom group,

you can then add users to that group. Here, you might create a group for

auditing or some other read-only purpose that would allow members to

view metrics, data, and authorized users but not actually call the APIs and

get a result.

Chapter 11 Implement apI management

547

 Utilizing Policies
With the APIM instance created, some routes in place, products to manage

groupings of APIs, APIs to route requests, and operations to make specific

calls to backend services, the last piece of the APIM ecosystem that you

need to be in command of is the ability to manipulate requests from the

frontend as they go to the backend services.

Policies are XML documents that exist at every level in the APIM

solution to give you inheritance and the ability to be more specific for each

individual operation, API, or all APIs.

The rest of this chapter looks at utilizing policies to control operations

within the deployed APIM instance.

 Inject/Decorate Information in Request/
Response
Drill into the Public API and get the URL for the GET operation on

Function1 operation via the Settings tab. This is the default function that

requires a query string or request body that contains a name in .NET 6

(or just shows that the function is working in .NET 7). Make a call to the

endpoint (it should be open, as previously set) and review the result. You

should see the friendly ... pass a name in the query string....

message for .NET 6 (or Welcome to Azure Functions! for .NET 7) (see

Figure 11-30).

Chapter 11 Implement apI management

548

Figure 11-30. The request requires a query string parameter or
request body for the name to show

In the APIM, on the GET request for Function1, select the Design

tab, and then click the + Add Policy button on the Inbound request (see

Figure 11-31).

Figure 11-31. Inject a policy into the Inbound request

A number of options exist, including Filter IP Addresses, Limit Call

Rate, Mock Responses, Set Query Parameters, Set Headers, and more,

including a spot to create other policies. The interesting one here is Set

Query Parameters. Select that box to start the process of creating an

injected query parameter.

Chapter 11 Implement apI management

549

When the Inbound Processing dialog box appears, add the Name as

name and the Value as name has been set by policy in APIM. Leave the

Action as override, then save the setting, as shown in Figure 11-32.

Figure 11-32. Adding an override for the query string parameter
name by policy

After saving, click the setting. You will see everything you just created

in the XML for the policy (see Figure 11-33).

Figure 11-33. The policy is set as XML and you can edit the values
here just as easily as when using the baked-in tools

With this policy saved and in place, make the call again from the client

to see the result. Of course, now you will see the value for name no matter

if the name is passed or not from the client side (see Figure 11-34).

Chapter 11 Implement apI management

550

Figure 11-34. The query string parameter is overridden by policy in
the APIM instance

Injecting a parameter is extremely useful if a secret code, such as a

third-party API key or other setting, needs to be passed to the backend API

and you don’t want to expose that information to the clients of your APIM

solution.

 Rate Limit
Rate limiting is another tool you can use from the APIM policies. For

example, consider the two subscriptions. You may want to set rate

limits on the GetTopMovies operation for the Standard vs the Premium

subscriptions. Note that rate limiting by subscription key is not available

at the Consumption tier level. Rate limiting is incredibly useful to prevent

bad players from accessing your API too often. If a rate limit is reached, the

client will receive a 429 – Too Many Requests response from your APIM

solution.

Chapter 11 Implement apI management

551

On the GetTopMovies operation, select the policies again and choose

the Limit Call Rate option. On the blade, set the Number of Calls to 5 and

the Renewal Period in Seconds to 60 seconds. Select API Subscription as

the Counter Key and then use Any Request as the Increment Condition

(see Figure 11-35).

Figure 11-35. The rate limiting policy is set to be created

Save the new policy, then utilize PostMan or another tool or command

of your choice to send requests to the GetTopMovies endpoint with the

subscription key in place. It won’t matter which subscription you use,

because you’ve blocked them all with the previous settings. Even the

Premium subscription would get a 429 error for too many requests, as

shown in Figure 11-36.

Chapter 11 Implement apI management

552

Figure 11-36. The rate limit is easily exceeded for any subscription

 Conditional Policies
In order to limit by a specific key, you have to essentially use an if

condition, just like you would in any code-based scenario. In the APIM

policies, this is done via conditions with the verb choose instead of if or

case. Like SQL, the choose verb is followed by when. The final condition is

otherwise.

Update the XML, replacing the rate-limit entry for the policy with the

following:

 <choose>

 <when condition="@(context.Subscription.Key ==

"premium-key-here")">

 <rate-limit-by-key calls="20" renewal-period="60"

counter-key="@(context.Subscription.Id)" />

 </when>

 <when condition="@(context.Subscription.Key ==

"standard-id-here")">

Chapter 11 Implement apI management

553

 <rate-limit-by-key calls="10" renewal-period="60"

counter-key="@(context.Subscription.Id)" />

 </when>

 <otherwise>

 <rate-limit-by-key calls="5" renewal-period="60"

counter-key="@(context.Subscription?.Key ??

"anonymous")" />

 </otherwise>

 </choose>

</inbound>

Make sure to update the subscription key for each condition to the

appropriate subscription ID from the creation of the two subscriptions

earlier in the chapter. Once completed, return to your tool of choice

and blast your endpoint with requests, validating that the Premium

subscription can get to 20 requests before receiving a 429 response and

the Standard subscription can get to ten requests before receiving a 429

response.

 IP Address Restrictions
Rate limiting by subscription is great, but what if it’s not everyone on the

subscription but perhaps it’s one bad developer who made a mistake, or a

bad player who just wants to take you down? Instead of blocking the entire

subscription, another option is to block by IP address. IP addresses can be

blocked by range or by a specific IP address. Additionally, IP addresses can

be allowed by range, meaning that you can prevent all other IP addresses

from executing your APIs (see Figure 11-37).

Chapter 11 Implement apI management

554

Figure 11-37. Filtering by IP enables you to allow and deny requests
based on a range of IP addresses

 Validate Certificates
So far you’ve locked down requests by subscription key and by rate

limiting and IP address. However, what happens when someone has a

valid subscription key that they should not have access to? In that scenario,

you need to authenticate the client before allowing the request to continue.

Within the APIM instance, you can use policies to validate certificates

in one of many ways. Note that the examples that follow in this section are

all available at https://learn.microsoft.com/azure/api-management/

api-management-howto-mutual-certificates-for-clients.

For the most part, the following code is exactly as it is shown on the

website, with a few tweaks, such as a separate issuer and subject, which are

utilized simply for learning purposes.

Chapter 11 Implement apI management

https://learn.microsoft.com/azure/api-management/api-management-howto-mutual-certificates-for-clients
https://learn.microsoft.com/azure/api-management/api-management-howto-mutual-certificates-for-clients

555

 Issuer (Certificate Authority)

The first way you can validate a certificate with a policy is based on the

issuer. In this case, your policy would look as follows:

<choose>

 <when condition="@(context.Request.Certificate == null ||

!context.Request.Certificate.Verify() || context.Request.

Certificate.Issuer != "trusted-issuer")" >

 <return-response>

 <set-status code="403" reason="Invalid client

certificate" />

 </return-response>

 </when>

</choose>

 Thumbprint

As with the issuer, you can check the thumbprint as follows:

<choose>

 <when condition="@(context.Request.Certificate == null ||

!context.Request.Certificate.Verify() || context.Request.

Certificate.Thumbprint != "DESIRED-THUMBPRINT-IN-UPPER-

CASE")" >

 <return-response>

 <set-status code="403" reason="Invalid client

certificate" />

 </return-response>

 </when>

</choose>

Chapter 11 Implement apI management

556

 Subject

Another example is to validate by subject:

<choose>

 <when condition="@(context.Request.Certificate == null ||

!context.Request.Certificate.Verify() || context.Request.

Certificate.SubjectName.Name != "expected-subject-name")" >

 <return-response>

 <set-status code="403" reason="Invalid client

certificate" />

 </return-response>

 </when>

</choose>

 Validate Against Uploaded Certificates

If you upload a certificate to APIM, you can validate client certificates

against the uploaded certificate:

<choose>

 <when condition="@(context.Request.Certificate == null

|| !context.Request.Certificate.Verify() || !context.

Deployment.Certificates.Any(c => c.Value.Thumbprint ==

context.Request.Certificate.Thumbprint))" >

 <return-response>

 <set-status code="403" reason="Invalid client

certificate" />

 </return-response>

 </when>

</choose>

Chapter 11 Implement apI management

557

 Validate by JWT
Another common authorization scenario is to validate users by JSON Web

Tokens. The utilization of JWT for authorization is less than trivial. If you

want to learn more about this, specifically how to use JWTs to authenticate

by specific HTTP verb, review this document (which includes an inbound

policy): https://learn.microsoft.com/azure/api-management/

policies/authorize-request-based-on-jwt-claims.

 Which Is Better (JWT or Certificates)?
This is the million-dollar question. On the one hand, it may be easier to

utilize JWT for authentication. Once implemented, the solution can easily

be validated and is highly reusable for many clients. The JWT is designed

to share enough information about the user to make the appropriate

authentication/authorization checks. However, JWT may not be as secure

as using a certificate can be. With a certificate, you also have to make sure

to keep the certificates secure and the client needs to have a valid leaf

certificate that allows the solution to authenticate the client and allow the

requests. You’ll likely need to store your certificates in Azure Key Vault and

rotate them regularly.

In the end, the solution of choice will be up to you and your team.

Do you want a lightweight and easy way to allow clients to authenticate,

or do you need the best security, including encryption? Based on factors

like these, you’ll need to decide which approach your solution needs to

implement.

 Mock Responses for Testing
Just like you can create mock data in typical unit tests, you can utilize a

mock response policy to send fake or mocked response codes back to the

client for testing purposes.

Chapter 11 Implement apI management

https://learn.microsoft.com/azure/api-management/policies/authorize-request-based-on-jwt-claims
https://learn.microsoft.com/azure/api-management/policies/authorize-request-based-on-jwt-claims

558

 Authenticate to the Backend
One final scenario that is likely a bit outside the scope of the AZ-204 Exam

but good to know is how to authenticate your APIM against a resource

at Azure.

In general, consider the scenario where your Azure Function App

requires authentication. This means that even with a valid function

key, unless the request also includes a valid bearer token in the header,

the request is rejected. Once a user or entity is logged in or has a valid

managed identity, the authorization can be validated.

To make everything work, the first step is that the function app or

other endpoint resource must be registered as an application in your

subscription. This will give the application a client ID. Additionally, the

endpoint resource must require authorization so that anonymous requests

are rejected.

With that in place, the APIM itself must have a managed identity

so that it can be authenticated in the Azure tenant. Unfortunately, it’s

not as easy as working with the Key Vault, where the function app or

other resource can create an access policy. In the case of the APIM

authentication, after the configuration is set up, a policy must be added to

all requests going against the locked-down backend in APIM.

The policy must set information utilizing the client ID of the endpoint

resource application. The policy is simple, and it is created in the inbound

policies for ALL APIs. To implement the policy, simply add the following to

the ALL APIs inbound policies:

<authentication-managed-identity resource="client-id-of-

endpoint-app" />

With that policy in place, the APIM instance can utilize its system-

managed identity to authenticate and make calls against the locked-down

endpoint resource.

Chapter 11 Implement apI management

559

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solutions. You can find

answers to these questions in Appendix A at the end of this book.

 1) What are the different offerings within APIM

for deployment of solutions? Which tier(s) get a

Developer Portal?

 2) Why do some tiers deploy quickly while others take

30-45 minutes to deploy? Which tier(s) get a self-

hosted gateway? Why might a self- hosted gateway

be important?

 3) What is an API within APIM?

 4) What is a product within APIM?

 5) What is a subscription within APIM? Is the

subscription applied to the API or the product? How

does this enhance your solution?

 6) What is a policy? How do you utilize policies? Where

can you apply policies and in what directions? What

is the inheritance precedence of policies?

 7) What are two ways to validate client requests outside

of subscriptions? Which is considered more secure?

Chapter 11 Implement apI management

560

 Complete the AZ-204: Implement API
Management Learn Module
To fully learn the material, I recommend taking the time to also complete

the MS Learn module for AZ-204: Implement API Management

found here:

• Export API Management: https://learn.microsoft.

com/training/paths/az-204-implement-api-

management/

 Chapter Summary
In this chapter, you learned about working with the Azure API

Management to create a centralized façade on the Public APIs. The

benefits of this approach were examined, and you saw how to utilize the

API Management solution to present one public endpoint with multiple

routes to various backend services. You also learned about using policies

to intercept and decorate the requests on the incoming request or the

outgoing response. Additionally, you learned about working with groups,

products, and subscriptions to create various levels of access to your

API Management. Within the APIM instance, you can block or throttle

requests by IP address, and at the development tier or better, you can also

use policies along with subscription keys to perform operations like rate-

limiting and throttling.

After working through this chapter and the Microsoft Learn module,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Create and work with APIM via the Azure Portal.

• Know the difference and hierarchy of APIs, operations,

subscriptions, and products.

Chapter 11 Implement apI management

https://learn.microsoft.com/training/paths/az-204-implement-api-management/
https://learn.microsoft.com/training/paths/az-204-implement-api-management/
https://learn.microsoft.com/training/paths/az-204-implement-api-management/

561

• Understand and leverage policies to perform common

operations like validation of tokens or certificates,

inject or modify the requests and responses, or throttle

(rate-limit) requests.

In the next chapter, you learn about working with event-driven

solutions in the Azure ecosystem, specifically around the Azure Event Hub

and Azure Event Grid.

Chapter 11 Implement apI management

563

CHAPTER 12

Develop Event-Based
Solutions
When I first started learning about Azure, one thing that was more

confusing than most things was the purpose and reasoning for both an

Event Grid and an Event Hub. In fact, I was unsure what either service

was, when to use which service, and even if they were dependent on one

another (such as questions as to whether all event hubs must have an

event grid, or vice versa). Perhaps you are in a similar position related

to these services as you are studying for your AZ-204 Exam. I hope this

chapter will eliminate any questions about what these services are for, how

they work, and when to use each one. In any event, this chapter presents

two major technologies for event-based solutions in Azure—Azure Event

Hubs and Azure Event Grid.

 Event Hub vs Event Grid
Before going further, I’ll give you a spoiler alert on the questions you may

have based on the first paragraph. To be clear from the start, the Azure

Event Grid and Azure Event Hubs offerings are both standalone services

in Azure and are independent of one another as offerings in Azure. Where

it does get somewhat confusing is that you can combine them in solutions

at times, such as sending a single event into an event hub or perhaps

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_12

https://doi.org/10.1007/978-1-4842-9300-3_12#DOI

564

putting a service like Stream Analytics behind the ingested data at a hub

and sending custom events to the event grid based on queries against the

stream from within Stream Analytics.

At the highest level, to keep the two services separate in your learning

and while you sit for the AZ-204 Exam, you can think of these two services

separately by always remembering how each is designed to be utilized.

The Azure Event Grid service is for working with one-off events that are

either system generated or custom events created by you. These events are

the result of some singular event at a specific point in time, generated by a

specific resource or from within a specific application.

The Azure Event Hub service is used to ingest a massive number

events from a stream, generally hundreds to hundreds of thousands of

events per minute from many disparate sources. This service could be

reporting telemetry, logging data, or some combination of information

that is consistently streamed and needs to be analyzed, reported, or

responded to.

 Azure Event Hubs
The primary reason for utilizing Azure Event Hubs is to ingest streaming

data as it is produced. At capacity, an event hub has the capability to ingest

(ingress) over one million events per minute and can egress nearly four

times that number.

In a typical architecture, events are produced and ingested into

Azure Event Hubs, either with Advanced Messaging Queuing Protocol

1.0 (AMQP) or via Apache Kafka 1.0. With the event hub, events are

available for playback from one to ninety days, depending on the tier of the

event hub.

Chapter 12 Develop event-BaseD solutions

565

 Event-Driven Architecture
With Azure Event Hubs, you can implement a full event-driven

architecture to work with events in a distributed environment at scale and

at massive capacity.

In an event-driven architecture, events are gathered, and information

is analyzed or conglomerated to discern appropriate additional actions.

Once the analysis of the event is completed, then typically a follow-up

action needs to take place. This follow-up action can be automated or may

also be a process that requires manual intervention.

For example, you might create a fleet of IoT devices to monitor

the temperature and air quality in hospital operating rooms for your

organization’s 150 hospitals in the central United States. In this case, you’ll

likely have millions of telemetry data points coming in at regular intervals

throughout the day. When data is outside of a normal threshold, it’s

critical to make that information available to someone who can remediate

the solution. This can be accomplished by sending an alert, or it might

be automated through a function or Logic App, or could even be sent as

information to a custom webhook endpoint.

As a side note, an IoT solution such as this would likely utilize the

Azure IoT Hub, which is out of scope for the AZ-204 Exam (but not the

AZ-220 IoT Specialization). The IoT hub is a subset of the event hub. As

such, the code you write against the IoT hub can leverage the same event

hub SDK code that you would use to write code against Azure Event Hubs.

In any event-driven architecture, regardless of the various

implementations, there are a few important concepts and terms critical

to the solution that you need to be in command of. These concepts and

terms are:

• Producer

• Receiver

• Partition

Chapter 12 Develop event-BaseD solutions

566

• Consumer

• Consumer group

• Checkpointing

• Client

 Producer

The producer is the source of the event. This could be logs from an

application, telemetry from devices, or any other stream of data that needs

to be captured for analysis.

 Receiver

The receiver is the tool or tools that are responsible for the ingress

(intaking/processing) of the data. In this architecture, the receiver is the

event hub, and the data is received in either the Kafka 1.0 or Advanced

Message Queuing Protocol (AMQP) 1.0 data format.

The Kafka 1.0 format is based on Apache Kafka, which is one of the

major players in big-data streaming solutions. If you are interested in

knowing more about Apache Kafka, you can read more at https://kafka.

apache.org/10/documentation.html. Other than knowing the Kafka 1.0

protocol is offered and the fact that Azure Event Hubs can ingest data just

like a Kafka cluster would be able to, additional information regarding

Apache Kafka is out of scope for the AZ-204 Exam.

The AMQP 1.0 data format is an international standard messaging

protocol, which, according to the documentation (see https://learn.

microsoft.com/azure/service-bus-messaging/service-bus-amqp-

overview?#amqp-10-technical-features), is approved by ISO and IEC in

the ISO/IEC 19454:2014 Standard.

Chapter 12 Develop event-BaseD solutions

https://kafka.apache.org/10/documentation.html
https://kafka.apache.org/10/documentation.html
https://learn.microsoft.com/azure/service-bus-messaging/service-bus-amqp-overview?#amqp-10-technical-features
https://learn.microsoft.com/azure/service-bus-messaging/service-bus-amqp-overview?#amqp-10-technical-features
https://learn.microsoft.com/azure/service-bus-messaging/service-bus-amqp-overview?#amqp-10-technical-features

567

 Partition

Internally to the hub, the data can be grouped into one or more partitions.

These partitions record the data in the order of events grouped by a

specific partition key. Although you can code your solution to write

directly to a partition, the correct way to send data to the event hub via

code is to send with the partition key and let your event hub handle which

partition to write the data on. The number of partitions for any event hub

is set during creation of the hub and cannot be changed after creation.

The maximum number of partitions is 32, but this can be increased via a

request to support if necessary.

 Consumer

The consumer is the application or service that is reading and processing

events. Later you’ll see this done with a .NET application. Additionally,

the event hub created will be capturing data to an Azure data lake storage

account.

 Consumer Group

When it comes to reading the data, a consumer is required. However, in

order for the hub to allow multiple readers to review the streams without

affecting each other, there is a feature called consumer groups. An event

hub can have up to 20 consumer groups, and each group can have five

concurrent readers. The recommendation is to only have one active reader

per consumer group if possible. Due to the ability to replay the data from

the event hub over time, there is a concept known as checkpointing.

Chapter 12 Develop event-BaseD solutions

568

 Checkpointing

Checkpointing essentially allows each consumer group to have a specific

marker in the stream, which points to the last event processed. Therefore,

each consumer group can replay data for sliding window analysis at will, or

the consumer can just pick up processing where the last consumer left off

in the case of resuming the processing of data.

 Client

The client for the event hub is the SDK that can be used for reading

and writing to the event hub. In this chapter, you see the .NET SDK for

event hubs being utilized. Other SDKs exist for Java, Python, JavaScript,

Go, and C.

 Creating an Event Hub Namespace in Azure
To get started creating an event hub, note that the first thing you need to

do is create a namespace. What’s most interesting here is the URL that will

be the namespace for the hub. Even though this is an event hub, and you

might expect the URL to be something like yourhub.eventhubs.windows.

net, what you’ll see is that the URL is actually yourhub.servicebus.

windows.net. You’ll get a chance to learn more about Azure Service Bus

in the next chapter. For now, just note this oddity on the URL for the

event hubs.

To create your hub namespace, select your subscription and resource

group as expected, then give your hub namespace a useful and unique

name, like az204examref-event-hub-namespaceYYYYMMDD. Choose the

appropriate location and then discern the appropriate pricing tier (see

Figure 12-1).

Chapter 12 Develop event-BaseD solutions

569

Figure 12-1. The basics for an event hub namespace are set

Due to the desire to demonstrate capture, this hub is provisioned at the

Standard tier, but the workload will be minimal, so one throughput unit

(TU) with no scaling is sufficient.

 Throughput Units (TU)

The throughput unit is used in the Basic and Standard tiers, and it is a pre-

purchased compute resource to process data for the event hub(s) in your

namespace. This is done on a shared architecture in Azure. Capacity for a

single TU on ingress is 1MB/second or 1,000 events per second and 2MB/

second or 4,096 events per second on egress.

 Processing Units (PU)

Similar to a TU, the processing units (PU) are compute resources offered

in the Premium tier for event hubs. This offering is isolated to its own CPU

and memory. The capacity for processing is dependent on your workload

and can be from 5-10 MB/second on ingress and 10-20MB/second

on egress.

Chapter 12 Develop event-BaseD solutions

570

 Capacity Units

With capacity units (CU), you can have a workload that responds quickly

to scale when needed. The ingress and egress can achieve upper levels

around 1GB per second.

 Offerings (SKUs/Tiers)

Azure Event Hubs has several offerings that you can choose from when

creating a hub namespace.

Basic

As the entry-level tier, the Basic hub tier offers a maximum retention

period of one day and only allows up to 84 GB of storage. You cannot

capture to storage at this tier, nor can you leverage Apache Kafka, and you

won’t be able to forgo sharing the schema on your data.

Standard

The Standard tier gives you the ability to capture data, utilize Kafka,

and leverage the schema registry to forgo the need to exchange schema

information. At this tier, additional charges can apply if you add data

capture. Event data can be stored up to seven days, and the max amount of

storage is also capped at 84 GB.

Premium

The Premium tier has everything that the Standard tier offers but prices for

ingress and capture are included in the overall cost. Event data retention is

up to 90 days, and the storage capacity is 1 TB per processing unit (PU).

Chapter 12 Develop event-BaseD solutions

571

Dedicated

The Dedicated tier is the most expensive tier by far and offers everything

the Premium tier offers with capacity set to 10 TB per capacity unit (CU).

At the Dedicated tier, you are reserving the resources as dedicated to

your tenant. Ingress and egress at this tier are much higher, so you can do

massive amounts of data processing.

 Advanced Settings

The Advanced settings for the hub allow you to select a Minimum TLS

Version and decide whether or not to utilize Local Authentication (SAS

tokens). Figure 12-2 shows the Advanced tab with default settings selected.

Figure 12-2. Creating a hub namespace on the Advanced tab

 Networking

As with other solutions in Azure, you can utilize private access for your hub

namespace to configure the private endpoint connections for the hub. For

this demonstration, public access is sufficient.

 Creating a Data Lake Storage Account
and Container
When creating a hub in the next sections, the event hub will leverage

the ability to automatically capture data. In order to do this, you need to

have the storage account and container provisioned before provisioning

Chapter 12 Develop event-BaseD solutions

572

the hub. For big data pipelines, you generally want data lake storage.

Therefore, make sure to provision the account with a hierarchical

namespace on the Advanced tab, as shown in Figure 12-3.

Figure 12-3. Creating an Azure Data Lake hierarchical
storage account

Within the new storage account, create a container named eventdata

or something similar to store the captured event data.

 Creating an Event Hub in Azure
Once the namespace is created, you can create one or more event hubs in

the namespace. Use the + Event Hub from the Namespace blade to create a

new hub. Give the hub a reasonable name, and then set the partition count

from 1-32 and message retention from 1-7 days (as shown in Figure 12-4).

Figure 12-4. Creating a new event hub in the event hub namespace

Chapter 12 Develop event-BaseD solutions

573

 Event Hub Capture

With the hub created, you can capture your data automatically to storage.

Typically, for a big data pipeline, you’ll want this to be hierarchical, so you

would use Azure Data Lake Storage (which is just blob storage with the

data lake feature enabled). Select On to start configuration of the capture.

The event hub capture process will capture data automatically at a

specified interval of a specified number of minutes or at a specific amount

of data (size in MB), whichever comes first.

Time Window (Minutes)

This is the number of minutes that can expire before data is captured. This

will automatically create a file every n minutes if the data size window is

not met in that time period. The default of five minutes is sufficient for this

demonstration.

Size Window (MB)

This is the maximum amount of data to ingest before capturing to storage.

The size window will only trigger if the overall data reaches a set amount

before the time window expires. The default of 300 MB is sufficient for this

demonstration.

Emit Empty Files

As mentioned previously, it is generally easier for your downstream

processing to handle data even if there are empty files due to the fact that

your system will not have to discern if data is missing (i.e., there was data

but no file was emitted). For this reason, the default and the recommended

approach is to emit empty files, leaving this box unchecked.

Chapter 12 Develop event-BaseD solutions

574

Capture Provider

The capture provider has two options. The typical Storage Account (Gen 2)

or the older Data Lake (Gen 1). If you created a new account, select the

Storage Account option. Only select the Data Lake option if you have

an older, Azure Gen 1 Data Lake Storage, account to which to capture

your data.

Azure Storage Container

This is just a regular blob storage container inside your Gen 2 hierarchical

Azure Storage account.

File Name Formats

Unless you have a structure in place, there is no reason to change these

settings. They will capture data in a way that allows the data to be in folders

based on the date of capture.

Review and Create the Event Hub

Figure 12-5 shows the completed capture information.

Chapter 12 Develop event-BaseD solutions

575

Figure 12-5. Completed capture information

 Working Against an Event Hub with .NET
The next part of this chapter discusses how to connect clients to the hub

and send and consume data.

 .NET Client for Sending Events to the Hub

The sample code for this chapter includes clients to send and receive data

to and from the event hub.

 Shared Access Signatures

In order to connect to the Event Hub, the client could be authenticated.

However, for ease of use and configuration, you can connect via Shared

Access Signatures (as long as you left that enabled when creating the

Chapter 12 Develop event-BaseD solutions

576

solution). For the AZ-204 Exam, it will be important enough to be familiar

with these shared access signatures for events and messaging and they are

easy to work with, so the solutions as provided utilize SAS authentication.

Every namespace has a RootManageSharedAccessKey that has all the rights

on the entire namespace (see Figure 12-6).

Figure 12-6. The RootManageSharedAccessKey can do all things
against all hubs in the namespace, so you should rarely use this and
you should never share it

Note sas authentication can be handled at the namespace level for
all hubs in the namespace, or it can be at the specific hub level for
granular control.

 Data Roles

To set the signatures and roles in Azure, it’s important to be aware of

three levels of control. They are Owner/Manage, Sender/Send, and

Listener/Listen.

Chapter 12 Develop event-BaseD solutions

577

Owner

If you want to manage the hub via code but want to limit this to a specific

hub rather than using the root key for the namespace, create an SAS

token in the hub with Manage capability. Go to the hub and create a

new SAS policy called HubOwner. Note that checking the Manage option

automatically selects Send and Listen without the ability to remove those

options, so the Owner policy can be used to manage the hub and also to

ingress and/or egress data to the hub (see Figure 12-7).

Figure 12-7. The SAS policy for the owner with the Manage, Send,
and Listen capabilities selected

Sender

Within the hub or at the root level, you can create a specific SAS policy for

producing events. Figure 12-8 shows creating a policy named Producer

specifically for az204examref-eventhub.

Chapter 12 Develop event-BaseD solutions

578

Figure 12-8. The SAS policy for Producer with Send permission
is created. This token will only allow clients to ingress event data
to the hub

After creating the policy, make sure to copy the connection string

information for use in the client application (see Figure 12-9).

Chapter 12 Develop event-BaseD solutions

579

Figure 12-9. Get the connection string for the new Producer
SAS token

Listener

As with the Producer, you’ll likely want your clients that are listening to

only be able to consume event data. Create another SAS token named

Consumer that has only the ability to listen (see Figure 12-10).

Chapter 12 Develop event-BaseD solutions

580

Figure 12-10. The ability to listen only is granted on the SAS token
named Consumer

As with the Producer SAS token, make sure to get the connection string

for the primary key on this Consumer token so you can leverage it in the

Consumer client later in the chapter.

 .NET Event Producer

The sample code has two client applications. The first application is

the producer and is in the project called WorkingWithEventHub. In this

producer, you will need to set the connection information to utilize the

SAS token for the Producer created previously. Note that you could use the

Manage token or the Root token, but the best choice is to limit privilege to

only allow the client to send data to the hub.

Set the ConnectionString and Name in Secrets.json

Manage the user secrets in the WorkingWithEventHub project to add the

connection string. If you don’t have the connection string handy, go back

to the hub and select the Producer SAS token you created previously.

Additionally, add the name of the hub to the secrets file. Your secrets

file should be similar to what is shown in Figure 12-11.

Chapter 12 Develop event-BaseD solutions

581

Figure 12-11. The event hub Producer client connection information
is set in the secrets.json file

Code to Produce Events

To publish data from this client application, the code leverages the

EventHubProducerClient object, which needs the connection string and

the event hub name. Remember that the connection string must have the

Send permission as part of the SAS token or this client won’t be able to

send data to the hub.

producerClient = new EventHubProducerClient(_

eventHubConnectionString, _eventHubName);

For simplicity, this application does nothing more than send trivial

practice apps available from Microsoft Learn. A batch of data is created

and sent based on your specified number of events, producing the data in

the hub. Note that the data is encoded as binary by the application into an

EventData object.

using EventDataBatch eventBatch = await producerClient.

CreateBatchAsync();

for (int i = 1; i <= _numberOfEvents; i++)

{

 var log = GenerateNewLogMessage();

 if (!eventBatch.TryAdd(new EventData(Encoding.UTF8.

GetBytes($"Event {i}: {log}"))))

 {

 // if it is too large for the batch

Chapter 12 Develop event-BaseD solutions

582

 throw new Exception($"Event {i} is too large for the

batch and cannot be sent.");

 }

}

Once the batch is created, the data is sent via the Producer client:

try

{

 // Use the producer client to send the batch of events to

the event hub

 await producerClient.SendAsync(eventBatch);

 Console.WriteLine($"A batch of {_numberOfEvents} events has

been published.");

}

finally

{

 await producerClient.DisposeAsync();

}

Run the client application to send the batch data to the hub. Validate

that a success message is generated in the client application (see

Figure 12-12).

Figure 12-12. Success message shows that the events have been
published

Note that you can also see this information on the Event Hub blade

(see Figure 12-13).

Chapter 12 Develop event-BaseD solutions

583

Figure 12-13. The event hub has ingressed 25 messages

Wait for five minutes. The automatic capture will run and the data will

be captured to your data lake storage container (see Figure 12-14).

Figure 12-14. The data is captured to storage automatically

The data is stored as .avro files, which is a binary file protocol

commonly utilized in Big Data pipelines. You can download the file if you

want, but viewing it will not be very useful in its binary state.

Chapter 12 Develop event-BaseD solutions

584

 .NET Event Consumer

For the consumer application, you need to get connection string

information for the Listen SAS token and also get information for another

storage account container.

Create Another Container

While you would likely do something other than store information in

storage (especially since it is already captured), this consumer client

application will simply process and move data to another container.

Name the new container something like processedeventdata and get the

connection string for the storage account.

Update User Secrets for the Client Application

For the client application, update the user secrets with the Listen SAS

token connection string, event hub name, storage account connection

string, and the container name. Your secrets.json file for the

EventHubConsumer app should be similar to what is shown in Figure 12-15.

Figure 12-15. The Consumer secrets are set to consume the events
and send the results to storage

Consume Events

To consume the event messages from the event hub, the

EventProcessorClient is used. This consumer client will use the

DefaultConsumerGroup. The storage client information is also set for use

during processing:

Chapter 12 Develop event-BaseD solutions

585

// Read from the default consumer group: $Default

string consumerGroup = EventHubConsumerClient.

DefaultConsumerGroupName;

storageClient = new BlobContainerClient(

blobStorageConnectionString

 , _blob

ContainerName);

// Create an event processor client to process events in the

event hub

_processor = new EventProcessorClient(_storageClient,

consumerGroup

 , _eventHubConnectionString,

_eventHubName);

If you want to use another consumer group, you can create one and

use it. Also note that this EventProcessorClient is set to leverage storage

by reading from the consumer group on the hub via the Listen SAS token

connection string.

After setting the processor, handlers are added to process events

and errors:

// Register handlers for processing events and handling errors

_processor.ProcessEventAsync += ProcessEventHandler;

_processor.ProcessErrorAsync += ProcessErrorHandler;

Next, the processor is started. The application waits 30 seconds and

stops processing, just for the academic nature of the application. In the real

world, you may never stop processing on a dedicated consumer.

I’ll leave the code examination for error handling to you (it’s academic

and trivial here). For the processing, note the ability to get the data from

the message as expected; this client is automatically ingesting to storage as

a way to manage the processed information.

Chapter 12 Develop event-BaseD solutions

586

var eventArgsMessageData = eventArgs.Data.Body.ToArray();

var eventArgsMessageString = Encoding.UTF8.GetString(eventArgs

MessageData);

// Write the body of the event to the console window

Console.WriteLine($"\tReceived event:

{eventArgsMessageString}");

// Save the data to a text file at Storage:

var fileName = $"{DateTime.Now.ToString("yyyy.MM.dd_")}

{r.Next(1000, 1999)}.txt";

var blobClient = _storageClient.GetBlobClient(fileName);

using (var ms = new MemoryStream(eventArgsMessageData))

{

 await blobClient.UploadAsync(ms, true);

}

// Update checkpoint in the consumer group so that the app

processes

// only new events the next time it's run

await eventArgs.UpdateCheckpointAsync(eventArgs.

CancellationToken);

Run the application (right-click and select Debug ➤ Start New

Instance) to consume the 25 events generated earlier (see Figure 12-16).

Chapter 12 Develop event-BaseD solutions

587

Figure 12-16. The data is removed from the hub during processing
and this application is sent to Azure Storage

Note that autocapture and even the processing did not remove these

event messages from the event hub, but this processing has moved the

Checkpoint so the messages are effectively “removed” from the hub for the

$Default consumer group.

If you explore the storage, you’ll see that the container is storing

information about the checkpoint for the $Default consumer group (see

Figure 12-17).

Figure 12-17. The consumer group checkpoint is stored in storage

Chapter 12 Develop event-BaseD solutions

588

Additionally, the data was exported as expected, as shown in

Figure 12-18.

Figure 12-18. The data was exported, and you can easily review it
since the data is stored as simple text files

 Azure Event Grid
If you’ve completed other chapters in this book, you likely read the Azure

Functions chapter, where a storage event was created on an upload of

a new file, and the event triggered an Azure Function via the event grid

trigger. In this chapter, you get another chance to look at the event grid in a

bit more detail.

 Producers
In consideration for the event grid, as with the event hub, the producers

are going to be the source of the events. In contrast to the event hub, where

each producer streams events into the hub, the event grid is going to be a

single event generated by a producer. Each time an event happens, you can

respond to the event directly by subscribing to the event topic.

Chapter 12 Develop event-BaseD solutions

589

Event producers can be anything within Azure, such as the blob

storage events for create, delete, and modify. Additional sources

(producers) can be things like virtual machine started/stopped events,

messages received in the message bus topic or queue, or even things like

a user signed in to Azure create events that can be leveraged. You can also

create custom events (more on this later).

 Consumers
The consumer of an event grid event is any client application or service in

Azure that has correctly subscribed to the event. When the event is raised,

Azure Event Grid broadcasts the event data to all subscribers. This means a

single event can be handled by more than one application or service.

Typical responses to an event might be an Azure Function (see Chapter 6),

Logic Apps (shown later in this chapter), automation runbooks, storage, event

hubs, or any custom webhook endpoint or third-party API endpoint.

 Concepts
Within the Azure Event Grid ecosystem, there are generally five things

that you need to be in command of. They are events, sources, topics,

subscriptions, and handlers.

 Events

When it comes to Azure events in the event grid, every event has common

information associated with it. This information is always in a JSON

document and you can leverage this information to handle the event in

various manners. Each JSON document contains the same information

(covered in detail under the upcoming “Event Schema” section). The first

callout here is the data section, which contains the event information from

the producer.

Chapter 12 Develop event-BaseD solutions

https://doi.org/10.1007/978-1-4842-9300-3_6

590

One thing that is important to note before going forward is that the size

of the data for the event is limited to 64 KB without fee and a max size of

1 MB. Events larger than 64 KB will incur a fee. As a quick first investigation

into whether to use messages or events in your solutions, make a note

that data in an event is supposed to be informational only, whereas data

in a message (covered in the next chapter) will typically contain both

information and state. For example, a blob storage event contains only the

URL to the file (not the file contents), whereas a message might contain the

URL to the file and one or more of the rows of data from the file, as well as

any other important information for use in a distributed transaction.

Another distinction between messages and events is that typically the

event grid doesn’t care if you do anything with the information sent via an

event. Once the event is registered as delivered, it’s forgotten about (fire-

and-forget). In contrast, messages and message brokers typically have

some concern as to the processing of the message.

 Sources

As mentioned, sources for the event are just the solution or system where

the event was generated.

 Topics

In my opinion, one of the more difficult things to understand about events

(and messages in the next chapter) is the concept of topics, simply because

of the obscurity of the naming. What exactly is a “topic” after all?

To make this easier, you can think of a topic such as a general “today’s

topic of discussion is anything related to” either “the reduction of the

overall acreage of rainforests globally” or “the scores from each game in

the world cup during round two.” If your events are focused on something

that is related, that is the concept of what a topic should do, it’s better to

group related events in Azure Event Grid.

Chapter 12 Develop event-BaseD solutions

591

For example, responding to blob storage events on a specific storage

account is a topic. Another example might be custom events from your

major line-of-business application. Likely the subscriber only cares about

one of those, not both, so routing all of the events from both producers

into the same topic would be a poor design choice. Those events should

be properly grouped as individual topics so that interested parties could

subscribe to the topics that make sense for their day-to-day operations.

 Subscriptions

Once a topic is created, any consumer can subscribe to the topic to

respond to the event. A topic can have multiple subscribers, and each

subscriber can respond to all events individually. Additionally, subscribers

can use filtering to only respond to events within the topic that concern

their purpose (filtering is covered later).

For example, consider the blob storage account. On the created event,

a Logic App and an Azure Function are both subscribing to the topic and

therefore responding to the event and can use the information from the

event individually. Perhaps the function app is parsing the file if it a *.csv

or *.xlsx file, and perhaps the Logic App is doing something else with

the file if it is an image file like a *.jpg or *.png file. Maybe they both do

something with the information. The operation and handling of the events

by one or more subscribers is entirely up to you as the developer.

 Handlers

The event handlers are the applications or systems that subscribe to topics

and then continue the processing of the event.

Chapter 12 Develop event-BaseD solutions

592

 Event Schema
Every event that is generated has the same schema within Azure. This

makes it universally easier to process events across your subscription, and

also allows for filtering of events. The event schema is JSON and contains

the following items:

• ID

• Topic

• Subject

• Event type

• Event time

• Data

• Data version

• Metadata version

The schema is JSON and is formatted as follows (from https://learn.

microsoft.com/azure/event-grid/event-schema, which you can review

for more information):

[

 {

 "topic": string,

 "subject": string,

 "id": string,

 "eventType": string,

 "eventTime": string,

 "data":{

 object-unique-to-each-publisher

 },

 "dataVersion": string,

Chapter 12 Develop event-BaseD solutions

https://learn.microsoft.com/azure/event-grid/event-schema
https://learn.microsoft.com/azure/event-grid/event-schema

593

 "metadataVersion": string

 }

]

 ID

Every event has its own unique ID, which is required on all events.

Typically, you don’t have a lot of concern about this property in your

event handling solutions. The ID is generated in system events and can be

anything you want in custom events.

 Topic

The topic in an event grid schema is not actually required. Most of

the time, however, you will have the topic for the event included in

the schema.

As you may have already gathered, there are two types of topics that

can be utilized—system and custom.

System Topics

System topics are any topics that are generated by solutions within the

Azure ecosystem. For example, a blob storage account might have a topic

associated with it. In this scenario, any subscriber could get all the events

raised by the storage account.

Custom Topics

Custom topics are any event topic you create to handle custom event data.

For example, you might create a custom topic to respond to a button-press

event in one of your applications. When the user presses the button, your

code raises a custom event for the topic with the payload as expected by

your application event handlers. The event is then sent to the event grid

and can be handled by any subscribers.

Chapter 12 Develop event-BaseD solutions

594

 Subject

The subject is one of the required fields. This subject has relevant data

from the producer to the event subject. For example, this might be the path

to the file when a blob is created, or it could be a path to a route for your

custom event.

 Type

The event type is required and is based on the event itself and can be

used to filter handling. The common example continually mentioned

here is blob storage. Within blob storage, you have many event types,

including blob created and blob deleted. If the event handler doesn’t care

when blobs are deleted, then it will filter to only the event types it does

care about.

 Time

The time field is required and is the date and time (timestamp) to mark the

exact moment when the event was created.

 Data

The data for an event is not required, but when present, it is in the JSON

schema, formatted as JSON within the data section. This is where the meat

of the event information resides for use by handlers. For example, here is

the sample body for an event that contains data regarding a blob storage

created event (note the data section, which contains metadata info about

the blob, including the url, but is not the full file):

{

 "topic": "/subscriptions/..../resourceGroups/az204-exam-

ref-apim/providers/Microsoft.Storage/storageAccounts/

az204examrefstor20251231",

Chapter 12 Develop event-BaseD solutions

595

 "subject": "/blobServices/default/containers/anycontainer/

blobs/SampleData.xlsx",

 "eventType": "Microsoft.Storage.BlobCreated",

 "id": "56175e60-f01e-0057-0de4-30f0d306be43",

 "data": {

 "api": "PutBlob",

 "clientRequestId": "d179b80a-8ecc-44f5-8aab-dda658fc5010",

 "requestId": "56175e60-f01e-0057-0de4-30f0d3000000",

 "eTag": "0x8DAFEFB97E7C92E",

 "contentType": "application/vnd.openxmlformats-office

document.spreadsheetml.sheet",

 "contentLength": 9154,

 "blobType": "BlockBlob",

 "url": "https://az204examrefstor20251231.blob.core.windows.

net/anycontainer/SampleData.xlsx",

 "sequencer": "0000000000000000000000000001580500000000

00007203",

 "storageDiagnostics": {

 "batchId": "dcf8dc55-f006-0068-00e4-303870000000"

 }

 },

 "dataVersion": "",

 "metadataVersion": "1",

 "eventTime": "2023-01-25T17:42:56.5147822Z"

}

(A similar data sample is also shown in Figure 12-33 at the end of the

chapter.)

Again, it is critical that events are treated as information only about a

specific happening at a specific date and time.

Chapter 12 Develop event-BaseD solutions

596

For example, an event might be information that a rocket was launched

by SpaceX on October 8th 2022 at 18:05 from Launchpad CCSFS SLC 40.

All of that “event” data can easily be sent in JSON form within the 1 MB

Limit (and likely under the 64KB limit where no additional charges are

incurred). There is no concern as to what happened next on the launch—

whether it was successful, returned, crashed, orbited, went to mars, or

anything else. All that matters is the event that happened, and that is all the

data has made available. Any subscribers could report that the launch had

happened and get information from the data payload as to the event type

and launchpad details.

 Versions (Data/Metadata)

Version information for data and metadata are not required fields (these

two entries are combined for brevity in this book). The event grid schema

is determined by the event grid, and currently only has the one version

(which contains all of these properties). If you want to give your data a

version, the producer of the event can put a data version on the event data.

 Subscribing to Topics
As mentioned, to set up events, you must create a topic in the event grid

that responds to the events (otherwise events are ignored). Once a topic is

created, one or more handlers can subscribe to the topic.

 Filtering Data
In most scenarios, the handler doesn’t need to respond to every event.

In certain scenarios, your solution may even rely on filtering to prevent

certain processing from happening.

Chapter 12 Develop event-BaseD solutions

597

For example, consider a solution that needs to notify fans of the world

cup about the scores of today’s games. Consider a scenario where the

fans only want to get live updates for specific teams in the world cup, but

they want the ending score for all games. For simplicity, assume this is as

simple as the fan selecting to get score updates and then selecting to get

detailed updates from the game where teams are France vs Poland, and

another subscriber wants the updates from the USA vs Netherlands game.

Each fan can filter by team and get detailed updates, and the fact that

they subscribed means they get final scores for all games. Event data is

similar to this. Certain events can be handled based on the filters set in the

subscription.

 Filter by Subject

One way to filter data is by the subject. This might include a filter where

the subject starts with some key string like “images” or is in a specific

container in a storage account like ../images/uploads. The filter here can

also be concerned only with the end of the subject (such as the extension)

to handle, such as *.jpg or *.xlsx only.

 Filter by Type

Another important way to filter data is to key on the type. This is similar

to the ongoing example where the type is something like the BlobCreated

event type on the blob storage account. All other event types would be

ignored. Another might be to key on only the type for events involving

virtual machines where the type is machine deallocated.

 Filter by Conditions

An advanced way to work with events is to leverage some conditional logic

in your event filter. In these filtered queries, you set some conditions which

evaluate the data property and discern if the event should trigger the

handler.

Chapter 12 Develop event-BaseD solutions

598

The conditions you can filter on include a number of operator types

involving checking a data field or the subject for some evaluation that

results in a Boolean true/false value. A comprehensive list can be found at

https://learn.microsoft.com/azure/event-grid/event-filtering.

For example, you can check the data on a field named length to see

if the length is greater than or equal to 150 (an arbitrary value) with the

following advanced filter in the subscription:

"advancedFilters": [{

 "operatorType": "NumberGreaterThanOrEquals",

 "key": "data.length",

 "value": 150

}]

Another example lets you check the data field fileURL for ends with

*.jpg as follows:

"advancedFilters": [{

 "operatorType": "StringEndsWith",

 "key": "data.fileURL",

 "values": "jpg"

}]

 Event Delivery
Unless certain scenarios are encountered (see the next section on retry

policies), Azure Event Grid will attempt to deliver an event indefinitely

until the event is acknowledged as delivered.

Chapter 12 Develop event-BaseD solutions

https://learn.microsoft.com/azure/event-grid/event-filtering

599

 Retry Policies

When you create a subscription, you can set a maximum number of retries

or a time limit to limit the number of attempts, and there are specific

error codes that the system will know can never be resolved. They will be

immediately placed in the dead-letter queue or dropped completely if you

haven’t configured dead-lettering for the topic.

Error Codes that Immediately Cancel Retry

The following codes are unresolvable with time, so the Event Grid

immediately dead-letters or drops the event when any of the following

error codes occur:

• 400: Bad request

• 401: Unauthorized (webhook only)

• 403: Forbidden

• 404: Not Found

• 413: Request Entity Too Large

Maximum Number of Attempts

When you create the subscription, you can set the maximum number of

retry attempts to a valid number between 1 and 30.

Maximum TTL

When you create the subscription, you can set the maximum time to retry

for an event from 1 to 1,440 minutes.

Chapter 12 Develop event-BaseD solutions

600

 Dead-Letter

If you want to ensure that no event is ever lost, you can create a dead-letter

policy on the subscription. Typically, the events that are sent to dead-letter

are stored in an Azure Storage account. You configure the storage settings

upon creation of the topic (see Figure 12-19).

Figure 12-19. The subscription for an event allows configuration of
the dead-lettering policy

 Responding to an Event with a Logic App
To complete this chapter, you look at creating a simple event subscription

on a storage account to run a Logic App upon a blob upload.

 Leverage the Storage Account

Earlier in this chapter, you created a storage account. For simplicity, you

can leverage that for this activity. Navigate to that storage account. On the

storage account, make sure to record the name of the account as well as

Chapter 12 Develop event-BaseD solutions

601

either the primary or secondary key for access (you can get these from the

Access Keys left-navigation menu). When you have that information ready,

then click the Events left-navigation menu (see Figure 12-20).

Figure 12-20. Starting the process of creating a new Logic App on a
blob-created event

 Add a Subscription

Click the Create button with Logic Apps selected. This will direct you to the

page to create a new Logic App. In order to make the event subscription

and get set up, the Logic App requires you to sign in (potentially you could

leverage a managed identity for some of this as well).

Chapter 12 Develop event-BaseD solutions

602

Add your sign-in information for the storage account, as shown in

Figure 12-21.

Figure 12-21. Create a connection to the storage account for the
Logic App

For the event grid, you have to sign in or you could use a previously

built service principal or user-assigned managed identity. Sign in to

authorize Azure Event Grid (see Figure 12-22).

Chapter 12 Develop event-BaseD solutions

603

Figure 12-22. The event grid requires authentication. For this
demonstration, use your user account. For production-ready uses,
consider the other two options

Once both connections are built, click Continue, as in Figure 12-23.

Figure 12-23. The connections are good, so it’s time to create the
Logic App

Once the Logic Apps Designer comes up, immediately save the Logic

App to create the endpoint and not lose anything. Name the Logic App

something like az204storageevents. You can’t change the name of a

Logic App after you save it, so make sure you name it properly right away.

Chapter 12 Develop event-BaseD solutions

604

Once you’ve created it and the portal confirms it has been created (see

Figure 12-24), navigate away and ignore the You’ll lose your changes

warning.

Figure 12-24. The Logic App is successfully created, but the portal
won’t realize it so you need to get out and come back to this view

 Modify the Subscription

Return to the storage account and review your subscriptions. You will see

a link for the Logic App, as well as the event types being filtered (currently

created and deleted), as shown in Figure 12-25.

Figure 12-25. The Logic App subscription is set on the Events blade
for the storage account

In the subscription, change the filters to only trigger on Blob Created.

Note that you can also add subject filtering and advanced filters here. You

don’t need any, but it’s important to note this screen so you can see where

those filters are applied. See Figure 12-26 for details.

Chapter 12 Develop event-BaseD solutions

605

Figure 12-26. You can modify the filters for the subscription in the
Event Subscription blade

Add a subject filter to only process .txt files, as shown in Figure 12-27.

Figure 12-27. Filter events to only process .txt files

Make sure to save any changes.

Continue looking at the subscription to review the Additional Features

blade, as discussed (see Figure 12-28).

Chapter 12 Develop event-BaseD solutions

606

Figure 12-28. The Additional Features blade includes dead-lettering
and retry policy configurations

Note that there is also a tab for Delivery Properties, where you can

inject your own information into the headers (see Figure 12-29).

Chapter 12 Develop event-BaseD solutions

607

Figure 12-29. The Delivery Properties blade allows you to add other
headers to the event if you want, and you can make them secret

 Modify the Logic App

Return to the Logic App. The default Logic App has a path that runs for 30

days. You will want to delete this. Also, you’ll see that the Logic App was

triggered potentially by the autocapture from the event hub (depending

on how long you took in the previous steps). Cancel any runs that are in

progress.

In the Logic App Designer, delete the condition and everything that is

under it. Change the When a Resource Event Occurs option to have only

the event type of blob created (see Figure 12-30).

Chapter 12 Develop event-BaseD solutions

608

Figure 12-30. The Logic App with the condition deleted and the type
set to create only

This Logic App is now complete for this demonstration, but you can

play around with it more if you want to do something like send an email to

yourself via SendGrid or Outlook, or if you want to process the file further.

There are over 200 connectors available for you to choose to work with the

file, and the data you need will be in the JSON schema. Let’s run a few that

only process text files as expected to prove this.

 Test the Logic App Event Handler

To test the Logic App event handler, you can manually upload any text

file to the storage account. An easier solution is to open the event hub

app from earlier in the chapter and change the value to produce five or

so events, then run it and then run the consumer. When the five or so text

files are created, the Logic App should fire once for every new text file

created (if you deleted your hub before this or are using a fresh storage

account, just manually upload a text file to any blob storage container in

the account).

Your end result should show that the Logic App has been triggered by

the event as many times as you uploaded a new file to storage with a *.txt

extension (see Figure 12-31).

Chapter 12 Develop event-BaseD solutions

609

Figure 12-31. The storage account upload triggered the event that
was handled in the Logic App for every text file uploaded

 Review the Logic App Data

Open any of the successful runs and review the data in the run. You should

be able to see the event grid data schema in the body of the data for the

run, as shown in Figure 12-32.

Figure 12-32. The Logic App executed and you can review the run
data, where you can see the details of the event schema

Chapter 12 Develop event-BaseD solutions

610

If you click Show Raw Outputs, you can see much more information

about the data, as shown in Figure 12-33.

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solutions. You can find

answers to these questions in Appendix A at the end of this book.

 1) What is the purpose of Azure Event Hubs?

 2) What is the purpose of Azure Event Grid?

 3) What is an event producer? What is a receiver?

What is the purpose of a partition and what is the

maximum number of partitions you can have? What

is a consumer? What is a consumer group? How

many readers can you have per consumer group?

What is checkpointing?

Figure 12-33. The entire event schema is easily viewed in the Logic
App run raw outputs blade

Chapter 12 Develop event-BaseD solutions

611

 4) How do you work with .NET code to send and

receive events?

 5) What is an event topic? What is an event

subscription?

 6) What is a dead-letter event?

 7) What are some ways to utilize event subscriptions to

respond to events?

 Complete the AZ-204: Develop
Event-Based Solutions
To fully learn the material, I recommend taking the time to also complete

the MS Learn module for AZ-204: Develop Event-Based Solutions

found here:

• Explore Azure Event Grid: https://learn.microsoft.

com/training/modules/azure-event-grid/

• Explore Azure Event Hubs: https://learn.microsoft.

com/training/modules/azure-event-hubs/

 Chapter Summary
In this chapter, you learned about working with event-based solutions,

including working with Azure Event Hubs and Azure Event Grid. You

should now have a general understanding of when to use each, and the

moving parts and pieces associated with each type of event solution

in Azure.

Chapter 12 Develop event-BaseD solutions

https://learn.microsoft.com/training/modules/azure-event-grid/
https://learn.microsoft.com/training/modules/azure-event-grid/
https://learn.microsoft.com/training/modules/azure-event-hubs/
https://learn.microsoft.com/training/modules/azure-event-hubs/

612

After working through this chapter and the Microsoft Learn modules,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Know the difference between the Event Grid and the

Event Hub.

• Recognize reasons to utilize each (Event Grid/

Event Hub).

• Understand SAS tokens and their purpose for Send/

Listen/Manage.

• Work with the Event Hub SDK to publish and consume

data using Event Hub.

• Recognize basic pipeline structure for Big Data,

including hot and cold path storage with automatic

capture for hierarchical cold storage.

• Create and subscribe to events within the Azure Portal.

• Respond to events such as blob storage created to

launch an Azure Function, a Logic App, or send data to

another API webhook endpoint.

In the next (and final) chapter, you complete this book and your

AZ-204 study by learning about working with messaged-based solutions in

the Azure ecosystem using Azure Service Bus Queues, Azure Service Bus

Topics, and the Azure Storage Queue.

Chapter 12 Develop event-BaseD solutions

613

CHAPTER 13

Develop
Message- Based
Solutions
You’ve made the move to a serverless architecture, or you’ve decided to

“microservice all the things”. You’re in the middle of implementing your

solution and you realize that creating events is great for fire-and-forget

type of scenarios, and the fact that you can process an Excel file when it

hits storage is great. Everything is working as expected, and you’ve gone

live. What you forgot was that the end of the month processing is about to

kick off, on a Friday, and you’ll have about 250-300 Excel files coming in

from 3:00 PM until 5:00 PM.

The fact that all the files are coming in isn’t terrible. Your function

can scale up at will and the processing will work great. That is until the

backend service that is handling the data as it’s placed into an Azure SQL

server starts to get bogged down, and your Azure Function will be throwing

an error for every new file because the backend database can’t keep up.

One good thing about this scenario is that the order of the processing isn’t

important, so at least you don’t need to manage that in this scenario, but

you can foresee some upcoming issues where the order could be critical.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3_13

https://doi.org/10.1007/978-1-4842-9300-3_13#DOI

614

After some research, you learn that your best option is to implement

some messaging to decouple the processing of the files from storing the

data in the backend database.

 Overview
Queues and messaging services give you the benefit of being able to

decouple your various applications, which is sometimes called “temporal

decoupling” or “load leveling.” By placing the correct information into a

message and sending to the queue, your application can offload the work

and your frontend or processing units can run just as quickly as before, just

sending the information to the service bus or storage queue to continue

the processing without getting bogged down, even when the backend

processes or downstream services can’t keep up with the load.

Within the messaging ecosystem in Azure, especially when concerned

with what might be on the AZ-204 Exam, you need to be in command

of three messaging solutions. The three services are Azure Service Bus

Queues, Azure Service Bus Topics, and Azure Storage Queues. Which

service you choose to implement will be based on the needs of your

solution and the functionality that each service provides. For the exam,

and to make your decision when creating your solutions, you need to know

which features and options are available for each of the three services.

Before taking a look at the services, it’s important to cover a couple of basic

concepts for working with messaging solutions. These concepts are:

• First in/first out (FIFO) processing

• Load leveling

• Loose coupling

Chapter 13 Develop Message- BaseD solutions

615

 First In/First Out (FIFO)
In computer science, there are a couple of major terms for data structures

in regard to processing order. The concept of first in/first out (FIFO) is

important for queueing. When it comes to FIFO operations in these Azure

messaging solutions, the only service that can guarantee FIFO processing

is the Service Bus Queue, and that’s only when you utilize sessions.

Therefore, if you need to have a guaranteed processing of messages in the

order they are received, you must use Service Bus Queue with sessions.

What’s funny to me is that even though the Storage Queue is literally

named “queue,” the processing cannot be guaranteed to be in order, which,

in my mind, is the critical function of a queue For example, you waited in

line for three days for those Taylor Swift tickets, so they better not just let

someone just waltz up to the window and buy better tickets before you

even get a chance, right?

 Load Leveling
As mentioned, one of the major benefits of working with messaging

is the concept of load leveling, which eliminates any chance that the

client solution will be bogged down by backend processing. In the Azure

messaging ecosystem, you can accomplish load leveling with any of the

three messaging solutions, so this benefit has no deterministic effect on

your overall solution architecture where load leveling is concerned.

 Loose Coupling
Another benefit of working with messaging solutions is the loose

coupling that you get by nature in a distributed system. The solution on

the consumer side of the queue can be reworked and deployed at will

and the solution on the producer side of the queue can also be reworked

and deployed at will. In both scenarios, as long as the message structure

Chapter 13 Develop Message- BaseD solutions

616

and payload are the same, the producer or the consumer doesn’t have

any dependency or concern on the architecture of the other side of the

message broker.

As with load leveling, loose coupling is a benefit that you can get from

any of the three solutions, so there is no benefit or drawback to choosing

any of the options when it comes to achieving loose coupling.

 Working with Azure Storage Queue
Azure Storage Queue is simple enough to implement and utilize, so it’s a

great starting place for looking at these three solutions. It’s important to

remember that Azure Storage Queue cannot guarantee order, and it can’t

guarantee at-most-once delivery without additional work to implement

the functionality on your part.

 When to Use Azure Storage Queue
When it comes to Azure Storage Queue, there are a couple of scenarios

where it will be the only choice.

For example, consider a scenario where you have a massive amount

of message data. The Storage Queue is the only place where you can store

over 80 GB of message data. Another situation that requires utilization of

the Storage Queue is when you need to keep track of all the transactions

against the queue or if you need to have some sort of indication as to the

progress of message processing (such as the ability to set a checkpoint in

Azure Event Hubs, but typically just one long-running process around a

message on the storage queue where one message processing operation

can be continued if a timeout or other error happens).

Chapter 13 Develop Message- BaseD solutions

617

 Azure Storage Queue Features
Azure Storage Queue has several features and benefits that make it an

attractive option with a lower barrier to entry than Azure Service Bus.

However, there will be scenarios where Storage Queue is not the correct

solution, and these are addressed later in the chapter with discussions on

the appropriate utilization of Service Bus Queues.

 Access via HTTP/HTTPS

One benefit of storage queues is their ability to produce and consume

messages via the HTTP/HTTPS protocol. Storage queues work well with

HTTP/HTTPS, whereas service buses use AMQP protocols, which don’t

play well over HTTP/HTTPS.

 Message Size (64 KB)

When working with Azure Storage Queue, the maximum size of the

message is limited to 64 KB. This is not intuitive, since the max size for a

Service Bus message is larger (256 KB or 100 MB, discussed later in the

chapter). You might be tempted to think that storage would have larger

message sizes since it is, by nature, storage. Make sure to not get tripped

up on this point. A very important part of your job (and this certification)

is to discern when to use a service and the size of the message is absolutely

critical to ascertaining which service you should choose..

 Massive Amounts of Messages (>80 GB)

Although the storage queue has a smaller maximum message size, the

storage queue itself can store massive amounts of messages. If you have

more than 80 GB of data that needs to be retained, then Azure Storage

Queue is your only viable option (other than perhaps creating multiple

service bus namespaces and queues).

Chapter 13 Develop Message- BaseD solutions

618

 Storage Queue URL

While it’s not really a feature, it’s important to remember that the type of

storage for anything in the storage ecosystem is easily identifiable by the

URL. In the case of the storage queue, the URL is https://your-storage.

queue.core.windows.net/queue-name.

 Operations
When working with the Azure Storage Queue, all operations will take

two steps or more to process a message. This is done in a lease and

delete approach. In contrast, you’ll see that Service Bus Queue provides

a similar option to this approach (Peek Lock), as well as an option to

receive and delete with one command (which is not an option with Azure

Storage Queue).

 Lease the Queue Message

The first step is to get a lease on the message from the queue. This lease is

typically valid for 30 seconds. In that time, no other process can access the

message being processed.

 Renew the Lease

Whenever the processing is going to take more than the original lease

time, and the process needs to continue working on the message, and the

process has not encountered an unrecoverable error, then the consumer

client needs to send a command to renew the lease with Azure Storage

Queue. If the consumer fails to do this, the message will be put back into

the queue. The maximum amount of time you can renew a lease is for

seven days.

Chapter 13 Develop Message- BaseD solutions

https://your-storage.queue.core.windows.net/queue-name
https://your-storage.queue.core.windows.net/queue-name

619

 Delete the Message

After a message is successfully processed, it needs to be deleted from the

queue. Failure to send the command to delete the message will mean that

eventually the message will be back in the queue and could be processed a

second time.

 At-Most-Once

As seen in these last three sections, Azure Storage Queue does not have the

ability to immediately remove a message at the same time as the message

is being retrieved. For this reason, there is no At-Most-Once guarantee.

While you could get the message and immediately delete it, there is still

not a solid guarantee on At-Most-Once for all messages. Therefore, if you

want At-Most-Once delivery guaranteed, your best choice is Azure Service

Bus Queue.

 Message Retention

The messages in Azure Storage Queue are only retained for seven days.

After seven days, messages in the queue are automatically deleted.

 Working with Storage Queue in .NET
To work with Azure Storage Queue, you just need to create a queue and

then you can leverage the code samples from this chapter to see how to

work with the .NET SDK in order to add and receive messages in Azure

Storage Queue.

Chapter 13 Develop Message- BaseD solutions

620

 Create an Azure Storage Queue

To create an Azure Storage Queue, you just need to leverage an existing

Azure Storage Account or create a new one. On the Storage Account blade,

select the Queues left navigation, then select + Queue (see Figure 13-1).

Figure 13-1. Creating an Azure Storage Queue in the portal is very
straightforward

Just give the queue any name, such as az204examref-storagequeue.

Remember that the name must be able to be reached via a public-facing

web address, so it must be compliant with web domain naming rules.

Creating the queue also shows the full URL after creation (see Figure 13-2).

Chapter 13 Develop Message- BaseD solutions

621

Figure 13-2. The full URL for the storage queue is shown. It may
seem simple, but this is a critical part of working with the queue over
HTTP/HTTPS should you desire to do so

If you’re annoyed at the level of attention to the URL at this point,

I apologize. I just need to convince you that this attention to detail is

something to keep in mind and it’s very easy to forget if the first part of

the URL is the storage account name or if it is the queue name. Hopefully

at this point you won’t ever need to question what goes where in the URL

ever again.

 NuGet Packages

In order to work with the code against the Azure Storage Queue, you need

the Azure.Storage.Queues NuGet package.

 Get the Connection String

For the SDK, you can connect via the Azure Storage Account connection

string, just as if you were going to work against blob or table storage. Get

the connection string from the Access Keys page on your Storage account

(see Figure 13-3).

Chapter 13 Develop Message- BaseD solutions

622

Figure 13-3. The Access Keys page on your Storage account contains
the connection string

Add the connection string to your local user secrets file. In addition,

put the name of your queue into the local secrets file (see Figure 13-4).

Figure 13-4. Ensuring the connection string and queue name are in
your local secrets file

 Compose the Client

As the pattern has been in other instances, start by creating your client

object as a new QueueClient:

_sqClient = new QueueClient(_sqConnectionString, _sqName);

Chapter 13 Develop Message- BaseD solutions

623

Next, ensure that the queue is created. This command is idempotent

and won’t hurt you if the queue already exists:

await _sqClient.CreateAsync();

 Send Messages to the Queue

When you send messages to the queue, you can get a receipt back from

the queue as to the success of the send operation. To add a message to the

queue, utilize the QueueClient object and leverage the SendMessageAsync

command. Note that the object is serialized by the code before sending to

the queue.

var movies = GetMovies();

var receipts = new List<SendReceipt>();

foreach (var movie in movies)

{

 receipts.Add(await _sqClient.SendMessageAsync(JsonConvert.

SerializeObject(movie)));

}

Receipts have several properties, and you can analyze the receipts to

see the message IDs and expiration times if you want or need to do so (see

Figure 13-5).

Figure 13-5. You can analyze the receipts for information like the
message ID and expiration time

Chapter 13 Develop Message- BaseD solutions

624

 Peek at the Messages

You can peek at messages in the queue using Azure Storage Queue. When

you peek at a message, you can review it without removing it from the

queue. To complete the operation, you can peek at the messages with the

following code, utilizing the PeekMessagesAsync command:

PeekedMessage[] peekedMessages = await _sqClient.

PeekMessagesAsync(maxMessages: 10);

foreach (PeekedMessage peekedMessage in peekedMessages)

{

 // Display the message

 Console.WriteLine $"MessageId: {peekedMessage.MessageId} |

Message: {peekedMessage.MessageText}");

}

For the peeked messages, you can specify a number (i.e., 10), and you

can see the message text and the message ID with the peekedMessage.

MessageText and peekedMessage.MessageId commands, respectively (see

Figure 13-6).

Figure 13-6. The messages are shown, and you can see the ID and
the text of the messages by peeking at each message

Chapter 13 Develop Message- BaseD solutions

625

 Update a Message in the Queue

In some cases, you may need to update a message in the queue. You can

do this in Azure Storage Queue. Using the message ID from the message

receipts, you can update it to a new value:

// Update a message using the saved receipt from sending

the message

var newMovie = new Movie() { Id = "235234QAW", MPAARating = "PG-13"

 , Title = "Top Gun: Maverick",

ReleaseYear = 2022 };

await _sqClient.UpdateMessageAsync(receipts[0].MessageId

 , receipts[0].PopReceipt

 , JsonConvert.

SerializeObject(newMovie));

 Receive but Leave the Messages

With Storage Queue, you have two operations that must be performed

together to remove a message from the queue. The two operations are

essentially to lease and/or delete the messages. For this operation, you

can read all the messages, and if you don’t delete them, they stay in the

queue. The code to get the messages leverages the client. It calls the

ReceiveMessagesAsync method and sets the number of messages to get at

one read:

var messages = await _sqClient.ReceiveMessagesAsync(maxMess

ages: 20);

foreach (var m in messages.Value)

{

 var qMovie = JsonConvert.DeserializeObject<Movie>(m.Body.

ToString());

Chapter 13 Develop Message- BaseD solutions

626

 Console.WriteLine($"Received Message deserialized to Movie

{qMovie.Title}");

}

This shows a max of 20 messages, which includes all the movies from

the queue, as shown in Figure 13-7.

Figure 13-7. All of the messages are retrieved from the storage queue

 Extend the Lease

As mentioned, you can extend your lease on the object by setting the

object visibility (see Figure 13-8). Be very careful here, however. If you set

the lease to one hour from now as in this code, if your code breaks or can’t

be continued, you could lose your reference and ability to work with those

messages for the next hour.

TimeSpan ts = new TimeSpan(1);

foreach (QueueMessage message in messages.Value)

{

 Console.WriteLine($"Renewing Lease for 1 hour on {message.

MessageId}");

Chapter 13 Develop Message- BaseD solutions

627

 await _sqClient.UpdateMessageAsync(message.MessageId

 , message.PopReceipt

 , message.Body, ts);

}

foreach (QueueMessage message in messages.Value)

{

 Console.WriteLine($"Message: {message.MessageId} " +

 $"Next visible on: {message.

NextVisibleOn}");

}

Figure 13-8. Leases are extended by setting the visibility of
the message

Chapter 13 Develop Message- BaseD solutions

628

It is also important to note that the messages cannot be deleted once

leased for another hour (until the lease expires), even if you have a handle

on the message. Once you set the visibility, you are essentially making it

so that the queue can’t see or alter messages. If you run this code and then

try to delete any message immediately after extending the lease, you get an

error, as shown in Figure 13-9.

Figure 13-9. The message is not visible so the program can’t delete it,
and you get an error message showing this fact

 Delete Messages from Storage Queue

To delete messages from Azure Storage Queue, you just need to leverage

the DeleteMessageAsync call with the message ID and pop receipt:

foreach (QueueMessage message in messages.Value)

{

 // "Process" the message

 Console.WriteLine($"Message: {message.MessageText} processed" +

 $", now deleting...");

Chapter 13 Develop Message- BaseD solutions

629

 // Let the service know we're finished with

 // the message and it can be safely deleted.

 await _sqClient.DeleteMessageAsync(message.MessageId

 , message.PopReceipt);

}

The messages are deleted, as shown in Figure 13-10.

Figure 13-10. The messages are deleted from the queue

 Delete the Queue

You can use code to delete the queue. If you want to do this, leverage the

DeleteAsync method as follows:

await _sqClient.DeleteAsync();

 Working with Azure Service Bus
Compared to Azure Storage Queue, working with Azure Service Bus takes

a bit more to get up and running. Additionally, the Service Bus Queue and

Topics will likely incur more charges by default than Storage Queue.

Chapter 13 Develop Message- BaseD solutions

630

 Tiers
Service Bus has three tiers—Basic, Standard, and Premium. For testing,

you’ll use Basic, which is inexpensive, but for production, you’ll want to

use Standard or Premium to get the best consistency and latency, both of

which have some dedicated monthly charges. It should be noted that the

official recommendation is to use Premium for production scenarios due

to the potential for variable throughput and latency at the standard level.

As you deploy a new instance of Service Bus, you’ll note that you first

need a Service Bus namespace (just like with the Event Hub from the

previous chapter). However, this URL will actually be for a Service Bus

instance, so the Service Bus namespace URL makes much more sense in

this case. For this demonstration and any testing solution, the Standard

tier is sufficient (if you don’t need topics, then use the Basic tier).

For more information and a comparison of the service offerings,

take a quick look at the chart offered at https://azure.microsoft.com/

pricing/details/service-bus/. Also, reference Figure 13-11.

Chapter 13 Develop Message- BaseD solutions

https://azure.microsoft.com/pricing/details/service-bus/
https://azure.microsoft.com/pricing/details/service-bus/

631

v

Figure 13-11. The tier can be changed from Basic to Standard or
back once deployed. The Premium offering is not available once the
Service Bus has been deployed at the Basic tier

Chapter 13 Develop Message- BaseD solutions

632

 Basic

The Basic tier is a serverless instance of Service Bus, with a lower cost of

entry. It can do a few million requests at minimal cost. Message size is

limited to 256 KB, and all service bus instances cannot exceed 80 GB of

storage. The Basic tier is comparable to the Azure Storage Queue, offering

the basic queue capabilities but no topics (topics are responsible for pub/

sub-multicast messaging and are covered later in the chapter).

 Standard

At the Standard tier, you get queues and topics and pay a baseline, entry-

level price for the month to use the service. At this tier, you do get variable

throughput and variable latency, so you can’t get predictable performance.

You also get all the benefits of the premium service like transactions,

automatic duplicate detection, sessions (necessary for order guarantee

and long-running polling), and message forwarding. Size limits are the

same as with Basic, with message size capped at 256 KB and 80 GB max

storage for the namespace.

 Premium

The Premium offering is the recommended solution for production

scenarios. You get all of the benefits/features of Service Bus on an isolated

tier, and your message size can be a massive 100 MB. With Premium

tier offerings, you get guaranteed performance for both throughput and

latency, and you can set additional options for resiliency, including

failover to another region (where you pay for the service in that region

as well). The Premium tier also supports Java Messaging (JMS) 2.0. See

Figure 13-12.

Chapter 13 Develop Message- BaseD solutions

633

Figure 13-12. The Service Bus Namespace is created on the pricing
tier (all queues and topics share this tier pricing and compute)

Initially, I deployed this test instance on the Basic tier, then scaled up

to Standard for the ability to leverage topics.

 Advanced Tab
During deployment, as with the deployment of the Event Hub Namespace,

you’ll choose the minimum TLS version and the ability to do local

authentication (this is the same SAS token capabilities seen in the previous

Chapter 13 Develop Message- BaseD solutions

634

chapter). You want to leave local authentication on for this testing. In

future production scenarios, you might consider implementing a more

secure solution using RBAC, Managed Identities, or Service Principals (see

Figure 13-13).

Figure 13-13. The Advanced tab allows TLS and local
authentication configuration

 Networking
As with other offerings, the service bus can be created with Public or

Private access. For this demonstration, the public-access version of Azure

Service Bus is used (see Figure 13-14).

Figure 13-14. Networking can be leveraged if you want to keep your
service bus on a private virtual network

The Service Bus Namespace is then deployed to be utilized later in the

chapter.

Chapter 13 Develop Message- BaseD solutions

635

 When to Use Azure Service Bus
As with the Azure Storage Queue, your job here is to know when to leverage

Service Bus over Storage Queue. Hopefully, as this chapter has already

discussed several reasons for using Storage Queue, the choice will become

more evident as you continue to learn about the features each offers.

 Features
As Service Bus is the message broker of choice within Azure that is a

bit more involved and expensive, there are several powerful messaging

features that you can leverage in your solutions available through

Service Bus.

 Message Size (Up to 256 KB or 100 MB)

Message size in Azure Service Bus is typically 256 KB, but at the Premium

tier you can have messages up to 100 MB. For most scenarios, 100 MB of

data is an excessive amount of data. However, consider the cases where

you may need to pass an entire document or relevant state information

for a system. In those scenarios, you might need 4 MB or more. In other

scenarios, you may be looking to pass along information from an email,

which might have attachments.

Although Outlook currently limits attachments to 20 MB, if the email

has a few attachments you would be better served if you can keep them

all together. All of that being said, even though you can send up to 100 MB

messages, it is highly recommended that you keep your messages small.

For the previous cases, a pattern known as the “claim check” is a better

solution. In that pattern, you send information in the message that allows

you to get the data from another place, such as Azure Storage. For more

information, you can review this document: https://learn.microsoft.

com/azure/architecture/patterns/claim-check.

Chapter 13 Develop Message- BaseD solutions

https://learn.microsoft.com/azure/architecture/patterns/claim-check
https://learn.microsoft.com/azure/architecture/patterns/claim-check

636

 Sessions (Long-Polling and Guaranteed FIFO)

To achieve true FIFO processing, the Service Bus offering must implement

sessions. The Session feature is also useful for implementing long-polling

solutions, which is essentially like streaming messages into your client,

rather than the client continually fetching (polling) the messages. Note

that this is not the same as streaming data into an event hub.

 Duplicate Detection

With Service Bus at Standard or Premium tiers, you get automatic

duplicate detection. This is incredibly useful to ensure that data can

be resent if there is an error, and no side-effects occur if the message is

already present.

 Transactions

Another powerful feature of Service Bus is the ability to batch operations

into transactions. This feature makes it possible to ensure that you get all-

or- none operations for grouping messages or processing.

Moving messages within Service Bus is also transactional, so if a

message is forwarded or moved to the dead-letter queue, the operation is

transactional to ensure that messages are not lost during these operations.

 Opaque Binary Payload

Service Bus is agnostic regarding your message payload. This is a great

thing because it means you can serialize your data on your services, send

the data, and get the data back to complete the operation by deserializing

the data. In the middle, Service Bus does its own serialization to make your

payload binary, and you don’t have to interact with that at all. The content

of your message therefore has no effect on the processing at Service Bus,

and your data is opaque as far as Service Bus is concerned.

Chapter 13 Develop Message- BaseD solutions

637

 Auto-Forwarding

This advanced feature allows you to build a chain of queues that can be

used for advanced processing scenarios. As long as the queues or topics

are in the same namespace, you can forward from one to another. This

can be useful for a fan-out scenario, similar to fan-out on Azure Durable

Functions. Another useful benefit this can give you is the ability to build a

massive messaging system where senders and consumers are decoupled

and independent of one another.

 Dead-Lettering

As with events, messages are supposed to be delivered to a consumer at

some point. With messaging, in contrast to events, the dead-letter queue is

automatically utilized in your solution. Messages are moved to this queue

when they can’t be delivered and then you can look at these messages to

try to resubmit or correct any issues.

Dead-letter messages will never expire, and, in contrast to how

you work with messages in Azure Storage Queue, you can utilize both

approaches to receive queue messages where you either peek at and then

delete the message, or you just receive and delete the message with one

operation.

Another interesting fact is that one of the main reasons messages move

to the dead-letter queue is due to the fact that messages can expire before

delivery. Since messages never expire from the dead-letter queue, you will

then need to purposefully interact with the dead-letter queue to remove

these messages, if desired.

 Batching

If you want to improve your overall Service Bus performance, you can

enable batching at the subscription and topic level. This means that as

your clients send in requests to write messages or delete them, Service Bus

Chapter 13 Develop Message- BaseD solutions

638

is internally batching the operations. Rather than running 100 individual

delete requests, Service Bus might receive 100 requests and then execute

them in a batch.

When batching is enabled (which it is by default on your queues and

topics), your clients typically see no latency issues and you don’t have to

worry about losing any data in the process.

 Auto-Delete on Idle

Imagine a scenario where you need to quickly queue several messages and

then once they are all processed, the queue is no longer needed (perhaps

a nightly batch process). In this scenario, you can configure the queue

to be deleted once it’s been idle for a specified time interval, such as one

hour. While the batch is active, the queue is alive. As soon as the batch is

completed and one hour has passed since the last message was received,

the queue is completely deleted.

 At-Most-Once Delivery

Azure Storage Queue is unable to guarantee at-most-once delivery. With

Azure Service Bus, you can utilize this functionality. It is important to

note that if you do use this functionality, if something goes wrong during

processing of the message, there is no chance for recovery. Essentially,

since the message is retrieved using the Receive and Delete option, on read

the message is immediately deleted from the queue so that At-Most-Once

delivery is achieve. If something goes wrong, the message is lost forever

since it no longer exists in the queue.

 At-Least-Once Delivery

All three messaging services have At-Least-Once capability. All this means

is that your message will exist at least until it is read, and then another

manual operation will be required to remove it from the queue. Service

Chapter 13 Develop Message- BaseD solutions

639

Bus may be more useful to you in this category over storage queues

because the storage queue has a Time To Live (TTL) of just seven days.

After seven days, messages are purged from the Azure Storage Queue

forever.

With Azure Service Bus, expired messages are moved to the dead-letter

queue. Therefore, if a message expires before being removed, you still

don't lose the data.

Technically, neither solution has delivered “at least once” in this

scenario (the message was never delivered in either scenario after all).

However, the fact that the message still exists in the Service Bus dead-letter

queue means that you didn’t lose the history of the unprocessed message,

which could be extremely important.

 Filtering

Another advanced and powerful feature of Service Bus is the ability to filter

your messages. If you worked through the previous chapter on events,

then you are aware of what it means to have a separation of concerns on

messages based on some filters. With Service Bus, you can use filtering to

only review the items from the queue or topic that you are concerned with.

Later in the chapter, you get to see this in action when a topic is given a

number of movies, and three separate consumers care only about certain

movies that meet either family or non-family rating criteria (such as only

the movies rated G). Filtering allows the exact same result set to be viewed

differently across three subscriptions with only relevant entries present.

 Queues and Topics
Within Azure Service Bus, the two services you need to be in command

of are queues and topics. At the high level, queues are singular entities.

Topics are publish and subscribe (pub/sub) and have all the capabilities of

queues but can be multicast. The concept of multicasting a message just

Chapter 13 Develop Message- BaseD solutions

640

means that delivery of one message can be received by multiple clients at

the same time or asynchronously. As with the filtering scenario, a single

message queue can be read in different ways by different clients. One

message can therefore be received by one or more clients.

 Queues

Working with queues is available at all tiers in Service Bus and is going

to follow along with all the other tenets you’ve likely seen throughout

this book in terms of composition. For example, you start with the Azure

Service Bus namespace, then add a queue, similar to how you create

an Azure Storage Account and then add a storage queue. The code

composition pattern of starting from the top level and composing objects

that are more specific follows these same patterns.

Receive Mode

Within the queue ecosystem, as mentioned previously, there are two ways

to receive data. The first method is the At-Most-Once approach of Receive

and Delete. The second method is the At-Least-Once approach of Peek

and Lock.

Receive and Delete

The first mode you can utilize to get items from the queue is Receive and

Delete. To utilize this mode, set the receive options on creation of the client

similar to the following code:

var sbpo = new ServiceBusProcessorOptions();

sbpo.ReceiveMode = ServiceBusReceiveMode.ReceiveAndDelete;

var processor = client.CreateProcessor(_sbQueueName, sbpo);

Chapter 13 Develop Message- BaseD solutions

641

It is important to note that this read mode has no fault tolerance

because once you receive the message in this mode, it is also deleted from

the queue. If something goes wrong, you lose the message forever.

ServiceBusReceiveMode.ReceiveAndDelete is the mode you want to

use to when you need to implement At-Most-Once processing.

Peek Lock

To enable the message to remain in the queue until you want to delete it,

you want to implement a Peek and Delete strategy. To accomplish this,

utilize the ServiceBusReceiveMode.PeekLock option. In this option, you

get At-Least-Once delivery, and you can then process the message.

Messages are read and passed to a processing method via an event

handler. Once the message is completely processed, you then need to

make a second call to delete the message from the queue. The second call

is to a method called CompleteMessageAsync, which deletes the message

from the queue.

Working with Service Bus Queue in .NET

To get started here, grab the starter code for the ServiceBusQueue

project. This project will reference the NuGet package Azure.Messaging.

ServiceBus in the publisher and the consumer projects.

Configure a Queue

In addition to the project, you need to create a queue in Azure. You can

name the queue whatever you like, something like az204examrefqueue. You

can leave all the default settings (optionally, you could make the message

TTL just a couple of days instead of 14 since this is a test instance), but take

a minute to review all the settings to see how they line up with a few of the

features already discussed in this chapter, such as duplicate detection, auto-

delete, sessions, dead-lettering, and auto- forwarding (see Figure 13-15).

Chapter 13 Develop Message- BaseD solutions

642

Figure 13-15. Creating a default queue for use in testing. No
additional options are configured, but TTL is reduced to two days

Chapter 13 Develop Message- BaseD solutions

643

Shared Access Policies

If you worked through the previous chapter, you’re fully aware of Shared

Access Policies. These policies allow your consumers to read only and your

producer to write only.

Drill into the new queue and select the left-navigation item for Shared

Access Policies, then click + Add. Create a policy called Consumer with

Listen access (see Figure 13-16).

Figure 13-16. Creating the Consumer SAS policy for the new queue

Make sure to record the connection string information for the new

policy. You’ll need it in your consumer application.

Create another policy called Producer with Send access. Of course, if

you are going to modify the queue structure or properties, you would need

a policy with manage rights as well. Creating a manage policy is beyond

the needs of this example, but you are welcome to create it for practice

if you like. Figure 13-17 shows the two policies that are necessary to

complete this example.

Chapter 13 Develop Message- BaseD solutions

644

Figure 13-17. The SAS policies are set on the queue

Drill into the SAS to get the connection string for each if you don’t

already have them ready to go (see Figure 13-18).

Figure 13-18. The SAS tokens have connection strings. You need each
to have the appropriate access to send or receive messages to and from
the queue

Chapter 13 Develop Message- BaseD solutions

645

Update User Secrets

Update the user secrets for the Publisher and the Consumer projects.

Utilize the examples to get the format and information you need for each

(see Figure 13-19).

Figure 13-19. The Producer app is ready to go with user
secrets updated

Make sure you have updated secrets for the Publisher and the

Consumer applications with the correct SAS token connection string and

queue name information.

Publish Messages to the Queue

To publish messages to the queue, the Publisher project highlights the way

to send data. First, however, you must compose the object (just like every

other SDK you’ve seen in the Azure ecosystem):

var client = new ServiceBusClient(sbConnectionString);

var sender = client.CreateSender(sbQueueName);

With the ServiceBusClient you create Sender. This Sender object is

then used to send messages in a ServiceBusMessageBatch with a using

statement:

using ServiceBusMessageBatch messageBatch = await sender.

CreateMessageBatchAsync();

Chapter 13 Develop Message- BaseD solutions

646

Next, the TryAddMessage method adds the message to the batch:

foreach (var m in theMovies)

{

 var moviesJSON = JsonConvert.SerializeObject(m);

 if (!messageBatch.TryAddMessage(new ServiceBusMessage(mov

iesJSON)))

 {

 // if an exception occurs

 throw new Exception($"Exception has occurred adding

message {moviesJSON} to batch.");

 }

}

Finally, the SendMessagesAsync method is utilized to send messages:

try

{

 await sender.SendMessagesAsync(messageBatch);

 Console.WriteLine($"Batch processed {messageBatch.Count}

messages " + $"to the queue for movie review list");

}

Run the Producer to put messages into the Service Bus Queue.

Provided everything is set correctly, you should see that 17 messages were

sent to the queue. You can also see that the queue has 17 messages in it if

you view it in the portal (see Figure 13-20).

Chapter 13 Develop Message- BaseD solutions

647

Figure 13-20. The queue received all 17 messages

Service Bus Explorer

A new feature has recently been added to Azure Service Bus in the portal.

You can navigate to the Service Bus Explorer, and you can actually review

the data in your queue using the At-Least-Once PeekLock Read-and-Delete

approach (see Figure 13-21).

Figure 13-21. The Service Bus Explorer lets you examine messages in
the queue in a way that leaves the messages in the queue

Chapter 13 Develop Message- BaseD solutions

648

Receive Messages from the Queue with a Consumer

As mentioned, the Service Bus Queue is really designed for just one

downstream dependency (not a multicast). With that in mind, the

consumer client should typically read the messages and process them.

To get started reading the messages, the client needs to be created:

var client = new ServiceBusClient(_sbConnectionString);

Next, you can optionally set options for PeekLock or

ReceiveAndDelete, depending on how you want to proceed. If you use

PeekLock, which doesn’t explicitly remove messages at the time of the

read, the messages will remain in the queue. If you use ReceiveAndDelete,

then the messages will be received and removed at the same time.

Either way, you need to use the client to create a processor. The code

contains one processor that utilizes PeekLock and another that runs the

ReceiveAndDelete operations:

sbpo.ReceiveMode = ServiceBusReceiveMode.ReceiveAndDelete;

var processor = client.CreateProcessor(_sbQueueName

 , new ServiceBus

ProcessorOptions() {

 ReceiveMode =

ServiceBus

ReceiveMode.

PeekLock

 });

var processorReceiveAndDelete = client.CreateProcessor

(_sbQueueName, sbpo);

For demonstration purposes, both types of read operations are

created in the previous code, but only the PeekLock processor is used in

the remaining code (it requires the additional completion to remove the

message from the queue). Feel free to experiment with this on your own

Chapter 13 Develop Message- BaseD solutions

649

for additional learning. The At-Most-Once approach is utilized in the final

example later in the chapter.

Process Messages

Similar to event processing, the client processor will use a callback

function as an event handler to respond to messages for processing. An

additional method is leveraged to record any errors:

// add handler to process messages

processor.ProcessMessageAsync += MessageHandler;

// add handler to process any errors

processor.ProcessErrorAsync += ErrorHandler;

Processing is then started and continues until stopped:

await processor.StartProcessingAsync();

This academic app just stops after a minute. In the real world, you

likely would just let it run indefinitely, or as necessary for your solution.

The code to end message processing is as follows:

await processor.StopProcessingAsync();

The Code to Process Messages

The code required to process messages is as follows:

private static async Task MessageHandler(ProcessMessageEvent

Args args)

{

 string body = args.Message.Body.ToString();

 Console.WriteLine($"Received: {body}");

 var movie = JsonConvert.DeserializeObject<Movie>(body);

 await WriteMessageToConsole(movie);

Chapter 13 Develop Message- BaseD solutions

650

 // complete the message. message is deleted from the queue.

 await args.CompleteMessageAsync(args.Message);

}

Note the final line of code with the call to the CompleteMessageAsync

method is how the message is deleted from the queue in the PeekLock

processing flow. Additional options exist on the args object that instead

allow you to renew, defer, or abandon the message.

Complete the Processing

Run the consumer application to view the output for PeekLock and then

run the args command at the end for complete message to remove it from

the queue (see Figure 13-22).

Figure 13-22. The queue was able to be read and the messages are
removed as expected

 Topics

The final area of concern in the Azure messaging ecosystem is Azure

Service Bus Topics. Topics are the pub/sub solution for multicasting

messages to multiple consumers. Additionally, topics allow consumers to

filter their feeds to only receive the messages that concern them.

Chapter 13 Develop Message- BaseD solutions

651

Pub/Sub

The major benefit of topics over queues, as mentioned, is the pub/sub

nature of topics. With this feature, each topic is a standard queue but each

subscriber gets all the benefits of essentially viewing their own version

of the main queue. These subscriber queues do not affect each other,

so consumer A can remove messages from their queue and consumer B

would still have those messages available until consumer B has processed

the message.

Filtering

Another major benefit of topics is their ability to filter the data. As the

consumer, an application may only be concerned about a subset of

the messages in the queue. It would be extraneous and perhaps even

dangerous if the consumers can review all of the messages in the queue.

For example, consider a scenario where you have the world cup

example from the previous challenge. The data for every team is available

in queues that store the stats for every game. However, one consumer

only cares about one or two countries and just wants the data from those

games. Using filtering, the consumer can get only the pertinent messages

regarding games of interest, and all other messages are ignored.

An additional scenario might be your company publishing feed data

to clients. Perhaps you only want some specific clients—like your best

customers—to see the best sales offers, and so you configure their queue

to pick those offers up in the messages from their product offers queue.

Clients who do not meet a certain sales threshold do not see those offers in

their product offers queue.

Chapter 13 Develop Message- BaseD solutions

652

Working with Service Bus Topics in .NET

The sample application for this final project is a bit more involved,

as there are three clients. Grab the sample code for the chapter for

WorkingWithServiceBusTopics and open the solution, then look at the

ServiceBusAdministrator project.

Get Started with the Administration Project

To make this administration project work, you need to create and/or get a

root-level SAS token for the administrator and run that project, which will

create your pub/sub topics and subscriptions.

Root-Level Administrator Token

Navigate in Azure to your Service Bus instance. On the Shared Access Policies

blade, select RootManageSharedAccessKey and get the secondary connection

string for this. (Use the primary for production, use secondary for testing and

development; if it gets exposed by accident you can then just rotate it quickly

and production will be unaffected in theory.) See Figure 13-23.

Figure 13-23. Getting the root management key for the entire service
bus instance. This is the God Mode key and should be well protected.
Do not check this key into your code or push it to GitHub under any
circumstances

Chapter 13 Develop Message- BaseD solutions

653

Set Secrets for the Administrator Project

Use the connection string to configure the secrets for the Administrator

project in the solution, as illustrated in Figure 13-24.

Figure 13-24. The Root Manage Shared Access Key is added to the
user secrets

Commands from the Admin Program

Within the Administrator program, first, as always, an object hierarchy is

established:

adminClient = new ServiceBusAdministrationClient(_

sbConnectionString);

Next, the program checks to see if the topic for MoviesToReview exists.

var existingTopic = await adminClient.GetTopicAsync(_sbTopicName);

If not, the topic is created using the following line of code:

await adminClient.CreateTopicAsync(_sbTopicName);

Next, each of the subscriptions is created if they don’t exist with similar

commands:

var anExistingSubscription = await adminClient.

GetSubscriptionAsync(_sbTopicName, _sbSubscriptionAllMovies);

Chapter 13 Develop Message- BaseD solutions

654

and

await adminClient.CreateSubscriptionAsync(

 new CreateSubscriptionOptions(_sbTopicName, _

sbSubscriptionAllMovies),

 new CreateRuleOptions("AllMovies", new TrueRuleFilter()));

Note the filter in this subscription is set to TrueRuleFilter. Essentially,

this filter is a Boolean filter that, when the value is true, gets all the entries

in the queue. Compare that to this subscription creation statement:

await adminClient.CreateSubscriptionAsync(

 new CreateSubscriptionOptions(_sbTopicName, _

sbSubscriptionAdultMovies),

 new CreateRuleOptions("AllAdultMovies"

 , new SqlRuleFilter("MPAARating='PG-13'

OR MPAARating = 'R'")));

Note this subscription uses SqlRuleFilter, which checks to see what

the rating is within the message. Only movies that are rated PG-13 or R are

selected in this subscription.

The filters used previously are built-in and can be selected.

The options for filtering include the previously shown Boolean and

SqlRuleFilter, as well as a Correlation filter. The conditions of the filter

are set by you. Boolean and SqlRuleFilters are both utilized in the code

examples.

The Correlation filter is a bit more involved and is not shown in

the code. With the Correlation filter, you can create a set of conditions

that must be matched in order for the filter to select the message for

your queue. The following properties can be matched when using a

Correlation filter:

• ContentType

• Label

Chapter 13 Develop Message- BaseD solutions

655

• MessageId

• ReplyTo

• ReplyToSessionId

• SessionId

• To

• Custom properties defined by you

If you want to know more about using filters, you can review this

document on Microsoft Learn: https://learn.microsoft.com/azure/

service-bus-messaging/topic-filters#filters.

Execute the Administration Program

With everything in place, you can now execute the administration

program to create the topic and subscriptions. Figure 13-25 shows the

execution of the program and the result in the portal with the topic and all

subscriptions.

Figure 13-25. The topic and subscriptions are created

Chapter 13 Develop Message- BaseD solutions

https://learn.microsoft.com/azure/service-bus-messaging/topic-filters#filters
https://learn.microsoft.com/azure/service-bus-messaging/topic-filters#filters

656

Note that you can drill into the subscriptions to see more information

and/or configure them in Azure as well (see Figure 13-26).

Figure 13-26. The filter can be reviewed and modified from within
the portal

Publish Messages

Publishing messages is accomplished with the ServiceBusPublisher

program from the example projects.

Producer and Consumer Tokens

To make this work, you need a write-only (Send) SAS token for the

topic. Navigate to the portal, drill into the topic, and then select the left-

navigation menu item called Shared Access Policies. Note that you can use

a token from any level, but you can get as granular as the specific topic, all

topics, or for the entire namespace with your SAS tokens.

This token should be specifically for the moviestoreview topic. Of

course, using the most specific access level is much more secure, as this

Chapter 13 Develop Message- BaseD solutions

657

token won’t work on other topics or queues (whereas a namespace-level

token could work on any of the queues).

By now you should be familiar with tokens, and you should likely

realize you will need the Listen token in a minute for the final part of the

solution. Therefore, you can create both tokens now and then just record

the connection strings for each token to use as needed (see Figure 13-27).

Figure 13-27. The SAS tokens for Send and Listen are added, and
connection strings are recorded for future use

Send Messages

To put this all together, pretend that you are working for the last

Blockbuster video store on Earth, and you have created this program that

allows users to review the movie catalog. The first thing you need to do is

load all the available rentals. This is done by sending data to the topic.

The first thing you need to do is establish the hierarchy, which includes

the ServiceBusClient and Sender (similar to sending to a queue):

_sbClient = new ServiceBusClient(_sbConnectionString);

_sbSender = _sbClient.CreateSender(_sbTopicName);

Chapter 13 Develop Message- BaseD solutions

658

Next, you get all the movies and send them one-by-one to the topic

with the following code:

var message = new ServiceBusMessage(

 Encoding.UTF8.GetBytes(

 JsonConvert.SerializeObject(movie)))

{

 CorrelationId = movie.Id,

 Subject = movie.MPAARating,

 ApplicationProperties =

 {

 { "Id", movie.Id },

 { "Title", movie.Title },

 { "MPAARating", movie.MPAARating },

 { "ReleaseYear", movie.ReleaseYear }

 }

};

await sender.SendMessageAsync(message);

Note the use of the Subject field to store the movie’s Motion Picture

Association of America (MPAA) rating. This is how the filters will retrieve

the correct messages.

Run the Program

With everything in place, run the program to send the movies that are

available to rent into the topic for consumption by subscribers. Figure 13-28

shows how each of the movies is added to the topic, and Figure 13-29 shows

that you can go to the portal and review the data to see that the subscriptions

have different amounts of data in them, based on the ratings filter.

Chapter 13 Develop Message- BaseD solutions

659

Figure 13-28. The movies are loaded into the service bus topic

Figure 13-29. The messages are distributed to the appropriate
subscriptions based on the preapplied filters

Consume Messages

The rentals are all in place, and now, say you have a couple of customers in

the store. You need to help them find a movie, so you ask them what kind

of movie they want. The first customer conveniently lets you know that

they want “a family” movie. Customer two is looking for “an adult movie—

no not that kind of adult movie, just not a kids or family movie.” Customer

three asks to see all the movies. You are in luck, because, wouldn’t you

know it, this is just how you set up the subscriptions.

Chapter 13 Develop Message- BaseD solutions

660

Update the Secrets

For purposes of brevity, and because it’s been covered numerous times,

including in the "Publishing Messages" section, I’ll assume you can now

quickly and easily update the secrets file for the Consumer app with the

Listen SAS token for the moviestoreview topic.

Compose the Hierarchy

To connect and read from the topics, you need to create the

ServiceBusClient and ServiceBusReceiver objects:

_sbClient = new ServiceBusClient(_sbConnectionString);

_sbReceiver = _sbClient.CreateReceiver(_sbTopicName, subChoice

 , new ServiceBusReceiverOptions() {

 ReceiveMode = ServiceBusReceiveMode.

ReceiveAndDelete

 });

The interesting things to note here are that the subChoice variable

is set based on which subscription to review. The options are presented

in a switch in the program and are read from the general appsettings.

json file:

_sbConnectionString = _configuration["ServiceBus:ReadOnlySASCon

nectionString"];

_sbTopicName = _configuration["ServiceBus:TopicName"];

_sbSubscriptionFamilyMovies = _configuration["ServiceBus:Subscr

iptionNameFamily"];

_sbSubscriptionAdultMovies = _configuration["ServiceBus:Subscri

ptionNameAdult"];

_sbSubscriptionAllMovies = _configuration["ServiceBus:Subscrip

tionAll"];

//...other code

switch (choice)

{

Chapter 13 Develop Message- BaseD solutions

661

 case 1:

 Console.WriteLine("You have chosen all movies");

 subChoice = _sbSubscriptionAllMovies;

 break;

 case 2:

 Console.WriteLine("You have chosen the family movies");

 subChoice = _sbSubscriptionFamilyMovies;

 break;

 case 3:

 Console.WriteLine("You have chosen the adult movies");

 subChoice = _sbSubscriptionAdultMovies;

 break;

 default:

 Console.WriteLine("You have chosen poorly. All movies

selected by default");

 break;

}

Also note that the receive mode is set to ReceiveAndDelete, which,

as you know from earlier, means that this is an At-Most-Once delivery.

The reason this is interesting because it illuminates the deletion of entries

and how, even when they are removed from one subscription, they are

still available to the other subscriptions that have not yet consumed the

messages. Therefore, you can be confident that each subscription is

independently affected and can’t interfere with other subscriptions.

Receive All Messages

As the program runs, you can pretend to be one of the customers and

get a subset of the movies. This is done with the ReceiveMessageAsync

command against the correct subscription:

while (true)

{

Chapter 13 Develop Message- BaseD solutions

662

 var receivedMessage = await receiver.

ReceiveMessageAsync(TimeSpan.FromSeconds(10));

 if (receivedMessage != null)

 {

 foreach (var prop in receivedMessage.ApplicationProperties)

 {

 Console.Write("{0}={1},", prop.Key, prop.Value);

 }

 Console.WriteLine("CorrelationId={0}", receivedMessage.

CorrelationId);

 receivedMessages++;

 }

 else

 {

 // No more messages to receive.

 break;

 }

}

Run the Program for All Movies

The first run of the program should use the AllMovies subscription. This

will prove that the others are not affected by removing all the movies from

one subscription. Figure 13-30 shows all the movies from the AllMovies

Chapter 13 Develop Message- BaseD solutions

663

subscription, and the portal shows that no more movies exist in that

subscription after the ReceiveAndDelete At-Most-Once delivery has

completed, as shown in Figure 13-31.

Figure 13-30. The AllMovies subscription has cleared all entries and
delivered all 17 messages to the client

Figure 13-31. The portal shows that the other subscriptions still
contain relevant messages, but the AllMovies subscription has no
more messages that have not been consumed after the execution

Chapter 13 Develop Message- BaseD solutions

664

Repeat the Run for Each Subscription

To finalize this learning, run the program two more times to review each

subscription and ensure the filtering works as expected (see Figure 13-32).

 Review Your Learning
As an additional challenge, consider the following questions and

determine how you would approach potential solution(s). You can find

answers to these questions in Appendix A at the end of this book.

 1) What is the maximum size of an Azure Storage

Queue message? What is the maximum size of an

Azure Service Bus message?

 2) Which service can store more than 80 GB of data?

Figure 13-32. The movies can be listed by their filter, as expected.
This image shows the FamilyMovies subscription output. Once the
program has run for all subscriptions, no messages remain in any of
the filtered subscriptions

Chapter 13 Develop Message- BaseD solutions

665

 3) Which service can guarantee order?

 4) Which service(s) can guarantee At-Most-Once

delivery? Which service(s) can guarantee At-Least-

Once delivery?

 5) What is the difference between PeekLock and

ReceiveAndDelete?

 6) What are the various types of filters available for

filtering messages? How do you leverage a filter for

a subscription? What does it mean to multicast? If

topics are multicast, can a message be read more

than once? If possible, how or why is this possible?

 7) What are the various levels of SAS tokens? What

token can do everything on the Service Bus

deployment? What is/are the benefit(s) of using

granular SAS tokens?

 Complete the AZ-204: Develop
Message- Based Solutions Learn Module
To fully learn the material, I recommend taking the time to also complete the

MS Learn module for AZ-204: Develop Message-Based Solutions found here:

• Discover Azure Message Queues: https://learn.

microsoft.com/training/modules/discover-azure-

message-queue/

 Chapter Summary
In this chapter, you completed your study for the AZ-204 Exam:

Developing Solutions for Microsoft Azure by learning about the messaging

Chapter 13 Develop Message- BaseD solutions

https://learn.microsoft.com/training/modules/discover-azure-message-queue/
https://learn.microsoft.com/training/modules/discover-azure-message-queue/
https://learn.microsoft.com/training/modules/discover-azure-message-queue/

666

options of Service Bus Queue, Service Bus Topic/Subscription Pub/

Sub, and Azure Storage Queues. In the process, you have gained enough

information to discern when to use each of the solutions and what kinds

of features each has to offer for the various scenarios you will encounter in

your development work.

After working through this chapter and the Microsoft Learn module,

you should be on track to be in command of the following concepts as you

learn about Azure and prepare for the AZ-204 Exam:

• Work with Azure Storage Queue, including creating and

deleting a queue and using an At-Least-Once approach

to publish and consume messages.

• Work with Azure Service Bus Queue, including creating

and deleting a queue, and using either an At-Least-

Once or an At-Most-Once approach to publish and

consume messages.

• Understand the limitations of the sizes of messages

and queues.

• Understand which transport protocols can be used

against which queues.

• Utilize Service Bus Topics to create a pub/sub queue

solution.

• Utilize filters to get only the messages that are

important to your specific consumer applications.

 Book Wrap-Up
I hope you have enjoyed working through this book. I’ve put a lot of time

into building the solutions to help you get some really solid experience

with the concepts and techniques needed to develop solutions in Azure,

Chapter 13 Develop Message- BaseD solutions

667

and so you're prepared to sit for the AZ-204 Exam. I am honored that you

gave me the opportunity to be a part of your journey.

It is my sincere hope that this material also has positioned you to

have the confidence and skills to sit for the AZ-204 Exam and pass it. I

encourage you to not be afraid of the exam, but to get ready and sit for it.

When you do pass the exam, and if this book was a big help/part of your

journey, I would be very grateful if you would let me know and/or if you

would be willing to post something on any of your social media channels

such as Twitter, LinkedIn, or another social media provider. Feel free to tag

me as well, if you want to (@blgorman on Twitter).

On another note, if you did give this book a sincere work through and

you are unable to pass the exam, I would appreciate it if you reach out to

me (www.linkedin.com/in/brianlgorman/ is easiest) and let me know

about your experience. I would love to have the chance to work with you to

get you to the peak and help you plant the flag of the AZ-204 certification

on your resume.

With that being said, it’s time to wrap this journey up. I appreciate

your sincere efforts and I am so grateful to have had the chance to lead you

through this material. All the best to you in the future, and now, go pass

that exam!

Chapter 13 Develop Message- BaseD solutions

https://www.linkedin.com/in/brianlgorman/

669

 APPENDIX A

Answers to the
“Review Your
Learning” Questions
and Additional Links
This appendix contains my thoughts regarding each of the questions for

the “Review Your Learning” sections at the end of every chapter. There

are some questions that include thoughts that I have, and those should

be taken as such—simply my thoughts. However, the majority of the

questions have a precise answer that can be validated via documentation

and the Microsoft Learn materials for this exam.

Additionally, you will find links to the Microsoft Learn modules for

each chapter conveniently listed here. There are also a couple of extra links

for your review to aid in your final exam preparation.

I hope you find these questions and reviews useful as a final part of

your study for the AZ-204 Exam.

 Chapter 1: Azure Storage
Chapter 1 is about Azure Storage. Specifically, Azure Blob Storage.

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3

https://doi.org/10.1007/978-1-4842-9300-3_1
https://doi.org/10.1007/978-1-4842-9300-3_1
https://doi.org/10.1007/978-1-4842-9300-3#DOI

670

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) How do you access a specific private blob and all

private blobs in a container from the public URL?

In order to access a private blob via the public URL,

you need to have a valid SAS token. As a reminder,

the SAS token contains the access permissions,

effective date range, and a signature to validate

that the token is valid. The signature is generated

from one of the Storage Account Access Keys.

https://learn.microsoft.com/azure/cognitive-

services/translator/document-translation/

how-to-guides/create-sas-tokens

 2) What are some scenarios where you might make

blobs public?

This is one of those scenarios that is up to you, but

essentially making a blob public means that anyone

could access the blob with the public URL. Good

use cases for this include hosting common images

or documents that need to be served from a web

page. https://learn.microsoft.com/azure/

storage/blobs/anonymous-read-access-overview

 3) Can you put an Azure Storage account inside a

private network?

Yes, you can have storage that is only accessible

from within a private network via private endpoints.

https://learn.microsoft.com/azure/storage/

common/storage-private-endpoints

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/cognitive-services/translator/document-translation/how-to-guides/create-sas-tokens?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cognitive-services/translator/document-translation/how-to-guides/create-sas-tokens?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cognitive-services/translator/document-translation/how-to-guides/create-sas-tokens?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/blobs/anonymous-read-access-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/blobs/anonymous-read-access-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/common/storage-private-endpoints?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/common/storage-private-endpoints?WT.mc_id=AZ-MVP-5004334

671

 4) What is the maximum size of a blob?

The current maximum size of a block blob in Azure

Storage is 190.7 TiB and an append blob can be 195

GiB. This is based on the blob being composed of

50,000 blocks of sizes up to 4000 MiB for a block

blob and 4 MiB for an append blob. https://

learn.microsoft.com/azure/storage/blobs/

scalability-targets

 5) How do you move blobs from one tier to another?

You can move blobs from one tier to another by

selecting any blob from the storage account in the

portal and selecting the Change Tier option. You can

then move the blob into another tier. Additionally,

you can move the blob to a new tier via PowerShell

and the Azure CLI. https://learn.microsoft.

com/azure/storage/blobs/access-tiers-

online-manage

Remember: Moves from hot to cool, hot to archive,

cool to hot, and cool to archive are performed

immediately. Moves from archive to any other tier

are not performed immediately.

 6) Describe the process of rehydration of a blob from

archive storage to any other tier?

In order to restore a blob from archive storage to

the hot or cold tier, you must copy the blob to a new

hot or cool tier blob or change the tier on the blob

and wait for it to be rehydrated. Currently, it can

take up to 15 hours to rehydrate a blob. However,

in some cases you may be able to pay more to get

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/storage/blobs/scalability-targets?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/blobs/scalability-targets?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/blobs/scalability-targets?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/blobs/access-tiers-online-manage?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/blobs/access-tiers-online-manage?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/blobs/access-tiers-online-manage?WT.mc_id=AZ-MVP-5004334

672

a high-priority rehydration, where you get a blob

rehydrated that is under 10 GB in size in less than

one hour. https://learn.microsoft.com/azure/

storage/blobs/archive-rehydrate-overview

 Learn Modules
 AZ-204: Develop Solutions That Use Blob
Storage Learning Path
To fully learn the material, I recommend taking the time to also complete

these Microsoft Learn modules, found in the learning path (https://

learn.microsoft.com/training/paths/develop-solutions-that-use-

blob-storage/):

• Explore Azure Blob Storage: https://learn.

microsoft.com/en-us/training/paths/develop-

solutions-that-use-blob-storage

• Manage the Azure Blob Storage lifecycle: https://

learn.microsoft.com/training/modules/manage-

azure-blob-storage-lifecycle

• Work with Azure Blob Storage: https://learn.

microsoft.com/en-us/training/modules/work-

azure-blob-storage

 Chapter 2: Cosmos DB and Table Storage
Chapter 2 covers what it takes to work with the Azure Cosmos DB and the

Azure Table Storage offerings.

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/storage/blobs/archive-rehydrate-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/blobs/archive-rehydrate-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/paths/develop-solutions-that-use-blob-storage/
https://learn.microsoft.com/training/paths/develop-solutions-that-use-blob-storage/
https://learn.microsoft.com/training/paths/develop-solutions-that-use-blob-storage/
https://learn.microsoft.com/en-us/training/paths/develop-solutions-that-use-blob-storage?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/develop-solutions-that-use-blob-storage?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/develop-solutions-that-use-blob-storage?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/manage-azure-blob-storage-lifecycle?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/manage-azure-blob-storage-lifecycle?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/manage-azure-blob-storage-lifecycle?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/work-azure-blob-storage?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/work-azure-blob-storage?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/work-azure-blob-storage?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_2
https://doi.org/10.1007/978-1-4842-9300-3_2

673

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What is a logical partition in Cosmos DB? What are

some good and bad partitions for write-heavy and

read-heavy databases?

A logical partition is how the data is segregated

within the physical partitions in Cosmos DB. For

write-heavy databases, the logical partition should

typically be based on some value with a high

cardinality (like a unique ID or email address) so

that the data will spread evenly over the partitions.

On a read-heavy database, you should use the

best partition you can find with unique values, but

you should consider the where clause in your read

operations. When data is going to be queried with a

where clause, it will often be the case that utilization

of the field being queried against can make a good

partition so that data will be grouped together for

efficiency. https://learn.microsoft.com/azure/

cosmos-db/partitioning-overview

 2) What is a physical partition in Cosmos DB? What are

the physical partition limits?

A physical partition is the actual storage mechanism

for the data. Physical partitions can contain one

or more logical partitions. The limits that require

multiple physical partitions are the RU limit

of 10,000 for a physical partition and/or total

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/cosmos-db/partitioning-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cosmos-db/partitioning-overview?WT.mc_id=AZ-MVP-5004334

674

storage of 50 GB of data per partition. https://

learn.microsoft.com/azure/cosmos-db/

partitioning-overview

 3) Can a Cosmos DB be accessed from a private

network?

Yes, you can connect to a Cosmos DB database

from a private network using Azure Private Link.

https://learn.microsoft.com/en-us/azure/

cosmos-db/how-to-configure-private-endpoints

 4) What is the maximum size of a Cosmos DB

document?

The maximum size of a typical document is 2 MB for

a regular Cosmos DB Account. The size is larger for

Mongo DB, which allows a 16 MB document size.

https://learn.microsoft.com/azure/cosmos-db/

concepts-limits

 5) How do you calculate an RU?

An RU is calculated based on the memory, CPU, and

IOPS required to read the data. A common example

is 1 RU equals the cost to read 1 KB of data using the

index and partition. This is the best performance

you could get on a read. https://learn.

microsoft.com/azure/cosmos-db/request-units

 6) When working with code against the Cosmos

Database, what are two different ways to connect to

the account using keys?

You can connect the SDK for Cosmos DB to your

Cosmos DB Account in .NET code by composing

a client with the account endpoint and an access

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/cosmos-db/partitioning-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cosmos-db/partitioning-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cosmos-db/partitioning-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/cosmos-db/how-to-configure-private-endpoints?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/cosmos-db/how-to-configure-private-endpoints?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cosmos-db/concepts-limits?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cosmos-db/concepts-limits?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cosmos-db/request-units?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cosmos-db/request-units?WT.mc_id=AZ-MVP-5004334

675

key, or you can connect via the account connection

string. https://learn.microsoft.com/azure/

cosmos-db/nosql/how-to-dotnet-get-started

 7) What does it take to migrate a table storage

application to a Cosmos DB Table API application?

To migrate an application that utilizes Azure Table

Storage to Azure Cosmos DB, all you need to do

is change the connection string and point to the

correct Cosmos DB. This is possible because the

SDK code is the same for the Cosmos Table API and

Azure Table Storage, and the migration can happen

by simply changing the connection string. https://

learn.microsoft.com/dotnet/api/overview/

azure/data.tables-readme

 Learn Modules
 AZ-204: Develop Solutions That Use Azure
Cosmos DB
To fully learn the material, I recommend taking the time to also complete

these Microsoft Learn modules, found in the learning path (https://

learn.microsoft.com/training/paths/az-204-develop-solutions-

that-use-azure-cosmos-db/):

• Explore Azure Cosmos DB: https://learn.microsoft.

com/training/modules/explore-azure-cosmos-db

• Implement partitioning in Azure Cosmos DB: https://

learn.microsoft.com/en-us/training/modules/

implement-partitioning-azure-cosmos-db/

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/cosmos-db/nosql/how-to-dotnet-get-started?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cosmos-db/nosql/how-to-dotnet-get-started?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/dotnet/api/overview/azure/data.tables-readme?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/dotnet/api/overview/azure/data.tables-readme?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/dotnet/api/overview/azure/data.tables-readme?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/paths/az-204-develop-solutions-that-use-azure-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/paths/az-204-develop-solutions-that-use-azure-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/paths/az-204-develop-solutions-that-use-azure-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/explore-azure-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/explore-azure-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-partitioning-azure-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-partitioning-azure-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-partitioning-azure-cosmos-db/?WT.mc_id=AZ-MVP-5004334

676

• Work with Azure Cosmos DB: https://learn.

microsoft.com/training/modules/work-with-

cosmos-db/

 Chapter 3: Infrastructure as a Service
(IaaS) Solutions
Chapter 3 kicks off the look at important infrastructure tools in Azure.

Because the infrastructure system is large, this first look concentrates

only on the first part, which includes virtual machines (VMs) and Azure

Resource Manager (ARM) templates (with a little Bicep thrown in for good

measure).

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What is a VM Availability Set? What is a VM Scale

Set? How are VM Scale Sets and VM Availability Sets

different? When would you use one over the other?

A VM Availability set is a VM that is provisioned

across fault and update domains in an Azure Data

Center. A VM Scale Set is used to replicate a number

of identical VMs, typically to handle load balancing.

An availability set is great if you just need to keep a

VM active in case of a simple failure within a single

data center. https://learn.microsoft.com/azure/

virtual-machines/availability-set-overview

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/training/modules/work-with-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/work-with-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/work-with-cosmos-db/?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_3
https://doi.org/10.1007/978-1-4842-9300-3_3
https://learn.microsoft.com/azure/virtual-machines/availability-set-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-machines/availability-set-overview?WT.mc_id=AZ-MVP-5004334

677

The Scale Set is more redundant, as it can span

zones within the region and also spans fault

domains within the single data center(s). https://

learn.microsoft.com/azure/virtual-machine-

scale-sets/overview

 2) What are some of the main groups of VM compute

configurations?

The compute configurations are generally broken

up by letter, with A being for test, B for burstable

(batch processing), D for general purpose (dev/

small production), E for memory optimized, F

for compute optimized, and G for memory and

storage optimized. There are many other groups,

including some high-compute scenarios and some

GPU-based scenarios for Big Data. https://azure.

microsoft.com/pricing/details/virtual-

machines/series

 3) Which Azure disks are managed? Which

are potentially unmanaged? What are some

considerations to remember when utilizing an

unmanaged disk?

All SSD disks are managed by Azure. The only

option for unmanaged disks that currently remains

is a standard 7200 RPM hard drive. If you choose to

utilize an unmanaged disk, you must also encrypt

it and maintain backups, as well as manage the

page blob for the disk in Azure Storage. If you

utilize a managed disk, Azure manages all of the

encryption and storage details for you. https://

learn.microsoft.com/azure/virtual-machines/

managed-disks-overview

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/virtual-machine-scale-sets/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-machine-scale-sets/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-machine-scale-sets/overview?WT.mc_id=AZ-MVP-5004334
https://azure.microsoft.com/pricing/details/virtual-machines/series/?WT.mc_id=AZ-MVP-5004334
https://azure.microsoft.com/pricing/details/virtual-machines/series/?WT.mc_id=AZ-MVP-5004334
https://azure.microsoft.com/pricing/details/virtual-machines/series/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-machines/managed-disks-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-machines/managed-disks-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-machines/managed-disks-overview?WT.mc_id=AZ-MVP-5004334

678

 4) How do you limit traffic to and from a VM in Azure?

What are some common ports to be aware of?

Inbound and outbound traffic for a VM can be

managed by using Network Security Groups (NSGs)

that are attached to the Network Interface Card

(NIC) or the subnet of a virtual network. https://

learn.microsoft.com/azure/virtual-network/

network-security-groups-overview

Ports to be aware of as a developer include the

common port 3389 for Remote Desktop (RDP) to

Windows boxes and port 22 for Secure Shell (SSH) to

Linux boxes. Additionally, HTTP is exposed on port

80, HTTPS via port 443, MySQL communications

typically happen on port 3306, and MS SQL utilizes

port 1433. There are many more ports to consider,

but these are the ones I recommend knowing very

well should you need to administer a VM for web

development in most languages.

 5) Which resources in Azure are necessary to deploy a

VM with a desired configuration? What are the steps

to ensure a VM has a feature enabled?

To deploy a VM with Desired State Configuration

(DSC), you need to create a PowerShell (PS) script.

With the PS script, you use Azure Automation to

create a manifest and then deploy the manifest into

Azure Automation. Once the DSC is set in Azure

Automation, you associate any VMs to ensure that

the DSC is run against the VM. https://learn.

microsoft.com/azure/virtual-machines/

extensions/dsc-overview

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/virtual-network/network-security-groups-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-network/network-security-groups-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-network/network-security-groups-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-machines/extensions/dsc-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-machines/extensions/dsc-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/virtual-machines/extensions/dsc-overview?WT.mc_id=AZ-MVP-5004334

679

 6) What are the main sections of an ARM template?

How do you create and work with variables?

The main sections of an ARM template are the

parameters, variables, functions, resources,

and outputs. Typically, an ARM template will

use parameters to make the solution reusable.

Additionally, you can leverage variables that either

modify the parameters (such as adding a unique

value to a string) or are just internal variables.

Parameters and variables are both accessed with

a special square braces string in the JSON file and

are referenced by type and name. For example, a

variable named storageAccountName would be

referenced as [variables('storageAccountNa

me')]. https://learn.microsoft.com/azure/

azure-resource-manager/templates/template-

tutorial-create-first-template

 7) Working with Bicep, how do you configure a

deployment for a new resource? How do you use

variables?

Bicep is less verbose than ARM and uses a

more straightforward syntax. https://learn.

microsoft.com/azure/azure-resource-manager/

bicep/quickstart-create-bicep-use-visual-

studio-code

You can create a new resource by declaring it in the

template with the name of the resource. You can

easily just declare variables within the template

much like regular code. https://learn.microsoft.

com/azure/azure-resource-manager/bicep/

variables

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/azure-resource-manager/templates/template-tutorial-create-first-template?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-resource-manager/templates/template-tutorial-create-first-template?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-resource-manager/templates/template-tutorial-create-first-template?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-resource-manager/bicep/quickstart-create-bicep-use-visual-studio-code
https://learn.microsoft.com/azure/azure-resource-manager/bicep/quickstart-create-bicep-use-visual-studio-code
https://learn.microsoft.com/azure/azure-resource-manager/bicep/quickstart-create-bicep-use-visual-studio-code
https://learn.microsoft.com/azure/azure-resource-manager/bicep/quickstart-create-bicep-use-visual-studio-code
https://learn.microsoft.com/azure/azure-resource-manager/bicep/variables?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-resource-manager/bicep/variables?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-resource-manager/bicep/variables?WT.mc_id=AZ-MVP-5004334

680

 8) What is the difference between an incremental and

a complete template deployment?

An incremental deployment will only modify

the resources or deploy the resources that are

configured within the template. A complete

deployment will both modify and deploy resources

as configured in the template and also remove

any resources in the resource group that are not

explicitly defined in the template. https://learn.

microsoft.com/azure/azure-resource-manager/

templates/deployment-modes

 Learn Modules
 AZ-204: Implement Infrastructure as a Service
Solutions (Modules 1 and 2)
To fully learn the material, I recommend taking the time to also complete

the first two Microsoft Learn modules for Implement Infrastructure as a

Service Solutions, found in this learning path (https://learn.microsoft.

com/en-us/training/paths/az-204-implement-iaas-solutions):

• Provision virtual machines in Azure: https://learn.

microsoft.com/training/modules/provision-

virtual-machines-azure/

• Create and deploy Azure Resource Manager templates:

https://learn.microsoft.com/training/modules/

create-deploy-azure-resource-manager-templates

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/azure-resource-manager/templates/deployment-modes?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-resource-manager/templates/deployment-modes?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-resource-manager/templates/deployment-modes?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-implement-iaas-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-implement-iaas-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/provision-virtual-machines-azure/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/provision-virtual-machines-azure/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/provision-virtual-machines-azure/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/create-deploy-azure-resource-manager-templates/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/create-deploy-azure-resource-manager-templates/?WT.mc_id=AZ-MVP-5004334

681

 Chapter 4: Azure App Service Web Apps
Chapter 4 examines the concept of deploying a public-facing web app with

traditional code.

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What is the relationship between App Service Plans

and App Services? Can an App Service have more

than one App Service Plan? Can an App Service

Plan have more than one App Service? What are

some considerations when the relationship goes

beyond 1:1?

The App Service Plan determines the compute and

cost, as well as the region and the operating system.

https://learn.microsoft.com/azure/app-

service/overview-hosting-plans

An App Service can have many App Services but

each App Service can only have one App Service

Plan. https://learn.microsoft.com/azure/app-

service/overview

You might put more than one App Service into

a plan for optimizing your Azure spend on test

instances. Just remember that all App Services

within a plan will share the compute dictated by

the App Service Plan, so if one becomes a hog of

resources that could be bad for the others.

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://doi.org/10.1007/978-1-4842-9300-3_4
https://doi.org/10.1007/978-1-4842-9300-3_4
https://learn.microsoft.com/azure/app-service/overview-hosting-plans?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/app-service/overview-hosting-plans?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/app-service/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/app-service/overview?WT.mc_id=AZ-MVP-5004334

682

 2) Where do you choose which operating system will

be utilized? Where do you configure the choice for

code vs. container vs. static?

The operating system, region, and compute settings

of the configuration of the App Service Plan. The

choice to deploy code vs. container vs. static

websites is part of the App Service configuration

(review the links in Question 1 for more

information).

 3) Which plan is an entry-level plan that offers scaling?

Which plan is an entry-level plan for deployment

slots? Which plans can have a custom domain

for hosting? What is the minimal plan level to

implement private networking?

Scaling can happen manually in the shared

Basic Dedicated (B1) tier, with up to three active

instances. However, it is more likely that you

would implement scaling in the Standard (S1 and

better) tier or better, where you can have up to ten

instances, and you can create autoscaling rules. The

Standard (S1 and better) tier is also the first plan

to get deployment slots (it gets five). The Custom

domain is available on all but the free tier. https://

azure.microsoft.com/en-us/pricing/details/

app-service/windows/

In order to use virtual networks, you must be in a

dedicated compute pricing tier (not free). https://

learn.microsoft.com/en-us/azure/app-service/

overview-vnet-integration.

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://azure.microsoft.com/en-us/pricing/details/app-service/windows/?WT.mc_id=AZ-MVP-5004334
https://azure.microsoft.com/en-us/pricing/details/app-service/windows/?WT.mc_id=AZ-MVP-5004334
https://azure.microsoft.com/en-us/pricing/details/app-service/windows/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/app-service/overview-vnet-integration?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/app-service/overview-vnet-integration?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/app-service/overview-vnet-integration?WT.mc_id=AZ-MVP-5004334

683

 4) What are some considerations for creating

autoscaling rules?

Always remember two things when creating

autoscaling rules. First, make sure to create rules

in pairs—one rule to scale out and another to scale

back in. Next, also make sure to create a range in

the metric being used as the determinant so that

the scale-in will take place without immediately

requiring a scale-out operation. Additional

considerations include making sure to utilize the

correct metric for the scaling operation. https://

learn.microsoft.com/azure/architecture/best-

practices/auto-scaling

 5) Can an App Service Plan and the App Service be

deployed into different regions?

No. The App Service Plan determines the region,

and the App Service is dependent on the plan. If

you want to create a high-availability, multi-region

deployment, you must have individual App Service

Plans. https://learn.microsoft.com/azure/

architecture/reference-architectures/app-

service-web-app/multi-region

 6) How do you implement security around the

application regarding HTTP/HTTPS, TLS levels, and

certificates? How do you enforce certain security

levels for clients? Can you deny traffic that is not

utilizing HTTPS?

All of the security settings for an App Service are

configured in the App Service Configuration.

You can set all of the information via the portal

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/architecture/best-practices/auto-scaling?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/architecture/best-practices/auto-scaling?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/architecture/best-practices/auto-scaling?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/multi-region?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/multi-region?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/architecture/reference-architectures/app-service-web-app/multi-region?WT.mc_id=AZ-MVP-5004334

684

or use tools like the Azure CLI to configure

that app service. https://learn.microsoft.

com/azure/app-service/configure-

common?tabs=portal#configure-app-settings

 7) Where can you go to check the status of your website

deployments?

You can review the deployments in the Deployment

Center under the app service in the portal.

https://learn.microsoft.com/shows/azure-

friday/an-overview-of-azure-app-service-

deployment-center

 8) How do you create custom variables and settings?

Where should you set environment variables?

Where should you add connection strings?

Variables and connection strings are created

on the configuration blade for the app service.

Environment variables are typically utilized in the

Application Settings portion of the App Service

Configuration, whereas connection strings are

added to the Connection Strings section. https://

learn.microsoft.com/azure/app-service/

reference-app-settings

 Learn Modules
 Complete the Azure App Service Web Apps
Learn Modules
To fully learn the material, I recommend taking the time to also complete

the Microsoft Learn modules for Create Azure App Service Web Apps from

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/app-service/configure-common?tabs=portal&WT.mc_id=AZ-MVP-5004334#configure-app-settings
https://learn.microsoft.com/azure/app-service/configure-common?tabs=portal&WT.mc_id=AZ-MVP-5004334#configure-app-settings
https://learn.microsoft.com/azure/app-service/configure-common?tabs=portal&WT.mc_id=AZ-MVP-5004334#configure-app-settings
https://learn.microsoft.com/shows/azure-friday/an-overview-of-azure-app-service-deployment-center?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/shows/azure-friday/an-overview-of-azure-app-service-deployment-center?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/shows/azure-friday/an-overview-of-azure-app-service-deployment-center?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/app-service/reference-app-settings?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/app-service/reference-app-settings?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/app-service/reference-app-settings?WT.mc_id=AZ-MVP-5004334

685

this learning path (https://learn.microsoft.com/en-us/training/

paths/create-azure-app-service-web-apps/):

• Explore Azure App Service: https://learn.

microsoft.com/training/modules/introduction-to-

azure-app-service/

• Configure web app settings: https://learn.

microsoft.com/training/modules/configure-web-

app-settings

• Scale apps in Azure App Service: https://learn.

microsoft.com/training/modules/scale-apps-

app-service/

• Explore Azure App Service Deployment Slots:

https://learn.microsoft.com/training/modules/

understand-app-service-deployment-slots/

 Chapter 5: Azure Container
Ecosystem (Container Registry
and Container Instances)
Chapter 5 is the second part of the infrastructure information that

developers need to be in command of for the AZ-204 Exam. This portion

deals with the Azure Container Registry and Azure Container Instances.

Note that Azure Container Apps and Azure Kubernetes Service are not in

scope for the AZ-204 at the time of this writing (but you may still want to

familiarize yourself with these services as a cloud application developer).

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/training/paths/create-azure-app-service-web-apps/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/create-azure-app-service-web-apps/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/introduction-to-azure-app-service/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/introduction-to-azure-app-service/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/introduction-to-azure-app-service/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/configure-web-app-settings/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/configure-web-app-settings/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/configure-web-app-settings/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/scale-apps-app-service/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/scale-apps-app-service/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/scale-apps-app-service/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/understand-app-service-deployment-slots/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/understand-app-service-deployment-slots/?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_5
https://doi.org/10.1007/978-1-4842-9300-3_5

686

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) Which runtime is required to host containers?

The runtime most commonly used to host

containers is Docker. https://docs.docker.com/

get-started/

 2) What is the purpose of the Azure Container Registry

(ACR)? How do you interact with the ACR from your

local machine?

The Azure Container Registry (ACR) is used to

create repositories, which are deployable images

you have pushed to the ACR. Any deployment

that leverages containers can then pull the image

from the ACR for deployment. https://learn.

microsoft.com/azure/container-registry/

container-registry-intro

 3) What do the following terms mean: Dockerfile,

image, and container? How does each play a part in

the containers ecosystem?

A Dockerfile is the file you create with your

code that tells Docker how to create an image.

An image is the build of the application using a

layered approach based on the instructions in the

Dockerfile. Once an image is created, you can run

the image in any number of containers. Containers

are separate versions of the application built and

deployed, typically exposing a port and running the

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://docs.docker.com/get-started/
https://docs.docker.com/get-started/
https://learn.microsoft.com/azure/container-registry/container-registry-intro?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-registry/container-registry-intro?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-registry/container-registry-intro?WT.mc_id=AZ-MVP-5004334

687

application as developed by you and built into the

deployable image artifact. https://docs.docker.

com/get-started/02_our_app/

 4) Can you change the variables in a running container

instance? Can you change the variables of a

container hosted in Azure App Service? What about

Kubernetes or Azure Container Apps?

Containers are immutable, so you cannot change

the variables in an Azure Container Instance (ACI)

that is deployed from the portal. To change the

variable, you either need to delete and redeploy

the ACI or potentially connect to the container and

run some commands to modify values from inside

the running container. https://learn.microsoft.

com/azure/container-instances/container-

instances-environment-variables

An Azure App Service adds a layer of orchestration

in that you can change a setting on the configuration

of the app service and the Azure App Service

will restart the container with the new variable

information injected into the new container. You

do not need to delete the app service for this to take

place. https://learn.microsoft.com/azure/app-

service/configure-custom-container

While Kubernetes or Azure Container Apps are out

of scope, those systems are specifically designed to

orchestrate container lifecycle, so you would have

no problem changing settings and the deployed

solution would orchestrate new containers to

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://docs.docker.com/get-started/02_our_app/
https://docs.docker.com/get-started/02_our_app/
https://learn.microsoft.com/azure/container-instances/container-instances-environment-variables?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-environment-variables?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-environment-variables?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/app-service/configure-custom-container?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/app-service/configure-custom-container?WT.mc_id=AZ-MVP-5004334

688

handle the new variable information. https://

learn.microsoft.com/azure/aks/intro-

kubernetes

 5) Can you have an Azure Container Instance running

on a private network?

Yes, you can deploy the ACI instance into a private

network, either a new or existing one. You can also

create a private endpoint to connect to the ACI

from a virtual network. https://learn.microsoft.

com/azure/container-instances/container-

instances-vnet

 6) How do you authenticate against the ACR? Can you

get granular per- user control over individual images

within an ACR?

You can authenticate to the Azure ACR via RBAC

as your own principal, as a service principal, or

you can use the registry administrator credentials.

Individuals can be limited to push and/or pull

operations based on role membership or their

identity principal. https://learn.microsoft.com/

azure/container-registry/container-registry-

authentication

 7) Can the ACR run automated builds and

deployments for your images?

Yes, ACR has the ability to build images with ACR

tasks. https://learn.microsoft.com/azure/

container-registry/container-registry-

tasks-overview

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/aks/intro-kubernetes?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/aks/intro-kubernetes?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/aks/intro-kubernetes?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-vnet?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-vnet?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-vnet?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-registry/container-registry-authentication?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-registry/container-registry-authentication?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-registry/container-registry-authentication?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-registry/container-registry-tasks-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-registry/container-registry-tasks-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-registry/container-registry-tasks-overview?WT.mc_id=AZ-MVP-5004334

689

 8) Can a container instance communicate with other

Azure services such as an Azure SQL Server?

Yes, as long as the ports are open on the services and

connection information is in place with appropriate

settings, the container can easily work with a service

such as Azure SQL Server and Azure SQL Server

Managed Instances. additionally, you can set the

managed identity on a container instance to allow

communication with other Azure services. https://

learn.microsoft.com/azure/container-instances/

container-instances-managed-identity

 9) Can a container instance host multiple containers?

Yes, it is common to sidecar a container with an

application container into what is called a container

group. This is easily accomplished in Azure

Container Instances using YAML. https://learn.

microsoft.com/azure/container-instances/

container-instances-multi-container-yaml

 Learn Modules
 AZ-204: Implement Infrastructure as a Service
Solutions Modules (Modules 3 and 4)
Complete the AZ-204 Microsoft Learn path (https://learn.microsoft.

com/en-us/training/paths/az-204-implement-iaas-solutions/),

Modules 3 and 4:

• Manage container images in Azure Container Registry:

https://learn.microsoft.com/training/modules/

publish-container-image-to-azure-container-

registry/

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/container-instances/container-instances-managed-identity?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-managed-identity?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-managed-identity?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-multi-container-yaml?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-multi-container-yaml?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/container-instances/container-instances-multi-container-yaml?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-implement-iaas-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-implement-iaas-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/publish-container-image-to-azure-container-registry/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/publish-container-image-to-azure-container-registry/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/publish-container-image-to-azure-container-registry/?WT.mc_id=AZ-MVP-5004334

690

• Run container images in Azure Container Instances:

https://learn.microsoft.com/training/modules/

create-run-container-images-azure-container-

instances/

 Learn Modules for Optional/Additional Learning

• Deploy and run a containerized web app with Azure

App Service: https://learn.microsoft.com/en-

us/training/modules/deploy-run-container-

app-service/

• Quickstart: Deploy your first container app using the

Azure Portal: https://learn.microsoft.com/en-us/

azure/container-apps/quickstart-portal/

• Deploy a containerized application on Azure

Kubernetes Service: https://learn.microsoft.

com/en-us/training/modules/aks-deploy-

container-app/

 Chapter 6: Implement Azure Functions
Chapter 6 covers Azure Functions, including regular functions and Azure

Durable Functions.

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/training/modules/create-run-container-images-azure-container-instances/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/create-run-container-images-azure-container-instances/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/create-run-container-images-azure-container-instances/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/deploy-run-container-app-service/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/deploy-run-container-app-service/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/deploy-run-container-app-service/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/container-apps/quickstart-portal/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/container-apps/quickstart-portal/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/aks-deploy-container-app/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/aks-deploy-container-app/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/aks-deploy-container-app/?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_6
https://doi.org/10.1007/978-1-4842-9300-3_6

691

 1) What is the purpose of the host.json file? What

is the purpose of a function.json file? What

information can be determined from each?

The host.json file is utilized for the function app

settings for the entire host application, and includes

information like the runtime of the host, the runtime

version, and logging information. The function.

json file is specific to a single function and has

information like the input and output bindings, the

trigger, and any other information like connection

settings and the function entry point. https://

learn.microsoft.com/azure/azure-functions/

functions-reference

 2) What is a Function trigger? What kinds of triggers

are available? How can each be utilized?

The Function trigger is how the function is kicked

off to run. There are a number of triggers that you

need to be in command of, including, timer triggers

(using CRON job settings), HTTP triggers using GET

and/or POST requests, and various triggers from

other Azure services like the EventGridTrigger or

ServiceBusTrigger. https://learn.microsoft.

com/azure/azure-functions/functions-

triggers-bindings

 3) What plans are available for Azure Function Apps

and what are some of the considerations for each?

Can you use slots in function apps? Can you put

your function app on a private network?

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/azure-functions/functions-reference?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-reference?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-reference?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-triggers-bindings?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-triggers-bindings?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-triggers-bindings?WT.mc_id=AZ-MVP-5004334

692

The Function App Plan offerings include the

Consumption plan, which gives one million free

requests and incurs a minimum storage charge.

When the Consumption plan is not enough, you can

utilize an App Service Plan to host your functions.

You can also use an App Service Environment,

and you can even host Azure Functions in Azure

Kubernetes Service. https://learn.microsoft.

com/azure/azure-functions/functions-scale

Function apps can utilize slots. https://learn.

microsoft.com/azure/azure-functions/

functions-deployment-slots

The Consumption tier includes two slots, and any

hosting in App Service Plans would allow for slots as

long as the plan offers slots.

You can use your Function app in a private network

as long as it is not in the Consumption tier. https://

learn.microsoft.com/en-us/azure/azure-

functions/functions-networking-options

 4) What is an input binding? What is an output

binding? What are some advantages to working with

bindings?

Input bindings allow your Function app to connect

to other Azure Services and receive data from them.

Output bindings allow you to send data to other

Azure services. Utilization of the bindings allows

you to not have to wire up the plumbing of the

SDK code to connect and work with the services.

https://learn.microsoft.com/azure/azure-

functions/functions-triggers-bindings

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/azure-functions/functions-scale?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-scale?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-deployment-slots?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-deployment-slots?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-deployment-slots?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/azure-functions/functions-networking-options?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-triggers-bindings?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/functions-triggers-bindings?WT.mc_id=AZ-MVP-5004334

693

 5) What is an Isolated Worker Runtime and how does

that change the operations of a Function app?

Isolated Worker Runtimes (Processes) are new to

Azure functions and allow your Function app host

to be written in one language (such as .NET 6 or

.NET 7) and run functions in another language

(such as the .NET Framework 4.8). https://learn.

microsoft.com/azure/azure-functions/dotnet-

isolated-process-guide

 6) What are the various authentication modes for

an Azure Function? What are some security

considerations for each mode?

There are a few authentication modes, including

Anonymous, Function Key, and Admin Key.

In the Anonymous mode, anyone with the link

can execute the function. In the Function Key

authorization, anyone with the link and the token

can execute the function. With the Admin token,

any functions in the application can be executed.

https://learn.microsoft.com/java/api/com.

microsoft.azure.functions.annotation.

authorizationlevel?view=azure-java-stable

 7) What is the difference between a regular Azure

Function and a Durable Azure Function? What are

the types of Durable Functions and when can each

be used?

“Regular” Azure Functions are stateless. Durable

Azure Functions maintain state and have

persistence even past the recycling of the Function

App. The types and features of durable functions

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/azure-functions/dotnet-isolated-process-guide?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/dotnet-isolated-process-guide?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/dotnet-isolated-process-guide?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/java/api/com.microsoft.azure.functions.annotation.authorizationlevel?view=azure-java-stable&WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/java/api/com.microsoft.azure.functions.annotation.authorizationlevel?view=azure-java-stable&WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/java/api/com.microsoft.azure.functions.annotation.authorizationlevel?view=azure-java-stable&WT.mc_id=AZ-MVP-5004334

694

can be reviewed here: https://learn.microsoft.

com/en-us/azure/azure-functions/durable/

durable-functions-types-features-overview.

 8) What are the patterns associated with Durable

Functions and what is an example of each pattern?

The patterns were covered in the text, and they

are Function Chaining, Fan-Out/Fan-In, Async

HTTP APIs, Monitoring, Human Interaction, and

Aggregator. Examples were mentioned and you

can review this link: https://learn.microsoft.

com/azure/azure-functions/durable/durable-

functions-overview?tabs=csharp#application-

patterns.

 Learn Modules
 AZ-204: Implement Azure Functions
Review the following Microsoft Learn modules (https://learn.

microsoft.com/en-us/training/paths/implement-azure-functions/):

• Explore Azure Functions: https://learn.microsoft.

com/training/modules/explore-azure-functions/

• Develop Azure Functions: https://learn.microsoft.

com/training/modules/develop-azure-functions/

• Implement Durable Functions: https://learn.

microsoft.com/training/modules/implement-

durable-functions

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-types-features-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-types-features-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/azure-functions/durable/durable-functions-types-features-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-overview?tabs=csharp&WT.mc_id=AZ-MVP-5004334#application-patterns
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-overview?tabs=csharp&WT.mc_id=AZ-MVP-5004334#application-patterns
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-overview?tabs=csharp&WT.mc_id=AZ-MVP-5004334#application-patterns
https://learn.microsoft.com/azure/azure-functions/durable/durable-functions-overview?tabs=csharp&WT.mc_id=AZ-MVP-5004334#application-patterns
https://learn.microsoft.com/en-us/training/paths/implement-azure-functions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/implement-azure-functions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/explore-azure-functions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/explore-azure-functions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/develop-azure-functions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/develop-azure-functions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-durable-functions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-durable-functions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-durable-functions/?WT.mc_id=AZ-MVP-5004334

695

 Chapter 7: Implement User Authentication
and Authorization
Chapter 7 covers how to create code to work against identity and the

Microsoft Graph.

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What is authentication? What is authorization? How

are they different? Which one must exist for the

other to work?

Authentication is “who you are.” Authorization is

“what you can do.” Authentication allows you to be

identifiable and the authorization uses that identity

to allow you to do things within systems. You

cannot have authorization without authentication.

https://learn.microsoft.com/azure/active-

directory/develop/authentication-vs-

authorization

 2) What are the various ways a user can satisfy MFA

sign-in requirements? Are some more secure than

others? When MFA is turned on, in what scenarios

will the user always receive a second challenge for

sign-in?

Users can provide MFA credentials by proving who

they are and something they are or have and/or

something they know. Usually this means signing in

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://doi.org/10.1007/978-1-4842-9300-3_7
https://doi.org/10.1007/978-1-4842-9300-3_7
https://learn.microsoft.com/azure/active-directory/develop/authentication-vs-authorization?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/active-directory/develop/authentication-vs-authorization?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/active-directory/develop/authentication-vs-authorization?WT.mc_id=AZ-MVP-5004334

696

with a user ID and password, then providing a token

or an answer to a challenge question. In Azure, you

can use tokens from an authenticator app, get a text

message, or get a phone call.

A challenge will always be issued if the sign-in is

considered “risky.” This can happen if the user is

outside of normal regions, signs in from a strange

IP address, or uses a new device. https://www.

microsoft.com/en-us/security/business/

identity-access/azure-active-directory-mfa-

multi-factor-authentication

 3) What are the four primary roles that can be used for

subscription and/or resource group management?

Which role should you give to a guest on your

subscription? What about a guest on a specific

resource group? What about if the guest needs to

modify resources in a specific resource group?

The four primary roles are Owner, Contributor,

Reader, and User Access Administrator. Guests can

be a contributor on a resource group, and a reader

on the subscription. When resources need to be

modified, the Contributor role is best. In order to

assign user access, the user must be in the Owner

or User Access Administrator role. https://learn.

microsoft.com/azure/role-based-access-

control/built-in-roles

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://www.microsoft.com/en-us/security/business/identity-access/azure-active-directory-mfa-multi-factor-authentication
https://www.microsoft.com/en-us/security/business/identity-access/azure-active-directory-mfa-multi-factor-authentication
https://www.microsoft.com/en-us/security/business/identity-access/azure-active-directory-mfa-multi-factor-authentication
https://www.microsoft.com/en-us/security/business/identity-access/azure-active-directory-mfa-multi-factor-authentication
https://learn.microsoft.com/azure/role-based-access-control/built-in-roles?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/role-based-access-control/built-in-roles?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/role-based-access-control/built-in-roles?WT.mc_id=AZ-MVP-5004334

697

 4) What is the purpose of an identity provider? What is

a scope?

An identity provider is a service that provides

authentication for users. The main providers

that you might encounter are Microsoft, Google,

Facebook, Apple, Okta, and a few others. Within

identity providers, a scope is utilized to request

access to information associated with the identity.

For example, you might ask for the ability to

get the user’s email address, and perhaps more

information. Scope can also extend to things like

“Friends” on Facebook. Remember that the more

scope your application requests, the less likely users

are to agree to allow you to authorize their accounts.

https://learn.microsoft.com/azure/active-

directory/external-identities/identity-

providers

 5) What are the various authorization flows? What is an

example of each of them?

The main types of authorization flows you need

to be in command of are the Authorization

Code, Implicit, Client Credentials, On-Behalf-

Of, and Device Code. Review this document

for more information and examples of each:

https://learn.microsoft.com/azure/active-

directory/develop/authentication-flows-

app-scenarios?#scenarios-and-supported-

authentication-flows.

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/active-directory/external-identities/identity-providers?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/active-directory/external-identities/identity-providers?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/active-directory/external-identities/identity-providers?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/active-directory/develop/authentication-flows-app-scenarios?WT.mc_id=AZ-MVP-5004334#scenarios-and-supported-authentication-flows
https://learn.microsoft.com/azure/active-directory/develop/authentication-flows-app-scenarios?WT.mc_id=AZ-MVP-5004334#scenarios-and-supported-authentication-flows
https://learn.microsoft.com/azure/active-directory/develop/authentication-flows-app-scenarios?WT.mc_id=AZ-MVP-5004334#scenarios-and-supported-authentication-flows
https://learn.microsoft.com/azure/active-directory/develop/authentication-flows-app-scenarios?WT.mc_id=AZ-MVP-5004334#scenarios-and-supported-authentication-flows

698

 6) What is a service principal? Can you sign in to Azure

using a service principal?

A service principal is an identity object within

Azure, and it can be used to assign permissions,

typically by adding the principal to roles and

policies. Typically, you don’t directly sign in to Azure

with a service principal. Instead, your solutions

utilize the service principal to authenticate. For

example, a service principal allows your application

to have GET access to secrets in Azure Key Vault,

or a service principal allows your Azure DevOps

Pipeline to log in and deploy resources into a

specific resource group. https://learn.microsoft.

com/powershell/azure/create-azure-service-

principal-azureps?view=azps-9.3.0

 7) What are the various boundaries for Azure Cloud

Offerings? What is a sovereign region? Can you cross

boundaries with an identity?

There are a few boundaries based on the different

offerings. The offerings are Azure Public, Azure

Government for the U.S. Government, Azure

Germany for German government, and Azure

China for the Chinese regions. You cannot cross

the boundaries of an Azure sovereign region into

another Azure offering. https://learn.microsoft.

com/azure/cloud-adoption-framework/migrate/

azure-best-practices/multiple-regions

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/powershell/azure/create-azure-service-principal-azureps?view=azps-9.3.0&WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/powershell/azure/create-azure-service-principal-azureps?view=azps-9.3.0&WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/powershell/azure/create-azure-service-principal-azureps?view=azps-9.3.0&WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cloud-adoption-framework/migrate/azure-best-practices/multiple-regions?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cloud-adoption-framework/migrate/azure-best-practices/multiple-regions?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cloud-adoption-framework/migrate/azure-best-practices/multiple-regions?WT.mc_id=AZ-MVP-5004334

699

 Learn Modules
 AZ-204: Implement User Authentication and
Authorization
Review the following Microsoft Learn modules (https://learn.

microsoft.com/en-us/training/paths/az-204-implement-

authentication-authorization/):

• Explore the Microsoft Identity platform: https://

learn.microsoft.com/training/modules/explore-

microsoft-identity-platform/

• Implement authentication by using the Microsoft

Authentication Library: https://learn.

microsoft.com/en-us/training/modules/

implement-authentication-by-using-microsoft-

authentication-library

• Implement shared access signatures: https://learn.

microsoft.com/en-us/training/modules/implement-

shared-access-signatures/

• Explore Microsoft Graph: https://learn.microsoft.

com/en-us/training/modules/microsoft-graph/

 Chapter 8: Implement Secure
Cloud Solutions
Chapter 8 wraps up the look at security by showing you how to create

secure solutions within Azure. Specifically, concepts like managed

identities are used, and then Key Vault is explored. Along with Key Vault,

the Azure App Service is also utilized to round out the learnings of working

with various solutions in Azure in a secure manner.

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/training/paths/az-204-implement-authentication-authorization/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-implement-authentication-authorization/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-implement-authentication-authorization/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/explore-microsoft-identity-platform/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/explore-microsoft-identity-platform/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/explore-microsoft-identity-platform/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-authentication-by-using-microsoft-authentication-library/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-authentication-by-using-microsoft-authentication-library/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-authentication-by-using-microsoft-authentication-library/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-authentication-by-using-microsoft-authentication-library/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-shared-access-signatures/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-shared-access-signatures/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/implement-shared-access-signatures/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/microsoft-graph/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/modules/microsoft-graph/?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_8
https://doi.org/10.1007/978-1-4842-9300-3_8

700

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What are the two types of managed identities? When

would you use each type?

The two types of managed identities are system-

assigned and user-assigned identities. Use system-

assigned identities for one-to-one relationships

between services and identity. Use user-assigned

identities to manage the same authorization and

settings for a number of resources (such as a fleet

of VMs). https://learn.microsoft.com/azure/

active-directory/managed-identities-azure-

resources/overview

 2) Which type of managed identity must be manually

deleted? Which type is tightly coupled to a single

instance of a resource? Which can be reused across

multiple resources?

The user-assigned identity must be manually

removed since it is not associated directly with a

resource. The system-assigned identity is tightly

coupled to a single resource so it is removed once

the associated service is removed. Use the user-

assigned identity to manage multiple resources. See

the link in Question 1 for more information.

 3) What are the three types information that can be

stored securely in an Azure Key Vault? What is a

common use for each type of information stored?

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/active-directory/managed-identities-azure-resources/overview?WT.mc_id=AZ-MVP-5004334

701

Three types of information that you can store in

an Azure Key Vault are Certificates, Keys, and

Secrets. Certificates are great for authorization of

devices for web or IoT scenarios. Keys are used to

encrypt data, information, or resources. Secrets

can store common settings like connection strings

and passwords. https://learn.microsoft.com/

azure/key-vault/general/about-keys-secrets-

certificates

 4) How can you prevent your Azure Key Vault from

being deleted by accident? What about keys?

Azure Key Vault utilizes soft-delete to prevent

accidental deletion of the vault and keys. You can

read more about soft-delete and the upcoming

changes that will make it required for all vaults here:

https://learn.microsoft.com/azure/key-vault/

general/soft-delete-overview.

 5) Can you have multiple versions of a secret active at

the same time?

Yes, secrets receive a version and you can have

multiple versions active at the same time. https://

learn.microsoft.com/en-us/azure/key-vault/

secrets/about-secrets

 6) What are two ways a secret can exist in the vault but

also be unusable?

A secret will exist in the vault until it is deleted.

If you want to make a secret unusable without

deleting it, set an expiration date. Once it reaches

the expiration date, the secret will no longer work.

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/key-vault/general/about-keys-secrets-certificates?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/key-vault/general/about-keys-secrets-certificates?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/key-vault/general/about-keys-secrets-certificates?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/key-vault/general/soft-delete-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/key-vault/general/soft-delete-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/key-vault/secrets/about-secrets?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/key-vault/secrets/about-secrets?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/key-vault/secrets/about-secrets?WT.mc_id=AZ-MVP-5004334

702

If you want to immediately disable a version of a

secret, you can toggle the Enabled value on the

secret in the vault via the portal or via PowerShell

or the Azure CLI. https://learn.microsoft.com/

en-us/dotnet/api/microsoft.azure.commands.

keyvault.setazurekeyvaultsecret.disable

 7) What is the purpose of an access policy in Azure Key

Vault? Can you get fine-grained access level control

to individual secrets?

Access policies allow for RBAC-based authorization

on the vault. This layer of security gives granular

control to allow individual identities to be

authorized for specific actions such as GET secrets.

https://learn.microsoft.com/azure/key-vault/

general/assign-access-policy

It’s important to remember that the permissions

are for all of the entities in the vault. For example,

GET on Secrets means that the authorized identity

can read any of the secrets in that vault. This is why

you should not give LIST permission to an identity,

and it also means you need to use separate vaults to

create security boundaries as appropriate.

 8) Why might a developer choose to implement the

Azure App Configuration?

The Azure App Configuration is a great service

for sharing configuration settings across multiple

applications. Additionally, the Azure App Configuration

is the tool of choice for managing feature flags within

an Azure App Service. https://learn.microsoft.com/

azure/azure-app-configuration/overview

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.commands.keyvault.setazurekeyvaultsecret.disable?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.commands.keyvault.setazurekeyvaultsecret.disable?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/dotnet/api/microsoft.azure.commands.keyvault.setazurekeyvaultsecret.disable?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/key-vault/general/assign-access-policy?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/key-vault/general/assign-access-policy?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-app-configuration/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-app-configuration/overview?WT.mc_id=AZ-MVP-5004334

703

 Learn Modules
 AZ-204: Implement Secure Cloud Solutions
Review these modules for the Microsoft Learning Path for Implementing

Secure Cloud Solutions (https://learn.microsoft.com/en-us/

training/paths/az-204-implement-secure-cloud-solutions/) :

• Implement Azure Key Vault: https://learn.

microsoft.com/training/modules/implement-azure-

key-vault/

• Implement managed identities: https://learn.

microsoft.com/training/modules/implement-

managed-identities/

• Implement Azure App Configuration: https://learn.

microsoft.com/training/modules/implement-azure-

app-configuration

 Chapter 9: Implement Caching for Solutions
Chapter 9 explores caching and CDN solutions within Azure.

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What are some benefits of caching?

When you cache information, you get improved

application performance and you can offload work

that ordinarily has to go to the server or centralized

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/training/paths/az-204-implement-secure-cloud-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-implement-secure-cloud-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-azure-key-vault/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-azure-key-vault/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-azure-key-vault/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-managed-identities/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-managed-identities/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-managed-identities/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-azure-app-configuration/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-azure-app-configuration/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/implement-azure-app-configuration/?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_9
https://doi.org/10.1007/978-1-4842-9300-3_9

704

location of the application. You also generally gain

in latency since the information doesn’t need to

make roundtrips to the centralized application

servers. https://learn.microsoft.com/en-us/

azure/architecture/framework/scalability/

optimize-cache

 2) What is a CDN? How do you implement a CDN

in Azure?

A CDN is a content delivery network. The CDN is

implemented by creating a CDN Profile and then

setting the endpoints. For example, you can use

Azure Front Door to create the CDN profile and then

have the static web content served that is housed

in an Azure Storage account. https://learn.

microsoft.com/azure/cdn/cdn-overview?toc=%2F

azure%2Ffrontdoor%2FTOC.json

 3) What types of information are ideal candidates to

host on a CDN?

Static resources such as images and documents that

need to be served to users.

 4) How does a CDN work in relation to user requests,

serving data, and Time-To-Live (TTL)?

Time-To-Live is generally configured by the

application. The data is first retrieved from the

central location and then housed in the PoP (Point

of Presence) edge endpoints until the data is

invalidated or the Time-To-Live expires. Review the

link in Question 2 to see the flow in a nice image.

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/azure/architecture/framework/scalability/optimize-cache?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/architecture/framework/scalability/optimize-cache?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/architecture/framework/scalability/optimize-cache?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cdn/cdn-overview?toc=/azure/frontdoor/TOC.json&WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cdn/cdn-overview?toc=/azure/frontdoor/TOC.json&WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/cdn/cdn-overview?toc=/azure/frontdoor/TOC.json&WT.mc_id=AZ-MVP-5004334

705

 5) What are some reasons you would choose to use

IMemoryCache instead of Redis Cache? Why might

you choose Redis over IMemoryCache?

IMemoryCache is a built-in .NET solution object,

and it doesn’t require any additional configuration

or services to work. Redis Cache is a powerful and

robust caching solution that can also be replicated

globally. If you need simple caching, you might

leverage IMemoryCache. If you need a robust

solution with the ability to be highly available and

have additional tools, you’ll likely want to leverage

Redis Cache. https://learn.microsoft.com/en-

us/azure/architecture/best-practices/caching

 6) What offerings are available for Redis Cache? Which

can be implemented on a private network? Which

offerings leverage Redis modules (RediSearch, etc.)?

Redis Cache for Azure has an open source and an

Enterprise tier. To utilize networking and the Redis

modules, you need to implement the Enterprise

tier. https://learn.microsoft.com/azure/azure-

cache-for-redis/cache-overview#service-tiers

 7) What are some of the basic commands to work

with Redis?

There are a number of commands. Within the

Azure ecosystem, however, the main commands

are StringSet and StringGet. https://learn.

microsoft.com/azure/azure-cache-for-redis/

cache-dotnet-core-quickstart#executing-

cache-commands

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/azure/architecture/best-practices/caching?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/architecture/best-practices/caching?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-cache-for-redis/cache-overview?WT.mc_id=AZ-MVP-5004334#service-tiers
https://learn.microsoft.com/azure/azure-cache-for-redis/cache-overview?WT.mc_id=AZ-MVP-5004334#service-tiers
https://learn.microsoft.com/azure/azure-cache-for-redis/cache-dotnet-core-quickstart?WT.mc_id=AZ-MVP-5004334#executing-cache-commands
https://learn.microsoft.com/azure/azure-cache-for-redis/cache-dotnet-core-quickstart?WT.mc_id=AZ-MVP-5004334#executing-cache-commands
https://learn.microsoft.com/azure/azure-cache-for-redis/cache-dotnet-core-quickstart?WT.mc_id=AZ-MVP-5004334#executing-cache-commands
https://learn.microsoft.com/azure/azure-cache-for-redis/cache-dotnet-core-quickstart?WT.mc_id=AZ-MVP-5004334#executing-cache-commands

706

 8) How do you interact with Redis Cache from

.NET code?

Utilize the StackExchange.Redis NuGet package

and compose the cache object hierarchy, then issue

commands. https://learn.microsoft.com/en-us/

azure/azure-cache-for-redis/cache-web-app-

aspnet-core-howto

 Learn Modules
 AZ-204: Integrate Caching and Content Delivery
Within Solutions
Review the Microsoft learning path for Integrating Caching and Content

Delivery (https://learn.microsoft.com/en-us/training/paths/

az-204-integrate-caching-content-delivery-within-solutions/):

• Develop for Storage on CDNs: https://learn.

microsoft.com/training/modules/develop-for-

storage-cdns/

• Develop for Azure Cache for Redis: https://learn.

microsoft.com/training/modules/develop-for-

azure-cache-for-redis/

 Chapter 10: Troubleshoot Solutions by
Using Metrics and Log Data
Chapter 10 covers working with Application Insights, PING tests, alerts,

and also takes a short look at setting up dashboards and working with

Kusto queries.

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-web-app-aspnet-core-howto?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-web-app-aspnet-core-howto?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/azure-cache-for-redis/cache-web-app-aspnet-core-howto?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-integrate-caching-content-delivery-within-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-integrate-caching-content-delivery-within-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/develop-for-storage-cdns/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/develop-for-storage-cdns/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/develop-for-storage-cdns/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/develop-for-azure-cache-for-redis/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/develop-for-azure-cache-for-redis/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/develop-for-azure-cache-for-redis/?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_10
https://doi.org/10.1007/978-1-4842-9300-3_10

707

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What types of information can be monitored? Do

you have to do anything to get monitoring in your

Azure subscription?

Within the Azure Monitor ecosystem, you can

monitor metrics and logs. Technically, you can

also monitor and respond to events as well, but

for this chapter the main concepts are metrics and

logs, with some concern about traces and changes.

Azure Monitor is automatically included and will

be running on your subscription with no required

configuration on your part. https://learn.

microsoft.com/azure/azure-monitor/overview

Some services do require additional agents, such as

applications, VMs, and containers.

 2) What are the major components of Azure Monitor?

The major components are the source of the metric,

log, or event, the type of the monitored data (i.e.,

metric/log), and the target service being monitored.

 3) Do your web solutions automatically get

monitoring? If so, is there additional monitoring

you can implement? If so, how do you do this for a

typical .NET application?

Azure App Service does have monitoring without

any automatic configuration. However, you are

likely going to want to instrument Application

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/azure-monitor/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/overview?WT.mc_id=AZ-MVP-5004334

708

Insights on your solutions (or container or VM

insights depending on your architecture). Adding

the insights will give you additional monitoring

and the ability to create custom logs and traces.

https://learn.microsoft.com/azure/azure-

monitor/app/asp-net-core

 4) What are the types of information that can be

utilized with Application Insights? What are some

of the other types of insights available and what are

they for?

Once you’ve instrumented Application Insights,

you can utilize code to track events, traces,

exceptions, and metrics. Additional Insights exist

for containers, VMs, and networks. The insights

give you additional tools that allow you to leverage

visualizations, perform better logging, and have

a better understanding of the workflows in your

applications. You can then write queries and create

dashboards or view application maps. https://

azure.microsoft.com/products/monitor

 5) What is an availability test? How do you create a test

to check if your website is responding?

An availability test is just a way to determine if a web

page is responding. Within Application Insights,

you can use URL tests, standard tests, and more.

https://learn.microsoft.com/azure/azure-

monitor/app/monitor-web-app-availability

 6) What is the purpose of the Application Map?

What do you have to do to get it to work with your

solutions?

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/azure-monitor/app/asp-net-core?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/app/asp-net-core?WT.mc_id=AZ-MVP-5004334
https://azure.microsoft.com/products/monitor?WT.mc_id=AZ-MVP-5004334
https://azure.microsoft.com/products/monitor?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/app/monitor-web-app-availability?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/app/monitor-web-app-availability?WT.mc_id=AZ-MVP-5004334

709

The Application Map shows the requests and

latency between Azure solutions utilized from

within your application. You don’t have to do

anything other than instrument Application

Insights; the system will do the rest. https://

learn.microsoft.com/azure/azure-monitor/

app/app-map

 7) What is a Kusto Query? How do you run a custom

Kusto Query? How do you use a custom query to

trigger an alert?

Kusto Queries utilize the Kusto Query Language

(KQL) to perform analysis against Azure Monitor

Logs. This can be done to find information about

your solutions and to perform threat hunting.

https://learn.microsoft.com/azure/azure-

monitor/logs/log-query-overview?WT.mc_id=AZ-

MVP-5004334

You can use a Kusto Query as the signal to

determine if an alert should fire.

 8) What are the three main aspects of creating an alert?

Do alerts always cost the same? What are some of

the actions for notification/remediation/tracking of

alerts that you can take?

To create an alert, you need a metric or log entry

to monitor as the “signal.” You then need an action

group to determine who to notify, and you need

the ways to notify the group (i.e., SMS or email).

Additionally, you can perform a POST to a webhook

with alert information, trigger Azure Functions or

Logic Apps, and automatically create entries in your

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/azure-monitor/app/app-map?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/app/app-map?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/app/app-map?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/logs/log-query-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/logs/log-query-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/logs/log-query-overview?WT.mc_id=AZ-MVP-5004334

710

ITSM solutions. https://learn.microsoft.com/

azure/azure-monitor/alerts/alerts-overview

Alerts vary in cost depending on the signal and

other factors. https://learn.microsoft.com/

azure/azure-monitor/alerts/tutorial-

log-alert

 9) What are some of the main ways to visualize

information from Azure Monitor? Are there any

default visualizations that you can leverage?

What are the benefits of creating more robust

visualizations?

By default, the App Service has a number of

visualizations on metrics, but custom visualizations

give you more information about your solutions.

 10) Where in Azure can you create visualizations? What

are some additional tools that allow you to create

visualizations?

You can utilize a number of tools to visualize data.

The easiest is to leverage an Azure Dashboard.

https://learn.microsoft.com/azure/azure-

portal/azure-portal-dashboards Other tools

such as Power BI and Grafana can also be used to

visualize data.

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/azure-monitor/alerts/alerts-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/alerts/alerts-overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/alerts/tutorial-log-alert?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/alerts/tutorial-log-alert?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-monitor/alerts/tutorial-log-alert?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-portal/azure-portal-dashboards?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/azure-portal/azure-portal-dashboards?WT.mc_id=AZ-MVP-5004334

711

 Learn Modules
 AZ-204: Instrument Solutions to Support Moni-
toring and Logging
Review these Microsoft Learn modules (https://learn.microsoft.

com/en-us/training/paths/az-204-instrument-solutions-support-

monitoring-logging/):

• Monitor App Performance: https://learn.

microsoft.com/training/modules/monitor-app-

performance

 Chapter 11: Implement API Management
Chapter 11 looks at creating an API Management solution on the

Developer tier so you can see a bit about the Developer website in addition

to the basic API Management solution.

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What are the different offerings within APIM

for deployment of solutions? Which tier(s) get a

Developer portal?

The different offerings include a Consumption

tier, the Developer tier, then Basic, Standard,

and Premium. All tiers except consumption get

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/training/paths/az-204-instrument-solutions-support-monitoring-logging/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-instrument-solutions-support-monitoring-logging/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-instrument-solutions-support-monitoring-logging/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/monitor-app-performance/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/monitor-app-performance/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/monitor-app-performance/?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_11
https://doi.org/10.1007/978-1-4842-9300-3_11

712

a developer portal. https://learn.microsoft.

com/en-us/azure/api-management/api-

management-features

 2) Why do some tiers deploy quickly while others take

30-45 minutes to deploy? Which tier(s) gets a self-

hosted gateway? Why might a self- hosted gateway

be important?

The Consumption tier uses a shared gateway, so it

can deploy very quickly. All other tiers use a gateway

that has to be deployed, which takes around 30-45

minutes (this is similar to the time required to

deploy a VPN Gateway into a private network).

The Developer and Premium tiers get a self-hosted

gateway, which is useful to connect to private

networks in a hybrid scenario, either on-premises

or in a multi-cloud scenario. https://learn.

microsoft.com/azure/api-management/api-

management-key-concepts#self-hosted-gateway

 3) What is an API within APIM?

Within the API Management solution, an API is

a group of operations that are typically related.

https://learn.microsoft.com/azure/api-

management/import-and-publish

 4) What is a product within APIM?

A product is a grouping of one or more APIs, used

to expose operations as a solution to your clients.

https://learn.microsoft.com/azure/api-

management/api-management-howto-add-products

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/azure/api-management/api-management-features?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/api-management/api-management-features?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/api-management/api-management-features?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/api-management-key-concepts?WT.mc_id=AZ-MVP-5004334#self-hosted-gateway
https://learn.microsoft.com/azure/api-management/api-management-key-concepts?WT.mc_id=AZ-MVP-5004334#self-hosted-gateway
https://learn.microsoft.com/azure/api-management/api-management-key-concepts?WT.mc_id=AZ-MVP-5004334#self-hosted-gateway
https://learn.microsoft.com/azure/api-management/import-and-publish?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/import-and-publish?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/api-management-howto-add-products?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/api-management-howto-add-products?WT.mc_id=AZ-MVP-5004334

713

 5) What is a subscription within APIM? Is the

subscription applied to the API or the product? How

does this enhance your solution?

A subscription allows you to create a token for

clients to use on your API Management solution to

authorize requests and prove that the client should

be able to execute the API. Developers can use the

subscription key to make requests, and you can use

the key to manage the throughput and access for the

developers. https://learn.microsoft.com/azure/

api-management/api-management-subscriptions

 6) What is a policy? How do you utilize policies? Where

can you apply policies and in what directions? What

is the inheritance precedence of policies?

Policies are XML documents that create additional

functionality on request. You can apply policies

on request, during backend processing, and on

response. Policies can be applied for all APIs,

for a single API, and at the operation level. More

recent policies supersede any base policies (i.e., an

operation policy supersedes the All APIs policy).

https://learn.microsoft.com/azure/api-

management/api-management-howto-policies

 7) What are two ways to validate client requests outside

of subscriptions? Which is considered more secure?

Two ways to validate clients are JWTs (https://

learn.microsoft.com/azure/api-management/

validate-jwt-policy) and Certificates (https://

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/api-management/api-management-subscriptions?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/api-management-subscriptions?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/api-management-howto-policies?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/api-management-howto-policies?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/validate-jwt-policy?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/validate-jwt-policy?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/validate-jwt-policy?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/api-management-howto-mutual-certificates-for-clients?WT.mc_id=AZ-MVP-5004334

714

learn.microsoft.com/azure/api-management/

api-management-howto-mutual-certificates-

for-clients).

Certificates are considered more secure, but it may

be easier to implement solutions with JWTs.

 Learn Modules
 AZ-204: Implement API Management
Review these Microsoft Learn modules (https://learn.microsoft.com/

en-us/training/paths/az-204-implement-api-management/):

• Export API Management: https://learn.microsoft.

com/training/modules/explore-api-management/

 Chapter 12: Develop Event-Based Solutions
Chapter 12 is all about leveraging events in Azure with Azure Event Hub

and Azure Event Grid.

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What is the purpose of the Azure Event Hubs?

Azure Event Hubs is designed to ingress millions of

records of streaming data per minute for Big Data

pipelines. https://learn.microsoft.com/azure/

event-hubs/event-hubs-about

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/api-management/api-management-howto-mutual-certificates-for-clients?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/api-management-howto-mutual-certificates-for-clients?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/api-management/api-management-howto-mutual-certificates-for-clients?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-implement-api-management/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-implement-api-management/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/explore-api-management/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/explore-api-management/?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_12
https://doi.org/10.1007/978-1-4842-9300-3_12
https://learn.microsoft.com/azure/event-hubs/event-hubs-about?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/event-hubs/event-hubs-about?WT.mc_id=AZ-MVP-5004334

715

 2) What is the purpose of the Azure Event Grid?

Azure Event Grid is designed to handle single

events by allowing a producer to publish the event

and subscribers to respond to the event. https://

learn.microsoft.com/azure/event-grid/

overview

 3) What is an event producer? What is a receiver?

What is the purpose of a partition and what is the

maximum number of partitions you can have? What

is a consumer? What is a consumer group? How

many readers can you have per consumer group?

What is checkpointing?

A producer is the source of the event and the

receiver is the service that responds to the event.

https://learn.microsoft.com/en-us/azure/

event-hubs/event-hubs-features Partitions

group data together to easily allow consumers

to read the data. The Event Hub has a maximum

of 32 partitions. A consumer group is one to five

applications that are reading the same data from

within the hub. A checkpoint is a pointer to the last

event that was consumed.

 4) How do you work with .NET code to send and

receive events?

As with other solutions, you compose the objects

in a .NET project and leverage the SAS token to

gain permissions to send or receive (or do both).

https://learn.microsoft.com/en-us/azure/

event-hubs/event-hubs-dotnet-standard-

getstarted-send

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/event-grid/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/event-grid/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/event-grid/overview?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-features?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-features?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-dotnet-standard-getstarted-send?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-dotnet-standard-getstarted-send?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/event-hubs/event-hubs-dotnet-standard-getstarted-send?WT.mc_id=AZ-MVP-5004334

716

 5) What is an event topic? What is an event

subscription?

Within Event Grid, a topic is an endpoint that allows

publishing of a particular group of events. https://

learn.microsoft.com/en-us/azure/event-grid/

post-to-custom-topic An event subscription

is utilized to consume the events as they are

published. https://learn.microsoft.com/azure/

event-grid/receive-events

 6) What is a dead-letter event?

A dead-letter event is an event that was published

but never delivered. https://learn.microsoft.

com/azure/event-grid/manage-event-delivery

 7) What are some ways to utilize event subscriptions to

respond to events?

You can set subscriptions in the Azure Portal to

respond to events for things like Blob Storage

created events or VM State Change events

(i.e., power up/down). You can respond with a

subscription that triggers an Azure Function or

an Azure Logic App, or you can place message

information into Azure Service Bus when an event is

fired for distributed processing in your solutions.

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/en-us/azure/event-grid/post-to-custom-topic?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/event-grid/post-to-custom-topic?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/event-grid/post-to-custom-topic?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/event-grid/receive-events?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/event-grid/receive-events?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/event-grid/manage-event-delivery?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/event-grid/manage-event-delivery?WT.mc_id=AZ-MVP-5004334

717

 Learn Module
 AZ-204: Develop Event-Based Solutions
Review these Microsoft Learn modules (https://learn.microsoft.com/

training/paths/az-204-develop-event-based-solutions/):

• Explore Azure Event Grid: https://learn.microsoft.

com/training/modules/azure-event-grid

• Explore Azure Event Hubs: https://learn.microsoft.

com/training/modules/azure-event-hubs

 Chapter 13: Develop
Message-Based Solutions
The final chapter of the book is about message-based solutions, leveraging

Azure Service Bus and Azure Storage Queue.

 Review Your Learning
The questions and answers from the “Review Your Learning”

section follow:

 1) What is the maximum size of an Azure Storage

Queue message? What is the maximum size of an

Azure Service Bus message?

The maximum size of a storage queue message is

64 KB. https://learn.microsoft.com/azure/

storage/queues/storage-queues-introduction

The maximum size of a typical Service Bus Message

is 256 KB, but it can be up to 100 MB in size. Even

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/training/paths/az-204-develop-event-based-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/paths/az-204-develop-event-based-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/azure-event-grid/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/azure-event-grid/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/azure-event-hubs/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/azure-event-hubs/?WT.mc_id=AZ-MVP-5004334
https://doi.org/10.1007/978-1-4842-9300-3_13
https://learn.microsoft.com/azure/storage/queues/storage-queues-introduction?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/storage/queues/storage-queues-introduction?WT.mc_id=AZ-MVP-5004334

718

though it can be larger, Microsoft recommends

keeping your service bus message size less than

or equal to 1MB. https://learn.microsoft.

com/azure/service-bus-messaging/service-

bus-quotas

 2) Which service can store more than 80 GB of data?

The service that can store more than 80 GB of data is

the Azure Storage Queue.

 3) Which service can guarantee order?

The service that can guarantee order is the Azure

Service Bus.

 4) Which service(s) can guarantee At-Most-Once

delivery? Which service(s) can guarantee At-Least-

Once delivery?

All services can guarantee At-Least-Once delivery.

Only Azure Service Bus can guarantee At-Most-

Once delivery.

 5) What is the difference between PeekLock and

ReceiveAndDelete?

The difference is in how the messages are

processed. With PeekLock, the message is read

from the queue but is left in place, and it has to

be completed later in order to be deleted (which

also means it could potentially be read by another

consumer). https://learn.microsoft.com/

en-us/azure/service-bus-messaging/message-

transfers-locks-settlement#peeklock

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/service-bus-messaging/service-bus-quotas?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/service-bus-messaging/service-bus-quotas?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/service-bus-messaging/service-bus-quotas?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/service-bus-messaging/message-transfers-locks-settlement?WT.mc_id=AZ-MVP-5004334#peeklock
https://learn.microsoft.com/en-us/azure/service-bus-messaging/message-transfers-locks-settlement?WT.mc_id=AZ-MVP-5004334#peeklock
https://learn.microsoft.com/en-us/azure/service-bus-messaging/message-transfers-locks-settlement?WT.mc_id=AZ-MVP-5004334#peeklock

719

With the ReceiveAndDelete operation, the message

is read and deleted at the same time from the queue.

This operation guarantees At-Most-Once delivery,

but it can also result in a loss of data. https://

learn.microsoft.com/azure/service-bus-

messaging/message-transfers-locks-settlement

#receiveanddelete

 6) What are the various types of filters available for

filtering messages? How do you leverage a filter for

a subscription? What does it mean to multicast? If

topics are multicast, can a message be read more

than once? If possible, how or why is this possible?

Service Bus offers SQL filters, Boolean filters, and

Correlation filters. To leverage a filter, you create one

when you create the subscription. Any consumers

of the subscription automatically benefit from

the filter.

Multicasting means you can publish once and

consume with multiple clients. With multicasting,

messages are designed to be read by multiple

consumers so they are read more than once in their

various subscriptions. To prevent duplicate reads

on a single subscription, use the ReceiveAndDelete

approach (but remember that the other

subscriptions still read the message individually).

https://learn.microsoft.com/en-us/azure/

service-bus-messaging/topic-filters

 7) What are the various levels of SAS tokens? What

token can do everything on the Service Bus

deployment? What is/are the benefit(s) of using

granular SAS tokens?

 Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/service-bus-messaging/message-transfers-locks-settlement?WT.mc_id=AZ-MVP-5004334#receiveanddelete
https://learn.microsoft.com/azure/service-bus-messaging/message-transfers-locks-settlement?WT.mc_id=AZ-MVP-5004334#receiveanddelete
https://learn.microsoft.com/azure/service-bus-messaging/message-transfers-locks-settlement?WT.mc_id=AZ-MVP-5004334#receiveanddelete
https://learn.microsoft.com/azure/service-bus-messaging/message-transfers-locks-settlement?WT.mc_id=AZ-MVP-5004334#receiveanddelete
https://learn.microsoft.com/en-us/azure/service-bus-messaging/topic-filters?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/azure/service-bus-messaging/topic-filters?WT.mc_id=AZ-MVP-5004334

720

As with Event Hubs, the Service Bus has SAS tokens

available for Send, Listen, and Manage. There is also

a RootManage SAS token that allows all the topics

and queues to be leveraged with that single key.

Using a granular approach ensures that keys are

limited to the scope they should have, such as only

sending to one topic with no ability to send to the

wrong topic or listen for messages. https://learn.

microsoft.com/azure/service-bus-messaging/

service-bus-sas.

 Learn Modules
 AZ-204: Develop Message-Based Solutions
Review these Microsoft Learn modules (https://learn.microsoft.com/

en-us/training/paths/az-204-develop-message-based-solutions/):

• Discover Azure Message Queues: https://learn.

microsoft.com/training/modules/discover-azure-

message-queue/

 Conclusion
I hope this appendix has been useful in helping to solidify your knowledge

and preparing you for the AZ-204 Exam.

Appendix A AnSWeRS TO THe “ReVieW YOUR LeARninG” QUeSTiOnS And
 AddiTiOnAL LinKS

https://learn.microsoft.com/azure/service-bus-messaging/service-bus-sas?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/service-bus-messaging/service-bus-sas?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/azure/service-bus-messaging/service-bus-sas?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-develop-message-based-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/en-us/training/paths/az-204-develop-message-based-solutions/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/discover-azure-message-queue/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/discover-azure-message-queue/?WT.mc_id=AZ-MVP-5004334
https://learn.microsoft.com/training/modules/discover-azure-message-queue/?WT.mc_id=AZ-MVP-5004334

721

Index

A
Access Keys blade, 7, 34, 212, 444
Access policies, 360–361, 373, 377,

380, 702
Access Policies blade, 374, 380
Access token, 332, 335, 343
Activity functions, 287
ActivityTrigger, 290
Admin authorization level, 256
Administrators, 546
Admin token, 256, 693
Advanced Message Queuing

Protocol (AMQP), 564,
566, 617

Advanced policy configuration, 371
Aggregator pattern, 297
Always On setting, 179
Anonymous mode, 693
Apache Kafka, 564, 566, 570
API Gateway

centralized gateway
attack surface, 527
backend services,

clients, 526
entry point, 525
logging/monitoring, 527
response caching, 527

route aggregation, 526
SSL termination, 526

clients, 525
entry point, requests, 525
routing, 524, 525
validation, 527

API Management (APIM), 511
Application Insights, 516
Azure portal (see Azure portal)
basics tab, 517
consumption tier, 516
Developer Portal (see

Developer Portal)
developer tier, 516
instance, 516
Log Analytics Workspace, 515
managed Identity tab, 521
monitoring tab, 519
policies (see Policies, APIM)
protocol settings, 522–524
resource group, 514
scale tab, 520, 521
SKUs

basic tier, 519
consumption tier, 517, 518
developer tier, 518
development tier, 518

© Brian L. Gorman 2023
B. L. Gorman, Developing Solutions for Microsoft Azure Certification Companion,
Certification Study Companion Series, https://doi.org/10.1007/978-1-4842-9300-3

https://doi.org/10.1007/978-1-4842-9300-3#DOI

722

premium tier, 519
pricing tier, 518
standard tier, 519

virtual network tab, 522
API Management solution,

524, 560, 711–713
Append blob, 12, 13, 671
Apple, 310, 697
Application (client) ID, 321, 322, 339
Application code creation

bindings, 266–276
C#.NET, 250
default HTTP trigger

function, 257–260
deployment, 260–263
function app, 250–252
function.json file, 276–281
testing, 263–265
triggers, 252–256

Application Insights, 163, 164,
227, 246, 467

availability tests, 486, 487
custom testing, 489
standard tests, 489
URL tests, 487

basic creation and
utilization, 473–475

client-side JavaScript and AJAX
requests, 486

in .NET, instrumentation, 476
connection, 478, 479
connect to dependency

blade, 477

review, live metrics, 482–486
telemetry injected, 480, 481

Application Map, 489–490, 506, 709
Application permissions, 316, 340
Application setting, 176, 177
App Registration blade, 326–328, 331
App registration creation

Microsoft Graph SDK, 344–346
MSAL, 339–343
native redirect URI, 337
public client, 337
tenant ID, 339

App registrations, 312, 314, 316,
319–322, 326, 328, 337,
344, 430

App Service blade, 184, 192, 309
App Service Configuration, 229,

378, 382, 398–399, 402,
408, 682–684

App Service deployment
application name, 154
App Service Plan, 156, 157
automated deployments,

158, 159
code, 155
Docker Container, 155
manual deployments, 160, 161
monitoring, 163, 164
networking, 161–163
publish type, 155
runtime stack, 156
static web application, 155, 156

App Service Environment (ASE),
153, 244, 684, 692

API Management (APIM) (cont.)

INDEX

723

App Service Linux plan, 226
App Service Plan, 184, 244, 681–683

operating system, 153
pricing tier, 149–153
redundancy, 153
stand-alone deployments, 149

App Service setting and
configurations

additional services, 171–174
additional settings, 190–194
connection Strings, 174–177
Default Documents settings, 181
deployment slots, 164–171
general settings, 178–181
Path Mappings, 182
scaling, 183–190

App Service Web Application
to Azure App Configuration, 396

Add Role Assignment,
396, 397

review application, 402–404
update the application

code, 399–402
updation, 398, 399

appsettings files, 390
appsettings.json file, 174, 176, 390,

401, 479, 480, 660
Archive storage, 19, 23–25
ARM template, 98, 223, 330,

676, 679
deployment, 129, 134, 135
functions, 141
location and name

parameters, 137

output, 140
parameters, 136–138
portal, 129
resources, 132, 133
storage account, 136
template structure, 129
validation, 133, 134
variables, 138, 139
VS Code, 130–132

ARR Affinity, 180
ASP.NET Identity provider,

177, 310
ASP.NET MVC, 148, 310, 450
Async HTTP APIs pattern, 296, 694
Atomicity, Consistency, Isolation,

and Durability (ACID), 43
Authentication (AuthN),

305–306, 695
Authentication modes, 298, 693
Authorization (AuthZ), 305, 695
Authorization Code flow, 332, 333
Authorization flow, 697

Authorization Code, 332
client credentials, 332, 333
Device Code, 333
implicit workflow, 333
Integrated Windows, 334
interactive and non-

interactive, 334
On-Behalf-Of, 334
Username/Password, 335

AuthorizationLevel, 257
Authorization vs. authentication,

305, 306

INDEX

724

AuthorizeMicrosoftTenant
Users, 319

Automated deployment, 158–161,
167, 239, 261

Autoscaling, 52, 184, 185, 187–189
Autoscaling rules, 460, 472, 683
Availability test, 460, 486, 487, 708
AZ-400 Azure DevOps Expert

Exam, 260
AZ CLI/PowerShell

commands, 216
AZ-204 Exam, 110, 111, 146, 260,

299, 330, 332, 349, 352
az204examref20251231 (app

service), 374, 377
AZ204ExamRefFunctionsDT

value, 284
az login command, 212
Azure

excel file, 613
messaging ecosystem, 614
messaging services, 614
SQL server, 613

Azure Active Directory (Azure AD),
310, 334, 349

Azure API Management
service, 255

Azure App Config, 331, 353
AzureAppConfigConnection, 402
Azure Application Configuration,

352, 384, 702
centralized configuration, 384
connecting to Azure Key

Vault, 404

code change, 405
update, Azure App

Configuration, 406–408
create system-managed

identity, 387
customer-managed

key, 387–389
data encryption, 386
feature flags management, 392

configurations in Azure, 394
create new feature flag, 393
JSON representation, 394

Keys and Values, 389, 390
labels, 392
managed service, 384
networking, 386

Azure App Service, 308, 309, 311,
312, 319, 324, 349, 464, 473,
687, 707

containers, 225–229
creation (see Creating Azure

App Service)
definition, 147
.NET 6 and ASP.Net MVC, 148

Azure App Service Configuration
Application settings, 473

Azure App Service plan, 153,
246, 249

Azure Blob Storage, 4, 8–12,
335, 672

Azure Cache for Redis, 431
ASP.Net MVC application, 450

inject Redis Cache into
application, 452–454

INDEX

725

run the code, 455, 456
user secrets, 451, 452

caching patterns
clustering, 441–443
Content Cache pattern, 438
data cache (cache-aside),

437, 438
messaging pattern, 439, 440
networking, 440
session store, 438, 439
transactions, 440

creation, 432
Enterprise Redis

Enterprise Cache, 436
Enterprise Flash Cache,

436, 437
open source Redis

Basic Cache type, 433, 434
Premium Cache, 435
Standard cache, 435

preconfigured solution, 432
Redis commands, 443
working with cache via .NET, 444

connection object, 446
Connection Multiplexer and

Connect, 445
connection string, 444, 445
list all clients, 449
PING command, 446
PONG response, 446
store serialized JSON, 448
StringGet method, 447, 448

Azure CDN, see Content Delivery
Network (CDN)

Azure CLI, 33, 129, 134, 148, 326,
367, 514, 684

AzureCloudInstance.
AzurePublic, 340

Azure Cloud Offerings, 102, 698
Azure Container Apps (ACA), 200,

230, 232, 233, 687
Azure Container Ecosystem, 196,

198, 207
Azure Container Instances (ACI),

200, 688–689
container groups, 223, 224
deployment, 216–222
environment variables, 216
platform service, 216

Azure Container Registry (ACR),
155, 200, 686, 688

automated build tasks, 215
deployment, 209, 210
image storage, 209
pushing image, 210–214
service tier, 207–209

Azure Cosmos DB, 44–46, 50, 51,
55, 66, 75, 77, 92, 171, 237,
672, 675

Azure Dashboards, 460, 470, 471,
502, 504, 710

Azure Data Centers, 64, 99–101, 676
Azure DevOps, 155, 158, 167, 326,

479, 698
Azure event grid

concepts
events, 589
handlers, 591

INDEX

726

sources, 590
subscriptions, 591
topics, 590, 591

consumer, 589
event delivery

dead-letter, 600
retry polices, 599

event schema, 592
data, 594–596
formatting, 592, 593
ID, 593
subject, 594
time, 594
topics, 593
type, 594
versions, 596

filtering data
conditions, 597, 598
scenarios, 597
subject, 597
type, 597

Logic App (see Logic App)
producers, 589
subscription, topic, 596

Azure Event Grid, 561, 563, 564,
588–592, 602, 714, 715

Azure event hubs
capture process

capture provider, 574
emit empty files, 573
file name formats, 574
review/creation, 574, 575
size window (MB), 573

storage container, 574
time window, minutes, 573

container, 572
creation, 572
data lake storage account, 571
data roles

listener, 579, 580
owner, 577
sender, 577, 578

event-driven architecture
concepts and terms, 565–568
events, 565
IoT devices, 565
IoT hub, 565

vs. event grid, 563, 564
events, 564
namespace

advanced settings, 571
basics, 568, 569
capacity units (PU), 570
groups, 568
networking, 571
offerings (SKUs/tiers),

570, 571
processing units (PU), 569
throughput units (TU), 569
URL, 568

.NET
clients, 575
SAS, 575, 576

.NET event consumer
consume events, 584, 585,

587, 588
container, 584

Azure event grid (cont.)

INDEX

727

user secrets, client
application, 584

.NET event producer
code to produce

events, 581–583
secrets.json file, 580, 581
WorkingWithEventHub, 580

uses, 564
Azure Event Hubs, 561, 563–566,

611, 616, 714
Azure File Storage, 16, 17, 224
Azure Function App, 3, 238, 240,

244–247, 249–251, 256, 279,
285, 460

Azure Function creation
Azure Portal, 240
Azure subscription, 239
backing storage, 244, 245
deployment options, 247, 248
hosting plans, 243, 244
monitoring, 246, 247
naming function app, 240
networking, 246
OS, 242
publishing application, 240, 241
runtime stack, 242
slots, 249

Azure Functions
application code (see

Application code creation)
cloud migration, 238
constraints and operational

features, 238
languages, 238

maximum runtime, 238
solution, 237
stateless nature, 238

Azure Functions Premium
plan, 243

Azure.Identity, 344
Azure Key Vault, 323, 331, 333, 349,

352, 701
access policies, 360,

361, 373–377
application to read, 379–384
from Azure App Service, 377
Azure resource, 356
centralized storage, 358, 359
certificates, 370–373
create vault, 357
data encryption, 364
data retention, 359, 360
keys, 364–366
network access, 362
secrets, 367–370
tiers

Premium Key Vault, 358, 359
Standard Key Vault, 358, 359

Azure Kubernetes Service (AKS),
200, 230–232, 685, 690, 692

Azure Load Balancer, 112
Azure-managed encryption

key, 364
Azure Monitor, 273, 460

ability to respond, 472
changes, 465, 466
insights, 467–469
integrations, 472

INDEX

728

Log Analytics, 466
logged events, 460
logs, 463, 464
metrics, 461, 462
tools, 466
tools for analysis, 471
traces, 464
types, 461
visualization tools, 470, 471

Azure Monitor ecosystem, 460, 707
Azure Monitor Workbook, 501
Azure physical architecture, VMs

advanced options,
deployment, 115, 116

architecture, 105
availability options, 104
availability zone, 101
Azure Data Center, 100
Azure Regions, 102
bare-metal servers, 100
deployment, 103
disk creation, 110
disks, 109
fault domain, 100, 101
final review screen, 116, 117
hybrid license, 108
image, 104, 105
management, 113, 114
Microsoft, 100
monitoring, 114, 115
network, 110–113
port rules, 107, 108
security, 104, 105

size, 105–107
Sovereign regions, 102
update domains, 101
VMs creation, 103

Azure portal, 468
APIs

creation, 528, 529, 531
customer API, 532, 533
Function1 function,

529, 530
Function App, 528, 529
function execution, 532
HTTP trigger, 530
Public API, 533
send button, 532
value setting, 530, 531

products
clients, 537, 538
creation, 534, 535
customers API, 537
description, 534
offerings, 533
Public API, 533
public façade, 536, 537
subscriptions, 536

subscriptions
creation, 539
naming, 538
sending request, 539, 540

Azure Portal Configuration, 176
Azure Regions, 101, 102
Azure Resource Group, 211
Azure Resource Manager (ARM),

223, 676

Azure Monitor (cont.)

INDEX

729

Azure.ResourceManager.Cdn
library, 430

Azure Role-Based Access
Control, 360

Azure service-based triggers, 254
Azure Service Bus, 237, 718

advanced tab, 633, 634
features

at-least-once delivery,
638, 639

at-most-once delivery, 638
auto-delete, idle, 638
auto-forwarding, 637
batching, 637
dead-letter, 637
duplicate detection, 636
filtering, 639
message size, 635
payload, 636
sessions, 636
transactions, 636

namespace, 630
networking, 634
queues (see Queues)
service offerings, 630
testing, 630
tiers, 630, 631

basic tier, 632
premium tier, 632, 633
standard tier, 632

topics (see Topics)
Azure SQL instance, 172–174
Azure SQL Server, 172, 352,

613, 689

Azure storage, 273
access keys, 6, 7
blobs, 4, 5
block blob size, 671
create storage account, 6
FQDN, 5
move blobs, 671
.Net SDK (see .Net SDK)
private network, 670
SDK, 32
storage account performance

tiers, 17
storage account with

container, 5
types (see Types of Azure

storage)
URL, 5

Azure Storage Account, 5, 17, 25,
34, 182, 270, 271, 574, 600,
621, 704

Azure Storage Queue, 718
client, 622
connection string, 621, 622
creation, 620, 621
deletion, 629
features, 617, 618
messages

deletion, 628, 629
lease extension, 626–628
operations, 625
peek at messages, 624
retrieving, 626
sending, 623
updation, 625

INDEX

730

.NET, 619
NuGet packages, 621
operations, 618, 619
scenarios, 616

Azure Storage Software Developer
Kit (SDK), 6, 14, 36, 40

Azure Table Storage, 675
Azure tenant, 153, 161, 325
.azurewebsites.net, 240

B
Backing storage, 3, 243–246, 283
Backup policy, 59
Backups, 59, 147, 194, 677
Baked-in disaster recovery, 147
Bicep, 33, 679
Bicep templates, 129

AZ CLI to deploy, 143
code, 142, 143
IaC, 141
Terraform, 142
VS Code, 131, 141

Big data pipelines, 3, 572, 573,
583, 714

BitBucket/Azure Repos, 262
Blob, 4
Blob binding, 268
Blob storage, 7–10, 17, 40, 237, 267,

281, 299
Blob Storage-created

event, 276
Blob storage tiers

Archive storage, 23, 24
cool storage, 23
hot storage, 22, 23
lifecycle management rule, 25
tier placement

automation, 25, 26
Blob trigger, 252, 254, 267
Block blob, 10–12, 671
Bounded Staleness, 54–56

C
Caching, optimization, 430, 431
Caching, benefits

data stored in local
memory, 414

retrieve and mutate data
quickly, 414

server offload, high
throughput, 415

static content via CDN, 415
higher throughput, 415
resiliency, 416
server offload, 416

Capacity mode, Cosmos DB
autoscaling, 52
limit throughput, 51
provisioned throughput, 50
provision throughput, 50, 51
serverless, 50, 52

Cascading Style Sheets (.css)
files, 413

Cassandra API, 48
Certificates, 370–373

Azure Storage Queue (cont.)

INDEX

731

Certificates & Secrets, 322, 328
Certificates blade, 193
ChainFunctionOrchestrator

function, 288
Change analysis, 465, 471
Checkpointing, 566–568
CI/CD deployment, 250, 261, 262
Claim check, 635
Clearance events, 184
CLI command, 216, 327
Client, 568
Client credentials, 332, 333, 697
Client functions, 288
Clustering, 436, 441
Code, 32, 34, 155
Code + Test option, 264, 277
Cold start, 243, 244
collectionName, 275
Commercial Driver’s License

(CDL), 306
Complete deployment, 143,

144, 680
Compute configurations, 677
Conditional sign-in/risky sign-in

detection, 304, 305
Configuration blade, 174–176, 274,

373, 378, 384, 398, 684
ConnectionMultiplexer, 445
ConnectionMultiplexer.

Connect(your-connection-
string), 445

Connection string, 6, 7, 14, 34, 35,
76, 77, 165, 174–177

Consent, 314, 318, 319, 340

Consistency levels, Azure
Cosmos DB

account level, 54
bounded staleness, 54–56
consistent prefix, 54, 55
consistent prefix, 56, 57
eventual, 54, 55, 57
session, 54–56
strong, 54, 55

Consistent prefix, 54–57
Consumer, 567, 568, 589
Consumer groups, 566–568, 585,

587, 715
Consumption function app,

246, 262
Consumption plan, 243, 244,

249, 692
Consumption tier, 243, 244, 246,

249, 516–518, 520, 522, 541,
692, 711, 712

Container (blob) storage
append blob, 12
block blob, 10–12
byte array (byte[]), 9
code, 9
$logs container, 10
page blobs, 13
public/private access, 9, 10

Container groups
deployment, Docker

Compose, 224
deployment, YAML file, 224
DNS and public IP address, 223
logging solution, 223

INDEX

732

persistent file shares, 224, 225
YAML manifest file, 223

Container Insights, 227, 467, 468
Containerization, 123, 204
Containerized applications,

197–199, 231, 232, 235, 690
Container-level tokens, 30
Containers, 686, 687

cloud-native serverless
applications, 199

description, 198
hosting environment, 198
hosting in Azure, 200
hosting platform, 199
IIS/build networking, 199

Content Delivery Network (CDN),
413, 415, 416, 704

Azure CDN via .NET Code, 430
caching rules, 423

custom caching rules, 424
global caching rules, 424
query string caching,

425, 426
endpoint, 421
Front Door, 417–419
geo-filtering content, 429
Microsoft Standard CDN

Profile, 419–421
order of operations, 428
PoP nodes, 427
pre-loading content, 429
product offerings, 421
Profile, 416, 417

purging content, 427
time to live (TTL), 426

Content Management System
(CMS), 541

Continuous Deployment (CD), 158
Contributors, 306, 307, 696
Cool storage, 23, 25, 26
Cosmos DB, 13–15, 281, 299

account, 46
API, 46, 47
Azure Table Storage API, 48
backup policy, 59
benefits, 44
Cassandra API, 48
change feed, 71
create account, 45
customer-managed key, 60
encryption, 60
global distribution, 52, 53
Gremlin API, 48, 49
logical partition, 673
MongoDB, 47
networks, 57, 58
NoSQL API, 49
partitioning (see Partitioning)
physical partition, 673
PostgreSQL, 49
private network, 674
region, 44
relational database

systems, 43
SDK, 45, 674
size, 674
Table API, 75, 675

Container groups (cont.)

INDEX

733

throughput, 45
top-level account, 43

Cosmos DB function, 274
Cosmos DB SDK, 44, 45, 72, 276
Cosmos DB triggered function, 254
Create Event Subscription blade,

271, 272
Creating Azure App Service

App Service
deployment, 154–164

App Service Plans, 149–153
imperative commands, 148, 149

Cross-partition scan, 65, 69, 70
Custom Autoscaling blade, 188
Custom caching rules, 424, 425
Custom domains, 149, 194, 417, 682
Customer-managed key, 387–389

D
Database container, 80, 84
databaseName, 275
Day-to-day development, 303
Dead-letter event, 716
Default instance, 188
Default documents settings,

181, 182
Default HTTP trigger function

bindings, 257
body/query string

information, 258
GET/POST verbs, 257
GetTopMovies Function, 260
input parameters, 257

.NET 7 changes, 259
route paths, 257

DefaultWebDeveloperInsights, 477
Delegated permissions, 316
Deployment Center, 161, 247
Deployment Center blade, 159,

160, 261
Deployment slots

creation, 164
Slot’s Publish Profile, 167–171
swap slots, 165
traffic load-balancing/

routing, 166
Deployment slot setting, 176, 177
Desired State Configuration (DSC),

99, 115, 123–128, 678
Developer Portal

CMS, 541
groups

custom group, 546
default groups, 545, 546
products, API, 543, 544
register developers, 544, 545

public API documentation,
542, 543

Publish Website operation,
541, 542

Developer tier, 516, 518, 519,
522, 711

Device code, 333, 345
Device code authorization flow,

333, 344
Device code credential, 345
DNS zone, 362

INDEX

734

Docker
docker-v command, 202
HomeBrew/Chocolatey, 201
images, 202, 203
.NET core versions, 201
Ubuntu, 201

Docker Container, 155, 205, 240
docker container ls

command, 205
Docker deployment, 241
Docker Desktop, 201–205
Dockerfile, 202–204, 686
DockerHub

public/private images, 206
third-party solution, 207

docker images command, 203
Durable Azure

Function, 298, 693
Durable functions, 238

durable orchestrations, 286
patterns, 288–297
scope, 282
storage resources, 285, 286
task hubs, 282–284
types, 286–288

Durable orchestrations, 286

E
Elliptic Curve Cryptography (ECC),

364, 365
Encryption, 60, 364, 388
Encryption keys, 60, 208, 209, 222,

356, 359, 364, 366

Entity functions, 287, 288, 290
Environment variable

information, 174
Environment variables, 165, 174,

177, 178, 204, 205, 221, 222,
228, 384

Event Grid, 269, 273, 563, 589, 598,
602, 611, 612, 714–716

EventGrid subscription, 270
EventGrid trigger, 252, 261,

267–270, 272, 273
Event Hubs, 335, 336, 497, 563, 564,

568, 573, 715, 720
Event subscription, 273, 716
Eventual consistency, 56, 57
examreftaskhubproduction

value, 284
extensions:durableTask:hubName

value, 283

F
Facebook, 310, 311, 697
FanInFanOutOrchestrator, 291
Fan-Out/Fan-In pattern, 290–292,

294, 300
Fan-out orchestrator

triggers, 295
Fault domain, 19, 20,

100, 101, 677
Federated Credentials, 328–331
File storage, 5, 16–17, 224
FinalFunction, 292
FirstFunction, 292

INDEX

735

First in/first out (FIFO), 614, 615
404 error, 243, 255
Free plan, 150
Free tier, 151, 385, 386
Front Door, 416–419, 421, 704
Fully-Qualified Domain Name

(FQDN), 4, 154, 217
Function1 function, 257, 259, 264,

512, 529, 532, 536, 547, 548
Function app, 692

functions, 512
.NET 6, 513, 514
.NET 7, 513, 514

Function App Plan, 692
Function authorization

level, 255
Function binding, 273, 278
Function Chaining

pattern, 288–290
function.json file, 266, 267, 283,

298, 691
bindings, 281
Code + Test option, 277
Cosmos DB bindings, 277
debug console, 279
Debug Console, 279
directional indicator, 281
direction parameters, 280
direction values, 277
GitHub, 279
Integration blade, 278, 279
Integration page, 280, 281

Function Key authorization, 693
Function trigger, 298, 691

G
General settings, 178–181
Geo-filtering content, 429
Geo-Redundant backup

storage, 59
Geo-Redundant Storage

(GRS), 20, 21
Geo-Redundant Storage

with Read Access
(GRS-RA), 21

Geo-Zone-Redundant Storage
(GZRS), 21

GET/POST function, 264
GetTopMovies function, 260, 512,

513, 533
GitHub, 148, 155, 158, 159, 167,

169, 206, 215, 310
GitHub Action, 240, 247, 261,

326, 327
GitHub Action Secrets, 263
GitHub Action YAML script, 248
GitHub/Azure Repos, 239
GitHub link, 455
GitHub Secret, 168, 169, 248, 263
.github/workflows folder, 263
GIT repository, 33, 155, 156, 158,

159, 206, 262
Global caching rules, 424
Google, 310, 311, 697
Grafana, 460, 470, 501, 710
Grant Admin Consent, 318
Graph service client, 346
Gremlin API, 48, 49

INDEX

736

H
Hardware Security Modules

(HSMs), 359
Hazardous-Materials (HazMat)

authorization, 306
host.json file, 253, 283, 284,

298, 691
Hot storage, 22, 23
HTTP queue length, 185
HttpRequest req, 257
HTTP trigger, 252, 253, 257–260,

264, 266, 530, 691
HTTP-triggered functions, 252
HTTP Version, 179
Human Interaction

pattern, 297
Hypertext Transfer Protocol

(HTTP), 99
Hypertext Transfer Protocol Secure

(HTTPS), 99

I
IAsyncCollector<T>

binding, 275
Identity Object ID, 376
Identity provider, 177, 309–312,

318, 697
IDurableOrchestration

Client, 290
ILogger log, 257
IMemoryCache, 430, 431, 705
Implicit workflow, 333
Inbound IP address, 191–192

Incremental deployment, 143,
144, 680

Individual (ad hoc) tokens, 31
Infrastructure as a Service (IaaS),

93, 128, 145
ARM template (see Azure

resource manager (ARM)
templates)

Bicep templates, 129
cloud migration, 98
VMs (see Virtual

machines (VMs))
Infrastructure as Code (IaC)

ARM templates (see Azure
resource manager (ARM)
templates)

Bicep templates (see Bicep
templates)

template deployments
complete, 144
incremental, 143, 144

Input binding, 267, 269, 273, 274,
276, 298, 692

Insert/Upsert operations, 276
Integrated providers, 310–311
Integrated Windows workflow, 334
Interactive and non-interactive

workflows, 334
IP addresses, 30, 57, 110, 192, 304,

367, 548, 553, 554
Isolated/ASE options, 246
Isolated Worker runtime, 259, 265,

298, 693
ITableEntity interface, 74

INDEX

737

J
Java Messaging (JMS), 632
JavaScript (.js) files, 413
JSON Web Tokens

(JWT), 527, 557

K
Keys, 6, 7, 29, 34, 65, 78, 255,

274, 364–366
Key Vault secret, 378, 379,

383, 404
kubectl, 232
Kubernetes, 104, 223, 225, 231–233,

244, 328, 358, 687
Kusto Queries (KQL),

163, 490, 709
create alerts in Azure

action groups, 492
action set, 495
alert condition, 494
basics, 495
configure additional

options, 497
create the query, 493
Details section, 499
notification methods,

492, 493
Notifications tab, 496
signals, 492
SMS and email alerts, 500

log-based metrics, 491
pre-aggregated time-series

metrics, 491

for traditional T-SQL
developers, 490

Kusto Query Language (KQL),
163, 709

L
Linux App Service Plan, 226
Linux containers, 200, 201
Linux operating system, 153
Load leveling, 614–616
Locally Redundant Storage

(LRS), 19–21
local.settings.json file, 261
Log Analytics, 460, 466, 471, 490
Log Analytics blade, 471
Log Analytics Workspace, 163, 460,

463, 468, 474, 515, 516
Log-based metrics, 491
Logical partitions, 62–65,

68, 69, 673
Logic App

data review, 609, 610
event handler, 608, 609
modification, 607, 608
storage account, 600–602
subscription

additional features blade,
605, 606

authentication, 602, 603
connections, 603
delivery properties, 606, 607
events blade, 604
filters, 604, 605

INDEX

738

naming, 603
portal, 604
.txt files, 605

Logs, 10, 118, 273, 459, 460, 463,
464, 491, 566, 707

Loose coupling, 614–616

M
Managed disk, 13, 109, 677
Managed identities, 113, 331,

333, 374, 379, 387, 396,
398, 404

system-assigned
identity, 352–354

user-assigned identities,
355, 356

Managed pipeline
version, 179

Management page, 191, 192
Manual deployment, 99, 158,

160, 161
Manual Scale/Custom

Autoscale, 185
Manual scaling, 189, 190
Measure alert condition, 494
Me object, 346
Metrics, 115, 163, 460–462
MFA/risky sign-on/conditional

sign-on challenge, 334
MFA sign-in requirements, 347
Microservices solution, 237
Microsoft, 49, 78, 100, 310

Microsoft.AspNetCore.
Authentication.
MicrosoftAccount NuGet
package, 323

Microsoft Authentication, 323,
336, 339

Microsoft Authentication Library
(MSAL), 336

access token, 341
application building,

339, 340
application code, 339
NuGet package, 339
run and grant permissions,

342, 343
scopes, 340
token printing, 342

Microsoft authorization, 323
Microsoft.Azure.Cosmos, 78
Microsoft.Azure.

DocumentDB, 78
Microsoft Graph, 310, 314, 316, 344,

346, 349, 695
Microsoft.Graph.Core, 344
Microsoft Graph SDK, 336

application building, 344
Device Code authorization

flow, 344
Device Code

credential, 345
Graph Service Client, 346
Me object, 346
scopes, 345

Microsoft identity, 304

Logic App (cont.)

INDEX

739

adding client secret, 322, 323
additional app registration,

319, 320
authorization code, 323
configuration values, 324
logged-in user, 319
OAuth tokens, 319
platform service, 319
redirect URI, 321
user registration, 324

Microsoft.Identity.Client, 339
Microsoft Identity platform, 308,

313, 699
Microsoft Learn module, 92, 195,

196, 235, 299, 349, 409, 506,
560, 666, 672, 675, 680, 684,
694, 699

Minimum TLS Version, 180, 193,
571, 633

MongoDB, 47–49
Monitoring, 114–115, 163–164, 227,

245–247, 294, 519
Motion Picture Association of

America (MPAA), 658
M365 solutions, 304
Multi-Factor Authentication

(MFA), 303, 304, 334, 695
myCosmosConnection, 274
my-simple-website, 204
myStorageConnection connection

string, 269
myStorageConnection

variable, 269
mytaskhub, 285

N
.NET 6 Function App, 264
.NET 7 function, 259
.NET 6/.NET 7 version, 203,

204, 242
.NET 6/7 solution, 242
.NET application, 204, 323, 410,

460, 467, 473, 476, 505,
567, 707

.NET CLI, 148, 443, 575

.NET Framework (version 4.8), 200,
201, 259, 693

.NET project, 277, 715

.Net SDK, 41
blobs

delete, 39
download, 37
list, 37
metadata, 38
upload, 36

connected account, 34
connection string, 34
create container, 35
create resources, Azure, 33, 34
delete container, 39

Network File System (NFS), 17
Networking, 57–58, 99, 100, 108,

110–113, 118, 122, 161–163,
173, 190, 202, 208–210, 220,
246, 386, 435, 440, 571,
634, 705

Networking blade, 220, 221
Network insights, 467

INDEX

740

Network Interface Card (NIC),
109, 678

Network Security Group (NSG),
108, 111, 119, 467, 678

New app registration
application permissions, 316
authentication settings, 313
delegated permissions, 316
permissions, 314
supported account types,

312, 313
Non-durable Functions, 238
Non-interactive workflow, 334
NoSQL, 13, 46
NoSQL API, 49
NoSQL data, 14, 15, 41
NuGet package, 73, 78, 163, 323,

339, 344, 443, 445, 448, 480,
621, 641

NumberOfWorkerFunctions, 292

O
OAuth 2.0, 313
On-Behalf-Of flow, 334
Operating system (OS), 147, 152,

153, 156, 157, 199, 242, 682
Optional setting, 181
Orchestration, 225, 231–232,

286–289, 291, 292, 300
Orchestrator functions, 287–290
Organizational Directory (…), 319
Outbound IP address, 192
Owner, 211, 306–308, 361, 546,

577, 696

P
Page blobs, 13, 677
Partitioning

Cosmos DB, 60
logical partitions, 62–64
partition keys, 65–70
physical partitions, 64, 65
typical bowling alley lane, 61

Partition keys, 81
create sample database, 66
index, 70
JSON data, 66
LastName field, 68
query filter, 69
Quick Start option, 66
write-heavy scenario, 69

Partitions, 61, 62, 64–66, 68, 71, 567,
673, 715

Path Mappings, 182–183
Patterns

Aggregator, 297
Async HTTP APIs, 296
Fan-Out/Fan-In, 290–294
function chaining, 288–290
Human Interaction, 297
monitor, 297

PeekLock, 647, 648, 650, 718
Physical partitions, 64, 65,

68, 673
PIP/FQDN, 222
Pods, 231
Point of Presence (PoP) nodes,

415, 427
Policies, APIM, 547

INDEX

741

authentication, backend, 558
certificates, 557
certificate validation, 554

issuer, 555
subject, 556
thumbprint, 555
uploaded certificates, 556

conditional policies, 552, 553
inject/decorate information

Inbound request, 548
name, 547, 548
options, 548
override, 549
query string parameter,

549, 550
secret code, 550
XML, 549

IP addresses, 553, 554
JWT, 557
mock response, testing, 557
rate limiting, 550, 552

Policy-issued tokens, 31, 32
Policy management, 366, 373
Port rules, 107, 108, 111, 118
PostgreSQL, 47, 49
Power BI, 460, 470, 501, 710
Pre-aggregated time-series

metrics, 491
Premium Key Vault, 358, 359
Premium plan, 151, 243
Pricing tier, 149–153, 518, 568, 633
Primary Authorization Roles

contributor, 307
owner, 307, 308

Reader, 306
User Access Administrator, 307

Private access, 10, 26, 28, 29
ProcessExcelToCosmos

function, 267
Producers, 566, 589
Program.cs file, 400, 402, 452
Provision Throughput, 50, 51
Public access, 26, 28, 33, 57,

362, 571
PublicClientApplication

Builder, 339
Public-facing resource, 308
Public IP Address (PIP), 217, 223
publish-profile, 263

Q
Query string caching, 425, 426

bypass query string caching, 426
caching unique query strings, 426
ignore query strings, 426
rules, 425

Queues, 614, 639
composition, 640
configuration, 641, 642
messages, consumer, 648
.NET, 641
processing messages, 649, 650
publish messages, 645, 646
receive mode, 640, 641
Service Bus Explorer, 647
Shared Access Policies, 643, 644
user secrets, 645

INDEX

742

Queue storage, 8, 16, 17
QuickStart, 241, 690
Quick Start blade, 210, 211

R
Rancher Desktop, 201
RBAC-Based Access Control, 360
RBAC permissions, 325, 333, 353
Read Access and Geo Redundancy

(GRS-RA), 18
Read-Access Storage, 21
Readers, 306, 567
Read-heavy database, 673
ReceiveAndDelete, 648, 661,

663, 719
Receiver, 566, 715
Redis Cache, 413, 430, 433, 443, 705

open source solution, 431
redis.cache.windows.net, 432
Redis cloud, 431
RedisConnection class, 452
Redundant backup storage, 59
“Regular” Azure Functions, 693
Remote Desktop Protocol

(RDP), 99
Request Units (RUs), 44
Required sign-in, 316, 317
Requiring authentication, 308–309
Resource group management, 347
Resource Health, 194
Resource Owner Password

Credentials (ROPC), 335
Restart Policy, 221

Rivest-Shamir-Adleman (RSA),
304, 364

Role-Based Access Control (RBAC),
207, 325, 352, 354, 357

RootManage SAS token, 720
Rotation policy, 365, 366
RU, 674
Runtime stack, 156, 158, 242

S
Sales Keeping Unit (SKU), 156, 157,

179, 184, 190, 517
SampleDataItems, 274, 275
sampleDataItemDocuments, 275
SAS tokens, 208, 335, 571, 577, 580,

581, 584, 585, 644, 652, 656,
657, 670, 720

container-level tokens, 30
create token, 29, 30
individual (ad hoc) tokens, 31
individual basis, 29
policy-issued tokens, 31, 32
single-blob tokens, 30

Scale Out (App Service Plan)
option, 185

Scaling, 682
automated, 184
autoscaling, 184–189
manual, 189, 190
in and out, 184
up and down, 184

Scopes, 310, 313–317, 340, 341,
343, 345

INDEX

743

Secrets, 367–370
Secure Shell Protocol (SSH), 99
Secure Socket Layer (SSL), 356
Server-based solutions, 237
Server farm, 99, 104, 110
Serverless, 50, 52, 233, 243, 518,

613, 632
Serverless architecture, 613
Serverless cloud-native

solution, 233
Serverless tier, 243
Server Message Block 3.0 (SMB

3.0), 17
Service Bus, 16, 237, 335, 439, 614,

617, 630, 632, 634, 635, 639,
647, 652, 666, 720

Service Level Agreement (SLA), 18
Service principal, 698

app registration, 326
Federated Credentials, 328–331
GitHub Actions, 326, 327
managed identities, 331
RBAC, 325

Session consistency, 56
Shared Access Policies, 29, 643,

652, 656
Shared Access Signatures (SAS), 29,

208, 335–336, 349, 575–576
/signin-microsoft, 319, 321
SimpleWebShared:MySecretValue,

176, 377
Single-blob tokens, 30
Single-page application (SPA),

313, 486

S1 instance, 151
site.css, 425
site.js?v20251231, 425
Slots, 249
Software-based encryption

key, 359
Sovereign regions, 102, 698
SQL API, 46, 49, 77–78
SQL API, Cosmos DB

connection string, 78
containers creation, 79, 80
databases creation, 79
delete containers, 81
delete databases, 79
development, 77
insert and update items, 81–84
.NET, 78
NuGet package, 78
query the data via code

LINQ Version, Iteration, 90
named fields, 86
point read, 88
Query Item Iterator, 89, 90
syntax error, 87
The SELECT * FROM c query

returns, 85
remove items, container, 90, 91
using statement, 79
WorkingWithAzure

CosmosDB, 77
Stack and Version, 178, 179
StackExchange.Redis NuGet

package, 443, 445, 448,
457, 706

INDEX

744

StackExchangeRedisCache, 452
StackExchange.Redis.

IDatabase, 446
STAGING_PUBLISH_PROFILE, 169
Standard Key Vault, 358, 359
Standard (S1) plan, 150, 682
Standard storage, 13, 18
Standard tier, 18, 33, 208, 249,

385–387, 435, 519, 522, 569,
570, 630, 632

StatesCachedController, 452
Static web application, 155, 156
Step-by-step process, 286
Storage access

containers, 26
key access, 28
private access, 28
private network, 26
public access, 28
SAS token, 29–31

Storage account performance tiers
premium, 17, 18
standard, 17, 18

Storage account redundancy
GRS, 20
GRS-RA, 19, 21
GZRS, 21
GZRS-RA, 19, 21
LRS, 19
Read-Access Storage, 21
SLA, 18
ZRS, 20

Storage Area Network (SAN), 16
Storage queue message, 717

Strong consistency, 55, 56
Subject Identifier value, 329
System-assigned identities, 352,

353, 355, 700
System authorization level, 256

T
Table API, 75

Cosmos DB, 75
Table Storage to Cosmos

DB, 75, 76
Table scan, 64
Table storage, 13–15, 17

account, 72
compose the client, 73
connection string, 76
Cosmos Table API, 77
create table, 73
delete items, 75
ETag, 73
get item, 74
ITableEntity interface, 74
JSON document, 73
TimeStamp, 73

Tag command, 213
Tagged image, 214
Task hubs, 282–285, 287, 288
Template deployments

complete, 144
incremental, 143

Temporal decoupling, 439, 614
Terabytes (TBs), 466
Timer trigger, 252, 254, 281, 691

INDEX

745

Time-To-Live (TTL), 426, 438,
639, 704

/Title, 274
TLS/SSL settings, 193
Topics, 639, 650

administration project
commands, 653–655
execution, 655, 656
root-level SAS token, 652
secrets, 653

consuming messages
customers, 659
hierarchy, 660, 661
program, running, 662, 663
receiving messages, 661, 662
secrets, 660
subscriptions, 664

filtering, 651
.NET, 652
publishing messages

consumer tokens, 656, 657
producer tokens, 656, 657
program, running, 658, 659
sending messages, 657, 658

pub/sub solution, 651
Traces, 464, 491, 502, 708
TrackAvailability method, 489
TrackTrace() command, 464, 465
Traditional architecture, 147
Transactions, 56, 431, 440, 450,

632, 636
Transport Layer Security

(TLS), 356
Triggers

authorization levels
admin, 256
anonymous, 255
function, 255, 256
system, 256
user, 256

Azure services, 254
HTTP, 252, 253
one-to-one (1:1), 252
timer, 254
types, 252

Twitter, 310, 667
Types of Azure storage, 8

container (blob) storage, 9–13
container storage, 8
file, 8
file storage, 16, 17
queue storage, 8, 16
table storage, 8, 13–15

U
Ubuntu agent, 158, 171, 263
ubuntu-latest, 171
Unmanaged disks, 13, 109, 677
Update domains, 101, 676
URL hijack attack, 336
URL PING test, 488, 506, 507
User Access Administrator, 306,

307, 696
User-assigned identities, 352, 355,

356, 700
User authorization level, 256
Username/Password workflow, 335

INDEX

746

User.Read permission, 314–316
usersecrets.json file, 401, 451

V
Vault access policy, 360, 361, 375
Vault secrets, 360, 370, 376
Virtual machines (VMs), 147

allow action, 120, 121
allow RDP and HTTP traffic to

web, 122
availability set, 676
Azure physical architecture (see

Azure physical
architecture, VMs)

compute configurations, 677
DSC, 99, 123–128, 678
Effective Security Rules,

122, 123
inbound rules, 120
network security group rules,

118, 119
port 22, 99
port 80, 99
port 443, 99
port 3389, 99
scale set, 676, 677

Visualization tools, 460, 470
Azure Dashboard, 502–504
Power BI, 501
workbook, 501

Visualization tools/third-party
solution/Grafana, 501

Visual Studio, 161, 251, 260
VMs insights, 467
VS Code, 130, 132, 161, 250

W
WebJobs, 282
WebJobs vs. Functions, 282
WEBSITE_RUN_FROM_

PACKAGE, 279
Windows OS, 201
Windows Subsystem for Linux

(WSL), 200, 201
Worker functions, 291, 295, 296
WorkloadFunction, 292
wwwroot folder, 280

X
$logs container, 10

Y
YAML pipelines, 171

Z
Zone redundancy, 153, 157, 435, 436
Zone-Redundant Storage (ZRS), 20

INDEX

	Part I: Develop for Azure
	Chapter 1: Azure Storage Ecosystem: Overview and Development with Azure Blob Storage
	General Information about Azure Storage
	Types of Azure Storage
	Azure Container (Blob) Storage
	Block Blobs
	Append Blobs
	Page Blobs

	Azure Table Storage
	Designing Your Data

	Azure Queue Storage
	Azure File Storage

	Blob Storage
	Storage Account Performance Tiers
	Standard Tier
	Premium Tier

	Storage Account Redundancy
	Locally Redundant Storage (LRS)
	Zone-Redundant Storage (ZRS)
	Geo-Redundant Storage (GRS)
	Geo-Zone-Redundant Storage (GZRS)
	Geo-Redundant Storage with Read Access (GRS-RA)
	Geo-Zone-Redundant Storage with Read Access (GZRS-RA)
	Read-Access Storage and Development of Your Applications

	Blob Storage Tiers
	Hot Storage
	Cool Storage
	Archive Storage
	Automation of Tier Placement

	Storage Access
	Public Access
	Private Access
	Shared Access Signature (SAS) Tokens
	Individual (Ad Hoc) Tokens
	Policy-issued Tokens

	Working with the Azure Storage SDK
	Working with Azure Storage from Code Using the .Net SDK
	Creating the Account
	Getting Connected to the Account
	Creating a Container
	Uploading a Blob
	Listing All the Blobs
	Downloading a Blob
	Modifying the Blob Metadata
	Deleting a Blob
	Deleting a Container

	Review Your Learning
	Complete the AZ-204: Develop Solutions that Use Blob Storage Learning Path
	Chapter Summary

	Chapter 2: Develop Solutions That Use Cosmos DB
	Why Choose Azure Cosmos DB?
	Azure Cosmos DB Hierarchy
	Choosing the Correct API
	Cosmos DB for MongoDB
	Cosmos DB for Apache Cassandra
	Cosmos DB for Table
	Cosmos DB for Apache Gremlin (Graph)
	Cosmos DB for PostgreSQL
	Cosmos DB for NoSQL

	Capacity Mode
	Provisioned Throughput
	To Share or Not To Share; That Is the Question

	Serverless
	Autoscaling

	Global Distribution
	Consistency Levels
	Strong Consistency
	Bounded Staleness
	Session Consistency
	Consistent Prefix
	Eventual

	Networking
	Backup Policy
	Encryption
	Partitioning
	Logical Partitions
	Physical Partitions
	Partition Keys
	High Cardinality for Write-Heavy Workloads
	Utilizing Your Query Filter as the Partition Key for Read-Heavy Workloads
	Indexing in Cosmos DB

	Cosmos DB Change Feed
	Utilizing .NET with Azure Table Storage and Cosmos DB via the Cosmos DB SDK
	Azure Table Storage
	Compose the Client
	Create a Table
	Add an Item to Table Storage
	Get an Item from Storage
	Delete Items

	Azure Cosmos DB (Table API)
	Table Storage to Cosmos DB

	Azure Cosmos DB (SQL API)
	Connect to the Cosmos DB Account
	Create and Delete Databases
	Create and Delete Containers
	Insert and Update Items
	Query the Data via Code
	Using a Point Read
	Using the Query Item Iterator
	Using the LINQ Version of the Iteration for Query Syntax

	Delete Items from the Container

	Review Your Learning
	Complete the AZ-204: Develop Solutions That Use Azure Cosmos DB
	Chapter Summary

	Chapter 3: Implement Infrastructure as a Service (IaaS) Solutions
	Virtual Machines
	Azure Physical Architecture
	Fault Domains
	Update Domains
	Availability Zones
	Azure Regions
	Azure Sovereign Regions
	Deploying an Azure Virtual Machine
	Creating a Virtual Machine: The Basics
	Availability Options
	Security, Image, and Architecture
	Virtual Machine Size
	Port Rules
	Hybrid Licensing
	Disks
	Networking
	Management
	Monitoring
	Advanced
	Final Checks

	Restricting and Allowing Network Access to a Virtual Machine
	Effective Security Rules

	Implementing Desired State Configuration on an Azure Virtual Machine

	Azure Resource Manager (ARM) Templates and Bicep for Infrastructure as Code (IaC)
	Template Structure
	VS Code for Templates
	ARM Templates
	Resources
	Validating ARM Templates
	Deploying ARM Templates
	Parameters
	Variables
	Outputs
	Functions

	Bicep Templates
	A Quick Bicep Example

	Final Thoughts about Template Deployments
	Incremental Deployments
	Complete Deployments

	Review Your Learning
	Optional Training: Complete the Original First Two AZ-204: Implement Infrastructure as a Service Solutions Modules (no longer a the learning path for AZ-204 as of April 2023)
	Chapter Summary

	Chapter 4: Create Azure App Service Web Apps
	Before Getting Started
	Creating an Azure App Service
	App Service Plans
	Pricing Tier
	Operating System
	Redundancy

	App Services
	Name Your Application
	Publish Type
	Code
	Docker Container
	Static Web Application
	Runtime Stack
	App Service Plan
	Deployment
	Automated Deployments
	Manual Deployments

	Networking
	Monitoring

	After Provisioning
	Deployment Slots
	Create a Deployment Slot
	Swap Slots
	Simple Traffic Load-Balancing/Routing
	Automated Deployment Using the Deployment Slot’s Publish Profile

	Additional Services
	Deploy an Azure SQL Instance

	Configuration
	Application Settings and Connection Strings
	Connection Strings
	Application Settings

	General Settings
	Default Documents
	Path Mappings

	Scaling
	Autoscaling
	Manual Scaling

	Additional Settings and Configurations
	Networking
	Inbound IP Address
	Outbound IP Addresses
	Certificates and TLS/SSL
	A Few Things Not Covered in this Chapter

	Review Your Learning
	Complete the Azure App Service Web Apps Learn Modules
	Chapter Summary

	Chapter 5: Azure Container Ecosystem: Azure Container Registry, Azure Container Instances, and Azure Container Apps
	Four Important Things to Know About Containers
	Containers Are for Everyone
	Containers Are Not Microservices or Cloud-Native Applications
	Containerized Applications Are Agnostic to Their Hosting Platform
	Containers and the Container Ecosystem Have a Steep Learning Curve

	Hosting Containers in Azure
	Windows Subsystem for Linux (WSL)
	Docker
	Images
	Containers

	Azure Container Registry
	Service Tiers
	Basic
	Standard
	Premium
	Additional Information

	Image Storage
	Deploy an Azure Container Registry
	Push an Image to the Container Registry
	Log in to Your Registry from Your Local Machine
	Tag Your Image with Your Registry Name and a Version Number
	Push Your Tagged Image to the Registry

	Automated Build Tasks

	Azure Container Instances
	Deploy from the Container Registry
	Deploying with the AZ CLI
	Deploying from the Portal
	Networking
	Restart Policy and Environment Variables

	Container Groups
	Group Deployment via a YAML File
	Group Deployment via Docker Compose

	Persistent File Shares

	Containers in Azure App Services
	Additional Services
	Azure Kubernetes Service
	Azure Container Apps

	Review Your Learning
	Complete the Three AZ-204: Implement Containerized Solutions Modules
	Chapter Summary

	Chapter 6: Implement Azure Functions
	A Quick History of Azure Functions
	Creating an Azure Function
	Name the Function App
	Publish
	Runtime Stack
	Operating System (OS)
	Hosting Plans
	Backing Storage
	Networking
	Monitoring
	Deployment Options
	Slots

	Creating the Application Code
	Create the Function App
	Function Apps and Functions
	Triggers
	HTTP Triggers
	Timer Triggers
	Azure Service-Based (or Third-Party) Triggers
	Authorization Levels
	Anonymous
	Function
	Admin
	System
	User

	The Default HTTP Trigger Function
	.NET 7 Changes
	GetTopMovies Function

	Deploy the Function App
	Right-Click and Publish from Your Local Environment
	Deploying with CI/CD

	Test the Function App
	Bindings
	Create a Function with an Input Binding to Blob Storage
	Modify the Function to Parse and Push Data to Cosmos DB with an Output Binding

	The function.json File

	WebJobs vs. Functions
	Durable Functions
	Task Hubs
	Storage Resources
	Durable Orchestrations
	Durable Function Types
	Orchestrator Functions
	Activity Functions
	Entity Functions
	Client Functions

	Patterns
	Function Chaining
	Fan-out/Fan-In
	Async HTTP APIs
	Monitor
	Human Interaction
	Aggregator

	Review Your Learning
	Complete the AZ-204: Implement Azure Functions
	Chapter Summary

	Chapter 7: Implement User Authentication and Authorization
	Multi-Factor Authentication (MFA)
	Conditional Sign-in/Risky Sign-in Detection
	Authentication and Authorization
	Primary Authorization Roles in Azure
	The Reader Role
	The Contributor Role
	The User Access Administrator Role
	The Owner Role

	Requiring Authentication
	Identity Providers
	Integrated Providers
	Creating a New App Registration
	Supported Account Types
	Authentication Settings
	Permissions
	Delegated Permissions
	Application Permissions

	Required Sign-In
	Consent on Behalf of Your Organization
	Leverage the Microsoft Identity in Your Application
	Create an Additional App Registration
	Add a Redirect URI to the App Registration
	Add a Client Secret to the App Registration
	Add a NuGet Package

	Add the Authentication Code to the Application
	Add Configuration Values to App Service and Slot
	Register the Users

	Service Principals
	Leverage a Service Principal in GitHub Actions
	Add Federated Credentials
	Managed Identities

	Authorization Flows
	Authorization Code
	Client Credentials
	Device Code
	Implicit
	Integrated Windows
	Interactive and Non-Interactive
	On-Behalf-Of
	Username/Password

	Shared Access Signatures
	Identity and Authorization in Applications
	Create the App Registration
	Working with the Microsoft Authentication Library (MSAL)
	Build the Application
	Set the Scopes
	Get Your Access Token
	Print the Token
	Run and Grant Permissions

	Working with the Microsoft Graph SDK
	Build the Application
	Set the Scopes
	Create Device Code Credential
	Create the Graph Service Client
	Get the Me Object

	Review Your Learning
	Complete the AZ-204: Implement User Authentication and Authorization
	Chapter Summary

	Chapter 8: Implement Secure Cloud Solutions
	Managed Identities
	System-Assigned Identities
	User-Assigned Identities

	Azure Key Vault
	Centralized Storage
	Azure Key Vault Tiers
	Standard Key Vault
	Premium Key Vault

	Data Retention
	Access Policy
	Network Access
	Data Encryption
	Keys, Secrets, and Certificates
	Keys
	Secrets
	Certificates

	Access Policies
	Create an Access Policy

	Connect to Azure Key Vault From Azure App Service
	Configure the Application to Read From Key Vault

	Azure Application Configuration
	Centralized Configuration
	Azure Managed Service
	Creating a New Azure App Configuration
	Networking

	Data Encryption
	Create a System-Managed Identity
	Customer-Managed Key

	Keys and Values
	Labels

	Feature Flag Management
	Create a Feature Flag
	Feature Flag Configuration

	Connecting an App Service Web Application to an Azure Application Configuration
	Configure the Security Settings
	Add a New Role Assignment
	Update the Azure App Service Configuration
	Update the Application Code to Connect to Azure App Configuration

	Review the Application

	Connect to Azure Key Vault Through Azure Application Configuration
	Make the Code Change
	Update Azure App Configuration

	Review Your Learning
	Complete the AZ-204: Implement Secure Cloud Solutions
	Chapter Summary

	Chapter 9: Implement Caching for Solutions
	Benefits of Caching
	Data Stored in Local Memory
	Retrieve and Mutate Data Quickly
	Server Offload, High Throughput
	Benefits of Delivering Static Content via the CDN
	Higher Throughput
	Resiliency
	Server Offload

	Azure Content Delivery Network (CDN)
	CDN Profiles
	Limitations

	Azure Front Door CDN
	Creating a Microsoft Standard CDN Profile
	Product Offerings
	Create an Endpoint
	Caching Rules
	Global Caching Rules
	Custom Caching Rules
	Query String Caching
	Ignore Query Strings
	Bypass Query String Caching
	Cache Unique Query Strings

	Time to Live (TTL)
	Purging Content
	Point of Presence (PoP)
	Order of Operations

	Pre-Loading Content
	Geo-Filtering Content
	Interact with the Azure CDN via .NET Code

	Caching for Optimization
	Redis Cache
	Azure Cache for Redis
	Cache Types
	Open Source Redis
	Basic Cache
	Standard Cache
	Premium Cache

	Enterprise Redis
	Enterprise Cache
	Enterprise Flash Cache

	Caching Patterns
	Data Cache (Cache-Aside)
	Content Cache
	Session Store
	Messaging
	Transactions

	Networking
	Clustering
	Redis Commands
	Working with Redis Cache via .NET
	Redis Connection String Information
	Create the Connection Multiplexer and Connect
	Create the Database Object
	Run the Commands
	PING/PONG
	StringSet
	StringGet
	Store Serialized JSON
	List All Clients
	Additional Commands Not Shown

	Cache-Aside in an ASP.Net MVC Application
	Utilize User Secrets
	Inject Redis Cache into the Application
	Review the Controller Code

	Run the Code
	Additional Resources

	Review Your Learning
	Complete the AZ-204: Integrate Caching and Content Delivery Within Solutions
	Chapter Summary

	Chapter 10: Troubleshoot Solutions by Using Metrics and Log Data
	Azure Monitor
	Metrics
	Logs
	Traces
	Changes

	Different Components of Azure Monitor
	Insights
	Visualizations
	Tools for Analysis
	Ability to Respond
	Integrations

	Utilizing Application Insights
	Implementing Application Insights in .NET
	Ensuring Application Insights Telemetry Is Injected
	Reviewing Live Metrics
	Requests
	Dependencies
	Exceptions
	Page Views/Server Performance
	User/Session Counts
	Live Tracking of Trace, Event, and Exceptions

	Client-Side JavaScript and AJAX Requests
	Performing Availability Tests
	URL Tests (Classic Test)
	Standard Test
	Custom Testing with TrackAvailability()

	Application Map
	Kusto Queries
	Log-Based Metrics
	Pre-Aggregated Time-Series
	Creating an Alert Based on a Query
	Signals
	Action Groups
	Notification Methods
	Create the Query
	Set the Alert Condition
	Create the Actions
	Set the Basics
	Set the Notifications
	Configure the Actions

	Details

	Visualization Tools
	Power BI
	Third-Party Solutions/Grafana
	Workbook
	Azure Dashboard
	Create a Dashboard Based on a Query

	Complete the AZ-204: Instrument Solutions to Support Monitoring and Logging
	Review Your Learning
	Chapter Summary

	Chapter 11: Implement API Management
	Overview
	Prerequisites
	Resource Group
	Log Analytics Workspace
	Application Insights

	Creating an APIM Instance
	APIM Basics Tab
	APIM SKUs (Tiers/Offerings)
	Consumption (99.95 Percent SLA)
	Developer (no SLA)
	Basic (99.95 Percent SLA)
	Standard (99.95 Percent SLA)
	Premium (99.95 or 99.99 Percent SLA)

	APIM Monitoring Tab
	APIM Scale Tab
	APIM Managed Identity
	APIM Virtual Network Tab
	APIM Protocol Settings

	The API Gateway
	Entry Point for All Requests
	Gateway Routing
	Benefits of a Centralized Gateway
	Route Aggregation
	Decouple Backend Services from Clients
	SSL Termination (SSL Offload)
	Reduced Attack Surface
	Logging and Monitoring
	Response Caching

	Validation of Tokens and/or Certificates

	Administering APIs in the Azure Portal
	APIs
	Create an API

	Products
	Create a Product

	Subscriptions
	Create Two Subscriptions
	Send a Request

	Developer Portal
	Public API Documentation
	Groups
	Expose APIs via Products to Groups
	Register Developers
	Default Groups
	Administrators
	Developers
	Guests

	Custom Groups

	Utilizing Policies
	Inject/Decorate Information in Request/Response
	Rate Limit
	Conditional Policies
	IP Address Restrictions
	Validate Certificates
	Issuer (Certificate Authority)
	Thumbprint
	Subject
	Validate Against Uploaded Certificates

	Validate by JWT
	Which Is Better (JWT or Certificates)?
	Mock Responses for Testing
	Authenticate to the Backend

	Review Your Learning
	Complete the AZ-204: Implement API Management Learn Module
	Chapter Summary

	Chapter 12: Develop Event-Based Solutions
	Event Hub vs Event Grid
	Azure Event Hubs
	Event-Driven Architecture
	Producer
	Receiver
	Partition
	Consumer
	Consumer Group
	Checkpointing
	Client

	Creating an Event Hub Namespace in Azure
	Throughput Units (TU)
	Processing Units (PU)
	Capacity Units
	Offerings (SKUs/Tiers)
	Basic
	Standard
	Premium
	Dedicated

	Advanced Settings
	Networking

	Creating a Data Lake Storage Account and Container
	Creating an Event Hub in Azure
	Event Hub Capture
	Time Window (Minutes)
	Size Window (MB)
	Emit Empty Files
	Capture Provider
	Azure Storage Container
	File Name Formats
	Review and Create the Event Hub

	Working Against an Event Hub with .NET
	.NET Client for Sending Events to the Hub
	Shared Access Signatures
	Data Roles
	Owner
	Sender
	Listener

	.NET Event Producer
	Set the ConnectionString and Name in Secrets.json
	Code to Produce Events

	.NET Event Consumer
	Create Another Container
	Update User Secrets for the Client Application
	Consume Events

	Azure Event Grid
	Producers
	Consumers
	Concepts
	Events
	Sources
	Topics
	Subscriptions
	Handlers

	Event Schema
	ID
	Topic
	System Topics
	Custom Topics

	Subject
	Type
	Time
	Data
	Versions (Data/Metadata)

	Subscribing to Topics
	Filtering Data
	Filter by Subject
	Filter by Type
	Filter by Conditions

	Event Delivery
	Retry Policies
	Error Codes that Immediately Cancel Retry
	Maximum Number of Attempts
	Maximum TTL

	Dead-Letter

	Responding to an Event with a Logic App
	Leverage the Storage Account
	Add a Subscription
	Modify the Subscription
	Modify the Logic App
	Test the Logic App Event Handler
	Review the Logic App Data

	Review Your Learning
	Complete the AZ-204: Develop Event-Based Solutions
	Chapter Summary

	Chapter 13: Develop Message-Based Solutions
	Overview
	First In/First Out (FIFO)
	Load Leveling
	Loose Coupling

	Working with Azure Storage Queue
	When to Use Azure Storage Queue
	Azure Storage Queue Features
	Access via HTTP/HTTPS
	Message Size (64 KB)
	Massive Amounts of Messages (>80 GB)
	Storage Queue URL

	Operations
	Lease the Queue Message
	Renew the Lease
	Delete the Message
	At-Most-Once
	Message Retention

	Working with Storage Queue in .NET
	Create an Azure Storage Queue
	NuGet Packages
	Get the Connection String
	Compose the Client
	Send Messages to the Queue
	Peek at the Messages
	Update a Message in the Queue
	Receive but Leave the Messages
	Extend the Lease
	Delete Messages from Storage Queue
	Delete the Queue

	Working with Azure Service Bus
	Tiers
	Basic
	Standard
	Premium

	Advanced Tab
	Networking
	When to Use Azure Service Bus
	Features
	Message Size (Up to 256 KB or 100 MB)
	Sessions (Long-Polling and Guaranteed FIFO)
	Duplicate Detection
	Transactions
	Opaque Binary Payload
	Auto-Forwarding
	Dead-Lettering
	Batching
	Auto-Delete on Idle
	At-Most-Once Delivery
	At-Least-Once Delivery
	Filtering

	Queues and Topics
	Queues
	Receive Mode
	Receive and Delete
	Peek Lock

	Working with Service Bus Queue in .NET
	Configure a Queue
	Shared Access Policies
	Update User Secrets
	Publish Messages to the Queue
	Service Bus Explorer
	Receive Messages from the Queue with a Consumer
	Process Messages
	The Code to Process Messages
	Complete the Processing

	Topics
	Pub/Sub
	Filtering
	Working with Service Bus Topics in .NET
	Get Started with the Administration Project
	Root-Level Administrator Token
	Set Secrets for the Administrator Project
	Commands from the Admin Program
	Execute the Administration Program

	Publish Messages
	Producer and Consumer Tokens
	Send Messages
	Run the Program

	Consume Messages
	Update the Secrets
	Compose the Hierarchy
	Receive All Messages
	Run the Program for All Movies
	Repeat the Run for Each Subscription

	Review Your Learning
	Complete the AZ-204: Develop Message-Based Solutions Learn Module
	Chapter Summary
	Book Wrap-Up

	Appendix A: Answers to the “Review Your Learning” Questions and Additional Links
	Chapter 1: Azure Storage
	Review Your Learning
	Learn Modules
	AZ-204: Develop Solutions That Use Blob Storage Learning Path

	Chapter 2: Cosmos DB and Table Storage
	Review Your Learning
	Learn Modules
	AZ-204: Develop Solutions That Use Azure Cosmos DB

	Chapter 3: Infrastructure as a Service (IaaS) Solutions
	Review Your Learning
	Learn Modules
	AZ-204: Implement Infrastructure as a Service Solutions (Modules 1 and 2)

	Chapter 4: Azure App Service Web Apps
	Review Your Learning
	Learn Modules
	Complete the Azure App Service Web Apps Learn Modules

	Chapter 5: Azure Container Ecosystem (Container Registry and Container Instances)
	Review Your Learning
	Learn Modules
	AZ-204: Implement Infrastructure as a Service Solutions Modules (Modules 3 and 4)
	Learn Modules for Optional/Additional Learning

	Chapter 6: Implement Azure Functions
	Review Your Learning
	Learn Modules
	AZ-204: Implement Azure Functions

	Chapter 7: Implement User Authentication and Authorization
	Review Your Learning
	Learn Modules
	AZ-204: Implement User Authentication and Authorization

	Chapter 8: Implement Secure Cloud Solutions
	Review Your Learning
	Learn Modules
	AZ-204: Implement Secure Cloud Solutions

	Chapter 9: Implement Caching for Solutions
	Review Your Learning
	Learn Modules
	AZ-204: Integrate Caching and Content Delivery Within Solutions

	Chapter 10: Troubleshoot Solutions by Using Metrics and Log Data
	Review Your Learning
	Learn Modules
	AZ-204: Instrument Solutions to Support Monitoring and Logging

	Chapter 11: Implement API Management
	Review Your Learning
	Learn Modules
	AZ-204: Implement API Management

	Chapter 12: Develop Event-Based Solutions
	Review Your Learning
	Learn Module
	AZ-204: Develop Event-Based Solutions

	Chapter 13: Develop Message-Based Solutions
	Review Your Learning
	Learn Modules
	AZ-204: Develop Message-Based Solutions

	Conclusion

	Index
	Capture.PNG

