

Deep Learning in Time
Series Analysis
Arash Gharehbaghi
Researcher, School of Information Technology
Halmstad University, Halmstad, Sweden

A SCIENCE PUBLISHERS BOOK
p,

A SCIENCE PUBLISHERS BOOK
p,

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

© 2023 Taylor & Francis Group, LLC

CRC Press is an imprint of Taylor & Francis Group, LLC

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of
their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write
and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access
www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive,
Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact
mpkbookspermissions@tandf.co.uk
Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging‑in‑Publication Data (applied for)

ISBN: 978-0-367-32178-9 (hbk)
ISBN: 978-1-032-41886-5 (pbk)
ISBN: 978-0-429-32125-2 (ebk)

DOI: 10.1201/9780429321252

Typeset in Times New Roman
by Radiant Productions

Cover illustration courtesy of Reza Gharehbaghi

http://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk

To Shabnam, Anita and Parsa.

I am delighted to introduce the first book on deep learning for time series analysis
in which analysis of cyclic time series is profoundly addressed along with the
theories. This idea was developed within a structure of a hybrid model where the
experimental results showed its outperformance against the baselines of neural
network-based methods. It was later improved by incorporating deep learning
structures of a time growing neural network, the network which was previously
introduced by us as a strong alternative to multilayer perceptron and time-
delayed neural networks, into a multi-scale learning structure. The idea of cyclic
learning is applicable to many natural learning where the phenomena exhibit
cyclic behaviours. Physiological characteristics of the human body emanate
cyclic activities in many cases such as cardiac and respiratory activities. The idea
of cyclic learning has received interest from researchers from various domains of
engineering and science.

Realistic validation of machine learning methods is a crucial task. A realistic
validation method must provide sufficient outcomes to project capability of a
machine learning method in terms of its risks in reproducibility of the results
in conjunction with the improvement of the results when the machine learning
method is being trained by a richer dataset. These validation capabilities are
considered in the A-Test method. As a validation method, A-Test has received
recognition from different engineering domains. These methods are likely to
become strong machine learning methods, especially for applications with a
small size of the learning data.

Foreword

Learning has been regarded as an important element of development by most
of the scientific pursuits including computer sciences in which deep machine
learning has recently sounded as an emerging context. Application of deep
machine learning methods has been well-received by the researchers and engineers
since the last half decade when time series analysis was increasingly regarded
as an important topic within different contexts such as biomedical engineering.
Although development of strong tools for the implementation of deep learning
methods created a breakthrough in computer science and engineering, a shift
towards abstract understanding within this context is clearly seen, especially
in the younger developers. This can put a negative impression on the general
beliefs of deep learning which will be in turn considered as downside of this
progress. Nowadays, various deep learning methods are enormously developed
and published in the highly reputable references, however, a very low percentage
of them entail sufficient quality to make a real impact on the underlying
community. One reason can be the lack of sufficient insight into the theoretical
foundation as well as into the implementation knowledge. This motivated the
author to prepare a textbook on deep learning methods, sophisticated for time
series analysis, to bring up fundamentals of the context along with the algorithms
for the implementation.

Book Focus

This book focuses on the deep notions of the learning process in general, and
deep learning in particular, with more orientation towards essentials of the
traditional methods and the modern ones for time series analysis. Although
image processing is known as an important topic of deep learning, the authors
concluded to exclude this topic from the book and assign it to a separate
publication as future work. The rationale behind this conclusion was mainly
to avoid extra diversity and losing central attention. The book begins with a
smooth transition from the fundamental definitions and speculations toward
method formulation. Contents of the book were pedagogically organized in a
way to foster and consolidate the essentials of time series analysis. This manner
of representation is set to broaden the scope of the readers from the scientific to

Preface

vi Deep Learning in Time Series Analysis

the engineering aspects. The book also considered to bring up a number of the
practical examples of the deep learning methods for time series analysis, with the
rise of biomedical engineering and medical informatics applications. Meanwhile,
the book represents the deep learning methods mostly in a mathematical manner
to help the researchers and the developers in mathematically formulating their
own methods. It is evident that mathematical representation of a new method
provides better readability compared to the descriptive representation. It is seen
that new students show more tendency to learn concepts of deep learning using
block diagrams and descriptive methods. Indulging in this learning manner can
mislead them from the basic abilities in mathematical representation that can act
as a degenerative factor for the learning of deep learning methods. Furthermore,
a consistent graphical representation is not seen in many cases.

A number of the new ideas in artificial intelligence are also presented in this
book. The A-Test validation method is introduced and compared to the other
traditional ones. The readers can easily find out elaborations of this method in
providing a more realistic validation as compared to the other two alternatives.
In terms of the learning models, the idea of cyclic time series and cyclic learning
are the other two new concepts addressed by this book and some of the learning
methods such as time growing neural network is also introduced for learning
cyclic time series.

Generative models for time series analysis were not addressed by this book.
These models fit well into the prediction category which is considered as part of
the future work.

Book Readership

This book, as a textbook, has been written in a fashion to establish fundamentals
of time series analysis and deep learning methods for the readers. Problem
formulation, as well as the methodological representations, have been rendered
in a way to address the notional contents with a special focus on the scientific
manners, so all the students, scientists, engineers and developers who are
interested to learn deep learning methods for time series analysis or building up
their own heuristic methods, can find this book interesting to read. The students
in engineering, particularly those in artificial intelligence, are rather encouraged
to read this book as a textbook.

Contributions

The book title as well as the arrangement of the chapters and the chapter titles
were prepared by Arash Gharehbaghi and Ning Xiong. Contents of the first 10
chapters have been completely written by Arash Gharehbaghi. It incorporates all
the writings, graphical representations, and tables. Chapter 11 was prepared by
Ning Xiong and Johan Holmberg. Chapter 12 was prepared by Elaheh Partovi
and Ning Xiong.

Arash Gharehbaghi

Preface vii

Foreword iv

Preface v

Contributors xii

Part I Fundamentals of Learning

 1. Introduction to Learning 3
1.1 Artificial Intelligence 5
1.2 Data and Signal Definition 6
1.3 Data Versus Signal 7
1.4 Signal Models 7
1.5 Noise and Interference 8
1.6 Time Series Definition 9
1.7 Time Series Analysis 10
1.8 Deep Learning and Time Series Analysis 10
1.9 Organisation of the Book 11

 2. Learning Theory 13
2.1 Learning and Adaptation 14
2.2 Learning in a Practical Example 15
2.3 Mathematical View to Learning 16

2.3.1 Training and Validation Data 17
2.3.2 Training Method 17
2.3.3 Training Parameters 19
2.3.4 Hyperparameters 19

2.4 Learning Phases 20
2.5 Training, Validation, and Test 21
2.6 Learning Schemes 22

2.6.1 Supervised-Static Learning 22
2.6.2 Supervised-Dynamic Learning 22
2.6.3 Unsupervised-Static Learning 23
2.6.4 Unsupervised-Dynamic Learning 23

2.7 Training Criteria 23
2.8 Optimization, Training, and Learning 25

Contents

2.9 Evaluation of Learning Performance
2.9.1 Structural Risk

26
26

2.10

2.9.2 Empirical Risk
2.9.3 Overfitting and Underfitting Risk
2.9.4 Learning Capacity
Validation

26
27
28
28

2.10.1 Repeated Random Sub Sampling (RRSS)
2.10.2 K-Fold Validation

29
29

2.10.3 A-Test Validation 30
2.11 Privileges of A-Test Method

2.11.1 A-Test and Structural Risk
31
32

2.11.2 A-Test and Leaning Capacity
2.11.3 A-Test vs other Methods

33
34

2.12 Large and Small Training Data 35

 3. Pre-processing and Visualisation
3.1 Dimension Reduction

37
38

3.1.1 Feature Selection 39
3.1.1.1 Hill-Climbing Algorithm
3.1.1.2 Linear Discriminant Analysis (LDA)
3.1.1.3 Fisher Method

39
40
42

3.1.2 Linear Transformation 44
3.1.2.1 Principal Component Analysis (PCA)
3.1.2.2 PCA-Fisher Method

44
46

3.2 Supervised Mapping
3.2.1 K-Nearest Neighbours (KNN)
3.2.2 Perceptron Neural Network
3.2.3 Multi-layer Perceptron Neural Networks (MLP)

3.3 Unsupervised Mapping
3.3.1 K-Means Clustering
3.3.2 Self-Organizing Map (SOM)
3.3.3 Hierarchical Clustering

49
50
50
54
59
59
61
62

Part II Essentials of Time Series Analysis

 4. Basics of Time Series 65
4.1
4.2
4.3

Introduction to Time Series Analysis
Deterministic, Chaotic and Stochastic
Stochastic Behaviors of Time Series

65
68
69

4.3.1 Cyclic Time Series
4.3.1.1 Sector Definition

71
72

4.3.1.2 Uniform Sectors 72
4.3.1.3 Growing-Time Sectors

4.3.2 Partially Cyclic Time Series
73
74

Contents ix

x Deep Learning in Time Series Analysis

4.4 Time Series Prediction 75
4.5 Time Series Classification 77

 5. Multi-Layer Perceptron (MLP) Neural Networks for Time Series 81
Classification
5.1 Time-Delayed Neural Network (TDNN) 82
5.2 Time-Growing Neural Network (TGNN) 84
5.3 Forward, Backward and Bilateral Time-Growing Window 85
5.4 Privileges of Time-Growing Neural Network 87

5.4.1 TGNN includes MLP in its architecture 87
5.4.2 TGNN can include TDNN in its structure 87
5.4.3 TGNN is optimal in learning the first window 88

 6. Dynamic Models for Sequential Data Analysis 89
6.1 Dynamic Time Warping (Structural Classification) 91
6.2 Hidden Markov Model (Statistical Classification) 97

6.2.1 Model-based analysis 97
6.2.2 Essentials of Hidden Markov Model (HMM) 98
6.2.3 Problem statement and implementation 100
6.2.4 Time series analysis and HMM 102

6.3 Recurrent Neural Network 103

Part III Deep Learning Approaches to Time Series Classification

 7. Clustering for Learning at Deep Level 109
7.1 Clustering as a Tool for Deep Learning 111
7.2 Modified K-Means Method 116
7.3 Modified Fuzzy C-Means 116
7.4 Discriminant Analysis 118
7.5 Cluster-Based vs Discriminant Analysis Methods 120
7.6 Combined Methods 121

 8. Deep Time Growing Neural Network 123
8.1 Basic Architecture 124
8.2 Learning at the Deep Level 126

8.2.1 Learning the growing centre 127
8.2.2 Learning the deep elements 128

8.3 Surface Learning 131

 9. Deep Learning of Cyclic Time Series 133
9.1 Time Growing Neural Network 134
9.2 Growing-Time Support Vector Machine 136
9.3 Distance-Based Learning 138
9.4 Optimization 138

 10. Hybrid Method for Cyclic Time Series 141
10.1 Learning Deep Contents 143
10.2 Cyclic Learning 145
10.3 Classification 146

 11. Recurrent Neural Networks (RNN) 149
11.1 Introduction 149
11.2 Structure of Recurrent Neural Networks 150
11.3 Unfolding the Network in Time 152
11.4 Backpropagation Through Time 153
11.5 The Challenge of Long-term Dependencies 155
11.6 Long-Short Term Memory (LSTM) 158
11.7 Other Recurrent Networks 160

11.7.1 Unfolding outputs at all steps 160
11.7.2 Gated recurrent networks 160
11.7.3 Echo state networks 161

 12. Convolutional Neural Networks (CNN) 163
12.1 Introduction 163
12.2 Architecture Overview 164
12.3 Convolutional Layer 165
12.4 Pooling Layer 166
12.5 Learning of CNN 168
12.6 Recurrent CNN 169

Bibliography 173

Index 189

Contents xi

Contributors

Arash Gharehbaghi
School of Information Technology, Halmstad University, Halmstad, Sweden.

Ning Xiong
School of Innovation, Design and Technology, Mälardalen University, Västerås,
Sweden.

Johan Holmberg
School of Innovation, Design and Technology, Mälardalen University, Västerås,
Sweden.

Elaheh Partovi
Department of Electrical Engineering, Amir Kabir University (Tehran,
Polytechnique), Tehran, Iran.

Part I

Fundamentals of Learning

https://taylorandfrancis.com

1

Introduction to Learning

All the components of nature have been set in an everlasting pursue towards
evolution through a growing network of mutual effects. Evolution is defined
as an absolute point of dimensionless in time when the fully interconnected
network of effects is moving in a completely predictable manner. The pursue
towards evolution incrementally occurs in the form of an adaptation, not only
for brainless materials, but also for any kind of intelligent creatures, such that
adaptability to the underlying environment is defined as one of the indicative
parameters of intelligence. Adaptation of a component can be expressed by
the inherent temporal changes in the behaviour, and ultimately in the struc-
ture of the component to exhibit further similarities with the surrounding
environment. This important definition will be seen in the section about the
learning theory in Chapter 2.

At this point, one should consider time as an important element of adap-
tation. In fact, adaptation is a dynamic process, through which the adapting
system adjusts, itself to the surrounding environment which is, in turn, another
dynamic element. In a dynamic environment, an adaptation of a component is
seen as a reaction of the component to the environmental variations towards
the same objective, exhibiting further similarities with the surrounding envi-
ronment. However, interpretation of this adaptation varies when it comes to
computer science in which decision making is regarded as an important fea-
ture of intelligence. Although this point of view might change when it comes
to the psychological perspectives, in a broader sense, decision making is a
way of adaptation. These two scopes converge to a single point if we consider
the process leading to decision making, which is based on learning similar-
ity along with the differences over various groups of data, which is by itself
linked to adaptation strongly. Putting such the absolute definitions (which
may not be observed within the lifetime of components) into consideration,
can be intuitive for real-world scenarios both for the problem formulation,
and for the solution methodologies, as like as the development of the deduc-
tive sciences in which absolute definitions provide a theoretical foundation of
the applicative contents. In analogy, a similar development has happened in
mathematics, when the analytical mathematics provided fundamentals of the
numerical mathematics to respond to the complicated real-world questions.

Numerical mathematics has been well-embraced since the development of
digital computers [127]. It is obvious that many machine learning methods are
based on the methods initiated by the scientists from the numerical mathe-

4 Deep Learning in Time Series Analysis

matics domain, without which one could barely imagine such a rapid progress
in artificial intelligence. It can be concluded that the natural development
of deductive science is typically initiated by the analytic foundation of the
theories, and extends towards application, unlike many branches of natural
sciences which flow from observation to the theories. It is almost customary
in chemistry that a phenomenon is observed first, and then the scientists bring
up theories to explain the phenomenon. In other words, the incentive begins
from an observation of the theory. In mathematics, the journey sometimes op-
positely commenced from a theory to the application. This attitude has been
tried to be followed in this book. The principals and concepts are described
before methodologies to link the readers to the deep notion of the methods.
The authors believe that it is essential for the readers to deeply understand
the notions, logic, and reasoning, hidden behind each presenting method.

Nowadays, numerous and varied methods along with the pertinent open
source codes for the implementation, have exploded within the community of
artificial intelligence, thanks to the new advances in computer engineering [76].
Certainly, a broad range of options are being opened to researchers, which is
naturally favourable, however, selecting the most appropriate one among the
innumerable options, is not an easy task if one suffices to the practical aspects
only. Furthermore, there are always hyper-parameters (sometimes called de-
sign parameters), associated with each method, and therefore providing an
optimal solution for a research question is almost unpractical without a deep
understanding of the theoretical foundation of the method. Many experienced
scientists believe scientific studies were averagely deeper in analytic methods
before the popularization of the open source implementation of the methods,
when the scientists had to develop their codes! Such tough judgement is of
course controversial and out of the belief of the authors, but worth considering
to conclude; a deep understanding of the deep learning methods is essential
prior to any kind of implementation.

Deep learning is indeed a sophistication of the above-mentioned adapta-
tion. Learning theory would be described in more detail in the next chapter,
nevertheless, it is worth addressing one important link between learning and
adaptation in this instance. Learning is mostly concomitant with decision
making, for better compliance with a minimal number of parameters. In con-
trary, adaptation is mostly a continuous process of system parameters to show
better similarity to a specific reference. This point will be expanded in more
detail in the section about learning theory, but it is important to note that
both learning and adaptation processes depend on the environmental dynam-
ics or the input data. To provide a consistent presumptions for the rest of the
chapters, some of the definitions are described in the following sequels. These
definitions will be presented descriptively, starting from the point of signal,
data, and eventually time series, definition, and landing for analysis. Funda-
mentals of noise and the existing models for the analysis will be addressed as
well. It is important to establish the definitions in a clear way at the introduc-

Introduction to Learning 5

tion, as most of the theories and methodologies are built upon these bases.
This chapter will terminate with a brief view of the book organisation.

1.1 Artificial Intelligence

Adaptation of a natural element is affected by a superposition of the surround-
ing elements through a network of interactions. Many scientists believe in a
high level of intelligence holistically governing natural movements. However,
a partial insight into the tiny particles shows that intelligence in an element
begins when a level of decision making occurs in that element, is not generally
true [4]. An approach towards simulating such an intelligence by using mathe-
matical tools, is known as “artificial intelligence”. The conventional approach
for a deeper understanding of intelligence was firstly inspired by the human
brain and concentrated on the learning process only [69]. The presented model
became a frontier against statistical methods which were already a popular
common, as a more powerful alternative for the learning, however, researchers
found out that the two alternatives were intrinsically similar but algorith-
mically different in terms of the calculation [15]. As a consequence, the gap
between the statistical way of learning and artificial intelligence-based fashion
became narrower, such that the two alternatives became well merged [115]. In
contrast with the traditional view of artificial intelligence which was predom-
inantly about the learning process, modern perspective has broadened the
scope of artificial intelligence to an expansive context including three main
topics shown in Figure 1.1.

FIGURE 1.1: The three main topics of artificial intelligence.

Learning

ValidationRepresentation

In this perspective, learning is limited to only one topic of the larger con-
text of artificial intelligence against the two other topics: representation and
validation. If the learning is methodologically based on extracting informa-
tion from the data through procedural machine-based routines, the learning
is named “machine learning”. Representation addresses methods for demon-
stration, dimension reduction or quantification of information. Validation is
concerned with evaluating the performance of the learning process, which is

6 Deep Learning in Time Series Analysis

in turn affected by the representation. Nevertheless, as we will see in the up-
coming chapters, in the modern learning perspectives, validation sometimes
influences the learning, or even the representation processes.

1.2 Data and Signal Definition

Data is defined as, AN ASSOCIATION TO AN EXISTENCE! This defini-
tion contains two keywords: association and existence. Association can be
attribution, defined according to the findings, e.g., facial colour of a patient.
It is often collected by the measurement, numerical or symbolical label, or
obtained through mathematical or statistical mapping. Existence can be a
phenomenon, an object, a living object, a signal, or any kind of image. For
example, a person’s weight is a measuring data, while the facial colour of a
newborn baby is a symbolic data collected from the individuals. Weight and
colour are the association and the individual from which the data is collected
is the existence. In science and engineering, the signal is a sequential regis-
tration or/and representation of a phenomenon in time. The phenomenon is
often represented in time-value axes. As an example, temporal variation of
the electrical potential acquired from a muscular unit can be plotted and con-
sidered as a vital signal, called Electromyograph. Figure 1.2 depicts a typical
electromyograph.

FIGURE 1.2: A rough representation of electromyograph.

E
le

c
tr

o
m

yo
g

ra
p

h
 (

m
V

)

Time (second)

Temporal profile of fluid pressure is also a signal, that is regarded as a vital
signal if the fluid is blood. Regardless of the type of signal, there is always
a variable of time associated with a variable of value representing the inten-
sity of the phenomenon represented by the signal, or one can conclude that
a signal is the variation profile of a phenomenon over time. Several related
publications exist in the literature that categorise images either as signal or
as data [105]. They introduce the processing commonly for images and signals,
where an image is treated as a two-dimensional signal. In contradiction, this
book considers image a separate class, which is not dealt with in terms of the
methodologies. There are several motivations for this categorisation. Although

Introduction to Learning 7

some of the processing methods are essentially common for images and sig-
nals, a large number of the methods have been sophisticatedly introduced for
signals only, in terms of both theoretical foundation and the implementation
details. Furthermore, each pixel of an image may, or may not, have a physical
dimension, depending on the image contents. Nevertheless, it is not decisive
that a physical dimension is always associated with an image. On the other
hand, an image is always captured or registered, like as a signal, and conse-
quently cannot be classified as data. Deep learning methods for time series of
the image is beyond the scope of this book and will not be addressed in the
sequels of the book.

1.3 Data Versus Signal

The first difference that one can realise after the above descriptions, is an
association of time with signal, in contrast with data where this association
is not necessitated. The signal is often recorded in a previously known time
interval, but data is not necessarily collected in a certain time sequence. For
example, the facial colour of a baby might be collected a few hours after the
birth, however, not all newborn babies must be attributed by their facial colour
in some of the clinical routines. In contrary, signal is a registration in time with
a certain order of time sequence. The data is, therefore, recorded or collected,
whereas the signal is merely recorded. Another discriminating aspect of signal
against data, is the dimension of signal. To clarify this point, a signal always
corresponds to a phenomenon, represented by using a measuring technique,
that provides a link between the phenomenon and the measuring technique
with a known physical dimension. Data is not necessarily associated with a
physical dimension, as not for the facial colour of a newborn baby. Moreover,
the link to the physical phenomenon is not generally seen for data, but is
so for the signal clearly. Sometimes data is a result of applying a processing
algorithm on a signal and the resulting features extracted from the signal,
constitute multi-dimensional data, from which there might be features that
are not physically interpretative. Such data is often obtained by introducing a
mathematical, or even a statistical mapping, applied to a set of certain types
of signals. You will see the case studies in the following sections, in particular
when the time series analysis is described.

1.4 Signal Models

Scientific studies toward understanding natural phenomena are mostly based
on the pertinent models, capable of justifying different behaviors of the phe-
nomena. A good model is the one that can explore different actions, interac-

8 Deep Learning in Time Series Analysis

tions and also behaviors of the phenomenon. It is important to emphasize the
fact that a model is indeed a way that we see a phenomenon, by assuming a
set of the presumptions along with the range of the model applicability. The
phenomenon by itself might show other sides in different conditions, which
were not foreseen by the model. In general, there are three ways to model
signals: deterministic, chaotic, and stochastic. Although similarities are seen
in the processing methodologies, fundamental differences in the theories make
such the classification necessary. In deterministic models, a signal is modelled
by a closed mathematical formula, implying that behavior of the signal is
well-recognized, and described by the formula. It is obvious that if a signal
is completely modelled by a closed mathematical formula, then the value of
the signal for the future as well as the past time, can be accurately predicted
using the formula, which is clearly unpractical in real-world scenarios. In fact,
deterministic models mostly correspond to the absolute definitions, and their
applicability is mostly limited only to opening up a theoretical foundation. In
deterministic methodologies, parameters like amplitude, phase, energy, and
frequency are of importance for the processing. There is always a gap between
deterministic models and applied solutions to respond practical questions,
caused by variation of the signal behavior in time, called non-stationary be-
haviour of the signal, and also signal variation over subjects. This gap is mainly
covered by further expansion of the deterministic models for specific practical
questions, in a mathematical and sometimes statistical manner. Stochastic
models come to practice when statistical methods are employed for model-
ing the signals. Stochastic models are based on the fact that amplitude of
the signal is not strictly known in time, and is considered a random vari-
able. Stochastic signals are attributed by the statistical parameters, like av-
erage and variance of the signals, in addition to those for the deterministic
models. Many practical questions are better resolved thanks to the stochas-
tic models. Chaotic models are basically deterministic with an initial value
which is a random variable. Such models are sometimes called, disordered
deterministic.

1.5 Noise and Interference

Noise is an unwanted, random-valued content, affecting a signal, with differ-
ent unknown sources. So, there are always uncertainties associated with noise.
Nevertheless, a kind of categorization is attributed to noise in sense of the
possible source, to allow the engineers and researchers to justify behaviour
of random processes appearing in the studies, and to select an appropriate
statistical method to model the process. Thermal noise is the most common
type of noise, seen in almost all electronic circuits. It results from any motion
of the electrical charge carrier inside a semiconductor part of an electronic
component. This is a random process the unavoidable occurs when the tem-

Introduction to Learning 9

perature of the component is above absolute zero. Thermal noise exits in a
semiconductor even if no external electrical potential is applied. Thermal noise
is statistically modelled by a Gaussian probability density function. Semicon-
ductors are often deemed as a source of other kinds of the noise including
flicker, shot, burst, and transient-time noise, which are mostly characterised
by a white noise process. The common feature of all the sources of noise,
is that noise introduces undesired contents to the signal, and does not corre-
spond to any known physical phenomenon. Interference on contrary, is defined
as the effect of an external signal (carrying information about a phenomenon),
on another signal, by induction or any other coupling media. In the digital
signal domain, other noise sources are accompanied, in addition to the above-
mentioned sources. Quantization error is a typical characteristic of the digital
signals, that inherently exist in the digital systems, which appears as a source
of the noise [104]. Other sources of disturbance exist merely in the digital elec-
tronic circuits, like clock inference, acting as noise. Discussion about various
behaviours of noise and interference is beyond the scope of this book.

1.6 Time Series Definition

A time series is a sequence of data points, collected in a priory known time
order. The time order is not always, but often, expected to be equally spaced
in time, meaning that the data point is sampled uniformly. A signal by itself is
considered as time series, but a time series might be data points of an unknown
phenomenon. The scope of time series, is therefore, broader than the digital
signals, and covers the data partly. Time series can be multidimensional, re-
sulting from applying a time-variant mathematical mapping to a signal. Time
series of images is another important domain of study, which plays a role in
different contexts, i.e., healthcare. Many biological signals, natural phenom-
ena, and industrial activities are represented by the time series of recordings.
As was mentioned, a digital signal is regarded as a one-dimensional time se-
ries, consequently, there is always a level of the random behaviour associated
with the time series because of the noise existing in digital signals. In many
applications, a time series of digital signals is mapped to another time series of
multi-dimensional with different length, after feature extraction. Variation of
a time series conveys information about dynamic contents of the time series,
which can be exploited for different purposes of the learning process. This will
be discussed in more detail in the related sections.

10 Deep Learning in Time Series Analysis

1.7 Time Series Analysis

Terrestrial phenomena can be generally registered and represented as the time
series, based on the fact that earth is in an everlasting movement of the rota-
tion as well as the turning, causing an oncoming movement of time that will
never stop. Analysis of time series is performed for different purposes, mainly
for five objectives: Classification, prediction, sequence detection, filtering, and
simulation (or sometimes termed by generation). Each single point of a time
series consists of information along with the noise, and extracting the informa-
tion from various sources of contamination, is an essential task in any kind of
time series analysis. Regardless of the objective of analysis, the main attention
is paid to the dynamic contents of the analysing time series, in other words,
exploiting information using the temporal variation of the data points. A time
series is always contaminated by different sources of noise; therefore, statisti-
cal methods are often employed as the key-tool for the analysis, even though it
might not be seen in the ultimate derivations. To put this point into a better
perspective, sometimes time series analysis leads to the mathematical closed
formulas for the analysis, which are not seemed to be statistical. Even though
the statistical process might be unclear by the closed formula, the underlying
model that provides the corresponding theoretical foundation often involves
different statistical assumptions contributing to the method derivations. In
most of the time series analysis towards classification and sequence detec-
tion, statistical methods are considered in two different directions; in learning
dynamic contents of a single time series, and in learning data dynamic over
different time series. In this perspective, an ergodic process is defined, as the
process in which the statistical momentums are consistent over the ensembles
and for a time slot of single time series. These points will be discussed in more
detail in the related sections. Another point worth noticing is that adaptive
methods are mainly applied to a single time series for the purpose of filtering
or sometimes prediction, whereas the classification which is mostly performed
using different groups of time series. These important notions will be further
expanded in the corresponding sequels.

1.8 Deep Learning and Time Series Analysis

One important question that a reader can bring to mind, is the definition
of learning, deep learning in an objective way. Although these terms will be
discussed in detail, in the related chapters, a short introduction about the topic
can be of help for better orientation in following to the corresponding contents.
Learning by itself is the process of classification based on the similarities
and dissimilarities. What brings difficulties to the learning, is indeed, the
process through which the similarities and dissimilarities are found. In the

Introduction to Learning 11

conventional forms of learning, sometimes called shallow learning, one stage of
processing is applied to the input data. This stage serves as the body process of
learning, nevertheless, two other levels of processing are often invoked, named
pre-processing and post-processing, which do not take part in the learning
process, but instead provide a better condition for the learning. However, a
deep learning process performs different stages of learning on the same input
data, to find the similarities and dissimilarities of multi scale architecture.
Deep learning methods are often employed either for classification of a time
series using parts or all of the data samples, or for detecting certain sequences
over a time series using short time samples. Much less attention has been paid
to the other possible applications.

1.9 Organisation of the Book

This book provides principles for the students, researchers, and scientists in
computer sciences, to find new ideas in learning and also to enable the re-
searchers to express their ideas in an objective mathematical way. The book
is organized in three parts, altogether comprising 12 sections. The first part
provides introductory content about learning theory and validation in two
chapters. A recently proposed method for validation, named A-Test, is intro-
duced in Chapter 1 and recommended to be studied. This method elaborates
the conventional validation methods, especially when it comes to the small
data. Chapter 2, contains well-known fundamentals of learning. Part 2, brings
the essentials of time series analysis with details of adaptation and classi-
fication. This part consists of three chapters, through which stochastic and
deterministic theories will be further expanded. Recent theories, proposed for
a group of time series, named cyclic time series will be deeply described and
applicative contents of such an important group of time series will be ex-
plained. The readers are highly encouraged to pay attention to this chapter,
as new ideas are specifically included in this book only. It founds a base for
Chapter 7 and Chapter 8, with practical importance that can be found merely
in this book. This part will be ended with an especial chapter on the dynamic
learning method. For the experienced readers, this chapter can be skipped,
however, mathematical derivations can provide means for the beginners to
learn the principles. The main focus of the book is included in the third part.
Chapter 6, explains the clustering methods which have been recently used for
learning at the deep level. This is an elaborated notion of deep learning that
can be found in this book, and differs from the existing ideas of deep learn-
ing. Chapter 7, gives materials on deep learning based on neural networks.
Time growing neural network will be much expanded for the deep learning.
Chapter 8, is sophisticated for the cyclic time series. This new idea facilitates
learning in different practical application, especially in biology where cyclic
time series are profoundly seen. Recurrent neural networks and convolutional

12 Deep Learning in Time Series Analysis

neural networks are the material of Chapters 11 and 12. Experienced readers
might be familiar with these chapters and can skip them. The book discusses
hybrid methods for learning and their advantages and disadvantages against
neural networks.

2

Learning Theory

Learning in its broad sense implies a process, through which similarities and
dissimilarities of various classes of previously prepared data, sometimes called
training data, are found, and an appropriate decision is made regarding it’s
implementation. In the context of computer sciences, learning is performed
through a systematic procedure, known as the learning process. Here one
should pay attention to the methodological differences in learning process be-
tween the conventional methods and the more recent forms of deep learning
methods, especially when it comes to the time series analysis. In most of the
conventional methods, a level of processing is involved, in which a mathemat-
ical or sometimes a statistical mapping is applied to an input time series. The
result of the mapping is another time series, often a multidimensional time se-
ries, but with the shorter length in another domain of the numbers, which can
be learnt in an easier way. This level of the process is called “feature extrac-
tion”, which is expected to provide a mapping to another domain, in which the
members with a similar class are closer in the same space. Feature extraction
is an important part of a learning method, employed for quantifying similari-
ties or dissimilarities over the samples of a dataset. In many of the examples
of deep learning methods, this level of feature extraction is merged into the
learning process, so more the process is executed the less hand-made manip-
ulation is allowed. A learning process in the conventional form, is typically
based on a set of the features extracted from the training data. Capability of
one or a set of the features in segregating different classes of data, is termed
as “discrimination power”. Discrimination power is not an absolute definition.
It is in contrast, employed to facilitate comparison of different feature sets.
Nevertheless, the dependability of the discrimination power is not limited to
the feature extraction only, while an underlying learning method holistically
takes part in the value of the discrimination power. However, for comparing
different feature sets, discrimination power can be potentially invoked when
the rest of the learning process remains identical!

Another definition, worth mentioning at this point, is the terms, “super-
vised” and “unsupervised” learning or classification. Supervised learning, is a
kind of learning in which classes of the members of the training data is priori
known and employed for the learning process. An example of the supervised
learning is classification of the Electrocardiogram (ECG) signals, where the
label of the signals are clinically assigned by the physicians, and the learning
method is deemed to find the similarity of the signals with similar classes,

14 Deep Learning in Time Series Analysis

along with the dissimilarities of different classes. Unsupervised classification
is however, the case in which these classes are not either known, or employed
for the learning process, and the learning is performed based on the simi-
larities only. By convention in this book, the labels of a supervised learning
are denoted by capital letters. In the following sections, further definitions of
learning are explained, sometimes by mathematical expressions, in conjunc-
tion with the principals needed for the following chapters.

2.1 Learning and Adaptation

In the first chapter, adaptation was addressed as an attribution of practical
systems in particular, those inherently seen in all the elements of the nature
as an everlasting change. Learning was discussed in contrast with adaptation,
in which decision making takes a role in the process. However, indicative dif-
ferences and similarities must be discussed in more detail, because of their
important roles in selecting an appropriate strategy for solving a practical
question. The border between learning and adaptation is sometimes unclear
for many researchers, leading to a waste of time in developing improper so-
lutions that cannot guaranty their research objectivity. It is important for an
engineer or researcher to obtain an understanding about the intrinsic nature
of the problem, before choosing a strategy for solving the research questions.
In both the cases, a set of the parameters are invoked to provide a reliable
result either for learning, or for the adaptation question. The number of the
parameters associated with a practical system often resembles the order of the
system. These parameters are dynamically estimated sometimes using a non-
linear model to estimate the performance, however, as you will see in the fol-
lowing sections, there are often other parameters associated with this method,
referred to as design parameters, which are found throughout the optimiza-
tion process. Adaptive solutions are mostly employed when the dynamic of a
phenomenon is taken into account. Adaptive filtering, Kaman filtering, and
many other methods that have already been proposed in the adaptive control
domain are typical examples of such solutions [30][2]. In contrary, learning
can also be used with static data, when the data variation comes from the
variation over the instances. The parameters of an adaptive method are up-
dated by each input, which is not often the case for a learning method where
the updates happen in the training phase. Decision making is also considered
as another point of differentiation, often seen in learning methods, and not
in the adaptive methods. Another point of divergence lays in the structure
of the adaptive methods. A necessity of majority of the adaptive methods,
is a reference time series with the informative contents, either coming from
another channel of time series recording, or from delay of the same channel.
Attention should be paid to the point that the reference time series is not nec-
essarily a signal. It can be an interference, noise or even data. A line canceller

Learning Theory 15

which receives a power line from one channel and removes it from a signal
contaminated by the power line interference, is a well-known example of such
an application. Another example, is an adaptive controller for predicting body
movement of an animal. There are also important differences in the nature of
the two processes; adaptation and learning, making the scientists categoriz-
ing them into two different contexts, signal processing (or sometimes control)
and machine learning, respectively. Adaptive methods have been widely pre-
sented in various text books of signal processing and control [22]. Although
one strong suggestion for time series analysis can be adaptive methods such
as the Linear Prediction Error Method, this book is planned to keep its focus
on learning methods for time series analysis, and even more specifically, deep
learning methods.

2.2 Learning in a Practical Example

Let’s assume a bicycle trainee who is starting to learn bicycle riding. Visual,
auditory, and motor skills of the person are all involved in sending signals to
the bicycle rider’s brain, which is responsible for receiving the signals, and to
send suitable control commands to establish balance and to maintain appro-
priate movements. The learning process in this case includes, sending appro-
priate signals to the muscular units of rider, based on the visual, auditory, and
muscular feedback. The rider should experience different situations of riding,
in order to be able to maintain a stable riding experience. The rider’s brain
receives different sets of input data, which are in this case, visual, auditory
and muscular feedback, and also performs a processing signal, and sends the
commands to the muscular units, and finally validates performance of the bi-
cycle rider based on the outcomes. In this process, a set of the input data with
known consequences, resulting from previous experiences, plays an important
role in the learning process. This set of data, is calling training data Main-
taining the balance of the rider and providing an appropriate movement are
accounted as the measures for the learning quality, which are termed as the
“learning function”. The input data are transferred to the brain, and those
units of the brain responsible of receiving and interpreting the related data,
take appropriate action. A massive interconnection of the synaptic links are
made between the neurons in time when the rider experiences different con-
ditions, and the rest of the brain cells remain almost neutral to the inputs.
The number and distribution of the neural connection are parameters of the
learning process that depend on the learning task, and also the input data.
They are considered as the learning parameter. In this simple example, an-
other set of the parameters contributing to the learning process, which seems
to be hidden, but was set before the onset of the process. The number of
the brain and muscular units, involved in the learning, and perhaps many

16 Deep Learning in Time Series Analysis

other phenomenon, which are yet undiscovered, are typical examples of these
parameters. These sets of the parameters, are named hyperparameters.

2.3 Mathematical View to Learning

Learning process is indeed the process of finding parameters of an appropri-
ate mathematical mapping by which an input vector is mapped to another
space where similarities and dissimilarities of the “within-class” and “between-
class” data, are better projected, respectively. Figure 2.1 illustrates how this
mathematical mapping functions.

FIGURE 2.1: A suitable mathematical function can map the data from a 2 di-
mensional space to another space of 2 dimension, where the three possible classes
are well segregated with high between-class, and low within-class variances.

In analogy, the term “Green Function”, used in mathematics implying a
process for finding parameters of a linear differential equation, with this dif-
ference that learning can include non-linear mappings as well. Depending on
the learning fashion, a number of the attributions are associated with learning
process, however, there are essentially some of the fundamental components,
seen in all the learning processes. For the developers and students of artificial
intelligence context, it is important to gain a deep understanding of the learn-
ing process, along with the learning objectives, to be able to achieve a reliable
learning. Nowadays, learning methods have been massively developed and a
bunch of the pertinent implemented codes can be publicly found. Neverthe-
less, finding the correct strategy to solve practical questions, and to develop
individual solutions requires deep insight into the context, that begins by “un-

Learning Theory 17

derstanding heart of learning process”. Fundamental components of a learning
process are described in the following sections.

2.3.1 Training and Validation Data

In the context of artificial intelligence, a predefined set of data is used to find
learning parameters of a method which is called “training data”. Looking back
at the bicycle rider example described in the previous sections, the training
data acts as the rider’s experiences. Training data can be a set of the time
series (in this case dynamic contents of the data are of importance), or sin-
gle point registration of a phenomenon. In supervised learning, the class of
each training data is known in advance. If the classes are assigned to all the
training data instances using a set of the categorical data, the dataset is re-
garded as a fully labeled training data [81]. The labels are sometimes assigned
independently, without looking at the signals by themselves, according to a
priori understanding obtained from a different source of knowledge. An exam-
ple of such supervised learning, is the case in which a set of the recordings of
heart activities is deemed to be used for detecting heart conditions [51][46].
The recording labels are obtained by an expert physician based on clinical
findings and other medical examinations. This example will be further ex-
plained throughout the book. In some cases, the labels are assigned at certain
temporal intervals of the training time series, where trained eyes can detect
several temporal sequences. Validation data is a set of the labelled data used
for evaluation of the learning performance. Although validation data can be
fully-labelled, the learning parameters are not updated by the validation data.
In practical situations, we may encounter a problem in which several methods
are to be trained and validated and we choose the one with optimal perfor-
mance. The learning parameters of the methods are firstly obtained during the
training which is followed by the optimization. Validation data is then used
for determining the classification method offering the optimal performance.
Sometimes validation data is invoked to select a suitable method such as the
middle-classification method among several options. This is especially seen in
the hybrid methods where a few classification methods are cascaded to deliver
better classification performance [40]. This is the main difference between val-
idation and training data that will be explained in more detail in the coming
sections.

2.3.2 Training Method

The mathematical process, which provides the above-mentioned mapping, de-
scribed as the training process, is known as the learning method. This can rely
on a series of mathematical functions, even though a single function which is
capable to serve as such the mapper can be considered as a learning method
[24]. In many cases, the learning method is corresponded to an estimation,
in the sense of the mathematical action. To bring this point into a better

18 Deep Learning in Time Series Analysis

perspective, let’s consider the case in which a linear system of equation is
supposed to be solved. In order to achieve a unique solution for a system of
equations, the following criteria must be fulfilled:

• The number of the equations, N , must be equal to the number of the
variables M

• The equations must be linearly independent

A curious reader may come up with this question: what happens if the first
criterion is not satisfied? In this case, we might be faced with two situations;

• The number of the equations is lower than the number of the variables

• The number of the equations is higher than the number of the variables

If the number of the equations is lower than the number of the variables,
and the equations are linearly independent, a unique solution does not exist,
and there will be unlimited number of the solutions. The most important
part is, however, the situation in which the number of the equations is higher
than the number of the variables. In this case, the system of equations cannot
derive any unique solution, and this leads to “estimation” question. This point
is summarized in Figure 2.2:

FIGURE 2.2: All the possible situations that may happen for a equation system,
in terms of N and M , defined as the number of the equation and the number of the
variables, respectively.

An estimation process often consists of a procedural method in conjunction
with a set of the criteria that should be optimized through the estimation
procedure. This set of the criteria is sometimes called “cost function”. The
learning method, in its intrinsic form, performs an estimation, since we have
a set of data to be mapped, to several classes and the set of data is always

N>M No solution
Estimation
problem

N=M Unique
solution

Analytic
method

N<M Unlimited
solutions

Optimization

Learning Theory 19

higher than the number of the classes. Looking back at the example of the
bicycle rider, the number of the instances sent to the brain of the rider is by far
higher than the conditions. In most of the cases of learning, the estimation is
performed through an iterative procedure and the cost function is calculated as
the mean square error of the predicted and actual values. This will be further
expanded with more detail in the upcoming sections. Artificial neural network,
discriminant analysis, and fuzzy logic are considered as the three well-known
learning methods, that will be partly explained in the related sections.

2.3.3 Training Parameters

In artificial intelligence, a learning process is often initiated by following a
certain procedure, described by the learning method, in a way to optimize a
criterion such as minimizing a cost function. The criterion, can be the mean
square error resulted from the subtraction of the desired class and the pre-
dicted class of each data sample. Another criterion for the learning, is for ex-
ample: the quantified similarities over the data. Sometimes, the optimization
is performed through a constrained minimization, as done in a support vector
machine [141]. In many cases, the learning process is performed through an
iterative procedure where numerical analysis is widely employed. As a result, a
number of the parameters are obtained through the learning procedure, most
of the times iteratively (especially in the elaborated methods), but sometimes
analytically by invoking techniques and lemmas from linear algebra [141].
Even the analytical solutions need iterative methods from numerical analysis
for the implementation. In any case, the obtained learning parameters can be
used to perform the mathematical mapping, which makes extraction of the
similarities and dissimilarities feasible. It is important to note that the learn-
ing parameters are all obtained for a specific solution with a certain training
data. The learning parameters are tightly linked to the training data, and
updated at each iteration of the learning process. This type of the straight
data-dependent feature of the learning parameters, with updating by each
training data, is a certain feature of the parameter that makes them different
from another set of the parameters, named hyperparameters.

2.3.4 Hyperparameters

Hyperparameters are those parameters which are set before starting the train-
ing phase. These parameters are sometimes called, design parameters, how-
ever, hyperparameter is the term that is currently more popular in the con-
text of artificial intelligence. From the example of the bicycle trainer, one can
clearly see that the neural links and synaptic connections, made during the
training, are considered as the learning parameters. However, the signals re-
ceived from the rider, were initially set prior to the training task. The signals,
are visual, auditory and muscular feedback. The number of the signals, and the

20 Deep Learning in Time Series Analysis

action of the signals in the learning process, are initially set (unintentionally
in a biological system), before the training, resembling the design parameters.

2.4 Learning Phases

From the previous explanations, it can be easily seen that a learning process
typically involves five different phases of activities: data preparation, problem
formulation, training, validation and optimization. Figure 2.3 illustrates a
typical learning process:

FIGURE 2.3: Typical steps of a learning process.

Data
preparation

Training Validation OptimizationProblem
formulation

The first phase of learning is often assigned to finding appropriate data for
the learning process. Validity of data is an important task that must be per-
formed prior to any process. The data must be valid, informative and clean,
otherwise efficient learning cannot be expected. Result of an inefficient learning
may be seen as an incorrect classification for different input samples. Depend-
ing on the data type, an appropriate strategy must be selected to purify the
training dataset. As an example, the learning process should probably take
dynamic contents of data into account, when it comes with the time series clas-
sification, while for a development problem of face detection, dynamic contents
of the data are not available. Selecting an appropriate learning strategy helps
to provide a clear formulation of the problem. The problem formulation phase
comprises of selecting the learning strategy, identification of the hyperparam-
eters and finding the learning parameters. Training phase includes choosing
a training method, and implementing the training procedure. The training
phase leads to a set of the parameters, having the hyperparameters already
initialised. It is worth noting that a set of the hyperparameters is selected
before the onset of the training, either intuitively by having a prior knowledge
of the case study, or by following a systematic procedure. After the training
process, the trained system is validated using a set of the input data, normally
out of the training data, but in some cases combined with the training data.

Learning Theory 21

The result of the validation indicates suitability of the learning performance.
Optimization is a process through which the hyperparameters are found, that
results in an optimal performance. In many development problems, due to the
insufficient theoretical bases for finding the hyperparameters in an analytic
way, systematic procedures are followed to obtain the optimized parameters.
Many developers offer the use of the classification rate as a metric for their
optimization. Depending on the case study, there are other metrics that can
be invoked for the optimization. The metrics which profile the performance
measures will be described in the following sections.

2.5 Training, Validation, and Test

Training refers to a process for finding learning parameters of a classifier. In
most of the cases the learning parameters are incrementally adjusted through
a recursive procedure in a way to minimize a cost function at each recursion of
training. Regardless of using recursive training procedure with the numerical
analysis or using an analytic solution to find the parameters of the classifier,
a training method is always associated with the training procedure, that gov-
erns the procedure on how to find the learning parameters. In most of the
cases, the procedure is repeated several times with a certain dataset, named
the training data, until reaching a certain low level of the cost function. In
some of the classification methods, the recursion can be continued until reach-
ing a very low value, ideally zero value, of the cost function with a certain
training data [81]. An important issue, however, arises when the classifier is
experimented on by another set of the data out of the training data. A classi-
fier can be well-trained with a very low value of the cost function, but show a
high error in the validation. This is considered as a poor performance for the
real world practices. It is therefore necessary to examine the classifier using a
different set of the data, otherwise the training would be unreliable. The data
which is used to validate performance of a classifier is called the validation
data. In practice, there are various situations where the data is not included in
the training data. This necessitates to validate a classification method using a
dataset, different from the training data. It is also practically seen that there
exist several alternatives of classification method on the table to be selected,
for the same classification purpose. The main purpose of using validation data
is to chose the classifier with the optimal performance. The training data is
conclusively employed to find the learning parameters, and/or hyper param-
eters of a classifier, while the validation data is used for selecting an optimal
classification method. A classifier, after being trained and validated by the
training and validation data, is evaluated by another set of data, named the
test data. The notation of Nt, Nv, and Ne are the notations will be used to
denote, the number of the samples for training, validation and test, respec-

22 Deep Learning in Time Series Analysis

tively, throughout all the chapters of this book. It is obvious that the total
number of the samples is a summation of all the samples:

N = Nt +Nv +Ne (2.1)

In some of the application, the learning dataset, Nl, is regarded as sum of
the training and validation data while the test data remains unknown in the
learning phase:

Nl = Nt +Nv (2.2)

It is sometimes seen that the learning dataset is not defined and the pro-
cessing suffices to the training, validation and test only.

2.6 Learning Schemes

In all the learning questions, depending on the input dataset and the char-
acteristics of the data, an appropriate model is chosen for the learning. The
model chosen for the learning, is completely tied to the type of the data that
should be learnt, in terms of its nature and also availability of the data label.
Basically, one can face two different cases of learning: supervised and unsuper-
vised learning. Each of the cases, by itself includes two sub-cases: dynamic and
static learning. The learning schemes corresponding to the cases are described
in more detail in the following sequels:

2.6.1 Supervised-Static Learning

Supervised-Static learning is a learning case in which the training data is
fully labelled and the training method does not consider temporal variation
of the data in the architecture of the method. A preliminary requirement
for any supervised-static learning is a set of the previously-known labels,
{Qi : i = 1, ..., Nl}, associated with the learning data, and the data sam-
ples are not time series of {xi ∈ Rn}. In most of the cases, the labels can be
assigned as the numerical or categorical data or symbols, (∀i : Qi ∈ Z), or
a character (∀i : Qi ∈ {a, b, .., z}). A supervised-static learning, is a process
which employs the labels for the training and for the validation.

2.6.2 Supervised-Dynamic Learning

In supervised-dynamic learning, each sample of the learning data consists
of a time series: {∀i : xi ∈ Rn×m}, where n is the dimension, and m is
the length of the time series. In many cases, the learning data contains
time series of different length: {∀i : xi ∈ Rn×mi}), and mi is the length
of the time series xi. For the supervised-dynamic, we may encounter with

Learning Theory 23

the cases, where a single label, {Qi : i = 1, . . . , Nl}, (Nl is the size of the
learning data), is assigned to the entire of time series i. However, the labels
are sometimes dynamic, with equal length equal to the time series samples:
{Qi(t) : i = 1, . . . , Nl, t = 1, . . . ,mi}. It is obvious that a supervised-dynamic
learning method employs both the set of the labels and the time series for the
learning process.

2.6.3 Unsupervised-Static Learning

Unsupervised-static learning is a process, in which the learning data is com-
posed of a set of the vectors without any label. The process attempts to
extract similarities disregarding any initial label, and terminates after assign-
ing unique labels to all the vectors, {∀i : qi ∈ Z, to each sample of the training
data {xi : i = 1, . . . , Nt}. The number of the classes is regarded as a hyperpa-
rameter. The learning process can be iterative and the labels may vary several
times for each single sample throughout the learning process, before reaching
an ultimate and stable set of the labels. Sometimes it doesn’t converge to a
stable set of the labels.

2.6.4 Unsupervised-Dynamic Learning

An unsupervised-dynamic learning is similar to the unsupervised-static one,
with the difference of including dynamics of time series at the input. Quanti-
fying the learning performance would be considerably different when it comes
to the input data of time series.

2.7 Training Criteria

A dynamic process for extracting similarities and dissimilarities of the input
data, termed by learning process, demands a systematic procedure towards
achieving certain goals such as optimal learning quality. A question at this
point on the learning process, is how to quantify the learning quality, using a
reckoning learning data. This point directs us to the learning criteria, which
addresses the way of quantifying the learning quality in a predefined situation.
In fact, the learning scheme plays the key role in the quantification method.
Classification error, defined as the ratio of the incorrectly classified samples to
the total samples, is one of the most common criterion employed in majority
of the supervised learning methods. Considering the following function:{

1, if x = y
δ(x, y) = (2.3)

0, if x = y̸

24 Deep Learning in Time Series Analysis

Classification error, Ie, of a classifier, is defined as:

Ie =

∑Nv

i=1(1− δ(Qi, qi))
(2.4)

Nv

where Nv is the number of the validation samples. Qi is the actual label of the
validation sample i, and qi is the label resulted from the classifier. In most of
the supervised learning, this criterion is attempted to be minimised during the
training phase. The lower classification error results from the validation phase,
the better training is achieved. In contrary, classification rate is defined as the
ratio of the correctly classified samples to the total number of the validation
samples, as follows: ∑Nv

i=1 δ(Qi, qi)
IR = (2.5)

Nv

It is obviously seen:

IR = 1− Ie (2.6)

These performance measures are sometimes used in percentage (%) form.
In this case we obviously have:

IR|% = 100− Ie|% (2.7)

Classification rate is commonly used as a performance measure for com-
paring different classification methods. In unsupervised learning, similar-
ity between samples is regarded as a criterion for the learning, during the
training processes. There are different ways to formulate the similarities.
Normalized cross-correlation of the two vectors, X = [x , ..., x]T1 1,1 1,m and
X2 = [x2,1, ..., x2,m]T , is one of the most common performance measures,
which is calculated as follows:

XT

Γ 1 X2
X1,X2

=
·

(2.8)
∥X1∥.∥X2∥

∥X1∥ =
√
x21 + ...+ x2m

If the two vectors are completely dissimilar, the corresponding cross-
correlation approaches to −1, and in contrary, for two similar vectors this
metrics becomes well close to 1. Distance measurement is another way of
quantifying dissimilarity of two vectors. Euclidean distance is one of the most
common distance measurement techniques:

d(X ,X) =
√
(x − x) 2 + ...+ (x − x) 21 2 1,1 2,1 1,m 2,m (2.9)

Two vectors are dissimilar if their distance is large. Distance measurement is
usually used for comparison since it lacks from a standard to scale similarity

Learning Theory 25

such as large and small. Unlike the normalized cross-correlation, where the
similarities are normalized between the two limits, −1 and +1, standard val-
ues to quantify the comparative description, e.g., large, cannot be derived by
distance measurement. Therefore, such a normalization depends on the case
studies rather than objectively known values. This limits application of the
distance measurement techniques only for the certain cases, in which the dis-
tance values are interpretive. By the way, the cross-correlation can be easily
reformulated for measuring dissimilarities between the samples.

2.8 Optimization, Training, and Learning

Optimisation is a process through which design parameters (or hperpa-
rameters) of a learning method are found. Training process is, however, a
process for finding the training parameters (training weights) instead of
design parameters, by assuming that the design parameter were already as-
signed. The learning process in particular, incorporates optimization, training
and validation, implying on the process that encompasses finding both the
design parameters and the learning parameters. In an optimization process, a
cost function is attempted to be minimized, either analytically using a mathe-
matical derivation, or numerically through a pre-designed procedure mainly by
a set of the iterative operations. In computer systems, it is always preferred
to perform iterative procedures with low computation power, composed of
simple arithmetic operations, instead of performing heavy mathematical cal-
culations like obtaining inverse matrix, which might lead to a singularity. This
will secure the operation of trapping in a singular point, and considerably im-
prove the performance. As a result, in many cases, an analytical optimization
method is tried to be converted to an iterative procedure, as mush as possible,
even at the expense of losing accuracy in a modest way. The extent to which
the accuracy is lost is obviously dependent to the computational power and
the number of the iterations performed through the procedure. Sometimes
an iterative procedure invokes experimental calculation for the optimization,
as happens mostly in the intelligent methods. It is important to note that
optimization is not limited to the intelligent methods only, and is generally
employed in different fields, such as communication systems, adaptive filter-
ing, and economic systems. In training, in contrast, a number of the criteria
or constrains are optimized, mostly through a recursive procedure training is
found merely in the intelligent methods. Constrained training is a common
form of the training seen in several training methods such as support vector
machine.

26 Deep Learning in Time Series Analysis

2.9 Evaluation of Learning Performance

An intelligent method, is always needed to be evaluated after a learning pro-
cess, as like as a child who makes efforts to learn a skill and is evaluated by
the trainer after the learning process how the learning goals are met. The first
step in any assessment or evaluation process is quantification of the learning
goals. The following sections address a number of the most common methods
for evaluation and comparison of classifiers.

2.9.1 Structural Risk

In artificial intelligence, a clear understanding about performance of classifi-
cation methods is sometimes a big challenge.

Structural risk of a classification method is termed as instability of the
method in its performance measures, when the method is evaluated by a dataset
out of the training data [44][43].

High structural risk is undesirable in any classification method. A well-
known performance measure of a classification method, is classification error
(see Eq. 2.4) of the classification method. Depending on the classification pur-
pose and the case study, other performance measures like sensitivity might be
of interest to be considered for the evaluation. This is seen in medical applica-
tions where an abnormal condition is learned against a normal condition and
defined as the percentage of the abnormal cases which are correctly classified
by the method. In many practical situations, especially in the problems in-
volving supervised learning, it is commonly seen that a certain classifier learns
similarities of the training data and the classification performance is tightly
dependant on the training data. Such the similarities might not be seen in a
test data, and therefore, accuracy of a method is not stable when the method
is going to be tested by different sets of the data out of the training data.
A common condition which can lead to a high structural risk, is a problem
called over-fitting. This happens when the classifier becomes over sensitive to
the similarities such that even small unimportant dissimilarities are learned
by the classifier. This point will be further discussed in the coming sections.
One must bear in mind that although training data plays an important role
in the learning process, structural risk addresses a deficit in the architecture
of the classifier which makes most of its effort to extract unimportant simi-
larities and dissimilarities. A classifier with high structural risk is not reliable
and can give an unacceptable classification rate, varying with different testing
datasets, in practical situations.

2.9.2 Empirical Risk

Classification error of a classifier, as defined in Eq. 2.4, is sometimes calcu-
lated by using a finite set of the training data, and used as a crude measure of

Learning Theory 27

the possible error in reality. It is obvious that the performance is mostly over-
estimated during the validation. Choosing an appropriate validation method
can push the estimated performance to the actual ones in terms of the clas-
sification error. The empirical risk, although is crude, but frequently used in
many statistical classification methods, especially with large training dataset.
A common condition which results in an unrealistic estimation of classification
rate is a condition in which the training process is stuck in a situation, named
local minimum. This condition can happen in training of a neural network us-
ing conventional back propagation error. Convex classifiers like support vector
machine have this interesting aspect of preventing occurrence of this condition.

2.9.3 Overfitting and Underfitting Risk

Machine learning methods, in a global sense, are divided into two different
categories in terms of the learning fashion, even though objective of the two
categories seems to be identical: convex and locally optimized methods. The
former refer to the methods, where the learning process ends up to global
optimal point of the cost function, whereas the later one in which the opti-
mal point cannot be globally guaranteed. Support vector machine and neural
networks are typical examples of the convex and locally optimized methods,
respectively. Learning parameters of a convex classifier are mostly calculated
by using closed analytic formulas. Even though, iterative procedures are some-
times preferred in order to decrease the computational complexities or to run
away from the singularities, the global optimum is theoretically known. In con-
trary, for classifiers of the second category, the global optimum is not known,
but tried to be achieved through a recursive procedure. One might think that
the more recursion to be employed, a closer point to the global optimum is
achieved. This is true only in theory. In practice, any classifier whose learn-
ing parameters are obtained through a recursive procedure, can be faced with
two different risks affecting performance of the classifier: overfitting and un-
derfitting. Overfitting is a condition in which the number of the recursions has
been unreasonably increased such that the decision border between different
classes is very tightly set. Figure 2.4 shows a case of the overfitting. On the
other side, there might be learning cases where the number of the recursions
is insufficient in a way that the border is coarsely set, as shown in Figure 2.4.

Both the overfitting and underfitting bring risks to the classifier. The for-
mer might show low empirical risk at the expense of high structural risk,
while the vice versa is for the later, with higher empirical risk, but probably
a better structural risk. There is no optimal point in between, to be found
analytically, and the trade-off between the risks must be performed through a
process, so called “cross-validation”. By definition, cross validation implies on
a systematic interrupting of the learning process at the training level (which
is assumed to be recursive in this case), and evaluating the performance using
the validation data, and repeating this procedure with a sufficient number of
the iteration until reaching a stable result.

28 Deep Learning in Time Series Analysis

FIGURE 2.4: The risks of overfitting, underfitting against a good fit, that can
affect the learning process.

2.9.4 Learning Capacity

The ability of a classifier in improving its learning performance with more
training data, is defined as the learning capacity. This lays well within the
context of artificial intelligence which pays more attention to learning quality.
One of the most common ways to quantify the learning performance, and hence
to provide an understanding about the learning quality, is classification rate
(see Eq. 2.5). This metric is calculated not only during the training, but also
after the learning process, for estimating performance of classifiers and also
for comparing performance of different classifiers. Although the objectivity of
this criterion has been well-received so far, especially when a certain common
learning data is employed for validation of different classifiers, there are other
sides to this point which are worth discussing.

Learning performance can be explored in two different perspectives: during
training and within validation. The trend of improvement in the classification
rate during the training phase shows how well a classifier performs its task,
which can be assumed as an indication of the learning capacity. A quick learner
is always of interest, especially when it comes with a large training dataset.
Another perspective of learning capacity, which is by far more important, is
trend of improvement in the classification rate after validation with a different
size of the training data. Almost in all the applications in the context of
machine learning, the training data is cumulatively increased in time, and it
is important to obtain an understanding of how the classifiers behave when
they have been trained by a larger selection of training data. This aspect of the
learning capacity is crucially important and regarded as an objective quality
of classifiers.

2.10 Validation

In many practical situations, it is seen that a well-trained classifier gives a poor
result in terms of the classification rate after been tested by test data, mostly

Learning Theory 29

due to the inappropriate training. In fact, it is always difficult to obtain a re-
alistic estimation of the classification performance of a classifier, however, by
following an appropriate validation, one can simulate the real situation. The
extent to which the simulation imitates a real situation depends on pervasive-
ness of the training data, especially in a small or medium training data size, It
is important for training data to include samples of every possible situation.
Consequently, one cannot easily judge how a previously trained classifier be-
haves with a new input which was not trained for. That’s why the validation
method becomes important.

A number of the validation methods which are commonly used in artificial
intelligence domain for validating classifiers are explained in this section. It
is important to note that all the below described methods are often used to
obtain an understanding about the structural risk of a classification method.
This is indeed a simulation of the real situations rather than standardization of
the risks. A difficulty in such analysis, commonly seen in all the three following
methods, is their dependence to the learning data, since one may not know the
true statistical distribution of the data. It is therefore, of critical importance
for learning data to pervasively cover various conditions of the data. This can
be difficult in many practical situations.

2.10.1 Repeated Random Sub Sampling (RRSS)

In this method, a certain portion of the learning data is selected for training
a classifier and the rest of the data is used for calculating the classification
performance [72][68]. The proportion pf the test data is fixed, but the data is
randomly selected based on using a persumed statistical distribution (typically
uniform distribution) and this procedure is repeated several times, with the
random selection of the training data. However, size of the training data is
fixed, and statistical descriptive of the classification rate is used to estimate
the performance of the classifier and also for comparing different classification
methods.

2.10.2 K-Fold Validation

This method is used for validating the performance of a classifier. In the K-
Fold method, the whole learning data set is divided into K partitions of equal
length. Then, one partition is used for validating the classifier and the rest of
the data for training the classifier. This procedure is repeated K times with
one partition used only once for the validation. This method is often preferred
over repeated random sub sampling, when the size of the learning data is
low. An exceptional case of K-Fold validation method, is the Leave-One-Out
method, or alternatively, Jack-knife, method. In Leave-One-Out method, a
single sample of the learning data is used for validation, and the rest for
training the classifier. The procedure is repeated by the same number as the
learning data size, with one sample in used only once for the validation.

30 Deep Learning in Time Series Analysis

2.10.3 A-Test Validation

A-Test method is indeed an elaboration of the two former ones, which can pro-
vide better information about the performance of classifiers [56]. This method
is based on using K-Fold validation with different values of k. In this method, k
is known as the validation index. Then, the learning data is randomly shuffled
and the same procedure is repeated until reaching stable values for the classi-
fication rates obtained for each value of K. Figure 2.5 illustrates the method
in its general form:

FIGURE 2.5: A complete block diagram of A-Test validation method. In order to
expedite the process, permutation of the data might be ignored (the block denoted
by the dashed line).

For each value of k, the classification rate is obtained and treated as a ran-
dom variable. The probability expectation of this random variable provides
an indication of the classification rate for a certain k. Let’s IR be classifica-
tion rate of a classifier, the expected value of the classification rate for the
validation index k is: {∑Nv

i=1 δ(Qi, qi(k))
IR(k) = E

}
(2.10)

Nv

where is Nv number of the validation samples and qi(k) is the classification
result for the sample i that is obtained using validation index of K. The upper
limit of k is found by paying attention to the size of the validation data. It
is obvious that the K-Fold validation method in its especial case, becomes
Leave-One-Out, when the testing partition incorporates only 1 sample of the
learning data. This condition happens if the k value exceeds ⌊Nv

2 ⌋+ 1, where

Dataset

Result

Calculate
maximum K

Permute data
order

Calculate classification rate using K-fold with
k = 1, ..., K

Statistical descriptive

Yes NoStable
classification

rate

Learning Theory 31

the operator ⌊.⌋ points to rounding a decimal number to its lower value. On
the other hand, the validation index cannot take a value lower than 2, in which
half of the learning data is used for the training and the rest of the other half
for validation. The range of k is therefore expressed by:

N
k = 2, ..., ⌊ v

2
⌋+ 1 (2.11)

Having the range of k, the classification rate resulting from A-Test method
is:

IR =

∑K
k=2 IR(k)

K − 1 (2.12)
N

K ⌊ v
=

2
⌋+ 1

The scuffling part of the A-Test guarantees that the learning data is not
arranged in a specific order to affect a fair validation, and therefore risk of
the bias on a certain dataset is considerably mitigated. Depending on the
comprehensiveness of the learning data as well as distribution of the data
classes, random arrangement of the validation data can be sometimes done
only once before validation. This might lead to loosing the elaborateness of
the method at the expense of the simplicity, even though, in many cases such
estimation of the performance measure will be sufficient for validation and
comparison. In this case, Eq. 2.10 is simplified as:

Nv

IR(k) =
i=1 δ(Qi, qi(k))

∑ Nv (2.13)
K

∑
I k=2 IR(k)
R =

K − 1

As seen in the above equations, the A-Test method provides a set of the
values projecting the performance measure for different validation index, k.
Some indicative information can be extracted from this set of the performance
measures, in different illustrative and quantitative ways. Advantages and dis-
advantages of this method against the other two methods, repeated random
sub sampling and K-Fold validation, will be described in the following sections.

2.11 Privileges of A-Test Method

A-Test offers a more realistic, broader information and deeper understanding
about performance of classifiers in reality as being compared to the other two
validation alternatives. These privileges are obtained at the expense of more
complexities in calculation. The following subsections brings up some of the
interesting aspects of the A-Test method along with the informative contents
which can be exploited by using A-Test validation.

32 Deep Learning in Time Series Analysis

2.11.1 A-Test and Structural Risk

In equation 2.10, the classification error was calculated for different values of
K, not only for the validation, but also for comparison of different classifiers.
The A-Test method can provide a measure about the structural risk of a
classifier, if classification error, Ie, is invoked instead of the classification rate:

ISR(k) = E

K

{∑Nv

i=1(1− δ(Qi, qi(k)))

Nv

}
(2.14)

I k=2 ISR(k)
SR =

∑
K − 1

where K is defined in (2.11).
A graphical representation of the classification error can provide an illus-

trative representation for different classification methods. Figure 2.6 demon-
strates a typical graph for different classification methods.

14

12

10

8

6

4

2

C
la

ss
ifi

ca
tio

n
er

ro
r

2 3 4 5 6 7 8 9 10
Validation index K

FIGURE 2.6: Illustrative comparison of 4 classification method suing A-Test
method. A-Test greaph is depicted for four different neural networks: Time Grow-
ing neural network (blue), time-delayed neural network with two different windows
length (yellow and orange) and multi layer neural network (violet).

As can be seen, the two time delayed neural networks show similar perfor-
mance for some of the validation indices (k = 4, 6), nevertheless the orange
one outperforms the yellow graph. As a result, a misleading comparison can
be made if one suffices to 4-fold or 6-fold validation for comparison. The A-
Test provides an informative illustration to compare different classification
methods. Besides, the slope of the classification error with respect to the val-
idation index, mean value and standard deviation of the classification error,

Learning Theory 33

altogether exhibit how well the performance of a classifier is improved when
size of the training data is increased. Such the valuable information cannot be
obtained by the other methods.

2.11.2 A-Test and Leaning Capacity

Remembering from the previous sections that learning capacity of a classifier
is defined as the potential of improvement in the performance of the classifier
when the training data is enriched. In contrast with the other two methods,
A-Test undertakes the validation with different sizes of the training data, and
hence makes an estimation of the learning capacity feasible. One way to this
end, is to find a graph of variation of classification rate with respect to the
validation index. Slope of the graph along with the range of the variation can
provide valuable information about the learning capacity. One way to formu-
late the learning capacity is to calculate relative variation of the classification
rate, given in (2.12). The following derivation gives a simple way to estimate
learning capacity in percent (%) based on using A-Test method:

max IILC = 100 · R(k)−min IR(k)

min IR(k) (2.15)

(min IR(k)) > 0

where IR(k) is given by Eq. 2.10. It is obvious that the above derivation tends
to infinity when the minimum classification rate tends to zero. Such condition
creates singularity to the estimation of the learning capacity, showing that the
applicability of the method is limited to the engineering pursuits only.

A large ILC for a classifier shows that the classifier can exhibit a much
better performance if being trained by a larger training data. In another word,
a classifier with high ILC , but not so high as IR, can be regarded as a po-
tentially good classifier with a high capacity of improvement, even though it
is not practically the case for a small dataset. It can be predicted that the
classification error can be drastically decreased if being trained by a larger
training data. Such the interesting information cannot be provided by other
validation methods.

It is worth noting that in A-Test validation method, neither the abso-
lute value, nor the average value of the classification rate can be employed as
the indicative qualifications for the learning capacity, instead variation of the
classification rate conveys the information about the learning capacity using a
larger training data. In many medical and clinical applications, preparing an
initial training data can be expensive, and sometimes impossible. Therefore,
choosing an optimal classification method among a great variety of the avail-
able ones, is critically important. Oppositely, in the testing phase, obtaining a
large group of the data from the referrals who would undergo the clinical test
can be by far more inexpensive. This is consequently, essential to calculate the

34 Deep Learning in Time Series Analysis

learning capacity of the classification method in the training phase to select
an optimal method which will ensure superior long-run performance.

2.11.3 A-Test vs other Methods

Repeated random sub sampling is based on random selection of the train-
ing data, with a fixed size of the training data. Although uniform statistical
distribution is often used for the random selection of training data, there is
no guarantee to secure that each sample of the learning data receives equal
share in the validation. In contrary, K-Fold validation assigns equal share to
each data sample, to contribute in the validation. Nevertheless, repeated ran-
dom sub sampling can provide a condition to calculate a confidence interval
for classification rate, whereas K-Fold validation gives a unique value for the
classification. A-Test on the other hand, can provide a confidence interval for
classification rate, and meanwhile assigns a consistent contribution to valida-
tion for all the learning data samples, even if the shuffling part is excluded.
Besides, the two important and unique possibilities offered by this method
against the other two: estimation of the structural risk and learning capac-
ity, make the A-Test method well preferred over the others, for most of the
applications in artificial intelligence, especially when the learning data is not
sufficiently large. Table 2.1 lists the indicative features of the three methods.

TABLE 2.1: Capabilities of the three validation methods commonly used in arti-
ficial intelligence; Repeated Random Sub Sampling (RRSS), K-Fold, and A-Test, in
terms of the possibilities to render results of the performance measures for a learning
method.

Validation Method RRSS K-Fold A-Test

Calculation of descriptive statistics ✓ – ✓
Consistent share to all samples from validation – ✓ ✓
data

Validation using various train/test ratios – – ✓
Intuition about the structural risks ✓ ✓ ✓
Quantitation of structural risk – – ✓
Calculation of learning capacity – – ✓

These possibilities cannot be provided by the other two methods where the
size of the training data is fixed. A powerful strategy to permute the learning
data in a way to guarantee consistent weight to each data sample is not a heavy
task in many applications. Apart from the statistical methods several other
methods can be developed to undertake this task. This is however beyond the
scope of this book.

Learning Theory 35

2.12 Large and Small Training Data

In practice, machine learning experts can find themselves in different chal-
lenges, when they develop machine learning methods with large or small train-
ing data. For a classifier, large training data is a condition in which the training
data incorporates adequate samples of different possible classes. One can eas-
ily see that large is not an absolute term, and depends on the number of the
design parameters. Here, it is important to note that there is a big difference
between the topics “big data” and large training data. Big data, mostly cor-
responds to the problems in which we may have (not necessarily have) large
training data, where each data sample by itself consists of a large data. An
example, is recordings of heart signals from a patient group, where each pa-
tient recording contains several millions of data samples. During training with
a classifier with large training data, it is important to maintain the training
under a condition, where we uniformly include different samples such that
certain data is not dominantly contributing in the training. Otherwise, the
classifier will be clearly biased to learn that dataset is better than the rest. In
contrary, for small data cases, we might not have adequate samples from each
data form. The main problem in this case is overfitting and structural risk.
This is the point where A-Test validation method is highly recommended to
be used for the validation. Nevertheless, for large training data, an appropri-
ate K-Fold validation can sometimes serve as a powerful validation method
with an approximately realistic estimation of the classification rate.

https://taylorandfrancis.com

3

Pre-processing and Visualisation

The time series of many physical phenomena in most cases carry uncountable
information by a sequence of the data samples recorded in a certain tempo-
ral order. It is often important to find efficient methods in order to extract
informative contents of a time series while preserving dynamics of the time
series in a concise form to be used either for classification or for representation
purposes [159]. Part of this process is known as feature extraction. Feature
extraction is indeed a mapping of a time series of length n × m to another
domain of multidimensional time series of length k × l in a way to provide a
better segregation between different classes exist in the learning data. Nev-
ertheless, the number of the features may be so large that another process
needs to be invoked to reduce dimension of the feature vectors, and mean-
while to make the resulting time series further informative. This process is
named pre-processing, which is sometimes employed for representation only.
The pre-processing is sometimes employed for mapping a time series, xi, to an-
other time series of multidimensional feature vectors: f(x) : Rn×mi 7→ Rk l

i
× i

Deep learning has recently disrupted this process and substituted the whole
learning in a homogeneous architecture [33]. However, regardless of what pro-
cessing method is used, pre-processing is commonly seen in different learning
methods, and hence is worth addressing in this chapter before introducing
learning strategies. This chapter serves as an introductory to show how the
pre-processing is formulated. This is of especial importance when a method
is formulated for a specific practical situation. In many cases, a multidimen-
sional time series of feature vectors carries a large amount of information as
well as redundancy, and needs to be mapped to another time series constituted
of feature vectors with lower dimensions without losing the important infor-
mation. Sometimes the squeezed feature vectors are regarded as the patterns.
Figure 3.1 shows a typical block diagram of a learning process for time series
in the conventional form where a level pre-processing is invoked.

The step after the pre-processing is another level of processing towards rec-
ognizing the patterns. It is important for a classification method to preserve
discriminating information both at the pre-processing, and at the recogni-
tion levels, where the former deals more with the structural contents, and
the later does so merely with the temporal contents of the time series. This
chapter is dedicated for describing as well as mathematically formulating the
pre-processing phase needed for a learning process. The methods are partly
supervised, and mainly unsupervised, but with notable considerations to im-

38 Deep Learning in Time Series Analysis

FIGURE 3.1: Classification of time series invokes these steps in its traditional
form.

prove the learning process. The mathematical descriptions not only provide
bases for the rest of the book, but also help the developers to build their own
methods.

3.1 Dimension Reduction

In many learning problems, extracting indicative features which is capable of
conveying similarity and dissimilarity between classes, leads to a large num-
ber of the features that might put the learning process in a position of high
structural and empirical risks. A large feature set can result in an unstable
classification in the testing phase, even though the training phase would be
quick with a negligible training error. This is widely accepted that large fea-
ture vectors should be avoided, especially in a medium or small training data
size, since the classifier might turn out to learn noise rather than the informa-
tion from the training data. The risk of overfitting is also increased by large
feature vectors.

A rule of thumb says in these cases: the number of features should not
exceed more than one tenth of the training data size. The important question
is: which of the features need to be omitted.

It is worth noting that some of the features might be inefficient when
considered independently, but powerful when combined with other ones due to
their dependent effect. Dimension reduction is indeed a mapping performed by

Pre-processing and Visualisation 39

the function f(xi) : R
n 7→ Rk where n and k is the initial and desired number

of the features, respectively. There are basically two different scenarios for this
mapping: finding the mapping function f based on the statistical methods, and
doing so using mathematical methods. No matter which scenario is employed,
the objective is to provide powerful tools for dimension reduction. The tools in
many cases are however, employed by an iterative procedure. Although there
are different pursuing method for this purpose, we introduce a well-know and
efficient algorithm, named “hill-climbing”, for finding an optimal set of the
features with the reduced dimension.

3.1.1 Feature Selection

With these methods, dimensionality is reduced based on selecting the most
effective features, providing optimal discrimination power. The way of formu-
lating the discrimination power depends on the underlying method. Here, sta-
tistical parameters of the features are estimated using the training data, and
the features are selected based the estimated parameters. The two most-used
methods are described in the following sections; however, different heuristic
methods have been reported in the recent publications, that might be suitable
for certain applications. Applicability of these heuristic methods depends on
the case study. The following methods, as described by linear discrimination
analysis and the Fisher method, are featured by the objectivity in their theo-
retical foundations that made them widely accepted. Before describing these
methods, the hill-climbing algorithm is introduced, by which the two meth-
ods can be invoked for ranking and thereby reducing dimension of the feature
vectors. Nevertheless, other algorithms such as genetic algorithm can be em-
ployed instead of hill-climbing algorithm, where advantages and disadvantages
are points of discussions. In fact, selecting an appropriate scenario to achieve
the optimal discrimination power depends on the size of the training data as
well as dimension of the feature vectors.

3.1.1.1 Hill-Climbing Algorithm

This is a well-known iterative algorithm. The number of iteration equals to
the number of the ultimate features desired during the feature reduction.
The algorithm works based on optimization of a discriminating function used
as the cost function [122][40]. At each iteration, the discriminating function
is calculated, and the feature set resulting in the optimal discrimination is
selected. Each input feature vector, Xi = [x T

i,1, ..., xi,n] (i = 1, ..., NL), to the
algorithm has an initial dimension of n, and the objective is to find the indices
I = [I T

1, ..., Ik] (k < n), whose feature set provides the optimal discrimination
power. It is assumed that the discrimination power is quantified by IDP .
Algorithm 1 illustrates a procedure to this end:

40 Deep Learning in Time Series Analysis

Algorithm 1 Hill-Climbing algorithm for finding indices of the features with
optimal discrimination power

1: procedure HillClimb(⟨Xi⟩, k, IDP (⟨.⟩))
2: I1 ← argmaxm IDP (⟨Xi,m⟩) ▷ m = 1, ..., n

3: For j=2:k

4: Ij ← argmaxm IDP (⟨[Xi,I1 , ..., Xi,Ij−1
, Xi,m]⟩) ▷ m = 1, ..., n

5: end for

6: return [I1, ..., Ik]

7: end procedure

The algorithm receives a feature matrix, the number of the desired dimen-
sions, and the discrimination function as its input argument. It starts with one
feature, makes an attempt to pursue for all the single features of the training
data, to find the one which results in an optimal discrimination power as for-
mulated by IDP . The index of this feature is stored in Ii. This index is then,
excluded from the rest of the indices and similar pursuit is repeated, but using
the previous features in the array. The discrimination function is calculated
for all the new features which are independently added to the previous fea-
tures, and the one with the optimal discrimination power is selected. Again,
this feature is excluded from the pursue dictionary, and similar procedure
is repeated with another feature added to the previous ones, and repeated
totally k times to extract k features of the M ones (k < M). In fact, the
algorithm starts from one feature and add features one by one recursively
and calculate the discrimination power at the end of each iteration, and the
feature set providing superior discrimination power is selected. Dimensions of
the feature vector is incremented by each iteration, and indices of the features
with optimal discrimination power is stored at the end of each iteration.

3.1.1.2 Linear Discriminant Analysis (LDA)

It should be mentioned from the beginning that an important presumption
to this method is that all the features at each class are normally distributed.
This presumption, although is not always met, but can be seen to some extent,
especially when the class size is sufficiently large (Nc > 100) [22]. In this sec-
tion, LDA is described for a problem of two classes, to simply put the reader’s
mind into the context, and will be generalized for multi-class problems. It is
assumed that the conditional probabilities for the two classes resembles nor-
mal distribution with the mean µi and the covariance matrix of Σi (i ∈ 1, 2).
Obviously, a set of the feature vectors that offers an optimal segregation be-
tween the two classes provides higher probability to be classified as class 1
when the feature vector is picked from the same class, and does so oppositely
for the other class.

p(Xi|Qi = 1) > p(Xi|Qi = 2) (3.1)

Pre-processing and Visualisation 41

where p is the probability function for a sample from the class 1, defined
by vector Xi, and Qi is the actual class of the sample. Assuming Gaussian
distribution of the feature vectors for the two classes, we have:

1
exp{(X −µ)TΣ−1 1

i Σ−1
1 1 (Xi−µ1)} > exp{(Xi−µ2)

T
2 (Xi−µ)

|Σ1| |Σ2|
2 } (3.2)

where |.| denotes operator of determinant for an input matrix. In principal,
without losing generality of the method, it is assumed that the probability of
an input vector Xi to be belonged to the class 1 is higher than the probability
of belonging to the class 2 with a certain threshold T . Applying logarith-
mic operations from both sides of the inequality, the following derivation is
obtained:

ln |Σ |+(X −µ)T 1
1 i 1 Σ−

1 (Xi−µ1)−ln |Σ T 1
2|−(Xi−µ2) Σ−

2 (Xi−µ2) > T (3.3)

Another theoretical assumption which is considered by LDA method, is
homoscedasticity of the data, meaning that the covariance matrix is identical
for the two classes:

Σ1 = Σ2 = Σ (3.4)

where Σ is the the covariance matrix of the whole population, resulted from
pooling the two classes together. Further simplification of Eq. 3.3 yields the
following derivations as the decision criteria for this method:

W.Xi > C
W = Σ−1(µ2 − µ1) (3.5)

µC 2
=W.

− µ1

2

The above decision criteria is employed to verify if an input vector Xi

belongs to the class 1. The main assumptions for LDA are:

• Multivariate normality: Independent variables are normal

• Homoscedasticity: Covariance matrix is similar for different classes and
the pooled class

• Multicollinearity: Predictive power can decrease with an increased corre-
lation between predictor variables

• Independence: The data is randomly sampled

This is the classical form of LDA and several variants which were later
introduced [145][8], however, all of these are nowadays used for either pre-
processing, or for learning at the deep level [56][50][140]. In the former case, one
can derive different strategies for the feature reduction process. One strategy
can be based on excluding one class as the monitoring class, versus others and
calculating the above threshold. Then, repeat the same procedure C times

42 Deep Learning in Time Series Analysis

(the total number of the classes) such that each class is used only once as the
monitoring class.

The threshold can be used as the discrimination power, and therefore, the
set of the feature vectors maximizing sum of the thresholds can be regarded
as the optimal feature vectors.

This method can be employed by a suitable searching algorithm, such
as hill-climbing algorithm, for finding an optimal set of the features with the
reduced dimension as you will see in upcoming sections. The reason of naming
this method as linear discriminant analysis, is that the method is based on
the statistical assumptions and leads to the discriminating boarders for the
classes are found by which a linear transformation in Eq. 3.5, which serves
as the discrimination functions. Sometime the function is found by a linear
superposition of several discriminating terms. LDA was initially proposed for
the classification problems, however, after development of powerful and robust
methods such as deep learning, it became discoloured for such questions and
mainly used for the dimension reduction.

3.1.1.3 Fisher Method

Fisher method is considered as a strong alternative to LDA, which disregards
the statistical presumptions introduced by LDA, hence the applicability of the
Fisher method is by far more acceptable. Nevertheless, some people categorize
the Fisher method as a method of LDA, even though attentions must be
paid in such a categorization. One of the point of difference is the statistical
presumptions on LDA, that is not necessitated for Fisher method. Moreover,
calculations for the Fisher method, although in some aspect is similar to, but
generally is different from LDA, and this difference attributes especial traits
to the method that will be addressed in this section. Looking back at the
LDA, one can easily see that in LDA, class segregation is the main focus
of the method, and threshold selection or in another term optimization, is
performed based on the class differences, or alternatively the between-class
variance. Here, one can think about this question, what could be the effect of
feature distribution on “within classes” and also on the between-class variance
[10][22]. To put this point into a better perspective, imagine a question of a
case with two classes, where the data distribution is plotted in Figure 3.2.

The graph shows a case where the “between-class variance” is considerably
higher than the case with lower between-class, but better situation in terms
of the within-class variance. Clearly, the second case with the better within-
class variance is preferred over the other case, as it can secure a superior
classification, even if the data size is augmented. This condition is not foreseen
in LDA with taking the within-class variance, or alternatively within-scatter,
into account only. Fisher method, in contrast, relies on optimizing both the
conditions, by introducing a criterion defined as the ratio of “between-scatter”
to “within-scatter”, as follows:

Pre-processing and Visualisation 43

FIGURE 3.2: Data Distribution for two cases of a two class condition: low within-
class and high between-class variances (Case 1), and high within-class and low
between-class variations (Case 2).

Between Scatter
F isher V alue =

Within Scatter
C

SB =
∑

p(ωi)(µi − µ) · (µi

i=1

− µ)T

C

SW =
∑

p(ωi)
i=1

· Σi

(3.6)
C T

=
|SB

∆
| i=1 p(ωi)(µi

=
− µ) · (µi − µ)

|SW |

∣∣∣∑ ∣∣∣
C
i=1 p(ωi) · Σi

∣ ∣
C

µi = E

∣
{x ω

∣∑
| i}, µ = E{x} =

∣∣
∑

p(ωi) µi

i=1

·

Σi = E{(x− µi) · (x− µ T
i) |ωi}

where p(ωi) is the probability density function of the random variable ωi. ∆
is called Fisher value which is in fact regarded as the discrimination function
for this method [50]. The Fisher value is simplified to the following derivation
for single valued numbers rather than the vectors:

(µ1 − µ2)
2

∆ = (3.7)
σ2
1 + σ2

2

where σ2 is the variance value of the feature. If the within-scatter approaches
a singularity condition (determinant of the within-scatter becomes zero), the
Fisher value tends to infinity, and hence the discrimination power comparison
cannot be performed in a realistic manner. This condition happens when the
feature vectors lose their independence in terms of the linear algebra. If at
least two dependent vectors exist in SW , the two columns corresponding to
the dependent vectors are aligned in the same orientation as they are linearly

44 Deep Learning in Time Series Analysis

dependent. In this case, the determinant of SW , becomes zero. This cannot
often happen unless feature repetition is avoided, since there is always a level
of noise, associated with the data, causing differences even for the dependent
vectors, and securing a non-singular matrix of the within-class variance.

Fisher method can be independently employed for individual features one
by one, to rank the features according to the Fisher value, and select the ones
with the highest ranks. A certain number of the features with minimal Fisher
value can be discarded. A high Fisher value corresponds to a well segregation,
or alternatively high discrimination power. Fisher method can be invoked by
the hill-climbing algorithm (described in the previous sequel), in order to keep
feature dependence regarded in the discrimination. In some of the applications,
a single feature is not as effective as when it is considered in conjunction with
other features. This justifies the importance of considering feature dependence
in the learning process, which lays well into the topic of multi-variate analysis.

3.1.2 Linear Transformation

In a group of the methods for feature reduction, a matrix of ℜk×n (k < n) is
found, which serves as the linear transformer to reduce dimension of an input
feature vector (n and k are the initial and ultimate dimension of the feature
vector, respectively). Principal component analysis and factor analysis are two
well-known methods to this end, broadly used in many applications, not lim-
ited, but well-beyond to feature reduction. Nowadays, principal component
analysis is becoming popular not only as an efficient mathematical tool for
feature reduction, but also as an important part of many classification meth-
ods and learning systems. It is therefore, essential to address these methods
especially for the beginners. One should keep in mind that both of the follow-
ing methods are categorised within the context of statistical methods, where
statistical distribution of features plays an important role in the implementa-
tion [7]. The main point of difference separating them from LDA lays in the
feature transformation for these two, in contrast with LDA in which a process
of feature selection is pursued.

3.1.2.1 Principal Component Analysis (PCA)

Let us assume that the training feature set is arranged in a matrixW of n×N ,
where n is the dimension of the feature vectors and N is size of the learning
data (for simplicity in writings, NL is replaced by N). PCA does not discard
any feature, instead, applies a linear transformation to the feature set, which is
interpreted as feature projection on k orthogonal vectors. The resulting vector
is obtained from the rotation of the feature vectors (k is the desired number
of the feature vector) in the vector space. In PCA, the rotation is guaranteed
to be done in a way to provide the maximum dispersion along each direction.
The orientations of the rotated vectors are mutually orthogonal to all other
vectors, and the projection of a feature vector on the unity vectors that shows

Pre-processing and Visualisation 45

the direction, is known as the principal component of the feature vector on
that direction. Figure 3.3 depicts a two dimensional case. The rotation to the
new directions is shown in the figure.

FIGURE 3.3: Principal component analysis rotates the data, or in another view
the axis, in a way to provide maximum dispersion along the rotated axis.

As can be seen in the figure, PCA is an effective method, when the data
dispersion is not at the same direction with respect the coordinates. PCA
implementation involves two steps:

1- finding the covariance matrix of the feature matrix W =
[X1, ..., X

n
N], Xk ∈ R , k = 1, ..., N

EW1,W1
, ...,EW1,WN

KW,W = ... (3.8)
EWN ,W1 , ...,EWN ,W

N

2- Then, the eigenvectors of

the covariance matrix,

KW,W , are calculated

and ordered according to the eigenvalues in the descending order. The first k
(k < n) eigenvectors are employed to find the principal components, defined
as the projection of the feature vectors on those eigenvectors.

It is important to note that normalizing dynamic range of the feature
vectors before performing the rotation, can substantially improve capability
of PCA in feature reduction. Algorithm 2 shows a pseudo algorithm for the

®PCA implementation, written in compliance with the MATLAB codes:
Algorithm 2 receives a matrix of feature vectorsW (W ∈ Rn×N), in which

each feature vector has a dimension of n, as well as the dimension of the
feature vectors k (k < n). The feature matrix is then linearly transformed, and
the transformed features with the reduced dimension is returned by the the
procedure in Z. Normalization is regarded as an important step of the process.
The richer dataset with a broad coverage of data is, the better performance
with reduced dimension it results.

46 Deep Learning in Time Series Analysis

Algorithm 2 Standard Principle Component Analysis

1: procedure PCA(W,k)

2: ∑N ∑N
i=1 W1,i i=1 Wn,i3: M ← [, ...,√ N N √∑N

i=1(W1,i−M1)24: S ← [, ...,
N−1

]T∑N
i=1

▷ Beginning of normalization

▷ Average Calculation

(Wn,i−M2
n]T ▷ Standard Deviation

N−1

5: For j=1:N

6: For i=1:n
(Wi,j−Mi)7: Y (i, j) = √

NSi

8: end for

9: end for ▷ End of normalization

10: K = Y ∗ Y T ▷ Covariance of the normalized features

11: [V, λ] = eig(K) ▷ Eigenvector V , and eigenvalue λ

12: For j=1:k

13: For i=1:n

√Vi,k14: R =
λk

▷ Transformation matrix

15: end for

16: end for

17: Z = RT ∗ Y ▷ Transformed features

18: return Z

19: end procedure

In some of the applications, it is required to perform a feature reduction
for the purpose of removing the background noise associated with the data.
In this case the number of the desired dimension k is not known, and should
be found automatically, where the process must be continued until to remove
a certain noise level. In such cases a certain threshold is empirically assigned,
and the eigenvectors with the eigenvalues of less than the assigned threshold
will be suppressed. Keeping the eigenvectors above the threshold can provide
a mean for finding an optimal value for k.

Even though, PCA is widely employed in different applications, it is not an
absolute drawback-free method. A criticism which is associated with PCA lays
in losing interpretablity of the resulting features with the reduced dimension.
In fact, interpretability of the features is lost after rotation where the trans-
formed feature vectors will have no physical meaning anymore, whereas other
methods of feature selection, in which the feature vectors with the reduced
dimension still have their initial meanings.

3.1.2.2 PCA-Fisher Method

It was shown in the previous section that the main art of PCA is in the
rotation of the coordination in the feature domain in a way to provide disper-
sion along the access. The eigenvector corresponded to the highest eigenvalue
points to the direction of the coordination with the highest dispersion. In
most of the cases, after the first few eigenvalues, this value is substantially
dropped, implying on the fact that the contents of the features do not convey

Pre-processing and Visualisation 47

much information, or typically contain noise. As a consequence, PCA has the
capability to be used in an unsupervised manner for feature reduction. To this
end, the trend of the decreasing eigenvalues is investigated and the one cor-
responding to a significant decline in eigen value would be considered as the
reduced size of the feature vectors. Similar trend can be considered, when the
Fisher method is employed for feature selection. The main difference, between
the PCA and Fisher method resides at this point that PCA transforms an in-
put feature vector to another one with lower dimensions and different feature
values, however, in Fisher method, only dimension is reduced and the feature
values remained unchanged. An important question raised here at this point
is: which method is preferred as the most efficient one, if we are obliged to pre-
serve optimal data dispersion? To answer this question, you need to consider
that Fisher value and PCA value, are used as the indicative numbers showing
discrimination and dispersion, respectively. Figure 3.4 depicts different cases
in terms of the accordance between discrimination and dispersion.

FIGURE 3.4: Comparison of principal component analysis to the Fisher discrim-
inant analysis for a classification problem. In Case A, both the methods can result
in a good discrimination power. In Case B, Fisher method can provide a better
discrimination. Oppositely, in Case C, principal component analysis can result in a
better discrimination power. In Case D, both the methods are impotent to provide
a good discrimination.

Figure 3.4A illustrates a case of two classes of 2-dimensional feature vec-
tors. In this case, dispersion and discrimination lay along the same direction.

48 Deep Learning in Time Series Analysis

With this distribution of data, a large dispersion along the rotated x axis is
observed, which is in correlation with the discrimination, and hence both the
PCA and the Fisher method, equivalently imply that the feature in the rotated
y axis gives the highest discrimination power. Figure 3.4B, shows a case in
which dispersion is not in accordance with the discrimination. It is clearly seen
that discrimination is better provided by the Fisher value, while PCA cannot
deliver an efficient reduction. This is in contradiction with Figure 3.4C where
PCA can serve as a more powerful method than Fisher in feature reduction,
and lastly Figure 3.4D demonstrates a case in which both the methods can-
not deliver inappropriate performance. In such the case, a combination of the
two method is recommended. Here, the PCA method followed by the Fisher
method will substantially improve the performance, since a rotation results
in an improved dispersion, and the Fisher methods guarantees a high value
of the discrimination power. One way to this end is the use of PCA method
for finding the transformed feature matrix, alternatively saying the rotated
feature matrix, followed by the Fisher method for selecting those ones.

Algorithm 3 Combined PCA and Fisher method through the Hill-Climbing
algorithm

1: procedure PCA-Fisher(⟨Xi⟩, k)
2: W ← [X1, ..., XN] ▷ Feature matrix W ∈ Rn×N

3: Z ← PCA(W,n) ▷ PCA transformed matrix

4: I ← HILLCLIMB(Z, k,∆) ▷ ∆ is the Fisher discrimination function defined in

(3.6)

5: For j=1:k

6: For i=1:N

7: Zj,i = ZIj ,i ▷ Transformation matrix

8: end for

9: end for

10: return Z
11: end procedure

This combination improves cases with heterogeneous dispersion [10]. It
is worth noting that PCA method or any kind of the related methods can
offer a more suitable performance only when contents of the information is
far higher than the noise at the feature level. This should be also taken into
consideration for the time series analysis. Obviously, absence of this condition
may mislead the feature reduction process by performing an improper
rotation towards dispersion of the noise contents.

Pre-processing and Visualisation 49

3.2 Supervised Mapping

A single multidimensional data sometimes carries unnecessary information,
which can mislead any classification task. Noise is a common source of such re-
dundancy, and always superimposes on the data, and occasionally overwhelms
the information, such that the feature contents are heavily contaminated and
it is not easy to extract the pure information from the features. In most of
the classification questions, there is often an intention to decrease redundancy
in multidimensional data by pruning additional contents. Apart from the sta-
tistical methods, described in the previous section, one way is to map the
multidimensional data (usually high dimensional), to the categorical forms,
or to the numerical symbols, in a pre-processing phase. The process is some-
times called “pattern detection”, which is often followed by another phase
named “pattern recognition”, in a multi-step learning process. Certainly, this
structure is not followed in all the learning scenarios, but privileged especially
in hybrid learning methods [11][151][31]. In this continuation, basics of neu-
ral networks, as the well-known methods, widely accepted by the artificial
intelligence community, will be described in detail.

The idea of the neural network has been inspired by activities in human
brain cells, and has tried to imitate the learning process happens in the hu-
man’s brain [137][81]. It is obvious that complexities in the human brain at-
tributes a high level of approximation with such imitations, however, even
simplified implementations have been responding to many of the practical
questions. Single layer perceptron, as the building block of any neural net-
work architecture, as well as multi-layer perceptron are introduced in this
section as the efficient methods for supervised learning. Before diving into the
theory of neural network, a well-known supervised method, named K-Nearest
Neighbours (KNN), is briefly described. Although popularity as well as versa-
tility of KNN couldn’t reach neural networks, it is worth to mention KNN as
it is widely employed by AI community as a part of the classification system
and even in a number of the hybrid structure [133]. Regardless of the classifi-
cation method, we make the following assumptions, which will be commonly
used for all the supervised methods.

There is a training dataset, V , with the priory known classes and the
following parameters:

V = {(Xi, Qi) : Xi ∈ Rn, Qi ∈ {1, ..., C}, i = 1, ..., N} (3.9)

• N : Size of the training data

• C: Number of the classes

• Xi: Input vector

• n: Dimension of the feature vector

• Qi: Actual class of an input

50 Deep Learning in Time Series Analysis

3.2.1 K-Nearest Neighbours (KNN)

KNN is a supervised classification method. The K nearest neighbours of a
testing sample, Y , (Y ∈ Rn) are found using Euclidean distance:

Di = (Y −Xi)
T ∗ (Y −Xi) (3.10)

Then, the class which receives majority of the votes in the vicinity of K
samples around the testing sample, will be assigned as the sample class.
Algorithm 4 describes the KNN method:

Algorithm 4 Classification of a testing sample, Y , based on KNN method

1: procedure KNN({V }, Y,K)

2: Calculate {Di(Y, {Xi})} ▷ Using Eq. (3.10)

3: S = Sort({Di}, Descending)

4: ▷ Sort the distances in the descending order

5: ST = {Si : i = 1, ...,K}
6: I ← arg{ST }
7: q ← argmaxi{Qi(I)} ▷ q is the classification result for the sample Y

8: return q

9: end procedure

3.2.2 Perceptron Neural Network

Perceptron neural network is a basic building block for linear classification
which has been inspired by the action of neural cells of human brain, with
similar hypothetical function. Although neural function of a human brain has
not been profoundly understood yet, but several studies attempted to model
parts of the neural functionality such as learning process [137][153]. The extent
to which the models exceed depends on the underlying function in conjunc-
tion with the corresponding information extracted from the neurological be-
haviours. Based on these findings, a simplified model of neurological activities,
in sense of learning process, has been proposed, that received much interests
from the researchers such that many people recognised it as an initiation of
artificial intelligence [97]. A single neuron of human brain, as a basic building
element of the neural system, is composed of a nucleus, dendrites, axon and
synapses. Figure 3.5 demonstrates this model.

An introductory description to neural activities is worth mentioning at this
point. In this model, the inputs from other surrounding neurons are received
by the dendrites, and sent to the nucleus of the neuron, which acts as a
corpus. Depending on the inputs as well as the ionic condition of the nucleus,
an output is created by the nucleus, and delivered to the axon connected to
it. The axon transfers the message received from the nucleus and passes it to
several synapses to perform a neural action. This neurological model, which
is fully justified by the physiological bases, is mathematically modelled by a
number of the elements like corpus, inputs, outputs and weights, simulates

Pre-processing and Visualisation 51

FIGURE 3.5: Neural simulation model used as the building block of neural net-
works.

the action of nucleus, dendrites, axon and synapses, respectively. This model
is named a perceptron, introduced in 1940th by McCulloch and Pitts, which
is demonstrated in Figure 3.6.

FIGURE 3.6: A single neuron perceptron model for simulating neural function.

In this mode, a neuron receives a superposition of its inputs (sum of the
weighted inputs) in conjunction with a bias value that resembles the neural
activity. If the sum of the weighted inputs exceeds a certain threshold (neuron
bias), the output of that neuron becomes activated. The output y of a neuron,
for an input vector X = [x1, ..., x

T
m] , in the perceptron model is calculated

as follows:
y(Xi) = g(WTXi − θ) (3.11)

52 Deep Learning in Time Series Analysis

In this model, g is the ACTIVATION FUNCTION, W is the weighting
vector, and θ is the bias value. The activation function in the linear model is
the Sign function:

1 if x > 0
g(x) = Sign(x) =

{
(3.12)

0 otherwise

The neuron’s output y(X) for an input X becomes 1, or alternatively say-
ing “is activated”, when the weighted superposition of the inputsWTX, added
by the bias value θ, becomes positive (> 0), otherwise the neuron remains
inactive. This is in analogy to the humans’ neural cells; the neuron Axon be-
comes activated (an action potential is created) when the superposition of the
connected dendrites exceeds a certain threshold of the ionic quiescence. This
model in its nature, performs a binary classification of two states: activated
inactive. In a binary case, if the model parameters,W and θ, are appropriately
selected, the neuron’s output y gives identical state for majority of the vectors
from the same class.

For multi-class problems, one neuron is independently assigned to each
class, whose output must become 1 only for that specific class, and zero for
the rest of the classes, as depicted in Figure 3.7.

FIGURE 3.7: Multi-class representation of perceptron model, named perceptron
neural network.

In this case, the weighting parameter is constituted of a set of the weighting
vectors, each assigned for a neuron, and altogether constituting the weighting
matrix:

W = [W1, ...,WC]
T (3.13)

Assigning a separate bias θj to each neuron, the outputs becomes:

yi,j = g(WT
j Xi − θj)

(3.14)
j = 1, ..., C

Pre-processing and Visualisation 53

The values of {yi,j} is the model output, resulted from the perceptron model,
or in other words, the classes obtained by the model. The actual class, {Qi,j}
(∀i, j Qi,j ∈ {0, 1}) for each data is composed of a vector of the length C,
in which, only and only, one element which corresponds to the related class
equals to 1, and the rest of the elements are zero:

∀j ∃! qi,j : qi,j = 1

C

∀i :
∑ (3.15)

qi,j = 1
j=1

If a reckoning perceptron neural network is perfectly trained (which is an
absolute definition), the same rule implies on the output all the neurons of the
neural network. However, in the practical cases, this ideal situation scarcely
happens with large data size, and some output neurons other than the actual
class of the output vector become 1.

∃i :
∑C

yi,j = 1 (3.16)
j=1

Training of a perceptron model, leads to the optimal values for W and θ,
to provide an optimal classification performance. It is performed in a super-
vised manner. Likewise in all training methods, a criterion must be defined
to quantify the classification performance. In the perceptron model, the least
square error, I, calculated based on the subtraction of the predicted class and
the actual class for each input, is invoked as the criterion for the training.
In order to preserve both the negative and positive errors, sum of the least
square error is employed as the criterion for the training:

N

I =
∑∑C (N C

2 2
yi,j(Xi)− qi,j

)
= W

i j=1

∑
i=1

∑
j=1

(
T
j (Xi)

=1

− θj − qi,j

i = 1, ..., N

)
(3.17)

The bias values can be easily incorporated into the weighting matrix. Although
an optimal result can be found by taking the derivation from (3.17), iterative
procedures are always preferred in order not to encounter with singularity.
This will yield an updating procedure for the W which incorporates θ as well:

∂I
= 0

∂Wj (3.18)

Wj = (X ∗XT)−1µQ

where Q and µ (0 < µ < 1) is the actual class and the learning rate, re-
spectively. However, taking the inverse of matrix might lead to singularity. In

̸

54 Deep Learning in Time Series Analysis

practice the learning parameters are iterative found. The values are randomly
initialized first and then updated through the following recursive formulation:

W t+1
j =W t

j + µ(qi,j − yti,j) (3.19)

where t denotes the iteration number, so called epoch. The bias θ is also treated
as a weight inW with the consistent input of 1. The The training is ultimately
stopped at reaching certain criterion, typically reaching a certain number of
epochs, or a certain low level of the error defined by Eq. (3.17), or even a
combination of the both. Perceptron model provides a linear classification,
which can be insufficient for many practical cases, that are typically more
complicated.

Perceptron neural network offers “DISCRIMINANT LEARNING” which
is regarded as a positive aspect of this method. The term “discriminant learn-
ing” is used for those methods in which learning one class of the data during
the training phase, does not affect learning the parameter of the other classes.
In the perceptron model for example, the learning weight vectorsWj are inde-
pendent for each class, without having any shared weight. As a result, training
neuron j, assigned to a certain class, cannot put any influence on the learning
weights of the other neurons.

3.2.3 Multi-layer Perceptron Neural Networks (MLP)

An arrangement of the perceptron neural network, in several sets of the neu-
rons, whose outputs constitute the inputs of other neurons, is defined as Multi-
Layer Perceptron neural network (MLP). MLP performs a nonlinear mapping
from Rn to {0, 1}C , therefore offers a fine border between the classes with
the capability of learning complex patterns comparing to the linear ones, i.e.,
Perceptron model. Figure 3.8 illustrates MLP architecture.

FIGURE 3.8: Multi-class representation of perceptron model, named perceptron
neural network.

Pre-processing and Visualisation 55

The input of a MLP is named, the input node, the middle layer(s) is(are)
named the hidden layer, and the set of the neurons whose outputs perform
the classification, is named the output layer. The number of the neurons in
the output layer depends on the number of the classes in the training data.
Output of MLP is derived by the following formula:

ϕj(Xi) = g2(W
T
2,j .g1(W

T
1,kXi − θk)− θj) (3.20)

Unlike a single layer perceptron where the classification method was linear,
the neurons’ activation function of MLP is a nonlinear function, e.g., Sigmoid,
which will be described in the followings. Neurons’ activation function of a
MLP must follow certain conditions in order to guarantee the learning process,
termed by convergence.

Activation function of the neurons in the MLP structure must be continu-
ous, derivable, and limited between −1 and 1. Logistic Sigmoid, is one of the
most common activation functions, which is formulated in (3.21) and depicted
in Figure 3.9.

1
g(u) = (3.21)

1 + exp(−βu)

FIGURE 3.9: Graph of sigmoiid function for different values of β, which is used
as the activation function for the perceptron models.

The parameter β affects the sharpness of the neurons’ activation, as seen
in the figure, but has not very much influence on the training process such
that the training remains approximately unchanged for a broad range of β.

Training of a MLP is based on calculating least square error as the learn-
ing rule (see Eq. 3.17). The training is performed in a supervised manner,
through a specific and well-known method, named BACK-PROPAGATION

1

0.8

0.6

0.4

0.2

0

b = 5.0

b = 1.0

b = 0.5

--5 0 5

56 Deep Learning in Time Series Analysis

ERROR method. As with the single layer network, the training method is
an iterative process for MLP, where the least squat error calculated from the
distance between the actual class and the ones obtained by the method, that
is attempted to be minimized at each iteration.

N

I =
∑
i=1

∑C N

(ϕ WT
i,j(Xi)− qi,j)

2 =
∑∑C (2

j (Xi) i,j

=1 i=1 j=1

− θj − q
j

i = 1, ..., N

)
(3.22)

The classification is discriminant, and as with the multi-class perceptron,
“1” is set for the output neurons when the input comes from the learning
class, and “0” for the rest of the neurons. The weights are updated in a way
to minimise gradient of the error on both the output, and the hidden layers.
Considering the logistic Sigmoid activation function, derivation of the logistic
Sigmoid function becomes:

1
g(uj,k) = = y

1 + exp(− j,k
uj,k)

(3.23)
∂g(uj,k) exp(

=
−uj,k)

= y
∂uj,k 1 + exp(− j,k(1 yj,k)

uj,k)
−

The error gradient propagates from the output layer towards the input
layer and the error at each layer can be easily calculated using Eq. (3.23).
Figure 3.10 illustrates the error propagation:

FIGURE 3.10: Propagation of the error from the output layer to the input layer
of a multi-layer perceptron neural network.

The training process is based on initialization of the neurons with random
values, and updating their weights by the following formula:

W t+1
i,j,k =W t ∂

i,j,k + α
I

(3.24)
∂Wi,j,k

Pre-processing and Visualisation 57

Nowadays, powerful toolboxes in some research programming languages
such as MATLAB and Python offer easy implementation, without the need to
deeply digging into the learning principals. To a lesser extent, for those who
are interested in understanding the calculation contents, details of finding the
learning parameters through an iterative algorithm can be found in many
older texts [4][81].

It is obvious if the number of the neurons and the layers tend to be high,
the training process will need more time to appear its effect on the output,
tending to make the process slower. It is certain that there is no closed formula
for finding the number of the hidden layers and also the number of the neurons
at each layer. Although there is no explicit rule to offer an appropriate archi-
tecture, it has been experimentally shown that exceeding a certain number of
the neurons cannot improve the classification performance, and may increase
the structural risk without gaining any advantages.

From Eq. (3.24) one can easily see that the sample number i comes to the
training phase. This point opens the discussion on how to update the learning
weights, for example, shall we calculate the error for one single sample and then
update the learning parameters after calculating the error for each sample, or
to calculate the error for all the samples of the training dataset, then update
the learning wights? This leads to different schemes of the training method.
Updating the weights are basically performed in either of the two fashions:
batch training or online training. In the batch training the weights are updated
after presentation of the whole training dataset, where cumulative gradient is
employed (see Eq. 3.25), while in the online training the update is performed
after presentation of each single data (Eq. 3.26)

∑N
t ∂

∆Wi,j,k = −α I
(3.25)

∂Wi,j,ki=1

∆W t ∂
i,j,k = −α I

(3.26)
∂Wi,j,k

The coefficient α (0 < α < 1) in the above equations is known as the
learning rate, which gives a control on the learning speed. Choosing a high α
near 1 makes the training process quicker, but coarser, implying on the poor
classification performance. In contrary, a low α, is an indication of a slow
training, but fine decision boarders between the classes. A complete process
of presentation of the training data followed by updating the learning weight, is
called one training “epoch”. An epoch demands longer time for batch training,
compared to on-line training, with similar training data. An iterative process
of training is often stopped at certain criterion, typically reaching a certain
number of epochs, or a certain low threshold of the classification error defined
in Eq. (3.22), or a combination of the both. In general, the batch training is a
rather quick learner comparing to the online training, even though it requires
longer epochs. The reason is the quicker convergence in the batch training
in which the error drops much quicker than the online training. However,

58 Deep Learning in Time Series Analysis

the online training offers a lower risk to be trapped in the local minimum,
a condition in which the error cannot decrease with more training epoch,
while potentially the neural network has the capability of lower classification
error. In such the cases, the training is usually stopped and restarted from
the beginning to run around the local minimum. In any of the cases, in order
to maintain the training process with lower number of the required epochs,
another term, named as “momentum term” is added to the weights. The
momentum term is defined as follows:

∆W t ∂ t 1
i,j,k = α

I− + β∆W −
∂W i,j,k (3.27)

i,j,k

This would reduce sensitivity to learning with the noise, in gradient esti-
mation. However, implementation of the momentum requires skill in finding
proper values for α and β, since very low values makes a negligible effect as
the gradient, and on the other hand very large values create error oscillation.
A solution for assigning a proper value for the learning rate is the use of the
adaptive learning rate, which changes with the training epoch. Vogl learning
algorithm is a well-known solution, in which the learning formula is given by:

∆Wi,j,k = −αt ∂I
(3.28)

∂Wi,j,k

and the value of the alpha varies in time according to the following rule:

If It < It−1 : αt+1 = αt(1 + ϵa)

If It−1 ≤ It < (1 + ρ)It−1 : αt+1 = αt

If It−1.(1 + ρ) ≤ It : αt+1 = α(1− ϵd)

This algorithm is by far less sensitive against the parameters: ρ, ϵa, and
ϵd, which are all real numbers between 0 and 1.

Back to the batch and online training, in many training procedures, a com-
bination of batch and online training is preferred, as in a well-known method
named, “diagonal Levenberg-Marquadt” algorithm, part of the training data
is employed to calculate elements of a matrix, named Hessian as follows:

∆W t α ∂
i,j,k =

I− (3.29)
†+HxxWi, j, k ∂Wi,j,k

The Hessian matrix is utilized for the updating the weight in on-line man-
ner:

1 ∂{Hxx(Wi,j,k)
I} = { C

L
k

∑
∂Wi,j,k

=1

} (3.30)

Pre-processing and Visualisation 59

Therefore, both batch and on-line fashions are employed for this method.
Diagonal Levenberg-Marquadt, is a very quick learner method, with relatively
low number of epochs, needed for a certain value of the training error, as
comparing to other alternatives. However, a larger training memory is required
for the arithmetic manipulations. The readers are encouraged to read relevant
textbooks for more details of this method, which is beyond the scope of this
book.

MLP has been broadly employed, either by itself, or as a pre-processing
method in hybrid classification for detection or recognition of patterns in a
stream of time series. Simplicity in training, in conjunction with the avail-
ability of this technology, which was in turn caused by its intrinsic versatility,
made MLP, a popular solution in different applications. Earlier researchers
in 1980th, were sometimes considering MLP as a black box alternative to
the statistical classification methods like KNN, and MLP was regarded as a
blind learning method instead. The connection between statistical methods
and MLP was later understood, and the unwritten confrontation, or at least
reluctance, from the earlier researchers was removed when potentials of MLP
were further explored [115][15]. In particular, it has received especial atten-
tion from the researchers after which its link to the statistical classification
methods has been understood [115][15][14].

3.3 Unsupervised Mapping

In most of the advanced learning systems, there are many practical situations
where we do not, or essentially sometimes cannot, have access to the label of
the training data. In other cases, it sometimes happens that the access is not
provided in the middle level of the process, even though the endpoint labels
are accessible. This necessitates invoking suitable unsupervised methods for
a level of pre-processing to reduce dimension of the feature vectors, either to
avoid high structural risk possibly associated with the redundant features, or
to prune extra features that might be created by contaminating noise. The
training phase of unsupervised methods is mostly recursive, starting with a
random initialization, and terminating with a stable situation of categorising
the training data. This categorization of a dataset in an unsupervised way, is
known as “clustering”, in contrast with classification which implies on a su-
pervised learning. The following subsections describe a number of the efficient
and common methods, invoked for the purpose of clustering.

3.3.1 K-Means Clustering

Clustering by definition is known as an unsupervised assignment of a label to
a dataset. The assignment is usually applied based on the similarities among
the dataset, such that similar data receive identical cluster label. This is an

60 Deep Learning in Time Series Analysis

explicit case of learning. In clustering, numerical symbols are often used for
labelling the clusters.

K-Means method performs a mapping ofM dimensional feature vectors of
real numbers, {Xi : X

M
i ∈ R }, to one dimensional vectors of integer numbers,

{qi : ∀i, qi ∈ {1, ...,K}, K < M, i = 1, ..., N} (N is the training data size).
Thus the number of the clusters, K, is known prior to the learning process.
This number is sometimes, known as the “quantization level” and treated as
hyperparameter. Remembering from the Fisher method, where distribution
of the data was taken into account in sense of the both within and between
classes, K-Means fundamentally does not assign any weight to the distribution,
and merely deals with the discrimination. Nevertheless, in a case of a single
feature with Gaussian distribution, K-means can eventually end-up with the
clustering result similar to Fisher or LDA method.

K-Means clustering method is based on recursive procedures begins with
an initialization and ends-up with a stable quantified label for each input data.
Stability in this definition means that further iteration does not noticeably
change the labels. This procedure is:

• Centroid Initialization: Initial K feature vectors at RM by random

• Classification: Classify the data to K classes according to their Euclidean
distances to the centroids

• Update: Update the centroids by the average value of the data at each
class

• Termination: Continue until reaching stable values for the centroids

K-Means in its original form does not consider any assumption for initial-
ising the recursive procedure. It assigns K data, out of the N training data
(K < N), as the available samples, for calculating the initial values of the
centres of gravity by random. These centres of gravity are named as “cen-
troid”. Each member of the training data is assigned to the nearest centroid
based on calculation of the minimum of Euclidean distance. After assigning a
class to all the data members, the centroids are updated by the average value
of the feature vectors at the same cluster. This is the end of the one whole
recursion. The same procedure is repeated several times until reaching stable
centroids.

K-Means provides a very simple and relatively efficient clustering method.
Although intra-cluster variance is deemed to be minimized during the learning
process, the global variance is not guaranteed to be minimised by this method.
Another drawback of this method is that the centroids which are close to each
other, do not necessarily correspond to similar values in the feature space. It
is important to note that many literatures associate another drawback with
K-Means clustering method, which is random cluster assignment to the data
caused by random initialization of the centroids. This may not be a real draw-
back. A simple solution is to introduce a certain rule for initialisation of the

Pre-processing and Visualisation 61

centroids. One can suggest assignment of the centroids according to the norm
of the feature vectors. In this method, norm of the data is calculated for all
the samples and uniformly assigned to the centroids according to their val-
ues. In this rule, the largest and the smallest norm of the feature vectors are
assigned as the highest and the lowest borders. Then, the rest of the data is
sorted according to their norms. The values between the norms are uniformly
divided into K values, and regarded as the reckoning norms of centroids. The
feature vectors with the nearest norms to the reckoning norms are selected
as the initial centroids. It is evident that such the initialisation prevents
random settings of the centroids, and therefore guarantees reaching stable
clustering.

3.3.2 Self-Organizing Map (SOM)

Classification, in its functional mapping view, can be interpreted as a way of
quantification or dimensional reduction, even though this aspect is not always
considered by the existing definitions, and especially by the contextual tax-
onomy. If dimension reduction is decreased down to 2 or 3 dimensions, the
processed high dimensional data can be visualized in a surface or space. That’s
why dimension reduction can be used as a way of visualization. A good visu-
alization method should provide interpretative, understandable and rational
distribution of data in a 2, or 3, dimensional space. In practice, a training
dataset is always contaminated by different sources of the noise, causing hard
segregation, questionable. The borderline data, caused by noise or any other
source of irregularity, are typically expected when it comes to a practical
visualisation. Many classification methods, such as MLP, employ nonlinear
mapping that set a well segregation to the data, such that the borderline data
is assigned either correctly, or incorrectly in one of the classification groups.
This associates an uncertainty to the methods. This feature of the classifica-
tion methods make them inefficient for the visualisation.

Self-Organizing Map (SOM), is an efficient unsupervised classification
method, that is very suitable for visualisation of multidimensional data. It
involves two phases of processing: training and mapping, which is the main
turning point comparing to clustering methods. In fact, in all the clustering
methods, an input dataset is clustered into a certain number of the clusters.
In SOM, however, a dataset is firstly employed for training in an unsuper-
vised way, where each area is expected to respond to specific patterns. In the
clustering methods the bordered are often hard, while in SOM there is no
specific border, and the areas are approximately mapped. Another important
differentiation point is that clustering methods are not often meant to involve
a test phase.

Self-organizing map was firstly introduced by Teuvo Kohonen in the 1980s
decade, as an efficient method for the clustering [83]. It is now mostly used for
both classification and visualization. An appropriate 2D or 3D colour-coded
graph, is commonly used for the visualization, which is called self-organizing

62 Deep Learning in Time Series Analysis

map. The learning method is regarded as an artificial neural network, differing
from Multi-Layer Perceptron (MLP) in the learning process. The learning
process in self-organizing map is based on the competitive learning, that is
against MLP, in which error is attempted to be minimized.

In this method, a certain number of the neurons, N , (N is a hyper pa-
rameter), are evenly arranged in a 2D or 3D setting according to the first 2
or three principal components, respectively. It is worth noting that the origi-
nal learning method relied on assigning a set of the small learning weights to
the neurons in a random way. Nevertheless, with the former alternative, the
learning is by far faster, as the weights already receive a good initiation. For
all of the training data, fed to the network, Euclidean distance of the sample
and all the neurons weights are calculated. The neuron with the lowest dis-
tance of its learning weights to the sample, is considered as the most similar
neuron to the sample, and named Best Matching Unit (BMU). The weights of
the neurons, laying within a vicinity to the BMU, receive updates during the
training, causing them to be pulled towards the training sample. The weight
update for the neuron v is calculated as follows:

Wv(s+ 1) =Wv(s) + θ(u, v, s)α(s)(D(n)−Wv(s)) (3.31)

where s and t is the step index and the training data index, respectively.
α is a monotonically decreasing function, employed to assure convergence of
the learning weights. θ is the neighborhood function, between neuron v and
neuron u in the vicinity of the BMU. Although in many applications a unity
function can be used for θ, a Gaussian function is recommended in the ma-
jority of the applications. Depending on the implementation, s can imply on
the recursion steps after including all the training samples indexed by n. It
is important to note that the output of SOM is not a classification, as per-
formed by the methods like MLP. Instead, SOM gives a mapping result, rather
than the classes, which can be regarded as a golden feature for the visualiza-
tion, or for the cases when the between-class borders are not sharp boarders.
It is evidently preferred to use mapping rather than classification in such
the cases.

3.3.3 Hierarchical Clustering

This method is indeed a derivation of K-Means clustering method. In this
method, the learning process is started with a single centroid, calculated as the
overall gravity centre. Then, a small random vector, “noise”, is added to the
centroid to create another centroid. The K-Means clustering is then, applied
to the data with the new centroids, and the same procedure is repeated several
times until a certain number of the clusters is reached. Although this is based
on adding a noise to the overall centroid, therefore it so inherently encompasses
a level of the uncertainty in the clustering, but is more stable than the K-
Means, especially when the K-Means come with the random initialization.

Part II

Essentials of
Time Series Analysis

https://taylorandfrancis.com

4

Basics of Time Series

The term time series, is defined by “a sequence of data in a known time
order”, and comprises a number of the notions and considerations, entailing
further explanations. This chapter is dedicated to bring up the definitions
and presumptions which need to be considered, when time series analysis is
an objective. Sections of the chapter are arranged in an order from the basic
introductory, up to the advanced definitions to addressing rather sophisticated
topics such as sector processing, which have been recently introduced to this
context. The first two sections, addressed in the introduction, try to bring the
reader into the context for further elucidation as these notions will provide a
base for the theoretical foundations of the upcoming chapters.

4.1 Introduction to Time Series Analysis

In the previous chapters, it was mentioned that image is not included as part
of data that will be addressed throughout this book [105]. Regardless of the
controversies which occur upon this subject, we assume that images cannot
be considered as signals, and therefore an exclusion of image does not offend
generality of the methods. A time series can be constituted of a set of the
multi-dimensional feature vectors ordered according to the time occurrence of
the vectors. Recall from Chapter 1, where signals and time series were linked
to the phenomena creating them, such that variations of the phenomena can
be explored by studying the resulting time series. It is in fact, the main goal
of a great majority of the theoretical and practical attempts on time series
analysis, is focused on extracting those informative contents of the time se-
ries, which are related to the phenomenon projected by the time series, either
through identification, or by classification which is in turn considered an es-
pecial case of system identification [3][42][41]. An important topic of study,
which extensively received interest from the scientists and engineers, is “sys-
tem identification”, which is entirely based on time series analysis. Time series
analysis in this topic, and in most of the cases, refers to building a parametric
model of the underlying system creating the time series, and the objective is
concentrated on the methods for finding the model parameters [73][119][21]
[142]. The identified model of the system is employed for different applications.
Estimating future contents of the time series is itself a prediction problem, or

66 Deep Learning in Time Series Analysis

classification of the time series by using the model parameters, are two typical
examples of such applications. Machine learning on the other hand, put the
functional analysis of the systems into the learning objective, and hence deals
with learning the system function instead of the parameters, by extracting
information from the time series. This is indeed a case of system identifica-
tion, implicitly performed in a non-parametric fashion. Hyperparameters of a
machine learning method in the learning process, can be indirectly concurrent
by the system parameters, even though these parameters profile the system
function, where the system implies the underlying phenomenon creating the
time series. In any case, the processing method attempts to learn dynamic
contents of time series, or in another word, to extract parameters either from
the system based on a reckoning model, or from the system function based on
its behaviour at the output.

In a holistic view, there are three different ways to model dynamic contents
of time series: deterministic, chaotic and stochastic model. These models will
be addressed in the next section. Nevertheless, at this point, the essentials of
how to formulate a model for time series analysis will be covered. For simplicity
in model description, the time series is presumed to be single dimensional
throughout this chapter. Generality of the upcoming formulation will not be
lost by this presumption, as any multidimensional time series of dimension
M can be decomposed to M single dimensional time series by considering
each elements of the time series independently. Assuming that time series
Xi[t], (t = −T, ..., 0, 1, ..., T), is a single dimensional sample from the training
dataset of N samples (i = 1,, N) (N is named the sample size), a system
identification method corresponds to the methods for finding a mathematical
model which is capable to describe current and the past values of the system,
in addition to predict future values of the time series (value of the time series at
t = T +1). Contents of the time series in the present and past time are always
invoked to predict future of the time series (time series values at t = T+1, ...).

ŷi[t] = f(xi[t− 1], ..., xi[t− T]) (4.1)

It is obvious that dynamic contents of time series must be taken into
account, to find the model parameters. It is often the case that the time series
is sliced into the temporal windows of L samples, and the model parameters
are found by utilising contents of each window, sliding over the time series
with an overlap of V samples between each two successive windows. Root
mean square of the predicted error, defined as the difference between actual
values of time series and the predicted ones, can be employed as an informative
metric to find an understanding about the model capability in identifying time
series.

I =

√√√√ L
1 ∑

(yi[t] i
L

=1

− ŷ [t])2
(4.2)

t

i = 1, ..., N

Basics of Time Series 67

where ŷi[t] is the predicted value of the output yi[t] at the time, and yi[t] is the
actual value of the output. In an ideal situation, where the system is perfectly
identified by its parameters, the value of the time series on all points can be
accurately predicted by using its present and pasts, and the I becomes 0.

In the derivation 4.1, there are three notations which require further at-
tention: i for the sample number, t for the time variable, and T for the length
of the temporal window which preserve dynamic of the system. The notation
i addresses sample or sometimes the subject number, i.e., biomedical applica-
tions. This is in another language of the stochastic processing, termed by the
ensemble index. As an example, lets assume we have N recordings of electro-
cardiograph from N patients, and here at this point, i refers to the subject
number. It is obvious that t denotes time variable for a specific recording, e.g.,
sample i. T denotes the system order, or the extent to which the dynamic con-
tents of the time series are supposed to be preserved. In parametric system
identification, T is also regarded as the number of the model parameters.

Considering derivation 4.1 once again, three cases might happen:

• The number of the samples (N) is less than the number of the system
order or model parameters T

• The number of the samples (N) equals to the number of the system order
or model parameters T

• The number of the samples (N) is larger than the number of the system
order or model parameters T

Imagine that the system parameters are found by solving a system of linear
equations, in which the variables of the linear equations are the time series
values at temporal points, the parameters are obtained by solving the equa-
tion system. The first case, is a situation, where the number of the equation
is less than the number of the parameters. It is clear that there are an un-
limited number of the solution for such the case, which should be obviously
avoided. In the second situation, the number of the parameters is equal to the
number of the equations. In this case, if the system equations are mutually
independent, the system has a unique result. The last case, when the num-
ber of the equations is higher than the number of the system parameters, we
face with an optimization problem, in which the prediction error, defined in
Eq. (4.2), is tried to be minimised. One can easily see that in order to predict
the time series, the value of the time series before t = 0 (xi[t] : t = −T+1, ..., 0)
must be known. These values are defined as the initial condition of the sys-
tem. These initial conditions can effect on the output, and in a number of the
methods, the rest of the conditions is defined as follows:

xi[−T + 1] = xi[−T + 2] = ... = xi[0] = 0
(4.3)

i = 1, ..., N

68 Deep Learning in Time Series Analysis

It is important to know that number of the model parameters, T , as well as
the overlap percentage, V , are regarded as two design parameters, optimised
according to a prior knowledge of the time series nature, or by experimental
procedures, or even by other theoretical considerations. They are sometimes
found tentatively and empirically using a trial and error procedure.

4.2 Deterministic, Chaotic and Stochastic

Figure 4.1 depicts the three modelling categories.

FIGURE 4.1: Three categories of modelling a system.

Recalling from Chapter1, where deterministic models were defined as the
models in which time series can be expressed by a closed mathematical for-
mula. In theory, a deterministic system is completely described by a linear
time invariant differential equation. By definition, for a deterministic time
series, a linear time invariant differential equation can be found, whose solu-
tion yields the deterministic time series. Practically phrasing, a deterministic
system is interpreted as a system in which using the system equations of
Eq. (4.1), with an identical number of the equations and parameters yields a
time invariant set of the parameters for all values of t. This means that the
system gives a unique mathematical formulation at its output, and thus the
solution of the corresponding differential equation remains consistent over the
time. It is not difficult to guess that such a system cannot be found in reality.
In practical situations, even parameter of an ideal linear differential equation
varies in time due to the environmental effects such as temperature and noise.

Chaotic systems on the other hand, are constituted of a nonlinear differ-
ential equation, with an unknown initial condition. In chaotic models, the
output time series is the solution to a nonlinear differential equation with an
unknown initial condition. Consequently, knowing the initial conditions, one
can completely find the output time series, and that is why the chaotic mod-
els are sometimes called “disordered deterministic”. This makes the initial
conditions, critical for modelling the time series in the chaotic manner, and
accounts for the turning point of such the models.

Basics of Time Series 69

In stochastic models, an output time series is assumed to have resulted
from a nonlinear and time dependent differential equations. We cannot fully
define a linear time invariant differential equation for the system, so the solu-
tion of the system is not uniquely identified. The differential system equation
describing the output, originating the time series, have a higher number of the
equations than the system parameters. As a consequence, a complete solution
cannot be found for the output, and therefore, an optimization technique must
be invoked for the system identification. This book deals mainly with stochas-
tic time series due to their practical and theoretical importance. In most of
the practical situations, a stochastic model can be found to analyse the learn-
ing process, whereas the chaotic counterpart whose application is not seen as
broadly as stochastic models.

4.3 Stochastic Behaviors of Time Series

A time series is often characterised by its values together with the variation
of the time series value in time. Random variable theories are important ele-
ments for analysis of stochastic time series. In this section, parts of the random
variable fundamentals are explained. Importance of such descriptions will ap-
pear in the future sections where different methods are described. It is worth
noting that in statistical time series analysis, we encounter with two different
types of variations: - Variation of the time series values for a certain subject
with respect to time, t - Variation of the time series value at a certain time
point with respect to the subjects, i.

In stochastic processing, average value of the time series i, is calculated
by:

T
1

xi =
T

∑−1

xi[t] (4.4)
t=0

This is known as the first order statistic (moment) of the time series i.
The reader must pay attention that the onset of the variable “time” (t) is the
point t = 0 for most of the calculations of the temporal variables, in contrast
with the subject number which starts from i = 1. The second order statistic
(moment), is named “autocorrelation” function, and obtained by:

T∑−1

rxixi(τ) = x[t]x[t+ τ] (4.5)
t=0

Higher order statistics are calculated similar to the Eq. (4.6), which is a
function of two variables.

T−1

Cxi(τ1, τ2) =
∑

x[t]x[t+ τ1]x[t+ τ2] (4.6)
t=0

70 Deep Learning in Time Series Analysis

Higher order statistics are known as “cumulants”, e.g., third order cu-
mulant. Third order cumulant has interesting characteristics. It is a linear
operator and also its value tends to zero when the statistical distribution of
the time series tends to the Gaussian shape. The higher order cumulants than
3 are not considered as the linear operators. The nomenclature of statistics in
the stochastic processing is listed as follows:

• First order statistic: Mean value

• Second order statistic: Autocorrelation function

• Third order statistic: Third order cumulant

• Forth order statistic: Forth order cumulant

It is important to note that when considering the time parameter t in
the statistics, the moments are functions of time τ or multiple parameters
(τ1, τ2, ...).

The addressed statistics are all calculated over time. In contrary, a number
of the statistics are calculated over the population, or subjects, rather than the
time span. This are named statistics or population-based moments. Average
(µ) and variance (σ) value of a parameter are two well-known statistics de-
fined over population, known as the first and the second statistical moments,
calculated as follows:

N
1

µ[t] =
∑

xi[t]
N

i=1
(4.7)

N

σ2 1
i [t] =

∑
(x 2

i[t]
N

i

− µi)
=1

The reader should pay attention to this point that when the statistics
are calculated over the population, the nomenclatures are preferred to be
used differently to facilitate the understanding. A certain time series whose
temporal variations remain stable for different time intervals is known as a
stationary time series. This means that all the statistics of the time series
(second, third,...) remain stable over different temporal windows. It is obvious
that such a definition entails only theoretical value and cannot be found in the
practical problems. A group of stationary time series whose temporal statistics
are equal to their population statistics (counter moments) is known as ergodic
time series. Presumptions like stationary and ergodic behaviours, drastically
facilitate time series analysis, through the system identification, even though
they cannot be seen in the practical problems. This will be partly addressed
in the next section.

Basics of Time Series 71

4.3.1 Cyclic Time Series

It is obvious that an stochastic time series cannot be periodic, easily since in
periodic time series the future of the time series can be predicted. In reality, we
face with a large number of the time series, whose values resemble repetitive
contents, but cannot be categorized as periodic time series. In these cases, even
though regularity cannot be observed in the value of time series, meaning
that the values are not exactly repeated at a certain, priory known points
of the time. Nevertheless, certain patterns are repetitively seen over a time
span. These types of time series are named as cyclic time series. A recording
of electrical activity of heart, so called electrocardiogram, is considered as
a cyclic time series [33][70][132]. One should consider that the cardiac cycle
of a person is not a fixed number and varies, because of the physiological
conditions such as respiration phase (inspiration or expiration), biochemical
characteristics of the blood, hormonic activities of the body, stress (mental or
physical), and many other factors which are not, yet, understood [121]. This
electrical activity initiates a mechanical activity in the heart that yields blood
circulation in the body. Recording of mechanical activity of heart, produces
a cyclic timer series of the acoustical signal, named phonocardiograph. This
is another cyclic time series which resembles even higher level of randomness
comparing to the electrocardiogram. Figure 4.2 sketches a few cycles of a
phonocardiograph signal:

FIGURE 4.2: Three cycles of heart sound signal, known as phonocardiograph.
Cyclic behavior with variant cycle is clearly seen in the graph.

Recording of lung sounds, or other natural phenomenon like the tempera-
ture at a certain geographical points of the earth all show a cyclic variation.
Here, random variable theory can profoundly help for classification and pre-
diction problems.

A cyclic model for processing a time series assumes that the time series
resembles random behaviour within the cycles, and also the cycle duration by
itself is also a random variable. A presumption of the cyclic time series, is that
the onset and the endpoint of the cycles are priory identified by a separate
source of information out of the time series contents. In many practical cases,
an auxiliary signal is recorded along with the time series synchronously. The

0.6
0.4
0.2

0
--0.2
--0.4
--0.6

PC
G

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (sec)

72 Deep Learning in Time Series Analysis

auxiliary signal helps to identify the onset and the endpoint information of
the time series. Such a situation is widely seen in industrial and medical
applications. In the following sub-sections, some of the definitions, that will
be invoked for the learning process will be described.

4.3.1.1 Sector Definition

By definition, a sector of a cyclic time series, is a set of the temporal frames
of a cyclic time series, all starting at a certain relative distance and having a
certain relative length, with respect to the underlying cycle. It is obvious that
cyclic duration is not a fixed number, and therefore a temporal frame with
a fixed relative length of certain ratio with respect to the cycle, cannot have
a fixed temporal length. This is the case for the initial point of the frames.
If the initial point is a calculated based on a certain ratio of the cycle, its
position within a cycle depends on the cycle duration and is not temporally
fixed. As we will see in the later chapters, sector definition can efficiently
facilitate learning process. It is important to bear in mind that a sector length
as well as the offset point (from the beginning of a cycle) are defined based
on a fraction, or even a fraction, of the cycle length [53].

4.3.1.2 Uniform Sectors

A set of the sectors with identical length within a cycle, is defined as the
uniform sectors. One should note that the length of the sectors within one
specific cycle is meant by this definition. It is obvious that two different cycles
encompass sectors with different lengths due to the different cycle durations.
The uniform sectors, divide each cycle into K temporal frame, each having
the same length. The K is fixed for all the cycles and regarded as a design
parameter. Considering the time series xi(t) with Li number of the cycles, a
set of the K uniform sectors is defined as follows:

xl(t, k) = xl(τk + t)

k = 1, ...,K

l = 1, ..., Li
(4.8)T

τk = (k − l
1)
K

Tl
t = 0, ...,

K
− 1

where k is the sector number (k = 1, ...,K), l is the cycle number (l = 1, ..., Li),
Tl is the duration of the cycle l, and τk is the offset of the sector with respect
to the cycle duration.

Basics of Time Series 73

4.3.1.3 Growing-Time Sectors

The sectors within a cycle can have a different length, and especially one
interesting option is to choose the sectors with the growing length. For a set
of the sequential sectors within a cycle of a cyclic time series, the sectors are
considered as the growing-time sector if the two following criteria are fulfilled:

• For each two successive sectors, the length of the first sector is shorter
than the length of the second sector

• For each two successive sectors, the second sector completely includes the
first sector

It is evident that contents of the first sector appears in all the consecutive
sectors, and as we will see later in the sequels, this sector receives the highest
importance by the learning methods [53]. By this definition, one can bring a
number of different possibilities of the growing-time sectors through a heuristic
fashion, however, this book describes only three well-defined growing schemes
which will be employed later in different learning processes:

• Forward growing-time sector

• Backward growing-time sector

• Bilateral growing-time sector

A forward growing-time scheme for a set of the sectors is the scheme in
which the onset of the first sector is exactly coincident with the onset of the
cycle, and is common for rest of the sectors within a cycle. In this scheme the
first sector begins at the beginning of the cycle, and its length grows in time,
within a cycle, until it covers the whole cycle:

Tl
xl(t, k) = xl(t) : t = 0, ..., k

K
− 1

(4.9)
k = 1, ...,K

where xl(t) is the contents of the time series for cycle l, xl(t, k) is contents of
the time series for the sector k and cycle l, and T − l is the length of the cycle
l. One should be aware that for each sector k, the onset point is t = 0. The
total number of the sectors per cycle K is a design parameter which makes
implications on the growing rate of the sectors as well.

A backward growing-time scheme for a set of the sectors is the scheme in
which the endpoint of the first sector is exactly coincident with the endpoint
of the cycle and is common for all the sectors of a cycle. In this scheme, the
first sector lays at the end part of the cycle with the endpoint coincident at
the endpoint of the cycle, and its length grows reversely towards the beginning
of the cycle until to cover the(whole cycle:

Tl Tl
xl(t, k) = xl t+ Tl − k

)
, t = 0, ..., k

K K (4.10)

k = 1, ...,K

74 Deep Learning in Time Series Analysis

In bilateral growing-time scheme, the first sector lays somewhere within
the cycle, and grows from the both ends until to cover the whole cycle. The
center of the first sector is called “GROWING CENTER”, TG, defined by
a percentage of the cycle duration:

Tl
TG(l) = η (4.11)

100

where l is the cycle number. η is a percentage of the cycle at which the center
of the first sector sets. Contents of the sectors for a bilateral cyclic time series
can be formulated by:

k Tl
xl(t, k) = xl

(
t+ (1−)TG(l), t = 0, ..., k

K K
− 1

k = 1, ...,K

)
(4.12)

Obviously, the growing center is not obligated to be at the middle of the
cycle, but the growing rate is identical for the both ends of the sector. This
doesn’t imply that the temporal length equally grows from the both ends.

It is easy to see that regardless of the scheme of the growing-time, (1) the
first sector is the shortest sector, (2) the last sector covers the whole cycle,
and (3) the total number of the sectors for a cyclic time series i is KLi in
which Li is the total number of the cycles existing in the time series. These
are three important characteristics of the growing-time sectors.

4.3.2 Partially Cyclic Time Series

A cyclic time series whose statistical characteristics remain almost consistent
within certain segments of a cycle, is known as segmented cyclic time series
[55]. Figure 4.3 shows two cycles of a phonocardiograph (top) along with
the electrocardiograph (bottom). It is clearly seen that in some, but not all,
segments of a cycle, the phonocardiograph shows stochastic behaviors.

In a certain segments of a cycle, for example the segments denoted by S1
(the first heart sound), the time series behaves differently comparing to the
segment denoted by the diastolic murmur or the systolic murmur. Clearly,
learning the first heart sound segment demands a different learning method
with respect to the diastolic part. Such the time series are therefore, cat-
egorised in a different group, to allow flexibility in introducing appropriate
models for the learning process which will be discussed later in in the upcom-
ing chapter.

Basics of Time Series 75

Time (Second)

S1 Systolic murmur Diastplic murmur S1 Systolic murmur Diastplic murmur
EC

G
PC

G

0 0.2 0.4 0.6 0.8 1

FIGURE 4.3: Two cycles of phonocardiograph (top) and electrocardiograph (bot-
tom). Segmental cyclic behavior with variant cycle is clearly seen in the graph.

4.4 Time Series Prediction

In practice, most of the time series represent stochastic characteristics, and
clearly the future value of the time series, cannot be precisely predicted. As
a result, there is always an error associated with the prediction of a time se-
ries value. It is a main assumption in many attempts, and in many aspects
of time series analysis including prediction, that the phenomenon behind a
time series, is identifiable, and the random behaviors of the results obtained
from the analysis are caused by the noise or any other reckoning element. In
many problems of system identifications, it is deemed for the prediction error
to resemble a Gaussian statistical distribution, whose variance and mean val-
ues denote power and bias of the noise, respectively. In order to predict time
series value at a certain point of time, there are fundamentally two different
strategies: machine learning-based and model-based strategies. The first strat-
egy, involves a machine learning method to learn variations of the time series,
and then prediction of the future values of the time series is performed by us-
ing the machine learning model which was previously trained using a specific
training method. Various machine learning models and training methods are
available nowadays. Details of this strategy is discussed in a future chapter
of the book (Chapter11, Recurrent Neural Network), where dynamic neural
networks will be presented. The second strategy, is based on a process of
system identification using a specific model, by which the future values are
predicted. The model can be identified by any kind of the linear or nonlinear
manners, selected according to the time series behavior and estimated based
on the prediction error. Nonlinear and linear models, each entails advantages
and disadvantages against the other. One of the most widely-used methods,

76 Deep Learning in Time Series Analysis

is based on a kind of linear model, named “AutoRegressive Moving Average”
(ARMA), model in which it is assumed an input time series is resulted from
a linear system with the following differential equation:

b0yi[t] + ...+ bT 1yi[t− T + 1] = a0xi[t] + ...+ aMxi[t−M + 1] + ε− i (4.13)

Then, each point of the time series is resulted from the system output
added by a white noise εi acting as a random variable. Here, we are faced
with a problem of system identification, in which the parameters al, bk :
l = 1, ...,M , k = 1, ..., T are to be found by the identification process. In
the above parametric system modelling, if ∀l > 0 : al = 0, the system is
named “AutoRregressive” (AR) model, in which only time shifted outputs as
well as the input at t = 0 appear in the model for calculating the output,
without having the shifted inputs. If ∀l > 0 : bl = 0, then the system is named
“Moving Average” (MA) in which only the shifted inputs contribute to the
output without having the shifted outputs.

In order to simplify the process, an AR model is firstly employed to find
the parameters ⟨ai⟩. The parametric model assumes that the estimation error
is calculated using real outputs yi[t] and the estimated ones. From Eq. (4.13)
with the above assumptions we have:

1
ŷi[t] = (a0

b0
− yi−1[t]− ...− bT−1yitT + 1− εi) (4.14)

and the minimum least square error is obtained:

E =
(
yi[t]− ŷi[t]

1
= yi[t] a0 yi 1[t] ... bT 1yitT + 1 + εi

)2(
−
b0

(
− − − − −

))2

(4.15)

∂E
= 0

∂bl

Taking the autocorrelation function from the both sides removes the noise
term which yields the parameters by:

B = [b0, ..., bT−1] = R−1r (4.16)

where

r0 r r 1 2 ... rT−1 r1 r0 r1 ... r

R = T−2

 r2 r1 r0 ... rT 3

−

...
rT−1 rT−2 rT−3 ... r

0 (4.17)

T
1

−l−1

rl =
T

k

∑
ykyk+l

=0

Basics of Time Series 77

The above correlation matrix is positive and symmetric and definite, so
the inverse matrix exists. However, in the digital implementations, there are
various methods for the calculation in recursive form which is always favored
to the digital processors. Interested readers can find such implementations in
[22][104]. Implementation of the moving average model is similar to the AR
model, and so is the ARMA model. Details of such implementations can be
found in [22]. Description of nonlinear modelling for system identification is
well-beyond the scope of this book, and the interested readers can refer to the
pertinent literature in system identification.

4.5 Time Series Classification

In time series analysis, classification is defined as establishing an association
to a time series, based on the prior knowledge about the possible cases of the
time series. From the previous sections, it is not difficult to realise that time
series attributions like stationary and ergodic refer to absolute definitions and
cannot be found in reality. Nevertheless, such the presumptions can help to
establish statistical methods for exploring time series characteristics, and by
this means to extract informative contents from the underlying phenomenon.
To this end, contents of time series can be employed to associate the time
series with a specific class of that phenomenon. An example of such a pro-
cess, is a time series of physiological activity inside the body such as brain
activity. The resulting time series can be recorded from several points over the
scalp, and processing of this set of the time series, named electroencephalo-
gram (EEG), can reveal important information about the brain activity which
is considered as the phenomenon in this example. Classifying the time series
of EEG can help to find out type of the brain activities, such as sleep phase,
or even to detect a number of the brain defects like epilepsy. Consequently,
time series classification is indeed interpreted as a way of obtaining an under-
standing about the underlying phenomenon. This is certainly a case of system
identification, however, formulated in another manner when it comes with ma-
chine learning. In this context, the phenomenon behind the time series is not
deemed to be identified by itself, but instead its manifestations are learned
by the corresponding methods. Classification was expressed as establishing an
association to a time series, based on the prior knowledge about the possible
cases of the time series. It is obvious that time series classification is tightly
linked to learning dynamic contents of the time series. In this sense, there
are basically three different models for time series classification, depicted in
Figure 4.4, and categorised according to the underlying fashion for preserving
the dynamic contents in the learning process:

78 Deep Learning in Time Series Analysis

FIGURE 4.4: Dynamic contents of time series can be learned in three manners:
at the feature level, at the input node, and in the entire architecture of a classifier.

- Preserving dynamic contents of time series at the feature level
in conjunction with a static classification method

This model has been introduced as a basic classification method in ar-
tificial intelligence. Temporal variations of time series are considered at the
feature level, such as using the spectral energies or time frequency decomposi-
tion, along with a multi-layer perceptron neural network. In such the models,
art of the classification resides in extracting powerful features, and the clas-
sifier can use any kind of the static method such as support vector machine
[122]. This model has been studied in several investigations on natural speech
recognition, biological signal processing, and ultrasound detection. Different
methods of frequency analysis, time analysis, linear time-frequency decom-
position, and nonlinear time-frequency decomposition have been employed as
the mathematical tools for the feature extraction [135][125][150].

-Preserving dynamic contents of time series in the architecture
of the classifier

In this model, the main focus of the classification lies in the architecture of
the classifier, that receives the time series values either single by single, or as
a pack of the multidimensional feature vectors, and performs the classification
according to the received contents. Recurrent neural networks can be referred
to as one of the most used models for this purpose, which will be separately
described in later chapters. It is worth noting that the dynamic contents of
the time series is learned by a fixed architecture, but variant values, for the
parameters in time according to the time series values [108][112].

- Preserving dynamic contents of time series in both the classifier
architecture and at the feature level

In these models, parts of the learning process is performed at the feature
level, which can in turn contribute in the input part of the classifier archi-
tecture, and the rest of the learning is followed by a dynamic architecture.

Basics of Time Series 79

Here, it is reemphasized that dynamic architecture implies a fixed structure,
but with time varying values of the parameters, whose values depends on the
past and present contents of the time series [108][112]. Hidden Markov model,
hybrid methods and recurrent time-delayed neural networks are categorised
at this group, which will be explained in the upcoming chapters.

https://taylorandfrancis.com

5

Multi-Layer Perceptron (MLP) Neural
Networks for Time Series Classification

In the functional point of view, a multi-layer perceptron neural network in-
herently performs a nonlinear regression with the difference from classical
methods where the parameters associated with the method are found in an
iterative way instead of analytic ways. Any iterative method needs terminat-
ing criteria, to terminate the recurssion, when the criteria are met, otherwise
the method will make an over-fitting on the decision boundaries. The number
of the epochs for training in conjunction with the classification error, are the
two criteria employed in most of the applications. The architecture of a MLP
contains an input node, constituted of the feature vector, followed by a num-
ber of the layers, named hidden layer, along with an output layer (see Figure
3.8).

Each of the hidden and output layers contains a number of the neurons.
There is no analytic way to calculate an optimal value for the number of the
neurons, required to perform the regression, at different layers, likewise for the
number of the hidden layer. However, in most of the practical situations, one
hidden layer is sufficient, and the number of the neurons in that layer depends
on the training variety. It has been experimentally shown that increasing the
number of the neurons after a certain range at the hidden layer of a three
layers MLP, will put negligible effect on the classification performance, which
in turn depends on the training data size [48].

It was previously discussed that MLP itself cannot preserve dynamic con-
tents of time series in its architecture, and therefore for the problems of the
classification kind, there is a need for further elaboration. Even though, these
contents can be considered in the feature space by employing different sorts
of time-frequency representations such as wavelet transformation techniques,
incorporating the temporal variation of an input time series into the archi-
tecture of a MLP can elaborate the classification quality [120][122][155]. It
can also assign further flexibility to make the trade-off between the feature
level and the classification level for analysis in which subtle variations are
required to be considered. This issue has been explored by different scenar-
ios, e.g., time-delayed neural network [143], time growing neural network and
recurrent neural network. The first two alternatives will be explained in this
chapter and the later is postponed for Chapter 11.

82 Deep Learning in Time Series Analysis

5.1 Time-Delayed Neural Network (TDNN)

Time-Delayed neural network comes with an offer for architecture, in which
the input node has the capability to include dynamic contents of time series
[106][128][134]. By means of this architecture, subtle variations are leaned by
the input architecture of the classifier, and the short-time variations can be
preserved by the feature vectors. Figure 5.1 illustrates architecture of a typical
TDNN:

FIGURE 5.1: General architecture of time-delayed neural network.

One way to learn short-time information of time series, is by using fre-
quency contents of the time series, xi[t] within the interval of length T starting
at t = 0. Spectral energy of the signal over the frequency band, (ω1, ω2) is
estimated based on Fourier analysis:

2ω
1 2 T−1

Pi(ω
jωt

1, ω2) =
T

ω

∑
=ω1

∣∣∣∑ ∣∣

In this formula, the shape of the windo

∣∣ xi[t]W [t]e−
∣∣∣ (5.1)

t=0

w is characterised by W [t] to miti-
gate effect of the side lob and frequency leakage [132][32]. Hamming, Hanning,
Gaussian and Kaiser windows are the most common shapes for the spectral
calculation. Sometimes an overlapping between successive windows are em-
ployed in order to better compromise between time and frequency resolution.
Interested readers can refer to [104] and [22] for obtaining profound intu-
ition about the signal processing details and the theoretical description of
this topic. Nevertheless, the mathematical formulation is given for the case
without temporal overlapping. The interested readers can easily expand it for
the overlapping windows. In Eq. (5.1), the contents of the time series can be

Multi-Layer Perceptron (MLP) Neural Networks for Time Series Classification 83

calculate for the temporal window ∆, as follows:

∑ ∣∣∑− 2ω
1 2 1

Pi(λ, ω1, ω) =
∣ T

2 ∣∣ xi[t+ (λ −jωt

T
− 1)T]W [t]e

∣∣∣∣∣ (5.2)
ω=ω1 t=0

λ = 1, ...,∆

where ∆ is the number of the temporal windows. For simplicity in formulation,
a frequency band is defined as follows:

.
B = {b = (ω1, ω2) : ω1, ω2 ∈ Z+ ∧ ω1 < ω2 < ωmax} (5.3)

The spectral energies, derived by Eq. (5.2), are calculated over M fre-
quency bands, which yield:

1
Pi(λ, bl) =

∑ ∣∣∣ T∑− 21∣∣ xi[t+ (λ 1)
T

∈B t=0

− T]W [t]e−jωt

ω

∣∣
(5.4)λ = 1, ...,∆

∣∣
l = 1, ...,M

∣

∀l bl ∈ B

The input node of a TDNN is constituted of the spectral energies calculated
over M frequency bands, for ∆ temporal windows. The total number of the
features at the input node is ∆M features of spectral energy, yielding the
following feature vector:

Pi =
[
Pi(1, 1), Pi(1, 2), ..., Pi(1,M), Pi(2, 1), Pi(2, 2), ..., Pi(M,∆) (5.5)

Given the weights of the neural network at the hidden and the output

]
layer

by {Wj,k}, each neuron of the output layer of the TDNN gives:

ϕj(Xi) = g2(W
T
2,j .g1(W

T
1,kPi − θk)− θj) (5.6)

The weights together with the thresholds ⟨θ⟩ are found by back propa-
gation error method, as described in Chapter 3. The window length as well
as the possible overlapping percentage are considered as the hyperparame-
ters, which can be found either empirically, or tentatively, or systematically
through an optimization process, however, sometimes prior knowledge about
the time series nature is invoked to find a set of the optimal parameters. An-
other set of parameters is the number of the frequency bands M , which are
obtained intuitively at this point. As you will see in the future chapter, certain
sophisticated deep learning methods can help to find these bands [122]. The
detailed description of this method is found in Chapter 7, when deep learning
methods and the cyclic time series are fully described.

84 Deep Learning in Time Series Analysis

5.2 Time-Growing Neural Network (TGNN)

From the previous section, it can be easily understood that TDNN is indeed
a type of MLP with the difference that in TDNN, temporal variation of a
time series is included at the input node of the neural network, keeping the
rest of the architecture the same as an MLP. The training method is also
identical to a simple MLP. Likewise to the TDNN, there is another neural
network in which dynamic contents of an input time series are preserved at
the input layer and the rest of the process is similar to MLP, in terms of both
the architecture and the training method. This new neural network is named
Time Growing Neural Network (TGNN) [48][54]. Input node of a TGNN is
constituted of spectral contents of the input time series, calculated over several
overlapping temporal windows. The length of the windows grow in time, with
a growing rate of K, until covering all of the time series length. The first node
corresponds to the shortest window, the second temporal window covers the
first one in addition to some more samples of the time series, and so on until
the last window which includes the time series entirely. Figure 5.2 depicts the
general architecture of a TGNN:

FIGURE 5.2: General architecture of a forward time growing neural network.

Each window can be characterised by its spectral contents, calculated using
periodogram. Lets assume that the length of the first window’s length and
the growing rate is T0 and G, respectively. Spectral contents of the temporal
windows l can be calculated using periodogram:

1
Xi(ω1, k) =

T0 + kG

∣∣ 2∣ T0+∑kG−1∣∣ xi[t]W [t]e−jωt

t=0

∣∣∣∣∣ (5.7)

Multi-Layer Perceptron (MLP) Neural Networks for Time Series Classification 85

Assuming that a set of the frequency bands, defined in Eq. 5.3, is employed
to calculate the spectral energies, the input node is similar to the one with
TDNN, but with the difference in calculating the spectral energies:

Pi =
[
Pi(1, 1), Pi(1, 2), ..., Pi(1,M), Pi(2, 1), Pi(2, 2), ..., Pi(M,∆)

∑ ∣∣∣ T0+∑kG1
− 21

]
P (k, b) = ∣ x [t+ (k − 1)G]W [t]e−jωt
i l i

T0 + kG
ω∈B

∣
t=0

∣∣
(5.8)

∀l : bl

∣
∈ B

∣
l = 1, ...,M

∣

k = 1, ...,∆

where B is defined in Eq. (5.3).The hidden layer and output layer, both to-
gether, map the input node to another domain by the nonlinear functions g1
and g2 as:

ϕ T
j(Xi) = g2(W2,j .g1(W

T
1,kPi − θk)− θj) (5.9)

The weights together with the thresholds ⟨θ⟩ are found by back propaga-
tion error method, as described in Chapter 3.

The length of the first window T0, namely the initial frame length, along
with the growing rate G, are considered as the hyperparameters found through
an optimization process. The window’s length can grow in different ways,
named the growing scheme, and will be formulated in the next section.
Finding an appropriate set of the frequency bands, is a case of the learn-
ing at the deep layer of the network architecture which will be described in
Chapter 7.

5.3 Forward, Backward and Bilateral Time-Growing
Window

Forward TGNN (FTGNN), is a scheme of the growing window in which the
windows all have an identical beginning point, but different ending points,
each is longer by G samples than the previous window. A windowed signal is
hence, defined by the following derivations:

{xi[t] : t = 1, ..., T0 + (k − 1)G , k = 1, ...,∆} (5.10)

In this scheme, contents of the first window, which appear at the beginning
part of the time series, exist in all the other windows, and therefore, the
neural network learns variations of the time series with respect to this window.
Forward time growing neural network is especially efficient when we deal with
the problem of learning dynamic contents of a time series by taking an initial
segment of the time series as the reference. As such the behaviour occurs in

86 Deep Learning in Time Series Analysis

the human auditory system. Let’s imagine a short length acoustic signal of
a type speech with a length of 1 second, stacks in a human ear of a healthy
person. The auditory part of the brain receives the information and interprets
the information, sequentially taking the first part of the information as the
reference [32]. In fact, the first segment of the audible sound (typically with
a length of 20 millisecond), remains as a residue until the following segments.
Forward TGNN can serve as a model for the human auditory system. The
corresponding parameters are the initial window length (T0) and the growing
rate (G), which should be selected appropriately.

Backward TGNN is a scheme in which the input node is composed of the
contents of a set of the temporal windows, where the first window locates at
the end of the time series. The rest of the windows grow backwardly with the
growing rate G, until reaching the beginning of the time series. The temporal
windows all have an identical ending point, but different beginning points. The
beginning point starts from the last part of the time series with the length T0
for the first window, and the zero point of t = 0 for the last window.

{xi[t] : t = (∆− k)G, ..., T0 +∆G , k = 0, ...,∆} (5.11)

In the bilateral growing TGNN, the shortest window resides somewhere
within the time series, and grows bidirectionally from the both ends, its be-
ginning and its ending points, until covering whole the time series. The centre
point of the shortest segment, is named the growing centre.

In the practical perspectives, all the three schemes of TGNN are common
at this point that the shortest window is assumed to be a part of the time
series which is roughly consistent over the subjects of the training data, and
information of the rest of the time series is by far another variant, conveying
the between-class information. This will direct us to the point to find the
growing centre. Assuming that spectral energy of the temporal windows is
calculated over the entire frequency band of the time series for all the time-
growing scheme. For simplicity, we consider a forward time-growing scheme as
in Eq. (8.2). Without losing generality of the theory, similar derivations can
be driven for other schemes of the time-growing windows. The segment which
provides the most stability could be used as the first window:

KOpt = argmax
k

{Pi(k, bl)} (5.12)

The KMAX is indeed the index of the temporal window with optimal
segregation.

This was one alternative to define the growing scheme. Nevertheless, any
reader can contribute to define other heuristic alternatives depending on the
case study. Use of wavelet transformation as an efficient tool for finding the
growing centre has been reported in the recent studies, which will be discussed
in Chapter 8.

Multi-Layer Perceptron (MLP) Neural Networks for Time Series Classification 87

5.4 Privileges of Time-Growing Neural Network

Use of time growing windows puts a positive impact on the classification per-
formance, when it comes to preserving the dynamic contents of time series,
and by this means serving as an elaborative classification method. These im-
pacts have been experimentally investigated and compared to the two other
alternatives, Time-Delayed Neural Network (TDNN) and Multi-Layer Per-
ceptron neural network (MLP), in a number of the studies on classifying time
series of physiological signals [48][53]. In this section these important charac-
teristics of TGNN are investigated in an intuitive way, as well as compared to
the other two alternatives, TDNN and MLP. The readers must bear in mind
that all the properties described below remain valid when the training phase
is ideal, without having been stuck in training bottlenecks such local mini-
mums, or over-fitting. Cross-validation is a well-known technique to overcome
such problems. In this technique, the training is stopped and the resulting
performance is saved, and the same training is repeated several times, yield-
ing the ultimate accuracy as the average of the accuracies resulted from the
estimations during the cross-validation process. An important assumption to
all of the following descriptions, is to perform an appropriate cross-validation
with sufficient number of the iterations, making the conclusive terms fully
subjected to an appropriate cross-validation. This point is not repeated in the
rest of the descriptions, taken as a necessary presumption to all of the follow-
ing conclusions. Another important assumption, which should be taken for the
rest of this chapter is focused on the feature vectors, which are constituted of
spectral energies. For other types of features, part or all the following points
might be inconclusive.

5.4.1 TGNN includes MLP in its architecture

Referring to Figure 5.2, one can easily see that the largest temporal window
covers whole the time series, and consequently, becomes a MLP where the
temporal contents are included in the feature domain only. The rest of the
windows help the neural network to learn dynamic of the time series.

5.4.2 TGNN can include TDNN in its structure

Assuming that the feature space is constituted of the spectral contents of
training time series. It is known that there are different methods for estimating
frequency contents of a stochastic time series [22][104], each having pros and
cons, by the way for simplicity, the direct method of Fourier transformation
is chosen to show pervasiveness of TGNN compared to the other alternative,
TDNN. Assuming a forward scheme of the growing windows are used for time
series characterisation, the second temporal window covers the first window in

88 Deep Learning in Time Series Analysis

addition to the frame growth with the rate G. In the spectral domain contents
of this window equal to the contents of the first window added by the contents
of the added part as well as a cross modulation term which is negligible for the
stochastic signals. Therefore, the value of the added window participates in the
output, and consequently in the learning weights are assigned appropriately
during the training phase.

5.4.3 TGNN is optimal in learning the first window

Along with the previous comparisons, here, the term optimal is employed
to provide a comparative conclusion with respect to the other presented al-
ternatives: MLP and TDNN. The readers should not forget that performing
cross-validation, is obviously regarded as “a must” to all the conclusive terms
of this section. Another important point to be considered is that all the com-
parisons, made in this section, are based on using identical feature vectors for
all the three neural networks, and merely puts input nodes of the three neural
networks into a comparative challenges. It is clear that MLP is incapable to
include dynamic of time series in its architecture, and the learning weights are
assigned to the whole time series. As a result MLP is not considered in com-
parison to TGNN in which the dynamic contents of time series are preserved
at the input node. Contents of the first window, the shortest window, appear
in all the other windows. Since a learning weight is automatically assigned
to each temporal window, and the contents of the first window is included
in all the other windows, the first window receives the highest number of the
learning weights, and after that the second window, and so on, such that the
longest window receives the least learning weight. One can easily see that a
TGNN assigns the highest number of the learning weights to the first window
(the shortest window). A consequence of such an inconsistent weight assign-
ment, with the highest bias to the first segment, is better learning for that
segment, since a miss-training of this segment effects the learning weights of
all the other segments. This implies that the error of the neural network is
far more magnified for the first segment as compared to the other segments,
and consequently is biased towards providing a better learning for the first
segment. For the TDNN case, the learning weights are consistently assigned
to all the segments and therefore the segments are learned equivalently.

In many practical situations, it is desirable to explore if contents of a
certain part of time series abruptly changes with the certain trend of variation.
As TDNN cannot pay especial attention to the first segment, and the segment
contents are non-stationary, the learning process will not converge to a reliable
result. In contrary, TGNN can offer a much better classification performance.
Experimental studies showed that classification of systolic click sound, the
sounds heard because of the abrupt changes in the frequency contents, can be
rather elaborated by using TGNN compared to MLP and TDNN [48][62].

6

Dynamic Models for Sequential Data
Analysis

A time series, as a set of the sequential data points with a certain time order,
typically carries information in its dynamic alterations over the samples. It is
often seen that the samples are sequentially ordered in time, as expected from
the term time series, which makes the notion dynamic contents meaningful in
this context. The difference between sequential data and time series, lies at this
point that in the time series case, the data sequence is ordered with respect
to time, elapsing at a certain priori-known rate, whereas in the sequential
data case, the temporal rate might not be consistent. This is in fact, the
way of looking at data. Another important point to be noted, is the fact
that time series is often either recorded, or obtained, however, sequential data
can be attributed by a manipulator, method, or even a system, through a
process named either “labelling” or registration. To put this point into a
better perspective, let’s consider a time series of an electrocardiogram signal,
expressed by its peaks and waves, as depicted in Figure 6.1.

FIGURE 6.1: Tow cycles of an ECG signal, expressed as a time series with the
known sequences of P-wave, QRS complex, and T-wave each conveying important
information of electrical activity of a heart.

The data point shows values in time, measured from the body, constitute
a time series, while assigning specific names on the peaks and waves, i.e.,
P-Q-R-S-T, leads to a sequence of the data. These peaks and waves, carry in-
dicative information about electrical activity of heart, which is initiated from
the pace-maker cells at the atrium and propagates towards the ventricles,
and further down to the apical point of heart, and returns back to its initial
point to create a self stimulating activity. This function can create a rhyth-

90 Deep Learning in Time Series Analysis

mic sequence of contraction and relaxation, and both together establish blood
circulation. A disorder in the electrical activity of heart creates abnormal al-
teration of the mentioned peaks or waves, such that studying these dynamic
characteristics provides a way to explore electrical function of heart [132][70].
The peaks and waves are sometimes, and even in some cardiac cycles, dis-
appear due to physiological or pathological conditions, and therefore might
exhibit irregularities in their appearance frequencies. The ECG samples are
however, present regardless of the cardiac condition. The difference between
sequential data and time series has been addressed by this example, because
of its role in extracting dynamic sequence from the data. Both the time series
analysis and the sequential data analysis are mostly discussed for the purpose
of extracting information. This is performed by presuming a certain model,
postulated over a data group, in many scientific approaches. Here, it is worth
noting that models are almost always employed when there exists a scientific
or a technical hypothesis behind. A model is based on a set of the hypotheses,
and differs from structures or graphs, in which hypothetical bases are not ne-
cessitated. The presumptions and hypotheses can be completely different for
the time series analysis and the sequential data analysis. A very rough view
suggests that a higher level of stochastic characteristics is associated with
time series analysis rather than sequential data analysis. This can be clearly
seen in the related graphs in which variations of the signal value resembles a
stochastic time series, while the peak sequences are further deterministic!

It is understandable as the data in this case is assigned to the peaks and
waves, in contrast to the time series value which is measured, always under
the circumstance of a noise.

A delicate point always arises with the term “stochastic model”. In fact,
the world “model” usually carries a deterministic notion behind, coming from
the absolute understanding about one or a set of the hypotheses. This is in con-
tradiction with the term “stochastic”. Perhaps, a better term would be “model
for stochastic data”. Nevertheless, we use the term “stochastic model” instead,
for the simplicity. The readers must be aware of this naming and intention of
the authors. This chapter introduces three well-known models for time series
analysis. The presenting models are capable of preserving dynamic contents
of time series. Although the name of the chapter can be somehow misleading,
both time series and data sequences can be modelled by the models presented
below. The first model, which will be described in the next section, is dynamic
time warping. This model considers a certain sequences of the data, trained in
the learning phase. The model involves a phase of synchronisation. This phase
demands time, and depending on the time series length and complexity can
be a cumbersome phase. The probability of the transitions can be used for
the training. The second model, is further elaborated, and hence accepted by
the researchers, where uncountable number of the studies were later performed
based on this model, named Hidden Markov Model. This model considers both
the priori and posteriori probabilities in its learning process. The third model,
has recently received interests from the artificial intelligence community, es-

Dynamic Models for Sequential Data Analysis 91

pecially after which several extensions of the model were integrated with the
deep learning methods. This model, named recurrent neural networks, is be-
ing widely used in different fields of science and engineering, such as natural
language processing, biomedical engineering, and media studies. This section
will describe the three models in a general descriptive form, however, further
elaborations of these models will be discussed in the other chapters where
hybrid models, or deep recurrent neural networks will be explained in detail.

6.1 Dynamic Time Warping (Structural Classification)

In many applications, especially for the cases in which classification of the
sequential data is speculated, we encounter with C classes of time series, each
containing a number of Nc sample (c = 1, ..., C), and a testing time series
xi (∀i : xi ∈ RM,T) is attempted to be classified based on its similarity to
the classes. The similarity is not limited to the contents of the input time
series only, and variations of the time series are taken into account too. For a
classification problem using a single vector, simple distance calculations such
as Euclidean or Mahalanobis distance measurement can provide at least a
measure, and in many cases do so with a classification method, to solve the
problem. In time series classification, however, this is by far a more compli-
cated problem. In addition to the stochastic behaviours of time series, syn-
chronization of the time series, is a major point to consider. Initial points of
a number of time series can be different while their contents are similar, and
this offers a measure for similarity calculations which is rather complicated.
This task looks to be even more complicated, when it comes with the mul-
tidimensional time series. In such the occasions, variation of time series, or
more scientifically saying, “dynamic contents” of a testing time series should
be compared to the time series for each class, and the testing time series is
assigned to the class which gives the most similarity in terms of its dynamic
contents. An important question raises up, here at this point, is: how to find
a way to quantify similarity of dynamic contents for two different time se-
ries, perhaps with different length and different initial points? Dynamic time
warping offers an algorithmic method to respond to this important question
[116][103]. Application of this method is rather pronounced in the studying
of sequential data with a relatively low level of uncertainty in its dynamic
contents [66][19]. Nevertheless, dynamic time warping can often be an option
to be studied in real world scenarios. Dynamic time warping takes the struc-
ture of the dynamic contents into account to find the similarity between two
time series [138][111]. The classification method is very similar to the KNN
method (see Section 3), with the difference in calculating the similarities. In
KNN, the classification is performed according to the similarity of the sam-
ples of M dimensional vectors, likewise for dynamic time warping with the
difference that the similarities are calculated for the time series of M l di-×

92 Deep Learning in Time Series Analysis

mension instead of the vectors [110][26][37]. This associates dynamic learning
with the method. Figure 6.2 illustrates a typical block diagram of dynamic
time warping classier:

FIGURE 6.2: Block diagram of a classification using dynamic time warping.

Considering the two time series X1(t) and X2(t) with a different length of
L1 and L2. The length of a time series, or in another word the number of the
sequences in the time series, is given and the similarity of the two time series is
to be calculated. Likewise the KNN where the similarities are calculated using
distance measurement, typically Euclidean distance, dynamic time warping in-
vokes the Euclidean distance technique for finding the similarity of the two
time series. The distance of the time series is calculated as the global distance
which is a sum of the distance at all the sequences. There are two important
points to be considered when the global distance is calculated for the time
series. The first point is the fact that the two time series can essentially have
different lengths. The second point is less generalised, but can be seen in some
cases, that the two time series may be asynchronous in the terms of their initial
points. The dynamic time warping algorithm considers both the two points
in its algorithmic structure for the distance calculation. To this end, the two
time series are set in the horizontal and vertical of 2D coordination, named
Time-Time matrix. The distance measurement in its simplest and quickest
form of dynamic time warping is based on the linear alignment implementa-
tion, where the two time series are linearly aligned. An important assumption
for linear alignment, governs to two time series to be synchronous in time, oth-
erwise the calculated distance cannot give a realistic measure about dynamic
contents of the two time series. Figure 6.3 shows a typical case of the linear
alignment.

Dynamic Models for Sequential Data Analysis 93

FIGURE 6.3: Linear alignment for calculating similarity of two time series using
time warping method.

Similarity of two time series, as reflected by the distance of the time series,
is fulfilled through the following algorithm for the linear alignment form of
dynamic time warping:

Algorithm 5 Linearly-Aligned Time Warping

1: procedure LTW(⟨xi⟩, ⟨rj⟩))
2: Linearly align ⟨xi⟩ and ⟨rj⟩ ▷ i = 1, ..., N j = 1, ..., T

3: j ← round((1 : T)N/T)

4: For i=1:T

5: D(i)← D(i− 1) + d(xi, rj)

6: end for

7: return D(T)

8: end procedure

In Algorithm 5, the round(.) is the round function to the closer number,
D(i) and d(xi, rj), is the accumulated and Euclidean distance, respectively.

Dynamic time warping with linear alignment, although it is simple and
quick, but it can rarely offer an efficient measurement, and is mostly used for
the purpose of initialisation for other methods. Therefore, a generalised form
of dynamic time warping has been introduced in which an optimisation proce-
dure is performed to align the two time series, asynchronously allocated in the
Time-Time plane. This form of dynamic time warping which demands more
calculation power, is often purposed for the cases where the two time series
are not synchronised in terms of their onset points [35][65][5]. An optimisation
process is performed in order to find the optimal match path. The process is
performed iteratively through a pursuit for finding an optimal distance. As

Ta
rg

et

(1
, .

..,
 N

)

Source (1, ..., T)

i-1, j
i, j

i,j-1
i, 1

j, 1

94 Deep Learning in Time Series Analysis

you will see in this section, in many advanced forms of dynamic time warping,
this optimisation process is constrained with a number of the general, as well
as the specific, heuristic or sometimes empirical, constrains for better learning.
There are a set of the specific constrains, employed for the learning, intuitively
presumed according to the prior information from the training data. This will
be discussed later in this section. In any case, the general constrains must
be necessarily fulfilled, otherwise the learning performance is not guaranteed.
The general constraints are listed as follow:

• Monotonicity: The frames for calculating the distance should be incre-
mental. A backward trace is not allowed.

• Boundary condition: The frames should be, started with the first se-
quence of the two time series, and terminated at the last sequence of the
both time series. It cannot be started from any other frame, e.g., the sec-
ond frame.

• Continuity and symmetricity: all the frames of the two time series
must be used in finding the best matching path.

One should take this point into account (as was mentioned before) that
all the time warping-based methods including dynamic time warping, rely on
distance measurement between two time series (that can be multi-dimensional
time series): an input time series and a time series from the training data (see
Figure 6.2). The two time series can be asynchronous. The classification is
performed based on the calculated distance with reference to all the samples
of the training data. The distance measure does not play any role in the
method generalisation. Assuming we have two multidimensional time series
X = [x1, ..., xN] and R = [r1, ..., rT] (please pay attention to the point that
the time series lengths can be different N = T), regardless of the distance
calculation formula for the two vectors xi and rj , taken from X and R, the
distance of the two vectors is denoted by: d(xi, rj) = ∥xi − rj∥. In order to
meet the continuity and symmetric conditions, the distance is allowed to be
measured using one of the paths, depicted in Figure 6.4:

The horizontal path in parallel to the x axes is called deletion, while the
vertical one along the y axes is named insertion. The diagonal path is termed
by a match. The optimisation process for finding the best transition is based
on calculating the accumulated distance, using the following derivation:

D(i, j) = min[D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)] + d(xi, rj) (6.1)

where D(i, j) denotes the accumulated distance, starting from the first vectors
of X and R, and continuing until the last vector i and j from X and R,
respectively (see the boundary condition). The d(xi, rj) is named the local
distance. The global distance is obtained by calculating all the accumulated
distance for the last vectors of the two time series. Algorithm 6 illustrates the
calculation of the distance for the two input time series.

̸

Dynamic Models for Sequential Data Analysis 95

FIGURE 6.4: The path which are allowed in a way to fulfil the above-mentioned
criteria.

Algorithm 6 Dynamic Time Warping

1: procedure DTW(⟨xi⟩, ⟨rj⟩))
2: For i=1:T

3: For j=1:N

4: D(i, j)← min[D(i− 1, j), D(i, j − 1), D(i− 1, j − 1)] + d(xi, rj)

5: end for

6: end for

7: return D(N,T)

8: end procedure

In many applications, the performance of the method can be improved by
assigning proper weights to the local distance, d(xi, rj), in Eq. 6.1. This mod-
ification yields an improved learning, named weighted dynamic time warping,
in which transition to the states charges a transition penalty λ. The transition
penalty contributes in calculation of the accumulated distance. Multiple tran-
sition penalties can be defined to secure that the learning process converges
to a valid result. Equation 6.2 shows the calculation of the weighted distance
for one memory cell (see also Figure 6.5):

D(i, j) = D∗ + λ∗d(xi, rj) (6.2)

Use of the weighted dynamic time warping allows integration of prior
knowledge which can bring an empirical risk to the classification method.

l = 2
(i - 1, j)

h

P
(i, j, - 1) (i, j) 1 lv = 2

(i - 1, j - 1) ld = 2
P2 P3

FIGURE 6.5: Assigning different weights to the warping paths.

(i - 1, j) (i, j)

(i - 1, j - 1) (i, j - 1)

Deletion: (i - 1, j)

Insertion: (i, j, - 1)

Match: (i - 1, j - 1)

(i, j)

Ta
rg

et

(1
, .

..,
 N

)

Source (1, ..., T)

i-1, j
i, j

i,j-1
i, 1

j, 1

96 Deep Learning in Time Series Analysis

As was previously mentioned, dynamic time warping only provides a means
to measure the similarity of time series dynamic, and the ultimate classifica-
tion is performed by another classifier such as KNN. In this case, the global
distance must be normalised by the length of the two time series, in order to
provide a fair metrics of similarity, when the time series length are different,
and especially when the KNN is attempting to classify the patterns according
to the calculated distances (the distance with all the samples).

D(N,T)
D(X,R) = (6.3)

N + T

Without losing the generality, one can use several memory cells depending
on the dynamic depth that is expected for the analysis. An example can be:

(λh, λd, λv) = (2, 1, 2) (6.4)

Hence, a simple algorithm for implementing the weighted dynamic time
warping is illustrated as follows:

Algorithm 7 Weighted Dynamic Time Warping

1: procedure WDTW(⟨xi⟩, ⟨rj⟩))
2: For i=1:T

3: For j=1:N

4: D∗ ← d(xi, rj)

5: D(i, j)← min[D(i−1, j)+λhD
∗, D(i, j−1)+λvD∗, D(i−1, j−1)+λdD

∗]

6: end for

7: end for
D(N,T)

8: D(X,R)←
N+T

9: return D(X,R)

10: end procedure

This is to some extent similar to the memory in the deep learning methods
such as long and short term memory which will be explained in a separate
chapter. Finding the learning weight can be based on the intuition, empirical
or even by using hybrid methods where the weights are obtained by other
dynamic classifiers. Sometimes the calculation path is restricted by the al-
gorithms in a way not to permit certain distance measurements. This is per-
formed relying on the fact that two well-aligned time series will likely result in
a path which is not too far from the diagonal. Figure 6.6 illustrates a number
of the possible constraints, used to restrain the alignment path.

Dynamic time warping demands small memories from the processor com-
paring to the other alternatives. However, as with many structural classifi-
cation methods, a common problem of dynamic time warping which made it
less appreciated compared to the other alternatives, is its relatively prolonged
testing phase, especially when the training data size is large. For small size
of the training data, dynamic time warping can be absolutely an option, as it

Dynamic Models for Sequential Data Analysis 97

FIGURE 6.6: Some examples of different possibilities to restrain the warping
paths.

offers low structural risk, and the implementation detail is entirely interpre-
tative. This is in contrast with the neural network-based methods. As a rule
of thumb, this method is a perfect option for the post processing of dynamic
data, resulting from applying stochastic based methods to an input time se-
ries, or even when there is a clear dynamic path of the sequential data which
is expected for each class of the training time series.

6.2 Hidden Markov Model (Statistical Classification)

6.2.1 Model-based analysis

In many practical applications of time series analysis, we are faced with a
set of the sequential data, alternatively called sequential patterns, created
in an order which may look like a random sequence. The sequences can be
generated by a certain system with a rationality with a certain extent of
random behaviour, however, the ration of the system in generating the time
series is neither perceived at the first glance, nor seen by looking at the time
series itself. An observer sees a sequence of pattern, so called observation, but
the system behind is hidden. This system is assumed to situate a set of the
states, which are most likely to be hidden, and each state can generate a set of
the patterns, profiled by their probabilities. The observer can see the pattern
generated by the system, and attempts to identify the state of the system
which produced the chain of observation.

The system model is the so called “hidden” to the observer, unlike the time
series which is directly observed [32][109]. The main goal of many methods for
time series analysis is to find the model from which the time series is generated,
where the model is entirely hidden [91][79]. In most of the cases, a number of
the models are predicted and the one with the utmost likelihood of creating
the time series is recognised as the predicted model [113][148]. Classification
of the time series will be easy, after recognising the model, based on the
model parameters [25][80]. In fact, the system with the utmost likelihood to
generate the observed time series, is assigned to the time series. This process

98 Deep Learning in Time Series Analysis

is performed all through the training phase based on the probabilistic models
and calculations [100][6][16]. In another word, in the test phase, an unknown
time series is processed and likelihood of matching the time series with the
predicted models is found individually for each model. The model with the
utmost likelihood would be the class of the time series. This manner of time
series analysis is called “model-based” analysis. Model based analysis can
provide not only information about the time series class, but also about the
state of the time series in terms of the model parameters.

6.2.2 Essentials of Hidden Markov Model (HMM)

Hidden Markov Model is one of the widely known model-based methods for
time series analysis [113]. It provides an excellent tool for finding the model
from the time series, especially when the time series resembles stochastic be-
haviours where other methods fail to provide efficient performance. There
are different methods for using HMM in time series classification, consider-
ing time series as a set of the sequential data with random behaviour, but
the hidden model behind might be deterministic, consisting of clearly known
states. The art of HMM lies at this point that the state definition of the model
(the possible states of the model named state diagram) resembles strict and
deterministic, but creates random patterns with the known probabilities. The
state-diagram of the model by itself must be presumed, but the model param-
eters are found by using any of the learning methods, which will be described
in the following sequels. Before dealing with the model identification, a num-
ber of the definitions, used in the HMM model identification, are explained.
A Markov model is fully described by having all of the following attributions:

1. State diagram model:

A state diagram model contains possible states of a hidden system, creating
the observed sequential data/patterns. The state diagram also includes all the
possible transitions between the states, based on the previous symbol. It is
important to note that HMM is well-known as a probabilistic model, fully
based on probability calculation, and the probabilities are all found relying on
a set of the symbol. This is also the case for the state model as well as state
transitions along with the state interconnections. To make the state diagram
clarified, an example of a common healthcare problem is explained. A certain
influenza disease manifests different states during the disease course including:
fever, headache, running nose, and cough. These are accounted for by the state
of the disease course. At each state, the three indicators composed of, the value
of the White Blood Cell (WBC), the value of the Cretin Reactive Protein
(CRP), and result of the Throat Bacterial Culture (TBC) are employed for
diagnosing the type of influenza and also medication prescribed for the disease
management. Progress of the disease might be different in person to person,
but the general disease phases can include the following state diagram:

Dynamic Models for Sequential Data Analysis 99

FIGURE 6.7: An example of the state transition diagram for an influenza disease.

The indicators are treated as the sequential data, as the observation shown
in Figure 6.7, and the model creating the observation is required to be found.

Let’s assume that the following observation is measured from a patient,
and we have four different models of influenza, the objective is to find the
influenza type from the sequence of the measured data. By using HMM meth-
ods, we can find the hidden model, or alternatively the disease type, creating
the observation.

2. Symbols for the state model:

In the above-described example, there are three types of the indicators, two
with the integer values including WBC and CRP, and one with positive or
negative symbol which is TBC. It is necessary for a HMM to define the number
of the symbols as well as the type of each symbol found in the symbols. For
the rest of the section, it is assumed that there are O symbols of categorical
data (∈ Z) in the model.

3. State initial probabilities:

Probability of states of HMM at zero time is regarded as the state initial
probabilities, denoted by πi. In some of the applications this probability is
considered to be identical for all the states.

4. State transition probabilities:

The conditional probability of moving from the state Si to the state Sj is
named posteriori probability for that state. The state transition probability
is denoted by:

A = {aij |aij = p(Sj |Si), i = 1, ...,S, j = 1, ...,S} (6.5)

where p(|) denotes conditional probability and S is the total number of the
states. The state transition probabilities A, is a square matrix with S rows

HeadacheFever

CoughRunning
Nose

100 Deep Learning in Time Series Analysis

and S columns. The state probabilities are required for finding the model of
a chain of the sequences produced by the Markov model.

5. Symbol probabilities:

Probability of a symbol O to be generated at the state Si is named: symbol
probabilities. The observation probabilities is a matrix with O rows and S,
denoting number of the symbols and states, respectively. The symbol proba-
bilities are denoted as follows:

B = {bjk|bjk = p(ok|Sj), k = 1, ...,O, j = 1, ...,S} (6.6)

One of the problems of HMM is that the state models together with the
corresponding interconnections of the system which should be presumed based
on the intuitions about the system which is supposed to be hidden. Under-
standing an appropriate model can be sometimes problematic.

6.2.3 Problem statement and implementation

HMM is commonly used for sequential data or time series analysis, either for
the classification, or for prediction problems. Regardless of the application,
one must always have prior knowledge about the possible states as well as the
interconnection between the states before deciding to employ HMM for the
analysis. This knowledge is intuitively obtained based on the model dynamics
and nature of the system. Using this knowledge, there are three problems ex-
pressed by HMM, and often needed to be responded in all the applications:

1. Estimation:

In an estimation problem using HMM, a model λ = (A,B, π) is already known,
and probability of a given observation p(X|λ), composed of a sequential data
X = {x1, x2, ..., xr} is required to be estimated. In this case, the probability
is calculated as the sum of the all possible paths, using forward recurrence
algorithm, which is in turn based on three axioms:

a. The model should be situated to produce only one of the states, out of
the total S states, at any given time t.

b. The output of the model is initialised by: ∀Sj : αj = πj .bj(xi)

c. The algorithm is recursive which uses the following recursive formula:

S

αj(t) = [
∑

aijαi(t− 1)] .bj(xi) (6.7)
i=1

d. The algorithm is terminated when either a certain number of the iter-
ations is performed, or a minimal change in the probabilities is observed, or

Dynamic Models for Sequential Data Analysis 101

even a combination of these two criteria is met and the probabilities are:

S

p(X|λ) =
∑

αi(T) (6.8)
i=1

2. Decoding:

In the decoding problem, a HMM model λ = (A,B, π) is known and an
observation of the sequential data is given Q = {q1, q2, ..., qT }. An optimal
sequence of the states is required to be found which can optimally justify the
given observation X = {x1, x2, ..., xT } in terms of the probability. The term
optimal in this definition implies on a states sequence which can most likely
generate the observation sequence. Clearly an observation sequence can result
from different state sequences and the one with the highest probability is the
optimal state sequence. A well-known method for a decoding problem has
been proposed by Andrew Viterbi, and accepted by many researchers [36]. In
this algorithm, the probability is calculated for the most likely path only, in
contrast with the original method in which the probabilities were calculated
for all the paths. The Viterbi algorithm is a dynamic process programming,
initialised by the following formula using the model parameters:

δj = πj .bj(xi) ∀Sj (6.9)

where the ⟨δj⟩ is the sequence of the states. The algorithm is recursive with
the following updating formula for the generated sequence of the states:

δj = [maxi(aij .δi(t− 1))] .bj(xi) (6.10)

After a certain number of the recursions, or when the relative change of
the decoded states is less than a certain threshold, the recursion is terminated
at the following points:

p∗ = maxi(δi(T)) (6.11)

3. Training:

In signal modelling using HMM, training implicates on finding an optimal
model (state diagram in conjunction with λ = (A,B, π)), which is capable of
accurately learning a set of the labelled observations. It is obvious that training
in HMM is a supervised task. This leads to the problem of the following kind:
the model state diagram is empirically presumed, but the manner of how
to update the model parameters in a manner to optimise the probabilistic
parameters, should be found. A widely used algorithm for training a Markov
model, was proposed by Viterbi [36], which was later improved by different
hybrid models resulted from the integration of multilayer neural networks with
the model [149][82]. The hybrid models will be described in detail in the later
chapter. Although Viterbi algorithm is time consuming and can lead to the
risk of getting stuck in a local minima, it is worth to be described because of
its favourable features such as simplicity.

102 Deep Learning in Time Series Analysis

Viterbi training algorithm is an iterative process, initialised by a linear
alignment of the observations and the states according to the state proba-
bilities, state transition probabilities, and symbol probabilities. Then, in the
estimation process, the transition and the symbol probabilities are estimated
by the following calculations:

̂ Number of transitions from state Si to state Sj Nij
aij = =

Number of transitions from state Si Ni
(6.12)̂ Number of observations of symbol Vk at state Sj Njk

bjk = =
Number of observations at state Sj Nj

At the third step, based on the estimated parameters, a decode process
is performed and an observation of the states is created. This observation is
aligned with the training data and the error is calculated. The same procedure
is repeated until reaching stable values for the error, or a criterion of not
exceeding a certain number of the iteration is met.

6.2.4 Time series analysis and HMM

It was shown that a HMM process is capable to up a model using observa-
tions of sequential symbols, or sequential patterns, as its inputs. A time series
can obviously receive any real-valued random variable, hence a pre-processing
level is sometimes required to turn the time series into a sequence of pat-
terns, which will constitute the observations to be employed by the HMM.
Figure 6.8 illustrates the process.

Time series of

FIGURE 6.8: The process needed for classification using hidden Markov model.

Input time
series

Multi
dimensional
with length L

Pre-
processing

numerical
symbol with

length M (M<L)

HMM
probability
calculation

Feature
vector

Classifi-
cation

This mapping from the real-valued time series, in general a multidimen-
sional time series, to a sequence of the observations composed of patterns, is
named pre-processing. This pre-processing often invokes a quantification tech-
nique such as distance-based quantification (Euclidean distant), KNN, Gaus-
sian mixture model, or even MLP neural network, as the mathematical tool
to perform mapping. In most of the cases a supervised mapping is preferred,
nevertheless, there is no limitation to use unsupervised clustering methods,
i.e., K-Means clustering to perform this mapping. Therefore the combination
of the unsupervised and the supervised model-based method can be of special
interest when we have multiple recordings of time series and would like to
extract the patterns of information from the noise [40]. Nevertheless, such the
models are mainly heuristic and can be faced with difficulties to be generalised,
and therefore were not included in this book.

Dynamic Models for Sequential Data Analysis 103

6.3 Recurrent Neural Network

Recurrent neural network is another form of the dynamic methods for learn-
ing the variant contents of time series and sometimes the sequential data.
Architecture of a recurrent neural network contains one/several feedback of
the outputs, which are used during the programming, both for the training
and the testing. Figure 6.9 illustrates an architecture of the recurrent neural
network.

FIGURE 6.9: Block diagram of a recurrent neural network.

Input time
series ClassificationOutput layerMid layer with

internal feedback

Recurrent neural networks offer the possibility of incorporating previous
states of data, and also the classification result, into the learning process,
through a predefined architecture of including the past content of the time
series in the learning architecture. Such the past contents of time series are
stored in the memory of the method, which differentiates the dynamic learning
from the static learning such as MLP. Bear in mind that system architectures
like the Time-Delayed Neural Network, even though introduce the potential
to bring dynamic contents of the time series into the learning process, still
are incapable to invoke the past contents of the system for decision making.
As a matter of fact, these architectures do not employ dynamic programming,
and the dynamic contents of the time series are treated as the input features,
unlike recurrent neural network in which system outputs from the previous
time instances are employed by the network for the classification. One should
be aware that recurrent neural network is different from the adaptive method
in this aspect that a recurrent neural network is trained only once, and when
trained the learning weights are employed for the classification. Some of the
learning weights are assigned to the feedback outputs at the previous time
instances. In contrary, an adaptive method cannot take any decision and the
parameters of the method are updated at certain time intervals.

In analogy to HMM, the method memory for a recurrent neural network
acts as the previous symbol of a HMM, which participates in predicting the
future of the method. Likewise the HMM in which deep understanding about
the classification goal as well as the input data provided intuitions for design-
ing state diagram in conjunction with the corresponding connections, a deep
insight into the nature of the input data is necessitated when architecture of
a recurrent neural network is going to be designed. Figure 6.10 shows archi-

104 Deep Learning in Time Series Analysis

tecture of a recurrent neural network, known as the Elman neural network,
which is commonly employed for the classification purposes [34][146].

FIGURE 6.10: Block diagram of an Elman recurrent neural network.

As seen in Figure 6.10, the architecture is designed according to the ap-
plications and demands, which is also true for the training strategy. In this
architecture, a copy of the hidden layer from the previous time sample is
incorporated into the learning process. Another alternative to Elman neural
network is known as Jordan neural network, in which the copy is taken from
the output layer at the previous sample time [146]. In many cases of recur-
rent neural network, back propagation error method is invoked for the train-
ing, where the hyper parameters are obtained by an appropriate optimisation
method such as natural inspired methods as defined by genetic algorithm and
evolutionary computing.

Recently, recurrent neural networks have been profoundly elaborated by
different architectures, each offering new elaborations compared to the previ-
ous ones. Long and Short Term Memory (LSTM) is one of the most commonly

Dynamic Models for Sequential Data Analysis 105

used architecture of recurrent neural network, whose application was broadly
studied in different topics. In this book, recurrent neural networks will be ex-
plained separately in Chapter 11, where details and features of the recurrent
neural networks will be scrutinised. This brief explanation was introduced in
order to describe the most commonly used alternatives of dynamic program-
ming for processing sequential data and also for time series analysis.

https://taylorandfrancis.com

Part III

Deep Learning Approaches
to Time Series
Classification

https://taylorandfrancis.com

7

Clustering for Learning at Deep Level

The concept of deep learning is focused on neural networks with many layers
and neurons, even up to thousands, containing several hyperparameters for
the training, needing heuristic and sometimes naturally inspired methods for
the optimization. This can be certainly true to a certain extent, but definitely
cannot cover the entire scope of deep learning. This chapter provides another
view towards deep learning based on using unsupervised methods to help the
learning process for extracting subtle contents of time series at the deep level.
This chapter focuses on the potentials of the well-known clustering methods
in the deep learning perspective, that can strengthen the learning process.

Segregation of data into a certain number of the groups, where the number
of the groups may not be necessarily known in advance, in an unsupervised
manner, i.e., clustering [102]. The number of the groups is assumed to be
known in majority of the clustering algorithms, however, it is not necessarily
a fixed number [118][147]. In some of the unsupervised methods, an optimal
number of the groups is also found through the learning process. Regardless
of knowing the number of the groups, a clustering method attempts to find
data similarities and group the data according to the similarities quantified
by a reckoning learning rule. This aspect of clustering has been sought in the
modern deep learning to extract latent information from the deep level of the
learning architecture.

Clustering from the beginning was deemed only as a method to extract
similarities when we didn’t have access to the real class of the data. Appli-
cation of clustering as a tool was evolved in time for extracting the pure
information out of the noisy data, by assuming that the variations appearing
in the data contents come from the different sources of noise. To some extent,
this unwitting contaminating source can be excluded from the data by using
a suitable clustering method. An important assumption to such the applica-
tions is that the noise level is far lower than the data. It is certainly accepted
that a number of the data points can be affected because of noise, but the
general data population is expected to be discriminant even at the presence
of various sources of noise. It is obvious that the discrimination power of a
clustering method in categorizing the data according their similarities plays
an important role, which can overcome the noise-caused data discrepancy.

The capability of a clustering method in extracting similarities within a
group of data with an identical class, and also dissimilarity of data groups for
different classes, can provide a powerful means for any kind of these learn-

110 Deep Learning in Time Series Analysis

ing methods. This ability is intuitively provided by different learning methods
such as multi layer perceptron neural networks, however, many practical solu-
tions were still lacking from a desirable performance. Even after development
of the sophisticated neural network-based methods, still performance of the
classifier is sometimes unsatisfying. The researchers have thereafter become
motivated to enhance the learning capability of neural networks by increasing
the learning layers of neural networks, that eventually led to innovative ar-
chitectures, named deep learning methods. At this level, an important point
that needs further attention, is the fact that blindly invoking deep learning
to develop a classifier, can result in a high structural risk and unreliable per-
formance of the classifier due the very large number of the hyper parameters
associated with the deep learning methods. Nowadays, efficient design tools
such as TensorFlow have made a breakthrough in designing the architecture
of deep learning. However, using a simple and easy task, jeopardizes perfor-
mance of these methods in terms of the structural risks. Nonetheless, powerful
learning exists in the latent space of deep learning methods that elaborates
the learning performance. In fact, art of the deep learning method lies in of-
fering an integrated model in which the feature extraction and pre-processing
levels, are incorporated into an integrated architecture. This is certainly an
elaboration for the method at the expense of association high structural risk
with the architecture. It is commonly seen in most of the neural network-based
methods with many layers, that can exceed even up to hundreds of the layers.

Another common problem often seen is the blind use of many heavy ar-
chitectures of deep learning methods, is the overfitting problem, caused by a
large number of the hyper parameters in relation to the training data. This
is an additional turning point that tends to increase structural risk of the
deep learning methods. Such problems have been well resolved by the re-
cent architectures of interpretive and understandable structures, introduced
to the community of artificial intelligence. In these structures, an input layer
of processing performs the learning at the deep level, either for the feature
extraction, or for learning deep contents of the data. The input layer deliv-
ers the purified, or in another language quantified data, to the outer layers
which performs the ultimate classification. In analogy to HMM, the input
layer of a deep learning method performs a pre-processing as was explained
in a separate block of a HMM-based method. The level of processing is, how-
ever, integrated with the rest of the architecture of the learning method. This
fashion of the classification, which is sometimes named multi-scale classifica-
tion method, offers an advantage to the HMM-based method, resulting from
the fact that the learning of the deep level is not completely separated from
the rest of the learning, unlike the HMM in which the pre-processing phase
is completely independent, and separately trained. Therefore the integrated
training can introduce an elaboration in learning process, resulting from an
improved possibility of extracting similarities and discriminative contents of
the data. As you will see in this chapter, clustering methods can be wisely

Clustering for Learning at Deep Level 111

invoked to extract subtle and very detailed contents of the information from
the data, down at the deep level of the learning process.

This chapter deals with the time series analysis and the theoretical founda-
tion is based on stochastic time series which can be contaminated by various
sources of noise. Of course generality of the theories is not lost by using time
series analysis as the case study, however, the main focus of this book is time
series analysis. In this perspective, the reset of the methods will be focused
on learning stochastic time series for the purpose of the classification, where
the between-class similarities makes conventional classification methods inca-
pable of learning discriminative details of the time series. Application of this
methods can be clearly seen in time series of the physiological signals, which
is a typical example of the signals with high complexity coming from the com-
plicated source of the data. This application is today a central part of the
context of biomedical engineering. This processing can be oriented towards
time series classification either for the diagnosis, or for patient monitoring
purposes. Some of the examples of this application will be briefly addressed
throughout the sequels. An experience of two decades of studying biological
signals for the diagnosis and monitoring, has taught the authors that not any
fashioned method can lead the users to arrive at an efficient system by which
a reliable performance can be achieved. In fact, benefits of many deep learning
methods are limited for only very large scale companies who have access to
a huge datasets of great data variety, to support an efficient training without
been trapped in difficulties such as overfitting. This convinces the author to
present the below methods by which efficient performance has been observed
[61][63][45][60][57][59]. Another practical factor to be considered is complexity
of the learning methods. In some of the applications of Internet of Things, a
heavy deep learning method cannot be implemented at the edge level, espe-
cially when it comes with the federated learning. In addition to the memory
needs for the training and testing, power consumption takes an important
role in the internet of things. Nevertheless, a number of the sophisticated
deep learning methods are designed to be implemented in such structures
[52][152][58].

7.1 Clustering as a Tool for Deep Learning

Community of artificial intelligence, in its older fashion, described clustering
as an unsupervised method where the data labels do not play any role in
the learning process. This traditional description can no longer maintain its
meaning, in some of the cases, for instance in the cases of deep learning when
it comes to the learning of time series at the deep level. In this case, the
learning process is assumed to be unsupervised, however, a clustering method
is still invoked to assign a set of the labels to the data, according to the
within-class similarities, and the between-class dissimilarities. Next, the labels

112 Deep Learning in Time Series Analysis

are compared to their actual class, and the classification error is calculated.
The feature set which provides the optimal performance (in most of the case
the largest classification rate) is selected for the rest of the learning process.
Figure 7.1 illustrates the way of using of a clustering method for learning
time series contents at the deep level. In this manner of learning, clustering
finds a feature set among a large number of the input features, which provides
optimal discrimination power.

FIGURE 7.1: Clustering is used to find an optimal feature set at the deep level of
the classification.

Input data Clustering Error Learing

• Feature
vectors {Xi}

• Labels {Qi}

• Input:
Feature
vectors {Xi}

• Output:
Labels {qi}

• Input:
{qi}, {Qi}

• Output:
E = {qi} - {Qi}

• Input:
{E}, {Xi}

• Output:
Xopt = Arg min
{E}

This structure comes from a multi scale classification, where subtle details
of the time series are extracted by using a clustering method, and the result-
ing abstract of the feature vectors are employed by another dynamic learning
method such as recurrent neural network or HMM. Let’s assume that a clus-
tering method assigns a label to an input data vector of dimension M , by the
function ϕ : RM → Z defined by:

qi = ϕ(xi), ∀i : xi ∈ RM , i = 1, ..., N (7.1)

Assuming the actual data labels to be Qi ∈ Z, the classification rate is
calculated for an input dataset of size N as follows:∑N

δ
I = i=1 (qi, Qi)

(7.2)
N

where
1, if x = y

δ(x, y) =

{
(7.3)

0, if x = y

It is usually difficult to characterise a time series, directly by its temporal
contents, especially for the stochastic cases, unless the groups are quite dis-
criminant in terms of the temporal variations. This task requires another step
of processing to find an appropriate mapping (alternatively saying mathemat-
ical transformation) for the time series to another domain, or sometimes an-
other space, in which different classes are better segregated. That’s why math-
ematical transformation has become an important topic of machine learning.
One of the most widely used transformation techniques is Fourier transfor-
mation. This powerful method, which has been profoundly used over many

̸

Clustering for Learning at Deep Level 113

decades, maps temporal variation of a time series to a domain of complex
numbers, named frequency domain, where the temporal variations can be
characterised easier than using merely temporal contents of the time series.
For the time series x(n) of length N , the Fourier transform is calculated as:

N
1

X(ω) =
∑−1

x(n)ejωt (7.4)
N

n=0

For stochastic time series, the Fourier transform is calculated over a win-
dowed time series, and the square power of the complex numbers resulted
from the Fourier transform for each window, is averaged over the windows.
The result is indeed an estimation of the spectral contents of the time se-
ries which is affected by several parameters such as the window’s length, the
window’s shape, and the window’s overlap. This way of direct form of spec-
tral estimation is named as “Periodogram” or simply “direct form of spectral
estimation”. This point is put into a better perspective in the followings.

For a temporal window w of length N0, the windowed Fourier transform
is calculated as:

N
1

−1

X(ω, t) =
∑

x(n+ t)w(n)ejωt, t = [0, ..., N 0
0 n=0

−N], N0 << N (7.5)
N

where square power of the Fourier transform of a time series is known as spec-
tral energy of the time series. For stochastic time series, windowing is always
known as an important consideration to be “taken with a little bit of salt”.
Length of the windows is fixed and also the time series, in its full-length, must
be covered by a set of the windows. Sometimes overlapping windows are em-
ployed to improve the time frequency resolution. For a better understanding,
one should consider that choosing a long window yields losing the temporal
resolution (see Eq. 7.4 in which t spans a short range since N0 approaches N).
On the other hand, too short window results in a low spectral resolution (N0 in
Eq. 7.5 becomes small). The trade-off between time and frequency resolution
requires an appropriate selection of the window size. The readers can refer
to the literature in discrete time signal processing to find more details about
the trade-off between time and frequency resolution [104][132][32]. Dynamic
contents of a time series can be found by using spectral contents of a temporal
window sliding over the time series as defined by periodogram. Thus equation
(7.5) becomes:

2N 1
1

X
∑−

(f, t) =

∣∣∣∣∣ x(n+ t)w(n)ej2πfn
N0 n=0

∣∣
(7.6)

The window’s shape is selected in a way to reduce side

∣∣∣
lobe leakage. More

details are found in [104][132][32]. Here, the question of time series char-
acterisation turns into another form: what frequency bands can be used to

114 Deep Learning in Time Series Analysis

calculate spectral energies such that similarity and dissimilarity between dif-
ferent classes are optimally quantitated? This directly points to a learning
process, remembered from the introduction where learning was introduced as
finding similarities and dissimilarities between different classes. For stochastic
time series, using only one level of learning may be insufficient, and therefore
multi-scale learning methods, which were later recognised as deep learning
are administered in most of the cases. The structure of such learning methods
involves learning details of the time series at the deep level. Clustering meth-
ods can be well employed at this level of learning with some considerations.
To this end, a set of the feature vector of length M is extracted from each
temporal window, over the frequency bands B defined as follows:

.
B = {[f1, f2]T : f1, f2 ∈ Z+ ∧ f1 < f2 < Fmax} (7.7)

where Fmax is the maximum frequency presumed for the analysis, that is often
defined by the signal collection system. An example of such the restrictions
in the real-world scenarios is the sampling frequency. In many practical situa-
tions, the maximum frequency is half of the sampling rate. Nonetheless, using
the above definition for frequency band, can help the formulation of finding
a set of the frequency bands whose spectral energies provide optimal discrim-
ination power. Spectral energies calculated over of a set of frequency band,
known as the sub-band energy, becomes:

T
1 0−1

P (bk) =
T0

∑ ∑
X(f, t) (7.8)

t=0 bk∈B

where T0 is the total number of the temporal windows. One may refer to
Eq. (7.5) and conclude that the total number of the temporal windows is
N −N0+1. This conclusion is not incorrect, but not generalised. This is only
true if the temporal shift is one sample which is not favoured in terms of the
calculations power, as it is a cumbersome process because of involving a high
number of the temporal windows. In most of the practical situations, in order
to make the process less demanding, the temporal shift is considered to be
much larger than one sample. A percentage of the windows length, expressed
as in percent, is mostly used, e.g., 75%, which causes a certain overlap over
for two successive windows. This manner of using the overlapping windows is
very common in most of the signal processing applications. In fact, use of the
temporal shift of one sample, might be seldom seen specially when the signal
length is large.

Finding such a set of frequency bands is indeed a kind of the learning pro-
cess at the deep level. This way of learning involves a pursuit over the spectral
energies calculated as defined by Eq. (7.6) using all the combinations of dif-
ferent frequency bands and selecting the set which provides an optimal value
of discrimination power. This set of the frequency bands is named discrimina-
tive frequency bands. As such the pursuit can be performed in different ways.
Hill-Climbing algorithm is one of the alternatives to this end. Assuming I is

Clustering for Learning at Deep Level 115

the value of the discriminative function resulted from a set of the frequency
bands with the utmost discrimination power, these discriminative frequency
bands can be found through the following algorithm:

Algorithm 8 Learning Discriminative K Frequency Bands using Hill-
Climbing

1: procedure DFB(⟨Xi⟩,K))

2: Calculate Xi(f, t) ▷ Eq. 7.6

3: Calculate P (b(Xi(f, t))) ▷ Eq. 7.8

4: I1 ← argmaxm I(P (b(Xi(f, t))))

5: For j=2:K

6: Ij ← argmaxm I(⟨[P (I1), ..., P (Ij−1), P (b(Xi(f, t)))]⟩)
7: end for

8: return [I1, ..., IK]

9: end procedure

Clearly, this is an iterative and time demanding algorithm. The number
of the pursuits required to find K discriminative frequency bands depends on
the total number of the frequency bands that exist in (7.7). In order to find
this number, we begin with the assumption of K = 1 to find the number of the
pursuit for one discriminative frequency band. In this case, we firstly assume
that f1 in (7.7) is set to 0. In this case there are Fmax frequency bands to be
examined. Next, the f1 is set to 1, and obviously the number of the frequency
bands is Fmax − 1. This will continue until the last, where (f1 = Fmax − 1)
and there is only one frequency band. Hence, the number of the pursuit is
found by accumulating the number of the bands at each iteration:∑ Fmax(F

b = Fmax + (Fmax − max 1)
1) + ...+ 1 =

−
(7.9)

2
b∈B

One can easily see that using the above-mentioned Hill-Climbing method
yields the total number of the pursuit for finding K discriminative frequency
band by the following equation:

K−1

Pursuits =
∑ (Fmax

j (7.10)
Fmax + 1

j=0

−
)

This algorithm demands a time-consuming process, even though it is ef-
ficient. Other optimisation methods such as evolutionary computation or ge-
netic algorithm can be invoked instead of using the hill-climbing method in
Algorithm 8.

It is again stated that any clustering method can be employed for finding
a set of the frequency bands which provides an optimal discrimination. This
can be assumed as learning at the deep level in which an optimal feature set
is learned, that is indeed a way to integrate the feature extraction with the

116 Deep Learning in Time Series Analysis

architecture of the learning process, which can serve as a learning method at
the deep level, as you will see in the next chapters. Depending on the nature of
the clustering method chosen for the learning purpose, certain attention must
be paid. Here the clustering method is not invoked for labelling, instead is
employed as a criterion for quantitating the discrimination power of the chosen
method. Such the elaborating aspect of clustering method takes nature of the
method into consideration rather than the labels assigned by the method. A
number of the well-known clustering methods are formulated in the following
sequels for this learning purpose.

7.2 Modified K-Means Method

K-Means has been previously described in Chapter 3, where it was shown
that this method segregates the clusters of data according to the statistical
distribution, reflected by the mean of the centroids. One of the problems of K-
Means in attaining a stable clustering is initialisation of the iterative method
for the clustering. In fact, sometimes the clustering might land in different
clustering results because of the different initialisation data. Nevertheless, this
method is invoked for learning the deep contents of the data according to the
classification rate obtained for each feature set. In order to prevent different
clustering results in each trial of K-Means, a fixed initialisation process is
employed, in which the absolute value of the feature vectores is calculated
and uniformly distributed over the classes for the initialisation. The algorithm
starts with one feature of spectral energy, and equally distributed based on
their values. Then, the features of spectral energies are added one by one. At
each step of adding a new feature, K-Means algorithm is applied to the data
to make a new clustering. Let’s assume the frequency bands, defined in (7.7),
are employed to form a feature vector as in (7.8). Then, augmented spectral
energy for a set of the frequency bands is calculated as in Algorithm 8 and the
classification rate of the resulting feature is calculated and the classification
error with respect to the actual classes is found for each frequency band. The
band with minimal classification error is selected as the discriminative band.
In fact, the discriminative function of Algorithm 8 becomes the classification
error resulted from the K-Means clustering.

7.3 Modified Fuzzy C-Means

The previous method is based on grouping the data samples to a pre-defined
number of the clusters according to their relative distance. Then, the centroid
of the clusters are calculated and iteratively updated until reaching a stable
segregation. At each iteration, a single data sample belongs to only one cluster,

Clustering for Learning at Deep Level 117

even though the cluster labels may be variant over the iterations. The c-means,
follows a similar clustering method, with the difference that a single data
sample may belong to all the clusters, but with a different membership value.
This is another parameter associated with the clustering method, seen in the
fuzzy-based methods including c-means, describing how a parameter can be
part of a cluster. Membership value of a data sample to a class is indeed the
degree of belongingness of the data sample to the class. Membership is different
from probability, in this sense that the sum of the membership values of a
single sample data over the whole available clusters can be unequal to one, in
contrast with the probability which always yields a unity sum over the classes.
Membership is a broader definition than probability since this summation can
be even one, depending on the developer’s design. Assuming that there are N
data samples X = [x1, ..., xN], which are tried to be segregated to C clusters,
and the feature vectors are defined in Eq. 7.8. In C-Means clustering method,
an initial value is guessed for the centre of each cluster. This initial guess
together with the memberships are updated through an iterative procedure,
where an objective function plays an important role in the updating procedure.
The objective function, Ob, defined as follows, is attempted to be maximised
in the iterative procedure:

N

Ob = arg min
∑∑C

wm∥x − c ∥2C ij i j

i=1 j=1

1
wij = 2∑ m

C

((7.11)

−1

∥xi−cj∥
k=1 ∥xi−ck∥

)

where m (m ∈ (1,∞)) is the degree of fuzziness. A higher value for m corre-
sponds to a higher fuzziness. Likewise to the K-Means algorithm, an iterative
algorithm can be invoked for the learning at the deep level using clustering
error as the cost function. The label to the data samples are assigned accord-
ing to the membership values to the clusters. The membership value is found
by:

wk(x)mx
ck =

∑
x (7.12)
x wk(x)m

This cost function is contributed

∑
in the learning process at the deep level,

by which an optimal feature sets are found. Although C-Mean and K-Means
clustering methods look to be very similar to each other, the accuracy result-
ing from these methods can be very different in many applications of deep
learning.

118 Deep Learning in Time Series Analysis

7.4 Discriminant Analysis

In the previous method, time series contents were learned at the deep level,
using K-Means clustering as the mathematical unsupervised mapping method
and the resulting labels were compared to the actual labels where the classi-
fication rate is employed as a metric for quantification of the discrimination
power, and consequently the learning process. The pursuit was repeated to-
wards finding an optimal value for the metric. Without losing generality of the
method, one can employ other statistical methods instead of K-Means clus-
tering to proceed the learning process at the deep level. Discriminant analysis
method can be alternatively employed for such the quantitation, either by it-
self or in a modified form by the transformed version obtained using the eigen
vectors. Assuming a training dataset of size N , contains C groups, each con-
taining Ni (i = 1, ..., C) number of the time series. Spectral contents of each
single time series is obtained from the Eq. 7.8. One way to quantify capabil-
ity of data segregation, is to use the technique presented as the discriminant
analysis and Fisher criterion. Recalling from Chapter 3, the Fisher value is
calculated by:

Between Scatter
F isher V alue =

Within Scatter

SB =
∑C

p(ωi)(µi − µ) · (µi − µ)T

i=1

C

SW =
∑

p(ωi)
i=1

· Σi

(7.13)
C

SB p(ωi)(µi µ) (µi µ)T
∆ =

| |
=

| i=1 − · − |
|SW |

∑
|
∑C

i=1 p(ωi) · Σi|
C

µi = E{x|ωi}, µ = E{x} = p(ωi)
i=1

· µi

Σi = E{(x− µi)

∑
· (x− µi)

T |ωi}

where p(ωi) is the probability density function of the random variable ωi and
∆ is the Fisher value.

For the spectral feature vectors, Pi = [P1,i, ..., PM,i] (i = 1, ..., N), as
defined by Eq. 7.8, the learning process begins with one feature with optimal
discrimination power, and then continues by adding the other the sub-optimal
spectral features one by one until reaching the last one. In order to find the first
discriminative frequency band, b1, one dimensional Fisher value is employed

Clustering for Learning at Deep Level 119

to facilitate the process:

∆ =

∑C
i=1(µi − µ)2

C∑ i=1 σi
N
j=1

µi =

∑
P1,iδ(i, j)

Ni

1
µ =

∑N
j=1 P ,i

i (7.14)
N∑ 2

N
j=1

σ

(
(P1,i − µi)δ(i, j)

i =
Ni

)
1, if x = y

δ(x, y) =

{
0, if x = y

The following algorithm shows the learning process at the deep level using
Fisher method:

Algorithm 9 Learning Discriminative K Frequency Bands using Fisher cri-
teria
1: procedure DFB(⟨Xi⟩,K))

2: Calculate Xi(f, t) ▷ Eq. 7.6

3: P1 ← P (b(Xi(f, t))) ▷ Eq. 7.8

4: Calculate ⟨Ii(P1)⟩ ▷ Eq. 7.14

5: b1 ← argmaxm⟨Ii(P1)⟩
6: For j=2:K

7: Pj,i ← P (b(Xi(f, t))) ▷ Eq. 7.8

8: Ii ← ⟨I([P (b1,i), ..., P (bj−1,i), Pj,i]⟩) ▷ Eq. 7.13

9: bj ← argmaxm Ii

10: end for

11: return [b1, ..., bK]

12: end procedure

The optimal bands are added to the feature vector, one by one towards
achieving the feature sets of length K providing optimal segregation. It is of
critical importance to consider that for a certain datasets, the determinant of
the SB and SW matrixes in (7.13) may tend to a close vicinity to zero, which
put calculation of the Fisher value into the risk of overflow, or in another
term leads to singularity and incorrect learning. The algorithm therefore, sets
a criterion of the bounded determinant meaning that the feature sets, creat-
ing an extraordinary high value of the determinant of the two matrices. The
bands with a singular value, or alternatively a low value of the determinant is
excluded from learning. This iterative algorithm can be boosted by involving

̸

120 Deep Learning in Time Series Analysis

eigen vectors of the Fisher matrix, using the following derivations:

∆ =

∣∣
(7.15)

W

∣∣WTSBW

WTSW

∣∣
where W = [w ,

∣∣ ∣
1 ..., wM] corresponds

∣
to the matrix

∣∣
resulting from M eigen

vectors with the largest eigen values. The only difference comes to the im-
plementation of the discriminant analysis, where in Algorithm 9 the learning
process is quantified by the eigen value of the Fisher matrix in Eq. 7.15 rather
than merely the Fisher value. In any case, the determinant of the Fisher ma-
trix must be checked to avoid singularity. The rest of the algorithm remains
similar to the previous ones. Using the eigen vectors of the Fisher value brings
rather secure learning to the process against the background noise. This comes
from the fact that the principal components correspond to the eigen values
project the background noise. Thus, to some extent, the background noise can
be eliminated by excluding the components with low eigen value.

7.5 Cluster-Based vs Discriminant Analysis Methods

The cluster-based learning methods, including K-Means, C-Means or any
other clustering method, all work relying on the classification rate. Although
methods like K-Means take the statistical distribution of the data into con-
sideration in their clustering process, the final decision for selecting the dis-
criminative optimal feature sets are made merely based on the classification
rate. Regardless of the distribution of the data, the classification performance
undertakes the learning process. This can be flawed for the small or medium
size of the training data, as performance of the method is potentially at the
risk of the instability when it comes with a large testing data out of the train-
ing data. To put this point into a better perspective, consider Figure 7.2,
depicting distribution of 2D data for two cases.

In Case 2, the classes are well segregated in terms of the classification rate,
however, the data is distributed in a way that a large number of the border-
line data samples are seen around the border. Therefore, for a large dataset
out of the training data, the probability of mixing the data samples of the
two groups is something to be considered. In the other graph of the figure,
the Case 1, the two classes are better segregated compared to the previous
one, even though the classification rate might be lower than the other one,
because of some outliers from the two classes interlacing the other class, and
therefore are wrongly classified. One can easily have an intuition that for a
large dataset out of the training data, a high probability of repeating more or
less a similar result is foreseen. Fisher value on the other hand, takes distri-
bution of the data samples into account, by using the joint “within scatter”
and “between scatter”, simultaneously. The two graphs depicted in Figure 7.2

Clustering for Learning at Deep Level 121

FIGURE 7.2: Two cases of data distribution: One with a higher Fisher value (Case
1) against the other one with a better classification rate (Case 2) but poor Fisher
value. A combined form of the two criteria, the Fisher value and the classification
rate, can result in a better performance.

are exaggeratedly demonstrated in order to illustratively show performance
of the two approaches of learning at the deep level: the cluster-based and dis-
criminant analysis methods. Obviously such the extreme cases are unrealistic
to be observed in real-world scenarios.

7.6 Combined Methods

The supervised clustering methods, prescribed for learning at the deep level
in the previous sections, all employ spectral contents of the time series over
a short length window to learn dynamic contents of time series at the deep
level. As you will see in the coming chapters, another level of the learning is
necessitated to extract dynamic contents of the time series over the surface
constituted of the learning outcomes from the deep level. Therefore a mul-
tistage structure demands a smaller size of the parameters for deep learning
and is suitable for small and medium size training data. In this situation, a
problem that can commonly arise for the clustering-based method is that, one
can reach to several frequency bands all resulting with a similar classification
error. Assuming that there areK frequency bands all yielding an identical clas-
sification error, an important question is: which frequency band can provide
a better learning when it comes to the multistage learning process? Response
to this question motives us to invoke a combination of the cluster-based and
Fisher-based learning. In the combined method, a set of the frequency bands
are firstly found in a way to provide optimal classification error. Among the
sets of the frequency bands, exhibiting similar classification performance, the
set with superior Fisher value is selected.

Referring to the previous sections, combining the two approaches of learn-
ing at the deep level can benefit the learning process of taking both the dis-
tribution and the classification rate into account. However, in the learning

122 Deep Learning in Time Series Analysis

algorithm, the order of using Fisher value and the classification rate, as the
constrained criteria, plays an important role in the learning process. In fact,
the order of using the criteria depends on the designer if they prefer clas-
sification rate-oriented or discriminant-oriented. Putting the Fisher value as
the primary criterion to be checked, attributes focus to the data distribution
rather than the classification rate. Choosing the order of the criteria depends
on the size of the training data and also the learning goal. This can be heuris-
tically decided or empirically found through experiments.

8

Deep Time Growing Neural Network

Deep learning was first introduced in the architecture of the multi-layer neu-
ral network with a high number of layers and neurons, in a way to improve
the learning capacity as was defined in the previous chapters. Time growing
neural network was also introduced as an alternative to time-delayed neural
network in which dynamic contents of an input time series is incorporated
into a set of the temporal window with growing length, each characterized
by its frequency contents, in conjunction with a multi-layer perceptron neural
network for a nonlinear mapping. Invoking the growing time windows in any
form of the growing scheme, can boost the performance of the classification
method, compared to the time-delayed and multi-layer neural network, that
was explained in the previous chapters. A time growing neural network incon-
sistently assigns the learning weights to the windows. This interesting feature
of time growing neural network tailors the classification method optimal such
that the windows with shorter lengths receives a higher number of the learn-
ing weights, and hence contents of the shorter windows are better learned
compared to the longer ones. Besides, all the contents of the multi-layer per-
ceptron and time-delayed neural networks are included in the time growing
neural network, when spectral energies are employed for the learning task.
Meanwhile, making the trade-off between frequency and time resolution is
easier for time growing windows. All of these interesting features are included
in time growing neural network, and several studies reported outperformance
of this architecture compared to the other two alternatives, in the time in-
variant architecture [48][53][55]. Nevertheless, this architecture was described
merely in the shift-invariant manner and needs to be improved by using a
suitable structure of deep learning. This chapter is dedicated to describe a
structure of deep learning as a dynamic process for time series analysis. Con-
tents of this chapter are based on the studies, that have been newly published
by the related journals or conference proceedings. In all of those studies, time
growing neural network was employed as a building block of the learning pro-
cess. The readers can ultimately speculate to suggest other structures of deep
learning based on time growing neural network, which might be topics of the
future publications.

124 Deep Learning in Time Series Analysis

8.1 Basic Architecture

This section unveils a general deep learning architecture for time series classi-
fication, based on the time growing neural network. This architecture assumes
that a stochastic time series contains discriminative information for different
classes, which are not easy to extract due to the non-stationary and non-
ergodic behaviours, and meanwhile the discriminative contents are included
within the signal chunks with short time, and also over a long interval of
temporal variations. Hence, the architecture must be capable enough to learn
both the short time information, and the long interval variation of the time
series, named the dynamic contents of the time series. The deep learning archi-
tecture in this perspective, contains a block sophisticated for learning at the
deep level, in conjunction with another learning process, which takes the long
interval dynamics into the learning process. Although this architecture seems
to be similar to multi-scale learning, but different in the sense of the depen-
dence of the classification method as a whole to the learning methods at the
deep level. Regardless of the dependence to deep level learning, multi-scale
and deep architecture share common parts with each other in the learning
perspective. Figure 8.1 illustrates a structure of the deep learning method for
time series analysis with C middle classes. The number of the middle classes
is indeed the state of the system and differs from the the number of the ulti-
mate classes. The number of the middle classes must be often higher than the
number of the ultimate classes, found either empirically or treated as a hyper
parameter.

FIGURE 8.1: Overall architecture of a deep time growing neural network.

Before going through the method description, it is needed to draw the at-
tention of the reader to the difference between temporal window and temporal
frame, in the terminology of this book. Temporal frame is a piece of a time
series identified either by following a systematic procedure or by performing a
processing method, which might have an unfixed length, even though in many
applications (including the below method) the frames accept uniform length.
However, there is no obligation for a temporal frame to be attributed by a
fixed length. An example where the temporal frames have variant length, is

Deep Time Growing Neural Network 125

in speech processing, where the temporal frames encapsulate word utterance.
This is an essential part of a speech processor, performed prior to learning
semantics of the sentences. Depending on the word length, the corresponding
temporal frame has a different temporal length. In contrast, the term tem-
poral window always refer to a segmentation of time series in a well-defined
manner. The temporal frames can have a variant length, however, the tempo-
ral windows cannot have unknown length. This is in line with the definition of
temporal window in signal processing books. In this method, the time grow-
ing modules are invoked to learn time series contents within the short length
temporal frames, referred to as learning at the deep level, which is usually
followed by another level of learning that deals with dynamic contents of the
time series. In fact, architecture of the input layer of the method is shaped
according to the training data, keeping the rest of the architecture unchanged
with respect to the data. By this definition, the learning process involves
two different levels of learning, deep level learning and surface level learning.
Deep learning corresponds to the process, through which detailed contents of
the time series within short length temporal frames are learned over different
classes of the training data. The method relies on the hypothesis that contents
of the time series over a set of the short length temporal frames are presumed
to be discriminative. Assuming that a temporal frame xi,t(n), of length T , is
characterised by its frequency contents, calculated over a set of the temporal
windows with growing length, all are situated within the temporal frame:

1
−

Xi,t =

∣∣∣ T∑1∣∣ xi,t(n)e
−j2πfn

T
t=0

∣∣
(8.1)

The deep level of the learning, yields in a schematic

∣∣
of the growing

windows, providing an optimal discrimination power.

∣
Besides, the frequency

bands, over which the spectral energies, are found during the deep level learn-
ing. It is obvious that the frequency bands are accompanied by the temporal
window, which is characterised by its spectral contents. An important ques-
tion is the fashion of the growing windows to achieve optimal discrimination
power, as was previously introduced in Chapter 4. It is sometimes the case
that the discriminative contents of the short length frames are mostly con-
centrated within the beginning of the frame, and the last parts of the frame
are rather consistent over the classes. This situation motivates the use of the
backward time growing neural network, as the discriminative parts of the
frame are employed with respect to the consistent part of the frame of the
time growing scheme. In the deep time growing neural network, the type of
the growing scheme (forward, backward, or bilateral) is learned through the
deep learning process. The method, uses all the three forms of the growing
windows, and finds the optimal windows in conjunction with the correspond-
ing discriminative frequency bands. For the forward and backward cases, the
scheme is rather clear, but for the mid growing scheme, the point from which
the growing windows are bilaterally expanded, must be found as well. This

126 Deep Learning in Time Series Analysis

point is named, the growing centre. The deep level of learning includes all
these details. The following sequels describe the learning process.

8.2 Learning at the Deep Level

Although there are several interesting features of using the growing-time win-
dows effectively which improve the learning process, when spectral energies
are employed for the learning method to preserve the temporal variations, one
should pay attention to the suitable scheme for using the growing-time win-
dows in terms of the temporal expansion. Forward, backward and mid-growing
schemes, each can improve the learning in its way. The question is, which
scheme results in a better learning? In fact, the way of using the growing-time
windows puts a noticeable impact on the learning performance, but it might
be the case of degrading the performance, if implemented awkwardly. For the
forward and backward cases, the length of the first time window within a
frame certain frame length, plays an important role in the learning process,
and so does the initial location and length of the fist window for the mid-
growing scheme. Length of the first window, referred to as the initial window
length, is treated as the design parameter for all of the three schemes, how-
ever, location of the initial window within a temporal frame is regarded as
a learning parameter, often obtained in a non-iterative way. Learning at the
deep level includes the process for finding the growing scheme as well as the
discriminative frequency bands and the multilayer neural network, which will
be described in detail, in the followings. Let’s assume there are N time se-
ries with different length, in the training data, each has been divided into Li

temporal frame of length Ti. The time series contents at window t form the
temporal frame i for a forward growing scheme can be formulated as follows:

Ti
x⃗i(n, t) = xi(n) : t = 1, ..., Li , n = 0, ..., t

Li
− 1 (8.2)

For the backward growing scheme the time series con

(
tents becomes:

)

i
x⃗i(n, t) = xi()

(Ti T
n n+ Ti − t

)
: t = 1, ..., Li , n = 0, ..., t

Li Li
− 1 (8.3)

In the bilateral growing scheme, an initial temporal windo

(
w is located

)
at a

point, named growing centre G, and grows from the both sides with a certain
rate, until it can cover the signal. The growing centre can be identified by a
percentage of the signal length, denoted by η in the following derivation:

i
x⃗i(n, t) = x

(
t T

i n+
(
1−

)
Gi

)
: t = 1, ..., Li , n = 0, ...,

(
t

Li Li
− 1

η

)
Gi = Ti

100
(8.4)

Deep Time Growing Neural Network 127

In the bilateral growing scheme, in addition to the initial window length,
which is regarded as the design parameter, the middle point of the growing
centre, is unknown and considered as a learning parameter (not a hyperpa-
rameter), found during the training process. The learning process involves a
pursuit towards finding the discriminative temporal windows and frequency
bands, in which the growing centre is obtained as well. The following sequels
proposes an effective method for finding the growing centre. This method is,
not the only one, but a strong alternative from a bunch of the heuristic ones,
which may have been brought up in the readers’ mind. The rest of the other
learning elements will be described accordingly.

8.2.1 Learning the growing centre

If a temporal frame is divided into Li segments, it is assumed that the growing
centre is located in a temporal segment in which most of the information is
included, compared to the rest of the other segments. One way to find this
segment is based on using wavelet transform calculated for each of the tempo-
ral frames of the time series. Before explaining the learning process, wavelet
transformation is briefly addressed. Wavelet transformation in a brief view,
is a technique that provides a mathematical tool to decompose a time series
into its constitutive components, where each of the components incorporates a
certain range of frequencies [96][27]. The frequency ranges are fixed and ruled
by the band-pass filters with the predefined shapes introduced by the wavelet
type. Mother wavelet is a general term attributed with the wavelet transfor-
mation, exhibiting shape of the band-pass filters used for the decomposition.
The frequency range of each component is a ratio of the sampling frequency,
and the ratio is an integer factor of 1 for dyadic wavelet transformation. The2
temporal frame can be decomposed into constitutive components by using
discrete wavelet transformation technique:

L
1 i

Xi(α, τ) = √
∑

xi(n)ψα,τ (n), (α, τ)
2a

n=0

∈ Z

(8.5)
1 n τ2α

ψα,τ (n) =
α

−√ ψ
2

(
2α

)

where Xi(α, τ) is defined as the the wavelet transform of xi(n). The ψα,τ (n)
introduces the mother wavelet with the scale of τ and shift of τ to the trans-
formation. Each value of τ is named a scale of the wavelet transform, carrying
information over a certain frequency range. At each scale, theXi(α, τ) resulted
from the derivation 8.5, is called the detail coefficients and if subtracted from
the signal, the resulting function is the approximation coefficient. The above
derivation shows that the sample rate is decreased by half of its value, for each
increment of scale α. In order to obtain contents of the signal at each scale, the
approximation and detail contents of the previous scale, are both up-sampled,

128 Deep Learning in Time Series Analysis

meaning that a sample with zero value is added between each two samples.
Then, the up-sampled signals are passed through a pair of filters, one for the
detail and one for the approximation separately. The filters are designed ac-
cording to the wavelet type, as defined by the wavelet family. The filters are
named quadrature filters. This structure can be used to find the detail (high
frequency contents) and the approximation (low frequency contents) of each
scale. This process is named reconstruction of the signal. The reconstructed
signals resulting from the detail and approximation of a scale, are then added
together to create the signal at the higher scale. In many applications, the
reconstruction is performed using detail contents only, keeping zero for the
approximation. This yield of the details of the signal contents at each scale to
be constructed as acts of filtering since parts of the frequency contents of the
signal corresponded to the approximation contents are excluded from recon-
struction. This technique has been widely used and explored by the researchers
and scientists and dealing with more details of the technique is well-beyond
the scope of the book, but it can be extensively found in a broad range of the
literature [96][32].

Back to the main problem, finding the growing centre, the wavelet trans-
form of the signal is employed for finding the growing centre. Assuming that
the number of the temporal windows and the length of the signal is Li and Ti,
respectively. These two parameters are considered as the design parameters.
The wavelet
denoted by X̂

transform at each scale, is reconstructed up to the zero level, and

i(α, τ), where α is the scale number. The reconstructed contents
of each time series, are divided into Li non-overlapping temporal frames with
fixed length of Ti . Energy of the wavelet transform is calculated and aver-Li

aged for each temporal window, and also for each scale. The Fisher value of
the energies are calculated for all the windows and scales, and the temporal
window whose energy gives the highest Fisher value is selected as the growing
centre. It is important to note that sometimes the energies must be verified
first, before the Fisher calculations, in order not be lower than the noise limit.
In these situations, one need to set a noise limit below which the windows are
not invoked for the rest of the learning process.

8.2.2 Learning the deep elements

The deep elements of a time growing-based method are composed of the archi-
tecture to extract dynamic information from the time series, here at this point
at the deep level. This means the deep contents extracted from the temporal
frames. Figure 8.2 depicts a learning architecture for the deep level:

Deep Time Growing Neural Network 129

FIGURE 8.2: Learning architecture at the deep level for a deep time growing
neural network.

This architecture contains the growing windows scheme as well as the
discriminative frequency band for extracting spectral energies. The growing
time scheme which was found during the training at the deep level, is found
along with the discriminative frequency band, simultaneously, and the rest of
the learning process corresponds to finding the learning weights to perform
the nonlinear mapping, from the spectral energies to the classification result.
We firstly deal with finding the discriminative frequency bands connected to
the growing schemes, for calculating the spectral energies. To this end, we
begin with spectral calculations. The spectral contents of each window are
calculated using periodogram:

T 1
1 i−

X⃗i(f, t) =
πfn

Ti

∣∣
n

∑
x⃗i(n, t)e

−2j

=0

∣∣

The

∣∣ ∣∣ ∣ (8.6)

pursuit towards forming the input architecture of the classifier be-
gins with considering the spectral contents and use of

∣
the three schemes of

the growing windows; forward, backward and bilateral growing time window,
for finding the discriminative time and frequency contents. The clustering
method, introduced in Chapter 7, can be employed for the learning at the
deep level. This level of the learning process leads to shaping the input struc-
ture of the deep learning method. This can be considered as the deep level
learning. An important difference between deep time growing neural network
and the other aforementioned deep learning methods, is that in deep time
growing neural network, the pursuit is performed over the frequency bands
in conjunction with the temporal windows and the joint frequency bands and
the structure of the temporal windows are simultaneously found within the
learning process. To this end, spectral contents of all the three schemes of
time growing neural network together with the growing centre are found. The
spectral contents are calculated for each temporal frame and averaged over

130 Deep Learning in Time Series Analysis

the frames:

Tl,i 2L
1 i K −

Xi(f, k) =
∑∣∣∣ k ∑ 1∣∣ x⃗ ,i e−j2πfn

l (n, k) (8.7)
LiTl,i

l=1 n=0

∣∣∣
T

L n+T
1 i

∣∣
l,i−k l,i 2

K

Xi(f, k) =
∑∣∣∣∣ ∑∣ x⃗l,i(n, k)e

−j2πfn

LiTl,i
l=1 n=0

∣∣∣
(8.8)

T∑L ∣∣∣ k l,i 2

∣
1 i

X (f, k) =
∑K −1∣ x⃗ (n, k)e−j2πfn

∣
i l,i

LiTl,i
l=1 n=0

∣∣
(8.9)

In the above derivations, the learning process is followed b

∣∣
y a pursuit over

frequency bands f , temporal window

∣
number k, and the windo

∣
ws scheme s,

where the later is an indicative number denoting the scheme of the growing
window.

.
B = {(f1, f2, k, s) : (f1, f +

2) ∈ Z ∧f1 < f2 < Fmax, k ∈ {1, ...,K}, s ∈ {1, 2, 3}}
(8.10)

where1, Forward Growing Eq. (8.7)

s = 2, Backward Growing Eq. (8.8)

3, Bilateral Growing Eq. (8.9)

The

spectral features are calculated over frequency band and the tempo-

ral windo

ws identified by the windows number k and the growing scheme s.

The growing scheme s points to one of the Eq. (8.7) to (8.9) to be used for
the spectral calculation. For the bilateral growing case, the growing centre is
supposed to be found as was described in Section 8.2.1, prior to the spectral
calculation.

Pi =

[
b

∑
Xi(f, k), ...,

1∈B bM

∑
Xi(f, k)

∈B

]
(8.11)

The pursuit for finding the input architecture of a time growing neural net-
work, employs a combined learning method at the deep level composed of the
K-Means clustering and Fisher criterion. This way of calculation takes both
the data distribution and discrimination power into account for the learning
process.

Deep Time Growing Neural Network 131

Algorithm 10 The Deep Leaning Algorithm

1: procedure DLA(⟨xl,i, ci⟩,K, ς)

2: b1 ← argmax(b) B ∆(b) : S >∈ W TH ▷ Eq. 7.13

3: for i← 2,M do

4: if SW > TH then

5: B1 ← argmax(b) ∆i ▷ Eq. 7.13∈B

6: bi ← argmax(b)∈B Ii. ▷ Eq. 7.2
1

7: end if

8: end for

9: return ⟨bM ⟩

10: end procedure

where TH is a certain threshold, set to secure the non-singularity of Eq.
(7.13). This threshold is tentatively or sometimes empirically obtained by the
developers.

The outcomes of this level of the learning are indeed a set of the frequency
bands corresponding to their temporal windows with the growing schemes,
whose spectral energies deliver an optimal segregation. This yields the first
layer architecture of the classifier. As a matter of fact, these outcomes con-
stitute the input node of a multi-layer perceptron neural network, trained by
using back propagation error method, as was previously introduced. It is typi-
cally sufficient for the neural network to contain three layers of neurons along
with the input node which is built up for learning time series contents. There is
no restriction on the number of the layers as well as the number of the neurons.
The activation functions for the hidden and output layers can be tangential
sigmoid and logarithmic sigmoid, respectively. Nevertheless, objectivity of the
method is not lost by using other activation functions. The number of the neu-
rons in the hidden layer cannot place an impact on the learning process, after
a certain number, however, if the number of the neurons decreased down to a
certain threshold, the learning process may be affected [55][48]. The number
of the neuron at the output layer reflects the level of deep learning, and can
be intuitively found by considering possibility of the pattern occurrence in the
time series.

8.3 Surface Learning

Outputs of learning at the deep level, shape up a multidimensional time se-
ries of real number. Therefore the results coming from this level of learning,
at the deep level, will be processed to give the final classification result. The
multidimensional time series resulting from the deep processing, conveys dis-
criminative information about the time series contents at the deep level. In

132 Deep Learning in Time Series Analysis

fact, this processing extracts the deep discriminative contents of time series
from the deep level, and brings them to a surface for ultimate learning. This
is the main motivation for naming the processing as the “surface learning”. In
many practical cases, a simple post processing in conjunction with a nonlin-
ear classification such as multi layer perceptron classifier can sufficiently cope
with the learning task at the surface level. Some others invoke another dy-
namic processing methods on these outcomes. The need of the dynamic learn-
ing methods such as recurrent neural network or dynamic time warping can
be obviously felt in many applications, where the time series reveals further
complicated features. Such dynamic methods can be easily incorporated into
the learning model for the time series classification. This time the elaborated
dynamic methods can takeover the role of the post processing and the ultimate
classification, which will result in an accurate performance. Nonetheless, for
simple cases, in the post processing, sometimes an unsupervised learning such
as K-Means is invoked to exclude unimportant contents, i.e., noise contents,
from the learning process. In any case, if the dynamic contents, can contribute
in the surface level of learning, to improve the classification performance, a
recurrent model might be invoked that suits the dynamic surface learning. In
this case an intuition about the dynamic contents at the surface level is al-
ways needed. As like as other cases, for the dynamic cases where the sequences
are well segregated in the space, but not easily seen in the multidimensional
time series, dynamic time warping can be always employed. Nevertheless, this
method demands a long processing time, even at the test level which makes
the implementation, far more complicated than the recurrent neural networks
when it comes to the practical application. A fast method for implementation
of dynamic time warping has been on demand for such the processing. As
you will see in continuation, the idea of recurrent neural network is based on
quick learning, as with any other neural network-based methods, unlike the
statistical methods such as hidden Markov model or dynamic time warping.
This would be at the expense of lower structural risk for such the statistical
classification methods. The readers are encouraged to review the statistical
model-based classification methods in light of the learning and testing com-
plexities as well as the structural risk, comparing to the neural network-based
methods [44][43].

9

Deep Learning of Cyclic Time Series

Real-world activities in many cases are examples of cyclic activities, resem-
bling cyclic time series, when recorded by appropriate instruments reflecting
the behaviour of the activities. It is evident that a level of noise is always
associated with the recording due to many factors, such as electrical induc-
tion and thermal condition. In biological activities such as heart sound signal,
even more factors come into the phenomenon such as biochemical status of
the blood, heart rhythm and respiration, all constituting different sources of
the noise, that can resemble cyclic characteristics, even at the presence of the
noises. One should pay attention to the difference between periodic and cyclic
time series in terms of their natures and behaviors. Periodic time series, is an
absolute and impractical definition with theoretical applicability, however, in
an engineering point of view, some of the activities appear as having periodic
contents with sufficient approximation. The activity of a clock pulse generator
in microprocessor systems is an example of being treated as a periodic signal.
Although the period of the generated signals takes an approximation in the
range of 0.000001 hertz, in the engineering context this would be assumed as
zero. It is therefore, a question of application. Nevertheless, the term “peri-
odic signal” is an absolute term that has modest roots in reality. In contrast,
cyclic time series is an adaptation of the periodic characteristics which can
fit well into real-world applications. A cyclic time series is not periodic, but
instead certain patterns repetitively appear in certain intervals, known as the
cycles. The cycle duration is not a fixed number, in contrast with the absolute
definition of periodic signals. Contents of a cyclic time series within the cycles
resemble stochastic behavior, which associate even further complexities with
the learning methods. In this chapter, practical methods are introduced for
learning cyclic time series. The time series is assumed to be all end-pointed,
meaning that the beginning and end points of the cycles are all identified by
other methods. There are several methods which are sophisticated for the seg-
mentation of cyclic time series, especially for the time series of heart sound
signal [121][49], mainly working based on the energy difference of the time
series over sets of the temporal windows. As such the methods have been
well incorporated into different learning methods such as automatic methods
for speech recognition, and natural language processing. Appropriate machine
learning methods for learning this group of the time series are urged to con-
sider learning non-stationary stochastic contents within the cycles, along with
the dynamic variations over the cycles. This may remind the readers the top-

134 Deep Learning in Time Series Analysis

ics of “learning at the deep level” and the “surface learning”, from Chapter
8. Looking back and remembering from Chapter 8 the learning method at
the deep level, employs temporal frames of fixed length to extract the deep
information. Outcomes of this learning level are later employed by a dynamic
classification method to perform the surface learning. Likewise for the cyclic
time series, the learning method invokes two different levels of learning, when
it comes with the cyclic stochastic time series: cyclic learning and surface
learning. Figure 9.1 illustrates a block diagram of the learning process for the
classification of cyclic time series:

FIGURE 9.1: Classification of cyclic time series demands two levels of processing:
learning within-the-cycle contents (cyclic learning) and learning over-the-cycle con-
tents (surface learning).

It is shown in the above illustration that cyclic learning performs a kind of
the learning at the deep level. However, there is a big difference between the
cyclic stochastic learning and the non-cyclic one; as the cycles do not have a
equal time period, deep learning cannot be designed based on the temporal
frames with a fixed length. In fact the temporal frames are replaced by the
cycles, and the surface learning remains typically identical to the previously
described method. In order not to lose objectivity of the description, the cyclic
learning employs sector analysis instead of windowing the temporal frames, as
was the case for the non-cyclic stochastic time series. The following sections
will take this point into account and introduce different methods for process-
ing cyclic stochastic time series in light of the learning for the classification
problems.

9.1 Time Growing Neural Network

In the previous chapters, we sow that learning process at the deep level for
cyclic time series is slightly different from the non-cyclic time series. A non-
cyclic time series lacks from any repetitive pattern and therefore, a uniform
temporal frame can be employed for the learning process. This gap between
cyclic and non-cyclic time series can be covered by taking the sector definition

Extracting
discriminative
information
from each
cycle

Learning
dynamics of
the time
series over
the cycles

ClassificationSurface
learning

Cyclic
learning

Deep Learning of Cyclic Time Series 135

into account, as was addressed in Chapter 4. This brings a level of deep learn-
ing, named cyclic learning to the process. The cyclic learning in the training
phase involves two steps of deep learning: finding the input architecture of
the time growing neural network and finding the learning weight of the neural
network. It is assumed that all the cycles were already end-pointed, and Tl,i
denoted length of the cycle l in time series i. Using training data of size N , at
the first step, a time growing scheme is shaped up, using the temporal sectors
instead of temporal frames. One of the design parameters at this level is the
number of the sectors in each cycle, denoted by K, which is in turn an indica-
tion of the temporal resolution. Higher resolution is used, the better resolution
it yields, at the expense of the increased complexity and longer training time.
A reasonable range of K is often intuitively obtained by considering the tem-
poral and spectral characteristics of the learning data, and the optimal number
is found through the optimisation process. Spectral contents of each sector, for
the forward, backward, and bilateral growing schemes can be obtained by the
Eqs. 9.1, 9.2, and 9.3, respectively, using periodogram:

L
1 i

Xi(f, k) =
LiTl,i

∑
l=1

∣∣ T
k l,i∣∣ ∑K −1 2

x⃗ (n, k)e−j2πfn∣ l,i

n=0

∣∣
T

∣
(9.1)

∑L n+Tl,ii
∣∣∣ ∑−k l,i

∣
2

1 K

X (f, k) = ∣ x⃗ (n, k)e−j2πf

∣
n

i l,i
LiTl,i

l=1 n=0

∣∣∣
T

k 1
1

∣ ∣∣ (9.2)

l,i 2Li K −

Xi(f, k) = x⃗ (n, k)e−j2πfn
l,i (9.3)

LiTl,i

∑
l=1

∣∣
n

∑
=0

∣∣
where Li is the total number of the

∣∣
cycles in time series i. Us

∣∣
ing the Tl,i as

the cycle length, xl,i is defined for the

∣
the forward, backward,

∣
and bilateral

growing schemes by the equation (8.2), (8.3), and (8.4), respectively. Use of
the growing sectors scheme, introduces an inconsistency to the length of
the temporal windows, which can in turn introduce inconsistent frequency
resolution. It is obvious that one way to cope with this problem is zero-padding
to a predefined length, that guarantees all the windows attain identical length
after the zero-padding. Even though there is no theoretical restriction to use
the sectors with a different length, when mapping a cycle to the spectral
domain, the zero-padding is needed when it comes to averaging over the cycles
in order to maintain concordance of the frequency samples. Here, it is worth
noting that use of the growing sectors provides further flexibility to preserve
temporal dynamics in the learning process rather than wavelet transformation,
as the temporal shrinkage in wavelet transformation is performed by a certain
multiplication of the scale number. The learning process at the deep level
is similar to the non-cyclic learning, with this difference that the spectral
contents in (8.6) is replaced by the above equations. The learning algorithm

136 Deep Learning in Time Series Analysis

as well as finding the discriminative frequency bands, sector and temporal
schemes remain similar to the previous sections.

9.2 Growing-Time Support Vector Machine

The main idea of incorporating different schemes of the growing time window
into a classification architecture is to build an input layer which enables the
architecture to learn discriminative features at the deep level of the learning
process. The surface learning would be performed by a binary classifier such
as a multilayer neural network. The binary classification can be performed
by support vector machine. In this case, the spectral energies, extracted from
the temporal sectors, constitute feature vectors for each cycle, carrying infor-
mation from the deep level of learning within the cycle. Figure 9.2 illustrates
a block diagram of a deep learning method for cyclic stochastic time series
for a problem of binary classification. In this method, firstly a deep learning
process is employed to learn each class versus the others using support vec-
tor machine. This process is known as “singling-out” learning. In this process
subtle contents of the “within-cycle” are learnt for each cycle, which requires
multiple learning, individually for each class of data. This multiple learning
requires data preparation for each individual learning, C times (C is the to-
tal number of the classes), where a label 1 is assigned to each sample of the
learning data from that individual class, and 0 for the rest. This is repeated C
times with each sample receives the labels 1 only once. Next, discriminative
frequency bands and the rest of the the deep learning process is performed
using a support vector machine [47]. Lastly, surface learning is performed by
using any classification method. In a binary case, support vector machine can
be invoked. The learning manner is detailed as follows:

FIGURE 9.2: Deep learning for cyclic time series using support vector machine.

This process is explained for the training phase first, followed by the testing
phase consequently, in a separate paragraph. Considering a case of binary

Deep Learning of Cyclic Time Series 137

classification, a hyperplane Φ : RK 7→ {0, 1} that can separate the two classes
is found by using support vector machine:

yl,i = Φ(Pl,i(Xi(f, k))) (9.4)

where l is the cycle number (l = 1, ..., Li), and i is the subject number
(i = 1, ..., N). Li is the total number of the cycles exist in the subject i. Details
of finding the hyperplane are found in [23][9][141]. In these conditions, surface
learning is not simply limited to a one step classifier, such as neural network.
One way to achieve a robust classification is based on using a level of post
processing cascaded by the binary classification. An important assumption to
this method is that the surface learning is not attempted to extract dynamic
variations over the cycles. Instead, it treats the over-cycle variation as caused
by noise contamination, where statistical manipulation can remove the noisy
outcomes. In order to eliminate the effect of the noise from the outcomes of
the cyclic classification, average of the cyclic classification is calculated by the
following formula:

Li

Oi =
∑

Φ(PLi
(Xi(f, k))) (9.5)

l=1

where Oi is the average of the cyclic classification. In the training phase, mem-
bership of yl,i to the both of the classes are found independently, by using
statistical estimation. Gaussian distribution is a typical membership function
used in many cases of statistical processing, especially when the size of the
training data is sufficiently large. There are iterative methods for finding the
statistical distribution of the real data, however, in this case since the result
of the classification can take over parts of the learning process, a rough esti-
mation would be sufficient in the majority of the cases. This approximation
can be based on the average and variance of the classification outcomes at the
deep level, or alternatively the cyclic learning is employed for approximating
the membership functions. The membership values of the signals to differ-
ent classes are then invoked for surface learning, which yields the ultimate
classification result. Depending on the case study, any kind of classification
method can be used for surface learning. A rule of thumb valid here says
that for binary classification problems with small or medium data size, sup-
port vector machine is always a recommended option, and for the multi-class,
multi-layer perceptron neural network is a common candidate. All the above-
mentioned sequences correspond to the training phase. The testing phase is
rather straightforward, and demands only simple calculations, performed on
the obtained parametric functions from the training phase.

138 Deep Learning in Time Series Analysis

9.3 Distance-Based Learning

The previous cyclic learning methods were based on a phase of learning at the
deep level, herein named cyclic learning, through which a set of the discrim-
inative frequency bands along with the sectoral schemes were obtained. The
presented methods so far, invoked spectral contents of the temporal sectors
with growing length for the spectral estimation. Such is the fashion of the
temporal windows to provide an efficient way of learning by prioritizing the
temporal sectors according to their importance. The temporal sectors with
the highest distinction receives the highest number of the learning weight, in
another term, its contents are learned the best. However, this is only valid
when certain structures of the learning parameters such as neural network
or support vector machine are employed for the training, which is not the
case for the methods which are based on distance measurement, like KNN.
Regardless of the sector fashion used for training at the deep level, spectral
contents of the sectors are invoked for learning at the deep level. The spec-
tral contents calculated over the sectors, in any kind of fashion of growing or
non-growing fashion, are named spectro-sectoral contents of the time series.
Using these spectro-sectoral contents, the discriminative frequency bands, are
found using any algorithm such as the hill-climbing method, as was described
before in different contexts. These bands all together, help the method to
profile dynamic contents of the time series within the cycles. In the training
phase, the spectro-sectoral contents of the time series are obtained by using
periodogram, calculated over a set of the temporal sectors with fixed number
of the sectors per cycle. The discriminative frequency bands can be obtained
using Algorithm 10. Then, a KNN method is employed, through which the
distance of the KNN to each class is obtained. As with the previous methods
of deep cyclic learning, membership functions are calculated over the result
of the cyclic classification, performed using a KNN method. The membership
values are employed by any kind of the classification method, such as neural
network, which provides a nonlinear mapping, and the learning weights are
found by any kind of the methods. The testing phase involves easy calculation
of the spectro-sectoral contents over the discriminative frequency bands, and
the functions obtained in the training phase.

9.4 Optimization

Learning processes of any kind, incorporates a phase of training followed by
optimization, where the former delivers the learning parameters and the later
gives the design parameters. The number of the temporal sectors as well as
the length of the temporal windows for the spectral calculation are the two
design parameters associated with the above-described methods. The design

Deep Learning of Cyclic Time Series 139

parameters cannot be uniquely obtained with such methods. It is customary
to find a range for the parameters according to the nature of the time series.
For example, range of the sampling frequency as well as the sector length are
roughly approximated for the distance/based method, and then a statistical
procedure is invoked for finding the optimal set of the design parameter. At
this point, there is a big difference between large and small data cases of learn-
ing. For the large data cases the attempts are focused on including various
samples of the learning data, while for the small cases running around from
overfitting is important issue. A procedural algorithm is suggested by calculat-
ing performance of the methods using different set of the design parameters.
The A-Test method can be invoked either with or without premutation (see
Chapter 2.10.3). It is obvious that permutation imposes complexities to the
method, and increases the execution time and the memory issues. A smart
selection can be based on the verification of the effect of the permutation on
the performance of the method. Any reader can arrive at a conclusion to use
a heuristic or sometimes adhoc method suiting the case study.

https://taylorandfrancis.com

10

Hybrid Method for Cyclic Time Series

The context of time series analysis has received a large number of the model-
based learning methods for the purpose of classification in the last three
decades. In contrast with knowledge-based methods in which information is
extracted directly from the data, model-based methods presume a structure
of the data flow in conjunction with a set of the hypothesis and parame-
ters, whose values are found by the learning method. In fact, the outcome of
a learning method is a set of values for the learning parameters, providing
an optimal performance for the learning task, which is tightly dependent on
training data. Hidden Markov model and artificial neural networks are known
as the two model-based learning methods, whereas methods like case-based
reasoning and fuzzy logic in which information is extracted directly from the
data without the need of presuming a specific model generating the time se-
ries. Knowledge-based learning is far from the main focus of this book, even
though fuzzy method was addressed to be as an especial tool for deep learn-
ing. The two model-based methods, which were earlier brought up into the
discussion, hidden Markov model and neural networks, differ from the point
of data generation. In hidden Markov model, the time series contents are gen-
erated according to the probabilities, which attribute a self-generative feature
to the model, however, neural networks cannot produce time series by itself,
and the output depends only on the inputs fed to the model. This comes
from the fact that the model is hidden for the former, implying that a time
series can be generated by itself using that model, and an input time series is
classified according to the probability of belonging to a hypothesised model
that produces the time series. Neural networks, in general, employ posteriori
data for training, in contrast with the hidden Markov model where the ini-
tial probabilities together with the priori probabilities play important roles
in the learning process. Nevertheless, one should consider that even for neu-
ral networks, lack of data from certain classes can be roughly regarded as
an indication of the priori probabilities. In any case, the initial symbol and
state probabilities are not considered in the parameters of a neural network,
causing the inability of the neural network for self-generating a time series in
its classical way. One can certainly propose heuristic model based on neural
network to generate time series. Nevertheless, one cannot overlook the very
elaborating features of neural networks in quick learning with relatively small
amount of data. It was therefore, rational that many studies in the 1980’s,
were directed towards combining the two methods, for improved learning,

142 Deep Learning in Time Series Analysis

which were named hybrid models [149][82][126]. Application of the hybrid
models have been highlighted in different field of study, especially in the field
of speech recognition, in which enhancement in the recognition was practically
observed [157][139][39][31]. Links between neural networks and hidden Markov
model in terms of estimating posteriori probabilities was discovered in that
decade. The model-based methods can effectively learn that grammar exists
in time series data. This grammar comes from the semantic relation ruling the
sequential data. In speech processing, a hybrid model, is assigned to a model
which combines neural network and hidden Markov model, however, gener-
ality of this definition is not lost if other combinations are employed, even
though this way of terminology is more common is this topic. In this chapter,
a specific hybrid model of deep learning for cyclic time series is introduced.
It is worth noting that another important difference between hidden Markov
model and deep learning methods is that a level of pre-processing is performed
in hidden Markov model-based methods to turn a time series of real valued
numbers into another form of data: time series of patterns, and the recogni-
tion task of the Markov model is performed using the time series of patterns,
while the deep learning methods usually do not involve a heavy level of the
pre-processing and the whole process of the recognition is performed in an
integrated manner inside the architecture of classifier. However, the following
method employs a combination of the conventional hidden Markov model and
neural networks, where a pre-processing level is also employed. Figure 10.1
shows block diagram of the method:

FIGURE 10.1: Classification of cyclic time series using hybrid model. A pre-
processing level, composed of extraction of discriminative frequency bands and vec-
tor quantification is performed and followed by the Hidden Markov Model (HMM).
State, state transition and symbol probability at each state are calculated and em-
ployed for the classification.

The preprocessing serves as the learning at the deep level, as was discussed
in the previous chapters, however, with this difference that all the time series
of the training data show cyclic behaviour and have therefore already been
end-pointed and segmented. Therefore, the time series contents are segmented
for each cycle, and labeled for each state. As with other hidden Markov model-

Vector
quantification

Discrimination
spectral contents

State and symbol
probabilities Classification

Learning data

Pre-processing HMM

Hybrid Method for Cyclic Time Series 143

based methods, the following assumptions are made for the learning process
all throughout this chapter:

• N : The total number of the training data

• Li: The total number of the cycles exist in a time series i

• xl,i (l = 1, ..., Li i = 1, ..., N): A time series for which l denotes cycle
numbe

• Tl,i: Cyclic interval

The above definitions incorporate only the time series, or the inputs, and
does not address the method or any design parameter. A Markov model is
often expressed by its state transition model in conjunction with the probabil-
ities. Since we employ spectral contents of time series for the learning process,
the spectral energies are also considered as a part of the design method. Here,
attention must be paid for the spectral calculations, when temporal windows
of fixed length are employed, and the length of the temporal windows is re-
garded as a hyper parameter for the method. Based on this assumption, we
have:

• Xl,i(f, t) : Spectral contents of the time series at frequency f and temporal
window t, defined with respect to the beginning of cycle l.

• Λ: Length of the temporal window for calculating the spectral contents
(∀(l, i) : Λ << Tl,i).

• sl,i(t): State of the time series i at time t and cycle l.

• A and B: Symbol and state probabilities.

The method description begins with an introduction to learning at deep
level, followed by the rest of the classification process. This method is clearly
introduced not only as an absolute model for learning, but to make the readers
acquainted with the recent methods as an introduction for inspiration. After
this chapter, the readers may become inspired enough to bring in innovative
methods, according to the case studies of their underlying researches.

10.1 Learning Deep Contents

Learning contents of a time series at the deep level intrinsically demands
different strategies for cyclic and non-cyclic time series. This level of learn-
ing corresponds to an autonomous procedure for feature extraction, which
is slightly different from the procedures that were presented in the previous
chapters in regard with the time growing-based methods. Sector analysis, is
in fact the main point of diverse in the sense of processing methodology, that

144 Deep Learning in Time Series Analysis

is considered in cyclic time series only, when it comes with the time growing
fashion for the learning purpose. This process leads to extraction of the simi-
larities and dissimilarities, termed by learning process, based on the spectral
contents of time series which are extracted from the growing time windows.
The number of the growing windows is treated as a design parameter, which
in turn governs length of the temporal windows, and hence the learning ca-
pacity. In contrary, for the non-cyclic time series, temporal windows of fixed
length can provide efficient means for learning dynamics of time series, as in
hidden Markov model. This manner of learning the dynamic contents can be
invoked even for cyclic time series, specially when the cycle durations are suffi-
ciently long, and the time series is resulted from a model of the sequence with
pre-defined states. An important presumption for the hybrid method is to as-
sume a hypothetic model that creates the cyclic time series in which the state
sequences were already identified for each time series in a direct or indirect
way. Although each cycle can include several states, the spectral calculation is
performed over the whole cycle and deviation of spectral energies within each
state is considered as a key learning feature. With this perspective, the cyclic
frequency contents are directly obtained using periodogram:

∑ 2Li T 1
1

=
∑i

Xi(f)

∣∣∣ −∣∣ xl,i(n)w(n)e
−2πfn

Tl
l=1 n=0

∣∣
(10.1)

where W (n) is the temporal window employed for atten

∣∣
uation of side lobe

effect. Zero padding is performed in order to achieve consisten

∣
t frequency

resolution for all the cycles. Assuming that a frequency band is defined as in
Eq. (10.2), spectral feature can be calculated by Eq. (10.3):

.
B = {(f , f) : (f , f) ∈ Z+

1 2 1 2 ∧ f1 < f2 < Fmax} (10.2)

Pi =

[∑
Xi(f), ...,

b1∈B bM

∑
Xi(f)

∈B

]
(10.3)

where Fmax is the maximum frequency presumed for the spectral calculation.
Fmax can take a maximum value of Fs (half of the sampling frequency) which2
is known as the Shannon-Nyquist frequency [105][104][32]. The learning pro-
cess at the deep level is indeed based on finding the discriminative frequency
bands which can provide optimal discrimination Algorithm 11 is one way to
obtain the discriminative frequency bands.

Output of the algorithm is constituted of a set of the frequency bands which
provide optimal discrimination for each state. These bands are employed by
the method to transform an input time series to another domain of spectral
energies which is a time series of the multi dimensional feature vectors. In
fact, this level of the learning process, applies a nonlinear mapping to the
time series. The resulted time series is another time series composed of the
spectral energies. The time series resulted from this learning process will be

Hybrid Method for Cyclic Time Series 145

Algorithm 11 The Learning Process at the Deep Level for Hybrid Model

1: procedure DLA(⟨xl,i, ci⟩,K, ς)

2: b1 ← argmax(b)∈B ∆(b) : SW > TH ▷ Eq. 7.13

3: for i← 2,M do

4: if SW > TH then

5: B1 ← argmax(b) B ∆i ▷ Eq. 7.13∈

6: bi ← argmax(b)∈B Ii. ▷ Eq. 7.2
1

7: end if

8: end for

9: return ⟨bM ⟩

10: end procedure

invoked by the second stage of the learning process, introduced as the process
of cyclic learning.

10.2 Cyclic Learning

Cyclic learning for hybrid method involves the following mappings:

• xi(n) → X 1
i(f, t): From a one dimensional time series of R ×LiTi to an-

other time series of different length, but multi dimensional of RFmax×LiΓi ,
composed of the spectral contents. Γ is the total number of the temporal
windows used for the spectral calculations

• Xi(f, t) → P F
i(t): From a multi dimensional time series of R max×LiΓi

to another multi dimensional time series of RM×LiΓi composed of the
spectral energies which are calculated over M discriminative frequency
bands (M << Fmax)

• Pi(t) → Oi(t): From a multidimensional time series of RM×LiΓi to a single
dimensional of Z1×Γi composed of the the numerical symbols resulted from
the vector quantification of the spectral energies

• Oi(t) → Vi: From a single dimensional time series of Z1×Γi to a mul-
tidimensional feature vector of RΥ, composed of the state and symbol
probabilities

• Vi → qi: From multidimensional vector of RΥ to a number denoting class
of the time series

146 Deep Learning in Time Series Analysis

In the above mapping items, the first and the second items are performed
by Eq. (10.1) and Eq. (10.3), respectively. It is obvious that the spectral ener-
gies in (10.3) are calculated over the discriminative frequency bands, obtained
using Algorithm 11. The third item requires a vector quantification method
such as Euclidean distance DE (Eq. 10.4) or Mahalanobis DM distance
(Eq. 10.5):

DE(Pi(t)) =
√
(Pi(t)− µc)T (Pi(t)− µc) , c = 1, ..., C

(10.4)
Oi(t) = argc minDE(Pi(t))

DM =

√
(Pi(t)− µc)TΣ

−1
c (Pi(t)− µc) , c = 1, ..., C

(10.5)
Oi(t) = argc minDM (Pi(t))

where µc and Σc are the mean vector and covariance matrix of data for the
class c. This quantification can be performed by using other methods such as
KNN or even multi layer perceptron neural network. The probability feature
vector in the forth item is then calculated by:

Vi = [⟨E(sl,i(t)⟩, ⟨E(sl,i(t2)|sl,i(t1))⟩, ⟨E(c|sl,i(t))⟩] (10.6)

The feature vector found in Eq. (10.6) will be employed by a classifier
to perform the ultimate classification as shown in the fifth item. This part
demands more sophistication which will be described in the following section.

10.3 Classification

The previous mappings ended with a multidimensional feature vector, asso-
ciated with an input time series which preserves dynamic contents of the
time series, reflected by the probability features. The probability features in-
clude symbol, state, and state transition probabilities, all together conveying
dynamic of the input time series. The feature vectors are supposed to be dis-
criminative for all the classes. The ultimate classification can be performed
by any static classifier, such as multilayer neural network, support vector
machine or even distance-based methods such as KNN. As a rule of thumb,
for the problems of binary classifications with small and medium size of the
training data, support vector machine is an excellent option, where an ap-
propriate kernel function can be empirically selected based on the intuitive
insights into the data distribution. In many applications linear kernel func-
tion works well, however, for the cases when the classes are tightly close to
each other, nonlinear kernel functions like quadratic or Gaussian function can
be considered as the relevant options. For the cases with large data, a multi-
layer neural network is recommended, with a training method which includes
batch training. A favourable feature of neural networks is the flexibility of the

Hybrid Method for Cyclic Time Series 147

learning process with a different size of training data, as well as its well-known
feature: quick learning. Other classification methods such as Fuzzy classifiers
and KNN method are typical alternatives which must be investigated for any
classification problem. There is no specific rule for selecting an appropriate
classifier and experience of the developer plays an important role for selecting
an appropriate classification method, in the validation process, which is an
important part of it’s development.

https://taylorandfrancis.com

11

Recurrent Neural Networks (RNN)

11.1 Introduction

The neural networks discussed in the preceding chapters, are purely static
learning models that implement mapping from the input vector to the out-
puts. However, they cannot deal with time related information in a dynamic
system. Consider the industrial process of gas furnace as an example, the CO2
concentration is not only dependent on the current air flow rate but also af-
fected by the process conditions in the preceding steps. Another example can
be seen from data analysis with EEG signal in which the temporal property
of the data plays a key role in the pattern recognition of the signal. Evidently,
handling the dynamic nature of data sequences requires deep networks other
than those traditional static learning models.

Inspired by the self-feeding mechanisms inside human brains, recurrent
neural networks have been developed, which resort to a recurrent architecture
to capture the time-dependent associations. They can be used to process se-
quential data and predict future data values by incorporation of the influences
of previous data evolutions [99]. Recurrent networks are shown as universal
approximators to dynamic systems [1][2] and also scalable in learning how
much longer sequences than those manageable by the feedforward networks
without sequence-based treatments.

There are generally two types of recurrent networks: globally recurrent
and locally recurrent [3]. Networks of the former case allow for feedback con-
nections for any pairs of neurons, while locally recurrent networks contain
dynamic inner feedback despite the globally feedforward connections between
neurons. A fully connected recurrent network with neurons of sigmoid activa-
tion functions has equivalent computational power to that of any state-space
machines [4]. However, the learning of globally recurrent networks may be
complicated by the problem of instability. Locally recurrent networks are rel-
atively simpler for training due to less complex architecture. Yet they are able
to approximate the state-space trajectory of a continuous function with any
desired accuracy [5].

The early works of recurrent networks dated back to the models proposed
by Elman [6] and Williams and Zipser [7] independently, which marked the
start of the research of applying neural network techniques in processing tem-
poral information. Later various recurrent networks with different structure

150 Deep Learning in Time Series Analysis

and functioning were proposed, although the notion of “recurrent neural net-
work” has not been clearly defined in the literature. More recently, in relation
to the avenue of deep learning, (deep) recurrent networks are being investi-
gated to learn the long-term dependence from longitudinal time series signals.

This chapter focuses on local recurrent networks as models in the state
space, in which hidden neurons correspond to states of an underlying process
and the value of a hidden neuron is affected by the states in the preceding time
step. The learning of these networks is based on the fundamental principles of
structure unfolding in time and parameter sharing in the network. Timely un-
folding enables converting the temporal model into a multilayer feed-forward
network so that existing static learning techniques can be reused. The idea of
parameter sharing manifests in applying the same model for inference at all
time steps. Each member of the network output is produced using the same
function as previous outputs. Likewise, the values of hidden neurons are up-
dated with the same rule at different locations of the sequence. Therefore the
unfolded network consists of identical sub-models that are connected through
consecutive time steps.

The rest of this chapter proceeds as follows:
Section 11.2 describes (local) recurrent neural network as a state space

model, which is followed by unfolding the network with time in Section 11.3.
Section 11.4 explains the backpropagation through time (BATT) algorithm
for the learning of recurrent networks. The challenge of learning long-term
dependencies is discussed in Section 11.5. In Section 11.6, we present the
long short-term memory (LSTM) model as an extended recurrent network
to overcome vanishing gradients. Finally, Section 11.7 provides an outline of
other types of recurrent networks.

11.2 Structure of Recurrent Neural Networks

Let’s consider a dynamic process as depicted in Figure 11.1, in which X and
Y denote the external input and output vectors, S represents the vector of
hidden states, and the square indicates the delay of a time step. The state
transition and observation functions of this process are formulated in Eqs.
(11.1) and (11.2) respectively.

St = F (St−1, Xt) (11.1)

Yt = G(St) (11.2)

The state transition from St to S is seen as autoregressive as it is also−1 t

affected by the external forceXt. The output Yt is calculated in the observation
function based on the current state St.

Recurrent Neural Networks (RNN) 151

FIGURE 11.1: A dynamic process with state S.

Y(t)

X(t)

Dynamic

processes

State S

Recurrent neural networks, as universal approximators, can be well uti-
lized to represent temporal dependences of dynamic processes. More specif-
ically, this chapter focuses on local recurrent network with one hidden layer
as the dynamic process model. The architecture of this network is shown in
Figure 11.2, where the recurrence only exists with the hidden neurons
s1, s2, . . . , sd, which are fed back to themselves in the next time step. This
means that the hidden units are determined with non-linear functions of their
previous values and the external forces, while the network outputs are calcu-
lated only based on the current values of the hidden units. Thereby, the state
transition and process outputs can be modelled by the equations as follows:

S(t) = tanh[W · S(t− 1) + U ·X(t) + θ] (11.3)

Y (t) = V · S(t) + γ (11.4)

where S = (s1, s2, ..., sd), U , V , and W are the weight matrices of the connec-
tions of the network, and q and g are the bias vectors for the hidden and output
units respectively. Note that, for classification problems, a softmax operation
will be applied as a post-processing step to Y (t) to obtain the normalized
probabilities of possible classes.

The recurrent network in Figure 11.2 is a succinct graph. It actually im-
plements a function that takes the sequence of the external forces X till time
step t to produce the network outputs Y (t). This is evident by repeated ap-
plications of the mapping h : X(t)×S(t− 1) −→ S(t) across various time steps
as follows:

Y (t) = h[X(t), S(t− 1)]

= h[X(t), h[X(t− 1), S(t− 2)]] (11.5)

= H[X(t), X(t− 1), ..., X(1)]

Training the network is equivalent to adapting the transition function F
in (11.1) and observation function G in (11.2) of the dynamic process. It can

152 Deep Learning in Time Series Analysis

FIGURE 11.2: A recurrent neural network with d hidden neurons.

be transformed to the following parameter optimization problem concerning
the weight matrices U , V , W and bias vectors θ and γ:

T

min (11.6)
u,v,w,θ,γ

t=1

∥Yα(t)− Y (t)∥2

where Yα denotes the actual pro

∑
cess outputs and T is the total number of

time steps in the sequence.

11.3 Unfolding the Network in Time

A common approach to solving the optimization problem as stated in (11.6)
is to unfold the recurrent network in time [85]. This practice will convert
the representation of the recurrence into a spatial feedforward network. The
unfolded network structure is depicted in Figure 11.3, where each time step
constitutes one layer of the network. This means that the hidden units at the
layer for time step t receive inputs from the preceding layer of time step t− 1
and then deliver information to the next layer of time step t+ 1. The weight
matrices U , V ,W , and bias vectors θ and γ are shared in the unfolded network
to insure the same dynamics and input-output relations across all time steps.

It bears noting that, owing to constraints of computational resources, the
unfolding in practice has to be limited by truncation after a certain number
of time steps m. The determination of m is usually based on the heuristics
of how many steps to trace back to retrieve adequate information to predict
the process outputs Y (t). Unfolding with m steps backwards from each time
t ∈ {m + 1, T} will produce a set of sliding windows, each of which can
be treated as a training sample. Then the task of network learning can be
reformulated into the optimization problem of finding optimal weight matrices
to minimize the error on all sliding windows outputs.

Recurrent Neural Networks (RNN) 153

FIGURE 11.3: Unfolded network with shared weights.

11.4 Backpropagation Through Time

As training example we use a sliding window which unfolds the recurrence from
time step t ∈ m+ 1, ..., T − 1, T backward till t−m while having outputs only
at the final step t. The unfolded network in correspondence to such sliding
windows is depicted in Figure 11.4. The error function E(t) for this training
example is simply defined as:

1
E(t) = ∥Y 2

α(t)− Y (t)
2

∥ (11.7)

We then follow a stochastic gradient decent to modify the weight matrices
to minimize the error E(t) in (11.7). To this end the partial derivatives of E(t)
with respect to weight matrices U , V , and Whave to be derived.

We start from the weights V that are used to produce the outputs Y (t).
The partial derivatives with respect to V is calculated by

∂E(t) ∂E(t) ∂Y (t)
= =)]

∂V ∂Y (t)
· [Y (t) Yα(t S(t) (11.8)
∂V

− ⊕

where ⊕ is the outer product of two vectors.
Regarding the weights W appearing at multiple time steps of the sliding

window, we have to sum up their contribution at the each of the steps in
calculation of the gradient. Therefore we have

∂E(t)
(
∂E(t)

)
∂S(t)

(
∂E(t)

)
∂S(t

= diag + diag
− 1)

+ ...
∂W ∂S(t)

·
∂W ∂S(t− 1)

·() ∂W
(11.9)

∂E(t) ∂S(t
+diag

−m+ 1)

∂S(t−m+ 1)
·

∂W

154 Deep Learning in Time Series Analysis

FIGURE 11.4: An unfolded network with output only at the last step.

with diag
(

∂E(τ)
)
indicating the diagonal matrix containing the elements of∂S(τ)

∂E(τ) for τ ∈ {t−m+ 1, ..., t∂S(τ) − 1, t}.
Since the partial derivative of S(τ)(τ = t−m+1, ..., t) with respect to W

is obtained by

∂S(t) ∂S(t) ∂Z(t)
=

∂W ∂Z(t)
· = tanh′[Z(τ)]
∂W

⊕ S(τ − 1) (11.10)

where
z 1(τ)

Z(τ) = ..

 =W · S(τ − 1) + U. ·X(τ) + θ (11.11)

zn(τ)

1− tanh2(z1(τ))

tanh′ .(Z(τ)) =

 ..
1− tanh2

(zn(τ))

(11.12)

what remains to be solved (11.9) is

to acquire the partial

derivatives of E(t)

with respect to S at various time steps. These derivatives can be yielded by
using a backpropagation in time (BPTT) method as follows.

We start from the final time step t and obtain

∂E(t) ∂E(t) ∂Y (t)
= = [Y (t) Yα(t)]

′ V (11.13)
∂S(t) ∂Y (t)

·
∂S(t)

− ·

Then we move backwards to the successive proceeding time steps by cal-
∂E(t)culating the partial derivatives for the time step τS(τ−1) − 1 based on the

Recurrent Neural Networks (RNN) 155

information available at the step τ . The information propagation is written
as follows:

∂E(t) ∂E(t) ∂S(τ)
= τ = t m+ 1, ..., t (11.14)

∂S(τ − 1) ∂S(τ)
·
∂S(τ − 1)

−

∂S(τ) ∂S(τ) ∂Z(τ)
= · = diag[tanh′(Z(τ)] ·W (11.15)

∂S(τ − 1) ∂Z(τ) ∂S(τ − 1)

where tanh′(Z(τ) has been defined in (11.12) and diag[tanh′(Z(τ)] is a diag-
onal matrix containing the elements of tanh′(Z(τ).

Likewise, the partial derivatives of E with respect to the weights U are
obtained by considering the influences of U at multiple time steps:

∂E(t)
(
∂E(t)

)
∂S(t) ∂E(t) ∂S(t

= diag
∂ ∂S()

· + diag
− 1)

+ ...
U t ∂U

(
∂S(t 1)

)
·

− ∂U

+diag

(
∂E(t) ∂S(t−m)

∂S(t−m)

)
·

∂U
(11.16)

where the partial derivatives of S(τ)(τ = t − m, ..., t) with repect to U are
given as

1 tanh2(z1(τ))
∂S(τ) ∂S(τ) ∂Z(τ) .·

−

= .

 ⊕X(τ) (11.17).∂U ∂Z(τ) ∂U
1− tanh2(zn(τ))

∂E(t)Since for τ∂S(τ) ∈ {t − m, ..., t − 1, t} can be yielded according to Eqs.

(11.13) to (11.15), we now solve Eq. (11.16) to get the partial gradient con-
cerning U .

Once the full gradient information for a training example (sliding window)
is available, the weights will be updated in terms of gradient descent to effi-
ciently reduce the error. This instance-based update will be conducted for all
training examples to finish one epoch of learning. Subsequently the updated
network will be evaluated on both training and validation data sets to de-
termine if the termination condition is satisfied. In cases of the termination
condition not being satisfied, a new epoch of learning will be launched. The
complete procedure to learn the weights of recurrent neural networks based
on BPTT is formally described in Algorithm 12.

11.5 The Challenge of Long-term Dependencies

One challenge that may arise with the learning of a recurrent network is caused
by the long-term dependencies. This is attributed to the fact that an unfolded

156 Deep Learning in Time Series Analysis

Algorithm 12 Learning of recurrent neural networks based on BPTT

Require: A set of sliding windows as training examples. The number of hidden units in

the network. The learning rate η

Ensure: The connection weights U , V , W of the network

1: Initialize the connection weights U , V , W with random small values

2: while termination condition is not met do

3: for each sliding window ⟨Xi(t−m), ..., Xi(t)⟩ do
4: Forward calculation of the unfolded network output Y (t) based on the inputs

⟨Xi(t−m), ..., Xi(t)⟩
5: Calculating the partial gradient with respect to V

∂E(t)
6: = [Y (t)

∂V
− Y i

α(t)]⊕ S(t)
∂E(t)

7: Backpropagation of with the start from τ = t as follows
∂S(τ)

∂E(t)
8: = [Y (t)

∂S(t)
− Y i

α(t)]
′ · V

∂E(t) ∂E(t)
9: = tanh

∂S(τ 1) ∂S(τ)
· diag[′(Z(τ)]− ·W τ = t−m+ 1, ..., t

10: Calculating the partial
∂E(t)

11: =
∂W

∑t
t−m+1 diag

∂S(τ)
12: = tanh)]

∂
′[Z(τ

W

(gradient with respect to W
∂E(t)

)
· ∂S(τ)

∂S(τ ∂W

⊕ S(τ − 1)

)
τ = t−m+ 1, ..., t

13: Calculating∑ the partial gradient with respect to U
∂E(t) t

(
∂E(t)

14: = diag
∂U t−m ∂S(τ)

)
· ∂S(τ)

∂U

∂S(τ)
15: = tanh′[Z(τ)]⊕Xi(τ) τ = t m,

∂U
− ..., t

16: Update the weights based on the gradient information

17: W = W + η · ∂E(t)) (t
, U = U + · ∂E(t ∂E)

η , V = V + η
∂W ∂U

·
∂V

18: Evaluate the updated network on the training and validation data

network is a deep network comprising of a number of layers corresponding
to the time steps. Backpropagating the gradient information through many
layers may tend to produce partial derivatives that are close to zero, giving
rise to the so called vanishing gradient problem. The vanishing gradient will
make it hard for the search algorithm to identify the direction to change the
weights to quickly reduce the cost function. A detailed explanation of the
vanishing gradient with recurrent networks is given in the following. Deeper
analysis and treatment of the long-term dependencies can be from [29][13] and
[107].

According to the BPTT method described in Section 11.4, the vectors
∂E(t)of partial derivatives are calculated from time step τ = t and then∂S(τ)

will be backpropagated in time. The backpropagation chain is shown in
Figure 11.5, where the transition between two consecutive time steps is

∂S(τ)achieved by the multiplication of a transition matrix . It follows that∂S(τ−1)

the vector of partial derivatives at time step t − k, (k ≤ m) will be obtained

Recurrent Neural Networks (RNN) 157

by using a chain of matrix multiplications as follows:

∂E(t) ∂E(t) ∂S(t) ∂S(t− 1) ∂S(t− k + 1)
=

∂S(t− k) ∂S()
·
∂S(t− 1)

· ...
t ∂S(t− 2)

· ·
∂S(t− k)

∂E(t)
=
∂S(t)

·
t−

∏t (11.18)
∂S(τ)

∂S(τ
k+1

− 1)

Based on (11.15) the transition matrices can be reformulated as

tanh τ)) ... 0
∂S(τ) . .=

 ′(z 1(..∂S(τ − .1)

·W (11.19)

0 ... tanh′(zn(τ))

Because the derivatives of the tanh function are bounded

by one and ap-

pear as zero at both ends (as seen from Figure 11.6), the transition matrices
in (11.19) actually represent a decay of the weights W . Consequently, with
small values in the matrices and multiple matrix multiplications (k times in
this case), the gradient may decline exponentially fast and finally vanish if k
is large. This causes the difficulty of learning the long dependency using the
BPTT algorithm since the gradient contribution from remote time steps is
likely to be zero.

FIGURE 11.5: Calculating partial derivatives in a backpropagation chain.

¶E (t)
¶S (t - m)

¶S (t - m + 1)
¶S (t - m)

¶E (t)
¶S (t - 2)

¶S (t - 2)
¶S (t - 3)

¶S (t - 1)
¶S (t - 2)

¶E (t)
¶S (t - 1)

¶S (t)
¶S (t - 1)

¶E (t)
¶S (t)

V

E (t)Backpropagation in time

The risk of the vanishing gradient can be seen more clearly when the
transition matrix is identical across the various time steps. We use W ′ to
denote this transition matrix. Suppose W ′ has an eigendecomposition W ′ =

Qdiag(λ)Q−1 ∂E(t)with Q being orthogonal. The partial derivatives at∂S(t−k)

time step t− k becomes

∂E(t) ∂E(t) k ∂E(t)
= · (W ′) = ·Qdiag(λ)kQ−1 (11.20)

∂S(t− k) ∂S(t) ∂S(t)

The eigenvalues are raised to the power of k, resulting in those with the
∂E(t)original magnitudes less than one to decay to zero. As is scaled to∂S(t−k)

diag(λ)k, some of its components will eventually be discarded leading to a
vanishing gradient.

158 Deep Learning in Time Series Analysis

11.6 Long-Short Term Memory (LSTM)

Given that gradients may vanish through a number of time steps, one mitiga-
tion approach proposed by Lin et al. [94] was to add skip connections through
multiple time steps, based on the idea of building recurrent networks with
longer delays [12]. It incorporated direct connections of units from distant
past to present to better capture the long-term dependences.

Implementing hidden units as leaky units [101] presents an alternative way
to obtain the similar effect of skipping connections through multiple steps. A
leaky unit has linear self-connection with a weight near one, so that it enables
the direct influence of a variable from a distant past. The time constants
of leaky units can be either sampled from a distribution or determined by
learning. This brings more flexibility of smooth adjustment than by changing
the integer-valued skip length. Having leaky units of different time scales was
shown to benefit the learning of long dependency [107].

The LSTMmodel [71] resembles leaky units by using a self-loop to allow for
information to be kept for a longer duration. However, the weights of self-loop
in LSTM can change across various time steps instead of remaining constant
as in leaky units. The basic idea is that these parameters should be situation
dependent and hence they are decided by the gating of some other hidden
units. By learning to adapt the self-loop parameters through time, it will be
possible to dynamically change the time scales of paths in the model so that
a piece information can be memorized or discarded based on the situation in
terms of its usefulness.

The block diagram of an LSTM cell is depicted in Figure 11.7, in which
the “forget gate” plays a central role by setting the parameter of the linear
self-loop of the state of the cell. Moreover, the cell contains the “input gate”
and “output gate” to control the input and output flows of information. All
these three gates are implemented as hidden units which receive the current

tanh’ (x)

FIGURE 11.6: The derivative of the tanh function [1].

1.2

1.0

0.8

0.6

0.4

0.2

0.0
-5 -3 -1 1 3 5

Recurrent Neural Networks (RNN) 159

external X(t) and preceding outputs of the cells S(t − 1) and then produce
gating values according to the sigmoid function. LSTM cells can be used to
replace the usual hidden units of conventional recurrent neural networks for
construction of LSTM recurrent networks.

FIGURE 11.7: An LSTM recurrent network cell.

More concretely, the state of a cell i has linear self-connection as similar
to leaky units, but its parameter is set by the gating value of the forget gate
as follows:

fi(t) = σ[bf (i) + Uf (i, :) ·X(t) +W f (i, :) · S(t− 1)] (11.21)

where bf , Uf , W f are respectively the bias vector, input weight matrix, and
recurrent weight matrix of the forget gates. Likewise, the input gate uses its
own parameters from the bias vector bg, input weight matrix Ug and recurrent
weight matrix W g respectively to produce the value of input gating as

gi(t) = σ[bg(i) + Ug(i, :) ·X(t) +W g(i, :) · S(t− 1)] (11.22)

Thus, the state of the LSTM cell can now be updated using both the
self-loop parameter and the input gating value as

Ci(t) = fi(t) ·Ci(t−1)+gi(t) ·σ[b(i)+U(i, :) ·X(t)+W (i, :) ·S(t−1)] (11.23)

where b, U , andW refers to the bias vector, input weight matrix, and recurrent
weight matrix for the cells of the LSTM model.

The output of the cell at time t, Si(t), is decided by both the cell state
and the value of the output gate:

Si(t) = tanh(Ci(t)) · qi(t) (11.24)

qi(t) = σ[bo(i) + Uo(i, :) ·X(t) +W o(i, :) · S(t− 1)] (11.25)

160 Deep Learning in Time Series Analysis

where bo, Uo, W o denote respectively the bias vector, input weight matrix,
and recurrent weight matrix of the output gates.

Finally, recent research has demonstrated the powerful performance of
LSTM networks in learning the long-term dependency based on complex se-
quential information, particularly in the applications of machine translation
[130], speech recognition [64], image captioning [17], time series [144][146] as
well as industrial process modeling [158].

11.7 Other Recurrent Networks

This section briefly discusses the other three types of structures of recurrent
networks that have not been addressed in the preceding sections. They include
recurrent networks with unfolding outputs at all time steps, gated recurrent
networks, as well as echo state networks.

11.7.1 Unfolding outputs at all steps

In Section 11.4 we discussed the recurrent network learning with the unfolded
structure having outputs only at the last time step. Alternatively, we can also
consider an unfolded network that has outputs at each time step, as shown in
Figure 11.8. In that case, the new error function TE(t−m, ..., t− 1, t) has to
be redefined as:

t

TE(t−m, ..., t− 1, t) =
τ=

∑
E(τ) (11.26)

t−m

where
1

E(τ) =
2
∥Yα(t)− Y (τ)∥2 τ = t−m, ..., t (11.27)

Yα(τ) denotes the real process outputs at time τ .
Having the new error function in (11.26), the gradients that are needed for

learning will be calculated as the sum of the partial derivatives of E(τ) with
respect to weights across all time steps. Fortunately, these partial derivatives
can be obtained by using the same method as given in Section 11.4 for calcu-
lating the derivatives of E(t). Of course, Algorithm 12 for learning also needs
to be revised accordingly by considering the gradients of TE(t−m, ..., t−1, t)
rather than E(t) in weight updating.

11.7.2 Gated recurrent networks

More recently, gated recurrent networks were proposed [78][18], which differ
from LSTM by adopting a single gate, termed as “update gate”, to control
the integration of the old and new target states in their units. A unit that
is used in a gated recurrent network is also known as gated recurrent unit

Recurrent Neural Networks (RNN) 161

FIGURE 11.8: An unfolded network with outputs at each time step.

(GRU) [20][38][86][99][129]. The state update of GRU in time step t can be
formulated as:

St = ut 1
i i

− St−1
i + (1− ut−1

i)σ(b(i) + U(i, :)X(t− 1) +W (i, :)[.., rt−1
j St−1

j , ..]′)
(11.28)

where ut−1
i denotes the value of the update gate, while rt−1

j stands for the
value of the “reset gate” which is used to control the degree of involvement
of GRU j in computing the new target state. The update and reset gates are
defined as sigmoid units with their values being calculated as

uti = σ(bu(i) + Uu(i, :) ·X(t) +Wu(i, :) · St) (11.29)

rti = σ(br(i) + Ur(i, :) ·X(t) +W r(i, :) · St) (11.30)

where bu, Uu, Wu denote respectively the bias vector, input weight matrix,
and recurrent weight matrix of the update gates, while br, Ur, W r refer to
the corresponding weights of the reset gates.

11.7.3 Echo state networks

To avoid the difficulty of parameter learning with a large recurrent network,
echo state networks (ESNs) [74][75] were proposed with the idea of only learn-
ing the weights of the output layer while making the input and recurrent
weights nontrainable. ESNs are considered as one class of networks in reser-
voir computing, which aims to utilize the temporal features derived from hid-
den units to capture the history of past inputs. The other class of networks
belonging to reservoir computing are liquid state machines [95], which differ

162 Deep Learning in Time Series Analysis

from ESNs in using binary-valued spike neurons rather than hidden units with
continuous outputs.

In the design of an echo state network, it is crucial to set the input and
recurrent weights to reach the desired property of the dynamic system, as mea-
sured based on the Jacobian of the hidden state transitions. One important
index of the Jacobian is the spectral radius, which is defined as the maximum
of the absolute values of its eigenvalues. The recent research [156] on ESNs
suggested having a spectral radius of much more than unity to ensure a re-
sultant large variation when an initial perturbation is propagated through a
number of time steps. Note that a large spectral radius will not lead to un-
bounded dynamics in forward propagation due to the saturating effect of the
tanh activation function.

Once the input and recurrent weights are successfully generated, the ESN
will be able to capture the essential information of an input sequence, which
is transformed into a fixed-length vector in terms of the hidden units. The
network output will then be produced based on the values of the hidden units,
typically through a linear regression function. A simple learning algorithm [74]
can be applied here to identify the output weights in an attempt to minimize
the mean squared error.

12

Convolutional Neural Networks (CNN)

12.1 Introduction

Convolutional Neural Networks [89] (CNN), are a category of neural networks
that are specially designed to process data represented with a grid structure,
such as images and time series data. The word “convolutional” indicates that
convolutional networks use the mathematical operation of convolution. The
convolution operation is introduced in CNNs to replace the general matrix
multiplication in one or more layers of the network.

On the other hand, convolutional networks are quite similar to feedforward
multilayer neural networks. They consist of inter-connected neurons, each of
which receives multiple inputs from the preceding layer and then produces an
output through an activation function. As a whole the total network still be-
haves as a non-linear and differentiable mapping from input to output spaces.
A distinguishing property of CNNs is that they enable incorporating grid
structure of data into model architecture such that both neural connections
and their weights can be dramatically reduced, which improves computational
efficiency in learning and inference of the model as well as saves memory for
data (weight) storage.

Convolutional networks have been at the forefront in the history of deep
learning. Indeed, LeNet-5 [88], the first example of CNNs was proposed much
before deep learning methods received wide acceptance. The CNNs were also
among some of the first deep learning models that were successfully trained
with back-propagation. This gives strong evidence of the higher computational
efficiency of CNNs than regular fully connected networks. The success of CNNs
paved the way to the recognition of neural networks in general and promoted
fruitful research into other deep learning models and algorithms.

There have been many convolutional networks successfully applied to many
problems with practical domains. Examples of early application include the
CNN-based OCR and handwriting recognition systems [123], developed by
Microsoft. The intense commercial interest in CNNs started when the deep
CNN created by [84] achieved record-breaking results with classifying 1.2 mil-
lion images into 1000 classes. This advance won the ImageNet Large Scale
Visual Recognition Challenge (ILSVRC) in 2012 and also resulted in domi-
nating impact on the subsequent events of ILSVRC. A comprehensive review
of the models, methodologies and applications of CNNs can be found in [28].

164 Deep Learning in Time Series Analysis

The remainder of this chapter is organized as follows. Section 12.2 gives
an overview of the general architecture of CNNs. The two important layers of
CNNs, convolutional layer and pooling layer, are described in Sections 12.3
and 12.4 respectively. Section 12.5 briefly discusses the learning issue of CNNs.
Finally, Section 12.6 presents recurrent CNNs that aim to handle grid data in
time series.

12.2 Architecture Overview

Let’s consider images of the size p × q × r, where p, q, and r denotes the
width, height, and number of color channels, respectively. If we use a regular
fully connected network to process these images, a neuron in the first hidden
layer will have p × q × r weights (plus the bias) for being connected to each
pixel of the image. As the layer contains multiple neurons, the total number
of weights will add up very quickly. This number of parameters would only
be manageable when the size of images is small. It will be hard to scale up
to large images for which the width and height are above 200 for instance.
Moreover, a huge number of parameters in the neural network will increase
the risk of overfitting in model training.

To more efficiently deal with large scale inputs, convolutional networks are
specially designed with convolutional layers to depict data of grid topology.
Each neuron in a convolutional layer is only connected to units of a local region
rather than all neurons of the preceding layer. The task of these neurons is to
perform a convolution of the pixels of the regions that they are respectively
associated with. The results of convolution are then transformed by a non-
linear, rectified function to yield local features of the corresponding regions.

The coupling of convolution and non-linearity (via the Rectified Linear
Unit function) constitutes one kernel in the convolutional layer. The kernel
is useful to detect a certain local feature across the whole range of the data,
giving rise to a feature map [87][98][154]. Since we are usually interested in
detecting more than a single feature, several groups of neurons have to be
arranged in the convolutional layer to implement multiple kernel functions
for creating different feature maps. Sometimes such a kernel is also referred
to as filter in the literature. A general architecture of convolutional networks
is shown in Figure 12.1. It comprises a stack of stages with the purpose of
learning feature representations at various abstracting levels. Each stage con-
sists of a convolutional layer and a pooling layer. The convolutional layer,
containing convolution and ReLU, acts as kernels to produce multiple feature
maps, while the pooling layer is responsible for performing a downsampling
operation along the spatial dimensions of the feature maps [114]. At last, the
fully connected layers compute the final outputs, i.e., the score of each class.

Finding the best CNN architecture is problem and data dependent. There
are many ongoing pieces of research that frequently reveal a new architecture

Convolutional Neural Networks (CNN) 165

FIGURE 12.1: The general architecture of CNN.

for a given benchmark that improves model performance. But this issue is not
going to be addressed here. In the subsequent sections, we will only explain
the convolutional and pooling layers that are important building blocks for
construction of CNNs.

12.3 Convolutional Layer

Convolutional layer has been designed based on two main ideas: sparse con-
nectivity and parameter sharing [154], which is further explained in the sequel:

Sparse connectivity. As is noted before, a neuron in the convolutional
layer aims to detect a feature in a local area and hence it is only connected to
a small part of units in the preceding layer. This method is very advantageous
in resulting in fewer parameters of the model as well as fewer operations
to calculate model outputs, in comparison to an ordinary fully connected
network. Suppose the images to process are of the size p×q×l (with p, q being
the width and height, respectively). If we use a network of full connection,
the first hidden layer with s neurons will have a total of p×q×s connections
and parameters, and the runtime to calculate the hidden layer outputs (via
matrix multiplication) will be O(p×q×s). Nevertheless, a neuron in the first
convolutional layer of CNN is merely connected to a local region of k pixels
instead of the entire image. It follows that a feature map (with s neurons)
in the convolutional layer will have k×s connections and thereby the runtime
will be O(k×s). Since k is usually several orders of magnitude smaller than
p×q, we significantly reduce the complexity and computing expense with this
sparse connectivity.

Parameter sharing. It refers to the use of a weight by multiple con-
nections of the network rather than assigning a unique weight to each neural
connection. Given that a feature map in the convolutional layer is tasked to
identify a single feature across the input space, all its neurons are arranged
to have an identical set of parameters to ensure the same kernel function be
applied at different locations. In other words, the value of a weight employed
at one position is tied to the value of a weight employed at any other locations.

166 Deep Learning in Time Series Analysis

Therefore, only k parameters (plus the bias) are needed by the feature map
despite the k×s connections. This indicates a dramatic reduction of model
parameters, leading to a much lower memory requirement of the model and
higher statistical efficiency in learning.

The rule of parameter sharing also brings the property that the convolu-
tional layer is of equivariance to translation of input. This can be explained
by the fact that shared parameters cause the same kernel function to be ap-
plied everywhere such that the convolution of translated input is equal to the
result of translating the convolution of the original input. Arguably, when an
image shifts, its new feature map can be obtained by performing the same
shift to the feature map of the original image. Hence no information will get
lost in the convolutional layer with occurrences of input data shifting.

In a convolutional stage, a kernel is applied to different local regions by
sliding across the entire range of the input data. The number of pixels the
kernel moves at a time is called stride. At each local region, the kernel first
calculates the sum of the products of each kernel weight and the corresponding
input element, which is then transformed by the Rectified Linear Unit (ReLU)
function to produce the output of the connected neuron in the convolutional
layer. The ReLU function used here is given by:

f(x) =

{
x, x ≥ 0

(12.1)
0, x < 0

Figure 12.2 gives an example on how a feature map is generated by per-
forming convolution to an image of the size 4×4×1. The local regions that
the kernel is applied to, has the size of 3×3×1, and the stride is set to be one.
The resultant 2-D feature map provides information about the values of the
feature at different locations.

12.4 Pooling Layer

The pooling layer is designed for downsampling of feature maps in order to
reduce the number of outputs from the convolutional layer. The pooling func-
tion constructs the layer by summarizing rectangular neighborhoods in the
feature maps with statistical values. Two commonly used pooling methods
are max-pooling and average pooling [117][90], as described in the following:

• Max-pooling: it reports the maximum value of a rectangular neighborhood.
We slide the neighborhood (also termed as pool) over the entire feature
map to obtain the maximum outputs of the convolutional layer at different
locations.

Convolutional Neural Networks (CNN) 167

FIGURE 12.2: Generation of a feature map via convolution.

Kernal

0 1 0

1 0 1

0 0 1

0 0

00

00

0 0

1

1

1 1

1

2

2

2

0 0

00

00

0 0

1

1

1 1

1

2

2

2

0 0

00

00

0 0

1

1

1 1

1

2

2

2

0 0

00

00

0 0

1

1

1 1

1

2

2

2

4 1

2 5

5

4 1

2

• Average pooling: it calculates the average of the values of a rectangular
neighborhood. We slide the pool over the entire feature map so as to obtain
the mean of outputs of the convolutional layer at different locations.

An example of the pooling operations is given in Figure 12.3, in which the
max-pooling and average-pooling are applied to a feature map of the size 8×8.
A 4×4 pool slides across the dimensions of the feature map with the stride
of two. Both pooling operations lead to compression of the 16 outputs in the
feature map into four units of the pooling layer.

FIGURE 12.3: Example of pooling applied to a feature map.

168 Deep Learning in Time Series Analysis

It is worth noting that the pooling layer representation is approximately
invariant to small translation of input data. This is because each unit in
the layer provides a summary statistic of a neighborhood so that it is quite
insensitive to slight changes in the pool. Particularly, with max-pooling, the
output of a pooling unit will remain unchanged as long as the maximum
output of the corresponding neighborhood does not change. This invariance
property is beneficial for the feature detection purpose in the sense that the
identified feature values will receive little influence from input data shifts.

12.5 Learning of CNN

The learning of CNN is to adapt the weights of the network to minimize the
differences between target labels and predicted outputs, as measured by a
loss function E. The most commonly used method is gradient descent, which
revises the weights in terms of negative gradient in order to quickly reduce the
function E. Generally, the backpropagation algorithm can still be employed
here to acquire the gradient and update the weights iteratively.

However, special treatments have to be made for learning with a convo-
lutional layer, given that neurons in this layer share their weights as if they
belong to the same feature map. Let’s consider a weight wl

m,n of connections
in a convolutional layer l. Because this weight is used in calculating outputs
of all neurons of the associated feature map, its influence to the loss E has to
add up for the whole feature map. In view of this, the partial derivative of E
with respect to wl

m,n is expressed as:

∂E ∂E ∂αl
i,j

= ΣiΣj . (12.2)
∂wl ∂αl

m,n i,j ∂wl
m,n

Here αl
i,j denotes the linear combination of inputs for a unit indexed by

(i, j) in the feature map. As inputs to the feature map are actually outputs
from the preceding layer l-1, we can formulate αl

i,j as

αl l 1 l
i,j = ΣuΣvOi.s

−
+u,j.s+vwu,v + bl (12.3)

where Ol−1
i.s+u,j.s+v is an output of the local region in the preceding layer that

is connected to the unit (i, j) in the next layer, bl is the bias, and s is the
stride of convolution. Based on 12.3, we obtain the following:

∂αl
i,j ∂

=
∂wl

m,n

(
ΣuΣvO

l−1
i.s+u,j.s+vw

l
u,v + bl

∂wl
m,n

)
= Ol−1

i.s+m,j.s+n (12.4)

Convolutional Neural Networks (CNN) 169

Further we define the error term of a unit as

∂E
= δl (12.5)

∂αl i,j
i,j

Consequently, the derivative of E with respect to wl
m,n can be rewritten

as
∂E

= ΣiΣ
l

jδ
∂wl i,j .O

l−1
i.s+m,j.s+n (12.6)

i,j

In principle, the error terms can be acquired backwards as specified in the
backpropagation algorithm. But, note that a pooling layer has no weights.
This entails the following extra rules to be honored in backpropagation when
routing gradient from the pooling layer to its preceding convolutional layer.

Backpropagation from a max-pooling layer: we assign the error term
to the unit in the pool which has the maximum output, while all other units in
the pool get zero error (term) since they have no contribution to the pooling
unit. For doing this, the wining unit that has the maximum output from the
pool needs to be recorded already in the forward pass.

Backpropagation from an average-pooling layer: all units in the
pool receive an equal error term, which is the error term of the pooling unit
divided by the number of units of the pool. The reason of this assignment is
that all units in the pool have equal contribution to the pooling unit in the
next layer.

In many situations, designing a good CNN architecture and training the
network from scratch is highly expensive and time consuming. One practi-
cal way to relieve the learning burden is to perform transfer learning based
on a pre-trained CNN that has been optimized for a similar task. The pre-
trained network can be further updated and refined using the new data of
the underlying task. Sometimes we can even freeze several layers and only
adjust parameters of the input and output layers of the pre-trained network.
The method of transfer learning is also very helpful when there is a lack of
sufficient data to train a complex CNN.

There are already a few CNN models which can be reused for adaptation to
solve new problems. The most well known CNN architectures include LeNet-
5 [88], VGG [124], AlexNet [84], GoogLeNet [131], ResNet [67], etc. Caffe
[77], as a modifiable framework of the state-of-the-art deep learning methods,
provides a collection of reference models of general-purpose CNNs that can
be selected/adopted for transfer learning to tackle a new task at hand.

12.6 Recurrent CNN

In CNN networks, information flows in a forward path, and consequently,
CNNs are incapable of capturing contextual dependencies [144]. To solve this

170 Deep Learning in Time Series Analysis

problem, [92] proposed the recurrent convolutional layers (RCL), which re-
places the convolutional layers by incorporating the recurrent connections into
each convolutional layer. Therefore, RCL is the core of RCNN. The recurrent
connections expand the network depth while the number of parameters is kept
constant by weight sharing. A general RNN network is defined as follows:

a(t) = g(wfx(t) + wra(t− 1) + ba) (12.7)

where x and a indicate the feed-forward and recurrent input (hidden state),
respectively, wf and wr indicate feed-forward and recurrent weights, respec-
tively, and bais the bias.

As mentioned before, in RCL layers, recurrent connections are incorpo-
rated into the convolutional layer. Therefore, according to 12.7 its net input
is given by

Zijk(t) = (wk
f)

Tx(i,j)(t) + (wk
r)

Ta(i,j)(t− 1) + ba (12.8)

where (i, j) indicates the center of the vectorized square patch of the Kth
feature map, x(i, j) indicates the feed-forward input and it is the vectorized
square patch of the feature map from the previous layer, a(i, j) indicates the
recurrent input and it is the vectorized square patch of the feature map from
the current layer, wk

f , w
k
r and ba indicates the feed-forward weights, recurrent

weights and, the bias for the Kth feature map respectively. The first term of
12.8 is calculated using standard CNN and the second term is calculated using
the recurrent connections and both of them take the form of convolution. The
hidden state of the RCL unit is given by:

aijk(t) = f(h(Zijk(t))) (12.9)

where h is the activation function and the Relu function is usually used:

h(Zijk(t)) = max(0, Zijk(t)) (12.10)

and f is local response normalization (LRN):

hijk(t)
f(hijk(t)) = ((12.11)

β
min(K,k+M)

1 + α Σ 2 (h k)2ijM k ,k
′′=max(0 −M)2

where α and β are constants that control the amplitude

)
of LRN, K is the

number of feature maps in the current layer, M is the neighborhood length for
normalization, and k is the ith filter output. LRN is a non-trainable layer that
simulate the lateral inhibition in the cortex, where different features compete
for high activities.

If we unfold an RCL layer for T time steps, a feed-forward subnetwork of
depth T+1 is obtained Figure 12.4(a), Figure 12.4(b). T is a hyperparameter,
and the effective receptive field of each unit expands when T (iteration num-
ber) is bigger [92][93][136]. Therefore, the RCL can capture more contextual
information.

Convolutional Neural Networks (CNN) 171

RCNN comprises a stack of RCL units with feed-forward connections be-
tween neighbors. There are two structures to develop an RCNN [93]:

• The first approach unfolds the RCLs individually for T time steps and then
feeding to the next RCL Figure 12.4(a). This approach multiplicatively
expands the depth of the network.

• In the second approach, at each time step, the states of all RCLs are
updated consecutively and the output of every neuron in a current layer
connects to the input of every neuron in the next layer Figure 12.4(b).
This unfolding approach additively expands the depth of the network.

If we have a L RCL unit and T time step, then the largest depth of the
network is L×T and N+T in the first and second approaches, respectively. The
second approach is more computationally expensive because the feed-forward
input needs to be updated at each time step, but the first approach needs to
be updated once. Additionally, the effective RF is wider in the first approach.

FIGURE 12.4: (a) Multiplicatively unfold two RCLs with T=2 (b) Additively
unfold two RCLs with T=2.

The training process is performed by backpropagation through time
(BPTT), in which all the RCNNs unfolded to feed-forward networks, and
the BP algorithm is applied.

https://taylorandfrancis.com

Bibliography

 [1] keisan.casio.com. urlhttps://keisan.casio.com/exec/ystem/15411343272927.
Accessed: 2021-09-12.

 [2] Aghajary, M.M. and A. Gharehbaghi. A novel adaptive control design method
for stochastic nonlinear systems using neural network. Neural Computing
and Applications, 33: 9259–9287, 2021.

 [3] Ahlstrom, C., K. Höglund, P. Hult, J. Häggström, C. Kvart and P. Ask.
Assessing aortic stenosis using sample entropy of the phonocardiographic
signal in dogs. IEEE Trans. Biomed. Eng., 55: 2107–2109, 2008.

 [4] Anderson, J.A. An Introduction to Neural Networks. MIT Press, Boston,
1995.

 [5] Anguera, X., R. Macrae and N. Oliver. Partial sequence matching using
an unbounded dynamic time warping algorithm. In Acoustics Speech and
Signal Processing (ICASSP), 2010 IEEE International Conference on,
pp. 3582–3585, March 2010.

 [6] Arslan, L.M. and J.H.L. Hansen. Selective training for hidden markov models
with applications to speech classification. IEEE Transactions on Speech and
Audio Processing, 7(1): 46–54, 1999.

 [7] Baum, L.E. and T. Petrie. Statistical inference for probabilistic functions of
finite state markov chains. Ann. Math. Statist., 37(6): 1554–1563, 12 1966.

 [8] Baum, L.E., T. Petrie, G. Soules and N. Weiss. A maximization technique
occurring in the statistical analysis of probabilistic functions of markov
chains. Ann. Math. Statist., 41: 164–171, 1970.

 [9] Begg, R.K., M. Palaniswami and B. Owen. Support vector machines for
automated gait classification. IEEE Transactions on Biomedical Engineering,
52: 828–838, 2005.

 [10] Belhumeur, P.N., J.P. Hespanha and D.J. Kriegman. Eigenfaces vs.
fisherfaces: Recognition using class specific linear projection. IEEE Trans.
Pattern Analyse and Machine Intel., 19: 711–720, 1997.

https://www.keisan.casio.com

174 Deep Learning in Time Series Analysis

 [11] Bengio, Y., Renato de Mori, G. Flammia and R. Kompe. Global optimization
of a neural network-hidden markov model hybrid. Neural Networks, IEEE
Transactions on, 3(2): 252–259, 1992.

 [12] Bengio, Y. Artificial neural networks and their application to sequence
recognition. 1993.

 [13] Bengio, Y., P. Simard and P. Frasconi. Learning long-term dependencies
with gradient descent is difficult. IEEE Transactions on Neural Networks,
5(2): 157–166, 1994.

 [14] Bourlard, H. and C.J. Wellekens. Speech pattern discrimination and multilayer
perceptrons. Comput., Speech & Language, 3: 1–19, 1989.

 [15] Bourlard, H. and C.J. Wellekens. Links between markov models
and multilayer perceptrons. IEEE Trans. Pat. Anal. and Mach. Intel.,
12: 1167–1178, 1990.

 [16] Chen, B. and P. Willett. Detection of hidden markov model transient signals.
IEEE Transactions on Aerospace and Electronic Systems, 36(4): 1253–1268,
2000.

 [17] Chen, M., G. Ding, S. Zhao, H. Chen, Q. Liu and J. Han. Reference based
lstm for image captioning. In Thirty-first AAAI Conference on Artificial
Intelligence, 2017.

 [18] Cho, K., B. Van Merriënboer, D. Bahdanau and Y. Bengio. On the properties
of neural machine translation: Encoder-decoder approaches. arXiv preprint
arXiv:1409.1259, 2014.

 [19] Christiansen, R. and C. Rushforth. Detecting and locating key words in
continuous speech using linear predictive coding. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 25(5): 361–367, 1977.

 [20] Chung, J., C. Gulcehre, K. Cho and Y. Bengio. Empirical evaluation of
gated recurrent neural networks on sequence modeling. arXiv preprint
arXiv:1412.3555, 2014.

 [21] Ciaccio, E.J., S.M. Dunn and M. Akay. Biosignal pattern recognition and
interpretation systems. 3. Methods of classification. Engineering in Medicine
and Biology Magazine, IEEE, 13(1): 129–135, 1994.

 [22] Cohen, A. Biomedical Signal Processing. CRC Press, Florida, 1988.

Bibliography 175

 [23] Cortes, C. and V.N. Vapnik. Support vector networks. Mach. Learn.,
20: 273–297, 1995.

 [24] Cortes, C. and V. Vapnik. Support-vector networks. Machine Learning,
20(3): 273–297, 1995.

 [25] Crouse, M.S., R.D. Nowak and R.G. Baraniuk. Wavelet-based statistical
signal processing using hidden markov models. IEEE Transactions on Signal
Processing, 46(4): 886–902, 1998.

 [26] Davis, S. and P. Mermelstein. Comparison of parametric representations
for monosyllabic word recognition in continuously spoken sentences. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 28(4): 357–366,
1980.

 [27] de Vos, J.P. and M.M. Blanckenberg. Automated pediatric cardiac auscultation.
IEEE Trans. Biomed. Eng., 54: 244–252, 2007.

 [28] Dhillon, A. and G.K. Verma. Convolutional neural network: A review of
models, methodologies and applications to object detection. Progress in
Artificial Intelligence, 9(2): 85–112, 2020.

 [29] Doya, K. Bifurcations of recurrent neural networks in gradient descent
learning. IEEE Transactions on Neural Networks, 1(75): 218, 1993.

 [30] Du, J., C. Gerdtman, A. Gharehbaghi and M. Lindén. A signal processing
algorithm for improving the performance of a gyroscopic head-borne
computer mouse. Biomedical Signal Processing and Control, 35: 30–37,
2017.

 [31] Dugast, C., L. Devillers and X. Aubert. Combining tdnn and hmm in a hybrid
system for improved continuous-speech recognition. IEEE Trans. Speech
and Audio Processing, 2: 217–223, 1994.

 [32] Dutoit, T. and F. Marques. Applied Signal Processing. Springer, New York,
2009.

 [33] Ebrahimi, Z., M. Loni, M. Daneshtalab and A. Gharehbaghi. A review on
deep learning methods for ecg arrhythmia classification. Expert Systems with
Applications: X, 7: 100033, 2020.

 [34] Elman, J.L. Finding structure in time. Cognitive Science, 14(2): 179–211,
1990.

176 Deep Learning in Time Series Analysis

 [35] Feng, L., X. Zhao, Y. Liu, Y. Yao and B. Jin. A similarity measure of jumping
dynamic time warping. In Fuzzy Systems and Knowledge Discovery (FSKD),
2010 Seventh International Conference on, volume 4, pp. 1677–1681,
Aug 2010.

 [36] Forney, G.D. The viterbi algorithm. Proceedings of the IEEE, 61(3): 268–
278, 1973.

 [37] Furui, S. Cepstral analysis technique for automatic speaker verification. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 29(2): 254–272,
1981.

 [38] Gao, S., Y. Zheng and X. Guo. Gated recurrent unit-based heart sound
analysis for heart failure screening. Biomedical Engineering Online,
19(1): 1–17, 2020.

 [39] Garcia-Moral, A.I., R. Solera-Urena, C. Pelaez-Moreno and F. Diaz-de Maria.
Data balancing for efficient training of hybrid ann/hmm automatic speech
recognition systems. IEEE Transactions on Audio, Speech, and Language
Processing, 19(3): 468–481, 2011.

 [40] Gharehbaghi, A., P. Ask and A. Babic. A pattern recognition framework
for detecting dynamic changes on cyclic time series. Pattern Recognition,
48(3): 696–708, 2015.

 [41] Gharehbaghi, A., P. Ask, M. Lindén and A. Babic. A novel model for screening
aortic stenosis using phonocardiogram. pp. 48–51. In: Henrik Mindedal
and Mikael Persson (eds.). 16th Nordic-Baltic Conference on Biomedical
Engineering, volume 48 of IFMBE Proceedings. Springer International
Publishing, 2015.

 [42] Gharehbaghi, A., P. Ask, E. Nylander, B. Janerot-Sjoberg, I. Ekman, M.
Linden and A. Babic. A hybrid model for diagnosing sever aortic stenosis
in asymptomatic patients using phonocardiogram. In World Congress on
Medical Physics and Biomedical Engineering, June 7–12, 2015, Toronto,
Canada, volume 51 of IFMBE Proceedings, pp. 1006–1009. Springer
International Publishing, 2015.

 [43] Gharehbaghi, A. and A. Babic. Structural risk evaluation of a deep neural
network and a markov model in extracting medical information from
phonocardiography. Studies in Health Technology and Informatics,
251: 157–160, 2018.

Bibliography 177

 [44] Gharehbaghi, A. and A. Babic. A-test method for quantifying structural risk
and learning capacity of supervised machine learning methods. In Studies in
Health Technology and Informatics, volume 289, pp. 132–135, 2022.

 [45] Gharehbaghi, A., A. Babic and A.A. Sepehri. A machine learning method
for screening children with patent ductus arteriosus using intelligent
phonocardiography. In EAI International Conference on IoT Technologies
for HealthCare, pp. 89–95. Springer, 2018.

 [46] Gharehbaghi, A., A. Babic and A.A. Sepehri. Extraction of diagnostic
information from phonocardiographic signal using time-growing neural
network. pp. 849–853. In: Lenka Lhotska, Lucie Sukupova, Igor Lacković,
and Geoffrey S. Ibbott (eds.). World Congress on Medical Physics and
Biomedical Engineering 2018. Singapore, 2019. Springer Singapore.

 [47] Gharehbaghi, A., M. Borga, B.J. Janerot-Sjöberg and P. Ask. A novel method
for discrimination between innocent and pathological heart murmurs. Medical
Engineering and Physics, 37(7): 674–682, 2015.

 [48] Gharehbaghi, A., T. Dutoit, P. Ask and L. Sörnmo. Detection of systolic
ejection click using time growing neural network. Medical Engineering and
Physics, 36(4): 477–483, 2014.

 [49] Gharehbaghi, A., T. Dutoit, A. Sepehri, P. Hult and P. Ask. An automatic tool
for pediatric heart sounds segmentation. In 2011 Computing in Cardiology,
pp. 37–40, 2011.

 [50] Gharehbaghi, A., T. Dutoit, A.A. Sepehri, A. Kocharian and M. Lindén. A
novel method for screening children with isolated bicuspid aortic valve.
Cardiovascular Engineering and Technology, 6(4): 546–556, 2015.

 [51] Gharehbaghi, A., I. Ekman, P. Ask, E. Nylander and B. Janerot-
Sjoberg. Assessment of aortic valve stenosis severity using intelligent
phonocardiography. International Journal of Cardiology, 198: 58–60, 2015.

 [52] Gharehbaghi, A. and M. Lindén. An Internet-Based Tool for Pediatric
Cardiac Disease Diagnosis Using Intelligent Phonocardiography,
pp. 443–447. Springer International Publishing, 2016.

 [53] Gharehbaghi, A. and M. Lindén. A deep machine learning method for
classifying cyclic time series of biological signals using time-growing neural
network. IEEE Transactions on Neural Networks and Learning Systems,
29(9): 4102–4115, 2017.

178 Deep Learning in Time Series Analysis

 [54] Gharehbaghi, A., M. Lindén and A. Babic. A decision support system for
cardiac disease diagnosis based on machine learning methods. Stud. Health
Technol. Inform., 235: 43–47, 2017.

 [55] Gharehbaghi, A., M. Lindén and A. Babic. An artificial intelligent-based
model for detecting systolic pathological patterns of phonocardiogram based
on time-growing neural network. Applied Soft Computing, 83: 105615, 2019.

 [56] Gharehbaghi, A. and M. Lindén. A deep machine learning method for
classifying cyclic time series of biological signals using time-growing neural
network. IEEE Transactions on Neural Networks and Learning Systems,
29(9): 4102–4115, 2018.

 [57] Gharehbaghi, A., A.A. Sepehri and A. Babic. Distinguishing aortic stenosis
from bicuspid aortic valve in children using intelligent phonocardiography.
In 8th European Medical and Biological Engineering Conference, EMBEC
2020, 29 November 2020 through 3 December 2020, pp. 399–406. Springer
Science and Business Media Deutschland GmbH, 2021.

 [58] Gharehbaghi, A., A.A. Sepehri and A. Babic. An edge computing method
for extracting pathological information from phonocardiogram. In ICIMTH,
pp. 364–367, 2019.

 [59] Gharehbaghi, A., A.A. Sepehri and A. Babic. Forth heart sound detection
using backward time-growing neural network. In International Conference
on Medical and Biological Engineering, pp. 341–345. Springer, 2019.

 [60] Gharehbaghi, A., A.A. Sepehri and A. Babic. Distinguishing septal heart
defects from the valvular regurgitation using intelligent phonocardiography.
Studies in Health Technology and Informatics, 270: 178–182, 2020.

 [61] Gharehbaghi, A., A.A. Sepehri, M. Lindén and A. Babic. Intelligent
Phonocardiography for Screening Ventricular Septal Defect Using Time
Growing Neural Network, volume 238, pp. 108–111. IOS Press IOS Press
IOS Press IOS Press, 2017.

 [62] Gharehbaghi, A., A.A. Sepehri, M. Lindén and A. Babic. A Hybrid Machine
Learning Method for Detecting Cardiac Ejection Murmurs, pp. 787–790.
Springer Singapore, Singapore, 2018.

 [63] Gharehbaghi, A., A.A. Sepehri, A. Kocharian and M. Lindén. An intelligent
method for discrimination between aortic and pulmonary stenosis using
phonocardiogram. In World Congress on Medical Physics and Biomedical

Bibliography 179

Engineering, June 7–12, 2015, Toronto, Canada, volume 51 of IFMBE
Proceedings, pp. 1010–1013. Springer International Publishing, 2015.

 [64] Graves, A., N. Jaitly and A.-R. Mohamed. Hybrid speech recognition with
deep bidirectional lstm. In 2013 IEEE Workshop on Automatic Speech
Recognition and Understanding, pp. 273–278. IEEE, 2013.

 [65] Gudmundsson, S., T.P. Runarsson and S. Sigurdsson. Support vector
machines and dynamic time warping for time series. In Neural Networks,
2008. IJCNN 2008. (IEEE World Congress on Computational Intelligence).
IEEE International Joint Conference on, pp. 2772–2776, June 2008.

 [66] Gupta, L., D.L. Molfese, R. Tammana and P.G. Simos. Nonlinear alignment
and averaging for estimating the evoked potential. IEEE Transactions on
Biomedical Engineering, 43(4): 348–356, 1996.

 [67] He, K., X. Zhang, S. Ren and J. Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 770–778, 2016.

 [68] Hedges, L.V. and I. Olkin. Statistical Methods for Meta-Analysis. Academic
Press, San Diego, 1985.

 [69] Hertz, J.A., A. Krogh and R.G. Palmer. Introduction to the Theory of Neural
Computation. CRC Press, Boca Raton, USA, 1991.

 [70] Hettiarachchi, R., U. Haputhanthri, K. Herath, H. Kariyawasam, S.
Munasinghe, K. Wickramasinghe, D. Samarasinghe, A. De Silva and C.U.S.
Edussooriya. A novel transfer learning-based approach for screening pre-
existing heart diseases using synchronized ECG signals and heart sounds.
In 2021 IEEE International Symposium on Circuits and Systems (ISCAS),
pp. 1–5. IEEE, 2021.

 [71] Hochreiter, S. and J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8): 1735–1780, 1997.

 [72] Hollander, M. and D.A. Wolfe. Nonparametric Statistical Methods. John
Wiley & Sons Inc., New York, 1999.

 [73] Huerta, R., S. Vembu, K. Muezzinoglu, Mehmet and A. Vergara. Dynamical
SVM for time series classification. In Pattern Recognition, volume 7476 of
Lecture Notes in Computer Science, pp. 216–225. Springer Berlin Heidelberg,
2012.

180 Deep Learning in Time Series Analysis

 [74] Jaeger, H. Adaptive nonlinear system identification with echo state networks.
Advances in Neural Information Processing Systems, 15: 609–616, 2002.

 [75] Jaeger, H. Echo state network. Scholarpedia, 2(9): 2330, 2007.

 [76] Jain, A.K., R.P.W. Duin and J. Mao. Statistical pattern recognition: A review.
IEEE Trans. Pattern Analyse and Machine Intel., 22: 4–37, 2000.

 [77] Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama and T. Darrell. Caffe: Convolutional architecture for fast feature
embedding. In Proceedings of the 22nd ACM International Conference on
Multimedia, pp. 675–678, 2014.

 [78] Jozefowicz, R., W. Zaremba and I. Sutskever. An empirical exploration of
recurrent network architectures. In International Conference on Machine
Learning, pp. 2342–2350. PMLR, 2015.

 [79] Juang, B.-H. and L.R. Rabiner. A probabilistic distance measure for hidden
markov models. ATT Technical Journal, 64(2): 391–408, 1985.

 [80] Juang, B.-H. and L.R. Rabiner. The segmental k-means algorithm for
estimating parameters of hidden markov models. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 38(9): 1639–1641, 1990.

 [81] Kecman, V. Learning and Soft Computing: Support Vector Machine, Neural
Networks and Fuzzy Logic Models. MIT Press, Cambridge, MA, 2002.

 [82] Kim, M. and V. Pavlovic. Sequence classification via large margin hidden
markov models. Data Min. Knowl. Disc., 23: 322–344, 2011.

 [83] Kohonen, T. Self-organized formation of topologically correct feature maps.
Biological Cybernetics, 43(1): 59–69, 1982.

 [84] Krizhevsky, A., I. Sutskever and G.E. Hinton. Imagenet classification
with deep convolutional neural networks. Advances in Neural Information
Processing Systems, 25, 2012.

 [85] Kubat, M. Neural networks: A comprehensive foundation by simon haykin,
macmillan, 1994, isbn 0-02-352781-7. The Knowledge Engineering Review,
13(4): 409–412, 1999.

 [86] Latif, S., M. Usman and J.Q.R. Rana. Abnormal heartbeat detection using
recurrent neural networks. arXiv preprint arXiv:1801.08322, 2018.

Bibliography 181

 [87] LeCun, Y., L. Bottou, Y. Bengio and P. Haffner. Deep learning. Nature,
521(7553): 436–444, 2015.

 [88] LeCun, Y., L. Bottou, Y. Bengio and P. Haffner. Gradient-based
learning applied to document recognition. Proceedings of the IEEE,
86(11): 2278–2324, 1998.

 [89] LeCun, Y. Generalization and network design strategies. Connectionism in
Perspective, 19(143-155): 18, 1989.

 [90] Lee, C-Y., P. W. Gallagher and Z. Tu. Generalizing pooling functions
in convolutional neural networks: Mixed, gated, and tree. In Artificial
Intelligence and Statistics, pp. 464–472. PMLR, 2016.

 [91] Lee, K.F. and H.W. Hon. Speaker-independent phone recognition using
hidden markov models. IEEE Trans. Acoustics, Speech and Signal Processing,
37: 298–305, 1989.

 [92] Liang, M. and X. Hu. Recurrent convolutional neural network for object
recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3367–3375, 2015.

 [93] Liang, M., X. Hu and B. Zhang. Convolutional neural networks with
intra-layer recurrent connections for scene labeling. Advances in Neural
Information Processing Systems, 28, 2015.

 [94] Lin, T., B.G. Horne, P. Tino and C.L. Giles. Learning long-term dependencies
in narx recurrent neural networks. IEEE Transactions on Neural Networks,
7(6): 1329–1338, 1996.

 [95] Maass, W., T. Natschläger and H. Markram. Real-time computing without
stable states: A new framework for neural computation based on perturbations.
Neural Computation, 14(11): 2531–2560, 2002.

 [96] Mallat, S. A Wavelet Tour of Signal Processing, Third Edition: The Sparse
Way. Academic Press, Inc., USA, 3rd edition, 2008.

 [97] McCulloch, W.S. and W.H. Pitts. A logical calculus of the ideas immanent in
nervous activity. Bulletin of Mathematical Biophysics, 5: 115–133, 1943.

 [98] Meintjes, A., A. Lowe and M. Legget. Fundamental heart sound classification
using the continuous wavelet transform and convolutional neural networks.

182 Deep Learning in Time Series Analysis

In 2018 40th Annual International Conference of the IEEE Engineering in
Medicine and Biology Society (EMBC), pp. 409–412. IEEE, 2018.

 [99] Messner, E., M. Zöhrer and F. Pernkopf. Heart sound segmentation—An event
detection approach using deep recurrent neural networks. IEEE Transactions
on Biomedical Engineering, 65(9): 1964–1974, 2018.

 [100] Michalek, S., M. Wagner and J. Timmer. A new approximate likelihood
estimator for arma-filtered hidden markov models. IEEE Transactions on
Signal Processing, 48(6): 1537–1547, 2000.

 [101] Mozer, M.C. Induction of multiscale temporal structure. In Advances in
Neural Information Processing Systems, pp. 275–282, 1992.

 [102] Nagy, G. Feature extraction on binary patterns. IEEE Transactions on Systems
Science and Cybernetics, 5(4): 273–278, 1969.

 [103] Nakagawa, S. and H. Nakanishi. Speaker-independent english consonant and
japanese word recognition by a stochastic dynamic time warping method.
IETE Journal of Research, 34(1): 87–95, 1988.

 [104] Oppenheim, A.V., R. Shafer and J.R. Buck. Discrete-Time Signal Processing.
Prentice Hall, Upper Saddle River, New Jersey, USA, 1998.

 [105] Oppenheim, A.V., A.S. Willskey and N.S. Hamid. Signals and Systems.
Pearson New International Edition, USA, 2014.

 [106] Oskiper, T. and R. Watrous. Detection of the first heart sound using a time-
delay neural network. In Proc. Comput. Cardiol., volume 29, pp. 537–540,
2002.

 [107] Pascanu, R., T. Mikolov and Y. Bengio. On the difficulty of training recurrent
neural networks. In International Conference on Machine Learning,
pp. 1310–1318. PMLR, 2013.

 [108] Rabiner, L. A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2): 257–286, 1989.

 [109] Rabiner, L. and S. Levinson. A speaker-independent, syntax-directed,
connected word recognition system based on hidden markov models and level
building. IEEE Transactions on Acoustics, Speech, and Signal Processing,
33(3): 561–573, 1985.

Bibliography 183

 [110] Rabiner, L., S. Levinson, A. Rosenberg and J. Wilpon. Speaker independent
recognition of isolated words using clustering techniques. IEEE Transactions
on Acoustics, Speech, and Signal Processing, 27(4): 336–349, 1979.

 [111] Rabiner, L., A. Rosenberg and S. Levinson. Considerations in dynamic time
warping algorithms for discrete word recognition. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 26(6): 575–582, 1978.

 [112] Rabiner, L. and B.-H. Juang. Fundamentals of Speech Recognition. Prentice
Hall, United States ed edition, 1993.

 [113] Rabiner, L.R. A tutorial on hidden markov models and selected applications
in speech recognition. Proceedings of the IEEE, 77(2): 257–286, 1989.

 [114] Renna, F., J. Oliveira and M.T. Coimbra. Deep convolutional neural networks
for heart sound segmentation. IEEE Journal of Biomedical and Health
Informatics, 23(6): 2435–2445, 2019.

 [115] Richard, M. and R. Lippmann. Neural network classifiers estimate bayesian
a posteriori probabilities. Neural Computation, 87: 1738–1752, 1991.

 [116] Sakoe, H. and S. Chiba. Dynamic programming algorithm optimization for
spoken word recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1): 43–49, 1978.

 [117] Scherer, D., A. Müller and S. Behnke. Evaluation of pooling operations
in convolutional architectures for object recognition. In International
Conference on Artificial Neural Networks, pp. 92–101. Springer, 2010.

 [118] Selim, S.Z. and M.A. Ismail. K-means-type algorithms: A generalized
convergence theorem and characterization of local optimality. IEEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-6(1):
81–87, 1984.

 [119] Semmlow, J.L., M. Akay and W. Welkowitz. Noninvasive detection
of coronary artery disease using parametric spectral analysis methods.
Engineering in Medicine and Biology Magazine, IEEE, 9(1): 33–36, 1990.

 [120] Sepehri, A.A., A. Kocharian, A. Janani and A. Gharehbaghi. An intelligent
phonocardiography for automated screening of pediatric heart diseases.
Journal of Medical Systems, 40(1), 2015.

 [121] Sepehri, A.A., A. Gharehbaghi, T. Dutoit, A. Kocharian and A. Kiani. A
novel method for pediatric heart sound segmentation without using the ECG.
Computer Methods and Programs in Biomedicine, 99(1): 43–48, 2010.

184 Deep Learning in Time Series Analysis

 [122] Sepehri, A.A., J. Hancq, T. Dutoit, A. Gharehbaghi, A. Kocharian and
A. Kiani. Computerized screening of children congenital heart diseases.
Computer Methods and Programs in Biomedicine, 92(2): 186–192, 2008.

 [123] Simard, P.Y., D. Steinkraus, J.C. Platt. Best practices for convolutional neural
networks applied to visual document analysis. In Icdar, volume 3, 2003.

 [124] Simonyan, K. and A. Zisserman. Very deep convolutional networks for large-
scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

 [125] Sinha, R.K., Y. Aggarwal and B.N. Das. Backpropagation artificial neural
network classifier to detect changes in heart sound due to mitral valve
regurgitation. J. Med. Sys., 31: 205–209, 2007.

 [126] Sloin, A. and D. Burshtein. Support vector machine training for improved
hidden markov modeling. IEEE Trans. Signal Proc., 56: 172–188, 2008.

 [127] Stoer, J. and R. Bulirsch. Introduction to Numerical Analysis. Springer, 2002.

 [128] Sugiyama, M., H. Sawai and A.H. Waibel. Review of tdnn (time delay
neural network) architectures for speech recognition. In 1991 IEEE
International Symposium on Circuits and Systems (ISCAS), pp. 582–585
vol. 1, 1991.

 [129] Sujadevi, V.G., K.P. Soman, R. Vinayakumar and A.U. Prem Sankar. Deep
models for phonocardiography (pcg) classification. In 2017 International
Conference on Intelligent Communication and Computational Techniques
(ICCT), pp. 211–216. IEEE, 2017.

 [130] Sutskever, I., O. Vinyals and Q.V. Le. Sequence to sequence learning with
neural networks. In Advances in Neural Information Processing Systems,
pp. 3104–3112, 2014.

 [131] Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke and A. Rabinovich. Going deeper with convolutions. In
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, pp. 1–9, 2015.

 [132] Sörnmo, L. and P. Laguna. Bioelectrical Signal Processing in Cardiac and
Neurological Applications. Elsevier Academic Press, USA, 2005.

 [133] Tahir, M.A., A. Bouridane and F. Kurugollu. Simultaneous feature selection
and feature weighting using hybrid tabu search/k-nearest neighbor classifier.
Pattern Recognition Letters, 28: 438–446, 2007.

Bibliography 185

 [134] Takami, J.I. and S. Sagayama. A pairwise discriminant approach to robust
phoneme recognition by time-delay neural networks. In [Proceedings]
ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal
Processing, pp. 89–92 vol. 1, 1991.

 [135] Tang, H., T. Li and T. Qiu. Noise and disturbance reduction for heart sounds
in cycle-frequency domain based on nonlinear time scaling. IEEE Trans.
Biomed. Eng., 27: 234–243, 2010.

 [136] Tang, Y., X. Wu and W. Bu. Deeply-supervised recurrent convolutional neural
network for saliency detection. In Proceedings of the 24th ACM international
conference on Multimedia, pp. 397–401, 2016.

 [137] Taniguchi, T., H. Yamakawa, T. Nagai, K. Doya, M. Sakagami, M. Suzuki, T.
Nakamura and A. Taniguchi. A whole brain probabilistic generative model:
Toward realizing cognitive architectures for developmental robots. Neural
Networks, 150: 293–312, 2022.

 [138] Tappert, C. and S. Das. Memory and time improvements in a dynamic
programming algorithm for matching speech patterns. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 26(6): 583–586, 1978.

 [139] Trentin, E. and M. Gori. Robust combination of neural networks and hidden
markov models for speech recognition. IEEE Transactions on Neural
Networks, 14(6): 1519–1531, 2003.

 [140] Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural
Net., 10: 988–999, 1999.

 [141] Vapnik, V.N. The Nature of Statistical Learning Theory. Springer, New York,
2000.

 [142] Vembu, S., A. Vergara, M.K. Muezzinoglu and R. Huerta. On time series
features and kernels for machine olfaction. Sensors and Actuators B:
Chemical, 174: 535–546, 2012.

 [143] Waibel, A., T. Hanazawa, G. Hinton, K. Shikano and K.J. Lang. Phoneme
recognition using time-delay neural networks. IEEE Transactions on
Acoustics, Speech, and Signal Processing, 37(3): 328–339, 1989.

 [144] Wang, B., Y. Lei, T. Yan, N. Li and L. Guo. Recurrent convolutional neural
network: A new framework for remaining useful life prediction of machinery.
Neurocomputing, 379: 117–129, 2020.

186 Deep Learning in Time Series Analysis

 [145] Webb, A.R. Statistical Pattern Recognition. Hodder Arnold Publication,
1999.

 [146] Williams, R.J. and D. Zipser. A learning algorithm for continually running
fully recurrent neural networks. Neural Computation, 1(2): 270–280, 1989.

 [147] Wilpon, J. and L. Rabiner. A modified k-means clustering algorithm for use
in isolated work recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 33(3): 587–594, 1985.

 [148] Wilpon, J.G., L.R. Rabiner, C.-H. Lee and E.R. Goldman. Automatic
recognition of keywords in unconstrained speech using hidden markov
models. IEEE Transactions on Acoustics, Speech, and Signal Processing,
38(11): 1870–1878, 1990.

 [149] Wissel, T., T. Pfeiffer, R. Frysch, R.T. Knight, E.F. Chang, H. Hinrichs, J.W.
Rieger and G. Rose. Hidden markov model and support vector machine based
decoding of finger movements using electrocorticography. Journal of Neural
Engineering, 10: 1–19, 2013.

 [150] Wood, J.C. and D.T. Barry. Time-frequency analysis of the first heart sound.
IEEE Eng. Med. Biol. Mag., 95: 144–151, 1995.

 [151] Wu, X., P. Rozycki and B.M. Wilamowski. A hybrid constructive algorithm
for single-layer feed forward networks learning. Neural Networks and
Learning Systems, IEEE Transactions on, 26(8): 1659–1668, 2015.

 [152] Xiao, B., Y. Xu, X. Bi, W. Li, Z. Ma, J. Zhang and X. Ma. Follow the sound
of children’s heart: A deep-learning based computer-aided pediatric chds
diagnosis system. IEEE Internet of Things Journal, 7(3): 1994–2004, 2019.

 [153] Yamakawa, H. The whole brain architecture approach: Accelerating the
development of artificial general intelligence by referring to the brain. Neural
Networks, 144: 478–495, 2021.

 [154] Yamashita, R., M. Nishio, R.K.G. Do and K. Togashi. Convolutional neural
networks: an overview and application in radiology. Insights into Imaging,
9(4): 611–629, 2018.

 [155] Yan, H., Y. Jiang, J. Zheng, C. Peng and Q. Li. A multilayer perceptron-based
medical decision support system for heart disease diagnosis. Expert Systems
with Applications, 30(2): 272–281, 2006.

 [156] Yildiz, I.B., H. Jaeger and S.J. Kiebel. Re-visiting the echo state property.
Neural Networks, 35: 1–9, 2012.

Bibliography 187

 [157] Zavaliagkos, G., Y. Zhao, R. Schwartz and J. Makhoul. A hybrid segmental
neural net/hidden markov model system for continuous speech recognition.
IEEE Transactions on Speech and Audio Processing, 2(1): 151–160, 1994.

 [158] Zhang, X. Y. Zou, S. Li and S. Xu. A weighted auto regressive lstm based
approach for chemical processes modeling. Neurocomputing, 367: 64–74,
2019.

 [159] Zhang, X., L.-G. Durand, L. Senhadji, H.C. Lee and J.-L. Coatrieux. Time-
frequency scaling transformation of the phonocardiogram based of the
matching pursuit method. Biomedical Engineering, IEEE Transactions on,
45(8): 972–979, 1998.

https://taylorandfrancis.com

Index

A

accumulated 93–95
Activation function 52, 55, 56, 131, 149,

162, 163, 170
Adaptation 3–5, 11, 14, 15, 133, 169
Algorithm 7, 39, 40, 42, 44–46, 48, 50, 57,

58, 92–96, 100–102, 104, 109, 114–117,
119, 120, 122, 131, 135, 138, 139,
144–146, 150, 155–157, 160, 162, 163,
168, 169, 171

Approximation coefficient 127
AR 76, 77
Architecture 11, 22, 26, 37, 49, 54, 57, 78,

79, 81, 82, 84, 85, 87, 88, 103–105, 109,
110, 116, 123–125, 128–131, 135, 136,
142, 149, 151, 163–165, 169

Arithmetic 25, 59
ARMA 76, 77
Artificial neural network 19, 62, 141
A-Test validation 30, 31, 33, 35
Autocorrelation 69, 70, 76
Autoregressive 76, 150
Autoregressive moving average 76
Average 8, 33, 46, 60, 69, 70, 76, 77, 87,

137, 166, 167, 169
Average pooling 166, 167, 169
Axon 50–52

B

Background noise 46, 120
Backpropagation error 169
Backward 73, 85, 86, 94, 125, 126, 129,

130, 135, 152–154, 169
Backward growing 73, 126, 130
Batch training 57, 146
Between scatter 42, 43, 118, 120
Between-class 16, 42, 43, 62, 86, 111
Bias vector 151, 152, 159–161
Big data 35

Bilateral 73, 74, 85, 86, 125–127, 129, 130,
135

Bilateral growing 73, 74, 86, 126, 127, 129,
130, 135

Binary 52, 136, 137, 146, 162
Boundary condition 94

C

Capacity 28, 33, 34, 123, 144
Centroid 60–62, 116
Chaotic 8, 66, 68, 69
Class 6, 13, 16, 17, 19, 40–44, 49, 50,

52–54, 56, 60, 62, 77, 86, 91, 97, 98,
109, 111, 112, 117, 120, 136–138, 145,
146, 161, 164

Classification 8, 10, 11, 13, 14, 17, 20, 21,
23, 24, 26–35, 37, 38, 42, 44, 47, 49, 50,
52–62, 65, 66, 71, 77, 78, 81, 87, 88, 91,
92, 94–98, 100, 102–104, 107, 110–112,
116, 118, 120–124, 129, 131, 132, 134,
136–138, 141–143, 146, 147, 151

Classification error 23, 24, 26, 27, 32, 33,
57, 58, 81, 112, 116, 121

Classification rate 21, 24, 26–35, 112, 116,
118, 120–122

Classifier 21, 24, 26–33, 35, 38, 78, 82, 96,
110, 129, 131, 132, 136, 137, 142, 146,
147

Clustering 11, 59–62, 102, 109–112,
114–118, 120, 121, 129, 130

C-means 116, 117, 120
Coefficient 57, 127
Conditional probability 99
Continuity and symmetricity 94
Convolution 163, 164, 166–168, 170
Convolutional layer 164–170
Convolutional neural network 163
Covariance 40, 41, 45, 46, 146
Covariance matrix 40, 41, 45, 146

190 Deep Learning in Time Series Analysis

Criteria 18, 23, 25, 41, 73, 81, 95, 101, 119,
121, 122

Criterion 18, 19, 23, 24, 28, 42, 53, 54, 57,
102, 116, 118, 119, 122, 130

Cross-validation 27, 87, 88
Cumulant 70
Cyclic 11, 71–75, 83, 133–138, 141–145
Cyclic learning 134, 135, 137, 138, 145
Cyclic time series 11, 71–74, 83, 133, 134,

136, 141–144

D

Dataset 13, 17, 20–22, 26–28, 30, 31, 33,
35, 45, 49, 57, 59, 61, 66, 111, 112,
118–120

Decision 3–5, 13, 14, 27, 41, 57, 81, 103,
120

Decoding 101
Decomposition 78, 127
Deep learning 4, 7, 10, 11, 13, 15, 37, 42,

83, 91, 96, 107, 109–111, 114, 117, 121,
123–125, 129, 131, 133–136, 141, 142,
150, 163, 169

Deep level 11, 41, 109–112, 114–119, 121,
124–126, 128–132, 134–138, 142–145

Dendrites 50–52
Design parameter 4, 14, 19, 20, 25, 35, 68,

72, 73, 126–128, 135, 138, 139, 143,
144

Detail coefficient 127
Determinant 41, 43, 44, 119, 120
Deterministic 8, 11, 66, 68, 90, 98
Dimension 5, 7, 16, 22, 37–40, 42, 44–47,

49, 59, 61, 66, 112, 164, 167
Dimension reduction 5, 38, 39, 42, 61
Discriminant analysis 19, 40, 42, 47, 118,

120, 121
Discriminant learning 54
Discriminating 7, 37, 39, 42
Discrimination power 13, 39, 40, 42–44, 47,

48, 109, 112, 114–116, 118, 125, 130
Discriminative 110, 111, 114–116, 118–120,

124–127, 129, 131, 132, 134, 136, 138,
142, 144–146

Discriminative frequency band 114, 115,
118, 125, 126, 129, 136, 138, 142,
144–146

Dispersion 44–48

Dissimilarities 10, 11, 13, 14, 16, 19, 23,
25, 26, 111, 114, 144

Distance 24, 25, 50, 56, 60, 62, 72, 91–96,
102, 116, 138, 139, 146

Dynamic 3, 4, 9–11, 14, 17, 20, 22, 23, 37,
45, 66, 67, 75, 77–79, 81, 82, 84, 85,
87–97, 100, 101, 103, 105, 112, 113,
121, 123–125, 128, 132–135, 137, 138,
144, 146, 149–152, 162

Dynamic contents 9, 10, 17, 20, 66, 67, 77,
78, 81, 82, 84, 85, 87–92, 103, 113, 121,
123–125, 132, 138, 144, 146

Dynamic time warping 90–96, 132

E

Echo state network 160–162
Eigenvalue 45–47, 157, 162
Eigenvector 45, 46
Electrocardiogram 13, 71, 89
Electrocardiograph 67, 74, 75
Element 3, 5, 14, 50, 53, 58, 66, 69, 75,

127, 128, 154, 155, 166
Elman neural network 104
Empirical risk 26, 27, 38, 95
Endpoint 59, 71–73
Epoch 54, 57–59, 81, 155
Equation 16, 18, 31, 32, 57, 67–69, 76, 95,

113, 115, 135, 151
Equivariance 166
Error 9, 15, 19, 21, 23, 24, 26, 27, 32, 33,

38, 53–59, 62, 66–68, 75, 76, 81, 83, 85,
88, 102, 104, 112, 116, 117, 121, 131,
152, 153, 155, 160, 162, 169

Estimation 17–19, 27, 29, 31, 33–35, 58,
76, 87, 100, 102, 113, 137, 138

Euclidean 24, 50, 60, 62, 91–93, 102, 146
Euclidean distance 24, 50, 60, 62, 92, 93,

146
Evaluation 17, 26

F

Feature extraction 9, 13, 37, 78, 110, 115,
143

Feature map 164–168, 170
Feature selection 39, 44, 46, 47
Feature transformation 44
Feature vector 37–47, 49, 59–61, 65, 78,

81–83, 87, 88, 102, 112, 114, 116–119,
136, 144–146

Index 191

Feedback 15, 19, 103, 149
Feedforward 149, 152, 163
Filter 164, 170
Filtering 10, 14, 25, 128
Fisher 39, 42–44, 46–48, 60, 118–122, 128,

130
Forward 73, 84–87, 100, 125, 126, 129,

130, 135, 150, 156, 162, 169–171
Forward growing 73, 126, 130
Fourier series 82, 87, 112, 113
Frequency 8, 78, 81–83, 85–88, 113–116,

118, 119, 121, 123, 125–131, 135, 136,
138, 139, 142–146

Frequency band 82, 83, 85, 86, 113–116,
118, 119, 121, 125–127, 129–131, 136,
138, 142, 144–146

Fuzzy 19, 116, 117, 141, 147

G

Gated recurrent network 160
Gaussian distribution 41, 60, 137
Genetic algorithm 39, 104, 115
Gradient 56–58, 150, 153, 155–158, 160,

168, 169
Gradient decent 153
Grammar 142
Graphical representation 32
Gravity 60, 62
Grid structure 163
Grid topology 164
Growing center 74
Growing scheme 73, 85, 86, 123, 125–127,

129–131, 135
Growing time 73, 74, 123, 126, 129, 136,

144
Growing window 85–87, 123, 125, 129,

130, 144

H

Heterogeneous 48
Heuristic 39, 73, 86, 94, 102, 109, 127, 139,

141, 152
Hidden layer 55–57, 81, 85, 104, 131, 151,

164, 165
Hidden Markov model 79, 90, 97, 98, 102,

132, 141, 142, 144
Hidden unit 151, 152, 156, 158, 159, 161,

162

Hierarchical 62
Higher order statistics 69, 70
Hill-climbing 39, 40, 42, 44, 48, 114, 115,

138
Homogeneous 37
Homoscedasticity 41
Hybrid learning 49
Hybrid model 91, 101, 142, 145
Hyperparameter 16, 19–21, 23, 60, 66, 83,

85, 109, 127, 170
Hypotheses 90
Hypothesis 90, 125, 141

I

Image 6, 7, 9, 65, 160, 163–166
Independence 41, 43
Independent 18, 41, 54, 67, 110
Information 5, 9, 10, 30, 31, 33, 37, 38,

47–50, 66, 71, 72, 77, 82, 86, 89, 90, 94,
98, 102, 109, 111, 124, 127, 128, 131,
134, 136, 141, 149, 152, 155, 156, 158,
160, 162, 166, 169, 170

Initial window length 86, 126, 127
Input argument 40
Input gate 158, 159
Intelligence 3–5, 16, 17, 19, 26, 28, 29, 34,

49, 50, 78, 90, 110, 111
Interconnection 15, 98, 100
Iteration 19, 25, 27, 39, 40, 54, 56, 60, 87,

100, 102, 115–117, 170
Iterative algorithm 39, 57, 117, 119

J

Jack-Knife 29
Jordan neural network 104

K

Kernel 146, 164–166
K-fold 29–31, 34, 35
K-means 59, 60, 62, 102, 116–118, 120,

130, 132
K-Nearest neighbours 49, 50

L

Labelling 60, 89, 116
Large data 35, 53, 139, 146

192 Deep Learning in Time Series Analysis

Learning 1, 3–7, 9–31, 33–35, 37, 38, 41,
42, 44, 49, 50, 53–60, 62, 66, 69, 72–75,
77, 78, 83, 85, 88, 90–92, 94–96, 98,
101, 103, 104, 107, 109–112, 114–139,
141–145, 147, 149, 150, 152, 155–158,
160–164, 166, 168, 169

Learning capacity 28, 33, 34, 123, 144
Learning data 10, 22, 23, 28–31, 34, 37, 44,

135, 136, 139, 142
Learning parameter 15, 17, 19–21, 25, 27,

54, 57, 126, 127, 138, 141
Learning theory 3, 4, 11, 13
Leave-One-Out 29, 30
Linear 15, 16, 18, 19, 39, 40, 42–44, 50,

52, 54, 55, 67–70, 75, 76, 78, 92, 93,
102, 146, 151, 158, 159, 162–164, 166,
168

Linear alignment 92, 93, 102
Linear discriminant analysis 40, 42
Local minimum 27, 58, 87
Logistic sigmoid 55, 56
Longitudinal 150
Long-short term memory 158
Long-term dependences 150, 158

M

Machine learning 3, 5, 15, 27, 28, 35, 66,
75, 77, 112, 133

Mahalanobis distance 91
Mapping 6, 7, 9, 13, 16, 17, 19, 37–39, 49,

54, 59–62, 102, 112, 118, 123, 129, 135,
138, 144–146, 149, 151, 163

Mathematical 5–11, 13, 14, 16, 17, 19, 25,
38, 39, 44, 66, 68, 78, 82, 102, 112, 118,
127, 163

Matrix 25, 40, 41, 44–46, 48, 52, 53, 58,
77, 92, 99, 100, 119, 120, 146, 154–157,
159–161, 163, 165

Max pooling 166–169
Maximum 30, 44, 45, 114, 144, 162, 166,

168, 169
Membership 117, 137, 138
Memory 59, 95, 96, 103, 104, 111, 139,

150, 158, 163, 166
Mid-growing 126
Minimum 27, 33, 58, 60, 76, 87
MLP 54–56, 59, 61, 62, 81, 84, 87, 88, 102,

103

Model 4, 5, 7, 8, 10, 14, 22, 50–55, 65–69,
71, 74–79, 86, 89–91, 97–102, 110, 132,
141–145, 149–151, 158, 159, 163–166,
169

Model-based 75, 97, 98, 102, 132, 141, 142
Momentum term 58
Monotonicity 94
Multi-class 40, 52, 54, 56, 137
Multicollinearity 41
Multidimensional 9, 13, 37, 49, 61, 66, 78,

91, 94, 102, 131, 132, 145, 146
Multi-layer 49, 54, 56, 62, 78, 81, 87, 123,

131, 137
Multivariate normality 41

N

Neural network 11, 12, 19, 27, 32, 49–54,
56, 58, 62, 75, 78, 79, 81–85, 87, 88, 91,
97, 101–105, 109, 110, 112, 123–126,
129–132, 134–138, 141, 142, 146,
149–152, 155, 156, 159, 163, 164

Neuron 15, 50–57, 62, 81, 83, 109, 123,
131, 149–152, 162–166, 168, 171

Noise 4, 8–10, 14, 38, 44, 46–49, 58, 59,
61, 62, 68, 75, 76, 90, 102, 109, 111,
120, 128, 132, 133, 137

Non-cyclic 134, 135, 143, 144
Nonlinear 14, 54, 55, 61, 68, 69, 75, 77, 78,

81, 85, 123, 129, 132, 138, 144, 146,
164

Normal distribution 40
Numerical 3, 6, 19, 21, 22, 49, 60, 102, 145
Numerical symbol 49, 60, 102, 145

O

Observation 4, 97, 99–102, 150, 151
Observation function 150, 151
Optimal 4, 17, 21, 23, 27, 33, 34, 39, 40,

42, 46, 47, 53, 81, 83, 86, 88, 93, 101,
109, 112, 114, 115, 117–121, 123, 125,
131, 135, 139, 141, 144, 152

Optimization 14, 17–21, 25, 39, 42, 67, 69,
83, 85, 109, 138, 152

Orthogonal 44, 157
Output 50–57, 62, 66–69, 76, 81, 83, 85,

88, 100, 103, 104, 112, 131, 141, 144,
149–154, 156, 158–171

Index 193

Output gate 158–160
Output layer 55, 56, 81, 83, 85, 103, 104,

131, 161, 169
Overfitting 27, 28, 35, 38, 110, 111, 139,

164
Overlap 66, 68, 113, 114

P

Parameter 15, 19, 25, 52, 54, 55, 62, 68,
70, 72, 73, 117, 124, 126, 127, 139,
143, 144, 150, 152, 158, 159, 161, 165,
166

Parameter sharing 150, 165, 166
Partial derivative 153–157, 160, 168
Pattern 37, 49, 54, 59, 61, 71, 96–98, 102,

131, 133, 134, 142, 149
Pattern recognition 49, 149
Perceptron 49–56, 62, 78, 81, 110, 123,

131, 132, 137, 146
Performance 5, 14, 15, 17, 21, 23–34,

45, 48, 53, 57, 81, 87, 88, 94, 95, 98,
110–112, 120, 121, 123, 126, 132, 139,
141, 160, 165

Periodogram 84, 113, 129, 135, 138, 144
Phonocardiograph 71, 74, 75
Pooling layer 164–169
Population 41, 70, 109
Post processing 11, 97, 132, 137, 151
Posteriori probability 99
Prediction 10, 15, 65, 67, 71, 75, 100
Prediction error 15, 67, 75
Pre-processing 11, 37, 49, 59, 102, 110,

142
Principal component analysis 44, 45, 47
Priori probabilities 141
Probability 9, 30, 40, 41, 43, 90, 98–102,

117, 118, 120, 141, 142, 146
Probability expectation 30

Q

Quadrature 128
Qualification 33
Quality 15, 23, 28, 41, 81
Quantification 5, 23, 26, 61, 102, 118, 142,

145, 146
Question 3, 4, 8, 10, 14, 16, 18, 22, 23, 38,

42, 47, 49, 91, 113, 121, 125, 126, 133

R

Random 8, 9, 29–31, 34, 43, 56, 59, 60–62,
69, 71, 75, 76, 97, 98, 102, 118, 156

Reconstruction 128
Rectified linear unit 164, 166
Recurrent 11, 75, 78, 79, 81, 91, 103–105,

112, 132, 149–152, 155, 156, 158–162,
164, 169, 170

Recurrent neural network 11, 75, 78, 81,
91, 103–105, 112, 132, 149–152, 155,
156, 159

Recursive 21, 25, 27, 40, 54, 59, 60, 77,
100, 101

Redundancy 37, 49
Regression 81, 162
Repeated random sub sampling 29, 31, 34
Risk 26–29, 31, 32, 34, 35, 38, 57–59, 95,

97, 101, 110, 119, 120, 132, 157, 164
Rotation 10, 44–46, 48
RRSS 29, 34

S

Scale 11, 24, 110–112, 114, 124, 127, 128,
135, 157, 158, 163, 164

Sector 65, 72–74, 134–136, 138, 139, 143
Segment 74, 85, 86, 88, 127
Self-feeding 149
Self-organizing map 61, 62
Semantic 125, 142
Sequence 7, 9–11, 17, 37, 65, 89, 90, 92,

94, 97, 99–102, 132, 137, 144, 149,
150–152, 162

Sequential data 89–91, 97–101, 103, 105,
142, 149

Sigmoid 55, 56, 131, 149, 159, 161
Signal 4, 6–9, 13–15, 17, 19, 20, 35, 65, 71,

72, 78, 82, 85–90, 101, 111, 113, 114,
124–128, 133, 137, 149, 150

Similarities 3, 8, 10, 11, 13, 14, 16, 19,
23–26, 59, 91, 92, 109–111, 114, 144

Singular value 119
Singularity 25, 33, 43, 53, 119, 120, 131
Small data 11, 35, 139
SOM 61, 62
Sparse connectivity 165
Spectral energy 82, 83, 86, 113, 116
Spectro-sectoral 138

194 Deep Learning in Time Series Analysis

Speech 78, 86, 125, 133, 142, 160
Spike neuron 162
Square error 19, 53, 55, 76
State diagram 98, 101, 103
State space model 150
Static 14, 22, 23, 78, 103, 146, 149, 150
Static classifier 146
Statistical 5–10, 13, 27, 29, 30, 34, 39, 42,

44, 49, 59, 69, 70, 74, 75, 77, 97, 116,
118, 120, 132, 137, 139, 166

Statistical distribution 29, 34, 44, 70, 75,
116, 120, 137

Stochastic 8, 11, 66–71, 74, 75, 87, 88, 90,
91, 97, 98, 111–114, 124, 133, 134, 136,
153

Structural 26, 27, 29, 32, 34, 35, 37, 38, 57,
59, 91, 96, 97, 110, 132

Structural risk 26, 27, 29, 32, 34, 35, 57, 59,
97, 110, 132

Supervised 13, 14, 17, 22–24, 26, 37, 49,
50, 53, 55, 59, 101, 102, 121

Support vector machine 19, 25, 27, 78,
136–138, 146

Surface learning 131, 132, 134, 136, 137
System 3, 4, 9, 14, 18, 20, 25, 44, 49, 50,

59, 65–70, 75–77, 86, 89, 97, 98, 100,
103, 111, 114, 124, 133, 149, 162, 163

System identification 65–67, 69, 70, 75–77

T

Tangential sigmoid 131
Temporal frame 72, 124–129, 134, 135
Temporal window 66, 67, 70, 83, 84,

86–88, 113, 114, 123–131, 133, 135,
138, 143–145

Threshold 41, 42, 46, 51, 52, 57, 83, 85,
101, 131

Time growing neural network 11, 32, 81,
84, 85, 87, 123–125, 129, 130, 134, 135

Time series 4, 7, 9–11, 13–15, 17, 20, 22,
23, 37, 38, 48, 59, 63, 65–79, 81–94,
96–98, 100, 102, 103, 105, 107, 109,
111–114, 118, 121, 123–128, 131–136,
138, 139, 141–146, 150, 160, 163, 164

Time warping 90–96, 132
Time-delayed neural network 32, 79, 81,

82, 87, 103, 123

Training 13–15, 17, 19–29, 31, 33–35,
38–40, 44, 49, 53–62, 66, 75, 81,
84, 86–88, 90, 94, 96–98, 101–104,
109–111, 118, 120–122, 125–127, 129,
135–138, 141–143, 146, 147, 149,
151–153, 155, 156, 164, 169, 171

Training data 13, 15, 17, 19–23, 26, 28, 29,
33–35, 38–40, 49, 55, 57–60, 62, 81,
86, 94, 96, 102, 110, 120–122, 125, 126,
135, 137, 141–143, 146, 147

Training parameter 19, 25
Training process 17, 20, 24, 25, 27, 55–58,

127, 171
Training weight 25
Transformation 42, 44, 46, 48, 81, 86, 87,

112, 127, 135
Transition matrix 156, 157
Transition probability 99

U

Underfitting 27, 28
Unfolding 150, 152, 160, 171
Uniform 29, 34, 72, 124, 134
Universal approximator 149, 151
Unsupervised 13, 14, 22–24, 37, 47, 59, 61,

102, 109, 111, 118, 132

V

Validation 5, 6, 11, 17, 20–22, 24, 25,
27–35, 87, 88, 147, 155, 156

Validation data 17, 21, 22, 27, 30, 31, 155,
156

Value 6, 8, 13, 19, 21, 25, 30–34, 43–48,
51–56, 58–61, 66–71, 75, 78, 79, 81,
88–90, 98, 99, 102, 114–122, 127, 128,
137, 138, 141, 144, 149–151, 156, 157,
159, 161, 162, 165–168

Vanishing gradient 150, 156, 157
Variable 6, 8, 18, 30, 41, 43, 67, 69, 71, 76,

102, 118, 158
Variance 8, 16, 42–44, 60, 70, 75, 137
Vector 16, 19, 23–25, 27, 37–47, 49, 51–54,

59–62, 65, 78, 81–83, 87, 88, 91, 92, 94,
102, 112, 114, 116–120, 136–138, 142,
144–146, 149–153, 156, 159–162

Vector quantification 142, 145, 146
Visualisation 37, 61

Index 195

W

Wavelet transform 127, 128
Wavelet transformation 81, 86, 127, 135
Weight 6, 25, 34, 50, 54, 56–58, 60, 62, 83,

85, 88, 95, 96, 103, 123, 129, 135, 138,
151–153, 155–166, 168–170

Weighting matrix 52, 53

Window 32, 66, 67, 70, 82–88, 113, 114,
121, 123–131, 133–136, 138, 143–145,
152, 153, 155, 156

Within scatter 42, 43, 118, 120
Within-class variance 16, 42, 44

Z

Zero padding 135, 144

	Cover
	Title Page
	Copyright Page
	Dedication
	Foreword
	Preface
	Table of Contents
	Contributors
	Part I Fundamentals of Learning
	1. Introduction to Learning
	1.1 Artificial Intelligence
	1.2 Data and Signal Definition
	1.3 Data Versus Signal
	1.4 Signal Models
	1.5 Noise and Interference
	1.6 Time Series Definition
	1.7 Time Series Analysis
	1.8 Deep Learning and Time Series Analysis
	1.9 Organisation of the Book

	2. Learning Theory
	2.1 Learning and Adaptation
	2.2 Learning in a Practical Example
	2.3 Mathematical View to Learning
	2.3.1 Training and Validation Data
	2.3.2 Training Method
	2.3.3 Training Parameters
	2.3.4 Hyperparameters

	2.4 Learning Phases
	2.5 Training, Validation, and Test
	2.6 Learning Schemes
	2.6.1 Supervised-Static Learning
	2.6.2 Supervised-Dynamic Learning
	2.6.3 Unsupervised-Static Learning
	2.6.4 Unsupervised-Dynamic Learning

	2.7 Training Criteria
	2.8 Optimization, Training, and Learning
	2.9 Evaluation of Learning Performance
	2.9.1 Structural Risk
	2.9.2 Empirical Risk
	2.9.3 Overfitting and Underfitting Risk
	2.9.4 Learning Capacity

	2.10 Validation
	2.10.1 Repeated Random Sub Sampling (RRSS)
	2.10.2 K-Fold Validation
	2.10.3 A-Test Validation

	2.11 Privileges of A-Test Method
	2.11.1 A-Test and Structural Risk
	2.11.2 A-Test and Leaning Capacity
	2.11.3 A-Test vs other Methods

	2.12 Large and Small Training Data

	3. Pre-processing and Visualisation
	3.1 Dimension Reduction
	3.1.1 Feature Selection
	3.1.1.1 Hill-Climbing Algorithm
	3.1.1.2 Linear Discriminant Analysis (LDA)
	3.1.1.3 Fisher Method

	3.1.2 Linear Transformation
	3.1.2.1 Principal Component Analysis (PCA)
	3.1.2.2 PCA-Fisher Method

	3.2 Supervised Mapping
	3.2.1 K-Nearest Neighbours (KNN)
	3.2.2 Perceptron Neural Network
	3.2.3 Multi-layer Perceptron Neural Networks (MLP)

	3.3 Unsupervised Mapping
	3.3.1 K-Means Clustering
	3.3.2 Self-Organizing Map (SOM)
	3.3.3 Hierarchical Clustering

	Part II Essentials of Time Series Analysis
	4. Basics of Time Series
	4.1 Introduction to Time Series Analysis
	4.2 Deterministic, Chaotic and Stochastic
	4.3 Stochastic Behaviors of Time Series
	4.3.1 Cyclic Time Series
	4.3.1.1 Sector Definition
	4.3.1.2 Uniform Sectors
	4.3.1.3 Growing-Time Sectors

	4.3.2 Partially Cyclic Time Series

	4.4 Time Series Prediction
	4.5 Time Series Classification

	5. Multi-Layer Perceptron (MLP) Neural Networks for Time Series Classification
	5.1 Time-Delayed Neural Network (TDNN)
	5.2 Time-Growing Neural Network (TGNN)
	5.3 Forward, Backward and Bilateral Time-Growing Window
	5.4 Privileges of Time-Growing Neural Network
	5.4.1 TGNN includes MLP in its architecture
	5.4.2 TGNN can include TDNN in its structure
	5.4.3 TGNN is optimal in learning the first window

	6. Dynamic Models for Sequential Data Analysis
	6.1 Dynamic Time Warping (Structural Classification)
	6.2 Hidden Markov Model (Statistical Classification)
	6.2.1 Model-based analysis
	6.2.2 Essentials of Hidden Markov Model (HMM)
	6.2.3 Problem statement and implementation
	6.2.4 Time series analysis and HMM

	6.3 Recurrent Neural Network

	Part III Deep Learning Approaches to Time Series Classification
	7. Clustering for Learning at Deep Level
	7.1 Clustering as a Tool for Deep Learning
	7.2 Modified K-Means Method
	7.3 Modified Fuzzy C-Means
	7.4 Discriminant Analysis
	7.5 Cluster-Based vs Discriminant Analysis Methods
	7.6 Combined Methods

	8. Deep Time Growing Neural Network
	8.1 Basic Architecture
	8.2 Learning at the Deep Level
	8.2.1 Learning the growing centre
	8.2.2 Learning the deep elements

	8.3 Surface Learning

	9. Deep Learning of Cyclic Time Series
	9.1 Time Growing Neural Network
	9.2 Growing-Time Support Vector Machine
	9.3 Distance-Based Learning
	9.4 Optimization

	10. Hybrid Method for Cyclic Time Series
	10.1 Learning Deep Contents
	10.2 Cyclic Learning
	10.3 Classification

	11. Recurrent Neural Networks (RNN)
	11.1 Introduction
	11.2 Structure of Recurrent Neural Networks
	11.3 Unfolding the Network in Time
	11.4 Backpropagation Through Time
	11.5 The Challenge of Long-term Dependencies
	11.6 Long-Short Term Memory (LSTM)
	11.7 Other Recurrent Networks
	11.7.1 Unfolding outputs at all steps
	11.7.2 Gated recurrent networks
	11.7.3 Echo state networks

	12. Convolutional Neural Networks (CNN)
	12.1 Introduction
	12.2 Architecture Overview
	12.3 Convolutional Layer
	12.4 Pooling Layer
	12.5 Learning of CNN
	12.6 Recurrent CNN

	Bibliography
	Index

