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V

 

Opher Liba of blessed memory, 1953–2016

Dear readers,

Beyond the interest and pleasure that this book will surely produce, especially for 
Opher's family, the actual publication is a very moving event. Opher worked on the 
manuscript for many years but did not live to see it published.

Opher was a distinguished teacher of mathematics at all levels. Opher organized 
and convened several mathematics conferences and wrote numerous books and 
papers for both teachers and students of mathematics.

Opher was particularly interested in the Fibonacci sequences, researched it in 
depth and organized conferences that dealt with this topic.

Opher gave the Hebrew manuscript to Bat-Sheva several years ago. After Opher’s 
death, Bat-Sheva decided to finish the Fibonacci manuscript, and add material, 
exercises and explanations. Later on, Bat-Sheva arranged the publication of the 
manuscript both in Hebrew and in English.

A number of friends volunteered to help with the work, led by Dr. Bat-Sheva Ilany: 
Isaac Nativ, Dr. Anatoly Starkman, Arie Rokach and Gidi Shenholz. Many other 
who read the manuscript gave invaluable feedback.

Special thanks to Anatoly Starkman for writing with Bat Sheva Ilany: Background 
on the Golden Rectangle and the Fibonacci Sequences, in the introduction and 
Chapter 6: In Opher’s Footsteps—Challenges for Exploration.

Linda Yechiel and Isaac Nativ translated the manuscript to English.

Special thanks to Natalie Rieborn and to Lay Peng Ang of Springer for their infinite 
patience and dedication.

The book is dedicated to Opher’s memory, and hopefully, it will inspire many 
students and lovers of mathematics.
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Introduction

The Fibonacci sequence is a sequence whose first two elements are 1,1, and each 
subsequent number equals the sum of its two predecessors (1, 1, 2, 3, 5, 8, 12, 21, 
34, 55, …). This will be expanded later in the book.

This sequence is a mathematical sequence that miraculously can be discovered 
in many places in nature.

Patterns based on the Fibonacci sequence appear in nature in many and 
varied objects, such as snail shells, pinecones, the arrangement of leaves and 
branches on a stem, and more.

One of the arguments that has been suggested as a possible explanation is that 
the scales of a pinecone are arranged spirally so as to allow optimal exposure to 
the sun. If  the angle between two adjacent scales would be 180 degrees for in-
stance, the second scale would grow in the opposite direction, but the third scale 
would grow on top of the first and hide it from the sun. On the other hand, if  the  
angle between the scales would be too small, the scales would overlap and shade 
one another.

The ratio between Fibonacci numbers approaches the golden ratio. If we divide 
360 degrees by this number (which is approximately 1.618), we obtain an angle of 
about 222.5 degrees or 137.5 degrees in the opposite direction. This angle allows 
new scales to grow in the spaces between the scales below them. It seems that for 
this reason, the Fibonacci sequence often appears in plants. And this is the kind of 
reason to why it is associated with so many natural phenomena.

Fibonacci sequence of a pinecone
(Daniel Briskman)
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Note that the Fibonacci sequence can progress in either clockwise or coun-
ter-clockwise direction in the pinecone.

For more advanced discussion, read the following source: 7 https://awkward-
botany.com/2019/12/25/pine-cones-and-the-fibonacci-sequence

This chapter includes:
A.  How to read this book
B.   Background information about the golden rectangle and the Fibonacci  

sequence by Dr. Bat-sheva Ilany and Dr. Anatoly Shtarkman
C.  Foreword by Dr. Uzi Armon
D.  Introductory problem: The Lewis Carol Paradox: Does 0 = 1?

A. How to Read This Book

Opher Liba

This book is based on ongoing, independent research and is aimed at a wide 
range of readers: gifted high school students; undergraduate and graduate stu-
dents, pre-service mathematics teachers in universities and colleges; practicing 
mathematics teachers; and, in general, anyone who loves mathematics. I would 
now like to address the two main groups of readers: learners and teachers.
A few words for the readers

This book has many educational objectives. Some of them I list here:
z to raise awareness of one of the more beautiful mathematical topics and to  

develop awareness of the beauty of mathematics in general,
z to reinforce and expand secondary-school mathematical knowledge and to  

allow a glimpse of some academic concepts,
z to demonstrate and instill values of mathematical research: observation,  

hypothesis, proof, application, and raising new questions,
z to deal with specific issues in more than one way (see, for example: sum of 

Fibonacci sequences in the books’ chapters and exercises),
z to stimulate curiosity and the desire to explore and develop beyond that which 

appears in this book.

The two directions of the Fibonacci sequence in a pinecone (7 https://papaitaly.files.wordpress.com/2014/ 
02/blogpinecone2-e1391960557180.jpg)

https://awkwardbotany.com/2019/12/25/pine-cones-and-the-fibonacci-sequence
https://awkwardbotany.com/2019/12/25/pine-cones-and-the-fibonacci-sequence
https://papaitaly.files.wordpress.com/2014/02/blogpinecone2-e1391960557180.jpg
https://papaitaly.files.wordpress.com/2014/02/blogpinecone2-e1391960557180.jpg
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This book has some special didactic characteristics:
z The procession of the topics is from the tangible, to the abstract, to the  

general.
z The book includes a large number of exercises, stemming from the belief  that 

varied practice is extremely valuable in learning mathematics, just as it is in 
learning to play an instrument. The aims of the exercises are for the learner to 
internalize the material taught in the various chapters, to refine and expand on 
selected issues, and to prepare a solid basis for future topics. Most of the exer-
cises were written especially for this book. At the end of each of the exercise 
chapters, answers, hints, and partial solutions are offered.

z The book is meant to encourage self-study to develop the learner’s knowledge. 
The learner must invest energy to elucidate subsequent stages and actively de-
velop the proofs set forth in the book. This is done by asking the reader to fill 
in plenty of details and complete lots of missing steps. They were left out on 
purpose!

In general, it should be emphasized that reading a mathematical text is unlike 
reading a novel. It must be “accompanied by paper and pencil.” As the famous 
mathematician Paul Halmos said: “Don’t just read it; fight it!” (Halmos, 1985). 
Ask questions, look for patterns, discover your own proofs! Persistence and effort 
will lead you to more profound understanding, satisfaction, and pleasure!
z In the text and in some of the exercises, you will find many formulas. Do your 

best to try to visualize these formulas numerically, to “see” what they stand 
for. You can make use of the table at the end of the book (“Fibonacci and Lu-
cas Numbers”) as well as a calculator or mathematical software.

z There are many references to definitions and formulas in both the chapters 
and the exercises. These are all numbered and gathered together at the end of 
the book for your convenience.

Some comments for teachers/lecturers
In this address to teachers, I would like to turn the spotlight on the following 

aspects of the book:
z This book links most of the topics taught in advanced mathematics classes in 

high school.
z This book contains quite a number of original proofs (e.g. a simple, concise 

proof for Binet’s formula using analytical geometry, a proof of some  
Fibonacci sequence properties by comparing rational coefficients, and more). 
These include ϕ-numbers, δ(a, b), M(a, b) matrices, the Lucas-like sequence of 
the Fibonacci-like sequence, the “meta” sequence of the Fibonacci-like series, 
and other original results.

z Special emphasis has been placed on the close relationship between the se-
quences discussed and between the golden ratio and its powers. The analysis 
of the Lucas sequence and the Fibonacci-like sequences (7 Chaps. 4 and 5) is 
systematically extended.
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When presenting this book to your students, you should:
z Try to encourage your students to tackle as many exercises as possible, as well 

as to complete the details and steps missing in the text.
z Be sure to praise and encourage original proofs and novel approaches to deal-

ing with the same problem.
z If  this is your students’ first experience in studying post-secondary school ma-

terial, this is a wonderful opportunity to insist that they write their proofs 
properly, both mathematically and linguistically. This will make them aware of 
the importance of the matter and how proper writing exhibits respect toward 
mathematics. It is also extremely beneficial for the learners themselves, since 
precise, lucid writing reinforces proper, clear thinking.

This book is structured so that the topics can be taught in various formats:
z A comprehensive course on the golden ratio and the Fibonacci and Lucas se-

quences: 7 Chaps. 1–4.
z A more comprehensive course: this will include 7 Chap. 5, which requires 

special effort.
z An interdisciplinary cultural course: This will include featured content from 

this book plus specific applications from the natural and life sciences, technol-
ogy, art and architecture, and perhaps even some historical background. Some 
sources for such content appear in the bibliography and you can find many 
sites on the Internet (a selected list of which appears at the end of the book).

Reference

 Halmos, P. R. (1985). I want to be a mathematician. Washington: Mathematical Association of America 
Spectrum. 

Quiz: Starting from the 1 at the top, in how many ways can you reach the number 6, 
always moving downward? (7 https://he.wikipedia.org/wiki/%D7%A1%D7%93%
D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D
7%A6%27%D7%99#/media/File:FibHive.svg)

https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:FibHive.svg
https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:FibHive.svg
https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:FibHive.svg
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B. Background on the Golden Rectangle and the Fibonacci 
Sequences

Bat-sheva Ilany and Anatoly Starkman

Much has been written about the connection between the golden rectangle (often 
described as the golden ratio or the golden mean, the golden section, the divine 
ratio, etc.) and the Fibonacci sequence.

The Fibonacci numbers have many interesting properties. Entire books have 
been written about them and there is even a mathematical journal, The Fibonacci 
Quarterly (7 http://www.fq.math.ca), that is entirely devoted to discoveries and 
generalizations of the Fibonacci numbers. In addition, the Fibonacci Association 
was established (7 http://www.mathstat.dal.ca/fibonacci), whose goal is to dis-
cover new results, problems, and proofs pertaining to the Fibonacci sequence.

This book presents a unique mathematical perspective on the golden ratio and 
Fibonacci numbers. It begins with the golden ratio and goes on from that to the 
Fibonacci sequences and series.

The book begins with a brief glimpse at the history of Fibonacci and the defini-
tions of Fibonacci numbers and the golden section.

Leonardo Fibonacci was born circa 1170 in Pisa, Italy. He received a broad 
education in the subjects of arithmetic, geometry, astronomy, logic, etc. Fibo-
nacci traveled with his father, a tax and commission collector for imported goods. 
During those travels, Fibonacci attended universities in Bagdad, Egypt, Syria, 
and Spain, studied Greek mathematics, and learned about Arabic culture and 
its important contributions to mathematics. In 1192, while in Algeria, he learned 
about the Hindu-Arab numeral system invented by Muḥammad ibn Mūsā al-Kh-
wārizmī that was not yet recognized in Europe. (al-Khwārizmī is sometimes called 
Algoritmi or Algorismi. He is considered the father of modern algebra.) His sys-
tem used the Arabic numeral digits 0–9 and introduced a place numbering system 
(up till then, numbers were written using Roman numerals). On Fibonacci’s re-
turn to Pisa in approximately 1200, he taught mathematics until about 1230s.

Around 1200, Fibonacci presented a problem about breeding rabbits from 
which the Fibonacci sequence was derived. Fibonacci did it as a stimulating 
mathematical exercise, but eventually it was discovered that the Fibonacci num-
bers occur in far ranging aspects of nature, such as in the dimensions of the DNA 
helix, in plants and flowers such as the sunflower, and so on. The average relative 
distances between the planets in the solar system and the sun itself  are approx-
imately equal to the golden section. More information can be found in the site: 
7 https://www.goldennumber.net/solar-system/

Fibonacci, who wrote five books about mathematics, was primarily inter-
ested in number theory. He was the first in Europe to describe the sequence that 
is named after him, which he did in his book Liber Abacci (The Book of Calcula-
tion), published in 1202. (The sequences had already been discovered in India as 
early as the sixth century).

The riddle regarding the breeding of rabbits appears in the book and goes like this:
A pair of young rabbits, which we call “bunnies,” are introduced into a closed 

cage. Rabbits reach maturity at two months and at the end of the second month, a 

http://www.fq.math.ca
http://www.mathstat.dal.ca/fibonacci
https://www.goldennumber.net/solar-system/
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pair will begin to produce offspring, producing a pair (male and female) of bunnies 
at the end of each month. Each pair of rabbits, at two months old, also begins pro-
ducing a pair of bunnies at the end of each month, which, at the end of their second 
month, also begin to reproduce, and so on and so forth. Assuming the rabbits never 
die, how many pairs of rabbits will be in the cage at the beginning of every month?

The answer is as follows: At the beginning of the first and second months, 
there will be one pair of young rabbits in the cage. At the beginning of the third 
month, there will be two pairs (the original pair plus the pair that was born at 
the end of the second month). At the beginning of the fourth month, there will 
be three pairs (the original pair has produced another pair at the end of the third 
month, but the second pair has not yet begun to reproduce). At the beginning of 
the fifth month, there will be five pairs and so on.

If  we write the number of pairs of rabbits in the cage as a sequence of num-
bers, we get 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …

As Fibonacci pointed out in his book, this is a unique sequence because every 
number in it is the sum of the two preceding numbers.

Month
Generation Total no. of pairs 

of rabbits
(Results in Fibonacci 

sequence)1  2  3  4  5  6  7  

1  1  1  

2  1  1  

3  1  1  2  

4  1  2  3  

5  1  3  1  5  

6  1  4  3  8  

7  1  5  6  1  31

8  1  6  01 4  12

9  1  7  51 01 1  43

01 1  8  12 02 5  55

11 1  9  82 53 51 1  98

21 1  01 63 65 53 6  441

31 1  11 54 48 07 12 1  332

41 1  21 55 021 621 65 7  773

In other words, the Fibonacci sequence is a sequence whose first two elements 
are 1,1, and each subsequent number equals the sum of its two predecessors.

The recursive definition of the sequence appears in Chap. 3, The Fibonacci 
Sequence. Although the sequence was already known to Indian mathematicians, 
the French mathematician Édouard Anatole Lucas (1891–1842) named it the 
Fibonacci sequence. Lucas also discovered some interesting properties of the se-
quence (see Chap. 4: The Lucas Sequence).

The ratio between two consecutive elements of the Fibonacci sequence ap-
proaches the golden ratio, which is an irrational number with value 1.61803398…, 
as first shown by Johannes Kepler. The golden ratio is already closely approxi-
mated for the 11th element of the Fibonacci sequence: 155/89 = 1.6181818, 

The number of rabbits in successive generations (Surprising patterns could be seen in the table. For ex-
ample: 3 + 3 = 6; 15 + 6 = 21 as highlighted in the table)
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and with the 16th element, the accuracy improves to 5 decimal places: 
987/610 = 1.61803 ....

The Fibonacci sequence can be represented geometrically. One begins with 
a square of side length 1 for the first element, and squares are added to the se-
quence as follows:

Another 1×1 square is placed next to the first one. These two squares create a 
rectangle that is 1 square high and two squares wide (the elements 1, 1, and 2 in 
the sequence).

We next add a 2×2 square to get a 2×3 rectangle, and then the addition of a 
3×3 square leads to a 3×5 rectangle. The construction continues thus, each time 
adding a square, the side lengths of which are equal to the next element in the 
Fibonacci sequence, and producing a rectangle whose sides represent two consec-
utive Fibonacci elements. As the construction continues, the rectangles approach 
the exact proportions of the golden rectangle, which is a rectangle where the ratio 
of its sides produce the golden ratio—which is approximately 1.618.

Both the golden ratio and the golden rectangle appear in nature, architecture, 
and art.

 

 Sequence rectangles 
(7 https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%9
1%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:FibonacciBlocks.svg)

Fibonacci cubes 
(7 https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%9
1%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:Diepholz_Skulpturenpfad_Fibo-
nacci.JPG)

https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:FibonacciBlocks.svg
https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:FibonacciBlocks.svg
https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:Diepholz_Skulpturenpfad_Fibonacci.JPG
https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:Diepholz_Skulpturenpfad_Fibonacci.JPG
https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:Diepholz_Skulpturenpfad_Fibonacci.JPG
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The ratios of successive cube lengths approximate the Fibonacci sequence.

It has been claimed that the use of the golden ratio was already apparent in 
the architecture of ancient Greece (7 https://en.wikipedia.org/wiki/Golden_ra-
tio). Some experts believe that the proportions of several classical structures, such 
as the Parthenon in Athens, were deliberately designed to represent the golden ra-
tio. However, other experts have challenged that claim, stating that measurements 
can be taken in many ways, and that the golden ratio was artificially super-im-
posed on those ancient structures.

There are also some who claim that the golden ratio can be observed in the 
Great Pyramid of Giza, and the ratio of its height to its base is 1.618. Further-
more, they claim, the ratio of the distance from the head to the feet and between 
the distance from the navel to the feet is 1.618. Some also have brought evidence 
of the golden ratio in the Ark of the Covenant, whose ratio of length to breadth 
is 1.66 (2.5 amot × 1.5 amot).

ϕ
ϕ

1

Fibonacci sequence in nature 
(7 https://en.wikipedia.org/wiki/Fibonacci_number#/media/File:FibonacciChamomile.PNG; 
7 https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%
91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:Aeonium_tabuliforium_2_spi-
rals_13.jpg)

The Great Pyramid of Giza 
(7 https://en.wikipedia.org/wiki/Great_Pyramid_of_Giza#/media/File:Kheops-Pyramid.jpg)

https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Golden_ratio
https://en.wikipedia.org/wiki/Fibonacci_number#/media/File:FibonacciChamomile.PNG
https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:Aeonium_tabuliforium_2_spirals_13.jpg
https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:Aeonium_tabuliforium_2_spirals_13.jpg
https://he.wikipedia.org/wiki/%D7%A1%D7%93%D7%A8%D7%AA_%D7%A4%D7%99%D7%91%D7%95%D7%A0%D7%90%D7%A6%27%D7%99#/media/File:Aeonium_tabuliforium_2_spirals_13.jpg
https://en.wikipedia.org/wiki/Great_Pyramid_of_Giza#/media/File:Kheops-Pyramid.jpg
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In the Middle Ages, the golden ratio was used in Islamic architecture. For ex-
ample, it is believed that the Dome of the Rock in Jerusalem was built in propor-
tions that approach the golden ratio, although, when speaking about the golden 
ratio, it is difficult to prove.

In art, the golden ratio is considered to be the most perfect and pleasing pro-
portion imaginable. Renaissance painters, sculptors, and architects utilized the 
golden mean to arrive at what was considered perfect beauty. Golden ratios can 
be found in abundance in the paintings of Leonardo da Vinci and other great art-
ists. Renaissance scholars Piero della Francesca and Fra Luca Bartolomeo de Pa-
cioli both wrote books about the golden ratio. Pacioli’s book, De divina proporti-
one (The Divine Proportion), was written in Milan in 1496–1498 and published in 
Venice in 1509. Leonardo da Vinci did the illustrations.

In Leonardo da Vinci’s most famous painting, the Mona Lisa, the golden ratio 
can be precisely measured on the Mona Lisa’s face and over the entire painting. Also, 
da Vinci used the golden ratio in his 1483 painting Saint Jerome in the Wilderness. 
The painting depicts a lion at the feet of a sitting Saint Jerome. Saint Jerome himself  
is enclosed in a golden rectangle.

 

Today, the golden rectangle is still abundant in architecture and art. Several 
modern buildings have been constructed according to the golden ratio. For exam-
ple, the ratio of the height (152 ft) of the UN building in New York to its breadth 
(95 m) is 1.621, which is very close to the golden ratio. The dimensions of credit 
cards and other magnetic cards also approach those of the golden rectangle.

Mona Lisa 
(Michael Paukner/substudio.com)
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It is interesting to point out that there many unsolved questions arising from 
the Fibonacci sequence. For example, are there infinitely many primes in the  
Fibonacci sequence?

You can find a full annotated bibliography at the end of the book.

Further Reading

z Herz-Fischler, Roger (1987). A Mathematical History of Division in Extreme 
and Mean Ratio.Reprint, 1998 by Dover. Mineola, New York: Dover Publica-
tions.

z Livio M. (2002). The Golden Ratio: The Story of Phi, the World’s Most  
Astonishing Number. Broadway Books.

C. Foreword by Dr. Uzi Armon

Opher Liba’s book takes us on a fascinating journey through one of the most 
beautiful and fascinating areas of mathematics. It presents a wealth of infor-
mation about the golden ratio and the Fibonacci sequence. It begins by intro-
ducing the golden ratio, ϕ = 1

2
(1+

√
5) and its properties, such as ϕ2 = ϕ + 1 

or 1− ϕ = −1
ϕ

, ϕ + 1
ϕ
=

√
5. From there, he introduces us to the golden trian-

gles (isosceles triangles in where the ratio between two different sides is equal to 
ϕ) and their properties, such as their existence in a regular pentagon. Continu-
ing on, we arrive at topics which range from the Fibonacci and Lucas sequences 
to the Fibonacci-like and Lucas-like sequences. These sequences have diverse 
properties, such as the Cassini formula, Fn+1Fn−1 = F2n + (−1)n, or the formulas 

Fibonacci in architecture—a spiral structure in the Vatican’s staircase
(7 http://www.goldenmuseum.com/index_engl.html)

http://www.goldenmuseum.com/index_engl.html
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Ln = Fn+1 + Fn−1 and F2n = LnFn. They also have a number of surprising rela-
tionships with the golden ratio, such as ϕn = Fnϕ + Fn−1.

Additionally, this book offers a fascinating way of looking at mathematics as 
it is taught in schools, with emphasis on the fundamental principles of genuine 
mathematics, which include aesthetics (for example, in geometrical shapes), prob-
lems that invite a variety of approaches and solutions, research approach (discov-
ering laws, generalizations, and relationships), cerebral challenges, and problem 
solving, with an emphasis on reasoning. Opher always believed that beauty and 
elegance are essential properties of mathematics.

Beyond its presentation of the abundance and assortment of properties re-
lated to the golden ratio and the Fibonacci sequence, this book’s great contribu-
tion is in creating an environment for learning mathematics that is rich with activ-
ities and challenges. An extensive learning environment is a powerful educational 
concept that improves overall learning and enhances and refreshes the learning of 
mathematics in particular. Such an environment is necessary to achieve two ulti-
mate and interrelated educational goals. One is the freedom to learn, as the title of 
a book by Carl Rogers. A learning environment with numerous activities provides 
each individual learner the freedom to choose the way that best suits his or her 
learning, the topics of most interest, and the problems that intrigue the learner, 
all according to their own personal inclinations. Freedom to learn is vital, both to 
foster the creativity inherent in each and every student, to improve their motiva-
tion, and to make real learning enjoyable. Real learning is the second educational 
goal. Real learning is expressed by the specific, independent activities that the stu-
dent takes personal responsibility to perform. Real learning is achieved through a 
myriad of activities that include reading relevant material, investigating the topic 
under study, coping with cognitive tasks, comparing their solution to prepared 
ones, and more. Real learning in an activity-rich learning environment allows  
internalizing knowledge and making it understandable and meaningful.

Indeed, this book has the potential to help transform mathematics  education 
and learning. It encourages basing the learning of a mathematical topic on read-
ing a mathematical text, an approach that is not very common. Yet such an  
approach can lead to a real understanding of the mathematical concepts in-
volved. For example, investigating sequences that are related to the Fibonacci se-
quence can improve understanding the concepts of sequences and series. To-
day many consider a “sequence” to be an abstract concept (an ordered set of 
 numbers), while the concept of a “series” is one that deals with the sum of the  
sequence. In fact, the term “sum of the sequence” refers to the sequence of  partial 
sums of the sequence, and this sequence is a special case of a sequence that is 
formed from some sequence. All sequences produce many “offspring”: a sequence 
of differences (in an arithmetic sequence this is a sequence of constants), a  
sequence of quotients (in a geometric sequence, it is a sequence of constants, and 
in a Fibonacci sequence it is a sequence that tends to a limit—the golden ratio), a 
sequence of squares, a sequence of the product of two adjacent values, and more.

In a manner befitting the topic of “golden,” Opher Liba’s book excels in its 
richness. This wealth is expressed both in the variety of mathematical topics  
woven into the book, in the multitude of activities offered (some described in the 
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chapters and some presented as exercises), and also by the relationships between 
various areas of mathematics as expressed in one of the most beautiful, enchant-
ing, and astounding mathematical subjects.

The late Uzi Armon was a faculty member of Kinneret College, an extension 
of Bar Ilan University.

D. Introductory Problem: The Lewis Carol Paradox: Does 0 = 1?

Let us cut a square with sides of 8 units into two identical triangles and two iden-
tical trapezoids, as illustrated in . Fig. 1a. Let us then recombine them to form a 
5 × 13 rectangle, as illustrated in . Fig. 1b.

Now, the area of the square is 64 square units but the area of the rectangle 
is 65 square units, yet both shapes are constructed from exactly the same pieces. 
This seems to imply that 64 = 65, or, in other words, that 0 = 1! A contradiction.

This visual paradox has two aspects:

1.  What’s the trick? This can be answered relatively easily.
2.   Why does this paradox work so well? The answer to this requires some deep 

understanding of the Fibonacci sequence (see 7 Chap. 3).

Notice that the lengths of the sides adjacent to the right angles, in all the 
shapes in the illustrations—the triangles, the trapezoids, the square, and the rec-
tangle—are 3, 5, 8, or 13 units. Notice, too, that this is a quadruplet of sequential 
numbers in the Fibonacci sequence (4th to 7th). Moreover, the further up the se-
quence the quadruplet of Fibonacci numbers are, the more “perfect” the illusion.

There is an interesting connection between the paradox and the Cassini for-
mula:

Fn is the n-th element of the Fibonacci sequence, which we shall meet in 
7 Chap. 3. The paradox also stems from the fact that:

where ϕ is the golden ratio, which we shall meet already in 7 Chap. 1.

Fn+1Fn−1 − Fn
2= (−1)n

limn→∞Fn+1/Fn = ϕ

Fig. 1  The Lewis Carol Paradox
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2 Chapter 1 · The Golden Rectangle and the Golden Ratio

1

The Parthenon

(7 https://en.wikipedia.org/wiki/Parthenon#/media/File:The_Parthenon_in_Athens.jpg)

A Greek temple that stands on the Acropolis of ancient Athens. It is considered 
the most famous building of ancient Greece. The Parthenon’s design is based on 
the golden ratio.

z Introduction to Chapter 1
At the beginning of our journey, let us introduce the golden rectangle and the 
golden ratio, both of which will have enormous importance throughout this 
book. In 7 Sect. 1.3, we will define several mathematical tools—commutative 
group, matrices, isomorphism, and norms—for more in-depth analysis and to 
prepare the background for Chaps.  3, 4  and  5.

The exercises that follow each chapter are meant to develop mathematical 
skills related to the golden ratio. We shall also apply this ratio to various topics 
taught in high school mathematics: algebra, analysis, geometry, analytic geome-
try, complex numbers, and so forth. (We shall leave trigonometry for 7 Chap. 2.)

1.1   The Golden Rectangle and the Golden Ratio

When we analyze a rectangle numerically, we are generally looking at the lengths 
of its sides, the length of its perimeter, and its area.

A

EF

C

D

B
a

a

a

a a

bb

. Fig . 1 .1 
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In this section, we shall focus on the ratio of the sides.
We shall attempt to find a rectangle, ABCD, such that if  we remove the square 

AEFD from it, we will be left with rectangle EBCF such that the ratio of the 
length to width of the original rectangle, ABCD, will be equal to the ratio of the 
length and width of the resulting rectangle, EBCF. In other words, the two rec-
tangles are similar:

AB
AD

= BC
EB

  (See . Fig. 1.1)

We denote: AE = EF = FD = DA = BC = a

As stated above, we want the following to hold: a + b
a

= a
b

We rearrange the equation to highlight the a
b
 ratio: ab+ b2 = a2

Divide both sides by b2

By denoting x = a
b
, we have attained the golden equation:

This is a quadratic equation whose solutions are:

We denote the positive solution (the one relevant to our task at this point) by the 
symbol ϕ (the Greek letter “phi”, which is the first letter of the name of Greek 
sculptor Phidias, who lived between 490 and 431 BC). Hence:

We call ϕ the golden ratio, (or the golden ratio), and ϕ satisfies the golden equa-
tion, i.e.:

According to the Vieta’s formula, the product of the solutions is −1 and their sum 
is 1. Therefore, the negative solution is −1

ϕ
 or 1− ϕ.

1− ϕ is the other solution of the golden equation. Accordingly, we can write:

This number also satisfies the golden equation, i.e.:

EB = FC = b

a
b
+ 1 =

(

a
b

)2

(1.1a)x2 = x+ 1

x1 = 1
2
(1+

√
5) ≈ 1.61803399

x2 = 1
2
(1−

√
5) ≈ −0.61803399

(1.2)ϕ = 1+
√
5

2

(1.1b)ϕ
2 = ϕ+ 1

(1.3)−1

ϕ
= 1− ϕ = 1

2
(1−

√
5)

(1.4a)
(

−1

ϕ

)2

= −1

ϕ
+ 1
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1
or:

Rectangle ABCD (as well as all rectangles that are similar to it) is defined as the 
golden rectangle.

To further test our results, we note that rectangle EBCF is also a golden rectangle 
(which is what we sought from the beginning). If  we divide it into a square and 
a rectangle, as shown in . Fig. 1.2, and calculate the ratio of length to width of 
rectangle EBHG, we find that:

We shall now see how to construct a golden rectangle out of a square (using com-
pass and straightedge).

Let point M be the midpoint of side DC in the square ABCD. With the point 
of the compass on M, draw an arc that passes through vertex B until it meets the 
continuation of side DC at point F. Complete the construction by constructing 
a perpendicular to DF through point F until it meets the continuation of AB at 
point E (. Fig. 1.3).

(1.4b)(1− ϕ)2 = (1− ϕ)+ 1

EB
BH

= b
a − b

= 1
a
b
− 1

= 1
ϕ− 1

= ϕ

EB

D

A

C F

2a

a aM

. Fig . 1 .3 

E B

G H

CF

a-b

b

b

b
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a-b

. Fig . 1 .2 



5 1
1 .1 · The Golden Rectangle and the Golden Ratio

We shall now prove that rectangle AEFD is, indeed, a golden rectangle. We de-
note 2a = AB = BC = CD = DA, and use the Pythagoras theorem for triangle 
MBC:

From here we get:

The length of the rectangle is:

and therefore the ratio between the length and the width of the rectangle is:

Q.E.D.

An accepted alternative definition of the golden ratio (ratio) is that it is the ra-
tio of lengths obtained by cutting away a given portion of a line segment in such 
a way that the ratio between the length of the entire line segment to the length 
of the longest segment (created by the cut) will be equal to the ratio between the 
lengths of the longer and shorter segments. In other words (see . Fig. 1.4):

If  we denote AE = a, EB = b, we obtain: a + b
a

= a
b
. Therefore, a

b
= ϕ.

We say that point E “divides (cuts) segment AB into the golden ratio.” (This 
alternative definition is equivalent to the first definition; it already appeared in the 
writings of Euclid.)

Based on the fact that 
√
5 is known to be an irrational number it is possible to 

deduce that the golden ratio is irrational. Nevertheless, we are now going to pres-
ent a direct proof of the irrationality of ϕ.

Notice that according to . Figs. 1.1 and 1.2, that the following conditions 
hold:

MB2 = MC2 + BC2 = a2 + (2a)2 = 5a2.

MB = MF = a
√
5.

DF = DM+MF = a+ a
√
5 = 2a · 1

2
(1+

√
5) = 2aϕ,

DF
AD

= 2aϕ
2a

= ϕ.

AB
AE

= AE
EB

a > b

b > a− b (⇔ a < 2b).

a bA E B

. Fig . 1 .4 
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1
In other words:

Now, assume that one can write ϕ = a
b
 where a and b are integers, and also as-

sume that this fraction has been reduced “all the way” (in other words, it has the 
lowest possible numerator and denominator).
From our construction of the golden rectangle, we have:

but (as previously noted) b < a and also a− b < b. In other words: the fraction 
on the right has a smaller numerator and denominator than that on the left, con-
tradicting the assumption.

1.2   Quantitative Attributes of ϕ

We will first present two interesting methods of denoting the golden ratio. We be-
gin with the equation:

and obtain the square root of each side (remember that ϕ is a positive number):

If  we repeat this step recursively (repeat it over and over), we obtain:

Now, we define a sequence (an) as recursive as follows:

and:

b < a < 2b.

a
b
= b

a − b
,

(1.1b)ϕ
2 = ϕ+ 1

ϕ =
√

ϕ+ 1 =
√

1+ ϕ.

ϕ =
√

1+ ϕ =
√

1+
√

1+ ϕ =

√

1+
√

1+
√

1+ ϕ = . . .

{

a1 = 1

an+1 =
√
1+ an (n ≥ 1)

a2 ≈ 1.414214

a3 ≈ 1.553774

a4 ≈ 1.598053

a5 ≈ 1.611848

a6 ≈ 1.616121

a7 ≈ 1.617443

a8 ≈ 1.617851.
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Note that:

It is possible to formally prove that the sequence (an) has a limit (it is a rising 
monotonic that is bounded at the upper level), and that this limit is indeed ϕ. This 
can be commonly written as:

This last equation is called the infinite nested radicals. It uses only the number 1 
and two arithmetic functions: addition and the square root. Divinely elegant!
We begin again with the equation

Now, let us divide both sides by ϕ. We obtain:

By performing recursive substitutions (over and over), we obtain:

Let us define the sequence (bn) recursively:

Thus:

b2 = 2
1
≈ 2.000000

b3 = 3
2
≈ 1.500000

b4 = 5
3
≈ 1.666667

b5 = 8
5
≈ 1.600000

b6 = 13
8
≈ 1.625000

b7 = 21
13

≈ 1.615385

b8 = 34
21

≈ 1.619048

We note that : |b8 − ϕ| ≈ 0.001014.

|a8 − ϕ| ≈ 0.000183

lim
n→∞

an = ϕ =

√

1+
√

1+
√
1+ · · ·

(1.1b)ϕ
2 = ϕ+ 1

ϕ = 1+ 1
ϕ

ϕ = 1+ 1
ϕ
= 1+ 1

1+ 1
ϕ

= 1+ 1

1+ 1

1+ 1
ϕ

= . . .

{

b1 = 1

bn+1 = 1+ 1
bn

(n ≥ 1)

1 .2 · Quantitative Attributes of ϕ
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1
It is possible to formally prove that sequence (bn) approaches a limit as n ap-
proaches infinity, and that the limit is ϕ, and therefore write the sequence as:

The last entry is called the simple continued fraction. It uses only the number 1 
and two arithmetic operations: addition and division.

Also, a number is rational if  and only if  it has a representation as a finite con-
tinued fraction: the fact that ϕ has this representation as an infinite simple contin-
ued fraction proves that it is irrational. More about continued fraction can be read 
in: Olds, C. (1963). Continued Fractions. Mathematical Association of America.

At the beginning of this chapter, we noted three fundamental relationships be-
tween ϕ and “itself” and between ϕ and 

√
5:

We shall now introduce six other arithmetical relationships that are also quite 
useful.

Hint: This can be directly derived (in two steps beginning with the numeric value 
of ϕ).

Proof: The first equality is already known. To arrive at the second, we use (1.2):

Proof: The first equality is already known. This can be expanded to arrive at the 
second and third:

The proofs for the following equations we leave to the reader:

lim
n→∞

bn = ϕ = 1+ 1

1+ 1
1+···

(1.1b)ϕ
2 = ϕ+ 1

(1.2)ϕ = 1
2
(1+

√
5)

(1.3)−1
ϕ

= 1− ϕ = 1
2
(1−

√
5)

(1.5)2ϕ− 1 =
√
5

(1.6a)ϕ
2 = ϕ+ 1 = 1

2
(3+

√
5)

ϕ+ 1 = 1
2
(1+

√
5)+ 1 = 1

2
(3+

√
5)

∗ ∗ ∗

(1.6b)(

1

ϕ

)2

= (ϕ− 1)2 = 2− ϕ = 1

2
(3−

√
5)

(ϕ − 1)2 = ϕ2 − 2ϕ + 1 = (ϕ + 1)− 2ϕ + 1

= 2− ϕ = 2− 1
2
(1+

√
5) = 1

2
(3−

√
5)

(1.7a)ϕ
2 + 1 = ϕ+ 2 = ϕ

√
5
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1.3   The Group of ϕ-Numbers

First, we define a commutative group:
A non-empty set, G, together with a binary operation (represented here by “◦”) is 
deemed a commutative group if  the following properties hold:

1. Closure

That is to say, the value obtained as a result of the operation is also an element 
in G. We point out that in some of the literature, closure is an integral part of 
the concept of the “operation,” and is not presented as a property in itself.

2. Commutativity

3. Associativity

This is commonly expressed as:

4 . An Identity or a Neutral Element Exists (Denoted Here as “e”):

If the operation resembles addition, the neutral element is called the “zero ele-
ment,” since 0 is the neutral element in addition. If the operation resembles mul-
tiplication, the neutral element is termed the “unit element” since 1 is the neu-
tral element in multiplication.

5 . An Inverse Element Exists (The Element That “Neutralizes” a is Denoted Here  
as a′)

(1.7b)
(

1

ϕ

)2

+ 1 = 3− ϕ =
√
5

ϕ
= (ϕ− 1)

√
5

(1.8)ϕ
3 = 2ϕ+ 1 = 2+

√
5

∀a ∈ G, ∀b ∈ G : a ◦ b ∈ G

∀a ∈ G, ∀b ∈ G : a ◦ b = b ◦ a

∀a ∈ G, ∀b ∈ G, ∀c ∈ G: a ◦ (b ◦ c) = (a ◦ b) ◦ c

a ◦ (b ◦ c) = (a ◦ b) ◦ c = a ◦ b ◦ c

∃e ∈ G, ∀a ∈ G : a ◦ e = e ◦ a = a

∀a ∈ G, ∃a′ ∈ G : a ◦ a′ = a′ ◦ a = e

1 .3 · The Group of ϕ-Numbers
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1
(Since the set is commutative, it will suffice to use only one equality: a′ ◦ a = e.)
If  the operation resembles addition, the inverse element is called the “negative ele-
ment,” and (−a) is the accepted denotation. If  the operation resembles multiplica-
tion, the inverse element is termed the “reciprocal” and a−1 is the accepted deno-
tation.

We will now look at the set of ϕ-numbers.
A number of the form:

where a and b are rational numbers, is called a “ϕ-number.”
We will begin with an equality between two ϕ-numbers:

It is easy to see that a = c and b = d must hold. (This would be the case for any ir-
rational number that replaces ϕ).
This is because if  b  = d we get:

which is impossible because the fraction on the RHS, c − a
b − d

, is rational while ϕ is ir-
rational. It thus follows that b = d and a = c must hold.
We have obtained an important and useful rule that we shall call the principle of 
equating (rational) coefficients.

We now shall prove that the set of all ϕ-numbers other than 0 together with the 
standard multiplication operation will produce a commutative group.

1 . Closure
For any two numbers a+ bϕ and c+ dϕ

It remains to be shown that the result cannot be 0, since the product of two real, 
non-zero numbers is different from zero.
A special case of the result should be pointed out: (a+ bϕ)2 = (a2 + b2)+ b (2a+ b)ϕ.

2 . Commutativity: It is Not Necessary to Prove This, Since Multiplication in R is  
Commutative

.

(1.9)a+ bϕ

a+ bϕ = c+ dϕ

ϕ = c − a
b − d

,

(a+ bϕ) (c+ dϕ) = ac+ adϕ+ bcϕ+ bdϕ2

= ac+ adϕ+ bcϕ+ bdϕ+ bd

= (ac+ bd)+ (ad+ bc+ bd)ϕ
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3. Associativity: Ditto
The Unit Element is 1+ 0 ϕ

4 . An Inverse Element Exists
We first observe the following:

We define the function δ(a, b) as follows:

Hence:

It possible to check that this equation also holds for the case where a = 0 , b �= 0 
and also for the case where a  = 0, b = 0. We now just have to prove that, except 
for the case where (a, b) = (0, 0), there are no other values of a and b for which 
δ (a, b) = 0.
To prove it, we assume that the above statement is true, that is:

In this case:
If  b = 0, then a2 = 0, and hence a = 0, which contradicts our assumption.
If  b  = 0, we can divide each side of the equation by b2 to get: 

(

a
b

)2 +
(

a
b

)

− 1 = 0, 
and thus a

b
= −ϕ or a

b
= 1

ϕ
, neither of which is possible since a and b were defined 

to be rational numbers and ϕ is irrational.

We shall now examine the special case where δ (a, b) = 1. Using expression (1.11a) 
we write the following:

Therefore, we define (in a general sense: not specifically for the case where  
δ (a, b) = 1):

This shall call this number the “companion of a+bϕ.” “Companion” indicates a 
“mutual relationship”, namely:

(a+ bϕ) [a+ b (1− ϕ)] = a2 + ab (1− ϕ)+ abϕ+ b2ϕ (1− ϕ)

= a2 + ab− abϕ+ abϕ+ b2 · (−1)

= a2 + ab− b2

(1.10)δ(a,b) = a
2 + ab− b

2

(1.11a)(a + bϕ)−1 = a+b (1−ϕ)

δ(a,b)
= a+b−bϕ

δ(a,b)

a2 + ab− b2 = 0.

(a+ bϕ)−1 = a+ b (1− ϕ) = a+ b− bϕ.

(1.12a)(a + bϕ)∗ = a + b (1− ϕ)

(1.12b)[a + b (1− ϕ) ∗ = a + bϕ

(1.12c)(a + bϕ)∗∗ = a + bϕ

1 .3 · The Group of ϕ-Numbers
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1
Therefore, we can write Eq. (1.11a) as:

or alternatively as:

As we pointed out above, if  δ (a, b) = 1 then:

The inverse equations give us a way to rationalize the denominator (that is to say 
to “eliminate” ϕ from the denominator). In other words, if  ϕ appears in the de-
nominator of any fraction, we multiply both the numerator and the denominator 
by its companion.

Here are three examples:

For the sake of completeness, we will now show that the set of ϕ-numbers is a 
field. First, recall that a “field” is a non-empty set, F, together with two binary ope-
rations (“addition,” denoted here by ⊕, and “multiplication,” denoted by ⊗), pro-
vided the following properties hold true:
a. The set F with operation ⊕ only constitutes a commutative group. The zero ele-

ment is denoted by “0” and the inverse of a is denoted as (−a).
b. The non-empty set F\{0} together with operation ⊗ only constitutes a com-

mutative group. The unit element is denoted as 1, and the inverse of a is de-
noted as a−1.

c. The “multiplication” operation is distributive over the “addition” operation:

We shall now see that a set of ϕ-numbers, along with the usual operations of ad-
dition and multiplication between the numbers constitutes a field.
a. A set of ϕ-numbers, along with addition, constitutes a commutative group:

1. Closure: For any two numbers a+ bϕ and c+ dϕ:

2. Commutativity: It is clear that addition in R is commutative.
3. Associativity: It is clear that addition in R is associative.
4. The zero element is 0+ 0ϕ

5. The negative element of a+ bϕ is (−a)+ (−b)ϕ 
b. A set of ϕ-numbers without 0+ 0ϕ and with multiplication, constitutes a com-

mutative group.

(1.1b)(a + bϕ)−1 = (a+ bϕ)∗

δ(a,b)

(1.11b′)(a + bϕ) (a + bϕ)∗ = δ (a,b)

(a+ bϕ)−1 = (a+ bϕ)∗

1
1+ 2ϕ

= 1+ 2 (1−ϕ)
δ(1,2)

= 3− 2ϕ
−1

= −3+ 2ϕ

2−ϕ

3− 2ϕ
= (2−ϕ) [3− 2 (1−ϕ)]

δ(3,−2)
= ϕ

−1
= −ϕ

1+ 2ϕ
−1+ 2ϕ

= (1+ 2ϕ) [−1+ 2 (1−ϕ)]
δ(−1,2)

= −3− 4ϕ
−5

= 3
5
+ 4

5
ϕ

∀a ∈ F , ∀b ∈ F , ∀c ∈ F : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

(a+ bϕ)+ (c+ dϕ) = (a+ c)+ (b+ d)ϕ
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The proof for this was presented at the beginning of the current section.
c. Multiplication is distributive over addition: It is clear that this property exists 

in R.

1.4   Matrices and Isomorphism

The group described in the previous section closely corresponds to the set of ma-
trices of type:

where a and b are rational numbers, neither of which are not both 0.
We shall see that this set, combined with the standard multiplication operation 

between matrices, also constitutes a commutative group.
1. First, closure:

It is obvious that closure exists due to the commutative property of addition in R.
2. Commutativity:

 Hence commutativity exists (due to the commutativity of addition and multi-
plication in R).

3. Associativity: It is not necessary to prove this because multiplication over of ma-
trixes is (in general) associative.

4. The neutral element is:

“I” is conventionally used to indicate the unit matrix.
5. Inverse element

 Before considering the inverse matrix for each matrix in the set, we shall re-
mind ourselves how to calculate inverse matrix:

(1.13)M(a, b) =
(

a b

b a + b

)

M(a, b)M(c, d) =
(

ac+ bd ad+ bc+ bd

bc+ ad+ bd bd+ ac+ ad+ bc+ bd

)

M(c, d)M(a, b) =
(

ca+ db cb+ da+ db

da+ cb+ db db+ ca+ bc+ da+ db

)

M(1, 0) =
(

1 0

0 1+ 0

)

= I

(

a b

c d

)−1

= 1
�

(

d −b

−c a

)

1 .4 · Matrices and Isomorphism
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1
where

is the determinant of the matrix.
Since the determinant of M(a, b) is:

this yields

which can be written as:

Hence, it is clear that the inverse matrix belongs to our set.
Q.E.D.

Now, we are ready to establish the precise relation between the two groups.
Let us define the following function:

To begin with, we will show that it is a one-to-one function:
If  M(a, b) = M(c, d), then according to the definition of equality between matri-
ces, the following must occur:

from which it follows:

In addition, we can see that this is a surjective function because the “natural” ori-
gin of each matrix M(a, b) is a+ bϕ.

Finally, we show that the multiplication operation preserves the one to one corre-
spondence between the functions:

(The multiplication operation on the left is the usual multiplication on R, and the 
multiplication operation on the right is the standard multiplication operation be-
tween matrices.)
In other words, the image of the product is the product of the images.

Proof

� = ad− cb �= 0

a (a+ b)− b2 = a2 + ab− b2 = δ(a, b),

(1.14a)
(

a b

b a+b

)−1

= 1

δ(a,b)

(

a+b −b

−b a

)

(1.14b)M
−1(a,b) = δ

−1(a,b) ·M(a + b,−b)

a+ bϕ �→ M(a, b)

(a, b) = (c, d),

a+ bϕ = c+ dϕ.

(a+ bϕ)(c+ dϕ) �→ M(a, b)M(c, d)

(a+ bϕ) (c+ dϕ) = (ac+ bd)+ (ad+ bc+ bd)ϕ,
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and

In other words, the multiplication operation preserves the one to one correspond-
ence between the functions.

A function mapping one group to another that satisfies the three properties 
just proved is said to be isomorphic between groups, and hence the groups them-
selves are denoted as isomorphic.

To illustrate the operation preserving property, we shall take the ϕ-numbers 
3− ϕ and 1+ 2ϕ. Their product is:

Now:

We multiply the two matrices:

As stated, the following is true:

The isomorphism that we have presented here brings us naturally to a matrix that 
corresponds to ϕ. Since ϕ = 0+ 1ϕ, the corresponding matrix is:

We can check that it satisfies the golden ratio in the form of a matrix. In other 
words:

(This is not really surprising!)
Thus, we can now define the golden matrix as:

� is a simple variation of the Fibonacci Q-Matrix: 
(

1 1

1 0

)

.

So far, this matrix behaves like the ϕ-number, since it satisfies the equality:

which is the matrix version of the equality:

M(a, b)M(c, d) =
(

ac+ bd ad+ bc+ bd

bc+ ad+ bd bd+ ac+ ad+ bc+ bd

)

(1+ 2ϕ) (3− ϕ) = 3− ϕ+ 6ϕ− 2ϕ− 2 = 1+ 3ϕ.

1+ 2ϕ �→ M(1, 2)

3− ϕ �→ M(3,−1)

M(1, 2)M(3,−1) =
(

1 2

2 3

)(

3 −1

−1 2

)

=
(

1 3

3 4

)

= M(1, 3).

(1+ 2ϕ)(3− ϕ) �→ M(1, 2)M(3,−1)

M(0, 1) =
(

0 1

1 1

)

M2(0, 1) = M(0, 1)+ I

(1.15)� = M(0, 1) =
(

0 1

1 1

)

(1.16)�2 = �+ 1

ϕ
2 = ϕ+ 1.

1 .4 · Matrices and Isomorphism
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1
(In 7 Chap. 3 we shall return to the above equations and develop them further.)
We can check that the following equality is true:

Notice that this is the matrix version of the equality:

Another matrix that may be of interest to us is the one that “applies” to 
√
5.

Since 
√
5 = 2ϕ− 1, the “natural” candidate would be:

Indeed,

which is exactly what we expect.
Therefore, we can define the root-five matrix to be:

(R stands for “root”. It is interesting to observe that the  symbol is a stylized 
“r”.)
We shall meet these two matrices again in the chapters to come.

1.5   The Norm of ϕ-Numbers

Let us define the following number:
Define:

where a+ bϕ is a ϕ-number.
This number shall be termed the “norm of a+bϕ.”
(We could define the norm without the square root, as is customary in some 
places. However, the definition we use here allows us to do the normalization eas-
ily. We will discuss normalization later on.)
We first point out some basic properties of the norm (x denotes any ϕ-number):

(1.17)�−1 = �− I = M(− 1, 1)

1
ϕ
= ϕ− 1.

M(−1, 2) = 2�− I.

M2(−1, 2) = M(5, 0) = 5I

(1.18)R(5) = M(−1, 2) =
(

−1 2

2 1

)

(1.19)µ(a, b) = µ(a + bϕ) =
√

|δ(a, b)|

(1.20)µ(x) = 0 ⇔ x = 0

(1.21a)µ(− x) = µ(x∗) = µ(x)
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(We shall leave the details to the reader. With respect to (1.20), recall that a and b 
are rational.)

We shall now move on to another essential property of the norm, one that is 
associated with multiplication:

where x and y are ϕ-numbers.
(Notice that (1.22) is actually a special case of (1.23)).

Proof of (1.23):
We denote x = a+ bϕ, y = c+ dϕ.

Hence (1.23) is true.

An important inference from Formula (1.23) is that:

An additional inference is:

This can be easily proved by induction.

We shall now move to the special case where the norm is equal to 1.
A ϕ-number whose norm is equal to 1 is designated as a “normalized ϕ-number.”
If  x and y are normalized ϕ-numbers, then (as a result of the properties men-
tioned earlier):

(1.21b)µ(x−1) = [µ(x)]−1

(1.22)µ(kx) = |k|µ(x) (∀k ∈ Q)

(1.23)µ(xy) = µ(x)µ(y)

xy = (a+ bϕ) (c+ dϕ) = (ac+ bd)+ (ad+ bc+ bd)ϕ

δ(ac+ bd , ad+ bc+ bd) = (ac+ bd)2 + (ac+ bd) (ad+ bc+ bd)

− (ad+ bc+ bd)2

= . . . . . . . . . . . . . . . . . . . . . . . . (complete the missing steps)

= a2 (c2 + cd− d2)+ ab (c2 + cd− d2)

− b2 (c2 + cd− d2)

= (a2 + ab− b2) (c2 + cd− d2)

= δ(a, b)δ(c, d).

(1.24)
µ[(a + bϕ)2] = µ[(a2 + b

2)+ b (2a + b)ϕ

= [µ (a + bϕ)2] = |δ(a,b)|

(1.25)µ

(

xk
)

= [µ(x)]k(∀k ∈ N)

µ(− x) = µ(x∗) = µ(x−1) = 1 (1.21′)

µ(kx) = |k|(∀k ∈ Q) (1.22′)

1 .5 · The Norm of ϕ-Numbers
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1

We can prove that the entire set of normalized ϕ-numbers presents a commutative 
group in itself  (i.e., it is a subset of the set of ϕ-numbers).
Closure: µ(xy) = 1 is true.
Commutative: is satisfied in any case.
Associative: same as above.
The unit element, which must be the same as the unit element for “general” ϕ-numbers, that 

is to say, 1+ 0 · ϕ is, in fact, a member of the set, since µ(1+ 0 · ϕ) =
√
|δ(1, 0)| = 1.

The inverse of  x is x∗ since it is true that µ(x∗) = 1.

It is natural to ask ourselves if  there is a way to “normalize” any given ϕ-number. 
That is to say, given a ϕ-number whose norm is not 1, is it possible to “do some-
thing to it” to obtain a normalized ϕ-number?

The answer is in the affirmative, as can be deduced by noting (1.22) and by ob-
serving the following:

In other words, in order to normalize any given ϕ-number, x, it is sufficient to 
multiply it by µ−1(x).

We present now the theorem that summarizes the above discussion.

Given any ϕ-number, x, it will be true that:

As an example, let us use x = 3− ϕ. In this case,

Q.E.D.

In the following section we will utilize the principles and definitions developed in 
this chapter in order to solve related exercises and theorems.

µ(xy) = 1 (1.23′)

µ

(

x
k

)

= 1(∀k ∈ N) (1.24′)

µ[µ−1(a, b)(a+ bϕ)] = µ
−1(a, b)µ(a, b) = 1.

(1.26)µ

(

x
µ(x)

)

= 1

µ(x) =
√
|δ(3,−1)| =

√
|9− 3− 1)| =

√
5

x
µ(x)

= 3−ϕ√
5

µ

[

x
µ(x)

]

= δ

(

3√
5
, −1√

5

)

= . . . = 1
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Exercises for Chapter 1

z Note
When given an isosceles triangle, the first letter (on the left) specifies the vertex 
angle (opposite the base).

z Exercise 1 .1: Identifying Numerical Values with ϕ
Establish the following equalities. Try to express the results in terms of the al-
gebraic equations ϕ 2 = ϕ + 1, ϕ – 1 = 1/ϕ, not the numeric value of ϕ:

 1. (ϕ + 1)(ϕ – 1) = ϕ
 2. (ϕ+

√
ϕ) (ϕ−

√
ϕ) = 1

 3. ϕ− 1
ϕ
= 1

 4. ϕ+ 1
ϕ
=

√
5

 5. ϕ
2 + 1

ϕ
= 2ϕ reference

 6. ϕ
2 − 1

ϕ
= 2

 7. 
√
ϕ+ 1√

ϕ
= ϕ

√
ϕ

 8. (ϕ2 − 1)2 = ϕ+ 1

 9. ϕ
4 = (ϕ+ 1)2 = 3ϕ+ 2

 10. 1− 1
ϕ2

= 1
ϕ
= ϕ− 1

z Exercise 1 .2: Equations and Inequalities
Solve in R:

 1. x2 + x − 1 = 0

 2. x2 − |x| − 1 = 0

 3. x2 − |x| − 1 < 0

 4. x2 + |x| − 1 = 0

 5. x2 + |x| − 1 < 0

 6. x4 − 3x2 + 1 = 0

 7. x4 − 3x2 + 1 < 0

 8. x −
√
x − 1 = 0

 9. x4 − x2 − 2x − 1 = 0

 10. x2 − √5x + 1 = 0

 11. x2 − ax − a2 = 0 (a ≠ 0)

 12. x2 − 3x + 1 = 0

 13. x2 − 2x − 4 = 0
 14. 4x2 − 2x − 1 = 0

Exercises for Chapter 1
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1
z Exercise 1 .3: An Equation System

Solve in R2:
1. x2 = y + 1
 y2 = x + 1
2. x2 = −y + 1
 y2 = −x + 1

z Exercise 1 .4: Equations to Powers of Three
Solve in R:
1. x3 − 2x − 1 = 0
2. x3 − 2x2 + 1 = 0
3. x3 − 2x + 1 = 0
4. x3 + 2x2 − 1 = 0

z Exercise 1 .5: Equations with a Complex Variable
Solve in C:
1. z2 + iz + 1 = 0
2. z2 − iz + 1 = 0
3. z4 + 3z2 + 1 = 0
4. z4 − z2 − 1 = 0
5. z4 + z2 − 1 = 0

z Exercise 1 .6: Constructing Quadratic Equations
Construct quadratic equations whose solutions are:
1. ϕ±

√
ϕ

2. ϕ2, 1
ϕ

3. ϕ2,−1

4. ϕ, 1
5. ϕ, –1
6. 1,− 1

ϕ2

7. ϕ2,− 1
ϕ

8. ϕ, 1
ϕ2

9. ϕ,− 1
ϕ2

z Exercise 1 .7: Relationship Between Reciprocals
In both sections: a > b > 0. Prove:
A. If

Then a/b = ϕ.

1

a+ b
=

1

b
−

1

a
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B. If

Then a/b = ϕ2.

z Exercise 1 .8: Right-Angled Triangles
 Given the lengths of the hypotenuse and one of the perpendiculars of a 
right-angled triangle, calculate the length of the second perpendicular.
1. ϕ2, 1/ϕ
2. ϕ,

√
ϕ

3. ϕ2, ϕ
4. ϕ2 + a,ϕ2 − a (0 < a <

√
ϕ)

z Exercise 1 .9: Geometrical Sequences of Right-Angled Triangles
 The lengths of the sides of a right-angled triangle form a geometric sequence. 
What is the common ratio of the sequence?

z Exercise 1 .10: Geometric Triangle Sequence
 The lengths of the sides of a triangle present a geometric sequence with a 
common ratio of q. Prove that 1/ϕ < q < ϕ.

z Exercise 1 .11: Triangles with “Inversed” Sides
The following is true for side lengths a, b, and c of a triangle:

The side lengths of another triangle are 1/a, 1/b and 1/c.
A. Justify the following inequalities:

B. Prove:

C. Deduce that:

z Exercise 1 .12: Geometric Series
Calculate:
1. 1 + 1/ϕ + 1/ϕ2 + 1/ϕ3 + ⋯
 1 − 1/ϕ + 1/ϕ2 − 1/ϕ3 + ⋯
2. 1 + 1/ϕ2 + 1/ϕ4 + 1/ϕ6 + ⋯
 1 − 1/ϕ2 + 1/ϕ4 − 1/ϕ6 + ⋯
3. 1 + 1/ϕ3 + 1/ϕ6 + 1/ϕ9 + ⋯
 1 − 1/ϕ3 + 1/ϕ6 − 1/ϕ9 + ⋯
4. 1 + (ϕ/2) + (ϕ/2)2 + (ϕ/2)3 + ⋯
5. (1 + 1/ϕ − 1/ϕ2) + (1/ϕ3 + 1/ϕ4 − 1/ϕ5) + ⋯

1

a− b
=

1

b
−

1

a

a > b > c.

0 < a− c < b

0 < 1/c− 1/a < 1/b

(a/c)2 − 3(a/c)+ 1 < 0

1/ϕ2 < a/c < ϕ
2

Exercises for Chapter 1
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1
z Exercise 1 .13: Constant Sequences

In both sections, the sequence is comprised of positive numbers. Prove that:
A. Sequence (an) where an+1

2 = 1 + an, is a constant sequence if  and only if   
a1 = ϕ.

B. Sequence (bn) where bn+1
2 = 1 − bn, is a constant sequence if  and only if   

b1 = ϕ – 1.

z Exercise 1 .14: Geometric Sequences (A)
(an) is a geometric sequence where an+2 = an+1 + an (for all natural n).
What is the common ratio of the sequence?

z Exercise 1 .15: Introducing the Fibonacci Sequence and Locus
The sequence (Ln) is defined by

A. Calculate the first two elements of the sequence.
B. Prove that Ln+2 = Ln+1 + Ln exists for all natural n.
C. Determine if  all the elements of the sequence are natural numbers.
D. Repeat the above (A–C) for the sequence (Fn) that is defined by

z Exercise 1 .16: Power Series
A. Prove: A necessary and sufficient condition for the convergence of the series

is 1–ϕ < x < ϕ.
What is the sum of the column for x = 1/ϕ?
B. Prove: A necessary and sufficient condition for the convergence of the series

is –ϕ < x < ϕ–1.
What is the sum of the series for x = –1/ϕ?

z Exercise 1 .17: Power Series
The function f  is defined by:

Where 0 < |x| < 1.
A. Use two different methods to find the derivative function.
B. Find the sums of the following series (use the previous section to help you):

z Exercise 1 .18: Complex Numbers
Given two numbers

Ln = ϕ
n + (1− ϕ)n

Fn
√
5 = ϕ

n − (1− ϕ)n

1+ x(x− 1)+ x2(x− 1)2 + x3(x− 1)3 + · · ·

1+ x(x+ 1)+ x2(x+ 1)2 + x3(x+ 1)3 + · · ·

f(x) = 1+ x+ x2 + x3 + · · ·

1/ϕ+ 2/ϕ2 + 3/ϕ3 + 4/ϕ4 + · · ·
1− 2/ϕ+ 3/ϕ2 − 4/ϕ3 + · · ·
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Calculate:
1. AB
2. A2 − B2

3. A2 + B2

4. (A + B)/(A − B)
5. (A + B)2 + (A − B)2

6. (A + B)2 − (A − B)2

z Exercise 1 .19: Complex Roots
Solve in c:
1. z2 = 1 + 2i
2. z2 =

√
5+ 2i

z Exercise 1 .20: Ratio of Areas
 The rays of angle A connect two parallel sections BD and CE, such that  
AC
AB

= AE
AD

= ϕ.

Prove: SBDEC
SBAD

= ϕ

z Exercise 1 .21: Two Interlocking Golden Rectangles
 Two golden rectangles of dimensions ϕ by 1 are arranged to form a “plus” 
shape (see illustration).

 

Calculate the area and perimeter of the shape.

z Exercise 1 .22: Golden Rectangle Inside a Square
 A golden rectangle, FECD, is cut out from square ABCD. From the remain-
ing rectangle ABEF, square HBEG is cut, and from rectangle FECD, square 
IECJ is cut (see illustration, below). 

A = 1
2

(√
ϕ+ i√

ϕ

)

B = 1
2

(√
ϕ− i√

ϕ

)

Exercises for Chapter 1
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1

A

A

E

B

C

F

D

H

G
I

J

. Prove: AHGF is a golden rectangle. (You may assume, without loss of 
generality, that: AB = ϕ.)

B. Prove:

z Exercise 1 .23: Golden Ratio in a Rectangle
ABCD is a rectangle with side lengths: AB = DC = √ϕ, AD = BC = 1.
H is a point on diagonal AC such that ∠AHB = 90°.

 

A B

C

H

D

A. Calculate the lengths of segments AH, HC, and BH.
B. Prove:

z Exercise 1 .24: Golden Rectangle and Square
ABCD is a golden rectangle (AB = ϕAD).
 From point C, a perpendicular is connected to diagonal DB, which intersects 
side AB at point E. From point E, a perpendicular is connected to DC, which 
intersects it at point F. 

A

A E B

CFD
. Prove: ∆DBC ~ ∆ECF.

B. Determine whether: AEFD is square.
 (You may assume, without loss of generality: AD = 1.)

SIECJ

SAHGF
=

SFIJD

SHBEG
= ϕ

SABC

SABH
= ϕ
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z Exercise 1 .25: Right-Angled Triangles in a Golden Rectangle
ABCD is a golden rectangle with dimensions AB = ϕ, AD = 1.
 M and N are points on sides DC and BC (respectively) such that ∆ADM ≅ 
∆MCN (see illustration). 

A

A

N

B

CMD
. Prove: SABN = SADM

B. Prove: SAMN
SMCN

=
√
5

z Exercise 1 .26: A Tower of Golden Rectangles
 Given a “horizontal” golden rectangle whose dimensions are ϕ by 1. On top 
of it there is another “horizontal” golden rectangle whose dimensions are 1 by 
1/ϕ. On top of that, there is another “horizontal” golden rectangle of dimen-
sions 1/ϕ by 1/ϕ2. This continues ad infinitum. In other words, the dimensions 
of each subsequent rectangle are 1/ϕ times the previous rectangle.

 

.

.

.

Calculate the height and area of the resulting “tower.”

z Exercise 1 .27: There is No Paradox
A. Explain how the paradox presented in the introduction (“is 1 = 0?”) came 

about and where “the hole” (in the rectangle) with an area equal to 1 can 
be found.

B. From a square with side length a, two identical right-angled triangles and 
two identical right-angled trapezoids are removed, according to the dimen-
sions specified in the drawing on the left. The four sections are joined to-
gether to produce a “complete” rectangle (that is to say, unlike the rectangle 
of the paradox that has a “hole”), as detailed in the drawing on the right:

Exercises for Chapter 1



26 Chapter 1 · The Golden Rectangle and the Golden Ratio

1

b

b

a

a b−
b

a b−

b a b−

 Prove that the area of the square is equal to the area of the rectangle if, and 
only if, a = bϕ.

z Exercise 1 .28: Gold Rectangles and Squares
 In a golden rectangle ABCD, E is the point on BC (the short side) such that 
BE = ϕ·EC.
 The lines AE and DC intersect at point F. A perpendicular is drawn from F to 
DF, and this line meets line AB at point G. 

A
F

G

D

A

E

C

B

. Prove:

(You can assume, without loss of generality: AB = ϕ2.)
B. Show that the result of the question above is also valid when BC is the 

longer side.
(You can assume, without loss of generality: AB = ϕ.)
C. Show that the result is also valid if  ABCD is a square.
(You can assume, without loss of generality: AB = ϕ2).

z Exercise 1 .29: In Preparation for Golden Triangles
ABC is an isosceles triangle whose measurements are AB = AC = ϕ, BC = 1.
D is a point on side AC such that BC = BD.
A. Prove that: ∆ABC ~ ∆BCD
B. Calculate the lengths of segments DC and AD, and show that triangle 

DAB is also isosceles.
C. Determine the angles of triangle ABC.

SAGFD

SABCD
=

SABCD

SBGFC
= ϕ
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z Exercise 1 .30: A Triangle, a Circle and Tangents
 A is a point that lies outside a circle with center O. Segment AB is tangent to 
the circle at point B, and line AO intersects the circle at point C. A tangent is 
drawn at point C that intersects segment AB at point D.
Given: BD = 1, AD = ϕ.

 

D

A

C

B

O

Calculate the radius of the circle.

z Exercise 1 .31: Equilateral Triangle and Circumcircle
 ABC is an equilateral triangle inscribed in a circle. Points M and N are the 
midpoints of lines AB and AC (respectively). Line MN intersects the circle at 
points S and T.

Given: AB = 2a. 

T

A

CB

S
M N

A. Prove: SN·NT = a2.
B. Determine that: MN/NT = ϕ.
C. Prove: AT/TC = ϕ.

z Exercise 1 .32: Bisector of an Angle in a Right-Angled Triangle
 In the right-angled triangle ABC (A = 90°), AB = 2CA. M is a point on AB 
such that CM bisects angle C.
Prove: AC/MA = ϕ. (You may assume, without loss of generality: AC = 1.)

z Exercise 1 .33: The Golden Ratio in a Right-Angled Triangle
 In the right-angled triangle ABC, AC = 2AB, D is a point on BC such that 
BD = BA, and E is a point on AC such that CE = CD.
Prove:

AC

EC
=

EC

AE
= ϕ

BD

CD
=

ϕ

2

Exercises for Chapter 1
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1
z Exercise 1 .34: The Golden Ratio in a Rectangle

 ABCD is a rectangle. F is a point on side AB such that FB = 1, AF = ϕ, and 
therefore DFC = 90°.

 

A F B

CD

G

ϕ 1

A. Calculate the lengths of line segments DF, AD, FC.
B. Calculate cos ∠AFC.
C. G is the intersection of sections DF and AC. Calculate the length of sec-

tion DG.
D. (Part D does not depend on A, B, or C.) Prove:

z Exercise 1 .35: Golden Rectangle That Circumscribes an Isosceles Triangle
 ABCD is a golden rectangle (AB = ϕ, AD = 1). F is a point on side AB such 
that DC = DF.
A. Calculate the length of section AF.
B. Prove:

z Exercise 1 .36: Trapezoid
 ABCD is an isosceles trapezoid in which the larger base is DC and the smaller 
base is AB.
Given: DC = a, DA = AB = BC = b.
Prove that if  the following is true

Then a/b = ϕ.

z Exercise 1 .37: The Golden Function
 The graph of y = x2 − x − 1 intersects the x-axis at points A and B, and the 
y-axis at point C. Straight lines perpendicular to the x-axis are drawn through 
points A and B, and a straight line parallel to the x-axis and which intersects 
the vertical lines at point D (the line extending from A) and point E (the line 
extending from B) is drawn through point C.

SADC

SFAC
=

SFAC

SBFC
= ϕ

tan∠FDC = cos∠FDC = 1/
√
ϕ

SABCD

SDCB
=

SDCB

SADB
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O is the origin point.
Prove that rectangles OBEC, OCDA are golden rectangles.

z Exercise 1 .38: Ratio Function
The function f  is defined by:

A. Find the domain of the function, the intersection points with the axes, the 
asymptotes, and the increasing and decreasing intervals of the function.

B. Show that the following holds:

z Exercise 1 .39: Logarithmic Function
The function f  is defined by:

Show that the following holds:

z Exercise 1 .40: Functions to the Fifth Power
The function f  is defined by:

A. Find the fixed points of the function.
B. What are the minimum and maximum points of the graph of the function?
C. Prove that the rectangle whose vertices rest on the extreme points of the 

graph, is a parallelogram with area 4√5.

z Exercise 1 .41: The Family of Functions (A)
Function fn is defined by

where n is a natural number.
A. Prove that the sequence fn(ϕ) is geometric.
B. Calculate:

f(x) =
x2 − x− 1

x2 + x− 1

f′(1− ϕ)+ f′(ϕ) = 2f′(1− ϕ)f′(ϕ)

f(x) = ln(x+ 1)+ 1/x

f′(ϕ) = f′(1− ϕ) = 0

f(x) = x5 − 5x3 + 5x

fn(x) =
x2 − x− 1
(

x2 + 1
)n

f′1(ϕ)+ f′2(ϕ)+ f′3(ϕ)+ f′4(ϕ)+ · · ·

Exercises for Chapter 1
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1
C. Function gn is defined by

Calculate:

z Exercise 1 .42: The Family of Functions (B)
The function f  is defined by:

A. Prove that the following holds for the function and its derivative:

B. Determine:

z Exercise 1 .43: The Multiple of Golden Functions
g is a differentiable function and f(x) is defined as follows:

A. Prove:

B. Prove:

z Exercise 1 .44: Integral of an Exponential Function
Calculate:

z Exercise 1 .45: Integral with Logarithms
Show that the following holds:

gn(x) =
x2 − x− 1

xn

g′1(ϕ)+ g′2(ϕ)+ g′3(ϕ)+ g′4(ϕ)+ · · ·

f(x) = xn
(

x2 − x− 1
)

xf′(x)− (n+ 1)f(x) = xn
(

x2 + 1
)

f ′(ϕ) =
√
5ϕn

f ′(1− ϕ) = −
√
5 (1− ϕ)n

f(x) =
(

x2 − x− 1
)

g(x)

f ′(ϕ) = g(ϕ)
√
5

g(ϕ)f′(1− ϕ)+ g(1− ϕ)f′(ϕ) = 0

ϕ
ˆ

1−ϕ

(2x− 1)ex
2−x−1dx

ϕ
ˆ

1

ϕ

ϕx− 1
dx = 2

1
ˆ

0

dx

x+ ϕ
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z Exercise 1 .46: Hyperbolic Functions
 The hyperbolic sine function is defined as sinh(x) = ½(ex – e–x), and the hyper-
bolic cosine function is defined by cosh(x) = ½(ex + e–x).
A. Calculate the area limited by the graph of y = sinh(x), the axis x, and the 

straight lines x = lnϕ and x = 2lnϕ.
B. Calculate the area limited by the graph of y = cosh(x), the axis x and the 

straight lines x = lnϕ and x = 2lnϕ.

z Exercise 1 .47: Golden Rectangle Circumscribed by a Circle .
 A circle whose equation is x2 + y2 = ϕ

√
5 circumscribes a “horizontal” golden 

rectangle (the long sides are parallel to the x-axis). Find the equation of the 
tangent to the circle at the vertex of the rectangle in the first quarter.

z Exercise 1 .48: Hyperbolas
A. A hyperbola whose equation is x2 − y2 = 1 is bisected at four points by the 

straight lines x =
√
ϕ and x = −

√
ϕ. Show that the rectangle created by 

the four points is a golden rectangle.
B. The hyperbola whose equation is x2 − y2 = ϕ is bisected at four points by the 

straight lines y =  ± 1. Show that the rectangle created by the four points is a 
golden rectangle. Find the equations of the tangents to the hyperbola at the 
vertices of the rectangle and the area of the diamond created by the tangents.

z Exercise 1 .49: Circle of Apollonius
Points A (–1, 0) and B (1, 0) rest on a planar axis system.
Find the geometric position of points P on the plane for which are PA = ϕ·PB.

z Exercise 1 .50: Circle and Golden Ellipse
 Recall that the area of the ellipse b2x2 + a2y2 = a2b2 (a > b) is π ab, and the 
foci are (±

√

a2 − b2, 0).
A circle whose center is on the main axis passes through the foci of the ellipse.
 Prove that the area of a circle equals the area of the ellipse if  and only if  
a = bϕ.

z Exercise 1 .51: Properties of δ(a, b)
Prove the following (a and b are not necessarily rational numbers):

 1. δ(a, 0) = δ(−a, 0) = δ(a, a) = δ(−a, −a) = a2

 2. δ(0, b) = −δ(b, 0) = −δ(b, b) = −b2

 3. δ(−a, a) = δ(a, −a) = −a2

 4. δ(a, b) + δ(b, a) = 2ab
 5. δ(a, a − b) = δ(a + b, −b) = δ(−a, −b) = δ(a, b)
 6. δ(a, −b) = δ(−a, b) = δ(a, a + b) = −δ(b, a)
 7. δ(a + b, a) = δ(a + b, b)
 8. δ(ka, kb) = k2δ(a, b)
 9. δ(an, 0) = δ(an, an) = δn(a, 0)
 10. a ≥ b > 0 ⇒ δ(a, b) > 0

Exercises for Chapter 1
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1
 11. a2b2δ(1/a, 1/b) = δ(b, a)
 12. δ(ia, ib) = −δ(a, b)
 13. δ(ia, 0)δ(bi, 0) = δ(a, 0)δ(b, 0) = a2b2

 14. δ(1, ϕ) = δ(ϕ − 1, 1) = δ(ϕ, ϕ + 1) = 0
 15. d(a2 + b2, 2ab + b2) = d2(a, b)

z Exercise 1 .52: Equations with δ
A. Given the equations:
1. δ(1, x) = 0
2. δ(x, x + 1) = 0
3. δ(x − 1, 1) = 0
4. δ(1/x, 1) = 0
5 Solve the equations in R.
5 Solve the equations in Q.

B. Given the equations:
1. δ(k, x) = 0
2. δ(x, x + k) = 0
3. δ(x − k, k) = 0
4. δ(k/x, 1) = 0
where x is a real variable, and k is a real parameter different than 0.
Prove that for all the equations the solution set is S = {kϕ, k(1–ϕ)}.
C. Prove:
5 The graph of equation δ(x, y) = 0 consists of two straight lines perpendicu-

lar to each other and which are cut by the main axis.
5 The vertical distance between the two straight lines is |x|√5.

z Exercise 1 .53: Linear System with Parameters
Given the system

where a and b are rational parameters both of which are not zero.
 Prove that the system has a single solution and that it is not dependent on the 
values of the parameters.

z Exercise 1 .54: Multiples of ϕ-Numbers
a, b, c, d are rational numbers different than 0.
A. Prove that the product (a + bϕ)(c + dϕ) is a rational number if  and only if

B. Prove that the power (a + bϕ)2 is a rational number if  and only if  b = −2a.

ax+ by = a+ b

bx+ (a+ b)y = a+ 2b,

a

b
+

c

d
+ 1 = 0
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z Exercise 1 .55: Quadratic Equation
In this exercise, a and b are rational numbers, and b ≠ 0.
A. Construct a quadratic equation with rational coefficients, where one of its 

solutions is a + bϕ.
B. Show that we can write the equation as follows:

C. What is the second solution for the equation?

z Exercise 1 .56: Geometric Sequence (b)
A. The sequence (an) satisfies δ(an, an+1) = 0. Prove that it is a geometric se-

quence with a common ratio of ϕ or −1/ϕ.
B. The sequence (bn) satisfies δ(bn+1, bn) = 0. Prove that it is a geometric se-

quence with a common ratio of –ϕ or 1/ϕ.

z Exercise 1 .57: Properties of M (a, b)
Prove:

 1. M(a, 0) = aI
 2. M(0, b) = bΦ
 3. M(a, b) = aI + bΦ
 4. M(a, a) = aI + aΦ = aM(1, 1) = aΦ2

 5. M(ka, kb) = kM(a, b)
 6. M(αa, βb) = αM(a, 0) + βM(0, b) = αaI + βbΦ
 7. M(a, b) + M(c, d) = M(a + c, b + d)
 8. αM(a, b) + βM(c, d) = M(αa + βc, αb + βd)
 9. ΦM(a, b) = M(b, a + b)
 10. Φ−1M(a, b) = M(b − a, a)
 11. M(a, b)M(−b, a) = δ(a, b)Φ
 12. M(a, b)M(a + b, −b) = δ(a, b)I

z Exercise 1 .58: Identities in Matrix Versions
In the text we saw:

Ascertain that the above equations are true for matrix versions, namely:

x2 − (2a+ b)x+ δ(a, b) = 0

(1.2)ϕ = 1
2
(1+

√
5)

(1.3)1− ϕ = 1
2
(1−

√
5)

(1.7a)ϕ
2 + 1 = ϕ+ 2 = ϕ

√
5

(1.8)ϕ
3 = 2ϕ+ 1 = 2+

√
5

� = 1
2
[I+ R(5)]
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1

z Exercise 1 .59: Groups and Isomorphism
In this exercise, a and b are rational numbers, neither of which are 0.
A. Prove: The set of numbers of the form a+ b

√
5 along with the operation 

of multiplication is a commutative group.
B. Prove: The set of matrices of the form M(a − b, 2b) along with the stand-

ard multiplication operation between matrices is a commutative group.
C. Prove that the two groups are isomorphic.
D. Prove: The set of numbers of the form a+ b

√
5 together with the standard 

addition and multiplication operations between numbers forms a field.

z Exercise 1 .60: Norms
A. a and b are rational numbers. We denote: x = a + bϕ. Show/prove:
1. μ(1) = 1
2. μ(ϕ) = μ(1−ϕ) = 1
3. μ(a) = |a|
4. μ(bϕ) = |b|
5. μ(ϕn) = μ((1−ϕ)n) = 1
B. Prove: The set of numbers of the form a + bϕ, where a and b are integer 

numbers (neither of which are 0) and whose norm is 1, is a commutative 
group.

Answers, Hints and Partial Solutions

z Exercise 1 .2
 1. −ϕ , 1/ϕ
 2. ±ϕ
 3. −ϕ < x <ϕ
 4. ±1/ϕ
 5. −1/ϕ < x < 1/ϕ
 6. 4 solutions: ± ϕ ,± 1/ϕ
 7. −ϕ < x < −1/ϕ , 1/ϕ < x < ϕ
 8. ϕ2

 9. ϕ , − 1/ϕ
 10. ϕ, 1/ϕ
 11. aϕ, −a/ϕ
 12. 1/ϕ2, ϕ2

I−� = 1
2
[I− R(5)]

�2 + I = �+ 2I = �R(5)

�3 = 2�+ I = 2I+ R(5)
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 13. 2ϕ ,−2/ϕ
 14. ϕ/2, −1/2ϕ

z Exercise 1 .3
Solving this “systematically” is not necessary, since the solutions are obvious.
1. (−1, 0), (0,−1), (ϕ,ϕ),

(

− 1
ϕ
,− 1

ϕ

)

2. (1, 0), (0, 1), (−ϕ,−ϕ),
(

1
ϕ
, 1
ϕ

)

z Exercise 1 .4
Try using “prominent” solutions (± 1) and reducing their factors:
1. (x + 1) (x2 − x − 1) = 0
2. (x − 1 x2 − x − 1) = 0
3. (x − 1) (x2 + x − 1) = 0
4. (x + 1) (x2 + x − 1) = 0

z Exercise 1 .5
1. −iϕ, i

ϕ

2. iϕ, −i
ϕ

3. 4 solutions: ±iϕ,± i
ϕ

4. 4 solutions: ±
√
ϕ,± i√

ϕ

5. 4 solutions: ±i
√
ϕ,± 1√

ϕ

z Exercise 1 .6
Using Vieta’s theorem:
1. x2 − 2ϕ x +1 = 0
2. x2 − 2ϕ x + ϕ = 0
3. x2 + ϕx + ϕ2= 0
4. x2 − ϕ2x + ϕ = 0
5. ϕx2 − x − ϕ2 = 0 or x2 + (1−ϕ)x − ϕ = 0
6. ϕx2 − x + (1−ϕ) = 0
7. x2 − 2x −  ϕ = 0
8. x2 − 2x + ϕ − 1 = 0 or ϕx2 − 2ϕx + 1 = 0
9. ϕx2 − 2x − 1 = 0

z Exercise 1 .8
1. 2

√
ϕ

2. 1
3. ϕ

√
ϕ

4. 2ϕ
√
a

z Exercise 1 .9
√
ϕ or 1√

ϕ
   (Use Pythagoras theorem.)

Answers, Hints and Partial Solutions
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1
z Exercise 1 .10

Use the triangle inequality thrice and solve the resulting system.

z Exercise 1 .11
A. The solution is based on the triangle inequality and what is given.
B. Multiply the corresponding sides of the inequalities.

z Exercise 1 .12
1. First: ϕ2, second: 1

ϕ

2. First: ϕ , second: ϕ√
5

3. First: ϕ
2

2
, second: ϕ

2
.

4. 2ϕ2.
5. ϕ

z Exercise 1 .14
ϕ or 1–ϕ.

z Exercise 1 .15
A. L1 = 1, L2 = 3.
D. F1 = 1, F2 = 1.

z Exercise 1 .16
Both are ϕ/2.

z Exercise 1 .17
A. f(x) = (1 − x)–1 ⇒ f ’(x) = 1 + 2x + 3x2 + 4x3 + ⋯ = (x − 1)–2

B. First: ϕ3, second: 1/ϕ2.

z Exercise 1 .18
1. 

√
5
4

2. i
3. 1/2
4. –iϕ
5. 1
6. √5

z Exercise 1 .19

1. ±
(√

ϕ+ i√
ϕ

)

2. ±
(√

ϕ+ i√
ϕ

)

z Exercise 1 .21
The area is 

√
5 and the circumference is 4ϕ.
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z Exercise 1 .23
A. AH = 1, HC = 1

ϕ
, BH = 1√

ϕ

z Exercise 1 .26
Both are ϕ2.

z Exercise 1 .27
A. The diagonal of the rectangle is actually a long, narrow parallelogram 

with area = 1.

z Exercise 1 .29
B. DC = 1/ϕ, AD = 1.
C. A =36°, B = C =72°.

z Exercise 1 .30

z Exercise 1 .31
A. SN · NT = AN·NC.
B. Mark NT = x.
C. Use the law of cosines for triangles ANT, CNT.

z Exercise 1 .32
Mark MA = x and use the angle bisector theorem.
Alternatively, you can write tgC = 2, and prove: tg (C/2) = 1/ϕ.

z Exercise 1 .33
Mark BD = a, DC = x to calculate x using the Pythagorean theorem.

z Exercise 1 .34
A. ϕ ,

√
ϕ , ϕ

√
ϕ  (respectively).

B. –1/ϕ. You can use the law of cosines or first calculate sin ∠AFD.
C. DG = 1√

ϕ
 (You can use similar triangles.)

D. They have a common height, making it easier to perform the calculations.

z Exercise 1 .35
A. AF =

√
ϕ.

z Exercise 1 .38
A. Area of definition: R \ {–ϕ, 1/ϕ}.

 Intersections with the axes: (ϕ, 0), (−1/ϕ, 0), (0, 1).

ϕ
√
ϕ

Answers, Hints and Partial Solutions
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1
 Asymptotes: x = − ϕ , x = 1/ ϕ, y = 1.
 Increasing in intervals: (1/ϕ, ∞), (−ϕ,1/ϕ), (−∞, −ϕ) .

B. Both sides are equal to 5/2.

z Exercise 1 .40
A. 0, ± 1, ± 2
B. Minimum points: (ϕ, –2), (–1/ϕ, –2)

 Maximum points: (–ϕ, 2), (1/ϕ, 2)

z Exercise 1 .41
B. 

√
5

ϕ2

C. 
√
5ϕ

z Exercise 1 .44
0

z Exercise 1 .45
Both sides are equal to 2lnϕ.

z Exercise 1 .46
A. 1/ϕ2

B. 1/ϕ

z Exercise 1 .47

z Exercise 1 .48
B. Four points of intersection: (±ϕ, ± 1).
The four tangents: y =  ± ϕ x, ±  ϕ. Area of the diamond: 2 ϕ.

z Exercise 1 .49
A circle with center at (

√
5, 0) and radius 2.

z Exercise 1 .51
15. Work on each side separately.

z Exercise 1 .52
A. S = {ϕ, 1–ϕ}, S = ∅.
B. The equation obtained (for all) is x2 − kx − k2 = 0.
C. The lines are y = ϕx, y = (1–ϕ) x.

y = −ϕx + ϕ

√
5
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Answers, Hints and Partial Solutions

z Exercise 1 .53
The solution is (1,1). You don't have to solve it systematically, because the 
solution is obvious and it is unique because the determinant of the system is 
δ(a, b), and is different than 0 according to the conditions.

z Exercise 1 .54
A. Compare the ϕ coefficient (in the result) to 0.
B. Use the result of section A, or directly.

z Exercise 1 .55
A. Mark x = a+ bϕ, show that 2x − 2a− b = b

√
5, and square the two sides.

C. a + b (1–ϕ).

z Exercise 1 .59
A. Closure: (a+ b

√
5) (c+ d

√
5) = (ac+ 5bd)+ (ad+ bc)

√
5

 Associativity: Occurs in R.
 The identity element is 1+ 0 ·

√
5

 The inverse of a+ b
√
5 is a

a2 − 5b2
+ −b

a2 − 5b2

√
5

 (Also true when a = 0 or b = 0, but this must be examined separately!)
 It is important to first show that for all a and b (both not zero): a2 – 5b2 ≠ 0

z Exercise 1 .60
A. Question 5: Solve in a similar manner as Eq. (1.25).
B. The proof is identical to that in the text, where a and b are rational.
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2

A golden triangle is an isosceles  triangle in which the ratio of the side to the base is 
equal to the golden ratio.

z Introduction to Chapter 2
In this chapter we shall become acquainted with a pair of golden triangles and, 
naturally, combine it with plane trigonometry. The golden ratio will be expressed 
in terms of the trigonometric functions of angles that are multiples of 18°.

The chapter will conclude with a general analysis of the regular 5-sided poly-
gon (pentagon) and the pentagram (5-pointed star).

2.1   Wide and Narrow Golden Triangles

Note: When given an isosceles triangle, the first letter specifies the vertex angle 
(opposite the base). This convention also applies to the exercises.

Let us attempt to find an obtuse isosceles triangle, ABC, such that if  we re-
move a similar triangle, DAC, from it, the remaining triangle, BAD, will also be 
isosceles (see . Fig. 2.1).

Assuming that such a triangle exists (we shall prove its existence in the next 
section), we first determine what the ratios of their sides will be.

We denote: a = AB = AC = BD, b = DA = DC
We assume, as noted above, that �ABC ∼ �DAC, and thus obtain:

BC
AC

= AC
DC

a + b
a

= a
b

The Golden Triangle
(Daniel Briskman)
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2 .1 · Wide and Narrow Golden Triangles

This equation was already solved in Chap. 1 : a
b
= ϕ.

From a geometrical aspect, this result points to a number of facts:
z Point D divides segment BC in the golden ratio.
z The ratio of the length of the base to the side lengths of triangle ABC and tri-

angle DAC is ϕ.
z The ratio of the length of the side to the length of the base of triangle BAD is ϕ.

From this point on, we shall call triangle ABC (or any similar obtuse triangle) a 
wide golden triangle, and we shall call triangle BAD (or any similar acute triangle) 
a narrow golden triangle.
Thus, we can define the following:

A wide golden triangle is an obtuse isosceles triangle in which the ratio of the 
lengths of the base to the side is ϕ. A narrow golden triangle is an acute isosceles tri-
angle in which the ratio of the lengths of the side to the base is ϕ.

Another way to define a wide golden triangle:
ABC is a wide golden triangle if it is an obtuse isosceles trinangle such that when we 
remove from it an isosceles triangle ABD the remaining triangle DAC is similar to 
the triangle ABC (. Fig. 2.2).

Triangle BAD can also be similarly divided so as to produce two new golden 
triangles (one narrow and the other wide) DEA and EBD. We shall here make do 
with the equality: b

a − b
= ϕ.

A

B D Ca

a a
b

b

1 2

1 2

. Fig . 2 .1 The golden triangle

A

B D

E

a

a b−

b b b

. Fig . 2 .2 The golden triangle
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2.2   The Angles in Golden Triangles

In the previous section we assumed that golden triangles exist without actually 
being certain that they do, because we carried out a construction that was sup-
posed to achieve two things simultaneously: one of the inner triangles was should 
be similar to the original, and the second should be isosceles. By determining the 
various angles in . Fig. 2.1, we can show that such triangles exist. We shall there-
fore return to . Fig. 2.1 and label it as follows: B = C = α. Hence:

Now, in triangle ABD:

To summarize:
The angles of a wide golden triangle are 36◦, 108◦, 36◦, and the angles of a narrow 
golden triangle are 72◦, 36◦, 72◦.

Note that all the angles are multiples of 18◦.
Now, we shall divide triangle ADC into two right-angled triangles: DMC and 

DMA (. Fig. 2.3).

In triangle DMC:

A2 = C = α

D1 = A2 + C = 2α

A1 = D1 = 2α

A1 + B+ D1 = 180◦

2α+ α+ 2α = 180◦

α = 36◦

cos C = MC
DC

= a
2b

A

M

D C

2
a

b

2
a

. Fig . 2 .3 
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Therefore:

Hence we can conclude that:

Also:

2.3   Area Ratios

Let us again examine . Fig. 2.1, this time focusing on the relation between the 
areas of the triangles in the figure.

All three triangles have a common height (that which extends from angle A, 
and denoted by h). We can take advantage of this fact when doing the calcula-
tions. Thus we have:

Which gives us:

We explain these results in simple words:
z The ratio between the area of a wide golden triangle and the area of a narrow 

golden triangle contained therein (as in . Fig. 2.1) is ϕ.
z The ratio between the area of a narrow golden triangle and the area of a wide 

golden triangle that combine to form a wide golden triangle (as in . Fig. 2.1) is ϕ.

Now, we repeat the process described above, this time referring to . Fig. 2.2, 
where the common height extends from vertex D. We have:

In words:

(2.1a)cos 36◦ = ϕ

2

(2.1b)sin 54◦ = ϕ

2

cos 72◦ = 2 cos2 36◦ − 1 = 1
2
(ϕ2 − 2)

(2.2)cos 72◦ = sin 18◦ = 1
2
(ϕ2 − 2)

SABC = 1
2
(a+ b) h

SBAD = 1
2
ah

SDAC = 1
2
bh

SABC

SBAD

=
a+ b

a
= ϕ

SBAD

SDAC

=
a

b
= ϕ

SBAD

SEBD

=
a

b
= ϕ

SEBD

SDAE

=
b

a− b
=

1

ϕ− 1
= ϕ

2 .3 · Area Ratios
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z The ratio between the area of a narrow golden triangle and the area of a wide 
golden triangle contained therein (as in . Fig. 2.2) is ϕ.

z The ratio between the area of a wide golden triangle and the area of a nar-
row golden triangle that combine to form a narrow golden triangle (as in 
. Fig. 2.2) is ϕ.

2.4   Pentagons and Pentagrams

In regular pentagon ABCDE, we draw diagonals AC, EC, and AD (. Fig. 2.4).
It can be shown that triangles DEC, EAD, and BCA are isosceles and that they 
are congruent.
We shall use the formula to calculate the angles of a regular polygon with n sides: 

180◦ (n − 2)
n

 and use n = 5. We obtain:

Therefore:

Hence, triangles EAD and DEC are wide golden triangles.
Similarly, by calculating the angles in triangle ACD, we see that it is a narrow 
golden triangle.
We now draw the remaining diagonals to obtain a five-pointed star inscribed in 
the pentagon.
In the illustration that we obtained, there is a large quantity of golden triangles:

∠AED = ∠EDC = 108◦

∠EAD = ∠EDA = ∠ECD = 36◦

A

B

C D

E

F

. Fig . 2 .4 
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2 .4 · Pentagons and Pentagrams

z narrow and small (such as EGF, DFJ, total 5)
z narrow and medium in size (such as EJD, CDF, total 10)
z narrow and large in size (such as ACD, BDE, total 5)
z wide and small (such as JCD, FDE, total 5)
z wide and medium in size (such as JEB, DEC, total 10)

A total of 35 golden triangles!
The “heart” of pentagram HGFJI is also a regular pentagon, therefore one can 
repeat the process to obtain a smaller star ad infinitum.

A

B

C D

E

F

J

I

H G

. Fig . 2 .5 

. Fig . 2 .6 
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Exercises for Chapter 2

Note: when given an isosceles triangle, the first letter (on the left) specifies the ver-
tex angle (opposite the base).

The exercises in chapter two aim to improve the understanding of the role of 
golden triangles in geometry.

z Exercise 2 .1: Isosceles Trapezoid
 ABCD is an isosceles trapezoid with large base DC and small base AB. Di-
agonal BD divides the trapezoid into two golden triangles: ADB (wide) and 
DCB (narrow). 

A. Prove that:

(You can assume without loss of generality that AB = 1).

B. The sides of the trapezoid are extended until they meet at point M. Prove 
that:

C. The diagonals of the trapezoid meet at point P. Prove that:

z Exercise 2 .2: Deltoid
 ABCD is a convex deltoid golden triangle composed of narrow golden trian-
gle ADB and wide golden triangle CDB (common base DB). Prove that:

(You can assume without loss of generality: DB = 1.)

SABCD

SDCB
=

SDCB

SADB
= ϕ

SMDC

SABCD
= ϕ

�ADB ∼= �PDC

SABD

SABCD
=

ϕ

2

SABCD

SCBD
= 2ϕ2

A B

D C
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z Exercise 2 .3: Narrow Golden Triangle and Triangle with 54°
 ABC is a narrow golden triangle. D is a point on the continuation of base CB 
such that ∠ADB = 54°
A. Prove:

 RADC = RADB = BC
B. Prove:

(You can assume without loss of generality: BC = 1.)

z Exercise 2 .4: Wide Golden Triangle and Narrow Golden Triangle
ABC is a golden triangle. D is a point on BC such that ADC = 54°.
A. Prove:

 RADC = RABD
B. Prove:

z Exercise 2 .5: “Adjacent” Golden Triangles
 OCB and OBA are two golden triangles (the first is wide, the second narrow) 
with common side OB. 

A

A

BC

O

. Prove:

B. Prove:

C. Prove:

(You can assume without loss of generality: AB = 1.)

z Exercise 2 .6: Recognizing Golden Triangles
 In acute isosceles triangle ABC, D is a point on side AC such that BD bisects 
angle B.
Prove: If  AD = BC, then triangles ABC, BCD, and DAB are golden triangles.

SADC

SABC
=
SABC

SABD
= ϕ

SADC

SABD
= 2ϕ

SOCB = SABC

SOBA = SOCA

SOCB

SOBA
=
SABC

SOCA
= ϕ

SOCBA

SOCB
= ϕ

Exercises for Chapter 2
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z Exercise 2 .7: Bisector of Wide Golden Triangle
 In wide golden triangle ABC, the length of base BC is ϕ, AH is the height to 
the base, and M is a point on side AC such that BM bisects angle B and inter-
sects AH at point T. Prove that:
1. AM =

1

ϕ2
, MC =

1

ϕ

2. BT

TM

= ϕ
2

3. S

MBC

S

ABM

= ϕ

4. S

BTH

S

BAT

=

ϕ

2

z Exercise 2 .8: Circumcircle and Incircle
 Prove that in a wide golden triangle, the ratio of the radius of the circumcircle 
(the circumradius) to the radius of the incircle is 2ϕ.

z Exercise 2 .9: Golden Triangle Inscribed in a Circle (A)
 ABC is a golden triangle. D is a point on side AC such that BD bisects angle 
B. The extension of segment BD intersects the circle at point E. Lines AE and 
BC intersect at point F, which is outside the circle.
A. Prove:

B. Prove that triangles ABC and BEA are congruent golden triangles.
C. Prove that triangles ADE and BCD are congruent golden triangles.

z Exercise 2 .10: Golden Triangle Inscribed in a Circle (B)
Narrow golden triangle ABC is inscribed in a circle with center O.
A. Prove:

B. Deduce:

z Exercise 2 .11: Golden Triangle Inscribed in a Circle (C)
 ABC is a narrow golden triangle. DC is the diameter, which intercepts side AB 
at point E.
Prove:

FC

CB
=

FB

FC
= ϕ

SOBC

SABOC
=

ϕ

2

SABC

SOBC
=

√
5

SABC

SABOC
=

ϕ

√
5

2

SABC

SBCE
=

SBCE

SAEC
= ϕ
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z Exercise 2 .12: Golden Triangle Intersecting a Circle
 Base BC of a narrow golden triangle is the diameter of a circle with radius 
length ½. Sides AB and AC of the triangle intersect the circle at points E and 
F, respectively.
Calculate the lengths of segments BE, EA, EF.

z Exercise 2 .13: Circle Inscribed in a Golden Triangle
A circle with radius 1 is inscribed in a narrow golden triangle.
Prove: The distance between the center of the circle and the top vertex is 2ϕ.

z Exercise 2 .14: A Semicircle Inscribed In a Golden Triangle
 ABC is a narrow golden triangle. A “semi-circle” with center is inscribed in the 
triangle such that it is tangent to base BC at point E and to side AC at point D.
A. Prove:

B. Prove:

(You can assume without loss of generality: BC = 1.)

z Exercise 2 .15: Golden Triangles and a Circle
 Triangle ABC is inscribed in a circle. A line tangent to the circle at point C in-
tersects the continuation of segment AB at point D.
Given: AC = AB = CD
 Show that triangles ABC, BDC, and ACD are golden triangles. (You must 
make a distinction between two cases!)

z Exercise 2 .16: A Geometric Series
Calculate the following:

z Exercise 2 .17: Trigonometric Equations
A. Solve the following equation

where 0° < α < 180°.
B. Solve the following equation

where 0° < α < 180°.

AD = DC = 1/2 AC

SABC

SODEC
= ϕ

1+ cos 36◦ + cos2 36◦ + cos3 36◦ + . . .

1− sin 18◦ + sin2 18◦ − sin3 18◦ + . . .

4 cos2 α− 2 cos α− 1 = 0

4 cos2 α+ 2 cos α− 1 = 0

Exercises for Chapter 2
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z Exercise 2 .18: Multiples of 18°
Prove that

z Exercise 2 .19: Calculations of Sine and Cosine
A. Prove that:

B. Show that it is impossible to write sin36° = a + bϕ if  a and b are rational 
numbers. Show the same for sin72°.

z Exercise 2 .20: A Regular Decagon
 Given a regular decagon with side length 1 and radius of its circumcircle R, 
prove that R = ϕ.

Answers, Hints and Partial Solutions

z Exercise 2 .1
A. Make use of the common height.

z Exercise 2 .3
B. Pay attention to the following two points:
– Triangle CAD is isosceles.
– The three triangles have the same height.

z Exercise 2 .5
Note the common heights.

z Exercise 2 .6
Mark AB = AC = a, BC = AD = b, and use the angle bisector theorem.

z Exercise 2 .7
1. You Can Use the Angle Bisector Theorem or the Law of Sines.

z Exercise 2 .9
Calculate the angles.

z Exercise 2 .10
A. Note that OA = OB = OC = R.
B. SABC = SABOC + SOBC.

{

cos

(

36
◦
k

)

| k ∈ Z

}

=
{

sin

(

18
◦
+ 36

◦
k

)

| k ∈ Z

}

= {ϕ/2,−ϕ/2, 1/2ϕ,−1/2ϕ, 1,−1}

sin 36◦ = cos 54◦ =
1

2

√

3− ϕ

sin 72◦ = cos 18◦ =
1

2

√

2+ ϕ
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z Exercise 2 .11
Calculate all the angles.

z Exercise 2 .12

z Exercise 2 .14
A. Calculating the angles will lead to the conclusion that triangle OCA is 

isosceles.

z Exercise 2 .16
The first: 2ϕ2, the second: 2/ϕ2.

z Exercise 2 .17
A. 36°, 108°
B. 72°, 144°

EF = ϕ

2
, EA = ϕ

2

2
, BE = 1

2ϕ

Answers, Hints and Partial Solutions
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Fibonacci reproduction in rabbits 
(7https://en.wikipedia.org/wiki/Fibonacci_number#/media/File:FibonacciRabbit.svg)

z Introduction to Chapter 3
In this chapter we shall part from the geometric aspects of the golden ratio and 
start exploring the Fibonacci sequence.

The proofs of many beautiful relationships between the members of the se-
quence are based on the linearization of the powers of golden ratio, and the prin-
ciple of comparing the rational coefficients equation shown in the previous chap-
ter. Developing formulas for the sums of the sequence will be based on “tele-
scopic cancellation.” (Other methods will be offered in the exercises.)

Expanding the sequence for negative indices (which is interesting in itself) will 
enable us to discuss isomorphism in a new context. (The two last sections can be 
skipped in the first reading.)

The exercises will include both technical aspects and additional theoretical de-
velopments to those in the text.

We will also extend the golden ratios and geometrical figures to of Fibo-
nacci and Lucas numbers. The reason for this is that the techniques applied to the 
golden ratios turn out to be very useful for this related topic.

3.1   The Fibonacci Sequence and the Exponents of the Golden 
Ratio

The sequence (Fn), named after Leonardo Fibonacci (c, 1180-c. 1250), is recur-
sively defined as follows

Thus, the beginning of the sequence looks like:

(3.1)F1 = F2 = 1,Fn+2 = Fn+1 + Fn (n ≥ 1).

1, 1, 2, 3, 5, 8, 13, 21, 34, 55, . . .

https://en.wikipedia.org/wiki/Fibonacci_number#/media/File:FibonacciRabbit.svg
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Below are some sequential powers of ϕ, repeatedly using the equality of   
ϕ
2 = ϕ+ 1:

From looking at the sequence up to this point, it seems that successive powers of 
ϕ can be written as linear expressions ofϕ, where the coefficients of ϕ are sequen-
tial members of the Fibonacci sequence. It is interesting to note that the “free 
numbers,” which are not coefficients ofϕ, are also members of the Fibonacci se-
quence. We define F0 = 0 in order to apply mathematical induction. It is consist-
ent since F2 = F1 + F0 holds.

We shall use induction to prove that our hypothesis is correct, in other words, 
that the following holds for each natural n:

Proof It is obvious that the following holds: ϕ1 = F1ϕ+ F0 .
We assume: ϕk = Fkϕ+ Fk−1  and shall prove: ϕk+1 = Fk+1ϕ+ Fk :

Now, we notice that in the equations above, we only make use of the fact that 
ϕ satisfies the golden equation. The expression (1− ϕ) also satisfies the golden 
equation. Hence, we can conclude:

It is worth observing the following:
A. ϕn and  (1− ϕ)n  are normalized  ϕ -numbers since they are products of nor-

malized φ-numbers, c.f  (1.23) or (1.25).
B. (1− ϕ)n is the companion of  ϕn, denoted by: (ϕn)∗ = (1− ϕ)n. As defined in 

7 Chapter 1 (1.12a)
C. ϕn and (1− ϕ)n are normalized ϕ

n-numbers, that is to say: 
µ(ϕn) = µ[(1− ϕ)n] = 1  (see Exercise 1.60 in 7 Chap. 1).

ϕ
1 = 1 · ϕ+ 0

ϕ
2 = 1 · ϕ+ 1 (just shown)

ϕ
3 = ϕ

2 + ϕ = 2ϕ+ 1 (An easy exercise)

ϕ
4 = 2ϕ2 + ϕ = 3ϕ+ 2

ϕ
5 = 3ϕ2 + 2ϕ = 5ϕ+ 3

ϕ
6 = 5ϕ2 + 3ϕ = 8ϕ+ 5

(3.2)ϕ
n = Fnϕ+ Fn−1

ϕ
k+1 = ϕϕ

k

= ϕ (Fkϕ+ Fk−1)

= Fkϕ
2 + Fk−1ϕ

= Fk (ϕ+ 1)+ Fk−1ϕ

= (Fk ϕ+ Fk−1)ϕ+ Fk

= Fk+1ϕ+ Fk

(3.2b)(1− ϕ)n = Fn(1− ϕ)+ Fn+1 = −Fnϕ+ Fn+1
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3.2   Binet’s Formula

Our goal in this section is to find a formula for the sequence Fn.
This formula is named after Jacques Binet (1786–1856).

z First Proof (Using Powers of the Golden Ratio)
We write the two results obtained in the previous section adjacent to each other:

We subtract one equation from the other to obtain:

Hence:

(Also for n = 0).
Since (−a)2n−1 = −a2n−1, (−a)2n = a2n for all real a and all natural n, we obtain:

We now substitute  ϕ  in (3.3a) with its numeric value and obtain:

It is quite surprising that such a complicated looking formula yields only nat-
ural numbers!

z Second Proof (Using Analytical Geometry)
We consider the straight line whose equation is

According to (3.2), this line passes through the two points (ϕ,ϕn) and  
(1− ϕ, (1− ϕ)n).

(3.2a)ϕ
n = Fnϕ+ Fn+1

(3.2b)(1− ϕ)n = Fn (1− ϕ)+ Fn+1

ϕ
n − (1− ϕ)n = Fn (2ϕ− 1)

ϕ
n − (1− ϕ)n = Fn

√
5

(3.3a)Fn = 1√
5
[ϕn − (1− ϕ)n]

F2n = 1√
5
[ϕ2n − (ϕ− 1)2n]

F2n−1 = 1√
5
[ϕ2n−1 − (ϕ− 1)2n−1]

(3.3b)Fn = 1√
5

[(

1+
√
5

2

)n

−
(

1−
√
5

2

)n]

y = Fnx + Fn−1.
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Therefore, the slope of the line is:

On the other hand, the slope is Fn (the coefficient of x in the equation for the 
straight line), therefore:

z Third Proof (Classic Proof)
We shall look for a geometric sequence (xn) where the following recursive equa-
tion holds:

Substituting into the equation gives:

It is possible to validate that for the entire sequence (fn)  with formula  
fn = αϕ

n + β (1− ϕ)n, and where coefficients α and β are constants the above re-
cursive equation holds. The converse (in this case, f0 and f1 must be given) is also 
true and this can be validated.

We now use (f0, f1) = (F0, F1) = (0, 1) and arrive at the following system of 
equations:

From the first equation, α = −β. We substitute this in the second equation:

Hence:

From here we obtain:

ϕ
n − (1−ϕ)n

2ϕ− 1
= ϕ

n − (1−ϕ)n√
5

Fn = 1√
5
[ϕn − (1− ϕ)n]

fn+2 = fn+1 + fn.

xn+2 = xn+1 + xn

x2 = x1 + 1

x = ϕ, 1− ϕ

αϕ
0 + β (1− ϕ)0 = 0

αϕ
1 + β (1− ϕ)1 = 1

αϕ− α (1− ϕ) = 1

α (2ϕ− 1) = 1

α = 1√
5

β = − 1√
5

Fn = 1√
5
[ϕn − (1− ϕ)n] Q.E.D.

3 .2 · Binet’s Formula
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3.3   Key Relationships Between Members of the Sequence

The Fibonacci sequence has many lovely features, and in this section, we shall 
point out the main ones. (Additional features will become apparent in the exer-
cises.)

For the proofs, we shall avail ourselves of Eqs. (3.2):

z Property 1: Cassini Formula
(Jean-Dominique Cassini, 1625–1712)

Proof We first write both equalities:

We then multiply the respective sides of each equation, and obtain, using 

The next relationship is important: In (1.10), δ was defined as:

Hence, Cassini’s formula may be written as follows:

The last equation corresponds nicely with the fact that µ(ϕn) = 1, as mentioned 
at the end of 7 Chap. 1 (see (1.24’)).

z Property 2: Even and Odd Indices

ϕ
n = Fnϕ+ Fn+1

(1− ϕ)n = Fn (1− ϕ)+ Fn+1 = −Fnϕ+ Fn+1

(3.4a)Fn+1Fn−1 − F
2

n
= (− 1)n

(3.2a)ϕ
n = Fnϕ+ Fn+1

(3.2b)(1− ϕ)n = Fn (1− ϕ)+ Fn−1

ϕ(1− ϕ) = −1

ϕ
n (1− ϕ)n = (Fnϕ+ Fn−1) [Fn(1− ϕ)+ Fn−1]

(−1)n = −F2n + FnFn−1ϕ+ FnFn−1 (1− ϕ)+ F2n−1

(−1)n = −F2n + FnFn−1 + F2n−1

(−1)n = −F2n + Fn−1 (Fn + Fn−1)

(−1)n = −F2n + Fn−1Fn+1

δ(Fn−1, Fn) = F2n−1 + FnFn−1 − F2n

= Fn−1 (Fn−1 + Fn)− F2n

= Fn−1Fn+1 − F2n

= (−1)n

(3.4b)δ(Fn−1,Fn) = (− 1)n

(3.5a)F2n = F
2

n+1
− F

2

n−1
= Fn (Fn+1 + Fn−1)
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Proof On the one hand:

On the other hand:

Based on the principle of comparing the rational coefficients of an equation 
(since this is about two ϕ-numbers), the following must be true:

z Property 3: “Index Sum”

It is obvious that if  the first equality is true, then the second must automatically 
hold true because Fn+m = Fm+n.

Therefore, we shall prove the first.
On one hand:

On the other hand:

Therefore, the following must hold:

By substituting m = n, we get “back” equation (3.5a).
(In 7 Chap. 5 we present a simpler proof for (3.5a)).

(3.5b)F2n−1 = F
2

n
+ F

2

n+1

(ϕn)2 = ϕ
2n = F2nϕ+ F2n−1

(ϕn)2 = (Fnϕ+ Fn−1)
2

= F2nϕ
2 + 2FnFn−1ϕ+ F2n−1

= F2nϕ+ F2n + 2FnFn−1ϕ+ F2n−1

= (F2n + 2FnFn−1)ϕ+ (F2n + F2n−1)

F2n = F2n + 2FnF2n−1

F2n−1 = F2n + F2n−1

(3.6)Fn+m = FnFm+1 + Fn−1Fm = Fn+1Fm + FnFm−1

ϕ
n
ϕ
m = ϕ

n + m = Fn + mϕ+ Fn + m−1.

ϕ
n
ϕ
m = (Fnϕ+ Fn−1) (Fmϕ+ Fm−1)

= FnFmϕ+ FnFm + FnFm−1ϕ+ Fn−1Fmϕ+ Fn−1Fm−1

= (FnFm + FnFm−1 + Fn−1Fm)ϕ+ FnFm + Fn−1Fm−1

Fn + m = FnFm + FnFm−1 + Fn−1Fm

= Fn (Fm + Fm−1) + Fn−1Fm

= FnFm + 1 + Fn−1Fm

3 .3 · Key Relationships Between Members of the Sequence
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3.4   Sums

The formulas for the sum of the first n elements, the first n elements in the even 
positions and the first n elements in the odd positions, can be obtained using “tel-
escopic cancellation”:

To summarize the results:

Now we proceed to calculate the sum of squares of elements. We shall prove:

Notice first that:

Therefore:

Here is a neat geometric depiction of the last equalities (. Fig. 3.1):

F1 + F2 + F3 + · · · + Fn

= (F3 − F2)+ (F4 − F3)+ · · · + (Fn + 2 − Fn−1)

= Fn + 2 − F2

= Fn + 2 − 1

F2 + F4 + F6 + · · · + F2n

= (F3 − F1)+ (F5 − F3)+ · · · + (F2n + 1 − F2n−1)

= F2n + 2 − F1

= F2n + 1 − 1

F1 + F3 + F5 + · · · + F2n−1

= (F2 − F0)+ (F4 − F2)+ · · · + (F2n − F2n−2)

= F2n − F0

= F2n

(3.7a)F1 + F2 + F3 + · · · + Fn = Fn+2 − 1

(3.7b)F2 + F4 + F6 + · · · + F2n = F2n+1 − 1

(3.7c)F1 + F3 + F5 + · · · + F2n−1 = F2n

(3.8)F
2

1
+ F

2

2
+ F

2

3
+ · · · + F

2

n
= FnFn+1

F2n = FnFn = Fn (Fn+1 − Fn−1) = FnFn+ 1 − FnFn−1

F21 + F22 + F23+ · · · + F2n

= (F1F2 − F1F0)+ (F2F3 − F2F1)+ · · · + (FnFn + 1 − FnFn−1)

= FnFn + 1 − F1F0

= FnFn + 1
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For example, for the equation (3.8), the gray rectangle is:

For the equation (3.7c): F1 + F3 + F5 = F6.

3.5   Extending the Sequences

The purpose of this section is to extend the (Fn) sequences to use negative integer 
indices.

We can approach this extension in two ways:
z As a new sequence that is denoted as (F−n). (“Separate” from the (Fn) se-

quences.)
z As a function F, defined over Z (more interesting!).

Because sequences (Fn) is defined by:

We must, first and foremost, ensure that the following equation,

F1=1, F2=1, F3=2, F4=3, F5=5, F6=8, F7=13

F5F6 = F21 + F22 + F23 + F24 + F25

(3.1)F1 = F2 = 1, Fn+2 = Fn+1 + Fn (n ≥ 1)

Fm+2 = Fm+1 + Fm,

. Fig . 3 .1 Geometric depiction

3 .5 · Extending the Sequences



64 Chapter 3 · The Fibonacci Sequence

3

holds even when m is assigned negative values (integers), namely:

(n are natural numbers.)
(The case for m = 0 is covered in the previous sections, i.e., F0 = 0.)
We substitute n = 1 and get:

We substitute n = 2 and get:

We substitute n = 3 and get:

We substitute n = 4 and get:

for every natural n.
While it is possible to establish that the following is indeed true for every natural 
n (which is what we wanted):

we can take it further:
At the beginning of this chapter, we showed that for every natural n:

Therefore, what we would expect is that the following hold for every natural n:

Hence (here we leave what is known and make some suitable changes):

We define recursively, for every natural number n that

F−n + 2 = F−n + 1 + F−n

F1 = F0 + F−1 ⇒ 1 = 0+ F−1 ⇒ F−1 = 1

F0 = F−1 + F−2 ⇒ 0 = 1+ F−2 ⇒ F−2 = −1

F−1 = F−2 + F−3 ⇒ 1 = −1+ F−3 ⇒ F−3 = 2

F−2 = F−3 + F−4 ⇒ −1 = 2+ F−4 ⇒ F−4 = −3

(3.9)F−n = (− 1)n+1
Fn

F−n + 2 = F−n + 1 + F−n,

ϕ
n = Fnϕ+ Fn−1

(1− ϕ)n = −Fnϕ+ Fn+1.

(3.10a)ϕ
−n = F−nϕ+ F−n−1

(3.10b)(1− ϕ)−n = −F−nϕ+ F−n+1

ϕ
n = Fnϕ+ Fn−1

(−1)n(−ϕ)n = Fnϕ+ Fn−1

(1− ϕ)−n = (−1)n (Fnϕ+ Fn−1)

(1− ϕ)−n = −F−nϕ+ F−n+1

F−n = F−(n−2) − F−(n−1) = F−n+2 − F−n+1
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and this makes the equality

hold also for negative n, and then prove by induction on the natural numbers n 
that:

For both developments, we made use of Eq. (3.9).

The result is the following:

for each integer m!

Now, observe the following interesting point. We proved Binet formula and the 
resultant relationships using:

And:

where n is a natural number, but we did not use this fact in any of the proofs! How-
ever, since the above three equalities also hold for negative indices (and exponen-
tial), we can conclude that all the proofs are also valid for integer negative indices 
(and exponential). Hence, the results are respectively valid. In particular, the fol-
lowing:
z Binet’s formula (for integer m):

z Cassini’s formula (for integer m):

Similarly:
A. ϕm and (1− ϕ)m are ϕ-numbers.

Fn+2 = Fn + Fn+1

(1− ϕ)n = −Fnϕ+ Fn+1

(−1)n(ϕ− 1)n = −Fnϕ+ Fn+1

(ϕ− 1)n = (−1)n (−Fnϕ+ Fn+1)

ϕ
−n = F−nϕ+ F−n−1

(3.11a)ϕ
m = Fmϕ+ Fm−1

(3.11b)(1− ϕ)m = −Fmϕ+ Fm+1

(3.2a)ϕ
n = Fnϕ+ Fn+1

(3.2b)(1− ϕ)n = Fn (1− ϕ)+ Fn−1

(3.1)Fn+2 = Fn+1 + Fn

(3.12)Fm = 1√
5
[ϕm − (1− ϕ)m]

(3.13)δ(Fm−1,Fm) = Fm+1Fm−1 − F
2

m
= (− 1)m

3 .5 · Extending the Sequences
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B. (1− ϕ)m is the companion of ϕm, that is to say (ϕm)∗ = (1− ϕ)m.
C. ϕm and (1− ϕ)m are normalized ϕ-numbers, i.e.: µ(ϕm) = µ[(1− ϕ)m] = 1.

(This is exactly the same as for the natural numbers only.)

Now, it is obvious that the set {ϕm|m ∈ Z} along with multiplication is a (commu-
tative) group.
In particular, the unit element is ϕ0 and the inverse element of ϕm is ϕ−m. There-
fore, since

the set {Fmϕ+ Fm−1|m ∈ Z} with multiplication is a commutative group. In par-
ticular, the unit element is F0ϕ+ F−1 and the inverse element of Fmϕ+ Fm−1 is 
F−mϕ+ F−m−1. (This holds even if  m is negative. Please check!).

This group is actually a subgroup of the group of ϕ-numbers.

3.6   Matrices and the Fibonacci Sequence

In 7 Chap. 1 we saw that the set of matrices of type M(a, b) (a and b are rational 
numbers and at least one of them is not zero), along with standard multiplica-
tion between matrices is a commutative group that is isomorphic to the group of 
ϕ-numbers.

It is possible to check that the set {M(Fm−1, Fm)|m ∈ Z} (note that m must be a 
integer) is a commutative group in itself, meaning that the subgroup of the set of 
matrices of type M(a, b) is also a commutative group. In particular:
z The unit element is:

z The inverse element of M(Fm−1, Fm), which we shall calculate using the for-
mula

is:

(even if  m is negative.)

Now, we shall give special attention to the golden matrix which was defined at the 
end of 7 Chap. 1:

(3.11a)ϕ
m = Fmϕ+ Fm−1

M(F−1, F0) = M(1, 0) = I

(1.14b)M−1(a, b) = δ−1(a, b)M(a+ b,−b)

M−1(Fm−1, Fm) = δ−1(Fm−1, Fm)M(Fm+1,−Fm)

= (−1)mM(Fm+1,−Fm) (based on(3.13))

= M(F−m−1, F−m) (based on (3.9))

(1.15)� = M(0, 1) = M(F0, F1)
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We calculate the first powers of the matrix and obtain:

Therefore, we can assume that:

Or explicitly:

It is possible to prove this conjecture by using induction.
From this we conclude:

for every natural n. Similarly:

We point out that if  A is an invertible square matrix, we can show that

and that both can be represented by A−n. This is not being overly pedantic, since 
the multiplication operation (and hence the exponential functions) between ma-
trices does not necessarily uphold the attributes of multiplication between num-
bers. For example, matrix multiplication is not commutative.

Since

We can add together the three equalities to form one:

Or, more precisely:

where m is an integer.
If  we connect what we have just written and what we observed in the previous 
section and at the beginning of this section, we can conclude that the group of 
matrices {�m|m ∈ Z} is isomorphic to the group of numbers {ϕm|m ∈ Z}, in the 
same way that the group of matrices of type M(a, b) when a and b are rational 
numbers, is isomorphic to the group of ϕ -numbers.

�2 = M2(0, 1) = M(1, 1)

�3 = M3(0, 1) = M(1, 2)

�4 = M4(0, 1) = M(2, 3)

(3.14a)�n = M
n(0, 1) = M(Fn−1,Fn)

(3.14b)�n =
(

Fn−1 Fn

Fn Fn+1

)

�−n = (�− I)n = M−1 (Fn−1, Fn) = (−1)n (Fn+1,−Fn) = M(F−n−1, F−n)

(3.15)(I−�)n = M(Fn+1,−Fn)

(A−1)n = (An)−1

�0 = I = M(1, 0) = M(F−1, F0)

(3.16a)�m = M
m(0, 1) = M(Fm−1,Fm)

(3.16b)�m =
(

Fm−1 Fm
Fm Fm+1

)

3 .6 · Matrices and the Fibonacci Sequence
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Since this is a chapter about the Fibonacci sequence, we shall develop this nexus 
further.
At the end of 7 Chap. 1, we pointed out that the golden matrix behaves like ϕ,  
as the following holds:

(This is the matrix version of ϕ2 = ϕ+ 1)
Since

(n remains natural), we would like the following to hold:

The first equality we can write as:

(Check!)
The second equality can be written as:

(Check!)
We now subtract (3.17b) from (3.17a) to get:

R(5) is the fifth-root matrix that was defined at the end of the 7 Chap. 1.
We have finally derived the matrix version of Binet’s formula!
We could have proven those relationships by using the golden ratio and its expo-
nents and by using the golden matrix and its exponents instead. This is not sur-
prising in light of the isomorphism that we have proved previously.

For example, we shall use matrices to prove this relationship, with which we 
are already familiar:

(1.16)�2 = �+ I

ϕ
n = Fnϕ+ Fn−1

(

−1
ϕ

)n
= (1− ϕ)n = −Fnϕ+ Fn+1

(3.17a)�n = FnF+ Fn−1I

(3.17b)(�−1)n = (I−�)n = −Fn�+ Fn+1I

M(Fn−1, Fn) = Fn M(0, 1)+ Fn−1 M(1, 0)

M(Fn+1,−Fn) = −Fn M(0, 1)+ Fn+1 M(1, 0)

�n − (I −�)n = 2Fn�+ (Fn−1 − Fn+1) I

= 2Fn�− FnI

= Fn (2�− I)

(3.18)�n − (I−�)n = FnR

(3.6)Fn+m = FnFm+1 + Fn−1Fm = Fn+1Fm + FnFm−1
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On the one hand:

On the other hand:

Comparing the results proves the relationship (3.6).
It can also be shown that:

A special case of it is:

Exercises for Chapter 3

z Note
 n, m, p, and k are usually natural numbers. If not, it will be clear from the con-
text.

z Exercise 3 .1: The Sequences of Numerators of (Fn)

Calculate: lim
n→∞

Fn+1

Fn
.

z Exercise 3 .2: Recursive Sequence
The sequence (an) is defined by

(This sequence was first discussed in the second section of the 7 Chap. 1).
A. Calculate a2, a3, a4. Suggest an appropriate hypothesis and prove it.
B. Deduce limn → an.
C. Repeat the previous problems using the sequences (bn) and (cn) that are de-

fined by

�n�m =
(

Fn−1 Fn
Fn Fn+1

)(

Fm−1 Fm
Fm Fm+1

)

=

�n�m =
(

Fn−1Fm−1 + FnFm Fn−1Fm + FnFm+1

FnFm−1 + Fn+1Fm FnFm + Fn+1Fm+1

)

�n�m = �n+m =
(

Fn+m−1 Fn+m

Fn+m Fn+m−1

)

M(Fm−1, Fm)M(Fn−1, Fn) = M(Fm+n−1, Fm+n)

M−1(Fm−1, Fm) = M(F−m−1, F−m)

a1 = 1 , an+1 = an + 1
an

b1 = 1 , bn+1 = 1
1+ bn

Exercises for Chapter 3
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z Exercise 3 .3: Difference of 4th-Power Exponents
Prove: F4n+1 − F4n = F2n+1Fn+2Fn−1.

z Exercise 3 .4: Exponential Functions
The number R(n) = Fn/Fn+1 and the function fn is defined by fn(x) = XR(n).
A. Show that the equation of the tangent to the graph of the function at the 

point where x = 1 is Fnx− Fn+1y+ Fn−1 = 0

B. Calculate lim
n→∞

´ 1
0 fn(x) dx

z Exercise 3 .5: Polynomials with Coefficients that are Fibonacci Numbers
Given the polynomial

A. Prove:

B. Prove that the following holds (for all x and all n):

z Exercise 3 .6: Relationship Between Two Powers of ϕ
Prove For all n and for all k:

Fnϕ
k − Fkϕ

n = Fn(1− ϕ)k − Fk(1− ϕ)n = FnFk+1 − FkFn+1

z Exercise 3 .7: Analogy (a)
The sequence (an) exists for all n ≥ 0:

A. By subtracting the respective sides of the two equations find the formula 
for the sequence.

B. Calculate the first and second elements.
C. Substitute n = 2 into the equations and calculate p.
D. What do you conclude?

z Exercise 3 .8: Analogy (b)
The series (an) exists for all n ≥ 0:

c1 = 1 , cn+1 = 2cn + 1
cn + 1

fn(x) = Fn + Fn−1x+ Fn−2x
2 + · · · + F1x

n−1

xn+1 − Fn+1x − Fn = (x2 − x − 1) fn(x)

fn+1(x) = x fn(x)+ Fn+1

pn = anp+ an−1

(1− p)n = an (1− p)+ an−1

p  = 0, 1
2
, 1.

pn = anp+ an−1

(

−1
p

)n
= an

(

−1
p

)

+ an−1
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where p  = 0,±i,±1.
A. By subtracting the respective sides of the equations find the formula for the 

sequence.
B. Calculate a0 , a1 , a2  , and a3.
C. Prove: If  a2 = 1, then p = ϕ, − 1/ϕ.
D. Calculate α and β so that the following holds for all n:

Prove: If  1 = α, then p = ϕ, −1
ϕ

.

z Exercise 3 .9: Additional Sequence?
In this chapter we showed that:

 The purpose of this exercise is to find and characterize all the sequences an 
and bn in which the following hold:

A. Prove:

B. Deduce that the sequences (an − Fn) and (bn − Fn) are geometric.
C. Deduce:

D. Prove:
 If  an = bn for all n, then an = bn = Fn

E. Prove:
 If  an b = n for all n, then an = bn = Fn

z Exercise 3 .10: Cassini Formula
Prove Cassini’s formula:
A. Using Binet’s formula.
B. By induction.

an+2 = αan+1 + βan

(3.2a)ϕ
n = Fnϕ+ Fn−1

(3.2b)(1− ϕ)n = −Fnϕ+ Fn+1

ϕ
n = anϕ+ an−1

(1− ϕ)n = −bnϕ+ bn+1

an − Fn = (1− ϕ)(an−1 − Fn−1)

bn − Fn = ϕ(bn−1 − Fn−1)

an = Fn + a0(1− ϕ)n

bn = Fn + b0ϕ
n

Exercises for Chapter 3
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z Exercise 3 .11: Identity for Odd Indices
Prove:

If  and only if  n is odd.

z Exercise 3 .12: Quadratic Function
A. Given the equation x2 − 2 FnX+ Fn+1Fn−1 = 0

 Show that if  n is odd, then the solutions of the equation are: Fn + 1, Fn − 1.
B. The function fn is defined by fn(x) = x2 − 2Fnx+ Fn+1Fn−1 when n is odd.
Prove: The tangents to the graph of the functions at the points of intersection 
with the x-axis form, along with the x-axis, a triangle whose area does not de-
pend on n.
C. Prove: The lines that connect those same intersection points (of the graph 

with x-axis) with the minimum point of the graph (the “apex”), produce, 
along with the x-axis, a triangle whose area does not depend on n.

z Exercise 3 .13: Linear System
Prove that the solution of the system

Does not depend on n.

z Exercise 3 .14: A Straight Comparison
 Prove that the equation of the straight line that passes through the points 
(Fn+1, Fn+2) and (Fn, Fn+1) is

(Test the case of n = 1 separately).

z Exercise 3 .15: Even-Odd
Prove:
A. If  n and m are even, then

B. If  n and m are odd, then

C. If  n is even and m is odd (or, vice versa, m is even and n is odd), then

Fn+1Fn−1 = (Fn + 1)(Fn − 1)

Fn−1x+ Fny = Fn+1

Fnx+ Fn+1y = Fn+2

Fnx− Fn−1y = (−1)n+1

Fn+1Fn−1 − Fm+1Fm−1 = F2n − F2m

Fn+1Fn−1 − Fm+1Fm−1 = F2n − F2m

Fn+1Fn−1 + Fm+1Fm−1 = F2n + F2m
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z Exercise 3 .16: Generalizations of Cassini’s Formula
In this exercise, you may assume that m ≥ n.
A. Justify the identities:

B. Deduce:

z Exercise 3 .17: Fn + 1 as an Expression of Fn Only
A. Prove:

B. Deduce:

C. Deduce that the expression under the square root sign is always (for all n) a 
square of a natural number.

z Exercise 3 .18: Even/Odd Indices
Prove what we obtained in the chapter:

By using the identity ϕ2n − 1 = (ϕn + 1)(ϕn − 1).

z Exercise 3 .19: Relationship with Two Parameters
Use the equation  ϕn−p

ϕ
n+p = ϕ

2n to prove that:

For all p < n.

z Exercise 3 .20: Relationships for F3n
A. Prove:

ϕ
m(1− ϕ)n = (−1)nϕm−n

ϕ
n(1− ϕ)m = (−1)n(1− ϕ)m−n

Fn−1Fm − FnFm−1 = (−1)nFm−n

Fn+1Fm − FnFm+1 = (−1)nFm−n

Fn+12 − Fn+1Fn − F2n = (−1)n

Fn+1 =
1

2

(

Fn +
√

5F2n + 4(−1)n
)

(3.5a)F2n = F
2

n+1
− F

2

n−1
= Fn (Fn+1 + Fn−1)

(3.5b)F2n−1 = F
2

n
+ F

2

n+1

F2n = Fn−p+1Fn+p + Fn−pFn+p−1

F2n−1 = Fn−pFn+p + Fn−p−1Fn+p−1

F3n = Fn+13 + F3n − Fn−13

Exercises for Chapter 3
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B. Find a formula for the sum

(This question is not connected to the previous one.)

z Exercise 3 .21: General Properties of Division
Prove that Fpn is divisible by Fp for all n.

z Exercise 3 .22: Additional Proofs for the Formulas of Sums (a)
Prove what we obtained in this chapter:

A. Using Binet’s formula.
B. By induction.

z Exercise 3 .23: Additional Proofs for the Formulas of Sums (b)
A. Prove:

B. Deduce:

C. Prove:

and deduce that

z Exercise 3 .24: Sum of totals/Sum of Sums
A. SFn is defined as followed:

Find a formula for the following sum:

F3 + F6 + F9 + · · · + F3n

(3.7a)F1 + F2 + F3 + · · · + Fn = Fn+2 − 1

(3.7b)F2 + F4 + F6 + · · · + F2n = F2n+1 − 1

(3.7c)F1 + F3 + F5 + · · · + F2n−1 = F2n

ϕ+ ϕ
2 + ϕ

3 + ϕ
4 + · · · + ϕ

n = ϕ
n+2 − ϕ− 1

(3.7a)F1 + F2 + F3 + · · · + Fn = Fn+2 − 1

ϕ
2 + ϕ

4 + ϕ
6 + · · · + ϕ

2n = ϕ
2n+1 − ϕ

(3.7b)F2 + F4 + F6 + · · · + F2n = F2n+1 − 1

(3.7c)F1 + F3 + F5 + · · · + F2n−1 = F2n

SFn = F1 + F3 + F5 + · · · + F2n−1

SF1 + SF2 + SF3 + SF4 + · · · + SFn
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B. Deduce:

z Exercise 3 .25: Sum of Products
A. Prove for all n even:

B. Deduce for all n even:

C. Deduce for all n odd:

z Exercise 3 .26: Formula for the Sum of F4n
A. Justify the equality:

B. Find a formula for the sum

z Exercise 3 .27: Sum with Alternating Signs
Find a formula for the sum:

z Exercise 3 .28: Sum of Products with Alternating Signs
Prove for all even n:

z Exercise 3 .29: The Sum of Fractions
A. Justify the equality:

B. Find a formula for the sum:

n F1 + (n− 1)F3 + (n− 2)F5 + · · · + 2F2n−3 + F2n−1 = F2n+1 − 1

F0F2 + F1F3 + F2F4 + · · · + Fn−1Fn+1 = F21 + F22 + F23 + F24 + · · · + Fn2

= FnFn+1

F0F1 + F1F2 + F2F3 + · · · + Fn−1Fn = F2n

F0F1 + F1F2 + F2F3 + · · · + Fn−1Fn = F2n − 1

F4n = F2 n+12 − F2 n−12

F4 + F8 + F12 + · · · + F4n

−F1 + F2 − F3 + F4 − · · · + (−1)nFn

−F1F2 + F2F3 − F3F4 + · · · + FnFn+1 = F22 + F24 + F26 + · · · + F2n

Fn

Fn+1
−

Fn−1

Fn
=

(−1)n+1

Fn+1Fn

1

F1F2
−

1

F2F3
+

1

F3F4
− · · · +

(−1)n+1

FnFn+1

Exercises for Chapter 3
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Deduce the limit of the above sum, where n → ∞.

z Exercise 3 .30: Equality Between the Sums of Fractions
Prove that for any even n, the following holds:

z Exercise 3 .31: Infinite Series
A. Prove:

B. Deduce:

z Exercise 3 .32: “Mixed” Sum
A. Prove: If  n is even, then

B. Deduce: If  n is odd, then

z Exercise 3 .33: Product
We define:

A. Prove:

B. Deduce limn→∞ Pn.

z Exercise 3 .34: Combinatorics
 We first recall the formula (special case of the development of Newton’s bino-
mial theorem):

F1

F2
−

F2

F3
+

F3

F4
−

F4

F5
+ · · · +

Fn−1

Fn
−

Fn

Fn+1

=
1

F2F3
+

1

F4F5
+ · · · +

1

FnFn+1

1

FnFn+2
=

1

FnFn+1
−

1

Fn+1Fn+2

1

F1F3
+

1

F2F4
+

1

F3F5
+

1

F4F6
+ · · · = 1

F1 + F2ϕ+ F3ϕ
2 + · · · + Fnϕ

n−1 = Fnϕ
n

F1 + F2ϕ+ F3ϕ
2 + · · · + Fnϕ

n−1 = Fn+1ϕ
n−1

Pn =
(

1+
1

F22

)

(

1−
1

F23

)

(

1+
1

F24

)

· · ·

(

1+
(−1)n+1

F2n+1

)

Pn =
Fn+2

Fn+1

(1+ x)n = 1+ C1
nx+ C2

nx
2 + · · · + Cn

nx
n
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A. By substituting x = ϕ, prove:

B. By substituting x = −ϕ, prove:

C. By substituting x = 2ϕ, prove:

z Exercise 3 .35: Triangles Within an “Almost Golden” Rectangle
ABCD is a rectangle with sides AB = Fn+1, AD = Fn(n > 1).
 M and N are points on sides DC and BC (respectively) so that the following 
holds:

 

A

N

B

CMD

nF

n 1F +

Prove: SAMN = 1/2 F2n−1.

z Exercise 3 .36: “Almost Golden” Triangles (a)
In this exercise, n > 1.
In triangle ABC, D is a point on side BC such that CD = AD = AB = Fn.
Similarly: BC = Fn + 1

 

A

B
D

C

C1
nF1 + C2

nF2 + C3
nF3 + · · · + Cnnn = F2n

C2
nF1 + C3

nF2 + C4
nF3 + · · · + CnnFn−1 = F2n−1 − 1

C1
nF1 − C2

nF2 + C3
nF3 − C4

nF4 + · · · + (−1)n+1Cn
nFn = Fn

21C1
nF1 + 22C2

nF2 + 23C3
nF3 + · · · + 2nCnnn = F3n

�ADM ∼= MCN

Exercises for Chapter 3
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A. Prove:

B. Deduce:

z Exercise 3 .37: “Almost Golden” Triangles (b)
 Isosceles triangle ABC intersects isosceles triangle BCD (D is on AC) such that:
∆ABC ~ ∆BCD. Similarly, given is: AB = Fn + 1, BC = Fn.

A. Prove: CD = F2n
Fn+1

B. Deduce: limn→∞
AD
CD

= ϕ

z Exercise 3 .38: Vectors and Inequalities
Given are vectors (Fn+1, Fn) and (Fm+1, Fm).
A. Calculate the scalar products and their lengths.
B. Deduce for all n and for all m: Fn+m+12 ≤ F2 n+1F2m+1

z Exercise 3 .39: Ellipse
Recall that the foci of the ellipse b2x2 + a2y2 = a2b2(a > b) are ((±

√

a2 − b2, 0)).
Given is the following ellipse:

where n > 1
 Prove: The equation of the canonical circle (that is to say, a circle with center 
on the origins of the axes) that passes through the foci of the ellipse is

z Exercise 3 .40: Sums of Negative Indices
n is a natural number. Prove:

1. F−1 + F−2 + F−3 + F−4 + · · · + F−n = (−1)n−1Fn−1 + 1

= −F−n+1 + 1

2. F−2 + F−4 + F−6 + · · · + F−2n = −F2n+1 + 1 = −F−2n−1 + 1.
3. F−1 + F−3 + F−5 + · · · + F−2 n+1 = F2 n = −F−2 n.
4. F2−1 + F2−2 + F2−3 + F2−4 + · · · + F2−n = FnFn+1 = −F−nF−n−1

z Exercise 3 .41: “Double” Amount
Find a formula, without powers of (−1) for the sum:

when n (natural) is even.
when n (natural) is odd.

cos B =
Fn−1

2Fn

AC2 = FnFn+2

F2n−1x
2 + F2n+1y

2 = F2n+1F
2
n−1

x2 + y2 = F2n

F−n + F−n+1 + · · · + F−2 + F−1 + F0 + F1 + F2 + · · · + Fn
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z Exercise 3 .42: Proof Using Matrices
A. Multiply the respective sides of each equation together

to obtain Cassini’s formula.
 (Note: �n(I−�)n = [�(I−�)]n for all n, because the set of matrices M(a, b) 
is a commutative group.)
B. By using the equation �2 n = �n�n  
obtain:

z Exercise 3 .43: In Anticipation of the LUCAS Sequence
The (Ln) sequence is defined by:

Prove:

z Exercise 3 .44: In anticipation of the Fibonacci sequence
The sequence (fn) is defined by:

A. Calculate f2, f3, f4, f5, suggest an appropriate hypothesis, and prove it.
B. Deduce:

Answers, Clues and Partial Solutions

z Exercise 3 .1
ϕ. The easiest proof uses Binet’s formula.

z Exercise 3 .2
A. an =

Fn+1

Fn

(3.14a)�n = M(Fn−1, Fn)

(3.15)(I−�)n = M(Fn+1,−Fn)

(3.5a)F2n = F
2

n+1
− F

2

n−1

(3.5b)F2n−1 = F
2

n
+ F

2

n+1

L0 = 2, L1 = 1

Ln+2 = Ln+1 + Ln

Ln = ϕ
n + (1− ϕ)n

f0 = a, f1 = b

fn+2 = fn+1 + fn

fn
√
5 = (aϕ+ b− a)ϕn + (aϕ− b) (1− ϕ)n

Answers, Clues and Partial Solutions
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B. ϕ
C. bn = Fn

Fn+1
 The limit is 1/ϕ

D. cn =
F2 n

F2 n−1
. The limit is ϕ

z Exercise 3 .3
You can use the formula: a4 − b4 =

(

a2 + b2
)

(a+ b)(a− b)

z Exercise 3 .4
B. 1/ϕ

z Exercise 3 .7
A. an =

pn−(1−p)n

2p−1

B. a1 = a2 = 1.
C. p2 = p + 1 is obtained, so therefore, p = ϕ, 1− ϕ.
D. The Fibonacci sequence is the only one that simultaneously holds for both 
equalities at the beginning of the exercise.

z Exercise 3 .8
A. an =

p

p2+1

[

pn − (−1/p)n
]

B. a0 = 0, a1 = 1, a2 =
(

p2 − 1
)

/p, a3 =
(

p4 − p2 + 1
)

/p2

D. α =
(

p2 − 1
)

/p, β = 1

z Exercise 3 .9
A. By subtracting the respective sides from each other.
D. Conclusion from section C.
E. Conclusion from section C.

z Exercise 3 .10
B. Fk+2Fk − F2k+1 = (Fk+1 + Fk)Fk − F2k+1

= Fk+1(Fk − Fk+1)+ F2k = Fk+1(−Fk−1)+ F2k

= −
(

Fk+1Fk−1 − F2k

)

= −(−1)k = (−1)k+1

z Exercise 3 .11
Use Cassini’s formula.

z Exercise 3 .12
A. � = 4F2n − 4Fn+1Fn−1 = 4(−1)n+1 = 4

B.  The tangents are y = 2(x − Fn − 1), and y =  − 2(x − Fn + 1). The point of in-
tersection is (Fn, − 2), the area is 2.

C. The vertex is (Fn, − 1), the area is 1.
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z Exercise 3 .13
The solution is (1,1). This should not be solved systematically because this is 
an “obvious” solution and it is unique because the determinant of the system 
equals (−1)n (in accordance with Cassini’s formula) and therefore is different 
from 0.

z Exercise 3 .14
Use Cassini’s formula.

z Exercise 3 .15
You can use Cassini’s formula.

z Exercise 3 .16
B. Use equation (3.2).

z Exercise 3 .17
A. Use Cassini’s formula.
B.  Refer to the equality in section a as a quadratic equation where the miss-

ing variable is Fn + 1.

z Exercise 3 .20
A. Use m = 2n in Eq. (3.6).
B.  1/2(F3n+2 − 1). You can use Binet’s formula and find the sum of the two 

geometric sequences.

z Exercise 3 .21
If  the proof is in the induction (on n), the last step is:

z Exercise 3 .23
A. The left side is the sum of a geometric sequence.
B. Use equation (3.2a).
C. Use equation (3.2a).

z Exercise 3 .24
A. 
B. 

z Exercise 3 .25
A. You can use Cassini’s formula.
B. 

z Exercise 3 .26
A. 4n = 2(2n)
B. F22n+1 − 1. Use the equality given in section A.

Fp(k+1) = Fpk+p = FpFpk+1 + Fp−1Fpk

F2n+1 − 1

SF1 + SF2 + · · · + SFn = F1 + (F1 + F3)+ · · · + (F1 + F3 + F5 + · · · + F2n−1)

Fn−1Fn = Fn−1(Fn+1 − Fn−1) = Fn−1Fn+1 − F2n−1

Answers, Clues and Partial Solutions
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z Exercise 3 .27

(Calculate even n and odd n separately.)

z Exercise 3 .28

z Exercise 3 .29
A. Derived from Cassini’s formula.
B. Fn

Fn+1
. (Based on the previous section.)

C. 1
ϕ

z Exercise 3 .30

z Exercise 3 .31
A. Start from the right side.

z Exercise 3 .32
A. Connect the addends two by two.
(Or by induction.)

z Exercise 3 .33
A. You can use Cassini’s formula.
B. ϕ

z Exercise 3 .34
A. (1+ ϕ)n = ϕ

2n = F2nϕ+ F2n−1

B. (1− ϕ)n = −Fnϕ+ Fn+1

C. (1+ 2ϕ)n = ϕ
3n = F3nϕ+ F3n−1

z Exercise 3 .35
Note that triangle MNA is a right-angled isosceles triangle.

z Exercise 3 .36
A. Observe (isosceles) triangle ABD.
B. Use the law of cosines in triangle ADC and the fact that

 cos ∠ADC = − cos B

(−1)nFn−1 − 1

−Fn−1Fn + FnFn+1 = Fn(−Fn−1 + Fn+1) = F2n

Fn−1

Fn
−

Fn

Fn+1
=

Fn+1Fn−1 − F2n

FnFn+1
=

1

FnFn+1
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z Exercise 3 .38
A. Use formulas (3.5) and (3.6).
B. Calculate the cosine of the angle between the vectors.

z Exercise 3 .40
It is preferable to use the definition of F−n, but induction can also be used.

z Exercise 3 .41
2Fn when n is even; 2Fn + 1 when n is odd.

z Exercise 3 .43
Work as with the "classic proof" for Binet’s formula for the Fibonacci se-
quence.

z Exercise 3 .44
A. fn = aFn−1 + bFn
B. Substitute (twice) Binet’s formula in the result of section A.

Answers, Clues and Partial Solutions
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4
 The Lucas sequence spiral1

The Lucas spiral, made with quarter-arcs, is a good approximation of the golden 
spiral when its terms are large. A golden spiral is a logarithmic spiral whose 
growth factor is ϕ, the golden ratio.

z Introduction to Chapter 4
The Lucas sequence is based upon the same recursive equation as the Fibonacci 
sequence, but with different initial conditions (the first two elements). The combi-
nation of the two series, including sums, demonstrates a number of beautiful rela-
tionships.

Note that some theoretical developments do not appear in the text; instead, 
they are dealt with in the exercises.

4.1   Three Definitions of the Lucas Sequence

By using the “classic” proof of Binet’s formula for the Fibonacci sequence, we 
demonstrated that the entire sequence (fn) with formula

satisfies the recursive equation:

In the Fibonacci sequence, α = −β = 1√
5
.

fn = αϕ
n + β(1− ϕ)n

fn+2 = fn+1 + fn.

1 7 https://en.wikipedia.org/wiki/Lucas_number

https://en.wikipedia.org/wiki/Lucas_number
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It is natural to wonder “what happens” when α and β are replaced by 1, 
(α = β = 1), which are the simplest coefficients. (If  either of them would be 0, the 
sequence would be even “simpler” but then it would be geometric, which does not 
interest us here.)

The first two elements in the sequence are:

 And the sequence continues as follows:

For consistency, we shall define L0 = 2 so that L2 = L1 + L0 will hold, and which 
is L0 = ϕ

0 + (1− ϕ)0.
We thus have another definition:

We shall now introduce a basic, fundamental relationship between the Lucas se-
quence and the Fibonacci sequence:

In summary, we have three definitions (it is possible to show that they are equiv-
alent) for the Lucas sequence: one is in the form of Binet’s formula (for conveni-
ence and consistency, we shall henceforth call it the Binet’s formula for the Lucas 
sequence), the second is recursive, and the third uses the Fibonacci sequence.

4.2   Connections Between the Fibonacci and Lucas Sequences

There are many relationships between the elements of the Lucas sequence them-
selves, but particularly between them and elements of the Fibonacci sequence. We 
shall explore some of them here.

z Relationships Between Elements of the Lucas Sequence
We start out using Binet’s formula for the sequence and square both sides:

(4.1)Ln = ϕ
n + (1− ϕ)n

L1 = ϕ
1 + (ϕ− 1)1 = 1

L2 = ϕ
2 + (ϕ− 1)2 = 3

1, 3, 4, 7, 11, 18, 29, 47, . . .

(4.2)
L1 = 1, L2 = 3

Ln+2 = Ln+1 + Ln(n ≥ 1)

(4.3)Ln = ϕ
n + (1− ϕ)n = Fnϕ+ Fn−1 − Fnϕ+ Fn+1 = Fn−1 + Fn+1

Ln = Fn−1 + Fn+1

L2
n = [ϕn + (1− ϕ)n]2 = ϕ

2n + (1− ϕ)2n + 2ϕn (1− ϕ)n = L2n + 2 (−1)n
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This gives:

Similarly:

 which gives:

Using the same method, we also obtain:

We now develop the relationship between the two parameters (the indices m and 
n). Let us assume that m ≥ n. In this case:

Which leads to:

[Note that if  we substitute m = n into the equation, it leads “back” exactly to Eq. 
(4.4)].

z Relationships Between the Fibonacci Sequence and the Lucas Sequence
We will now restate some previous result in order to clarify the relationships be-
tween the Fibonacci and the Lucas sequences:

By adding (or subtracting) each of the sides, we arrive at the following two equal-
ities:

We now write down Binet’s formula for the two sequence:

(4.4)L2n = L
2

n
− 2(− 1)n

LnLn−1 = [ϕn + (1− ϕ)n] [ϕn−1 + (1− ϕ)n−1]

= ϕ
2n−1 + (1− ϕ)2n−1 + ϕ

n−1(1− ϕ)n−1 [ϕ+ (1− ϕ)]

= LnLn−1 = ϕ
2n−1 + (1− ϕ)2n−1 + (−1)n−1

= L2n−1 + (−1)n−1

(4.5)L2n−1 = LnLn−1 + (− 1)n

(4.6)L2n = Ln−1Ln+1 + 3(− 1)n

LnLm = [ϕn + (1− ϕ)n][ϕm + (1− ϕ)m]

= ϕ
n+m + (1− ϕ)n+m + ϕ

n(1− ϕ)n[(1− ϕ)m−n + ϕ
m−n]

= Ln+m + (−1)nLm−n

(4.7)Ln+m = LnLm + (− 1)n Lm−n

Ln = Fn−1 + Fn+1

Fn = Fn+1 − Fn−1

(4.8a)Ln + Fn = 2Fn+1

(4.8b)Ln − Fn = 2Fn−1

(4.1)
Ln = ϕ

n + (1− ϕ)n

(3.3a)
Fn
√
5 = ϕ

n + (1− ϕ)n
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Multiplying both sides of the equations yields:

Therefore:

This is the simplest relationship and between the two sequence.

Based on this last relationship, it is natural to observe some other “multiplicative” 
combinations between the elements of the two sequences. We shall do this by us-
ing their Binet’s formulas.

Hence:

Similarly, we can obtain:

Adding the two equalities together yields:

The same method will also yield:

Again, by adding together each side of the two equalities, we obtain:

Furthermore (either by using (4.10a, 4.10b, 4.10c) or by using Binet’s formulas di-
rectly, as we have until now):

z Relationships Between the Two Sequences, Using Two Indices
We begin again by assuming that m ≥ n, and then, by using Binet’s formulas, ob-
tain:

LnFn
√
5 = [ϕn + (1− ϕ)n][ϕn − (1− ϕ)n]

= ϕ
2n − (1− ϕ)2n = F2n

√
5

(4.9)LnFn = F2n

LnFn + 1

√
5 = [ϕn + (1− ϕ)n][ϕn + 1 − (1− ϕ)n + 1]

= ϕ
2n + 1 − (1− ϕ)2n+1 + ϕ

n(1− ϕ)n(2ϕ− 1)

= F2n+1

√
5+ (−1)n

√
5

(4.10a)LnFn+1 = F2n+1 + (− 1)n

(4.10b)Ln+1Fn = F2n+1 − (− 1)n

(4.10c)LnFn+1 + Ln+1Fn = 2F2n+1

(4.11a)Ln+1Fn−1 = F2n + (− 1)n

(4.11b)Ln−1Fn+1 = F2n − (− 1)n

(4.11c)Ln+1Fn−1 + Ln−1Fn+1 = 2F2n

(4.12)L2n = LnFn+1 + Ln−1Fn = LnFn−1 + Ln+1Fn

(4.13a)LnFm = Fn+m + (− 1)nFm−n

(4.13b)LmFn = Fn+m − (− 1)nFm−n

4 .2 · Connections Between the Fibonacci and Lucas Sequences
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Adding each side of the equations yields:

and also:

(Note that if  we substitute m = n into the equation, it leads back exactly to 
Eq. 4.12.)

A simpler proof for the latter is given in 7 Chap. 5.

4.3   The Powers of the Golden Ratio

We write Binet’s formulas for the two sequences consecutively:

Adding (or subtracting) each of the sides, yields the following two equalities:

Thus we have obtained new formulas for the powers of ϕ and (1− ϕ):

Additional relationships can be obtained from these formulas. One of them will 
be demonstrated below. The others will be derived in the exercises.
Multiplying the respective sides of the two equalities gives:

But we are not done yet! At the beginning of 7 Chap. 3 we saw that:

We shall now investigate the relationship between the analoguous expressions:

(4.13c)LnFm + LmFn = 2Fn+m

(4.14)Ln+m = LnFm−1 + Ln+1Fm = LmFn−1 + Lm+1Fn

(4.1)Ln = ϕ
n + (1− ϕ)n

(3.3a)Fn
√
5 = ϕ

n − (1− ϕ)n

Ln + Fn
√
5 = 2ϕn (result from adding)

Ln − Fn
√
5 = 2(1− ϕ)n (result from subtracting)

(4.15a)ϕ
n = 1

2
(Ln + Fn

√
5) (result from addingthe two equalities)

(4.15b)(1− ϕ)n = 1

2
(Ln − Fn

√
5) (result from subtracting the two equalities)

(4.16)L
2

n
− 5F

2

n
= 4(− 1)n

(3.2a)Fnϕ+ Fn−1 = ϕ
n

(3.2b)−Fnϕ+ Fn+1 = (1− ϕ)n

Lnϕ+ Ln−1

−Lnϕ+ Ln+1
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and between the powers of ϕ and of (1− ϕ). It emerges that:

In other words,

Similarly, we obtain:

From this, we observe three interesting conclusions:
Combining this with

Gives:

Subtracting the two sides of each gives:

Note the analogy with:

Multiplying the both sides of Eq. (4.19) by Ln−1 gives:

Or alternatively:

Lnϕ+ Ln−1 = (Fn+1 + Fn−1)ϕ+ Fn + Fn−2

= Fn+1ϕ+ Fn + Fn−1ϕ+ Fn−2

= ϕ
n+1 + ϕ

n−1

= ϕ
n−1(ϕ2 + 1)

= ϕ
n−1

ϕ

√
5

= ϕ
n
√
5

(4.17a)ϕ
n = 1√

5
(Lnϕ+ Ln−1)

(4.17b)(1− ϕ)n = 1√
5
(Lnϕ− Ln+1)

(3.2a)ϕ
n = Fnϕ+ Fn−1

(3.2b)(1− ϕ)n = −Fnϕ+ Fn+1

(4.18a)
Lnϕ+Ln+1

Fnϕ+Fn−1
=

√
5

(4.18b)
Lnϕ−Ln+1

Fnϕ−Fn−1
= −

√
5

(4.19)Ln+1 + Ln−1 = 5Fn

(4.3)Fn+1 + Fn−1 = Ln

(4.20a)Ln+1Ln−1 − L
2

n
= 5(−1)n+1 (Exercise 4.9 below)

(4.20b)δ(Ln−1, Ln) = 5(−1)n+1

4 .3 · The Powers of the Golden Ratio
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This is the “Cassini-like” formula for the Lucas sequence.
Also:

(We leave it to the reader to work out the detailed proofs to these formulas.)

4.4   Sums

Using the telescopic cancellation method through which we arrived at the formu-
las for various types of sums in the Fibonacci sequence, we similarly obtain:

Below is a geometric depiction of the last three equalities:
Explanation of . Fig. 4.1:

In the left lower figure, there are 3 squares with the following areas:

The total area is 26.
There is also a rectangle which its area is

(4.20c)µ(Ln−1 + Lnϕ) = µ(− Ln+1 + Lnϕ) =
√
5

(4.21a)L1 + L2 + L3 + · · · + Ln = Ln+2 − 3

(4.21b)L2 + L4 + L6 + · · · + L2n = L2n+1 − 1

(4.21c)L1 + L3 + L5 + · · · + L2n−1 = L2n − 2

(4.22)L1
2 +L2

2 +L3
2 + · · · + Ln

2 = LnLn+1 − 2

L1 = 1, L2 = 3, L3 = 4, L4 = 7, L5 = 11, L6 = 18, L7 = 29

L1 × L1 = 1× 1 = 1

L2 × L2 = 3× 3 = 9

L3 × L3 = 4× 4 = 16

1× 2 = 2.

. Fig . 4 .1 A geometric depiction
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The sum is 28 = 4 × 7 = L3 L4.
In this case: (4.22)

We now will develop some formulas for the sums of “mixed” equations.
A. From the relationship:

We obtain for even n:

and for odd n (using the previous result):

In summary:

B. Similarly, from the relationship:

We obtain:

C. From the relationship:

We obtain:

L2
1 + L2

2 + L2
3 = L3L4 − 2

1+ 9+ 16 = 26

(4.10a)LnFn + 1 = F2n + 1 + (−1)n

L1F2 + L2F3 + L3F4 + · · · + LnFn+1

= F3 + F5 + · · · + F2n+1

= F2n+2 − F1

= F2n+2 − 1

L1F2 + L2F3 + L3F4 + · · · + Ln−1Fn + LnFn+1

= F2n − 1+ F2n+1 − 1

= F2n+2 − 2

(4.23a)A. L1F2 + L2F3 + L3F4 + · · · + LnFn+1 = F2n+2 − 1 (even n)

(4.23b)L1F2 + L2F3 + L3F4 + · · · + LnFn+1 = F2n+2 − 2 (odd n)

(4.10b)Ln+1Fn = F2n + 1 − (−1)n

(4.23c)L2F1 + L3F2 + L4F3 + · · · + Ln+1Fn = F2n+2 − 1 (even n)

(4.23d)L2F1 + L3F2 + L4F3 + · · · + Ln+1Fn = F2n+2 (odd n)

(4.11a)Ln+1Fn−1 = F2n + (−1)n

(4.24a)L2F0 + L3F1 + L4F2 + · · · + Ln+1Fn−1 = F2n+1 − 1 (even n)

(4.24b)

4 .4 · Sums

L2F0 + L3F1 + L4F2 + · · · + Ln+1Fn−1 = F2n+1 − 2 (odd n)
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D. And finally, from the relationship:

We obtain:

Exercises for Chapter 4

z  Note
The variables n, m, p, k, usually represent natural numbers. In the cases where 
they do not, it will be clear from the context.

z Exercise 4 .1: Limits
A. Calculate: limn→∞ Ln+1/Ln.
B. Calculate: limn→∞ Ln/Fn.

z Exercise 4 .2: Recursive Sequence
The sequence (an) is defined by

A. Prove:

B. Deduce: limn → ∞ an.

z Exercise 4 .3: Relationships Between Squares
Prove:

z Exercise 4 .4: Relationships Between the Two Parameters (Indices)
Prove:

 for each p < n.

z Exercise 4 .5: Mixed Relationships (a)
Prove:
1. L2n = 5Fn+1Fn−1 + 3(−1)n+1

2. L2n = 5Fn+pFn−p + (−1)n−pL2p(n ≥ p)

(4.11b)Ln−1Fn+1 = F2n − (−1)n

(4.24c)L0F2 + L1F3 + L2F4 + . . .+ Ln+1Fn+1 = F2n+1 − 1 (even n)

(4.24d)L0F2 + L1F3 + L2F4 + . . .+ Ln+1Fn+1 = F2n+1 (odd n)

a1 = 1, an+1 =
3an + 1

an + 2

an = Fn+1/Fn for odd n,

an = Ln+1/Ln for even n.

L2
n + F2n = 2

(

F2n + 1 + F2n−1

)

L2
n − F2n = 4Fn+1Fn−1

Ln−pLn+p = L2n + (−1)n−pL2p
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3. L2n = 5F2n + 2(−1)n

4. Ln+m = 5FmFn + (−1)nLm−n(m ≥ n)

z Exercise 4 .6: Mixed Relationships (b)
(In this exercise, you can assume that n ≥ p).
A. Prove:

B. Deduce:

z Exercise 4 .7: The Differences
Prove:
1. LnFn+1 − Ln+1Fn = 2(−1)n

2. Ln+1Fn−1 − Ln−1Fn+1 = 2(−1)n

3. LnFm − LmFn = 2(−1)nFm−n

(You may assume that m ≥ n).

z Exercise 4 .8: Even/Odd
Prove:
A. If  n and m are even, then

B. If  n and m are odd, then

C. If  n is even and m is odd (or: m is even and n is odd), then

z Exercise 4 .9: Cassini’s Formula for (Ln)
Prove:

(According to Definition 4.1).

z Exercise 4 .10: The Golden Function
f  is the golden function, i.e.: f(x) = x2 − x − 1.
A. Prove:

Ln+pFn−p = F2n − (−1)n−pF2p

Ln−pFn+p = F2n + (−1)n−pF2p

Ln+pFn−p + Ln−pFn+p = 2F2n

L2n − L2m = L2
n − L2

m

L2n − L2m = L2
n − L2

m

L2n + L2m = L2
n + L2

m

Ln+1Ln−1 − L2
n = 5(−1)n+1

f

(

Fn+1

Fn

)

=
(−1)n

F2n

f′
(

Fn+1

Fn

)

=
Ln

Fn

Exercises for Chapter 4
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B. Prove that the equation for the tangent at the point x = Fn+1

Fn
 on the func-

tion’s curve is

C. Prove that the equation for the tangent at the point x = −Fn+1

Fn
 on the  

function’s curve is

z Exercise 4 .11: Quadratic Function (a)
A. Verify that Fn+1, Fn−1 solves equation

(You can use Viète’s formula).

B. Function fn is defined by:

 Find the equations of the tangents to the function’s curve at the points where 
it intersects the x-axis. Also, find the intersection point of the two tangents.

z Exercise 4 .12: Quadratic Function (b)
In this exercise, n > 1.
A. Verify that the solutions of the equation

are Ln, Fn (use Viète’s formula).

B. The function fn is defined by:

 Find the equations of the tangents to the function’s curve at the points where 
it intersects the x-axis. Also, find the intersection point of the two tangents.

z Exercise 4 .13: Quadratic Function (a)

A. Solve the equation.

(You should use Viète’s formula).

B. The function fn is defined by:

 Find the equations of the tangents to the function’s curve at the points where 
it intersects the x-axis. Also, find the intersection point of the two tangents.

F2nx− F2ny = F2n+1

F2n+2x+ F2n + 1y = −F2n+1

x2 − Lnx+ F2n + (−1)n = 0

fn(x) = x2 − Lnx+ F2n + (−1)n

x2 − 2Fn+1x+ F2n = 0

fn(x) = x2 − 2Fn+1x+ F2n

x2 − Lnx+ (−1)n = 0

fn(x) = x2 − Lnx+ (−1)n
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z Exercise 4 .14: Hyperbola
Given is the hyperbola defined by xy = F2n.
A. A tangent meets the curve at point (Fn, Ln). Show that the equation of the 

tangent is:

Show that the area of the triangle formed by the tangent and the two axes is 2F2n.
B. A tangent meets the hyperbola at (Ln, Fn). Show that the equation of the tangent is:

Show that the area of the triangle formed by the tangent and the two axes is 2F2n.

z Exercise 4 .15: Tangent
A. Verify that point (Fn−1, Fn) exists on the curve of the equation δ(x, y) = (−1)n.
B. Prove: The equation for the tangent to the curve at this point is:

(You can use the first equality in Exercise 4.7).

z Exercise 4 .16: Integrals
In this exercise, n > 1.
The function fn is defined by:

Show that the area bounded by the curve of the function, the x-axis and the 
straight lines x = Fn and x = Ln is 2Fn−1.

z Exercise 4 .17: Trapezium
In this exercise, n > 1.
 In an isosceles trapezium with larger base angles equal to 45°, the lengths of 
the bases are Fn+1 and Fn−1,
Prove that the area of the trapezium is ¼F2n.

z Exercise 4 .18: The Powers of ϕ
We have shown that:

 using Binet’s formulas for the two sequences.
Prove these formulas (again) using:

Lnx+ Fny = 2F2n

Fnx+ Lny = 2F2n

Lnx− Ln−1y = 2(−1)n

fn(x) =
F2n

x2

(4.15a)ϕ
n = 1

2
(Ln + Fn

√
5)

(4.15b)(1− ϕ)n = 1
2
(Ln − Fn

√
5)

(3.2a)ϕ
n = Fnϕ+ Fn−1

(3.2b)(1− ϕ)n = −Fnϕ+ Fn−1

Exercises for Chapter 4
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z Exercise 4 .19: Additional Formulas to the Powers of ϕ
Prove:

z Exercise 4 .20: Mixed Relationships (c)
In this exercise we use the formula ϕn = 1

2
(Ln + Fn

√
5).

 (Some of the equalities we shall obtain were already proven using another 
method).
A. Based on the equality (ϕn)2 = ϕ2n, deduce that

B. Based on the equality ϕnϕm = ϕn+m, deduce that

C. Based on the equality ϕn+pϕn−p = ϕ2n, deduce that

(You can assume that n ≥ p).

D. Based on the equality ϕn = ϕn−pϕp, deduce that

(You can assume that n ≥ p).

z Exercise 4 .21: Additional Proofs for the Formulas of Sums
Prove:
1. L1 + L2 + L3 + · · · + Ln = Ln+2 − 3

2. L2 + L4 + L6 + · · · + L2n = L2n+1 − 1

3. L1 + L3 + L5 + · · · + L2n−1 = L2n − 2

A. Using (4.3), (3.7).
B. By induction.

z Exercise 4 .22: Equality Between Sums
Prove:
        If  n is even, then
1. L2 + L4 + L6 + · · · + L2n = L2

1 + L2
2 + L2

3 + · · · + L2
n

2. L1 + L3 + L5 + · · · + L2n−1 = L1L0 + L2L1 + L3L2 + · · · + LnLn−1

3. L2 + L4 + L6 + · · · + L2n = L0L2 + L1L3 + L2L4 + · · · + Ln−1Ln+1

ϕ
n = Fn

√
5ϕ− Ln−1

ϕ
n = −Fn−1

√
5ϕ+ Lnϕ

F2n = FnLn

L2n = 1/2
(

L2
n + 5F2n

)

Fn+m = 1/2(LnFm + LmFn)

Ln+m = 1/2(LnLm + 5 FnFm)

F2n = 1/2
(

Ln+pFn−p + Ln−pFn+p

)

L2n = 1/2
(

Ln+pLn−p + 5 Fn+pFn−p

)

Fn = 1/2
(

LpFn−p + Ln−pFp
)

Ln = 1/2
(

LpLn−p + 5 Fn−pFp
)
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z Exercise 4 .23: Sum with Alternating Signs
Find a formula for the sum of:

z Exercise 4 .24: The Fibonacci and Lucas Sums
A. Prove:

using the formula for the sum of a geometric sequence.
B. Using the formula ϕn = ½(Ln + Fn√5), deduce:

z Exercise 4 .25: Sum with Powers of 2
The purpose of this exercise is to find a formula for the following sum:

A. Multiply the two sides by 2, subtract the two sides and arrive at:

B. Deduce:

C. Deduce:

z Exercise 4 .26: Extension to Negative Indices
A. Justify the definition:

For each natural n.
B. Verify that for every integer m, the following is true:

(It is, of course, sufficient to test only for negative m).

−L1 + L2 − L3 + L4 − · · · + (−1)nLn

ϕ+ ϕ
2 + ϕ

3 + ϕ
4 + . . .+ ϕ

n = ϕ
n+2 − ϕ− 1

L1 + L2 + L3 + · · · + Ln = Ln+2 − L1 − 2 = Ln+2 − 3

F1 + F2 + F3 + F4 + · · · + Fn = Fn+2 − F1 = Fn+2 − 1

Sn = L1 + 2L2 + 4L3 + 8L4 + · · · + 2n−1Ln

Sn = −L1 − 2L0 − 4

(

L1 + 2L2 + 4L3 + · · · + 2n−3Ln−2

)

+ 2nLn

Sn = −L1 − 2L0 − 4
(

Sn − 2n−2Ln−1 − 2n−1Ln

)

+ 2nLn

Sn = 2nFn+1 − 1

L−n = (−1)nLn

Lm+2 = Lm+1 + Lm

Lm = ϕ
m + (1− ϕ)m

Lm = Fm+1 + Fm−1

Exercises for Chapter 4



100 Chapter 4 · The Lucas Sequence

4

z Exercise 4 .27: A Consistency About Negative Indices
 In this exercise, n is a natural number. Also, L−n = (−1)nLn (see the previous 
exercise).
A. We proved:

Verify:

B. We proved:

Verify that:

z Exercise 4 .28: Sum for Negative Indices
Prove:
A. If  natural n is even:

B. If  natural n is odd:

C. For all natural n, deduce that

z Exercise 4 .29: “Half” Indices
In this chapter, we saw that

We shall define:

Show that the following is true:

L2n−1 = Ln Ln−1 + (−1)n

L−2n−1 = L−nL−n−1 + (−1)−n

LnFn+1 = F2n+1 + (−1)n

Ln+1Fn = F2n+1 − (−1)n

L−nF−n+1 = F−2n+1 + (−1)−n

L−n+1F−n = F−2n+1 − (−1)−n

L−1 + L−2 + L−3 + L−4 + · · · + L−n = Ln−1 + 1 = −L−n+1 + 1

L−1 + L−2 + L−3 + L−4 + · · · + L−n = −Ln−1 + 1 = −L−n+1 + 1

L−1 + L−2 + L−3 + L−4 + · · · + L−n = (−1)nLn−1 + 1 = −L−n+1 + 1

LnFn = F2n

Fn
2

√
5 = (

√
ϕ)n −

(

i√
ϕ

)n

Ln
2
= (

√
ϕ)n +

(

i√
ϕ

)n

Ln
2

F n
2

= Fn
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z Exercise 4 .30: Matrices and the Lucas Sequence
Prove:
1. M2(L0, L1) = 5�2

2. M2(L−1, L0) = 5I

3. �M2(Ln−1, Ln) = M(Ln, Ln+1)

4. �−1M(Ln, Ln+1) = M(Ln−1, Ln)

5. �nM(Ln−1, Ln) = M(L2n−1, L2n)

6. �nM(L−1, Ln) = M(Ln−1, Ln)

z Exercise 4 .31: Matrix Versions
In this chapter we have demonstrated that

Verify that the above equations also hold for matrix versions, namely:

Answers, Hints and Partial Solutions

z Exercise 4 .1
A. ϕ. The easiest way is by using Binet’s formula.
B. 

√
5.

z Exercise 4 .3
Square both sides of Fn = Fn+1 − Fn−1 and of Ln = Fn+1 + Fn−1.

z Exercise 4 .5
1. Calculate the product Fn+1Fn−1 using Binet’s formula.
2. Similar to 1.
3. Square both sides of Binet's formula (of the Fibonacci sequence).
4. Calculate the product FmFn using Binet’s formula.

ϕ
n = 1

2
(Ln + Fn

√
5)

(1− ϕ)n = 1
2
(Ln − Fn

√
5)

ϕ
n
√
5 = Lnϕ+ Ln−1

(1− ϕ)n
√
5 = Lnϕ− Ln+1

�n = 1
2
[LnI+ FnR(5)]

(I−�)n = 1
2
[LnI− FnR(5)]

�nR(5) = Ln�+ Ln−1I = M(Ln−1, Ln)

(I−�)nR(5) = Ln�− Ln+1I = M(−Ln+1, Ln)

Answers, Hints and Partial Solutions
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z Exercise 4 .6
A. Start from the left side and use Binet’s formulas for both sequences.

z Exercise 4 .7
Subtract (4.10a and 4.10b, (4.11a, (4.13a) (respectively) from each side.

z Exercise 4 .8
Use (4.4).

z Exercise 4 .9
Use Definition (4.1).

z Exercise 4 .10
A. Use Cassini’s formula.
B. Use (4.10a).

C. 
f
′
(

−Fn
Fn+1

)

= −Ln
Fn+1

f

(

−Fn
Fn+1

)

= (−1)n+1

F2n+1

z Exercise 4 .11
B. The tangents are y = Fn(x − Fn+1) and y =  − Fn(x − Fn−1).

The point of intersection is 
(

Ln
2
,
−F2n
2

)

.

z Exercise 4 .12
B. The tangents are y =  − 2Fn−1(x − Fn) and y = 2Fn−1(x − Ln)
The point of intersection is (Fn+1,−2F2n−1).

z Exercise 4 .13
A. ϕn, (1 − ϕ)n

B. The slopes of the tangents are ±Fn
√
5, the point of intersection: 

(

Ln
2
,
−5F2n
2

).

z Exercise 4 .15
A. Use Cassini’s formula.
B. Differentiate as an explicit function.

z Exercise 4 .18
Replace ϕ with its numeric value.

z Exercise 4 .19
For both, begin from the right side.
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Answers, Hints and Partial Solutions

z Exercise 4 .22
According to (4.4–4.6) respectively.

z Exercise 4 .23
(−1)nLn−1 + 1

(It’s best to calculate separately for even n and for odd n).

z Exercise 4 .24
B. Compare the rational coefficients.
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The recurring sequences in Fibonacci numbers
(Uploaded by Rhuben Nealon)

This is the recurring, 24-digit compressed Fibonacci sequence on a torus skin. 
The 9 s are highlighted and create approximate Phi spiraling arms… (Posted by 
Rhuben Nealon FB).

By calculating the Final Digit Sums* (FDS) for the Fibonacci numbers, we get 
a sequence with cycle length 24. The digit 9 occurs in cycle length 12.

When you add a number from the regular sequence with the corresponding 
number in the highlighted sequence, you get a Final Digit Sum 9, for example: 
9+ 9 = 18 and 1+ 8 = 9.

*The Final Digit Sum of  89 is 8: 8 + 9 = 17 and 1 + 7 = 8.

z Introduction to Chapter 5
Analyzing Fibonacci and Lucas sequences naturally evokes the desire to examine 
in general all the Fibonacci-like sequences that hold to the same sort of recursive 
equations that both these sequences do.

After dealing with Fibonacci-like sequences in a general sense, and so that 
we may analyze in depth other aspects of the sequence, we shall define and make 
use of a Lucas-like sequence and a generalized sequence. The interactions be-
tween the various sequences—Fibonacci, Lucas, Fibonacci-like, Lucas-like are 
extremely fascinating. It also leaves room for more research along various other 

1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1, 2, 3 . . .

8, 8, 7, 6, 4, 1, 5, 6, 2, 8, 1, 9, 1, 1, 2, 3, 5, 8, 4, 3, 7, 1, 8, 9, 8, 8, 7, 6, . . .

FDS : 9, 9, 9, 9, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ., 9, 9, 9, 9 . . .
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5 .1 · Definitions, Binet’s Formulas and Relationships

venues. More experienced readers and those with motivation will be able to iden-
tify the “loose ends” and proceed accordingly.

Some of these theoretical developments will appear in the exercises.

5.1   Definitions, Binet’s Formulas and Relationships

Using the classic proof of Binet’s formula (for the Fibonacci sequence), we saw 
that any sequence (fn) whose formula is

satisfies the recursive equation:

This also works vice versa, provided f0 and f1 are given. For ease of nota-
tion and reading, we shall occasionally (in this section and those following) use 
(f0, f1) = (a, b). We shall call all such sequences Fibonacci-like sequences.

Throughout the discussion, we shall assume that when we have α and β, at 
least one of them is not 0, so that the sequence will not be equivalent to zero. Ex-
amining (5.1) leads us to observe the existence of four basic cases:
z If  α = 0, then fn = β(1− ϕ)n , in other words, the sequence is geometric with 

quotient (1− ϕ).
z If  β = 0, then fn = β(1− ϕ)n, in other words, the sequence is geometric with 

quotient ϕ.
z If  α = β then fn = α

[

ϕ
n + (1− ϕ)n

]

= αLn, meaning that (fn) is a multiple of 
the Lucas sequence.

z If  α = −β then fn = α
[

ϕ
n − (1− ϕ)n

]

= α
√
5Fn, meaning that (fn) is a multi-

ple of the Fibonacci sequence.

We are not interested in investigating the first two cases for two reasons:
z They are geometric sequence (or equivalent to zero if  both α and β are 0), and 

we are already well familiar with geometric series.
z As we shall soon see, in this case, δ(a, b) = 0, and this fact will not allow us to 

“add it to the denominator”.

Therefore, for the rest of the discussion the following shall hold:

(unless otherwise specified).
Hence, the (fn) sequence may be defined by using fn = αϕ

n + β(1− ϕ)n and then 
determined through (α, β).

Alternatively, it can be defined by fn+2 = fn+1 + fn, using (f0, f1). Then, it 
seems natural to ask what the relationship is between α and β on one hand and 
between f1 and f2 on the other?

(5.1)f n = αϕ
n + β (1− ϕ)n

(5.2)f n+2 = f n+1 + f n

(α,β)  = (0, 0)

(α,β)  = (α, 0)

(α,β)  = (0,β)
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To determine the value of coefficients α and β using a and b, we must solve the 
following system of equations:

That is to say,

By multiplying each side of the first equation by ϕ, and the subtracting the sec-
ond equation from the first, we obtain:

Substituting this into the original equation produces

and therefore:

(We arrived at this result in exercise 3.44 using a different method.)
If  we “borrow” 1 from each of the exponents, we obtain:

In particular (the substitutions are made in (5.4):
z if  b = aϕ, then fn = aϕn, that is to say it is geometric sequence with quotient ϕ.
z If  b = a(1− ϕ), then fn = a (1− ϕ)n, and the sequence is geometric with quo-

tient (1− ϕ).

As we pointed out earlier, we are not interested in dealing with these generalized 
cases. Therefore, for the rest of the discussion the following shall hold:

(Unless otherwise specified).

Now we substitute ϕ = 1
2
(1+

√
5)  into 5.4a and obtain:

f0 = αϕ
0 + β (1− ϕ)0

f1 = αϕ
1 + β (1− ϕ)1

α + β = a

αϕ+ β(1− ϕ) = b

β(2ϕ− 1) = aϕ− b, hence:

(5.3b)β

√
5 = aϕ−b

(5.3a)α

√
5 = aϕ+b−a = a (ϕ− 1)+b

(5.4a)f n = 1√
5
[(aϕ+b−a)ϕn + (aϕ−b) (1−ϕ

n)]

(5.4a’)fn =
1
√
5

[

(a + bϕ)ϕn−1 − (a + bϕ)(1− ϕ)n−1

]

(a, b)  = (0, 0)

(a, b)  = (a, aϕ)

(a, b)  = (a, a(1− ϕ))

(5.4b)f n=
1

2
√
5
[a
√
5+(2b− a)ϕn + [a

√
5− (2b− a)] (1− ϕ)n]
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which can be written as:

where

(recall that we indicated that: (f0, f1) = (a, b)),

and therefore also:

We have arrived at a formula that connects the element in the nth place in a Fib-
onacci-like sequence to the elements in the same places in the of Fibonacci and 
Lucas sequences. This formula implies that every Fibonacci-like sequence is in 
fact a linear combination of the Fibonacci and Lucas sequences. Simpler versions 
of (5.4c) and (5.5a) will appear below.

We shall now substitute Ln = 2Fn−1 + Fn (from (4.3)) into (5.5a). We obtain

(We arrived at this result in Exercise (3.44), by combining observation and proof 
by induction. Study the answers to that exercise.)

Specifically:
If  a = 0, then fn = bFn.
If  b = 0, then fn = aFn−1.
If  a = b, then fn = aFn+1.
If  a = −b, then fn = bFn−2.
If  a = 2b, then fn = bLn.

Therefore, we have four definitions for a Fibonacci-like sequence (and we can es-
tablish that they are equivalent):
z One uses a “Binet-like” formula (actually two: one using α and β and the other 

using a and b. For convenience and consistency, henceforth we shall call them 
the Binet formula for the Fibonacci-like sequence).

z The second is recursive (when a and b are given).
z The third uses the Fibonacci and Lucas sequences.
z The fourth uses the Fibonacci sequence.

We shall now closely observe coefficients α and β. We already know that:

(5.4c)f n=
1√
5
[(c

√
5+ d)ϕn + (c

√
5− d) (1− ϕ)n]

(c, d) =
(

a

2
,
2b− a

2

)

=
(

f0

2
,
2f1 − f0

2

)

(5.5a)f n = cLn + dFn = 1

2
[aLn + (2b− a)Fn]

fn = 1
2
[a (2Fn−1 + Fn)+ (2b− a)Fn]

= 1
2
[2aFn−1 + aFn + 2bFn − aFn]

(5.6)f n = a Fn−1 + bFn = f0Fn−1 + f1Fn

(5.7a)α+ β = a = f 0

5 .1 · Definitions, Binet’s Formulas and Relationships
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What about the product? In fact:

In other words:

We shall now develop the Cassini formula for (fn):

Therefore, according to (5.7b):

5.2   Comparing the Fibonacci and the Fibonacci-Like Sequences

In the previous section we established the basic relationship between the Fibo-
nacci sequence and the Fibonacci-like sequence:

In this section, we shall focus on even/odd indices and the sum of indices in the 
Fibonacci-like sequence. The equalities that we shall prove are the following:

We begin by proving (5.10), which consists of two equalities. (The second equal-
ity arises from the first equality, and thus we shall satisfy ourselves with proving 
the first):

(α
√
5) (β

√
5) = [a (ϕ− 1)+ b] (aϕ− b)

= a2 (ϕ− 1)ϕ− ab (ϕ− 1)+ abϕ− b2

= a2 − abϕ+ ab+ abϕ− b2

= a2 + ab− b2

= δ (a, b)

(5.7b)5αβ = δ (a, b) = δ (f 0, f 1)

δ(fn−1, fn) = fn+1fn−1 − f2n

=
(

αϕ
n+1 + β(1− ϕ)n+1

)(

αϕ
n−1 + β(1− ϕ)n−1

)

−
(

αϕ
n + β(1− ϕ)n

)2

= αβϕ
n+1(1− ϕ)n−1 + αβ(1− ϕ)n+1

ϕ
n−1 − 2αβϕn(1− ϕ)n

= αβ

[

ϕ
n−1(1− ϕ

n−1
(

ϕ
2 + (1− ϕ)2

)

− 2(−1)n
]

= αβ

[

3(−1)n−1 − 2(−1)n
]

= 5αβ(−1)n+1

(5.8)δ(f n−1, f n) = f n+1f n−1 − f 2
n
= δ(a, b) (− 1)n+1

(5.6)fn = aFn−1 + bFn = f0Fn−1 + f1Fn

(5.9a)f 2n = f nFn−1 + f n+1Fn = f n−1Fn + fnFn+1

(5.9b)f 2n−1 = f n−1Fn−1 + f nFn

(5.10)f n+m = fmFn−1 + fm+1Fn = f nFm−1 + f n+1Fm
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Now, if  we substitute m = n, we obtain (5.9a); if  we substitute m = n− 1, (5.9b).

We shall now present some briefer proofs. To this purpose, we define a new Fibo-
nacci-like sequence, (gn) by:

and therefore,

Following (5.6), we can hence write

thus arriving at:

And again, substituting m = n, gives (5.9a) and substituting m = n− 1 gives 
(5.9b).

In the last two chapters, we promised that we would present simpler proofs for 
the following two relationships in this chapter:

In fact, substituting Fn = fn into (5.10) immediately leads to (3.6) and substituting 
Ln = fn, we immediately leads to (4.14).

5.3   The Lucas-Like Sequence of the Fibonacci-Like Sequence

Given—and only if given!—a Fibonacci-like sequence (fn) where (f0, f1) = (a, b), 
we can define a Lucas-like sequence (ln) of (fn) as follows:

Specifically:
z (Ln) is the Lucas-like sequence of (Fn) because Ln = Fn+1 + Fn−1.
z (Fn) is the Lucas-like sequence of Fn = (Ln+1 + Ln−1)/5, and for a similar rea-

son, (fn) is the Lucas-like sequence of (1n/5).

Since.

fmFn−1 + fm+1Fn = Fn−1(aFm−1 + bFm)+ Fn(aFm + bFm+1)

= a(Fn−1Fm−1 + FnFm)+ b(Fn−1Fm + FnFm+1)

= aFn+m−1 + bFn+m

= fn+m

gn = fn+m

(

g0, g1
)

= (fm, fm+1)

gn = g0Fn−1 + g1Fn = fmFn−1 + fm+1Fn

(5.10)f n+m = fmFn−1 + fm+1Fn

(3.6)Fn+m = FnFm+1 + Fn−1Fm

(4.14)Ln+m = LmFn−1 + Lm+1Fn

(5.11)ℓn = f n+1 + f n−1

fn = fn+1 − fn−l

5 .3 · The Lucas-Like Sequence of the Fibonacci-Like Sequence
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we obtain (by adding or subtracting the respective sides)

Exactly as with the Fibonacci and Lucas sequences.
A Lucas-like sequence is a Fibonacci-like sequence in every respect (because 

ln+2 = ln+1 + ln), and therefore we can automatically write:

We can check that

and hence

Similarly,

Note that the similarity between this equality and between

allows us to develop a Binet formula for (ln):

We obtained:

If  we “borrow” 1 from each of the exponents, we obtain:

In particular:
z If  b = aϕ, then 1n = −a

√
5(1− ϕ)n, meaning that the sequence is geometric 

with quotient ϕ.
z If  b = a(1− ϕ), then 1n = −a

√
5(1− ϕ)n and the sequence is geometric with 

quotient (1− ϕ).

(5.12a)ℓn + f n = 2f n+1

(5.12b)ℓn − f n = 2f n−1

(5.13a)ℓn = ℓ0Fn−1 + ℓ1Fn

(l0, l1) = (2b− a, 2a+ b) = (2f1 − f0, 2f0 + f1)

(5.13b)ℓn = (2b− a)Fn−1 + (2a + b)Fn = (2f 1 − f 0)Fn−1 + (2f 0 + f 1)Fn

ln = fn+1 + fn−1

= aFn + bFn+1 + aFn−2 + bFn−1

= a(Fn + Fn−2)+ b(Fn+1 + Fn−1)

(5.14)ℓn = aLn − 1+ bLn = f 0Ln−1 + f 1Ln

(5.6)fn = aFn−1 + bFn = f0Fn−1 + f1Fn

ln = aLn−1 + bLn

= a
[

ϕ
n−1 + (1− ϕ)n−1

]

+ b
[

ϕ
n + (1− ϕ)n

]

= ϕ
n[a(ϕ− 1)+ b] + (1− ϕ)n[a(−ϕ)+ b]

(5.15a)ℓn = (aϕ+ b− a)ϕn − (aϕ− b) (1− ϕ)n

(5.15b)ℓn =
√
5 [αϕn − β (1− ϕ)n]

(5.15a')ℓn = (a + bϕ)ϕn−1 − (a + bϕ) (1− ϕ)n−1
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We now substitute ϕ = 1/2(1+
√
5) and obtain (after the substitution in 5.15a):

or

where

We can now write (5.4c) and (5.16b) as follows:

Similarly, we can simplify (5.5a) as follows:

We now return to the formulas for the even/odd indices and the sum of the indi-
ces in the Fibonacci-like sequence:

Substituting Fn−1 = 1/2(Ln − Fn) in each, yields:

We have thus obtained a number of lovely simple relationships between the four 
sequences (Fibonacci, Lucas, Fibonacci-like and Lucas-like). This naturally leads 
us to inspect the even/odd indices and the index sum for the Lucas-like sequence. 
The formulas are:

(5.16a)ℓn = 1

2

(

[a
√
5+ (2b− a)]ϕn − [a

√
5− (2b− a)] (1− ϕ)n

)

(5.16b)ℓn = (c
√
5+ d)ϕn − (c

√
5− d) (1− ϕ)n

(c, d) =
(

a

2
,
2b− a

2

)

=
(

f0

2
,
2f1 − f0

2

)

=
(

f0

2
,
l0

2

)

(5.4d)f n = 1

2
√
5
[(f 0

√
5+ ℓ0)ϕ

n + (f 0

√
5− ℓ0) (1− ϕ)n]

(5.16c)ℓn = 1

2
[(f 0

√
5+ ℓ0)ϕ

n − (f 0

√
5− ℓ0) (1− ϕ)n]

(5.5b)f n = 1

2
(f 0Ln + ℓ0Fn)

(5.9a)f 2n = f nFn−1 + f n+1Fn

(5.9b)f 2n−1 = f n−1Fn−1 + f nFn

(5.10)f n+m = fmFn−1 + fm+1Fn

(5.17a)f 2n = 1

2
(f nLn + ℓnFn)

(5.17b)f 2n−1 =
1

2
(f n−1Ln + ℓn−1Fn) = 1

2
(f nLn−1 + ℓnFn−1)

(5.17c)f n+m = 1

2
(fmLn + ℓmFn) = 1

2
(f nLm + ℓnFm)

(5.18a)ℓ2n = f nLn−1 + f n+1Ln = f n−1Ln + f nLn+1

5 .3 · The Lucas-Like Sequence of the Fibonacci-Like Sequence
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5

Based on (5.10), and with the aid of (5.12) and (4.8), we can write:

Substituting m = n gives (5.18a), and substituting m = n – 1 gives (5.18b).

5.4   Comparing the Fibonacci-Like and Lucas-Like Sequences

This section is devoted to developing some direct relationships between the Fib-
onacci-like sequence and its Lucas-like sequence without any “intermediaries” 
(that is to say, the Fibonacci and/or Lucas sequence). To this effect, we shall look 
for “inspiration” from 7 Chap. 4, where relationships between the Fibonacci and 
Lucas sequences were presented.

At the beginning of the previous section, we presented the following relation-
ships:

These are identical to the relationships between the Fibonacci and Lucas  
sequences.

Before proceeding further, we shall demonstrate an important equivalence that 
will simplify some later calculations, and that is:

Proof:

(5.18b)ℓ2n−1 = f n−1Ln−1 + f nLn

(5.18c)ℓn+m = fmLn−1 + fm+1Ln = f nLm−1 + f n+1Lm

1n+m = 1mFn−1 + 1m+1Fn

= (2fm+1 − fm)Fn−1 + (2fm + fm+1)Fn

= 2fm+1Fn−1 − fmFn−1 + 2fmFn + fm+1Fn

= fm(2Fn − Fn−1)+ fm+1(2Fn−1 + Fn)

= fmLn−1 + fm+1Ln

(5.11)ℓn = fn + 1 + fn−1

(5.12a)ℓn + fn = 2fn + 1

(5.12b)ℓn − fn = 2fn−1

(5.19)af n−1 + bf n =
√
5 [α2

ϕ
n − β

2 (1− ϕ)n]

afn−1 + bfn = a [αϕn−1 + β (1− ϕ)n−1] + b [αϕn + β (1− ϕ)n]

= aαϕn−1 + bαϕn + aβ (1− ϕ)n−1 + bβ (1− ϕ)n

= αϕ
n−1 [a (ϕ− 1)+ b] + β (1− ϕ)n [a (−ϕ)+ b]

= αϕ
n
α

√
5− β (1− ϕ)nβ

√
5

=
√
5 [α2

ϕ
n − β

2 (1− ϕ)n]



115 5

Now, we shall consider some of the multiplicative combinations between the two 
sequences (the same as what we did in 7 Chap. 4 with respect to the Fibonacci 
and Lucas sequences):

By substituting (fn, ln) = (Fn, Ln), the well-known relationship LnFn = F2n is “re-
turned.”

Similarly we get:

Hence we can conclude:

5.5   The General Sequence of the Fibonacci-Like Sequence

z Motivation and definition
At the beginning of the previous section we proved that:

In this section, we shall take this even further.

ℓnfn =
√
5 [αϕn − β (1− ϕ)n] [αϕn + β (1− ϕ)n]

=
√
5 [α2ϕ2n − β

2 (1− ϕ)2n]

(5.20)ℓnf n = af 2n−1 + bf 2n

ℓnfn+1 =
√
5 [αϕn − β (1− ϕ)n] [αϕn+1 + β (1− ϕ)n+1]

=
√
5 [α2ϕ2n+1 − β

2 (1− ϕ)2n+1 + αβ (−1)n (1− ϕ− ϕ)]

=
√
5 [α2ϕ2n+1 − β

2 (1− ϕ)2n+1] − 5αβ (−1)n

(5.21a)ℓnf n+1 = af 2n + bf 2n+1 − δ (a, b) (− 1)n

(5.21b)ℓn+1f n = af 2n + bf 2n+1 + δ (a, b) (− 1)n

(5.21c)ℓn−1f n+1 = af 2n−1 + bf 2n + δ (a, b) (− 1)n

(5.21d)ℓn+1f n−1 = af 2n−1 + bf 2n − δ (a, b) (− 1)n

(5.22a)ℓnf n+1 + ℓn+1f n = 2 (af 2n + bf 2n+1)

(5.22b)ℓnf n+1 − ℓn+1f n = 2δ (a, b) (−1)n+1

(5.22c)ℓn−1f n+1 + ℓn+1f n−1 = 2 (af 2n−1 + bf 2n)

(5.22d)ℓn−1f n+1 − ℓn+1fn−1 = 2δ (a, b) (−1)n

(5.19)afn−1 + bfn =
√
5 [α2

ϕ
n − β2 (1− ϕ)n]

5 .5 · The General Sequence of the Fibonacci-Like Sequence
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5

Given—and only if given!—a Fibonacci-like sequence (fn)
where (f0, f1) = (a, b), we can define general sequence (gn) of (fn) as follows:

By using (5.19) we get:

First, we calculate g0 and g1:

Now, according to (5.23a), this sequence is clearly Fibonacci-like for all intents 
and purposes, so we can automatically write:

Specifically:
If  fn = Fn, then gn = Fn (that is to say: Fn is the generalized sequence of itself!).

z Even and Odd Indices
Observing (5.11) and (5.20) and that fn = fn+1 − fn−1, allows us to immediately 
write:

Now, we shall prove (using induction over n ≥ 0) that:

(This hypothesis stems from the value of g1.)
We saw that this formula is correct for 1. We shall assume that it is correct for 
k ≥ 1, and prove it correct for k + 1:

Earlier we saw that if  fn = Fn, then gn = Fn. Therefore, we can substitute gn = Fn 
in (5.25), leading back to the relationships we are familiar with from 7 Chaps. 3  
and  4:

(5.23a)gn = af n−1 + bf n = f 0f n−1 + f 1f n

(5.23b)gn =
√
5 [α2

ϕ
n − β

2 (1− ϕ)n]

g0 = af−1 + bf0 = a (b− a)+ ba = a (2b− a) = f0ℓ0

g1 = af0 + bf1 = a2 + b2 = f 20 + f 21

(5.24)gn = f 0ℓ0Fn−1 + (f 2
0
+ f 2

1
)Fn

(5.25a)g2n = f nℓn = f 2
n+1

− f 2
n−1

(5.25b)g2n−1 = f 2
n−1

+ f 2
n

g2k+1 = g2k−1 + g2k =
(

f2k−1 + f2k

)

+
(

f2k+1 − f2k−1

)

= f2k + f2k+1

(3.5a)F2n = F2n+1 − F2n−1
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Now, we can write the equalities of (5.21) as follows:

z Special Cases

We return to one of the definitions for (gn):

We shall examine two specific cases:
1. if  α = ±β, then

In other words, (gn) is a multiple of the Fibonacci sequence.
Recall that in the first section, we saw that if  α = β, then (fn) is a multiple of the 
Lucas sequence, and if  α = −β, then (fn) is a multiple of the Fibonacci sequence.

2. if  α = ±iβ, then

in other words, (gn) is a multiple of the Lucas sequence.

5.6   The Powers of the Golden Ratio

In 7 Chaps. 3  and  4 we saw that:

It seems natural to now address the analogue expressions

(4.9)F2n = LnFn

(3.5b)F2n−1 = F2n − F2n−1

(5.21a’)ℓnf n+1 = g2n+1 − δ (a, b) (− 1)n

(5.21b’)ℓn+1f n = g2n+1 + δ (a, b) (− 1)n

(5.21c’)ℓn−1f n+1 = g2n + δ (a, b) (− 1)n

(5.21d’)ℓn+1f n−1 = g2n − δ (a, b) (− 1)n

(5.23b)gn =
√
5 [α2

ϕ
n − β2 (1− ϕ)n]

gn =
√
5 [α2

ϕ
n − α2 (1− ϕ)n] =

√
5α2 [ϕn − (1− ϕ)n] =

√
5α2Fn

gn =
√
5 [α2

ϕ
n + α2 (1− ϕ)n] =

√
5α2 [ϕn + (1− ϕ)n] =

√
5α2Ln

(3.5a)Fn−1 + Fnϕ = ϕ
n

(3.5b)Fn−1 − Fnϕ = (1− ϕ)n

(4.17a)Ln−1 + Lnϕ =
√
5ϕn

(4.17b)Ln−1 − Lnϕ =
√
5 (1− ϕ)n

fn−1 + fnϕ

fn+1 − fnϕ

5 .6 · The Powers of the Golden Ratio
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5

In fact:

therefore:

Similarly, we obtain:

Here we preferred (n − 1) as the exponent instead of n due to the simplicity of the 
results.

If  we multiply together the respective sides of each equality, we return to the 
Cassini formula for the Fibonacci sequence:

We shall now continue on to another aspect. From the previous chapter we know 
that

If  we begin with (5.26), replace ϕ with its numeric value, and substitute (5.12), we 
obtain:

5.7   Ordering Fibonacci-Like Sequences

A Fibonacci-like sequence may have “strange and different” forms depending on 
the types of numbers that it is made up of: natural numbers, integers, rational 
numbers, ϕ-values, and even complex numbers. In the analysis up to now, there 
was no restriction on the type of number.

fn−1 + fnϕ = (aFn−2 + bFn−1)+ (aFn−1 + bFn)ϕ

= a(Fn−2 + Fn−1ϕ)+ b(Fn−1 + Fnϕ)

= aϕn−1 + bϕn

= (a+ bϕ)ϕn−1

(5.26a)ϕ
n−1 = (a+bϕ) · (f n−1 + f nϕ)

δ(a,b)

fn−1 + fnϕ = (a+ bϕ) (1− ϕ)n−1

(5.26b)(1− ϕ)n−1 = (a+bϕ) · (f n−1 − f nϕ)

δ(a,b)

(5.8)δ(fn−1, fn) = fn+1fn−1 − f 2n = δ (a, b) (−1)n+1

(4.15a)ϕ
n = 1

2
(Ln + Fn

√
5)

(4.15b)(1− ϕ)n = 1
2
(Ln − Fn

√
5)

(5.27a)ϕ
n−1 = (a+bϕ) · (ℓn + f n

√
5)

2δ(a,b)

(5.27b)(1− ϕ)n−1 = (a+ bϕ) · (ℓn − f n
√
5)

2δ(a,b)
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In this section, we shall discuss special cases of Fibonacci-like sequences and 
describe the properties of some special ones.

z Multiples of Fibonacci
In the first section of this chapter we saw that if  α = −β, that is to say a = 0, then:

In other words, (fn) is a multiple of the Fibonacci sequence.
In this case,

and therefore:

(Note that the first equality is a generalization of Cassini's formula.)

z Multiples of the Lucas Sequence
In the first section of this chapter we saw that if  α = β, meaning that a = 2b, then:

In other words, (fn) is a multiple of the Lucas sequence.
In this case:

and therefore:

z Multiples of “Shifted” Fibonacci Sequences
A multiple of the Fibonacci sequence that is “shifted” (to the right) is defined by:

where k is a natural number, and c  = 0.
Therefore:

In this case:

and therefore:

fn = α
√
5 Fn = bFn

δ(a, b) = δ(0, b) = −b2

δ(fn−1, fn) = δ(0, b)(−1)n+1 = b2(−1)n

µ(fn−1 + fnϕ) = µ(fn+1 − fnϕ) = |b|

fn = αLn = bLn

δ(a, b) = δ(2b, b) = 5b2

δ(fn−1, fn) = δ(2b, b) (−1)n+1 = 5b2 (−1)n+1

µ(fn−1 + fnϕ) = µ(fn+1 − fnϕ) = | b |
√
5

fn = cFn+k

(a, b) = (cFk, cFk+1)

δ(a, b) = δ(cFk, cFk+1) = c2δ(Fk, Fk+1) = c2(−1)k+1

5 .7 · Ordering Fibonacci-Like Sequences
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z Multiples of “Shifted” Lucas Sequences
A multiple of a Lucas sequence that is “shifted” (to the right) is defined by:

where k is a natural number, and c ≠ 0.
Therefore:

In this case:

and therefore:

z Rational Fibonacci-Like Sequences
If  a and b are rational numbers (and then all the elements of the sequence will 
be rational numbers), the sequence will be termed a rational Fibonacci-like  
sequence.

Also:

We shall now formulate a theorem that confers a more exact property for a ra-
tional Fibonacci-like sequence.

Theorem:
A Fibonacci-like sequence is rational if  and only if.

where A and B are rational numbers.

Proof:
We begin from formula (5.4c):

δ(fn−1, fn) = δ(cFk, cFk+1)(−1)n+1 = c2(−1)k+1(−1)n+1 = c2(−1)n+k

µ(fn−1 + fnϕ) = µ(fn+1 − fnϕ) = |c|

fn = cLn+k

(a, b) = (cLk, cLk+1)

δ(a, b) = δ(cLk, cLk+1) = c2δ(Lk, Lk+1) = 5c2(−1)k

δ(fn−1, fn) = δ(cLk, cLk+1)(−1)n+1 = 5c2(−1)k(−1)n+1 = 5c2(−1)n+k+1

µ(fn−1 + fnϕ) = µ(fn+1 − fnϕ) = |c|
√
5

δ(fn−1, fn) = δ(cLk, cLk+1) (−1)n+1 = 5c2 (−1)k (−1)n+1 = 5c2 (−1)n+k+1

µ (fn−1 + fnϕ) = µ (fn+1 − fnϕ) = | c |
√
5

(5.28a)f n = (A+ B

√
5)ϕn + (A− B

√
5) (1− ϕ)n

fn =
1
√
5

[(

c
√
5+ d

)

ϕ
n +

(

c
√
5− d

)

(1− ϕ)n
]
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and rewrite it as follows:

If  (fn) is a rational Fibonacci-like sequence, then c and d are rational numbers, 
and therefore if  we write

we shall arrive at (5.28).
In the opposite direction: If  (5.28) holds, then

If f0 and f1 are rational, then according to (5.2), every sequence must necessarily 
be rational.

Note that you can also write (5.28a) as follows:

and then the proof of the theorem is easier: If  A and B are rational numbers, 
then clearly, the sequence (fn) is rational, and if  the sequence is rational, then 
(5.28b) can be derived from (5.5a).

Exercises for Chapter 5

Please note:
5 n, m, k, are usually natural numbers (or 0), unless indicated otherwise.
5 (fn) is a Fibonacci-like sequence. ((fn) is not geometric and is not a (0) iden-

tity).
5 (ln) is Lucas-like sequence of (fn).
5 (gn) is a surjective sequence of (fn).
5 (α, β), (a,b), and (c, d) are as defined in the text in the chapter, and conform to 

the restrictions noted in the first section.

z Exercise 5 .1: Cassini’s Formula
In the text we proved that:

fn =

(

c+
d
√
5

5

)

ϕ
n +

(

c−
d
√
5

5

)

(1− ϕ)n

c = A, d/5 = B

f0 = (A+ B
√
5)ϕ0 + (A− B

√
5) (1− ϕ)0 = 2A ∈ Q

f1 = (A+ B
√
5)ϕ1 + (A− B

√
5) (1− ϕ)1

= Aϕ+ B
√
5ϕ+ A− B

√
5− Aϕ+ B

√
5ϕ

= B
√
5 (2ϕ− 1)+ A

= B
√
5
√
5+ A

= 5B+ A ∈ Q

(5.28b)f n = ALn + BFn

(5.8)δ(fn−1, fn) = fn+1fn−1 − f 2n = δ (a, b) (−1)n+1

Exercises for Chapter 5
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Prove the formula (again) using:

z Exercise 5 .2: The Sequence of Numerators of (fn)
Calculate: lim

n→∞
fn+1/fn.

z Exercise 5 .3: Sums of a Fibonacci-Like Sequence
Prove:
1. f1 + f2 + f3 + . . .+ fn = fn+2 − f2
2. f2 + f4 + f6 + . . .+ f2n = f2n+1 − f1
3. f1 + f3 + f5 + . . .+ f2n−1 = f2n − f0
4. f21 + f22 + f23 + . . .+ f2n = fnfn+1 − f1f0

z Exercise 5 .4: Linear System
Prove that the solution of the following system does not depend on n.

z Exercise 5 .5: Non-Infinite Series
In this exercise, assume that fn ≠ 0 for all n.
A. Prove:

B. Deduce:

C. Deduce:

z Exercise 5 .6: Even/Odd
Prove:
A. If  n and m are even, then

B. If  n and m are odd, then

C. If  n is even and m is odd (or m is even and n is odd) then

(5.6)fn = aFn−1 + bFn

fn−1x+ fny = fn+1

fnx+ fn+1y = fn+2

1

fnfn+2

=
1

fnfn+1

−
1

fn+1fn+2

1

f1f3
+

1

f2f4
+

1

f3f5
+

1

f4f6
+ . . .+

1

fnfn+2

=
1

f1f2
−

1

fn+1fn+2

1

f1f3
+

1

f2f4
+

1

f3f5
+

1

f4f6
+ . . . =

1

f1f2

fn+1fn−1 − fm+1fm−1 = f2n − f2m

fn+1fn−1 − fm+1fm−1 = f2n − f2m

fn+1fn−1 + fm+1fm−1 = f2n + f2m
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z Exercise 5 .7: Extending the Fibonacci-Like Sequence
A. Calculate f−1, f−2, f−3, f−4, and propose and propose a definition for f−n 

(where n is natural)
B. Deduce (n is natural):

C. Deduce (for each whole/integer m)

D. Prove:

z Exercise 5 .8: Fn as an Expression of fn
A. Prove that for all natural n and for every Fibonacci-like sequence (fn):

B. Deduce that for every natural n sequence and for every Fibonacci-like se-
quence (fn), the expression on the right side of the above equality is a natu-
ral (!) number.

C. Prove that if  a and b are integers, then (afn+1 − bfn) and δ(a, b) are integers, 
and that δ(a, b) is a divisor of (afn+1 − bfn) for all natural n.

z Exercise 5 .9: Comparing the Fibonacci-Like Sequence and the Lucas Sequence
Prove:
1. fnLn = f2n + a(−1)n

2. fn−1Ln = f2n−1 + (a− b)(−1)n+1

3. fnLn−1 = f2n−1 + b(−1)n+1

z Exercise 5 .10: Comparing the Lucas-Like Sequence and the Fibonacci Sequence
Prove:
1. 1nFn = f2n + a(−1)n+1

2. ln−1Fn = f2n−1 + (a− b)(−1)n

3. lnFn−1 = f2n−1 + b(−1)n

z Exercise 5 .11: All Together
In this chapter we proved that

Prove (again) the equalities using the results of exercises 5.9 and 5.10.

z Exercise 5 .12: Sums
Prove:
1. f1L1 + f2L2 + f3L3 + . . .+ fnLn = f2n+1 − b (n even )

f−n = aF−n−1 + bF−n

fm = aFm−1 + bFm

f−1 + f−2 + f−3 + f−4 + . . .+ f−n = (−1)n(aFn − bFn−1)+ b = −f−n+1 + b

Fn = δ−1(a, b)(affn+1 − bfn)

(5.17a)f2n = 1/2[fnLn + 1nFn]

(5.17b)f2n−1 = 1/2
[

fn−1Ln + 1n−1Fn
]

= 1/2
[

fnLn−1 + 1nFn−1

]

Exercises for Chapter 5
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2. f1L1 + f2L2 + f3L3 + . . .+ fnLn = f2n+1 − a− b (n odd )

3. 11F1 + 12F2 + 13F3 + . . .+ 1nFn = f2n+1 − b (n even)

4. 11F1 + 12F2 + 13F3 + . . .+ 1nFn = f2n+1 + a− b (n odd )

z Exercise 5 .13: Inequalities
A. Given are the vectors (ϕn, (1− ϕ)n) and (α, β), where α and β are real numbers.
 Calculate their scalar product and their lengths, and deduce that for all n 

the following holds:

B. Given are the vectors (Fn−1, Fn) and (a, b), where a and b are real numbers.
 Calculate their scalar product and their lengths, and deduce that for all n 

the following holds:

C. Given are the vectors (Ln, Fn) and (c, d), where c and d are real numbers.
 Calculate their scalar product and their lengths, and deduce that for all n 

the following holds:

z Exercise 5 .14: Units
Prove: 1nfn = f2n if  and only if  fn = Fn (and then also ln = Ln).
(Reminder: In the first section, we established that fn is not geometric.)

z Exercise 5 .15: Between δ and δ
A. Prove:

B. Deduce:

z Exercise 5 .16: Powers of the Golden Ratio
A. In this chapter we proved that:

Prove (again) the above formulas using:

f2n ≤
(

α2 + β2
)

L2n

f2n ≤
(

a2 + b2
)

F2n−1

f2n ≤
(

c2 + d2
)(

L2
n + F2n

)

δ(l0, l1) = −5δ(f0, f1)

δ(ln−1, ln) = 5δ(f0, f1)(−1)n = −5δ(fn−1, fn)

(5.26a)ϕ
n = δ−1(a, b) (a+ bϕ) · (fn−1 + fnϕ)

(5.26b)(1− ϕ)n = δ−1(a, b) (a+ bϕ) · (fn+1 − fnϕ)

(5.1)fn = αϕn + β (1− ϕ)n
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B. Prove:

C. Prove:

z Exercise 5 .17: Generalized Sequence
Prove:
1. gofn−1 + g1fn = fogn−1 + f1gn
2. agn+1 − bgn = δ−1(a, b)fn
3. gn−1 + gn+1 = 1ofn−1 + 11fn

z Exercise 5 .18: Mixed Sums
Prove:

z Exercise 5 .19: Squares
A. Prove:

B. Deduce:

C. Prove:

z Exercise 5 .20: Composite Sequences
A. Define:

Prove:
B. In this section, α and β are real numbers.

We define:

Prove:

1

2

(

ln + fn
√
5
)

=
1

2

(

l0 + f0
√
5
)

ϕ
n

1

2

(

ln − fn
√
5
)

=
1

2

(

l0 − f0
√
5
)

ϕ
n

ln−1 + lnϕ

fn−1 + fnϕ
=

l0 + l1ϕ

f0 + f1ϕ
=

√
5

l1f1 + l2f2 + l3f3 + . . .+ 1nfn = a2n + bf2n+1 − a2 − b2 = g2n+1 − g1

(a+ bϕ)2 = (a2 + b2)+ b (2a+ b)ϕ

(f0 + f1ϕ)
2 = g1 + g2ϕ

(fn−1 + fnϕ)
2 = g2n−1 + g2nϕ

fn = Fn−1 + iFn

|fn|2 = F2n−1

fn = αϕn + iβ(1− ϕ)n

| fn |2
√
5 = g2n

Exercises for Chapter 5
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z Exercise 5 .21: Matrices and Fibonacci-Like Sequences
In this exercise, (fn) is a rational Fibonacci-like sequence. Prove:
1. �M(fn−1, fn) = M(fn, fn+1)

2. �−1M(fn, fn+1) = M(fn−1, fn)

3. �nM(fn−1, fn) = M(f2n−1, f2n)

4. �kM(fn−1, fn) = M(fn+k−1, fn+k)

5. �nM(f−1, f0) = M(fn−1, fn)

6. M(fm − 1, fm) = M(a, b)�n−1

7. M(fn−1, fn)R(5) = M(ln−1, ln)

8. M(fn−1, fn)M(fn+1,−fn) = δ(fn−1, fn)I = (−1)n+1δ(a, b)I

z Exercise 5 .22: Matrix version for Binet’s Formula
In this exercise, (fn) is a rational Fibonacci-like sequence.
In this chapter, we saw that

Verify the following:

z Exercise 5 .23: “Hyperbolic-Fibonacci” Functions
The functions f  and g are defined for all real x by:
f(x) = ϕ

x + (ϕ− 1)x

g(x) = ϕ
x − (ϕ− 1)x

A. Establish the following facts (x is a real variable):
1. f(x)+ g(x) = 2ϕx

2. f(x)− g(x) = 2(ϕ − 1)x

3. f2(x)+ g2(x) = 2f(2x)

4. f(x)g(x) = g(2x)

5. f(x) = 2 cosh(x ln ϕ)

6. g(x) = 2 sinh(x ln ϕ)

B. Establish the following facts (x and y are real variables):
1. f(x+ y) = ϕ

xg(y)+ (ϕ− 1)yf(x) = ϕ
yg(x)+ (ϕ− 1)xf(y)

2. g(x+ y) = ϕ
xg(y)+ (ϕ− 1)yg(x) = ϕ

yg(x)+ (ϕ− 1)xg(y)

3. f(x)g(y)+ f(y)g(x) = 2g(x+ y)

4. f(x)f(y)+ g(x)g(y) = 2f(x+ y)

5. f′(x)f(y)+ f′(y)f(x) = g′(x)g(y)+ g(x)g′(y)

C. Establish the following facts (n is a natural number):
1. L2n = f(2n)

2. L2n−1 = g(2n− 1)

3. 
√
5 F2n = g(2n)

4. 
√
5 F2n−1 = f (2n− 1)

5. 2f2n = (α + β)f(2n)+ (α − β)g(2n)

6. 2f2n−1 = (α + β)g(2n− 1)+ (α − β)f(2n− 1)

(Be careful! Make sure to distinguish between fn and (f(n)!).

(5.4a’)fn
√
5 = (a+ bϕ)ϕn−1 − (a+ bϕ) · (1− ϕ)n−1

fnR(5) = M(a, b)�n−1 −M(a+ b,−b) (I−�)n−1
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z Exercise 5 .24: Fibonacci-like triplets (a)
A triplet (a, b, c) will be called a Fibonacci-like triplet if  c = a + b.
A. Show that the following triplets are Fibonacci-like triplets:
1. 

(

a2 + b2, 2ab, (a+ b)2
)

2. 
(

(a− b)2, 4ab, (a+ b)2
)

3. 
(

a2 − b2, ab, δ(a, b)
)

4. 
(

cos2 α, sin2 α, 1
)

5. 
(

cos2 α,− sin2 α, cos 2α
)

6. [cosα, sin α,
√
2 sin(α + 45◦)]

7. (cot α,−tgα, 2 cot 2α)

8. 
(

ex, e−x, 2 cosh x
)

9. (cosh(x), sinh(x), ex)

10. 
(

cosh2(x), sinh2(x), cosh(2x)
)

11. 
(

cosh2(x),− sinh2(x), 1
)

12. (ln(a), ln(b), ln(ab))
B. Show that the following triplets are Fibonacci-like triplets:
1. (1,

√
5, 2ϕ)

2. (ϕ,ϕ − 1,
√
5)

3. (Fn−1, Fnϕ,ϕ
n)

4. (Fn+1,−Fnϕ, (1− ϕ)n)

5. (Fn+1,−Fn−1, Fn)

6. 
(

Fn+1Fn−1,−F2n, (−1)n
)

7. 
(

F2n, F
2
n−1, F2n−1

)

8. (Fn+1, Fn−1, Ln)

9. (Ln, Fn, F2n+1)

10. (f1Fn, f0Fn−1, fn)

z Exercise 5 .25: Fibonacci-Like Triplets (b)
A. The triplet (a, b, c) is a Fibonacci-like triplet. Prove that the following tri-

plets are Fibonacci-like triplets:
1. (b, a, c)
2. (−a, c, b)

3. (a− b, b, c− b)

4. (c,−b, a)

5. (ka, kb, kc)
6. (a+ k, b+ k, c+ 2k)

B. The triplet (a, b, c) is a Fibonacci-like triplet. Prove:
1. δ(a, b) = ac− b2

2. δ(a, b)+ δ(b, c) = 0

3. δ(c, a) = δ(c, b)

C. Prove:
– If  (a, a+ d, a+ 2d), is a Fibonacci-like triplet, then d = a.
– If  

(

a, aq, aq2
)

 is a a Fibonacci-like triplet, then q = ϕ, −1/ϕ.

Exercises for Chapter 5
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– If  (1/a, 1/b, 1/c) is a Fibonacci-like triplet, then c2 = ab.
– If  (a, b, k(a+ b)) is a Fibonacci-like triplet, then k = 1 or b = −a.
D. Given the equation x2 − cx+ ab = 0,

Prove that if  a ≠ b, then S = {a, b}, and if  a = b, then S = {a}.

Answers, Hints and Partial Solutions

z Exercise 5 .2
ϕ. The simplest proof uses (5.1).

z Exercise 5 .3
The simplest way: Using the telescopic cancellation method (as we did for 
finding the sums of (Fn).)

z Exercise 5 .4
The solution is (1,1). It is not worth trying to solve this systematically. This is 
an “obvious” solution, and it is unique since the determinants of the system is 
equal to δ(fn−1, fn) and therefore is different from 0. (Reminder: In the first sec-
tion, we established that fn is not geometric.)

z Exercise 5 .5
A. Begin with the right side.
C. The conclusion was established in the previous section.

z Exercise 5 .6
B. This is in accordance to (5.8).

z Exercise 5 .7
A. fn = (−1)n(aFn+1 − bFn)

C. Do not forget f0.

z Exercise 5 .8
A. Begin with the right side and substitute (5.6).
B. Fn is a natural number for all n.

z Exercise 5 .12
The first two: According to the first equality in Exercise 5.9 and the second 
equality in Exercise 5.3.
 The latter two: According to the first equality in Exercise 5.10 and the second 
equality in Exercise 5.3.
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z Exercise 5 .13
Calculate the cosine of the angle between the vectors.

z Exercise 5 .14
1nfn = f2n can be transformed into an equality.√
5 [α2

ϕ
2n − β2 (1− ϕ)2n] = aϕ2n + β (1− ϕ)2n

z Exercise 5 .16
This is derived from (5.26a). (Reminder: (ln) is a Fibonacci-like sequence in 
every sense of the word.)

z Exercise 5 .19
A. See 7 Chap. 1, Section C.

Answers, Hints and Partial Solutions
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Stamp series, Macau, China 2007  

(photographed from the collection of stamps by Dr. Johnny Oberman)

Many stamps around the world have been issued in honor of Fibonacci.

z Introduction to Chapter 6
This chapter was written by Anatoly Shtarkman and Bat-Sheva Ilany
This chapter includes 13 challenging tasks intended to supplement  
Chaps.  1–5. They are mainly explorative exercises that can lead to additional in-
teresting discoveries. They can also serve as a source for investigative projects of-
fered in mathematical courses or seminars.

z Task 1: Functions of the 1st, 2nd, and 3rd Degrees—With a Parameter
(1) Given a straight line y = Fnx + Fn−1.

(a)  Show that this line passes through both points (ϕ,ϕn) and  
( 1− ϕ, (1− ϕ)n ).

(b)  Determine its intersection points with the x and y axes and also the points 
of intersection of any two consecutive straight lines in the family.

(c)  Calculate the area bounded by the two lines, the x-axis and line x = k (nat-
ural k).

(2) Given a function fn(x) = Fn (x
2 − 1)+ Fn−1.

(a)  Show that the graph of the function passes through both points  
(ϕ,ϕn) and ( 1− ϕ, (1− ϕ)n ).

(b)  Determine its intersection points with the x- and y-axes and calculate the 
value of the vertex.
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(c)  Determine the general equation of a tangent to the graph at any point 
(one at a point of ascent and another at a point of descent) and calculate 
the area of the triangle bounded by the tangent, the x-axis, and straight 
line x = k (natural k).

(d)  Calculate the area bounded by the graph, the x- and y-axes and the verti-
cal line passing through the point of origin.

(3) Given a function gn(x) = 1
2
Fn (x

3 − 1)+ Fn−1.
(a)  Show that the graph of the function passes through both points  

(ϕ,ϕn) and ( 1− ϕ, (1− ϕ)n ).

(b)  Show that no extrema points exist but that there is a point of inflection. 
Calculate the value of the inflection point.

(c)  Determine the general equation of the tangent to the graph at any given 
point (one to the right of the inflection point and one to the left), and 
calculate the area of the triangle bounded by the tangent, the x-axis, and 
straight line x = k (natural k).

(d)  Calculate the area bounded by the graph, the x- and y-axes and the verti-
cal line passing through the point of origin.

z Task 2: An Analogy
(1) Given that t = 1+

√
3

 Construct a quadratic equation with integer coefficients for which t is one 
solution. Determine the second solution.

(2) Carry out a linearization of the first five powers of tand prove that:
 tn = ant+ 2an−1, When:

(3) Find an explicit formula for the sequence an
(4) Determine formulas for different sums similar to the Fibonacci sequence.

z Task 3: The Family of Functions with Fibonacci Coefficients
Given a family of functions defined by:

(1) Show that the graph of each such function intersects the x-axis at both   
(ϕ, 0) and (1− ϕ, 0)

(2) Prove that if   1− ϕ < x < ϕ, then fn(x) < 0

(3) Show that fn(x) = (x2 − x − 1) gn(x), n > 2, where gn(x) is a polynomial to 
the power of n− 2. Find a formula for the polynomial’s coefficients.

(4) Prove that if  n is an even number, the graph will not intersect the x-axis at any 
other point, but if  n is odd, the graph will intersect the x-axis at a third point. 
For the latter case, find a closed interval that includes the point.

a1 = 1, a2 = 2

an+2 = 2an+1 + 2an

fn(x) = xn − Fnx − Fn−1, n > 1.
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z Task 4: The Sum of Two Geometric Sequences with Conjugate Complex Ratios
Given that z = 1

2
(1+ i

√
3).

(1) Construct a quadratic equation with integer coefficients for which z is one 
solution. Determine the second solution.

(2) Express the first eight exponents of z in the form of  a+ bi (a and b are real 
numbers), and generalize each one for any exponent.

(3) The sequence (an) is defined by an = α (z)n + β (z∗)n where α and β are real 
numbers (z∗ is the conjugate of z).
(a)  Show that the sequences satisfy the recursive equation:  

an+2 = an+1 − an,

(b) and calculate a0 and a1.
(c) Examine the sequence when a0 = 0.
 Find equations, properties, and equations for the sums.
(d)  Examine the sequence when a0 = a, a1 = b (both are natural numbers). 

Determine relationships, properties, and formulas for the totals.

z Task 5: Exploring a Family of Functions
A family of functions, fA, is defined by: fA(x) = x2−x−1

x2−A
.

where A is a real number.
(1) Explore the function systematically, differentiating between various values of 

A. Examine the domain, intersection points with the x- and y-axes, asymp-
totes, ascending and descending areas, extrema, points of inflection, graphs.

(2) Determine the general equations of the tangents at the intersection points 
with the x- and y-axes and at any point.

z Task 6: Sequences Defined by the Root of the Golden Ratio
Background: Fibonacci and Lucas Sequences (Chap. 3 without matrices and 
Chap.  4).

Two sequences, (an) and (bn), are defined by:

(1) Derive formulas for odd and even indexes, the sum of the indexes, and the 
sums of each of the sequences separately. Find the relationship between the 
Fibonacci and Lucas sequences.

(2) Find relationships between the two sequences, formulas for mixed sums, and 
the relationship between the sums of the Fibonacci and Lucas sequences.

z Task 7: Linear Combinations of Two Sequences
Background: Fibonacci and Lucas Sequences (Chap. 3 without matrices and 
Chap.  4).

an
√
5 = (

√
ϕ)n −

(

i√
ϕ

)n

bn = (
√
ϕ)n +

(

i√
ϕ

)n
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Sequence fn is defined by fn = ALn + BFn, where A and B are integers.
Derive formulas for odd and even indexes, the sum of indexes, and the prod-

ucts and sums. Point out instances that are fundamentally dissimilar.

z Task 8: The Sum of Two Real Geometric Progressions
Background: The Fibonacci sequence (Chap.  3 without matrices).
(1) Calculate the solutions for x1 and x2 for the equation x2 − S x + P = 0, where S 

and P are integers and � = S2 − 4P > 0.
(2) Two sequences, (an) and (bn), are defined by:

 where x1 > x2.
(a)  Derive formulas for odd and even indexes and the sums of the indexes. 

Point out cases that are fundamentally different.
(b)  Find relationships between the two sequences, the formulas for mixed 

sums, and the relationship between the sums of the Fibonacci and Lucas 
sequences.

z Task 9: Complex Series Based on Exponents of the Golden Ratio
Background Chap.  3 (first four sections) and Chap.  4.

Sequences (fn) and (gn) are defined by

and “conjugate” sequences (f ∗n ) and (g∗n) by

(We use either an asterisk or a line above the number (function) to denote the 
conjugate of that number of function).

(1) Explore each of the sequences separately and derive formulas. For example, 
derive the formulas for

 

In some cases, the results will involve Fibonacci and Lucas sequences. These 
cases should be pointed out.
(2) Explore “combinations” of sequences, such as
 

an
√
� = (x1)

n − (x2)
n

bn = (x1)
n + (x2)

n

fn = ϕ
n + i (1− ϕ)n

gn = (1− ϕ)n + iϕn,

f ∗n = ϕ
n − i (1− ϕ)n

g∗n = (1− ϕ)n − iϕn

f 2n , fnfn+1, fn−1fn+1, fnfm, |fn| and so on.

fngn, fn + gn, fnf
∗
n , fng

∗
n, and so on.
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In some cases, the results will be identical. For example: fng
∗
n = f ∗n gn = L2n. 

Can you identify such cases? Also, sometimes the result will always be a real num-
ber, or always pure imaginary result, or always a complex result. Find such cases.

z Task 10: “Hyperbolic-Fibonacci” Functions
Background: The Fibonacci sequence and the Binet formula (beginning of Chap.  3), 
Lucas sequences (beginning of Chap.  4).
(1) Explore the sine-hyperbolic and cosine-hyperbolic functions:

Show that each one is the derivative of the other. Relate this to the equations 
of tangents and areas in general.
(2) Explore the families:

Pay particular attention to the general equations for tangents and areas.
(3) Show that the following are true:

(4) Explore the functions defined by:

Pay particular attention to the general equations for tangents and areas.
(5) For each function, find the general equation for the tangent associated with 

the sequence at any point; calculate the area bounded by the graph, the x- and 
y-axes, and the vertical line that passes through this point; and calculate the 
area of the triangle bounded by the tangent, the x-axis and the vertical line 
through the point.

sinh(x) = 1
2
(ex − e−x)

cosh(x) = 1
2
(ex + e−x)

fm(x) = sinh(mx)

gm(x) = cosh(mx)

F2n
√
5 = ϕ

2n − (ϕ− 1)2n

F2n−1

√
5 = ϕ

2n−1 − (ϕ− 1)2n−1

L2n−1 = ϕ
2n−1 − (ϕ− 1)2n−1

L2n = ϕ
2n + (ϕ− 1)2n

f1(x) =
ϕ
2x−1 + (ϕ− 1)2x−1

√
5

f2(x) =
ϕ
2x − (ϕ− 1)2x

√
5

ℓ1(x) = ϕ
2x−1 − (ϕ− 1)2x−1

ℓ2(x) = ϕ
2x + (ϕ− 1)2x
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z Task 11: Partitioning of a Rectangle
Background: The golden rectangle and the first section of 7 Chap. 1.
(1) Section a rectangle into a square and a rectangle. Repeat this action once 

more. The terminology is defined as follows: step 0 is the original rectangle; 
step 1 is the rectangle that remains after the first square has been removed; 
step 2 is the rectangle that remains after removing the square from the rectan-
gle formed in step 1.

 Classify each rectangle as follows:
(a)  A rectangle whose dimensions are Fibonacci numbers. Find three such 

rectangles.
(b)  A rectangle whose dimensions are Lucas numbers. Find three such rectan-

gles.
(c)  A rectangle with one side that is more than half  the length of the other 

side. Form three such rectangles.
(d)  A rectangle whose length is greater than twice its width. Form three such 

rectangles.
(2) All the dimensions in this task should be natural numbers.
(3) Draw all the rectangles obtained and prepare a table using an appropriate 

computer program. The columns in the table should include: Length, width, 
and ratio of length to width at step 0, step 1 and step 2. In total, there will be 
9 columns (three times three)

Precision: Rounded to 6 digits after the decimal point.
Prepare a dynamic presentation.

z Task 12: A “Catalogue” of Triangles
Background: Golden triangles (first three sections in Chap.  2).
(1) Prepare a catalogue of as many triangles that you can whose angles (all three) 

are multiples of 18◦ (including both types of golden triangles). Sort them into 
the following categories: equilateral triangles, right-angled triangles, oth-
ers. For each triangles, let A designate the largest angle and C the smallest (in 
some instances, of course, two angles may be equal).

(2) Assuming that the length of shortest side is 1 unit, calculate the lengths of the 
other sides, the radius of the ccircumscribed circle, the radius of the iinscribed 
circle, and the ratio between these two radii. Also, calculate the ratios between 
the sides and determine the values of the angles’ trigonometric functions.

(3) Try to divide each type of triangle into two triangles whose angles are also 
multiples of 18◦. Clarify when this is possible and when it is not. Calculate the 
ratios between the areas of the triangles (three ratios).

(4) Each final result should be written as a ϕ  -number. If  this is impossible, write 
it as the square root of a ϕ-number. In the latter case, prove that it is impossi-
ble to write it in the first form (see Exercises 2.18, 2.19).

z Task 13: Partitioning of Squares
Background: Lewis Carroll’s paradox: Is 1 = 0 (Introductory chapter).

Note: Only natural numbers should be use in this task
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(1) Position a square on the Cartesian coordinate system such that the lower 
left vertex of the square lies at (0, 0) and two sides lie on the axes. Divide the 
square into two identical right-angled triangles and two identical right-angled 
trapezoids (see . Fig. 6.1).
 The solution to the apparent paradox lies in the fact that a very narrow 

section of the resulting rectangle either remains uncovered or is covered 
twice by the sections cut out from the square.

(a)  Prove that the uncovered part or the part that is covered twice (by the two 
triangles and the two trapezoids) is a parallelogram (see . Fig. 6.2).

(b)  Determine the equations for the sides of the missing/doubled parallelo-
grams, calculate the distance between the sides of the parallelogram, and 
calculate the small angle of the parallelogram. Also, calculate the area of 
the parallelogram, the difference in areas between the rectangle and the 
square and the relative difference.

Repeat this for the following cases:

(i) The side length of a square is a Fibonacci number and the dimensions 
of the triangles and the trapezoids are also Fibonacci numbers (as in 
. Fig. 6.1). Investigate at least three different such squares.

(ii) The side length of the square is a Fibonacci number but the dimensions 
of the triangles and the trapezoids are not Fibonacci numbers. Investi-
gate at least three different such squares.

(iii) The side length of the square is a Lucas number and the dimensions of 
the triangles and the trapezoids are also Lucas numbers. Investigate at 
least three different such squares.

(iv) The side length of the square is a Lucas number but the dimensions of 
the triangles and the trapezoids are not Lucas numbers. Investigate at 
least three different such squares.

y

8

8
x

. Fig . 6 .1 Lewis Carroll’s paradox
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(2) Is it possible to generalize a square with a side of length n? Explain your  
answer.

(3) Is there any case where the area of the parallelogram equals zero? If  so, when 
does this occur?

z Finally
We have reached the end of our long journey, but as we mentioned at the be-
ginning of this book, there are still quite a few “loose ends.” Thus, we con-
clude our discussion on Fibonacci with:
This may be the end of our book, but the journey itself has just begun.
 Sadly, Opher Liba passed away on February 2016, and never saw the published 
book.

5

13

5

13

(a)

(b)

. Fig . 6 .2 Lewis Carroll’s paradox 
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List of Formulas, Theorems, and Definitions

7 Chapter 1: The Golden Rectangle and the Golden Ratio

The Golden ratio

The Golden Equation and The Golden Function

In geometry, a golden rectangle is a rectangle that if  we remove from it a 
square then the ratio between between the length and the width of the remaining 
rectangle equal to the analogous ratio in the original rectangle. This ratio equals 
the golden ratio ϕ.

Identifying Basic Numerical Values with ϕ

(1.2)ϕ = 1+
√
5

2

(1.3)−1

ϕ
= 1− ϕ = 1

2
(1−

√
5)

(1.1b)ϕ
2 = ϕ+ 1

(1.4a)
(

−1

ϕ

)2

= −1

ϕ
+ 1

(1.4b)(1− ϕ)2 = (1− ϕ)+ 1

(1.1a)x2 = x+ 1

x  → x2 − x − 1

(1.5)2ϕ− 1 =
√
5

(1.6a)ϕ
2 = ϕ+ 1 = 1

2
(3+

√
5)
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Commutative Group

�G, ◦� is a Commutative Group if:

Field

�F,⊕,⊗� is a Field if  �F,⊕� and �F\{0},⊗� are Commutative Groups, and if:

A number of the form:

 where a and b are rational numbers, is called a “ϕ-number.”

The companion of a+bϕ:

(1.6b)
(

1

ϕ

)2

= (ϕ− 1)2 = 2− ϕ = 1

2
(3−

√
5)

(1.7a)ϕ
2 + 1 = ϕ+ 2 = ϕ

√
5

(1.7b)
(

1

ϕ

)2

+ 1 = 3− ϕ =
√
5

ϕ
= (ϕ− 1)

√
5

(1.8)ϕ
3 = 2ϕ+ 1 = 2+

√
5

∀a ∈ G,∀b ∈ G : a ◦ b ∈ G

∀a ∈ G,∀b ∈ G : a ◦ b = b ◦ a

∀a ∈ G,∀b ∈ G , ∀c ∈ G : a ◦ (b ◦ c) = (a ◦ b) ◦ c

∃e ∈ G,∀a ∈ G : a ◦ e = e ◦ a = a

∀a ∈ G, ∃a′ ∈ G : a ◦ a′ = a′ ◦ a = e

∀a ∈ F, ∀b ∈ F, ∀c ∈ F : a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c)

(1.9)a + bϕ

(1.10)δ(a,b) = a
2 + ab− b

2

(1.11a)(a + bϕ)−1 = a+ b (1−ϕ)

δ(a,b)
= a+ b− bϕ

δ(a,b)

(1.10)δ(a,b) = a
2 + ab− b

2

(1.12a)(a + bϕ)∗ = a + b(1− ϕ)

(1.12b)[a + b(1− ϕ) ∗ = a + bϕ

(1.12c)(a + bϕ)∗∗ = a + bϕ

(1.11b)(a + bϕ)−1 = (a+bϕ)∗

δ(a,b)

List of Formulas, Theorems, and Definitions
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Theorem A set of ϕ-numbers different from zero, along with multiplication, constitutes a 
commutative group:

Multiplication between two ϕ-numbers:

The square of a ϕ-number:

The inverse element of a ϕ-number:

The matrix M(a, b)

 where a and b are rational numbers, neither of which is 0.

Theorem The set of matrices of the form M(a, b), combined with the standard multipli-
cation operation between matrices, constitutes a commutative group, which is isomorphic 
to the set the non zero ϕ-numbers.

The Golden Matrix

(a + bϕ)(a+ bϕ)∗ = δ(a, b) (1.11b′)

(a+ bϕ)(c+ dϕ) = (ac+ bd)+ (ad+ bc+ bd)ϕ

(a+ bϕ)2 = (a2 + b2)+ b (2a+ b)ϕ

(1.11b)(a + bϕ)−1 = (a+bϕ)∗

δ(a,b)

(1.11b′)(a + bϕ)(a + bϕ)∗ = δ(a, b)

(1.13)M(a, b) =
(

a b

b a + b

)

(1.14a)
(

a b

b a + b

)−1

= 1

δ(a,b)

(

a + b −b

−b a

)

(1.14b)M
−1(a,b) = δ

−1(a,b) ·M(a + b,−b)

(1.15)� = M(0, 1)

(1.16)�2 = �+ 1

(1.17)�−1 = �− I = M(− 1, 1)
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The Root-Five Matrix

The Norm of ϕ-Numbers

The Norm of ϕ-Numbers

Definition: 

x = a+ bϕ shall be termed the “norm of a+bϕ”, if µ(x) = 1.

Attribute  if   x   and y are ϕ-numbers, then:

Theorem  The entire set of normalized ϕ-numbers constitutes a commutative group.
Theorem  Given any ϕ-number, x = a+ bϕ, it will be true thats:

(1.18)R(5) = M(− 1, 2) = 2�− I

R
2(5) = 5I

(1.19)µ(a + bϕ) =
√

|δ(a, b)|

(1.20)µ(x) = 0 ⇔ x = 0

(1.21a)µ(− x) = µ(x∗) = µ(x)

(1.21b)µ(x−1) = [µ(x)]−1

(1.22)µ(kx) = |k|µ(x) (∀k ∈ Q)

(1.23)µ(xy) = µ(x)µ(y)

(1.24)
µ[(a + bϕ)2] = µ[(a2 + b

2)+ b(2a + b)ϕ]

= [µ(a + bϕ)2] = |δ(a,b)|

(1.25)µ(xk) = [µ(x)]k (∀k∈ N)

(1.21′)µ(− x) = µ(x∗) = µ(x−1) = 1

(1.22′)µ(kx) = |k| (∀k ∈ Q)

(1.23′)µ(xy) = 1

(1.24′)µ(xk) = 1 (∀k ∈ N)

µ

(

x
µ(x)

)

= 1 (1.26)
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7 Chapter 2: Introducing Golden Triangles

Golden Triangles

A wide golden triangle is an obtuse isosceles triangle in which the ratio of the 
lengths of the base to the side is ϕ. Its angels are 36◦, 108◦, 36◦.

A narrow golden triangle is a isosceles triangle that the ratio of the length of 
the side to the length of the base of triangle is ϕ. Its angels are 72◦, 36◦, 72◦.

7 Chapter 3: The Fibonacci Sequence

The Fibonacci Sequence
Definition: 

The powers of ϕn and (1− ϕ)n:

Relationships

Binet’s formula:

 Cassini formula:

(2.1)cos36
◦
= sin54

◦
= ϕ

2

(2.2)cos72
◦
= sin18

◦
= 1

2
(ϕ2 − 2)

(3.1)F1 = F2 = 1,Fn+2 = Fn+1 + Fn (n ≥ 1)

(3.2)ϕ
n = Fnϕ+ Fn+1

(3.2b)(1− ϕ)n = Fn(1− ϕ)+ Fn+1 = −Fnϕ+ Fn+1

(3.3a)Fn = 1√
5
[ϕn − (1− ϕ)n]

(3.3b)Fn = 1√
5

[(

1+
√
5

2

)n

−
(

1−
√
5

2

)n]

(3.4a)Fn+1Fn−1 − F
2

n
= (− 1)n

(3.4b)δ(Fn−1,Fn) = (− 1)n
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 Even and odd indices and the sum of indices:

 Sums:

Expanding the Sequence

Negative indices (n natural):

 Integer indices (m an integer):

Theorem The set  {ϕm|m ∈ Z} with multiplication operation is a commutative group.

Conclusion The set {Fmϕ+ Fm−1|m ∈ Z} with multiplication is a commutative group. 
This group is a subgroup of the group of ϕ-numbers.

(3.5a)F2n = F
2

n+1
− F

2

n−1
= Fn(Fn+1 + Fn−1)

(3.5b)F2n−1 = F
2

n
+ F

2

n+1

(3.6)Fn+m = FnFm+1 + Fn−1Fm = Fn+1Fm + FnFm−1

(3.7a)F1 + F2 + F3 + · · · + Fn = Fn+2 − 1

(3.7b)F2 + F4 + F6 + · · · + F2n = F2n+1 − 1

(3.7c)F1 + F3 + F5 + · · · + F2n−1 = F2n

(3.8)F
2

1
+ F

2

2
+ F

2

3
+ · · · + F

2

n
= FnFn+1

(3.9)F−n = (− 1)n+1
Fn

(3.10a)ϕ
−n = F−nϕ+ F−n−1

(3.10b)(1− ϕ)−n = −F−nϕ+ F−n+1

(3.11a)ϕ
m = Fmϕ+ Fm−1

(3.11b)(1− ϕ)m = −Fmϕ+ Fm+1

(3.12)Fm = 1√
5
[ϕm − (1− ϕ)m]

(3.13)δ(Fm−1,Fm) = Fm+1Fm−1 − F
2

m
= (− 1)m
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Matrices and the Fibonacci Sequence

Theorem The group of matrices {�m|m ∈ Z} with the regular multiplication is isomor-
phic to the group of numbers {�m|m ∈ Z}, with the regular multiplication between num-
bers.

7 Chapter 4: The Lucas Sequence

Definition: 

Connections:

Connections between elements of the Lucas Sequence:

(3.14a)�n = M
n(0, 1) = M(Fn−1,Fn)

(3.14b)�n =
(

Fn−1 Fn

Fn Fn+1

)

(3.15)(I−�)n = M(Fn+1,−Fn)

(3.16a)�m = M
m(0, 1) = M(Fm−1,Fm)

(3.16b)�m =
(

Fm−1 Fm

Fm Fm+1

)

(m ∈ Z)

(3.17a)�n = FnF+ Fn−1I

(3.17b)(�−1)n = (I−�)n = −Fn�+ Fn+1I

(3.18)�n − (I−�)n = FnR(5)

(4.1)Ln = ϕ
n + (1− ϕ)n

(4.2)Ln+2 = Ln+1 + Ln (n ≥ 1)

(4.3)Ln = Fn−1 + Fn+1

(4.4)L2n = L
2

n
− 2(− 1)n

(4.5)L2n−1 = LnLn−1 + (− 1)n−1

(4.6)L2n = Ln−1Ln+1 + 3(− 1)n−1

(4.7)Ln+m = LnLm + (− 1)nLm−n
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 Combining the Lucas sequence and the Fibonacci sequence—with one index:

 Combining the Lucas sequence and the Fibonacci sequence—with two indices:

 The powers of the golden ratio

(4.8a)Ln + Fn = 2Fn+1

(4.8b)Ln − Fn = 2Fn−1

(4.9)LnFn = F2n

(4.10a)LnFn+1 = F2n+1 + (− 1)n

(4.10b)Ln+1Fn = F2n+1 − (− 1)n

(4.10c)LnFn+1 + Ln+1Fn = 2F2n+1

(4.11a)Ln+1Fn−1 = F2n + (− 1)n

(4.11b)Ln−1Fn+1 = F2n − (− 1)n

(4.11c)Ln+1Fn−1 + Ln−1Fn+1 = 2F2n

(4.12)L2n = LnFn+1 + Ln−1Fn = LnFn−1 + Ln+1Fn

(4.13a)LnFm = Fn+m + (− 1)n Fm−n

(4.13b)LmFn = Fn+m − (− 1)n Fm−n

(4.13c)LnFm + LmFn = 2Fn+m

(4.14)Ln+m = LnFm−1 + Ln+1Fm = LmFn−1 + Lm+1Fn

(4.15a)ϕ
n = 1

2
(Ln + Fn

√
5)

(4.15b)(1− ϕ)n = 1

2
(Ln − Fn

√
5)

(4.16)L
2

n
− 5F

2

n
= 4 (− 1)n

(4.17a)ϕ
n = 1√

5
(Lnϕ+ Ln−1)

(4.17b)(1− ϕ)n = 1√
5
(Lnϕ− Ln+1)
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 More connections:

 Sums

Sums of Lucas sequence:

 The Fibonacci and Lucas sums—even n:

 The Fibonacci and Lucas sums—odd n:

(4.18a)
Lnϕ+Ln+1

Fnϕ+Fn−1
=

√
5

(4.18b)
Lnϕ−Ln+1

Fnϕ−Fn−1
= −

√
5

(4.19)Ln+1 + Ln−1 = 5Fn

(4.20a)Ln+1Ln−1 − L
2

n
= 5(− 1)n+1

(4.20b)δ(Ln−1,Ln) = 5(− 1)n+1

(4.20c)µ(Ln−1 + Lnϕ) = µ(− Ln+1 + Lnϕ) =
√
5

(4.21a)L1 + L2 + L3 + · · · + Ln = Ln+2 − 3

(4.21b)L2 + L4 + L6 + · · · + L2n = L2n+1 − 1

(4.21c)L1+L3 + L5 + · · · + L2n−1 = L2n − 2

(4.22)L
2

1
+ L

2

2
+ L

2

3
+ · · · + L

2

n
= LnLn+1 − 2

(4.23a)L1F2 + L2F3 + L3F4 + · · · + LnFn+1 = F2n+2 − 1

(4.23c)L2F1 + L3F2 + L4F3 + · · · + Ln+1Fn = F2n+2 − 1

(4.24a)L2F0 + L3F1 + L4F2 + · · · + Ln+1Fn−1 = F2n+1 − 1

(4.24c)L0F2 + L1F3 + L2F4 + · · · + Ln+1Fn+1 = F2n+1 − 1

(4.23b)L1F2 + L2F3 + L3F4 + · · · + LnFn+1 = F2n+2 − 2

(4.23d)L2F1 + L3F2 + L4F3 + · · · + Ln+1Fn = F2n+2

(4.24b)L2F0 + L3F1 + L4F2 + · · · + Ln+1Fn−1 = F2n+1 − 2

(4.24d)L0F2 + L1F3 + L2F4 + · · · + Ln+1Fn+1 = F2n+1
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7 Chapter 5: The General Fibonacci-Like Sequences

Definitions, Binet’s Formulas and Relationships

(5.1)f n = αϕ
n + β(1− ϕ)n

(5.2)f n+2 = f n+1 + f n

(f0, f1) = (a, b)

(5.3b)β

√
5 = aϕ−b

(5.3a)α

√
5 = aϕ+b− a = a(ϕ−1)+ b

(a, b)  = (0, 0), (α, β)  = (α, 0), (α, β)  = (0, β)

(5.4a)f n = 1√
5
[(aϕ+ b− a)ϕn + (aϕ−b)(1−ϕ

n)]

(a, b)  = (0, 0), (a, b)  = (a, aϕ), (a, b)  = [a, a(1− ϕ)]

f n = 1√
5
[(a+bϕ)ϕn−1−(a + bϕ)·(1−ϕ)n−1] (5.4a′)

(5.4b)f n=
1

2
√
5
[a
√
5+(2b− a)ϕn + [a

√
5− (2b− a)](1− ϕ)n]

(5.4c)f n=
1√
5
[(c

√
5+ d)ϕn + (c

√
5− d)(1− ϕ)n]

(c, d) =
(

a
2
, 2b − a

2

)

=
(

f0
2
,
2f1 − f0

2

)

(5.5a)f n= cLn + dFn = 1

2
[aLn + (2b− a)Fn]

(5.6)f n = a Fn−1 + bFn = f 0Fn−1 + f 1Fn

(5.7a)α+ β = a = f 0

(5.7b)5αβ = δ(a, b) = δ(f 0, f 1)
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The Lucas-Like Sequence of the Fibonacci-Like Sequence

(5.8)δ(f n−1, f n) = f n+1f n−1 − f 2
n
= δ(a, b)(− 1)n+1

(5.9a)f 2n = f nFn−1 + f n+1Fn = f n−1Fn + f nFn+1

(5.9b)f 2n−1 = f n−1Fn−1 + f nFn

(5.10)f n+m = fmFn−1 + fm+1Fn = f nFm−1 + f n+1Fm

(5.11)ℓn = f n+1 + f n−1

(5.12a)ℓn + f n = 2f n+1

(5.12b)ℓn − f n = 2f n−1

(5.13a)ℓn = ℓ0Fn−1 + ℓ1Fn

(ℓ0, ℓ1) = (2b− a, 2a+ b) = (2f1 − f0, 2f0 + f1)

(5.13b)
ℓn = (2b− a)Fn−1 + (2a + b)Fn

= (2f 1 − f 0)Fn−1 + (2f 0 + f 1)Fn

(5.14)ℓn = aLn−1 + bLn = f 0Ln−1 + f 1Ln

(5.15a)ℓn = (aϕ+ b− a)ϕn − (aϕ− b)(1− ϕ)n

(a, b)  = (0, 0), (a, b)  = (a, aϕ), (a, b)  = [a, a(1− ϕ)]

ℓn = (a + bϕ)ϕn−1 − (a + bϕ)(1− ϕ)n−1 (5.15 a′)

(5.15b)ℓn =
√
5[αϕn − β(1− ϕ)n]

(a, b)  = (0, 0), (α, β)  = (α, 0), (α, β)  = (0, β)

(5.16a)ℓn = 1

2

(

[a
√
5+ (2b− a)]ϕn − [a

√
5− (2b− a)](1− ϕ)n

)

(5.16b)ℓn = (c
√
5+ d)ϕn − (c

√
5− d)(1− ϕ)n

(c, d) =
(

a
2
, 2b − a

2

)

=
(

f0
2
,
ℓ0
2

)
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The Even/Odd Indices and the Sum of Indices

Comparing the Fibonacci and the Lucas Sequence

(5.4d)f n = 1

2
√
5
[(f 0

√
5+ ℓ0)ϕ

n + (f 0

√
5− ℓ0)(1− ϕ)n]

(5.16c)ℓn = 1

2
[(f 0

√
5+ ℓ0)ϕ

n − (f 0

√
5− ℓ0)(1− ϕ)n]

(5.5b)f n = 1

2
(f 0Ln + ℓ0Fn]

(5.17a)f 2n = 1

2
(f nLn + ℓnFn)

(5.17b)f 2n−1 =
1

2
(f n−1Ln + ℓn−1Fn) = 1

2
(f nLn−1 + ℓnFn−1)

(5.17c)f n+m = 1

2
(fmLn + ℓmFn) = 1

2
(f nLm + ℓnFm)

(5.18a)ℓ2n = f nLn−1 + f n+1Ln = f n−1Ln + f nLn+1

(5.18b)ℓ2n−1 = f n−1Ln−1 + f nLn

(5.18b)ℓn+m = fmLn−1 + fm+1Ln = f nLm−1 + f n+1Lm

(5.19)af n−1 + bf n =
√
5[α2

ϕ
n − β

2(1− ϕ)n]

(5.20)ℓnf n = af 2n−1 + bf 2n

(5.21a)ℓnf n+1 = af 2n + bf 2n+1 − δ(a, b)(− 1)n

(5.21b)ℓn+1f n = af 2n + bf 2n+1 + δ(a, b)(− 1)n

(5.21c)ℓn−1f n+1 = af 2n−1 + bf 2n + δ(a, b)(− 1)n

(5.21d)ℓn+1f n−1 = af 2n−1 + bf 2n − δ(a, b)(− 1)n

(5.22a)ℓnf n+1 + ℓn+1f n = 2(af 2n + bf 2n+1)
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The Lucas-Like Sequence of the Fibonacci-Like Sequence

The Powers of the Golden Ratio

(5.22b)ℓnf n+1 − ℓn+1f n = 2δ(a, b)(− 1)n+1

(5.22c)ℓn−1f n+1 + ℓn+1f n−1 = 2(af 2n−1 + bf 2n)

(5.22d)ℓn−1f n+1 − ℓn+1f n−1 = 2δ(a, b)(− 1)n

(5.23a)gn = af n−1 + bf n = f 0f n−1 + f 1f n

(5.23b)gn =
√
5[α2

ϕ
n − β

2(1− ϕ)n]

(g0, g1) = (f0ℓ0, f
2
0 + f 21 )

(5.24)gn = f 0ℓ0Fn−1 + (f 2
0
+ f 2

1
)Fn

(5.25a)g2n = f nℓn = f 2
n+1

− f 2
n−1

(5.25b)g2n−1 = f 2
n−1

+ f 2
n

ℓnf n+1 = g2n+1 − δ(a, b)(− 1)n (5.21a′)

ℓn+1f n = g2n+1 + δ(a, b)(− 1)n (5.21b′)

ℓn−1f n+1 = g2n + δ(a, b)(− 1)n (5.21c′)

ℓn+1f n−1 = g2n − δ(a, b)(− 1)n (5.21d′)

(5.26a)ϕ
n−1 = (a+bϕ)·(f n−1 +f nϕ)

δ(a,b)

(5.26b)(1− ϕ)n−1 = (a+bϕ)·(f n−1−f nϕ)

δ(a,b)

(5.27a)ϕ
n−1 = (a+bϕ)·(ℓn+f n

√
5)

2δ(a,b)
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Fibonacci-Like sequence Rational

If  a and b are rational numbers, the sequence is called Rational Fibonacci-like 
sequence

Theorem Fibonacci-like sequence (fn) is rational if  and only if:

When A and B are rational numbers.

The Fibonacci and Lucas Numbers

n Fn Ln F2n F2n+1 Fn
2 Ln

2

0 0 2 0 1 0 4

1 1 1 1 2 1 1

2 1 3 3 5 1 9

3 2 4 8 13 4 16

4 3 7 21 34 9 49

5 5 11 55 89 25 121

6 8 18 144 233 64 324

7 13 29 377 610 169 841

8 21 47 987 1597 441 2209

9 34 76 2584 4181 1156 5776

10 55 123 6765 10,946 3025 15,129

11 89 199 17,711 28,657 7921 39,601

12 144 322 46,368 75,025 20,736 103,684

13 233 521 121,393 196,418 54,289 271,441

14 377 843 317,811 514,229 142,129 710,649

15 610 1364 832,040 1,346,269 372,100 1,860,496

16 987 2207 2,178,309 3,524,578 974,169 4,870,849

(5.27b)
(1− ϕ)n−1 = (a+bϕ)·(ℓn−f n

√
5)

2δ(a,b)

(5.28a)f n = (A+ B

√
5)ϕn + (A− B

√
5)(1− ϕ)n

(5.28b)f n = ALn + BFn
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n Fn Ln F2n F2n+1 Fn
2 Ln

2

17 1597 3571 5,702,887 9,227,465 2,550,409 12,752,041

18 2584 5778 14,930,352 24,157,817 6,677,056 33,385,284

In the following table, all decimal numbers are approximations.

n Fn Ln
Fn+1

Fn

Ln+1

Ln

∣

∣

∣

Fn+1

Fn
− ϕ

∣

∣

∣

∣

∣

∣

Ln+1

Ln
− ϕ

∣

∣

∣

0 0 2 – 0.500000 – 1.118034

1 1 1 1.000000 3.000000 0.618034 1.381966

2 1 3 2.000000 1.333333 0.381966 0.284701

3 2 4 1.500000 1.750000 0.118034 0.131966

4 3 7 1.666667 1.571429 0.048633 0.046605

5 5 11 1.600000 1.636364 0.018034 0.018330

6 8 18 1.625000 1.611111 0.006966 0.006923

7 13 29 1.615385 1.620690 0.002649 0.002657

8 21 47 1.619048 1.617021 0.001014 0.001013

9 34 76 1.617647 1.618421 0.000387 0.000387

10 55 123 1.618182 1.617886 0.000148 0.000148

11 89 199 1.617978 1.618090 0.000056 0.000056

12 144 322 1.618056 1.618012 0.000022 0.000022

13 233 521 1.618026 1.618042 0.000008 0.000008

14 377 843 1.618037 1.618031 0.000003 0.000003

15 610 1364 1.618033 1.618035 0.000001 0.000001

16 987 2207 1.618034 1.618034 0.000000 0.000000

17 1597 3571 1.618034 1.618034 0.000000 0.000000

18 2584 5778 1.618034 1.618034 0.000000 0.000000
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Books

•  Bicknell, Marjorie and Verner Hoggatt. A Primer for the Fibonacci Numbers. The Fibonacci 
Association 1973a.

A collection of articles that appeared between 1963–1973 in the Fibonacci Organization Quarterly.

•  Bicknell, Marjorie and Verner Hoggatt. Fibonacci’s Problem Book. The Fibonacci Association 1973b.

A collection of about 150 exercises on different levels, along with their solutions.

•  Cleyet-Michaud, Marius. Le Nombre d’Or. PUF 1973.

“A bit of everything”: The golden ratio and its properties, history and mysticism, geometry, art, and 
nature.

•  Dunlap, Richard. The Golden Ratio and Fibonacci Numbers. World Scientific 1997.

The mathematics of the Fibonacci and Lucas sequences, and their application in nature.

•  Garland, Trudi Hammel. Fascinating Fibonaccis. Dale Seymour 1987

Fibonacci numbers in nature, art, and music.

•  Ghyka, Matila. The Geometry of Art and Life. Dover 1977.

The Golden section in geometric bodies, biology, the plastic arts, and architecture.

•  Herz-Fischler, Roger. The Mathematical History of the Golden ratio. Dover 1998.

The history of the golden ratio from Euclid to the present.

•  Huntley, H.E. The Divine Proportion – A Study in Mathematical Beauty. Dover 1970.

The golden section, the Fibonacci sequence, and the beauty of mathematics in general.

•  Jarden, Dov. Recurring Sequences – A Collection of Papers. Riveon Lematematika 1973.

Four articles on the Fibonacci and Lucas sequences and on recursive sequences of the second degree.

•  Koshy, Thomas. Fibonacci and Lucas Numbers with Applications. Wiley 2001.

An all-encompassing book that presents different perspectives on the Fibonacci and Lucas sequences 
and on the golden ratio.

•  Livio, Mario. The Golden Ratio – The Story of Phi, the World's Most Astonishing Number. Broadway 
2002.

The history of the golden section and the Fibonacci sequence.
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The myth of the golden section in the plastic arts. Includes a translation of Huntley’s book.

•  Posamentier, Alfred and Ingmar Lehmann. The Fabulous Fibonacci Numbers. Prometheus Books 2007.

The Fibonacci numbers in mathematics, botany, art and architecture, and economics.

•  Runion, Garth. The Golden Section. Dale Seymour 1990.

Geometric perspectives of the golden section.

•  Vajda, Steven. Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications. Dover 
2008.

About the Fibonacci and Lucas numbers and their applications. (An updated printing of the 1989 
edition.)

•  Vorobyov, Nikolai. The Fibonacci Numbers. Heath and Company 1963.

A classic booklet that presents the main properties of the Fibonacci sequence, including divisibility 
properties.

•  Walser, Hans. The Golden Section. MAA 2001.

A modern book that connects two theories: the golden section and fractals. Many illustrations.

•  Willard, Claude-Jacques. Le Nombre d’Or. Magnard 1987.

The golden ratio and the Fibonacci sequence, the geometry of the golden ratio, and the golden section 
in art and architecture.

Chapters in Books

Brousseau, Alfred. “Fibonacci Sequences”, in Sobel, Max (ed.). Readings for Enrichment in Secondary 
School Mathematics. NCTM 1988.

Cadwell, J.H. “The Fibonacci Sequence”, in Topics in Recreational Mathematics. Cambridge University 
Press 1966.

Conway, John and Richard Guy. “Famous Families of Numbers”, in The Book of Numbers. Springer 
1996.

Coxeter, H. S. M. “The Golden Section and Phyllotaxis”, in Introduction to Geometry (2nd edition). 
Wiley 1989.

Dudley, Underwood. “Phi”, in Mathematical Cranks. MAA 1992a.
Hilton, Peter, Derek Holton and Jean Pederson. “Fibonacci and Lucas Numbers”, in Mathematical 

Reflections – In a Room with Many Mirrors. Springer 1997.
Hilton, Peter, Derek Holton and Jean Pederson. “Fibonacci and Lucas Numbers – Their Connections 

and Divisibility Properties”, in Mathematical Vistas – From a Room with Many Windows. Springer 
2002.

Kantor, Jean-Michel. “Le Nombre d'Or”, in Mathématiques Venues d'Ailleurs. Belin 1982.
Maor, Eli. “Spira Mirabilis”, in e – The Story of a Number. Princeton University Press 1994.
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Movshovitz-Hadar, Nitsa and John Webb. “Congruency Paradox” and “The Lost Square”, in One 
Equals Zero, and other Mathematical Surprises. Key Kurriculum Press 1988.

Salem, Lionel, Frédéric Testard and Coralie Salem. “The Golden Ratio” and “The Fibonacci Numbers”, 
in The Most Beautiful Mathematical Formulas. Wiley 1992.

Young, Robert. “Fibonacci Numbers: Function and Form”, in Excursions in Calculus – An Interplay of 
the Continuous and the Discrete. MAA 1992.

Warusfel, André. “De la Métaphysique... aux Beaux-Arts” in Les Nombres et leurs Mystères. Seuil 1961.
Wells, David. “The Divine Proportion”, “The Fibonacci Sequence” and “The Lucas Numbers”, in The 

Penguin Dictionary of Curious and Interesting Numbers. Penguin Books 1987.

Articles

Rokach, Arieh: “Optimal Computation of Fibonacci Numbers”, in The Fibonacci Quarterly, November 
1996.

A Selection of Internet Sites
(The sites were active in January 2018.)

The Fibonacci Association

7 http://www.mscs.dal.ca/fibonacci/
The Fibonacci Association website. The Association publishes a quarterly journal dedicated to the 

Fibonacci sequence and accompanying topics. The site gives information on the association, its 
members, and its publications.

Fibonacci Numbers: From Wolfram MathWorld

7 http://mathworld.wolfram.com/FibonacciNumber.html
Detailed mathematical analysis of the Fibonacci sequence.

Fibonacci Numbers, the Golden Section and the Golden String

7 http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html
One of the most famous sites that has won many prizes. A vast amount of information on the golden 

ratio and Fibonacci and Lucas sequences.

(The) Fib-Phi Link Page

7 http://www.goldenratio.org/info/
A nicely sorted collection of links connected to the golden ratio and the Fibonacci sequence.

Museum of Harmony and Golden Section

7 http://www.goldenmuseum.com/index_engl.html
One of the most comprehensive websites: an extraordinary amount of documents, articles, and papers on 

both the theoretical and practical aspects, including special attention to applications in computer science.

The Fibonacci Quarterly

7 https://www.goldennumber.net/
As the primary publication of the Fibonacci Association, The Fibonacci Quarterly provides the focus 

for worldwide interest in the Fibonacci number sequence and related mathematics. New results, 
research proposals, challenging problems and new proofs of known relationships are encouraged. 
The Quarterly seeks intelligible, well-motivated, university-level articles. Illustrations and tables 
should be included to the extent that they clarify main ideas of the text. A well-developed list of 
references is required.

http://www.mscs.dal.ca/fibonacci/
http://mathworld.wolfram.com/FibonacciNumber.html
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fib.html
http://www.goldenratio.org/info/
http://www.goldenmuseum.com/index_engl.html
https://www.goldennumber.net/
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The Golden Ratio and the Fibonacci Sequence in Wikipedia

7 https://en.wikipedia.org/wiki/Phyllotaxis
7 https://en.wikipedia.org/wiki/Fibonacci_number

London Einav on How the Golden Section Relates to the Environment (in Hebrew)

7 https://sites.google.com/site/einavloondon/home/act/gold2/gold3

Eureka: A Website (in Hebrew) that Includes Some Video Clips.

7 https://tinyurl.com/ydz2u5vg

The Golden Section and Fibonacci Numbers in Art and Architecture

7 http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Obara/Emat6690/Golden%20Ratio/golden.
html

The Golden Section and Fibonacci Numbers on Postage Stamps

7 https://www.goldennumber.net/golden-ratio-fibonacci-postage-stamps/

Fibonacci Numbers and Nature 

7 http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html#petals

Or Simply Type any of the Terms into Google to Search for More Information 

7 https://educateinspirechange.org/spirituality/learn-magic-fibonacci-nature-math-god/
Learn about the magic of Fibonacci in nature – the math of God.
7 https://slideplayer.com.br/slide/11727812/

https://en.wikipedia.org/wiki/Phyllotaxis
https://en.wikipedia.org/wiki/Fibonacci_number
https://sites.google.com/site/einavloondon/home/act/gold2/gold3
https://tinyurl.com/ydz2u5vg
http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Obara/Emat6690/Golden%20Ratio/golden.html
http://jwilson.coe.uga.edu/EMT668/EMAT6680.2000/Obara/Emat6690/Golden%20Ratio/golden.html
https://www.goldennumber.net/golden-ratio-fibonacci-postage-stamps/
http://www.maths.surrey.ac.uk/hosted-sites/R.Knott/Fibonacci/fibnat.html#petals
https://educateinspirechange.org/spirituality/learn-magic-fibonacci-nature-math-god/
https://slideplayer.com.br/slide/11727812/
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