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1.1  A Statistical Association: COVID-19 Spread and Residential 
Property Prices

Oslo is the capital of Norway. Like many such capitals, Oslo is made up of several city 
districts. Table 1.1 contains some quantitative information on three of these districts. 
I have named the districts A, B, and C because Norwegian names are unfamiliar and 
more than a mouthful to pronounce for non-Norwegians.

We find the three districts’ COVID-19 infection rates in the right column of the 
table. These rates express the number of people infected per 100,000 persons. We note 
that district B has the largest infection rate, followed by district C, and district A. 
The table also provides information on how costly it is on average to buy a residential 
property in these three districts. We note that properties in district C are most pricey, 
followed by the properties in district A and district B.

Statistical analysis in research is often about associations or relationships.1 We might 
ask if there is some kind of association between COVID-19 rates and the average 
property prices for the six numbers in Table 1.1. In this regard, we note that district 
B has the least expensive properties and the largest COVID-19 infection rate. In 
contrast, districts A and C, both pricier at about the same level, have lower infection 
rates. We thus note the contour of a systematic association. Yet, since we base our 
visual statistical analysis (for lack of a better term) on only three districts, we cannot 
be sure about this.

As it happens, a total of 15 districts make up the city of Oslo. Table 1.2 presents the 
complete quantitative information about all these districts.

1 What Is Statistical Analysis from 
a Research Perspective?

Table 1.1  COVID-19 infection rates and average residential property prices per square-meter 
in thousands of Norwegian Crowns (NOK) for three of the city districts in Oslo, 
Norway’s capital.

Oslo districts Average property price per square-meter COVID-19 infection rate

District A 79.470 231.20
District B 43.210 448.00
District C 84.772 310.70

Note. The COVID-19 infection rates refer to November 2020, as reported in the Norwegian newspaper 
Aftenposten. The residential property prices per square meter in NOK (1,000) pertain to 2019.

https://doi.org/10.4324/9781003252559-1


2 Statistical Analysis - a Research Perspective

Table 1.2 contains more information than Table 1.1, but here we face a new prob-
lem. By simply looking at the 30 numbers it is hard to visualize any potential associ-
ation between property prices and infection rates. Yet, if we put the property prices 
on the x-axis and the infection rates on the y-axis of a scatterplot, as in Figure 1.1, 
the 30 numbers transform into a cloud of districts with a systematic pattern. The 
straight line in the figure captures the trend in the pattern, which we call a negative 
association: Higher residential property prices seem to go hand in hand with, or are 
associated with, lower COVID-19 infection rates. Conversely, lower prices appear to 
suggest higher rates. Why do we see this pattern? The association in itself does not tell 
us why, but we may speculate. The high prices in some districts might reflect large 
residences and spacious surroundings, that is, an environment that makes it harder 
for the COVID-19 virus to spread. Alternatively or additionally, the association may 
reflect differences between the lifestyles of people living in pricy and those living in 
less pricey districts. Whatever the cause might be, the fundamental point is that a sta-
tistical analysis may find an association between two phenomena but generally tells us 
little about why we observe the association in question. To explain such an association 
causally – that is, to answer why we observe what we observe – we also need a theory, 
reason, or mechanism to guide us.

Figure 1.1 shows a systematic statistical pattern – that is, a negative statistical 
 association – between property prices and COVID-19 infection rates. Put differently, 
the figure answers the associational research question of how property prices are associ-
ated with COVID-19 infection rates. Such a research question is one of the three main 
types of statistical questions we are about to take on in this book. The remaining two 
are descriptive and inferential questions. We return to these three types of questions in 
Section 1.3. Before that, however, we should briefly mention what statistical analysis in 
research contexts is all about and answer the question of why and how we examine this 
in the present book.

Table 1.2  COVID-19 infection rates and average residential property prices per square-
meter in thousands of Norwegian Crowns (NOK) for the 15 city districts in Oslo, 
Norway’s capital.

Oslo districts Average property price per square-meter COVID-19 infection rate

District A 79.470 231.20
District B 43.210 448.00
District C 84.772 310.70
District D 69.166 185.40
District E 78.535 112.80
District F 90.332 246.30
District G 76.616 351.10
District H 63.190 217.30
District I 58.627 261.80
District J 79.139 298.00
District K 52.754 455.80
District L 45.389 441.20
District M 50.337 458.40
District N 59.782 511.60
District O 83.082 224.00
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1.2  Why Do Statistical Analysis in Research? The Book’s Purpose 
and Pedagogical Approach

Using a scatterplot and a trend line on the numbers in Table 1.2, as in Figure 1.1, is to 
do a statistical analysis. Why do this? A simple answer is that we do statistical analysis in 
research to increase our knowledge on some topic. I repeat: Statistical analysis is about 
crunching numbers to become wiser than we were before. In this regard, the present 
book is about to take on three intertwined aspects of statistical analysis from a research 
perspective:

 1 Doing statistical analysis
 2 Interpreting the results of statistical analysis
 3 Presenting the results of statistical analysis to readers/audiences

The reason for doing statistical analysis also has a subtler answer: We do it to simplify 
large amounts of quantitative information so that such information becomes compre-
hensible in our minds. This might sound odd on the face of it because most people 
think of statistical analysis as anything but simple. To wrap your head around it, look 
at Table 1.2 again! It is very hard to discover, or to make any sense of, the association 
between the two phenomena simply by looking at the table. There is too much infor-
mation. However, by using a scatterplot and a trend line – that is, by doing statistical 
analysis – we unraveled the hidden and negative association between property prices 

Figure 1.1  Scatterplot of residential property prices and COVID-19 infection rates for 15 
city districts in Oslo, with trend line. 
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and COVID-19 infection rates and made it visible and interpretable. That is, we made 
the association simpler and, consequently, comprehensible to our brains.

Imagine a table like Table 1.2 but with 30 columns and 1,500 rows. You get the pic-
ture! The more information we have, as in the more rows and columns a table contains, 
the more we need statistical analysis to simplify and make sense of the numbers. To do 
such statistical analysis in real life, however, we also need one more thing as a practical 
matter: a statistics software program. I will return to this shortly, but first a few words 
about textbooks on statistics/statistical analysis and what the present book brings to the 
table in this regard.

There are many great books on statistics. Yet a lot of them tend to fall into one 
of two main types. The first comprises the classic textbooks. These books teach you 
the  technicalities once you manage to get through the formulas, the equations, and 
the technical workings of the statistical techniques. Often, however, such books take 
practical applications lightly, although some have added outputs from statistics pro-
grams of late. The second type of books have the name of a statistics program in 
their title. Unsurprisingly, these books are heavy on practical applications using the 
program in question, but they seldom teach you much about statistics or statistical 
reasoning per se.

I hope this book does not fall into any of the above categories but is somewhere mid-
way. In particular, the aim of this book is to show how to do, how to interpret, and how 
to report statistical analysis in research settings. The book uses the statistics programs 
Stata and SPSS for illustration purposes in this regard. In principle, I could have used 
a plethora of statistics programs (e.g., Statistica, R, SAS, or Gauss) to do the calcula-
tions. The reasons for preferring Stata and SPSS are twofold: First, both programs are 
 popular and easy to use. Second, I have used both of them in my teaching during the 
last 25 years. That said, you could download the data sets accompanying this book, do 
the analyses in the statistics program of your choosing, and still learn all that the book 
has to offer.

A second feature that I hope distinguishes this book from many others has to do with 
the background or context of the statistical questions. That is, many books are often 
rather silent on the process with which such questions are being asked and answered. 
One of my aims in this book is to get the research context back into statistical analy-
sis. In most of the book’s examples, thus, the context or background is some research 
 finding, some idea, or some everyday fact. Experience tells me that context aids learn-
ing of statistical analysis, whereas context-free demonstration of statistical techniques 
undermines it. That said, since too much context hinders forward thrust, which I also 
believe in, there is a balance in play. In this regard, I use notes for supplemental infor-
mation that might have stalled forward thrust or interrupted the narrative if placed in 
the main text.

The book differs from others in other respects as well. I introduced the main event 
of most of the statistical analysis in research – that is, the study of associations – on the 
book’s first page. In contrast, most books tend to do this in the second half or later. That 
is, elsewhere you have to consume many unnecessary appetizers before getting to the 
main course of the meal.2 Furthermore, the book pays more attention to the presenta-
tion of the results of statistical analysis to readers and audiences than what seems to be 
the norm in other books on statistical analysis.

Many introductory texts on statistics are technically thornier than they need to be in 
mathematical terms. This scares off many readers. An issue separating this book from 
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others is thus the die-hard principle of keeping matters as simple and down-to-earth as 
possible. To hold on to this keep-it-simple approach, I follow the example-driven and 
applied path. The book also focuses on what the student should know when the data 
appear on their computer and their objective is to analyze them. Many comprehensive 
textbooks on statistics (which we also need) concern topics not relevant in this regard, 
and I skip them for the most part. However, I will point to such books when needed. 
Finally, I aim to make statistical analysis relevant and interesting for many types of 
 students – not just students following specific subjects. To achieve this goal, I use exam-
ples backed up with easily recognizable data.

It might be redundant to spell out the intended audience for this book against the 
background just provided. Yet I will do so at the risk of over-explaining. The student 
who will benefit most from the following pages is one who needs to do statistical analy-
sis and who also finds traditional books on statistics too abstract, too technical, too long, 
too irrelevant, or too boring. I realize I lay my head on the block here!

1.3  Three Types of Statistical Research Questions: Descriptive, 
Associational, and Inferential

The book is organized around three types of statistical research questions. The descrip-
tive questions deal with the description of large amounts of information in a summary 
manner. Consider the 15 COVID-19 infections rates in Table 1.2. A way to describe 
these rates more generally is to come up with an answer to the question of what the typ-
ical infection rate is among all the 15 districts. I return to this in Section 1.5 and Chapter 
2. The second type of statistical research question is of the associative kind, such as the 
one between property prices and COVID-19 spread in Oslo. I have more to say on such 
questions in Section 1.5 and Chapters 3, 4, and 6. The third type of statistical question is 
the inferential one. The information in Table 1.2 concerns the 15 districts of Oslo. May 
we use the statistical association between property prices and COVID-19 spread in Oslo 
to say something about similar relationships in other capital cities? This is an inferential 
question, and I will say more on this topic in Section 1.5 and Chapters 5 and 6. Before 
taking on Chapters 2 to 6, however, we first need to cover some groundwork. This is 
the topic of the remainder of Chapter 1.

1.4 Some Key Concepts You Really Should Understand

Bear with me! There are some key concepts you must master to become a skilled 
 statistical analyst. On the brighter side, however, you already met many of them in 
 Section 1.1. Yet there I eschewed statistics lingo for the benefit of everyday language. 
The most basic concepts include:

1.4.1 Data

I mentioned the terms “quantitative information” and “numbers” in Sections 1.1 and 
1.2 by referring to the contents of Tables 1.1 and 1.2. The shorter term in this regard is 
simply data. That is, Table 1.2 contains the data or raw data for the 15 city districts of 
Oslo. We might also say that Table 1.2 is a data set or a data matrix. Generally, we do 
statistical analysis of, or on, our data or data set.
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1.4.2 Variables

We speak of phenomena, features, traits – and some of us, informally, of things – in 
everyday life. In statistics lingo, however, there are no such “things.” That is, in statistics 
lingo we write and speak of variables. What is a variable? A variable is something that 
varies. (No surprise there!) Remember the COVID-19 data in Table 1.2. The infection 
rates varied among the 15 districts; some districts had smaller rates and some had larger 
rates. The take-home message is that statistical analysis is about the analysis of variables. 
Variables appear as columns in data sets, and a variable’s name most often appears on the 
top of a column, as in Table 1.2.

1.4.3 Units

A variable is something that varies among a set of units. Other names for such units 
are observations or cases.3 The units, observations, or cases in our COVID-19 data are 
thus the 15 districts of Oslo. More generally, units are often persons, firms, counties, 
or countries in the social and behavioral sciences. Yet they could be anything: trans-
actions, stocks, products (e.g., cars, houses, wines), or services (e.g., meals, hotel stays). 
When people answering a survey questionnaire are the units, we typically call them 
respondents or subjects. Formally, we have variable information on a set of units. The 
units make up the rows in data sets, as in one district’s variable information for each 
row in Table 1.2.

1.4.4 Variable Value

Variables take on different values. The values for the COVID-19 rate variable in Table 
1.2 are between about 113 and 512. Similarly, the average residential property prices 
per square meter all lie in the range between 43,000 and 90,000 NOK. Other types of 
variables, which I return to in Chapter 2, might take on many more or fewer potential 
values.

1.4.5 Variables’ Measurement Levels

The value of a COVID-19 infection rate is a number, and the same goes for an average 
property price. We call variables having numbers as their values for continuous variables 
or numerical variables (to simplify a bit). Alternatively, we might claim that such vari-
ables are on the continuous or numerical measurement level. Other variables are more 
categorical by nature, and I introduce such variables in Sections 2.3 and 2.4. The gender 
variable is a case in point having two values: female or male. A variable’s measurement 
level has consequences for what kind of descriptive questions being relevant (cf. chapter 
2) and for how to address associative research questions (cf. chapters 3, 4, and 6).

1.4.6 Independent and Dependent Variable

The tacit assumption behind the association between property prices and COVID-19 
infection rates was that the former somehow affected the latter: property prices → 
infection rates.4 “Assumption” is the keyword here. When analyzing statistical associ-
ations, we tend to assume that variation in one variable is responsible for variation in 
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another variable. Yet we do not like using the expression “cause variation in another 
variable,” and I explain why in Sections 3.6 and 3.7. When examining a statistical as-
sociation, however, we must always tell the statistics program about the assumed causal 
direction of our association. We use the terms independent variable and dependent 
variable in this regard. The independent variable is the one we assume brings about 
variation in some other variable. The dependent variable is the one being affected by an 
independent variable. It is common practice to denote the independent variable as x and 
the dependent variable as y. Figure 1.2 sums up.

In the data for a bachelor or master’s thesis, x and y might be anything that varies 
among a set of units. More generally, our imagination is the only boundary for what 
might go into the statistical analysis of an association between x and y in such a research 
setting. For convenience, I mostly use x or x-variable and y or y-variable in this book 
rather than longer independent and dependent variables.

1.4.7 The Place for Statistical Analysis in the Quantitative Research Process

Many textbooks have defined the quantitative research process as a series of phases or 
steps (e.g., Bryman, 2016). The first phase covers the start of the project, as in the first 
loose ideas to the final research question (RQ). The RQ is often an expectation of an 
association between an independent and a dependent variable, x and y. We often call 
this associational expectation a hypothesis. We will learn to test such hypotheses for-
mally in Chapter 5.

The second phase is about obtaining the data to answer the RQ. We generally have 
two options in this regard: We may collect new data ourselves, as in making a survey 
questionnaire or by compiling the relevant numbers from, say, the Internet. Alterna-
tively, we may use already available data collected by others. This phase typically also 
includes the cleaning and preparation of data to get them into their final form and ready 
for analysis. In this book, I have gathered and prepared the data for you. (Lucky you!) I 
will take on some important aspects of data preparation in Chapter 6, though.

The third phase is about doing and interpreting statistical analysis: descriptive anal-
ysis (Chapter 2), associational analysis (Chapters 3, 4, and 6), and inferential analysis 
 (Chapters 5 and 6). This book has, unsurprisingly, most to offer on this phase.5

Independent variable Dependent variable

x y 

Property price Covid-19 infection rate

Figure 1.2  Independent and dependent variable. The arrows show the assumed causal di-
rections of the statistical associations, that is, from independent to dependent 
variable or from x to y.
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Fourth and finally, we write up the research process and present our results and con-
clusions in a thesis or a research paper – or in a PowerPoint presentation. Yet I advise 
you to start the writing-and-presentation process earlier than this. I will say more on 
writing up and presenting statistical results in Chapter 6. Figure 1.3 sums up the quan-
titative research process from beginning to end.

1.5  Chapter Summary, Key Learning Points, and the 
Organization of the Rest of the Book

Why do statistical analysis in research? We do it to reduce the complexity of large amounts 
of quantitative information to become more knowledgeable about some topic. The in-
formation we analyze we call our data, which are typically stored in  spreadsheet-like 
matrixes. Statistical analysis in research spins around three intertwined types of questions:

• Descriptive questions: What is the typical value of variable x, and what is the typical 
value of variable y and so on?6

• Associational questions: How are the variables x and y associated, if at all?
• Inferential questions: Do the values of x and y, and possibly the numeric expression for 

their association, apply to other units than the ones we have in our particular data set?

The aim of this book is to equip you with the necessary skills to tackle these questions. 
Before doing so, however, let us recap the following important terms:

• Data/data set/raw data: Typically, a spreadsheet-like file with large amounts of col-
umns and rows containing numbers, that is, quantitative information on many units.

• Variables: A feature or trait that varies among units, that is, typically the columns 
in data sets.

• Units/observations/cases: The entities for which variables vary. Typically, persons, 
firms, counties, or countries in the social sciences, but they could be anything. Most 
often, the units make up the rows in data sets.

From idea to research question/hypothesis

Data collection and data management

Statistical analysis

Writing up the process/results/conclusions

Figure 1.3 The quantitative research process as a series of phases.
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• Variable value: The possible values a variable may take on for a unit.
• Independent variable/x: The variable we assume affects another variable.
• Dependent variable/y: The variable we assume is affected by an independent 

variable/x.

I recommend reading the upcoming chapters in the order in which they appear. That 
said, if you have a good grip on descriptive statistics, you might jump directly to Chap-
ter 3. The remainder of the book is organized as follows:

Chapter 2 dives into descriptive questions: What is typical for a variable? We start 
on a small scale with the COVID-19 data and with a focus on what characterizes 
the infection rate variable. Next, we turn to the analysis of variables in larger data 
sets. These include variables characterizing Christmas beers, variables character-
izing Norwegian soccer players, and variables describing college students’ health 
behaviors. Along the way, I explore the different types of variables in quantitative 
research by addressing their different measurement levels. Chapter 2 is, in short, 
about doing and presenting descriptive statistics. It is also a stepping-stone for the 
chapters to come.

Chapter 3 takes on the main event of most statistical analysis done in research: the 
associational statistical questions. I will show that we typically face three types of asso-
ciational or relational research questions: questions regarding differences in proportions, 
questions regarding differences in averages, and correlational questions. Please relax; 
these terms will be explained when we get there! To illustrate the statistical techniques 
corresponding with the three types of research questions, I will continue using the var-
iables and data sets introduced in Chapter 2. Towards the end of Chapter 3, in Sections 
3.6 and 3.7, I discuss the limitations of associational analysis involving only two varia-
bles. These two sections foreshadow Chapter 4.

Chapter 4 first spins around one vital question: How can we be sure x is associated 
with y when we analyze observational data? That is, how do we know it is the variation 
in x and not the variation in some other variable, say z, that brings about the variation 
in y? Multiple regression answers this (causal) question and many more in the behavioral 
and social sciences when we have no access to experimental data. Later in Chapter 4, I 
address more complex multiple regression scenarios. I also introduce some new data sets 
for illustration purposes in this chapter.

Chapter 5 tackles the inferential questions. In research, we typically search for con-
clusions stretching beyond our specific data; we aim for results that should pertain to 
more people, more situations, more places, and more cultures. If our data are repre-
sentative of some larger entity, we might justify generalizing our results in this way. 
In contrast, if our data are not representative of such an entity, such an inference ap-
pears dubious. Inferential statistics is about the conditions we need to make trustworthy 
(valid) generalizations from our data. Often, but not always, this involves the analysis of 
a random sample from some well-defined population. (Yes, I will explain these concepts 
as well when we get there!)

When you get to Chapter 6, you will have gotten a firm grasp on doing statistical 
analyses and on how to interpret the results of such analysis in a research context. 
Yet, things seldom go as smooth as presented in this book in real-life research. Much 
of the first part of Chapter 6 thus solves a number of problems that tend to come up 
in actual research. The last part of Chapter 6 deals with how to present and com-
municate to readers and audiences the results of the statistical analyses covered in 
Chapters 3–5.
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Notes

 1 I use the term statistical analysis throughout the book for simplicity, rather than the more 
appropriate statistical data analysis. I use the terms association and relationship interchange-
ably, but mostly the former. 

 2 I mean “unnecessary” in the sense that many of the topics typically placed in the first part of 
statistics books (e.g., descriptive statistics, inferential statistics, operationalization, variables’ 
measurement levels, etc.) are by no means necessary to get a firm grip of the concept of a 
statistical association. See White and Gorard (2017) for a similar view.

 3 We may use units and observations interchangeably as long as the unit occupies one row 
in the data. When the same unit occupies two or more rows in the data, as in having 
several  observations for the same unit, we should probably distinguish between units and 
observations. 

 4 In principle, however, the causal arrow could go the other way round: property prices ← 
infection rates.

 5 A wishful side effect on my part: After having read the book, I hope what you have learned 
will make you see more possibilities than you did before regarding new ideas for quantitative 
research questions/hypotheses.

 6 This is a simplification. Descriptive statistical questions also concern variables’ distribution 
and spread; more on this in Section 2.6. 
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2.1 Introduction and Chapter Overview

This chapter deals with descriptive research questions or descriptive statistics. Descrip-
tive statistics is the starting point of all statistical analysis in research no matter what the 
end goal might be. The key question of descriptive statistics is very often this: What is 
typical for a variable?

Section 2.2 introduces Stata and SPSS using the COVID-19 data. Here, I also bring 
up the advice to work commando-style with statistics (more on this in Section 2.9). 
Then I proceed with the analysis of a data set containing 75 Christmas beers. Section 
2.2 elaborates on the topic of what is typical for a variable, which in statistics lingo 
translates into three measures of central tendency: mean, median, and mode.

Section 2.3 takes on variables’ measurement levels. I continue using the data on 
Christmas beers, but I also introduce two more data sets – one on the attributes of 
Norwegian soccer players, and one on college students’ health behaviors – to shed more 
light on variables’ different measurement levels.

Section 2.4 is about ordinal variables. I treat ordinal variables as a special case re-
garding variables’ measurement levels for presentational ease. This section explains 
why. Sections 2.2 through 2.4 present the results of descriptive statistical analyses 
mainly as  tables. Section 2.5 presents the same kind of results using graphs. Section 2.6 
 concerns the variation or spread of continuous variables and not their central tendency 
(which is the focus of Section 2.2 and partly of Section 2.3 also). Section 2.6 is also the 
 stepping-stone for Chapter 5. Section 2.7 sets the stage for Chapter 3, and Section 2.8 
summarizes the chapter and lists the key learning points.

Section 2.9 reintroduces commando-style statistical analysis by means of do-files 
in Stata and syntax-files in SPSS to obtain reproducible results, whereas Section 2.10 
 provides exercises with solutions.

Note! Throughout Chapter 2, my comments regarding the various descriptive results 
pertain only to what happens within the data. I do not refer to what might happen (or 
not) outside of the data. The latter inference topic is for Chapter 5.

2.2  What is Typical? Three Measures of Central Tendency:  
Mean, Median, and Mode

The combination of observing and analyzing the data simultaneously is in my expe-
rience great for learning. I thus repeat the COVID-19 data from Section 1.1 in Table 
2.1 below. The data set is called res_prop_price_COVID-19.1 You find these data and 
most of the other data sets used in the book on the book’s website, ready for download.

2 Descriptive Research Questions

https://doi.org/10.4324/9781003252559-2
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2.2.1 Introduction to Stata

When opening the Stata statistics program, something similar to Stata-output 2.1 will 
pop up on your computer:

Table 2.1  COVID-19 infection rates and average residential property prices per square-
meter in thousands of Norwegian Crowns (NOK) for the 15 city districts in Oslo, 
Norway’s capital.

Oslo districts Average property price per square-meter COVID-19 infection rate

District A 79.470 231.20
District B 43.210 448.00
District C 84.772 310.70
District D 69.166 185.40
District E 78.535 112.80
District F 90.332 246.30
District G 76.616 351.10
District H 63.190 217.30
District I 58.627 261.80
District J 79.139 298.00
District K 52.754 455.80
District L 45.389 441.20
District M 50.337 458.40
District N 59.782 511.60
District O 83.082 224.00

Stata-output 2.1 Stata’s interface window.
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The Command-window at the bottom is where you first type your statistical com-
mands before pressing Enter (i.e., Carriage Return) to execute. The results then appear 
in the large Results-window in the middle of the screen. The names of the variables in 
the data appear in the upper right corner of the output – the Variables-window – once 
you have loaded the data into Stata. Stata-output 2.2 shows this for the COVID-19 data, 
where we have three variables: district, infect_rate, and price_sq_m.2

What is the typical infection rate among the 15 city districts in Table 2.1? More gen-
erally, what is the typical value of variable y or variable x? In statistics lingo, we trans-
late these questions into finding out about a variable’s central tendency. The three most 
frequently used measures of central tendency are the mean, the median, and the mode. 
I address them in turn below, that is, in the order of their popularity.

2.2.2 The Mean

We find the mean or average of the COVID-19 infection rate variable for the 15 city 
districts in Table 2.1 by adding the individual districts’ rates and dividing the sum by 15: 
(231.20 + 448.00 + 310.70 + … + 224.00)/15 ≈ 316.90.3 Or, since we have a statistics 
program at our disposal, we make Stata do this calculation for us by typing 

sum infect_rate 

in the Command-window and pressing Enter. The output in the Results-window in 
Stata-output 2.3 then appears. The output from most other statistics programs has a 

Stata-output 2.2 Stata’s interface window, including the COVID-19 data.
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similar visual appearance, and this is the case in general throughout the chapter. We 
see that Stata finds the Mean or average to be 316.9067. We note that Obs is short for 
observations, and that the data contain 15 units.

The last thing to note in the output, for now, is the Min and Max columns. Unsur-
prisingly, they tell us about the lowest and highest infection rates in the data for the 
15 districts. One substantive question remains unanswered: Is the mean COVID-19 
infection rate of 317 a high or a low rate? A meaningful answer to this question requires 
information from outside of the data. As Stigler has eloquently put it (Stigler, 2016, p. 
63): ‘A measurement without context is just a number.’ In the present case, this context 
could be the mean rate for another city, say London, or a threshold rate for some agreed-
upon dangerous infection rate level.

2.2.3 Introduction to SPSS

When opening the COVID-19 data in SPSS, you will notice that the data appear on your 
computer screen much like in SPSS-output 2.1. There might be small differences in the 
setup between different computers and different versions of the program, however.

In contrast to Stata’s typing-short-commands structure, SPSS uses a point-and-click 
or dialog box routine as the default way of generating statistical results. (Stata also 
has such a dialog box routine. In my experience, however, most users find the com-
mand-approach in Stata more intuitive.) To get the analogous results as in Stata-output 
2.3, you click on Analyze → Descriptive Statistics → Descriptives. Once there, you 
drag the variable infect_rate from the box on the left and over to the empty box on 

Stata-output 2.3 The mean or average of the variable infect_rate in the COVID-19 data.
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the right. Then you click on OK, and the output in SPSS-output 2.2 appears. The only 
difference between Stata and SPSS in this case is that the latter uses N to refer to the 
number of units and not Obs.

SPSS-output 2.1 The interface window of SPSS, including the COVID-19 data.

SPSS-output 2.2 The mean or average of the variable infect_rate in the COVID-19 data.
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2.2.4 Some Formalities about the Mean

More generally, and replacing the infection rate variable with y, we have that 

mean of y
y

n

∑
= , 

where ∑ is the summation sign for the individual values of y (i.e., COVID-rates) and n is 
the number of units (i.e., districts) in the data. To some, the use of such formulas serves 
as a convenient and quick notational shorthand. Since I do not belong in that category 
of people (by a long shot, I might add), I will eschew formulas and equations to the 
greatest possible extent in the pages to come.

2.2.5 The Median

If the mean is the most frequently used measure of a variable’s central tendency, the 
median is the second-most popular choice. In Stata, we might find the median of the 
infection rate variable by typing 

tab infect_rate 

in the Command-window and clicking on Enter in the usual manner. I will skip the 
entire Stata interface from now on and report only what comes up in the Results-win-
dow; cf. Stata-output 2.4.4

The median for the infection rate variable is the value splitting the 15 rates into two 
equally large groups (or halves) of districts. That is, the median infection rate comprises 

Stata-output 2.4  Frequency table (distribution) for the variable infect_rate in the 
COVID-19 data.
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the middle row shaded in grey in the frequency table in Stata-output 2.4. Seven districts 
have lower rates than the median of 298, and seven have higher rates than the median.

Another way to get the median is to find the infection rate accounting for 50 percent 
of districts with the lowest infection rates. In this respect, the rate of 261.80 accounts 
for 46.67 percent of the districts; see the column Cum. in Stata-output 2.4. This is not 
enough. In contrast, the rate of 298 makes up for 53.33 percent of the districts, which is 
enough. The rate of 298 is in other words the median – which we already knew.

Any assessment of a median of 298 as high, low, or somewhere in between is contin-
gent on information outside the data, as in the case of a mean of 317. The mean and the 
median are quite similar in this case. In others, they are not. We return to such examples 
later in the chapter.

To get a similar frequency table in SPSS, we click Analyze → Descriptive Statistics 
→ Frequencies. Once there, we drag the variable infect_rate from the box on the 
left over to the empty box on the right. Then we click on OK, and the output in SPSS- 
output 2.3 appears.

2.2.6 The Mode

The mode is the third measure of a variable’s central tendency or typicalness. The mode 
is also the measure of central tendency that applies to all sorts of variables; a feature I 
will get back to in Section 2.3. The mode is simply the most frequent value in a frequency 
distribution. Because no two districts have exact equal infection rates in our data, there 

SPSS-output 2.3  Frequency table (distribution) for the variable infect_rate in the 
COVID-19 data.
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is no mode. We return to other cases in which the mode is a more meaningful summary 
statistic later in the chapter.

Summing up, the mean infection rate is 317, the median infection rate is 298, and 
the mode is not defined. If we were to produce a summary table of our findings in a 
thesis or a research paper, it would look something like Table 2.2.5 We do not nor-
mally copy-paste the output from statistics programs directly into such publications, 
or in a PowerPoint for that matter, in most circumstances; see Section 6.8 for more 
on this.

The numbers in Table 2.2 refer to only 15 units, making it easy to calculate them on 
a piece of paper or by a hand calculator. In addition, if we focus on only one variable at 
a time, we get an instant feel of what is typical simply by looking at the numbers in the 
data. Yet observing what is typical gets difficult when the data refer to more than, say, 
30 units or thereabouts. When analyzing larger data sets, as we normally do, we need a 
statistics program to calculate our summary descriptive statistics. It is time to scale-up 
the size of our data a notch, but first a word or two about the workflow of statistical 
analysis.

2.2.7 Interactive versus Command-Driven Statistical Analysis

So far, I have worked interactively with the COVID-19 data in Stata and SPSS. Such 
a working mode is typical and often advisable in the get-to-know-your-data phase of 
a project. However, statistics instructors recommend doing statistical analysis based on 
written commands (to which I return in Section 2.9); such commands or inputs are what 
Section 2.9 is all about. In the present and upcoming sections, however, I focus on the 
outputs of statistical analysis. With that out of the picture, we are now ready to take on 
some new data.

2.2.8 The Price, Alcohol Level, and Taste of Christmas Beers

Every year in December, Norwegian newspapers report quality tests of Christmas beers. 
This is a field day for beer enthusiasts. For statistics instructors, it is also an opportunity 
to collect data for teaching. We may use such data to examine the associational research 
question of, say, how the bottle price of beers is associated with their alcohol level, if 
at all. Yet, this is all for later; right now, we are interested in describing the central 
tendency of the variables’ price, alcohol level, and taste, independent of each other. 
The data x-mas_beer comprise 75 beers (33 cl.). The price per bottle is in Euros, the 
alcohol level is in percent, and the taste quality has values ranging from zero (terrible) 
to ten (perfect). If this sounds like ‘too much information,’ think of a table with three 
columns (one for each variable) and 75 rows (one for each bottle of beer.) The complete 
documentation for all the variables in the Christmas beer data appears in appendix A 
of this chapter.

The mean of the bottle price variable appears in Stata-output 2.5. Since the point-
and-click routine in SPSS (Analyze → Descriptive Statistics → Descriptives) of course 

Table 2.2  Descriptive statistics for the infection rate variable in the COVID-19 data.

Variable N = Mean Median Mode

Infection rate 15 317 298 –



Descriptive Research Questions 19

yields the same results, I see no reason to report this. Such a repeat-everything-in-SPSS 
approach with no new information of interest will inevitably become very tiresome. 
The mean or average Christmas beer costs about 6.30 Euros per bottle. All 75 beers in 
the data lie in the price range from 3.8 to 9.9 Euros.

The frequency distribution for the price variable appears in Stata-output 2.6 and 
looks similar in SPSS. The median price is 6.1 Euros; note the gray shading for the 
52nd cumulative percentage. The mode – that is, the most frequent price among the 75 
beers – is 5.5 Euros. Eight beers cost this much (in bold).

Table 2.3 sums up the descriptive statistics for the price variable, the alcohol percent 
variable, and the taste quality variable. The average beer has an alcohol level of 8.2 per-
cent, a median alcohol level of 8.0 percent, and a mode alcohol level of 9.0 percent. Fi-
nally, the average beer scores 5.4 points on the taste quality scale from zero to ten, with 
a median and a mode of 6.0 points. We need some form of yardstick if we are to make 
any substantive interpretations of these results, such as similar results for an earlier year. 
(I promise to stop reiterating this point now!) We will return to these data on several 
occasions later in the book.

Stata-output 2.5 Descriptive statistics for the variable price in the Christmas beer data.

Stata-output 2.6 Frequency (distribution) table for the variable price in the Christmas beer data.
(Continued)
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2.3  Variables’ Measurement Levels: Continuous or  
Categorical Variables

Three of the variables thus far – infection rate, beer price, and beer alcohol level – have 
numbers as values. These are continuous or numerical variables – or on the continu-
ous/numerical measurement level or scale.6 (Some prefer the term ratio variables, but I 
will not use this term.) It thus makes sense to talk about more or less of the variable in 
question. Furthermore, phrases like ‘twice as many,’ ‘twice the amount of,’ and ‘half as 
much/many’ are meaningful. That is, a beer priced at eight Euros costs twice as much 
as a beer priced at four Euros and so on.

Many variables in the behavioral sciences are not on this measurement level, how-
ever. We have for example the variable production location in our Christmas beer data: 
Such a beer is Norwegian-made or made outside of Norway. Furthermore, we have the 
variable gender in our upcoming student data: A student is either male or female. Both 
of these variables have a categorical nature, and the categorical variable is the term I 
will use in this book. Strictly correct, the production location variable and the gender 
variable are on the nominal measurement level.7 You may think of nominal variables as 
a subset of categorical variables if you feel the need to.

The way to classify a variable as categorical in this book is to recognize that it has 
no ranking among the categories it may take on. (A categorical variable takes on cat-
egories, not values.) That is, male category is not more or less than female category; 
a Norwegian origin is not more or less than a foreign make. Simply put, categorical 
variables have an either-or logic. The mean and median do not make sense as measures 

Table 2.3  Descriptive statistics for price, alcohol level, and taste quality in the Christmas beer 
data.

Variable N = Mean Median Mode

Price per bottle (in Euros) 75 6.3 6.1 5.5
Alcohol level (percent) 75 8.2 8.0 9.0
Taste quality (0–10) 75 5.4 6.0 6.0

Stata-output 2.6 (Continued)
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of central tendency for such variables, but the mode very much does. Stata-output 2.7 
presents the frequency distribution for the production location variable in the Christ-
mas beer data.

There are two categories: made in Norway or made outside Norway. The most 
typical origin is a Norwegian-made beer, as might be expected given the context: 47 
out of the 75 beers, or 63 percent of them, are of Norwegian make. This is the mode. 
SPSS-output 2.4, where I now only show the basic results, tells the same story, of course.

Table 2.4 displays the information for the production location variable in a more 
camera-ready publication version.

Table 2.4 illustrates an essential point in passing: The only thing we – or more pre-
cisely, the statistics program – may do for a categorical variable is to count how many 
units there are in each category. Categorical variables having only two categories (or 
outcomes) carry a special name in statistics: dummy variables or dummies.8 Yet categorical 
variables may take on more than two categories, as the next subsection shows.

Table 2.4  Frequency table for the production location variable in the Christmas beer data.  
N = 75.

Variable: Production location Frequency Percent

Norway 47 63
Outside of Norway 28 37

Stata-output 2.7 Frequency table for the variable production location in the Christmas beer data.

SPSS-output 2.4  Frequency table for the production location variable in the Christmas beer 
data.
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2.3.1 The Income and Other Characteristics of Norwegian Soccer Players

Sports superstars make lots of money. The soccer players in the Norwegian version of 
the Premier League do not belong to this superstars league, but they still command 
larger earnings than most Norwegians. Previous research has looked at how different 
factors explain variations in top athletes’ earnings, and this is the context for the analyses 
in Chapters 3 and 4. Now we focus on the typical income and the typicalness of some 
other attributes of the 240 players in the top-tier Norwegian soccer league. The data 
are called soccer. The complete documentation for all the variables in the soccer player 
data appears in Appendix B of this chapter. Summary descriptive statistics for three of 
the variables in the data appear in Table 2.5. (Nothing new happens regarding what we 
already have done in Stata or SPSS to produce the results in Table 2.5.)

The soccer players earn about 86,000 Euros on average, whereas their median income 
is 68,000 Euros. This difference in mean and median by almost 20,000 Euros is huge. 
Why is this? The answer appears in the so-called histogram in Figure 2.1.

The height of the tallest bars on the left side of the figure shows that most players have 
an income below 100,000 Euros. (We already know that 50 percent of the players earn 
less than the median of 68,000 Euros.) On the right side of the figure, that is, for the 
very low bars, we find the players with very large incomes. These few players’ incomes 
pull the mean income upwards and to the right of the median income – to 86,000 Eu-
ros. An old joke starring Bill Gates, at one point the world’s wealthiest man, sheds light 
on this phenomenon. Attuned to the present it goes something like this:

Jeff Bezos, the now previous CEO of Amazon, walks into a bar. The crowd imme-
diately roars. They all suddenly became billionaires – on average.

The joke is not very funny, but has a point. Although the mean wealth among the 
crowd increased in perhaps billions, the median wealth did not increase by one cent. 
That is, the mean is more sensitive to extreme values than the median. Against this 
backdrop, we could claim that the median is a better measure of central tendency than 
the mean for our soccer income variable. This often happens for distributions of the 
kind portrayed in Figure 2.1, which we call a skewed distribution. For non-skewed or 
symmetrical distributions, in contrast, we tend to prefer the mean to the median.9

The mode for yearly income is 76,142 Euros. Yet, this mode is uninteresting as a 
measure of central tendency because it applies to only two out of the 240 players. This 
is often the case for continuous variables with a large and fine-grained number of values, 
but not always (as we soon will see).

Table 2.5  Descriptive statistics for yearly income in Euros in 2015, number of club matches 
played during career, and number of matches played for the national team during 
career in the soccer player data.

Variable N = Mean Median Mode

Yearly income in Euros in 2015 240 86,367 67,708 76,142a

Club matches in career 240 85 63 29b

Nat. team matches in career 240 3.6 0 0c

a Refers to two players only.
b Refers to seven players only.
c Refers to 160, or 67 percent, of the players.
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The comments for income also apply to club matches during a career: a right-skewed 
distribution and a mode that does not reveal anything of interest. However, we note 
an even more pervasive right skew for the variable national team matches during their 
career: a median of zero and a mean of 3.6. The reason is that a large proportion of the 
players have not played any national team matches at all. A frequency distribution (not 
shown) shows that this proportion pertains to 160, or 67 percent, of the players. That 
is, the mode of zero matches played for a national team is in this case an informative 
descriptive summary measure.

For continuous variables with a lot of skewness, we might consider creating a new 
variable. For the variable number of matches played for a national team, this could imply 
making a new variable with only two categories: not having played for a national team 
at all or having played one or more matches for such a team. Table 2.6 presents the sum-
mary descriptive statistics for this national team dummy. The mode is having played zero 
matches for a national team. The actual proportion is 67 percent, as mentioned above.

A categorical variable often has more than two or three categories. A categorical var-
iable with four categories appears in the soccer data. Table 2.7 shows this variable’s fre-
quency distribution. We note that the mode is a defense player, with a proportion of 35 
percent. The second most-frequent player position is that of a midfielder: 32 percent.10 
We will get back to these soccer data later in the book.

Figure 2.1 Histogram of soccer players’ yearly income in Euros in 2015.

Table 2.6  Frequency table for the national team dummy variable in the soccer data. N = 240.

Variable: National team Frequency Percent

National team matches = 0 160 67
National team matches > 0 80 33
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2.3.2 Students’ Health Behaviors and Exercising

Because lifestyle choices that cause trouble later in life (e.g., high blood pressure, over-
weight, substance abuse) often commence during adolescence and early adulthood, the 
health behaviors of students have gotten a lot of attention from researchers worldwide. 
The student_exercise data stem from a survey questionnaire answered by 644 stu-
dents attending a Norwegian university college in 2017. Documentation for the vari-
ables in the student exercise data appears in appendix C of this chapter. A continuous 
variable in the data is the answer to the question, ‘In a typical week, how many hours 
do you exercise?’11 Summary descriptive statistics for this variable appear in Table 2.8.

The average student exercises 4.78 hours per week. The median is 4.0 hours per 
week, indicating a right skew. The mode is 3.0 hours per week. Table 2.9 shows the 
summary descriptive statistics for the dummy variable sports club membership. The 
mode is not being a member of a sports club; this is the most frequent category among 
the students, with a 78 percent proportion.

Table 2.10 shows a frequency distribution table for the variable exercise preference, 
that is, the answer to a question of what kind of exercising one prefers. Most students 
prefer to do strength training and cardio training equally. This proportion is 43 percent 
and is, thus, the mode. We return to these data in the next section.

Table 2.7  Frequency table for the player position variable in the soccer data. N = 240.

Variable: Player position Frequency Percent

Goalkeeper 23 10
Defender 84 35
Midfielder 76 32
Attacker 57 24

Table 2.8  Descriptive statistics for hours of weekly exercise in the student exercise data.

Variable N = Mean Median Mode

Hours of weekly exercise 644 4.78 4.0 3.0

Table 2.9  Frequency table for sports club membership in the student exercise data. N = 644.

Variable: Member of sports club Frequency Percent

No 504 78
Yes 140 22

Table 2.10  Frequency table for exercise preference in the student exercise data. N = 644.

Variable: Exercise preference Frequency Percent

Strength training 222 34
Cardio training 147 23
Both forms equally much 275 43
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2.4  Ordinal Variables: A Third and Special-Case  
Measurement Level

We find the ordinal variables between the continuous and the categorical variables.12 
Ranking is fine for ordinal variables just as for continuous variables. More or less of this, 
or higher or lower of that, thus makes sense. Yet exactly how much more or less, or how 
much higher or lower, is not easy to answer. In accordance with categorical variables, 
however, ordinal variables take on only a limited number of categories. The examples 
below clarify.

The Christmas beer data include a taste quality variable; cf. Table 2.3. This variable 
has 11 categories ranging from zero (terrible taste) to ten (perfect taste). This is ranking. 
It makes sense to assess a beer scoring an eight as better tasting than a beer scoring a four. 
Yet it does not make sense to judge the former as twice as tasty as the latter, although 
eight is twice as much as four. Why? The answer lies in the arbitrariness of the quality 
scale’s end points. That is, the scale could have gone from one to five or from zero to 
seven. Indeed, the chief taste quality scale for alcoholic beverages, the so-called Parker 
scale, goes from 60 points (terrible) to 100 points (perfect). The vital point is that we 
cannot use the distances between scores as measures of how much better or worse beer 
A tastes compared to beer B or C. This is why, strictly speaking, the taste quality vari-
able is ordinal and not continuous.

I analyzed the quality variable as a continuous variable in Table 2.3. The reason was 
that it provided a mean (6.4) and a median (6.0). More precisely, I treated the variable 
as continuous to use the mean and median as summary measures of central tendency. 
Yet there is a more subtle reason for doing this. The mean and median are much more 
efficient summaries of the typicalness of the taste quality variable than a frequency 
distribution. The frequency distribution appears in Stata-output 2.8 for comparison. 
We note that the quality score of three accounts for 23 percent of the beers in the data. 
Similarly, the score of five accounts for 44 percent, which is still not enough to be the 
median quality. The median of six, in bold, accounts for 63 percent of the beers in terms 
of taste quality.

Stata-output 2.8 Frequency table for the taste quality variable in the Christmas beer data.
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A question in the student exercise data reads, ‘In your youth before you started 
studying, to what extent were you involved in sports requiring lots of physical exer-
cise (to a very small extent = 1; to a very great extent = 10)?’ This variable is ordinal: 
A student answering six was more active than a student answering three, but she was 
probably not exactly twice as active. Summary descriptive statistics for this variable, 
which we treat as continuous because of the large number of categories, appears in 
Table 2.11. Most students answer towards the active end of the scale, and the mode 
score is ten. A not-shown frequency distribution shows that 127 of the students (20 
percent) answered ten.

The two ordinal variables above had many categories: eleven and ten. It is common 
practice, as I have shown, to treat such variables as continuous in statistical analysis.13 
Yet many ordinal variables have only a few ranked categories, such as five or lower. It 
is time to look at these.

2.4.1 Ordinal Variables with Few Categories

The questionnaire for the student exercise data includes the question, ‘How is your 
physical health in general?’ Table 2.12 provides summary descriptive statistics for the 
answers to this question.

The health variable is ordinal. The reason is that good health (the mode) is better than 
ok health, and that very good health is better than both good health and ok health.14 
Ranking thus makes sense. Yet because the variable has only three ranked categories, it 
makes no sense talking about means and medians. There are typically two main ways of 
dealing with ordinal variables having few categories in statistical analysis:

 (1) Treat the variable as categorical in our sense of the term, that is, to disregard the 
ordinal nature of the categories or to regroup the variable into two categories, that 
is, to make it a dummy.

 (2) Keep the variable ordinal, and do ‘ordinal statistical analysis.’15

I mainly adopt category (1) in this book in the spirit of keeping matters as simple as 
possible. That concludes the basics on variables’ measurement levels,16 and we are ready 
for a new topic: visual presentations of descriptive statistics.

Table 2.11  Descriptive statistics for youth sports involvement in the student exercise data.

Variable: N = Mean Median Mode

Youth sport involvement 644 6.56 7 10

Table 2.12  Frequency table for physical health assessment in the student exercise data. N = 644.

Variable: Physical health Frequency Percent

Ok 217 34
Good 315 49
Very good 112 17
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2.5 Visual Presentation of Descriptive Statistics: Graphs

I have used tables to convey statistical information thus far. But since many people 
think better in visual terms rather than numerically, it is time to do something about 
that. This section takes on presenting results of descriptive statistical analysis visually. 
We start with continuous variables and proceed to categorical variables.17 There are 
no specific graphs for ordinal variables. In keeping with the comments at the tail end 
of Section 2.4, I treat ordinal variables as continuous or categorical depending on the 
situation.

2.5.1 Graphs for Continuous Variables: Boxplots

A natural start for a graph of a continuous variable is the boxplot or box and whiskers 
plot. Figure 2.2 illustrates for the infection rate variable in the COVID-19 data. The 
shaded rectangle in the figure – the box – contains the infection rates for the middle 
50 percent of the districts. The horizontal line inside the box is the median, which we 
already know is 298. The whiskers are the two remaining horizontal lines; one below 
and one above the box. The vertical distance from top to bottom whisker accounts for 
all the infection rates in the data. Any district above or below the whiskers are called 
outliers, of which there are none in the present case.

A similar box and whiskers plot appears in Figure 2.3 for the price variable in the 
Christmas beer data. We know from Table 2.3 that the median price is 6.1 Euros. 
 Figure 2.3 shows that we find 50 percent of the beers in the price range between about 
five and a half and seven Euros, that is, within the outer limits of the box. Practically 
speaking, we find all beers in the price range from about four to about nine Euros, that 
is, the distance between the two whiskers. Finally, we have three very costly and thus 

Figure 2.2 Box and whiskers plot (boxplot) for the variable infection rate.
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Figure 2.3 Box and whiskers plot (boxplot) for the variable beer price.

outlying beers. Two of these, occupying the same dot in the figure, cost 9.9 Euros, and 
one costs 9.3 Euros. Note that the axis for price is truncated. That is, the y-axis starts 
not at zero but at slightly below four Euros, which is the least pricey beer in the data.

2.5.2 Graphs for Continuous Variables: Histograms

Another way to describe the beer price variable is by a histogram. I introduced the 
histogram in passing in Figure 2.1. (It is a graph!) Figure 2.4 presents such a histogram.

The histogram shows that the average-priced beers – that is, the tallest bars – appear 
in the middle of the graph around the mean (6.3) and the median (6.1). We also note 
that the price distribution has a roughly symmetrical shape around the mean and the 
median. That is, the lower bars on both sides of the mean – that is, the so-called tails of 
the distribution – are of roughly the same height and width.

2.5.3 Graphs for Continuous Variables: Kernel Density Plots

The histogram’s cousin is the Kernel density plot. The Kernel plot offers a smoother 
view of a continuous variable’s distribution. Figure 2.5 demonstrates the beer price var-
iable. We see more clearly than in Figure 2.4 the roughly symmetrical shape of the price 
distribution around the mean and the median.

2.5.4 Graphs for Categorical Variables 1: Bar Charts

Bar charts are often useful to describe categorical variables. We have two production 
locations for the beers in the Christmas beer data; cf. Table 2.4. Figure 2.6 displays the 
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Figure 2.4 Histogram for the variable beer price.

Figure 2.5 Kernel density plot for the variable beer price.
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Figure 2.6 Bar chart for the variable production location.

same information as did Table 2.4 but in a visual manner. Most beers (63 percent) are 
manufactured in Norway. Alternatively, we could place the bars vertically rather than 
horizontally – this is a matter of taste or convenience.

2.5.5 Graphs for Categorical Variables 2: Pie Charts

The second main alternative for graphing a categorical variable is the pie chart. 
 Figure 2.7 illustrates the production location variable once more.

2.6  The Concept of Variation: Statistical Spread for  
Continuous Variables

So far, we have scrutinized variables’ central tendency. We have for data on city dis-
tricts, Christmas beers, soccer players, and students found out about continuous varia-
bles’ means and medians. Yet such summary measures are but one aspect of continuous 
variables; another aspect concerns such variables’ variation. This is the topic in the pres-
ent section. There are several ways to describe the variation or spread of a continuous 
variable. First up is the range.

2.6.1 The Range

The range is the difference between the lowest (smallest) and highest (largest) value of 
a continuous variable. The highest infection rate in the COVID-19 data in Table 2.1 is 
512; the lowest is 113. In other words, the range is 399 (512–113 = 399). As for measures 
of central tendency, a range of 399 is not small nor large in itself; we must compare it 
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with something. If a group of districts in another city has a range of 200 among their 
infection rates, we might argue there is more variation in our group of districts. In 
Stata-output 2.9, which repeats Stata-output 2.6, we see that the least expensive beer 
in our beer data costs 3.8 Euros, whereas the two most expensive beers cost 9.9 Euros. 
The range is thus 6.1 Euros.

2.6.2 The Interquartile Range (IQR)

The range has one drawback as a measure of variation: Extreme values influence it. 
We use the interquartile range (IQR) to account for this. Remember the boxplot in 
Figure 2.3 containing 50 percent of beers in the middle of the price distribution. These 
beers similarly appear between the row in bold (5.5) and the row in bold italics (7.0) in 
 Stata-output 2.9. The IQR is the price range of the beers inside this 50-percent box: 1.5 
Euros (7.0–5.5 = 1.5). 

Some of the students in our exercise data exercise for zero hours per week (result 
not shown). At the other end of the spectrum, some students exercises for 16 hours per 
week. The range is thus 16. In contrast, the IQR pertaining to the 50 percent of stu-
dents in the middle of the exercise distribution is only three hours. Yet there is no point 
showing this because it is just a long table akin to Stata-output 2.9. This concludes our 
business with the range as a measure of a variable’s spread or variation. Next up is the 
standard deviation (SD).

Norway

63%

37%

Outside Norway

Figure 2.7 Pie chart for the variable production location.
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2.6.3 The Standard Deviation

Some of the districts in the COVID-19 data have infection rates close to the overall 
mean of 317, such as 311 (district C) or 351 (district G). Others have rates further 
away from the mean – say 224 or 448. That is, the individual districts differ regarding 
the deviation between their own infection rate and the (overall) mean infection rate 
among all the 15 districts. Consider district C in Table 2.1 (311). The deviation or 
distance from the overall mean for this district is eight (317–311 = 8). For district G, 
with a rate of 351, the similar deviation is 34. Fast-forward to the key idea: Because 
every district has a deviation from the overall mean in the data, we may compute a 
measure resembling the average deviation from the overall mean. Please welcome the 
standard deviation or SD.

Stata-output 2.9 Frequency (distribution) table for the variable price in the Christmas beer data.
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Technically, the standard deviation is the square root of a measure called the variance. 
We obtain the variance or s2 for the infection rate variable, now labeled as y, by the 
formula

s
y y

n

i∑
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−

−

( )

1
2

2

,

where ∑ is the summation sign, yi is the individual district’s infection rate, ȳ is  
the mean infection rate in the data, and n is the number of districts in the data. The 
variance or s2 is 14,592.22 in this case. The square root of the variance, or s, is the 
SD: 120.80. The SD measures the size of the variation or spread around the mean of 
a continuous variable: The larger the SD, the more variation around the mean there 
is. The practical problem once more is that the size of a SD is neither small nor large 
in itself; it needs context for assessment, such as the SD for the infection rates in an-
other group of city districts. If the latter group has a SD of, say, 250, we could claim 
there is less variation among the infection rates in Oslo. Having explained how SD 
works, we are finally ready to present the relevant summary descriptive statistics for 
continuous variables.

2.6.4  Presenting Descriptive Statistics for Continuous Variables  
in a Thesis or a Research Paper

Table 2.13 is a typical way of showing summary descriptive statistics for a continuous 
variable using the familiar infection rate variable as an example. (We do not normally 
present the IQR.) Table 2.14 shows the similar setup for the two continuous variables 
in the Christmas beer data.

Consider the SDs in Table 2.14. It is tempting to claim that the variation in prices is 
smaller than the variation in alcohol levels: 1.35 versus 1.57. This is not necessarily the 
case, however, because we cannot interpret the SD in this way. Since the two variables 
refer to different measurement scales (i.e., Euros and percent), comparing the two SD 
amounts is akin to comparing apples with oranges. We use the coefficient of variation 
(CV) to overcome this problem.

Table 2.13  Descriptive statistics for the infection rate variable in the COVID-19 data.

Variable: N = Mean SD Median Min. Max.

Infection rate 15 317 121 298 113 512

Table 2.14  Descriptive statistics for price and alcohol level in the Christmas beer data.

Variable: N = Mean SD Median Min. Max.

Price per bottle (Euros) 75 6.3 1.35 6.1 3.8 9.9
Alcohol level (percent) 75 8.2 1.57 8 5 12
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2.6.5 Coefficient of Variation

Finding the CV is straightforward. We divide the SD by the mean and multiply the 
result with 100. For the price and alcohol variable, respectively, we thus obtain 21.4 and 
19.1. Since these two CVs are comparable, the correct interpretation is that the price 
variable in fact has more variation than the alcohol level variable.

2.6.6 A Few Remarks on the Shape of Continuous Variables’ Distribution

We often learn a lot from knowing the central tendency and the variation of a continu-
ous variable. Yet these two pieces of information do not necessarily say much about the 
shape of such a variable’s distribution. The next few paragraphs introduces this topic in 
a tentative fashion.

The alcohol level variable in Table 2.14 has a range of seven (12–5 = 7) and a mean 
of 8.2 percent. The histogram in Figure 2.8 shows this visually. Superimposed on the 
figure is the normal or Gaussian distribution with its characteristic bell-shaped and per-
fectly symmetric form.18 We know a priori – that is, before doing any analysis at all – that 
the mean, median, and the mode are similar for a variable having a normal distribution. 
We may deduce the following from this:

 - The alcohol level variable is not normally distributed, but it comes rather close as a 
practical matter

 - The alcohol level variable has a symmetric form with little skewness to either side
 - The peak (i.e., top) of the alcohol level variable’s distribution is less sharp than for 

the normal distribution

Figure 2.8  Histogram for the variable alcohol level, with the normal distribution 
superimposed.



Descriptive Research Questions 35

Skewness and kurtosis measure the characteristics of a continuous variable’s distribution 
against the normal distribution. A perfect normal distribution has zero skewness and a 
kurtosis of three. The alcohol variable has a skewness of 0.092, thus making it symmet-
rical for all practical purposes.19 The kurtosis is 2.18. This suggests that the peak of the 
distribution is less sharp than for the normal distribution, and that the tails on both sides 
are thinner and shorter than for the normal distribution.20

Why bring this up? The normal distribution plays a fundamental role in inferential 
statistics, that is the topic of Chapter 5 and Section 5.3 in particular. This was just a 
small teaser in terms of preparation.

2.7  Foreshadowing Associational Research Questions: Descriptive 
Statistics for Subgroups

To set the stage for Chapter 3, we close with a section on how two variables might be 
associated in some way. We look at the price variable and the production location varia-
ble in the Christmas beer data to illustrate. Stata-output 2.10 lists a number of summary 
statistics measures for the price variable broken down on the two production locations: 
in Norway or outside of Norway. Yet since results like these typically are intermediate 
in the research process, I see no reason to present a camera-ready publication table for 
the results. (The results are of course similar in SPSS.)

The bottom row (Total) provides the same information as did Table 2.14. Other 
than this, we note that the mean prices are close for the two production locations: 6.4 
Euros for Norwegian-made beers and 6.1 Euros for beers made outside of Norway. In 
contrast, there seems to be more price variation among the Norwegian beers because 
the range, the sd, and the cv are all larger for this group of beers. Figure 2.9 paints the 
same picture as Stata-output 2.10.21 It appears, in other words, as if the price variable 
and the production location variable are associated somehow. I have much more to say 
on such variable associations in Chapter 3.

2.8  Chapter Summary, Key Learning Points,  
and Further Reading

This chapter has been about doing statistical analysis and presenting summary descrip-
tive statistics for one variable at a time. Descriptive statistical analysis primarily concerns 

Stata-output 2.10  Summary descriptive statistics for the variable price in the Christmas beer 
data, by production location (country).
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finding out about what is typical for variable x and variable y, and so on. Yet descriptive 
statistical analysis is also about finding the variation or spread of a continuous x and y 
and so on. Below follows some key learning points:

• Three statistical summary measures express the central tendency or typicalness of a 
variable: the mean (or average), the median, and the mode.

• There are several ways of categorizing a variable according to its measurement lev-
els. I use two main levels in this book: the continuous measurement level (i.e., con-
tinuous variables) and the categorical measurement level (i.e., categorical variables).

• Ordinal variables (i.e., variables at the ordinal measurement level) are a special case 
of variables located between the continuous variables and the categorical variables.

• Means and medians make sense as summary measures of continuous variables and 
ordinal variables having many categories, say typically six or more. The mode, in 
principle, applies to all measurement levels as a summary measure.

• The median is often a better descriptive summary measure of a variable than the 
mean for skewed distributions.

• The results of descriptive statistics may be presented in tables or in graphs. Or both.
• Statistical variation or spread primarily concern continuous variables. The most 

important measure in this regard is the SD.

Freedman et al. (2007) and Agresti (2018) are general books on statistics/statistical anal-
ysis teaching you all there is to know. Two introductions on doing statistical analysis 
in Stata are Bittmann (2019) and Daniels and Minot (2020), whereas Field (2018) is the 
key source in this regard for SPSS. Wheelan (2013) and Spiegelhalter (2019) are two 

Figure 2.9  Box and whiskers plot (boxplot) for the variable beer price, by production 
location.
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entertaining introductions to statistics and statistical analysis. Healy (2019) is a good 
starting-point for data visualizations (i.e., graphs).

2.9  Executing Statistical Commands: Do-Files in Stata and 
Syntax-Files in SPSS

After a session of interactive statistical analysis, Stata or SPSS will ask if you want to save 
the changes you made (if any) to the data. If you consider answering yes to this question, 
I recommend that you save the data under a new name. In this way, you keep your orig-
inal data intact if anything has gone wrong during the session. (It often does!) Working 
interactively in this way is not the favored approach among instructors, however. No, 
they – and I – urge you to work commando-style and save only the commands you 
made during the session. This way, the data are left unchanged. Please welcome do-files 
and syntax-files, two ways of working commando-style with statistical analysis.

A do-file is a text document containing the commands you tell Stata to execute dur-
ing a session. Similarly, a syntax-file is a text document containing the commands you 
tell SPSS to execute. The reason instructors advocate using do-files/syntax-files is that 
they ensure reproducibility and translucency in research. Translation: We forget what we 
did yesterday or three hours ago in our interactive sessions!

2.9.1 Stata Commands in Do-Files

A Stata do-file is a text file containing the commands, some of which we have seen so 
far, such as sum infect_rate or tab quality. Instead of typing such commands in 
the Command-window, however, we type them in a text document and execute them 
– or ‘do them’ – from within this document; hence the name do-file. For example, to 
obtain the mean and the frequency distribution for the infection rate variable in the 
COVID-19 data (Stata-outputs 2.3 and 2.4), I typed the following in a do-file:

version 16.1
capture log close
set more off
use "C:\Users\700245\OneDrive - Høgskolen i Innlandet\Dokumenter\
Christer\Forskning\Statistical_analysis_research_persp\res_prop_
price_Covid-19.dta" 
sum infect_rate
tab infect_rate

The text above appears in do-file format in Stata-output 2.11. I highlighted lines 1 to 
8 and clicked on the execute-button in the upper-right corner (pointed at by the arrow) 
to execute or ‘do’ the commands.22

Line 5, stretching out over three lines, tells Stata where I have stored the data on my 
computer. The location for the data on yours will of course be different. You may copy-
paste the analogous text on your computer from the Results-window the first time you 
open the data in interactive mode. Lines 7 and 8, the two statistical commands, produce 
the results we saw in Stata-outputs 2.3 and 2.4.

Below the tab-command to get the frequency distribution for infect_rate, one 
may continue the do-file with more commands or with a new use-line to get, say, the 
Christmas beer data:
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use "C:\Users\700245\OneDrive - Høgskolen i Innlandet\Dokumenter\
Christer\Forskning\Statistical_analysis_research_persp\x-mas_beer.
dta", replace

After this, one may ask for the mean of the beer price variable with the command:

sum price

Below you find the Stata-commands to generate the results in this chapter. I present 
the commands in plain text and not in the do-file format of Stata-output 2.11 to save 
space. I also skip the long and tedious use-commands (which are probably different on 
your computer than they are on mine anyway) that always must appear before a com-
mand whenever we shift from one data set to another.

Stata-output 2.3 (as mentioned)

sum infect_rate

Stata-output 2.4 (as mentioned)

tab infect_rate

Table 2.2
Stata-outputs 2.3 and 2.4 generate the results of this table.

Stata-output 2.5

sum price

Stata-output 2.11 An example of a short Stata do-file.
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Stata-output 2.6

tab price

Table 2.3

sum price alch_perc quality
tab price
tab alch_perc
tab quality

Stata-output 2.7 and Table 2.4

tab country

Table 2.5

sum inc_year match_tot national, detail
tab inc_year
tab match_tot
tab national

The extension detail after the comma displays the median directly; cf. the 50 percent.

Figure 2.1

twoway histogram inc_year, percent

Note that the figures in the book containing numerical information look slightly dif-
ferent from Stata’s default graphs. Since I prefer a visual layout other than the default 
graphs, I use a different graph scheme. To download it, go to https://github.com/
mdroste/stata-scheme-modern and follow the instructions. I have also done some tink-
ering to get the graphs camera-ready. Such tinkering is always required.

Table 2.6

tab nation_dum

Table 2.7

tab pos

Table 2.8

sum hours_exer, detail
tab hours_exer

Table 2.9

tab sport_club
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Table 2.10

tab exer_most

Stata-output 2.8

tab quality

Table 2.11

sum youth_exe, detail
tab youth_exe

Table 2.12

tab health

Figure 2.2

graph box infect_rate

Figure 2.3

graph box price

Figure 2.4

twoway histogram price, percent bin(50)

Figure 2.5

kdensity price

Figure 2.6

catplot country, percent

Before applying the catplot-command, you must first download it from the Internet. 
In the Command-window or do-file, type:

ssc install catplot

Figure 2.7

graph pie, over(country) plabel(_all percent)

Stata-output 2.9

tab price
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Table 2.13

sum infect_rate, detail

Table 2.14

sum price alch_perc, detail

Figure 2.8

histogram alch_perc, percent norm

The command to obtain the values for skewness and kurtosis is:

sum alch_perc, detail

Stata output 2.10

tabstat price, by(country) stats(count min max range mean sd cv)

If you only want the information in the Total row, delete by(country) from the com-
mand above.

Figure 2.9

graph box price, by(country)

2.9.2 SPSS Commands in Syntax-Files

A syntax-file is the SPSS-version of a Stata do-file. Compared to Stata’s short commands, 
however, the syntaxes of SPSS are longer and thus more tedious to type. Thankfully, 
copy-paste works fine and saves a lot of typing/time. To get the mean and the frequency 
distribution for the infection rate variable in the COVID-19 data (SPSS-outputs 2.2 and 
2.3), I typed the following in a syntax-file:

GET

  FILE='C:\Users\700245\OneDrive - Høgskolen i '+
    'Innlandet\Dokumenter\Christer\Forskning\
Statistical_analysis_research_persp\res_prop_price_Cov'+
    'id-19.sav'.
DESCRIPTIVES VARIABLES=infect_rate
  /STATISTICS=MEAN STDDEV MIN MAX.
FREQUENCIES VARIABLES=infect_rate
  /ORDER=ANALYSIS.

Yet there is a simpler way! When opening the COVID-19 data (File → Open → Data), 
do not click on Open but on Paste instead. Similarly, after having dragged the variable 
infect_rate from the box on the left and over to the empty box on the right to get its 
mean and frequency distribution (two separate commands), do not click on OK but on 
Paste instead. Voilà! You now have the syntax-file in SPSS-output 2.5 without typing 
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SPSS-output 2.5 An example of a short SPSS syntax-file.

anything (yet with a different Get File command). Moreover, you may paste all interac-
tive SPSS-commands into a syntax-file in this way. (Stata has a similar capability, but given 
its very short commands there is not much to gain.) I highlighted lines 2 to 11 and clicked 
on the execute-button (the triangle, pointed at by the arrow) to execute the commands.

Lines 2–5 tells SPSS where the data are stored on my computer; this location will be 
different on your computer. Lines 7, 8 and 10, 11, the two statistical commands, produce 
the results we saw in SPSS-outputs 2.2 and 2.3.

Below the FREQUENCIES-command to get the frequency distribution for infect_ 
rate, one may continue the syntax-file with more commands or with a new GET-line 
to get, say, the Christmas beer data:

GET
  FILE='C:\Users\700245\OneDrive - Høgskolen i '+
    'Innlandet\Dokumenter\Christer\Forskning\Statistical_analysis_
research_persp\x-mas_beer.sav'.
DATASET NAME DataSet2 WINDOW=FRONT.

After this, one may ask for the mean of the beer price variable with the command:
DESCRIPTIVES VARIABLES=price
  /STATISTICS=MEAN STDDEV MIN MAX.

Below you find the SPSS-commands to generate the results in this chapter in SPSS 
style. I have pasted the commands from the interactive mode as just described. I do not 
present the commands in the syntax-file format of SPSS-output 2.5 but only as plain 
text to save space. I also skip the long and tedious GET-commands (which are different 
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on your computer than they are on mine anyway) that always must appear before a 
command whenever you shift from one data set to another.

SPSS-output 2.2 (as mentioned)
DESCRIPTIVES VARIABLES=infect_rate
  /STATISTICS=MEAN STDDEV MIN MAX.

SPSS-output 2.3 (as mentioned)

FREQUENCIES VARIABLES=infect_rate
  /ORDER=ANALYSIS.

Table 2.2
SPSS-outputs 2.2 and 2.3 generate the results of this table.

Stata-output 2.5

DESCRIPTIVES VARIABLES=price
  /STATISTICS=MEAN STDDEV MIN MAX.

Stata-output 2.6

FREQUENCIES VARIABLES=price
  /ORDER=ANALYSIS.

Table 2.3

DESCRIPTIVES VARIABLES=price alch_perc quality
  /STATISTICS=MEAN STDDEV MIN MAX.
FREQUENCIES VARIABLES=price alch_perc quality
  /ORDER=ANALYSIS.

SPSS-output 2.4 and Table 2.4

FREQUENCIES VARIABLES=country
  /ORDER=ANALYSIS.

Table 2.5

DESCRIPTIVES VARIABLES=inc_year match_tot national
  /STATISTICS=MEAN STDDEV MIN MAX.
FREQUENCIES VARIABLES=inc_year match_tot national
  /ORDER=ANALYSIS.

Figure 2.1

FREQUENCIES VARIABLES=inc_year
  /HISTOGRAM
  /ORDER=ANALYSIS.

Table 2.6

FREQUENCIES VARIABLES=nation_dum
  /ORDER=ANALYSIS.
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Table 2.7

FREQUENCIES VARIABLES=pos
  /ORDER=ANALYSIS.

Table 2.8

DESCRIPTIVES VARIABLES=hours_exer
  /STATISTICS=MEAN STDDEV MIN MAX.
FREQUENCIES VARIABLES=hours_exer
  /ORDER=ANALYSIS.

Table 2.9

FREQUENCIES VARIABLES=sport_club
  /ORDER=ANALYSIS.

Table 2.10

FREQUENCIES VARIABLES=exer_most
  /ORDER=ANALYSIS.

Stata-output 2.8

FREQUENCIES VARIABLES=quality
  /ORDER=ANALYSIS.

Table 2.11

DESCRIPTIVES VARIABLES=youth_exe
  /STATISTICS=MEAN STDDEV MIN MAX.
FREQUENCIES VARIABLES=youth_exe
  /ORDER=ANALYSIS.

Table 2.12

FREQUENCIES VARIABLES=health
  /ORDER=ANALYSIS.

Figure 2.2 (basic)

EXAMINE VARIABLES=infect_rate
  /PLOT=BOXPLOT
  /STATISTICS=NONE
  /NOTOTAL.

Note that all graph commands in SPSS (as in Stata or whatever statistics program 
you are using) produce very basic graphs that need some tinkering to become 
camera-ready.
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Figure 2.2 (advanced)

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=infect_rate MISS-
ING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: infect_rate=col(source(s), name("infect_rate"))
  DATA: id=col(source(s), name("$CASENUM"), unit.category())
  COORD: rect(dim(1), transpose())
  GUIDE: axis(dim(1), label("infect_rate"))
  GUIDE: text.title(label("1-D Boxplot of infect_rate"))
  ELEMENT: schema(position(bin.quantile.letter(infect_rate)), 
label(id))
END GPL.

The GGRAPH-commands originate from the interactive chart-builder function in SPSS, 
and I have used the paste-procedure in the usual manner. If you type ‘chart builder 
SPSS’ on Google search, you will find many videos demonstrating how to use the 
chart-builder function. See also Field (2018).

Figure 2.3

EXAMINE VARIABLES=price
  /PLOT=BOXPLOT
  /STATISTICS=NONE
  /NOTOTAL.

Figure 2.4

FREQUENCIES VARIABLES=price
  /HISTOGRAM
  /ORDER=ANALYSIS.

Figure 2.5

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=price MISSING=LISTWISE 
REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: price=col(source(s), name("price"))
  GUIDE: axis(dim(1), label("price"))
  GUIDE: axis(dim(2), label("Density"))
  SCALE: linear(dim(2), min(-5))
  ELEMENT: line(position(density.kernel.epanechnikov(price*1)))
END GPL.



46 Descriptive Research Questions

Figure 2.6 (with vertical bars)

FREQUENCIES VARIABLES=country
  /BARCHART FREQ
  /ORDER=ANALYSIS.

Figure 2.7

FREQUENCIES VARIABLES=country
  /PIECHART FREQ
  /ORDER=ANALYSIS.

Stata-output 2.9

FREQUENCIES VARIABLES=price
  /ORDER=ANALYSIS.

Table 2.13

DESCRIPTIVES VARIABLES=infect_rate
  /STATISTICS=MEAN STDDEV MIN MAX.
FREQUENCIES VARIABLES=infect_rate
  /ORDER=ANALYSIS.

Table 2.14

DESCRIPTIVES VARIABLES=price alch_perc
  /STATISTICS=MEAN STDDEV MIN MAX.
FREQUENCIES VARIABLES=price alch_perc
  /ORDER=ANALYSIS.

Figure 2.8

FREQUENCIES VARIABLES=alch_perc
  /HISTOGRAM NORMAL
  /ORDER=ANALYSIS.

The command to produce the values for skewness and kurtosis is:

EXAMINE VARIABLES=alch_perc
  /PLOT BOXPLOT STEMLEAF
  /COMPARE GROUPS
  /STATISTICS DESCRIPTIVES
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.

Note that Stata and SPSS use two different formulas to compute the kurtosis. This ex-
plains the different results in this regard.23

Stata-output 2.10 and Figure 2.9

EXAMINE VARIABLES=price BY country
  /PLOT BOXPLOT STEMLEAF
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  /COMPARE GROUPS
  /STATISTICS DESCRIPTIVES
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL. 

If you do not want the results broken down on country, delete By country in the first 
line of the command.

2.10 Chapter Exercises with Solutions

The exercises below use the data available for download on the book’s website.

Exercises:

Exercise 1 (data: res_prop_price_COVID-19, see Section 2.2 for the data display)
What is the mean of the variable residential property price per square-meter 
(price_sq_m) for the 15 city districts? The minimum? The maximum? The range? 
The median? The SD? The CV?

Exercise 2 (data: soccer, see appendix B of this chapter for data documentation)
2a  What is the mean of the variable number of matches played during the season 

(match_ses)? The minimum? The maximum? The range? The median? The 
SD? The CV?

2b What is the mode for number of goals scored during the season (goals)?
2c What is the mode for player origin (origin)?

Exercise 3 (data: student_exercise, see appendix C of this chapter for data 
documentation)

3a  What is the mean of the variable number of times exercising per week (times_
exer)? The minimum? The maximum? The range? The median? The SD? The 
CV?

3b What is the mode for financial situation (econ)?
3c How many students are younger than 22 years (age)?

Answers to exercises (in Stata only; see Section 2.9 for equivalent SPSS 
syntaxes):

Exercise 1 (data: res_prop_price_COVID-19, see Section 2.2 for the data display)
We could apply the sum and tab commands, but it is faster to use the flexible tabstat- 

command from Section 2.7 as in:
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The mean is 67.63 in thousands of NOK (or 67,626 230 NOK). The minimum is 
43.21, the maximum is 90.33, and the range is thus about 47. The median (p50) is 69.17 
or quite similar to the mean. The SD is 15.34 and the CV is 0.23.

Exercise 2 (data: soccer, see appendix B of this chapter for data documentation)
2a  What is the mean of the variable number of matches played during the season 

(match_ses)? The minimum? The maximum? The range? The median? The 
SD? The CV?

We could apply the sum and tab commands, but again it is faster to use the 
 tabstat-command from Section 2.7 as in:

The mean is 20 matches, the minimum is 2, the maximum is 30, and the range is thus 
28. The median (p50) is 23 or rather close to the mean. The SD is 8.33 and the CV is 0.41.

2b What is the mode for number of goals scored during the season (goals)?
Here, we simply use the tab command as in:

The mode is zero goals; 40 percent of the soccer players have not scored a goal during 
the season.

2c What is the mode for player origin (origin)?
Again, we use the tab command as in:
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The mode is a Norwegian player, with a percentage of 73.

Exercise 3 (data: student_exercise, see appendix C of this chapter for data 
documentation)

3a  What is the mean of the variable number of times exercising per week (times_
exer)? The minimum? The maximum? The range? The median? The SD? The 
CV?

We use the tabstat command from Section 2.7 as in:

The mean is about three times per week, the minimum is 0, the maximum is 8, and 
the range is thus 8. The median (p50) is 3 or very similar to the mean. The SD is 1.65 
and the CV is 0.54.

3b What is the mode for financial situation (econ)?
We use the tab command as in:

The mode is ok health, with a percentage of 46.
3c How many students are younger than 22 years (age)?

Again, we use the tab command as in:
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We find that 44.72 percent of the students are younger than 22 years if we look at the 
cumulative percentage column on the right (Cum.). Note that one student found it nec-
essary to be more specific and rather than answering with an integer, he or she answered 
20.5 years!

Notes

 1 I write the names of the data sets used in the book in the font Courier New. The same 
goes for commands and (most) variable names. For example, the COVID-19 infection rate 
 variable bears the name infect_rate.

 2 The text appearing in the Results-window in the middle of Stata-output 2.2 shows where the 
data is stored on my computer. This location will of course be different on your computer.

 3 I use the (arithmetic) mean and the average as synonymous and thus interchangeable 
throughout the book.

 4 Note that the command generating the output (tab, short for tabulate) appears on top 
of Stata-outputs, where you should disregard the dot in front of the command. In this case, 
a more direct approach to get the median is to use the command: sum infect_rate, 
detail

 5 Note that tables of summary statistics normally include more descriptive measures. We will 
get back to these in Section 2.6.
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 6 The taste quality variable is ordinal – or on the ordinal measurement level. This is the topic 
of Section 2.4. There are several ways of characterizing and presenting variables’ measure-
ment levels. My personal touch on the subject follows my aim of keeping matters as simple 
as possible without sacrificing (too much) precision. 

 7 These two particular variables are so-called dummy variables, which I will return to shortly. 
 8 All statistics programs require numbers to do calculations. We thus must provide the 

 categories of a dummy with a pair of numbers. The conventional coding in this regard is  
1 and 0. It is customary to code the presence of something or yes as 1 and the non-presence 
of something or no as 0.

 9 Figure 2.1 is a right-skewed distribution; the mean is located on the right side of the median. 
The long tail to the right in the figure – that is, the very large incomes pertaining to only 
a few players – characterizes such a distribution. A left-skewed distribution has the mean 
on the left of the median, with a tail to the left. For distributions with no skewness, that is, 
symmetrical distributions, the mean and the median are often very close. I will say some 
more on continuous variables’ distributions in Section 2.6. 

 10 The codings in the data are goalkeeper = 0, defender = 1, midfielder = 2, and attacker = 3; 
cf. the data documentation. These codings could be anything, however, as the only require-
ment is four different numbers.

 11 One question typically equals one variable when data stem from survey questionnaires. 
 12 Some will place the ordinal variables among the categorical variables. My reason for not 

doing so in this book is presentational ease.
 13 I often do the same for an ordinal variable having about six or more categories if its  frequency 

distribution is not very skewed. 
 14 The health variable could have been a scale ranging from zero (very poor heath) to a hundred 

(excellent health). This would make it continuous in practical terms.
 15 The definitive source on ordinal statistical analysis is Agresti (2010).
 16 Actually, it does not. There is one more measurement level: the interval level. Yet since in-

terval variables for all practical purposes are similar to continuous variables, I do not address 
them. I do not think you should do so either.

 17 The commands for generating the graphs in this section all appear in Section 2.9.
 18 Few real-life variables have perfect normal distributions. Peoples’ height and IQ are oft- 

mentioned examples in this regard.
 19 Positive values suggest a right skew, whereas negative values imply a left skew. Values below 

–1.0 or above 1.0 indicate severe skewness. Values around –0.75 and 0.75 suggest moderate 
skewness. 

 20 A kurtosis above 3.0 suggests a sharper peak and that the tails on both sides are thicker and 
longer than that of the normal distribution. 

 21 Note, however, that the median price is actually higher for non-Norwegian beers, whereas 
it is the other way round for the mean price; cf. Stata-output 2.10. 

 22 Line 1 tells Stata which version of the program one uses (Stata version 17 became available in 
the spring of 2021); lines 2 and 3 are just smart to enter in every do-file for reasons that we 
need not get into.

 23 See https://stats.idre.ucla.edu/other/mult-pkg/faq/general/faq-whats-with-the-different-
formulas-for-kurtosis/ for different formulas.



Appendix A

Christmas Beer Data

Data documentation for the data x-mas_beer; a data set of Christmas beers quality-tested 
by a Norwegian newspaper in 2019. Variable names are in bold typeface. N = 75.

price

Price per 33 cl. bottle of beer in Euros (1 Euro ≈ 10 Norwegian Crowns)

country

Country of production for beer: Norway = 0, outside of Norway = 1

alch_perc

Alcohol level (in percent) in the Christmas beer

quality

Taste quality of the beer on a scale from 0 (tasteless) to 10 (perfect taste)



Data documentation for the data soccer; a data set on the soccer players in the Norwe-
gian top-tier soccer league (Eliteserien) in 2014/2015. The only variable pertaining to 
2015 is total income; the remaining variables pertain to the 2014 season. Variable names 
are in bold typeface. N = 240.

inc_year

Total, yearly income in Euros for player in the 2015 season (1 Euro ≈ 10 Norwegian 
Crowns)

age

Age of player

pos

Player position: goalkeeper = 0, defender = 1, midfielder = 2, attacker = 3

match_tot

Number of matches played during career

match_ses

Number of matches played during the season

goals

Number of goals scored during the season

assist

Number of assists made during the season

national

Number of matches played for the national team during career

club_rank

Ranking of a player’s club at the end of the season: 1 = winner, 2 = second place, 3 = 
third place, …, 16 = last place. A lower number thus means playing for a better-perform-
ing or higher-ranked club.

Appendix B

Soccer Data
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origin

Player origin: Norwegian player = 0, foreign player = 1

nation_dum (recoding of national: 0 = 0, > 0 = 1)

Played for the national team at all: no = 0, yes = 1

age_ord

Recoding of age: 18–20 = 1, 21–23 = 2, 24–26 = 3, 27–29 = 4, 30–32 = 5, 33–41 = 6

log_inc

Natural logarithm of inc_year



Data documentation for the data student_exercise; a survey questionnaire data for a 
random sample of students attending a Norwegian university college in 2017. Variable 
names are in bold typeface. N = 644.

times_exer

In a typical week, how many times do you exercise?

hours_exer

In a typical week, how many hours do you exercise?

exer_most

What kind of exercise do you prefer (one answer!)? strength = 0, cardio = 1, both 
equally much = 2

fitness_cen

Are you currently a member of a fitness center? no = 0, yes = 1

sport_cub:

Are you currently a member of a sports club? no = 0, yes = 1

age

Your age (in years)? 

gender

Your gender? female = 0, male = 1

km_away

How far from downtown do you reside (in number of kilometers)?

status

Your current status? single = 0, boyfriend/girlfriend = 1, cohabiting/married = 2

health

How is your general physical health? ok = 0, good = 1, very good =2

Appendix C

Student Exercise Data
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econ

How is your financial situation? not good = 0, ok = 1, good = 2

youth_exe

In your youth before you started studying, to what extent were you involved in sports 
requiring lots of physical exercising (to a very small extent = 1, to a very great extent 
= 10)?

Recodings of existing variables:

times_ex_gr

Grouping of times_exer: 0–1 time a week = 0, 2–3 times a week = 1, 4 times or more 
a week = 2

hours_ex_gr

Grouping of hours_exer: 0–1 hour a week = 0, >1 to 3 hours a week = 1, >3 to 5 
hours a week = 2, >5 hours a week = 3

health_dum

Grouping of health: ok/good = 0, very good = 1

weight

A so-called weighting variable to create a 50:50 distribution on the gender variable; 
cf. Chapter 6
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3.1  Introduction: The Association between  
Two Variables, x and y

Variable associations are the bread and butter of quantitative research in the social 
and behavioral sciences. In this respect, we typically have some theoretical reason 
for expecting that one variable, x, affects another variable, y, in some way.1 We 
then use a statistics program to examine our beliefs. I repeat: Our beliefs about 
how x is associated with y make us scrutinize this relationship empirically. For this 
reason, Chapter 2 was mainly an appetizer to the main event of statistical analysis 
in research settings: the examination of statistical associations. Now, let the real 
games begin!2

There are several kinds of statistical associations, but three go a long way: dif-
ferences in proportions, differences in means, and correlations. Sections 3.2 to 3.4 
look at these three types of associations, corresponding with three different types of 
statistical analysis techniques. Furthermore, and as the section headings imply, the 
choice of which technique to use depends on the measurement level of the x-variable 
and y-variable in question. The three statistical analysis techniques covered in Sec-
tions 3.2 to 3.4 – cross-tabulation, one-way ANOVA, and regression analysis – also 
serve as the foundation for Section 3.5: the bivariate analysis in which the y-variable 
is ordinal.

Sections 3.6 and 3.7 spin around the limitations of bivariate analysis and lay down the 
foundation for Chapter 4. Section 3.8 summarizes the chapter and lists the key learning 
points, whereas Section 3.9 shows the do-file and syntax-file commands necessary to 
produce the results mentioned in the chapter. Section 3.10 provides some exercises with 
solutions.

Note! Throughout Chapter 3, my comments regarding the various associational re-
sults pertain only to what happens within the data. I do not refer to what might happen 
(or not) outside of the data. The latter inference-topic is for Chapter 5.

3.2 A Categorical x and a Categorical y: Cross-Tabulation

Table 2.9 showed that 22 percent of our students were members of sports clubs and 
that 78 percent were not. Suppose previous research among older adults has shown that 
men tend to be sports club members more often than women. Based on this, we expect 
such a pattern to be the case among our students as well. We thus ask if the proportion 

3 Associational Research 
Questions I
Bivariate Analysis

https://doi.org/10.4324/9781003252559-3
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of sports club members varies among female and male students in our data. Performing 
the statistical technique called cross-tabulation sheds light on this research question, and 
Table 3.1 presents the results.

The column on the right tells us what we already knew; the new information is 
in the two columns on the left of the total column. We note that 35 percent of the 
male students are sports club members, whereas the similar proportion for the female 
students is 14 percent. That is, we find that male students more often than female 
students are members of sport clubs – in accordance with our expectation. More 
precisely, the table shows an association between gender and sports club member-
ship because the gender-specific proportions vary. This association boils down to the 
21-percentage points difference between male and female membership propensity: 
35–14 = 21. Since the only other option in the table is not being a sports club mem-
ber, it follows that the gender difference for this negative option must be 21 percent-
age points as well.

Now for a thought experiment. What if the membership proportions were similar for 
female and male students, yielding a percentage difference of zero? This would suggest 
no association between the two variables. Statistical analysis in research is often about 
distinguishing between associations and non-associations in this way, and we will get 
back to this distinction several times in the book.

The Stata-output yielding the results in Table 3.1 appears in Stata-output 3.1. 
SPSS-output 3.1 of course looks very similar. The outputs from most other statis-
tics programs look very close to the Stata-outputs and SPSS-outputs in a visual sense 
throughout this chapter as well.

Table 3.1  Sports club membership by gender in the student exercise data. Cross-tabulation.  
N = 644.

Variable: member of sports club Female student Male student Total

No 86% 65% 78%
Yes 14% 35% 22%

Stata-output 3.1 Stata-results producing Table 3.1.
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Cross-tabulations as a way of presenting an association between a categorical x and a 
categorical y is a common undertaking in the social and behavioral sciences. In the most 
basic terms, a cross-tabulation counts how many units belong in each of the cross-table’s 
cells. There are four cells in Table 3.1; we disregard the column for the totals. We might 
want to display the results of a cross-tabulation in a graph, as in Figure 3.1. We call this 
figure a horizontal and stacked bar chart. SPSS uses the vertical version as default; cf. 
the syntax in Section 3.9.

We do not always have a reasoned expectation for a potential association between 
x and y as in the case above. Sometimes, out of sheer curiosity – that is, from an ex-
ploratory point of view in method speak – we want to find out if a categorical x and 
a categorical y are associated somehow. Table 2.10 showed 34 percent of the students 
preferred doing strength training, 23 percent preferred doing cardio training, and 43 

Female

Male

Member of sport club or not (%)
0 20 40 60 80 100

no

yes

Figure 3.1 Graphical presentation of the cross-tabulation results in Table 3.1.

SPSS-output 3.1 SPSS-results producing Table 3.1.
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percent preferred doing both types of exercising equally. Do these preferences vary by 
gender? Table 3.2 presents a cross-tabulation answering this question. I have also added 
actual frequencies (i.e., the number of students) in each cell of the cross-table since many 
prefer this.

The horizontal gender comparisons for the two middle columns again concern us. 
We note in the uppermost row that male students tend to prefer strength training more 
often than female students. This gender difference between the two proportions is 12 
percentage points. For cardio training, we find the opposite tendency: Female students 
tend to prefer this more often than male students, with a percentage points difference of 
seven. Finally, the category of doing equally has the most even gender distribution – 44 
percent (male) versus 39 percent (female).

Summing up, there is some gender variation in exercise preferences because the per-
centage differences between the gender-specific proportions are higher than zero; we 
note the contour of a statistical association between the two variables. Again, what if the 
gender differences between the proportions were zero or thereabouts? Then we would 
be reluctant to claim that such an association existed.

A final example. Does the exercise preference vary by student status of  being single, 
boy/girlfriend, or cohabiting/married? Table 3.3 sheds light on this research question by 
a cross-tabulation in the usual manner.

We have to make two horizontal comparisons for each preference in Table 3.3. 
Among the single students, we find that 33 percent prefer doing strength training. For 
the boyfriend or girlfriend group (BF/GF) the analogous number is 35 percent, whereas 
it is 38 percent for the married or cohabiting group (C/M). That is, the preference for 
doing strength training does not seem to vary much among the three groups. A similar 
pattern holds for the cardio preference and the both-forms preference. The tentative 
conclusion is that there is no statistical association between student status and exercise 
preference.

Table 3.2  Exercise preference by gender in the student exercise data. Cross-tabulation.  
N = 644.

Variable: exercise preference Female student Male student Total

Strength training 30% (126) 42% (96) 34% (222)
Cardio training 25% (105) 18% (42) 23% (147)
Both forms equally much 44% (185) 39% (90) 43% (275)

Note. The numbers in parentheses are frequencies.

Table 3.3  Exercise preference according to student status in the student exercise data.   
Cross-tabulation. N = 644.

Variable: exercise preference Single BF/GF C/M Total

Strength training 33% (110) 35% (71) 38% (41) 34% (222)
Cardio training 24% (78) 21% (44) 23% (25) 23% (147)
Both forms equally 43% (141) 44% (91) 39% (43) 43% (275)

Note. The numbers in parentheses are frequencies.
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We may in principle associate any two categorical variables in cross-tables like those 
shown above. But suppose your x (your variable x, that is!) and y have five categories 
each. This yields a cross-table with 25 cells: 5 × 5 = 25. Such a table is difficult to 
interpret and, more importantly, challenging to communicate to readers. For this rea-
son, we often choose to regroup (recode in statistics lingo) a categorical variable with 
many categories into a variable having fewer categories before doing the cross-tabu-
lation (more on this in Section 6.2). Now it is time for our second statistical analysis 
technique, covering the case of a categorical x and a continuous y. Section 3.3 is about 
one-way ANOVA.

3.3 A Categorical x and a Continuous y: ANOVA

We saw in Table 2.5 that the mean income among the soccer players was 87,367 Euros. 
Earlier research suggests that the earnings of athletes depended on many x-variables. For 
example, research has shown that players representing their national teams earn more 
than players not representing their national teams on average. (Playing for a national 
team signals better performances, which in turn tends to pay more.) We expect such 
a pattern among our Norwegian soccer players as well. We thus ask if the mean of in-
come varies for national team players and players not representing their national teams. 
Applying the statistical technique called one-way ANOVA sheds light on this research 
question, and Table 3.4 presents the results.3 Despite its complicated name, the ANOVA 
technique simply calculates and displays the mean of y for different subgroups in the data 
(to simplify a bit).

The bottom row shows what we already know for all the players; cf. Table 2.5. The 
main message of Table 3.4 is the huge mean difference in the two player groups’ yearly 
income. The national team players earn 71,210 Euros more on average than the players 
not representing their national teams (133,840–62,630 ≈ 71,210). This supports our 
expectations based on previous research.

Table 3.4 shows an association between player group and player income because 
the mean income is different for the two groups of players. The association boils 
down to the 71,210 Euros difference between the two groups. Now for a second 
thought experiment. What if the means were similar for the two groups of players, 
yielding a mean income difference of zero or thereabouts? Then we would claim 
there was no association between the two variables. The Stata-output responsible for 
the results of Table 3.4 appears in Stata-output 3.2.4 The analogous SPSS-output is 
in SPSS-output 3.2.

Table 3.4  Mean of yearly income in Euros in 2015, in total and for national team players and 
players not representing their national teams in the soccer player data. One-way 
ANOVA.

Variable: yearly income in Euro N = Mean SD

National team player: no 160 62,630 41,787
National team player: yes 80 133,840 86,025
Total 240 86,367 68,843
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The comparison of subgroup means is a common way of finding out about two varia-
bles’ potential association in the behavioral and social sciences. Again, we might want to 
present our results in a graph. Figure 3.2 illustrates this, and the vast difference in mean 
income between the two groups is apparent.

We often have an a priori expectation (i.e., before doing the analysis) about the asso-
ciation between x and y. Yet as before we sometimes do a statistical analysis just to find 
out if two variables are associated or not. Table 3.5 looks at the potential association 
between alcohol level and production location in the Christmas beer data. The table 
shows that the mean levels of alcohol are very similar for the two subgroups; 8.13 versus 
8.29. That is, we find no association of importance (it is tempting to say substance!) 
between the two variables.

SPSS-output 3.2 SPSS-results producing Table 3.4.

Stata-output 3.2 Stata-results producing Table 3.4.
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One-way ANOVA is not restricted to comparing the mean of y for two subgroups; 
we may compare as many subgroups as we like. Table 3.6 shows the mean income for 
the four player positions in our soccer data. Overall, there seems to be little income 
variation among the four positions. The two variables are not associated.

The time has come for our third statistical technique, relating two continuous varia-
bles. Section 3.4 is about regression analysis.

Figure 3.2 Graphical presentation of the ANOVA results in Table 3.4.

Table 3.5  Mean of alcohol level, in total and for two production locations in the Christmas 
beer data. One-way ANOVA.

Variable: alcohol level (percent) N = Mean SD

Production location: Norway 47 8.13 1.42
Production location: outside of Norway 28 8.29 1.80
Total 75 8.19 1.57

Table 3.6  Mean of yearly income in Euros in 2015, in total and for four player positions in the 
soccer player data. One-way ANOVA.

Variable: yearly income in Euros N = Mean SD

Goalkeeper 23 87,593 85,982
Defender 84 89,968 71,684
Midfielder 76 80,115 61,628
Attacker 57 88,900 67,383
Total 240 86,367 88,843
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3.4 A Continuous x and a Continuous y: Regression Analysis

Associations between two continuous variables carry a special name in statistics: corre-
lations. A correlation is a specific type of variable association.5 We typically use regres-
sion analysis to study correlations in the behavioral and social sciences.6 Actually, we 
already did so in Section 1.1.

Figure 1.1 showed a negative association between residential property prices and 
COVID-19 infection rates. We could have said a negative correlation with no information 
loss. I referred to the straight line in Figure 1.1 summing up the negative association between 
the two variables as the trend line. From now on, I will call this line the linear regression line. 
Regression analysis is all about estimating regression lines to summarize the association –  
or, more precisely, the correlation – between a continuous x and a continuous y.7

Research on alcoholic beverages, and predominantly on red wines, has examined 
how several factors explain variation in the prices of such products. The alcohol level 
is one of these factors, typically showing a positive correlation with price: the more 
alcohol content in a beverage, the costlier it tends to be on average. Against this back-
ground, we expect such a statistical association among our Christmas beers as well. A 
linear regression analysis sheds light on this research question, and Figure 3.3 provides 
the first graphical answer in this regard.

Figure 3.3 is perhaps a keen illustration of the adage that a picture tells more than 
1,000 words. The graph supports our theoretical expectation; there is a positive correlation 
or association between alcohol level and price. The upward-sloping linear regression 
line from left to right suggests that beers with higher alcohol levels seem to be pricier 
on average than beers with lower alcohol levels.

Now we enter our thought experiment for the final time. What if the beers in   
Figure 3.3 were located in a way that yielded a horizontal regression line, implying that 

Figure 3.3  Scatterplot of correlation between alcohol level in beers and price of beers, with 
regression line.
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the beers on average had the same price for every level of alcohol? Then we would say 
there was a zero correlation or a non-correlation between the two variables. That is, a 
non- horizontal regression line implies some form of correlation or association between 
x and y, whereas a horizontal regression suggests a zero-correlation or non-association.

Technically, a regression equation yields the regression line in Figure 3.3. In the 
Christmas beer case, this regression equation is

price of beer = 1.94 + 0.53 × alcohol level.

The number 1.94 is the spot where the regression line crosses the y-axis (i.e., the price-
axis) if we extend it towards the left. The number 0.53 refers to the steepness of the 
regression line. That is, if we move one place to the right on the x-axis – from an alco-
hol level of six to seven, say – the bottle price is 0.53 Euros more expensive on average. 
Furthermore, by moving 2 percent levels to the right on the x-axis, the analogous price 
difference is 1.06 Euros and so on.

Another name for the number 1.94 is the constant or b0. Furthermore, the number 
0.53 is the slope or b1. By replacing beer price with y and alcohol level with x, and sup-
pressing the multiplication sign, we get the general regression equation

y = b0 + b1x.

Figure 3.4 shows this general equation visually.8 We note that the regression line crosses 
the y-axis at x = zero; this is the constant/b0. We also note that the slope/b1 is the average 
change in y given a one-unit increase in x. And since the regression line is linear, it does not 
matter where we start on the x-axis when doing this one-unit-increase step. For the rest of 
this book, I will mostly use the term regression coefficient or b1 when referring to the slope. 

As it happens, statistics programs do not typically produce graphs (plots) as defaults 
when instructed to run a regression. That is, regression plots are mainly pedagogical 
devices to inform readers about what is going on behind the scenes. Stata-output 3.3 
presents the results yielding the regression plot in Figure 3.3; SPSS-output 3.3 presents 
the analogous results in SPSS format.

b1

(x)

(y)

b0

x x + 1

Figure 3.4  The regression line, the b0 (i.e., constant), and the b1 (i.e., regression coefficient/slope).
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In Stata, the regression coefficient or b1 appears under the heading Coef. for the var-
iable alch_perc. (0.530 = 0.530.) Similarly, we find the constant or b0 (1.939) under 
the same heading labelled as _cons. We will get back to other parts of the regression 
output later in the book.

SPSS-output 3.3 SPSS-results producing Figure 3.3.

Stata-output 3.3 Stata-results producing Figure 3.3.
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In SPSS, the regression coefficient appears under the heading B for the variable alch_
perc. (0.530 = 0.530.) Similarly, we find the constant (1.939) under the same heading 
labeled as (Constant).

We may say the regression coefficient measures the size of the correlation between 
two continuous variables. Yet a more typical measure in this regard is the Pearson cor-
relation coefficient – or r. The r for the correlation between alcohol level and beer price 
is 0.6142.9 Possible values for r lie in the –1 to +1 range, where positive values imply a 
positive correlation and negative values suggest a negative correlation. The value of zero 
suggests no (linear) correlation.

Let us look at another correlation in the soccer data. Intuition and prior research sug-
gest that players with more experience earn more than players with lesser experience. 
Figure 3.5 shows this correlation in a scatterplot that also includes the regression line, 
and Stata-output 3.4 presents the results generating this regression line. There is no need 
to present the analogous SPSS-output; it looks very similar to Stata’s as we just saw in 
the previous example.

The plot – but mostly the regression line10 – supports our common-sense notion; 
more experienced players tend to earn more than less experienced players: A player 
with, say, 80 matches in his career earns 248 Euros more on average than a player with 
79 matches in his career; cf. Stata-output 3.4. This amounts to 12,400 Euros a year for 
a 50-match difference (248 × 50 = 12,400).

Now, remember the regression coefficient’s literal interpretation: the average change 
in y given a one-unit increase in x. It might thus be tempting to claim that playing one 
more match increases the income with 248 Euros, but this interpretation is inaccurate. 

Figure 3.5  Scatterplot of correlation between number of matches played in career and yearly 
income, with regression line.
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The regression compares players with unequal match experience with respect to income 
at one point in time, that is, in a static manner. This regression has little to offer on any 
dynamic income-changes among the players.

Regression is mainly about finding the overall trend in a correlation between 
x and y. The regression line is the key in this respect, whereas the individual data 
points (i.e., the dots/matches in Figure 3.5) are of less importance. It follows that the 
regression equation and the regression coefficient/b1 get the lion’s share of attention. 
This emphasis on b1 has one important consequence: The measurement level of the 
x-variable becomes more or less irrelevant. That is, we may do regression analysis 
no matter the measurement level of the x-variable in question. The next paragraph 
shows how.

3.4.1 Linear Regression When x Is Categorical: ANOVA ≈ Regression

We return to the soccer player data and the association between yearly income and 
playing for a national team or not – as introduced in Table 3.4. The main findings from 
this ANOVA table were that national team players on average earned 133,840 Euros, 
whereas non-national team players on average earned 62,630 Euros. That is, the differ-
ence in mean earnings was about 71,210 Euros. Suppose we set this variable association 
up in the now-familiar regression framework, as in

yearly income = b0 + b1National team.

The new feature is the measurement level of the national team variable. This dummy 
is coded as one for national team players and zero for non-national team players. Yet 
the regression coefficient has the usual interpretation: the average change in y given a 
one-unit increase in x. Now, however, the only possible one-unit increase is from zero 
to one, which implies the comparison of non-national team players and national team 
players with respect to income. Stata-output 3.5 presents the results for this regression. 
(Again, there is no need to present the analogous SPSS-output.)

Stata-output 3.4 Results producing Figure 3.5.
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The literal interpretation is that when the national team dummy increases by one 
unit, that is, from zero to one, the income increases by 71,210 Euros. More correctly 
and more in step with reality, we note that national team players on  average earn 71,210 
Euros more than non-national team players – just as we did for the ANOVA in Table 
3.4. (Do not pay attention to the correct rounding for the regression coefficient to 
71,211.) What does the constant (_cons) mean here? Plugging the x-value for the 
non-national team players, that is, zero, into the regression equation, we get

yearly income = 62,630 + 71,210 × 0 → yearly income + 0 = 62,630.

The constant thus refers to the mean of yearly income for the non-national team play-
ers.11 To obtain the mean of yearly income for the national team players, we plug the 
x-value for these players, that is, one, into the regression equation. We then get

yearly income = 62,630 + 71,210 × 1 → yearly income = 62,630 + 71,210 = 133,840.

These calculations show that one-way ANOVA and bivariate regression with a dummy 
are the same. The two techniques differ only with respect to the presentation of re-
sults: ANOVA reports the mean of y for the two subgroups directly. Regression reports 
similar information indirectly: the mean of y for one subgroup (i.e., the constant), and 
how much the other subgroup differs from the constant regarding the mean of y. This 
difference is the regression coefficient.

The results in this subsection have one important implication from an applied re-
search perspective. Regression subsumes ANOVA and thus makes the latter redundant 
in many real-life applications. For this reason, I will mostly focus on regression rather 
than ANOVA from here on in the book.12

Coming up next is a regression in which the categorical x-variable has four catego-
ries. We saw a similar ANOVA style analysis in Table 3.6, that is, the mean of yearly 
income for the four soccer player positions. Stata-output 3.6 presents the results. (Again, 
there is no need to present the analogous SPSS-output.)

Stata-output 3.5  Results for regression of yearly income by national team dummy in the 
soccer player data.
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The key to interpret the output is noticing the player position not showing up: The 
goalkeepers. The goalies earn 87,593 on average, as suggested by the constant. We 
compare the remaining player positions to this reference. For example, the defenders 
make 2,376 Euros more than the goalies on average. Furthermore, the midfielders make 
7,478 Euros less than the goalies; cf. the negative sign of the coefficient. Still, the main 
message from Stata-output 3.6 echoes the ANOVA results of Table 3.6. There is little 
income variation among the four player positions.

3.4.2 Residential Property Prices and COVID-19 Spread Revisited

We close the regression introduction by reporting the coefficient and constant for the 
property price variable in the opening figure of the book, that is, Figure 1.1. Stata-out-
put 3.7 displays the results. Again, there is no need to present the 100 percent analogous 
SPSS-output.

Stata-output 3.6  Results for regression of yearly income by the categorical player position 
variable in the soccer player data.

Stata-output 3.7 Results producing Figure 1.1.
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We note the expected negative regression coefficient, suggesting a downward-sloping 
regression line going from left to right.13

3.5 An Ordinal y and Bivariate Analysis

The statistical techniques covered thus far – the cross-table, the ANOVA, and the 
 regression – are all alternatives at the outset for an ordinal y-variable. What often 
 determines which technique to use is the number of ordered categories for the y in 
question. The student data includes a question about physical health; cf. Table 2.12. 
The frequency distribution for this variable is ok health = 34 percent, good health = 49 
percent, and very good health = 17. We expect a positive association between exercising 
and health based on prior studies; we expect students exercising often to report better 
health than students exercising less often. The data also contain an exercise frequency 
variable (times_ex_gr). The frequency distribution for this variable is zero to one time 
per week = 15 percent, two to three times per week = 47 percent, and four times or 
more per week = 39 percent. (There is no need to show these results in a table.) That is, 
the y-variable (health) and the x-variable (exercise frequency) are both ordinals having 
three categories each. It is always safe to do a cross-tabulation in such cases. Table 3.7 
presents the results.

The column on the right repeats the overall answer distribution for the health 
variable, and we begin the comparisons for the bottom row. Among students ex-
ercising zero to one time per week, 7 percent report very good health. Similarly, 
among students exercising two to three times per week, 9 percent answer very good 
health. Finally, for students exercising four times per week or more, 31 percent re-
port very good health. We find the opposite pattern for the ok health group in the 
top row: Students exercising infrequently have the highest probabilities of reporting 
ok health, whereas students exercising often have the least probabilities of reporting 
ok health. (The tendency for the good health category in the middle row is akin to 
the very good category in the bottom row.) Summing up, the results support a “pos-
itive association” between exercise frequency and health: Compared with students 
exercising infrequently, students exercising often tend to report having very good 
physical health more often.

Cross-tabulation is always a possibility for associating two ordinal variables having 
few categories. Yet such an analysis neglects the ordered nature of the variables. If we 
want one summary measure for the association between two ordinal variables – akin 
to the regression coefficient or Pearson’s r for two continuous variables – we ask the 
statistics program for Kendall’s Tau ordinal correlation coefficient. This coefficient is 

Table 3.7  Physical health assessment by exercise frequency in the student exercise data.  
Cross-tabulation. N = 644.

Variable: physical health 0–1 p/w 2–3 p/w 4 or more p/w Total

Ok 59% (57) 40% (120) 16% (40) 34% (217)
Good 33% (32) 51% (152) 53% (131) 49% (315)
Very good 7% (7) 9% (28) 31% (77) 17% (112)

Note. The numbers in parentheses are frequencies.



72 Bivariate Analysis

0.34 in the present case. A limitation with this summary measure compared to the very 
transparent cross-table is that the group differences in health get somewhat lost.

Suppose we want to find out if there is an association between the age of the students 
and their physical health level. In this case, a cross-tabulation will not cut it because 
age is a continuous variable. Imagine three health level cells for 19-year old, three for 
20-year old, and three for 21-year old students, and so on that will result in a vast cross- 
table! A way to solve this is first to recode the age variable into an ordered age variable 
with categories such as 19 to 21 years, 22 to 24 years, 25 to 27 years, and so on (see 
Section 6.2 for more on recoding).14 That done, we may associate the new and ordered 
age variable to the exercise frequency variable in a cross-tabulation or by employing an 
ordinal correlation analysis.15

Table 3.8 examines the potential association between gender and physical health us-
ing a cross-tabulation. The results show that male students are slightly more likely than 
female students to report very good health, whereas it is the other way round for good 
health. In this case, however, doing ordinal correlation analysis is not a viable option 
because the x-variable is categorical and not ordinal.

3.5.1 An Ordinal y Having Many Categories

When an ordinal y-variable has many categories, say about six or more, it is common 
and most often uncontroversial to treat it as continuous when using it in a bivariate 
analysis.16 The next example illustrates. The ordinal taste variable in the Christmas beer 
data has 11 categories ranging from zero (terrible) to ten (perfect). Figure 3.6 examines 
if the alcohol level is associated with the quality scores of the beers using regression 
analysis.

The new feature of this regression is that the quality scores have a limited range of 
values. The more important upshot is that the usual linear regression usually works 
fine for ordinal y-variables having many categories. The regression coefficient in ques-
tion, which by now we need not present, is 1.01. This suggests that a beer with, say, a 
7- percent alcohol level on average gets a 1.01 points better quality score than a beer with 
an alcohol level of 6 percent.

A final example concerns the y-variable youth sports involvement in the student 
data. This y reads, “In your youth before you started studying, to what extent were 
you involved in sports requiring lots of physical exercise (to a very small extent = 1; 
to a very great extent = 10)?” The mean is 6.56 on this one-to-ten scale, as we saw 
in Table 2.11. Below we examine if this mean value varies by gender. The regression 
results appear in Stata-output 3.8. Again, there is no need to present the analogous 
SPSS-output.

Table 3.8  Physical health assessment by gender in the student exercise data. Cross-tabulation. 
N = 644.

Variable: physical health Female student Male student Total

Ok 34% (142) 33% (75) 34% (217)
Good 51% (213) 45% (102) 49% (315)
Very good 15% (61) 22% (51) 17% (112)

Note. The numbers in parentheses are frequencies.
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The literal interpretation is that the youth sports variable increases by 1.28 points 
when the gender dummy increases by one unit. More correctly, male students score 
1.28 points higher on the youth sports variable than female students on average. The 
female students score 6.11 for this variable on average, as indicated by the constant. I 
could have said more on ordinal bivariate analysis, but I will stop here. Literature for 
further reading on this topic appears at the end of the chapter.

Figure 3.6 Scatterplot of correlation between alcohol level in beers and quality of beers, 
with regression line.

Stata-output 3.8  Results for regression of youth sports involvement by gender in the student 
exercise data.
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3.6  The Limitations of Bivariate Analysis: The Need for 
Statistical Control for a Third Variable

The next sentence is perhaps discouraging. Bivariate analysis is often not the end goal 
in advanced behavioral and social science research, but only a necessary stepping-stone 
along the way. The end goal typically comes in two guises: (1) We want to find out how 
several independent variables – x1, x2, x3 and so on – affect y simultaneously, or (2) we 
want to find out how one particular x-variable – say x1 – causally affects y.17 Sometimes, 
if we are lucky, doing (1) might also fix (2). Taking on these issues by doing multiple 
regression analysis is the task of Chapter 4; what follows next lays down some of the 
foundations in this respect.

You have run a cross-tabulation, an ANOVA, or a regression and found a statistical 
association that makes sense from a theoretical point of view. You want to publish 
your results in a research report; you want to tell journalists, “I have found that a 
change in x by this much brings about a change in y by that much!” While this is 
tempting, you should probably not do it. The reason is that we cannot be sure the 
non-mentioned numbers in the fictitious quote are correct. More precisely, we can-
not in general be sure that the numbers in question are correct when our analysis is 
restricted to only two variables.18 Below I explain why a bivariate analysis most often 
is not enough in the end.

We stay in familiar territory. Suppose you have survey questionnaire data for all 
students at a local university. Let us suppose further that you have run a regression be-
tween hours of exercise per week and membership in the fitness center (a dummy; yes 
= 1, no = 0) and found a regression coefficient of two: Fitness center members exercise 
two more hours per week on average than non-members. This is as expected. The key 
question concerns the interpretation of this bivariate association, that is, whether it is 
reasonable or not to think of the two-hour regression coefficient as a causal effect. In 
this regard, the idea that buying a subscription to a fitness center will cause students to 
exercise more hours per week is plausible. Yet does buying such a subscription in itself 
make students exercise exactly two more hours per week on average? That is to say, is 
the effect causal? This appears much less plausible. The upcoming story tells you why. 
In it, you play the role of a sales representative for a fitness center.

You run into fellow students Liza and Marie, both presently not members of fitness 
centers, and ask them to buy a center subscription. You advertise that such a subscrip-
tion increases exercising by two hours per week “according to one recent study.” Both 
sign up! Fast-forward two months, and to when you meet Liza and Marie again and ask 
them about their present exercise habits. Liza, halfway happy, says she exercises for the 
same number of hours as she did before buying the subscription, but that most of the 
exercising now happens inside the center. Marie, in contrast, is delighted. Since signing, 
she has increased her exercise by four hours per week. The point now is not that the 
advertisement got it right on average (i.e., (0 + 4)/2 = 2). The point is that the effect of 
member subscription is different for both Liza and Marie because they differ regarding 
a potentially long list of x-variables causing variation in exercise hours. It is, for exam-
ple, not a stretch to think of Liza as very motivated when it comes to exercising and, 
conversely, to imagine Marie as someone struggling with the motivation to exercise. 
In short: Liza’s zero-hour effect and Marie’s four-hour effect might have everything to 
do with their difference in exercise motivation before signing up for the fitness center 
subscription.19
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To find the causal effect of how a fitness center subscription affects later exercise 
hours, we should ideally compare Liza with a woman having a similarly high level 
of exercise motivation who did not buy such a subscription. Analogously, we should 
ideally compare Marie with a woman similar to her when it comes to the low level of 
exercise motivation who did not buy a subscription. And so on for two Carries, two 
Jonis, and two Ericas, etc. Can we do this? The short answer is yes. A longer one is that 
we may – and often should! – include exercise motivation as a third x-variable in our 
analysis and carry out such a like-for-like comparison. The next paragraph sheds more 
light on this in a preliminary fashion.

Our imagined bivariate regression compares fitness center members and non- 
members as they are in a metaphorical sense; it does not consider the many differences 
between the two groups likely to cause a difference in exercise hours when calculating 
the overall mean group difference. In a manner of speaking, bivariate regression thus 
compares apples with oranges. Multiple regression, in contrast, explicitly accounts for 
these “many differences” – that is, a difference in motivation – when calculating the 
mean group difference in question. That is, multiple regression compares apples with 
rather similar apples. In our imagined case, the multiple regression analysis finds the 
effect of fitness center membership on exercise hours while holding exercise motivation 
constant at some fixed level. This holding-constant ability is the key competence of mul-
tiple regression, making it an indispensable tool in the quest to unravel causal effects in 
the social and behavioral sciences. Another name for this ability is statistical control: We 
find the effect of x1 (fitness center membership) on y (hours of exercise) while statistically 
controlling for x2 (exercise motivation), x3, x4, and so on.

In research, we often want to find the causal effect of x on y. Other terms for the 
causal effect are the correct effect, the unbiased effect, or the unique effect. You might 
have heard that correlation does not imply causation. In practice, this often means that 
a bivariate analysis does not say much about the causal effect of x on y for observational 
data. It is actually a bit more complicated, but that is the takeaway message.20 Like-for-
like comparisons are essential for quantitative research having causal ambitions, and the 
holding-constant principle briefly described above is one solution for it. I will explain 
the particulars in this regard in more depth in Chapter 4. The next short Section brings 
up another way out: the experimental control method.

3.7 Experimental Control for a Third (and Fourth) Variable

Imagine 100 women sharing the same disease entering a hospital reception. They 
have all signed up for a study on how a new medication will affect the illness they 
suffer from. The first woman in line, patient one, walks up to the desk and signs 
herself in. A nurse makes a metaphorical coin toss to provide patient one with a head 
or a tail. This metaphorical procedure repeats itself 99 more times for the remaining 
patients. The result of the process given a fair coin is an approximately 50:50 distribu-
tion of heads and tails. The formal term for this coin-toss procedure is randomization, 
and it ensures that the patient group receiving heads is similar to the patient group 
getting tails on average. More precisely, the coin toss ensures that any systematic 
differences between the two groups of patients before they enter the clinical trial (as 
they call it on Grey’s) are the results of pure, random chance. Formally, we call the 
study type in question a Randomized Controlled Trial (RCT). Let us suppose that 
the heads-group gets the real medicine, and the tails-group gets the placebo (i.e., fake 
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medicine). Note that neither the doctors nor the patients know who gets what; this 
type of trial is called “double blind.”

Fast-forward two months to the diagnostic test for the disease in question. This test is 
the y-variable with values from, say, zero to ten. The medicine versus placebo variable 
is a dummy in the regression framework, where real medicine is coded one and pla-
cebo zero. The regression coefficient is thus the average difference in the diagnostic test 
between the medicine group and the placebo group (i.e., the constant). Note that the 
medicine or placebo → diagnostic test setup is analogous to the fitness center member 
or non-member → hours of exercise setup from a statistical viewpoint. Yet there is one 
vital difference: For the association between fitness center membership and exercise 
hours, we have few reasons to believe that the regression coefficient reflects the causal 
relationship between the two variables. For the RCT, in contrast, we have every reason 
to think the regression coefficient for the medicine or placebo dummy is the causal ef-
fect of the medicine on the diagnostic test! The next paragraph explains why.21

The keyword in the explanation is randomization. Randomization is the vital element 
in RCTs and all forms of experimental research designs. The problem in Section 3.6 
was that members and non-members of a fitness center were different in many ways 
(e.g., exercise motivation) which might account for the mean difference in exercise 
hours. The “magical” feature of randomization is that it controls for all such alternative 
causes by the experimental design in itself. Moreover, randomization accounts for the 
alternative causes we may think of in advance of a study as well as those we forget to 
think of! In contrast, and as Chapter 4 will show in detail, statistical control only ac-
counts for the alternative causes we enter into our multiple regression analysis.

The causal inference in RCTs/experimental designs has a Sherlock Holmes flavor: 
“Once we have eliminated the impossible, whatever remains, however improbable, 
must be the truth!”22 Because randomization controls for all other possible causes, the 
cause that remains – that is, the medical treatment – must be the true cause no matter 
how unlikely it might sound.

Experimental designs/RCTs have become more popular in behavioral and social 
sciences of late. The reason is the straightforward causal inference if everything goes as 
planned in the experiment, which, of course, may or may not happen. That said, exper-
iments are not always feasible in research having to do directly with people for ethical, 
political, or economic reasons. The statistical control approach in Chapter 4 is therefore 
oftentimes the only option we have. Finally, there are cases in which statistical control 
also might improve RCTs and experiments, and I return to this topic in Section 4.6.

3.8  Chapter Summary, Key Learning Points,  
and Further Reading

This chapter has been about analyzing associations between two variables, x and  
y, where we expect or assume the former to have a statistical effect on the latter: x →  
y. Some key learning points follow below:

• We typically use three statistical analysis techniques to associate x and y: cross- 
tabulation, one-way ANOVA, and regression analysis.

• When to use the three techniques depends on what we assume is x (i.e., the inde-
pendent variable or “cause”), what we assume is y (i.e., the dependent variable or 
“effect”), and the measurement level of the x-variable and y-variable in question.
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• Regression analysis subsumes ANOVA in the bivariate case, making one-way 
ANOVA more or less redundant in practice. Yet ANOVA might be preferred as a 
personal choice or as a requirement in specific research fields.

• When a statistical association for observational data involves only two variables, x 
and y, we can never be sure to identify the causal or unique effect of x on y.

• We have two options when the aim is to identify x’s causal effect on y: the statisti-
cal control procedure (which is imperfect) and the experimental control procedure 
(which is better). More on both procedures in Chapter 4.

The books mentioned in the further reading paragraph in Section 2.8 also apply to this 
chapter, but I would like to offer two more: Pearl and Mackenzie (2018) and Rosen-
baum (2017).

3.9 Do-Files in Stata and Syntax-Files in SPSS

Make sure you have read Section 2.9 before taking on this section. I present the com-
mands as they should appear in do-files (Stata) or syntax-files (SPSS), but I present 
them in plain text “outside” of such files to save space. I also add some comments to the 
various commands on occasion. I assume throughout that the “correct” data set is in 
memory to avoid unnecessary repetition.

3.9.1 Stata-Commands in Do-Files

Table 3.1/Stata-output 3.1

tab sport_club gender, col

The command above puts the y-variable (sport_club) in rows and the x-variable (gen-
der) in columns, which I personally prefer. It also makes the percentages amount to a 
100 vertically (col). You could turn this table one its head (rows → columns; columns 
→ rows), for which you should use the command:

tab gender sport_club, row.

For new cross-tabulations, replace sport_club with a new variable name and gender 
with a new variable name.

Figure 3.1

catplot sport_club gender, percent(gender) asyvars stack

If you did not download the command catplot in Chapter 2, you must do it now; see 
Section 2.9.

Table 3.2

tab exer_most gender, col

Table 3.3

tab exer_most status, col
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Table 3.4/Stata-output 3.2

oneway inc_year nation_dum, t

For new ANOVAs, replace inc_year with a new variable name and nation_dum with 
a new variable name.

Figure 3.2

graph bar (mean) inc_year, over(nation_dum)

Table 3.5

oneway alch_perc country, t

Table 3.6

oneway inc_year pos, t

Figure 3.3

twoway (scatter price alch_perc) (lfit price alch_perc)

For new but similar figures, replace price with a new variable name and alch_perc 
with a new variable name.

Stata-output 3.3

reg price alch_perc

For new regressions, replace price with a new variable name and alch_perc with a 
new variable name.
To obtain the correlation coefficient, r, between the variables in Stata-output 3.3, use 
the command:

corr price alch_perc

Figure 3.5

twoway (scatter inc_year match_tot) (lfit inc_year match_tot)

Stata-output 3.4

reg inc_year match_tot

Stata-output 3.5

reg inc_year i.nation_dum

The prefix i. in front of a categorical x-variable tells Stata to display the relevant label(s) 
for the x-variable of interest, that is, the category “yes” for nation_dum in this case.
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Stata-output 3.6

reg inc_year i.pos

Stata-output 3.7

reg infect_rate price_sq_m

Table 3.7

tab health times_ex_gr, col

The command to get the ordinal correlation coefficient is:

ktau health times_ex_gr

Note that the value of 0.34 refers to Kendall’s so-called Tau-b.

Table 3.8

tab health times_gender, col

Figure 3.6

twoway (scatter quality alch_perc) (lfit quality alch_perc)

Stata output 3.8

reg youth_exe i.gender

3.9.2 SPSS-Commands in Syntax-Files

As mentioned in Section 2.9, I use the paste-from-interactive-mode option to get the 
statistical commands into SPSS syntaxes. Once there, the copy-paste-replace- variable-
names procedure saves much typing.

Table 3.1/SPSS-output 3.1

CROSSTABS
  /TABLES=sport_club BY gender
  /FORMAT=AVALUE TABLES
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL.

The command above puts the y-variable (sport_club) in rows and the x-variable 
(gender) in columns, which I personally prefer. It also makes the percentages amount 
to a 100 vertically (COLUMN). You could turn this table one its head (rows → columns; 
columns → rows), for which you should use the command:

CROSSTABS
  /TABLES=gender BY sport_club
  /FORMAT=AVALUE TABLES
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  /CELLS=COUNT ROW 
  /COUNT ROUND CELL.

For new cross-tabulations, replace sport_club with a new variable name and gender 
with a new variable name.

Figure 3.1 (vertically)

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=gender COUNT()
[name="COUNT"] sport_club 
    MISSING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: gender=col(source(s), name("gender"), unit.category())
  DATA: COUNT=col(source(s), name("COUNT"))
  DATA: sport_club=col(source(s), name("sport_club"), unit.
category())
  GUIDE: axis(dim(1), label("gender"))
  GUIDE: axis(dim(2), label("Percent"))
  GUIDE: legend(aesthetic(aesthetic.color.interior), 
label("sport_club"))
  GUIDE: text.title(label("Stacked Bar Percent of gender by 
sport_club"))
  SCALE: cat(dim(1), include("0", "1"))
  SCALE: linear(dim(2), include(0))
  SCALE: cat(aesthetic(aesthetic.color.interior), include("0", "1"))
  ELEMENT: interval.stack(position(summary.percent(gender*COUNT, 
base.coordinate(dim(1)))), 
    color.interior(sport_club), shape.interior(shape.square))
END GPL.

Table 3.2

CROSSTABS
  /TABLES=exer_most BY gender
  /FORMAT=AVALUE TABLES
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL.

Table 3.3

CROSSTABS
  /TABLES=exer_most BY status
  /FORMAT=AVALUE TABLES
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL.
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Table 3.4/SPSS-output 3.2

ONEWAY inc_year BY nation_dum
  /STATISTICS DESCRIPTIVES 
  /MISSING ANALYSIS.

For new ANOVAs, replace inc_year with a new variable name and nation_dum with 
a new variable name.

Figure 3.2

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=nation_dum MEAN(inc_
year)[name="MEAN_inc_year"] 
    MISSING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: nation_dum=col(source(s), name("nation_dum"), unit.
category())
  DATA: MEAN_inc_year=col(source(s), name("MEAN_inc_year"))
  GUIDE: axis(dim(1), label("nation_dum"))
  GUIDE: axis(dim(2), label("Mean inc_year"))
  GUIDE: text.title(label("Simple Bar Mean of inc_year by 
nation_dum"))
  SCALE: cat(dim(1), include("0", "1"))
  SCALE: linear(dim(2), include(0))
  ELEMENT: interval(position(nation_dum*MEAN_inc_year), shape. 
interior(shape.square))
END GPL.

Table 3.5

ONEWAY alch_perc BY country
  /STATISTICS DESCRIPTIVES 
  /MISSING ANALYSIS.

Table 3.6

ONEWAY inc_year BY pos
  /STATISTICS DESCRIPTIVES 
  /MISSING ANALYSIS.

Figure 3.3

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=alch_perc price MISS-
ING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=YES.
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BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: alch_perc=col(source(s), name("alch_perc"))
  DATA: price=col(source(s), name("price"))
  GUIDE: axis(dim(1), label("alch_perc"))
  GUIDE: axis(dim(2), label("price"))
  GUIDE: text.title(label("Simple Scatter with Fit Line of price by 
alch_perc"))
  ELEMENT: point(position(alch_perc*price))
END GPL.

For new but similar figures, replace price with a new variable name and alch_perc 
with a new variable name.

SPSS-output 3.3

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT price
  /METHOD=ENTER alch_perc.

For new regressions, replace price with a new variable name and alch_perc with a 
new variable name.

To obtain the correlation coefficient, r, between the variables in SPSS-output 3.3, use 
the command:

CORRELATIONS
  /VARIABLES=price alch_perc
  /PRINT=TWOTAIL NOSIG
  /MISSING=PAIRWISE.

Figure 3.5

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=match_tot inc_year 
MISSING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=YES.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: match_tot=col(source(s), name("match_tot"))
  DATA: inc_year=col(source(s), name("inc_year"))
  GUIDE: axis(dim(1), label("match_tot"))
  GUIDE: axis(dim(2), label("inc_year"))
  GUIDE: text.title(label("Simple Scatter with Fit Line of inc_year 
by match_tot"))
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  ELEMENT: point(position(match_tot*inc_year))
END GPL.

Stata-output 3.4

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT inc_year
  /METHOD=ENTER match_tot.

Stata-output 3.5

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT inc_year
  /METHOD=ENTER nation_dum.

SPSS has to the best of my knowledge no routine to show the labels of a categorical 
x-variable (or a dummy) in a regression similar to Stata’s i.-routine.

Stata-output 3.6

When a categorical x-variable has more than two categories, such as the player position 
variable (pos) with four, we must first create in SPSS the number of categories we need 
and use them as a set of dummy variables. Here, we need three dummies: defender, 
midfielder, and attacker, making the goalkeepers the constant. The commands are:

RECODE pos (1=1) (ELSE=0) INTO defense.
RECODE pos (2=1) (ELSE=0) INTO midfield.
RECODE pos (3=1) (ELSE=0) INTO attack.
REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT inc_year
  /METHOD=ENTER defense midfield attack.

Stata-output 3.7

REGRESSION
  /MISSING LISTWISE
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  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT infect_rate
  /METHOD=ENTER price_sq_m.

Table 3.7

CROSSTABS
  /TABLES=health BY times_ex_gr
  /FORMAT=AVALUE TABLES
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL.

The command to get the ordinal correlation coefficient is:

CROSSTABS
  /TABLES=health BY times_ex_gr
  /FORMAT=AVALUE TABLES
  /STATISTICS=BTAU 
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL.

Note that the value of 0.34 refers to Kendall’s so-called Tau-b.

Table 3.8

CROSSTABS
  /TABLES=health BY gender
  /FORMAT=AVALUE TABLES
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL.

Figure 3.6

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=alch_perc quality 
MISSING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=YES.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: alch_perc=col(source(s), name("alch_perc"))
  DATA: quality=col(source(s), name("quality"))
  GUIDE: axis(dim(1), label("alch_perc"))
  GUIDE: axis(dim(2), label("quality"))
  GUIDE: text.title(label("Simple Scatter with Fit Line of quality 
by alch_perc"))
  ELEMENT: point(position(alch_perc*quality))
END GPL.
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Stata-output 3.8

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT youth_exe
  /METHOD=ENTER gender.

3.10 Chapter Exercises with Solutions

The exercises below use the data available for download on the book’s website.

Exercises:

Exercise 1 (data: soccer, see appendix B of Chapter 2 for data documentation)
1a Describe the association between nation_dum and origin, if any.
1b Describe the association between nation_dum and match_tot, if any.
1c Describe the association between match_tot and age, if any.
1d Describe the association between pos and match_tot, if any.
1e Describe the association between club_rank and inc_year, if any.

Exercise 2 (data: student_exercise, see appendix C of Chapter 2 for data documentation)
2a Describe the association between fitness_cen and gender, if any.
2b Describe the association between times_exer and fitness_cen, if any.
2c Describe the association between econ and health_dum, if any.
2d Describe the association between hours_exer and times_exer, if any.
2e Describe the association between status and econ, if any.

Answers to Exercises (in Stata Only; see Section 3.9 for Equivalent SPSS 
Syntaxes):

Exercise 1 (data: soccer, see appendix B of Chapter 2 for data documentation)

1a Describe the association between nation_dum and origin, if any.

It makes most sense to treat origin as x and nation_dum as y. Furthermore, both var-
iables are categorical/dummies. We thus make a cross-tabulation as in:
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Among the Norwegian players, 27 percent have played one or more matches for the 
national team. The analogous percentage is 49 among the foreign players. There is a 
clear association between the two variables: Foreign players are national team players 
more often than Norwegian players.

1b Describe the association between nation_dum and match_tot, if any.

It makes most sense to treat nation_dum as x and match_tot as y. Furthermore, x is 
categorical (a dummy) and y is continuous. We may thus do a one-way ANOVA or a 
regression; I start with the former:

The mean of total number of matches played in career is 85.40 for all the play-
ers; see the row for Total. The mean for the national team players is 130 matches, 
whereas the analogous mean is 63 for the players not having played for their na-
tional teams. Since 66 matches by all accounts is a marked difference (129.64 – 63.29 
≈ 66), we have a clear association between the two variables. The regression di-
rectly shows this 66-match difference along with the mean number of matches for  
players not having made appearances in their national teams (63.29), that is, the 
constant:
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1c Describe the association between match_tot and age, if any.

It only makes sense to treat age as x and match_tot as y. Furthermore, both variables 
are continuous. We thus do a regression as in:

The general interpretation of the regression coefficient is the average change in y 
given a one-unit increase in x. From this it follows that, say, a 25-year old player has 
played 12 more matches than a 24-year old player on average. There is a clear association 
between the two variables, as might be expected.

1d Describe the association between pos and match_tot, if any.

It makes most sense to treat pos as x and match_tot as y. Furthermore, x is strictly 
categorical and y is continuous. We may thus do a one-way ANOVA or a regression; I 
start with the former:

There is, save for the goalkeepers, very little variation in the number of matches 
played in the entire career: 90 (defense players), 87 (midfielders), and 86 (attackers).  
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The similar regression analysis contrasts the goalkeepers with the defense players, the 
midfielders, and the attackers. The analysis, of course, suggests there is no clear associa-
tion between the two variables, save for a possible exception for the goalies standing out 
with less match experience.

1e Describe the association between club_rank and inc_year, if any.

It only makes sense to treat club_rank as x and inc_year as y. Furthermore, inc_
year is continuous and club_rank may be treated as continuous, although it is ordinal 
in a strict sense. We thus do a regression as in:

A player representing the club finishing at, say, seventh place at the end of the season 
earns 6,200 Euros less on average than a player on the club finishing at sixth place. 
Better performing clubs thus pay better than clubs not performing so well, as might be 
expected. There is a marked association between the two variables.
Exercise 2 (data: student_exercise, see appendix C of Chapter 2 for data 

documentation)

2a Describe the association between fitness_cen and gender, if any.
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It only makes sense to treat gender as x and fitness_cen as y. Furthermore, both 
variables are categorical/dummies. We thus do a cross-table as in:

Almost 50 percent of the female students are members of fitness centers. The anal-
ogous percentage is almost 53 among the male students. There is thus no association 
between the two variables: Male and female students are fitness center members to the 
same extent for all practical purposes.

2b Describe the association between times_exer and fitness_cen, if any.

It arguably makes most sense to treat fitness_cen as x and times_exer as y, given 
the reasoning thus far in this book. Furthermore, x is a dummy and y is continuous. We 
may thus do a one-way ANOVA or a regression; I start with the former:

The mean of exercise times per week is 3.04 among all students; see the row for To-
tal. The mean for the fitness center members is 3.67 times, whereas the analogous mean 
is 2.39 for the non-members. Since 1.28 times per week is a large difference (3.67–2.39 
= 1.28), we have a marked association between the two variables. The similar regression 
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analysis directly shows this 1.28-times difference along with the mean of 2.39 for the 
non-members (i.e., the constant):

2c Describe the association between econ and health_dum, if any.

In the medical, social, and behavioral sciences you have no trouble finding evidence 
to suggest that financial trouble over a long period of time makes people less healthy. 
Conversely, if one becomes very sick, one has to stop working – leading most often to a 
worsened financial situation. That is, causation works both ways. I adopt the “material-
istic” explanation and treat econ as x and health_dum as y. Furthermore, both variables 
are categorical/dummies. We thus do a cross-table as in:

Only 10 percent among those experiencing a not-so-good financial situation report 
very good health. Among those experiencing a good financial situation, the percent-
age reporting good health is almost 24 – or more than twice as large. (The row for 
ok/good health of course shows the opposite pattern.) There is a clear association 
between the two variables: Compared with students experiencing a poorer financial 
situation, students experiencing a better such situation report having very good health 
more often.

2d Describe the association between hours_exer and times_exer, if any.
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It only makes sense to treat times_exer as x and hours_exer as y. Furthermore, both 
variables are continuous. We thus do a regression as in:

A student exercising for, say, three times per week exercises on average 1.65 more 
hours per week than a student exercising two times per week. There is a marked, posi-
tive association between the two variables, as is expected.

2e Describe the association between status and econ, if any.

It makes most sense to treat status as x and econ as y. Furthermore, both variables are 
categorical. We thus make a cross-tabulation as in:

As before, the frequency distribution for the financial situation variable among all 
students appears in the column on the right (Total). The main message is that the 
percentages referring to financial situation do not differ much among the three student 
statuses. There is no association between the two variables. 

Notes

 1 I emphasize again that we are assuming a causal direction; we are not claiming that x is in 
fact a cause of y. More on this in Sections 3.6, 3.7, and Chapter 4. 
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 2 That said, I encourage you to spend more time on descriptive statistics to really get to know 
your data.

 3 One-way refers to one x-variable, and ANOVA is short for ANalysis Of VAriance.
 4 The other information in Stata-output 2.3 and SPSS-output 3.2 need not concern us at this 

point.
 5 All correlations are associations, but not all associations are correlations. Hence, association 

is the more general term of the two.
 6 Some might beg to differ claiming that we should do correlation analysis when studying corre-

lations. Yet I see no reason to introduce correlation as a statistical technique per se, because 
regression does everything correlation does and much more.

 7 I have more to say on regression analysis in Chapter 4, which draws heavily on my primer 
on regression analysis (Thrane, 2020). Consider this section a warm-up.

 8 This equation should also include an error term, e, but we skip it for now. More on this in 
Chapters 4 and 6.

 9 Regression assumes a causal direction from x to y, whereas correlation makes no such assump-
tion. That is, the correlation could be x → y or x ← y (reverse causation) or x ← → y (simul-
taneous causation). The commands in Stata and SPSS to produce r appear in Section 3.9. 

 10 A large amount of variation in many social science data sets often makes it hard to see the 
overall trend in an association between two variables; hence the need for a regression line to 
summarize this association.

 11 In a bivariate regression, the constant is always the mean of y for x = zero if zero is a legiti-
mate value in the data.

 12 In addition to being a matter of personal taste, the choice between ANOVA and regression 
has much to do with different historical developments within different subjects. In psychol-
ogy, pedagogy, and marketing, for example, ANOVA has a strong position. In economics, 
sociology, and political science, in contrast, regression is very dominant. Since I am a soci-
ologist by training, I prefer regression. Sirkin (2005) has more on ANOVA. 

 13 Some might wonder how Stata or SPSS calculates b0 and b1. The calculus-procedure in 
question bears the name «Ordinary least squares» (OLS), but I see no reason to go into 
the statistical mechanics of this principle in the present context. Thrane (2020) guides you 
through the work if you choose to pursue it. 

 14 If the research question specifically concerns the differences between students above or 
 below some theoretically interesting threshold age, say 22 years, we could similarly make a 
dummy.

 15 Note that the ordered exercise frequency variable in Table 3.7 is a recoded version of the 
continuous exercise frequency variable in the data, that is, times_exer.

 16 The value of six is a suggestion and it is not set in stone. Some would say seven or eight; 
others might say four or five. The demarcation value also depends on the variation in the y 
in question. For y-variables with little variation and/or much skewness, I personally move 
the threshold value upwards rather than downwards. 

 17 The second goal expressed less ambitiously: We want to find the unique effect of x1 on y.
 18 Provided that we are analyzing observational data. All the data in this book so far are obser-

vational. Matters may become easier when analyzing experimental data. I return to this in 
Section 3.7.

 19 Similar reasoning leads to different effects for Carrie, Joni, Erica, and so on.
 20 Another problem is that we cannot rule out that causation does not work the other way 

round, as in exercise hours (i.e., actual or planned) affecting the decision to buy a fitness 
center subscription. In principle, we could solve this by associating the membership dummy 
with exercise hours measured at some later point in time. The future cannot affect the past. 
This happens only in science-fiction movies. 

 21 The RCT is the gold standard among the quantitative research designs available for identi-
fying causal effects in the social and behavioral sciences.

 22 Variations of this quote appear throughout the Holmes stories, but it is most often attributed 
to The Sign of the Four (1890).
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4.1 Introduction and Chapter Overview

This chapter introduces multiple regression analysis. Section 4.2 begins where Section 
3.6 left off; we examine the association between x1 and y while simultaneously con-
trolling for a second and a third x-variable, x2, and x3. Section 4.3 then formalizes the 
classic multiple linear regression equation and discusses the linear regression model per se.

We have thus far been concerned with linear regression. That is, we have assumed that 
a straight regression line could summarize the association between x1 and y. Sometimes, 
however, such a straight line is too simplistic a representation of how x1 relates to y.  
More precisely, variable associations might be non-linear. Section 4.4 addresses how to 
handle non-linear variable associations within the multiple regression framework and 
explains when it is wise to do so.

Section 4.5 brings up another variant of such a too-simplistic-a-representation sce-
nario: the case of parallel versus non-parallel regression lines for subgroups in the data. 
This section also brings up the question of when to prefer regression models with par-
allel regression lines and when to opt for non-parallel models.

We study experimental data using linear regression analysis in Section 4.6. More 
exactly, by replicating a classic psychology experiment, I show how statistical control 
typically is redundant when analyzing experimental data/RCT data.

Section 4.7 considers a dummy y-variable. In essence, this section swaps everything 
we have done in the book for a continuous y with that of a dummy y. The takeaway 
message is that we might consider adjusting the linear multiple regression model when 
y is a dummy, but that this oftentimes is not necessary. Section 4.8 summarizes the 
chapter and lists the key learning points, whereas Section 4.9 is the usual do-file and 
syntax-file coverage of commands. Section 4.10 provides some exercises with solutions.

Note! Throughout Chapter 4, my comments regarding the various associational re-
sults pertain only to what happens within the data. I do not refer to what might happen 
(or not) outside of the data. The latter inference topic is for Chapter 5.

4.2 Statistical Control for Observational Data: Two Examples

We have exclusively analyzed observational data in this book, save for a short bit on the 
workings of experimental data in Section 3.7. The vital feature of observational data is 
that the researcher is a passive observer of the data-generating process. For experimental 
data or RCT data, in contrast, the researcher actively manipulates this process. Survey 
data typically fall into the observational data category; the researcher handing out the 

4 Associational Research 
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Table 4.1  Descriptive statistics for hours of weekly exercise in the student exercise motive data. 

Variable: N = Mean SD Min. Max.

Hours of weekly exercise 510 3.92 3.70 0 23

questionnaires has no bearing on the answers given.1 We always face a vast challenge 
when analyzing observational data with the aim of finding the causal effect of x on y: to 
control for the effects of all other x-variables on y.

Section 3.6 introduced the need to control for other x-variables when trying to find 
the causal effect of fitness center subscription on hours of weekly exercise. Below we 
follow up on this by introducing a student data set similar to the one we have seen so 
far: student_exercise_motive. The data documentation appears in appendix A of 
this chapter. Three variables concern us at first: hours of weekly exercise (y), fitness 
center membership (x1), and exercise motivation (x2). These variables carry the names 
hours_exer, fitness_center, and exer_easy_motive. The descriptive statistics 
for the variables appear in Tables 4.1 and 4.2.

We have data on 510 students exercising for 3.92 hours per week on average; cf. Table 
4.1. The standard deviation is 3.70, and the range is 23 hours (23 – 0 = 23). Panel A in Table 
4.2 shows that 65 percent of the students presently are fitness center members, making 
the non-member category 35 percent. The exercise motivation variable is ordinal, that 
is, a statement shedding light on the students’ varying exercise motivation. The state-
ment reads, ‘I easily find the motivation to exercise!’ (totally disagree = 1, disagree = 2,  
neither disagree nor agree = 3, agree = 4, and totally agree = 5). Panel B in Table 4.2 
shows that most students are on the agreeing side of the statement. Yet as much as 30 
percent of the students are still on the disagreeing side (12 + 18 = 30).2

We first associate the center membership dummy to the exercise variable in a bivar-
iate regression. Stata-output 4.1 shows the results. The analogous SPSS-output tells the 
same story and is thus redundant. This is also the case for most of the Stata-outputs in 

Table 4.2  Descriptive statistics for fitness center membership (Panel A) and exercise motivation 
(Panel B) in the student exercise motive data. N = 510.

Variables: Frequency Percent

Panel A
Fitness center member:
No 180 35
Yes 330 65

Panel B:
Exercise motivation:a

Totally disagree (1) 62 12
Disagree (2) 91 18
Neither/nor (3) 140 27
Agree (4) 136 27
Totally agree (5) 81 16

a Exercise motivation statement: ‘I easily find the motivation to exercise!’
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this chapter. In those few instances where SPSS differs from Stata, however, I will also 
present the analogous SPSS-outputs.

Fitness center members exercise on average 2.32 more hours per week than non- members, 
which coincidentally is close to our imagined result in Section 3.6. The non-members  
exercise 2.42 hours on average, as suggested by the constant. Yet, since we expect that the 
membership group includes many students with excess exercise motivation and, conversely, 
that the non-member group includes many students lacking exercise motivation, we suspect 
that the membership coefficient by no means is causal. We thus want to compare members 
and non-members of fitness centers having similar levels of exercise motivation with respect 
to exercise hours per week. This like-for-like comparison, to simplify it somewhat, is what 
multiple regression does. Stata-output 4.2 presents the multiple regression in question.

The multiple regression coefficient for the fitness center dummy is 1.33 hours. Com-
paring students with similar levels of exercise motivation, we find that members of a 
fitness centers on average exercise 1.33 more hours per week than non-members. We 

Stata-output 4.1  Results for regression of hours of exercise by fitness center membership in 
the student exercise motive data.

Stata-output 4.2  Results for multiple regression of hours of exercise by fitness center mem-
bership and exercise motivation in the student exercise motive data.
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are now certain that some part of the bivariate effect of a fitness center membership (i.e., 
2.32) was not causal. We may even claim that about 43 percent of this bivariate effect 
was brought about by exercise motivation ((2.32 – 1.33)/2.32 = 0.427). Yet, since we 
still find a difference of more than one hour of exercising per week between members 
and non-members who are similar regarding exercise motivation, exercise motivation 
does not seem to account for the complete bivariate group difference.

The multiple regression in Stata-output 4.2 finds the effect of the fitness center 
dummy on exercise hours while simultaneously taking the exercise motivation variable 
into account. Complicated math takes care of this. Metaphorically, we may think of the 
statistics program first doing a regression between the membership dummy and exercise 
hours for the students totally disagreeing with the motive statement. Next, the statistics 
program does a second and similar regression for the students disagreeing with the motive 
statement, and so on three more times for the remaining three levels of motivation: 
neither/nor, agree, and totally agree. Finally, the program finds the average of these five 
dummy coefficients, which becomes 1.33 in our case. This keeping-another-x-varia-
ble-fixed ability is the pillar of multiple regression. It is also the foundation of the hold-
ing constant clause; the expression that members of fitness centers on average exercise 
1.33 more hours per week than non-members holding exercise motivation constant. As an 
alternative expression, we might say that members of fitness centers on average exercise 
1.33 more hours per week than non-members controlling for exercise motivation.

The multiple regression coefficients for exercise motivation is 1.29. This suggests that 
students answering, say, agree (4) on the statement exercise 1.29 more hours per week on 
average than students answering neither/nor (3) holding the fitness center membership 
dummy constant;3 that is, in multiple regression each x-variable is simultaneously con-
trolled for every other x-variable included in the analysis.4

Having explained the principle of holding constant or controlling for with regard 
to the three-variable case, it is straightforward to imagine the same principle in the 
four, five, and six-variable case, and so on. Let us put this into practice. Our data also 
contain information paralleling the motive variable for the statement, ‘Exercising three 
times per week is important for my quality of life!’ What happens if we add this impor-
tance-variable, x3, to the multiple regression? Stata-output 4.3 shows the results.

Stata-output 4.3  Results for multiple regression of hours of exercise by fitness center  
 membership, exercise motivation, and exercise importance in the student 
exercise motive data.
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Stata-output 4.3 suggests that fitness center members on average exercise 0.83 more 
hours per week than non-members when holding constant, or controlling for, exer-
cise motivation and exercise importance. When comparing fitness center members and 
non-members equally in terms of exercise motivation and exercise importance, we find 
that the former group exercises just short of one hour more per week than the latter 
group. Note also the reduction in the effect of exercise motivation from 1.29 to 0.86 
once controlled for the importance variable. The importance variable has about the 
same effect on hours of exercise as the motivation variable: 0.75 versus 0.86. Motivation 
and importance in combination account for 64 percent of the bivariate association be-
tween the fitness center dummy and hours of exercise ((2.32–0.83)/2.32 = 0.642). Yet 
exercise motivation and exercise importance are not able to rule out completely that 
a fitness center membership by itself has a larger-than-zero causal effect on exercise 
hours. That is, we find an almost one-hour difference in exercise hours per week when 
comparing members and non-members who are equal in terms of exercise motivation 
and exercise importance.

I could go on and on entering more x-variables like this in the regression. Yet 
I quit now since nothing essentially new would happen, save for the fact that the 
regression coefficient for the fitness center dummy might decrease or increase in 
size when a fourth x-variable enters the regression, and so on for a fifth and a sixth 
x-variable.5 The upshot is that owing to the statistical control ability, multiple re-
gression finds the unique effect of each x-variable in terms of explaining variation 
in the y-variable. The multiple regression coefficients expresses this adjusted effect. 
That said, multiple regression only controls for the x-variables included in the re-
gression. We are, therefore, certain about the size of the regression coefficient for x1, 
x2, and so on only to the extent that the regression includes all x-variables responsi-
ble for bringing about variation in y. This makes the statistical control approach less 
effective and less certain than the experimental control method in terms of finding 
causal effects.

Some learn lots from numbers in tables; others learn better with graphs. In the 
paragraphs to come, we take on the same problem as above from a visual per-
spective. We have analyzed the Christmas beer data on several occasions by now;  
Figure 4.1 presents the correlation between taste quality (x1) and bottle price (y) 
along with the regression line. Stata-output 4.4 presents the results yielding the plot 
in Figure 4.1.

Stata-output 4.4 Results producing Figure 4.1.
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It seems as though we get what we pay for in terms of taste quality when paying more 
for a beer. That is, we find a positive correlation between the variables. The taste coeffi-
cient suggests that a beer scoring a six on taste costs almost 0.15 Euros more than a beer 
obtaining a score of five on average. Yet this quality coefficient suffers from the same 
problem as the fitness center dummy variable we just saw; the size of 0.15 might say 
little or nothing about taste quality’s causal effect on price. To shed more light on this, 
we include the alcohol level variable (x2) in the analysis and run a multiple regression. 
Stata-output 4.5 displays the results.

Figure 4.1  Scatterplot of correlation between quality score of beers and bottle price of beers, 
with regression line.

Stata-output 4.5  Results for regression of beer price by quality and alcohol level in the 
Christmas beer data.
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The quality coefficient is close to zero, and even negative, in the multiple regression. 
Figure 4.2 shows the difference in the quality effect for the bivariate and multiple re-
gression. What is happening here? The answer is that the bivariate regression between 
quality and price does not take other x-variables, such as alcohol level, into account. In 
contrast, the multiple regression examines the quality-price association for beers having 
the same alcohol level.6 This multiple regression suggests no linear association between 
quality and price. That is, we do not get what we pay for in terms of better taste when 
paying more for a beer! Why this new and contradictory conclusion? The following 
scenario explains the major change in the taste quality effect: We saw in Figure 3.6 a 
positive correlation between alcohol level and taste quality: Higher alcohol levels im-
plied better taste scores. Stata-output 4.5 and Figure 3.3 showed a positive correlation 
between alcohol level and bottle price: Higher alcohol levels suggested pricier beers. 
Combined, these two positive correlations suggest the causal setup in Figure 4.3: The 
alcohol level variable is the common cause, or confounder, of the spurious (false) relation-
ship between taste quality and price shown in Figure 4.1. The relationship between taste 
quality and price is 100 percent spurious or false in this example. In the fitness center 
membership dummy and exercise hours example, in contrast, the relationship was only 
partially spurious/false. 

Having explained the metaphorical mechanics of multiple regression, we are now 
ready to address some new but related topics.

Figure 4.2  How taste quality is associated with bottle price in bivariate regression (dashed 
line) and not associated with bottle price in multiple regression (solid line).
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4.3 The Multiple Regression Model and R2

I have kept an informal approach to regression and all things statistical so far. I intend to 
keep up this easy-going approach, but some formalities are still necessary. First up, we 
write the multiple regression equation properly as

y b b x b x b x en n= + + +… + ,0 1 1 2 2

where subscript n implies that we may have as many regression coefficients and x- 
variables we want, and where the error term, e, captures all other unmeasured influ-
ences on y. We refer to this regression equation as the multiple regression model. This 
model appears in Figure 4.4 in visual form. A more complex model most often just 
means more x-variables as in one box for x3, one box for x4, and so on.

One motivation for multiple regression is to rule out a false association between x1 
and y in the quest to find x1’s causal effect on y, as we just saw in Section 4.2. A second 
motivation concerns plausibility. Is it reasonable to expect in real life that only one 
x-variable affects the variation in your y? If yes, you have no worries. In contrast, if 
you insist on using only one x-variable when many x-variables actually affect y, your 
bivariate regression model is a poor representation of reality. You want to avoid this 
for obvious reasons. On a practical note: If theory, prior research, and common sense 
suggest that four x-variables affect y, your multiple regression model should ideally con-
tain these four x-variables. Our multiple regression models so far have had only two or 
three x-variables. It is thus prudent to step up our ambitions a notch by performing an 
exemplary study with more x-variables using new data.

Our study concerns students’ tourism activities during summer and in particular their 
vacation trip of longest duration away from home. Our research question refers to the asso-
ciation between length of stay in days (x1) and total personal trip expenditures in Euros (y). 
Yet we also include some other x-variables in the analysis because we are aware of the need 
for statistical control: booking time, trip destination, and type of trip. Booking time is the 
number of weeks passing from booking to trip start. The destination is a trip to a Nordic 
country or to beyond a Nordic country. Type of trip is a non-package trip or a package trip. 
The questionnaire data pertain to 444 students and (stud_tourism). The data documenta-
tion is at the end of the chapter (Appendix B).  Table 4.3 is a typical way of presenting sum-
mary descriptive statistics for the five variables in question in a thesis or a research paper.

The information for the two key variables appears on the top two rows of the table. 
We note that the average trip incurs almost 600 Euros in total expenditures and lasts for 

Alcohol level

PriceQuality

Figure 4.3  Alcohol level is associated with taste quality and bottle price (i.e., two direct 
arrows), but there is no association (i.e., no direct arrow) between taste quality 
and bottle price. The alcohol level variable is the confounder or common cause 
behind the spurious (false) taste quality-bottle price relationship.
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about ten days. The mean of booking time is eight weeks. The rows for the dummies 
deserve special attention since I previously claimed that the mean does not make sense 
for categorical variables. This was only partially correct because the mean of a dummy is 
the proportion of units with the value of one. That is, 62 percent of the students went on 
trips to destinations beyond the Nordic countries. Similarly, 35 percent of the students 
took part in package trips.

Formally, the multiple linear regression model is

y b b x b x b x b x= + + + + ,0 1 1 2 2 3 3  4 4

where y is total trip expenditures in Euros (tot_spend), x1 is length of stay in days 
(los), x2 is booking time in weeks (book_time), x3 is trip destination (destin), and x4 
is type of trip (type_trip). I omit the error term. Stata-output 4.6 presents the results 
of the regression model.

x1

y 

x2

Figure 4.4 Multiple regression model containing two independent variables, x1 and x2.

Table 4.3  Descriptive statistics for tourism study variables. 

Variables: N = Mean SD Min. Max.

Total trip expenditures (Euros) 444 595.1 597.2 0 2,500
Length of stay (in days) 444 10.1 8.5 1 60
Booking time (in weeks) 444 7.9 9.0 0 50
Destination (1 = Beyond Nordic country) 444 0.62 0.49 0 1
Type of trip (1 = Package trip) 444 0.35 0.48 0 1

Stata-output 4.6 Total trip expenditures by independent variables for the student tourism data.
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We note that the coefficient of main interest, length of stay or los, is almost 28: 
On average, a trip lasting for, say, seven days incurs 28 Euros more in total expendi-
tures than a trip lasting six days controlling for booking time, trip destination, and 
type of trip. Alternatively, we may more tersely claim the same but finish off with 
‘… six days ceteris paribus.’7 It is perhaps tempting to claim that staying one more day 
increases total expenditures by 28 Euros ceteris paribus, but I advise against it. Such 
a dynamic interpretation hints at a causal relationship, but this is not likely for two 
reasons: First, the model lacks x-variables affecting expenditures, such as income and 
savings. Second, length of stay is measured at the same time as expenditures. It is, 
therefore, possible that disposable total expenditures could curb length of stay as in 
reverse causation.

Trips booked, say, ten weeks in advance incur on average six Euros more in total 
 expenditures than trips booked nine weeks in advance ceteris paribus. A 20-week differ-
ence thus amounts to 120 Euros. Compared with a trip to the Nordic countries, a trip to 
the non-Nordic countries on average entails 446 Euros more in total expenditures ceteris 
paribus. In contrast, package trips incur on average only 74 Euros less than non-package 
trips ceteris paribus.

That was it for the individual x-variables and their individual ceteris paribus contribu-
tions to the statistical explanation of total trip expenditures. What about the regression 
model per se? To what extent do the four x-variables in combination explain variation 
in total trip expenditures? R2 (R-squared) answers this question.

4.3.1 R-squared (R2)

In regression, we are often concerned about how “good” our regression model is. We 
might also in this regard speak of a good model fit. Formally, this boils down to how 
much of the variation in y the x-variables explain combined. A poor regression model (a 
model with poor fit) explains little or nothing of the variation in y; a good or better-fit-
ting model explains more and preferably much more. R2 formalizes this assessment, 
yielding a number between zero and one. R2 for the model in Table 4.6 is 0.36 or 36 
percent; note the R-squared in the upper right of the output. The four x-variables in 
the regression model combined explain 36 percent of the variation in total trip expendi-
tures.8 The error term, e, and randomness account for the remaining 64 percent.

The intuition behind R2 is straightforward. There is variation in y irrespective 
of the x-variables. We refer to this total variation in y as the total sum of squares.  
For the regression model in Table 4.6, this Total amount is 157993361; cf. the up-
per left of the output (SS is short for sum of squares). Similarly, we have the variation 
in y accounted for by the x-variables in the regression model. For the regression 
model in Table 4.6, this Model amount is 56832535.8; cf. two rows above Total 
SS. Dividing 56832535.8 by 157993361, we get 0.36: the variation in y accounted 
for by the four x-variables.

We find R2 at the top of SPSS-output 4.1. Similarly, we find the total and model sum 
of squares in the middle part of the output. Regarding the effects of the dummy varia-
bles destin and type_trip, we note that SPSS does not present the categories coded 
as one for the dummies, that is, beyond Nordic trip and Package trip. Otherwise, the 
results are similar except for rounding.

There is another way to look at R2. Imagine guessing on total trip expenditures for a 
random student. In the long run, as the statisticians are fond of saying, your best guess 
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would be the average trip expenditures. If you base your guess on the regression model, 
however, it will be 36 percent better in the long run than guessing on the average.9

Many students want to know if their regression model “is good,” “has good fit,” or 
has a “satisfactory R2.” There is no clear-cut answer to such questions. The best one 
is probably that it depends. That is, the R2 of a particular regression model should be 
judged against a yardstick we oftentimes find in prior research. No more, no less. The 
importance of R2 has also much to do with the nature of the research question. R2 is 
often uninteresting if the primary interest lies in x1’s causal effect on y. In contrast, R2 
is more relevant if we want to know how five x-variables in combination affect y. That 
said, the idea of 100 percent explained variance is no benchmark in most cases. More-
over, an R2 of, for example, 15 percent may be satisfactory for regression models based 
on survey questionnaire data.

SPSS-output 4.1 Total trip expenditures by independent variables for the student tourism data.
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Figure 4.5  Scatterplot of correlation between age of player and yearly income, with linear 
regression line.

4.4 Non-Linear Effects

Straight regression lines have an aesthetic and orderly appeal, and the same goes for 
straight, parallel regression lines. Yet the world around us is often messier than this. To 
account for the complexities of real life, we must often adjust our regression models to 
become more attuned to how reality works and sometimes bites. This section and the 
next, that is, 4.5, is about doing so.

4.4.1 Non-Linear Effects 1: Quadratic Regression

We have performed only linear regression in this book so far; all our regression lines 
for continuous x-variables have been straight. This simplification is useful for many 
purposes. Yet sometimes it is a too simplistic way of associating x1 and y. Think of the 
association between age and income among athletes, and suppose a researcher has found 
a positive correlation for these variables in a group of hockey players. The usual inter-
pretation of this correlation would be the more of the former (age), the more of the latter 
(income). But does this make sense in real life? Is it reasonable that as players get older 
and older they get to earn more and more money by each passing year? Not so much. 
Let us dive into this scenario for our soccer players.

The scatterplot and regression line for the age of the soccer players and their yearly in-
come appear in Figure 4.5. We note the positive correlation, that is, an upward- sloping 
regression line in sync with the fictitious hockey researcher’s results. The regression 
coefficient for the age variable is 2,502 Euros (not shown) and suggests that a 25-year old 
player on average earns 2,502 Euros more than a 24-year old player. Again, we should 
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not say, “Aging by one year implies 2,502 Euros more in yearly income on average.” 
This is too close to a causal interpretation that cannot be justified here.

Two concerns are important regarding Figure 4.5. One is theoretical and relates to 
prior research; the other concerns the empirical plot itself. Theoretically and in accord-
ance with prior studies, we should expect an inverse U-association between age and 
income: Income tends to rise steeply at the start of the career, flatten out in midlife, 
and then decrease in later years before retirement. Given that an athlete’s career is a 
micro-version of this life cycle, a linear regression line is dubious. Empirically, the plot 
shows that many players are located far away from the regression line. Moreover, many 
of the players receiving the largest incomes appear in the middle of the plot – in step 
with the theoretically expected inverse U-pattern. The long and short of this is that the 
linear regression does not sit well with either theory or data. An R2 of 2.78 percent (not 
shown) also reflects this poor model fit. These shortcomings beg the question of how to 
make a regression line more in accordance with the inverse U-pattern. The answer is a 
quadratic regression model, and this model appears in Figure 4.6.

The quadratic regression line has the inverse U-pattern in sync with the theoretical 
prediction. It also has a better model fit than the linear model; R2 for the quadratic 
model is 5.3 percent; cf. Stata-output 4.7. According to the non-linear regression having 
the inverse U-pattern, the soccer players’ incomes peak at around 30 years of age. Now 
for some technicalities in this regard.

The quadratic or curved regression line in Figure 4.6 is the result of a regression with 
two x-variables: age (i.e., age in the data) and age2 (i.e., age-square, which is not in the 
data). That is, to estimate the regression model bringing about Figure 4.6, we must first 
create the variable age2 and then add this new variable to the regression responsible for 

Figure 4.6  Scatterplot of correlation between age of player and yearly income, with quad-
ratic regression line.
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Figure 4.5. Fortunately, Stata has a built-in command that does this in one step. (Sec-
tion 4.9 shows the similar procedure in SPSS.) The output appears in Stata-output 4.7.

The regression coefficients for age and c.age#c.age, which is Stata’s technical term 
for age2, are 23,965.15 and –389.08. In most applications, however, the main concern 
is just their signs. Because the age2 coefficient has a negative sign, we know a priori that 
the regression line has an inverse U-shape.

Assume that age is x1 and that age2 is x2. By plugging the values of their respective 
 coefficients, b1 and b2, into the formula –b1/(2 × b2), we get the top-point for the associ-
ation between player age and yearly income. This top-point is 30.80 years (–23,965.15/
(2 × –389.08) = 30.80).10

When do we prefer a quadratic regression to a simpler, linear regression? The an-
swer is that we opt for a quadratic regression when theory, prior research, or common 
sense tell us that there should be some kind of non-linear association between x1 and 
y. If this is not the case at the outset, we tend to prefer the simpler, linear model. The 
name of this principle is Occam’s razor: Keep things as simple as possible when there 
is no specific reason to make them more complex. In contrast, if the quadratic model 
fits the data better than the linear model and this makes sense theoretically, as in our 
age-income example, we prefer the more complex, quadratic model.11 Occam’s razor: 
There is a reason to complicate matters. One practical problem remains, however: We 
often lack theoretical or common-sense cues for the shape of the association between 
x1 and y. It might be prudent in such instances to examine for non-linearity in a more 
exploratory manner.

4.4.2 Non-Linear Effects 2: Sets of Dummy Variables

Another way to shed light on a possible non-linear association between x1 and y is to 
use sets of dummy variables to represent x1. For the soccer player case, we may associate 
yearly income to the ordinal variable age_ord having six age categories: 18–20 years, 
21–23 years, 24–26 years, 27–29 years, 30–32 years, and 33–41 years. The results appear 
in Stata-output 4.8.

Stata-output 4.7 Results producing Figure 4.6.
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The age group not showing up in the results window is the reference: the 18–20 
years group. This youngest age group on average earns 38,166 Euros yearly, that is, 
the constant. Compared with this, the 21–23 years group earns 37,514 Euros more 
on average. The same interpretation applies to the remaining age groups, and we 
note at first the steady age increase in income. The non-linearity of the association is 
apparent for the two oldest groups: Whereas the 30–32 years old players earn 68,161 
Euros more than the youngest players on average, the analogous difference between 
the oldest and the youngest players is only 44,393. We note the same overall trend 
as in Figure 4.6.

4.4.3 Non-Linear Effects 3: Logarithmic Regression

The two prior procedures for handling non-linearity have one thing in common: They 
adapt the regression to a non-linear data pattern. The next procedure, in contrast, first 
changes the data by linearizing a non-linear pattern and then runs a linear regression 
in the usual manner. I use a new data set on red wines to illustrate (red_wine); cf. 
appendix C of this chapter for documentation. The y is bottle price in Euros (mean = 
32.1, SD = 35.3, min = 7, and max = 252; not shown) and the x1 is taste quality. The 
taste quality variable is the Parker scale, with a possible range from 60 points (terrible) to 
100 points (perfect). The mean is 84.4 and the SD is 5.9 (not shown). The data comprise 
218 wines. We expect a positive correlation between taste quality and bottle price based 
on prior studies. Figure 4.7 presents both the linear and the quadratic regression model 
for the two variables. The main message of the figure is that neither regression model 
line fits the data very well, although the quadratic model possibly looks slightly better 
in terms of model fit.12

Stata-output 4.8  Results for regression of yearly income by an ordered age variable in the 
soccer player data.
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Figure 4.7  Scatterplot of correlation between taste quality and price of red wine, with 
regression lines based on linear (solid line) and quadratic (dashed line) model 
specifications.

The quadratic regression model yields by its inherent mathematical properties a re-
gression line with either a top-point or a low-point. When the data pattern has no such 
point, however, it follows that the quadratic regression is not optimal. We, therefore, 
want a better solution, and a possible remedy in this regard is to perform a logarithmic 
regression analysis.

Logarithmic regression means using the natural logarithm of a variable rather than 
the variable itself in a regression. Most often in practice, however, we replace only y 
with the log of y. When we want the logarithm of a number, we crunch it through a 
formula on a calculator (Ln) to get what we want. We call this ‘logging.’ The natural 
logarithm of, say, 5.0 is 1.605. More examples appear below.

Number on natural scale: Number on the logarithmic scale, i.e., in logs:

0 Not defined
0.50 –0.693
1.00 0
8.40 2.128
10.00 2.302
50.00 3.912
100.55 4.611
500.00 6.215
5,000.77 8.517
100,000.00 11.519
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The key feature to note is that logging makes small natural numbers change a little, 
say from 10.00 on the natural scale to 2.302 on the logarithmic scale. For large natural 
numbers, in contrast, the change is huge, such as from 100,000.00 (natural) to 11.519 
(logarithmic). On the logarithmic scale, thus, larger natural numbers end up much 
closer to smaller natural numbers. This trivial fact has some favorable consequences 
when dealing with non-linearity, as we shall see below.

Practically, we first tell Stata or SPSS or our preferred software to create a logarithmic 
version of the variable of interest; see Section 6.2 on how to do this. We then use the 
logarithmic variable, and not the original variable, in the regression in the usual way. 
Figure 4.8 presents the plot and the regression line for the natural logarithm of bottle 
price (i.e., price measured in logs) and quality. Nothing changes in Stata or SPSS except 
for the new name given to the dependent variable.

The first thing to note is the y-axis. The values for the price variable on the log scale 
range from 1.9 to 5.5. This is much less variation than the original price scale from 7 
to 252 Euros. The second thing to note is the closer fit between the regression line and 
the individual data points, that is, the red wines. The final thing to note is that there is 
no need for a non-linear regression line; the linear model specification fits nicely. That 
is, logging the price variable makes the non-linear association between bottle price and 
taste quality become linear in the present case. Yet the reason for bringing attention to 
this example is of course that this logging procedure works well in many cases involv-
ing y-variables having only positive values.13 The regression results yielding Figure 4.8 
 appears in Stata-output 4.9.

Figure 4.8  Scatterplot of correlation between taste quality and the natural logarithm of 
price of red wine, with regression line based on a linear model specification.
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Stata-output 4.9 has one feature separating it from all regression outputs so far. The 
interpretation of the regression coefficient is not the average change in y given a one-unit 
increase in x. When y is measured in logs, the interpretation is instead the average change 
in y in percent given a one-unit increase in x.14 A red wine with a taste quality score of, say, 
90 thus costs 7.5 percent more on average than red wine with a taste quality score of 89.

One caveat regarding a regression where y is in logs and x is in natural levels: When 
the coefficient for such a regression is large, say ± 0.20 or larger, we should adjust it to get 
the correct percentage interpretation. We apply the formula 100 × (eb – 1) in this regard. 
A coefficient of, say, 0.45 thus becomes a 57 percent difference; 100 × (2.71820.45 – 1) =  
56.83. Finally, note that logging only works for variables with only positive values. It 
does not work when zero is a legitimate value for x or y.15

4.5 Interaction Effects (Moderator Effects)

We have repeatedly looked at the doings of specific subgroups in the data in this book: 
female and male students, students of different statuses, soccer players on the national 
team or not, and soccer players in different positions etc. Yet whenever such subgroups 
have been part of regressions, we have (tacitly) assumed that the regression coefficient 
for x1, b1, has had the same size for every subgroup in the data.16 That is, we have as-
sumed parallel regression lines – linear or not – for subgroups A, B, C, and so on in the 
data. Yet, presupposing parallel regression lines among subgroups in the data is the same 
kind of over-simplification with respect to what happens in real life as presupposing 
linear associations. That is, regression lines are not always parallel in a messy world. We 
even have a name for this when it happens: an interaction or moderator effect.

Examining parallel versus non-parallel regression lines has much in common with 
the linearity versus non-linearity examination. The start is often some cue from the-
ory, prior research, or common sense saying that subgroup A has a steeper regression 
line than subgroup B or vice versa.17 If this is not the case, we prefer keeping regression 
lines parallel based on Occam’s razor.18 But suppose we have such a cue, how do we go 
about examining this? The upcoming example shows that the “mechanical” procedure 
has lots in common with the quadratic regression procedure to examine non-linearity. 
Yet a difference is that non-parallel regression lines – that is, interaction effects – are not 
something we usually get a visual impression of by simply looking at a scatterplot as in 
the case of non-linearity.

Stata-output 4.9 Results producing Figure 4.8.



Multiple Regression 111

We return to the student tourism data from Section 4.3. To set the stage, we look 
at how destination and length of stay are associated with total trip expenditures in 
a plain vanilla regression. The results appear in Stata-output 4.10. Ceteris paribus, 
trips to destinations beyond the Nordic countries on average incur 437 Euros more 
in expenditures than trips to the Nordic countries. A trip lasting for, say, ten days 
incurs 29 Euros more in expenditures on average than a trip lasting nine days ceteris 
paribus. Combined, the two x-variables explain 34.8 percent of the variation in total 
trip expenditures (R2). Figure 4.9 presents the regression results of Stata-output 4.10 
in a visual form.

Stata-output 4.10  Total trip expenditures by trip destination and length of stay for the stu-
dent tourism data.

0

500

1000

1500

2000

1 10 20 30 40 50 60

Length of stay (in days)

Nordic destination

Beyond Nordic

T
ot

al
 tr

ip
 e

xp
en

di
tu

re
s 

(E
ur

o)

Figure 4.9  Graphical display of the multiple regression results in Stata-output 4.10. The 
parallel regression lines are a mathematical consequence of the linear model 
specification.
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Three features are noteworthy regarding Figure 4.9. First, we note the upward- 
sloping regression lines for length of stay in step with the positive regression coefficient. 
Second, the regression line for the costlier non-Nordic trips is on top, whereas the 
similar line for the less expensive Nordic trips is at the bottom. Third, and this is the 
key point, the regression lines are parallel. Yet as mentioned above, this parallelism is 
a direct consequence of the inherent mathematical properties of the linear regression 
model. It does not necessarily mean that the two regression lines are parallel in real life.

Suppose a researcher has found out that length of stay’s effect on trip expenditures is de-
pendent on type of destination, that is, the effect is larger for some destinations and smaller 
for others. Such a scenario amounts to non-parallel regression lines in regression-speak. 
How do we examine this? We proceed as follows: First, we create a new variable, as we did 
for the quadratic regression. The new variable is the product of trip destination and length 
of stay. That is, we multiply destin and los. Second, we add the new product variable 
to the regression in Stata-output 4.10. Again, Stata has a built-in command that does this 
procedure in one step. (Section 4.9 shows the similar procedure in SPSS.) The results ap-
pear in Stata-output 4.11. The product variable, which we call an interaction term, 19 appears 
near the bottom of the output with the technical Stata name destin#c.los.20

Stata-output 4.11 yields Figure 4.10 just as Stata-output 4.10 yielded Figure 4.9. That 
is, Figure 4.10 is based on the x-variables destin, los, and the interaction variable/
term destin multiplied with los.

The main feature of Figure 4.10 is the non-parallel regression lines. The association 
between length of stay and total trip expenditures is steeper for trips to beyond the 
Nordic countries than it is for trips to the Nordic countries. In other words, the regres-
sion coefficient is larger for beyond Nordic trips than for Nordic trips, making beyond 
Nordic trips more expensive than Nordic trips also on a day-by-day basis.

Stata-output 4.11 provides the results generating the non-parallel regression lines in 
Figure 4.10. The trick for regressions with interaction terms is to interpret the output – 
which is tricky! The first thing to note is that the regression coefficient for the inter-
action term is clearly different from zero: 31.45. Such a non-zero coefficient is the first 

Stata-output 4.11  Total trip expenditures by trip destination, length of stay, and the product 
of trip destination and length of stay for the student tourism data.
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cue suggesting that non-parallel regression lines fit the data better than parallel lines. 
The second cue is R2. The plain vanilla regression had an R2 of 0.348, cf. Stata-output 
4.10, whereas the regression with the interaction term according to Stata-output 4.11 
has an R2 of 0.394. This is two strikes for non-parallel regression lines.21 Now to the 
tricky part. A compact way of presenting the regression equation in Stata-output 4.11, 
in which total trip expenditures is TTE and omitting the error term, is

TTE = 189.29 + 140.72destin + 9.78los + 31.45destin×los.

For a trip to the Nordic countries, that is, destin = zero, this equation thus becomes

TTE = 189.29 + 140.72×0 + 9.78los + 31.45×0×los →
TTE = 189.29 + 0 + 9.78los + 0   →
TTE = 189.29 + 9.78los.

That is, the regression coefficient for length of stay is 9.78 for trips to the Nordic 
countries. For trips to beyond the Nordic countries, that is, destin = one, the analo-
gous equation becomes

TTE = 189.29 + 140.72×1 + 9.78los + 31.45×1×los →
TTE = 189.29 + 140.72 + 9.78los + 31.45los  →
TTE = 330.01 + 41.23los.

For trips to beyond the Nordic countries, the regression coefficient for length of stay 
is 41.23. This much larger regression coefficient for the non-Nordic trips suggests a 
steeper regression line for this subgroup, as we saw in Figure 4.10.
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Figure 4.10  Graphical display of the multiple regression results in Stata-output 4.11. The 
non-parallel regression lines are a mathematical consequence of the linear 
model specification that includes an interaction variable/term.
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We find the relevant results in Stata-output 4.11. The regression coefficient for los 
refers to Nordic trips only: 9.78. The analogous coefficient for beyond Nordic trips 
is 9.78 plus the coefficient for the interaction term: 9.78 + 31.45 = 41.23. Finally, the 
regression coefficient for destin, 141, is the difference in total expenditures between 
Nordic and beyond Nordic trips lasting for only one day, that is, the difference between 
the two constants in the two regression scenarios: 330.01 – 189.29 ≈ 140.7.

When do we prefer a regression model with an interaction term to a model without? 
We prefer the former when theory, prior research, or common sense suggest that x1’s 
regression coefficient might be larger or smaller among certain subgroups in the data. 
If this is the case, we go about along the lines just described. In contrast, if we have 
no reason to suspect such an unequal-coefficient-size scenario, we stick to the simpler 
model according to Occam’s razor. More formally, an interaction effect means that the 
effect of x1 on y is dependent on the value of x2. In our case just described, this means 
that length of stay’s effect on total trip expenditures is dependent on the type of desti-
nation for the trip.

The previous example included a continuous x-variable (los) and a dummy x-var-
iable (destin). The same principle applies to two continuous x-variables and two 
categorical/dummy x-variables. The latter case comes up next. Skipping the research 
context introduction, we first look at how fitness center membership and gender are 
associated with total hours of exercise per week in the student data. The plain vanilla 
regression appears in Stata-output 4.12.

The taken-for-granted assumption in Stata-output 4.12 is that the regression coeffi-
cient for the center membership dummy (i.e., 2.23 hours) has the same size for female 
and male students. Suppose, however, that we have come across research questioning 
this assumed gender-neutral effect, and that we wish to examine this more closely. 
Stata output 4.13 sheds light on the matter, following the exact same procedure as in 
Stata-output 4.11/Figure 4.10.

Stata-output 4.12  Results for multiple regression of hours of exercise by fitness center mem-
bership and student gender in the student exercise data.
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The regression coefficient for the fitness center dummy refers to the female students, 
that is, gender = zero. That is, female fitness center members exercise 1.78 more hours 
per week than female non-members on average. For the male students, that is, gender 
= one, the analogous difference is 3.06 (1.78 + 1.29 = 3.06). That is, the fitness center 
effect on exercise hours is larger among male students. The coefficient for gender, that 
is, 0.71, now refers to the gender difference in exercise hours for the non-members of 
fitness centers.

Figure 4.11 shows the fitness center and gender interaction effect. We note the steeper 
regression line for male students in sync with the regression results in Stata-output 4.13.22

4.5.1 Non-Linearity and Interaction

We sometimes face situations in which interaction and non-linearity appear simulta-
neously. Figure 4.12 illustrates such a scenario for the student data. The age-exercise 
hours regression lines for the two genders are both non-linear (especially for males) and 
non-parallel. In other words, the non-linear age effect is dependent on the students’ 
gender.

4.6 Regression on Experimental Data

Amos Tversky and Daniel Kahneman, two Israeli-born psychologists, went on a mission 
in the 1970s. In perfect hindsight, their ultimate target was the rational decision-maker 
at the core of the statistical models used by economists. In the early days, however, 
their aims were more modest: They wanted to show that most people have limited 

Stata-output 4.13  Results for multiple regression of hours of exercise by fitness center mem-
bership, student gender, and the product of fitness center membership and 
student gender in the student exercise data.
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Figure 4.11  Graphical display of the multiple regression results in Stata-output 4.13. The 
non-parallel regression lines are a consequence of the linear model specification 
including an interaction term.
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capabilities when it comes to doing assessments and making decisions based on num-
bers – in stark contrast to the 100 percent rational homo economicus. That is, people are 
subjected to a number of heuristics and biases. Using experiments with an RCT bent, 
the two psychologists forcefully showed their arguments rather than just mocking the 
flawed rationality assumptions of homo economicus. One of their first experiments, that 
set the scene many followed, has the following background.23

When people are about to do an assessment about making a decision or a judgment, 
they tend to rely on the last information they received. We call this the anchoring effect; 
the last information serves as an anchor for the assessment. This is not necessarily bad. 
What makes it a potentially distorting bias, however, is that we tend to rely on useless 
information as such anchors. This is irrational, to borrow a phrase from the economists’ 
dictionary. Let us proceed with an update of the classical experiment.

Imagine a group of students receiving an assignment on a sheet of paper and being told 
not to look at each other while completing it. On top of the sheet is a short instruction on 
what to do followed by the question, ‘What percentage of African nations do you think 
are members in the UN?’ That is, the students’ assignment is to make an educated guess 
as in writing down a number between 0 and 100. This is the experiment’s y-variable.

The key to the experiment lies in the introduction before the question above. In this 
regard, one introduction might read:

Read the instruction carefully, and do not show your answers to your ‘neighbor!’
A random number generator has chosen a number between 0 and 100.
The number chosen and assigned to you is X = 65.

A second introduction may read like this:

Read the instruction carefully, and do not show your answers to your ‘neighbor!’
A random number generator has chosen a number between 0 and 100.
The number chosen and assigned to you is X = 10.

The only difference between the two introductions is the numbers at the end: 65 or 
10. Whether a student gets a ‘65’ or a ‘10’ is the result of a coin toss (randomization) as 
in an RCT.24 Furthermore, and provided the students follow the instruction, they do 
not get to know there are only two possible ‘treatments:’ 65 or 10. Neither does the 
‘doctor’ (instructor) get to know which student gets which version of the introduction. 
The experiment is therefore double-blind. The treatment dummy is the x-variable of 
the experiment, where ‘65’ is coded one (treatment) and ‘10’ is coded zero (placebo).

Now for the logic in the experiment. The introduction with the bogus random gen-
erator is the anchor of interest. By definition, a random generator (fake or not) cannot 
provide any help in making an improved educated guess on the UN-percentage ques-
tion. The anchor dummy should thus not affect the y-variable. That is, students receiv-
ing ‘65’ (treatment) and students receiving ‘10’ (placebo) should on average come up 
with about the same percentage guess on the UN question if they are rational. Is this 
really the case?

I have conducted the above experiment on some of my bachelor-level classes (N = 
138). The data are called anchor_exp. If the two experiment groups come up with the 
same average guess on the UN question, the regression coefficient for the anchor dummy 
should be zero or thereabouts. Stata-output 4.14 presents the results in this regard.
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The constant is the mean UN-percentage guess for the placebo group, that is, the 
students receiving the 10-anchor. The average UN-guess for this 10-anchor group 
is almost 25 percent. For the students receiving the 65-anchor, that is, the treatment 
group, the average UN-guess is 21 percentage points higher – or 46 percent to be 
precise. This is a large difference illustrating that a nonsense anchor has a substantial 
effect on a later assessment.25 Students, like people in general, are not rational when 
it comes to assessments having to do with numbers. This questions the assumptions 
of homo economicus.

Interesting as this experiment might be, the reason for bringing it up has to do with 
the distinction between experimental and statistical control mentioned in Sections 3.6, 
3.7, and 4.2. I said there that experimental control makes statistical control redundant 
provided successful randomization. Now it is time to show this. Stata-output 4.15 pre-
sents two more regressions. The first adds the control variable gender to the model; the 
second also adds the control variable to class belonging (i.e., the constant = business 
administration class 1).

The uppermost multiple regression in Stata-output 4.15 shows roughly the same 
treatment effect (21.38) as the bivariate model in Stata-output 4.14. We note in passing 
that female students on average provide an almost 9 percentage points lower guess on 
the UN question than male students. The multiple regression model at the bottom of 
Stata- output 4.15 shows about the same treatment effect (21.65) as the upper model. 
The point now is that we could go on and on adding more x-variables to the regression 
model without anything of much interest happening to the treatment effect; it will 
probably remain in the 21–22-point region. The reason is that the additional control 
variables will have no systematic association with the treatment dummy provided suc-
cessful randomization.26 One caution is in order, however. The treatment effect is the 
average effect among all the units in the data. There could be interaction effects lurking 
in the background, and we should examine these along the lines already drawn up in 
Section 4.5.

Stata-output 4.14 Answer to UN question by anchor dummy in the anchor experiment data.
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4.7 A Dummy y

We have analyzed many dummy variables in this book, but they have exclusively been 
x-variables save for in Section 3.2. In real life, however, such dummies are often y- 
variables. Some examples include (the decision) to vote or not, being employed or not, 
or being ill or not. That is, we examine y-variables that directly or indirectly may be 
coded as one (the presence of something/yes) or zero (the non-presence of something/
no). Because there is an abundance of such ‘choice’ y-variables in the behavioral and so-
cial sciences, it is mandatory that a quantitative analyst worth her salt manages to handle 

Stata-output 4.15  Answer to UN-question by anchor dummy and controls in the anchor 
experiment data.
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this frequently occurring situation within a multiple regression framework. This section 
teaches you how to do so.27

The good news at the outset is that we often may keep on doing plain vanilla multi-
ple regression for a dummy y the way we have done so far.28 The next example follows 
up the analysis in Section 3.2. The dependent variable is whether a student is member 
of a sports club or not, and we examine how certain x-variables are possibly associ-
ated with this yes/no choice. Stata-output 4.16 shows summary descriptive statistics 
for the sports club membership variable and breaks it down on gender by means of a 
cross-tabulation.

We see on top of the output that presently 21.74 percent of the students are sports club 
members. This corresponds to the mean of 0.2174 in the middle of the output. Finally, the 
lower part of the output suggests that male students are sports club members more often 
than female students. The gender difference is about 21 percentage points (35 – 14 = 21). 
Stata-output 4.17 shows a bivariate regression between the gender dummy and the mem-
bership dummy in the usual manner.

The constant refers to the mean of y for x = zero. That is, the probability of being a 
sports club member among females is roughly 14 percent according to Stata-output 4.17. 

Stata-output 4.16  Descriptive statistics for sport club membership variable and sports club 
membership by gender.
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This mirrors the result in the cross-table in Stata-output 4.16. The regression coefficient 
0.207 implies that the probability of being a sports club member among males is almost 
21 percentage points larger than 14 percent: 35 percent. This result also mirrors the 
cross-table in Stata-output 4.16.29 We may thus deduce the general interpretation of the 
linear regression coefficient when y is a dummy: the average probability change for y = 
1 in percentage points given a one-unit increase in x.

We extend the bivariate regression model into a multiple regression model as before. 
The multiple regression in Stata-output 4.18 adds the youth sports involvement variable 
and the exercise preference variable in the customary manner.

Stata-output 4.17  Results for regression of sports club membership by gender in the student 
exercise data.

Stata-output 4.18  Results for linear regression of sports club membership by gender, youth 
sports involvement, and exercise preference in the student exercise data.
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The following ceteris paribus interpretations apply: A male student has on average a 
17.59 percentage points greater probability of being a sports club member than a female 
student. A student with the score of, say, six on the youth sports variable has on average 
a 3.27 percentage points greater probability of being a sports club member than a stu-
dent with the score of five. Finally, a student preferring cardio training has on average 
an 11.23 percentage points greater probability of being a sports club member than a 
student preferring strength training (i.e., the reference). A similar difference between 
the ‘preferring both equally much’ group and the ‘strength training’ group is 6.79 per-
centage points.

The direct extension from a linear regression of a continuous y and the translucent 
interpretation of the regression coefficient explain why linear regression for a dummy y 
has become popular in recent years. We call it the Linear Probability Model (LPM). For 
many years, however, the LPM was a no-go in statistics circles.30 The reason is that it 
violates some of the assumptions of regression analysis; see Section 6.6 for more on this. 
The appropriate statistical model was – and, in many fields of research, still is – logistic 
regression analysis. We therefore cover this model below.

4.7.1 Logistic Regression Analysis

The equivalent logistic regression of the model in Stata-output 4.18 appears in Stata- 
output 4.19.

The logistic regression coefficient for gender is 1.062, and the analogous youth ex-
ercise coefficient is 0.264. Unfortunately, however, these coefficients tell us nothing 
except for their signs. The positive gender coefficient implies that male students are more 
likely to be members of sports clubs than female students – which we already know 
from Stata-output 4.18. The positive youth exercise coefficient similarly implies that a 

Stata-output 4.19  Results for logistic regression of sports club membership by gender, youth 
sports involvement, and exercise preference in the student exercise data.
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student with a score of six on this variable is more likely to be a sports club member than 
a student with a score of five – which we also know from Stata-output 4.18. The upshot 
is that although the logistic regression model solves some of the problems with the LPM 
model, such a rescue mission comes at a steep price: non-informative logistic regression 
coefficients.31 SPSS-output 4.2 presents a similar output for the logistic regression in 
SPSS format. Column B displays the logistic regression coefficients.

By default, SPSS also reports so-called odds-ratios in the column on the right: 
 Exp(B). Just as any student has a probability of being a sports club member, she 
also has the odds of being a member of such a club.32 An odds-ratio is one such 
odds divided by another, as in for example male students’ odds divided by female 
students’ odds. According to SPSS-output 4.2, male students’ odds of being sports 
club members are 2.89 times larger than female students’ odds of being sports club 
members ceteris paribus. (An odds-ratio of 1.0 would suggest gender parity in this 
respect.) A student scoring six on the youth sports variable has 1.30 greater odds of 
being a sports club member than a student scoring five ceteris paribus. Similar interpre-
tations hold for the exercise preference dummies.33 One caveat is in order regarding 
odds-ratios. They say little of the magnitude of an effect. Moreover, an odds-ratio 
of 2.0 most often does not mean twice as likely in terms of probabilities. An efficient 
solution to non-informative logistic coefficients and odds-ratios is to turn logistic re-
gression coefficients into something resembling linear regression coefficients. Please 
welcome marginal effects!

4.7.2 Logistic Regression: Marginal Effects

Marginal effects based on logistic regression analysis have roughly the same interpreta-
tion as the regression coefficients of the LPM. Stata-output 4.20 presents the marginal 
effects for the logistic regression model in Stata-output 4.19.

The ceteris paribus interpretations are straightforward: A male student has on average a 
16.92 percentage points larger probability of being a sports club member than a female 
student. A student with a score of, say, six on the youth sports variable has on average a 

SPSS-output 4.2  Results for logistic regression of sports club membership by gender, 
youth sports involvement, and exercise preference in the student  
exercise data.
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3.89 percentage points greater probability of being a sports club member than a student 
with a score of five. Finally, a student preferring cardio training has on average an 11.84 
percentage points greater probability of being a sports club member than a student pre-
ferring strength training (i.e., the reference). The similar difference between the ‘pre-
ferring both equally much’ group and the ‘strength training’ group is 6.89 percentage 
points. In general, these marginal effects are very close to the plain vanilla regression 
coefficients (i.e., LPM coefficients) in Stata-output 4.18.34

The similarity of marginal effects based on logistic regression and LPM coefficients 
appears to be the general case (cf. Angrist and Pischke, 2009). This most probably ex-
plains why many analysts prefer the LPM despite its shortcomings: It produces good 
estimates and we do not need a sophisticated statistics program to calculate it. In fact, 
Excel will suffice nicely.35

4.7.3 Logistic Regression: Pseudo R2

When y is continuous or roughly so, it makes intuitive sense to talk about y’s variation and 
how much of this variation the x-variables account for. In short, the idea of R2 adds up. 
Such ‘variation’ makes less sense when y is a dummy. For this reason, and some technical 
ones we need not get into, logistic regression has no universal R2 measure. Instead, we 
have a plethora of Pseudo R2 measures. We note for Stata-output 4.19 that our Pseudo R2 
is almost 13 percent. Although this measure has a certain resemblance to the plain vanilla 
R2, we should not interpret it literally. It is probably also fair to say that the various Pseudo 
R2 measures play a smaller role in logistic regression than R2 does in linear regression.

4.7.4 Logistic Regression: Non-Linearity and Interaction Effects

Non-linearity and interaction effects, as we saw in Sections 4.4 and 4.5, apply to the case 
of a dummy y in the same way as for a continuous y, save for the use of a logarithmic y. 
I thus skip showing this.

Stata-output 4.20 Marginal effects based on logistic regression model in Stata-output 4.19.
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4.8  Chapter Summary, Key Learning Points,  
and Further Reading

This chapter has been about multiple regression analysis. A multiple regression 
model has one y-variable and multiple x-variables. Below follows some key learn-
ing points:

• A multiple regression model per definition has more than one x-variable. Such a 
model may be expressed in an algebraic or visual form.

• Multiple regression analysis is a typical way of holding constant (or controlling for) 
other x-variables when analyzing how x1 affects y for observational data in the so-
cial and behavioral sciences.

• To find the causal or unique effect of x1 on y when analyzing observational data, we 
invariably in practice have to control for several other x-variables.

• R2 measures how much of the variation (variance) in y the x-variables account for 
combined.

• Non-linearity and interaction effects may – and should sometimes! – be built into 
multiple regression models. Theory, prior research, and common-sense guide when 
to check out non-linear regression models and regression models that include in-
teraction terms.

• If carried out successfully, an experimental design/RCT typically makes statistical 
control for other x-variables redundant.

• Linear multiple regression most often handles a dummy y-variable very well. This 
is called the LPM.

• Logistic regression analysis is tailor-made for the dummy y-variable case, but it 
needs some tinkering to produce translucent regression coefficients.

Pearl and Mackenzie (2018) and Rosenbaum (2017) are still the key sources for do-
ing causal analysis on observational or experimental data. Cunningham (2021) is a 
recent and easy-going contribution to this causal inference literature. Thrane (2020) 
provides an in-depth but practically oriented coverage of all things related to multi-
ple regression analysis; see also Wolf and Best (2015). Long (1997, 2015) and Hosmer  
et al. (2013) teaches you all you need to know about logistic regression analysis and 
related techniques. Mitchell (2021) is the prime source for visualizing regression re-
sults in Stata.

Best and Wolf (2015) is the next natural step for all things related to regression and 
causal analysis in a more practical manner. The same goes for Angrist and Pischke 
(2009, 2015) and Berk (2004). Imbens and Rubin (2015) is a comprehensive primer to 
causal inference in experimental settings, but it requires a certain amount of compe-
tence in math/calculus.

4.9 Do-Files in Stata and Syntax-Files in SPSS

I assume you have read Sections 2.9 and 3.9 before taking on this section. The 
commands appear as usual in plain text ‘outside’ of do-files (Stata) or syntax-files 
(SPSS) to save space. As usual, I add some comments to the commands on occasion. 
I assume throughout that the ‘correct’ data set is in memory to avoid unnecessary 
repetition.
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4.9.1 Stata-Commands in Do-Files

Table 4.1

sum hours_exer

Table 4.2

tab fitness_center
tab exer_easy_motive

Stata-output 4.1

reg hours_exer i.fitness_center

Stata-output 4.2

reg hours_exer i.fitness_center exer_easy_motive

To do a multiple regression in Stata we simply add more x-variables after the first. The 
variable exer_easy_motive thus makes the above regression a multiple regression.

Stata-output 4.3

reg hours_exer i.fitness_center exer_easy_motive exer_imp_qol

Figure 4.1

twoway (scatter price quality)(lfit price quality)

Stata-output 4.4

reg price quality

Stata-output 4.5

reg price quality alch_perc

Figure 4.2

reganat price quality alch_perc, dis(quality) biline 

Before applying the reganat-command you must first download it. In the Command- 
window, type findit reganat and follow the instructions after first clicking on SJ-
13-1 st0285.

Table 4.3

sum tot_spend los book_time destin type_trip

Stata-output 4.6

reg tot_spend los book_time i.destin i.type_trip
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Figure 4.5

twoway (scatter inc_year age)(lfit inc_year age)

The l in lfit is short for linear (fit).

Figure 4.6

twoway (scatter inc_year age) (qfit inc_year age)

The q in qfit is short for quadratic (fit).

Stata output 4.7

reg inc_year c.age##c.age

The ## between the variable names means that both age and age × age (i.e. age2) 
should be included in the regression model. The c. tells Stata that age is, or should be 
treated as, a continuous variable.

Stata-output 4.8

reg inc_year i.age_ord

Figure 4.7

twoway (scatter price quality) (qfit price quality) (lfit price 
quality)

Figure 4.8

twoway (scatter log_price quality) (lfit log_price quality)

Stata-output 4.9

reg log_price quality

Stata-output 4.10

reg tot_spend i.destin los

Figure 4.9
Two commands immediately after the regression command in Stata-output 4.10 are 
necessary to produce the graph:

margins destin, at(los=(1 10 20 30 40 50 60))
marginsplot, noci

Stata-output 4.11

reg tot_spend i.destin##c.los

The ## between the variable names means that both destin, los, and destin × los 
(i.e., the interaction term) should be included in the regression model. The c. tells Stata 
that los is, or should be treated as, a continuous variable.
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Figure 4.10

margins destin, at(los=(1 10 20 30 40 50 60))
marginsplot, noci

Stata-output 4.12

reg hours_exer i.fitness_cen i.gender

Stata-output 4.13

reg hours_exer i.fitness_cen##i.gender

Figure 4.11

reg hours_exer i.fitness_cen##i.gender 
margins gender, at(fitness_cen =(0(1)1))
marginsplot, noci

Figure 4.12
The sequence of commands to generate the graph are:

reg hours_exer i.gender##c.age##c.age i.sport_club i.fitness_cen
margins gender, at(age=(19(2)45))
marginsplot, noci

Stata-output 4.14

reg UN_percent i.anchor

Stata-output 4.15

reg UN_percent i.anchor i.gender
reg UN_percent i.anchor i.gender i.class

Stata-output 4.16

tab sport_club
sum sport_club
tab sport_club gender, col

Stata-output 4.17

reg sport_club i.gender

Stata-output 4.18

reg sport_club i.gender youth_exe i.exer_most

Stata-output 4.19

logit sport_club i.gender youth_exe i.exer_most

The only new feature is the replacement of reg with logit as the command. To obtain 
odds-ratios, use the command:
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logit sport_club i.gender youth_exe i.exer_most, or

Stata-output 4.20
Immediately after the logistic regression in Stata-output 4.19, use the command:

margins, dydx (*)

4.9.2 SPSS-Commands in Syntax-Files

Table 4.1

DESCRIPTIVES VARIABLES=hours_exer
  /STATISTICS=MEAN STDDEV MIN MAX.

Table 4.2

FREQUENCIES VARIABLES=fitness_center exer_easy_motive
  /ORDER=ANALYSIS.

Stata-output 4.1

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT hours_exer
  /METHOD=ENTER fitness_center.

Stata-output 4.2

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT hours_exer
  /METHOD=ENTER fitness_center exer_easy_motive.

To do a multiple regression in SPSS we simply add more x-variables after the first. The 
variable exer_easy_motive thus makes the above regression a multiple regression.

Stata-output 4.3

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT hours_exer
  /METHOD=ENTER fitness_center exer_easy_motive exer_imp_qol.



130 Multiple Regression

Figure 4.1

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=quality price MISS-
ING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=YES.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: quality=col(source(s), name("quality"))
  DATA: price=col(source(s), name("price"))
  GUIDE: axis(dim(1), label("quality"))
  GUIDE: axis(dim(2), label("price"))
  GUIDE: text.title(label("Simple Scatter with Fit Line of price by 
quality"))
  ELEMENT: point(position(quality*price))
END GPL.

Stata-output 4.4

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT price
  /METHOD=ENTER quality.

Stata-output 4.5

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT price
  /METHOD=ENTER quality alch_perc.

Figure 4.2
To the best of my knowledge, there is no SPSS option readily available for generating 
this graph.

Table 4.3

DESCRIPTIVES VARIABLES=tot_spend los book_time destin type_trip
  /STATISTICS=MEAN STDDEV MIN MAX.
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SPSS-output 4.1 (Stata-output 4.6)

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT tot_spend
  /METHOD=ENTER los book_time destin type_trip.

Figure 4.5

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=age inc_year MISS-
ING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=YES.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: age=col(source(s), name("age"))
  DATA: inc_year=col(source(s), name("inc_year"))
  GUIDE: axis(dim(1), label("age"))
  GUIDE: axis(dim(2), label("inc_year"))
  GUIDE: text.title(label("Simple Scatter with Fit Line of inc_year 
by age"))
  ELEMENT: point(position(age*inc_year))
END GPL.

Figure 4.6

TSET NEWVAR=NONE.
CURVEFIT
  /VARIABLES=inc_year WITH age
  /CONSTANT
  /MODEL=QUADRATIC 
  /PLOT FIT.

Stata-output 4.7

COMPUTE age_square=age*age.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT inc_year
  /METHOD=ENTER age age_square.
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In SPSS, we must first create the variable age_square (i.e., age2) by the COMPUTE- 
command before using it in the quadratic regression.

Stata-output 4.8

RECODE age_ord (2=1) (ELSE=0) INTO age21_23.
RECODE age_ord (3=1) (ELSE=0) INTO age24_26.
RECODE age_ord (4=1) (ELSE=0) INTO age27_29.
RECODE age_ord (5=1) (ELSE=0) INTO age30_32.
RECODE age_ord (6=1) (ELSE=0) INTO age33_41.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT inc_year
  /METHOD=ENTER age21_23 age24_26 age27_29 age30_32 age33_41.

In SPSS, we must first create the various age-group dummies by the RECODE- 
commands before using them in the regression.

Figure 4.7

TSET NEWVAR=NONE.
CURVEFIT
  /VARIABLES=price WITH quality
  /CONSTANT
  /MODEL=LINEAR QUADRATIC 
  /PLOT FIT.

Figure 4.8

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=quality log_price 
MISSING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=YES.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: quality=col(source(s), name("quality"))
  DATA: log_price=col(source(s), name("log_price"))
  GUIDE: axis(dim(1), label("quality"))
  GUIDE: axis(dim(2), label("log_price"))
  GUIDE: text.title(label("Simple Scatter with Fit Line of log_price 
by quality"))
  ELEMENT: point(position(quality*log_price))
END GPL.
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Stata-output 4.9

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT log_price
  /METHOD=ENTER quality.

Stata-output 4.10

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT tot_spend
  /METHOD=ENTER destin los.

Figure 4.9
I know of no easy way to produce a graph like Figure 4.9 in SPSS. That said, Excel 
might be used to generate the y-values that, in turn, could go into a graph.

Stata-output 4.11

COMPUTE destin_los=los * destin.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT tot_spend
  /METHOD=ENTER destin los destin_los.

In SPSS, we must first create the product variable/term destin_los by the COMPUTE- 
command before using it in the interaction regression model.

Figure 4.10

GRAPH
  /SCATTERPLOT(BIVAR)=los WITH tot_spend BY destin
  /MISSING=LISTWISE.

Now, first double-click on the graph to get it ‘active.’ Then click on Elements and 
choose Fit Line at Subgroups. The appearing graph resembles Figure 4.10 although it 
also contains the individual data points.
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Stata-output 4.12

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT hours_exer
  /METHOD=ENTER fitness_cen gender.

Stata-output 4.13

COMPUTE fit_cen_gender=fitness_cen * gender.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT hours_exer
  /METHOD=ENTER fitness_cen gender fit_cen_gender.

Figure 4.11

GRAPH
  /SCATTERPLOT(BIVAR)=fitness_cen WITH hours_exer BY gender
  /MISSING=LISTWISE.

Now, first double-click on the graph to get it “active.” Then click on Elements and 
choose Fit Line at Subgroups. The appearing graph resembles Figure 4.11 although it 
also contains the individual data points.

Figure 4.12
To the best of my knowledge there is no SPSS option readily available for generating 
this graph.

Stata-output 4.14

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT UN_percent
  /METHOD=ENTER anchor.

Stata-output 4.15

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
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  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT UN_percent
  /METHOD=ENTER anchor gender.
RECODE class (2=1) (ELSE=0) INTO busi_adm_2.
RECODE class (3=1) (ELSE=0) INTO mixed.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT UN_percent
  /METHOD=ENTER anchor gender busi_adm_2 mixed.

Stata-output 4.16

FREQUENCIES VARIABLES=sport_club
  /ORDER=ANALYSIS.
DESCRIPTIVES VARIABLES=sport_club
  /STATISTICS=MEAN STDDEV MIN MAX.
CROSSTABS
  /TABLES=sport_club BY gender
  /FORMAT=AVALUE TABLES
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL.

Stata-output 4.17

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT sport_club
  /METHOD=ENTER gender.

Stata-output 4.18

RECODE exer_most (1=1) (ELSE=0) INTO cardio.
RECODE exer_most (2=1) (ELSE=0) INTO equal.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT sport_club
  /METHOD=ENTER gender youth_exe cardio equal.



136 Multiple Regression

SPSS-output 4.2 (Stata-output 4.19)

LOGISTIC REGRESSION VARIABLES sport_club
  /METHOD=ENTER gender youth_exe cardio equal 
  /CONTRAST (gender)=Indicator(1)
  /CONTRAST (cardio)=Indicator(1)
  /CONTRAST (equal)=Indicator(1)
  /CRITERIA=PIN(.05) POUT(.10) ITERATE(20) CUT(.5).

Stata-output 4.20
To the best of my knowledge, there is no SPSS option readily available for generating 
marginal effects.

4.10 Chapter Exercises with Solutions

The exercises below use the data available for download on the book’s website.

Exercises:

Exercise 1 (data: soccer, see appendix B of Chapter 2 for data documentation)
1a  Use match_tot as y and the following x-variables in a multiple regression: na-

tion_dum, origin, and age. Describe your results.
1b Add the variable pos to the model in 1a. Describe your results.
1c  Is there an interaction effect between nation_dum and age? Describe your results.
1d  Use inc_year as y and the following x-variables in a multiple regression: na-

tion_dum and club_rank. Describe your results.
1e  Use log_inc as y and the following x-variables in a multiple regression: na-

tion_dum, match_tot, and club_rank. Describe your results.

Exercise 2 (data: student_exercise, see Appendix C of Chapter 2 for data 
documentation)
2a  Use times_exer as y and the following x-variables in a multiple regression: gen-

der, fitness_cen, sport_club, age and age-square. Describe your results.
2b  Is there an interaction effect between gender and fitness_cen? Describe 

your results.

Exercise 3 (data: student_exercise_motive, see Appendix A of this chapter for data 
documentation)
3a  Use the dummy sport_club as y and the following x-variables in a multiple re-

gression: gender, youth_exe, and exer_easy_motive. Describe your results.
3b  Use the dummy sport_club as y and the following x-variables in a multiple 

logistic regression: gender, youth_exe, and exer_easy_motive. Describe 
your results.

Answers to exercises (in Stata only; see Section 4.9 for equivalent SPSS syntaxes):
Exercise 1 (data: soccer, see appendix B of Chapter 2 for data documentation)

1a  Use match_tot as y and the following x-variables in a multiple regression:  nation_
dum, origin, and age. Describe your results. The multiple regression is:
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Ceteris paribus throughout: Players who have appeared for their national teams have 
played almost 36 more matches in their careers on average than players without such 
experience. Foreign players have played about 41 fewer matches in their careers on aver-
age than Norwegian players. Both differences are large and suggest marked associations 
between the variables. A 25-year old player has played 11 more matches in his career on 
average than a 24-year old player. There is thus a noticeable association between the two 
variables. The three x-variables combined explain 57 percent of the variation (variance) 
in total number of matches played in the career.

1b  Add the variable pos to the model in 1a. Describe your results. The multiple 
regression is:
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The coefficients or effects change little from the regression model in 1a. On average, 
defense players have played 28 more matches in their careers than goalkeepers ceteris par-
ibus; the analogous differences between goalkeepers and midfielders and between goal-
keepers and attackers are 34 and 34, respectively. There is a clear association between 
player position and total number of matches played in career. The increase in R2 from 
57 to 59 percent also supports this.

1c  Is there an interaction effect between nation_dum and age? Describe your 
results. The multiple regression is:

The age effect is 8.86 for players who have not appeared for their national teams. For 
players with appearances for their national teams, the age effect is 15.67 (8.86 + 6.81 = 
15.67). That is, we have a steeper regression line for the association between age and 
number of matches played in career among players who (also) play for their national 
teams. The increase in R2 also supports this. To obtain the graph showing the interac-
tion effect (in Stata), enter the two following commands in succession after running the 
regression model in question:
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Ceteris paribus, we find that national team players on average earn 59,276 Euros more 
than non-national team players. A player for the club finishing at, say, seventh place at 
the end of the season earns on average 4,568 Euros less than a player for the club finish-
ing at sixth place ceteris paribus. There are marked associations between both x-variables 
and income. The two x-variables combined explain 33 percent of the variation (vari-
ance) in yearly income.

1e  Use log_inc as y and the following x-variables in a multiple regression: na-
tion_dum, match_tot, and club_rank. Describe your results. The com-
mand and multiple regression are:

Ceteris paribus, we find that national team players earn 68 percent more than non- 
national team players on average. We must apply the formula 100 × (eb – 1) to get this 
percentage. In the Command window in Stata, type dis 100 * (exp(0.519)-1) and 
press Enter to get ≈ 68.

A player having played 100 matches earns almost 2 percent more on average than 
a player having played 90 matches ceteris paribus (0.0018 × 10 = 0.018 → 1.8 percent). 
Finally, a player for the club finishing at, say, seventh place at the end of the season 
earns 5.3 percent less on average than a player for the club finishing at sixth place 
ceteris paribus. There are clear associations between all three x-variables and income. 
The three x-variables combined explain 38 percent of the variation (variance) in log 
of yearly income.
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Exercise 2 (data: student_exercise, see appendix C of Chapter 2 for data 
documentation)

2a  Use times_exer as y and the following x-variables in a multiple regression: 
gender, fitness_cen, sport_club, age and age-square. Describe your 
results. The multiple regression is:

Ceteris paribus throughout: Male students exercise on average 0.41 more times per 
week than female students. Fitness center members exercise on average 1.33 more times 
per week than non-members. The analogous effect for sports club membership is 0.83 
times per week. There is a U-pattern between age and number of times of exercise per 
week, with age = 29 years as the lowest point. We use the formula –b1/(2 × b2) to get 
this low-point for the association between age and exercising. In the Command win-
dow in Stata, type dis (0.3507558/(2 * 0.0059923)) and press Enter to get ≈ 29.

In summary, there are clear associations between all three x-variables and times ex-
ercise per week. The three x-variables combined explain 23 percent of the variation 
(variance) in times of exercise per week.

2b  Is there an interaction effect between gender and fitness_cen? Describe 
your results. The multiple regression is:
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Ceteris paribus, female fitness center members exercise 1.09 more times per week than 
female non-members on average. Ceteris paribus, male fitness center members exercise 
1.79 more times per week than male non-members on average (1.09 + 0.70 = 1.79). 
The difference between fitness center members and non-members in terms of times 
exercising per week differ for the genders; we have an interaction effect. Finally, there 
is practically speaking no gender difference in times of exercise for non-members of 
fitness centers (0.052).
Exercise 3 (data: student_exercise_motive, see appendix A of this chapter for data 
documentation)

3a  Use the dummy sport_club as y and the following x-variables in a multiple 
regression: gender, youth_exe, and exer_easy_motive. Describe your 
results. The multiple regression is:
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Ceteris paribus throughout: Male students on average have a 12.7 percentage points 
greater probability of being a sports club member than female students. A student with 
the score of, say, five on the youth sports variable has on average a 5.2 percentage points 
greater probability of being a sports club member than a student with the score of four. 
A student scoring, say, four on the exercise motive has on average a 4.7 percentage points 
greater probability of being a sports club member than a student scoring three.

3b  Use the dummy sport_club as y and the following x-variables in a multiple 
logistic regression: gender, youth_exe, and exer_easy_motive. Describe 
your results. The multiple logistic regression and its marginal effects become:

Ceteris paribus throughout: Male students on average have a 12.8 percentage points 
greater probability of being a sports club member than female students. A student with the 
score of, say, five on the youth sports variable has on average a 5.8 percentage points greater 
probability of being a sports club member than a student with the score of four. A student 
scoring, say, four on the exercise motive has on average a 4.7 percentage points greater 
probability of being a sports club member than a student scoring three. The multiple logis-
tic regression and its linear counterpart yield very similar answers in a qualitative sense.
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Notes

 1 If we randomly distribute two different types of questionnaires, imitating an RCT, we call 
it a survey experiment. See Section 4.6 for more on this.

 2 This kind of question/statement goes by the name of a Likert scale.
 3 Remember that the bivariate regression coefficient is the average change in y given a one-

unit increase in x. In the multiple regression case, we simply add the holding constant clause 
to this interpretation.

 4 The negative constant –1.02 is nothing to worry about. The constant has a literal interpre-
tation only when zero is a legitimate value for all x-variables in the regression.

 5 Of course, the regression coefficients for exercise motivation (x2) and exercise importance 
(x3) variables might also change in magnitude when a fourth and a fifth x-variable enter the 
regression.

 6 Metaphorically once more: We may think of the statistics program first running a quality- 
price regression for beers having an alcohol level of 5 percent. Next, the statistics program 
runs a second and similar quality-price regression for beers having an alcohol level of 6 per-
cent and so on for the remaining alcohol levels in the data. The average of all these regression 
coefficients is –0.172.

 7 The ceteris paribus clause is a convenient shorthand to avoid spelling out the names of all the 
other x-variables included in the regression model.

 8 Strictly speaking, R2 refers to the variance in y, but this goes for the same in practice.
 9 The adjusted R2 adjusts for the fact that more x-variables in a model almost by definition 

increases R2. 
 10 The regression line has a U-shape and a bottom-point when the coefficient for b2 has a 

positive sign. Nothing changes with more x-variables in the regression model except for the 
entering of the ceteris paribus clause. 

 11 R2-comparison between the two models is one criterion. Another criterion is that the 
 coefficient for the square term (i.e., x2) should be statistically significant, which it is. We dive 
into statistical significance in Chapter 5. 

 12 R2 for the linear model is 0.202, and R2 for the quadratic model is 0.259 (not shown).
 13 In some research traditions, such as the determinants of income, the log regression model is 

in fact the default model rather than the plain vanilla regression model. 
 14 We just add the ceteris paribus clause in the usual manner in the multiple regression case.
 15 Some researchers, especially economists, often log x to make both x and y measured in logs. 

When associating log x and log y, the interpretation is the average change in y in percent 
given a 1-percent increase in x. We call this elasticity.

 16 I focus on only x1 and b1 for presentational ease. The same reasoning applies in the multiple 
regression case for x2 and b2 and so on.

 17 I assume that a linear regression model is ok in the following for ease of presentation. That 
said, the same principle applies to non-linear settings.

 18 Kennedy (2002) has another name for Occam’s razor: the KISS principle: Keep It Sensibly 
Simple! Yet we might want to examine any possibility of non-parallel regression lines from 
an exploratory point of view, as in the case for linearity versus non-linearity.

 19 Some prefer moderator variable or moderator term; I personally prefer interaction variable/term.
 20 I explain the commands for interactions and non-linearity in more depth in Section 4.9.
 21 The third and final strike is that the regression coefficient for the interaction term should be 

statistically significant, which it is. More on statistical significance in Chapter 5, Section 5.7.
 22 Entering more x-variables does not complicate matters for the two examples of interaction 

effects in this section. I only omit such variables for presentational ease.
 23 Kahneman (2011) is the obvious source for all matters on the two authors’ collaborations. 

You also find the experiment I present here in Kahneman’s book, although I use the modi-
fied version developed by Gelman and Nolan (2017).

 24 The instructor prepares two versions of the assignment, say 50 with “65” and 50 with “10” 
and shuffles them randomly into a pile of 100 assignments before distributing them (again 
randomly) in class. In other words, the random number generator is bogus!

 25 More precisely, as we shall see in Section 5.7, it is evidence against the idea that a nonsense 
anchor has no effect on the subsequent assessment.
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 26 If randomization is not successful, however, control variables may help as for observational 
data. There is one more justification for using control variables in experiments: to increase the 
precision of the treatment variable’s effect. We find this in the reduction of the treatment vari-
able’s standard error from 4.128 to 4.073. This reduction is trivial in the present case, however. 

 27 I focus on dummy y-variables. It is also possible to do regression on categorical y-variables 
with more than two unordered outcomes, such as yes, no, and do not know. See the further 
reading section for this.

 28 Some might protest here, claiming that we should do the so-called logistic regression when 
y is a dummy. I will address this claim later in the section. 

 29 Linear regression between a dummy y and a dummy x always reproduces a similar cross- 
tabulation between the two variables. This no longer holds when more x-variables enter the 
regression.

 30 I think Angrist and Pischke’s (2009) influential book on econometrics marks the revival of 
the LPM model. By the way, econometrics is just the economists’ more hotshot name for 
statistical data analysis. 

 31 See Thrane (2020) for a more in-depth treatment of logistic regression analysis.
 32 If 140 out of the 644 students (i.e., about 22 percent) are members of a sports club, the odds 

of being such a member is 0.28 (0.22/(1 – 0.22) = 0.282). 
 33 Stata may also report odds-ratios; cf. Section 4.9.
 34 SPSS has to the best of my knowledge no option to produce marginal effects based on logis-

tic regression.
 35 We generally do not know the correct result in real life. That is, we do not know if the true 

gender difference is 17.6 or 16.9 percentage points. If we did, there would be no reason for 
trying to estimate the gender difference in the first place!
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Student Exercise Motive Data

Data documentation for the data student_exercise_motive; a survey questionnaire 
data from a random sample of students attending a Norwegian university college in 
2018. Variable names are in bold typeface. N = 510.

fitness_cen

Member of fitness center: no = 0, yes = 1

sport_club

Member of sport club: no = 0, yes = 1

health

Your physical health condition: ok = 0, good = 1, very good = 2

qol

Your quality of life: ok = 0, good = 1, very good = 2

youth_exe

In your youth before you started studying, to what extent were you involved in sports 
that required a lot of physical exercising (to a very small extent = 1, to a very great 
extent = 10)?

exer_imp_qol

Statement/question: Exercising three times per week is important for my quality of life!
Answer scale: totally disagree = 1, disagree = 2, neither/nor = 3, agree = 4, totally 
agree = 5

exer_easy_motive

Statement/question: I easily find the motivation to exercise!
Answer scale: totally disagree = 1, disagree = 2, neither/nor = 3, agree = 4, totally 
agree = 5

age

Age in years
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gender

Gender: female = 0, male = 1

snuff

Snuffing (moist snuff): never = 0, sometimes/daily = 1

hours_exer

Hours of weekly exercise (in hours)
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Student Tourism Data

Data documentation for the data stud_tourism; a survey questionnaire data for a ran-
dom sample of Norwegian students on their summer vacation trip of longest duration. 
Variable names are in bold typeface. N = 444.

los

Length of trip in days (duration)

book_time

Number of weeks from booking to start of trip

accom

Type of accommodation on trip: Commercial = 0, Private = 1

trav_party

Travel party on trip: Alone = 0, Friends = 1, Partner = 2, Other = 3

pay_meth

Main payment method on trip: Cash = 0, Card = 1

destin

Trip destination: Nordic country = 0, Beyond Nordic country = 1

type_trip

Type of trip: Non-package trip = 0, Package trip = 1

tot_spend

Total personal expenditures on trip in Euros
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Red Wine Data

Documentation for the data red_wine; a data set of red wines quality-tested by a 
Norwegian newspaper some years ago. Variable names are in bold typeface. N = 218.

quality

Taste quality of the wine on a scale from 60 (tasteless) to 100 (perfect taste): The Parker 
Scale

district

Wine district: Burgundy = 1, Bordeaux = 2, Languedoc/Roussillon = 3, Rhone = 4, 
Other = 5

age

The wine’s age, that is, the number of years it has been stored

in_store

Wine available in store: No, must be ordered = 0, Yes = 1

price

Price per bottle of red wine in Euros

log_price

Natural logarithm of price
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5.1 Introduction and Chapter Overview

Chapters 2–4 concerned only what happened inside our data – as expressed perhaps a 
bit cryptically at the end of Sections 2.1, 3.1, and 4.1. This chapter spins around one key 
question: How can we be sure what we find inside our data is something that also takes 
place outside our data? This is an inferential research question. To answer it properly, I 
take a rather circumstantial route with many stops along the way. Why bother with this? 
The short answer is that it needs to be done!

Sections 5.2–5.5 build the foundation for the main event of this chapter, namely 
 Section 5.7 on hypothesis testing and the assessment of statistical significance. Section 
5.6, in contrast, is an intermediate section verifying that the many claims of Sections 5.2 
to 5.5 are correct. Some do not quarrel with statements like ‘statisticians have proved 
that …’ and accept this without further ado. Others, among them myself, find such 
statements borderline infuriating. I have thus written Section 5.6 for those who do not 
accept matters at face value and partly for myself!

The presentation of the topics in this chapter, and particularly those in Section 5.7, 
takes an implicit notice of the by now long-lasting ‘statistical significance testing con-
troversy,’ for lack of a better term. Yet I postpone this important topic for an explicit and 
separate section, namely Section 5.8.

Section 5.9 summarizes the chapter and lists the key learning points in a familiar 
manner, whereas Section 5.10 is the usual coverage of do-file and syntax-file com-
mands. Section 5.11 provides some exercises with solutions.

Note to instructors! I have written this chapter with one particular type of student in mind: 
One who finds math difficult and encounters inferential statistics for the first time. This 
chapter is thus not written for instructors who already know the material! I emphasize 
this point more strongly than before because it has a direct bearing on the pedagogical 
order in which I present the various topics and on the level of the preciseness in their ex-
plications. Other instructors, likely those more skilled in statistics than me, might claim I 
over- simplify. My first response to such a claim is, ‘Yes, I do.’ My second response is that 
over-simplifying is often necessary to get the main message through. A third response, 
someone might say, is that over-simplifying with success oftentimes is very difficult to do. 

5.2 Samples, Populations, and Random Sampling

Two of the first concepts you encounter when picking up any book on statistics are 
‘samples’ and “populations.” In this book thus far, however, I have not discussed these 
terms. Why? The answer is that they complicate matters unnecessarily and that we do 

5 Inferential Research Questions

https://doi.org/10.4324/9781003252559-5


150 Inferential Research Questions

not need them to get a firm grip on what practical statistical analysis is mainly about. In 
this respect, we have already been through the basics without even bothering to define 
the two concepts properly. At present, however, it is essential to get some formalities in 
place as a foundation for what comes next.

At the beginning of Chapters 2–4, I claimed that my upcoming comments regarding the 
statistical results pertained only to what happened inside our data. There were two reasons 
for this: First, I wanted a focus on what happens inside our data, and a focus on what might 
happen (or not) outside our data takes that focus away. Second, we always analyze only our 
data. We oftentimes have a research ambition stretching beyond our particular data, but 
such an inference always involves a leap (of faith) from what we actually know about our 
data to what we do not know about what happens in the world beyond our data.

The inference from what we know (our data) to what we may reasonably speculate 
about (the world outside our data) is crucial. The main problem is that we in research 
are seldom interested in what happens in our data per se.1 On the contrary, our research 
interests most often pertain to the world outside our data. Yet since it is impossible to 
examine this outside world directly, we use our data to do so indirectly. The success or 
failure of this strategy rests on the foundation that our data resemble, or are represent-
ative of, the outside world. This question of representativeness is critical. If our data 
are unrepresentative of the outside world, it follows that they help us little in terms of 
making valid inferences about this world. If we predict the height of an adult male based 
on the average height of the 20 adult women in our data, our prediction will be too 
low because women on average are shorter than men. That is, our inference will be off 
since our data and the world beyond our data do not match up. This begs the question 
of how to make data representative of the outside world. Please welcome the distinction 
between a sample and a population and the idea of random sampling.

I am very sure you have heard the terms “sample” and “population” before. Indeed, 
what I have called data thus far is often a sample. For example, our student exercise data 
is a sample of 644 students. The world beyond our data is in this case the student popula-
tion, as in all the students attending the university in question. We may thus deduce that 
a population is all the units of a particular thing sharing at least one common trait – such 
as enrollment in the same university. A sample, in contrast, is some smaller proportion 
or fraction of such a population – as in 644 out of all the university students in our case.

Populations often refer to many people with a common characteristic: all adults in 
Australia, all adult women in Canada, and all basketball players in the NBA. Yet a 
population does not have to contain people in a technical sense. All transactions on 
the Danish stock exchange in 2020 are a population, and so are all car commutes by 
Canadian female drivers in 2020. Furthermore, all hockey games played in the 2020/21 
season of the NHL are a population. Any smaller proportions of these populations are 
by definition a sample.

If a sample was always our data and the world beyond our data was always a 
 population, I could simply have claimed that we in quantitative research use a sample 
to make an  inference about an unknown population. Yet this is not necessarily the 
case in  present-day statistical analysis.2 Consider, for example, our data on Norwegian 
soccer players that include all the players in the top-tier league. In this case, there is no 
need for a sample-to-population inference because the data by definition are a (known) 
 population.3 Still, these population data may by themselves serve as a relevant source of 
data for answering more general research questions, that is, inferential research ques-
tions stretching beyond our particular population data.
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Inferential statistics has much to do with the quantification of uncertainty. One issue 
is important at the outset in this regard: As long as we focus on what is going on inside 
our data – which could be a sample, a population, or whatever – questions about uncer-
tainty are typically irrelevant. That is, statistics programs do the calculations for the data 
correctly. Uncertainty, in other words, comes up when we wish to make an inference 
from our data to the world beyond our data. Furthermore, in the case of a sample versus 
a population, such an inference is probabilistic in certain circumstances.4 We look at 
these certain circumstances in more detail below.

We prefer a representative sample to an unrepresentative sample for obvious reasons. 
The big-ticket question is thus how to make a sample representative of a larger pop-
ulation. The best strategy is to draw a random sample. Random sampling means that 
every unit in the population has a known and roughly similar chance of ending up in 
the sample. Suppose 16,500 students attend the university from which we collected our 
student exercise data. Suppose also that each student had a student number and that we 
used a random function to select 644 numbers without replacement. (Any computer 
can make a random draw from a list of 16,500 numbers.) The first student thus had a 
1/16,500 chance of being selected into the sample. For the second student the chance 
was 1/16,499, for the third it was 1/16,498, and so on for the remaining 641 students. In 
short, the 16,500 students had a known and approximately similar chance of ending up 
in the sample receiving the invitation to take part in the survey.5

The random sampling procedure is the mechanism that makes a sample representa-
tive of a larger population rather than just a sample. In a manner of speaking, random 
sampling creates a miniature model of the population of interest.6 We then use this 
miniature model (i.e., the sample) to make an inference about the full-scale model (i.e., 
the population) under certain, probabilistic conditions. These conditions need some 
clarification, though, and this is the topic of the two next sections.

5.3 Repeated Sampling and the Normal Distribution

5.3.1 Repeated Sampling

Andrew, a friend of mine, is an avid fan of Norwegian top-tier soccer. He also has a sys-
tematic streak. Before the 2017 soccer season, he chose 25 matches to attend live at the 
stadiums. Moreover, he chose his 25 matches randomly from a list of all the 240 matches to 
be played in the 2017 season, that is, the population. He also gathered information on the 
matches he attended, such as the number of goals scored by the home team, the number of 
goals scored by the away team, the number of spectators etc. By the end of 2017, Andrew 
had thus compiled information on a set of variables for 25 of the matches in the Norwegian 
top-tier league of 2017. Furthermore, his data were a random sample of the population of 
soccer matches played in the 2017 season of the top-tier Norwegian soccer league.

Goal-scoring is one of the features in soccer Andrew finds interesting. Based on the 
scoring records for both teams, he created the variable total number of goals scored per 
match (goals). The name of the data file is Andrew_data. The summary descrip-
tive statistics for this goal-scoring variable appear in Stata-output 5.1. The analogous 
SPSS-output looks very similar, tells the exact same story, and is thus redundant. This 
is also the case for most of the other Stata-outputs in this chapter. In the few instances 
where the Stata-outputs and the SPSS-outputs differ, however, I will also present the 
analogous SPSS-outputs.
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We note that the two teams playing against each other scored 2.84 goals combined 
per match on average. The range for this goal-scoring variable is one to seven goals. The 
SD is 1.62. There is absolutely nothing new here compared with what we have been 
through so far in the book, except perhaps for the fact that the unit of analysis – that is, 
the soccer match – comprises two teams.

Suppose the above story is true, but now for an alternate reality experiment. Imagine 
Andrew making his computer do the random draw of the 25 matches for the 2017 season 
but forgetting to write down the list of 25 numbers (matches) because he suddenly remem-
bered being late to a meeting. So next time at home, he makes a second random draw of 
25 matches from the list of 240 matches and gets 25 new numbers. (This is sampling with 
replacement.) Some of the new numbers might have been on Andrew’s original list, but 
the majority will be new numbers. Now, picture Andrew attending these 25 alternate 
matches and compiling the “same” data as before. What would the mean, minimum, 
and maximum be for the total goals variable this time? Because this is an alternate reality 
scenario, we do not know. Yet a good guess is close to the results of the first and actual draw in 
Stata-output 5.1. We would not anticipate the results to be identical, however, because of 
the expected random variation between Andrew’s actual sample and our imagined sample.

Let us step up our alternate reality experiment a notch. The second time Andrew 
makes the random draw the fire alarm goes off. He shuts down his computer in a hurry 
without saving and runs out of the apartment. Back again (it was a false alarm!), Andrew 
makes a third random draw. Now picture Andrew attending this second alternate list of 
25 matches and compiling the data in the usual way. What would the mean and so on be 
for the total goals variable this time? Again, we cannot know for sure. Yet a good guess 
is once more “close to results of the first and actual draw in Stata-output 5.1.” Again, how-
ever, we would not anticipate the results to be identical because of the expected random 
variation between Andrew’s actual sample and our two imagined samples.

You get the picture of what happens in a fourth random draw, so I do not have to 
come up with any more bad excuses for Andrew. The results will typically be close to 
the results of similar statistical analyses based on other random samples from the same 
population. This thought experiment of making consecutive random draws from the 
same population and doing the same statistical analysis – say, to find a mean – for the 
various samples one obtains is fundamental in statistics. We call it repeated sampling.

Think back on our 644 students in the exercise data. Imagine making a second ran-
dom draw to get a new random sample of 644 students. What would be the results if 
we were to repeat the analyses in this book on this alternate random sample? We cannot 
know for sure, but a good guess in line with the reasoning above is that the results in 
the main would be close to the ones we got for the sample we actually analyzed. And so 
on for a third, fourth, and fifth alternate random sample etc. Yet we would not expect 
the results for the various samples to be identical because of random variation between 
samples.

Stata-output 5.1  Descriptive statistics for the total number of goals per match in Andrew’s 
random sample of the 2017 season.
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Let us not forget about Andrew yet. Above I described the procedure for getting his 
random sample for the 2017 season. However, he did a similar thing for the 2018, 2019, 
and 2020 seasons. His total data are thus a random sample of 100 matches (25 × 4 seasons) 
from the population of 960 soccer matches in 2017–2020 (240 × 4 seasons). Summary de-
scriptive statistics for the variable total goal-scoring per match appear in Stata-output 5.2.

We note that the two teams scored 2.96 goals combined per match on average, with a 
range from zero to seven goals. The SD is close to 1.61. Both results are very close to the 
results for the 2017 season in Stata-output 5.1, which should come as no surprise by now.

What is the average of total goals per match in the population of 960 matches? The 
short answer is that we do not know. The longer one is that we do not know this be-
cause there would be no reason for taking a sample to begin with if we did! That said, 
we could speculate. A good guess in this regard – the best guess, even – is somewhere in 
the proximity of Andrew’s sample mean of 2.96. I show why this is a good guess below.

5.3.2 The Normal Distribution

Repeated sampling is one bedrock of statistics. Another bedrock is the normal distribu-
tion. We met the normal distribution in Section 2.6 when scrutinizing the distribution 
for the alcohol level variable in the beer data. Owing to statisticians, we know one 
fundamental fact about a normally distributed continuous variable in a large sample: 95 
percent of its units lie in the interval mean ± two SDs.7 We can thus make the following 
rough inference for the alcohol level variable in Stata-output 5.3, assuming for conven-
ience that it has a normal distribution and pertains to a large sample: 95 percent of the 
Christmas beers in the data have an alcohol level in the range between 5.06 and 11.32 
percent (8.187 ± 2 × 1.566 = 8.187 ± 3.132 = [5.055, 11.319]).8

In practice, we often relate the normal distribution to a standardized variable. A stand-
ardized variable has a mean of zero by definition, and one SD is called z.9 Figure 5.1 
depicts the normal distribution for a standardized variable and its relationship to z (or 
z-score). We see that 95 percent of the distribution for a standardized and normally 
distributed variable lies in the interval 0 ± 2 z.

Stata-output 5.2  Descriptive statistics for the total number of goals per match in Andrew’s 
random sample of the 2017–2020 seasons.

Stata-output 5.3 Descriptive statistics for alcohol level in the Christmas beer data.
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5.3.3 Combining Repeated Sampling and the Normal Distribution

How does the idea of repeated sampling relate to the normal distribution? We return to 
Andrew’s interest in goal-scoring to answer this, but we address the sample collection 
from another angle. We know the population contains exactly 960 matches. It is thus 
doable to compile a list of 960 numbers – one for each match – and to make a random 
draw of 100 numbers from this list. Suppose we did just that, found the match statistics 
for the 100 matches on the Internet (unlike Andrew), and calculated the mean of the 
total goals variable. Assume this mean was 3.05; a result different from Andrew’s but 
not by much. Suppose we made a second random draw of 100 matches and repeated 
the process for the second sample. Assume the second result for the total goals variable 
was 2.93. Third random draw, third sample, third data compilation, third analysis, and 
a third mean for total goals: 2.88. Once more: fourth random sample … and a fourth 
mean for the total goals variable: 2.90. Table 5.1 displays the results of this imagined 
repeated sampling project stopping at 100 random samples.

Now, think of Table 5.1 as a data set in which “Mean of total goals” is a variable and 
each sample is a unit. The variable “Mean of total goals” thus has a mean and an SD. 
Furthermore, and thanks to statisticians once more, we know a priori that this variable 
has a normal distribution: If we actually were to do this repeated sampling project and 
calculate the mean for each new sample, the distribution of means would follow the 
normal distribution in Figure 5.1.10 (We return to this normal distribution in Section 
5.6.) Based on this knowledge, we may calculate an interval containing the true and 
unknown mean of the total goals variable in the population. Please welcome the 95 
percent CI!

Figure 5.1  Percentage of units under the normal curve for a standardized variable; 95% of 
the units lies in the interval 0 ± 2 z.
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5.4  The 95 Percent CI for Descriptive Statistics:  
Means and Proportions

5.4.1 Means

If the “data” in Table 5.1 were real, we could calculate the mean and the SD to find the 
interval containing 95 percent of the matches with respect to the mean of the total goals 
variable: the mean ± two SDs.11 There is only one problem with this approach; the data 
are not real! For this reason, we have no mean or SD to base our calculations on. Yet 
the statisticians save the day once more with their knowledge. Thanks to the random 
sampling principle, we know that Andrew’s sample most often is representative of the 
unknown population. We may therefore use his sample mean of 2.96 as an estimate for 
the total goals variable’s unknown population mean. One problem solved; we have the 
mean we need! The next problem is the SD. We mentioned in Chapter 2 that the SD 
measured the size of the variation around the mean of a continuous variable. We could 
thus use Andrew’s sample-SD for total goals as an estimate for this variable’s unknown 
population-SD – just as did for the mean. Yet this is inefficient because there is much 
more variation in the total number of goals variable from match to match than there 
is variation in the mean of the total number of goals variable from repeated sample to 
repeated sample.12 However, we may compute an estimate of the latter repeated-sample 
SD based partly on Andrew’s sample-SD. The name of this repeated-sample SD is the 
standard error (SE). The formula to obtain the SE of a mean is

s
n

,

where s is the SD of the total goals variable in Andrew’s sample in this case, and n is the 
number of matches in Andrew’s sample in this case. From Stata-output 5.2 the SE thus 
becomes

= = ≈ 
1.6076

100
0.16076 0.161

To find the interval containing 95 percent of the matches with respect to the mean of 
the total goals variable in the population, we apply the formula mean ± 2 SEs. That is, 
we substitute the SD with the SE. This interval becomes

[ ]± × = ± ≈2.96 2 0.161 2.96 0.322 2.64, 3.28 .

Table 5.1  Results of an imagined repeated random sampling project. 

Random samples: N = Mean of total goals

Andrew’s sample 100 2.96
Our first sample 100 3.05
Our second sample 100 2.93
Our third sample 100 2.88
Our fourth sample 100 2.90
… 100 2.84
… 100 2.92
… Our sample 99 100 3.02
… Our sample 100 100 2.98
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The approximate interpretation is that we are 95 percent confident the interval from 
2.64 to 3.28 goals contains the true and unknown mean of the total number of goals 
variable in the population. We call this the 95 percent confidence interval (CI). More 
precisely, in repeated samples of the same size from the same population, the true popu-
lation mean will lie in the interval from 2.64 to 3.28 goals 95 percent of the time. I will 
mostly use the former rough interpretation for convenience in the examples to come.

Stata-output 5.4 verifies our calculations. The output displays the SE (Std. Err.) 
and the 95 percent CI on the right. Stata’s 95 percent CI is based on more decimals than 
my calculation and on multiplication with a number slightly smaller than 2.0, that is, 
1.984. SPSS-output 5.1 reports approximately the same interval in addition to some of 
the measures we covered in Chapter 2.

SPSS-output 5.1  The 95 percent CI for total number of goals per match in the 2017–2020 
seasons.

Stata-output 5.4  The 95 percent CI for total number of goals per match in the 2017–2020 
seasons.
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We have analyzed the variable students’ total hours of exercise per week on several 
 occasions. What is this variable’s 95 percent CI? The upper part of Stata-output 5.5 
 contains the numbers we need to calculate by hand; the lower part makes the calcula-
tion for us. With 95 percent confidence, the unknown mean of total hours of weekly 
exercise lies in the range between 4.54 and 5.02 hours in the population. (SPSS shows 
the exact same results of course.)

5.4.2 Proportions

The examples thus far were CIs for means. We use the same approach to find the 95 
percent CI of a proportion, but we use another formula to find its SE. The formula to 
obtain the SE of a proportion is

p p

n
( )−1

,

where p is the sample proportion in question and n is the number of units. Suppose we 
want to find the SE for the proportion of sports club members in the student exercise 
data. The sample numbers of interest are 0.2174 (i.e., 21.74 percent are members, cf. 
Stata output 4.16) and 644 (i.e., the number of students). The SE thus becomes

( )− = 
0.2174 1 0.2174

644
0.01625

We now have the information we need to compute the 95 percent CI, namely,

[ ]± × = ± ≈2.96 2 0.161 2.96 0.322 2.64, 3.28 .

We are 95 percent confident the interval from 18.5 to 25 percent contains the true 
and unknown proportion of sports club members in the population. Stata again uses 
more decimals and multiplies the SE with a number slightly less than 2.0 (i.e., 1.96) 
to obtain the 95 percent CI; cf. Stata-output 5.6. (The analogous SPSS-output shows 
the same.)

Stata-output 5.5 Descriptive statistics and the 95 percent CI for hours of weekly exercise.
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The three previous examples – two for a mean and one for a proportion – have one 
thing in common: They tell us we know less precise things about a population than we 
do about a random sample from such a population. If this is true in general (which it 
is!), it must also hold for the difference between two means, the difference between two 
proportions, and for variable associations in general. This is coming up next.

5.5 The 95 Percent CI for Variable Associations

5.5.1 Difference in Two Means

Stata-output 5.7 presents the gender-specific means in total exercise hours per week for 
the student data. We note the familiar and average gender difference of 1.447 hours per 
week (5.7149 – 4.2680 = 1.4469), with males being more active than females.

Stata-output 5.6  The 95 percent CI for the proportion of students being members of sports 
clubs.

Stata-output 5.7 Hours of weekly exercise by gender. One-way ANOVA.
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What is the 95 percent CI for the mean gender difference in the population? We pro-
ceed along the same lines as before to answer this question. First, we find the SE of the 
mean difference. The formula is

s
n

s
n

+ ,1
2

1

2
2

2

where, in this case, s1 is the SD for females, n1 is the number of females, s2 is the SD for 
males, and n2 is the number of males. From Stata-output 5.7 the SE thus becomes

+ = ≈2.756
416

3.581
228

0.2729 0.273.
2 2

From this, we obtain the 95 percent CI

[ ]± × = ± ≈1.447 2 0.273 1.447 0.546 0.90, 1.99 .

We are 95 percent confident the interval from almost one to almost two hours contains 
the true and unknown mean gender difference in exercise hours in the population. 
Note that the CI, in this case, is always larger than zero; it does not include a zerohour 
mean difference between the genders. We may tentatively deduce that the male students 
in the population exercise on average more hours per week than female students. (We 
return to this conclusion more formally in Section 5.7.)

Again, Stata uses more decimals and a number less than 2.0 (i.e., 1.96) to calculate 
the analogous results, which appear in Stata-output 5.8. The diff row at the bottom 
of the output presents the relevant numbers. The negative sign reflects that Stata in this 
case subtracts the male mean from the female mean. SPSS-output 5.2 presents the same 
results in an analogous manner in the bottom row.

Stata-output 5.8 The 95 percent CI for the mean gender difference in weekly exercise hours.
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5.5.2 Difference in Two Proportions

We find the 95 percent CI for a difference between two proportions along the same 
route as we did for the difference between two means, but we use a different formula to 
calculate the SE (cf. Agresti, 2018). Yet since we typically prefer to carry out a compari-
son of proportions by another statistical technique, to be described in Section 5.7, I will 
not get into this. Differences in means and proportions are two types of variable associ-
ations; a regression coefficient is a third. We close the present section by looking at this.

5.5.3 A Regression Coefficient

What is the 95 percent CI for a regression coefficient? To answer this, we first find 
the coefficient’s SE and then proceed in the usual way: the coefficient ± 2 × SEs. Yet 
since calculating the SE of a regression coefficient is a complicated affair, we leave 
this to the statistics program and proceed directly to the association between gender 
and  exercise hours in Stata-output 5.8. Stata-output 5.9 presents the analogous analysis 
 regression-style. We note that male students on average exercise 1.447 hours more per 
week than female students – as we already know.

SPSS-output 5.2  The 95 percent CI for the mean gender difference in weekly exercise hours.

Stata-output 5.9  Hours of weekly exercise by gender in the student exercise data. Linear 
regression.
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The SE (Std. Err.) of the regression coefficient is 0.2532, and the 95 percent CI on 
the right goes from 0.95 to 1.94. The reason why the regression-SE is slightly different 
from the ANOVA-SE in Stata-outputs 5.7 and 5.8 lies in the mathematical properties 
of regression. We make the same general inference as before, however: Because the CI 
does not include zero (i.e., gender equality), we tentatively conclude that male students 
appear to exercise more hours per week on average than female students in the popula-
tion. SPSS-output 5.3 reports the same conclusion, but as usual in a somewhat different 
format.

5.6  Verifying That Random Sampling and the Central Limit 
Theorem Work as Promised

A random sample is a means to an end; a population is that end. That is, we study a 
known random sample to get more knowledge about an unknown population. The 
previous sections have taken us up the steps in a bottom-up approach from sample to 
population based on the ideas of random sampling, the normal distribution, and the-
oretical and imagined statistical reasoning. Now it is time to show how this actually 
works by doing the exact opposite, that is, a top-down population-to-sample verifica-
tion exercise. To be clear, the normal situation is that we do not know what happens in 
the population of interest, and this is why we draw a random sample to begin with. In 
the upcoming and particular case, however, we have access to data for the entire popu-
lation. We may thus retrace our steps in the bottom-up process by going in the opposite 
top-down direction.

SPSS-output 5.3  Hours of weekly exercise by gender in the student exercise data. Linear 
regression.
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You might have figured out that “Andrew” is no friend of mine; that he is a 
 fictitious character. You might have had a hunch I made him up for this Chapter. I 
did. Furthermore, you might have guessed that I have a data set covering the entire 
population of soccer matches in the 2017–2020 period (N = 960). I have.13 It is thus 
easy to imagine how I used a random draw function to select “Andrew’s sample” of 
100 matches, and how I computed the mean of the total goals variable. I can do this 
just as easily 49 more times – which I actually have done. That is, I turned the im-
agined repeated sampling project mentioned in Section 5.3 into an actual repeated 
sampling project. Table 5.2 presents the results in this regard. (The table uses four 
columns instead of two to save space.) On top and left, we find Andrew’s result for the 
total goals variable: the mean of 2.96. For the second random sample, the analogous 
mean became 3.15. The mean for the third random sample became 2.90 and so on for 
the remaining 46 samples.

Think of Table 5.2 as a data set having only one continuous variable – “Mean of 
total goals” – and 50 units. That is, one unit equals one (repeated) sample. Scanning 
through the data, we see that no sample mean is smaller than 2.52 (sample 6) or larger 
than 3.29 (sample 38); the range is thus 0.77. Section 5.3 said the sampling distribution 
has a normal distribution. Figure 5.2 verifies this using a Kernel density plot for the 
50 mean values in Table 5.2. We note the symmetrical and bell-shaped curve roughly 
corresponding with the superimposed normal distribution. The Kernel plot for the 
50 mean values would have been even smoother and more perfectly aligned with the 
normal distribution if we had taken 100 repeated samples rather than just 50.

Table 5.2  Results of an actual repeated random sampling project from a population of 960 
soccer matches. N = 100 for each sample; 50 samples with replacement. 

Repeated samples Mean of total goals Repeated samples Mean of total goals

Andrew’s sample 2.96 Sample 26 3.04
Sample 2 3.15 Sample 27 2.77
Sample 3 2.90 Sample 28 3.14
Sample 4 2.71 Sample 29 2.92
Sample 5 2.72 Sample 30 2.91
Sample 6 2.52 Sample 31 2.98
Sample 7 2.64 Sample 32 3.15
Sample 8 3.17 Sample 33 3.00
Sample 9 2.96 Sample 34 3.13
Sample 10 2.99 Sample 35 3.20
Sample 11 2.65 Sample 36 3.00
Sample 12 2.70 Sample 37 3.00
Sample 13 2.77 Sample 38 3.29
Sample 14 2.86 Sample 39 2.92
Sample 15 2.85 Sample 40 2.67
Sample 16 3.05 Sample 41 2.61
Sample 17 2.66 Sample 42 3.18
Sample 18 2.81 Sample 43 3.05
Sample 19 2.85 Sample 44 2.88
Sample 20 3.06 Sample 45 3.09
Sample 21 3.06 Sample 46 2.91
Sample 22 2.91 Sample 47 2.90
Sample 23 3.18 Sample 48 2.74
Sample 24 3.27 Sample 49 2.75
Sample 25 3.08 Sample 50 3.10
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Stata-output 5.10 displays the mean of the 50 mean values in Table 5.2. The out-
put shows that this repeated-sample mean is 2.94 goals, with a repeated-sample SD 
of 0.188. The analogous numbers were 2.96 and 1.608 for Andrew’s sample; cf. 
 Stata-output 5.2. As expected, the two means are close. Furthermore, and again as 
expected, there is much more variation in total goal-scoring from match to match 
in Andrew’s sample (1.61) than there is variation in the mean of total goal-scoring 
among repeated samples (0.188). Interestingly, we note that the estimated SE based on 
Andrew’s sample – 0.161; cf. Stata-output 5.4 – is very close to the repeated-sample 
SD of 0.188.

What about the population mean? Stata-output 5.11 shows that the population mean 
for the total goals variable is 2.93. This is not exactly the same as in Andrew’s sample 

Stata-output 5.10  Descriptive statistics for the variable mean of total goals (totgoal_mean) based 
on the data in Table 5.2. The name of the data file is repeat _ samp _ 50.
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Figure 5.2  Kernel density plot for the variable mean of total goals in Stata-output 5.10, based 
on the data in Table 5.2.
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(2.96) or as in our repeated sampling exercise (2.94). But it is very close. Random 
 sampling and the CLT work as promised!

5.7  Hypothesis Testing and the Assessment of  
Statistical Significance

We are now ready for the main event of this chapter: hypothesis testing and the as-
sessment of statistical significance. We start with hypothesis testing and proceed to the 
significance aspect. The presentation builds on the premise that the data we analyze is 
a random sample from some well-defined population if not explicitly stated otherwise. 
For this reason, we also assume that the sample we analyze is representative of the 
 population in question.

5.7.1 Hypothesis Testing: Preliminaries

Hypothesis testing concerns at least two variables, and this x-and-y case is our point 
of departure.14 Specifically, we believe x affects y for some plausible reason.15 We may 
for example hypothesize that male students exercise more hours per week than female 
students because of a stronger (male) exercise motivation. In this case, x is gender, y is 
hours of exercise, and motivation is the reason. In a related spirit: Students active in 
sports in their youth exercise more hours per week than students less active in sports in 
their youth because of habit formation. The x is youth exercise involvement, y is hours 
of exercise, and the reason is habit formation.16 That said, any hypothesis always refers 
to a population. The hypotheses above should thus have included an “in the population” 
phrase I omitted for the sake of readability. Yet although a hypothesis always refers to 
a population, we test it against what we find in a sample from this population.17 Before 
going into the actual testing, however, we must first make a detour concerning the 
two types of hypotheses we face in research: the alternative hypothesis and the null 
hypothesis.

5.7.2 The Alternative Hypothesis and the Null Hypothesis

The alternative hypothesis refers to what we believe in regarding the association be-
tween x and y in the population prior to the statistical analysis of this association for the 
sample. We denote this alternative hypothesis H1. For the gender and exercising case, 
we thus have

H1: Male students exercise more hours per week than female students.18

Stata-output 5.11 Descriptive statistics for the total goals variable in the population.
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The null hypothesis specifies what we do not believe in for the population, or the “op-
posite” of what we believe in, namely

H0: Male students exercise for the same number of hours per week as female students.

The alternative hypothesis generally suggests some form of non-zero association be-
tween x and y in the population, whereas the null hypothesis implies a zero associa-
tion between x and y. The key point is that we always test the null hypothesis!19 We 
test the null hypothesis for the population against what we find in a random sample 
from this population. If what we find in the random sample differs from what we 
should find in the population according to the null hypothesis (i.e., a zero association 
between x and y), we reject the null hypothesis and get indirect support for the alter-
native hypothesis. That is, we get support for a non-zero association between x and y 
in the population in keeping with what we believe in a priori, that is, the alternative 
hypothesis.

A small and vital word in the above paragraph is “differs.” How do we assess if what 
we find in the sample differs from what we should find in the population according to 
the null hypothesis? The answer is that we use tests of statistical significance for exactly 
this purpose.

5.7.3 Statistical Significance: Preliminaries

When examining the association between x and y in a random sample, we know that 
any association we find will not be of exactly the same magnitude as the equivalent 
population association. Suppose the sample association in question is a regression 
coefficient of 0.5. In the population, the analogous coefficient could be, say, 0.2, 0.3, 
0.4, 0.6, 0.7, or 0.8 merely because of random differences between the sample and 
the population. Could the population coefficient also be zero, implying that x has 
no effect on y in the population? A statistical significance test tries to answer this 
question, and I will now show this for the association between gender and exercise 
hours.

5.7.4 Gender and Hours of Exercise Once More: ANOVA

The null hypothesis suggests that male students exercise for the same number of 
hours per week as female students in the population. We saw in Stata-outputs 5.7 and 
5.8 that male students on average exercised 1.45 hours more per week than female 
students. (The 95 percent CI went from 0.90 to 1.99.) To find out if random differ-
ences between the population and the sample may account for this 1.45-hour mean 
gender difference, we turn the 95 percent CI on its head. That is, we compute a 95 
percent CI for the null hypothesis. The formula to get this 95 percent CI for the null 
hypothesis, which goes by the name of the 95 percent acceptance region for the null 
hypothesis, is

± ×0 2 SEs.
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Since we already know from the calculation based on Stata-output 5.7 that the SE in 
question is 0.273, we thus obtain the 95 percent acceptance region

[ ]± × = ± ≈0 2 0.273 0 0.546 –0.546, 0.546 .

Given a correct null hypothesis in the population – that is, gender equality in the mean 
of total exercise hours – we are 95 percent confident the interval from –0.55 to 0.55 
hours contains the mean gender difference in exercise hours in the population. The 
1.45-hour mean gender difference in our sample is outside of this acceptance region – 
just as the 95 percent CI for the mean gender difference did not include zero in Section 
5.5. We, therefore, reject the null hypothesis and get indirect support for the alternative 
hypothesis suggesting that male students on average exercise more hours per week than 
female students in the population. The association between gender and exercise hours 
is statistically significant. Alternatively (and a bit simplified), we might say the observed 
mean gender difference in exercise hours appears not to be the result of random differ-
ences between the sample and the population.

5.7.5 Gender and Hours of Exercise Once More: Regression Analysis

We do a similar thing in the regression case. The null hypothesis – that is, gender equal-
ity in the mean of total exercise hours in the population – implies that the regression 
coefficient for the gender dummy variable should be zero. The 95 percent acceptance 
region for this null hypothesis is

± ×0 2 SEs.

We already know that the SE in question is 0.253; cf. Stata-output 5.9 or SPSS-output 
5.3. We thus get the 95 percent acceptance region

[ ]± × = ± ≈0 2 0.253 0 0.506 –0.506, 0.506 .

Given the null hypothesis implying a gender regression coefficient of zero in the 
population, we are 95 percent confident the interval from –0.51 to 0.51 hours con-
tains the gender regression coefficient in the population. Our gender coefficient of 
1.45 hours for the sample is outside of this acceptance region. Again, we reject the 
null hypothesis and get indirect support for the alternative hypothesis. The gender 
regression coefficient has a statistically significant effect on hours of exercise, imply-
ing that male students on average exercise more hours per week than female students 
in the population.

The two prior examples compared an acceptance region for a null hypothesis 
in a population with a statistical result for a sample. Because the sample result was 
outside of the acceptance region for H0, we rejected it and got indirect support 
for H1.

20 The association was thus statistically significant. But suppose the sample 
result was inside of the acceptance region of H0, we would have then kept H0 and 
gotten no support for H1. The association between x and y would then have been 
statistically insignificant – or not statistically significant. Thankfully, finding out if 
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a mean difference between two groups or a regression coefficient, or any other sta-
tistical association, is statistically significant is often more of a mechanical action in 
research than making the calculations above. Let us, therefore, look at this for our 
familiar examples.

5.7.6 From t-values to p-values

To find out if a variable association is statistically significant, we typically divide the 
expression for the association in question by its SE. This provides us with a t-value. 
We return to the regression between gender and hours of weekly exercise, which re-
appears in Stata-output 5.12. By dividing the regression coefficient (1.44883) by its SE 
(0.2532102), we get the t-value of 5.71 reported in column t; see also SPSS-output 5.3.

The t-value is important in inferential statistics involving means – such as for the 
regression between gender and hours of exercise.21 In large samples, t-values roughly 
correspond to the z-values we saw in Figure 5.1.22 This has one very important im-
plication: A t-value larger than ± 2 for a regression coefficient (or an ANOVA mean 
difference) implies outside of the 95 percent acceptance region for the null hypothesis. 
That is, a t-value larger than ± 2 suggests a statistically significant association between x 
and y. In contrast, a t-value in the range from –2 to 2 suggests that such an association 
is not statistically significant. The t-value for our gender regression coefficient is 5.71. 
This is outside of the 95 percent acceptance region for the null hypothesis, as shown in 
the upper part of Figure 5.3. The association is hence statistically significant.

The 95 percent CI for a mean, for a difference between two means, for a regression 
coefficient, and for the null hypothesis’ acceptance region have one thing in common: 
the insistence on making the correct inference 95 percent of the time in repeated sam-
pling. In practice, however, we focus on the flip side of this 95 percent certainty level. 
That is, we are dead set on not making the wrong inference more than 5 percent of the 

Stata-output 5.12  Hours of weekly exercise by gender in the student exercise data. Linear 
regression.
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time. We refer to this threshold value as the 5 percent significance level. This 5 percent sig-
nificance level, in turn, corresponds with a t-value of ± 2.23 How does this relate to the 
t-value of 5.71 of our gender coefficient? The bottom of Figure 5.3 illustrates. We note 
that the t-value lies way outside of the acceptance region for the 5 percent significance 
level coinciding with a t-value in the region from –2 to 2.

Figure 5.3 also shows the acceptance region for the 1 percent significance level, that 
is, a t-value in the range from –2.58 to 2.58. We may think of the 1 percent significance 
level as raising the bar even higher in terms of not making the wrong inference. Our 
gender regression coefficient’s t-value of 5.71 is on the outside of the 1 percent signifi-
cance level as well.

The idea of not making the wrong call more than five times out of a 100 suggests we 
may say something more exact about this probability of wrongdoing. Welcome to the 
p-value, where p is short for probability. The p-value is the flip side of the t-value. A 
large t yields a low p, and a small t yields a large p. For this reason, since we most often 
do research in the hope of finding a statistically significant association between x and 
y, we hope to find large t-values/small p-values. (If for some particular reason we do a 
statistical analysis in which the alternative hypothesis is that x does not affect y, we thus 
hope for a small t/a large p.)

All statistics programs report p-values. We find the p-value on the right of the t-value 
under the column heading P>|t|in Stata-output 5.12. The p-value for the gender re-
gression coefficient is 0.000, which implies less than 0.0001 or less than 0.01 percent.24 
In other words, the probability of obtaining a gender regression coefficient of 1.445 
(or a larger one) is below 0.01 percent if the true coefficient in the population is zero. 
Alternatively, given no mean gender difference in the population (i.e., H0), it is very 
unlikely to obtain a mean gender difference of 1.445 hours in a random sample from 
this population. We analogously find the p-value in SPSS-output 5.3 on the right of the 
t-value under the Sig.column heading. The result in SPSS is of course similar to the 
result in Stata.

Figure 5.3 Region of acceptance for the null hypothesis and its relationship with t-values.
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The p-value plays an important role in statistics, but it is often misinterpreted. 
The strictly correct interpretation in our case is the probability of finding a gender 
regression coefficient of 1.445, or a larger one, if the true coefficient in the population 
is zero.25 It is important to note what this p-value is not: It is not the probability of 
random chance creating the statistical association in the sample – which many seem to 
believe. The p-value measures something less relevant, namely, “… in a world where 
your hypothesis isn’t true, how likely is it that pure noise would give you results like 
the ones you have, or ones with an even larger effect?” (Ritchie, 2020, p. 88).26 That 
said, if the p-value has a very low probability, it makes sense believing that something 
else more systematic is going on – such as the stated reason for the alternative hypoth-
esis to begin with.

Stata-output 5.13 presents a regression between hours of exercise and the student 
status variable. The constant (or reference) is the single students, and the coefficient 
for the boyfriend/girlfriend group suggests that this group exercises 0.09 hours less per 
week than the single students. The difference between the cohabiting/married group 
and the single students is 0.57 hours in the same negative direction. Yet neither of these 
coefficients have p-values below 0.05. We conclude there is no statistically significant 
association between exercise hours and the student status variable in the population.27 
That said, the coefficient for the cohabiting group is not far from being significant at 
the 5 percent level, with a p-value of 0.10 or 10 percent. (SPSS of course yields similar 
results.)

5.7.7 Significance Tests in Multiple Regression

The multiple regression in Stata-output 5.13 has two dummy variables: the boyfriend/
girlfriend group versus the single group and the cohabiting group versus the single 
group. For this reason, we have one alternative hypothesis and one null hypothesis for 
each of the two dummy x-variables in the regression model. Save for this, nothing is 
new in the multiple x-variable case compared with the bivariate case.

Stata-output 5.13  Hours of exercise by student status in the student exercise data. Linear 
regression.
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5.7.8 The Margin of Error

The 95 percent CI and the 95 percent acceptance region for the null hypothesis have 
one common feature: the expression ± 2 × SEs. This is the margin of error. Looking 
at the formulas for the SEs in Sections 5.4 and 5.5, we note they have sample size in 
their denominators. (This applies to all SE-formulas.) This suggests that the SE and 
thus the error margin decreases by necessity as sample size increases – all else being 
equal. Smaller error margins thus means narrower or more precise CIs and acceptance 
regions. To double the precision, as in reducing the error of margin by 50 percent, we 
need to increase the sample size fourfold. This has practical implications we return to 
in Section 5.8.

5.7.9 One-Sided and Two-Sided Significance Tests

So-called two-sided or two-tailed tests of significance dominate statistical research. 
A two-sided test means that we reject the null hypothesis if the t-value is larger than 
± 2; cf. Figure 5.3. Sometimes, however, we use one-sided tests of significance. Be-
low I clarify when to adopt the two-sided and when to adopt the one-sided test for 
the multiple regression in Stata-output 5.13. We may have two different alternative 
hypotheses for the difference in exercise hours between, say, the single and the cohab-
iting students:

H1a: Cohabiting students exercise fewer hours per week than single students.
H1b: Cohabiting students and single students exercise for an unequal number of hours 

per week.

H1a is a directional hypothesis, whereas H1b is non-directional. A directional hy-
pothesis is thus a more specific expectation regarding the association between x and 
y. A directional H1 entails a one-sided test of significance. This implies that we reject 
H0 only when the t-value is either larger than 2 or larger than –2, depending on the 
direction (i.e., plus or minus) of H1. For a non-directional H1, in contrast, we reject 
H0 whenever the t-value is larger than ± 2. Suppose H1b is at stake. The p-value in 
this regard, as we already know, is 0.10. But suppose H1a was what mattered. Since 
we now reject H0 only when the t-value is larger than –2 on the left side of Figure 
5.3, we should divide the p-value in the statistics program by two: 0.10/2 = 0.05 or 
5 percent. Thus, given H1a, the difference in exercise hours between cohabiting and 
single students is statistically significant at the 5 percent level exactly.28 The upshot 
is that it is “easier” to get a significant result for a directional H1 than it is for a non- 
directional H1. The state of knowledge concerning the research question of interest 
determines if a directional hypothesis is more prudent than a non-directional one 
to begin with.

5.7.10 t-Values and p-Values in Small Samples

The CLT tells us that the larger the random sample, the more it resembles the popula-
tion from which it was drawn. This has one key implication: Random differences be-
tween populations and samples are more pronounced for smaller samples than for larger 
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samples – all else being equal. In order not to make an error more than five times out 
of a 100 when rejecting a null hypothesis for a small sample, we must therefore guard 
ourselves against these enlarged random differences. This defense entails raising the bar 
as in demanding a higher t-value to reject the null hypothesis. We already know that 
the t-value of 2, or 1.96 to be exact, refers to large samples. Some critical t-values for 
various sample sizes are:

Sample size:29 5 percent significance  
(two-sided): 

1 percent significance  
(two-sided):

N = 30 2.042 2.750
N = 60 1.980 2.660
N = 100 1.984 2.626
N = 120 1.980 2.617
Large sample 1.960 2.576

Suppose we do a bivariate regression analysis for a sample of about 30 units. In 
this case, we reject the null hypothesis for a 5 percent significance level when the 
t-value for the regression coefficient exceeds ± 2.042 given a non-directional alterna-
tive hypothesis.

5.7.11 Using Asterisks (*) to Denote Statistical Significance Level

It has become almost mandatory to use asterisks to denote statistical significance levels 
throughout the world of quantitative research. Although many are skeptical of this prac-
tice (more on the critical aspects of significance testing in Section 5.8), it would still be 
a severe oversight not to mention this practice. The three levels of statistical significance 
typically used are:

One asterisk: * Significant at the 5 percent level
Two asterisks: ** Significant at the 1 percent level
Three asterisks *** Significant at the 0.1 percent level

Some researchers and research fields use a 7 percent or 10 percent significance level 
as the lowest form of certainty for rejecting a null hypothesis when analyzing small 
samples. One asterisk (*) typically equals the 7-percent or the 10-percent level in such 
cases.

5.7.12 p-Values for Cross-Tabulations

The procedures for calculating p-values for regressions and ANOVAS are similar, 
which explains why I have put the latter in the notes. The cross-table is another story. 
We looked at the association between gender and the propensity of being a sports club 
member using a cross-tabulation in Section 3.2; cf. Stata output 3.1 or SPSS-output 
3.1. This analysis reappears in Stata-output 5.14, with a small text-extension below 
the table.
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The null hypothesis states that male and female students are sports club members to 
the same extent in the population. That is, the null hypothesis implies a zero gender 
difference. If this H0 is correct in the population, 22 percent of the females and 22 
percent of the males in the sample should be sports club members – in sync with the 
total column on the right of the table. Yet we find that 35 percent of the male students 
in the sample are sports club members, whereas the analogous percentage for the fe-
male students is 14 percent. The significance test below the table asks and answers if 
random chance differences between the sample and the population might explain this 
21 percentage points gender difference given a correct H0. The p-value on the right 
(Pr = 0.000) is less than 0.0001 or less than 0.01 percent. The random-chance expla-
nation is very unlikely. We reject the null hypothesis and get indirect support for the 
alternative hypothesis suggesting some form of gender difference. SPSS reports similar 
information under the cross-table in SPSS-output 5.4. The p-value is displayed under 
the Asymptotic Significance column heading.

The significance tests in Stata-output 5.14 and SPSS-output 5.4 is a Pearson chi-
square test. The chi-square value is almost 37 in our 2 × 2 cross-table case. How do 
we obtain this? The numbers without decimals in Stata-output 5.14 are the actual or 
observed number of students in each cell. Stata-output 5.15 also includes the expected 
number of students in each cell (in italics) given a correct null hypothesis of gender 
equality in the population. (The numbers are of course similar in SPSS.)

The chi-square value of approximately 37 is the difference (or deviation) between the 
observed (O) and the expected (E) frequencies according to the formula

O E
E∑ ( )− 2

,

where O and E refer to the frequencies in each cell.

Stata-output 5.14  Sports club membership by gender in the student exercise data. Cross- 
tabulation, with chi-square test. N = 644.
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SPSS-output 5.4  Sports club membership by gender in the student exercise data. Cross-tab-
ulation with chi-square test. N = 644.

Stata-output 5.15  Sports club membership by gender in the student exercise data. Cross- 
tabulation, with chi-square test and expected frequencies in italics. N = 644.
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The chi-square test is the appropriate significance test for a cross-tabulation in 
the same way a t-test is the appropriate test for the individual x-variable in regres-
sions and ANOVAs. A special feature of the chi-square test, however, is that we 
always should take the cross-table’s number of cells into account when examining 
the chi-square value. The reason is that larger cross-tables “automatically” get larger 
chi-square values than smaller tables because the formula summarizes the deviations 
in each cell. To account for the size of a cross-table, we consider its degrees of free-
dom. The smallest cross-table, that is, the 2 × 2 table, has one degree of freedom.30 
For this 2 × 2 table the chi-square value must be larger than 3.84 to reject the null 
hypothesis at the 5-percent significance level (two-sided). We thus needed a chi-
square of at least 3.84 to reject our null hypothesis, whereas 37 was what we got. 
Some other critical values for larger cross-tables appear below. Note, however, that 
cross-tables larger than, say, 12 cells are hard to read and most often require a very 
large sample size.

Number of cells: Degrees of freedom: 5 percent significance (two-sided):

Six cells 2 5.991
Eight cells 3 7.815
Nine cells 4 9.488
Ten cells 5 11.07
Twelve cells 6 12.59

Suppose for the student population we have an alternative hypothesis suggesting gen-
der inequality in terms being a member of a fitness center. The null hypothesis is thus 
gender parity. Stata-output 5.16 tests this H0.

The probability of being a fitness center member is almost the same for male and fe-
male students: 53 versus 50 percent. The chi-square is much lower than 3.84 (i.e., 0.57), 

Stata-output 5.16  Fitness center membership by gender in the student exercise data. 
Cross-tabulation, with chi-square test. N = 644.
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and the p-value is thus much larger than 0.05 (i.e., 0.45). We dare not reject the null 
hypothesis of gender parity in the population. Random chance might very well have 
generated this tiny gender difference assuming a correct H0.

5.8 Critical Aspects of Significance Testing

Section 5.1 gave away a clue. There has been much discussion of statistical significance 
testing in recent years. In particular, many have criticized how researchers routinely 
carry out significance testing and its assessment within the Null Hypothesis Signifi-
cance Testing (NHST) framework.31 In addition, bad practice has not gotten any better 
because very many books on statistics, as well as journal papers, actually misunderstand 
what is going on in a significance test and what we may learn – or not learn – from such 
a test. Now is not the time nor the place for a full account of the critique of the NHST 
approach in modern-day research, but I will bring up some of its main topics relevant 
for the newbie statistical analyst.

5.8.1 The Null Hypothesis Is Often Stupid!

The null hypothesis most often comes in one of three guises: no effect, no association, 
or no group difference. Oftentimes this is naïve if not plain stupid. Suppose you have 
read ten studies on gender differences in exercise hours among older adults in the age 
range of 20 to 80 years. Suppose further that the mean gender difference in these stud-
ies (combined) was 1.1 hours in men’s favor. Imagine this being the state of knowledge 
before doing our regression between gender and exercise hours. Does it make sense to 
compare the 1.45-hour mean gender difference in our sample to a zero gender differ-
ence as per the null hypothesis? My answer is no. Moreover, when we have reason to 
believe a correct null hypothesis is something other than zero in the population, we 
should if possible test it against this more plausible non-zero value. Stata-output 5.17 
presents the familiar regression again, followed by a significance test in which the null 
hypothesis is a 1.1-hour mean gender difference.

The p-value 0.171 says we cannot reject the null hypothesis implying an average 
1.1-hour gender difference in the population:32 We cannot claim that our mean gen-
der difference in exercise hours in the student population is larger than the analogous 
mean gender difference among older adults. But suppose the mean gender difference in 
exercise hours among older adults was 0.9 hours. Testing against this 0.9-hour gender 
difference, we obtain the p-value 0.031 (result not shown). That is, against a H0 sug-
gesting a 0.9-hour gender difference, we reject the null and get indirect support for the 
alternative hypothesis that the mean gender difference in exercise hours in the student 
population is larger than the analogous mean gender difference among older adults. The 
key point is this: Whenever we have the opportunity to test an idea against a sharper 
null hypothesis, we should grab it rather than testing it against a nonsensical zero-effect 
hypothesis in the NHST framework.
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5.8.2  Statistical Significance Is a Function of Sample Size: “Everything” 
Becomes Significant in Large Samples!

We saw in Section 5.7 that the margin of error – that is, ± 2 × SEs – was smaller in large 
samples because the SE decreases with increasing sample size. To illustrate the flip side 
of this phenomenon, I drew a 25 percent random sample from the student exercise data 
and “repeated” the gender and exercise hours regression from Stata-output 5.17. The 
new results appear in Stata-output 5.18 and are of course similar in SPSS.

Stata-output 5.17  Hours of weekly exercise by gender in the student exercise data. Linear 
regression followed by a significance test for the null hypothesis that the 
gender coefficient equals 1.1 hours.

Stata-output 5.18  Hours of weekly exercise by gender in a 25 percent random sample from 
the student exercise data. Linear regression.
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We note a very similar gender coefficient: 1.421. In contrast, the gender coefficient’s SE 
is 0.464 or almost twice as large as in the actual sample of 644 students (i.e., 0.253). Since 
we obtain the t-value by dividing the regression coefficient by its SE (1.421/0.464 ≈ 3.06), 
it follows that a smaller SE makes it “easier” to get a t-value larger than ± 2 given a fixed 
value for the regression coefficient.33 That is, a regression coefficient of a fixed size has an 
easier time getting statistically significant for a large sample compared with a small sample. 
Everything, so to speak, becomes statistically significant if the sample is large enough! For 
a small sample, in contrast, a regression coefficient must be quite large to get statistically 
significant due to the enlarged SE. This point also relates to the next point.

5.8.3 Statistically Significant Effect ≠ Important Effect

A significant association or difference does not mean a strong association or a large dif-
ference. The p-value refers to a null hypothesis implying a zero association or difference 
in a population; it says nothing about the strength of the association between x and y in 
a sample. That is, a significant association does not imply a strong association or a large 
difference in substantive terms. Nor does p = 0.001 imply a stronger association or a 
larger difference than p = 0.04. This also relates to the next point.

5.8.4 The 5 Percent Significance Level Is Arbitrary

Someone once said God loves 0.051 as much as he loves 0.050, although this is tough 
to verify. This statement points to the arbitrary threshold for what we call “statisti-
cally significant” and what we call “not statistically significant” or “insignificant” in 
research. Combined with the fact that the p-value largely is a function of sample size, 
such arbitrariness is even more questionable. To avoid yes/no thinking in statistical 
significance assessments, which is much too common, many researchers recommend 
evaluating statistical significance on a continuum rather than as some binary choice. 
I concur. Many of these researchers also recommend reporting CIs in addition to sig-
nificance tests, to which I also concur. I return to these CIs in Section 6.8.

5.8.5 Statistical Significance Tests for Population Data

Researchers often analyze population data nowadays, akin to our data on the 240 
Norwegian soccer players. Adhering to the principles of this chapter – random sam-
pling, repeated sampling, the normal distribution, CIs, and sample-to-population 
 inference  – doing a significance test on population data seems a bit like carrying 
coals to Newcastle: When analyzing the population, there is no random chance var-
iation between the sample and the population to study! Using significance tests on 
population data, which appears to be the norm nevertheless, has to be justified on 
other grounds. The first is to think of the population under study as a random sample 
from some imaginary superpopulation. We may for example think of our 240 soccer 
players as a random sample of all the players appearing in the top-tier soccer league 
throughout history.34 The second option is to make an inference towards some process 
rather than towards a superpopulation. That is, we test for significance to get sup-
port for the (underlying) process being responsible for bringing about the association 
between x and y. A significant result thus implies that the process we shed light on 
in our population data might be generalizable to other situations and populations.35 
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That said, the process of interest might be contingent on the population under study. 
Generalization might be dubious in such cases.

5.8.6  Statistical Significance Tests for Non-Random Samples  
(i.e., Convenience Samples)

Researchers analyze samples not meeting the random draw criteria in many real-life 
situations. We may call such data “convenience samples.” They include persons partic-
ipating in an RCT and all sorts of on-site samples: students on campus on a particular 
day, patients at a hospital in a given week, and persons visiting a park on a Sunday. Our 
data on Christmas beers and our data on the students in the anchoring experiment fall 
into this convenience category. The frame of reference for significance tests on conven-
ience samples should arguably be a process or a superpopulation – and not a population. 
Yet prevailing practice among most present-day researchers, at least as far as I can tell, 
is to do significance tests on non-random samples as if they in fact were random sam-
ples from well-defined populations. Berk (2004) and White and Gorard (2017) are not 
happy about this practice, and I think they have a valid point.

5.8.7 Significance Tests: A Swan Song?

The NHST framework has several shortcomings. In essence, a significance test answers 
the wrong question. We want the probability of the alternative hypothesis being cor-
rect; the probability of x having an effect on y in the population. A significance test does 
not give us that. Nor does it tell us anything about the probability of the null hypothesis 
being correct; the probability of x having no effect on y in the population. What we get 
instead is the probability of finding an effect of x on y in our sample, or a larger one, if 
there is no such effect in the population. This is a poor equivalent at the best of times. 
Yet it is the best one there is unless one is a fan of Bayesian statistics. That is a story for 
another day, however.

These remarks aside, significance tests will not leave academia anytime soon. Fur-
thermore, I am not among the scholars advocating such an abandoning.36 Yet there is 
room for improvement, especially regarding the tendency to use p-values below 5 per-
cent as the dominant and die-hard corroboration of some more or less interesting x-y 
association in some population. The mandatory reporting of CIs is one step in the right 
direction, to which I return in Section 6.8.

5.9  Chapter Summary, Key Learning Points,  
and Further Reading

This chapter has been about inferential statistics, that is, the process of making an 
 inference about what happens outside of our data based on what we find inside our data. 
More may be said on this topic; see the further reading paragraph below. Yet if you got 
the gist of what took place in this chapter, you are well-prepared for making valid infer-
ences in your own statistical work. Below follows some key learning points:

• A population is a number of units (e.g., people, counties, countries, firms, cars, 
wines, transactions, stocks etc.) having at least one common feature or trait.

• A sample is some proportion or fraction of a typically larger population.
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• Random sampling is the way to make sure a sample becomes representative of a 
larger population. Random sampling ensures that a sample typically gets to be a 
miniature-model of the full-scale population. The CLT proves this.

• Provided a random and thus representative sample, we can make approximate de-
scriptions of an unknown population based on exact descriptions of a sample from 
this population.

• 95 percent CIs express the approximate descriptions or inferences about a population.
• 95 percent CIs build on the principles of random sampling, on repeated sampling, 

and on the shape and the variation of the normal distribution.
• Roughly speaking, a significance test is a means to find out if a statistical associa-

tion between x and y in a sample is “large enough,” given a predetermined level of 
confidence (often 95%), to warrant attention in the population.

• Weak statistical sample-association → random chance might have caused it → a 
large p-value → we dare not reject the null hypothesis saying that x and y are un-
associated in the population → we keep the null hypothesis suggesting that x and y 
are unassociated in the population.

• Strong statistical sample-association → random chance has probably not caused it 
→ a small p-value → we reject the null hypothesis saying that x and y are unassoci-
ated in the population → we get indirect support for the alternative hypothesis that 
x and y are associated in the population.

• Small difference in y between group A and B in a sample → random chance might 
have caused it → a large p-value → we dare not reject the null hypothesis saying 
that the groups are equal with respect to y in the population → we keep the null 
hypothesis suggesting that the groups are equal with respect to y in the population.

• Large difference in y between group A and B in a sample → random chance has 
probably not caused it → a small p-value → we get indirect support for the alternative 
hypothesis saying that the groups are unequal with respect to y in the population.

• Note! In practice, the assessment of statistical significance needs more careful con-
sideration than the above and on-purpose simplified decision rules suggest.

Agresti (2018) and Freedman et al. (2007) are obvious sources for everything that has to 
do with inferential statistics or significance tests in the traditional random- sample-to-
population manner. Wheelan (2013) explains inferential statistics in a non-technical and 
intuitive way for those finding formulas and equations troubling (like myself ). Weisberg 
(2014) is a fascinating account of the history of inferential statistics; the same is Salsburg 
(2001). Lew (2012) tells you what you need to know about p-values, and Kline (2020) 
sums up the NHST controversy. Berk (2004), Schneider (2013), and White and Gorard 
(2017) are good places to start for assessments of the NHST practice, whereas Frick (1998) 
summarizes the process-based significance testing approach. Reinhart (2015) is, among 
other things, an entertaining account of bad practice in inferential statistics in medicine.

5.10 Do-Files in Stata and Syntax-Files in SPSS

As before I assume you have read Sections 2.9, 3.9, and 4.9 before taking on the present 
section. The commands appear in plain text “outside” of do-files (Stata) or syntax-files 
(SPSS) to save space. As before I add some comments to the commands on occasion. 
I assume throughout that the “correct” data set is in memory to avoid unnecessary 
repetition.
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5.10.1 Stata-Commands in Do-Files

Stata-output 5.1

sum goals if season == 0

The if season == 0 command means that Stata selects a subset of the units in the data 
for analysis, as per the stated condition. In Stata, the == means “equal to” when used 
in if-statements.

Stata-output 5.2

sum goals

Stata-output 5.3

sum alch_perc

Stata-output 5.4

mean goals

Stata-output 5.5

sum hours_exer
mean hours_exer

Stata-output 5.6

prop sport_club

Stata-output 5.7

oneway hours_exer gender, t

Stata-output 5.8

ttest hours_exer, by(gender) une

The command-part une at the end is necessary when the SDs in the two groups, that 
is, male and female students in this case, are (very) unequal. Otherwise, it is redundant.

Stata-output 5.9

reg hours_exer i.gender

Stata-output 5.10

sum totgoal_mean
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Figure 5.1

kdensity totgoal_mean, normal

Stata-output 5.11

sum goals

Note that the data set for Stata-output 5.11 is not on the book’s website.

Stata-output 5.12

reg hours_exer i.gender

Stata-output 5.13

reg hours_exer i.status

Stata-output 5.14

tab sport_club gender, col chi2

Stata-output 5.15

tab sport_club gender, col chi2 exp

Stata-output 5.16

tab fitness_cen gender, col chi2

Stata-output 5.17

reg hours_exer i.gender
test i1.gender = 1.1

Replace 1.1 with a figure of your own choosing (e.g., 0.9) to test against other values 
for the null hypothesis.

Stata-output 5.18

reg hours_exer i.gender

Note that the data set for Stata-output 5.18 is not on the book’s website.

5.10.2 SPSS-Commands in Syntax-Files

Stata-output 5.1

COMPUTE filter_$=(season = 0).
VARIABLE LABELS filter_$ 'season = 0 (FILTER)'.
VALUE LABELS filter_$ 0 'Not Selected' 1 'Selected'.
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FORMATS filter_$ (f1.0).
FILTER BY filter_$.
EXECUTE.
DESCRIPTIVES VARIABLES=goals
  /STATISTICS=MEAN STDDEV MIN MAX.
FILTER OFF.
USE ALL.
EXECUTE.

The COMPUTE filter_$-command creates the “filter” selecting the subset of units 
in the data for analysis. The FILTER OFF-command turns the filter off again (not 
unsurprisingly!).

Stata-output 5.2

DESCRIPTIVES VARIABLES=goals
  /STATISTICS=MEAN STDDEV MIN MAX.

Stata-output 5.3

DESCRIPTIVES VARIABLES=alch_perc
  /STATISTICS=MEAN STDDEV MIN MAX.

SPSS-output 5.1 (Stata-output 5.4)

EXAMINE VARIABLES=goals
  /PLOT BOXPLOT STEMLEAF
  /COMPARE GROUPS
  /STATISTICS DESCRIPTIVES
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.

Stata-output 5.5

DESCRIPTIVES VARIABLES=hours_exer
  /STATISTICS=MEAN STDDEV MIN MAX.
EXAMINE VARIABLES=hours_exer
  /PLOT BOXPLOT STEMLEAF
  /COMPARE GROUPS
  /STATISTICS DESCRIPTIVES
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.

Stata-output 5.6
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NPTESTS
  /ONESAMPLE TEST (sport_club) BINOMIAL(TESTVALUE=0.5 
LIKELIHOODSUCCESSCATEGORICAL=LIST(1) 
SUCCESSCONTINUOUS=CUTPOINT(MIDPOINT)) 
  /MISSING SCOPE=ANALYSIS USERMISSING=EXCLUDE
  /CRITERIA ALPHA=0.05 CILEVEL=95.

Stata-output 5.7

ONEWAY hours_exer BY gender
  /STATISTICS DESCRIPTIVES 
  /MISSING ANALYSIS.

SPSS-output 5.2 (Stata-output 5.8)

T-TEST GROUPS=gender(0 1)
  /MISSING=ANALYSIS
  /VARIABLES=hours_exer
  /CRITERIA=CI(.95).

SPSS-output 5.3 (Stata-output 5.9)

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS CI(95) R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT hours_exer
  /METHOD=ENTER gender.

Stata-output 5.10

DESCRIPTIVES VARIABLES=totgoal_mean
  /STATISTICS=MEAN STDDEV MIN MAX.

Figure 5.2 (Kernel density plot without normal curve)

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=totgoal_mean MISS-
ING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
SOURCE: s=userSource(id("graphdataset"))
DATA: totgoal_mean=col(source(s), name("totgoal_mean"))
GUIDE: axis(dim(1), label("totgoal_mean"))
GUIDE: axis(dim(2), label("Density"))
SCALE: linear(dim(2), min(-5))
ELEMENT: line(position(density.kernel.epanechnikov(totgoal_mean*1)))
END GPL.
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Figure 5.2 (Histogram with normal curve)

FREQUENCIES VARIABLES=totgoal_mean
  /HISTOGRAM NORMAL
  /ORDER=ANALYSIS.

Stata-output 5.11

DESCRIPTIVES VARIABLES=goals
  /STATISTICS=MEAN STDDEV MIN MAX.

Note that the data set for Stata-output 5.11 is not on the book’s website.

Stata-output 5.12

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS CI(95) R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT hours_exer
  /METHOD=ENTER gender.

Stata-output 5.13

RECODE status (1=1) (ELSE=0) INTO bf_gf.
RECODE status (2=1) (ELSE=0) INTO cohabit.
REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT hours_exer
  /METHOD=ENTER bf_gf cohabit.

SPSS-output 5.4 (Stata-output 5.14)

CROSSTABS
  /TABLES=sport_club BY gender
  /FORMAT=AVALUE TABLES
  /STATISTICS=CHISQ 
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL.

Stata-output 5.15

CROSSTABS
  /TABLES=sport_club BY gender
  /FORMAT=AVALUE TABLES
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  /STATISTICS=CHISQ 
  /CELLS=COUNT EXPECTED COLUMN 
  /COUNT ROUND CELL.

Stata-output 5.16

CROSSTABS
  /TABLES=fitness_cen BY gender
  /FORMAT=AVALUE TABLES
  /STATISTICS=CHISQ 
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL.

Stata-output 5.17
SPSS-output 5.3 reports the regression. Yet there is to the best of my knowledge no 
SPSS regression option available for testing against an alternative null hypothesis, such 
as a H0-coefficient of 1.1.

Stata-output 5.18

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS CI(95) R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT hours_exer
  /METHOD=ENTER gender.

Note that the data set for Stata-output 5.18 is not on the book’s website.

5.11 Chapter Exercises with Solutions

Exercises:

Exercise 1
Look at the statistics outputs from Chapter 3 and onwards! On the occasions I men-
tion a “clear” or a “marked” association between x and y or use some similar phrase, 
check that this refers to a p-value below 0.05 or 0.10. Furthermore, check that the 
p-value is above 5 or 10 percent whenever I claim that x and y are not associated or 
use some similar phrase indicating a no-association.

Exercise 2 (data: student_exercise, see appendix C of Chapter 2 for data 
documentation)
2a Use a multiple regression model and examine the following hypotheses:
 (1) Male students exercise more hours than female students.
 (2) Fitness center members exercise more hours than non-members.
 (3) Sports club members exercise more hours than non-members.
 (4) There is a U-association between student age and exercise hours.
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2b  Add the variable financial situation (econ) to the multiple regression in 2a and 
examine the following hypothesis:

 Students experiencing better financial situations exercise more hours than stu-
dents experiencing poorer financial situations.

2c Examine the following hypothesis (by extending the model in 2b):
 The effect of fitness center membership on exercise hours is larger for male 

students than it is for female students.

Exercise 3 (data: stud_tourism, see appendix B of Chapter 4 for data documentation)
3a  Controlling for book_time, destin, and type_trip, examine the following 

hypothesis:
 The effect of length of stay on total trip expenditures is larger than 22 

Euros.
3b Examine the following hypothesis (by extending the model in 3a):
 There is a stronger association between length of stay and total trip expendi-

tures for package trips than it is for non-package trips.

Exercise 4 (data: x-mas_beer, see Sections 2.2 and 2.3 for data documentation)
4a Use multiple regression and examine the following hypotheses:
 (1)  Beers produced outside of Norway are less costly than Norwegian beers.
 (2)  There is a positive association between a beer’s alcohol level and price.
4b Examine the following hypothesis (by extending the model in 4a):
 The effect of alcohol level on price is dependent on production location.

Exercise 5 (data: soccer, see appendix B of Chapter 2 for data documentation)
5a  Controlling for age, age-square, nation_dum, and match_tot, examine the 

following hypothesis:
 More match experience during the season has a positive association with yearly 

income.
5b Examine the following hypothesis (by extending the model in 5a):
 The effect of match experience during the season on income is dependent on 

whether a player has appeared on a national team or not.

Answers to exercises (in Stata only; see Section 5.10 for equivalent SPSS syntaxes):
Exercise 2 (data: student_exercise, see appendix C of Chapter 2 for data 

documentation)
2a Use a multiple regression model and examine the following hypotheses:
 (1) Male students exercise more hours than female students.
 (2) Fitness center members exercise more hours than non-members.
 (3) Sports club members exercise more hours than non-members.
 (4) There is a U-association between student age and exercise hours.

The above alternative hypotheses imply the following null hypotheses, 
which we actually test:

 (1) Male students exercise for the same number of hours as female students.
 (2)  Fitness center members exercise for the same number of hours as non- 

members.
 (3) Sports club members exercise for the same number of hours as non-members.
 (4) There is no U-association between student age and exercise hours.
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The multiple regression is:

All p-values in the column P>|t| are below 0.01 or 1 percent (two-sided tests); we 
may thus reject all four null hypotheses. Note that the alternative hypotheses are direc-
tional, and that one-sided tests are thus to be preferred. I do not repeat the interpreta-
tions of the regression coefficients or R2; cf. Chapters 3 and 4.

2b  Add the variable financial situation (econ) to the multiple regression in 2a and 
examine the following hypothesis:

  Students experiencing better financial situations exercise more hours than stu-
dents experiencing poorer financial situations.

The null hypothesis, which we actually test, is:
  Students experiencing better financial situations exercise for the same number 

of hours as students experiencing poorer financial situations.
The multiple regression is:
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We have a directional alternative hypothesis, and the regression coefficient for finan-
cial situation variable is positive (econ = 0.16). We should divide the p-value by two 
to get 0.162 (0.323/2 ≈ 0.162). Still, we cannot reject the null hypothesis at the 5 percent 
level and we must thus keep it. There is no positive association between students’ finan-
cial situation and hours of exercise in the student population.

2c Examine the following hypothesis (by extending the model in 2b):
  The effect of fitness center membership on exercise hours is larger for male 

students than it is for female students.
The null hypothesis, which we actually test, is:

  The effect of fitness center membership on exercise hours is the same for male 
and female students.

The multiple regression is:
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The coefficient for the gender by fitness center interaction (gender#fitness_cen 
male#yes) is 1.29 and its p-value is 0.005. We therefore reject the null hypothesis. 
The effect of fitness center membership on exercise hours is larger for male students 
than it is for female students in the population, which by now should come as no 
surprise.

Exercise 3 (data: stud_tourism, see appendix B of Chapter 4 for data documentation)
3a Controlling for book_time, destin, and type_trip, examine the following 
hypothesis:
 The effect of length of stay on total trip expenditures is larger than 22 Euros.
The null hypothesis, which we actually test, is:
 The effect of length of stay on total trip expenditures is not larger than 22 Euros.
The multiple regression and hypothesis test are:

With the p-value 0.045 that should be divided by two given the directional alterna-
tive hypothesis, we reject the null and gain support for the effect of length of stay on 
total trip expenditures being larger than 22 Euros. Does the same conclusion hold for a 
similar test against 23 Euros? Spoiler alert! It does not.

3b Examine the following hypothesis (by extending the model in 3a):
  The association between length of stay and total trip expenditures is stronger 

for package trips than it is for non-package trips.
The null hypothesis, which we actually test, is:

  The association between length of stay and total trip expenditures is of the 
same magnitude for package trips and non-package trips.



190 Inferential Research Questions

The multiple regression is:

The package trip by length of stay interaction (type_trip#c.los Package trip) 
has a coefficient of 15.83 and its p-value is 0.063. Since the alternative hypothesis is di-
rectional, however, we should divide the reported p-value by two. In other words, we 
reject the null at the 5 percent level because the one-sided p-value is 0.032. The associa-
tion between length of stay and total trip expenditures is stronger for package trips than 
it is for non-package trips in the population.

Exercise 4 (data: x-mas_beer, see Sections 2.2 and 2.3 for data documentation)

Note! The Christmas beer data are not a random sample from some well-defined 
 population. Tests of significance should thus be justified with reference to a super-
population or to a process responsible for generating the association between x and y.  
(I am not claiming that any of these justifications are feasible in the present context, 
but that is another matter.)
4a Use multiple regression and examine the following hypotheses:

(1) Beers produced outside of Norway are less costly than Norwegian beers.
(2) There is a positive association between beers’ alcohol level and price.

The above alternative hypotheses imply the following null hypotheses, which we 
actually test:

(1) Beers produced outside of Norway cost the same as Norwegian beers.
(2) There is no association between beers’ alcohol level and price.
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The multiple regression is:

The coefficient for the production location variable is negative and thus in line with 
the alternative hypothesis. The coefficient’s p-value, however, is 0.142 – or 0.071 if we 
apply a one-sided test, as we should. We still cannot reject H0; we get no support for our 
alternative hypothesis (at the 5 percent significance level). In contrast, the coefficient for 
alcohol level is positive, with a p-value less than 0.0001 (that we also should divide by 
two). We reject H0 and gain indirect support for a positive association between alcohol 
level and price with reference to a superpopulation or a process responsible for generat-
ing the association.

4b Examine the following hypothesis (by extending the model in 4a):
  The effect of alcohol level on price is dependent on production location.

The null hypothesis, which we actually test, is:
  The effect of alcohol level on price is not dependent on production location.

The multiple regression is:
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The location by alcohol level interaction (country#c.alch_perc Outside Nor-
way) has a coefficient of –0.33 and its p-value is 0.034 or 3.4 percent. We reject the null 
at the 5 percent level and get indirect support for the effect of alcohol level on price 
being dependent on production location with reference to a superpopulation or to a 
process responsible for generating the interaction effect.

Exercise 5 (data: soccer, see appendix B of Chapter 2 for data documentation)

Note! The soccer player data are a population. Tests of significance must therefore be jus-
tified with reference to a superpopulation or to a process responsible for generating 
the association between x and y. (I am not claiming that any of these justifications 
are feasible in the present context, but that is another matter.)
5a Controlling for age, age-square, nation_dum, and match_tot, examine the fol-
lowing hypothesis:

  More match experience during the season has a positive association with yearly 
income.

The null hypothesis, which we actually test, is:
  More match experience during the season has no association with yearly 

income.
The multiple regression is:

The coefficient for match experience during the season is positive (1,058), as per the 
alternative hypothesis. Its one-sided p-value, given the directional alternative hypoth-
esis, is 0.029 divided by 2: 1.45 percent. We reject the null and get indirect support 
for more match experience during the season having a positive association with yearly 
income with reference to a superpopulation or to a process responsible for generating 
the association.

5b Examine the following hypothesis (by extending the model in 5a):
  The effect of match experience during the season on income is dependent on 

whether a player has appeared on a national team or not.
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The null hypothesis, which we actually test, is:
  The effect of match experience during the season on income is not dependent 

on whether a player has appeared on a national team or not.
The multiple regression is:

The match experience by national team dummy (nation_dum#c.match_ses yes) 
has no significant effect, with a p-value of 0.682. We keep the null and get no indirect 
support for the effect of match experience during the season on income being depend-
ent on whether a player has appeared on a national team or not. 

Notes

 1 There are exceptions in which the data are interesting in themselves. I return to these later 
in the section.

 2 Many books on statistics more or less equate data with a sample and the world beyond the 
data with a population. Because modern-day statistical analysis to an ever-increasing extent 
pertains to data that are not samples in this traditional sense, I do not. 

 3 I return to this issue in Section 5.8.
 4 The more general inference from the data to the world beyond the data is typically not 

probabilistic.
 5 We assume each of the students contacted agreed to take part in the survey and (politely) 

answered every question in the questionnaire. This, of course, never happens in real life. Yet 
the failure to do so has no bearing on the main points and conclusions of this chapter if those 
who participate/answer and those who do not are roughly similar. If this is not the case, we 
have some more work to do, and I return to this in Section 6.4.

 6 Not every time according to some natural law, but most times according to a priori known 
statistical “laws” or regularities. In practice, we often use more complex random-sampling 
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techniques to ensure representativeness (see, e.g., Bryman, 2016), but the basic idea men-
tioned here still applies. 

 7 A “large” sample typically refers to a sample with more than 120 units. For such a sample, 
the exact number is 1.96 SDs. For smaller samples, say 30 units, the analogous number is 
2.042. I use 2.0 as an easy-to-remember approximation if not explicitly stated otherwise, but 
see Section 5.7 for more on this. 

 8 Statisticians also tell us that 68 percent of the beers lie in the interval mean ± one SD.
 9 We get the standardized alcohol level in one beer by subtracting the mean alcohol level 

(8.187) from its actual alcohol level and dividing the result we get with the SD (1.566). 
 10 This imagined distribution carries a special name in statistics: the sampling distribution. The CLT 

proves that this distribution becomes close to normal for samples larger than 30 units or so.
 11 The mean of the variable “Mean of total goals” if the repeated sampling continues for, say, 

1,000 times approximates the unknown population mean. This thought experiment mean 
also carries a special name: the sampling mean. 

 12 There is in general much more variation among the units in a sample with respect to x (or y) 
than there is variation in the mean of x (or y) among samples in repeated sampling.

 13 Thanks to Ulrik Berg Rian, Simen Kleven, and Marthe Sælebakke Stangnes for the permis-
sion to use the data they compiled from the Internet in January and February 2021. 

 14 We may have a hypothesis about how one variable, say y, is close to some population con-
stant, but I do not consider this case.

 15 I use “affect” rather than the more correct “is associated with” for presentational ease, but I 
emphasize that the latter is more correct in most situations.

 16 I mentioned in passing in Section 1.1 that a statistical association in itself does not explain 
why we observe this association and that we need some theory, reason, or mechanism to help 
us here. Motivation and habit formation are these reasons in the two preceding examples.

 17 I emphasize once more: If the data are a random sample from a population, we are generally 
not interested in the sample/data per se. 

 18 We omit the (theoretical) reason for the hypothesis in the final hypothesis specification be-
cause it typically appears in the text preceding this specification. 

 19 We try to falsify what we do not believe in rather than to verify what we believe in. We need 
not get into the details of this philosophical stance. The key point is that falsification is better 
proof than verification. 

 20 Note that rejecting H0 is not the same as accepting H1. Rejection of H0 only supports H1 
indirectly.

 21 The t-value for the mean gender difference in hours of exercise in the ANOVA case is –5.30; 
cf. Stata-output 5.8 or SPSS-output 5.2. The negative sign reflects that the male mean is 
being subtracted from the female mean.

 22 The upcoming explications assume such a large sample if not explicitly stated otherwise. 
 23 I repeat: 1.96, rather than 2.00, is the strictly correct number for large samples.
 24 In the ANOVA-case, as in Stata-output 5.7, the p-value appears under the column heading 

Prob > F. In SPSS, the p-value in the ANOVA-case appears under the Sig. column heading. 
 25 More generally: The p-value is the probability of finding the effect/association/difference in 

a sample, or a larger one, if there is no effect/association/difference in the population. 
 26 Noise is what I call random chance. In a related spirit, Reinhart (2015) calls the p-value a 

measure of surprise: The lower the p-value, the more surprising it is to get the sample result 
you get if the null hypothesis is correct in the population. 

 27 To be clear, this analysis tacitly presupposes an alternative hypothesis in which we have some 
reason to expect that the variables student status and exercise hours are associated.

 28 The observant reader might have noticed that we actually had a directional hypothesis for the 
regression between exercise hours and gender. The correct p-value is thus < 0.0001 divided 
by two. In this case, however, such halving amounts next to nothing in practical terms.

 29 The correct quantity should here be degrees of freedom and not sample size. For most prac-
tical purposes, however, this amounts to the same. More on degrees of freedom later in this 
section.

 30 Imagine that all rows and columns should be a sum of 100 for a 2 × 2 table. If you then put the 
number 30 in the upper-left cell of the table, the numbers in the three remaining cells must 
clockwise become 70, 30, and 70. The only free cell is the first cell: 30. This table thus has one 
degree of freedom, and larger tables must consequently have more degrees of freedom.
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 31 The well-respected journal The American Statistician devoted an entire issue to this topic as 
late as 2019 (Vol 73, S1). 

 32 The p-value 0.171 is based on a so-called F-test (i.e., F-test = 1.88 in the Stata-output). I 
have not explicated the F-test, but it works rather similar to the t-test and the chi-square test 
in principle. For more on the F-test, see Sirkin (2005). 

 33 Similar reasoning applies to ANOVA and all bivariate techniques of associating x and y. I use 
the regression-case example simply because it is by now most familiar. 

 34 I agree with Berk (2004) who finds such reasoning far-fetched and tautological in many 
cases. One might perhaps also argue that treating a population as a sample in order to do 
significance tests resembles putting the cart in front of the horse. 

 35 The statistical significance of the age-square variable in Section 4.4 (p-value = 0.019) should 
thus be justified with respect to a process yielding a non-linear age-income association.

 36 It deserves mentioning that White and Gorard (2017) end up on a negative note; they advo-
cate stopping significance testing altogether. See also Gorard (2019).
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6.1 Introduction and Chapter Overview

Things seldom go as smoothly as they have done in this book in real-life statistical anal-
ysis. The reason is obvious: I made the required data preparation in advance. To shed 
more light on such preparation, Sections 6.2–6.4 handle various aspects of statistical 
analysis having mostly to do with data groundwork before taking on the later descrip-
tive, associational, and inferential analyses. Since doing data preparation is the main 
purpose in these three sections, I include the statistical commands in the main text.

Sections 6.2 and 6.3 show how to create new variables based on existing variables, 
whereas Section 6.4 takes on the handling of missing data. Section 6.5 addresses outliers 
that typically are a part of both the initial data preparation and the final associational 
and inferential analyses.

Regression analysis is the working horse when analyzing variable associations in the 
behavioral and social sciences. If we are to trust the results of regression analysis, how-
ever, it has to meet certain conditions or assumptions. Section 6.6 is all about these 
assumptions of regression analysis.

In real-life statistical analysis, we often lack a yardstick for assessing whether a vari-
able association is weak or strong – or when judging if a statistical difference between 
two groups is small or large. Such a lack-of-yardstick scenario is, in short, what Section 
6.7 is about.

I have made several implicit choices regarding the presentation of results from associ-
ational statistical analyses in the book so far. Section 6.8 turns these implicit choices into 
explicit pieces of advice in terms of what you should do – or at least offer some deliber-
ate thoughts – when presenting associational statistical results to your readers/audiences.

Section 6.9 summarizes the chapter and lists the key learning points and further 
reading. Section 6.10 contains the do-file commands and syntax-file commands from 
Section 6.6 and onwards. Section 6.11 contains the exercises and answers in the usual 
manner.

6.2 Creating, Recoding, and Labeling New Variables

6.2.1 Creating a New (Dummy) Variable

Research often involves strict categorical x-variables with many categories, say five 
or more. We then face a dilemma as researchers. On the one hand, we do not want to 
compare an excess number of categories or groups with respect to y; this is tedious for 

6 Doing Quantitative Research
Some Tricks of the Trade
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researchers and audiences alike. We thus often collapse categorical variables into new 
variables having fewer categories.1 On the other hand, we do not want to mix catego-
ries or groups not belonging together – as in mixing apples and oranges. Regrouping 
categories into fewer categories thus needs some kind of justification. Below I illustrate 
using the status variable in the student exercise data; see the frequency table in Stata 
output 6.1. (SPSS of course yields the same result, making it redundant here.)

The student status variable has three categories: single (coded 0), boyfriend or girl-
friend (coded 1), or cohabiting or married (coded 2). It is fair to say that the two latter 
categories have something in common that the first has not, namely a “significant other.” 
It thus makes sense, at least in this pedagogical context, to create a new variable with two 
categories based on the original variable: single (coded 0) and non-single (coded 1). Stata 
output 6.2 presents the procedures to create, recode, and label this new dummy variable.

The first command-line in the do-file creates the new variable; status_dum. The 
second line recodes the new variable in the manner suggested above. The third and 
fourth lines label the new dummy,2 whereas the fifth asks Stata for a frequency table. We 
note that the non-singles correctly amount to 315 students (206 + 109).

SPSS-output 6.1 reports a similar procedure in SPSS. The first command-line in the 
syntax-file recodes the original variable into the new variable status_dum as per the 

Stata output 6.1 Frequency distribution for the variable status in the student exercise data.

Stata output 6.2 An example of creating, recoding, and labeling into a new dummy variable.
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instruction at the outset. The second to seventh line creates and attaches the values to 
the new variable, and line eight executes the syntaxes. The two last lines yield the fre-
quency table for the new dummy.

In these examples, we created and recoded a variable having three categories into a 
variable with two categories. The procedure is similar in the four to three (or two) cat-
egory case and so on.3 Many such category reduction processes are oftentimes necessary 
for a typical research project.

6.2.2 Creating a Logarithmic Variable

We examined the variable log of wine price in Section 4.4. Furthermore, the soccer 
player data contain the variable log of yearly income. The commands to create loga-
rithmic variables are straightforward in Stata and SPSS. For example, the command to 
generate the log of wine price in a Stata do-file was:

gen log_price = ln(price)

Similarly, the command in a syntax-file in SPSS was:

COMPUTE log_price=LN(price).
EXECUTE.4

To create other logarithmic variables, we just use new names in the generate/com-
pute expression and replace the variable name within the parenthesis with other names.

SPSS-output 6.1 An example of creating, recoding, and labeling into a new dummy variable.
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6.3 Creating a New Variable by Combining Existing Variables

The variable hours of exercising and the number of times of exercise per week appear in the 
student exercise data. We can easily create the variable exercise hours per workout by di-
viding the former by the latter. Stata output 6.3 presents the do-file command to create the 
new variable and associates it to the student gender variable by means of regression analysis 
in the usual manner. The first command-line creates the new variable of interest; ex_h_pw. 
The new variable has 51 missing values because 51 students reported zero hours of exer-
cising. (We cannot divide zero by anything.) We note that male students on average have 
almost 0.16 hours longer workouts than female students. This difference is statistically sig-
nificant below 0.0001l, with a 95 percent CI from 0.076 to 0.237. SPSS-output 6.2 presents 
the syntax-command to produce the new variable (two lines) and the similar regression.

We just divided one variable by another. We may, of course, multiply, add, or sub-
tract variables in the same way. For example, we may add the variables membership in a 
fitness center and membership in sports club to create a new variable having three cate-
gories: non-member of either, member of a fitness center or sports club, and member of 
a fitness center and sports club. Stata output 6.4 presents the do-file commands to create 
the new variable and its frequency distribution.

SPSS-output 6.2  Example of creating a new variable based on two existing ones and asso-
ciating the new variable to student gender.

Stata output 6.3  Example of creating a new variable based on two existing ones and associ-
ating the new variable to student gender.

(Continued)
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The commands are now familiar. We note that the typical or mode student is a 
member of a fitness center or a sports club (55 percent), and that only a small mi-
nority (9 percent) is a member of both. The technical term for this new variable is 
an index.

SPSS-output 6.3 presents the analogs syntax-commands to produce the new index 
variable and its frequency distribution.

SPSS-output 6.2  (Continued)

Stata output 6.4 Example of creating a new index-variable based on two existing variables.
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6.4 Missing Data and What to Do about Them

Missing data is the rule rather than the exception in quantitative research. Yet this is not 
a problem by necessity. Problems pile up when data are missing for non-random reasons 
we know nothing about, or when we do know about these reasons but lack the means 
to do something about them. Missing data typically come in two guises that also may 
interact: missing values or missing cases (i.e., units).5 We take on these two issues in 
turn below.

6.4.1 Missing Values

We have analyzed data with complete information for all units so far in the book. The 
75 beers in the Christmas beer data had complete information for all variables; the 
soccer player data had complete variable information for the 240 players. Likewise, all 
the students politely answered every question in our student data sets. We thus had no 
missing values. This almost certainly never happens in real life!6 I scrutinize the missing 
value phenomenon below for what probably is the most typical case in quantitative re-
search, namely, that some non-trivial proportion of respondents did not answer one or 
several questions in a survey questionnaire.

The new student data, described in appendix A to this chapter, also concern lifestyle 
variables. The sample consists of 331 female students answering all survey questions 
short of one: the question on their weight. For this question, only 289 of the female 
students gave a valid answer. That is, only 87 percent answered the question on their 
weight. Stata-output 6.5 shows the descriptive statistics in this regard. (There is no need 
to show the exact same results in SPSS.)

SPSS-output 6.3 Example of creating a new index-variable based on two existing variables.
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The average female student in the sample weighs 66.6 kilograms (1 kg = 1.20 
pounds/lbs.). The range is 68 kg (110 – 42 = 68). Is this mean value a precise estimate 
of the unknown weight for the average female student in the population?7 Perhaps 
yes and perhaps no. The answer might be yes if the female students not reporting 
their weight weigh the same as the female students reporting it on average.8 We have 
two options if this is the case: We could analyze the reduced sample (n = 289), or we 
could replace the missing values with the mean weight (66.56 kg) and analyze the full 
sample (n = 331). The two strategies amount to the same.9 But what if the 42 students 
not reporting their weight weigh noticeably more, or noticeably less than the 289 
students reporting it? Then we have a non-representative sample of the population 
at our hands. Such a scenario has three consequences: First, the mean replacement of 
missing values makes no sense. Second, the 66.56 kg mean estimate for the popula-
tion is biased. Third, and worse still, the results of all associational analyses involving 
the weight variable and some other variables are biased too. I explicate using the 
regression case below.

Say we want to regress weight on height and age in the usual manner. We then have 
several options on how to handle, or not to handle, missing values:

 1a Do nothing 1: Listwise deletion, that is, the default in most statistics programs
 1b Do nothing 2: Casewise deletion
 2a Replacing the missing value with the overall mean, median, or mode, that is, man-

ual imputation
 2b Replacing the missing value with the overall mean, median, or mode (manual im-

putation) for a certain subgroup in the data
 3 Replacing the missing value with a prediction from a regression model, that is, 

data-analytic imputation

Stata and SPSS use listwise deletion (1a) as default. That is, the regression uses only 
the units for which there are no missing values among the variables included in the 
analysis. For casewise deletion (1b), in contrast, any associational analysis tries to max-
imize the number of units on an analysis-by-analysis basis. Both (1a) and (1b), how-
ever, assume values are missing at random (MAR). The listwise deletion and hence 
reduced-sample regression appears in Stata-output 6.6 and SPSS-output 6.4. We find 
the expected and positive association between height and weight; taller female students 
weigh more than shorter female students on average. We also note a positive associa-
tion between age and weight; older female students weigh more than younger female 
students on average.

Stata-output 6.5  Descriptive statistics for the variable weight_kg in the female student 
weight data.



Doing Quantitative Research 203

SPSS-output 6.4 Female students’ weight by their height and age. Linear regression.

Stata-output 6.6 Female students’ weight by their height and age. Linear regression.

(Continued)
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Approaches (2a) and (2b) replace the missing value with a sample value – such as the 
mean. We typically also add a dummy for the valid versus missing values when using 
this strategy. Stata-output 6.7 shows the do-file commands and the results. Note that 
the dot (.) means missing value in Stata; hence . = 1.

SPSS-output 6.4 (Continued)

Stata-output 6.7  Construction of missing value dummy, construction of new weight vari-
able, and linear regression of female students’ weight by their height, age, 
and a missing value dummy.
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We note that the analysis uses the full sample and that the regression coefficients have 
changed very little in magnitude (0.62 versus 0.55 and 0.33 versus 0.30). Furthermore, 
the coefficient for the missing value dummy is not significant. We usually interpret both 
results as good signs and indirect support for that the missing data problem is not severe.

SPSS-output 6.5 presents the analogous syntaxes and output, but I have omitted some 
of the results in the output to make it more compact.

SPSS-output 6.5  Construction of missing value dummy, construction of new weight vari-
able, and linear regression of female students’ weight by their height, age, 
and a missing value dummy.
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We make an informed guess on what the missing value most likely is when replacing 
missing values with a mean, median, or mode. Option (3) uses regression analysis to 
make an even better guess in this regard. That is, we find the expected weight for the fe-
male students not reporting their weight by means of a multiple regression analysis based 
on the variables with complete information. Next, we replace (or impute) this expected 
weight for the missing values and do the associational analysis for the full sample.10

There were not many missing values in our case. In many real-life situations, how-
ever, the problem is severe – as in when 40 percent of the sample has not answered the 
y-question of interest. Options (1) and (2) appear dubious at the outset in such cases, es-
pecially when y refers to questions of a sensitive nature (e.g., weight, psychological trau-
mas, sexual behavior, alcohol consumption etc.). Assuming that respondents answering 
sensitive questions are similar to respondents not answering such questions might sound 
dubious, but this should be evaluated on a case-by-case basis. The main approach in the 
social and behavioral sciences, as far as I can tell, is listwise deletion. The risk we take 
when analyzing incomplete data – that is, potentially analyzing non-representative data –  
seems to be more acceptable than the risk introduced by using manual or data-analytic 
imputation techniques.

6.4.2 Missing Values for a Dummy/Categorical y-Variable

Missing values for a dummy/categorical y is analogous to the problem for a continuous 
y. Yet the options for replacement values are fewer and the mean replacement is a no-go. 
Mode replacement is popular, that is, changing the missing values to the mode of y in 
the reduced sample. Furthermore, data-analytic imputation (3) is still possible. As be-
fore, the pros and cons should be assessed in the individual case.

6.4.3 Missing Values for x-Variables

Missing values for x-variables is typically a smaller problem. Suppose age is the x-vari-
able of interest, but that a sizable proportion of your sample for some unknown reason 
has failed to report it. A remedy is to create a new age category variable (cf. Section 4.4) 
including a missing-age category for respondents with missing values. This way, you 
get the opportunity to compare respondents with missing age information to other age 
groups with respect to y. The same principle applies to variables that are categorical at 
the outset, that is, to recode missing values into a separate (answer) category.

6.4.4 Missing Cases (i.e., Units)

This section has mostly concerned missing values for a y-variable, that is, female stu-
dents not answering a survey question on their weight. This section has not been about 
when cases are missing from the data to begin with. A classic example is when a person 
for some reason chooses not to take part in a survey. As mentioned earlier, we have no 
worries if those choosing to participate are similar to those not choosing to participate 
on average. When the two groups differ, however, problems arise: We get to analyze 
a non-representative sample of the population. The upcoming example illustrates this.

Think back on our survey questionnaire data on exercise habits, where Stata-output 
6.8 displays the students’ gender distribution. We note a roughly 65:35 gender distribu-
tion in the sample, with female dominance. (There is no need to present the exact same 
results in SPSS.) But suppose for now that the true gender distribution in the population 
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was 50:50 and that we through random sampling contacted an equal proportion of 
male and female students.11 For some unknown reason, however, male students chose 
more often than female students to abstain from taking part in the survey – yielding 
the skewed 65:35 distribution. In short, we have a sample that is unrepresentative of the 
population with respect to the gender variable’s distribution.

Stata-output 6.9 shows the mean and CI for the variable exercise hours per week. The 
mean is 4.78, with a CI from roughly 4.5 to 5.0 (as we already knew from Chapter 5). 
The key question now is: How does our sample’s non-representative gender distribution 
affect the unknown mean of the exercise hours variable in the population?

Chapter 5 showed that male students exercised more hours per week than female 
students. We now have (fictitious) information saying that male students are under-rep-
resented in our sample. We can thus deduce that the mean estimate of 4.78 hours is 
downward-biased: If we had a 50:50 gender distribution in our sample in sync with the 
population distribution, that is, a sample including more male students, the estimate for 
the mean of the exercise variable in the population would have been larger.

Statistics programs use sampling weights to account for a sample that is not repre-
sentative of its population. Stata-output 6.10 shows the results in our (fabricated) case. 
We note that the mean estimate for exercise hours in the population increases to 4.99 
hours if we base our calculation on a constructed 50:50 gender distribution for the 
students in the sample. The CI follows suit. The similar results in SPSS appear in 
SPSS-output 6.6.12

The key point in this subsection is this: We use sampling weights to get a sample 
more representative of the unknown population from which it is drawn.13 This way, our 
results for the sample get closer to the corresponding (unknown) population results.

Stata-output 6.8 Frequency table for the variable gender in the student exercise data.

Stata-output 6.9 Mean and 95 percent CI for hours _ exer in the student exercise data.
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We also apply sampling weights to the analysis of variable associations – much in the 
same manner as we just did for descriptive analysis. Finally, the problem of missing val-
ues (e.g., not answering a question) and missing cases (e.g., not participating in a survey) 
might appear in combination. But let us not go there – at least not yet!

Stata-output 6.10  Mean and 95 percent CI for hours _ exer in the student exercise data, 
with the weighting variable weight to “construct” a 50:50 gender distri-
bution in the sample.

SPSS-output 6.6  Mean and 95 percent CI for hours _ exer in the student exercise data, 
with the weighting variable weight to “construct” a 50:50 gender distri-
bution in the sample.
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6.5 Outliers: When Too Much Information Causes Trouble

The problem in Section 6.4 was lack of information, that is, the failure to answer a 
survey question or not to respond to a survey at all. The problem in this section is the 
reverse in a sense; we have too much information. If this sounds cryptic, I promise to 
make it more translucent during the course of the section. For starters, look at the data 
in Table 6.1. I have borrowed the data from Vries (2019); a book I also recommend as a 
user-friendly introduction to thinking critically about statistics.

The data have two variables: a Gini score and a homicide rate. The units are 23 rich 
countries. The Gini score measures the economic inequality in a country: Larger scores 
imply that more of the total incomes and fortunes belong to fewer people in a relative 
sense. A theoretical Gini score of 100 implies that one person earns/owns everything. In 
contrast, a score of zero suggests that everyone earns/owns equally much of everything. 
The homicide variable is the rate per 100,000 people, that is, a typical way of measuring 
some quantity at the country level.

Glancing through the data, we notice that many of the Gini scores lie in the 30 to 40 
range. We also find many homicide rates around 1.0. Stata-output 6.11 presents descrip-
tive statistics for these two continuous variables. The average Gini score is 32.23; the 
average homicide rate is 1.34. (The results are similar in SPSS of course.)

Table 6.1  Gini score of economic inequality and homicides per 100,000 people for 23 rich 
countries.

Country: Gini score Homicides per 100,000 people

Australia 34.94 1.0
Austria 30.25 0.7
Belgium 28.53 1.7
Canada 33.68 1.6
Czech Republic 26.63 1.0
Denmark 29.02 0.8
Finland 27.74 2.2
France 33.78 1.3
Germany 31.14 1.0
Greece 34.48 1.6
Ireland 32.30 1.1
Israel 42.78 2.0
Italy 34.41 0.9
Netherlands 28.73 0.9
Norway 25.86 0.6
Poland 33.25 1.1
Portugal 35.84 1.2
Slovak Republic 27.32 1.6
Spain 35.79 0.9
Sweden 26.81 1.0
Switzerland 32.72 0.7
UK 34.81 1.2
USA 40.46 4.8

Note. The data are called gini_hom.

Stata-output 6.11 Descriptive statistics for gini and homiç
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The context for bringing up the data in Table 6.1 is the idea that economic inequal-
ity seems to be associated with many societal outcomes. In particular, many scholars 
within economics, sociology, and political science argue, yet not without controversy, 
that more economic inequality appears to be associated with many non-beneficial so-
cietal features – such as homicides. A regression analysis sheds light on this hypothesis. 
Stata-output 6.12 presents the results in this regard, whereas Figure 6.1 depicts it. We 
note a positive and significant regression coefficient for Gini (0.091; p = 0.026) yielding 
the upward-sloping regression line.14 More economic inequality seems to bring about 
more homicides as per the theoretical expectation.

Now, look at the country all by itself in the upper right corner of the figure. This is the 
USA, and it stands out in two respects (cf. Table 6.1): First, it has a much higher homicide 
rate than any other country in the data. Second, it has the second-largest Gini score trailing 
only Israel. We call the USA an outlier in statistics lingo. By definition, an outlier is located 
far away from the bulk of the other data points. Outliers are not necessarily problematic 
by themselves in quantitative research. The problems start when outliers also are influential.

Figure 6.1 Graphical display of the regression in Stata-output 6.12.

Stata-output 6.12 Regression of homi by gini.
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Is the USA an influential outlier? We must do two statistical analyses to answer this 
question in its most fundamental sense. In the first, we use all the units – as in the re-
gression in Stata-output 6.12 and Figure 6.1. In the second, we re-do the analysis with-
out the potentially influential outlier: the USA. We then ask if the results of these two 
analyses differ. If not, we claim that the outlier is not influential. If yes, we conclude 
that the outlier is indeed influential. Stata-output 6.13 and Figure 6.2 show the results 
we need to make this comparative assessment.15

Figure 6.2 Graphical display of the regression in Stata-output 6.13.

Stata-output 6.13 Regression of homi by gini, without the USA.
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The coefficient for Gini in Stata-output 6.13 is 0.025, that is, less than a third of the an-
alogs coefficient in Stata-output 6.12. Consequently, the regression line is much less steep. 
Finally, the coefficient is not statistically significant (p = 0.29). The results of the two 
analyses differ, implying that the USA is an influential outlier. This country by itself, so to 
speak, “creates” a too-strong positive association between Gini scores and homicide rates. 
By removing the USA from the data, the positive association in the main disappears.16

The result above is intriguing in light of the research sparking the research question: 
Ignoring the USA, we find little evidence to support that economic inequality is a 
driver of homicide rates. We could even say that our first analysis was based on “too 
much information” as in too many countries. In most real-life analyses, we have to 
consider multiple outliers and not just one. The basic problem remains in the multiple 
case, however; what changes is that we often use data-analytic procedures to identify 
influential outliers. The visual approach, in other words, only works for small data sets. 
See the further reading section at the end of the chapter for more on how to handle 
multiple outliers.

6.6 The Assumptions of Regression Analysis

6.6.1 Preliminaries

When we for a sample associate x1 and y by means of a regression while simultaneously 
controlling for x2, x3, and so on, we want to obtain the precise and unbiased estimate of x1’s 
effect on y in the population.17 This effect is the regression coefficient or b1. To be able to 
trust that b1 is unbiased, the regression in question must meet some assumptions. The first 
part of this section addresses this set of assumptions. The second part addresses another set 
of assumptions: the ones relevant for making valid sample-to-population inferences for b1. 
Given regression’s very dominant place in quantitative research, it is vital to have a firm grip 
on both sets of assumptions. I introduce the assumptions for a specific regression model (and 
not as general ideas) as a pedagogical means. Some assumptions are testable in the sense that 
we use a statistics program to shed light on them; others are not testable in this empirical 
way. I start with the non-testable assumptions and then proceed to the testable ones.

The regression in Stata-output 4.6/SPSS-output 4.1 serves as the frame of reference. 
This regression reappears in Stata-output 6.14. The focus is on the regression coefficient, 
b1, for length of stay, x1, on total trip expenditures, y. This b1-estimate is roughly 28 
Euros. I emphasize that we examine the first set of regression assumptions to shed light 
on whether this b1-estimate for length of stay is biased or not. Yet in principle, the same 
type of reasoning applies to b2 for x2, b3 for x3, and so on.

6.6.2  The Non-Testable Regression Assumptions  
Regarding the Unbiasedness of b1

The first and most important non-testable assumption is:

A1 The Regression Model Includes All Relevant x-Variables

Assumption A1 means that the regression in Stata-output 6.14 contains all x-varia-
bles explaining variation in total trip expenditures. If this is the case, the entering 
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of an additional x-variable will not cause length of stay’s b1 to change in magnitude. 
It is thus unbiased. The practical problem is that we can never be sure a regression 
actually contains all relevant x-variables. We can always think of some xn we do 
not have in our data, and we cannot know for sure what would have happened to 
the b1-estimate if this xn was added to the regression: It could have increased, de-
creased, or remained unchanged. The b1-estimate is thus potentially biased. (If we 
had xn in our data, we would just have entered it to check!) The A1-assumption is 
not testable because it is impossible to control for x-variables that are not present 
in the data. At the end of the day, we can only hope our regression model contains 
the most relevant x-variables.18 The regression in Stata-output 6.14 in all likelihood 
lacks relevant x-variables, such as students’ income, students’ savings, or their par-
ents’ income/savings. This omission might cause the b1-estimate of 28 Euros to be 
biased.

A2 The Regression Model Omits all Non-Relevant x-Variables

Textbooks always mention this assumption, although any violation of it typically is 
unproblematic. That said, something is often not right when a regression model con-
tains more x-variables not contributing with significant effects than x-variables hav-
ing significant effects. The A2-assumption is not testable for the same reason that the 
A1-assumption is non-testable. Furthermore, a non-significant effect of b1 does not 
necessarily imply that x1 is non-relevant.19 In the present case, however, most of the 
x-variables contribute with significant effects that also make a certain kind of sense from 
a theoretical point of view. This is generally reassuring.

Stata-output 6.14  Total trip expenditures by independent variables for the student tourism 
data.
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6.6.3 The Testable Regression Assumptions Regarding the Unbiasedness of b1

There are four testable assumptions addressing the unbiasedness of b1. These are:

B1 The linearity assumption
B2 The additivity assumption
B3 No influential outliers
B4 No (perfect) multicollinearity

I address them in turn below:

B1 The Linearity Assumption

Regression and linear regression often mean the same thing. Yet regression is the 
more general term because it says nothing about how x1 and y are associated. Lin-
ear regression, in contrast, says that the association between x1 and y is linear. As 
such, the linearity assumption applies to linear regression only. The typical way of 
checking if x1 is linearly related to y is by means of a visual inspection. Figure 6.3 
is a scatterplot smoother showing the four associations in Stata-output 6.14. The 
smoother puts no a priori restrictions, linear or otherwise, on the association between 
the four x-variables and total trip expenditures. Instead, the smoother lets the data 
speak for themselves. (Note that computation of smoothing plots is time-consuming 
for large data sets.)

The linearity assumption pertains only to length of stay and booking time; it does 
not apply to the two dummies. We see that length of stay and booking time have 

Figure 6.3  Multivariable scatterplot smoother visualizing the associations between the var-
iables in Stata-output 6.14
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approximately linear associations with total trip expenditures; the B1-assumption ap-
pears not to be violated. In cases where visual inspection reveals non-linear associations 
between the x-variables and y, that is, a violation of B1, we should employ the various 
strategies for handling non-linearity presented in Section 4.4.

B2 The Additivity Assumption

The B2-assumption says there are no significant interaction effects present. That is, 
non-additivity implies significant effects of interaction terms, whereas additivity means 
no significant interaction effects. We already know from Section 4.5 that our regression 
violates the B2-assumption because we found a significant effect of the interaction be-
tween length of stay and trip destination; cf. Stata-output 4.11. That is, the b1- estimate 
for length of stay was not of the same magnitude for the two trip destinations of inter-
est, but larger for trips to destinations beyond the Nordic countries than for trips to the 
Nordic countries. The take-home message is that a regression model containing one 
or more interaction terms is the procedure to solve a violation of the B2-assumption 
in the same way a non-linear regression is the procedure to solve a violation of the 
B1-assumption.

B3 No Influential Outliers

Section 6.5 showed how one unit in the data – that is, the influential outlier USA –  
caused the regression coefficient for the Gini score to be much larger than the analo-
gous coefficient based on an analysis in which the USA was discarded from the data. 
This is a classic violation of the B3-assumption. A common solution to a B3-vio-
lation is to remove the influential outlier(s) from the data. This procedure is often 
trouble-free if the influential outliers are few compared to the rest of the units in the 
data. Yet such removing should be assessed against the possibility of excluding units 
actually belonging to the data. For random samples in particular, any outlier-dele-
tion strategy might cause a representative sample to become non-representative in 
the extreme case. The general approach in the regression case is to do two regres-
sions; one with and one without the potentially influential outliers. You do not have 
a B3-problem if the two analyses tell the same story regarding the magnitude of b1. 
If they do not, you might consider dropping the influential outliers from the data.

There are more than 400 students in the data responsible for Stata-output 6.14. A 
visual inspection to identify potential influential outliers is thus cumbersome.20 Thank-
fully, there are data-analytic methods available for identifying influential outliers in 
large data sets, but going into these is beyond the scope of this book; see the section on 
further reading at the end of the chapter.21 Finally, it is very important you tell your 
readers how an outlier problem was handled if there indeed was one.

B4 No (Perfect) Multicollinearity22

The B4-assumption is not difficult to comprehend despite its complicated name. Mul-
ticollinearity has to do with associations among the x-variables in the regression model 
and has nothing to do with y. Say that trips lasting for many days always went to des-
tinations beyond the Nordic countries and that trips lasting for a few days always went 
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to Nordic countries. Then it would be hard for the regression to find out if the large 
total expenditures of a particular trip were the result of (1) being a long-lasting trip, 
or (2) being a beyond-Nordic destination trip.23 This potential association between 
x-variables is the concern of multicollinearity; too strong an association is a violation of 
the B4-assumption. To examine B4, we calculate the Variance Inflation Scores (VIFs). 
Stata-output 6.15 presents the VIFs for the regression in Stata-output 6.14. (They are of 
course similar in SPSS.)

One problem with the mean VIF score as a measure of possible multicollinearity is 

that there is no general agreement regarding what constitutes a too-high score. Some 
claim multicollinearity is problematic only if the mean VIF score exceeds 10; others 
are concerned above 2.5.24 Personally, I lean towards the lower threshold levels in this 
regard, say 3 or 4. In this case, however, multicollinearity is of no concern regardless of 
the preferred threshold value: None of the VIFs exceeds 1.58.

In the presence of multicollinearity between, say, x1 and x2, the estimates for b1 and 
b2 get unreliable and unstable. It is therefore questionable if these estimates capture the 
unbiased effects of x1 and x2. Multicollinearity between x1 and x2 causes no problems 
for the other x-variables and b-estimates in the regression model.

There are three main ways of dealing with multicollinearity: (1) Increase the number 
of units in the analysis if possible. (2) Delete the x-variable(s) responsible for the prob-
lem if this does not violate the A1-assumption, or combine the x-variables causing the 
problem into an index. (3) Do nothing if the regression estimates of main interest make 
theoretical sense despite having inflated SEs!

6.6.4  The Testable Regression Assumptions Regarding the Statistical  
Significance of b1

I mentioned the error term or e briefly throughout Chapter 4. Now I bring e center 
stage. The e captures random variability’s and all unmeasured x-variables’ effects on y in 
the population. This e has to meet three assumptions if we are to trust the significance 
test of b1: homoscedasticity in error terms (C1), normally distributed error terms (C2), 
and uncorrelated error terms (C3). In practice, however, we examine C1 to C3 for the 
residuals, which we may think of as the sample-equivalent of the error terms. I address 
the three assumptions in turn below. 

Stata-output 6.15 VIFs for the regression in Stata-output 6.14.
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C1 Homoscedastic Residuals

The C1-assumption, despite its complicated name, just means that the spread around the 
regression line should be of roughly similar size for the various levels of x1. Figure 6.4 
sheds preliminary light on the C1-assumption visually. Clearly, the spread around the 
regression line is not equal across the range of the length of stay variable. The residuals are 
not homoscedastic; they are heteroscedastic. The C1-assumption appears to be violated.

The plot in Figure 6.4 does not take all x-variables in Stata-output 6.14 into account. 
For this reason, the jury is still out on the final verdict for the C1-assumption. The 
residuals-versus-predicted-values plot in Figure 6.5 accounts for all x-variables in Stata- 
output 6.14. The horizontal and dashed line (at Residuals = zero) may be thought of as 
the regression line for the combination of all x-variables in the model. We verify our 
initial and tentative conclusion: The spread of the residuals is not equal around the regres-
sion line. That is, we have heteroscedasticity and thus a violation of the C1-assumption.

A second way to examine homoscedasticity is by using a formal statistical test. Homosce-
dasticity expresses the null hypothesis in this regard, whereas heteroscedasticity is the alter-
native hypothesis. Stata-output 6.16 presents the result of this homoscedasticity test.

We reject the null and get indirect support for heteroscedasticity, with a p-value be-
low 0.00001. The statistical test corroborates our visual inspection: The C1-assumption 
is violated. Not meeting the C1-assumption causes the SE of b1 to be biased.25 We do 
not know if the SE is biased upwards or downwards, but the latter is more likely and 
a more serious problem. Remember from Section 5.7: We get the t-value by dividing 
b1 on its SE. A downward-biased SE thus yields an upward-biased t-value. Long story 
short: If the SE is downward-biased, the correct t-value is smaller than what the statistics 
output suggests. We therefore risk claiming that b1 is statistically significant when it 
actually is not.

Figure 6.4  Scatterplot of correlation between length of stay and total trip expenditures, with 
regression line.
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The remedy in the face of heteroscedasticity is to compute so-called robust SEs. Stata- 
output 6.17 re-estimates the regression in Stata-output 6.14 using robust SEs.

Figure 6.5 Residuals-versus-predicted-values plot for the regression in Stata-output 6.14.

Stata-output 6.16 Test of homoscedasticity for the regression in Stata-output 6.14.

Stata-output 6.17  Total trip expenditures by independent variables for the student tourism 
data, with heteroscedasticity-robust SEs.

(Continued)
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We note larger robust SEs for all x-variables compared with the plain vanilla SEs in 
Stata-output 6.14. Moreover, the enlarged SE of the booking time coefficient makes 
this coefficient insignificant at the 5 percent level (p = 0.082). The take-home lesson is 
that we should compute robust SEs whenever the C1-assumption is violated. It is worth 
mentioning that the presence of heteroscedastic error terms is a very typical scenario in 
most real-life applications of regression analysis in the social and behavioral sciences.26

C2 Normally Distributed Residuals

There is no need to show the normal distribution by now since we have seen it on sev-
eral occasions. The C2-assumption unsurprisingly tells us that the distribution for the 
residuals should follow a normal distribution. Otherwise, the SEs will be biased – as 
in the case of a violation of the C1-assumption. Figure 6.6 shows the distribution for 
the residuals using a Kernel density plot alongside the normal distribution. The C2- 
assumption seems to be violated because the two curves do not align perfectly. We 
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Figure 6.6  Kernel density plot and the normal distribution for the residuals based on the 
regression in Stata-output 6.14.

Stata-output 6.17  (Continued)
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might also use a formal test to examine the C2-assumption. The results of such a test 
appear in Stata-output 6.18. The normal distribution is the null hypothesis, and the 
p-value below 0.000001 suggests a rejection of this null. We conclude once more that 
the residuals are not normally distributed.

A violation of the C2-assumption brings about biased SEs and hence significance 
tests that cannot be trusted, as mentioned earlier. Yet any such violation is problematic 
for small samples only – typically less than 120 units or so. The violation thus causes no 
harm for our analysis of 444 students.

C3 Uncorrelated Residuals

The C3-assumption often has to do with data collection. In random samples akin to what 
we have analyzed in this section, uncorrelated residuals follow by necessity from the ran-
dom sampling procedure in most cases. In our tourism case, uncorrelated residuals mean 
that what student A answers concerning total trip expenditures is independent of what 
student B answers for the same question and so on for students C and D etc. Key point: If 
your data is a random sample from a population, you could most probably relax with the 
C3-assumption. Yet there are exceptions. Think of a random sample of 1,000 pupils from 
the same school answering a questionnaire about the learning environment. Will these 
pupils’ answers be independent of each other? Probably not. Since pupils in the same class 
will share the same learning environment, they will probably answer pretty much the 
same. We thus have correlated residuals. A similar example concerns the incomes of our 
soccer players. Because players on the same team are subjected to the same, fixed salary 
budget, the players’ incomes – and hence the residuals – are most likely correlated.

A violation of the C3-assumption causes SEs to be biased, which by now should come as 
no surprise. The remedy is to use cluster-robust SEs. This requires access to a variable refer-
ring to such a cluster. In our pupil example above, the cluster-variable would be class be-
longing. The analogous cluster-variable would be team affiliation in the soccer player data.

6.6.5 The C3-Assumption and Cross-Sectional and Longitudinal Data

We have analyzed only cross-sectional data in this book. This implies cutting across 
the time-axis and analyzing what happens – say, the association between x and y – at 
one given point in time. The C3-assumption is not relevant in most cross-sectional 
contexts. This is another story for longitudinal data. Longitudinal data means having 
repeated observations for the same unit over time. Panel data is a special kind of longi-
tudinal data, as in when a random sample of respondents answers the same questionnaire 

Stata-output 6.18  Test of normal distribution for the residuals for the regression in 
 Stata-output 6.14.
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once every year or so over a ten-year period. For such panel data, the answers given by 
respondent A at year 1 will most likely be correlated with the answers given by him/
her at year 2, 3, and so on. The residuals are thus correlated. Since we do not analyze 
longitudinal data or panel data in this book, we need not get into statistical models for 
such data (but see the further reading section at the end of the chapter).

6.6.6 The Regression Assumptions: A Summary

The following regression assumptions ensure that the estimate of x1’s effect on y in the 
population, b1, is unbiased:

A1 The regression model includes all relevant x-variables. If violation, consult 
 Section 6.6

A2 The regression model omits all non-relevant x-variables. If violation, consult   
Section 6.6

B1 The linearity assumption. If violation, consult Section 4.4
B2 The additivity assumption. If violation, consult Section 4.5
B3 No influential outliers. If violation, consult Sections 6.5 and 6.6
B4 No (perfect) multicollinearity. If violation, consult Section 6.6

The remaining regression assumptions have to do with the significance test of b1: We 
want to make sure such a significance test is to be trusted. The assumptions are:

C1 Homoscedastic residuals. If violation, compute robust SEs
C2 Normally distributed residuals. A violation is only problematic for small samples
C3 Uncorrelated residuals. If violation, compute cluster-robust SEs

6.6.7 The Linear Probability Model (LPM) and the Regression Assumptions

We used linear regression on a dummy y in Section 4.7; we called this the LPM. The 
LPM violates two regression assumptions by mathematical necessity: C1 and C2. In 
other words, such violations are typically not critical. A better reason for not preferring 
the LPM (as opposed to doing logistic regression) is that the LPM might yield predic-
tions below zero and above one. Because a dummy y may take on only zero and one as 
values, such predictions are nonsensical. The size and severity of this problem should 
probably be assessed on a case-by-case basis.27

6.7 Effect Sizes

What is a strong association between two variables? What is a large mean difference 
between the two groups? Many people are for understandable reasons interested in the 
strength of an association or in the size of a mean group difference. I said earlier that we 
typically need some yardstick found in prior research to answer such questions. Often, 
however, we lack such a benchmark. This section takes on answering how-strong and 
how-large questions for bivariate variable associations when lacking relevant background 
knowledge for the assessment of the x-y association in question. I consider three of the 
most typical effect size scenarios: (1) a continuous y and continuous x, (2) a continuous y 
and dummy x, and (3) a dummy y and dummy x. I present the results in Stata only in this 
short section to avoid tedious repetition. The results are similar in SPSS.
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6.7.1 A Continuous y and a Continuous x

The Pearson correlation coefficient or r was briefly mentioned in passing in Section 3.4. 
The r is the typical effect size measure in the case of a continuous y and a continuous x. 
Stata-output 6.19 shows the Pearson correlation coefficient for the association between 
total trip expenditures and length of stay. The analogous bivariate regression coefficient 
for length of stay is 33.50 (not shown).

The correlation coefficient is just short of 0.48. This puts the association in the me-
dium effect size category according to the rule-of-thumb display below:

Pearson correlation coefficient: Effect size:
0.20 or –0.20 Small
0.50 or –0.50 Medium
0.80 or –0.80 Large

6.7.2 A Continuous y and a Dummy x

Stata-output 6.20 reports the mean of total expenditures for trips to the Nordic coun-
tries and trips beyond the Nordic countries. The results suggest that trips beyond the 
Nordic countries incur much larger expenditures than trips to the Nordic countries; 
almost 800 Euros as opposed to almost 270 Euros on average.

Stata-output 6.19  The Pearson correlation coefficient for total trip expenditures and length 
of stay.

Stata-output 6.20 Total trip expenditures by destination. One-way ANOVA.
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Cohen’s d is the typical effect size measure for a continuous y and a dummy x. 
 Stata-output 6.21 reports Cohen’s d and Hedges’ g. Hedges’ g is preferable to Cohen’s 
d when two groups differ in size, which they clearly do in this case. Otherwise, their 
interpretations are similar.

The rule-of-thumb display below puts the mean difference in trip expenditures for 
the two groups in the large effect size category, that is, –0.98.

Cohen’s d/Hedges’ g: Effect size:
0.20 or –0.20 Small
0.50 or –0.50 Medium
0.80 or –0.80 Large
1.20 or –1.20 Very large

6.7.3 A Dummy y and a Dummy x

Cohen’s w is a “correlation coefficient” for a cross-tabulation, to simplify a bit. That 
is, Cohen’s w expresses the effect size for an association between two categorical varia-
bles.28 Stata-output 6.22 reports a cross-tabulation between choice of accommodation 

Stata-output 6.21 Test of effect size in Stata output 6.20.

Stata-output 6.22  Accommodation type choice by trip destination. Cross-tabulation. N = 444.
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type and trip destination. We note that choice of commercial accommodation is much 
more common for trips to destinations beyond the Nordic countries than it is for trips 
to the Nordic countries. The difference is 40 percentage points (65.69 – 25.88 ≈ 40). 
Stata-output 6.23 displays Cohen’s w in this regard, which also is similar to the effect 
measure phi in the 2 × 2 cross-tabulation case.

Cohen’s w is almost 0.39, making it a medium-plus effect according to the rule-of-
thumb display below:

Cohen’s w: Effect size:
0.10 or –0.10 Small
0.30 or –0.30 Medium
0.50 or –0.50 Large

6.8  How to Present and Communicate Statistical-Association 
Results

We typically do not copy-paste the output from Stata or SPSS directly into a thesis, a 
research paper, or a PowerPoint, as I mentioned in passing in Section 2.2. The next four 
subsections show some usual and formal ways of presenting statistical-association results 
in a thesis, research paper, or PP based on the analyses in Sections 6.7 (i.e., cross-tabu-
lation and ANOVA) and 6.6 (i.e., multiple regression).

6.8.1 The Cross-Tabulation

Table 6.2 shows a typical way of presenting the results of a cross-tabulation. All num-
bers are extracted from Stata-outputs 6.22 and 6.23.

The main thing when presenting the results of Table 6.2 to readers and audiences 
is the difference in accommodation choice between the students traveling to Nordic 
or non-Nordic destinations. This 40-percentage points difference in choice of accom-
modation type (66 – 26 or 74 – 34) expresses the significant association between the 
variables. To sum up this association, we could write something like:

The table shows that students on trips to non-Nordic destinations have a signifi-
cantly larger probability (p < 0.001) of choosing commercial accommodation than 

Stata-output 6.23 Test of effect size in Stata output 6.22.
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students on trips to a Nordic country. For trips to non-Nordic destinations, the 
percentage choosing commercial lodging is 66, whereas the analogous percentage 
is 26 for trips to the Nordic countries. This 40-percentage points difference might 
be characterized as medium-sized.

The association in Table 6.2 is statistically significant and suggests that the two groups of 
students – the Nordic country travelers and the beyond-Nordic country travelers – dif-
fer with respect to accommodation choice. In other cases, the x-y association of interest 
might not be statistically significant. Is there a point in reporting a cross-table for such 
a non-significant x-y association? The correct answer is, not for the first time, that it 
depends. The upcoming example illustrates the general idea in question.

Statements (A) and (B) below convey the exact same amount of information:

(A) 20% of the total sample preferred option i for y.
(B) 20% of the females in the sample, and 20% of the males in the sample, preferred 

option i for y.

Think of (A) as a frequency table and (B) as a cross-tabulation. A non-significant gender 
difference implies in a strict sense that a cross-tabulation contains no more information 
than a frequency table, as in (A) and (B). Given this strict interpretation, the cross-table 
is redundant for a non-significant x-y association; it contains the same information as 
the frequency table. That said, and continuing with the example, gender equality with 
respect to y might be an interesting research finding in itself in certain circumstances 
and thus worthy of being mentioned. Sometimes equality among groups is as interesting 
as non-equality – especially when this is unexpected.

6.8.2 The One-Way ANOVA

Table 6.3 shows a typical way of presenting the results of a one-way ANOVA. All num-
bers are extracted from Stata-outputs 6.20 and 6.21.

Table 6.2  Accommodation type choice by trip destination. Cross-tabulation. N = 444.

Trip destination:

Accommodation type: Nordic trip Beyond Nordic trip Total
Commercial 26% (44) 66% (180) 50% (224)
Private 74% (126) 34% (94) 50% (220)
Total 100% (170) 100% (274) 100% (444)

Note. The numbers in parentheses are frequencies. Pearson chi-square (1, n = 444) = 66.52, p < 0.0001.
Cohen’s w = 0.39.

Table 6.3  Mean of total trip expenditures, in total and by trip destination. One-way ANOVA.

Variable: total trip expenditures N = Mean SD

Trip destination: Nordic trip 170 269.32 305.75
Trip destination: Beyond Nordic trip 274 797.88 643.04
Total 444 595.51 597.20

Note. F(1, 442) = 100.67, p < 0.00001. Cohen’s d = −0.98 and Hedges’ g = −0.98.
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The main thing to communicate to readers and audiences in Table 6.3 is the signif-
icant and very large mean difference in expenditures between the students traveling 
to the two destinations.29 As a brief summary, we could write something along the 
following lines:

The table shows that students on trips beyond the Nordic countries spend sig-
nificantly more money (p < 0.00001) than students on trips to the Nordic coun-
tries. On average, the students on trips to non-Nordic countries spend 798 Euros, 
whereas students on trips to Nordic countries spend 269 Euros. This mean differ-
ence should be classified as large.

We might find no significant mean differences for other x-y ANOVA-associations. 
That is, the overall mean of y might be indistinguishable from the mean of y among 
the subgroups of interest. Does this scenario make the ANOVA-table redundant in 
the sense that it contains no more information than the mean of y? The answer has 
lots in common with the answer for the cross-tabulation in Table 6.2: Yes, the ANO-
VA-table is redundant in a strict sense. That said, mean equality in y among subgroups 
in the data might be an interesting research finding in itself, especially when this is 
unexpected.

6.8.3 The Multiple Regression

A typical regression table based on Stata-output 6.14 or SPSS-output 4.1 might look 
something like Table 6.4.

Three general comments are of note at the outset. First, regression outputs from 
statistics programs contain much more information than what goes into regression 
tables. Second, we always report SEs. Third, we typically add one, two, or three as-
terisks (*, **, or ***) to indicate each regression coefficient’s statistical significance 
level.30

The main findings to communicate to readers and audiences are the effects of length 
of stay and trip destination. That said, all regression coefficients should most often be 
commented. We might write something like the following as a summary:

Length of stay has the expected positive effect on total trip expenditures: A trip 
lasting for, say, seven days incurs on average 28 Euros more than a trip lasting six 

Table 6.4  Total trip expenditures in Euros by independent variables. Multiple linear regression.

Variables: B

Length of stay (in days) 27.61 (2.80)***
Booking time (in weeks) 5.94 (2.70)*
Trip destination (1 = Beyond Nordic country) 445.49 (58.95)***
Type of trip (1 = Package trip) −74.40 (56.88)
Constant 20.02
R2 0.36
N = 444

Note. Standard errors are in parentheses.
* p < 0.05; ** p < 0.01; *** p < 0.001 (two-sided tests)
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days ceteris paribus (p < 0.001). A ten-day difference in length of stay thus amounts to 
almost 280 Euros, making length of stay an important determinant of trip expendi-
tures. Trips booked, say, ten weeks in advance incur six Euros more on average than 
trips booked nine weeks in advance ceteris paribus (p < 0.05). Trips to non-Nordic 
countries entail on average 445 Euros more than trips to Nordic countries ceteris 
paribus (p < 0.001), making also trip destination an important determinant of trip 
expenditures. In contrast, package trips do not seem to incur fewer expenditures 
than non-package trips ceteris paribus (p > 0.05). R2 suggests that the four independ-
ent variables in the regression model explain 36 percent of the variation in total trip 
expenditures.

The regression model in Table 6.4 has four x-variables. Models that are more com-
plex involve more x-variables, interaction terms, and/or square variables. With re-
spect to presentation, however, one more such variable just means one more row in 
the table.

6.8.4 Presenting CIs

A response to the NHST-controversy mentioned in Section 5.8 is the recommendation 
to report 95 percent CIs in all research settings. Table 6.5 reports such CIs based on 
Stata-output 6.14.

Readers and audiences should be told that the CI for length of stay’s coefficient goes 
from 22 to 33 Euros. It is hence a rather precise estimate – and always greater than zero. 
The CI for the booking time coefficient does not include zero either, although it is close. 
The coefficient for destination has a very broad CI, but it is always greater than zero. 
Finally, the coefficient for the type of trip has a CI that includes zero, making it statis-
tically insignificant at p > 0.05. Figure 6.7 is a visual display of the above-mentioned 
regression coefficients along with their CIs.

Table 6.5  Total trip expenditures in Euros by independent variables. Multiple linear regression, 
with 95 percent confidence intervals.

95 percent confidence interval

Variables: Lower Higher

Length of stay (in days) 27.61***
(2.80)

22.11 33.10

Booking time (in weeks) 5.94*
(2.70)

0.63 11.25

Trip estimation (1 = Beyond Nordic 
country)

445.49***
(58.95)

329.63 561.34

Type of trip (1 = Package trip) −74.40
(56.88)

−186.19 37.40

Constant 20.02
R2 0.36
N = 444

Note. Standard errors are in parentheses.
* p < 0.05; ** p < 0.01; *** p < 0.001 (two-sided tests).
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It is also possible to combine the graphical way of presenting regression results with 
the use of CIs. Figure 6.8 illustrates for the association between length of stay and total 
trip expenditures. We note the larger CIs – that is, the more variation – in predicted 
total expenditures for trips of longer duration. It is straightforward to expand Figure 6.8 
with separate regression lines for different subgroups in the data, as we saw in Section 
4.5 on interaction effects. 

Finally, we might present graphs based on one-way ANOVAs that include CIs. 
Figure 6.9 illustrates the association between total trip expenditures and trip desti-
nation based on the numbers in Stata-output 6.20. We again note the huge differ-
ence in mean spending between the two groups, as well as two CIs that are far from 
overlapping.31

6.8.5  Presenting and Communicating Statistical-Association Results in  
Non-Academic Settings

Scholarly reports, theses, and research papers are one type of outlet for statistical results. 
The other main type is the non-academic setting – to coin a broad term. Below follows 
some practical pieces of advice on how to communicate statistical-association results in 
non-academic settings. That said, many of these prescriptions might come in handy in 
academic settings as well.

Tip 1: Know Your Audience – and Prepare Accordingly!

When preparing a presentation about the results of statistical associations, perhaps with 
the aid of PowerPoints,32 it is often useful to have the typical spectator in your mindset. 

Figure 6.7 Regression coefficients and their CIs based on the regression in Table 6.5.
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Figure 6.8  Effect of length of stay on total trip expenditures. Predictions with 95 percent 
CIs based on the regression in Table 6.5.
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Figure 6.9 Means and 95 percent CIs for total trip expenditures by trip destination.
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This piece of advice, however, obviously presupposes that you actually have some 
knowledge about the background of your audience. You may for example explain less 
and take more for granted than I have done in this book if the audience is familiar with 
numbers.33 In contrast, for an audience not acquainted with statistics and numbers, it 
might even be a good idea to start the presentation by explaining what a statistical asso-
ciation is – perhaps by using a stripped-down example from the upcoming PPs. The use 
of tables versus graphs also depends on this (too crude) dichotomization of audiences. 
One piece of advice in this regard says that the lesser the numerical competence of the 
audience, the more you should rely on graphs. That said, variation is oftentimes a good 
thing in itself. One caveat: When presenting interaction effects and non-linear effects, 
use graphs no matter the numerical proficiency of the audience!

Tip 2: Very Little, and Less Than you Think, Is Self-Explanatory!

Experience tells me it is typical to overestimate the audience’s numerical capability as 
well as their interest in the topic in question. Note to self: You are always much more 
into your research topic and statistics than the audience. It follows that much more than 
you think is not self-evident. On the contrary, more context and background are usually 
called for. Too much explication for the five people on the front seats is most times a 
lesser evil than too little explication for the many backbenchers.

Tip 3: Spend Time on the y-Variable!

It is always smart to allow the audience to get a firm grip on the characteristics of your 
y-variable.34 Means, medians, mode (for categorical variables) are useful in order to let 
people get a feel of how the y-variable might possibly change with or without the “help” 
of any x-variables. The 95 percent CI for y in the population underscores that your re-
sults are neither completely precise nor set in stone.

Tip 4: Use Static Interpretations of Associations!35

From a presentational point of view, it is tempting to claim that a change in x brings 
about this or that change in y. Such interpretations make for brief statements having 
a nice flow. However, such dynamic interpretations more or less presuppose causal 
relationships. To be on the safe side, thus, you should probably adhere to the princi-
ple of communicating a static association with a ceteris paribus clause. For regression, 
this means comparing the conditional mean of y for some relevant value of x with 
the analogous mean of y for x + 1. If you say, “I will use dynamic interpretations 
for ease of presentation, but that the correct interpretation really is static,” most of 
the audience will not notice this after a while, even though they understand the 
distinction.

Tip 5: Downplay Statistical Significance and Emphasize Practical Significance!

There might be some researchers in the audience, but they are typically few and far 
between. These researchers are interested in statistical significance as a phenomenon; 
laypeople are generally not. Furthermore, a statistically significant association (due to, 
say, a large sample size) might be flat-out uninteresting from the practical point of view 
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of most people in the audience. Hence, you should focus on practical significance; to 
what extent does a change in x appear to bring about a substantial change in y should be 
the main question. Remember that a practically significant association usually also is a 
statistically significant association.

6.9  Chapter Summary, Key Learning Points,  
and Further Reading

This chapter began with a coverage of some topics that come up most times in quantitative 
research projects before we take on the descriptive, associational, and inferential questions. 
In short, Sections 6.2 through 6.4 were about data preparation. In contrast, Section 6.5 
was about outliers; a topic that is a part of the final associational and inferential analyses. 
Section 6.6 scrutinized the assumptions of regression analysis, whereas Section 6.7 was 
about effect sizes. Finally, Section 6.8 dealt with how to communicate statistical-associa-
tion results to readers and audiences. Below follows some key learning points:

• Most quantitative research projects involve an initial phase of data preparation: 
recoding of variables, labeling of variables, and construction of new variables. This 
amounts to a lot of tedious work in most applications. A systematic streak is thus 
called for!

• Missing data are pervasive for data sets in the social and behavioral sciences, and they 
typically show up in two guises: missing values and missing cases (i.e., units). Missing 
values refer to when information is lacking on a variable for a particular unit – such 
as when a respondent does not answer a specific question in a survey questionnaire. 
Missing cases refer to when a unit that should be part of the data is not – as in when 
someone receiving a survey questionnaire chooses not to take part in the study.

• If data are missing (completely) at random, we might often do statistical analysis as if 
nothing has happened. However, if data are not missing at random, which arguably 
is the more typical case, we should address the missing data problem (if possible).

• Outliers are data points that in a physical sense are located far away from the bulk 
of other data points; cf. Figure 6.1. Outliers are influential if we by removing them 
from the data obtain a statistical result different from the one we get when keeping 
the outliers in the data. A common procedure is to discard influential outliers from 
the data, but such a strategy might have pitfalls.

• Regression analysis must meet a set of assumptions to make sure its results are cor-
rect in the sense that the sample regression coefficients are close to their unknown 
population counterparts. Some of these assumptions are testable in a statistics pro-
gram; others are not. Section 6.6 guides you through the particulars in this respect.

• It is difficult to assess if a correlation is strong or weak – or if a mean group difference is 
large or small – when we have no prior information as to what constitutes “strong” or 
“large.” Effect size measures help save the day in such circumstances. The correlation 
coefficient or r, Cohen’s d, and Cohen’s w are three typical measures of effect sizes.

• The output from statistics programs typically requires some tinkering before ap-
pearing as final tables or graphs in a thesis, a research paper, or a PowerPoint pres-
entation. The characteristics of the audience govern the choice of how to present 
statistical-association results most effectively. As a broad generalization, tables tend 
to work well for numerically competent people, whereas graphs are more intuitive 
for the less numerically competent.
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Further reading on missing data are Allison (2002) and Gorard (2020). Identifying out-
liers is a vast topic, and Aggerwal (2017) provides a formal treatment, whereas Meule-
man et al. (2015) is a concise and practically oriented explication in the regression 
context. Berry (1993), Meuleman et al. (2015), Allison (1999), and Berk (2004) illu-
minate the assumptions of regression. Wooldridge (2010) covers all you need to know 
about analyzing longitudinal data and panel data. For more on effect sizes, see Cohen 
(1988) and Khamis (2008).

6.10  Statistical Commands: Do-Files in Stata and  
Syntax-Files in SPSS

As before I assume you have read Sections 2.9, 3.9, 4.9, and 5.10 before taking on this 
section. The commands appear in plain text “outside” of do-files (Stata) or syntax-files 
(SPSS) to save space. As before I add some comments to the commands on occasion. I 
assume throughout that the “correct” data set is in memory to avoid unnecessary rep-
etition. Since the Stata and SPSS commands appear in the main text in Sections 6.1 to 
6.5, the commands below refer to Section 6.6 and onwards.

6.10.1 Stata-Commands in Do-Files

Stata-output 6.14

reg tot_spend los book_time i.destin i.type_trip

Figure 6.3

mrunning tot_spend los book_time destin type_trip

Before doing the mrunning-command (i.e., the scatterplot smoother), you must first 
download it. In the Command-window, type findit mrunning and follow the in-
structions after first clicking on SJ-5-3 gr0017.

Stata-output 6.15

reg tot_spend los book_time i.destin i.type_trip
vif

Figure 6.4

twoway (scatter tot_spend los) (lfit tot_spend los)

Figure 6.5

reg tot_spend los book_time i.destin i.type_trip
rvfplot, yline(0)

Stata-output 6.16

reg tot_spend los book_time i.destin i.type_trip
estat hettest
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Stata-output 6.17

reg tot_spend los book_time i.destin i.type_trip, rob

Figure 6.6

reg tot_spend los book_time i.destin i.type_trip
predict r, resid
kdensity r, normal

Stata-output 6.18

swilk r

The analysis in 6.18 presupposes that the variable r was made when creating Figure 6.6.

Stata-output 6.19

corr tot_spend los

Stata-output 6.20

oneway tot_spend destin, tab

Stata-output 6.21

esize twosample tot_spend, by(destin) cohensd hedgesg

Stata-output 6.22

tab accom destin, col chi2

Stata-output 6.23

phi accom destin

Before doing the phi-command (i.e., Cohen’s w), you must first download it. In the 
Command-window, type findit snp3 and follow the instructions after first clicking 
on snp3 from http://www.stata.com/stb/stb3.

Figure 6.7

reg tot_spend los book_time i.destin i.type_trip
coefplot, xline(0)

Before doing the coefplot-command, you must first download it. In the Com-
mand-window, type findit coefplot and follow the instructions after first clicking 
on SJ-15-1 gr0059_1.

Figure 6.8

reg tot_spend los book_time i.destin i.type_trip
margins, at(los=(1 10 20 30 40 50 60))
marginsplot
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Figure 6.9

cibar tot_spend, over(destin)

6.10.2 SPSS-Commands in Syntax-Files

Stata-output 6.14 (SPSS-output 4.1)

REGRESSION
  /DESCRIPTIVES MEAN STDDEV CORR SIG N
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT tot_spend
  /METHOD=ENTER los book_time destin type_trip.

Figure 6.3 (length of stay)
To the best of my knowledge, there is no SPSS option readily available for generating 
this scatterplot smoother for all x-variables simultaneously. Yet there is a way to get a 
plot that considers one x-variable at a time. The commands are:

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=los tot_spend MISS-
ING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=NO.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: los=col(source(s), name("los"))
  DATA: tot_spend=col(source(s), name("tot_spend"))
  GUIDE: axis(dim(1), label("los"))
  GUIDE: axis(dim(2), label("tot_spend"))
  GUIDE: text.title(label("Simple Scatter of tot_spend by los"))
  ELEMENT: point(position(los*tot_spend))
END GPL.

Now, right-click on the graph to get it “active.” Then click on Edit Content → In 
Separate Window, and click on Elements and choose Fit Line at Total. Now, in the 
appearing Properties-Window, click on Loess and on Apply (and Close). The appearing 
graph resembles Figure 6.3 with length of stay at the x-axis.

Figure 6.3 (booking time)
To the best of my knowledge, there is no SPSS option readily available for generating 
this scatterplot smoother for all x-variables simultaneously. But there is a way to get a 
plot that considers one x-variable at a time. The commands are:

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=book_time tot_spend 
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MISSING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=NO.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: book_time=col(source(s), name("book_time"))
  DATA: tot_spend=col(source(s), name("tot_spend"))
  GUIDE: axis(dim(1), label("book_time"))
  GUIDE: axis(dim(2), label("tot_spend"))
  GUIDE: text.title(label("Simple Scatter of tot_spend by 
book_time"))
  ELEMENT: point(position(book_time*tot_spend))
END GPL.

Now, right-click on the graph to get it “active.” Then click on Edit Content → In 
Separate Window, and click on Elements and choose Fit Line at Total. Now, in the 
appearing Properties-Window, click on Loess and on Apply (and Close). The appearing 
graph resembles Figure 6.3 with booking time at the x-axis.

Stata-output 6.15

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA COLLIN TOL
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT tot_spend
  /METHOD=ENTER los book_time destin type_trip.

Figure 6.4

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=los tot_spend MISS-
ING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE
  /FITLINE TOTAL=YES.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: los=col(source(s), name("los"))
  DATA: tot_spend=col(source(s), name("tot_spend"))
  GUIDE: axis(dim(1), label("los"))
  GUIDE: axis(dim(2), label("tot_spend"))
  GUIDE: text.title(label("Simple Scatter with Fit Line of tot_spend 
by los"))
  ELEMENT: point(position(los*tot_spend))
END GPL.
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Figure 6.5

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA COLLIN TOL
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT tot_spend
  /METHOD=ENTER los book_time destin type_trip
  /SCATTERPLOT=(*ZRESID ,*ZPRED).

Stata-outputs 6.16 and 6.17

UNIANOVA tot_spend WITH los book_time destin type_trip
  /METHOD=SSTYPE(3)
  /INTERCEPT=INCLUDE
  /PRINT F BP
  /CRITERIA=ALPHA(.05)  
  /ROBUST=HC3
  /DESIGN=los book_time destin type_trip.

Figure 6.6

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA COLLIN TOL
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT tot_spend
  /METHOD=ENTER los book_time destin type_trip
  /SCATTERPLOT=(*ZRESID ,*ZPRED)
  /RESIDUALS HISTOGRAM(ZRESID) .

Stata-output 6.18

REGRESSION
  /MISSING LISTWISE
  /STATISTICS COEFF OUTS R ANOVA COLLIN TOL
  /CRITERIA=PIN(.05) POUT(.10)
  /NOORIGIN 
  /DEPENDENT tot_spend
  /METHOD=ENTER los book_time destin type_trip
  /SCATTERPLOT=(*ZRESID ,*ZPRED)
  /RESIDUALS HISTOGRAM(ZRESID)
  /SAVE RESID.
EXAMINE VARIABLES=RES_1
  /PLOT BOXPLOT STEMLEAF NPPLOT
  /COMPARE GROUPS
  /STATISTICS DESCRIPTIVES
  /CINTERVAL 95
  /MISSING LISTWISE
  /NOTOTAL.
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Stata-output 6.19

CORRELATIONS
  /VARIABLES=tot_spend los
  /PRINT=TWOTAIL NOSIG
  /MISSING=PAIRWISE.

Stata-output 6.20

ONEWAY tot_spend BY destin
  /STATISTICS DESCRIPTIVES 
  /MISSING ANALYSIS.

Stata-output 6.21
SPSS version 27 has built-in commands to calculate Cohen’s d or Hedges’ g, but my 
version (26) has not. To compute these effect size measures semi-automatically, go to 
for example https://memory.psych.mun.ca/models/stats/effect_size.shtml and plug the 
relevant means, standard deviations, and group sizes into the “unbiased” calculator.

Stata outputs 6.22 and 6.23

CROSSTABS
  /TABLES=accom BY destin
  /FORMAT=AVALUE TABLES
  /STATISTICS=CHISQ PHI 
  /CELLS=COUNT COLUMN 
  /COUNT ROUND CELL. 

Figure 6.7
There is no SPSS option readily available for generating this graph to the best of my 
knowledge.

Figure 6.8
There is no SPSS option readily available for generating this graph to the best of my 
knowledge.

Figure 6.9

GGRAPH
  /GRAPHDATASET NAME="graphdataset" VARIABLES=destin MEANCI(tot_
spend, 95)[name="MEAN_tot_spend" 
    LOW="MEAN_tot_spend_LOW" HIGH="MEAN_tot_spend_HIGH"] MISS-
ING=LISTWISE REPORTMISSING=NO
  /GRAPHSPEC SOURCE=INLINE.
BEGIN GPL
  SOURCE: s=userSource(id("graphdataset"))
  DATA: destin=col(source(s), name("destin"), unit.category())
  DATA: MEAN_tot_spend=col(source(s), name("MEAN_tot_spend"))
  DATA: LOW=col(source(s), name("MEAN_tot_spend_LOW"))
  DATA: HIGH=col(source(s), name("MEAN_tot_spend_HIGH"))
  GUIDE: axis(dim(1), label("destin"))
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  GUIDE: axis(dim(2), label("Mean tot_spend"))
  GUIDE: text.title(label("Simple Bar Mean of tot_spend by destin"))
  GUIDE: text.footnote(label("Error Bars: 95% CI"))
  SCALE: linear(dim(2), include(0))
  ELEMENT: interval(position(destin*MEAN_tot_spend), shape.interi-
or(shape.square))
  ELEMENT: interval(position(region.spread.range(des-
tin*(LOW+HIGH))), shape.interior(shape.ibeam))
END GPL.

6.11 Chapter Exercises with Solutions

The exercises below use the data available for download on the book’s website.

Exercises:

Exercise 1 (data: student_fem_weight, see appendix A of this chapter for data 
documentation)
1a  Find the formula for Body Mass Index (BMI) on the Internet and compute this 

new variable based on the relevant variables in the data.
1b  What is the mean of the BMI variable computed in 1a? The minimum? The 

maximum? The range? The median? The SD? The CV?
1c  Why are there only 289 valid units for the BMI variable?
1d  Is there an association between age and BMI? If so, how strong is this association?
1e  Is there a statistically significant difference in BMI between students who never 

snuff and those who do? If so, how large is this difference?
1f  Is the association between weight_kg and height_cm linear? Are there any 

outliers in this association?
1g  Is there an association between qol and health? If so, how strong is this 

association?

Exercise 2 (data: red_wine, see appendix C of Chapter 4 for data documentation)
2a  Estimate the following regression model: log_price by the x-variables qual-

ity, age and in_store. Describe your results.
2b For the model in 2a: Are the effects of quality and age linear?
2c For the model in 2a: Is there a problem with multicollinearity?
2d  Using the model in 2a as point of departure, is there an interaction effect be-

tween in_store and quality? What does this mean in terms of the additivity 
assumption?

2e  For the model in 2d: Examine the following assumptions: homoscedasticity in 
error terms (C1), normally distributed error terms (C2), and uncorrelated error 
terms (C3).

Answers to exercises (mainly in Stata; see Section 6.10 for equivalent SPSS syntaxes):

Exercise 1 (data: student_fem_weight, see appendix A of this chapter for data 
documentation)
1a  Find the formula for Body Mass Index (BMI) on the Internet and compute this 

new variable based on the relevant variables in the data.
There are two main formulas to compute BMI36:
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 (1) weight in kg / (height in meters)2

or

 (2) (weight in kg / (height in cm)2) × 10,000

Since the height variable in the data refers to cm, we should use (2) to compute the 
BMI variable.37 In Stata, the (do-file) command becomes:

gen bmi = (weight_kg/(height_cm*height_cm))*10000

In SPSS, the analogous syntax is:

COMPUTE bmi=(weight_kg/(height_cm*height_cm))*10000.
EXECUTE.

1b  What is the mean of the BMI variable computed in 1a? The minimum? The 
maximum? The range? The median? The SD? The CV?

We could apply the sum and tab commands, but again it is faster to use the tabstat- 
command from Section 2.7 as in:

The average student has a BMI of about 23. (A BMI in the range from 18.5 to 
23.9 is considered as “healthy” according to one rule-of-thumb.) BMI’s range is 23 
points, ranging from about 15 to about 38. The median is very similar to the mean, 
making the BMI-distribution symmetrical. The SD and CV are 3.33 and 0.14, 
respectively.

1c Why are there only 289 valid units for the BMI variable?
Only 289 out of the 331 female students in the data answered the question on their 

weight. It is thus only possible to compute the BMI for these 289 students.
1d Is there an association between age and BMI? If so, how strong is this association?
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Yes, there is a positive and statistically significant association (p = 0.001) between 
the two variables: Older female students on average appear to have greater BMIs than 
younger female students. The association is “small” (r = 0.19) according to the guide-
lines mentioned in Section 6.7. Yet we should always remember that such effect size 
classifications are rules-of-thumb. Ideally, assessment of effect sizes should be judged 
against the results in prior research.

1e  Is there a statistically significant difference in BMI between students who never 
snuff and those who do? If so, how large is this difference?

Female students who snuff have a 0.28 points greater BMI on average than female 
students who do not. But since the p-value is 0.51, we cannot reject the null hypothesis 
that the two groups have similar BMIs in the population.38 Since the answer to the first 
question is no, the second question becomes more or less redundant.

1f Is the association between weight_kg and height_cm linear? Are there any out-
liers in this association?

Using a scatterplot smoother (i.e., the mrunning-command in Stata), we may in this 
case answer both questions at the same time. The plot shows an approximately linear 
association with only a few potentially influential outliers.

1g  Is there an association between qol and health? If so, how strong is this 
association?

I assume that quality of life (qol) in the main is determined by physical health level 
(health), but I concede that the association might go the other way round. We have:
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Figure 6.10  Scatterplot smoother visualizing the association between the variables weight_
kg and height_cm.

We note the unexpected pattern that having good or very good health appears to 
be “beneficial” for experiencing better quality of life (p < 0.0001). The answer to 
the first question is yes. The answer to the second question is a medium-sized effect 
according to the rules-of-thumb mentioned in Section 6.7; cf. the table showing a 
Cohen’s w of 0.39:
Exercise 2 (data: red_wine, see appendix C of Chapter 4 for data documentation)
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2a  Estimate the following regression model: log_price by the x-variables qual-
ity, age and in_store. Describe your results.

A quick summary of the results assuming the data comprise a random sample from a 
well-defined population is this: Better tasting and older wines are more expensive on av-
erage than worse tasting and younger wines ceteris paribus. A one-point increase in quality 
suggests a 6.2 percent more expensive wine; a one-year increase in storage suggests a 13.9 
percent pricier wine – allowing in part for two dynamic interpretations. Wines available 
in store on average cost about 20 percent less than wines that need to be ordered. We ap-
ply the formula 100 × (eb – 1) from Section 4.5 to get this percentage difference. That is, 
100 × (2.7182−.2194535 – 1) ≈ –19.70.39 All regression coefficients are statistically significant 
(at p < 0.005), and R2 suggests that the three x-variables combined account for 59 percent 
of the variation (variance) in wine prices. Whether this is a satisfactory model fit or not 
should be evaluated against some yardstick – typically found in prior research.

2b For the model in 2a: Are the effects of quality and age linear?
The plots suggest that both effects are roughly linear, making the linear regression 

model suitable at the outset.40 That said, the effect of taste quality appears to have some-
thing of a breaking point at about 82 points.
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2c For the model in 2a: Is there a problem with multicollinearity?

No, there is no problem with multicollinearity. The mean VIF is much lower than 
any dangerous threshold level.

2d  Using the model in 2a as a point of departure, is there an interaction effect be-
tween in_store and quality? What does this mean in terms of the additivity 
assumption?

Figure 6.11  Multivariable scatterplot smoother visualizing the associations between log_
price and quality and log_price and age.
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Yes, the interaction effect is statistically significant at exactly p = 0.05. There is a 
stronger association between quality and (log) price of the wines that need to be or-
dered (0.0679) than there is for wines available in stores (0.0678 – 0.0232 = 0.0446). 
The additivity assumption is violated; we should thus prefer the model containing the 
interaction term.

2e  For the model in 2d: Examine the following assumptions: homoscedasticity in 
error terms (C1), normally distributed error terms (C2), and uncorrelated error 
terms (C3).

. hettest
Breusch-Pagan / Cook-Weisberg test for heteroskedasticity 
         Ho: Constant variance
         Variables: fitted values of log_price

         chi2(1)      =    28.72
         Prob > chi2  =   0.0000

Figure 6.12 Residuals-versus-predicted/fitted-values plot.
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Both test and plot suggest heteroscedasticity, that is, a violation the homoscedasticity 
assumption.

The remedy in the face of heteroscedasticity is to compute robust SEs:

The results of the robust regression suggest no far-reaching consequences for the 
p-values.
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Figure 6.13 Kernel density plot and the normal distribution for the residuals.
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Both plot and test indicate non-normally distributed error terms, that is, a violation 
of the normality assumption. Yet this has no consequences of substance in our setting 
given the large number of units in the analysis.

We have uncorrelated errors if the price of one wine in general is unassociated with 
the price of another wine. This could be the case in real life, but it is also thinkable 
that wines belonging to the same district tend to “share” the price level of that district 
irrespective of differences in quality or storage. In the latter case, we cannot rule out un-
correlated errors completely. We need more information regarding the data collection 
phase to answer this question properly.

Notes

 1 A second reason for collapsing is to avoid having categories with very few units. More cate-
gories inevitably mean more categories with fewer units given a fixed number of units in the 
data.

 2 The third line creates the labels for a temporary help-variable that I personally always name 
with an «l» at the end (short for label). The fourth line attaches the labels for the help-vari-
able to the variable of interest. 

 3 We use a similar approach to recode continuous variables (e.g., number of times exercising 
per week, age in years) into ordinal variables (e.g., times exercising per week in intervals, age 
in years in age groups). This only requires changes in the recode-commands. 

 4 Note that these logarithmic variables already are in their respective data sets. Hence, Stata 
and SPSS will not oblige if you try to repeat the commands and instead send you an error 
message!

 5 So far, I have used units or observations to refer to the entities for which we have data. Yet 
from here on in this section, I follow the missing data terminology and use the term “missing 
cases” and not “missing units.” 

 6 I deleted cases (i.e., units) with missing values in the data preparation phase to make sure 
there were no missing values in the data sets. Generally, this is ok to do only in a teaching 
context like the present. 

 7 I refer to the average in a numerical sense. There is no such thing as an average student in a 
physical sense!

 8 We can ignore the missing value problem and proceed as if there are no missing values if the 
female students not reporting their weight are missing completely at random.

 9 Note that the latter strategy reduces the variable’s variance and hence its SD. 
 10 Regression-based (i.e., data-analytic) imputation is technical material beyond the scope of 

this book; I refer to the further reading section at the end of the chapter.
 11 I emphasize that the 65:35 proportion is correct for the population, making what follows 

a what-if scenario. That said, many populations with a roughly 50:50 gender distribution 
might end up as a 60:40 or 40:60 distribution in random samples of such populations. In 
other words, the what-if scenario is relevant!

 12 The different SEs of Stata and SPSS cause the different CIs. I do not know why the programs 
use different formulas to compute the SE. 

 13 Note that in order to apply sampling weights to background variables (e.g., age, gender, 
county of residence, educational level etc.) we must know beforehand the correct population 
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distribution for these variables. Such information is not always available. Typically, we use 
sampling weights for several background variables simultaneously.

 14 It is debatable whether a statistical significance assessment is relevant for data like these, as 
discussed in Section 5.8. Yet I choose to follow convention and make the assessment in a 
typical manner. 

 15 There are several ways of restricting an analysis to a subgroup of units in Stata. Here, I use 
if homi < 4 because I know that all countries save for the USA have a lower homicide 
rate than four. 

 16 I am not claiming that the USA should be discarded from the data; the point is to illustrate 
what outliers (might) do.

 17 I use the term “unbiased” and not causal in this section to avoid getting into more com-
plexities than necessary. I also assume we analyze a random sample from some well-defined 
population. 

 18 The non-testability of A1 is the main reason why experimental control trumps statistical 
control when it comes to identifying causal effects with (more) certainty.

 19 For example, it is sometimes interesting to find out that an x-variable that according to the-
ory and prior research should have a significant effect indeed has not. 

 20 Yet using a scatterplot smoother (e.g., the mrunning-command in Stata) to check the line-
arity assumption might also get you a long way in terms of detecting outliers.

 21 The results of exploratory work suggest no outlier problem for the association between 
length of stay and total trip expenditures.

 22 Technically, only perfect multicollinearity is a violation of B4. Yet near-perfect multicollin-
earity also causes trouble. The latter is what I explore here.

 23 Conversely, it would be difficult for a regression to find out if the small total expenditures of 
a particular trip were the result of being (1) a short-lasting trip or being (2) a Nordic desti-
nation trip.

 24 Inflated SEs are another symptom of multicollinearity: All else being equal, it gets 
more difficult to obtain a statistically significant regression coefficient in the presence of 
multicollinearity. 

 25 I repeat: The same applies to b2, b3, and so on.
 26 Note also that logging the y-variable, cf. Section 4.4, in many applications, will mitigate 

heteroscedasticity or make the problem totally disappear. 
 27 Out of 644 predictions, the LPM in Stata-output 4.18 generated four predictions below zero 

and none above one. This is hardly problematic.
 28 Cohen’s w also equals Cramér’s V. Yet neither measure is restricted to two dummies; all 

strictly categorical may be used. For effect sizes regarding associations involving two ordinal 
variables, I again refer to Agresti (2010).

 29 In the two-group setting, as in the present case, the F-test and the t-test are equivalent. 
 30 No asterisk implies p > 0.05 or not significant at the 5-percent level. If a regression coeffi-

cient (or any other statistical association) refers to a small sample, say 100 units or less, one 
asterisk might indicate the 7-percent significance level, two asterisks the 5-percent level, and 
three asterisks the 1-percent level. 

 31 Note that overlapping CIs for two groups does not necessarily imply a non-significant mean 
group difference.

 32 Always use fewer PPs than you initially prepared, and always put fewer words/tables/graphs 
on each PP than you think is proper: Less is more! Do not read out aloud what the PPs say; 
the audience knows how to read!

 33 Beware of the danger of overestimating the audience’s numerical ability, however. This 
overestimating tendency is in my experience more prevalent than underestimating it.

 34 I use the singular y for ease of presentation only. 
 35 If you have observational data, that is. If your data are experimental, dynamic interpretations 

might be justified. 
 36 See, for example, https://www.cdc.gov/nccdphp/dnpao/growthcharts/training/bmiage/

page5_1.html.
 37 We could alternatively rescale the height variable to meters and use (1).
 38 Presupposing a non-directional H1. A one-way ANOVA of course yields the same result.
 39 In Stata, the (do-file) command is: dis 100 × (exp(–0.2194535)–1)
 40 The command in Stata is: mrunning log_price quality age



Appendix A

Female Student Weight Data

Data documentation for the data student_fem_weight; a survey questionnaire data 
from a random sample of female students attending a Norwegian university college in 
2018. Variable names are in bold typeface. N = 289 – 331.

health

Your physical health level: ok = 0, good = 1, very good = 2

qol

Your quality of life: ok = 0, good = 1, very good = 2

youth_exe

In your youth before you started studying, to what extent were you involved in sports 
that required a lot of physical exercising (to a very small extent = 1; to a very great 
extent = 10)?

age

Age in years

snuff

Snuffing (moist snuffing): never = 0, sometimes/daily = 1

weight_kg

Weight in kilograms (kg)

height_cm

Height in centimeters (cm) 
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