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Series Preface 

This series will publish the books on grey system theory and various applications in 
the fields of natural sciences, social sciences and engineering. 

It is devoted to the international advancement of the theory and application of 
grey system theory and seeks to foster professional exchanges between scientists 
and practitioners who are interested in the models, methods and applications of 
grey system theory. Through the pioneering work completed over 40 years, grey 
system analysis methods have become powerful tools in addressing system with 
poor information. 

Books published with this series will explore the models and applications of grey 
system theory, in order to tackle poor information more effectively and efficiently. 
The series aims to provide state-of-the-art information and case studies on new 
developments and trends in grey system research and its potential application to 
solve practical problems. 

In the era of big data, the grey system theory based on poor information data 
mining has sprung up. It has become an effective tool for people to extract valuable 
information from massive data. In the past 40 years, grey system method and model 
have been widely used in many fields, such as social science, natural science and 
engineering technology, which has led to innovation and progress in various fields. 
More and more people interested in grey system theory and a lot of new results have 
been obtained in recent years. In particular, successful applications in many fields 
have won the attention of the international world of learning. 

Scholars from more than 100 countries and regions in the world have published 
more than 300,000 documents of grey system research and applications. 

On the 7th of September 2019, Angela Dorothea Merkel, then German Chancellor, 
praised grey system theory in her speech at Huazhong University of Science and 
Technology. She said that the work of Prof. Deng Julong, the founder of grey system 
theory, and Prof. Sifeng Liu, the editor of this series, “have made a profound impact 
on the world”.
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viii Series Preface

The coverage of this series includes, but is not limited to:

• Foundations of grey systems theory
• Grey sequence operators
• Grey relational analysis models
• Grey clustering evaluations models
• Techniques for grey system forecasting
• Grey models for decision-making
• Combined grey models
• Grey input–output models
• Techniques for grey control
• Various applications of grey system models in the fields of natural sciences, social 

sciences and engineering. 

If you are interested in the series on grey systems, please contact with Ms. Emily 
Zhang at emily.zhang@springernature.com or Prof. Sifeng Liu at sfliu@nuaa.edu. 
cn. 

Nanjing, China Prof. Sifeng Liu, Ph.D. 
Editor of the Book Series on Grey 

System, Director of Institute for Grey 
Systems Studies, NUAA, President 
of International Association of Grey 

System and Uncertain Analysis

mailto:emily.zhang@springernature.com
mailto:sfliu@nuaa.edu.cn
mailto:sfliu@nuaa.edu.cn


Foreword by Dr. James M. Tien 

It gives me great pleasure to be introducing this 8th edition of Grey System Theory and 
Its Applications by Prof. Sifeng Liu. The theory of grey systems was first introduced in 
1982 by J. L. Deng (1933–2013) at Huazhong University of Science and Technology; 
it established a relatively new approach for addressing poorly defined problems with 
a high level of greyness or uncertainty. The theory enables one to model, analyse, 
monitor and control such partially defined systems by generating, excavating and 
extracting useful information from what is available. It built on the work of Dr. Lotfi 
A. Zadeh, who introduced the concept of fuzzy sets in the 1960s that in turn led to 
breakthroughs in neural networks and soft computing. 

Grey System Theory actually combines two critical and overarching areas. The first 
concerns systems which attempt to synthesize the various components or subsystems 
into an overall functioning system or system of systems. Systems theory attempts to 
make transparent the deep connections and interactions among objects and events, 
all leading to the enrichment and progress of science and technology. Many of the 
historically difficult, hard-to-solve problems in the different scientific fields have 
been successfully resolved through the application of systems theory and its allied 
methodologies, including information theory, cybernetics, combinatorics, genetics, 
etc. The second concerns the greyness or uncertainty level that is implicit in all natural 
or man-made systems. Indeed, most modelling techniques assume the existence 
of uncertainty or stochasticity, as defined by either empirical evidence or assumed 
distributions, including fuzzy sets. 

Grey System Theory, then, provides a realistic approach to modelling, analysing, 
monitoring and controlling systems. Professor Sifeng Liu has greatly extended, if 
not expanded, his earlier efforts. In the 1980s, he put forward a series of new models 
and concepts, including sequence operator, absolute degree of grey incidence, grey 
cluster evaluation model with fixed weight, and positioned coefficient of grey matrix. 
In the 1990s, he proposed a buffer operator and its axiom, generalized degree of grey 
incidence, grey number and measurement of its information content, drifting and 
positioning solution, the grey econometrics model GM(1,1), the grey Cobb–Douglas 
model, etc. More recently, he proposed the concept of general grey numbers, the grey
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x Foreword by Dr. James M. Tien

algebraic system based on a kernel and degree of greyness, and different variations 
of the model GM(1,1). 

The widespread recognition and application of grey system theory reflect its 
growing acceptance. A number of universities from around the world have adopted 
Prof. Sifeng Liu’s monographs, both in Chinese and English, as their textbooks. In 
2002, he won the World Organization of Systems and Cybernetics (WOSC) Prize. In 
2008, as a preeminent Chinese scholar, he was elected an Honorary WOSC Fellow. 
In 2013, after a strict review by the European Commission, he was selected to be a 
Marie Curie International Fellow, thus honouring him as the first such Fellow with 
grey systems expertise. 

As a systems scientist and engineer, I am honoured to write this preface for 
the 8th edition of Grey System Theory and Its Applications. I look forward to its 
widespread dissemination and its promulgation of grey system applications in science 
and engineering. 

James M. Tien, Ph.D., D.Eng. (h.c.), 
NAE 

Distinguished Professor and Dean 
Emeritus, College of Engineering 

University of Miami 
Coral Gables, FL, USA 

Note Professor James M. Tien prepared this note for 8th edition of Grey System 
Theory and Its Applications (in Chinese) by the same authors, published in 2016. 
With his permission, it is printed here as a foreword for this current book.



Foreword by Dr. Keith William Hipel 

Grey Systems: Theory and Applications 
Written by Sifeng Liu and Jeffrey Yi-Lin Forrest 
Springer-Verlag: Berlin, Heidelberg 
2010, 379 pages, ISBN 978-3-642-16158-2 (cloth) 
DOI: 10.1007/978-3-642-16158-2 

Professors Sifeng Liu and Yi-Lin have written another pioneering book on the 
important topic of grey systems. In 2006, the same authors wrote the well-received 
book entitled Grey Information: Theory and Practical Applications which was also 
published by Springer-Verlag. I am pleased to say that their second book on Grey 
Systems constitutes a significant expansion and improvement of their previous fine 
book. Accordingly, if you already possess a copy of the 2006 book, you can make a 
worthwhile academic investment by obtaining a copy of their recent book in order to 
be cognizant of the latest ideas and advancements in the crucial field of grey systems. 

The question that naturally arises is why grey systems are of such great import 
at this point in history. The answer is quite straightforward: many challenging prob-
lems facing society consist of interconnected complex systems of systems exhibiting 
high uncertainty and having few measurements. For example, in order to effectively 
combat climate change, one must understand as much as possible the complex inter-
actions among natural systems such as atmospheric, oceanic, geological, and hydro-
logical systems, with societal systems including energy production, industrial, agri-
cultural and city systems. The deep uncertainty involved with these interconnected 
systems of systems and their potential emergent behaviour, coupled with a dearth 
of observations, mean that formal tools for handling this uncertainty are in high 
demand. Fortunately, an arsenal of mathematically based methodologies and tech-
niques have been developed over the years: a rich variety of probabilistic-based tools, 
fuzzy sets founded by Lotfi Zadeh, rough sets started by Z. Pawlak, information-gap 
modelling perfected by Yakov Ben-Haim, uncertainty theory developed by Baoding 
Liu, and grey systems established by Julong Deng in 1982. The foregoing and other 
approaches to describing uncertainty are based upon different axioms and are thereby 
highly complementary for tackling a wide variety of uncertain situations.
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xii Foreword by Dr. Keith William Hipel

Grey systems are purposefully designed for modelling uncertain systems, or 
systems of systems, problems having small samples and low-quality information. 
Grey systems are capable of dealing with partially known information through gener-
ating, excavating and extracting useful information from what is available. How this 
is accomplished is explained in depth in the timely grey systems book of Profs. Liu 
and Lin. 

In their contemporary textbook, Liu and Lin systematically present the theory and 
practice of grey systems. In fact, the excellent ideas and applications contained in 
their book are based upon the authors’ many years of developing theoretical concepts, 
applying their methods to real-world applications, testing and refining their new 
techniques with actual data, carrying out stimulating research with their students and 
colleagues, teaching their students about their exciting work and delivering research 
papers at international conferences around the globe. Their comprehensive book 
contains the latest theoretical and applied advances created by the authors and other 
scholars around the world in order to place the readers at the forefront of international 
research in grey systems. 

The main body of their book contains ten well-explained and interconnected 
chapters: Introduction to Grey Systems Theory, Basic Building Blocks, Grey Inci-
dence and Evaluation, Grey Systems Modelling, Discrete Grey Prediction Models, 
Combined Grey Models, Grey Models for Decision Making, Grey Game Models, 
Grey Control Systems and Introduction to Grey Systems Modelling Software. More-
over, the book includes a computer software package developed for grey systems 
modelling to permit both researchers and practitioners to use the new methodolo-
gies. Their book concludes with three appendices. The first appendix compares grey 
systems theory and interval analysis while revealing the fact that interval analysis 
is a part of grey mathematics. The second presents an array of different approaches 
to studying uncertainties. Finally, the last appendix shows how uncertainties occur 
using a general systems approach. 

The book contains a wealth of mathematical results, techniques and algorithms 
which are presented by the authors for the first time. These contributions include an 
axiomatic system of buffer operators and a series of weakening and strengthening 
operators; axioms for measuring the greyness of grey numbers; general grey inci-
dences (grey absolute incidence, grey relative incidence, grey comprehensive inci-
dence, grey analogy incidence and grey nearness incidence); discrete grey models; 
fixed weight grey cluster evaluation; and grey evaluation methods based on trian-
gular whitenization weight functions, multi-attribute intelligent grey target decision 
models, applicable range of the G(1,1), grey econometrics (G-E), grey Cobb–Douglas 
(G-C-D), grey input–output (G-I-O) and grey game models (G-G). 

In their well-written book, Drs. Liu and Lin do a thorough job in their presentation 
of many difficult technical concepts. The authors are able to convince the readers 
of their book regarding the power and usefulness of their new theory by presenting 
many interesting examples of practical applications to real-life problems. The chal-
lenging practical problems addressed in their book include urban economic planning, 
downtown traffic design, natural disaster prediction, relative strength evaluation of a 
state, investment projection of a company and employee performance evaluation.
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The depth and scope of the advancements in grey systems covered in this book, 
in conjunction with clarity of explanation, make this seminal book attractive to 
researchers, students, teachers and practitioners working in many different fields. 
These areas of endeavour include image processing, video processing, multimedia 
security, computer vision, machinery, control, agriculture, water resources, medicine, 
astronomy, earth science, economics and management. I personally found grey 
systems useful for accurately forecasting wastewater time series for which there 
is a scarcity of data. I intend to keep a copy of this valuable book easily accessible in 
my university office and purchase more copies of the book for use by my students. 

Keith William Hipel, Ph.D., P.Eng., FIEEE, 
FINCOSE, FCAE, FEIC, FRSC, FAWRA 

University Professor of Systems Design Engineering 
University of Waterloo 
Waterloo, ON, Canada 

e-mail: kwhipel@uwaterloo.ca 
Website: http://www.systems.uwaterloo/Faculty/Hipel 

Senior Fellow 
Centre for International Governance Innovation 

Waterloo, ON, Canada 

Note Professor Keith William Hipel prepared this note for one of the earlier book 
by the same authors, published in 2010. It is published in Grey Systems: Theory and 
Application, 2011, Vol. 1, No. 3. With his permission, it is printed here as a foreword 
for this current book.

mailto:kwhipel@uwaterloo.ca
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Foreword by Dr. Hermann Haken 

With human knowledge maturing and scientific exploration deepening and largely 
expanding in the course of time, mankind finally realizes the fundamental fact that 
due to both internal and external disturbances and limitations of human and tech-
nical sensing organs, all information received or collected contains some kind of 
uncertainty. Accompanying the progress of science and technology and the afore-
mentioned realization, our understanding about various kinds of uncertainties has 
gradually been deepened. Attesting to this end, in the second half of the twentieth 
century, the continual appearance of several influential and different types of theo-
ries and methods on unascertained systems and information has become a major 
aspect of the modern world of learning. Each of these new theories was initiated and 
followed-up by some of the best minds of our modern time. 

In their recent book, entitled “Grey Information: Theory and Practical Applica-
tions”, published in its traditionally excellent way by Springer, Profs. Sifeng Liu and 
Yi-Lin presented in a systematic fashion the theory of grey system, which was first 
proposed by J. L. Deng in early 1980s and enthusiastically supported by hundreds of 
scientists and practitioners in the following years. Based on the hard work of these 
scholars in the past (nearly) thirty years, scholars from many countries currently are 
studying and working on the theory and various applications of this fruitful scien-
tific endeavour. With this book published by such a prestigious leading publisher 
of the world, it can be expected that more scientific workers from different parts 
of the world will soon join hands and together make grey system and information 
a powerful theory capable of bringing forward practically beneficial impacts to the 
advancement of the human society. 

This book focuses on the study of such unascertained systems that are known 
with small samples or “poor information”. Different of all other relevant theories on 
uncertainties, this work introduces a system of many methods on how to deal with 
grey information. Starting off with a brief historical introduction, this book carries 
the reader through all the basics of the theory. And, each important method studied 
is accompanied with a real-life project the authors were involved in during their 
professional careers.
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Many of the methods and techniques the reader will learn in this book were 
originally introduced by the authors. They show how from our knowledge based 
on partially and poorly known information can be obtained to accurate descriptions 
and effective controls of the systems of interest. Because this book shows how the 
theory of grey system and information was established and how each method could 
be practically applied, this book can easily be used as a reference by scholars who 
are interested in either theoretical exploration or practical applications or both. I 
recommend this book highly to anyone who has either a desire or a need to learn. 

Stuttgart, Germany 
July 2007 

Prof. Dr. Dr. h.c. mult. Hermann Haken 
Founder of Synergetics 

Note Professor Hermann Haken prepared this note for one of the earlier book by 
the same authors, published in 2006. It is published in Grey Systems: Theory and 
Application, 2011, Vol. 1, No. 1.



Foreword by Dr. Robert Vallée 

I am much interested and impressed by Dr. Sifeng Liu and Dr. Yi-Lin’s recently 
published monograph on grey information, dealing with the theory and practical 
applications. 

This book encompasses many aspects of mathematics under the aegis of uncertain 
information. I am greatly in favour of this attitude, concerning the uncertainty of 
information, which has been mine since a long time ago. Also, this book focuses on 
practice and aims at explorations of new knowledge. It is a comprehensive, all-in-
one exposition, detailing not only with the theoretical foundation but also real-life 
applications. Because of this characteristic of quality and usefulness, Liu and Lin’s 
book possesses the value of the widest possible range of reference by the workers 
and practitioners from all corners of natural and social sciences and technology. 

In this book, Liu and Lin present the theory of grey information and systems 
starting on such background information as the relevant history, an attempt to estab-
lish an unified information theory, the basics of grey elements, and reaching all the 
most advanced topics of the theory. Complemented by many first-hand and practical 
project successes, the authors developed an organic theory and methodology of grey 
information and grey system, dealing with errors. In fact, there is much more to tell 
about error than about truth. Error (inexactitude) can be met everywhere and truth 
(exactitude) nowhere. But inexactitude contains a part of the truth. Greyness is the 
field we live in. Extremes, as whiteness and blackness, are inaccessible, but very 
useful, ideal concepts. 

With the publication of such a book that contains not only a theory, aspects of 
magnificent real-life implications and explorations of new research, but also the 
history, the theorization of various difficult concepts, and directions for future works,
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there is no doubt that Drs. Liu and Lin have made a remarkable contribution to the 
development and applications of systems science. 

Paris, France 
June 2007 

Prof. Robert Vallée 
President of the World Organisation 

of Systems and Cybernetics, Université 
Paris-Nord 

Note This note is a book review written by Prof. Robert Vallée for one of the earlier 
book by the same authors, published in 2006. It is published in Kybernetes: The 
International Journal of Cybernetics, Systems and Management Science, 2008, Vol. 
37, No. 1.



Preface 

In this book, we answer the calls of the readers of our previous publications and 
systematically present the main advances in grey system theory and applications. By 
following our readers’ feedback and suggestions, this volume introduces the most 
recent research results and updates on what is presented in our earlier books. In 
particular, the following content, which represents the authors’ recent research, is 
highlighted in the book: general grey numbers and their operations, negative grey 
relational analysis models and grey relational analysis models based on similarity 
and closeness, three-dimensional grey relational analysis models, grey clustering 
evaluation models based on mixed possibility functions, original difference grey 
model (ODGM), even difference grey model (EDGM), discrete grey model (DGM), 
fractional grey models, self-memory grey models, multi-attribute intelligent grey 
target decision models, weight vector group with kernel and weighted comprehensive 
clustering coefficient vector. We also attach a software designed for grey system 
modelling, which was developed by Bo Zeng using Visual C#, the widely employed 
C/S software tool. This user-friendly software allows users to conveniently input 
and/or upload data and clearly distinguish module functions. Also, the software has 
the ability to present users with operational details, as well as periodic and partial 
results. Additionally, users can adjust the levels of computational accuracy based on 
their practical needs. 

During the writing of this book, we prioritized theoretical simplicity and clarity to 
make it easy for the reader to follow the main arguments made. With a good number 
of practical applications, we intended to illustrate the methodology of grey system 
theory and modelling techniques so that we could emphasize the practical applica-
bility of grey system thinking. We drew on the most recent research developments 
from various research groups around the world and tried to present the most complete 
picture of this new area of scientific endeavour in a concise manner. 

The overall planning and organization of topics contained in this book were carried 
out by Sifeng Liu (Nanjing, China), who also authored Chaps. 1, 2, 4, 6, 10 and 12. 
Yingjie Yang (Leichester,UK) produced Chaps. 3, and 11, Jeffrey Forrest (Slippery 
Rock, USA) composed Chaps. 7 and 8, Naiming Xie (Nanjing, China) wrote Chap. 9, 
and the Appendix and the attached computer software were developed by Zeng Bo
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(Chongqing, China). Zhigeng Fang, Yaoguo Dang, Lirong Jian and Chunhua Su 
and colleagues also worked with the authors to refine some of the book’s content. 
Sifeng Liu was responsible for unifying the terms used throughout the book and for 
finalizing the manuscript. 

Finally, we would like to encourage you to communicate with us and send us any 
comments you might have about this book. It is only by working together, as a team, 
that we can grow and mature as researchers. Sifeng Liu can be reached at sfliu@ 
nuaa.edu.cn, Yingjie Yang can be reached at yyang@dmu.ac.uk, and Jeffrey Forrest 
at jeffrey.forrest@sru.edu or jeffrey.forrest@iigss.net. 

Nanjing, China/Leicester, UK 
June 2022 

Sifeng Liu

mailto:sfliu@nuaa.edu.cn
mailto:sfliu@nuaa.edu.cn
mailto:yyang@dmu.ac.uk
mailto:jeffrey.forrest@sru.edu
mailto:jeffrey.forrest@iigss.net
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Chapter 1 
Introduction 

1.1 The Scientific Background of the Birth of Grey System 
Theory 

On the basis of dividing the spectrum of scientific and technological endeavors into 
fine sections, the overall development of modern science has shown the tendency 
of synthesis at a high level. This higher level synthesis has led to the appearance 
of various studies of systems science with their specific methodological and episte-
mological significance. Systems science reveals deep and intrinsic interconnections 
between objects and events, and has greatly enriched the overall progress of science 
and technology. Many of the historically difficult problems in different scientific 
fields have been resolved successfully along with the appearance of systems science 
and its specific branches. Furthermore, because of the emergence of various new 
areas in systems science, our understanding of nature and the laws that govern objec-
tive evolutions has been gradually deepened. At the end of the 1940s, there appeared 
systems theory, information theory, and cybernetics. Toward the end of 1960s and 
the start of 1970s, there appeared the theory of dissipative structures, synergetics, 
catastrophe, and fractal theory. Then, in the mid to late 1970s, new transfield and 
interfiled theories of systems science such as the hypercycle theory and dynamical 
systems theory emerged. 

In the process of system research, due to the existence of internal and external 
disturbances and the limitation of human cognitive ability, the information obtained 
by people often has some uncertainty. With the development of science and tech-
nology and the progress of human society, people have gradually deepened their 
understanding of various system uncertainties, and the research on uncertain systems 
is also deepening day by day. Since the 1960s, a variety of uncertain system theories 
and methods have been proposed one after another. Among them, Fuzzy mathematics 
founded by Professor L. A. Zadeh in the 1960s (Zadeh, 1965), grey system theory 
advanced by Professor Deng Julong in the 1980s (Deng Julong, 1982), rough sets 
theory devoloped by Professor Z. Pawlak in the 1980s (Pawlak, 1991), etc., are all 
important achievements in the study of uncertain systems with extensive international
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2 1 Introduction

influence. These uncertain theories discussed the theories and methods of describing 
and processing various kinds of uncertain information from different perspectives 
and aspects. 

Grey system theory takes the “small data and poor information” uncertain system 
with “some information known and some information unknown” as the research 
object. It mainly extracts valuable information through the mining of “some” known 
information, and realizes the correct description of the system operation behavior 
and evolution law, so that people can use mathematical models to analyze and assess 
the “small data and poor information” uncertain system, then realize high-precision 
prediction, scientific decision-making and optimal control of the “small data and poor 
information” uncertain system. The uncertainty system of “small data and poor infor-
mation” in the real world provides rich research resources and broad development 
space for grey system theory. 

1.2 The Founder of Grey System Theory 

The birth of grey system theory is an outcome of Professor Julong Deng who has 
been working with perseverance for decades. 

Prof. Deng was born in Lianyuan County, Hunan Province of China in 1933. He 
got his degree in electrical machinery from Huazhong Institute of Technology and 
then joined the same institute in 1955 as a teaching assistant. Prof. Deng used to 
keep an eye on new ideas related to his field which led to his later investigation 
into multi-variable system control problems. In the 1960s, he put forward a new 
method—“control by removing redundant”. His paper entitled “multivariable linear 
system shunt calibration device of a comprehensive approach” was published in 1965 
(Deng, 1965). By the early 1970s, the method of “control by remove redundant” has 
been widely recognized as a representative methodology in cybernetics. 

In 1965, Prof. L. A. Zadeh proposed Fuzzy Sets (Zadeh, 1965). Prof. Deng was 
involved in research of fuzzy mathematics. He published some papers in fuzzy math-
ematics. And served as a member of editorial board for several journals on fuzzy 
mathematics. In the late 1970s, Prof. Deng devoted himself to the study of “pre-
diction and control problems of economic system”. In dealing with systems where 
“some information is known, and some information is unknown”, the main chal-
lenge is to develop an effective method to represent such systems. Despite the diffi-
culties, Professor Deng and his colleagues have made significant progress in their 
explorations. In 1982, his pioneering paper titled “The Control Problems of Grey 
Systems” published by Systems and Control Letters (Deng, 1982). The publication 
of this seminal article indicated that grey system theory, a new branch of research, 
came into being. 

Since the birth of Grey System Theory, it has received significant attention from 
academic communities and industries both in China and overseas, especially in real 
world applications.
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So far, Prof. Deng’s works has been cited over 50 thousand times. Prof. Deng 
won the award of founder of Grey System Theory at the 2007 IEEE International 
Conference on Grey Systems and Intelligent Services which held in Nanjing. In 
2011, he was elected as the honor fellow of the World Organisation of Systems and 
Cybernetics at the joint conference of the 15th WOSC International Congress on 
Cybernetics and Systems and 2011 IEEE International Conference on Grey Systems 
and Intelligent Services. 

1.3 Development of Grey Systems Theory 

1.3.1 Building a Basic Team 

In the early 1990s, Professor Julong Deng began to recruit and train doctoral students 
in the field of grey system theory in the discipline of system engineering of Huazhong 
University of Science and Technology. He has recruited and trained 10 doctoral 
students, most of them are young scholars who have been engaged in grey system 
theory research for many years before entered Prof. Deng’s group. These scholars 
naturally become the first generation of grey system theory. They actively participate 
in the research of grey system theory, consciously assume the responsibility of devel-
oping and disseminating grey system theory, and unswervingly take the research and 
inheritance of grey system theory as their lifelong career. 

In 2000, as the first distinguished professor introduced by Nanjing University of 
Aeronautics and Astronautics (NUAA), one of Prof. Deng’s Ph.D. students, Professor 
Sifeng Liu joined this university with aerospace characteristics. In the same year, 
with Professor Sifeng Liu as the chief discipline leader, NUAA submitted an appli-
cation to the Academic Degrees Committee of the State Council of China for the 
establishment of a doctoral degree authorization point in management science and 
engineering, which was successfully approved. Therefore, grey system theory has 
naturally become the characteristic and leading direction of the doctoral program of 
management science and engineering of NUAA. At the same time, as the founding 
director, Professor Liu established the Institute for Grey System Studies at NUAA. 
IGSS-NUAA has also become the center of grey system scholars. A group of 
outstanding young scholars gathered in IGSS-NUAA through talent introduction, 
entering the station to carry out post-doctoral research and pursuing doctoral degree, 
forming a highland of grey system research. IGSS-NUAA has 12 doctoral tutors 
(including 6 full-time doctoral tutors). Over the past 20 years, it has recruited and 
trained more than 200 doctoral students, post-doctors and visiting scholars at home 
and abroad in the field of grey system theory. 

Many other universities are recruiting and funding doctoral and postdoctoral 
researchers in grey system theory and its application. Examples include Southeast 
University, Wuhan University of Technology, Fuzhou University, Shantou Univer-
sity, De Montfort University, Bucharest Economics University, Poznań University of
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Technology, Bogazici University, Cape Town University, Central Florida University, 
Nebraska-Lincoln University, University of Waterloo, Pablo de Olavide University, 
Kanagawa University, National Cheng Kung University, etc. 

Hundreds of doctoral graduates constitute the basic team of grey system theory 
research. Each Ph.D. graduates in grey system theory become a seed which take root 
in the new institution, then enlarge and spread one’s power and influence gradually. 

1.3.2 Establishment of Academic Organizations 

In 1987, Wuhan Grey System Society, with members from provinces, cities and 
autonomous regions all over the country of China, was approved by Wuhan 
Association for Science and Technology. 

In 2005, the Grey System Society of China, CSOOPEM, was approved by China 
Association for Science and Technology, and the Ministry of Civil Affairs of China. 
At the beginning of 2008, the Technical Committee of IEEE SMC on Grey Systems 
was established. In 2012, the first Workshop of European grey system research 
collaboration network was held by De Montfort University, and delegates from 
twelve member states of the European Union attended the event. In 2013, Professor 
Sifeng Liu was selected for a Marie Curie International Incoming Fellowship (FP7-
PEOPLE- IIF-GA-2013–629,051) of the 7th Research Framework Program of the 
European Union. Furthermore, in 2014 an international network project entitled 
“Grey Systems and Its Applications” (IN-2014–020) was funded by The Lever-
hulme Trust. Supported by this project, a series of grey system theory cooperative 
research and academic exchange activities have been held in Europe, North America 
and China. In 2015, the International Association of Grey System and Uncertain 
Analysis (GSUA) was established. 

Since 1984, 36 domestic and 16 international conferences on grey system theory 
and its applications have been held. Such conferences have been supported by IEEE, 
WOSC, GSUA, China Association for Science and Technology, China Center of 
Advanced Science and Technology, The Leverhulme Trust, Institute for Grey System 
Studies at Nanjing University of Aeronautics and Astronautics, De Montfort Univer-
sity, Stockholm University, Huawei Technology of Thailand, Wuhan University of 
Technology, Pudong Educational Society of Shanghai. A large number of young 
scholars has attracted to such events. 

Many special sessions and tracks on grey system theory have been organized 
at significant international conferences such as International Conference on Uncer-
tain System Modeling, International Conference on System Forecast and Control, 
International Conference on General System Studies, International Congress of 
World Organization of Systems and Cybernetics, IEEE International Conference 
on Systems, Man and Cybernetics, etc.. The topicality of grey systems theory and 
its popularity in such high-profile international conferences have certainly played an 
active role in furthering understanding of, and promoting, this theory among peers 
in the world of systems science.



1.3 Development of Grey Systems Theory 5

1.3.3 Journals and Book Series on Grey System Theory 

In 1989, The Journal of Grey System was launched by Research Information Ltd in 
the UK. In 2007, The Journal of Grey System is indexed in SCIE (Science Citation 
Index Expanded) and belongs to the categories of “Mathematics” and “Mathematics, 
Interdisciplinary Applications” in SCIE Currently, Journal of Grey System belong to 
JCR Q2 with an impact factor of 1.912. This publication is indexed by Mathematical 
Review of the United States and other important indexing agencies from around the 
world. In 2011, Emerald launched a new journal named Grey Systems: Theory and 
Application, edited by the faculty of the Institute for Grey System Studies at Nanjing 
University of Aeronautics and Astronautics. In 2019, Grey Systems Theory and 
Application is indexed in SCIE (Science Citation Index Expanded) and belongs to 
the categories of “Mathematics”and “Mathematics, Interdisciplinary Applications” 
in SCIE. At present, Emerald/ Grey Systems Theory and Application (GS) belong to 
JCR Q1 with an impact factor of 3.321. This journal is indexed by EBSCO, Scopus, 
Summon, ReadCube Discover and other important indexing agencies from around 
the world. There are currently over one thousand different professional journals in 
the world that have published papers in grey systems theory, many of which are top 
journals in a variety of fields. As of this writing, many journals and publishers such as 
the journal of the Association for Computing Machinery (USA), Communications 
in Fuzzy Mathematics (Taiwan, China), Kybernetes: The International Journal of 
Systems & Cybernetics, Transaction of Nanjing University of Aeronautics and Astro-
nautics, China Ocean Press, Chinese Agricultural Science Press, Henan University 
Press, Huazhong University of Science and Technology Press Co. Ltd, IEEE Press, 
Springer-Verlag have respectively published special issues or proceedings on grey 
system theory (Liu and Lin, 2010; Liu et al., 2022). 

Numerous publishing agencies such as Science Press, Defense Industries Press, 
Huazhong University of Science and Technology Press Co. Ltd, Jiangsu Science 
and Technology Press, Shandong People’s Press, Science and Technology Literature 
Press of China, China Science and Technology Book Press of Taiwan, Gaoli Books 
Limited Company of Taiwan, ASE Press of Romania, Japan Polytechnic Press, IIGSS 
Academic Press, CRC of Taylor & Francis Group, Springer-Verlag, Springer-Verlag 
London Ltd, and John Wiley & Sons, Inc. have published hundreds of academic 
works on grey systems, in many different languages including Chinese, Traditional 
Chinese, English, Japanese, Korean, Romanian, and Persian. 

Series of grey systems both in Chinese and English are published by Science 
Press and Springer-Nature Group respectively. Series of grey systems in Chinese 
was launched by Science Press in 2014. So far, 32 books have been published. Series 
of grey systems in English was launched by Springer-Nature Group in 2021. The 
three books that passed the review in the first phase have completed the signing 
process of publishing contracts now.
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1.3.4 Grey System Theory Curriculums 

Numerous universities around the world have set up grey system theory curriculums. 
For example, in Nanjing University of Aeronautics and Astronautics (NUAA), the 
curriculums of the grey system theory are found not only in Ph.D. and Master’s 
programs, but also in undergraduate programs of many disciplines across the univer-
sity, as an elective module. Prof. Liu Sifeng and his team at IGSS- NUAA did a lot 
of work to popularize and inherit the Grey System Theory. As a result, this course 
has been selected as the National Excellence Course beginning in 2008, the National 
Excellence Resource Sharing Course since 2013, the National Excellence Online 
Open Course starting in 2018, and the National first class courses of online and 
offline since 2020. Furthermore, Professor Liu Sifeng’s team worked with a number 
of professors from universities in Europe, the United States and Canada, including 
Keith William Hipel, former president of the Royal Canadian Academy of Sciences, 
Professor Yingjie Yang, the executive president of the GSUA, to complete the online 
course in English, Grey Data Analysis, which became a free open learning resource 
for all grey system hobbyists since 2021. 

1.3.5 Researchers of Grey System Theory Are All Over 
the World 

Many scholars from USA, UK, Germany, France, Italy, Korea, Canada, Romania, 
Poland, Turkey, South Africa, Iran, India and Pakistan, etc. have joined IGSS-
NUAA as visiting professor, research fellow or for joint project research. In recent 
years, some young scholars from different countries joining IGSS-NUAA as Ph.D. 
or Master students supported by Chinese government scholarship. It is helpful to 
promotion the popularization and international communication of grey system theory. 

According to the retrieval results by the database of web of science, scholars from 
more than 100 countries and regions in the world have carried out research on grey 
system theory and applications and published relevant academic papers. Hundreds of 
thousands of master’s and doctoral students around the world applying grey system 
thinking and methods to carry out scientific research and complete their dissertations. 

Many prominent scholars have commended grey system research. Such scholars 
include Professor Qian Xuesen, famous scientist and winner of the national highest 
science award, China, Professor Lotfi A. Zadeh (USA), the founder of fuzzy math-
ematics, Professor Herman Haken (Germany), the founder of synergetics, Professor 
James M. Tien (USA), former vice-president of IEEE and member of the National 
Academy of Engineering, Professor Robert Vallee (France), former president of 
World Organization of Systems and Cybernetics, Professor Alex Andrew (UK), 
former secretary General of the World Organization of Systems and Cybernetics, and 
Keith William Hipel, former president of the Canadian Royal Academy of Sciences, 
as well as many Academicians of the Chinese Academy of Sciences and the Chinese
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Academy of Engineering, including Professor Yang Shuzi, Professor Xiong Youlun, 
Professor Lin Qun, Professor Chen Da, Professor Zhao Chunsheng, Professor Hu 
Haiyan, Professor Xu Guozhi, Professor Wang Zhongtuo, Professor Yang Shanlin, 
Professor Chen Xiaohong, and Professor Shan Zhongde, et al. 

It attracts not only the affirmation and support from international leading scholars, 
but also many early career researcher from different disciplines of social sciences, 
natural sciences and engineering technology as well. Successful applications have 
been found in more than 100 countries and regions. It has been established as a new 
scientific branch in data analytics and uncertainty modelling (Liu et al., 2022). 

On 7th September, 2019, during the visit to China, Angela Dorothea Merkel-then, 
German Chancellor praised Chinese original grey system theory. She said that the 
work of professor Deng Julong, the founder of grey system theory, and professor Liu 
Sifeng and three other Alumni of HUST “profoundly affecting the world.” 

1.3.6 Papers of Grey Systems Theory Are Growing Rapidly 

The rapid development of grey system theory benefits from the strong promotion of 
practical application needs. 

In the information age, people in various fields begin to deeply realize that data 
analysis method has become an indispensable skill for everyone. Just like the gold 
buried in the sand sea, the laws and characteristics that people want to understand and 
control are deeply covered up by the chaotic and complicated data information with 
extremely low information density and value. There is an urgent need for effective 
scientific methods. To meet the needs of the times, grey system theory came into 
being. 

Just like any new thing, the growth process of a new theory is naturally full 
of hardships and twists and turns. When the grey system theory came out, it was 
inevitably criticized and questioned by some people. The desire for poor information 
data analysis methods in human social practice has formed a strong driving force, so 
that the grey system theory can still attract the positive attention of a large number 
of people of insight in various fields (Liu et al., 2022). 

A large number of grey system theory and application research papers can be 
retrieved in both Chinese and English academic paper databases. 

In the database of ISI Web of Science, search according to the English phrases of 
Grey number, Grey data and Sequence operator, etc. which contained in the article 
titles, the results are shown in Table 1.1.

Ten grey system related phrases such as grey system, grey number, sequence oper-
ator, grey correlation analysis, grey clustering, grey model, GM (1,1), grey prediction, 
grey decision-making and grey control are input into the China national knowledge 
infrastructure(CNKI) database for parallel retrieval. The results show that there are 
227,374 literatures containing the above phrases are included in the CNKI database 
from 1982 to 2020. Among them, there are 119,172 journal papers, 4950 conference 
papers, 231 books, 79 achievements, 40 newspaper articles, 101,905 dissertations,
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Table 1.1 Number of papers with grey system related phrases in the titles in ISI Web of Science 
database 

Title Word Grey number Grey data Sequence 
operator 

Grey relation Grey 
incidence 

Number of 
papers 

425 681 662 3374 406 

Title Word Grey analysis Grey cluster Grey 
clustering 

Grey 
evaluation 

Grey model 

Number of 
papers 

4976 774 557 1972 5374 

Title Word GM(1,1) Grey 
prediction 

Grey forecast Grey decision Grey control 

Number of 
papers 

892 1956 1420 877 1429

Table 1.2 Number of literatures with grey system related phrases in CNKI database from 1982 to 
2020 

Year 1982–2000 2001 2002 2003 2004 2005 2006 

No. of papers 15,276 1856 2384 2891 4151 5445 7199 

Year 2007 2008 2009 2010 2011 2012 2013 

No. of papers 8821 1.01 1.07 1.19 1.26 1.39 1.42 

Year 2014 2015 2016 2017 2018 2019 2020 

No. of papers 1.51 1.47 1.58 1.61 1.61 1.58 1.59 

including 13,961 doctoral dissertations and 87,944 master’s dissertations. See Table 
1.2 for the number of documents and achievements containing the above phrases in 
CNKI database from 1982 to 2020. 

As can be seen from Table 1.2, in the 18 years from 1982 to 2000, more than 
15,000 grey system papers were included in CNKI database, which is equivalent 
to the number of papers included in CNKI database of each year since 2014. After 
entering the new century, the grey system papers included in CNKI database show a 
rapid growth trend. In 2001, 1856 papers were included in CNKI database. By 2004, 
the number of papers included in CNKI database had reached 4151, double that of 
2001. In 2007, it doubled on the basis of 2004, reaching 8821. Since 2008, more 
than 10,000 papers have been included in CNKI database every year, and more than 
15,000 papers have been included in CNKI database since 2014. 

It can be found from the literatures included in CNKI database that a large number 
of grey system papers have been included in CNKI database in all double first-class 
universities and double first-class discipline construction universities in China. The 
top 20 universities of number of journal papers and dissertations of grey system 
included in CNKI database can be seen in Table 1.3. The data in Table 1.3 fully 
shows that the grey system theory has played an important role in the training of 
high-level talents in China.
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Table 1.3 Top 20 universities of number of grey system papers included in CNKI database 

Name of universities NCEPU CAU SJU WUT CSU 

No. of papers 4018 2995 2970 2704 2684 

Name of universities BJU NUAA JLU CQU TJU 

No. of papers 2644 2531 2526 2505 2427 

Name of universities HUST HNU HHU ZJU DUT 

No. of papers 2016 1998 1987 1910 1857 

Name of universities HUT CUMT DMU XUAT HIT 

No. of papers 1782 1762 1759 1740 1697 

Notes NCEPU North China Electric Power University, CNU: Chang’ An University, SJU Southwest 
Jiaotong University; WUT: Wuhan University of Technology, CSU Central South University; BJU: 
Beijing Jiaotong University, NUAA Nanjing University of Aeronautics and Astronautics, JLU Jilin 
University, CQU Chongqing University, TJU Tianjin University, HUST Huazhong University of 
Science and Technology, HNU Hunan University, HHU Hohai University, ZJU Zhejiang Univer-
sity, DUT Dalian University of Technology, HUT Hefei University of Technology, CUMT China 
University of Mining and Technology, DMU Dialian Maritime University, XUAT Xi’an University 
of Architecture and Technology, HIT Harbin Institute of Technology) 

Among the documents included in CNKI database, there are 37,887 documents 
marked with national important science and technology plan projects such as NSFC, 
national key basic research and development plan (973), national high technology 
research and development plan (863) or national science and technology support 
plan. See Table 1.4 for details. The data in Table 1.4 shows that the grey system 
theory has played an important role in promoting China’s scientific and technological 
progress and innovation development. This was fully affirmed by academician Zhao 
Chunsheng of the Chinese Academy of Sciences (Zhao, 2015). 

In the era of big data, the grey system theory based on small data mining has sprung 
up and become an effective tool for people to extract valuable information from 
massive data. In the past 40 years, the wide application of grey system methods and 
models in many fields of social science, natural science and engineering technology 
has led to innovation and progress in various fields.

Table 1.4 Number of papers of grey system which marked various important national science and 
technology projects in CNKI database 

Programme NSFC National key 
basic research 
and 
development 
plan (973) 

National high 
technology 
research and 
development 
plan (863) 

National 
science and 
technology 
support plan 

National 
key R & 
D plan  

National plan 
for tackling 
key scientific 
and 
technological 
problems 

No. of 
papers 

23,821 1731 1934 2666 1022 582 
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1.4 Elementary Concepts of Grey System Theory 

Many social, economic, agricultural, industrial, ecological and biological systems 
are named by considering the features of classes of the research objects, while grey 
systems are labeled using the color of the systems of concern. 

In the theory of control, scholars often make use of colors to describe the degree 
of clearness of available information. For instance, Ashby refers to objects with 
unknown internal information as black boxes. This terminology has been widely 
accepted in the scientific community. As another example, as a society moves toward 
democracy, citizens gradually demand more information regarding policies and the 
meanings of such policies. That is, citizens want to have an increased degree of 
information transparency (i.e. white information). Thus, we use “black” to indicate 
unknown information, “white” to indicate completely known information, and “grey” 
to convey partially known and partially unknown information. Accordingly, systems 
with completely known information are regarded as white, while systems with 
completely unknown information are considered black, and systems with partially 
known information and partially unknown information are seen as grey. 

In this context, incompleteness in information is the fundamental meaning of 
“grey.” However, the meaning of “grey” can be expanded or stretched from different 
angles and in varied situations (see Table 1.5) (Deng, 1985; Liu et al., 2017; Liu and 
Lin, 2011). 

At this point, the difference between “system” and “box” Must be highlighted. 
On the one hand, the term “box” is used when one does not pay much attention, or 
does not attempt, to utilize information regarding the interior characteristics of an 
object, while focusing mainly on the external characteristics of such an object. In 
this case, the researcher generally investigates the properties and characteristics of 
the object through analyzing the input–output relation. On the other hand, the term 
“system” is employed to indicate the study of the object’s structure and functions 
through the analysis of existing organic connections between the object, relevant 
factors, its environment, and related laws of change. 

The research objects of grey systems theory consist of uncertain systems that 
are known only partially through small samples and poor information. The theory

Table 1.5 Extensions of the concept of “grey” 

Situation/concept Black Grey White 

Information Unknown Incomplete Completely known 

Appearance Dark Blurred Clear 

Processes New Changing Old 

Properties Chaotic Multivariate Order 

Methods Negation Change for the better Confirmation 

Attitude Letting go Tolerant Rigorous 

Outcomes No solution Multi-solutions Unique solution 
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focuses on the generation and excavation of partially known information through 
grey sequence operators of possibility functions to enable an accurate description 
and understanding of the material world. 

1.5 Fundamental Principles of Grey System Theory 

In the process of developing grey systems theory, Julong Deng established six funda-
mental principles containing intrinsic philosophical intensions, as discussed below 
(Deng, 1985). 

Axiom 1.5.1 (The Principle of Informational Differences) . “Difference” implies 
the existence of information. Each piece of information must carry some kind of 
“difference”. 

When we say that object A is different from object B, we mean that there is some 
special information about object A that is not true for object B. All “differences” 
between natural objects and events have provided us with elementary information in 
order for us to understand their nature. 

If information “I” has changed our understanding or impression of a compli-
cated matter, then the piece of information “I” is definitely different from what we 
initially understood the complicated matter to be. Great breakthroughs in science and 
technology have provided us with necessary information, which we generally call 
knowledge and tools, to understand and change the world around us. Such advanced 
information is surely different from pre-scientific information. The more content a 
piece of information “I” contains, the more the differences from an earlier version 
of such information will become apparent. 

Axiom 1.5.2 (The Principle of Non-Uniqueness) The solution to any problem with 
incomplete and indeterminate information is not unique. 

Because of the principle of non-uniqueness, which is a basic law of the application 
of grey systems theory, one is set free to look at problems with flexibility. With 
flexibility, one becomes more effective in reaching their goals. 

Strategically, the principle of non-uniqueness is realized through the concept of 
grey target. This concept is a unification of the concept of non-unique target and that 
of non-restrainable target. For example, on the one hand, if a high school graduate 
does not plan to enroll in any university except for one specific institution, then his 
chance of being accepted by a university is greatly limited. On the other hand, if a 
high school graduate with similar qualifications as the one in the previous example is 
willing to apply for several universities other than his preferred one, he will be more 
likely to succeed in being accepted by a university because he has multiple targets, 
which in turn leads to an improved chance of hitting one of the targets. 

The principle of non-uniqueness can be seen as a comprehensive realization that 
each target can be approached, that any available information can be supplemented,
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that each plan made earlier can be further modified and improved, that each relation-
ship can be harmonized, that each thinking logic can be multi-directional, that each 
understanding can be deepened, and that each path can be optimized. When faced 
with the possibility of multiple solutions, one can locate one or several satisfactory 
solutions through deterministic analysis and supplementation of information. There-
fore, the method of finding solutions on the basis of “non-uniqueness” is one that 
combines both quantitative and qualitative analysis. 

Axiom 1.5.3 (Principle of Minimal Information) One characteristic of grey system 
theory is that it makes the most and best use of the “minimal amount of available 
information.” 

The “principle of minimal information” can be seen as a dialectic unification of 
“a little” and “a lot.” One advantage of grey system theory is its ability to handle 
such uncertain problems with “small data” and/or “poor information.” Its foundation 
of study is the concept of “spaces of limited information.” “Minimal amount of 
information” is the basic territory for grey system theory to show its, power. The 
amount of acquirable information is the dividing line between “grey” and “not grey”. 
Making sufficient discovery and application of any available “minimal amount of 
information” is the basic thinking logic of problem-solving used in grey system 
theory. 

Axiom 1.5.4 (Principle of Recognition Base). Information is the foundation on 
which people recognize and understand (nature). 

This principle argues that all recognition must be based on information. Without 
information, there is no way for people to know anything. With complete and deter-
ministic information, we can possibly gain firm understanding of nature. With incom-
plete and non-deterministic information, it is only possible to obtain incomplete and 
non-deterministic grey understanding of particular phenomena. 

Axiom 1.5.5 (Principle of New Information Priority) 
The function of new pieces of information is greater than that of old pieces of 

information. 

The “principle of new information priority” is the key idea behind information 
application in grey system theory. That is, by applying additional weights to new 
information, one can achieve a better result from grey modeling, grey prediction, grey 
analysis, grey evaluation, and grey decision making. The belief that “the new replaces 
the old” reflects our “principle of new information priority.” With the availability of 
new information, the motivation for whitening grey elements is strengthened. The 
“principle of new information priority” reflects the fact that information in general 
is time sensitive. 

Axiom 1.5.6 Principle of Absolute Greyness . 
“Incompleteness” of information is absolute. Incompleteness and non-

determinism of information have generality.
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Completeness of information is relative and temporary. It is the moment when the 
original non-determinism has just disappeared, and new non-determinism is about 
to emerge. Human recognition and understanding of the objective world have been 
improved over time through continued supplementation of information. With endless 
supply of information, man’s recognition and understanding of the world also become 
endless. That is, greyness of information is absolute and will never disappear. 

1.6 Main Contents of Grey System Theory 

Through nearly thirty years of development, grey systems theory has been built 
up as a newly emerging scientific discipline with its very own theoretical structure 
consisting of systems analysis, evaluation, modeling, prediction, decision-making, 
control, and techniques of optimization. Its main contents contain (Liu et al., 2017; 
Liu et al., 2016a, b; Liu,  2004). 

(a) The theoretical system developed on the basis of grey algebraic system, grey 
equations, grey matrices, etc.; 

(b) The methodological system established on the basis of sequence operators and 
generations of grey sequences; 

(c) The analysis and evaluation system constructed on the basis of grey incidence 
spaces and grey cluster evaluations; 

(d) The prediction model system centered around GM(1.1); 
(e) The decision-making model system represented by multi-attribute intelligent 

grey target decision models; 
(f) The system of combined grey models innovatively developed for producing new 

and practically useful results; and 
(g) The optimization model system, consisting mainly of grey programming, grey 

input–output analysis, grey game theory, and grey control. 

Grey algebraic system, grey matrices, grey equations, etc., constitute the founda-
tion of grey systems theory. In terms of the theoretical beauty and completeness of 
the theory, there are still a lot of problems left open in this area. In this book, gener-
ations of grey sequences are merged into the concept of sequence operators, which 
mainly include buffer operators (weakening buffer operators, strengthening opera-
tors), mean generation operators, ratio generation operators, stepwise ratio gener-
ators, accumulating generators, inverse accumulating generators, etc. Grey inci-
dence analysis includes such materials as grey incidence axioms, degree of grey 
incidence, generalized degree of grey incidence (absolute degree, relative degree, 
synthetic degree), the degrees of grey incidence based on either similar visual angles 
or approximate visual angles, grey incidence order, superiority analysis, and others. 
Grey cluster evaluation includes such contents as grey variable weight clustering, 
grey fixed weight clustering, cluster evaluations based on (center-point or end-point) 
triangular whitenization weight functions, and other related materials. Through grey 
generations or the effect of sequence operators to weaken the randomness, grey
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prediction models are designed to excavate the hidden laws; and through the inter-
change between difference equations and differential equations, a practical jump 
of using discrete data sequences to establish continuous dynamic differential equa-
tions is materialized. Here, GM(1,1) is the central model that has been most widely 
employed; and discrete grey models are a class of new models we initially devel-
oped. In terms of grey predictions, they produce quantitative forecasts on the basis 
of the GM model. Based on their functions and characteristics, grey predictions 
can be grouped into sequence predictions, interval predictions, disaster predictions, 
seasonal disaster predictions, stock-market-like predictions, system predictions, etc. 
The grey combined models include grey econometric models (G-E), grey Cobb-
Douglass Cobb—Douglas models (G-C-D), grey Markov models (G-M), grey-rough 
mixed models, etc. Grey decision-making includes multi-attribute intelligent grey 
target models, grey incidence decision-making, grey cluster decision-making, grey 
situation decisions, grey stratified decisions, etc. 

The main contents of grey control include the control problems of essential grey 
systems, the controls composed of grey systems methods, such as grey incidence 
control, GM(1,1) prediction control, etc. Considering all the feedbacks from the 
readers of our earlier monograph, Grey Information: Theory and Practical Applica-
tions (Liu and Lin, 2006; Liu et al., 2017), we have paid special attention to organize 
some of the most recent new results obtained by colleagues from around the world in 
this volume. Also, for the convenience of practical applications, this book is accom-
panied with a computer software on grey systems modeling, which is designed by 
Zeng Bo of our research group. 
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Chapter 2 
Characteristics of Grey System Theory 

2.1 A Kind of Poor Data Analysis Method with Strong 
Penetration 

Grey system theory takes the uncertain system with poor information as the research 
object. It is an interdisciplinary method with strong penetration. 

At Nanjing University of Aeronautics and Astronautics, the teaching team of 
management quantitative method course group led by Professor Liu Sifeng has been 
committed to the construction of Chinese original grey system theory courses for a 
long time. With the strong support of peer experts, the grey system theory courses has 
been selected as the National Excellence Course beginning in 2008, and the National 
first class courses of online and offline since 2020. The teaching resources including 
textbooks, videos and modeling software are widely distributed. At the same time, 
the original elements such as grey sequence operator, grey relational analysis, grey 
clustering evaluation, grey prediction, grey decision-making and grey linear program-
ming, etc. in the grey system theory and the latest achievements made by the course 
team and partnerships both at home and abroad are rewritten into teaching cases 
and injected into the courses of “Operations Research” “Applied Statistics” “Predic-
tion Methods and Technologies” “Theory and Methods on Decision-making” “eco-
nomic cybernetics” “system modeling and simulation”, “input–output analysis” and 
“econometrics”. It enriches the connotation of these courses, and greatly improved 
the overall construction level of the curriculum group. In 2010, the course team 
was selected into the national excellence teaching team. In 2018, “The construction 
of management quantitative method course group and teaching reform led by local 
original theory” won the prize of national teaching achievement.
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2.2 Characteristics of Uncertain Systems 
and the Simplicity Principle in Sciences 

The fundamental characteristic of uncertain systems is the incompleteness and inad-
equacy of their information. Due to the dynamics of system evolution, the biolog-
ical limitations of the human sensory system, as well as the constraints of rele-
vant economic conditions and technological availabilities, uncertain systems exist 
commonly (Deng, 1990; Liu,  2021). 

2.2.1 Incomplete Information 

Incompleteness in information is one of the fundamental characteristics of uncer-
tain systems. The most common situations involving incomplete system information 
include cases where: 

(1) Information about system elements (parameters) is incomplete; 
(2) Information on the structure of the system is incomplete; 
(3) Information about the boundary of the system is incomplete; and 
(4) Information on the system’s behaviors is incomplete. 

Incomplete information is a common phenomenon in our social, economic, and 
scientific research activities. For instance, in agricultural production, even if we have 
exact information regarding plantation, seeds, fertilizers, and irrigation, uncertainties 
in areas such as labor quality, natural environment characteristics, weather condi-
tions, and the commodity markets make it extremely difficult to precisely predict the 
production output and consequent economic value of agricultural fields. For biolog-
ical prevention systems, even if we know the relationship between insects and their 
natural enemies, it is still really difficult to achieve the expected prevention effects 
due to uncertainty regarding the relationships between insects and their baits, insects’ 
natural enemies and their baits, and a specific kind of natural enemy with another 
kind of natural enemy. As for the adjustment and reform of pricing systems, it is 
often difficult for policy makers to take actions because of the lack of information 
regarding price elasticity and consumer demand and how price changes on a certain 
commodity would affect the prices of other commodities. In security markets, even 
the brightest market analysts cannot be assured of winning constantly due to their 
inability to correctly predict economic policy and interest rate changes, management 
changes at various companies, the direction of political changes, investors’ behav-
ioral changes in international markets, and the effects of price changes in one block 
of commodities on another. As for the general economic system, because there are 
no clear relationships between the “inside” and the “outside” of the system, and 
between the system itself and its environment, and because the boundaries between 
the inside and the outside of the system are difficult to define, it is also difficult to 
analyze the effects of economic input on economic output.
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Incompleteness in available information is absolute, while completeness in infor-
mation is relative. Humans employ their limited cognitive ability to observe the 
infinite universe in order to try and obtain complete information. However, it is 
impossible for us to do so. In fact, the concept of large samples in statistics repre-
sents the degree of tolerance man has to incompleteness. In theory, when a sample 
contains at least 30 objects, it is considered “large.” However, in some situations, 
even when a sample contains thousands or several tens of thousands of objects, the 
true statistical laws of a given system still cannot be successfully uncovered. 

2.2.2 Inaccuracies in Data 

Another fundamental characteristic of uncertain systems is naturally occurring inac-
curacy in available data. In grey systems theory, the meanings of uncertain and inac-
curate are roughly the same. Both terms stand for errors or deviations from actual data 
values. Based on the essence of how uncertainties are caused, inaccuracies can be 
categorized into three types: the conceptual, level, and prediction type inaccuracies. 

(1) The Conceptual Type 

Inaccuracies of the conceptual type emanate from the expression of a certain event, 
object, concept, or wish. For instance, all such frequently used concepts as “large,” 
“small,” “many,” “few,” “high,” “low,” “fat,” “thin,” “good,” “bad,” “young,” and 
“beautiful” are inaccurate due to lack of clear definition. It is very difficult to use 
exact quantities to express these concepts. As a second example, suppose that a job 
seeker with an MBA degree wishes to get an annual salary offer of no less than 
$450,000, or that a manufacturing firm plans to control its rate of defective products 
to be less than 0.01%. These are all cases of conceptual type inaccuracies. 

(2) The Level Type 

This kind of data inaccuracy is caused by a change at the level of research or obser-
vation. This means that the available data might be accurate when seen at the level of 
the system of concern, that is, the macroscopic level, or at the level of the whole, that 
is, the cognitive conceptual level. However, when data are seen at a lower level, that 
is, a microscopic level, or at a partial localized level of the system, they generally 
become inaccurate. For example, the height of a person can be measured accurately 
to the unit of centimeters or millimeters. However, if the measurement has to be 
accurate to the level of one ten-thousandth micrometers, the former accurate reading 
will become extremely inaccurate. 

(3) The Prediction (or Estimation) Type 

Because it is difficult to have complete understanding of the laws of evolution, any 
prediction of the future tends to be inaccurate. For instance, it is estimated that two 
years from now, the GDP of a certain country will surpass $10 billion dollars; it is
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estimated that a certain bank will attract savings from individual residents of between 
$7 billion and $9 billion for the year 2022; it is predicted that in the coming years 
the temperature in Leicester, UK, during the month of June will not go beyond 30° 
C, and so on. All these examples provide uncertain numbers of the prediction type. 
In statistics, it is often the case that samples are collected to estimate the whole. 
Therefore, much statistical data are inaccurate. As a matter of fact, no matter what 
method is used, it is very difficult for anyone to obtain any absolutely accurate 
(estimated) value. When we draw out plans for the future and make decisions about 
what course of action to take, we in general have to rely on inaccurate predictions 
and estimates. 

2.2.3 The Scientific Principle of Simplicity 

In the history of science, the achievement of simplicity has been a common goal 
among most scientists. As early as the sixth century BC, natural philosophers had 
a common wish to understand the material laws of nature: to build knowledge of 
the material world on the basis of a few common, simple elements. The ancient 
Pythagoras of Greece introduced the theory of four elements (earth, water, fire, 
and gas) at around 500 BC. The Greeks believed that all material matters in the 
universe were composed of these four simple elements. Around the same time, 
ancient Chinese philosophers also developed a theory of five elements including 
water, fire, wood, gold, and earth. These are the most primitive and elementary 
thoughts about simplicity. 

The scientific principle of simplicity originates from the simplicity of thinking 
employed in the process of understanding nature. As the natural sciences matured 
over time, simplicity became the foundation and guiding principle of scientific 
research. For example, Newtonian laws of motion unify the macroscopic phenomena 
of objective movements in their form of extreme simplicity. In his Mathematical Prin-
ciples of Natural Philosophy, Newton pointed out that nature does not do useless 
work; because nature is fond of simplicity, it does not like to employ extra reasons 
to flaunt itself. During the Era of relativity, Albert Einstein introduced two criteria 
for testing a theory: external confirmation and internal completeness, that is, logical 
simplicity. Einstein believed that a true scientific theory must comply with the prin-
ciple of simplicity in order to reflect the harmony and orderliness of nature. In the 
1870s, Ampere, Weber, Maxwell, and others established theories to explain the 
phenomenon of electromagnetism based on their different assumptions. Because 
Maxwell’s theory is the one that best complies with the principle of simplicity, it 
became well accepted. Another example is the well-known Kepler’s third law of 
planetary motion: T2 = D3. This formula is very concise in form. 

According to the dominant principle of synergetics (Haken, 1978), one can 
transform an original high-dimensional equation into a low-dimensional evolu-
tion equation of order-parameters by eliminating the fast-relaxing variables in 
the high-dimensional nonlinear equation that describes the evolution process of a
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system. Because the order-parameters dominate the dynamic characteristics of the 
system near its boundary points, through dominant the evolution equation of order-
parameters one can obtain the system’s time structure, space structure or time–space 
structure, so that one can materialize efficient control over the system’s behavior. 

The simplicity of scientific models is actualized by employing simple expressions 
and by ignoring unimportant factors of the system of concern. In economics, the 
methods of using Gini coefficient to describe differences among consumers’ incomes 
(Gini, 1921) and of employing Cobb-Dauglas production function to measure the 
contribution of advancing technology in economic growth are all introduced on 
the basis of simplifying realistic systems (Cobb & Douglas, 1928). Modigliani and 
Brumbergh (1954) use the following model to describe the average propensity to 
consume: 

Ct 

yt 
= a + b y0 

yt 
, a > 0, b > 0 

The curve Alban W. Phillips (1958) employs to describe the relationship between 
the rate of inflation �p 

p and the unemployment rate x is:

�p 

p 
= a + b 1 

x 

Additionally, the well-known capital asset pricing model (CAPM, William F. Sharpe, 
1964) can be seen below: 

E[ri ] = r f + βi
(
E[rm] − r f

)

Essentially, all of these equations can be reduced to their simplest linear regression 
model with a few straightforward transformations (Liu, 2021). 

2.2.4 Precise Models Suffer from Inaccuracies 

When available information is incomplete and the collected data inaccurate, any 
pursuit of precise models in general becomes meaningless. This fact was well 
described by Lao Tzu more than two thousand years ago. The principle of incompat-
ibility proposed by L. A. Zadeh, the founder of fuzzy mathematics, also addresses 
this matter: when the complexity of a system increases, our ability to precisely and 
meaningfully describe the characteristics of the system decreases accordingly until 
such a threshold that, as soon as it is surpassed, the preciseness and meaningful-
ness become two mutually excluding characteristics (Zadeh, 1994). This mutually
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Table 2.1 Comparison between the prediction errors of a statistical model and a grey model 

Order No Type Average error 

Statistical model Grey model 

1 Horizontal displacement 0.862 0.809 

2 Horizontal displacement 0.446 0.232 

3 Vertical displacement 1.024 1.029 

4 Vertical displacement 0.465 0.449 

5 Water level of pressure measurement hole 6.297 3.842 

6 Water level of pressure measurement hole 0.204 0.023 

antagonistic principle reveals that the pursuit of preciseness can reduce the opera-
tionality and meaningfulness of a cognitive outcome. Therefore, precise models are 
not necessarily an effective means to address complex matters. 

In 1994, Jiangping Yue and Xisheng Hua established both theoretically delicate 
statistical regression model and relatively coarse grey model based on the deforma-
tion data and leakage data of a certain large scale hydraulic dam. Their work shows 
that the grey model provided a better fit than the statistical regression model. When 
comparing the errors between the predictions of the two models with actual obser-
vations, it is found that the prediction accuracy of the grey model is generally better 
than that of the regression model; see Table 2.1 for details (Yue & Hua, 1994). 

In 2001, Dr. Haiqing Guo as well as Zhongru Wu and colleagues respectively 
established a statistical regression model and a grey time series combined model 
using the observational data of displacement in the vertical direction of a certain large 
clay-rock filled dam of inclined walls. They compared the data fitting and predictions 
of the two models against actual observations and found that the data fitting eof the 
grey combined model was significantly superior to that of the statistical regression 
model (Guo et al., 2001). 

On the other hand, Xiaobing Li, Haiyan Sun and colleagues employed fuzzy 
prediction functions (a type of uncertainty prediction) to dynamically trace and 
precisely control the fuel oil feeding temperature for anode baking. The control 
effect was clearly better than that obtained by utilizing the traditional PID control 
method (Li & Sun, 2009). 

Finally, Caixing Sun and his research group made use of grey relational analysis, 
grey clustering, and various new types of grey prediction models to diagnose and 
predict insulation-related accidents related to electric transformers. Their substantial 
results indicate that these relatively coarse methods and models are operational and 
provide efficient results (Li et al., 2002; Sun et al., 2002, 2003).
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2.3 Comparison of Several Uncertainty Methods 

Probability and statistics, fuzzy mathematics, grey system theory and rough set theory 
are four of the most widely used research methods in the investigation of uncertain 
systems. Their research objects contain specific kinds of uncertainty, which represent 
their commonality. It is precisely the differences among the uncertainties in the 
research objects that make these four theories of uncertainty distinct from each other. 

Probability and statistics study the phenomena of stochastic uncertainty with 
emphasis placed on revealing historical statistical laws. They investigate the chance 
of each possible outcome of the stochastic uncertain phenomenon to occur. Their 
starting point is the availability of large samples, which are required to satisfy a 
typical form of distribution. 

Fuzzy mathematics emphasizes the investigation of problems with cognitive 
uncertainty, where research objects possess the characteristic of clear intension and 
unclear extension. For instance, “young man” is a fuzzy concept, because each person 
knows the intension of “young man.” However, if we determine the exact age range 
within which everybody is young and outside which each person is not young, then 
we will have great difficulty. That is because the concept of young man does not have 
a clear extension. In fuzzy mathematics, this kind of cognitive uncertainty problem 
with clear intension and unclear extension is addressed by making use of experience 
and the so-called membership function. 

Additionally, rough set theory tries to study uncertain systems by using the accu-
racy mathematical method. The main thought of rough set theory is to describe and 
address the inaccuracy or uncertain knowledge using a known knowledge library. 
Professor Z. Pawlak included all the units which cannot be acknowledged to have 
boundaries. He defined boundary as the difference set between upper approximate 
set and lower approximate set. The boundary is then described through the upper 
approximate set approaching the lower approximate set. 

The focus of grey system theory, on the other hand, is on the uncertainty problems 
of small data sets and poor information, which are different to the problems addressed 
by probability, fuzzy mathematics or rough set theory. It explores and uncovers 
the realistic laws of evolution, motion of events and materials through information 
coverage by possibility function, and through the works of sequence operators. One 
of its characteristics is construct models with small amounts of data. What is clearly 
different about grey systems theory compared to fuzzy mathematics is that grey 
system theory emphasizes the investigation of objects that process clear extension 
and unclear intension. For example, by the year of 2050, China will control its total 
population within the range of 1.5–1.6 billion people. This range from 1.5 billion 
to 1.6 billion is a grey concept. Its extension is definite and clear. However, if one 
inquires further regarding exactly which specific number within the said range it will 
be, then he will not be able to obtain any meaningful and definite answer. It’s a grey 
number (Deng, 1985; Liu,  2021; Liu et al., 2017). 

We summarize the differences among these four main uncertainty research 
methods in Table 2.2.
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Table 2.2 Comparison among the four methods of uncertainty research 

Uncertainty 
research 

Grey system Prob. Statistics Fuzzy math Rough set 

Research objects Poor 
information 

Stochastics Cognitive Boundary 

Basic set Grey number set Cantor set Fuzzy set Approximate set 

Describe method Possibility func. Density func. Membership 
func. 

Upper, lower 
Appr. 

Procedure Sequence 
operator 

Frequency Cut set Dividing 

Data requirement Any distribution Known 
distribution 

Known 
membership 

Equivalent Rel. 

Emphasis Intension Intension Extension Intension 

Objective Law of reality Historical law Cognitive 
expression 

Approx. 
approaching 

Characteristics Small data Large sample Depend on 
experience 

Information form 

2.4 Deep Applications of Grey System Theory in the Fields 
of Social Science, Natural Science and Engineering 
Technology 

2.4.1 Successful Application of Grey System Theory 
in the Field of Social Sciences 

The rapid development of grey system theory in the early stage of its establishment 
largely benefited from its successful application in the field of economic manage-
ment, that is, the strong impetus of the urgent need to carry out agricultural zoning 
and formulate economic development strategic planning all over the country in the 
1980s. The reform of the economic system and the adjustment of the statistical system 
directly affected the integrity and continuity of economic data. The disconnected data 
posed a big problem for the planners at that time. How to complete the tasks of system 
analysis and modeling based on small samples and poor information data, so as to 
obtain the prediction results with high reliability and support the scientific decision-
making of governments at all levels? The grey system theory characterized by small 
sample, poor information data modeling and analysis is just right. At that time, many 
government departments from the central to local governments tried to use grey 
system methods and models to analyze economic data and prepare development 
plans. Professor Deng Julong presided over and completed the research and prepara-
tion of the development plan of Yixian County, Hebei Province and Laohekou City, 
Hubei Province. The author has also presided over and participated in the comple-
tion of a number of key bidding projects of the National Development and Reform
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Commission of China, the Ministry of Science and Technology of China and the 
China Association for Science and Technology, as well as the development planning 
research of Henan Province, Jiangsu Province, Nanjing and Zhongyuan District of 
Zhengzhou, Hubin District of Sanmenxia, Changge City and Wuzhi county, etc. The 
data analysis mainly adopts the grey system method and model (Liu & Yang, 1994). 

Academician Yang Shanlin and academician Chen Xiaohong of Chinese Academy 
of engineering, academician Zavadskas of Lithuanian Academy of Sciences and 
their team have successfully solved many major problems in management practice 
by using grey system model and method, and achieved a series of research results 
(Chen, 2018; Jahan & Zavadskas, 2019; Xu, & Yang, 2013). 

Emil Scarlat and Camelia Delcea with Bucharest University of Economics of 
Romania used the methods and models of grey system theory to study the control of 
economic system, achieved a series of achievements (Delcea et al., 2013; Scarlat & 
Delcea, 2011), and published a monograph in Romanian. 

2.4.2 Deep Application of Grey System Theory in the Field 
of Natural Science 

Enter physics, chemistry, biology, geology, hydrology, crops, and medicine etc. as 
subject words into CNKI database to search the literature with physics, chemistry 
and other subjects and accurately containing the phrase “grey system”. The results 
are shown in Table 2.3 (Liu et al., 2022). 

Grey system theory has been applied to the fields of physics, chemistry, biology, 
geology, hydrology, crops, medicine and so on, a large number of valuable research 
results have been obtained. 

For example, in the field of physics 

Chen Lei et al. used the grey relational analysis model to study two sky light measure-
ment methods based on ASD ground object spectrometer—standard gray plate inver-
sion measurement method and direct measurement method, and defined the appli-
cable scenarios of different methods (Chen et al., 2011). Wang Yue and Chen Zonghai 
studied µ particles imaging of cosmic rays by using the method of grey correlation 
cluster analysis, the efficiency of material differentiation is improved (Wang et al., 
2011). 

Han Li et al., studied the geophysical characteristics of dynamic compaction fill 
foundation by using the grey correlation analysis model, and evaluated the quality

Table 2.3 Number of articles containing the phrase “grey system” accurately in various disciplines 
of Natural Science 

Discipline Physics Chemistry Biology Geology Hydrology Crops Medicine 

No. of papers 1793 2621 3313 7280 2688 2562 504 
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and effect of dynamic compaction by analyzing the correlation between surface wave 
velocity, resistivity and geophysical characteristic parameters such as soil dry density 
and water content (Han et al., 2020). 

Evans applied the grey system model to study the strength of British steel, and 
proposed a new method for parameter estimation of Generalized Grey Verhulst model 
(Evans, 2014). 

Shi et al. conducted reliability analysis on passive residual heat removal of AP1000 
nuclear power reactor based on grey model (Shi et al., 2017), and Wang Qin et al. 
used the grey correlation analysis method to study the optimal parameters of arc 
signal welding process(Wang et al., 2010), both have achieved important results. 

In the field of Chemistry 

Liu Yaoxin et al. studied the formation reaction of calcium sulphoaluminate in high 
temperature sulfur fixation phase by using grey correlation analysis and prediction 
model (Liu, 2007). Pornnapa Kasemsiri et al., used Taguchi method and grey rela-
tional analysis model to optimize biodegradable foam composites made from cassava 
starch, oil palm fiber, chitosan and palm oil (Kasemsiri, 2017). 

Gupta et al. applied the grey correlation analysis method to optimize the mechan-
ical properties of hybrid filler pultruded glass fiber composites (Gupta et al., 
2019). 

Jena et al. applied Taguchi grey correlation analysis to optimize parameters for 
maximizing photocatalytic behaviour of Zn1-xFexO nanoparticles for methyl orange 
degradation using Taguchi and Grey relational analysis Approach (Jena et al., 2019). 

In the field of Biology 

Zhang Fuli et al. studied the effect of BT insect resistant cotton straw returning on 
soil nutrient characteristics by using grey correlation analysis model. It is considered 
that straw returning is an ideal way for harmless treatment of Bt transgenic plant 
straw (Zhang et al., 2020). Yang et al. used the grey correlation analysis model to 
study the pigment content and standard deviation vegetation index in rice vegetative 
stage (Yang et al., 2012). 

Luo Qin and others used the grey correlation analysis model to study the relation-
ship between trace element content and lead content in the seed body of new irradiated 
Pleurotus ostreatus, which provided a scientific basis for breeding Pleurotus ostreatus 
varieties with lower lead content (Luo et al., 2015). 

Guo Ruilin has conducted in-depth research on crop grey breeding and cultivated 
some new crop varieties (Guo, 1995). 

Based on hyperspectral data, Jin et al. used grey correlation analysis and partial 
least square method to estimate the leaf water content of winter wheat (Jin et al., 
2013). Wei et al. used the grey correlation analysis method to evaluate the quality of 
Tibetan highland barley (Wei et al., 2019), has achieved important results.
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In the field of Geology and Earth Sciences 

Academician Zhao Pengda constructed the theory and method system of quantitative 
prediction of mineral resources, and put forward “geological anomaly”, “mathemat-
ical characteristics of geological body”, “triple” quantitative metallogenic predic-
tion, research on non-traditional mineral resources, new concepts, new contents and 
research methods. Two prospective metallogenic belts of copper nickel sulfide were 
found in Beishan area of Xinjiang and one gold belt was found in East Junggar (Zhao, 
2009). 

Research on safety analysis, evaluation, excavation and control measures design 
optimization and real-time monitoring of Geotechnical Engineering (including land-
slide) by Gao Wei and academician Feng XiaTing (Gao et al., 2004), study on limit 
displacement discrimination of stability and reliability analysis of surrounding rock 
of tunnel and underground engineering by Academician Li Xiaohong et al. (Li, 2005), 
have achieved results of great value. 

Peng Fang and Wu Guoping established a new quantitative evaluation method 
of caprock based on grey programming cluster analysis. They used this method to 
evaluate 12 kinds of caprock objects in 4 sets of mudstone in 3 main exploration 
areas of southeast basin of Hainan. The conclusion is consistent with the exploration 
results (Peng et al., 2005). Liang Bing et al. optimized and ranked the exploration 
and development potential of complex geological parameter characteristic areas with 
evaluation index value of interval grey number by establishing a multi index grey 
correlation degree optimization model (Liang, 2014). Chen Ronghuan and others 
used the grey system theory to study logging, drilling coring, oil testing and relevant 
geological data. Through matching, fitting and extracting parameters, they studied 
and divided formation lithology, physical properties and oil bearing properties by 
statistical analysis of eigenvalues and their accuracy and resolution, which provided 
a geological basis for oilfield exploration and development (Chen et al., 2005). Wang 
yunyun et al. used the grey correlation analysis method to scientifically predict the 
Yaojialing zinc gold polymetallic deposit (Wang et al., 2013). 

Fang Xiaotong and others used the multi-dimensional grey evaluation model to 
predict the risk of coal and gas outburst, which provided a basis for mine safety 
production (Fang et al., 2012). Zeng et al., predicted China’s shale gas production 
based on weakening buffer operator and unbiased grey model (Zeng et al., 2018). 
Kose and Tasci predict geodetic deformation based on multivariable grey prediction 
model and regression model (Kose & Tasci, 2019). 

In the field of hydrology and water resources 

Lin Yuezhong and others established the grey prediction model of slope rock mass 
deformation based on the field slope test data of the Three Gorges, and drew the fitting 
and prediction curve of slope deformation, which provided a reliable guarantee and 
theoretical basis for the prediction of slope rock mass deformation (Lin et al., 2005). 
Academician Xia Jun’s research on grey system hydrology (Jia, 1996), academician 
Wu Zhongru’s research on hydraulic structure and dam safety monitoring (Wu et al.,
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2012), and research on utilization of water resources by Wang and academician Hipel 
(Wang, and Hipel, 2011), have achieved a series of important results. 

Hao et al. used the grey system model to analyze and predict the hydrological 
process of karst basin, and obtained high accuracy. They also used the segmented 
grey model to study the impact of human activities on the hydrological process of 
karst basin (Hao et al., 2013). 

Peng Yong et al. studied the optimization algorithm of cascade reservoir operation 
based on the combination of grey prediction model and DDDP (Peng, 2018). With 
limited hydrogeological data, Mahmod et al. used the modified grey model to analyze 
the groundwater flow in Nubia sandstone area of Halga Oasis, Egypt (Mahmod et al., 
2014). 

In the field of Medicine 

Grey system method and model technology are widely used in modern medical 
fields such as disease prediction and control, health management evaluation, intel-
ligent diagnosis system construction, drug efficacy evaluation and medical image 
processing, and have made gratifying achievements, forming a branch field of grey 
medical research in grey system theory (Zhang, 2015). 

Professor Tan xuerui, Dean and doctoral supervisor of Medical College of Shantou 
University, and his research team have systematically studied the grey correlation 
methodology of clinical trials with the support of a number of National Natural 
Science Foundation of China and Guangdong Natural Science Foundation. The new 
clinical trial methods proposed, such as ergodic grey correlation space theory, polarity 
analysis theory and method of grey medical correlation factors, axiom system of 
multi-level grey medical correlation, grey correlation method comparison model, 
have been applied to many clinical medical disciplines, such as cardiovascular 
medicine, digestive medicine, neurology, infectious diseases and so on (Tan, 2011). 

Wei Hang et al., Established the pattern recognition model of chromatographic 
fingerprint of traditional Chinese medicine by using the grey system theory. The 
results of high performance liquid chromatography analysis of 56 batches of different 
varieties of tangerine showed that the recognition rate exceeded 92.85% for different 
cultivated varieties of tangerine with very similar chemical composition and content 
(Wei et al., 2013). 

Semra Icer et al. quantitatively graded the ultrasonic images of fatty liver based 
on grey correlation analysis, and obtained the scientific diagnosis results (Icer et al., 
2012). Lai Hsin Yi et al. applied the unsupervised single chain clustering method 
based on grey correlation analysis to the automatic sorting of spike waves in extracel-
lular electrophysiological records (Lai et al., 2011). Bhupendra Gupta and Mayank 
Tiwari have achieved good results in breast image brightness preserving contrast 
enhancement and quality segmentation based on histogram modified grey correlation 
analysis (Gupta & Tiwari, 2017).
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2.4.3 A Large Number of Applications of Grey System 
Theory in the Field of Engineering Technology 

Enter the subject words such as transportation, power and machinery, etc. respectively 
in the CNKI database, and to search the literatures with transportation, electric power 
and machinery, etc. as the subject and accurately including the phrase “grey system”. 
The results are shown in Table 2.4 (Liu et al., 2022).

Grey system theory has been applied to the fields of engineering technology such 
as transportation, electric power and machinery, etc., has achieved thousands or even 
tens of thousands of research results. Among them, there are more than 5000 papers 
containing “grey system” in the fields of power, computer and material science. There 
are more than 10,000 in the field of transportation, more than 20,000 in the field of 
information science and nearly 30,000 in the field of environmental science. 

For example, in the field of transportation 

Liu Qiuyan and Zhong Zhangdui comprehensively used grey clustering and rough 
set model to optimize the planning scheme of railway digital mobile communication 
system with limited frequency, and improved the accuracy of electrical level and inter-
ference matrix estimation (Liu et al., 2010); Gao Fan and Zhang Youpeng designed 
the grey number of fitness according to the train operation target, and constructed 
the high-speed train speed controller model based on grey genetic algorithm (Gao 
et al., 2012); Lu Xiaohong and Wang Changlin studied the modeling and simulation 
of automatic train speed controller based on predictive grey control (Lu et al., 2013); 
Based on the data of Britain and the United States, Chirwa et al. used GM (1,1) 
model to estimate the accident risk (Chirwa et al., 2006); Based on the diagnosis 
results of three diagnosis methods: fuzzy fault diagnosis method, genetic algorithm 
and grey system theory, Mi Gensuo et al. constructed the optimal combination model 
to diagnose the fault of 25 Hz phase sensitive track circuit (Mi et al., 2014). 

After comparing the simulation results obtained by artificial neural network, clas-
sification and regression tree, k-nearest neighbor method, linear discriminant anal-
ysis method, naive Bayesian classifier, quasi optimal algorithm and support vector 
machine method with the grey correlation classifier algorithm, Twala found that the 
grey correlation classifier algorithm is most suitable for the modeling and analysis 
of road traffic accident data in Gauteng Province, South Africa (Twala, 2014). 

In the field of Power Engineering 

Research of academician Sun Caixin’s team on the field of high voltage insulation 
and Fault Diagnosis Technology (Sun, 2005; Sun et al., 2002, 2003). Academician Li 
Licheng’s research group on Power Grid Engineering, DC transmission and AC/DC 
parallel power grid operation technology (Huang et al., 2011). 

Analysis of oil soluble gas content in power transformers by Liao et al. (2012). 
According to the measured data of lubricating oil temperature and iron content of 
wind turbine gearbox, Yang et al. introduced multi-source information, improved 
the traditional grey system model, predicted the wear trend of wind turbine gearbox,



30 2 Characteristics of Grey System Theory

Ta
bl
e 
2.
4 

N
um

be
r 
of
 a
rt
ic
le
s 
co
nt
ai
ni
ng
 th

e 
ph
ra
se
 “
gr
ey
 s
ys
te
m
” 
ac
cu
ra
te
ly
 in

 v
ar
io
us
 d
is
ci
pl
in
es
 o
f 
E
ng
in
ee
ri
ng
 T
ec
hn
ol
og
y 

D
is
ci
pl
in
e

T
ra
ns
po
rt
at
io
n

Po
w
er

M
ac
hi
ne
ry

M
ot
iv
e 
po
w
er

A
vi
at
io
n

A
rc
hi
te
ct
ur
e

C
om

pu
te
r 

N
o.
 o
f 
pa
pe
rs

10
,6
26

59
24

29
64

23
58

15
38

49
30

61
09
 

D
is
ci
pl
in
e

E
le
ct
ro
ni
cs

In
fo
rm

at
io
n

Pe
tr
ol
eu
m

C
he
m
ic
al
 in

du
st
ry

M
at
er
ia
l

Ir
ri
ga
tio

n 
w
or
ks

E
nv
ir
on
m
en
t 

N
o.
 o
f 
pa
pe
rs

23
10

24
,5
45

29
32

11
21

74
65

16
78

29
,0
69



2.4 Deep Applications of Grey System Theory in the Fields of Social … 31

and provided a scientific basis for gearbox maintenance and replacement decision-
making (Yang et al., 2019). 

Ossowski and Korzybski use grey system model to carry out analog circuit fault 
diagnosis (Ossowski & Korzybski, 2013); Jiang Wei diagnosed the fault of wind 
turbine drive chain based on grey rough set theory (Jiang, 2012); 

Study on Modeling and prediction of non-stationary voltage fluctuations by 
Dejamkhooy et al. (Dejamkhooy et al., 2017). 

In the field of Mechanical Engineering 

Academician Jia Zhenyuan’s research on shape control machining theory, tech-
nology and equipment of high-end equipment and high-performance parts (Jia, 2009). 
Research on mechanical design and theory, computer aided design and graphics, 
digital design and manufacturing, etc. by academician Tan Jianrong’s group (Fang 
et al., 2009). Research on submarine noise reduction technology by academician He 
Lin’s group (Liao et al., 2017). Czeslaw Cempel used the grey prediction model to 
monitor the mechanical vibration state (Cempel, 2008). Wang Xuliang and Nie Hong 
used the grey system model to predict the fatigue life of mechanical parts, which 
greatly reduces the prediction error (Wang et al., 2008); Zhang Xueyuan et al. used 
GM (1,1) model to study the change law of robot emotional state, and realized the 
emotional robot interaction system (Zhang et al., 2006); Li Tong et al. used the grey 
prediction model to calculate the fatigue crack growth rate (Li et al., 2010). 

Academician Zhang Jie et al. used the grey correlation analysis model to analyze 
the fault of two tooth difference swing movable teeth transmission, which provided 
a scientific basis for improving the reliability of two tooth difference swing movable 
teeth transmission system (Zhang et al., 2012). Xia Xintao and Wang Zhongyu used 
the grey correlation analysis model to study the relationship between rolling bearing 
processing quality and vibration, and found that the structural dimension error param-
eter is the factor that has a great impact on bearing vibration (Xia et al., 2005). Xie 
Yanmin et al. obtained the best parameters of each factor affecting the robustness of 
square box by analyzing the\of the grey correlation degree between each factor and 
the target sequence (Xie et al., 2007). 

Prakash et al. study on multi-objective optimization of turning stone powder rein-
forced aluminum matrix composites based on Taguchi method and grey correlation 
analysis model (Prakash et al., 2020). Loganathan et al. used the grey correlation 
analysis model to optimize the input parameters of progressive forming of AA6061 
alloy (Loganathan et al., 2020). Pagar and Gawande (Pagar & Gawande, 2020) used  
the grey correlation analysis method to carry out parametric design analysis on the 
radial deflection stress of metal expansion bellows. Sharma used Taguchi and grey 
correlation analysis to study the accuracy and surface roughness of GFRP gears 
(Sharma et al., 2020). Khan et al. used the grey correlation analysis method to carry 
out multi-objective optimization of dry, wet and low temperature undercut titanium 
base alloys (Khan et al., 2020).
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In the field of Aerospace 

Wang Yanyang and Cao Yihua established a nonlinear online prediction model of 
China’s civil aviation operation risk by using the method of grey neural network 
(Wang et al., 2010), Yang Tianshe (2008) and Li Peihua (2011) used the grey system 
model to predict spacecraft faults and achieved high accuracy. 

Xie Jianxi et al. solved the optimization decision-making problem of aircraft top-
level design scheme by using the grey correlation analysis model (Xie et al., 2004); 
Zhang Cheng and Ding Songbin et al. studied the aircraft customization scheme 
based on the grey correlation analysis model (Zhang et al., 2014); Xiao Jun and Zhang 
Weiwei comprehensively used the grey correlation analysis and fault tree method to 
study the target crash fault, which provided a theoretical basis for diagnosing the 
cause of the target crash fault, controlling the occurrence of the fault and improving 
the system reliability (Xiao et al., 2009). 

Yu Fengjie and Ke Yinglin applied the grey clustering decision-making method to 
the automatic docking and assembly system of aircraft large parts, which improved 
the system stability, reduced the risk of equipment failure, and controlled the mainte-
nance cost (Yu et al., 2009). Zhang Feng and Wang Pengwei used the grey clustering 
evaluation model to evaluate the safety of Shipborne aircraft system, which played 
a positive role in discovering system safety hazards in advance and preventing and 
reducing accidents (Zhang et al., 2010). 

In the field of Intelligent Control 

Research on intelligent control theory and robot system, image recognition theory 
and machine vision application, intelligent control technology of advanced manu-
facturing equipment, and integrated automatic control system of major projects in 
power and electrical industry by Academician Wang Yaonan’s team (E, J. Q.,et al., 
2005). Academician Liu Yexiang of the State Key Laboratory of powder metallurgy 
of Central South University have used the grey system method and model to study 
the control of aluminum electrolysis process, and achieved many results (Liu, 2004). 

Tian Jianyan et al. established the grey prediction model of billet temperature in 
heating furnace and put forward the billet temperature control method (Tian et al., 
2007); Wang Wei et al. proposed an improved fuzzy expert control method based on 
combined grey prediction model for the temperature control of coke oven flue with 
the characteristics of strong nonlinearity, large time delay and multi disturbance 
(Wang et al., 2010). Combining the traditional feedback control method and grey 
predictive control, Zhang Guangli et al. designed a self-adjusting grey predictive 
controller. The simulation results show that the new controller has better dynamic 
performance and robustness (Zhang et al., 2004). 

In view of the randomness, nonlinearity and time variability of the deep-sea 
walking mechanism in the seabed complex operating environment, and it is diffi-
cult to establish an accurate mathematical model, Qiao Guiling et al. proposed a 
grey prediction fuzzy PID control method to realize the effective control of the deep-
sea walking mechanism (Qiao et al., 2009). The research on pneumatic position 
servo control system based on grey correlation compensation control proposed by
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Zhu Jianmin et al. effectively improves the tracking accuracy of traditional control 
methods for pneumatic position servo control system (Zhu et al., 2012). 

In the field of Weapon Equipment Development and Application 

Cui Jianpeng et al. studied the selection of surface to air missile weapon system 
by using multi-objective grey decision model (Cui et al., 2012); Li Xinqi et al. 
constructed a grey programming model for the optimal configuration of missile 
nuclear weapons, which provides a theoretical basis for the ordering, storage, position 
configuration and operational application of missile nuclear weapons (Li et al., 2007). 

Han Xiaoming et al. used the grey clustering model to comprehensively eval-
uate the development scheme of air defense and anti-missile warhead (Han et al., 
2014); Yao Junbo and Hu Weiwen applied the grey evaluation model to evaluate 
the operational effectiveness of over the horizon ground wave radar according to its 
characteristics and operational tasks (Yao et al., 2008). 

Lin Jiajian used the grey relational analysis method to solve the main factors 
affecting the velocity of explosively formed projectile (EFP), and obtained the results 
that have important reference value for the design of EFP liner and charge structure 
(Lin, 2009). Zhao Guogang et al. established the threat assessment model of incoming 
missile in ship anti-missile operation by using the grey correlation analysis method, 
which provides a decision-making basis for the ship command and control system 
to judge the target threat in time (Zhao et al., 2007). And research on radar target 
tracking by Liu Yi’an et al., (Liu et al., 2006). 
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Chapter 3 
Grey Numbers and Their Operations 

3.1 Grey Numbers 

A grey system is described with grey numbers, grey sequences, grey equations, or 
grey matrices. Here, grey numbers are the elementary “atoms” or “cells”, and their 
exact values are unknown. In applications, a grey number stands for an indeterminate 
number that takes its possible value within an interval or a general set of numbers. 
A grey number is generally represented using the symbol “ ⊗ .” There are several 
types of grey numbers, as discussed below. 

(1) Grey numbers with only a lower bound: This kind of grey number ⊗ is repre-
sented as ⊗ ∈ [a, ∞) or ⊗(a), where a stands for the definite, known lower 
bound of the grey number ⊗. The interval [a, ∞) is referred to as the field of 
⊗. 

For example, the weight of a celestial body which is far away from the Earth 
is a grey number containing only a lower bound, because the weight of the 
celestial body must be greater than zero. However, the exact value of the weight 
cannot be obtained through normal means. If we use the symbol ⊗ to represent 
the weight of the celestial body, we then have that ⊗ ∈ [0, ∞). 

(2) Grey numbers with only an upper bound: This kind of grey number ⊗ is written 
as ⊗ ∈  (−∞, a] or ⊗(a), where a stands for the definite, known upper bound 
of ⊗. 

A grey number containing only an upper bound is a grey number with a 
negative value, but its asssbsolute value is infinitely great. For example, the 
opposite number of the weight of the celestial body mentioned above is a grey 
number with only an upper bound. 

(3) Interval grey numbers: This kind of grey number ⊗ has both a lower a and an 
upper bound a, written ⊗ ∈ [a, a]. 

For example, for an investment opportunity, there always exists an upper 
limit representing the maximum amount of money that can be mobilized. For 
an electrical equipment, there must be a maximum critical value for the equip-
ment to function normally. The critical value could be for a maximum voltage
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or for a maximum amount of current allowed to be applied to the equipment. 
At the same time, the values of investment, voltage, and current are all greater 
than zero. Therefore, the amount of dollars that can be used for a specific invest-
ment opportunity, and the voltage and the current requirements for the electrical 
equipment are all examples of interval grey numbers. 

(4) Continuous and discrete grey numbers: This kind of grey number takes only 
a finite number or a countable number of potential values and is known as 
discrete. If a grey number can potentially take any value within an interval, then 
it is known as continuous. 

For example, if a person’s age is between 30 and 35, his or her age could be 
one of the values 30, 31, 32, 33, 34, 35. Thus, age is a discrete grey number. As 
for a person’s height and weight, they are continuous grey numbers. 

(5) Black and white numbers: Black numbers are represented as ⊗ ∈  (−∞, +∞); 
that is, when ⊗ has neither an upper nor a lower bound, then ⊗ is known as a 
black number. When ⊗ ∈ [a, a] and a = a, ⊗ is known as a white number. 

For the sake of parsimony, in our discussion we treat black and white numbers 
as special grey numbers. 

(6) Essential and non-essential grey numbers: The former stands for a grey number 
that temporarily cannot be represented by a white number; the latter entails a 
grey number that can be represented by a white number obtained either through 
experience or through a certain method. The definite white number is referred 
to as the whitenization (value) of the grey number, denoted ⊗̃. Also, we use 
⊗(a) to represent grey number(s) with a as its whitenization. 

A grey number is an uncertain number with its value in a specific range. The 
range can be regarded as a cover of the grey number. Therefore, an interval grey 
number ⊗ ∈ [a, a], a < a is very different from an interval number [a, a], a < a. 
An interval grey number⊗ ∈ [a, a], a < a is only one value in interval [a, a], a < a. 
However, an interval number [a, a], a < a is the whole interval [a, a], a < a. 

3.2 The Whitenization of a Grey Number and Degree 
of Greyness 

When a type of grey number vibrates around a certain fixed value, the whitenization 
of this kind of grey number is relatively easy. One can simply use that fixed value as its 
whitenization. A grey number that vibrates around a can be written as ⊗(a) = a + δa 
or ⊗(a) ∈ (−, a, +), where δa stands for the vibration. In this case, the whitenized 
value is ⊗̃(a) = a. 

For the general interval grey number ⊗ ∈ [a, b], we can take its whitenization 
value ⊗̃ as indicated in (3.1), based on the possible value information: 

⊗̃ =  αa + (1 − α)b, α  ∈ [0, 1] (3.1)
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Here, α is called the positioned coefficient of the interval grey number ⊗ ∈ [a, b] 
(Liu, 1989). 

Definition 3.2.1 The whitenization of the form ⊗̃ =  αa + (1 − α)b, α  ∈ [0, 1] is 
called a whitenization with positioned coefficient α. 

Definition 3.2.2 Mean whitenization occurs when α = 1 2 . When the distribution of 
an interval grey number is unknown, mean whitenization is often employed. 

Definition 3.2.3 Take the interval grey numbers ⊗1 ∈ [a, b],⊗2 ∈ [a, b]; let  ⊗̃1 = 
αa + (1 − α)b, α ∈ [0, 1]; and ⊗̃2 = βa + (1 − β)b, β ∈ [0, 1]. 

If α = β, we say that both ⊗1 and ⊗2 are synchronous. If α /= β, we say that 
the grey numbers ⊗1 and ⊗2 are non-synchronous. When two grey numbers ⊗1 and 
⊗2 have the same value range in interval [a, b], it is only when they are synchronous 
that it is possible to have ⊗1 = ⊗2. 

When the distribution of a grey number is known, mean whitenization is not used. 
For instance, a certain person’s age is within the range of 35–45 years old. Thus, 
⊗ ∈[35, 45] is a grey number. It is also known that the person in question finished 
their 12 years of pre-college education and entered college at the end of 1990s. Hence, 
the chance of the person to be around 40 years old in 2022 is quite good. For this 
grey number, it is not reasonable for us to employ mean whitenization. 

When the value information of a grey number is known to a certain extent, we can 
use a possibility function to describe the possibility of the grey number has taking 
its potential values. 

The possibility function is different from the membership function in fuzzy math-
ematics. The membership function describes the degree to which an object belongs 
to a certain set. However, the possibility function describes the possibility that a grey 
number can take a certain value, or the possibility that a certain value is the true 
value of a grey number. The possibility function is similar to the density function of 
probability distribution, but there are essential differences between the two concepts. 
A grey number described by the possibility function is a number with incomplete 
value information. Once a number with complete value information can be treated 
as a random variable with a certain probability distribution, it is no longer a grey 
number with poor value information: 

For any conceptual type of grey number that represents wishes, its possibility 
function generally increases monotonically. In Fig. 3.1, the possibility function f (x) 
stands for, say, the grey number of the amount of funds for a research project (in ten 
thousand dollars) and its degree of preference. A straight line stands for the “normal 
desire,” that is, the degree of preference is directly proportional to the amount of 
funds, with different slopes representing different intensities of desire. In particular, 
f1(x) represents a relatively mild intensity of desire, where a funds in amount of 
$100,000 is not enough, a funds in the amount of $200,000 will be more satisfying, 
and a funds of $300,000 will be quite adequate. f2(x) stands for a desire with more 
intensity, where a funds in the amount of $350,000 is only about 40% satisfactory. 
The curve of f3(x) means that even for a funds in the amount of $400,000, the
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Fig. 3.1 Different types of 
possibility functions 

degree of satisfaction is only about 20%. To be satisfied, the amount of funds has to 
be somewhere around $800,000. 

Generally speaking, the possibility function of a grey number is designed 
according to what is known to the researcher. Therefore, it does not have a fixed 
form. The start and end of the curve should have its significance. For instance, in a 
trade negotiation, there is a process of changing from a grey state to a white state. 
The eventual agreed upon deal will be somewhere between the ask and the bid. Thus, 
the relevant possibility function should start at the level of the ask (or the bid) and 
end at the level of bid (or the ask). 

The typical possibility function is a continuous function with fixed starting and 
ending points so that the left-hand side increases and the right-hand side decreases, 
as seen in Fig. 3.2a, where: 

f1(x) = 

⎧ 
⎨ 

⎩ 

L(x), x ∈ [a1, b1) 
1, x ∈ [b1, b2] 
R(x), x ∈ (b2, a2] 

. 

For the convenience of computer programming and computation, in practical appli-
cations the left- and right-hand functions L(x) and R(x) are generally simplified into 
straight lines, as seen in Fig. 3.2b, where:

Fig. 3.2 Typical possibility function 
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f2(x) = 

⎧ 
⎪⎨ 

⎪⎩ 

L(x) = x−x1 
x2−x1 

x ∈ [x1, x2) 
1, x ∈ [x2, x3] 
R(x) = x4−x 

x4−x3 
x ∈ (x3, x4] 

. 

Definition 3.2.4 For the possibility function shown in Fig. 3.2a, the following 
representation is referred to as the degree of greyness of ⊗ (Deng, 1985): 

g
◦ = 

2|b1 − b2| 
b1 + b2 

+ max

[ |a1 − b1| 
b1 

, 
|a2 − b2| 

b2

]

(3.2) 

The expression g◦ is a sum of two parts. The first part represents the greyness of the 
grey number as affected by the size of the peak area under the curve of the possibility 
function, while the second part shows the effect of the size of the area under the curves 
of L(x) and R(x). Generally, the greater the peak area and the area under L(x) and 
R(x), the greater the value of g◦. When max

{
|a1−b1| 

b1 
, |a2−b2| 

b2

}
= 0, g◦ = 2|b1−b2| 

b1+b2 
. 

In this case, the possibility function is a horizontal line. When 2|b1−b2| 
b1+b2 

= 0, grey  

number ⊗ is a grey number with its basic value b = b1 = b2. When g
◦ = 0, ⊗ is a 

white number. 

3.3 Degree of Greyness Defined by Axioms 

Professor Julong Deng (1985) provided a definition of degree of greyness of a grey 
number with a typical possibility function, as shown in Fig. 3.2a. In 1996, Professor 
Sifeng Liu established an axiomatic definition of degree of greyness by using the 
length l(⊗) of the grey number interval and its kernel ⊗̂ (Liu, 1996): 

g
◦ 
(⊗) = 

l(⊗) 
⊗̂ (3.3) 

Such a definition is valid on the basis of the postulates of non-negativity, zero grey-
ness, infinite greyness, and scalar multiplication. However, the concept of greyness 
as defined in Eqs. (3.2) and (3.3) suffers from the following problems: 

(1) When the length l(⊗) of the grey interval approaches infinity, the degree of 
greyness as defined in both (3.2) and (3.3) is likely to approach infinity. 

(2) Grey numbers centered at zero will not have greyness. In this case, in Eq. (3.2), 
one has b1 = b2 = 0; and in Eq. (3.3), one faces ⊗̂ =  0. That is, neither (3.2) 
nor (3.3) is meaningful. 

A grey number is a way to express the behavioral characteristics of a specific grey 
system (Deng, 1990). The greyness of grey numbers reflects the degree to which the 
researcher understands the uncertainty involved in such numbers (Liu et al., 1999; 
Chen, 2001). Therefore, the magnitude of the greyness of a grey number should be
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closely related to the background on which the grey number is come from, or to the 
field of discourse within which the said number becomes grey. If this background, 
or field of discourse, and the characteristics of a grey system are not detailed, there 
is no means through which to discuss the degree of greyness of a given grey number. 
With this understanding in place, let Ω be the field of discourse within which grey 
number ⊗ is come from, and μ(⊗) is the measure of the number field from which ⊗ 
takes its value. Then, the degree of greyness g

◦ 
(⊗) of grey number ⊗ should satisfy 

the axioms below. 

Axiom 3.3.1 0 ≤ g◦ 
(⊗) ≤ 1. That is, the degree of greyness of any grey number 

has to be within the range of 0–1. 

Axiom 3.3.2 
Any ⊗ ∈ [a, a], a ≤ a, when a = a, g◦ 

(⊗) = 0. That is, white numbers contain no 
ambiguity, so their degree of greyness is 0. 

Axiom 3.3.3 g
◦ 
(Ω) = 1. That is, because the background Ω within which grey 

number ⊗ is come from is generally known. Therefore, Ω does not contain any 
useful information leading to the greatest level of uncertainty. 

Axiom 3.3.4 g
◦ 
(⊗) is directly proportional to μ(⊗) and inversely proportional to 

μ(Ω). 

Definition 3.3.1 The following equation is called the degree of greyness of grey 
number ⊗: 

g
◦ 
(⊗) = μ(⊗)/μ(Ω) (3.4)

Ω is the field of discourse of grey number ⊗, and μ is the measure of field Ω (Liu 
et al., 2010a). 

Theorem 3.3.1 The degree of greyness of grey numbers satisfies the following 
properties: 

(1) If ⊗1 ⊂ ⊗2, then g
◦ 
(⊗1) ≤ g◦ 

(⊗2). 
(2) g

◦ 
(⊗1 ∪ ⊗2) ≥ g◦ 

(⊗k), k = 1, 2, where⊗1∪⊗2 = {ξ |ξ ∈ [a, b] or ξ ∈ [c, d]} 
is the union of grey numbers ⊗1 ∈ [a, b], a < b and ⊗2 ∈ [c, d], c < d. 

(3) g
◦ 
(⊗1 ∩ ⊗2) ≤ g◦ 

(⊗k), k = 1, 2, where ⊗1 ∩ ⊗2 = {ξ |ξ ∈ [a, b] and ξ ∈ 
[c, d]} is the interaction between grey numbers ⊗1 ∈ [a, b], a < b and ⊗2 ∈ 
[c, d], c < d. 

(4) If ⊗1 ⊂ ⊗2, then g
◦ 
(⊗1 ∪ ⊗2) = g◦ 

(⊗2), g
◦ 
(⊗1 ∩ ⊗2) = g◦ 

(⊗1). 
(5) If μ(Ω) = 1 and the measures of ⊗1 and ⊗2 are independent of μ, then 
(6) g

◦ 
(⊗1 ∩ ⊗2) = g◦ 

(⊗1) · g◦ 
(⊗2); and 

(7) g
◦ 
(⊗1 ∪ ⊗2) = g◦ 

(⊗1) + g◦ 
(⊗2) − g0(⊗1) · g◦ 

(⊗2).
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Proof The conclusions (1)-(4) obviously.Therefore, the proof is omitted because all 
of them can be exported directly from Definition 3.3.1. 

For 5 1◦), from μ(Ω) = 1 and the assumption that measures of ⊗1 and ⊗2 are 
independent of μ, we have:  

g
◦ 
(⊗1 ∩ ⊗2) = μ(⊗1 ∩ ⊗2) = μ(⊗1) · μ(⊗2) = g◦ 

(⊗1) · g◦ 
(⊗2) 

Similarly, for 2◦, we have:  

g
◦ 
(⊗1 ∪ ⊗2) = μ(⊗1 ∪ ⊗2) = μ(⊗1) + μ(⊗2) − μ(⊗1) · μ(⊗2) 

= g◦ 
(⊗1) + g◦ 

(⊗2) − g◦ 
(⊗1) · g◦ 

(⊗2) QED. 

The way in which grey numbers are combined affects the degree of greyness 
and the reliability of the resultant grey number. Generally, when grey numbers 
are “unioned” together, the resultant degree of greyness and reliability of the new 
information increase; when grey numbers are intersected together, the resultant 
degree of greyness drops and the reliability of the combined information decreases. 
When solving practical problems and processing a large amount of grey numbers, 
it is advisable to combine the numbers at several different levels so that useful 
information can be extracted at individual levels. Additionally, in the process of 
combining grey numbers, “union” and “intersection” operations should be done 
at individual and other levels in order to guarantee that the extracted information 
satisfies pre-determined requirements in terms of reliability and degree of greyness. 

3.4 The Operations of Interval Grey Numbers 

In what follows, let us look at the operations of interval grey numbers. Given grey 
numbers ⊗1 ∈ [a, b], a < b and ⊗2 ∈ [c, d], c < d let us use * to represent an 
operation between ⊗1 and ⊗2. If  ⊗3 = ⊗1 ∗ ⊗2, then ⊗3 should also be an interval 
grey number satisfying ⊗3 ∈ [e, f ], e < f and for any ⊗̃1 and ⊗̃2, ⊗̃1∗ ⊗̃1 ∈ [e, f ]. 
The operation rules of interval grey numbers are discussed below (Deng, 1985). 

Rule 3.4.1 (Additive operation). Assume that ⊗1 ∈ [a, b], a < b; ⊗2 ∈ 
[c, d], c < d, then the following equation is called the sum of ⊗1 and ⊗2: 

⊗1 + ⊗2 ∈ [a + c, b + d] (3.5) 

Example 3.4.1 Assume that ⊗1 ∈ [3, 4], ⊗2 ∈ [5, 8], then ⊗1 + ⊗2 ∈ [8, 12]. 
Rule 3.4.2 (Additive inverse). Assume that ⊗ ∈ [a, b], a < b, then the additive 

inverse of ⊗ is given by: 

−⊗ ∈ [−b, −a] (3.6)
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Example 3.4.2 Assume that ⊗ ∈ [3, 4], then −⊗ ∈ [−4, −3]. 
Rule 3.4.3 (Subtraction operation). Assume that ⊗1 ∈ [a, b], a < b; ⊗2 ∈ 

[c, d], c < d, then the following is called the deviation ⊗1 minus ⊗2: 

⊗1 − ⊗2 = ⊗1 + (−⊗2) ∈ [a − d, b − c] (3.7) 

Example 3.4.3 Assume that ⊗1 ∈ [3, 4], ⊗2 ∈ [1, 2], then: 

⊗1 − ⊗2 ∈ [3 − 2, 4 − 1] = [1, 3], ⊗2 − ⊗1 ∈ [1 − 4, 2 − 3] = [−3, −1]. 

Rule 3.4.4 (Multiplication operation). Assume that ⊗1 ∈ [a, b], a < b; ⊗2 ∈ 
[c, d], c < d, then the following equation is called the product of ⊗1 and ⊗2: 

⊗1 · ⊗2 ∈ [min{ac, ad, bc, bd}, max{ac, ad, bc, bd}] (3.8) 

Example 3.4.4 Assume that ⊗1 ∈ [3, 4], ⊗2 ∈ [5, 10], then: 

⊗1 · ⊗2 ∈ [min{15, 30, 20, 40}, max{15, 30, 20, 40}] = [15, 40]. 

Rule 3.4.5 (Reciprocal). Assume that ⊗ ∈ [a, b], a < b, a /= 0, b /= 0,ab > 0, 
then the following equation is called the reciprocal of ⊗: 

⊗−1 ∈
[
1 

b 
, 
1 

a

]

(3.9) 

Example 3.4.5 Assume that ⊗ ∈ [2, 4] then ⊗−1 ∈ [0.25, 0.5]. 
Rule 3.4.6 (Division). Assume that ⊗1 ∈ [a, b], a < b; ⊗2 ∈ [c, d], c < d and 

c /= 0, d /= 0, cd > 0, then the following is called the quotient of ⊗1 division by 
⊗2: 

⊗1/⊗2 = ⊗1 × ⊗−1 
2 ∈

[

min

[
a 

c 
, 
a 

d 
, 
b 

c 
, 
b 

d

]

, max

[
a 

c 
, 
a 

d 
, 
b 

c 
, 
b 

d

]]

(3.10) 

Example 3.4.6 Assume that ⊗1 ∈ [3, 4], ⊗2 ∈ [5, 10], then: 

⊗1/⊗2 ∈
[

min

[
3 

5 
, 
3 

10 
, 
4 

5 
, 
4 

10

]

, max

[
3 

5 
, 
3 

10 
, 
4 

5 
, 
4 

10

]]

= [0.3, 0.8]. 

Rule 3.4.7 (Scalar multiplication). Let ⊗ ∈ [a, b], a < b, and k a positive real 
number, then the following is called the product of scalar k with grey number ⊗: 

k · ⊗  ∈  [ka, kb] (3.11)
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Example 3.4.7 Assume that ⊗ ∈ [2, 4], and k = 5, then 5 × ⊗  ∈  [10, 20]. 
Rule 3.4.8 (Power,). Let ⊗ ∈ [a, b], a < b, kk a positive real number, then the 

following equation is called the kth power of the grey number ⊗: 

⊗k ∈ [
ak , bk

]
(3.12) 

Example 3.4.8 Assume that ⊗ ∈ [2, 4], and k = 5, then ⊗5 ∈ [32, 1024]. 

3.5 General Grey Numbers and Their Operations 

3.5.1 Reduced Form of Interval Grey Numbers 

As the basis of grey system theory, grey numbers, grey number operations and grey 
algebraic systems have received much attention from grey system scholars over the 
past years. In the 1980s, we put forward the concept of mean whitenization of grey 
numbers (Liu, 1989), and based on this concept we developed a new algebraic system 
for grey numbers. 

According to the standard definition of degree of greyness of grey numbers (Liu, 
1996, 2006; Yang, 2007, Yang and Liu, 2011), it is possible to address grey intervals 
after the operation of grey numbers, with the help of the concept of degree of greyness 
(Jiang et al., 2017, 2021). 

In this section, a definition for grey “kernel” is put forward. The axioms for 
operation of grey numbers and a grey algebraic system is built based on grey “kernel” 
and the degree of greyness of grey numbers. Also, the properties of the operation are 
discussed with regards to how the operation of grey numbers can be transformed to 
the operation of real numbers. Thus, to a certain extent the problem for setting up 
the operation of grey numbers and grey algebraic systems is solved. 

Definition 3.5.1 (The “Kernel” of Grey Number) 

(1) Suppose an interval grey number⊗ ∈ [a, a], a < a. In case of a lack of 
distributing information of the values of grey number ⊗, ⊗̂ =  1 2 (a + a) is 
called the “kernel” of grey number ⊗. 

(2) If a grey number ⊗ is a discrete number and ai ∈ [a, a](i = 1, 2, . . .  n) are 
all the possible values for grey number ⊗, then ⊗̂ =  1 n

εn 
i=1 ai is called the 

“kernel” of grey number ⊗. 
(3) Suppose that grey number ⊗ ∈ [a, a], a < a is a random grey numbers with 

value distribution information. Then ⊗̂ =  E(⊗) is called the “kernel” of grey 
number ⊗ (Liu et al., 2010a, 2010b).
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⊗̂, the “kernel” of grey number ⊗, is the representation of grey numbers ⊗, which 
cannot be exchangeable in the course of transforming the operation of grey numbers 
to operation of real numbers. In fact, the “kernel” of grey number ⊗, as a real number, 
can be completely operated by the operation of real numbers, such as plus, minus, 
multiplication, division, power, extract„ and so on. Also, it is reasonable to take the 
operation results of the “kernels” as the “kernel” of operation results of grey numbers. 

Definition 3.5.2 Let ⊗̂ and g◦ 
be the kernel and the degree of greyness of a grey 

number ⊗, respectively. Then ⊗̂(g) is called the reduced form of grey number ⊗. The  
reduced form ⊗̂(g) contains all the information of grey number ⊗ ∈ [a, a], a < a. 

Proposition 3.5.1 For interval grey numbers, there is an one-to-one correspondence 
between the reduced form ⊗̂(g) and grey number ⊗ ∈ [a, a], a < a. 

In fact, for any chosen grey number ⊗ ∈ [a, a], a < a, one can compute ⊗̂(g) 
through both ⊗̂ and g◦ 

. On the other hand, when ⊗̂(g) is given, one can determine 
the position of ⊗ from ⊗̂. Therefore, from the definition of degree of greyness g

◦ 
, 

one can compute the measure of the grey number ⊗ and consequently the upper and 
lower bounds a and a, which provides detailed information for ⊗ ∈ [a, a], a < a. 

Example 3.5.1 Assume that the grey numbers ⊗1 = [−2, −1], ⊗2 = [8, 18], ⊗3 = 
[−2, 18] all on background Ω ∈ [−2, 20]. Take the length of grey interval as the 
measure of grey numbers, and calculate the reduced forms of ⊗1, ⊗2, ⊗3. 

Solution The measures of Ω, ⊗1, ⊗2, ⊗3 are μ(Ω) = 20 − (−2) = 22, μ(⊗1) = 
1, μ(⊗2) = 10, μ(⊗3) = 20. Then we can get to the kernels and the degree of 
greyness of ⊗1, ⊗2, ⊗3 as follows: 

⊗̂1 = −1.5 ⊗̂2 = 13, ⊗̂3 = 8; g◦ 

1(⊗1) = 0.045, g◦ 

2(⊗2) = 0.45, g◦ 

3(⊗3) = 0.91. 
Therefore, we obtained: 

⊗1 = −1.5(0.045), ⊗2 = 13(0.5), ⊗3 = 8(0.91). 

3.5.2 General Grey Number and Its Reduced Form 

Definition 3.5.3 (Basic element of grey number). Together, an interval grey 
number and a white number are called the basic element of a grey number. 

Definition 3.5.4 (General grey number). Let g± ∈ R be an unknown real number 
within a union set of closed or open grey intervals, where: 

g∗ ∈ 
n⋃

i=1

[
ai , ai

]
(3.13)
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If i = 1, 2, …, n, n is an integer and 0 < n < ∞, a, ai ∈ R and ai−1 ≤ ai ≤ ai ≤ 
ai+1, for any grey interval ⊗i ∈

[
ai , ai

] ⊂ ⋃n 
i=1

[
ai , ai

]
, then g± is called a general 

grey number. g− = inf 
a∈g+ 

ai and g
+ = sup 

ai∈g± 
ai are called the lower and upper limits 

of g± (Liu et al., 2012). 

Definition 3.5.5 (The “Kernel. ” of General Grey Number) 

(1) For a general grey number g± ∈ ⋃n 
i=1

[
ai , ai

]
, the following is called the 

“kernel” of a general grey number: 

ĝ = 
1 

n 

nε

i=1 

âi (3.14) 

(2) If the probability distribution of g± ∈ [
ai , ai |(i = 1, 2, . . . ,  n) is known, 

assume that pi is the probability for g± ∈ [ai , ai |(i = 1, 2, . . . ,  n) , âi the 
“kernel” of grey interval ⊗i ∈

[
ai , ai

]
, and the following conditions hold: 

pi > 0, i = 1, 2, . . . ,  n; and 

nε

i=1 

pi = 1. 

Then, the “kernel” ĝ of general grey number g± ∈ ⋃n 
i=1

[
ai , ai

]
can be defined 

as follows: 

ĝ = 
nε

i=1 

pi âi (3.15) 

Definition 3.5.6 (The degree of greyness of a general grey number). Suppose 
that the background which makes a general grey number g± ∈ ⋃n 

i=1

[
ai , ai

]
come 

into being is Ω, µ is the measure of Ω, and ⊗i ∈
[
ai , ai

]
, i = 1, 2, . . . ,  n are basic 

elements of general grey number g± ∈ ⋃n 
i=1

[
ai , ai

]
. Then the following is called 

the degree of greyness of general grey number g± ∈ ⋃n 
i=1

[
ai , ai

]
, also denoted as 

g
◦ 
for short (Liu et al.,  2012): 

g
◦(
g±) = 

1 

ĝ 

nε

i=1 

âi μ(⊗i )

/

μ(Ω) (3.16) 

Definition 3.5.7 (The reduced form of general grey number). If ĝ is the “kernel” 
of a general grey number g± ∈ ⋃n 

i=1

[
ai , ai

]
and g

◦ 
is the degree of greyness of 

this general grey number, then, ĝ(g◦ ) is called the reduced form of a general grey 
number.
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The reduced form ĝ(g◦ ) of a general grey number contains important information 

regarding the values of general grey number g± ∈ ⋃n 
i=1

[
ai , ai

]
. If all the âi and 

μ(⊗1)(i = 1, 2, . . . ,  n) are known, then the reduced form of grey number ĝ(g◦ ) 
contains all the information regarding the values of general grey numbers g± ∈⋃n 

i=1

[
ai , ai

]
. 

Example 3.5.2 Let us take a mixed general grey number g± = ⊗1∪⊗2∪2∪⊗4∪6, 
where ⊗1 ∈ [1, 3], ⊗2 ∈ [2, 4], ⊗4 ∈ [5, 9]. Assume that the background or field 
which makes general grey number g± come into being is Ω = [0, 32]. If we take  
the length of the interval as the measure of these grey numbers, try and work out the 
reduced forms of general grey number g±. 

Solution ⊗̂1 = 2, ⊗̂2 = 3, ⊗̂4 = 7, thus, the kernel of general grey number g± is 
as follows: 

ĝ = 
1 

5

(⊗̂1 + ⊗̂2 + 2 + ⊗̂4 + 6
) = 

1 

5 
(2 + 3 + 2 + 7 + 6) = 4. 

From that, μ(⊗1) = 2, μ(⊗2) = 2, μ(⊗4) = 4, μ(2) = μ(6) = 0, we have:  

g
◦(
g±) = 

1 

ĝ 

5ε

i=1 

⊗̂i μ(⊗i )

/

μ(Ω) 

= 
1 

4 
(2 × 2 + 3 × 2 + 2 × 0 + 7 × 4 + 6 × 0)/32 ≈ 0.297. 

Therefore, the reduced forms of general grey number g± is 4(0.297). When the 
probability distribution of g± is known, assume that: 

p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0.3, p5 = 0.1. 

Then: ĝ = 
nε

i=1 
pi · ⊗̂i = (0.1 · 2 + 0.2 · 3 + 0.3 · 2 + 0.3 · 7 + 0.1 · 6) = 4.1 

Therefore, the reduced form of general grey number g± is 4.1(0.297). 

3.5.3 Synthesis of Degree of Greyness and Operations 
of General Grey Numbers 

Axiom 3.5.1 (The synthesis axiom of degree of greyness) When plus and minus are 
operated on n general grey numbers of g± 

1 , g
± 
2 , . . . ,  g±

n , then the degree of greyness 
g

◦ 
of the operation results in g±, which can be arrived at as follows:
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g
◦ = 1

εn 
i=1 ĝi 

nε

i=1 

g
◦ 

i ĝi = 
nε

i=1 

wi g
◦ 

i (3.17) 

where wi = ĝiεn 
i=1 ĝi 

, i = 1, 2, . . . ,  n, are the weights of g◦ 

i . 

One can arrive the conclusion as following Proposition 3.5.2 through Axiom 3.5.1. 

Proposition 3.5.2 When sums and subtractions are operated on n general grey 
numbers of g± 

1 , g
± 
2 , . . . ,  g±

n , g
◦ 
is the degree of greyness of the operation result 

g±; if  g◦ 

m = min1≤i≤n
{
g

◦ 

i

}
, g

◦ 

M = max1≤i≤n
{
g

◦ 

i

}
, then: 

g
◦ 

m ≤ g◦ ≤ g◦ 

M (3.18) 

Axiom 3.5.2 (The Unreduction Aaxiom of Degree of Greyness) When divisions 
and multiplications are operated on n general grey numbers, the degree of greyness 
g

◦ 
of the operation result g± is not less than g

◦ 

M , the maximum value of the degree 
of greyness g

◦ 

1, g
◦ 

2, . . . ,  g◦ 

n of n general grey numbersg± 
1 , g

± 
2 , . . . ,  g±

n . 

Usually, g
◦ 

M , the maximum number of the degree of greyness of n general grey 
numbers is taken as the degree of greyness of the operation results. One can arrive 
at this conclusion through Proposition 3.5.3 below. 

Proposition 3.5.3 When divisions and multiplications are operated on n general 
grey numbers with the same degree of greyness, then the degree of greyness of the 
operation result holds the line. 

Proposition 3.5.4 When divisions and multiplications are operated on a white 
number and a general grey number, the degree of greyness of the result is equal 
to the degree of greyness of the general grey number. 

Suppose that g± 
1 , g

± 
2 are two general grey numbers; ĝ1, ĝ2 are their kernels, respec-

tively, and g
◦ 

1, g
◦ 

2 are their degrees of greyness, respectively. Then, the following rules 
come into existence according to Axioms 3.5.1 and 3.5.2: 

Rule 1 ĝ1(go 1) + ĝ2(go 2) =
(
ĝ1 + ĝ2

)

(w1go 1+w2g
◦ 
2 )

(3.19) 

Rule 2 − ĝ1(go 1) =
(−ĝ1

)

(g
◦ 
1 )

(3.20) 

Rule 3 ĝ1(g◦ 
1 ) − ĝ2(g◦ 

2 ) =
(
ĝ1 − ĝ2

)

(w1g
◦ 
1 +w2g

◦ 
2 )

(3.21) 

Rule 4 ĝ1(g◦ 
1 ) × ĝ2(g◦ 

2 ) =
(
ĝ1 × ĝ2

)

(g
◦ 
1 ∨g

◦ 
2 )

(3.22) 

Rule 5 If  ĝ1 /= 0, then 1/ ̂g1(gi 1) =
(
1/ ̂g1

)

(g
◦ 
1 )

(3.23)
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Rule 6 ĝ2 /= 0, then ĝ1(g◦ 
1 ) ÷ ĝ2(g◦ 

2 ) =
(
ĝ1 ÷ ĝ2

)

(g
◦ 
1 ∨g

◦ 
2 )

(3.24) 

Rule 7 k, is a real number, then k ĝ(gi 1) = (k · ĝ)(gi 1) (3.25) 

The operations of general grey numbers can be extended to cases where many 
general grey numbers must be operated. In such cases, we can take the operation 
results of the “kernels” as the “kernel” of operation results of general grey numbers. 
We can then get the degree of greyness of the results according to Axioms 3.5.1 and 
3.5.2, and, thus, we can arrive at the reduced forms of the results. 

Example 3.5.3 Take two mixed general grey numbers g± 
1 = ⊗1 ∪ ⊗2 ∪ 2 ∪ ⊗4 ∪ 6 

and g± 
2 = ⊗6 ∪ 20 ∪ ⊗8 ∪ ⊗9, where ⊗1 ∈ [1, 3], ⊗2 ∈ [2, 4], ⊗4 ∈ [5, 9], ⊗6 ∈ 

[12, 16], ⊗8 ∈ [11, 15], ⊗9 ∈ [15, 19]. Assume that the background or field which 
makes general grey number g± 

1 come into being is Ω = [0, 32], and the background 
or field which makes general grey number g± 

2 come into being is Ω = [10, 60]. Try  
and calculate the values of g± 

3 = g± 
1 + g± 

2 , g
± 
4 = g± 

1 − g± 
2 , g

± 
5 = g± 

1 × g± 
2 , and 

g± 
6 = g± 

1 ÷ g± 
2 . 

Solution First, calculate the reduced forms of g± 
1 and g

± 
2 . From Example 3.5.2, 

we have g± 
1 = 4(0.297). From that, ⊗̂6 = 14, ⊗̂8 = 13, ⊗̂9 = 17, and μ(⊗6) = 

4, μ(⊗7) = 0, μ(⊗8) = 4, μ(⊗9) = 4, we have:  

ĝ2 = 
1 

4

(⊗̂6 + 20 + ⊗̂8 + ⊗̂9
) = 

1 

4 
(14 + 20 + 13 + 17) = 16 

and 

g
◦ 

2

(
g±) = 

1 

ĝ2 

4ε

i=1 

⊗̂i μ(⊗i )

/

μ(Ω2) 

= 
1 

16 
(14 × 4 + 20 × 0 + 13 × 4 + 17 × 4)/50 = 0.22. 

Thus, the reduced form of general grey number g± 
2 is 16(0.22). With the reduced 

forms, as well as w1 = 4 
20 = 0.2, w2 = 16 

20 = 0.8, it is possible for us to get the 
following results: 

g± 
3 = g± 

1 + g± 
2 = (

ĝ1 + ĝ2
)

(w1g
◦ 
1 +w2g

◦ 
2 ) = (4 + 16)(0.2×0.297+0.8×0.22) = 200.235 

g± 
4 = g± 

1 − g± 
2 = (

ĝ1 − ĝ2
)

(gi 1vg
i 
2) = (4 − 16)(0.2×0.297+0.8×0.22) = (−12)0.235 

g± 
5 = g± 

1 × g± 
2 = (

ĝ1 × ĝ2
)

(g
◦ 
1 ∨g

◦ 
2 ) = (4 × 16)(0.297∨0.22) = 640.297
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g± 
6 = g± 

1 ÷ g± 
2 = (

ĝ1 ÷ ĝ2
)

(g
◦ 
1 ∨g

◦ 
2 ) = (4 ÷ 16)(0.297∨0.22) =

(
1 

4

)

0.297 

Definition 3.5.8 Assume that F
(
g±)

is a set of general grey numbers, and that 
g± 
i , g

± 
j ∈ F

(
g±)

. If  g± 
i + g± 

j , g± 
i − g± 

j , g± 
i · g± 

j , and g
± 
i ÷ g± 

j all belong to 
F

(
g±)

(when division is considered, the conditions in rule 6 need to be satisfied), 
then F

(
g±)

is called a field of general grey numbers. 

Theorem 3.5.1 The totality of all general grey numbers constitutes a field of general 
grey numbers. 

Definition 3.5.9 Assume that R
(
g±)

is a set of general grey numbers. If for g± 
i , g

± 
j 

and g± 
k ∈ R

(
g±)

, the following hold true: 

(1) g± 
i + g± 

j = g± 
j + g± 

i 

(2)
(
g± 
i + g± 

j

)
+ g± 

k = g± 
i +

(
g± 
j + g± 

k

)
; 

(3) There exists a zero element 0 ∈ R
(
g±)

, such that g± 
i + 0 = g± 

i ; 
(4) For any g± 

i ∈ R
(
g±)

, there exists a −g± 
i ∈ R

(
g±)

, such that g± 
i + (−g± 

i

) = 0; 
(5)

(
g± 
i · g± 

j

)
· g± 

k = g± 
i ·

(
g± 
j · g± 

k

)
; 

(6) There exists a unit element 1 ∈ R
(
g±)

, such that 1 · g± 
i = g± 

i · 1 = g± 
i ; 

(7)
(
g± 
i + g± 

j

)
· g± 

k = g± 
i · g± 

k + g± 
j · g± 

k and 

(8) g± 
i ·

(
g± 
j + g± 

k

)
= g± 

i · g± 
j + g± 

i · g± 
k . 

Thus, R
(
g±)

is called a linear space of general grey numbers. 

Theorem 3.5.2 The totality of all synchronous general grey numbers constitutes a 
linear space. 

A grey number is the most elementary component of grey system theory and forms 
the basis for studying the quantitative relations of a grey system. The operation of 
grey numbers is the starting point for grey maths, and it has much significance in 
the development of grey system theory. On the basis of intensifying the effect and 
significance of the “kernel” of general grey numbers, and with the degree of greyness 
of general grey numbers as a link, the operation of grey numbers has been translated 
into the operation of real numbers. Therefore, to a certain extent the problem of 
operation of grey numbers has been solved, and a grey algebraic system based on 
this operation has been constructed. The operation of grey numbers defined in this 
chapter can be extended to grey algebraic equations, grey differential equations and 
grey matrix operations. This is a development of great significance to the study of 
grey input–output models and grey programming, which has been progressing slowly 
due to the difficulty of grey number operations. 

The calculation of degree of greyness of general grey numbers relates to the field
Ω of general grey numbers. Thus, the fieldΩmust be considered in order to translate
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the reduced form of general grey number to its common form. Researchers tend to 
pay attention only to the operation of general grey numbers and ignore the field of 
the results, which creates difficulties in reverting general grey numbers. However, 
the reduced form of a general grey number provides relevant information about the 
“kernel” and degree of greyness, So that we can know what we know. This is similar 
to the digital characteristics of a random variable such as mean and variance, which 
hold the distribution information of the random variable. The “kernel” and degree of 
greyness arising from the reduced form are very important as they allow us to learn 
the value information of a general grey number. 
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Chapter 4 
Sequence Operators and Grey Data 
Mining 

4.1 Introduction 

One of the main tasks of grey systems theory is to uncover the mathematical relation-
ships between different system variables and the laws of change of certain system 
variables themselves based on the available data of characteristic behaviors of social, 
economic and ecological systems, for example. Grey systems theory looks at each 
stochastic variable as a grey quantity that varies within a fixed region and within a 
certain time frame, and each stochastic process as a grey process. 

When investigating the behavioral characteristics of a system, what is available is 
often a sequence of definite white numbers. There is no substantial difference between 
whether we treat the sequence as a trajectory or actualization of a stochastic process, 
or as whitenized values of a grey process. However, to uncover the laws of evolution of 
systems’ behavioral characteristics, different methods are developed using different 
thinking logics. For instance, the theory of stochastic investigates statistical laws 
on the basis of probabilities borrowed from prior knowledge. This methodology 
generally requires large amounts of data. However, even with large amounts of data 
there is no guarantee that any of the desired laws can be successfully uncovered. That 
is because the number of basic forms of distribution considered in this methodology 
is very limited. It is often extremely difficult to deal with non-typical distribution 
processes. Nonetheless, grey systems theory uncovers laws of change by excavating 
and organizing the available raw data, representing an approach of finding data out 
of data through grey sequence operators. Grey systems theory believes that a system 
possesses overall functions and properties, even if the expression of such an objective 
system might be complicated, and its data chaotic. Therefore, there must be internal 
laws governing the existence of the system and its operation. The key is to choose an 
appropriate method to excavate the internal laws and make use of such laws. For any 
given grey sequence, its implicit pattern can always be revealed through weakening 
the explicit randomness.
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For example, the following sequence does not clearly show any regularity or 
pattern: 

X (0) = (1, 2, 1.5, 3) = (
x (0) (1), x (0) (2), x (0) (3), x (0) (4)

)
. 

Now, we depict the data set with the graph in Fig. 4.1. From this graph, it can 
be seen that the curve of X(0) undulates with relatively large amplitude. If we apply 
the accumulating operator once to the original data set X(0), and denote the resultant 
sequence as X(1), then we have: 

X (1) = (1, 3, 4.5, 7.5) = (
x (1) (1), x (1) (2), x (1) (3), x (1) (4)

)

where for k = 1, 2, 3, 4, x (1) (k) = Σk 
i=1 x

(0) (i ). 
Now, the processed sequence X(1) clearly shows a growing tendency (see Fig. 4.2 

for more details). 

Fig. 4.1 The curve of X(0) 
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Fig. 4.2 The curve of X(1)
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4.2 Systems Under Shocking Disturbances and Buffer 
Operators 

4.2.1 The Trap for Shocking Disturbed System Forecasting 

Behavioral prediction of problems under the influence of shocking disturbances has 
always been a difficult problem. For such predictions, any theory on how to choose 
models would lose its validity. This is because the problem to be address here is 
not about which model is the best; instead, when a system is severely impacted by 
shocks, the available behavioral data of the past no long represent the current state 
of the system. In this case, the available data of the system’s behavior can no longer 
truthfully reflect the law of change of the system (Liu 2021; Liu et al., 2017). 

Definition 4.2.1 Assume that 

X (0) = (
x (0) (1), x (0) (2),  . . . ,  x (0) (n)

)

stands for a sequence of a system’s true behaviors. If the observed behaviors of 
the system are 

x = (x(1), x(2), . . .  ,  x(n)) 
= (

x (0) (1) + ε1, x (0) (2) + ε2, . . . ,  x (0) (n) + εn
) = X (0) + ε 

where ε = (ε1, ε2, . . . , εn) is a term for the shocking disturbance, then X is called a 
shock-disturbed sequence (Liu, 1991). 

To correctly uncover and recognize the true behavior sequence X (0) of the system 
from the shock-disturbed sequence X, one first has to go over the hurdle ε. If we  
directly established our model and made our predictions using the severely affected 
data X without first cleaning up the disturbance, then our predictions would most 
likely fail. This is because the model would not have described the true state X(0) of 
change of the underlying system. 

The wide spread existence of severely shocked systems often causes quantitative 
predictions to disagree with the outcomes of intuitive qualitative analyses. Hence, 
there is a need to seek an organic equilibrium between quantitative predictions and 
qualitative analyses, by eliminating shock wave disturbances in order to recover 
the true state of the systems’ behavioral data. This way the accuracy of the conse-
quent predictions can be greatly improved, which is one of the most important tasks 
performed by grey systems scientists. To this end, the discussion in this section is 
centered around the overall goal of reaching X (0) from X.
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4.2.2 Axioms of Buffer Operators 

Definition 4.2.2 Assume that X = (x(1), x(2), . . . , x(n)) is a system’s behavior 
data sequence. 

(1) If ∀k = 2, 3, . . . ,  n, x(k) − x(k − 1) >  0, then X is referred to as a monotonic 
increasing sequence; 

(2) If the inequality sign in (1) is inversed, then X is referred to as a monotonic 
decreasing sequence; 

(3) If there are k, k1 ∈ {2, 3, . . . ,  n} such that x(k) − x(k − 1) >  0, x
(
k ,) − 

x
(
k , − 1

)
< 0, then X is referred to as a random vibrating or fluctuating 

sequence. If M = max{x(k)k = 1, 2, . . . ,  n} and m = min{x(k)k = 
1, 2, . . . ,  n},, then M − m is referred to as the amplitude of sequence X. 

Definition 4.2.3 Assume that X is a data sequence of a system’s behavior, D an 
operator to work on X, and after being applied by the operator D, X becomes the 
following sequence: 

XD  = (x(1)d, x(2)d, . . .  ,  x(n)d) 

where D is referred to as a sequence operator and XD the first order sequence of 
operator D (Liu, 1991). If D1, D2, and D3 are all sequence operators, then D1D2 is 
referred to as a second order sequence operator, and 

XD1 D2 = (x(1)d1d2, x(2)d1d2, . . . ,  x(n)d1d2) 

a second order sequence of D1D2. Similarly, D1D2D3 is referred to as a third order 
sequence operator and 

XD1 D2 D3 = (x(1)d1d2d3, x(2)d1d2d3, . . . ,  x(n)d1d2d3) 

a third order sequence of D1D2D3. 

Axiom 4.2.1 (Fixed Point) . Assume that X is a data sequence of a system’s behavior 
and D a sequence operator. Then D satisfies x(n)d = x(n). 

This fixed point axiom means that under the effect of a sequence operator, data 
point x(n) remains unchanged, and this is the last entry of the system’s behavior 
data sequence. Based on the conclusions of relevant qualitative analysis, we can also 
leave several of the last entries of the data unchanged by the operator D, say,  

x( j )d /= x( j) and x(i )d = x(i ) 

for j = 1, 2, . . . ,  k − 1; i = k, k + 1, . . . ,  n.
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Axiom 4.2.2 (In accordance with information). The sequence operator must be 
defined in accordance with information in the data sequence X. That is, each entry 
value x(k), k = 1, 2, . . . ,  n, in the data sequence X of the system’s behavior should 
sufficiently participate in the entire process of application of the operator. 

This axiom requires that any sequence operator be defined by using known infor-
mation of the given sequence. It cannot be produced without referencing available 
raw data (Liu, 1991). 

Axiom 4.2.3 (Expressed normality). Each x(k)d, k = 1, 2, . . . ,  n, is expressed by 
a uniform, elementary analytic representation of x(1), x(2), . . . , x(n) (Liu, 1991). 

This last axiom requires that the procedure of applying sequence operators 
be clear, normalized, and uniform, so that it can be conveniently carried out on 
computers. 

Definition 4.2.4 Any sequence operator satisfying these three axioms is referred to 
as a buffer operator; the first order, second order, third order, …, sequences obtained 
by applying a buffer operator are referred to as the first order, second order, third 
order, …, buffered sequences. 

Definition 4.2.5 For a raw data sequence X and a buffer operator D, when X is 
respectively an increasing, decreasing, or fluctuating sequence: 

(1) If the buffered sequence XD increases, decreases, or fluctuates slower or with 
smaller amplitude, respectively, than the original sequence X, then D is referred 
to as a weakening operator. 

(2) If the buffered operator XD increases, decreases, or fluctuates faster or with 
larger amplitude, respectively, than the original sequence X, then D is referred 
to as a strengthening operator (Liu, 1991). 

4.2.3 Properties of Buffer Operators 

Theorem 4.2.1 Assume that X is a monotonic increasing sequence , then: 

(1) If D is a weakening operator x(k)d ≥ x(k), k = 1, 2, . . . ,  n; 
(2) If D is a strengthening operator x(k)d ≤ x(k), k = 1, 2, . . . ,  n (Liu, 1991). 

Proof Assume that 

r (k) = 
x(n) − x(k) 
n − k + 1 

, k = 1, 2, 3, . . .
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is the average increasing rate from x(k) to x(n) in the sequence X of raw data, and 

r (k)d = 
x(n)d − x(k)d 
n − k + 1 

, k = 1, 2, 3, . . .  

is the average increasing rate from x(k)d to x(n)d in the buffered sequence XD. 
Given the condition that 

x(n)d = x(n) 

It follows that 

r (k) − r (k)d = 
[x(n) − x(k)] − [x(n)d − x(k)d] 

n − k + 1
= 

x(k)d − x(k) 
n − k + 1 

If D is a weakening operator, then, r (k) ≥ r (k)d, that is r (k) − r (k)d ≥ 0. 
Therefore x(k)d − x(k) ≥ 0, that is, x(k)d ≥ x(k) and vice versa. 

If D is a strengthening operator, then r (k) ≤ r (k)d, that is r (k) − r (k)d ≤ 0. 
Therefore x(k)d − x(k) ≤ 0, that is, x(k) ≥ x(k)d and vice versa. 

Theorem 4.2.2 Assume that X is a monotonic decreasing sequence , then: 

(1) If D is a weakening operator ⇔ x(k)d ≤ x(k), k = 1, 2, . . . ,  n; 
(2) If D is a strengthening operator ⇔ x(k)d ≥ x(k), k = 1, 2, . . . ,  n (Liu, 1991). 

Theorem 4.2.3 Assume that X is a fluctuating sequence and XD a buffered sequence, 
then: 

(1) If D is a weakening operator, then max1≤k≤n{x(k)} ≥  
max1≤k≤n{x(k)d} and min1≤k≤n{x(k)} ≤  min1≤k≤n{x(k)d}; 

(2) If D is a strengthening operator, then max1≤k≤n{x(k)} ≤  max1≤k≤n{x(k)d} and 
min1≤k≤n{x(k)} ≥  min1≤k≤n{x(k)d}. 

For detailed proofs and relevant discussions of these theorems, please consult Liu 
and Lin (2006, pp. 64–67). What theorem implies is that each monotonic increasing 
sequence expands under the effect of a weakening operator and shrinks under a 
strengthening operator. What theorem indicates is that each monotonic decreasing 
sequence shrinks under the effect of a weakening operator and expands under a 
strengthening operator.
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4.3 Construction of Practically Useful Buffer Operators 

4.3.1 Weakening Buffer Operators 

Theorem 4.3.1 Given a raw data sequence X = (x(1), x(2), . . . , x(n)), let  X D  = 
(x(1)d, x(2)d, . . .  ,  x(n)d), where 

x(k)d = 1 

n − k + 1
[x(k) + x(k + 1) +  · · ·  +  x(n)], k = 1, 2, . . . ,  n (4.1) 

Then D is always a weakening operator regardless of whether X is a mono-
tonic increasing, decreasing, or vibrating sequence. This operator is referred to as an 
average weakening buffer operator (AWBO) (Liu, 1991). 

The weakening operator D in Theorem 4.3.1 possesses some very good properties 
and has been applied widely in modeling and prediction of systems with interference 
of uncontrollable shock waves. 

Corollary 4.3.1 For the weakening operator D as defined in Theorem 4.3.1, let:  

X D2 = XD  D  = (
x(1)d2 , x(2)d2 , . . . ,  x(n)d2)

x(k)d2 = 1 

n − k + 1
[x(k)d + x(k + 1)d +  · · ·  +  x(n)d]; k = 1, 2, . . . ,  n (4.2) 

Then D2 is always a second-order weakening operator for monotonic increasing, 
monotonic decreasing, and fluctuating sequences. 

Example 4.3.1 Let X = (36.5, 54.3, 80.1, 109.8, 143.2) and D and D2 as defined 
in Theorem 4.3.1 and Corollary 4.3.1 respectively, calculate the buffered sequence 
XD and XD2. 

Solution Here n = 5, from Formula 4.1, we have:  

x(1)d = 
1 

n − k + 1
[x(k) + x(k + 1) +  · · ·  +  x(n)] 

= 1 

5 − 1 + 1
[x(1) + x(2) +  · · ·  +  x(5)] 

= 1 

5 − 1 + 1
[36.5 + 54.3 + 80.1 + 109.8 + 143.2] =  84.78 

x(2)d = 1 

n − k + 1
[x(k) + x(k + 1) +  · · ·  +  x(n)] 

= 1 

5 − 2 + 1 
[x(2) +  · · ·  +  x(5)]
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= 
1 

4 
[54.3 + 80.1 + 109.8 + 143.2] =  96.85 

x(3)d = 1 

5 − 3 + 1
[x(3) + x(4) + x(5)] 

= 
1 

3 
[80.1 + 109.8 + 143.2] =  111.03 

x(4)d = 1 

5 − 4 + 1 
[x(4) + x(5)] =  

1 

2 
[109.8 + 143.2] =  126.5 

x(5)d = 143.2 

Therefore: 

XD  = (84.78, 96.85, 111.03, 126.5, 143.2) 

Similarly, we can obtained the second-order buffered sequence XD2 as follows: 

XD2 = (112.47, 119.4, 126.91, 134.85, 143.2). 

Theorem 4.3.2 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data, 
ω = (ω1, ω2, . . . , ωn) is a weight vector, and ω1 > 0, i = 1, 2, . . . ,  n. Let: 

X D  = (x(1)d, x(2)d, . . .  ,  x(n)d) 

where 

x(k)d = 
ωk x(k) + ωk+1x(k + 1) + · · ·  +  ωn x(n) 

ωk + ωk+1 +  · · ·  +  ωn 
= 1

Σn 
i=k ωi 

nΣ

i=k 

ωi x(i ) ,  (k = 1, 2, . . . ,  n) (4.3) 

Then D is always a weakening operator regardless of whether X is a monotonic 
increasing, decreasing, or vibrating sequence (Dang et al., 2004). This operator D is 
called as a weighted average (or mean) weakening buffer operator (W AW  B  O). 

Corollary 4.3.2 For the weighted average weakening operator D as defined in 
Theorem 4.3.2, let:  

ω = (1, 1, . . . ,  1). 

Then: 

1
Σn 

i=k ωi 

nΣ

i=k 

ωi x(i ) = 
1 

n − k + 1 

nΣ

i=k 

x(i ) 

That is, the average weakening buffer operator (AWBO) is a special case of the 
weighted average weakening buffer operator (W AW  B  O).
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Theorem 4.3.3 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data, 
ω = (ω1, ω2, . . . , ωn) is a weight vector, and ω1 > 0, i = 1, 2, , . . .  ,  n. Let: 

X D  = (x(1)d, x(2)d, . . .  ,  x(n)d) 

where 

x(k)d = [
x(k)ωk · x(k + 1) ωk+1 · · ·  x(n)ωn

] 1 
ωk+ωk+1+···+ωn = 

⎡ 

⎣ 
n⊓

i=k 

x(i )ωi 

⎤ 

⎦ 

1 
n ωi 

, (k = 1, 2, . . . ,  n) (4.4) 

Then D is always a weakening operator, regardless ofwhether X is a monotonic 
increasing, decreasing, or vibrating sequence (Dang et al., 2004). 

This operator D is called as a weighted geometric average weakening buffer 
operator (WG  AW  B  O) 

Example 4.3.2 From 1983 to 1986, the overall business revenue of private enter-
prises in Changge county, located in the Henan Province of The People’s Republic 
of China, was recorded as: 

X = (10155, 12588, 23480, 35388) 

This showed a tendency of rapid growth. The average rate of revenue growth 
for these years was 51.6%, and the average rate of revenue growth from 1984 to 
1986 was 67.7%. The people involved in the economic planning of the county, 
including politicians, scholars, policy makers, and residents, commonly believed 
that the overall revenue of private enterprises in this county would not be able to 
keep up with this record speed of growth in the coming years. If relevant data had 
been used to build models and make predictions, nobody would have accepted the 
resultant conclusions. After numerous rigorous analyses and discussions, all parties 
involved recognized that the reason for such a high growth rate between 1983 and 
1986 was mainly a low baseline. Such a low baseline had been a consequence of 
the fact that, in the past, policies relevant to private enterprises had been neither 
existent, nor encouraged. To weaken the growth rate of the sequence of the raw 
data, it was necessary to artificially add all favorable environmental factors to past 
years’ data, and such environmental factors were created based on the introduction 
of relevant policies for the development of private enterprise in recent years. With 
this goal in mind, we introduced the second-order weakening operator, as defined in 
Theorem 4.3.1, and obtained the following second-order buffered sequence: 

XD2 = (27260, 29547, 32411, 35388). 

As a result, the consequent modeling based on XD2 produced credible predictions 
for the county’s business revenue growth between 1987 and 2000.
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4.3.2 Strengthening Buffer Operators 

Theorem 4.3.4 Assume that X = (x(1), x(2) . . . ,  x(n)) is a sequence of raw data, 
and X D  = (x(1)d, x(2)d, . . .  ,  x(n)d), where D is defined as follows: 

x(k)d = 
x(1) + x(2) +  · · ·  +  x(k − 1) + kx(k) 

2k − 1
; k = 1, 2, . . . ,  n − 1 (4.5) 

If x(n)d = x(n), then D is a strengthening buffer operator regardless of whether 
the raw data sequence X is a monotonic, increasing or decreasing sequence (Liu, 
1991). 

Theorem 4.3.5 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data, 
and Di is a sequence operator defined by: 

x(k)di = 
x(k − 1) + x(k) 

2
; k = 2, 3, . . . ,  n; i = 1, 2 (4.6) 

If x(1)d1 = αx(1), α ∈ [0, 1], x(1)d2 = (1 + α)x(1), α ∈ [0, 1], and x(n)di = 
x(n), i = 1, 2, then D1 is a strengthening buffer operator for monotonic increasing 
sequences, and D2 a weakening buffer operator for monotonic decreasing sequences 
(Liu, 1991). 

Both D1 and D2 are called even strengthening buffer operators (ESBO). 

Theorem 4.3.6 For a given increasing or decreasing sequence X of raw data, the 
operator D is defined as follows: 

x(k)d = 
[x(k) + x(k + 1) +  · · ·  x(n)]/(n − k + 1) 

x(n)
· x(k); k = 1, 2, . . .  n (4.7) 

D is a strengthening buffer operator, and is called average strengthening buffer 
operator (ASBO). 

Theorem 4.3.7 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data, 
ω = (ω1, ω2, . . . , ωn) is a weight vector, and ω1 > 0, i = 1, 2, . . . ,  n. Let X D  = 
(x(1)d, x(2)d, . . .  ,  x(n)d), where D is defined as follows: 

x(k)d =
(
ωk + ωk+1 +  · · ·  +  ωn

)
(x(k))2 

ωk x(k) + ωk+1x(k + 1) + · · ·  +  ωn x(n) 
=

Σn 
i=k ωi (x(k))

2
Σn 

i=k ωi x(i ) 
, (k = 1, 2, . . . ,  n) (4.8) 

D is a strengthening buffer operator regardless of whether the raw data sequence 
X is a monotonic increasing, decreasing, or vibrating sequence (Dang et al., 2005). 
D is called a weighted average strengthening buffer operator (WASBO).
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4.3.3 The General Form of Buffer Operator 

Theorem 4.3.8 Assume that X = (x(1), x(2), . . . , x(n)) is a sequence of raw data, 
ω = (ω1, ω2, . . . , ωn) is a weight vector, and ω1 > 0, i = 1, 2, . . .. Let X D  = 
(x(1)d, x(2)d, . . .  ,  x(n)d), where D is defined as follows: 

x(k)d = x(k) ·
[
x(k)

/
ωk x(k) + ωk+1x(k + 1) +  · · ·  +  ωnx(n) 

ωk + ωk+1 +  · · ·  +  ωn

]α 

= x(k) ·
[

x(k)

/
1

Σn 
i=k ωi 

nΣ

i=k 

ωi x(i )

]α 

(4.9) 

Then: 

(1) When α <  0, D is a weakening operator regardless of whether X is a monotonic 
increasing or decreasing sequence. 

(2) When α >  0, D is a strengthening buffer operator regardless of whether the 
raw data sequence X is a monotonic increasing or decreasing sequence. 

(3) When α = 0, D is an identical operator (Wei et al., 2011). 

D is called the general form of buffer operator (GFBO). 

Corollary 4.3.3 Take α = −1 in Theorem 4.3.6, then Formula (4.8) changes to 
(4.2). That is, the weighted average weakening buffer operator (W AW  B  O)is a 
special case of the general form of buffer operator (GFBO). 

Corollary 4.3.4 Take α = 1 in Theorem 4.3.6, then Formula (4.8) changes to (4.7). 
That is, the weighted average strengthening buffer operator (WASBO) is a special 
case of the general form of buffer operator (GFBO). 

The buffer operator concept has been employed not only in grey systems modeling, 
but also in other kinds of model building. Generally, before building a mathematical 
model based on qualitative analysis and its conclusions, one applies a buffer operator 
on the original data sequence. This is done to soften or eliminate the effects of shock-
disturbances on the behavior sequence of a given system. By doing so, expected 
results are often obtained. 

Example 4.3.3 From 1996 to 1999, the annual gross revenues produced by the 
agricultural, forestry, animal husbandry, and fishery sectors in the area of Nanjing 
were (in 0.1 billion yuan): 

X = (91.9895, 94.2439, 96.9644, 98.9199) 

The growth rate shown  in  X is very slow, as it represents an average of about 
2.4% annually. Such a slow growth rate was not aligned with the fast advances of the
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overall annual economic development of the area. If such a slow growth continued 
in these economic sectors, it would have caused imbalances in the development of 
the overall economic structure of the region and sustained regional economic growth 
would have been adversely affected. In 2000, Nanjing City gradually adjusted the 
economic structure of the countryside to counteract slow economic growth. In order 
to accurately control that economic development tendency in a timely fashion, there 
was a need to produce scientifically reasonable economic forecasts. To achieve this 
goal we had to address available data where slow growth was recorded. This would 
allow the resultant predictions to possess practical value in the realm of economic 
forecast and pro-growth government intervention. By applying the strengthening 
operator in Theorem 2.12 twice on the available data sequence, we obtained the 
following second order buffered data sequence: 

XD2 = (79.5513, 85.5446, 93.1686, 98.9199) 

A GM(1,1) model (for details, see Liu and Lin (2006), or Sect. 4.1 in this book) 
based on this buffered sequence provided: 

dX (1) 

dt  
− 0.0720X (1) = 77.1389 

The time response function was as follows: 

X (1)
Δ

(k + 1) = 1150.7003e0.0720k − 1071.1503. 

Based on this equation, the computational simulation results, effectiveness of the 
data fit, and prediction efficacy are given in Tables 4.1 and 4.2. 

Table 4.1 The effectiveness of the simulation results 

Year Strengthened data 

x (0) (k) 
Simulated data 
x̂ (0) (k) 

Error ε(k) = 
x̂ (0) (k) − x (0) (k) 

Relative 

errorΔk = |ε(k)| 
x (0)(k) 

1997 85.5446 85.9245 0.3799 0.4441 

1998 93.1686 92.3407 −0.8279 0.8886 

1999 98.9199 99.2359 0.316 0.3195 

Table 4.2 The efficacy of the predictions 

Year Actual data x (0) (k) Predictions x̂ (0) (k) Error ε(k) = 
x̂ (0) (k) − x (0) (k) 

Relative 

errorΔk = |ε(k)| 
x (0)(k) (%) 

2000 106.3412 106.6460 0.3048 0.2866 

2001 113.29 114.6094 1.3194 1.1646 

2005 152.8703
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Tables 4.1 and 4.2 show that by employing the buffered data using a strengthening 
operator to establish our model, the simulated results and corresponding predictions 
are quite good. In particular, for 2000 and 2001, predicted values reached an accuracy 
rate of over 98% compared to the actual data for those years. 

4.4 Average Operator 

Due to various obstacles that are difficult to overcome, available data sequences 
may or may not contain missing entries. Nevertheless, even if data sequences are 
complete without any missing entries, systems’ behaviors can change suddenly at 
any point in time, and corresponding entries in data sequences can become out of 
the ordinary. This can create great difficulties for the researcher. For example, if 
abnormal entries are removed, blank entries are created. Hence, how to effectively 
fill blanks in data sequences naturally becomes one of the first questions one has to 
address when processing available data. Data generation using averages is another 
frequently used method to create new data, fill a vacant entry in the available data 
sequence, and construct new sequences. 

Assume that x = (x(1), x(2), . . .  ,  x(k), x(k + 1), . . .  ,  x(n)) is a sequence of raw 
data. Then, entry x(k) is referred to the preceding value and x(k + 1) the succeeding 
value. If x(n) stands for a piece of , then for any k ≤ n − 1, x(k) will be seen 
as a piece of old information. If the sequence X has a blank entry at location k, 
denoted ∅(k), then the entries x(k − 1) and x(k + 1) will be referred to as ∅(k)’s 
boundary values, with x(k − 1) being the preceding boundary and x(k + 1) the 
succeeding boundary. If a value x(k) at the location of ∅(k)) is generated on the basis 
of x(k − 1) and x(k + 1), then the established value x(k) is referred to as an internal 
point of the interval [x(k − 1), x(k + 1)]. 
Definition 4.4.1 Assume that x(k − 1) and x(k + 1) are two entries in a data sequence 
X. If  x(k − 1) stands for a piece of old information and x(k + 1) a piece of new 
information, the sequence operator D is defined as: 

x(k)d = x∗(k) = αx(k + 1) + (1 − α)x(k − 1), for α ∈ [0, 1] (4.9) 

D is called a non-adjacent neighbor generating operator. The new value x*(k) 
is referred to as generated by the new and old information under the generation 
coefficient (weight) α. When α > 0.5, the generation of x*(k) is seen with more 
weight placed on the new information than the old information. When α < 0.5, the  
generation of x*(k) is seen with more weight placed on the old information than 
the new information. If α = 0.5, then the value x*(k) is seen as generated without 
preference. 

In terms of stable time series, the exponential smoothing method employed in 
smooth prediction, focuses on the generation of predictions with more preference
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given to old information than new information. This is because the smoothing value 

s(1) 
k = αxk + (1 − α)s(1) 

k−1 

stands for a weighted sum of old and new information, with the weight α taking 
value from the range of 0.1–0.3. 

Definition 4.4.2 Assume that sequence X has a blank entry ∅(k)) at location k. This  
blank entry ∅(k) is filled by using the sequence operator D, which is defined as 
follows: 

x(k)d = x∗(k) = 0.5x(k − 1) + 0.5x(k + 1) 

If x(k –  1) and x(k + 1) are the adjacent neighbors of the location k, then D 
will be referred to as mean generation operator by using the non-adjacent neighbor. 
If x(k + 1) stands for a piece of new information, then the non-adjacent neighbor 
mean generation operator is an equal weight generation operator of new and old 
information. This kind of operator is employed when it is difficult to determine the 
degree of influence of new and old information on the missing value x(k). 

Definition 4.4.3 For a given sequence X = (x(1), x(2),  . . .  ,  x(n)), the sequence 
operator D is defined as: 

x(k)d = x∗(k) = 0.5x(k) + 0.5x(k − 1) (4.11) 

In this case, D is referred to as even generation operator by adjacent neighbor. 
The sequence worked by even generation operator by adjacent neighbor is referred 

to as a sequence of even generated by adjacent neighbor. In grey systems modeling, 
the sequence of even generated by adjacent neighbor is often employed. It provides 
a method of constructing new sequences based on available time series data. 

For the sequence X of length n, as given above, if Z stands for the sequence of even 
generated by adjacent neighbor, then the length of Z = (z(2), z(3),  . . . ,  z(n)) is n − 
2, where z(1) cannot be generated based on what is given in X. 

4.5 The Quasi-Smooth Sequence and Stepwise Ratio 
Operator 

Definition 4.5.1 Assume that, X = (x(1), x(2), . . . , x(n)), x(k) ≥ 0, k = 
1, 2, . . . ,  n, then the following is referred to as the smoothness ratio of the sequence 
X (Deng, 1985):
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ρ(k) = 
x(k)

Σk−1 
i=1 x(i )

; k = 2, 3, . . . ,  n (4.12) 

The concept of smoothness ratio reflects the smoothness of a sequence from a 
special angle. In particular, it uses the ratio ρ(k) of the kth data value x(k) over the 
sum

Σk−1 
i=1 x(i ) of the previous values to check whether or not the changes in the data 

points of X are stable. The more stable the changes of the data points in sequence X 
are, the smaller the smoothness ratioρ(k). 

Definition 4.5.2 If a sequence X = (x(1), x(2), . . .  ,  x(n)), x(k) ≥ 0, k = 
1, 2, . . . ,  n,satisfies the following, then X is referred to as a quasi-smooth sequence: 

1. ρ(k+1) 
ρ(k) < 1; k = 2, 3, . . . ,  n − 1; 

2. ρ(k) ∈ [0, ε], k = 3, 4, . . . ,  n; and; 
3. ε <  0.5. 

Quasi-smooth conditions are very important criteria, which are employed to check 
whether a sequence can be used to build a grey model. 

If the first entry x(1) or the last entry x(n) of a sequence are blank, that is, x(1) 
= ∅(1) or x(n) = ∅(n), we cannot fill these missing entries by using the method of 
adjacent neighbor mean generation operator. In this case, the operator of stepwise 
ratio is often employed. 

Definition 4.5.3 Assume that a sequence X = (x(1), x(2),  . . .  ,  x(n))1 x(k) ≥ 
0, k = 1, 2, . . . ,  n, then the following is referred to as the operator of stepwise ratios 
of X (Deng, 1985): 

x(k)d = σ(k) = 
x(k) 

x(k − 1)
; k = 2, 3, . . . ,  n (4.13) 

The missing entry x(1) = ∅(1) can be generated by using the operator of stepwise 
ratio of its right-hand side neighbors, and x(n) = ∅(n) its left-hand side neighbors. 
The sequence obtained by filling all its missing entries using the operators of stepwise 
ratio is referred to as stepwise ratio generated. 

Proposition 4.5.1 Assume that a sequence X = (x(1), x(2),  . . .  ,  x(n)), x(k) ≥ 
0, k = 1, 2, . . . ,  n and x(1) = ∅(1) or x(n) = ∅(n) If both x(1) and x(n) are 
generated by operator of stepwise ratio, then: 

x(1) = x(2)/σ (3), x(n) = x(n − 1)σ (n − 1) 

Proposition 4.5.2 Stepwise ratio σ(k + 1) and smoothness ratio as defined in 
Formulas (4.11) and (4.12), respectively, satisfy the relation as follows:
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σ(k + 1) = 
ρ(k + 1) 

ρ(k) 
(1 + ρ(k)); k = 2, 3, . . . ,  n (4.14) 

Proposition 4.5.3 If X = (x(1), x(2), . . .  ,  x(n)) is an increasing sequence, and 
satisfies the following conditions: 

(1) For any k = 2, 3, . . . ,  n, σ  (k) <  2; and 
(2) ρ(k+1) 

ρ(k) < 1. 

then for any ε ∈ [0, 1] and k = 2, 3, . . . ,  n, when ρ(k) ∈ [0, ε], we have 
σ(k + 1) ∈ [1, 1 + ε]. 

4.6 Accumulating and Inverse Accumulating Operators 

Accumulating operator is a method employed to mine the law implied in a grey data 
sequence. It plays an extremely important role in grey system modelling. Through the 
accumulating operator method, one can potentially uncover a development tendency 
existing in the process of accumulated grey quantities. This allows the characteristics 
and laws of integration hidden in chaotic original data to be sufficiently revealed. For 
instance, when looking at the financial outflows of a family, if we do our computations 
on a daily basis, we may not see obvious patterns. However, if our calculations are 
done on a monthly basis, some patterns of spending, which are somehow related to 
the monthly income of the family, will likely emerge. 

The inverse accumulating operator is often employed to acquire additional insights 
from a small amount of available information. It plays the role of recovery from the 
acts of the accumulating operator and is its inverse operation. In particular, 

Definition 4.6.1 For an original sequence x (0) = (
x (0) (1), x (0) (2), . . . ,  x (0) (n)

)
, D 

is a sequence operator defined as follows: 

x (0) D = (
x (0) (1)d, x (0) (2)d, . . . ,  x (0) (n)d

)
, where 

x (0) (k)d = 
kΣ

i=1 

x (0) (i); k = 1, 2, · · ·  , n (4.15) 

Here, D is called a once accumulating generation operator of X (0), denoted as 1-AGO. 
And X (0) D, the sequence worked by accumulating operator D on X (0), is denoted as 
X (1) for parsimony: 

x (0) D = X (1) = (
x (0) (1)d, x (0) (2)d, . . . ,  x (0) (n)d

)

If the accumulating operator D is applied r times on X (0), we obtain:
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X (0) Dr = X (r) = (
x (r) (1), x (r ) (2), . . . ,  x (r ) (n)

)

where 

x (r ) (k) = 
kΣ

i=1 

x (r−1) (i ); k = 1, 2, . . .  n (4.16) 

Dr is denoted as r-AGO (Deng, 1985). Corresponding to the accumulating 
operator, the inverse accumulating operator D is defined below. 

Definition 4.6.2 For an original sequence x (0) = (
x (0) (1), x (0) (2),  . . . ,  x (0) (n)

)
, D 

is a sequence operator defined as follows: 

X (0) D = (
x (0) (1)d, x (0) (2)d, . . . ,  x (0) (n)d

)
, where 

x (0) (k)d = x (0) (k) − x (0) (k − 1); k = 2, . . . ,  n (4.17) 

D is called an inverse accumulating generation operator of X (0), denoted as 1-
IAGO. In X (0) D, the sequence works by inverse accumulating operator D on X (0), 
and is denoted as α(1) X (0). 

If the inverse accumulating operator D is applied r times on X (0), we write 
conventionally: 

X (0) Dr = α(r ) X (0) = (
α(r) x (0) (1), α(r) x (0) (2), . . . , α(r) x (0) (n)

)

where α(r)x (0) (k) = α(r−1)x (0) (k) − α(r−1)x (0) (k − 1); k = 1, 2, . . . ,  n (Deng, 
1985). 

Proposition 4.6.1 For an original sequence X (0) = (
x (0) (1), x (0) (2), . . . , x (0) (n)

)
, 

if both X (r) and α(r ) are defined according to Definitions 4.6.1 and 4.6.2, then: 

α(r) X (r) = X (0) 

Example 3.6.1 If X = (5.3, 7.6, 10.4, 13.8, 18.1), calculate the 1-AGO X (1), 2-AGO  
X (2) and 1-IAGO α(1) X (0). 

Solution The results are shown in Table 4.3. 

Table 4.3 The 1-AGO, 2-AGO and 1-IAGO of X (0) 

X (0) 5.3 7.6 10.4 13.8 18.1 

X (1) 5.3 12.9 23.3 37.1 55.2 

X (2) 5.3 18.2 41.5 78.6 133.8 

α(1) X (0) 5.3 2.3 2.8 3.4 4.3



72 4 Sequence Operators and Grey Data Mining

4.7 Exponentiality of Accumulating Sequence 

After applying the accumulating operator a few times, the general non-negative 
quasi-smooth sequence will show the pattern of exponential growth with decreased 
randomness. The smoother the original sequence is, the more obvious an exponential 
growth pattern in the first order accumulation sequence will appear. 

Example 4.7.1 The sales quantity of cars from 2010 to 2015 in a city located in 
southeast of China is as follows: 

X (0) = {
x (0) (k)

}6 
1 = (50810, 46110, 51177, 93775, 110574, 110524) 

The 1-AGO sequence of X (0) is: 

X (1) = {
x (1) (k)

}6 
1 = (50810, 96920, 148097, 241872, 352446, 462970) 

The Figures of X (0) and X (1) are shown in Figs. 4.3 and 4.4, respectively. 
For the curve shown in Fig. 4.3, it is difficult to find a simple curve as the approx-

imation of X (0). However, the curve shown in Fig. 4.4 is very close to an exponential 
growth curve. X (1) can be fitted with an exponential curve.

Fig. 4.3 The curve of X(0) 

0 

Fig. 4.4 The curve of X(1) 

0 
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Definition 4.7.1 Assume that X (t) = ceat + b,c, a /= 0 is a continuous exponential 
function, then: 

(1) X (t) is referred to as homogeneous exponential function, if b = 0; 
(2) X (t) is referred to as non-homogeneous exponential function, if b /= 0. 

Definition 4.7.2 If a sequence X (t) = ceat + bαc, a /= 0 satisfies: 

(1) x(k) = ceak, c, a /= 0, for k = 1, 2, . . . ,  n, then X is referred to as a 
homogeneous exponential sequence; and 

(2) x(k) = ceak + b, c, a, b /= 0, for k = 1, 2, . . . ,  n, then X is referred to as a 
non-homogeneous sequence. 

Theorem 4.7.1 A sequence X = (x(1), x(2), . . .  ,  x(n)) is a homogeneous expo-
nential sequence if, and only if, for k = 1, 2, . . . ,  n, σ  (k) is a constant. 

Proof 

(1) Assume that ∀ k = 1, 2, …, n, x(k) = ceak , c, a /= 0,then: 

σ(k) = 
x(k) 

x(k − 1) 
= 

ceak 

cea(k−1) = ea = const 

(2) Assume that ∀ k = 1, 2, …, n, σ(k) = const = ea , then: 

x(k) = ea x(k − 1) = e2a x(k − 2) =  · · ·  =  x(1)ea(k−1) 

Definition 4.7.3 For the given sequence X = (x(1), x(2), …, x(n)), 

(1) if ∀ k, σ (k)∈(0, 1), then X is referred to as satisfying the law of negative grey 
exponent; 

(2) if ∀ k, σ (k)∈(1, b), for some b > 1, then X is referred to as satisfying the law of 
positive grey exponent; 

(3) if ∀ k, σ (k)∈[a, b], b − a = δ, then X is referred to as satisfying the law of grey 
exponent with the absolute degree of greyness δ; and 

(4) if δ < 0.5, then X is referred to as satisfying the law of quasi-exponent. 

Theorem 4.7.2 Assume that X (0) is a non-negative quasi-smooth sequence . Then, 
the sequence X (1), generated by applying accumulating operator once on X (0), satisfies 
the law of quasi-exponent. 

Proof According to the definition of quasi-smooth sequence and. 

σ (1) (k) = 
x (1) (k) 

x (1)(k − 1) 
= 

x (0) (k) + x (1) (k − 1) 
x (1)(k − 1) 

= 1 + ρ(k)
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We have 

∀k, ρ(k) <  0.5 

Therefore 

σ (1) (k) ∈ [1, 1.5), δ < 0.5 

Thus, X (1) is a sequence that satisfies the law of quasi-exponent. 
Theorem 4.7.2 is the theoretical foundation of grey systems modeling. In fact, 

because economic, ecological and agricultural systems (among others) can be seen 
as energy systems, and given that the accumulation and release of energy generally 
satisfy an exponential law, this explains why exponential modeling of grey systems 
theory has found an extremely wide range of applications. 

Theorem 4.7.3 Assume that X (0) is a non-negative sequence. If X (r) satisfies a law 
of exponent, and the stepwise ratio of X (r) is given by σ (r)(k) = σ , then according 
to Deng (1985): 

(1) σ (r+1) (k) = 1−σ k 
1−σ k−1 ; 

(2) When σ ∈ (0, 1), lim 
k→∞ 

σ (r+1) (k) = 1; and for each k, σ (r+1) (k) ∈ (1, 1 + σ ]; 
(3) When σ >  1, lim 

k→∞ 
σ (r+1) (k) = σ ; and for each k, σ (r+1) (k) ∈ (σ, 1 + σ ]. 

Proof 

(1) Assume that X (r) satisfies a law of exponent, and ∀ k, σ (r) (k) = x (r ) (k) 
x (r )(k−1) = σ , 

then ∀ k, 

x (r ) (k) = σ x (r) (k − 1) = σ 2 x (r) (k − 2) = ·  ·  ·  =  σ (k−1) x (r ) (1) 

X (r ) = (x (r ) (1), σ x (r ) (1), σ 2 x (r) (1), . . . , σ  (n−1) x (r ) (1)) 

X (r+1) = (x (r) (1), (1 + σ)x (r ) (1), 
(1 + σ + σ 2 )x (r) (1), . . . , (1 + σ + · · · +  σ (n−1) )x (r ) (1)) 

Therefore 

σ (r+1) (k) = 
x (r+1) (k) 

x (r+1)(k − 1) 
= 

(1 + σ + · · · +  σ k−1)x (r ) (1) 
(1 + σ + · · · +  σ k−2)x (r )(1) 

= 
1−σ k 
1−σ 

1−σ k−1 

1−σ 

= 
1 − σ k 

1 − σ k−1 

(2) When σ ∈ (0, 1), σ (r+1) (k) will decrease as k increases.
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k = 2 

σ (r+1) (2) = 
x (r+1) (2) 
x (r+1)(1) 

= 1 + σ 

k → ∞  

σ (r+1) (k) = 
1 − σ k 

1 − σ k−1 
→ 1 

Therefore ∀ k, 

σ (r+1) (k) ∈ [1, 1 + σ ] 

(3) When σ >  1, σ (r+1) (k) will decrease as k increases. 

k = 2 

σ (r+1) (2) = 1 + σ 

k → ∞  

σ (r+1) (k) = 
1 − σ k 

1 − σ k−1 
→ σ 

Therefore ∀ k, 

σ (r+1) (k) ∈ (σ, 1 + σ ] 

The Theorem 4.7.3 says that if the rth accumulating sequence of X (0) satisfies an 
obvious law of exponent, additional application of the accumulating operator will 
destroy the pattern of exponent. In practical applications, if the rth accumulating 
sequence of X (0) satisfies the law of quasi-exponent, we generally stop applying the 
accumulating operator. To this end, Theorem 4.7.2 implies that only one application 
of the accumulating operator is needed for a non-negative quasi-smooth sequence 
before establishing an exponential model.
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Chapter 5 
Grey Relational Analysis Models 

5.1 Introduction 

Any given system, such as a social, economic, agricultural, ecological, and educa-
tional system, will encompass different kinds of factors. It is the result of the mutual 
interactions of these factors that determines the development tendency and behavior 
of the system. It is often the case that, among all the factors, investigators will need 
to know which ones are primary and which ones are secondary. Primary factors have 
dominant effects on the development of systems. Such factors drive the develop-
ment of systems positively and must be strengthened. Conversely, secondary factors 
exert less influence on the development of systems. They tend to pose obstacles for 
the development of systems and, therefore, must be weakened. For instance, there 
are generally many influencing factors on the overall performance of an economic 
system. In order to realize the production of additional output with less input, 
systems analysis must be conducted prudently and a key part of this analysis is 
the identification of primary and secondary factors. 

Regression analysis, variance analysis, and main component analysis are the 
most commonly employed methods for conducting systems analysis. However, these 
methods suffer from the following weaknesses: 

(1) Large samples are needed in order to produce reliable conclusions. 
(2) Available data need to satisfy some typical types of probability distribution; 

linear relationships between factors and system behaviors are assumed, while 
no interactions can be found between factors. Generally, these requirements are 
difficult to satisfy. 

(3) The amount of computation is large and generally done by using computers. 
(4) At times quantitative conclusions do not resonate with qualitative analysis 

outcomes so that the laws governing system development are distorted or 
misunderstood. 

In fact, when available data are small it is extremely difficult to apply such tradi-
tional methods of statistics to analyze such data. This is because small data do
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not satisfy the modelling conditions of traditional methods; they contain relatively 
large amounts of grey information and do not follow any conventional probability 
distribution. 

The Grey Relational Analysis (GRA) model is a new method to analyze systems 
where statistical methods do not seem appropriate. It can be applied to large or small 
samples and does not have conventional distribution requirements. Additionally, the 
amount of computation involved is small and can be carried out conveniently, without 
issues of disagreement between quantitative and qualitative conclusions. 

The basic idea of grey relational analysis is to use the degree of similarity of 
the geometric curves of available data sequences to determine whether or not their 
connections are close. The more similar the curves, the closer the relational between 
sequences, and vice versa. 

A number of scholars have conducted meaningful research focused on the 
construction and properties of GRA models, and such researchers have achieved 
valuable results. For example, Zhang et al. (1996) has analyzed the predominant 
point trend of Deng’s (1985) GRA model. They has introduced grey relation entropy 
to improve the traditional model, and has proposed a new method to calculate degree 
of grey relational. Xiao and Colleagues (2006) have constructed a weighted degree 
of grey relational through the weighted compound of relational coefficient of each 
point. Zhao et al. (1998a) have introduced Euclid nearness into grey relational anal-
ysis, and have established the Euclid relational degree model based on the measure-
ment of nearness of factor points through calculating nearness. Furthermore, Zhao 
et al. (1998b) have defined a GRA model according to upper and lower boundaries of 
distances between grey factor points. The authors have also demonstrated that their 
GRA model as well as Deng’s (1985) GRA model through weighted relational anal-
ysis and the Euclid relational degree model are three special types of GRA model. Shi 
(1995) has proposed extreme difference relation according to the difference between 
distance of maximum value and distance of sequences, complementing Deng’s (1985) 
relational coefficient. Zhang et al. (2007) have integrated the method of discrimina-
tion coefficient correction, the entropy weight method and the projection method to 
advance Deng’s GRA model. Zhao et al. (2007) has introduced variant coefficient 
to relational analysis, and improved Deng’s GRA model through weighted values 
of variant coefficient and relational coefficient. Further, Zhou et al. (2005) defined 
relational coefficient with the application of generalized distance in fuzzy math to 
measure the difference between reference sequence and compared sequence. Peng 
(2008) has extended Deng’s GRA model to second-order trend relational analysis 
model through second-order difference. Finally, Wang (1989) has proposed the B-
type relational degree model, Tang (1995) has developed the T-type relational degree 
model, and Dang and Liu (2004) has proposed the gradient relational degree model 
as well as its improved version. Among these models, the GRA model proposed by 
Professor Deng (1985) is the most influential one. 

Thus, research based on early GRA models relies on relational coefficients of 
particular points to the absolute degree, relative degree, and synthetic degree of the 
original GRA model, which in turn is based on integral or overall perspectives. Such 
research also includes GRA models that measure similarity based on nearness to the
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models, which consider similarity and nearness, respectively. Additionally, research 
objects extend from the analysis of relationship among curves to those of relationships 
among curved surfaces, analysis of relationships in three-dimensional space and even 
the analysis of relationships among super surfaces in n-dimensional space. However, 
the study of high-dimensional models is still in its infancy. Indeed, many practical 
and scientific problems are yet to receive research attention and there is a need to 
focus on analysis methods based on panel data, matrix data, matrix sequence data and 
high-dimensional data. The absolute degree of GRA model, which extends definite 
integral models to multiple integral ones, can be used for relational analysis of high-
dimensional data. However, the testing and specific quantitative standards of GRA 
models require additional research (Liu et al., 2013, 2016; Liu,  2021) 

5.2 Grey Relational Factors and Set of Grey Relational 
Operators 

When analyzing a system, one must choose the mapping variable to reflect the char-
acteristics of such a system, and determine the factors that influence the behavior of 
the system. If a quantitative analysis is considered, one needs to process the chosen 
mapping variable and the effective factors using sequence operators so that the avail-
able data are converted to their relevant non-dimensional values of roughly equal 
magnitudes. 

Definition 5.2.1 Assume that Xi is a system factor and its observation value at the 
ordinal position k is xi (k), k = 1, 2, . . . ,  n, then Xi = (xi (1), xi (2), . . . ,  xi (n)) is 
referred to as the behavioral sequence of factor Xi . 

If k stands for the time order, then xi (k) is referred to as the observational value 
of factor Xi at time moment k, and Xi = (xi (1), xi (2),  . . . ,  xi (n)) is the behavioral 
time sequence (or series) of Xi . 

If k stands for an index ordinal number and xi (k) the observational value of the kth 
index of factor Xi , then Xi = (xi (1), xi (2),  . . . ,  xi (n)) is referred to as the behavioral 
index sequence of factor Xi . 

If k stands for the ordinal number of the observed object and xi (k) is the observed 
value of the kth object of factor Xi , then Xi = (xi (1), xi (2), . . . , xi (n)) is referred 
to as the horizontal sequence of factor Xi ’s behavior. 

For example, if Xi represents an economic factor, k time, and xi (k) the observed 
value of factor Xi at time moment k, then Xi = (xi (1), xi (2), . . . ,  xi (n)) is a time 
series of economic behaviors. If k is the ordinal number of an index, then Xi = 
(xi (1), xi (2), . . . , xi (n)) is the index sequence of an economic behavior. If k repre-
sents the ordinal number of different economic regions or departments, then Xi 

= (xi (1), xi (2), . . . ,  xi (n)) is a horizontal sequence of an economic behavior. No 
matter what kinds of sequence data are available, they can be employed in relational 
analysis.
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Definition 5.2.2 Let Xi = (xi (1), xi (2), . . . , xi (n)) be the behavioral 
sequence of factor Xi , and D1 a sequence operator such that Xi D1 = 
(xi (1)d1, xi (2)d1, . . . ,  xi (n)d1), where: 

xi (k)d1 = xi (k)/xi (1), xi (1) /= 0, k = 1, 2, . . . ,  n (5.1) 

Then D1 is referred to as an initialising operator and Xi D1 is its image, called 
initial image of Xi (Deng, 1985). 

Example 5.2.1 Let X = (3.2, 3.7, 4.5, 4.9, 5.6), and calculate the initial image of 
X . 

Solution: From Formula  5.1, we have:  

x(1)d1 = x(1)/x(1) = 1, x(2)d1 = x(2)/x(1) = 3.7−3.2 = 1.15625. 

Similarly, 

x(3)d1 = 1.40625, x(4)d1 = 1.53125, x(5)d1 = 1.75. 

Therefore: 

X D1 = (x(1)d1, x(2)d1, x(3)d1, x(4)d1, x(5)d1) = (1, 1.15625, 1.40625, 1.53125, 1.75). 

Definition 5.2.3 Let Xi = (xi (1), xi (2),  . . . ,  xi (n)) be the behavioral sequence of 
factor Xi . Sequence operator D2 satisfies Xi D2 = (xi (1)d2, xi (2)d2, . . . ,  xi (n)d2), 
and: 

xi (k)d2 = 
xi (k) 

Xi 
, Xi = 

1 

n 

nΣ

k=1 

xi (k), k = 1, 2, . . . ,  n (5.2) 

Here, D2 is referred to as an averaging operator and Xi D2 is its image, called the 
average image of Xi (Deng, 1985). 

Example 5.2.2 Let X be the same as Example 5.2.1 and calculate the average image 
of X . 

Solution: From Formula  5.2, we have:  

X = 
1 

5 

5Σ

k=1 

x(k) = 4.38, x(1)d2 = x(1)/X = 0.73, x(2)d2 = x(2)/X = 0.84. 

Similarly: 

x(3)d2 = 1.03, x(4)d2 = 1.12, x(5)d2 = 1.28.
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Therefore: 

X D2 = (x(1)d2, x(2)d2, x(3)d2, x(4)d2, x(5)d2) = (0.73, 0.84, 1.03, 1.12, 1.28). 

Definition 5.2.4 Let Xi = (xi (1), xi (2),  . . . ,  xi (n)) be the behavioral sequence of 
factor Xi . Sequence operator D3 satisfies Xi D3 = (xi (1)d3, xi (2)d3, . . . ,  xi (n)d3), 
and: 

xi (k)d3 = 
xi (k) − min 

k 
xi (k) 

max 
k 

xi (k) − min 
k 

xi (k)
; k = 1, 2, . . . ,  n (5.3) 

D3 is referred to as an interval operator and Xi D3 is its image, called the interval 
image of Xi (Deng, 1985). 

Example 5.2.3 Let X be the same as Example 5.2.1, and calculate the interval image 
of X . 

Solution: min 
k 

x(k) = 3.2, max 
k 

x(k) = 5.6. From Formula  5.3, we have:  

x(1)d3 = 0, x(2)d3 = 0.208. 
x(3)d3 = 0.542, x(4)d3 = 0.708, x(5)d3 = 1. 

Therefore: 

X D3 = (x(1)d3, x(2)d3, x(3)d3, x(4)d3, x(5)d3) = (0, 0.208, 0.542, 0.708, 1). 

As usual, D1, D2, D3 should not be mixed or overlapped. Only one of them can 
be selected according to a particular situation. 

Definition 5.2.5 Let Xi = (xi (1), xi (2), . . . , xi (n)) be the behavioral sequence 
of factor Xi . The behavioral sequence of factor Xi satisfies xi (k) ∈ [0, 1], i = 
1, 2, . . . ,  n, sequence operator D4 satisfies Xi D4 = (xi (1)d4, xi (2)d4, . . . ,  xi (n)d4), 
and: 

xi (k)d4 = 1 − xi (k), k = 1, 2, . . . ,  n (5.4) 

Then D4 is referred to as a reversing operator and Xi D4is its image, called the 
reverse image of Xi (Deng, 1985). 

Definition 5.2.6 Let Xi = (xi (1), xi (2),  . . . ,  xi (n)) be the behavioral sequence of 
factor Xi . Sequence operator D5 satisfies Xi D5 = (xi (1)d5, xi (2)d5, . . . ,  xi (n)d5), 
and: 

xi (k)d5 = 1/xi (k), xi (k) /= 0, k = 1, 2, . . . ,  n (5.5)
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Here, D5is referred to as a reciprocating operator with Xi D5 as its image, called the 
reciprocal image of Xi (Deng, 1985). 

Let X0 be the sequence of a system’s behavioral characteristics, which is 
increasing, and Xi the behavioral sequence of a relevant factor. If Xi is also an 
increasing sequence, then both Xi and X0 have a positive or direct relational rela-
tionship. If Xi is a decreasing sequence, then both Xi and X0 have a negative or 
inverse relational relationship. 

The negative relationship will be transformed to a positive relationship if affected 
by reversing operator D4 or reciprocating operator D5. Here, D4 and D5 should not 
be mixed or overlapped either. 

Definition 5.2.7 The set D = {Di |i = 1, 2, 3, 4, 5} is referred to as the set of grey 
relational operators. 

Definition 5.2.8 If X stands for the set of all system factors and D the set of grey 
relational operators, then (X, D) is referred to as the space of grey relational factors 
of a system. 

5.3 Grey Relational Axioms and Deng’s Grey Relational 
Analysis Model 

Given the sequence X = (x(1), x(2), . . . , x(n)), we can image the corresponding 
zigzagged line of the plane X = {x(k) + (t − k)(x(k + 1) − x(k))|k = 1, 2, . . . ,  n − 
1; t ∈ [k, k + 1]}. Without causing confusion, the same symbol is used for both the 
sequence and its zigzagged line. For parsimony, we will not distinguish between the 
two in our discussions. 

Definition 5.3.1 The given sequence X = (x(1), x(2), . . .  ,  x(n)), α = x(s)−x(k) 
s−k , 

s > k, k = 1, 2, . . . ,  n − 1, is referred to as the slope of X on interval [k, s], and 
α = 1 

n−1 (x(n) − x(1)) the average slope of X. 

Theorem 5.3.1 Assume that Xi and X j are non-negative increasing sequences such 
that X j = Xi + c, where c is a nonzero constant. Let D1 be an initialing operator, 
Yi = Xi D1 and Y j = X j D1. If  αi and α j are respectively the average slopes of Xi 

and X j , and βi and β j the average slopes of Yi and Y j , then, the following must be 
true: αi = α j ; when c < 0, βi < β  j ; and when c > 0, βi > β  j . 

What is meant here is that when the absolute amount of increase of two increasing 
sequences are the same, the sequence with the smallest initial value will increase 
faster than the other. To maintain the same relative rate of increase, the absolute 
amount of increase of the sequence with the greatest initial value must be greater 
than that of the sequence with the smallest initial value.
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Definition 5.3.2 Let X0 = (x0(1), x0(2), . . . , x0(n)) be a data sequence of a 
system’s behavioral characteristic and the following are relevant factor sequences: 

X1 = (x1(1), x1(2), . . . , x1(n)) 
.......................................... 
Xi = (xi (1), xi (2), . . . , xi (n)) 
.......................................... 
Xm = (xm(1), xm(2), . . . , xm(n)) 

Given real numbers γ (x0(k), xi (k)), i = 1, 2, ..., m, and k = 1, 2, ..., n, if the  
following satisfies conditions of normality (1) and closeness (2) below: 

γ (X0, Xi ) = 
1 

n 

nΣ

k=1 

γ (x0(k), xi (k)). 

(1) Normality: 0 < γ  (X0, Xi ) ≤ 1,γ (X0, Xi ) = 1 ⇔ X0 = Xi ; and 
(2) Closeness: the smaller |x0(k) − xi (k)|, the greater γ (x0(k), xi (k)). 

In this case, γ (X0, Xi ) is referred to as the Deng’s grey relational degree between 
Xi and X0, γ (x0(k), xi (k)) as the Deng’s grey relational coefficient of Xi and X0 at 
point k (Deng, 1985). 

Theorem 5.3.2 Given a system’s behavioral sequences X0 = 
(x0(1), x0(2), . . . ,  x0(n)) and Xi = (xi (1), xi (2), . . . , xi (n)), i = 1, 2, ..., m, 
for ξ ∈ (0, 1), it is possible to define: 

γ (x0(k), xi (k)) = 
min 

i 
min 

k 
|x0(k) − xi (k)| +  ξ max 

i 
max 

k 
|x0(k) − xi (k)| 

|x0(k) − xi (k)| +  ξ max 
i 

max 
k 

|x0(k) − xi (k)| (5.6) 

and: 

γ (X0, Xi ) = 
1 

n 

nΣ

k=1 

γ (x0(k), xi (k)) (5.7) 

In this case, γ (X0, Xi ) is the Deng’s grey relational degree between X0 and Xi , 
where ξ is known as the distinguishing coefficient (Deng, 1985). 

The Deng’s grey relational degree of γ (X0, Xi ) is commonly written as γ0i , and 
the Deng’s grey relational coefficient of γ (x0(k), xi (k)) as γ0i (k). 

Based on Theorem 5.3.1, the computation steps of the Deng’s grey relational 
degree between X0 and Xi can be accomplished as explained below. 

Step 1: Calculate the initial image (or average image) of X0 and Xi , i = 1, 2, ..., m, 
where:
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X ,
i = Xi /xi (1) =

(
x ,

i (1), x
,
i (2), . . . , x

,
i (n)

)
i = 0, 1, 2, . . .  ,  m. 

Step 2: Compute the difference sequences of X
,
0 and X

,
i , i = 1, 2, ..., m, and write 

as:

Δi (k) = x ,
0(k) − x ,

j (k)|, Δi =
(
Δ j (1),Δi (2), . . . , Δi (n)

)
i = 1, 2, . . . ,  m. 

Step 3: Find the maximum and minimum differences, and denote as: 

M = max 
i 

max 
k

Δi (k), m = min 
i 

min 
k

Δi (k). 

Step 4: Calculate the Deng’s grey relational coefficients: 

γ0i (k) = 
m + ξ M

Δi (k) + ξ M 
, ξ  ∈ (0, 1) k = 1, 2, . . . ,  n; i = 1, 2, . . . ,  m. 

Step 5: Compute the Deng’s grey relational degree: 

γ0i = 
1 

n 

nΣ

k=1 

γ0i (k); i = 1, 2, . . . ,  m. 

Example 5.3.1 Let 

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5)) 
= (12011.65, 7568.15, 3969.87, 2630.42, 2933.20) 

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5)) 
= (127467, 73378, 47472, 28728, 24063) 

X2 = (x2(1), x2(2), x2(3), x2(4), x2(5)) 
= (281.02, 197.78, 97.88, 55.50, 62.02) 

X3 = (x3(1), x3(2), x3(3), x3(4), x3(5)) 
= (2.50, 2.65, 2.50, 2.31, 2.05) 

X4 = (x4(1), x4(2), x4(3), x4(4), x4(5)) 
= (391, 423, 262, 497, 104) 

where X0 is the sequence of the regional GDP of the Suzhou, Wuxi, Changzhou, 
Zhenjiang and Yangzhou in Jiangsu Province in 2012, unit: 100 million yuan. And 

X1 is the sequence of the number of people engaged in R&D activities of the 
above five cities, unit: number of people. 

X2 is the sequence of the R&D expenditure of the above five cities, unit: 100 
million yuan.
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X3 is the sequence of the R&D expenditure/regional GDP of the above five cities, 
unit: %. 

X4 is the sequence of the number of invention patents authorized of the above five 
cities, unit: number of items. 

Data sources: China Statistical Yearbook 2013. 
Calculate the Deng’s grey relational degree between Xi , i  = 1, 2, 3, 4 and X0 

(Liu, 2021). 

Solution: Take  X0 as the system’s behavioral characteristics sequence. 
Step 1: Calculate the mean image of Xi , i  = 0, 1, 2, 3, 4 
From X ,

i = Xi /Xi = (x ,
i (1), x ,

i (2), x ,
i (3), x ,

i (4), x ,
i (5)); i = 0, 1, 2, 3, 4, we  

have: 

X
,
0 = X0/X0 = (2.0629, 1.2998, 0.6818, 0.4518, 0.5038) 

X
,
1 = X1/X1 = (2.1166, 1.2185, 0.7883, 0.4770, 0.3996) 

X
,
2 = X2/X2 = (2.0241, 1.4245, 0.7050, 0.3997, 0.4467) 

X
,
3 = X3/X3 = (1.0408, 1.1032, 1.0408, 0.9617, 0.8535) 

X
,
4 = X4/X4 = (1.1658, 1.2612, 0.7812, 1.4818, 0.3101) 

Step 2: Compute the difference sequences. 
From
Δi (k) = ||x ,

0(k) − x ,
i (k)

|| ; i  = 1, 2, 3, 4, it follows that:

Δ1 = (0.0531, 0.0813, 0.1065, 0.0252, 0.1042)
Δ2 = (0.0388, 0.1247, 0.0232, 0.0521, 0.0571)
Δ3 = (1.0221, 0.1966, 0.3590, 0.5099, 0.3497)
Δ4 = (0.8971, 0.0386, 0.0994, 1.0300, 0.1937) 

Step 3: Find the maximum and minimum differences. 

M = max 
i 

max 
k

Δi (k) = 1.0300 

m = min 
i 

min 
k

Δi (k) = 0.0232 

Step 4: Calculate the Deng’s relational coefficients. 
Let ξ = 0.5, it follows that: 

γ0i (k) = 
m + ξ M

Δi (k) + ξ M 
= 0.5382

Δi (k) + 0.5150
; i = 1, 2, 3, 4; k = 1, 2, . . . ,  5 

Therefore: 

γ01(1) = 0.9474, γ01(2) = 0.9026, γ01(3) = 0.8660,
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γ01(4) = 0.9963, γ01(5) = 0.8692 
γ02(1) = 0.9718, γ02(2) = 0.8413, γ02(3) = 1.0000, 
γ02(4) = 0.9490, γ02(5) = 0.9407 
γ03(1) = 0.3501, γ03(2) = 0.7563, γ03(3) = 0.6158, 
γ03(4) = 0.5251, γ03(5) = 0.6224 
γ04(1) = 0.3811, γ04(2) = 0.9722, γ04(3) = 0.8760, 
γ04(4) = 0.3483, γ04(5) = 0.7594 

Step 5: Compute the Deng’s grey relational degrees. 

γ01 = 
1 

5 

5Σ

k=1 

γ01(k) = 0.9163 

γ02 = 
1 

5 

5Σ

k=1 

γ02(k) = 0.9406 

γ03 = 
1 

5 

5Σ

k=1 

γ03(k) = 0.5739 

γ04 = 
1 

5 

5Σ

k=1 

γ04(k) = 0.6674 

According to the calculation results based on the data of five cities in Jiangsu 
Province, both of the R&D expenditure of X2 and the number of people engaged in 
R&D activities of X1 have great impact on the regional GDP of X0. Note that both X2 

and X1 are input factors of R&D, it can be seen that scientific and technological funds 
and personnel investment play an important role in regional economic development. 

5.4 Grey Absolute Relational Degree 

Proposition 5.4.1 Let Xi = (xi (1), xi (2), . . . , xi (n)) be the data sequence of a 
system’s behavior, Xi − xi (1) denote the zigzagged line (xi (1) − xi (1), xi (2) − 
xi (1), . . . ,  xi (n) − xi (1)), and let 

si = 
n{

1 

(Xi − xi (1))dt (5.8) 

Then, when Xi increases, si ≥ 0; when Xi decreases, si ≤ 0; and when Xi 

vibrates, the sign of si varies.
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Fig. 5.1 The zigzagged line of Proposition 5.1 

The results of Proposition 5.4.1 are represented in Fig. 5.1, where (a) shows the 
case where the sequence increases; (b) the situation where Xi decreases; and (c) the 
scenario where Xi vibrates. 

Definition 5.4.1 Let Xi = (xi (1), xi (2), . . . ,  xi (n)) be the data sequence of 
a system’s behavior and D the sequence operator which satisfies Xi D = 
(xi (1)d, xi (2)d, . . . ,  xi (n)d) and xi (k)d = xi (k) − xi (1), k = 1, 2, . . . ,  n. Then 
D is referred to as a zero-starting point operator and Xi D is the image of Xi . Xi D 
is often written as Xi D = X0 

i = (x0 
i (1), x0 

i (2), . . . ,  x0 
i (n)). 

Proposition 5.4.2 Assume that the images of the zero-starting point of two behav-
ioral sequences Xi and X j are respectively X0 

i = (x0 
i (1), x0 

i (2), . . . ,  x0 
i (n)) and 

X0 
j = (x0 

j (1), x0 
j (2), . . . ,  x0 

j (n)). Let: 

si − s j = 
n{

1 

(X0 
i − X0 

j )dt (5.9) 

and 

Si − Sj = 
n{

1

(
Xi − X j

)
dt (5.10) 

Then, when X0 
i is entirely located above X

0 
j , si − s j ≥ 0; when X0 

i is entirely 
underneath X0 

j , si − s j ≤ 0; and when X0 
i and X

0 
j alternate their positions, the sign 

of si − s j is not fixed. 
As shown in Fig. 5.2, when X0 

i is entirely located above X0 
j (Fig. 5.2a), the 

shaded area is positive so that si − s j ≥ 0. When X0 
i and X

0 
j alternate their positions 

(Fig. 5.2b), the sign of si − s j is not fixed. Similarly, We can discuss the sign of Xi 

as si − s j .

Definition 5.4.2 The sum of time intervals between consecutive observation values 
of a sequence Xi is called the length of Xi .It should be noted that two sequences 
with the same length may not have the same number of data. For example:
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Fig. 5.2 A description of the relationship between X0 
i and X

0 
j

X1 = (x1(1), x1(3), x1(6)) 
X2 = (x2(1), x2(3), x2(5), x2(6)) 
X3 = (x3(1), x3(2), x3(3), x3(4), x3(5), x3(6)) 

The lengths of X1, X2, X3 are all 6, but X1 has 3 data, X2 has 4 data, and X3 has 
6 data. 

Definition 5.4.3 Let Xi and X j be two sequences of the same length, and si and s j 

are defined as above. Then, the following is referred to as the grey absolute relational 
degree between Xi and X j , or absolute relational degree for short (Liu, 1991): 

εi j  = 1 + |si | + |s j | 
1 + |si | + |s j | + |si − s j | (5.11) 

As for sequences of different lengths, the concept of absolute relational degree can 
be defined by either shortening the longest sequence or by prolonging the shortest 
sequence using appropriate methods. This procedure will ensure that the sequences 
have the same length. However, by doing so, the ultimate value of the absolute 
relational degree will be affected. 

Proposition 5.4.3 Assume that Xi and X j are two sequences with the same length. 
Let X

,
i = Xi − a,X ,

j = X j − b, where a, b are real numbers. Denote ε0i as the 
grey absolute relational degree between X ,

i and X ,
j , then ε0i = ε0i . In fact, when Xi 

and X j have been transformed, the values of Si , Sj , and Si − Sj are not changed. 
Therefore, the value of absolute relational degree does not change. 

Definition 5.4.4 If the time intervals of any two consecutive observation values of a 
sequence Xi with the same length, then Xi is called an equal- time-interval sequence. 

Lemma 5.4.1 Assume that Xi is an equal-time-interval sequence. If the length 
of time-interval l /= 1, then following can transform Xi into an 1-time-interval 
sequence: 

t : T → T
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t |→ t/ l 

Lemma 5.4.2 Assume that Xi and X j are 1-time-interval sequences of the same 
length, and the following are zero-starting point images of Xi and X j : 

X0 
i = (

x0 
i (1), x

0 
i (2), . . . ,  x0 

i (n)
)

X0 
j = (x0 

j (1), x
0 
j (2), . . . ,  x0 

j (n)) 

Then, according to Liu (1991): 

|si | =
|||||

n−1Σ

k=2 

x0 
i (k) + 

1 

2 
x0 

i (n)

|||||

||s j

|| =
|||||

n−1Σ

k=2 

x0 
j (k) + 

1 

2 
x0 

j (n)

|||||

||si − s j

|| =
|||||

n−1Σ

k=2 

(x0 
i (k) − x0 

j (k)) + 
1 

2 
(x0 

i (n) − x0 
j (n))

|||||. 

Theorem 5.4.1 Assume that Xi and X j are two sequences with the same length, 
same time distances from one moment to another, and equal time moment intervals. 
Then, the grey absolute relational degree can also be computed as follows (Liu, 
1991): 

εi j  = [1 +
|||||

n−1Σ

k=2 

x0 
i (k) + 

1 

2 
x0 

j (n)

||||| +
|||||

n−1Σ

k=2 

x0 
j (k) + 

1 

2 
x0 

j (n)

|||||] 

× [1 +
|||||

n−1Σ

k=2 

x0 
i (k) + 

1 

2 
x0 

i (n)

||||| +
|||||

n−1Σ

k=2 

x0 
j (k) + 

1 

2 
x0 

j (n)

|||||

+
|||||

n−1Σ

k=2 

(x0 
i (k) − x0 

j (k)) + 
1 

2 
(x0 

i (n) − x0 
j (n))

|||||]
−1 

Example 5.4.1 Calculate the absolute relational degree ε01 of sequences X0 and X1. 
Let sequences X0 and X1 be as follows: 

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5), x0(7)) = (10, 9, 15, 14, 14, 16) 
X1 = (x1(1), x1(3), x1(7)) = (46, 70, 98 

Solution 
Step 1: Transform X1 into a sequence with the same corresponding time-intervals 
as X0.
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x1(2) = 
1 

2 
(x1(1) + x1(3)) = 

1 

2 
(46 + 70) = 58 

x1(5) = 
1 

2 
(x1(3) + x1(7)) = 

1 

2 
(70 + 98) = 84 

x1(4) = 
1 

2 
(x1(3) + x1(5)) = 

1 

2 
(70 + 84) = 77 

Thus, we have a new sequence X1 in place of the original X1: 

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(7)) = (46, 58, 70, 77, 84, 98) 

Step 2: Transform X0 and X1 into equal-time-interval sequences: 

x0(6) = 
1 

2 
(x0(5) + x0(7)) = 

1 

2 
(14 + 16) = 15 

x1(6) = 
1 

2 
(x1(5) + x1(7)) = 

1 

2 
(84 + 98) = 91 

We have: 

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5), x0(6), x0(7)) 
= (10, 9, 15, 14, 14, 15, 16) 

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(6), x1(7)) 
= (46, 58, 70, 77, 84, 91, 98) 

where X0 and X1 are 1-time-interval sequences. 
Step 3: Compute the zero-starting point images of sequences X0 and X1. 

X0 
0 =

(
x0 
0 (1), x

0 
0 (2), x

0 
0 (3), x

0 
0 (4), x

0 
0 (5), x

0 
0 (6), x

0 
0 (7)

)

= (0, −1, 5, 4, 4, 5, 6) 
X0 
1 =

(
x0 
1 (1), x

0 
1 (2), x

0 
1 (3), x

0 
1 (4), x

0 
1 (5), x

0 
1 (6), x

0 
1 (7)

)

= (0, 12, 24, 31, 38, 45, 52) 

Step 4: Calculate |S0|, |S1|, |S1 − S0| 

|s0| =
|||||

6Σ

k=2 

x0 
0 (k) + 

1 

2 
x0 
0 (7)

||||| = 20 

|s1| =
|||||

6Σ

k=2 

x0 
1 (k) + 

1 

2 
x0 
1 (7)

||||| = 176 

|s1 − s0| =
|||||

6Σ

k=2

(
x0 
1 (k) − x0 

0 (k)
) + 

1 

2

(
x0 
1 (7) − x0 

0 (7)
)
||||| = 156
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Step 5: Compute the grey absolute relational degree ε01 of sequences X0 and X1. 

ε01 = 1 + |s0| + |s1| 
1 + |s0| + |s1| + |s1 − s0| = 

197 

353 
≈ 0.5581 

Theorem 5.4.2 The grey absolute relational degree εi j  satisfies the following 
properties: 

(1) 0 < εi j  ≤ 1; 
(2) εi j  is only related to the geometric shapes of Xi and X j , and has no relationship 

with the spatial positions of these sequences; 
(3) Any two sequences are not absolutely unrelated. That is, εi j  never equals zero; 
(4) The more Xi and X j are geometrically similar, the greater εi j  is; 
(5) If Xi and X j are parallel or X0 

i fluctuates around X0 
j , with the area of the parts 

of X0 
i located above X0 

j equal to that of the parts with X0 
i located underneath 

X0 
j , then εi j  = 1; 

(6) When one of the observed values of Xi and X j change, εi j  also changes 
accordingly; 

(7) When the lengths of Xi and X j change, εi j  also changes; 
(8) ε j j  = εi i  = 1; and 
(9) εi j  = ε j i  . 

5.5 Grey Relative and Synthetic Relational Degree 

5.5.1 Relative Grey Relational Degree 

Definition 5.5.1 Let Xi and X j be sequences of the same length with non-zero initial 
values, and X

,
i and X

,
j the initial images of Xi and X j , respectively. The grey absolute 

relational degree of X
,
i and X

,
j is referred to as the relative grey relational degree of 

Xi and X j , denoted ri j  (Liu, 1991) This relative relational degree is a quantitative 
representation of the relationship between the rates of change of sequences Xi and 
X j , relative to their initial values. The closer the rates of change of Xi and X j are, 
the greater ri j  is, and vice versa. 

Proposition 5.5.1 Let Xi be a sequence with a non-zero initial value. If X j = cXi . 
If c > 0 is a constant, then ri j  = 1. 

Proof Assume that Xi = (xi (1), xi (2), . . . ,  xi (n)), then: 

X j = (x j (1), x j (2), . . . , x j (n)) = (cxi (1), cxi (2), . . . ,  cxi (n)).
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The initial images of Xi and X j are as follows: 

X
,
i = Xi /xi (1) = ( 

xi (1) 
xi (1) 

, 
xi (2) 
xi (1) 

, . . . ,  
xi (n) 
xi (1) 

) 

X
,
j = X j /x j (1) = ( 

x j (1) 
x j (1) 

, 
x j (2) 
x j (1) 

, . . . ,  
x j (n) 
x j (1) 

) 

= 
cxi (1) 
cxi (1) 

, 
cxi (2) 
cxi (1) 

, . . . ,  
cxi (n) 
cxi (1) 

= ( 
xi (1) 
xi (1) 

, 
xi (2) 
xi (1) 

, . . . ,  
xi (n) 
xi (1) 

). 

Therefore, X
,
j = X ,

i , so  ri j  = 1. 

Proposition 5.5.2 Let Xi and X j be two sequences of the same length with non-
zero initial values. Additionally, the relative grey relational degree of ri j  and the grey 
absolute relational degree of εi j  do not have any connections. When εi j  is relatively 
large, ri j  can be very small; when εi j  is very small, ri j  can also be very large. 

Proposition 5.5.3 Let Xi and X j be two sequences of the same length with non-zero 
initial values. Then, for any non-zero constants a and b, the relative grey relational 
degree r

,
i j  between aXi and bX j is the same as the ri j  of Xi and X j . 

In fact, the initial images of a Xi and b X j are equal to those of Xi and X j , 
respectively. Thus, scalar multiplication does not act in any way under the function 
of initialing operators. Hence, r

,
i j  = ri j . 

Example 5.4.2 Calculate the relative grey relational degreer01 for sequences X0 and 
X1 of Example 5.4.1. 

Solution 
Step 1: Transform X1 and X0 into the same 1-time-interval sequences. 

X0 = (x0(1), x0(2), x0(3), x0(4), x0(5), x0(6), x0(7)) 
= (10, 9, 15, 14, 14, 15, 16) 

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), x1(6), x1(7)) 
= (46, 58, 70, 77, 84, 91, 98) 

Step 2: Calculate the initial images of sequences X0 and X1. 

X
,
0 = (1, 0.9, 1.5, 1.4, 1.4, 1.5, 1.6) 

X
,
1 = (1, 1.26, 1.52, 1.67, 1.83, 1.98, 2.13) 

Step 3: Compute the zero-starting point images of sequences X
,
0 and X

,
1. 

X
,0 
0 = (x

,0 
0 (1), x

,0 
0 (2), x

,0 
0 (3), x

,0 
0 (4), x

,0 
0 (5), x

,0 
0 (6),
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x
,0 
0 (7)) = (0, −0.1, 0.5, 0.4, 0.4, 0.5, 0.6) 

X
,0 
1 = (x

,0 
1 (1), x

,0 
1 (2), x

,0 
1 (3), x

,0 
1 (4), x

,0 
1 (5), x

,0 
1 (6), 

x
,0 
1 (7)) = (0, 0.26, 0.52, 0.67, 0.83, 0.98, 1.13) 

Step 4: Calculate
||s ,

0

||,
||s ,

1

||,
||s ,

1 − s ,
0

||.

|||s
,
0

||| =
|||||

6Σ

k=2 

x
,0 
0 (k) + 

1 

2 
x

,0 
0 (7)

||||| = 2

|||s
,
1

||| =
|||||

6Σ

k=2 

x
,0 
1 (k) + 

1 

2 
x

,0 
1 (7)

||||| = 3.828

|||s
,
1 − s ,

0

||| =
|||||

6Σ

k=2 

(x
,0 
1 (k) − x ,0 

0 (k)) + 
1 

2 
(x

,0 
1 (7) − x ,0 

0 (7))

||||| = 1.925 

Step 5: Calculate the relative grey relational degree of r01. 

r01 = 1 + |s ,
0| + |s ,

1| 
1 + |s ,

0| + |s ,
1| + |s ,

1 − s ,
0| 

= 
6.825 

8.75 
≈ 0.78 

Theorem 5.5.1 The relative grey relational degree of ri j  satisfies the following 
properties: 

(1) 0 < ri j  ≤ 1; 
(2) The value of ri j  relates only the rates of change of the sequences Xi and X j with 

respect to their individual initial values. It does not relate to the magnitudes of 
other entries. In other words, scalar multiplication does not change the value 
of relative grey relational degree; 

(3) The rates of change of any two sequences are somehow related. That is, ri j  is 
never zero; 

(4) The closer the individual rates of change of Xi and X j with respect to their 
initial values, the greater the ri j ; 

(5) If X j = aXi , or when the images of zero initial points of the initial images of 
Xi and X j satisfy that X

,0 
i fluctuates around X

,0 
j , and if the area of the parts 

where X
,0 
i is located above X

,0 
j equals that of the parts where X

,0 
i is located 

underneath X
,0 
j , then ri j  = 1; 

(6) When an entry in Xi or X j is changed, ri j  will change accordingly; 
(7) When the length of Xi or X j is changed , ri j  also changes; 
(8) r j j  = rii  = 1; and 
(9) ri j  = r ji .
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5.5.2 Grey Synthetic Relational Degree 

Definition 5.5.2 Let Xi and X j be sequences of the same length with non-zero initial 
entries, εi j  and ri j  be respectively the absolute and relative relational degrees between 
Xi and X j , and θ ∈ [0, 1]. Then the following is referred to as the grey synthetic 
relational degree between Xi and X j (Liu, 1991): 

ρi j  = θεi j  + (1 − θ)ri j (5.12) 

The concept of grey synthetic relational degree reflects the degree of similarity 
between the zigzagged lines of Xi and X j , and the closeness between the rates of 
change of Xi and X j with respect to their individual initial values. It is an index 
that describes relatively completely the closeness relationship between sequences. 
In general, we take θ = 0.5. If the focus of a study is the relationship between relevant 
absolute quantities, θ can take a greater value than 0.5. On the other hand, if the focus 
is more on comparison between rates of change, then θ can take a smaller value than 
0.5. 

Example 5.4.3 Calculate the synthetic grey relational degree of ρ01 for sequences 
X0 and X1 of Example 5.4.1. 

Solution From Examples 5.4.1 and 5.4.2, we have  ε01 = 0.5581 and r01 = 0.78. If  
θ = 0.5: 

ρ01 = θε01 + (1 − θ)r01 = 0.5 × 0.5581 + 0.5 × 0.78 ≈ 0.669. 
We can obtain different ρ01 values if we take θ = 0.2, 0.3, 0.4, 0.6, 0.8, 

respectively (see Table 5.1). 

Theorem 5.5.2 The grey synthetic relational degree of ρi j  satisfies the following 
properties:

(1) 0 < ρi j  ≤ 1; 
(2) The value of ρi j  relates to the individual observed values of sequences Xi and 

X j ,as well as to the rates of change of these values with respect to their initial 
values; 

(3) ρi j  will never be zero; 
(4) ρi j  changes along with the values in Xi and X j ; 
(5) When the lengths of Xi and X j change, so does ρi j ; 
(6) With different θ value, ρi j  also varies; 
(7) When θ = 1, X j ; when θ = 0, ρi j  = ri j  ;

Table 5.1 The values of ρ01 with different θ 
θ 0.2 0.3 0.4 0.6 0.8 

ρ01 0.73562 0.71343 0.69124 0.64686 0.60248 
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(8) ρ j j  = ρi i  = 1; and 
(9) ρi j  = ρ j i  . 

5.6 Grey Similarity, Closeness and Three-Dimensional 
Relational Degree 

This section focuses on the new models which measure mutual influences and connec-
tions between sequences from two different angles: similarity and closeness. These 
new models are much easier to apply to practical problems than original model. 
Also, three-dimensional grey relational degree can be used to analyze the relationship 
among curved surfaces in three-dimensional space and this is discussed next. 

5.6.1 Grey Relational Analysis Models Based on Similarity 
and Closeness 

Definition 5.6.1 Let Xi and X j be sequences of the same length, and si − s j the 
same as defined in Proposition 5.4.2. Then, the following Formula (5.13) is referred 
to as the grey similitude relational degree between Xi and X j : 

εi j  = 1 

1 + |si − s j | (5.13) 

The concept of similitude relational degree is employed to measure the geometric 
similarity of the shapes of sequences Xi and X j . The more similar the geometric 
shapes of Xi and X j , the greater the value of εi j  , and vice versa. 

Definition 5.6.2 Let Xi and X j be sequences of the same length, and Si − Sj the 
same as defined in Proposition 5.4.2. Then, the following Formula (5.14) is referred 
to as the grey closeness relational degree between Xi and X j : 

ρi j  = 1 

1 + |Si − Sj | (5.14) 

The concept of the grey closeness relational degree is employed to measure the 
spatial closeness of sequences Xi and X j . The closer the Xi and X j sequences, the 
greater the value of ρi j  , and vice versa. 

Proposition 5.6.1 Let Xi and X j be sequences of 1-time-intervals with the same 
length. Then:
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||Si − Sj

|| =
|||||
1 

2

[
xi (1) − x j (1)

] + 
n−1Σ

k=2

[
xi (k) − x j (k)

] + 
1 

2

[
xi (n) − x j (n)

]
|||||
(5.15) 

It should be noted that the concept of the grey closeness relational degree is only 
meaningful when sequences Xi and X j possess similar meanings and identical units. 
Otherwise, it does not stand for any practical significance. 

Theorem 5.6.1 The grey similitude relational degree of εi j  satisfies the following 
properties: 

(1) 0 < εi j  ≤ 1; 
(2) The value of εi j  is determined only by the geometric shape of sequences Xi 

and X j without any relationship with their relative spatial positions. In other 
words, the transform translation of Xi and X j will not change the value of εi j ; 

(3) The more geometrically similar the sequences Xi and X j , the greater the value 
of εi j , and vice versa; 

(4) If Xi and X j are parallel, or when X0 
i fluctuates around X0 

j , and the area of 
the parts where X0 

i is located above X0 
j equals that of the parts where X0 

i is 
located beneath X0 

j , then εi j  = 1; 
(5) εi i  = 1, ε j j  = 1; and 
(6) εi j  = ε j i  . 

Theorem 5.6.2 The grey closeness relational degree of ρi j  satisfies the following 
properties: 

(1) 0 < ρi j  ≤ 1; 
(2) The value of ρi j  is determined not only by the geometric shape of sequences Xi 

and X j , but also by their relative spatial positions. In other words, the transform 
translation of Xi and X j will change the value of ρi j ; 

(3) The closer the sequences Xi and X j , the greater the ρi j  value, and vice versa; 
(4) If Xi and X j coincide, or Xi fluctuates around X j , and the area of the parts 

where Xi is located above X j equals that of the parts where Xi is located 
beneath X j , then ρi j  = 1; 

(5) ρi i  = 1, ρ j j  = 1; and 
(6) ρi j  = ρ j i  . 

Example 5.6.1 Compute the grey similitude relational degrees of ε12, ε13 and the 
grey closeness relational degrees of ρ12, ρ13 between X1 and X2, X3, respectively, 
given the sequences below: 

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), 
x1(7)) = (0.91, 0.97, 0.90, 0.93, 0.91, 0.95) 

X2 = (x2(1), x2(2), x2(3), x2(5), 
x2(7)) = (0.60, 0.68, 0.61, 0.63, 0.65)
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X3 = (x3(1), x3(3), x3(7)) = (0.82, 0.90, 0.86) 

Solution 
Step 1: Let us translate both X2 and X3 into sequences with the same time intervals 
as X1. To this end, consider the following: 

x2(4) = 
1 

2 
(x2(3) + x2(5)) = 

1 

2 
(0.61 + 0.63) = 0.62 

x3(2) = 
1 

2 
(x3(1) + x3(3) = 

1 

2 
(0.82 + 0.90) = 0.86 

x3(5) = 
1 

2 
(x3(3) + x3(7)) = 

1 

2 
(0.90 + 0.86) = 0.88 

x3(4) = 
1 

2 
(x3(3) + x3(5)) = 

1 

2 
(0.90 + 0.88) = 0.89 

Thus, we have: 

X2 = (x2(1), x2(2), x2(3), x2(4), x2(5), 
x2(7)) = (0.60, 0.68, 0.61, 0.62, 0.63, 0.65) 

X3 = (x3(1), x3(2), x3(3), x3(4), x3(5), 
x3(7)) = (0.82, 0.86, 0.90, 0.89, 0.88, 0.86) 

Step 2: Let us translate X1, X2, and X3 into sequences of equal time distance. To 
this end: 

x1(6) = 
1 

2 
(x1(5) + x1(7)) = 

1 

2 
(0.91 + 0.95) = 0.93 

x2(6) = 
1 

2 
(x2(5) + x2(7)) = 

1 

2 
(0.63 + 0.65) = 0.64 

x3(6) = 
1 

2 
(x3(5) + x3(7)) = 

1 

2 
(0.88 + 0.86) = 0.87 

Therefore, the following sequences are all 1-time distance, which means that the 
time distances between consecutive entries are all 1. 

X1 = (x1(1), x1(2), x1(3), x1(4), x1(5), 
x1(7)) = (0.91, 0.97, 0.90, 0.93, 0.91, 0.93, 0.95) 

X2 = (x2(1), x2(2), x2(3), x2(4), x2(5), 
x2(7)) = (0.60, 0.68, 0.61, 0.62, 0.63, 0.64, 0.65) 

X3 = (x3(1), x3(2), x3(3), x3(4), x3(5), 
x3(7)) = (0.82, 0.86, 0.90, 0.89, 0.88, 0.87, 0.86)
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Step 3: Compute the images of zero-starting points provided below. 

X0 
1 = (x0 

1 (1), x
0 
1 (2), x

0 
1 (3), x

0 
1 (4), x

0 
1 (5), x

0 
1 (6), 

x0 
1 (7)) = (0, 0.06, −0.01, 0.02, 0, 0.02, 0.04) 

X0 
2 = (x0 

2 (1), x
0 
2 (2), x

0 
2 (3), x

0 
2 (4), x

0 
2 (5), x

0 
2 (6), 

x0 
2 (7)) = (0, 0.08, 0.01, 0.02, 0.03, 0.04, 0.05) 

X0 
3 = (x0 

3 (1), x
0 
3 (2), x

0 
3 (3), x

0 
3 (4), x

0 
3 (5), x

0 
3 (6), 

x0 
3 (7)) = (0, 0.04, 0.08, 0.07, 0.06, 0.05, 0.04) 

Step 4: Compute |s1 − s2|, |s1 − s3| and |S1 − S2|, |S1 − S3| as follows. 

|s1 − s2| =
|||||

6Σ

k=2 

(x0 
1 (k) − x0 

2 (k)) + 
1 

2 
(x0 

1 (7) − x0 
2 (7))

||||| = 0.095 

|s1 − s3| =
|||||

6Σ

k=2 

(x0 
1 (k) − x0 

3 (k)) + 
1 

2 
(x0 

1 (7) − x0 
3 (7))

||||| = 0.21 

|S1 − S2| =
|||||

6Σ

k=2 

(x1(k) − x2(k)) + 
1 

2 
(x1(7) − x2(7))

||||| = 1.91 

|S1 − S3| =
|||||

6Σ

k=2 

(x1(k) − x3(k)) + 
1 

2 
(x1(7) − x3(7))

||||| = 0.375 

Step 5: Calculate the similitude relational degrees of ε12, ε13 and closeness 
relational degrees of ρ12, ρ13. 

ε12 = 1 

1 + |s1 − s2| = 0.91, ε13 = 1 

1 + |s1 − s3| = 0.83. 

ρ12 = 1 

1 + |S1 − S2| = 0.34, ρ13 = 1 

1 + |S1 − S3| = 0.73. 

Because ε12 > ε13, it follows that X2 is more similar to X1 than X3. Because ρ12 

< ρ13, it follows that X3 is closer to X1 than X2. 
Please note that the grey relational analysis focus on relevant order relationship 

and influence between sequences rather than the value of the grey relational degree. 
For instance, let us assume that one must compute the similitude relational degrees or 
closeness relational degrees based on Eqs. (5.13) or (5.14) When the absolute values 
of the sequence data are relatively large, the values of both

||si − s j

|| and
||Si − Sj

||
might be large, too, which in turn leads to the resultant similitude and closeness 
relational degrees being relatively small. This scenario does not have any substan-
tial impact on the analysis of order relationships. If a particular problem demands 
relatively large numerical magnitudes in the value of grey relational degree, one can
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replace the number 1 appearing in the numerators or denominators of Eqs. (5.13) 
and (5.14) by a relevant constant, or use the grey absolute relational degree, or use 
other appropriate models. 

5.6.2 Grey Three-Dimension Degree of Relational Degree 

The above GRA models can be generalized to three-dimensional space based on 
geometric descriptions of a behavior matrix. 

Definition 5.6.3 Assume that X is a two-dimensional system factor, and ai j  is an 
observation value of the system’s behavior at two-dimensional point (i, j), where 1 
≤ i ≤ m; 1 ≤ j ≤ n. Then the following expression is called the behavior matrix of 
system factor X : 

A = (ai j  )m×n = 

⎡ 

⎢⎢⎣ 

a11 a12 · · ·  a1n 

a21 a22 · · ·  a1n 

· · ·  · · ·  · · ·  · · ·  
am1 am2 · · ·  amn 

⎤ 

⎥⎥⎦ 

For example, if the prices (e.g., opening prices, closing prices, maximum prices, 
or minimum prices) of a share have been recorded on different dates, we can obtain 
the behavior matrix of the different prices X of the share. The behavior matrix will 
reduce to a behavior sequence if only one share price has been recorded on different 
dates. 

The scatter diagram in behavior matrix A and the corresponding behavioral curved 
surface in three-dimensional space are shown in Figs. 5.3 and 5.4. 

Fig. 5.3 The scatter 
diagram as behavior matrix
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Fig. 5.4 The corresponding behavioral curved surface 

Definition 5.6.4 Assume the following behavior matrix of system factor X . 

A = (ai j  )m×n = 

⎡ 

⎢⎢⎣ 

a11 a12 · · ·  a1n 

a21 a22 · · ·  a1n 

· · ·  · · ·  · · ·  · · ·  
am1 am2 · · ·  amn 

⎤ 

⎥⎥⎦ 

AD = (ai j d)m×n , where D is a matrix operator, ai j d = ai j  −a1 j , then D is called 
a zero-starting edge operator, AD is called the zero-starting edge image of A, and 
they are denoted as AD = A0 = (a0 

i j  )m×n . 
The zero-starting edge curved surface of A is shown in Fig. 5.5.

Definition 5.6.5 Assume that behavior matrices A = (ai j  )m×n , B = (bi j  )m×n are 
matrices of the same type. Then the following formula is called the three-dimensional 
grey absolute relational degree between A and B: 

εab = 1 + |sa| + |sb| 
1 + |sa| + |sb| + |sa − sb| (5.16) 

This occurs when sa = ˜ 

Da 

A0dxdy, sb = ˜ 

Db 

B0dxdy, sa − sb = 
˜ 

Dab 

(A0 − B0)dxdy.
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Fig. 5.5 The zero-starting edge image of a behavior curved surface

Formula (5.16) looks similar to the absolute GRA model shown in Formula (5.11) 
However, the meaning is different. The meaning of |si |, |s j |, |si − s j | in Formula 
(5.11) is the area of curved edge trapezoids surrounded by axis X0 

i , X
0 
j , the zero-

starting point curves, and the area of curved edge trapezoid surrounded by X0 
i and 

X0 
j . However, the meaning of |sp|, |sq |, |sp − sq | in Formula (5.16) is the  volume  of  

curved roof cylinders surrounded by the axis plane and A0, B0, the curved surface of 
zero-starting edge, and the volume of curved roof cylinders surrounded by A0 and 
B0. 

The three-dimensional grey relational analysis model can truly reflect the rela-
tional degree between system behavior matrices. The analysis results are objective, 
reliable and easy to implement on computer. The three-dimensional GRA model is 
seen to have expansive application prospects in many fields such as multi-criterion 
decision-making, panel data analysis, image processing, among others, which include 
matrices as objects of study. 

5.7 Negative Grey Relational Analysis Models 

In the past 40 years, driven by the realistic demand of measuring the relationship 
between the reverse sequences of the system, many scholars have made unremitting 
attempts and exploration around the construction of negative grey relational analysis 
model. In 2008, Shi Hongxing, Liu Sifeng, and Fang Zhigeng proposed a kind of grey
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relational analysis model referring to the grey absolute relational analysis model. In 
this paper, the positive and negative sign of the grey relational degree is determined 
according to the concave and convex direction of the periodic waveform to describe 
the inverse relationship between the periodic factors (Shi et al., 2008) In 2015, based 
on dissolved gas analysis (DGA), Song Bin et al. studied the latent fault diagnosis 
of power transformer. In order to correctly describe the reverse change relationship 
between different fault types, a calculation method of negative grey relational degree 
is proposed (Song et al., 2015) In 2019, Saad Ahmed Javed and Sifeng Liu proposed 
a bidirectional gabsolute GRA model for uncertain systems.. The proposed model 
can be used to evaluate both positive and negative relation of different sequences 
(Javed & Liu, 2019). 

Firstly, the definition of inverse sequence will be given in this section. Then, several 
different negative grey relational analysis models, such as negative grey similarity 
relational analysis model, negative grey absolute relational analysis model, negative 
relative grey relational analysis model, negative grey synthetic relational analysis 
model, and negative Deng’s grey relational analysis model will be put forward based 
on the corresponding common grey relational analysis models. The properties of the 
new models will be studied. 

In order to build a negative grey relational model, it is necessary to give the 
definition of inverse sequence at first. 

Definition 5.7.1 Assume that Xi = (xi (1), xi (2), . . . , xi (n)). 

is a system’s behavior data sequence, 

(1) If ∀k = 2, 3, . . . ,  n, xi (k) − xi (k −1) >  0, then Xi is referred to as a monotonic 
increasing sequence; 

(2) If the inequality sign in (1)is inversed, then Xi is referred to as a monotonic 
decreasing sequence. 

Monotonic increasing sequence and monotonic decreasing sequence are collec-
tively referred to as monotone sequence. Please see Fig. 5.6 for the curves of 
monotonic increasing sequence and monotonic decreasing sequences. 

Fig. 5.6 Monotone sequence curves
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Fig. 5.7 Oscillation 
sequence curve 

Definition 5.7.2 Assume that Xi = (xi (1), xi (2), . . . ,  xi (n)) is a system’s behavior 
data sequence, if there are k, k ,∈{2, 3, …, n} such that x(k) − x(k − 1) > 0, x

(
k ,)− 

x
(
k , − 1

)
< 0, then X is referred to as an oscillation sequence. 

Figure 5.7 shows the case of a curve of oscillation sequence. 

Definition 5.7.3 Assume that Xi = (xi (1), xi (2), . . . ,  xi (n)) is a system’s behavior 
data sequence, X0 

i = Xi − xi (1) is the zero-starting point sequence of Xi , let  si ={ n 
1 (Xi − xi (1))dt , then 

(1) If si > 0, then Xi is referred to as an increasing sequence; 
(2) If si < 0, then Xi is referred to as a decreasing sequence; 
(3) If si = 0, then Xi is referred to as a horizontal sequence. 

Obviously, monotonic increasing sequence is a special case of increasing sequence 
and monotonic decreasing sequence is a special case of decreasing sequence. An 
oscillation sequence can be an increasing sequence, decreasing sequence, or a 
horizontal sequence. And stationary sequence is a special case of horizontal sequence. 

Definition 5.7.4 Assume that 

Xi = (xi (1), xi (2), . . . ,  xi (n)) 
X j = (x j (1), x j (2), . . . ,  x j (n)) 

are two system’s behavior data sequences. 

(1) When both Xi , X j are increasing sequences or decreasing sequences, then Xi 

and X j are called sequences with the same direction; 
(2) When one of Xi and X j is an increasing sequence and the other is a decreasing 

sequence, then Xi and X j are called reverse sequences (Liu, 2022). 

The relationship between two sequences with the same direction can be measured 
by positive grey relational analysis model. The relationship between two reverse 
sequences needs to be measured by negative grey relational analysis model.
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Proposition 5.7.1 Assume that 

Xi = (xi (1), xi (2), . . . ,  xi (n)) 
X j = (x j (1), x j (2), . . . ,  x j (n)) 

are two system’s behavior data sequences. The zero-starting point sequences of Xi 

and X j as follows, 

X0 
i = (x0 

i (1), x
0 
i (2), . . . ,  x0 

i (n)) 
X0 

j = (x0 
j (1), x

0 
j (2), . . . ,  x0 

j (n)) 

Let 

si = 
n{

1 

(Xi − xi (1))dt (5.17) 

si − s j = 
n{

1 

(X0 
i − X0 

j )dt (5.18) 

then 

|si | =
|||||

n−1Σ

k=2 

x0 
i (k) + 

1 

2 
x0 

i (n)

||||| (5.19)

||si − s j

|| =
|||||

n−1Σ

k=2 

(x0 
i (k) − x0 

j (k)) + 
1 

2 
(x0 

i (n) − x0 
j (n))

||||| (5.20) 

Proof |si| and
||si − s j

|| are determined by areas of the following curved triangles, 
respectively. 

X = 0, X = X0 
i , and t = n 

X = X0 
i , X = X0 

j , t = n 

They are sums of little areas of n-1 small trapezoids of height 1. Note the length 
of the bottom edges of the small trapezoids, and it is easy to know that the conclusion 
is true (Liu, 2022). 

Proposition 5.7.2 Assume that Xi , X j , X0 
i , X0 

j , and |si|,
||si − s j

|| as shown in 
proposition 1 , then 

(1) When Xi and X j are with the same direction, and X0 
i , X0 

j intersect only at the 

starting point, then
||si − s j

|| = |||si | −
||s j

||||;
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(2) When Xi and X j are two reverse sequences, then
||si − s j

|| = |si | +
||s j

||; 
(3) If X0 

i fluctuates around X0 
j , then

||si − s j

|| is the absolute value of algebraic sum 
of area enclosed by X0 

i and X0 
j . The parts where X0 

i are above X0 
j take positive 

sign, and the parts where X0 
i are underneath X0 

j take negative sign. 

Positional relationship of X0 
i and X

0 
j can be clearly seen from Fig. 5.8. Figure 5.8a 

shows the case where Xi and X j are both increasing sequences, Fig. 5.8b shows  
the case where Xi and X j are both increasing sequences, Fig. 5.8c shows the case 
where Xi and X j are two reverse sequences, and Fig. 5.8d shows the case where X

0 
i 

fluctuates around X0 
j (Liu, 2022). 

It can be seen from Fig. 5.8c, when Xi and X j are reverse sequences, the value of||si − s j

|| is large. At this time, the value of grey relational degree calculated by positive 
grey relational model will be very small. Before the negative grey relational analysis 
model was proposed, people usually convert the inverse sequence into the same 
direction sequence through inverse operator or reciprocal operator, then calculate

Fig. 5.8 Positional relationship of X0 
i and X

0 
j 
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the positive grey relational degree of the sequences with the same direction, but the 
results are not completely reasonable. 

Therefore, for the measurement of the relationship between reverse sequences, 
the construction of negative grey relational analysis model has become an inevitable 
choice. 

Corresponding to the normalization and proximity axioms of the grey relational 
analysis model, the negative grey relational degree φ N 

i j  shall meet the following 
axioms. 

Axiom 5.7.1 Normalization 

−1 < ϕ  N 
i j  ≤ 0, ϕ  N 

i j  = 0 ⇐ Xi = X j . 

The value of ϕ N 
i j  is negative. The minimum value is −1 and the maximum value 

is 0 (Liu, 2022). 

Axiom 5.7.2 Reversibility The stronger the inverse relation between Xi and X j , 
the smaller the value of ϕ N 

i j  . 
Note that the value of negative grey relational degree belongs to interval (−1,0], 

the smaller the value of ϕ N 
i j  , the greater the absolute value of ϕ N 

i j  (Liu, 2022). 

Definition 5.7.5 Suppose the following system’s behavior data sequences 

Xi = (xi (1), xi (2), . . . ,  xi (n)) 
X j = (x j (1), x j (2), . . . ,  x j (n)) 

are reverse sequences, then 

φ N 
i j  = −

||si − s j

||
1 + |si − s j | (5.21) 

is called the negative grey similarity relational degree of Xi and X j (Liu, 2022). 
It can be easily proved that the negative grey similarity relational degree defined 

by Formula (5.21) satisfies the axioms of normalization and reversibility, and has the 
following properties: 

Theorem 5.7.1 The negative grey similarity relational degree φ N 
i j  satisfies the 

following properties: 

(1) −1 < φ  N 
i j  < 0. 

(2) φ N 
i j  is only related to the geometric shapes of Xi and X j ,and has no relationship 

with the spatial positions of these sequences. In other words, the translation 
transformation does not change the value of negative grey similarity relational 
degree. 

(3) The stronger the reverse relation between Xi and X j , the closer φ N 
i j  is to −1; 

The weaker the reverse relation between Xi and X j , the closer φ N 
i j  is to 0.
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(4) If Xi and X j are parallel or X0 
i fluctuates around X0 

j , with the area of the parts 
of X0 

i located above X0 
j equal to that of the parts with X0 

i located underneath 
X0 

j , then φ N 
i j  = 0. 

(5) φ N 
ii  = φ N 

j j  = 0. 
(6) φ N 

i j  = φ N 
ji  . 

(Liu, 2022) 

Example 1 Let X1 = (x1(1), x1(2), x1(3), x1(4), x1(5)) = (1, 2, 3, 4, 5) and X2 = 
(x2(1), x2(2), x2(3), x2(4), x2(5)) = (5, 4, 2, 2, 1). 

Then the zero-starting point sequences of X1 and X2 as follows 

X0 
1 = (x0 

1 (1), x
0 
1 (2), x

0 
1 (3), x

0 
1 (4), x

0 
1 (5)) = (0, 1, 2, 2, 4) 

X0 
2 = (x0 

2 (1), x
0 
2 (2), x

0 
2 (3), x

0 
2 (4), x

0 
2 (5)) = (0, −1, −3, −3, −4) 

We have s1 = 7, s2 = −9, therefore, X1 is an increasing sequence, and X2 is a 
decreasing sequence. That is, X1 and X2 are reverse sequences. From Formula (5) 

φ N 
12 = −  

|s1 − s2| 
1 + |s1 − s2| = −  

16 

1 + 16 
≈ −0.9412. 

It shows that there is a strong inverse correlation between X1 and X2. 
Similarly, the definitions of negative grey absolute relational degree, negative grey 

relative relational degree and negative grey comprehensive relational degree can be 
given as follows. 

Definition 5.7.6 Assume that Xi and X j are system’s behavior data sequences, 

(1) If Xi and X j are reverse sequences, then 

εN 
i j  = −

||si − s j

||

1 + |si | +
||s j

|| + ||si − s j

|| (5.22) 

Is called negative grey absolute relational degree of Xi and X j . 

(2) If the initial valued sequences of Xi and X j are reverse sequences, then 

r N 
i j  = −

|||s ,
i − s ,

j

|||

1 + ||s ,
i

|| +
|||s ,

j

||| +
|||s ,

i − s ,
j

|||
(5.23) 

Is called negative relative grey relational degree of Xi and X j .
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(3) If both of Xi and X j , and the initial valued sequences of Xi and X j are all 
reverse sequences, then 

ρ N 
i j  = θεN 

i j  + (1 − θ)r N 
i j (5.24) 

is called negative grey synthetic relational degree of Xi and X j .Where θ ∈ [0,1] (Liu, 
2022). 

It should be noted that the grey proximity relational analysis model have been 
constructed to measure the spatial relative position relationship of the sequences. 
The grey proximity relational degree does not consider the change direction of the 
sequences and does not pay attention to the same or reverse relationship between the 
two sequences. Therefore, it is not necessary to define the corresponding “negative 
grey proximity relational analysis model”. 

Definition 5.7.7 Let X0 = (x0(1), x0(2), . . . , x0(n)) be a data sequence of a 
system’s behavioral characteristic and the following are relevant factor sequences: 

X1 = (x1(1), x1(2), . . . , x1(n)) 
............................................ 
Xi = (xi (1), xi (2), . . . , xi (n)) 
............................................ 
Xm = (xm(1), xm(2), . . . , xm(n)) 

If Xi is a reverse sequence of X0, for  ξ ∈ (0, 1), let  

γ N 
0i (k) = 

min 
i 

min 
k 

|x0(k) − xi (k)| − |x0(k) − xi (k)| 
|x0(k) − xi (k)| +  ξ max 

i 
max 

k 
|x0(k) − xi (k)| (5.25) 

γ N 
0i = 

1 

n 

nΣ

k=1 

γ N 
0i (k) (5.26) 

Then γ N 
0i is called negative Deng’s grey relational degree of Xi and X0, and γ N 

0i (k) 
is called the negative Deng’s grey relational coefficient of relevant factor sequence 
Xi and the system’s behavioral characteristic sequence X0 at point k (Liu, 2022). 

It is easy to show that the negative grey absolute relational degree, negative relative 
grey relational degree, negative grey synthetic relational degree, and negative Deng’s 
grey relational degree are all satisfy the axioms of normalization and Reversibility.
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5.8 Superiority Analysis 

Definition 5.8.1 Assume that Y1, Y2, . . . ,  Ys are a system’s characteristic behavioral 
sequences, and X1, X2, . . . ,  Xm are behavioral sequences of relevant factors with the 
same length. Let γi j  be the grey relational degree between Yi and X j , i = 1, 2, . . . ,  s, 
and j = 1, 2, . . . ,  m. Then:

⎡ = (
γi j

)
s×m = 

⎡ 

⎢⎢⎣ 

γ11 γ12 · · ·  γ1m 

γ21 γ22 · · ·  γ2m 

· · ·  · · ·  · · ·  · · ·  
γs1 γs2 · · ·  γsm 

⎤ 

⎥⎥⎦. 

This formula is referred to as the grey relational matrix of the system, where the 
ith row is made up of the grey relational degree between the characteristic sequence 
Yi (i = 1, 2, . . . ,  s) and each of the factor sequences X1, X2, . . . ,  Xm ; and the jth 
column consists of the grey relational degree between each of the characteristic 
sequences Y1, Y2, . . . ,  Ys and X j ( j = 1, 2, . . . ,  m). We can analyze both the superi-
ority of a system’s characteristic behavioral variables or the behavioral variables of 
relevant factors. 

Definition 5.8.2 Assume that Y1, Y2, . . . ,  Ys are a system’s characteristic behavioral 
sequences, X1, X2 . . . ,  Xm are behavioral sequences of relevant factors, and ⎡ =(
γi j

)
s×m is the grey relational matrix. If there are k, i ∈ {1, 2, . . . ,  s} such that 

γk j  ≥ γi j  , j = 1, 2, . . . ,  m, then the system’s characteristic variable Yk is said to be 
more favorable than the system’s characteristic variable Yi , written as Yk ⟩ Yi . 

If ∀i = 1, 2, . . . ,  s, i /= k, Yk ⟩ Yi always holds true, then Yk is said to be the 
most favorable characteristic variable. 

Definition 5.8.3 Assume that Y1, Y2, . . . ,  Ys are a system’s characteristic behavioral 
sequences, X1, X2, . . . ,  Xm are behavioral sequences of relevant factors, and ⎡ =(
γi j

)
s×m is the grey relational matrix. If there are l, j ∈ {1, 2, . . . ,  m} such that 

γil ≥ γi j  , i = 1, 2, . . . ,  s, then we say that the system’s factor Xl is more favorable 
than factor X j , written as Xl ⟩ X j . 

If ∀ j = 1, 2, . . . ,  m, j /= l, Xl ⟩ X j always holds true, then Y1 = 
(170, 174, 197, 216.4, 235.8) is said to be the most favorable factor. 

Definition 5.8.4 Assume that Y1, Y2, . . . ,  Ys are a system’s characteristic behavioral 
sequences, X1, X2, . . . ,  Xm are behavioral sequences of relevant factors, and ⎡ =(
γi j

)
s×m is the grey relational matrix. 

(1) If there are k, i ∈ {1, 2, . . . ,  s} satisfying 
mΣ

j=1 
γk j  ≥ 

mΣ
j=1 

γi j  , then the system’s 

characteristic variable Yk is said to be more quasi-favorable than Yi , which is 
denoted as Yk ≥ Yi .
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(2) If there are l, j ∈ {1, 2, . . . ,  m} satisfying 
mΣ

i=1 
γil ≥ 

mΣ
i=1 

γi j  , then the system’s 

factor Xl is more quasi-favorable than X j , which is denoted as Xl ≥ X j . 

Definition 5.8.5 Assume that Y1, Y2, . . . ,  Ys are a system’s characteristic behavioral 
sequences, X1, X2, . . . ,  Xm are behavioral sequences of relevant factors, and ⎡ =(
γi j

)
s×m is the grey relational matrix. 

(1) If there is k ∈ {1, 2, . . . ,  s} such that ∀i = 1, 2, . . . ,  s, i /= k, Yk ≥ Yi , then 
the system’s characteristic variable Yk is said to be quasi-preferred. 

(2) If there is l ∈ {1, 2, . . . ,  m} such that ∀ j = 1, 2, . . . ,  m, j /= l, Xl ≥ X j , then 
the system’s factor Xl is said to be quasi-preferred. 

Proposition 5.8.1 In a system of s characteristic variables and m relevant factors, 
there may not be a most favorable characteristic variable and a most favorable 
factor. However, there must be quasi-preferred characteristic variable and factor. 

Example 5.8.1 The formulas below are system’s characteristic behavioral 
sequences. 

Y1 = (170, 174, 197, 216.4, 235.8) 
Y2 = (57.55, 70.74, 76.8, 80.7, 89.85) 
Y3 = (68.56, 70, 85.38, 99.83, 103.4) 

The formulas below are behavioral sequences of relevant factors. 

X1 = (308.58, 310, 295, 346, 367) 
X2 = (195.4, 189.9, 189.2, 205, 222.7) 
X3 = (24.6, 21, 12.2, 15.1, 14.57) 
X4 = (20, 25.6, 23.3, 29.2, 30) 
X5 = (18.98, 19, 22.3, 23.5, 27.655) 

Try and analyze the superiority of the system’s characteristic behavioral variables 
and the superiority of the behavioral variables of relevant factors. 

Solution 
We analyze the superiority of the system’s characteristic behavioral sequences and 
the behavioral sequences of relevant factors by absolute degree of GRA model. 

(1) Find the matrix of the grey absolute relational degree. Calculate the images of 
zero-starting point for all the system’s characteristic behavioral sequences as 
well as the behavioral sequences of relevant factors as follows:
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Y 0 
1 = (0, 4, 27, 46.4, 65.8) 

Y 0 
2 = (0, 13.19, 19.25, 23.15, 32.3) 

Y 0 
3 = (0, 1.44, 16.82, 31.27, 34.84) 

X0 
1 = (0, 1.42, −13.58, 37.42, 58.42) 

X0 
2 = (0, −5.5, −8.2, 9.6, 27.3) 

X0 
3 = (0, −3.6, −12.4, ,  −9.5, −10.03) 

X0 
4 = (0, 5.6, 3.3, 9.2, 10) 

X0 
5 = (0, 0.02, 3.32, 4.52, 8.675) 

For the system’s characteristic behavioral variable Y1, we have:

||sy1

|| =
|||||

4Σ

k=2 

y0 1 (k) + 
1 

2 
y0 1 (5)

||||| =
||||4 + 27 + 46.4 + 

1 

2 
× 65.8

|||| = 110.3

||sx1

|| =
|||||

4Σ

k=2 

x0 
1 (k) + 

1 

2 
x0 
1 (5)

||||| =
||||1.42 + (−13.58) + 37.42 + 

1 

2 
× 58.42

|||| = 54.47

||sy1 − sx1

|| =
|||||

4Σ

k=2 

(y0 1 (k) − x0 
1 (k)) + 

1 

2 
(y0 1 (5) − x0 

1 (5))

||||| = 55.9 

ε11 = 1 + ||sy1

|| + ||sx1

||

1 + ||sy1

|| + ||sx1

|| + ||sy1 − sx1

|| = 1 + 110.3 + 54.47 
1 + 110.3 + 54.47 + 55.9 

= 0.748

||sx2

|| =
|||||

4Σ

k=2 

x0 
2 (k) + 

1 

2 
x0 
2 (5)

||||| =
||||(−5.5) + (−8.2) + 9.6 + 

1 

2 
× 27.3

|||| = 9.55

||sy1 − sx2

|| =
|||||

4Σ

k=2 

(y0 1 (k) − x0 
2 (k)) + 

1 

2 
(y0 1 (5) − x0 

2 (5))

||||| = 100.75 

ε12 = 1 + ||sy1

|| + ||sx2

||

1 + ||sy1

|| + ||sx2

|| + ||sy1 − sx2

|| = 1 + 110.3 + 9.55 
1 + 110.3 + 9.55 + 100.75 

= 0.545 

Similarly: 

ε13 = 1 + ||sy1

|| + ||sx3

||

1 + ||sy1

|| + ||sx3

|| + ||sy1 − sx3

|| = 0.502 

ε14 = 1 + ||sy1

|| + ||sx4

||

1 + ||sy1

|| + ||sx4

|| + ||sy1 − sx4

|| = 0.606
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ε15 = 1 + ||sy1

|| + ||sx5

||

1 + ||sy1

|| + ||sx5

|| + ||sy1 − sx5

|| = 0.557 

For the system’s characteristic behavioral variable Y2, Y3, we have:  

ε21 = 0.880, ε22 = 0.570, ε23 = 0.502, ε24 = 0.663, ε25 = 0.588 
ε31 = 0.907, ε32 = 0.574, ε33 = 0.503, ε34 = 0.675, ε35 = 0.594 

Therefore, we have the grey absolute relational degree matrix as follows: 

A = (εi j  ) = 

⎡ 

⎣ 
ε11 ε12 ε13 ε14 

ε21 ε22 ε23 ε24 

ε31 ε32 ε33 ε34 

ε15 

ε25 

ε35 

⎤ 

⎦ = 

⎡ 

⎣ 
0.748 0.545 0.502 0.606 0.557 
0.880 0.570 0.502 0.663 0.588 
0.907 0.574 0.503 0.675 0.594 

⎤ 

⎦ 

(2) Calculate the relative grey relational degree matrix. Calculate the initial images: 

Y
,
i (i = 1, 2, 3) and X

,
j ( j = 1, 2, 3, 4, 5) of Yi (i = 1, 2, 3) and X j ( j = 

1, 2, 3, 4, 5). 
Then find the images of zero-starting point for all system’s characteristic behav-

ioral sequences Yi (i = 1, 2, 3) and the behavioral sequences of relevant factors 
X j ( j = 1, 2, 3, 4, 5). 

Y
,0 
i (i = 1, 2, 3) and X

,0 
j ( j = 1, 2, 3, 4, 5) of Y ,

i (i = 1, 2, 3) and X
,
j ( j = 

1, 2, 3, 4, 5). 
From:

|||s
,
yi

||| =
|||||

4Σ

k=2 

y
,0 
i (k) + 

1 

2 
y

,0 
i (5)

|||||; i = 1, 2, 3

|||s
,
x j

||| =
|||||

4Σ

k=2 

x
,0 
j (k) + 

1 

2 
x

,0 
j (5)

|||||; j = 1, 2, 3, 4, 5

|||s
,
yi 

− s ,
x j

|||

=
|||||

4Σ

k=2 

(y
,0 
i (k) − x ,0 

j (k)) + 
1 

2 
(y

,0 
i (5) − x ,0 

j (5))

|||||; i = 1, 2, 3, ; j = 1, 2, 3, 4, 5 

ri j  = 
1 + ||s ,

yi

|| +
|||s ,

x j

|||

1 + ||s ,
yi

|| +
|||s ,

x j

||| +
|||s ,

yi 
− s ,

x j

|||
;i = 1, 2, 3; j = 1, 2, 3, 4, 5, 

we have: 

r11 = 0.7945, r12 = 0.7389, r13 = 0.6046, r14 = 0.8471, r15 = 0.9973 
r21 = 0.6937, r22 = 0.6571, r23 = 0.5837, r24 = 0.9738, r25 = 0.8271
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r31 = 0.7300, r32 = 0.6866, r33 = 0.6101, r34 = 0.9444, r35 = 0.8884 

Therefore, we have the relative grey relational degree matrix as follows: 

B = 

⎡ 

⎣ 
r11 r12 r13 r14 r15 
r21 r22 r23 r24 r25 
r31 r32 r33 r34 r35 

⎤ 

⎦ = 

⎡ 

⎣ 
0.7945 0.7389 0.6046 0.8471 0.9973 
0.6937 0.6571 0.5837 0.9738 0.8271 
0.7300 0.6866 0.6101 0.9444 0.8884 

⎤ 

⎦ 

(3) Compute the grey synthetic relational degree matrix. If θ = 0.5, we have:  

C = θ A + (1 − θ)B = (θ εi j  + (1 − θ)ri j  ) = (ρi j  ) 

= 

⎡ 

⎣ 
ρ11 ρ12 ρ13 ρ14 ρ15 

ρ21 ρ22 ρ23 ρ24 ρ25 

ρ31 ρ32 ρ33 ρ34 ρ35 

⎤ 

⎦ 

= 

⎡ 

⎣ 
0.7713 0.6420 0.5533 0.7266 0.7772 
0.7869 0.6136 0.5429 0.8184 0.7076 
0.8185 0.6303 0.5566 0.8097 0.7412 

⎤ 

⎦ 

(4) Analysis and discussion. In matrix A of the grey absolute relational degree, the 
rows of A satisfy the following formula: 

ε3 j > ε2 j ≥ ε1 j ; j = 1, 2, 3, 4, 5. 

Therefore, we have Y3 ⟩ Y2 ⟩ Y1. That is, Y3 is the most favorable characteristic 
variable, Y2 is the second, and Y1 the least favorable characteristic variable. All 
columns of A satisfy: 

εi1 > εi4 > εi5 > εi2 > εi3; i = 1, 2, 3. 

Therefore, we have: 
X1 ⟩ X4 ⟩ X5 ⟩ X2 ⟩ X3. 
That is, X1 is the most favorable factor, X4 the second, X5 the third, X2 the fourth, 

and X3 the least. 
From the matrix B of relative degree of relational, it can be seen that because the 

elements of B satisfy 

ri4 > ri1 > ri2 > ri3; i = 1, 2, 3 
ri5 > ri1 > ri2 > ri3; i = 1, 2, 3 

Thus, we can conclude that: 

X4 ⟩ X1 ⟩ X2 ⟩ X3, X5 ⟩ X1 ⟩ X2 ⟩ X3.
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Hence, X3 is the most unfavorable factor of the system. Further, let us consider 
the following: 

5Σ

j=1 

r1 j = 3.9824 > 
5Σ

j=1 

r3 j = 3.8595 > 
5Σ

j=1 

r2 j = 3.7354. 

Thus, we can conclude that Y1⟩Y3⟩Y2, that is, Y1 is the quasi-preferred 
characteristic. Also, given that: 

3Σ

i=1 

ri4 = 2.7653 > 
3Σ

i=1 

ri5 = 2.7128 > 
3Σ

i=1 

ri1 = 2.2182 

> 
3Σ

i=1 

ri2 = 2.0826 > 
3Σ

i=1 

ri3 = 1.7984, 

we have: 

X4⟩X5⟩X1⟩X2⟩X3. 

That is, X4 is the quasi-preferred factor, X5 the next, and X3 the most unfavorable 
factor. 

On matrixC of the grey synthetic relational degree, it can be seen that the elements 
of C satisfy: 

ρi1 > ρi2 > ρi3, ρi4 > ρi2 > ρi3, ρi5 > ρi2 > ρi3, i = 1, 2, 3. 

Therefore, we have: 

X1⟩X2⟩X3, X4⟩X2⟩X3, X5⟩X2⟩X3. 

That is, X3 is the least preferred factor. We further consider the following: 

5Σ

j=1 

ρ3 j = 3.5563 > 
5Σ

j=1 

ρ1 j = 3.4704 > 
5Σ

j=1 

ρ2 j = 3.4694. 

Thus, 

Y3⟩Y1⟩Y2. 

That is, Y3 is the quasi-preferred characteristic variable. Also, based on:
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3Σ

i=1 

ρi1 = 2.3767 > 
3Σ

i=1 

ρi4 = 2.3547 > 
3Σ

i=1 

ρi5 = 2.226 

> 
3Σ

i=1 

ρi2 = 1.8859 > 
3Σ

i=1 

ρi3 = 1.6528, 

it follows that: 

X1⟩X4⟩X5⟩X2⟩X3. 

Therefore, X1 is the quasi-preferred factor, X4 the next, X5 is more favorable than 
X2, and X3 is the most unfavorable factor. 

When investigating practical problems, the analyses of the three relational orders 
may not provide cohesive conclusions. This is because the absolute relational order 
looks at the relationship between absolute quantities, the relative relational order 
focuses on the rates of change with respect to the initial values of the observed 
sequences, while the synthetic relational order combines both the relationships 
between absolute quantities and rates of change. When considering the background 
of the problem of concern, we can choose one of the relational orders. For parsi-
mony purposes, after a particular grey relational operator is applied to the system’s 
characteristic behavioral sequences and relevant factor sequences, one only needs to 
employ the absolute relational order to the processed data. 

5.9 Practical Application 

Through the example below, we look at how to apply GRA models to analyze the 
time difference of economic indices. 

Example 5.9.1 In order to effectively monitor the performance of macro-economic 
systems and provide timely warnings, there is a need to investigate the time rela-
tionship of various economic indices with respect to economic cycles in terms of 
their peaks and valleys. In order to do so, questions such as the following must be 
addressed: Which indices can provide warning ahead of time? Which indices would 
be synchronic with the evolution of economic systems? And which indices tend to 
lag behind economic development? In other words, there is a need to divide economic 
indices into three classes: leading indicators, synchronic indices, and stagnant repre-
sentations. To this end, grey relational analysis is an effective method for classifying 
economic indices (Chen & Liu, 2005). 

Through careful research and analysis, we selected the following 8 major classes 
and 17 criteria as indices for economic performance: 

(1) The Energy and raw materials class: the total production of energy; 
(2) The investments class: the total investment in real estate;
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(3) The production class: increase in industry output, increase in light industry 
output, increase in heavy industry output; 

(4) The revenue class: national income, national expenditure; 
(5) The currency and credit class: currency in circulation, savings at various finan-

cial institutions, amount of loans issued by financial institutions, cash payout in 
the form of salary and wages, net amount of currency in circulation; 

(6) The consumption class: the gross retail amount of the society; 
(7) The foreign trade class: gross amount of imports, gross amount of exports, direct 

investments by foreign entities; and 
(8) The commodity prices class: the consumer price index. 

By applying the following standards, we classify the previous criteria into three 
classes: leading indicators, synchronic indices, and stagnant representations. The 
standards for determining leading indicators are as follows: 

(1) The indicated appearance of economic cyclic peaks needs to be at least three 
months ahead of their actual occurrence. Such leading relationship must be 
relatively stable with few exceptions; 

(2) Indicated cycles and historical cycles are nearly one-to-one corresponded to 
each other. Also, for the most recent three economic cycles, the indicated cycles 
must be at least two times ahead of the actual occurrences with at least 3 months 
of lead time; and 

(3) The economic characteristics of the indices provide relatively definite and clear 
leading relationships with respect to the background economic cycles. 

The standards for determining both synchronic indices and stagnant represen-
tations are similar to those outlined above. However, for synchronic indices the 
time differences between the indicated appearances and the actual occurrences 
of economic cycles must be within plus and minus 3 months, while for stagnant 
representations the indicated appearances of economic cycles are behind the actual 
occurrences by at least 3 months. 

In practice, it is almost impossible to find an index that meets all the stated stan-
dards. Therefore, based on the recorded reference cycles, we look for the statistical 
indices that meet the previously stated standards as closely as possible. In reality, a 
leading indicator can sometimes lag behind actual economic development, while an 
identified stagnant representation can also provide good lead-time in its forecast of a 
specific economic evolution. Similar scenarios also occur with regard to synchronic 
indices. However, theoretically, if the index is leading the actual occurrences among 
the one-to-one correspondences between an index and the actually recorded cycles 
over 2/3 of times, then we treat such an index as leading. Similar treatments are 
applied to synchronic indices and stagnant representations. 

Given that the increase in industry output has played a significant role in the 
Chinese economy, as a synchronic index it has high quality. Therefore, it can be 
employed as the basic index in our grey relational analysis. We will compute not 
only the grey absolute relational degree between each criterion and the increase in 
industry output, but also the grey absolute relational degree of the other 16 criteria
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Table 5.2 The absolute degrees of grey relational of the criteria when L = 0 
Index Absolute degree of 

grey relational 
Index Absolute degree of 

grey relational 

Increase in heavy 
industry output 

0.979810 National income 0.559540 

Increase in light 
industry output 

0.972655 Gross amount of exports 0.544870 

Gross retail amount 0.862105 Total production of 
energy 

0.541044 

Cash payout as 
salaries 

0.789278 Net amount of currency 
in circulation 

0.525936 

Currency in 
circulation 

0.753681 Loans issued by financial 
institutions 

0.507958 

Total investment in 
real estate 

0.726366 Savings at financial 
institutions 

0.505226 

Gross amount of 
imports 

0.598248 Consumer price index 0.500173 

National 
expenditure 

0.566914 Direct investments by 
foreign entities 

0.500002 

with their data translated 1–12 months along the time axis either left or right. When 
data are translated to the left, the months will take negative values; when translated to 
the right, the months will take positive values. The amount of horizontal translation 
is denoted by L. That is, we compute the grey absolute relational degree between 
all 16 individual criteria, excluding that of increase in industry output, and that of 
increase in industry output for L = −  12, …, 12. For each L-value, we order the 
obtained the grey absolute relational degree from the smallest to the largest, with the 
criterion listed in the front chosen as candidate criterion for that specific L-value. For 
instance, when L = 0, the grey absolute relational degree of the criteria are listed in 
Table 5.2. 

Synchronic indices should be selected from those with large grey absolute rela-
tional degree, because large degrees of relational indicate that these criteria have 
greater similarities in comparison with that of increase in industry output, which 
we employ as the basic standard of the Chinese economic cycles. However, we still 
do not have theoretical evidence to support that an index with large grey absolute 
relational degree must be synchronic. To this end, we also need to consider whether 
or not the related grey absolute relational degree will be even greater when L /= 0. 
If when L = 0 the value of the grey absolute relational degree of a certain index is 
ranked in the front, and if when L = −  4 its value is even greater, it means that after 
this index is translated to four months earlier, it is more similar to the pattern of the 
increase in industry output. Thus, in this case, this specific index can be seen as one 
leading the economic cycle by as much as about four months. By using these two 
standards, we can not only classify indices as synchronic, leading, or stagnant, but 
also specify the amount of leading or staggering time.
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Table 5.3 The grey absolute relational degrees of “cash payout as salaries” when L /= 0 
L The grey absolute relational degree L The grey absolute relational degree 

−12 0.664615 1 0.877090 

−11 0.705983 2 0.867859 

−10 0.733564 3 0.857366 

−9 0.752740 4 0.832260 

−8 0.753598 5 0.825027 

−7 0.732221 6 0.806787 

−6 0.723942 7 0.806782 

−5 0.731232 8 0.820384 

−4 0.742249 9 0.803771 

−3 0.752628 10 0.806649 

−2 0.770216 11 0.805679 

−1 0.800838 12 0.836308 

0 0.789278 

When L = 0, the index of “cash payout as salaries” is ranked relatively in the 
front. Therefore, it is a natural candidate for being a synchronic indicator. When the 
L–value changes, the relevant changes in its absolute degrees of grey relational are 
given in Table 5.3. 

From Table 5.3, it follows that when L = 1, the grey absolute relational degree 
reaches its maximum. Therefore, this specific index should be seen as one that is 
lagging the economic cycle by as much as one month. An index which is leading 
or lagging no more than two months is usually seen as synchronic. However, if it 
exceeds this range of time it will be treated as either a leading or staggering index. 

As a second example, the computational results for the index of “gross retail 
amount” are provided in Table 5.4.

From Table 5.4, it can be seen that when L = −  6 the grey absolute relational 
degree of the particular index reaches its maximum. Therefore, it can be seen as a 
leading indicator. By using this method, we can compute the L–values corresponding 
to the maximum grey absolute relational degree of each of the indices of our interest. 
The results are listed in Table 5.5.

Table 5.5 indicates that we can classify the 16 indices of the eight major classes 
into three classes as leading, synchronic, and stagnant indices, as shown in Table 5.6.

Example 5.9.2 Measurement of reverse incentive effect of Fields Medal (Liu, 
2022). 

Most people agree that knowledge production can promote long-term economic 
growth. Yet little is known about how knowledge is produced (Borjas & Doran, 
2015) For example, it is difficult for the author to explain clearly how the models of 
the negative grey similarity relational degree, the negative grey absolute relational 
degree, negative grey relative relational degree, negative grey comprehensive rela-
tional degree, and negative Deng’s grey relational degree are finally proposed in
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Table 5.4 The grey absolute relational degrees of “gross retail amount” 

L The grey absolute relational degree L The grey absolute relational degree 

−12 0.914466 1 0.856944 

−11 0.915117 2 0.866789 

−10 0.918527 3 0.876758 

−9 0.887243 4 0.882430 

−8 0.888258 5 0.889590 

−7 0.928151 6 0.895899 

−6 0.948684 7 0.900899 

−5 0.939351 8 0.900130 

−4 0.923900 9 0.895977 

−3 0.909621 10 0.894374 

−2 0.884610 11 0.892662 

−1 0.846814 12 0.889532 

0 0.862105

Table 5.5 L–values corresponding to maximum grey absolute relational degree of the indices of 
our interest 

Index L Absolute degree Index L Absolute degree 

Currency in 
circulation 

− 6 0.983452 National income + 12 0.718998 

Increase in 
heavy industry 
output 

0 0.979810 Gross amount of 
imports 

− 9 0.606556 

Increase in light 
industry output 

0 0.972655 Gross amount of 
exports 

+ 10 0.560054 

Gross retail 
amount 

− 6 0.948684 Total production of 
energy 

− 6 0.555035 

Cash payout as 
salaries 

+ 1 0.877090 Direct investments 
by foreign entities 

− 11 0.510016 

National 
expenditure 

+ 12 0.800533 Loans issued by 
financial institutions 

− 5 0.508375 

Net amount of 
currency in 
circulation 

+ 8 0.796688 Savings at financial 
institutions 

− 6 0.505588 

Total 
investment in 
real estate 

− 11 0.769778 Consumer price 
index 

+ 11 0.503235
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Table 5.6 Classifications of leading, synchronic, and stagnant indices 

Leading index Synchronic index Stagnant index 

Energy and raw 
materials 

Total production of 
energy (−6)a 

Investment Total investment in real 
estate (−11) 

Production Increase in light 
industry output (0) 
Increase in heavy 
industry output (0) 

Finance National income (+12) 
National expenditure 
(+12) 

Currency and 
credit 

Currency in circulation 
(−6) 
Savings at financial 
institutions (−6) 
Loans issued by 
financial institutions 
(−5) 

Cash payout as 
salaries (+1) 

Net amount of currency 
in circulation (+8) 

Consumption Gross retail amount 
(−6) 

Foreign trade Gross amount of 
imports (−9) 
Direct investments by 
foreign entities (−11) 

Gross amount of exports 
(+10) 

Commodity price Consumer price index 
(+11) 

a Numbers in parentheses stand for the time difference between indicated cycles and reference 
cycles

this paper after 40 years of thinking. People try to motivate knowledge producers 
through awards. Hundreds of scientific prizes are awarded throughout the world and 
across all scientific disciplines. Although these prizes are frequently awarded with 
the explicit goal of inspiring more and better scientific work (Scotchmer, 2006) But  
a question remains: what kind of incentive effect does these prizes have produced 
(Rosen, 1986)? 

Fields Medal is recognized internationally as the highest academic award project 
in the field of mathematics. Mathematicians all over the world are proud to win the 
Fields Medal. Because there is no mathematics award in the Nobel Prize for natural 
science, Fields Medal is also known as the “Nobel Prize in mathematics”. 

In 1932, according to the proposal of the Canadian mathematician John Charles 
Fields, the 9th International Conference of mathematicians held in Zurich decided 
to establish an international mathematics award named after his surname—Fields 
Medal.
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Fields Medal is awarded every four years. The award ceremony is held at the 
Quadrennial International Conference of mathematicians hosted by the International 
Mathematical Federation. Each time, it is awarded to 2–4 young mathematicians with 
outstanding contributions. Winners will receive a bonus of 15,000 Canadian dollars 
and a gold medal. According to the award rules, Fields Medal is only awarded to 
mathematicians under the age of 40 on January 1, the year of award. 

Fields Medal was first awarded in 1936. By 2018, a total of 60 mathematicians in 
the world had won Fields Medal. 

As a prestigious World Award, Fields Medal has played an important role in 
attracting a large number of talented young scholars to participate in mathematical 
research and solve the world’s mathematical problems. 

Unlike the Nobel Prize, Fields Medal is awarded only to mathematicians under 
the age of 40. Mathematicians over the age of 40, no matter how much academic 
achievements they have made, are not eligible for Fields Medal. If there are a large 
number of mathematicians who have made greater contributions than the winners 
and can not win the prize only because of their age, the fairness of such a “grand 
prize” is obviously debatable. 

For those scholars who won Fields Medal, what effect does the award have on 
their research work? 

In 2015, George J. Borjas and Kirk B. Doran with University of Notre Dame 
conducted an in-depth study on the effect of Fields Medal. They selected 142 mathe-
maticians at first, including all 56 Fields Medal winners (Medalists) at that time and 
86 mathematicians in the control group (Contenders). Then collected the data of the 
published academic papers and other relevant data every year from the beginning of 
their academic career to the age of 60. Trying to analyze the impact of Fields Medal 
on the research output of the winners according to the actual data (Borjas & Doran, 
2015). 

The 86 mathematicians of contenders are all the winners of other prestigious 
mathematics awards. Such as the Abel Prize and the Wolf Prize. Other important 
awards are issued by the American Mathematical Society which including the Cole 
Prize for algebra, the Bôcher Prize for mathematical analysis, the Veblen Prize for 
Geometry, and Salem Prize for Fourier Series. Most of the winners of Fields Medal 
were won the above awards at first, and then won their Fields Medal. Therefore, it 
can be said that the 86 mathematicians in the control group are scholars who have 
the strength to participate competition for Fields Medal and finally fail to win Fields 
Medal. 

We divide the sequences of annual average number of papers published by the 
Medalists and the Contenders into two parts: 16 years before the award and 20 years 
after the award. The data sequences of annual average number of papers published 
by Medalists and Contenders for 16 years before the award are denoted by X M , XC 

respectively. And the data sequences of annual average number of papers published 
by the Medalists and the Contenders for 20 years after the award are denoted by 
YM , YC respectively. 

Calculate the three term center moving average smoothing sequence of 
X M , XC ; YM , YC . Still denoted by X M , XC ; YM , YC as before.
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XM = (xM (1), xM (2), . . . , xM (16)) 
= (2.64, 2.63, 2.70, 2.69, 2.80, 2.91, 3.01, 3.09, 3.38, 3.63 
, 3.81, 3.83, 3.95, 3.75, 3.85, 3.62) 

XC = (xC (1), xC (2), . . . , xC (16)) 
= (1.95, 2.11, 2.32, 2.72, 3.03, 3.48, 3.51, 3.61, 3.60, 3.50 
, 3.59, 3.75, 4.02, 4.10, 4.02, 4.00) 

YM = (yM (1), yM (2), . . . , yM (20)) 
= (3.72, 3.50, 3.51, 3.35, 3.15, 2.90, 2.95, 2.92, 3.02, 3.01, 3.02, 3.10, 3.25, 
3.30, 3.40, 3.35, 3.33, 2.96, 2.72, 2.60) 

YC = (yC (1), yC (2), . . . ,  yC (20)) 
= (3.95, 3.90, 4.20, 4.40, 4.50, 4.53, 4.48, 4.46, 4.01, 4.54, 4.75, 4.72, 4.49, 
4.23, 4.50, 4.62, 4.91, 4.95, 5.24, 5.49). 

Calculate the zero-starting point sequences of X M , XC ; YM , YC , 

X0 
M = (0, −0.01, 0.06, 0.05, 0.16, 0.27, 0.37, 0.45, 0.74, 0.99, 

1.17, 1.19, 1.31, 1.11, 1.21, 0.98) 
X0 

C = (0, 0.16, 0.37, 0.77, 1.08, 1.53, 1.56, 1.66, 1.65, 1.55, 
1.64, 1.80, 2.07, 2.15, 2.07, 2.05) 

Y 0 
M = (0, −0.22, −0.21, −0.37, −0.57, −0.82, −0.77, −0.80, 

− 0.70, −0.71, −0.70, −0.62, 
− 0.47, −0.42, −0.32, −0.37, −0.39, −0.76, −1.00, −1.12) 

Y 0 
C = (0, −0.05, 0.25, 0.45, 0.55, 0.58, 0.53, 0.51, 0.06, 
0.59, 0.80, 0.77, 0.54, 0.28, 0.55, 0.67, 0.96, 1.00, 1.29, 1.07) 

From Definition 2, we have. 

sX M = 9.56, sXC = 21.085. 

and 

sYM = −10.78, sYC 
= 10.865. 

Therefore, both X M and XC are all increasing sequences. YM and YC are reverse 
sequences.
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By Formula (5), we have 

φN 
YM YC 

= −
|||sYM 

− sYC

|||
1 + |sYM 

− sYC 
| ≈ −0.96 

Before the award, the average annual number of papers published by both the 
Medalists and the Contenders are all showed increasing trend, and the number was 
roughly the same. After winning the award, the average annual number of papers 
published by the Contenders is still an increase sequence, while the average annual 
number of papers published by the Medalists is an attenuation sequence, and the two 
show a strong inverse relation. The results clearly reveals that the “highest award” 
won by researchers in their prime of life has a significant reverse incentive effect on 
their research output. 

At the same time, George J. Borjas and Kirk B. Doran are collected and analyzed 
the relevant data that can reflect the research “quality” of the Medalists and the 
Contenders. They found that from the data such as the citation of the papers, the 
quality of research work of the winners of Fields Medal were also significantly 
reduced (Borjas & Doran, 2015). 

Borjas and Doran’s research further shows that, compared with the Contenders, 
more the Medalists changed their research direction after winning the prize. The 
Medalists are usually not as worried about the “failure” of the research as before. 
Therefore, the proportion of those who change the research direction in the Medalists 
is significantly higher than that in the Contenders (Borjas & Doran, 2015). 

The Fields Medal not only won the winners social reputation and respect, but also 
produced a huge wealth effect. Many academic institutions have hired or hope to hire 
the winners of Fields Medal with high salaries, giving them more opportunities and 
choices. After winning the prize, some people began to “Revel in being sought after” 
and “To play the game of life”, giving up their previous academic pursuit (Borjas & 
Doran, 2015) This may be one of the reasons for the reverse incentive effect. 

Some people say, “small awards inspire people to forge ahead, and big awards 
stop people” maybe it’s not unreasonable. 
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Chapter 6 
Grey Clustering Evaluation Models 

6.1 Introduction 

There are two kinds grey clustering models. One is based on grey relational degree, 
mainly clustering indicators. The other is based on possibility functions, mainly used 
to classify objects. When investigating practical problems, it is often the case that each 
observational object possesses quite a few characteristic indices, which are difficult 
to accurately classify. Depending on the objects to be clustered, grey clustering 
can be based on two methods: clustering using GRA models, and clustering using 
grey possibility functions. The first method is mainly applied to group the same 
kinds of factors into their individual categories, so that a complicated system can 
be simplified. By using the clustering method of grey relational analysis, we can 
examine whether or not some of the factors under consideration really belong to the 
same kind. This allows a synthetic index of these factors, or one of these factors, to 
be used to represent all factors without losing any part of the available information 
carried by such factors. This problem regards the selection of variables to be used in 
the study of a system. Before conducting a large-scale survey, which generally costs 
a lot of money and man power, by using the clustering method of grey relational 
analysis on a typical sample data, one can reduce the amount of data collection to a 
minimal level by eliminating the unnecessary variables so that tangible savings can 
be achieved. 

The clustering method based on grey possibility functions is mainly used for 
checking whether or not the observational objects belong to pre-determined classes so 
that they can be treated differently. In practice, we need to set the possibility functions 
and the weights for different criterion according to the corresponding clustering index 
and the grey classes we intend to partition if using the clustering method based on 
grey possibility functions. 

Grey clustering evaluation models using possibility functions are used widely for 
uncertain systems analysis. For the past four decades, much research on modeling 
techniques has been done, and new research results emerge constantly. For example, 
Professor Julong Deng has proposed the variable weight grey clustering model (Deng,
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1985), while Professor Sifeng Liu et al. has proposed the fixed weight grey clustering 
evaluation model (Liu, 1993), the grey clustering evaluation model using end-point 
triangular possibility functions (Liu, 1991; Liu & Zhu, 1993), the grey cluster eval-
uation model using center-point triangular possibility functions (Liu & Xie, 2011), 
among others. These models are all used widely. Grey variable weight clustering 
model is applicable to the problems with criteria that have the same meanings and 
dimensions. When the criteria for clustering involve different meanings and dimen-
sions, the fixed weight grey clustering evaluation model and grey clustering evalua-
tion model using triangular possibility functions are suitable. In particular, compared 
with the variable weight grey clustering and fixed weight grey clustering models, the 
grey clustering evaluation model using triangular possibility functions is more suit-
able for problems of poor information clustering evaluation. The grey clustering 
evaluation model using mixed end-point triangular possibility functions is suitable 
for situations where all grey boundaries are clear, but where the most likely points 
belonging to each grey class are unknown. Conversely, the grey clustering evaluation 
model using mixed center-point triangular possibility functions is suitable for prob-
lems where it is easy to judge the most likely points belonging to each grey class, but 
where the grey boundaries are unclear (Liu et al., 2015a). Additionally, both of the 
last two grey clustering evaluation models based on mixed possibility function which 
composed by the possibility function of moderate measure, the possibility function 
of lower measure, and the possibility function of upper measure (Liu et al., 2015a, 
2017; Liu,  2021). 

Further, Dong et al. (2010), Pei et al. (2012), Xiao (1997), Xiong & Chen (1999), 
Xu et al. (2006), and others are improved and optimized grey clustering evalua-
tion models from different perspectives. Furthermore, Zhang (2002) has studied the 
measurement problem of Grey Characteristics of Grey Clustering Result. The author 
has investigated the relation between a grey clustering analysis result and the entropy 
of the weight sequence, and proposed a measure method for the grey characteristics 
of a grey clustering analysis result. 

In this chapter, two novel grey cluster evaluation models based on mixed center-
point triangular possibility functions and mixed end-point triangular possibility func-
tions are put forward. These new grey clustering models based on mixed possi-
bility functions are especially applicable to evaluation and classification of poor 
information objects, and have broad application prospects. 

6.2 Grey Relational Clustering Model 

Definition 6.2.1 Assume that there are n observational objects. For each object the 
data of m attribute indexes are collected, producing the following sequences: 

X1 = (x1(1), x1(2), . . . ,  x1(n)) 
X2 = (x2(1), x2(2), . . . ,  x2(n))
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Xm = (xm(1), xm(2), . . . ,  xm(n)) 

Then, for all i < j , i, j = 1, 2, . . . ,  m, calculate εi j  , the absolute grey relational 
degree between Xi and X j , so that we have the following upper triangular matrix A: 

A = 

⎛ 

⎜⎜⎜⎝ 

ε11 ε12 · · ·  ε11 
ε22 · · ·  ε2m 

. . . 
... 

εmm 

⎞ 

⎟⎟⎟⎠ 

A is referred to as the grey relational matrix of the attribute indexes, where εi i  = 1, 
i = 1, 2, . . . ,  m. For a chosen threshold value r ∈ [0, 1], which in general satisfies 
r > 0.5, if  εi j  ≥ r , i �= j , the variables X j and Xi are seen as the same attribute. 

Definition 6.2.2 The classification of the attribute indexes with the chosen value r 
is referred to as the r- classification by grey relational degree. 

When studying a specific problem, the particular value r is determined based on 
the circumstances involved. The closer the r is to 1, the finer the classification and 
the fewer the variables in each class. Conversely, the smaller the r, the coarser the 
classification and the greater the number of variables in each class. 

Example 6.2.1 The talent search committee of a firm has proposed 15 candidate 
recruitment criteria as follows: 

1. Impression of overall application package; 
2. Academic abilities; 
3. Likability by others; 
4. Level of self-confidence; 
5. Intelligence; 
6. Honesty; 
7. Ability to sell; 
8. Experience; 
9. Motivation; 
10. Ambition; 
11. Presentation skills; 
12. Ability to comprehend instructions; 
13. Potential for future growth; 
14. Interpersonal skills; and 
15. Adaptability. 

Members of the committee admit that some of these 15 criteria can overlap and 
hope that through the study of a sample of a few data points, these 15 criteria can be 
classified into fewer categories. By using the scoring method to quantify the criteria,
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Table 6.1 The scores of 9 observational objects 

Attributes Objects 

1 2 3 4 5 6 7 8 9 

X1 6 9 7 5 6 7 9 9 9 

X2 2 5 3 8 8 7 8 9 7 

X3 5 8 6 5 8 6 8 8 8 

X4 8 10 9 6 4 8 8 9 8 

X5 7 9 8 5 4 7 8 9 8 

X6 8 9 9 9 9 10 8 8 8 

X7 8 10 7 2 2 5 8 8 5 

X8 3 5 4 8 8 9 10 10 9 

X9 8 9 9 4 5 6 8 9 8 

X10 9 9 9 5 5 5 10 10 9 

X11 7 10 8 6 8 7 9 9 9 

X12 7 8 8 8 8 8 8 9 8 

X13 5 8 6 7 8 6 9 9 8 

X14 7 8 8 6 7 6 8 9 8 

X15 10 10 10 5 7 6 10 10 10 

9 observational objects have been scored according to each of the criteria. Table 6.1 
gives the scores, where Oi stands for the ith object, i = 1, 2, …, 9. 

To calculate the absolute grey relational degree of εi j  of Xi and X j for all i ≤ 
j, i, j = 1, 2, . . .  15, we obtained the upper triangular matrix A as shown in Table 
6.2.

We divided the 15 criteria into different classes based on Table 6.2, where the value 
of threshold r can be different based on the requirements involved. For example, if 
we take r = 1, all 15 criteria above belong to their own classes with each in its own 
class. If we take r = 0.80, then we check the values in Table 6.2, row by row, and 
pick out all the values of εi j  which are greater than 0.80. Thus, we have: 

ε1,3 = 0.88, ε1,11 = 0.90, ε1,12 = 0.88, ε1,13 = 0.80, ε2,8 = 0.99 
ε3,11 = 0.80, ε3,13 = 0.90, ε6,11 = 0.84, ε6,12 = 0.86, ε6,14 = 0.81 
ε7,10 = 0.83, ε7,15 = 0.89, ε9,10 = 0.81, ε10,15 = 0.92, ε11,12 = 0.97 

Therefore, we know that X3, X11, X12, and X13 belong to the same class as X1; 
X8 belong to the same class as X2; X11 and X13 belong to the same class as X3; X11, 
X12, and X14 belong to the same class as X6; X10 and X15 belong to the same class 
as X7; X10 belong to the same class as X9; X15 belong to the same class as X10; and 
X12 belong to the same class as X11. 

Let each class be represented with the criterion with the minimum index contained 
in the class, and combine the classes containing X6 and X11, respectively, with the
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Table 6.2 The grey relational matrix of attribute indexes 

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15 

X1 1 0.66 0.88 0.52 0.58 0.77 0.51 0.66 0.51 0.51 0.9 0.88 0.8 0.67 0.51 

X2 1 0.72 0.51 0.53 0.59 0.5 0.99 0.51 0.51 0.63 0.62 0.77 0.55 0.51 

X3 1 0.56 0.7 0.51 0.72 0.51 0.51 0.51 0.8 0.78 0.9 0.63 0.51 

X4 1 0.56 0.53 0.58 0.51 0.69 0.62 0.52 0.52 0.51 0.54 0.6 

X5 1 0.65 0.51 0.53 0.53 0.52 0.61 0.61 0.55 0.75 0.52 

X6 1 0.51 0.59 0.52 0.52 0.84 0.86 0.66 0.81 0.51 

X7 1 0.5 0.7 0.83 0.51 0.51 0.51 0.51 0.89 

X8 1 0.51 0.51 0.63 0.62 0.77 0.55 0.51 

X9 1 0.81 0.0.52 0.52 0.51 0.53 0.76 

X10 1 0.51 0.51 0.51 0.52 0.92 

X11 1 0.97 0.74 0.71 0.51 

X12 1 0.73 0.72 0.51 

X13 1 0.6 0.51 

X14 1 0.52 

X15 1

class containing X1. Put X9 and X10 into the class containing X7, and treat X4 and 
X5 as individual classes. Then, we have obtained a classification of the 15 attribute 
criteria for our shortened list as follows: 

{X1, X3, X6, X11, X12, X13, X14}, {X2, X8}, {X4}, {X5}, 
{X7, X9, X10, X15} 

Here, the class of {X1, X3, X6, X11, X12, X13, X14} including the attribute criteria 
such as impression of overall application package, likability by others, honesty, 
presentation skills, ability to comprehend instructions, potential for future growth, 
and interpersonal skills, all of which direct impression, can be obtained through 
the application form or interviews. These attribute criteria can be replaced by one 
synthetic impression attribute criterion because all these attribute criteria correlate 
and it is difficult to be separate them completely. The class of {X2, X8} includes 
two attribute criteria, namely academic abilities and experience, which can be evalu-
ated through investigation and understanding of the academic research and practical 
work accomplished by the candidate. The class of {X7, X9, X10, X15} includes four 
attribute criteria, namely ability to sell, motivation, ambition, and adaptability, which 
can be judged synthetically by investigating the learning and working background 
of the candidate. Special investigation is required for assessment of the attribute 
criterion level of self-confidence of {X4}, and the attribute criterion intelligence of 
{X5}.
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6.3 Common Possibility Functions 

The variable weight grey clustering model, the fixed weight grey clustering evaluation 
model, the grey clustering evaluation model using end-point and center-point trian-
gular possibility functions, and the grey clustering evaluation model based on mixed 
possibility functions are all grey clustering evaluation models based on different 
possibility functions. Therefore, the four kinds of common possibility functions are 
explained in this section (Deng, 1985; Liu,  2021; Liu et al., 2017). 

The possibility function of the jth criterion about the kth class is denoted by f k j (•), 
j = 1, 2, . . .  m, k = 1, 2, . . .  s. 

Definition 6.3.1 Assume that the possibility function f k j (•) of the jth criterion about 
kth class is a trapezoidal function shown in Fig. 6.1. Then f k j (•) is referred to as 
possibility function of typical form, and xk j (1), x

k 
j (2), x

k 
j (3), and x

k 
j (4) are referred 

to as turning points of f k j (•). 

The possibility function of typical form is denoted by f k 
j [xk j (1), xk j (2), xk j (3), 

xk j (4)]. 
Definition 6.3.2 Assume that the possibility function f k j (•) of the jth criterion about 
kth class does not have the first and second turning points xk j (1) and xk j (2), as shown  
in Fig. 6.2. Then f k j (•) is referred to as the possibility function of lower measure. 

The possibility function of lower measure is denoted by f k j [−, −, xk j (3), xk j (4)].

Fig. 6.1 The possibility 
function of typical form 

Fig. 6.2 The possibility 
function of lower measure 
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Fig. 6.3 The possibility 
function of moderate 
measure 

Definition 6.3.3 Assume that the possibility function f k j (•) of the jth criterion about 
kth class does not have the third turning point xk j (3), or that the second and third 
turning points xk j (2) and xk j (3) of f k j (•) coincide, as shown in Fig. 6.3. In this case, 
f k j (•) is referred to as a possibility function of moderate measure, or a triangular 
possibility function. The possibility function of moderate measure, or triangular 
possibility function, is denoted by f k j [xk j (1), xk j (2), −, xk j (4)]. 
Definition 6.3.4 Assume that the possibility function f k j (•) of the jth criterion about 
kth class does not have turning points xk j (3) and xk j (4), as shown in Fig. 6.4. Function 
f k j (•) is then referred to as a possibility function of upper measure. The possibility 
function of upper measure is denoted by f k j [xk j (1), xk j (2), −, −]. 
Proposition 6.3.1 

(1) For the possibility function of typical form as shown in Fig. 6.1, we have: 

f k j (x) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 x /∈ [xk j (1), xk j (4)] 
x−xk j (1) 

xk j (2)−xk j (1) 
x ∈ [xk j (1), xk j (2)] 

1 x ∈ [xk j (2), xk j (3)] 
xk j (4)−x 

xk j (4)−xk j (3) 
x ∈ [xk j (3), xk j (4)] 

(6.1) 

(2) For the possibility function of lower measure as shown in Fig. 6.2, we have:

Fig. 6.4 The possibility 
function of upper measure 
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f k j (x) = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

0 x /∈ [0, xk j (4)] 

1 x ∈ [0, xk j (3)] 
xk j (4)−x 

xk j (4)−xk j (3) 
x ∈ [xk j (3), xk j (4)] 

(6.2) 

(3) For the possibility function of moderate measure as shown in Fig. 6.3, we have: 

f k j (x) = 

⎧⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎩ 

0 x /∈ [xk j (1), xk j (4)] 
x−xk j (1) 

xk j (2)−xk j (1) 
x ∈ [xk j (1), xk j (2)] 

xk j (4)−x 

xk j (4)−xk j (2) 
x ∈ [xk j (2), xk j (4)] 

(6.3) 

(4) For the possibility function of upper measure as shown in Fig. 6.4, we have: 

f k j (x) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

0, x < xk j (1) 
x−xk j (1) 

xk j (2)−xk j (1) 
, x ∈ [xk j (1), xk j (2)] 

1, x ≥ xk j (2) 
(6.4) 

6.4 Variable Weight Grey Clustering Model 

Definition 6.4.1 Assume that there are n objects to be classified according to m 
criteria into s different grey classes. Classifying the ith object into the kth grey class 
according to the observed value of the ith object judged against the jth criterion, xi j  , 
i = 1, 2, . . .  n, j = 1, 2, . . .  m, is called grey clustering (Deng, 1985). 

Definition 6.4.2 

(1) For the possibility function of typical form as shown in Fig. 6.1, let  λk 
j = 

1 
2 (x

k 
j (2) + xk j (3)). 

(2) For the possibility function of lower measure as shown in Fig. 6.2, let  λk 
j = 

xk j (3)). 
(3) For the possibility function of moderate measure as shown in Fig. 6.3 and the 

possibility function of upper measure as shown in Fig. 6.4, let  λk 
j = xk j (2). 

Then λk 
j is referred to as the basic value of the jth criterion about the kth class. 

Definition 6.4.3 Assume that λk 
j is the basic value of the jth criterion about the kth 

class. Then the following formula is referred to as the weight of the jth criterion 
about kth class (Deng, 1985):
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ηk 
j = λk 

j / 
m∑
j=1 

λk 
j (6.5) 

Definition 6.4.4 Assume that xi j  , i = 1, 2, . . .  n, j = 1, 2, . . .  m is the observed 
value of object i with regard to the jth criterion, f k j (•) the possibility function and 
ηk 
j the weight of the jth criterion about the kth class, with j = 1, 2, . . .  m, k = 

1, 2, . . .  s. Then the following Formula (6.6) is referred to as the grey clustering 
coefficient of variable weight for object i to belong to the kth grey class (Deng, 
1985): 

σ k i = 
m∑
j=1 

f k j (xi j  )·ηk 
j (6.6) 

Definition 6.4.5 

(1) The following formula is referred to as the clustering coefficient vector of object 
i: 

σi = (σ 1 i , σ  2 i , . . . , σ  s i ) = ( 
m∑
j=1 

f 1 j (xi j  )·η1 
j , 

m∑
j=1 

f 2 j (xi j  )·η2 
j , . . . ,  

m∑
j=1 

f s j (xi j  )·ηs 
j ) 

(2) The following matrix is referred to as the cluster coefficient matrix:

∑
= (σ k i ) = 

⎡ 

⎢⎢⎢⎣ 

σ 1 1 σ 2 1 · · ·  σ s 1 
σ 1 2 σ 2 2 · · ·  σ s 2 
... 

... 
. . . 

... 
σ 1 n σ 2 n · · ·  σ s n 

⎤ 

⎥⎥⎥⎦ 

Definition 6.4.6 If max 
1≤k≤s

{σ k i } =  σ k∗ 

i , then it is called object i belongs to grey class 

k∗. 

The variable weight clustering method is used to study problems with criteria that 
have the same meanings and units. Otherwise, it is not appropriate to employ this 
method. Also, if the numbers of observed values of individual criteria are greatly 
different from each other, this clustering method should not be applied. 

Example 6.4.1 Assume that we are interested in the study of three economic districts 
with the added value by the primary, secondary and tertiary industries as the three 
cluster criteria. The observational values xij, i  = 1, 2, 3; j = 1, 2, 3, of the ith economic 
district with respect to the jth criterion is given in the following matrix A, where the 
unit of the three criteria is same as a hundred million RMB:
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A = (xi j  ) = 

⎡ 

⎣ 
x11 x12 x13 
x21 x22 x23 
x31 x32 x33 

⎤ 

⎦ = 

⎡ 

⎣ 
80 20 100 
40 30 30 
10 90 60 

⎤ 

⎦ 

Please try to perform a synthetic clustering based on high, medium, and low added 
values. 

Solution Assume that the possibility functions f k j (•) for the jth criterion about the 
kth class are as follows: 

f 1 1 [30, 80, −, −], f 2 1 [10, 40, −, 70], f 3 1 [−, −, 10, 30] 
f 1 2 [30, 90, −, −], f 2 2 [20, 50, −, 90], f 3 2 [−, −, 20, 40] 
f 1 2 [40, 100, −, −], f 2 3 [30, 60, −, 90], f 3 3 [−, −, 30, 50] 

It follows that: 

f 1 1 (x) = 

⎧⎨ 

⎩ 

0, x < 30 
x−30 
80−30 , 30 ≤ x < 80 
1, x > 80 

; f 2 1 (x) = 

⎧⎪⎨ 

⎪⎩ 

0, x /∈ [10, 70] 
x−10 
40−10 , 10 ≤ x < 40 
70−x 
70−40 , 40 ≤ x < 70 

f 3 1 (x) = 

⎧⎨ 

⎩ 

0, x /∈ [0, 30] 
1, 0 ≤ x < 10 
30−x 
30−10 , 10 ≤ x < 30 

; f 1 2 (x) = 

⎧⎨ 

⎩ 

0, x < 30 
x−30 
90−30 , 30 ≤ x < 90 
1, x > 90 

f 2 2 (x) = 

⎧⎪⎨ 

⎪⎩ 

0, x /∈ [20, 90] 
x−20 
50−20 , 20 ≤ x < 50 
90−x 
90−50 , 50 ≤ x < 90 

; f 3 2 (x) = 

⎧⎨ 

⎩ 

0, x /∈ [0, 40] 
1, 0 ≤ x < 20 
40−x 
40−20 , 20 ≤ x < 40 

f 1 3 (x) = 

⎧⎨ 

⎩ 

0, x < 40 
x−40 

100−40 , 40 ≤ x < 100 
1, x > 100 

; f 2 3 (x) = 

⎧⎪⎨ 

⎪⎩ 

0, x /∈ [30, 90] 
x−30 
50−30 , 30 ≤ x < 50 
90−x 
90−50 , 50 ≤ x < 90 

f 3 3 (x) = 

⎧⎨ 

⎩ 

0, x /∈ [0, 50] 
1, 0 ≤ x < 30 
50−x 
50−30 , 30 ≤ x < 50 

Therefore: 

λ1 
1 = 80, λ1 

2 = 90, λ1 
3 = 100, λ2 

1 = 40, 
λ2 
2 = 50, λ2 

3 = 60, λ3 
1 = 10, λ3 

2 = 20, λ3 
3 = 30 

By ηk 
j = λk 

j∑3 
j=1 λ

k 
j 

we have:



6.4 Variable Weight Grey Clustering Model 135

η1 
1 = 

80 

270 
, η1 

2 = 
90 

270 
, η1 

3 = 
100 

270 
, η2 

1 = 
40 

150 
, 

η2 
2 = 

50 

150 
, η2 

3 = 
60 

150 
, η3 

1 = 
10 

60 
, η3 

2 = 
20 

60 
, η3 

3 = 
30 

60 

Thus, from σ k i =
∑m 

j=1 f 
k 
j (xi j  )·ηk 

j , when i = 1 for economic district 1, we have: 

σ 1 1 = 
3∑
j=1 

f 1 j (x1 j )·η1 
j = f 1 1 (80) × 

80 

270 

+ f 1 2 (20) × 
90 

270 
+ f 1 3 (100) × 

100 

270 
= 0.6667 

Similarly, we obtained the following: 

σ 2 1 = 0, σ  3 1 = 0.3333 

Therefore, σ1 = (σ 1 1 , σ  2 1 , σ  3 1 ) = (0.6667, 0, 0.3333). 
Similarly, we can calculate the clustering coefficient vector for economic districts 

2 and 3 as done for economic district 1. 
When i = 2, σ2 = (σ 1 2 , σ  2 2 , σ  3 2 ) = (0.0593, 0.3778, 0.6667). 
When i = 3, σ3 = (σ 1 3 , σ  2 3 , σ  3 3 ) = (0.4667, 0.4, 0.1667). 
The clustering coefficient matrix is as follows:

∑
= (σ k i ) = 

⎡ 

⎣ 
σ 1 1 σ 2 1 σ 3 1 
σ 1 2 σ 2 2 σ 3 2 
σ 1 3 σ 2 3 σ 3 3 

⎤ 

⎦ = 

⎡ 

⎣ 
0.6667 0 0.3333 
0.0593 0.3778 0.6667 
0.4667 0.4 0.1667 

⎤ 

⎦ 

From max 
1≤k≤3

{σ k 1 } =  σ 1 1 = 0.6667, max 
1≤k≤3

{σ k 2 } =  σ 3 2 = 0.6667, max 
1≤k≤3

{σ k 3 } =  σ 1 3 = 
0.4667, it follows that the second economic district belongs to the low grey class 
of added value, and the first and third economic districts belong to the high grey 
class of added value. Furthermore, from the cluster coefficients σ 1 1 = 0.6667 and 
σ 1 3 = 0.4667, it follows that there still exists some differences between the first and 
third districts, even though both belong to the high grey class of added value. If the 
grey classes of added value are refined, that is, if we use five grey classes such as 
high, mid-high, medium, mid-low, and low added value, then different results can be 
obtained. 

Furthermore, to determine the possibility function for the jth criterion about the 
kth class, it is generally possible to use the background information of the problem at 
hand. When resolving practical problems, one can determine the possibility functions 
from either the angle of the objects that are to be clustered or by looking at all the 
same type objects in the whole system, not just the ones involved in the clustering. 
For example, in Example 6.4.1, we could determine the possibility functions not 
only from the three economic districts in question, but also from the same level of
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economic districts in a city, a province, or from around the nation. Therefore, the 
results of grey clustering evaluation can only be applied to a certain range, which is 
the same as the one used in the determination of relevant possibility functions. 

6.5 Fixed Weight Grey Clustering Model 

When the criteria for clustering have different meanings, dimensions (units), and 
drastically different numbers of observed data points, the variable weight clustering 
method will fail. Because the indexes with different meanings and dimensions do 
not meet the additivity. There are two ways to get around this problem. The first is to 
transform the sample of data values of all the criteria into non-dimensional values by 
applying either the initiating operator or the averaging operator, and then clustering 
the transformed data. When employing this method, all the criteria are treated equally 
so that no difference played by the criteria in the process of clustering is reflected. 
The second way to solve non additive problem is to assign each clustering criterion 
a weight ahead of the clustering process. In this section, we address this second 
method. 

Definition 6.5.1 Assume that xi j  is the observed value of object i with regard to 
criterion j, i = 1, 2, . . .  n, j = 1, 2, . . .  m, and the possibility function f k j (•) of the 
jth criterion about kth class, j = 1, 2, . . .  m, k = 1, 2, . . . ,  s. If the weight ηk 

j of the 
jth criterion about the kth class is not a function of k, j = 1, 2, . . .  m, k = 1, 2, . . . ,  s. 
That is, if for any k1, k2 ∈ {1, 2, . . . ,  s} we always have ηk1 

j = ηk2 
j , then the symbol 

ηk 
j can be written as η j , j = 1, 2, . . .  m, with the superscript k removed. In this case, 

the following Formula (6.7) is referred to as the fixed weight clustering coefficient 
for object i to belong to the kth grey class (Liu, 1993). 

σ k i = 
m∑
j=1 

f k j (xi j  )η j (6.7) 

Definition 6.5.2 In Formula (6.7), if η j = 1 m , for  j = 1, 2, . . . ,  m, then the following 
formula is referred to as the equal weight clustering coefficient for object i to belong 
to the kth grey class: 

σ k i = 
m∑
j=1 

f k j (xi j  )·η j = 
1 

m 

m∑
j=1 

f k j (xi j  ) 

The method of clustering objects by using grey fixed weight clustering coefficients 
is known as grey fixed weight clustering. The method which uses grey equal weight 
clustering coefficients is known as grey equal weight clustering. 

Grey fixed weight clustering can be carried out according to the following steps:
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Step 1: Determine the possibility function f k j (•) for the jth criterion about the 
kth class, j = 1, 2, . . .  m, k = 1, 2, . . . ,  s. 
Step 2: Determine a clustering weight η j for each criterion j = 1, 2, . . .  m. 
Step 3: Based on the possibility functions f k j (•) obtained in step 1, the clustering 
weights η j obtained in step 2, and the observed data value xi j  of object i with 
respect to criterion j, calculate the fixed weight clustering coefficients σ k i =∑m 

j=1 f 
k 
j (xi j  ), i = 1, 2, . . .  n, j = 1, 2, . . .  m, k = 1, 2, . . . ,  s. 

Step 4: If max 
1≤k≤s

{σ k i } =  σ k∗ 

i , then it is called object i belongs to grey class k
∗. 

Example 6.5.1 Let us perform a grey clustering for the ecological adaptation of 
major strains of trees commercially used in China (Li et al., 1994). China is a huge 
country with a very diverse ecological environment, and different strains of trees 
obviously require different growing conditions. The area where a certain strain of 
trees has been growing reflects the adaptability of the strain to that particular ecolog-
ical environment. We now classify ecological environmental conditions into four 
main quantification criteria: 

(1) Geographical measure; 
(2) Temperature measure; 
(3) Precipitation measure; and 
(4) Arid measure. 

Here, geographical measure is an index representing the geographical width of 
the region in which the strain of trees grows. The numerical value of this measure is 
given by the product of differences of longitudes in the directions of east and west, 
and latitudes in the directions of south and north. The temperature measure indicates 
the adaptability of the strain of trees to various temperatures. Its numerical value is 
computed by using the difference of annual average temperatures of the southern 
and the northern bounds of the growing region. The precipitation measure is the 
adaptability of the trees to precipitation conditions. Its numerical value is recorded 
as the difference between the maximum and minimum annual average precipitation 
in all areas of the growing region. The arid measure is selected to describe a strain’s 
adaptability to arid conditions in the atmosphere. Its value is the difference between 
the maximum and minimum annual average aridities in different areas of the growing 
region. 

Statistics regarding the four measures for the 17 main strains of trees planted in 
China are given in Table 6.3.

With such data it is possible to carry out grey clustering based on wide adaptability, 
medium adaptability, and narrow adaptability. 

Solution Because the meanings of the criteria are different and there exists much 
difference among the values observed, we must apply the fixed weight clustering 
method.
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Table 6.3 The four measures of the 17 main strains of trees in China 

Trees Measure 

Geo. eco 
measure 

Temp. eco 
measure 

Prec. eco 
measure 

Arid eco 
measure 

1 Camphor pine 22.50 4 0 0 

2 Korean pine 79.37 6 600 0.75 

3 Northeast China ash 144.00 7 300 0.75 

4 Diversiform-leaved 
poplar 

300.00 6.1 189 12.00 

5 Sacsaoul 456.00 12 250 12.00 

6 Chinese pine 189.00 8 700 1.5 

7 Oriental arborvitae 369.00 8 1300 2.25 

8 White  elm 1127.11 16.2 550 3.00 

9 Dryland  willow 260.00 11 600 1.00 

10 Chinese white poplar 200.00 8 600 1.25 

11 Oak 475.00 10 1000 0.75 

12 Huashan pine 314.10 8 900 0.75 

13 Masson pine 282.80 7.4 1300 0.5 

14 China fir 240.00 8 1200 0.5 

15 Bamboo 160.00 5 1000 0.25 

16 Camphor tree 270.00 8 1200 0.25 

17 Southern Asian pine 9.00 1 200 0

Step 1: Assume that the possibility functions f k j (•)( j = 1, 2, 3, 4; k = 1, 2, 3) 
for the jth criterion about the kth class are as follows: 

f 1 1 [100, 300, −, −], f 2 1 [50, 150, −, 250], f 3 1 [−, −, 50, 100] 
f 1 2 [3, 10, −, −], f 2 2 [2, 6, −, 10], f 3 2 [−, −, 15, 30] 
f 1 3 [200, 1000, −, −], f 2 3 [100, 600, −, 1100], f 3 3 [−, −, 300, 600] 
f 1 4 [0.25, 1.25, −, −], f 2 4 [0, 0.5, −, 1], f 3 4 [−, −, 0.25, 0.5] 

Step 2: Let the weights for the geographical, temperature, precipitation, and 
aridity measures be: 

η1 = 0.3, η2 = 0.25, η3 = 0.25, η4 = 0.2 

Step 3: Based on σ k i = ∑m 
j=1 f 

k 
j (xi j  )·η j ; i = 1, 2, . . . ,  17; k = 1, 2, 3 and 

Table 6.3, when i = 1,
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σ 1 1 = 
4∑
j=1 

f 1 j (x1 j )·η j = f 1 1 (22.5) × 0.3 + f 1 2 (4) × 0.25; 

+ f 1 3 (0) × 0.25 + f 1 4 (0) × 0.2 = 0.0357 

and σ 2 1 = 
m∑
j=1 

f 2 j (x1 j )·η j = 0.125, σ  3 1 = 
m∑
j=1 

f 3 j (x1 j )·η j = 1 

Therefore, 

σ1 = (σ 1 1 , σ  2 1 , σ  3 1 ) = (0.0357, 0.125, 1) 

Similarly, we can calculate and obtain: 

σ2 = (σ 1 2 , σ  2 2 , σ  3 2 ) = (0.3321, 0.6881, 0.2488) 
σ3 = (σ 1 3 , σ  2 3 , σ  3 3 ) = (0.3401, 0.6695, 0.3125) 
σ4 = (σ 1 4 , σ  2 4 , σ  3 4 ) = (0.6107, 0.2883, 0.3688) 
σ5 = (σ 1 5 , σ  2 5 , σ  3 5 ) = (0 .7656, 0.075, 0.25 ) 
σ6 = (σ 1 6 , σ  2 6 , σ  3 6 ) = (0.6683, 0.508, 0) 
σ7 = (σ 1 7 , σ  2 7 , σ  3 7 ) = (0.9286, 0.125, 0) 
σ8 = (σ 1 8 , σ  2 8 , σ  3 8 ) = (0.8594, 0.225, 0.0417) 
σ9 = (σ 1 9 , σ  2 9 , σ  3 9 ) = (0.765, 0.25, 0) 
σ10 = (σ 1 10, σ  2 10, σ  3 10) = (0.6536, 0.525, 0) 
σ11 = (σ 1 11, σ  2 11, σ  3 11) = (0.9, 0.15, 0) 
σ12 = (σ 1 12, σ  2 12, σ  3 12) = (0.7973, 0.325, 0) 
σ13 = (σ 1 13, σ  2 13, σ  3 3 ) = (0.7313, 0.3625, 0.0375) 
σ14 = (σ 1 14, σ  2 14, σ  3 4 ) = (0.6886, 0.355 , 0) 
σ15 = (σ 1 15, σ  2 5 , σ  3 15) = (0.4114, 0.6075, 0.3875 ) 
σ16 = (σ 1 16, σ  2 16, σ  3 16) = (0.6836, 0.225, 0.2) 

Furthermore, 

σ17 = (σ 1 17, σ  2 17, σ  3 7 ) = (0, 0.05,1) 

Step 4: Based on the following facts, it follows that trees with numberings 4, 5, 
6, 7, 8, 9, 10, 11, 12, 13, 14, 16, are strains with wide adaptability: 

max 
1≤k≤3

{σ k 1 } =  σ 3 1 = 1, max 
1≤k≤3

{σ k 2 } =  σ 2 2 = 0.6881, max 
1≤k≤3

{σ k 3 } =  σ 2 3 = 0.6695
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max 
1≤k≤3

{σ k 4 } =  σ 1 4 = 0.6107, max 
1≤k≤3

{σ k 5 } =  σ 1 5 = 0 .7656, max 
1≤k≤3

{σ k 6 } =  σ 1 6 = 0.6683 

max 
1≤k≤3

{σ k 7 } =  σ 1 7 = 0.9286, max 
1≤k≤3

{σ k 8 } =  σ 1 8 = 0.8594, max 
1≤k≤3

{σ k 9 } =  σ 1 9 = 0.765 

max 
1≤k≤3

{σ k 10} =  σ 1 10 = 0.6536, max 
1≤k≤3

{σ k 11} =  σ 1 11 = 0.9, max 
1≤k≤3

{σ k 12} =  σ 1 12 = 0.91 

max 
1≤k≤3

{σ k 13} =  σ 1 13 = 0.82, max 
1≤k≤3

{σ k 14} =  σ 1 14 = 0.6886, max 
1≤k≤3

{σ k 15} =  σ 2 15 = 0.6075 

max 
1≤k≤3

{σ k 16} =  σ 1 16 = 0.6836, max 
1≤k≤3

{σ k 17} =  σ 3 17 = 1 

Such strains are diversiform-leaved poplars, sacsaouls, Chinese pines, oriental 
arborvitaes, white elms, dryland willows, Chinese white poplars, oaks, Huashan 
pines, masson pines, China firs, and camphor trees. These trees have an extremely 
strong ability to adapt themselves to natural ecological environments, can grow well 
in most parts of China, and should be widely introduced. The trees named Korean 
pine, Northeast China Ash, and bamboo with numberings 2, 3, and 15, respectively, 
belong to the grey class of medium adaptability, and can be introduced to a relatively 
large area in China. Finally, trees with the names camphor pine and South Asian 
pine, and numberings 1 and 17, respectively, belong to the grey class of narrow 
adaptability, where camphor pines are found near the Northern border of China and 
South Asian pines are mainly located near the Southern border of China. 

6.6 Grey Clustering Evaluation Models Based on Mixed 
Possibility Functions 

6.6.1 Grey Clustering Evaluation Model Based on End-Point 
Mixed Possibility Functions 

The grey clustering evaluation model based on mixed end-point triangular possibility 
functions is a new model. Compared with end-point triangular possibility functions, 
the new model has changed the possibility function for grey class 1 to the possi-
bility function of lower measure, and the possibility function for grey class s to the 
possibility function of upper measure. Additionally, the new model has avoided the 
problem of extension of the bound of value of each clustering index. The Grey clus-
tering evaluation model based on mixed end-point triangular possibility function is 
suitable for situations where all grey boundaries are clear, but the most likely points 
belonging to each grey class are unknown. The modeling steps are explained below 
(Liu et al., 2015a, 2015b). 

Step1 Assume that according to the assessment requirements, the number of grey 
classes to be divided is s. Then the value range of each index is also divided into 
s classes. For example, the value range [a1, as+1] of index j can be divided into s 
small intervals:



6.6 Grey Clustering Evaluation Models Based on Mixed … 141

[a1, a2], . . . ,  [ak−1, ak], . . . ,  [as−1, as], [as, as+1] 

The value of ak(k = 2, . . . ,  s) can be determined by the actual assessment 
requirements or the qualitative research results. 

Step 2: Determine the turning point λ1 
j and λ

s 
j of [a1, a2] and [as, as+1] that 

correspond to grey classes 1 and s. At the same time, calculate the geometric 
center-point λk = (ak +ak+1)/2 for each small interval [ak, ak+1], k = 2, . . . ,  s− 
1. 
Step 3: For grey class 1 and grey class s, construct the corresponding possibility 
function of lower measure f 1 j [−, −, λ1 

j , λ
2 
j ] and the possibility function of upper 

measure f s j [λs−1 
j , λs 

j , −, −]. 
Assume that x is an observation of index j, when x ∈ [a1, λ2 

j ] or x ∈ [λs−1 
j , as+1], 

using Formulas (6.8) or (6.9), respectively: 

f 1 j (x) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

0 x /∈ [a1, λ2 
j ] 

1 x ∈ [a1, λ1 
j ] 

λ2 
j−x 

λ2 
j−λ1 

j 
x ∈ [λ1 

j , λ
2 
j ] 

; (6.8) 

or 

f s j (x) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

0 x /∈ [λs−1 
j , as+1] 

x−λs−1 
j 

λs 
j−λs−1 

j 
x ∈ [λs−1 

j , λs 
j ] 

1 x ∈ [λs 
j , as+1] 

. (6.9) 

By using these formulas, the possibility degree of f 1 j (x) or f s j (x) regarding grey 
class 1 and grey class s can be calculated. 

Step 4: For grey class k(k ∈ {2, 3, . . . ,  s − 1}), connecting point (λk 
j , 1) with 

center-point (λk−1 
j , 0) of grey class k − 1 (or turning point(λ1 

j , 0) of grey class 
1), and connecting (λk 

j , 1) with center-point (λ
k+1 
j , 0) of grey class k + 1 (or 

turning point (λs 
j , 0) of grey class s), we can get the triangular possibility func-

tion f k j [λk−1 
j , λk 

j , −, λk+1 
j ], j = 1, 2, . . .  ; m; k = 2, 3, . . . ,  s − 1 of index j 

regarding grey class k (shown in Fig. 6.5).

For index j , x is an observation of it when k = 2, 3, . . . ,  s − 1, according to 
Formula (6.10): 

f k j (x) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

0 x /∈ [λk−1 
j , λk+1 

j ] 
x−λk−1 

j 

λk 
j−λk−1 

j 
x ∈ [λk−1 

j , λk 
j ] 

λk+1 
j − λk 

j x ∈ [λk 
j , λ

k+1 
j ] 

. (6.10)
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Fig. 6.5 The end-point mixed possibility function

This formula allows the possibility degree of f k j (x) regarding grey class k(k ∈ 
{2, 3, . . . ,  s − 1}) to be calculated. 

Step 5: Determine the weight wj , j = 1, 2, . . . ,  m of each index. 
Step 6: Calculate the clustering coefficient σ k i of object i (i = 1, 2, . . . ,  n) 
regarding grey class k(k = 1, 2, . . . ,  s): 

σ k i = 
m∑
j=1 

f k j (xi j  ) · wj . (6.11) 

f k j (xi j  ) is the possibility function of index j about grey class k, wj is the weight of 
index j among comprehensive clustering. 

Step 7: By max 
1≤k≤s

{σ k i } =  σ k∗ 

i , determine that object i belongs to grey class k∗. 

When there are multiple objects belonging to the same grey class k∗, we can 
further determine individual objects’ precedence in grey class k∗ on the basis of 
the size of integrate clustering coefficients. 

6.6.2 Grey Clustering Evaluation Model Based 
on Center-Point Mixed Possibility Functions 

This section addresses an improvement in the triangular possibility function. Such an 
improvement entails changing the center-point triangular possibility function which 
corresponds to class 1 to a possibility function of lower measure, and changing the 
triangular possibility function which corresponds to class s to a possibility function 
of upper measure. This improvement allows us to avoid having to extend the bound 
of value of each clustering index. 

Definition 6.6.1 For grey class k(k ∈ {2, 3, . . . ,  s−1}), the point which most likely 
belongs to grey class k is called the center-point of grey class k.
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Fig. 6.6 Center-point mixed possibility function 

The center-point may or may not be the midpoint. This is determined by the 
maximum likelihood of such a point to belong to the grey class. 

The modeling steps of the grey cluster evaluation model using center-point 
triangular possibility functions are as follows. 

Step 1: Assume that [a j , b j ] is the range of index j . According to the evaluation 
requirements, we divide [a j , b j ] into s small intervals. Then we determine the 
turning point λ1 

j , λ
s 
j of grey classes 1 and s, and the center-point λ

2 
j , λ

3 
j , . . . , λ

s−1 
j 

of grey class k(k ∈ {2, 3, . . . ,  s − 1}), respectively. 
Step 2: Construct the corresponding lower measure possibility function 
f 1 j [−, −, λ1 

j , λ
2 
j ], and the upper measure possibility function f s j [λs−1 

j , λs 
j , −, −] 

for grey classes 1 and s (see Fig. 6.6). 

Assume x is an observation value of index j . When x ∈ [a j , λ2 
j ] or x ∈ [λs−1 

j , b j ], 
the possibility degree of f 1 j (x) or f s j (x) regarding grey classes 1 and s can be 
calculated by using Formulas (6.12) and (6.13), respectively. 

f 1 j (x) = 

⎧⎪⎨ 

⎪⎩ 

0 
1 

λ2 
j−x 

λ2 
j−λ1 

j 

x /∈ [a j , λ2 
j ] 

x ∈ [a j , λ1 
j ] 

x ∈ [λ1 
j , λ

2 
j ] 

(6.12) 

f s j (x) = 

⎧⎪⎨ 

⎪⎩ 

0 
x−λs−1 

j 

λs 
j−λs−1 

j 

1 

x /∈ [λs−1 
j , b j ] 

x ∈ [λs−1 
j , λs 

j ] 
x ∈ [λs 

j , b j ] 
(6.13) 

Step 3: For grey class k(k ∈ {2, 3, . . . ,  s − 1}), by connecting point (λk 
j , 1) with 

center-point (λk−1 
j , 0) of grey class k − 1 (or turning point (λ1 

j , 0) of grey class 
1), and by connecting (λk 

j , 1) with center-point (λ
k+1 
j , 0) of grey class k + 1 

(or turning point (λs 
j , 0) of grey class s), we get triangular possibility func-

tion f k j [λk−1 
j , λk 

j , −, λk+1 
j ], j = 1, 2, . . .  ; m; k = 2, 3, . . . ,  s − 1 of index j 

regarding grey class k (see Fig. 6.6).
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Assume that x is an observation value of index j . The degree of membership f k j (x) 
regarding grey class k(k ∈ {2, 3, . . . ,  s − 1}) can be calculated by using Formula 
(6.14). 

f k j (x) = 

⎧⎪⎪⎪⎨ 

⎪⎪⎪⎩ 

0 x /∈ [λk−1 
j , λk+1 

j ] 
x−λk−1 

j 

λk 
j−λk−1 

j 
x ∈ [λk−1 

j , λk 
j ] 

λk+1 
j −x 

λk+1 
j −λk 

j 
x ∈ [λk 

j , λ
k+1 
j ] 

(6.14) 

Step 4: Determine the weight wj , j = 1, 2, . . . ,  m of each index. 
Step 5: Compute clustering coefficient σ k i of object i (i = 1, 2, . . . ,  n) regarding 
grey class k(k = 1, 2, . . . ,  s), as seen  in  Eq. (6.15). 

σ k i = 
m∑
j=1 

f k j (xi j  ) · wj (6.15) 

f k j (xi j  ) is the possibility function of index j about class k, while wj is the weight of 
comprehensive clustering of index j . 

Step 6: By max 
1≤k≤s

{
σ k i

} = σ k∗ 

i , determine that object i belongs to grey class k∗; 

when there are multiple objects that belong to the same grey class k∗, we can 
further determine the precedence of individual objects in grey class k∗ on the 
basis of the size of integrate clustering coefficients. 

6.7 Practical Applications 

Example 6.7.1 Five suppliers A, B, C, D, E who undertake the development of 
the C919 body component for Commercial Aircraft Corporation of China Ltd. 
(COMAC) are evaluated on their performance and are divided into four classes 
including “excellent”, “good”, “medium” and “poor” (Liu et al., 2015b). 

Step 1: Set the evaluation index system for supplier performance. 

The evaluation index system for supplier performance reflects the specific require-
ments of the main manufacturers to supplier. It is an important basis for the main 
manufacturers to comprehensively evaluate the supplier and make final management 
decisions. 

Factors that affect supplier performance are very complex. Main manufactures’ 
foci on supplier performance are also not the same across different stages in C919 
development. After four rounds of expert investigation, six first-grade evaluation 
indexes are determined, including quality, cost, delivery, cooperation, technology 
and service.
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At development stage, the four second-grade indexes of quality are pass rate of 
product, quality control system, airworthiness certification ability and control of sub-
supplier. The three second-grade indexes of cost are price, logistics costs and price 
stability. The two second-grade indexes of delivery are punctuality and flexibility. 
The three second-grade indexes of cooperation are credit, information communi-
cation and cooperation intention. The five second-grade indexes of technology are 
professional R&D staff, R&D investment, number of invention patents, market share 
and technology level. The four second-grade indexes of service are quick response, 
spare part support, training and technology support. 

Among those indexes, pass rate and market share are shown in percentage. Price 
and logistics costs are quantitative indexes and the unit is ten thousand yuan. The 
smaller the indexes, the better. The unit of professional R&D staff is person, R&D 
investment is ten thousand yuan, and the unit of patent number is an item. The bigger 
the indexes, the better. Other indexes like quality control system, price stability, 
delivery punctuality, flexibility, credit, information communication, technology level, 
quick response, spare part support, training and technology support are all qualitative 
indexes. They are usually quantified by expert grade. Here, the grade is a 10-point 
scale score and decimal points are allowed. 

If supplier who have different tasks are evaluated together, most quantitative 
indexes such as price and logistics costs cannot be compared. Therefore, at this point 
we need to invite experienced experts to make qualitative assessments of quantitative 
indexes by grading them as a 10-point scale score. The evaluation index system for 
supplier performance and its weight at development stage of C919 are shown in Table 
6.4.

For the evaluation of supplier performance at development stage, we use the index 
system shown in Table 6.4. 

Step 2: According to the evaluation results, the value range of each index is 
divided into four grey classes. The value of second-grade indexes are usually 
divided into four small sections based on the sample value. Considering the 
opinion of COMAC, the effect sample matrix of second-grade index is omitted. 
Here are the actual values of six first-grade indexes that are obtained by weighted 
integration of the second-grade indexes as 10-point scale scores. The values are 
yi j  , (i = 1, 2 . . . ,  5; j = 1, 2, . . .  6) as shown in Table 6.5.

The six first-grade indexes are all in 10-point scores, and the value range is [0,10]. 
Interval [0,10] is sub-divided into 4 small intervals as [0,6), [6,7.5), [7.5,9), [9,10], 
which correspond to “poor”, “medium”, “good” and “excellent”. 

Step 3 : Determine the turning point λ1 
j = 5, λ4 

j = 9.5 of [0,6) and [9,10] 
that correspond to grey class 1 and grey class 4. At the same time, calculate the 
center-point of [6, 7.5) and [7.5, 9), λ2 

j = 6.75, λ3 
j = 8.25. 

Step 4 : By using Formulas (6.8), (6.9), and (6.10), the possibility functions of 
index j regarding grey class k(k = 1, 2, 3, 4) can be obtained as follows:
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Table 6.4 The evaluation index system for supplier performance and its weight at development 
stage 

First-grade index and its 
weight 

Second-grade index Code Unit Weight 

Quality (22%) Pass rate x1 % 6 

Quality control system x2 Qualitative 6 

Airworthiness certification 
ability 

x3 Qualitative 5 

Control of sub-supplier x4 Qualitative 5 

Cost (18%) Price x5 Ten thousand yuan 8 

Logistic cost x6 Ten thousand yuan 4 

Price stability x7 Qualitative 6 

Delivery (17%) Punctuality x8 Qualitative 12 

Flexibility x9 Qualitative 5 

Cooperation (13%) Credit x10 Qualitative 6 

Information communication x11 Qualitative 4 

Cooperation intention x12 Qualitative 3 

Technology (16%) Professional R&D staff x13 Person 3 

R&D investment x14 Ten thousand yuan 3 

Number of invention patent x15 Item 3 

Market share x16 % 3 

Technology level x17 Qualitative 4 

Service (14%) Quick response x18 Qualitative 4 

Spare part support x19 Qualitative 4 

Training x20 Qualitative 3 

Technology support x21 Qualitative 3

Table 6.5 The actual values of first-grade index of five suppliers 

Supplier Actual value yi j  

Quality Cost Delivery Technology Cooperation Service 

A 9.1 7.8 8.4 9 9.5 9.3 

B 9.3 7.5 9 9.2 9 9 

C 9 8.6 8.7 9 9.1 9.1 

D 8.9 8.5 9 9.1 9.6 9.2 

E 8.6 9 8.6 9 9.7 9.5
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Table 6.6 The clustering coefficient regarding to each grey class of five suppliers 

The clustering objects The clustering coefficient 

σ 1 i σ 2 i σ 3 i σ 4 i 
A 0 5.4 42.04 52.56 

B 0 9 34.44 56.56 

C 0 0 47.44 52.56 

D 0 0 39.28 60.72 

E 0 0 40.48 59.52

f 1 j (x) = 

⎧⎨ 

⎩ 

0 
1 

6.75−x 
1.75 

x /∈ [0, 6.75] 
x ∈ [0, 5) 

x ∈ [5, 6.75] 
f 2 j (x) = 

⎧⎨ 

⎩ 

0 
x−5 
1.75 

8.25−x 
1.5 

x /∈ [5, 8.25] 
x ∈ [5, 6.75) 

x ∈ [6.75, 8.25] 

f 3 j (x) = 

⎧⎪⎪⎨ 

⎪⎪⎩ 

0 
x−6.75 
1.5 

9.5−x 
1.25 

x /∈ [6.75, 9.5] 
x ∈ [6.75, 8.25) 

x ∈ [8.25, 9.5] 
f 4 j (x) = 

⎧⎨ 

⎩ 

0 
x−8.25 
1.25 
1 

x /∈ [8.25, 10] 
x ∈ [8.25, 9.5) 
x ∈ [9.5, 10] 

where j = 1, 2, . . .  6. 

Step 5: The weight of each index wj , j = 1, 2, 3, 4, 5, 6 is shown in Table 6.4. 
Step 6: According to Formula (6.11), the clustering coefficient regarding the grey 
class of five suppliers can be calculated (i = 1, 2, 3, 4, 5; k = 1, 2, 3, 4), as  
shown in Table 6.6. 

Step 7: As can be seen from the results of max 
1≤k≤4

{
σ k A

} = 52.56 = σ 4 A, max 
1≤k≤4

{
σ k B

} = 

56.56 = σ 4 B , max 
1≤k≤4

{
σ k C

} = 52.56 = σ 4 C , max 
1≤k≤4

{
σ k D

} = 60.72 = σ 4 D max 
1≤k≤4

{
σ k E

} = 

59.52 = σ 4 E , the performance of five suppliers A, B, C, D, E at development stage 
all reach the level of “excellent”. Among those supplier, the clustering coefficient 
of supplier D regarding grey class “excellent” is the highest and supplier E takes 
the second place. However, the difference between D and E is very small, so the 
two supplier belong to the same level. Then comes supplier B. The coefficient of 
supplier A and C regarding grey class “excellent” is the smallest. 

Further investigation reveals that the indexes belonging to class “excellent” of 
supplier D and E are technology, cooperation and service. There is much room for 
improvement in terms of quality and cost for D, and in terms of quality and delivery 
for E.. The main problem for supplier B is its high cost. Although the evaluation on 
cooperation and service is quite good, the value is still on the low side compared 
with other supplier. For supplier A and C, the main problems are cost and delivery. 
The management department of COMAC can focus on each supplier according to 
their own problems and improve their whole performance level promptly.
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In this example, the value range of each index as well as its turning point and 
center-point λ1 

j , λ2 
j , λ

3 
j , λ

4 
j , j = 1, 2, . . . ,  6 regarding different grey classes are 

determined according to the expert evaluation results of supplier A, B, C, D, and 
E. Also, the conclusion only applies to the current situation of those supplier. The 
results of grey clustering evaluation can be used with a certain scope: the scope 
used when determining the possibility function is the one that can be used in the 
evaluation results. The so called “excellent”, “good”, “medium” and “poor” classes 
are also relative. Supplier A, B, C, D, and E are all prominent enterprises in China. 
Although they are very strong, there is a big gap between their performance and that 
of similar manufacturers around the world. 

Example 6.7.2 The evaluation of a project for discipline development at a university 
will be used to illustrate the application of the grey clustering evaluation models, 
which are based on mixed center-point triangular possibility functions. 

Based on extensive surveys, there are 6 primary indicators to reflect the perfor-
mance of a discipline development project, including faculty, scientific research, 
student cultivation, discipline platform development, conditions for development 
and academic communication. The corresponding weights are 0.21, 0.24, 0.23, 0.14, 
0.1, and 0.08, respectively (see Fig. 6.7) (Jian et al., 2007; Liu,  2021). 

We convert the evaluation scores of each indicator to centesimal system for conve-
nience. The evaluation results are divided into four grey classes including “excellent”, 
“good”, “medium” and “poor”, according to requirements of the university authori-
ties. 41 projects for discipline development have been conducted from 2016 to 2020. 
All the evaluation scores of the 6 indexes of these 41 projects for discipline devel-
opment are laid in the interval of [40, 100]. We set up the turning point λ4 

j = 90 for 
grey class “excellent” and the turning point λ1 

j = 60 for grey class “poor”, as well as 
the most likely points λ3 

j = 80, λ2 
j = 70, which belong to grey classes “good” and 

“medium”.

Fig. 6.7 Evaluation 
indicator system of project 
for discipline construction 

Discipline development evaluation iδ 
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Table 6.7 The values of 6 indicators of a project for discipline development 

Indicator Faculty Scientific 
research 

Student 
cultivation 

Discipline 
platform 

Development 
conditions 

Academic 
communication 

Value 81 87 92 78 74 53 

Since the evaluation scores of each indicator are converted to centesimal system, 
the possibility function of all 6 indicators on four grey classes of “poor”, “medium”, 
“good”, and “excellent” are the same: 

f 1 j (x) = 

⎧⎨ 

⎩ 

0 
1 

70−x 
70−60 

x /∈ [40, 70] 
x ∈ [40, 60] 
x ∈ [60, 70] 

, f 2 j (x) = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

0 
x−60 
70−60 
80−x 
80−70 

x /∈ [60, 80] 

x ∈ [60, 70] 

x ∈ [70, 80] 

f 3 j (x) = 

⎧⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎩ 

0 
x−70 
80−70 
90−x 
90−80 

x /∈ [70, 90] 

x ∈ [70, 80] 

x ∈ [80, 90] 

, f 4 j (x) = 

⎧⎨ 

⎩ 

0 
x−80 
90−80 

1 

x /∈ [80, 100] 
x ∈ [80, 90] 
x ∈ [90, 100] 

where the possibility function of each indicator for grey class “poor” is a possibility 
function of lower measure, each indicator for grey class “excellent” is a possibility 
function of upper measure, and each indicator for grey classes “medium” and “good” 
are triangular possibility functions. The values of the 6 indicators for a university’s 
discipline development project are shown in Table 6.7. 

The values of possibility functions for the different grey classes of each indicator 
can be calculated by using f 1 j (x) f 2 j (x) f 3 j (x) f 4 j (x), j = 1, 2, . . . ,  6. The grey 
clustering coefficient δi can be calculated by using Formula (6.7). The outcomes are 
shown in Table 6.8. 

Based on the results in Table 6.8, we can confirm that the project belongs to 
grey class “excellent” according to max 

1≤k≤4

{
δk i

} = δ4 i = 0.419. Therefore, the effect 
of the project for discipline development is remarkable. But the grey clustering 
coefficient which suggests that the project belongs to grey class “good” is δ3 i = 
0.413. This result is very close to δ4 i . It also shows that the execution effect of the

Table 6.8 Grey clustering coefficients of each indicator for different grey classes 

Grey class x1 x2 x3 x4 x5 x6 δi 

Excellent 0.1 0.7 1.0 0 0 0 0.419 

Good 0.9 0.3 0 0.8 0.4 0 0.413 

Medium 0 0 0 0.2 0.6 0 0.088 

Poor 0 0 0 0 0 1.0 0.080 
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project for discipline development is situated between grey classes “excellent” and 
“good”. As for the sub-indicators, the indicator on student cultivation belongs to 
grey class “excellent”, and reached a high level. The indicator on scientific research 
is situated between grey classes “good” and “excellent”, but close to grey class 
“excellent”. The indicators on faculty and discipline platform development basically 
belong to grey class “good”, which indicates that the implementation effect of these 
two indicators are satisfactory. The indicator on development conditions is situated 
between grey classes “good” and “medium”, but closer to grey class “medium”. The 
indicator on academic communication belongs to grey class “poor “, which suggests 
that there are still significant shortcomings in development conditions and academic 
communication that require further strengthening. 

The grey cluster evaluation model based on mixed possibility function is more 
suitable to solve problems of poor information clustering evaluation. On the other 
hand, grey cluster evaluation model using center-point triangular possibility functions 
is suitable for problems where it is relatively easy to judge the most likely points 
belonging to each grey class, but the grey boundaries are not clear. Finally, grey 
cluster evaluation model using end-point triangular possibility functions is suitable 
for situations where all grey boundaries are clear, but the most likely points belonging 
to each grey class are unknown. 
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Chapter 7 
Series of GM Models 

7.1 Introduction 

Model GM(1,1) is the basic model of grey prediction theory and has been used widely 
since its development in the early 1980s. Grey system theory is a new methodology 
that focuses on uncertain problems involving small data and poor information. Incom-
plete and inaccurate information is the basic characteristic of uncertainty systems. 
In the case of incomplete information and inaccurate data, it is impossible to pursue 
a refined model (Liu et al., 2012). Professor Zadeh’s incompatibility principle also 
clearly states that, when the complexity of the system grows, our ability to make an 
accurate and significant description of a system’s characteristics decreases until it 
reaches a threshold value that, if it exceeded, accuracy and significance will become 
mutually exclusive characteristics (Zadeh, 1994). The incompatibility principle tells 
us that pursuing a refinement model one-sidedly will reduce the feasibility and signif-
icance of the results. A refined model is not an effective means address complex 
systems. 

In the last 40 years, much research has been carried out on the practical appli-
cations of Model GM(1,1), and new research results emerge continuously. Recent 
studies on model GM(1,1) are focusing on how to further optimize the model and 
improve its simulated and predictive results. Such research can be roughly divided 
into the following areas: (1) research on the nature and characteristics of model 
GM(1,1) (Ji et al., 2001); (2) studies about initial value selection (Dang et al., 2005); 
(3) research on the optimization of model parameters (Xiao, 2000); (4) attempts to 
improve the simulation accuracy of the model by recreating the background value 
(Li & Dai, 2004; Tan, 2005); (5) attempts to optimize the model through different 
modeling methods (Song et al., 2002; Wang, 2003); (6) research on discrete model 
GM(1,1) (Xie & Liu, 2009; Xie & Liu, 2005); (7) modeling for non-equidistant 
sequence and model optimization (Luo 2010; Wang et al., 2008); (8) research on 
the application bound of different models (Liu & Deng, 2000); (9) research on frac-
tional order (Wu et al., 2013; Mao et al., 2016) or self-memory grey model (Guo
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et al., 2015) and research combining a grey system model with other soft computing 
methods to improve the accuracy of the model (Salmeron, 2010; Zhang, 2007). 

The buffer operator proposed in 1991 (Liu, 1991) has attracted much research 
attention in recent years. Buffer operator is essentially a method for processing raw 
data, rather than a technique to improve the degree of accuracy of the GM(1,1) 
model simulation and prediction. During the period of raw data collection, a system 
is likely to suffer interference from external shocks, which means that such data will 
be distorted and unlikely to reflect the operation of the system’s behavior. In such 
case, researchers can choose or construct a suitable buffer operator by following a 
qualitative analysis of the data to eliminate the impact of the distorted data sequence 
and keep the true nature of the data. 

The above-mentioned studies have played a positive role in improving the degree 
of accuracy of the simulation and prediction of model GM(1, 1), and in helping 
scholars engaged in applied research make appropriate selection and use of grey 
prediction models. 

7.2 The Four Basic Forms of GM(1,1) 

In this section we present definitions of four basic forms of model GM(1,1), including 
Even Grey Model (EGM), Original Difference Grey Model (ODGM), Even Differ-
ence Grey Model (EDGM) and Discrete Grey Model (DGM). The properties and 
characteristics of different models are discussed in-depth (Liu et al., 2015a, 2017; 
Liu, 2021; ).  

7.2.1 The Basic Forms of Model GM(1,1) 

Definition 7.2.1 Let X (0) = (x (0) (1), x (0) (2), . . . ,  x (0) (n)), x (0) (k) ≥ 0, X (1) be the 
1-AGO sequence of X (0); that is 

X (1) = [x (1) (1), x (1) (2), . . . ,  x (1) (n)] 

where x (1) (k) =Σk 
i=1 x

(0) (i ), k = 1, 2, . . .  n. Then 

x (0) (k) + ax (1) (k) = b (7.1) 

is referred to as the original form of model GM(1,1), which is a difference equation. 
The parameter vector â = [a, b]T of formula (7.1) can be estimated using the 

least square method, which satisfies 

â = (BT B)−1 BT Y (7.2)
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where 

B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

− x (1) (2) 1 
− x (1) (3) 1 

... 
... 

− x (1) (n) 1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x (0) (2) 
x (0) (3) 

... 
x (0) (n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

(7.3) 

Definition 7.2.2 Based on the original form of model GM(1,1) and formula (7.2), 
which is used to estimate the model’s parameters, then the model that takes the 
solution of the original difference Eq. (7.1) as the time response formula is called the 
original difference form of model GM(1,1), and is referred to as Original Difference 
Grey Model(ODGM) for short (Liu et al., 2015b). 

Definition 7.2.3 Let X (0) , X (1) and, just like Definition 7.2.1, let  

Z (1) = (z(1) (2), z(1) (3), . . . ,  z(1) (n)), 

where z(1) (k) = 1 2 (x
(1) (k) + x (1) (k − 1)), then 

x (0) (k) + az(1) (k) = b (7.4) 

is referred to as the even form of model GM(1,1). 
The even form of model GM(1,1) is also essentially a difference equation. The 

parameter vector of formula (7.4) can also be estimated with formula (7.2), but it 
should be noted that the elements of matrix B are different from those in formula 
(7.3), which is 

B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

− z(1) (2) 1 
− z(1) (3) 1 

... 
... 

− z(1) (n) 1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

(7.5) 

Definition 7.2.4 The following differential equation 

d x (1) 

dt  
+ a x (1) = b (7.6) 

is called a shadow equation of the even form x (0) (k)+az(1) (k) = b of model GM(1,1). 

Definition 7.2.5 Replace matrix B of formula (7.2) with (7.5), according to param-
eter vector â = [a, b]T of the least squares estimator of (7.6) and the solution of 
whitenization Eq. (7.6), and model the difference, differential hybrid model of the 
time response formula of GM(1,1). This is called the even hybrid form of model
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GM(1,1), and is referred to as Even Grey Model (EGM) for short (Deng, 1982, 
1985). 

Definition 7.2.6 The parameter −a of Even GM(1,1) is called development index 
and b is called grey actuating quantity. The development index reflects the trend of 
x̂ (1) and x̂ (0) . 

Even Model GM(1,1) is the grey prediction model proposed firstly by Professor 
Deng Julong, and is currently the most influential, widely used form. When 
researchers mention model GM(1,1) they are often referring to EGM. 

Definition 7.2.7 Based on the even form of model GM(1,1) and the estimated model 
parameters, then the model that takes the solution of the even difference Eq. (7.4) as  
the time response formula is called the even difference form of model GM(1,1), and 
is referred to as Even Difference Grey Model (EDGM) for short (Liu et al., 2015b). 

Definition 7.2.8 The difference equation as follows 

x (1) (k + 1) = β1x
(1) (k) + β2 (7.7) 

is called a discrete form of model GM(1,1), and is referred to as Discrete Grey Model 
(DGM) for short (Xie & Liu, 2005). 

The parameter vector β̂ = [β1, β2]T in Eq. (7.7) is similar to formula (7.2), where 

B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x (1) (1) 
x (1) (2) 

... 
x (1) (n − 1) 

1 
1 
... 
1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x (1) (2) 
x (1) (3) 

... 
x (1) (n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

. 

The four different models of GM(1,1) use only the system’s behavior data 
sequence to model the predictive models and belong to the simple and practical 
modeling method with a single sequence. In the case of time series data, only a 
regular time variables are involved; In the case of horizontal sequence data, only a 
regular object sequence number variables are involved, and other explanatory vari-
ables are not involved. GM(1,1) model is a modeling method which is relatively 
simple to apply and can mine valuable development and change information, so it is 
widely used. 

7.2.2 Properties and Characteristics of the Basic Model 

Theorem 7.2.1 The time response sequence of the Even Model GM(1,1) is as follows: 

x̂ (1) 
(k) =

(

x (0) (1) − 
b 

a

)

e−a(k−1) + 
b 

a 
, k = 1, 2, . . .  n (7.8)
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Proof The solution of whitenization or shadow equation d x
(1) 

dt  + a x (1) = b is 

x (1) (t) = C e−at + 
b 

a 
. (7.9) 

When t = 1, we let x (1) (1) = x (0) (1), and feed into Eq. (7.9); we can obtain 
C = [x(0) (1) − b a

]
ea . After that we take C into Eq. (7.9) and can get 

x̂ (1) 
(t) =

(

x (0) (1) − 
b 

a

)

e−a(t−1) + 
b 

a 
. (7.10) 

Equation (7.8) is the discrete form of Eq. (7.10). From Eq. (7.8)’s regressive 
reduction formula 

x̂ (0) 
(k) = α(1) x̂ (1) 

(k) = x̂ (1) 
(k) − x̂ (1) 

(k − 1), k = 1, 2, · · · n, 

we can obtain the time response formula of X(0), that is 

x̂ (0) (k) = (1 − ea )
(

x (0) (1) − 
b 

a

)

e−a(k−1) , k = 1, 2, · · ·  n (7.11) 

Theorem 7.2.2 The time response formula of formula (7.7) of the Discrete Model 
GM(1,1) is 

x̂ (1) (k) =
[

x(0) (1) − 
β2 

1−β1

]

βk 
1 +

β2 

1 − β1 
(7.12) 

Proof The general solution of the difference Eq. (7.13) 

x (1) (k + 1) = Ax (1) (k) + B (7.13) 

is 

x (1) (k) = CAk + B 

1 − A 
, (7.14) 

where C is an arbitrary constant and can be defined by the initial conditions. 
Formula(7.7) and (7.14) are exactly the same difference equation. Let A = 

β1, B = β2, then 

x (1) (k) = Cβk 
1 +

β2 

1 − β1 
. (7.15)



158 7 Series of GM Models

When k = 0, let x (1) (0) = x (0) (1), and feed into formula (7.15), we can get 

C =
[
x(0) (1) − β2 

1−β1

]
. Then take C into formula (7.15) and we can obtain formula 

(7.12). 
From formula (7.12)’s regressive reduction formula 

x̂ (0) 
(k) = α(1) x̂ (1) 

(k) = x̂ (1) 
(k) − x̂ (1) 

(k − 1), k = 1, 2, . . .  n, 

we can obtain the time response formula of X(0), that is 

x̂ (0) (k) = (β1 − 1)
[

x(0) (1) − β2 

1 − β1

]

βk−1 
1 . (7.16) 

Theorem 7.2.3 The time response formula of Original Difference Model GM(1,1) 
is 

x̂ (1) 
(k) =

(

x (0) (1) − 
b 

a

)(
1 

1 + a

)k 

+ 
b 

a 
(7.17) 

Proof From the original form (7.1) of model GM(1,1) we can get 

x (1) (k + 1) − x (1) (k) + ax (1) (k + 1) = b. (7.18) 

After transposition, we obtain 

x (1) (k + 1) =
(

1 

1 + a

)

x (1) (k) + b 

1 + a 
. 

Contrast with the difference Eq. (7.13), when we feed A = 1 
1+a , B = b 

1+a into 
Eq. (7.14), we can obtain 

x (1) (k) = C
(

1 

1 + a

)k 

+ 
b 

a 
(7.19) 

When k = 0, let x (1) (0) = x (0) (1), feed into formula (7.18) and get C =[
x(0) (1) − b a

]
. Then we feed C into formula (7.19) and can obtain formula (7.17). 

From formula (7.17)’s regressive reduction formula 

x̂ (0) 
(k) = α(1) x̂ (1) 

(k) = x̂ (1) 
(k) − x̂ (1) 

(k − 1), k = 1, 2, · · · n, 

we can obtain the time response formula of X(0), which is 

x̂ (0) 
(k) =

(

x (0) (1) − 
b 

a

)(
1 

1 + a

)k 

+ 
b 

a 
−
[(

x (0) (1) − 
b 

a

)(
1 

1 + a

)k−1 

+ 
b 

a

]

.
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That is 

x̂ (0) (k) = (−a)

(

x (0) (1) − 
b 

a

)(
1 

1 + a

)k 

(7.20) 

Theorem 7.2.4 The time response formula of Even Difference Model GM(1,1) is 

x (1) (k) =
(

x (0) (1) − 
b 

a

)(
1 − 0.5a 
1 + 0.5a

)k 

+ 
b 

a 
(7.21) 

Proof From the even form (7.4) of model GM(1,1) we can get 

x (1) (k + 1) − x (1) (k) + a
(
x (1) (k + 1) + x (1) (k) 

2

)

= b. 

After transposition, we obtain 

x (1) (k + 1) =
(
1 − 0.5a 
1 + 0.5a

)

x (1) (k) + b 

1 + 0.5a 
. 

Contrast with the difference Eq. (7.13), and feed A = 1−0.5a 
1+0.5a , B = b 

1+0.5a into 
formula (7.14). We can obtain 

x (1) (k) = C
(
2 − a 
2 + a

)k 

+ 
b 

a 
(7.22) 

When k = 0, let x (1) (0) = x (0) (1), feed it into formula (7.22) and get C =[
x(0) (1) − b a

]
. Then feed C into formula (7.22) and we can obtain formula (7.21). 

From formula (7.21)’s regressive reduction formula 

x̂ (0) 
(k) = α(1) x̂ (1) 

(k) = x̂ (1) 
(k) − x̂ (1) 

(k − 1), k = 1, 2, . . .  n, 

we can obtain the time response formula of X(0), which is 

x̂ (0) (k) =
(

x (0) (1) − 
b 

a

)(
1 − 0.5a 
1 + 0.5a

)k 

+ 
b 

a 

−
[(

x (0) (1) − 
b 

a

)(
1 − 0.5a 
1 + 0.5a

)k−1 

+ 
b 

a

]

. 

That is 

x̂ (0) (k) =
( −a 

1 − 0.5a

)(

x (0) (1) − 
b 

a

)(
1 − 0.5a 
1 + 0.5a

)k 

(7.23)
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Lemma 7.2.1 When −a → 0+, 1−0.5a 
1+0.5a ≈ e−a . 

Proof The Maclaurin expansions of e−a and 1−0.5a 
1+0.5a are as follows: 

e−a = 1 − a + 
a2 

2! − 
a3 

3! +  · · ·  +  (−1)n 
an 

n! + o(an ) 

1 − 0.5a 
1 + 0.5a 

= 1 − a + 
a2 

2 
− 

a3 

22 
+  · · ·  +  (−1)n+1 a

n+1 

2n 
+ o(an+1 ) 

As n = 3, then there is Δ = e−a − 1−0.5a 
1+0.5a = − a3 

6 + a3 4 = a3 

12 , therefore, when 
−a → 0+, 1−0.5a 

1+0.5a ≈ e−a . 

Theorem 7.2.5 When−a → 0+, Even Model GM(1,1) and Discrete Model GM(1,1) 
are equivalent. 

Proof From the even form (7.4) of Model GM(1,1) 

x (1) (k + 1) =
(
1 − 0.5a 
1 + 0.5a

)

x (1) (k) + b 

1 + 0.5a 
, 

and contrast with the discrete form (7.7), we can obtain β1 = 1−0.5a 
1+0.5a , β2 = b 

1+0.5a 
and 

a = 
2(1 − β1) 
1 + β1 

, b = 2β2 

1 + β1 
, 
b 

a 
= β2 

1 − β1 
. (7.24) 

Take b a = β2 

1−β1 
into formula (7.8), we can get 

x̂ (1) (k) =
[

x(0) (1) − β2 

1 − β1

]

e−a(k−1) + 
β2 

1 − β1 
, k = 1, 2, . . .  n (7.25) 

It is known from Lemma 1 that when −a → 0+, therefore, Even Model GM(1,1) 
and Discrete Model GM(1,1) are equivalent. 

Analogously, we can prove that when −a → 0+, the four basic forms of 
model GM(1,1), namely Even Model GM(1,1) (EGM), Original Difference Model 
GM(1,1)(ODGM), Even Difference Model GM(1,1)(EDGM) and Discrete Model 
GM(1,1)(DGM) are pairwise equivalent. However, the degree of approximation 
between different forms is a difference. This difference leads to different forms 
of Model GM(1,1) being suitable for different situations, and it also offers a variety 
of possible options for the actual modeling process. 

Theorem 7.2.6 Original Difference Model GM(1,1)(ODGM), Even Difference 
Model GM(1,1) (EDGM) and Discrete Model GM(1,1) (DGM) can all accurately 
simulate homogeneous exponential sequences.
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Since the time response formulas of Original Difference Model GM(1,1)(ODGM), 
Even Difference GM(1,1) model (EDGM) and Discrete GM(1,1) model (DGM) are 
all geometric sequences, they can accurately simulate homogeneous exponential 
sequences. 

In the basic forms of GM(1,1), the development coefficient (−a) reflects the 
development states of x̂ (1) and x̂ (0). In general, the variables that act upon the system 
of interest should be external or pre-defined. Because GM(1,1) is a kind of model 
constructed on a single sequence, it uses only the behavioral sequence (also referred 
to as output sequence or background values) of the system without considering any 
externally acting sequences (also referred to as input sequences, or driving quantities). 
The grey action quantity b in the basic forms of GM(1,1) is a value derived from the 
background values. It reflects changes contained in the data and its exact intension 
is grey. This quantity realizes the extension of the relevant intension. Its existence 
distinguishes grey systems modeling from the general input–output (or black-box) 
modeling. It is also an important test stone of separating the thoughts of grey systems 
and those of grey boxes. 

7.3 Suitable Ranges of Different GM(1,1) 

The suitable sequences of different basic models of GM(1,1) (Liu et al., 2015a, 2015b) 
and the applicable ranges of EGM (Liu & Deng, 2000) are studied by simulation 
and analysis with homogeneous exponential sequences, non-exponential increasing 
sequences, and vibration sequences. It can provide reference and a basis for people 
to choose the correct model in the actual modeling process. 

7.3.1 Suitable Sequences of Different GM(1,1) 

For further study of the suitable sequences of four basic forms of model GM(1,1), 
we let 

−a = 0.01, 0.02, 0.03, 0.04, 0.05, 0.1, 0.15, 0.2, 0.25, 
0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.6, 0.65, 0.7, 0.8, 0.9 
1.0, 1.1, 1.2, 1.5, 1.8 

and conduct simulation analysis, respectively. Let k = 1, 2, 3, 4, 5, with the homoge-
neous exponential function x (0) 

i (k) = e−ak , and accurate to six decimal places. Then 
we can get the corresponding sequences as follows: 

− a = 0.01, X (0) 
1 = (x (0) 

1 (1), x (0) 
1 (2), x (0) 

1 (3), x (0) 
1 (4), x (0) 

1 (5)) 
= (1.010050, 1.020201, 1.030455, 1.040811, 1.051271)
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− a = 0.02, X (0) 
2 = (x (0) 

2 (1), x (0) 
2 (2), x (0) 

2 (3), x (0) 
2 (4), x (0) 

2 (5)) 
= (1.020201, 1.040811, 1.061837, 1.083287, 1.105171) 

· · ·  · · ·  · · ·  · · ·  · · ·  · · ·  · · ·  · · ·  · · ·  · · ·  · · ·  · · ·  
· · ·  · · ·  · · ·  · · ·  · · ·  

− a = 1.8, X (0) 
25 = (x (0) 

25 (1), x
(0) 
25 (2), x

(0) 
25 (3), x

(0) 
25 (4), x

(0) 
25 (5)) 

= (6.049647, 36.59823, 221.4064, 1339.431, 8103.084) .  

We use X (0) 
1 , X

(0) 
2 , …,  X (0) 

25 as the original data to establish Even Model 
GM(1,1)(EGM), Original Difference Model GM(1,1)(ODGM), Even Difference 
Model GM(1,1)(EDGM) and Discrete Model GM(1,1)(DGM), respectively. We 
can find that Original Difference Model GM(1,1)(ODGM), Even Difference 
Model GM(1,1)(EDGM) and Discrete Model GM(1,1)(DGM) can accurately 
simulate homogeneous exponential sequence, which confirms the conclusions of 
Theorem 7.2.7 once again. Using Even Model GM(1,1)(EGM) to simulate X (0) 

1 , 
X (0) 
2 , …,  X (0) 

25 , it is fond that with the increasing of −a, the error will also increase. 
Table 7.1 shows the average relative error using four kinds of model GM(1,1) to 
simulate the homogeneous exponential sequence X (0) 

1 , X
(0) 
2 , …,  X (0) 

25 .
In Table 7.1, we can see that the small errors of Original Difference Model 

GM(1,1)(ODGM), Even Difference Model GM(1,1)(EDGM) and Discrete Model 
GM(1,1)(DGM) which simulate the homogeneous exponential sequence are all 
caused by round-off errors. In fact, the three models can all accurately simulate 
the homogeneous exponential sequence. 

Then, we limited the range of random numbers at first, and got the non-exponential 
increasing sequence Y (0) 1 , Y (0) 2 , …,  Y (0) 25 randomly generated by the homogeneous 
exponential sequence X (0) 

1 , X
(0) 
2 , …,  X (0) 

25 , along with the vibration sequenceZ
(0) 
1 , 

Z (0) 
2 ,…,  Z (0) 

25 . With that, when k = 2, 3, . . . ,  5, z(0) 
i (k) <  z(0) 

i (k−1), i = 1, 2, . . . ,  25 
will arise in the sequence data but there is a growth trend as a whole, both are equally 
accurate to six decimal places. Then we build Even Model GM(1,1)(EGM), Original 
Difference Model GM(1,1)(ODGM), Even Difference Model GM(1,1)(EDGM) and 
Discrete Model GM(1,1)(DGM) using sequences Y (0) 1 , Y (0) 2 , …,  Y (0) 25 and Z

(0) 
1 , Z

(0) 
2 , 

…, Z (0) 
25 respectively. The errors we can see are in Tables 7.2 and 7.4. Due to limited 

space, the generating data are not shown here.
From Table 7.2 we can see that four kinds of model GM(1,1) can all simulate 

the non-exponential increasing sequence to a certain degree. Generally speaking, the 
simulation error will increase with the increasing of the development index. In most 
cases, the simulation error of the difference, differential hybrid form of Even Model 
GM(1,1)(EGM), is smaller than that of the three discrete forms of Original Difference 
Model GM(1,1)(ODGM), Even Difference Model GM(1,1)(EDGM) and Discrete 
Model GM(1,1)(DGM). As the non-exponential increasing sequence is closer to the 
homogeneous exponential sequence, the simulation accuracy of the three discrete 
models is higher than. When the non-exponential increasing sequence is close to the 
homogeneous exponential sequence to a certain extent, the simulation accuracy of
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Table 7.1 The simulation errors of the homogeneous exponential sequence of four kinds of 
GM(1,1) (%) 

Code −a EGM DGM ODGM EDGM 

X (0) 
1 0.01 0.000849 0.000027 0.000027 0.000027 

X (0) 
2 0.02 0.003468 0.000013 0.000013 0.000013 

X (0) 
3 0.03 0.007951 0.000018 0.000018 0.000018 

X (0) 
4 0.04 0.014403 0.000004 0.000004 0.000003 

X (0) 
5 0.05 0.022922 0.000016 0.000016 0.000016 

X (0) 
6 0.10 0.100058 0.000008 0.000008 0.000008 

X (0) 
7 0.15 0.244034 0.000009 0.000009 0.000009 

X (0) 
8 0.20 0.467588 0.000003 0.000003 0.000007 

X (0) 
9 0.25 0.783590 0.000005 0.000005 0.000006 

X (0) 
10 0.30 1.205144 0.000004 0.000004 0.000010 

X (0) 
11 0.35 1.745610 0.000006 0.000006 0.000010 

X (0) 
12 0.40 2.418758 0.000004 0.000004 0.000010 

X (0) 
13 0.45 3.238864 0.000007 0.000007 0.000008 

X (0) 
14 0.50 4.220851 0.000011 0.000011 0.000008 

X (0) 
15 0.55 5.380507 0.000003 0.000003 0.000003 

X (0) 
16 0.60 6.734574 0.000016 0.000016 0.000011 

X (0) 
17 0.65 8.301040 0.000009 0.000009 0.000006 

X (0) 
18 0.70 10.099355 0.000021 0.000021 0.000021 

X (0) 
19 0.80 14.478513 0.000015 0.000015 0.000015 

X (0) 
20 0.90 20.068449 0.000016 0.000016 0.000022 

X (0) 
21 1.00 27.110835 0.000047 0.000047 0.000047 

X (0) 
22 1.10 35.908115 0.000040 0.000040 0.000035 

X (0) 
23 1.20 46.844843 0.000105 0.000105 0.000105 

X (0) 
24 1.50 98.188500 0.000129 0.000129 0.000129 

X (0) 
25 1.80 – 0.000433 0.000433 0.000433

the discrete models will be smaller than that of Even Model GM(1,1)(EGM). From 
the simulation results of the three discrete models GM(1,1), we can see that with 
the increasing of the development coefficient, the simulation accuracy of Original 
Difference Model GM(1,1)(ODGM), and Even Difference Model GM(1,1)(EDGM) 
is higher than that of Discrete Model GM(1,1)(DGM) in most cases. The statistics 
for sorting the simulation error of different models with the sequence Y (0) 1 , Y (0) 2 , …,
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Table 7.2 The simulation errors of the non-exponential increasing sequence of four kinds of 
GM(1,1) (%) 

Code – ,  –a, + EGM DGM ODGM EDGM 

Y (0) 1 0.01 0.030994 0.030429 0.030432 0.030430 

Y (0) 2 0.02 0.658978 0.659039 0.660095 0.659572 

Y (0) 3 0.03 0.495833 0.495773 0.495768 0.495770 

Y (0) 4 0.04 1.010474 1.010308 1.010329 1.010319 

Y (0) 5 0.05 1.550886 1.550331 1.550468 1.550401 

Y (0) 6 0.10 1.626294 1.704980 1.690324 1.697211 

Y (0) 7 0.15 1.343565 1.457800 1.458993 1.458442 

Y (0) 8 0.20 5.155856 5.100486 5.229480 5.171925 

Y (0) 9 0.25 4.353253 4.893857 4.743792 4.808361 

Y (0) 10 0.30 4.736323 5.345755 5.168529 5.244168 

Y (0) 11 0.35 5.236438 5.377225 5.192273 5.269577 

Y (0) 12 0.40 3.603875 4.166958 4.044567 4.096904 

Y (0) 13 0.45 12.834336 15.364230 13.520184 14.246584 

Y (0) 14 0.50 7.396770 8.276073 7.878017 8.044898 

Y (0) 15 0.55 10.218727 10.084749 10.188912 10.143461 

Y (0) 16 0.60 21.073070 23.709858 21.610863 22.440905 

Y (0) 17 0.65 6.637022 7.906483 7.629068 7.731359 

Y (0) 18 0.70 9.088900 11.000565 10.479505 10.677398 

Y (0) 19 0.80 21.156265 30.606589 28.554915 29.245194 

Y (0) 20 0.90 14.441947 20.378328 17.104000 18.188008 

Y (0) 21 1.00 11.685913 18.463203 17.357496 17.734931 

Y (0) 22 1.10 13.011857 20.620317 19.396248 19.782271 

Y (0) 23 1.20 17.176472 27.929743 26.163490 26.624283 

Y (0) 24 1.50 26.327218 51.915584 50.006882 50.471089 

Y (0) 25 1.80 62.460946 75.503705 73.434001 74.070128

Y (0) 25 in ascending order are presented in Table 7.2. Table 7.3 shows the statistical 
results.

As can be seen from Table 7.3, among the four kinds of models, Even Model 
GM(1,1)(EGM) is the most suitable for modeling with a non-exponential increasing 
sequence, followed by the Original Differential Model GM(1,1) (ODGM) and 
Even Difference Model GM(1,1) (EDGM). The error is slightly larger when using
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Table 7.3 Statistics for sorting the simulation error of the non-exponential increasing sequence of 
four kinds of model GM(1,1) 

Error sorting EGM DGM ODGM EDGM 

1 18 5 2 0 

2 2 2 15 6 

3 0 1 5 19 

4 5 17 3 0 

Table 7.4 Simulation errors of the vibration sequence of four kinds of model GM(1,1) 

Code −, −a, + EGM DGM ODGM EDGM 

Z (0) 
1 0.01 0.298392 0.299400 0.299118 0.299258 

Z (0) 
2 0.02 0.501223 0.505800 0.504877 0.505331 

Z (0) 
3 0.03 0.369630 0.378773 0.379089 0.378935 

Z (0) 
4 0.04 2.583662 2.586760 2.572109 2.579300 

Z (0) 
5 0.05 2.928035 2.953655 2.899369 2.925619 

Z (0) 
6 0.10 4.759929 4.791858 4.825226 4.807851 

Z (0) 
7 0.15 3.802630 3.770562 3.776330 3.773545 

Z (0) 
8 0.20 11.723459 11.946525 11.393483 11.642630 

Z (0) 
9 0.25 14.895391 14.979357 15.229595 15.130729 

Z (0) 
10 0.30 17.953543 17.992976 18.397577 18.241183 

Z (0) 
11 0.35 7.299184 8.980062 8.537865 8.708603 

Z (0) 
12 0.40 11.474779 11.519781 11.693309 11.619287 

Z (0) 
13 0.45 11.988111 12.321804 12.261075 12.286039 

Z (0) 
14 0.50 12.728220 11.753460 12.270432 12.038094 

Z (0) 
15 0.55 10.636507 10.285910 10.897796 10.623904 

Z (0) 
16 0.60 13.393234 13.515007 13.006751 13.227910 

Z (0) 
17 0.65 15.420377 15.457643 14.690315 15.004381 

Z (0) 
18 0.70 16.304197 16.365096 15.735103 15.998031 

Z (0) 
19 0.80 14.542100 14.579829 14.110548 14.310293 

Z (0) 
20 0.90 33.798587 33.160101 34.928437 34.293058 

Z (0) 
21 1.00 22.586380 22.384127 22.016157 22.145609 

Z (0) 
22 1.10 34.305920 34.481612 36.023522 35.484180 

Z (0) 
23 1.20 23.591927 24.133298 23.323921 21.511839 

Z (0) 
24 1.50 40.373380 40.475348 42.698005 41.917026 

Z (0) 
25 1.80 30.380522 54.851229 45.724311 48.579850
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Table 7.5 Statistics for sorting the simulation error of the vibration sequence of four kinds of model 
GM(1,1) 

Error sorting EGM DGM ODGM EDGM 

1 12 4 8 1 

2 1 7 6 11 

3 9 1 2 13 

4 3 13 9 0 

the Discrete Model GM(1,1)(DGM) to simulate the non-exponential increasing 
sequence. 

In theory, any simple model which describes a monotonous trend struggles to 
describe a change in the vibration sequence. Therefore, we add the limiting condition 
of the random number, then the research range is the vibration sequence Z (0) 

1 , Z
(0) 
2 ,…, 

Z (0) 
25 . With that, when k = 2, 3, . . . ,  5, z(0) 

i (k) <  z(0) 
i (k − 1), i = 1, 2, . . . ,  25 

will arise in the sequence data, but there is a growth trend as a whole. We can see 
from Table 7.4 that, for this specific vibration sequence, the simulation error of the 
four kinds of models is significantlyc higher than the non-exponential increasing 
sequence. Similar to the situation of the non-exponential increasing sequence, in 
most cases the simulation error of Even Model GM(1,1)(EGM) to the vibration 
sequence is smaller than that of the three discrete forms of Original Difference 
Model GM(1,1)(ODGM), Even Difference Model GM(1,1)(EDGM) and Discrete 
Model GM(1,1)(DGM). For the vibration sequence being close to the homogeneous 
exponential sequence, the simulation error of the discrete model is smaller than one 
of the difference, differential hybrid form of Even Model GM(1,1)(EGM). 

The statistics for sorting the simulation error of different models with the vibration 
sequence Z (0) 

1 , Z
(0) 
2 ,…,Z (0) 

25 in ascending order are presented in Table 7.4. Table 7.5 
shows the statistical results. 

As can be seen in Table 7.5, of the four kinds of models the Even Model 
GM(1,1)(EGM) is more suitable for modeling with vibration sequence than the 
other three discrete form models. The error using Discrete Model GM(1,1) (DGM) 
to simulate the vibration sequence is slightly larger than other two discrete form 
models. 

The authors once tried to use the original form (7.1) of Model GM(1,1) to estimate 
the parameter vector â = [a, b]T and, in accordance with the solution of whiteniza-
tion Eq. (7.6) along with the time response formula of Even Model GM(1,1)(EGM), 
modeled the original Model GM(1,1). After simulating the above data we found that, 
even in cases where the development index is very small, the simulation error was still 
comparatively large. Also, as the development index increases, the simulation error 
increases rapidly. Based on even transformation of the accumulation data to build the 
Even Model GM(1,1), the simulation accuracy improves greatly. Then a new method 
which can accurately simulate and predict the uncertain system involving small data 
and poor information comes into being.
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Among the four basic forms of model GM(1,1) discussed in Sects. 7.3 and 7.4, 
three discrete models can all accurately simulate the homogeneous exponential 
sequence. In the real world, a mass of practical data are not the simple homoge-
neous exponential sequence or close to it. This is the fundamental reason that people 
prefer to choose Even Model GM(1,1)(EGM) in the modeling process of the uncer-
tain system involving small data and poor information, and it can reflect a satisfactory 
result in most cases. 

In Sects. 7.3 and 7.4, the definitions of four basic forms of model GM(1,1) are 
put forward, and the properties and characteristics of different models are studied 
in-depth. The suitable sequences of different models are studied by simulation 
and analysis with homogeneous exponential sequences, non-exponential increasing 
sequences, and vibration sequences. The main conclusions of the research are as 
follows: 

(1) The four basic forms of model GM(1,1), namely Even Model GM(1,1) 
(EGM), Original Difference Model GM(1,1)(ODGM), Even Difference Model 
GM(1,1)(EDGM) and Discrete Model GM(1,1)(DGM) are pairwise equivalent. 

(2) Original Difference Model GM(1,1)(ODGM), Even Difference Model 
GM(1,1)(EDGM) and Discrete Model GM(1,1)(DGM) can all simulate the 
homogeneous exponential sequence accurately. 

(3) For the non-exponential increasing sequences and vibration sequences, we 
should first choose the difference, differential hybrid form of Even Model 
GM(1,1)(EGM). 

(4) For the non-exponential increasing sequences and vibration sequences which 
are close to the homogeneous exponential sequences, we should first choose the 
discrete form of Original Difference Model GM(1,1)(ODGM), Even Difference 
Model GM(1,1)(EDGM) or Discrete Model GM(1,1)(DGM). 

The conclusions above can be the reference and basis for choosing an appropriate 
model in the actual modeling process. There is a modeling software corresponding 
to the models. Interested readers can download it for free from the website of the 
Institute for Grey System Studies of Nanjing University of Aeronautics and Astro-
nautics (http://igss.nuaa.edu.cn) or from the website of the Marie Curie International 
Incoming Fellowship project (FP7-People-IIF-GA-2013-629051) (http://preview. 
dmu.ac.uk/research/research-faculties-and-institutes/technology/cci/projects/). 

Example 6.2.1 Let sequences of X (0) 
1 , X (0) 

2 and X (0) 
3 be as follows, 

X (0) 
1 = (x (0) 

1 (1), x (0) 
1 (2), x (0) 

1 (3), x (0) 
1 (4), x (0) 

1 (5)) 
= (1.5, 2.1, 3.0, 4.5, 5.48) 

X (0) 
2 = (x (0) 

2 (1), x (0) 
2 (2), x (0) 

2 (3), x (0) 
2 (4), x (0) 

2 (5), x (0) 
2 (6)) 

= (1.5, 1.3, 3.0, 3.9, 7.2, 9.5)

http://igss.nuaa.edu.cn
http://preview.dmu.ac.uk/research/research-faculties-and-institutes/technology/cci/projects/
http://preview.dmu.ac.uk/research/research-faculties-and-institutes/technology/cci/projects/
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Table 7.6 Simulation errors of four different models with X (0) 
1 

Models EGM DGM ODGM EDGM 

Mean relative errors (%) 4.7363 5.3458 5.1685 5.2442 

X (0) 
3 = (x (0) 

3 (1), x (0) 
3 (2), x (0) 

3 (3), x (0) 
3 (4), x (0) 

3 (5)) 
= (2, 9, 32, 27, 55) 

Try to build the Even Model GM(1,1)(EGM), Discrete Model GM(1,1)(DGM), 
Original Difference Model GM(1,1)(ODGM), and Even Difference Model 
GM(1,1)(EDGM) using sequences X (0) 

1 , X (0) 
2 and X (0) 

3 . Compare the simulation 
errors. 

Solution (1) For X (0) 
1 , we build Even Model GM(1,1)(EGM), Discrete Model 

GM(1,1)(DGM), Original Difference Model GM(1,1)(ODGM), and Even Differ-
ence Model GM(1,1)(EDGM) using 1.5, 2.1, 3.0, 4.5, 5.48. We then obtained the 
simulation results as follows. 

Simulation results by EGM: X̂ (0) 
1 = (1.5000, 2.2459, 3.0428, 4.1225, 5.5853) 

Simulation results by DGM: X̂ (0) 
1 = (1.5000, 2.2746, 3.0844, 4.1827, 5.6719) 

Simulation results by ODGM: X̂ (0) 
1 = (1.5000, 2.2600, 3.0726, 4.1772, 5.6789) 

Simulation results by EDGM: X̂ (0) 
1 = (1.5000, 2.2662 ,3.0776, 4.1795, 5.6760) (Table 

7.6). 

(2) For X (0) 
2 , we build EGM, DGM, ODGM, and EDGM using 1.5, 1.3, 3.0, 3.9, 

7.2, 9.5. Then we obtained the simulation results as follows. 

Simulation results by EGM: X̂ (0) 
2 = (1.5000, 1.8632, 2.8290, 4.29556.5220, 9.9028) 

Simulation results by DGM: X̂ (0) 
2 = (1.5000, 1.9247, 2.9317, 4.4654, 6.8016, 

10.3599) 

Simulation results by ODGM: X̂ (0) 
2 = (1.5000, 1.8793, 2.8771, 4.4047, 6.7433, 

10.3236) 

Simulation results by EDGM: X̂ (0) 
2 = (1.5000, 1.8973, 2.8988, 4.4290, 6.7669, 

10.3388) (Table 7.7). 

(3) For X (0) 
3 , we build EGM, DGM, ODGM, and EDGM using 2, 9, 32, 27, 55. 

Then we obtained the simulation results as follows.

Table 7.7 Simulation errors of four different models with X (0) 
2 

Models EGM DGM ODGM EDGM 

Mean relative errors (%) 11.9881 12.3218 12.2611 12.2860 



7.3 Suitable Ranges of Different GM(1,1) 169

Table 7.8 Simulation errors of four different models with X (0) 
3 

Models EGM DGM ODGM EDGM 

Mean relative errors (%) 27.2510 25.9994 26.4180 26.1794 

Simulation results by EGM: X̂ (0) 
3 = (2.0000, 13.9767, 21.6340, 33.4864, 51.8323) 

Simulation results by DGM: X̂ (0) 
3 = (2.0000, 15.4516, 23.4647, 35.6332, 54.1122) 

Simulation results by ODGM: X̂ (0) 
3 = (2.0000, 13.4756, 21.3666, 33.8782, 53.7164) 

Simulation results by EDGM: X̂ (0) 
3 = (2.0000, 14.2602, 22.2313, 34.6581, 54.0311) 

(Table 7.8) 
The simulation results with X (0) 

1 , X (0) 
2 and X (0) 

3 confirmed the above conclusion 
once again. 

7.3.2 Applicable Ranges of EGM 

Proposition 7.3.1 When (n−1)
Σn 

k=2

[
z(1) (k)

]2 → [Σn 
k=2 z

(1) (k)
]2 
, the EGM(1,1) 

becomes invalid. 

Proof By using the model parameters obtained by the least squared estimate, we 
have. 

â =
Σn 

k=2 z
(1) (k)

Σn 
k=2 x

(0) (k) − (n − 1)
Σn 

k=2 z
(1) (k)x (0) (k) 

(n − 1)
Σn 

k=2

[
z(1)(k)

]2 − [Σn 
k=2 z

(1)(k)
]2 

b̂ =
Σn 

k=2 x
(0) (k)

Σn 
k=2

[
z(1) (k)

]2 −Σn 
k=2 z

(1) (k)
Σn 

k=2 z
(1) (k)x (0) (k) 

(n − 1)
Σn 

k=2

[
z(1)(k)

]2 − [Σn 
k=2 z

(1)(k)
]2 

When (n − 1)
Σn 

k=2

[
z(1) (k)

]2 → [Σn 
k=2 z

(1) (k)
]2 
, â → ∞, b̂ → ∞, so that the 

model parameters cannot be determined. Hence, the EGM(1,1) becomes invalid. 

Proposition 7.3.2 When the development coefficient a of the EGM(1,1) model 
satisfies |a| ≥  2, the GM(1,1) model becomes invalid. 

Proof From the following expression of the GM(1,1) model 

x (0) (k) =
(
1 − 0.5a 
1 + 0.5a

)k−2(b − ax (0) (1) 
1 + 0.5a

)

; k = 2, 3, . . . ,  n 

it can be seen that when a = −2, x (0) (k) → ∞; when a = 2, x (0) (k) = 0; and when 
|a| > 2,  b−ax (0) (1) 

1+0.5a becomes a constant, while the sign of
(
1−0.5a 
1+0.5a

)k−2 
changes with k 

being even or odd. Thus, the sign of x (0) (k) flips with k being even or odd.
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The discussion above indicates that (−∞, −2] ∪ [2, ∞) is the forbidden area for 
the development coefficient (−a) of the GM(1,1) model. When a ∈ (−∞, −2] ∪  
[2, ∞), the GM(1,1) model loses its validity. In general, when |a| < 2, the GM(1,1) 
model is meaningful. However, for different values of a, the prediction effect of the 
model is different. For the case of −2 <  a < 0, let us respectively take −a = 0.1, 0.2, 
0.3, 0.4, 0.5, 0.6, 0.8, 1.5, 1.8 to conduct a simulation analysis. By taking k = 0, 1, 
2, 3, 4, 5, from x (0) 

i (k + 1) = e−ak , we obtain the following sequences: 

If 
−a = 0.1, X (0) 

1 = (x (0) 
1 (1), x (0) 

1 (2), x (0) 
1 (3), x (0) 

1 (4), x (0) 
1 (5), x (0) 

1 (6)) 
= (1, 1.1051, 1.2214, 1.3499, 1.4918, 1.6487) 

If −a = 0.2, X (0) 
2 = (1, 1.2214, 1.4918, 1.8221, 2.2255, 2.7183). 

If −a = 0.3, X (0) 
3 = (1, 1.3499, 1.8221, 2.4596, 3.3201, 4.4817). 

If −a = 0.4, X (0) 
4 = (1, 1.4918, 2.225, 3.3201, 4.9530, 7.3890). 

If −a = 0.5, X (0) 
5 = (1, 1.6487, 2.7183, 4.4817, 7.3890, 12.1825). 

If −a = 0.6, X (0) 
6 = (1, 1.8821, 3.3201, 6.0496, 11.0232, 20.0855). 

If −a = 0.8, X (0) 
7 = (1, 2.2255, 4.9530, 11.0232, 24.5325, 54.5982). 

If −a = 1, X (0) 
8 = (1, 2.7183, 7.3890, 20.0855, 54.5982, 148.4132). 

If −a = 1.5, X (0) 
9 = (1, 4.4817, 20.0855, 90.0171, 403.4288, 1808.0424). 

If −a = 1.8, X (0) 
10 = (1, 6.0496, 36.5982, 221.4064, 1339.4308, 8103.0839). 

Let us respectively apply X (0) 
1 , X

(0) 
2 , …, and  X (0) 

9 to establish a GM(1,1) model 
and obtain the following time response sequences: 

x̂ (1) 
1 (k + 1) = 10.50754e0.09992182k − 9.507541, 

x̂ (1) 
2 (k + 1) = 5.516431e0.1993401k − 4.516431, 

x̂ (1) 
3 (k + 1) = 3.85832e0.297769k − 2.858321, 

x̂ (1) 
4 (k + 1) = 3.033199e0.394752k − 2.033199 

x̂ (1) 
5 (k + 1) = 2.541474e0.4898382k − 1.541474, 

x̂ (1) 
6 (k + 1) = 2.216363e0.5826263k − 1.216362, 

x̂ (1) 
7 (k + 1) = 1.815972e0.7598991k − 0.8159718, 

x̂ (1) 
8 (k + 1) = 1.581973e0.9242348k − 0.5819733, 

x̂ (1) 
9 (k + 1) = 1.287182e1.270298k − 0.2871823,
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x̂ (1) 
10 (k + 1) = 0.198197e1.432596k − 0.1981966. 

From x̂ (0) 
i (k + 1) = x̂ (1) 

i (k + 1) − x̂ (1) 
i (k), i = 1, 2, . . . ,  10, we obtain 

x̂ (0) 
1 (k + 1) = 0.99918e0.09992182k , x̂ (0) 

2 (k + 1) = 0.99698e0.1993401k , 

x̂ (0) 
3 (k + 1) = 0.99362e0.297769k , x̂ (0) 

4 (k + 1) = 0.989287e0.394752k , 

x̂ (0) 
5 (k + 1) = 0.984248e0.4898382k , x̂ (0) 

6 (k + 1) = 0.97868e0.5826263k , 

x̂ (0) 
7 (k + 1) = 0.966617e0.7598991k , x̂ (0) 

8 (k + 1) = 0.95419e0.9242348k , 

x̂ (0) 
9 (k + 1) = 0.925808e1.270298k , x̂ (0) 

10 (k + 1) = 0.91220e1.432596k . 

From the mean generation of z(1) (k) = 1 
2 (x

(1) (k) + x (1) (k − 1)) of GM(1,1) 
model x (0) (k) + az(1) (k) = b, it has the effect of weakening the growth for 
increasing sequences. For an exponential sequence, the established GM(1,1) has 
a small development coefficient. 

Let us compare the errors between the original sequence X (0) 
i and the simulation 

sequence X̂ (0) 
i , as seen in Table 7.9. 

It can be seen that as the development coefficient increases, the simulation error 
grows drastically. When the development coefficient is smaller than or equal to 0.3, 
the simulation accuracy can reach above 98%. When the coefficient is smaller than 
or equal 0.5, the simulation accuracy can reach above 95%. When the coefficient is 
greater than 1, the simulation accuracy is lower than 70%. When the coefficient is

Table 7.9 The simulation errors of different development coefficients (−a) 

Development coefficient (−a) 1 
5

Σ6 
i=2 [x̂ (0) 

(k) − x (0) (k)] Mean relative error 1 5
Σ6 

k=2 Δk (%) 

0.1 0.004 0.104 

0.2 0.010 0.499 

0.3 0.038 1.300 

0.4 0.116 2.613 

0.5 0.307 4.520 

0.6 0.741 7.074 

0.8 3.603 14.156 

1 14.807 23.544 

1.5 317.867 51.033 

1.8 1632.240 65.454 
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Table 7.10 Prediction errors 

−a 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1 1.5 1.8 

Step 1 error (%) 0.129 0.701 1.998 4.317 7.988 13.405 31.595 65.117 – – 

Step 2 error (%) 0.137 0.768 2.226 4.865 9.091 15.392 36.979 78.113 – – 

Step 5 error (%) 0.160 0.967 2.912 6.529 12.468 21.566 54.491 – – – 

Step 5 error (%) 0.855 1.301 4.067 9.362 18.330 32.599 88.790 – – – 

greater than 1.5, the simulation accuracy is lower than 50% (Liu & Deng, 2000; Liu,  
2021). 

Let us now further focus on the first step, second step, fifth step, and 10th step 
prediction errors. See Table 7.10. 

It can be seen that when the development coefficient is smaller than 0.3, the step 
1 prediction accuracy is above 98%, with both steps 2 and 5 accuracies above 97%. 
When 0.3 < −a ≤ 0.5, the steps 1 and 2 prediction accuracies are all above 90%; and 
the step 10 prediction accuracy also above 80%. When the development coefficient 
is greater than 0.8, the step 1 prediction accuracy is below 70%. The horizontal bars 
in Table 4.5 represent that the relevant errors are greater than 100%. 

From this analysis, we can draw the following conclusions: When − a ≤ 0.3, 
GM(1,1) can be applied to make mid- to long-term predictions; when 0.3 < −a ≤ 
0.5, GM(1,1) can be applied to make short- and mid-term predictions with caution; 
when 0.5 < −a ≤ 0.8 and GM(1,1) is used to make short-term predictions, one needs 
to be very cautious about the prediction results; when 0.8 < −a ≤ 1, one should 
employ the remnant GM(1,1) model; and when −a > 1, GM(1,1) should not be 
applied (Liu & Deng, 2000; Liu et al., 2017). 

7.4 Remnant GM(1,1) Model 

When the accuracy of a GM(1,1) model does not meet the predetermined requirement, 
one can establish another GM(1,1) model using the error sequence to remedy the 
original model to improve the accuracy. We will use the remnant GM(1,1) of EGM(1) 
as an example (Deng, 1985; Liu,  2021). 

Definition 7.4.1 Assume that X (0) is a sequence of raw data, X (1) the accumulation 
generated sequence based on X (0), and the time response formula of the GM(1,1) 
model is. 

x̂ (1) 
(k + 1) =

(

x (0) (1) − 
b 

a

)

e−ak +b 

a 

then
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d x̂ (1) 
(k + 1) = (−a)

(

x (0) (1) − 
b 

a

)

e−ak (7.26) 

is referred to as the restored value through derivatives. 
Generally, d x̂ (1) (k + 1) /= x̂ (0) (k + 1), where x̂ (0) 

(k + 1) = x̂ (1) 
(k + 1) − x̂ (1) 

(k) 
stands for the restored value through inverse accumulation. This very fact implies that 
the GM(1,1) is neither a differential equation nor a difference equation. However, 
when |a| is sufficiently small, from 1 − ea ≈ −a, it follows  that  d x̂ (1) 

(k + 1) ≈ 
x̂ (0) 

(k + 1), meaning that the results of differentiation and difference are quite close. 
Therefore, the GM(1,1) model in this case can be seen as both a differential equation 
and a difference equation. 

Because the restored values through derivatives and through inverse accumulation 
are different, to reduce possible errors caused by reciprocating operators, the errors 
of X (1) are often used to improve the simulated values x̂ (1) (k + 1) of X (1). 

Definition 7.4.2 Assume that ε(0) = (ε(0) (1), ε(0) (2), . . . , ε(0) (n)), where ε(0) (k) 
= x (1) (k) − x̂ (1) (k), is the error sequence of X (1). If there is a  k0 satisfying 
that n − k0 ≥ 4 and ∀k ≥ k0, the signs of ε(0) (k) stay the same, and 
(
∣
∣ε(0) (k0)

∣
∣,
∣
∣ε(0) (k0 + 1)

∣
∣, , . . . ,

∣
∣ε(0) (n)

∣
∣) is referred to as the error sequence of 

modelability, which is and still denoted ε(0) = (ε(0) (k0), ε(0) (k0 + 1),  . . . , ε(0) (n)
)
. 

In this case, let the sequence ε(1) = (ε(1) (k0), ε(1) (k0 + 1), . . . , ε(1) (n)) be 
accumulation generated on ε(0) with the following GM(1,1) time response formula: 

ε̂(1) (k + 1) =
(

ε(0) (k0) − 
bε 

aε

)

exp[−aε(k − k0)] + 
bε 

aε 
, k ≥ k0 

Then the simulation sequence of ε(0) is given by ε̂(0) = (ε̂(0) (k0), ε̂(0) (k0 + 
1), . . . ,  ̂ε(0) (n)), where 

ε̂(0) (k + 1) = (−aε)

(

ε(0) (k0) − 
bε 

aε

)

exp[−aε(k − k0)], k ≥ k0. 

Definition 7.4.3 If ε̂(0) is used to improve X̂ (1), the modified time response formula 

x̂ (1) 
(k + 1) =

{(
x (0) (1) − b a

)
e−ak + b 

a , k < k0(
x (0) (1) − b a

)
e−ak + b 

a ± aε(ε
(0) (k0) − bε 

aε 
) e−aε (k−k0) , k ≥ k0 

(7.27) 

is referred to as the GM(1,1) model with error modification, or simply remnant 
GM(1,1) for short, where the sign of the error modification value 

ε̂ (0) (k + 1) = aε ×
(

ε(0) (k0) − 
bε 

aε

)

exp[−aε(k − k0)]
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needs to stay the same as those in ε(0). 

If a modeling of the error sequence ε(0) = (ε(0) (k0), ε(0) (k0 + 1),  . . . , ε(0) (n)) of 
X (0) and X̂ (0) is used to modify the simulation value X̂ (0), then different methods of 
restoration from X̂ (1) to X̂ (0) can produce different time response sequences of error 
modification. 

Definition 7.4.4 Let 

x̂ (0) 
(k) = x̂ (1) 

(k) − x̂ (1) 
(k − 1) = (1 − ea

)
(

x (0) (1) − 
b 

a

)

e−a(k−1) 

Then the corresponding time response sequence of error modification 

x̂ (0) (k + 1) =
{

(1 − ea)
(
x (0) (1) − b a

)
e−ak, k < k0 

(1 − ea)
(
x (0) (1) − b a

)
e−ak ± aε

(
ε(0) (k0) − bε 

aε

)
e−aε (k−k0) , k ≥ k0 

(7.28) 

is called the error modification model of inverse accumulation restoration. 

Definition 7.4.5 Let 

x̂ (0) (k + 1) = (−a)

(

x (0) (1) − 
b 

a

)

e−ak , 

then the corresponding time response sequence of error modification 

x̂ (0) (k + 1) =
{

(−a)
(
x (0) (1) − b a

)
e−ak, k < k0 

(−a)
(
x (0) (1) − b a

)
e−ak ± aε

(
ε(0) (k0) − bε 

aε

)
e−aε (k−k0) , k ≥ k0 

(7.29) 

is referred to as the error modification model of derivative restoration. 

In the previous discussion, all the error simulation terms in remnant GM(1,1) 
have been taken as the derivative restoration. Of course, they can be taken as inverse 
accumulation restoration. That is, one can take 

ε̂(0) (k + 1) = (1 − eaε
)
(

ε(0) (k0) − 
bε 

aε

)

e−aε (k−k0) , k ≥ k0 

As long as |aε| is sufficiently small, the effects of different error restoration 
methods on the modified x̂ (0) (k + 1) are almost the same. 

Example 7.4.1 Let 

X(0) = (x (0) (1), x (0) (2), . . . ,  x (0) (13))



7.4 Remnant GM(1,1) Model 175

= (6, 20, 40, 25, 40, 45, 35, 21, 14, 18, 15.5, 17, 15) 

be a sequence of raw data, and the creation of a EGM(1, 1) model produce the 
following time response sequence: 

x̂ (1) (k + 1) = −567.999e−0.06486k + 573.999 

The application of inverse accumulating restoration gives: 

X̂ (0) = {x̂ (0) (k)}13 2 = (35.6704, 33.4303, 31.3308, 29.3682, 27.5192, 25.7900, 
24.1719, 22.6534, 21.2307, 19.8974, 18.6478, 17.4768) 

The errors and relative errors of the results can be seen in Table 7.11. 
From Table 7.11, it can be seen that the simulation error is relatively large. Thus, 

it is necessary to apply a remnant model to remedy some of the errors. 
Let k0 = 9, we get the error sequence as follows 

ε(0) = (ε(0) (9), ε(0) (10), ε(0) (11), ε(0) (12), ε(0) (13)) 
= (−8.6534, −3.2307, −4.3974, −1.6478, −2.4768) 

which is an error sequence of modelability. Taking absolute value gives 

ε(0) = (8.6534, 3.2307, 4.3974, 1.6478, 2.4768) 

In establishing a EGM(1,1) for ε(0), we have the time response sequence of ε(1)

Table 7.11 The errors and relative errors of EGM(1,1) 

No. Real data 
x (0) (k) 

Simulated values 
x̂ (0) (k) 

Errors 
ε(k) = x (0) (k) − x̂ (0) (k) 

Relative errors

Δk = |ε(k)| 
x (0)(k) (%) 

2 20 35.6704 −15.6704 78.3540 

3 40 33.4303 6.5697 16.4242 

4 25 31.3308 −6.3308 25.3232 

5 40 29.3682 10.6318 26.5795 

6 45 27.5192 17.4808 38.8642 

7 35 25.6901 9.2099 26.3140 

8 21 24.1719 −3.1719 15.1043 

9 14 22.6534 −8.6534 61.8100 

10 18 21.2307 −3.2307 17.9483 

11 15.5 19.8974 −4.3974 28.3703 

12 17 18.6478 −1.6478 9.6926 

13 15 17.4768 −2.4768 16.5120 
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Table 7.12 Improved results 

No. Real data x (0) (k) Simulated values 
x̂ (0) (k) 

Errors 
ε(k) = x (0) (k) − x̂ (0) (k) 

Relative errors

Δk = |ε(k)| 
x (0)(k) 

10 18 17.1858 0.8142 4.52% 

11 15.5 16.4799 -0.9799 6.32% 

12 17 15.6604 1.2396 7.29% 

13 15 15.0372 -0.0372 0.25% 

ε̂(1) (k + 1) = −24e−0.16855(k−9) + 32.7 

whose restored value of derivatives is 

ε̂(0) (k + 1) = (−0.16855)(−24)e−0.16855(k−9) = 4.0452e−0.16855(k−9) 

From 

x̂ (0) (k + 1) = x̂ (1) (k + 1) − x̂ (1) (k) = (1 − ea )
(

x (0) (1) − 
b 

a

)

e−ak = 38.0614e−0.06486k 

We can obtain the remnant model of inverse accumulating restoration 

x̂(0) (k + 1) =
{
38.0614e−0.06486k , k < 9 
38.0614e−0.06486k − 4.0452e−0.16855(k−9), k ≥ 9 

where the sign of ε̂(0) (k + 1) is the same as the original error sequence. 
Based on this model, we can modify the four simulation values with k = 10, 11, 

12, 13, with improved accuracy listed in Table 7.12. 
From this table, we can compute the sum of squares of errors as follows, 

s = εT ε = 3.1611 

and the average relative error

Δ = 
1 

12 

13∑

k=10

Δk = 4.595% 

Here, the simulation accuracy of the remnant EGM(1, 1) has obviously increased. 
However, the current error sequence no longer satisfies the modeling requirement. 
Therefore, if the improved accuracy is still unsatisfactory, we will have to consider 
other models or some appropriate choice of data to the original sequence.
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7.5 Group of GM(1,1) Models 

In practice, one does not have to use all the available data in their modeling. Each 
subsequence of the original data can be employed to establish a model. Generally 
speaking, different subsequences lead to different models. Even though the same kind 
of GM(1,1) is applied, different subsequences lead to different a, b values. These 
changes reflect the fact that varied circumstances and conditions have different effects 
on the system under consideration. 

For example, for the grain production in China, if we use the data values collected 
since 1949 to establish a model GM(1,1), the development coefficient (−a) will be 
on the small side. However, if only the values collected after 1978 are used, the 
corresponding development coefficient (−a) will obviously increase (Deng, 1985; 
Liu, 2021). 

Definition 7.5.1 For a given sequence X (0) = (x (0) (1), x (0) (2),  . . . ,  x (0) (n)), if we  
take x (0) (n) as the origin of the time axis, then t < n is seen as the past, t = n the 
present, and t > n the future. 

Definition 7.5.2 Assume that X (0) = (x (0) (1), x (0) (2), · · ·  , x (0) (n)) is a sequence 
of raw data, let 

x̂ (0) (k + 1) = (1 − ea
)
(

x (0) (1) − 
b 

a

)

e−ak 

be the restored values of inverse accumulation of the GM(1,1) time responses of 
X (0). Then: 

(1) For t ≤ n, x̂ (0) (t) is referred to as the simulated value out of the model; and 
(2) When t > n, x̂ (0) (t) is known as the prediction of the model. 

The main purpose of modeling is to make predictions. To improve the prediction 
accuracy, one first needs to guarantee sufficiently high accuracy in his simulation, 
especially for the simulation of the time moment t = n. Therefore, in general, the 
data, including x (0) (n), used for modeling should be an equal-time-interval sequence. 

Definition 7.5.3 Assume that X (0) = (x (0) (1), x (0) (2), . . . ,  x (0) (n)) is a sequence 
of raw data, then: 

(1) The GM(1,1) model established using the entire sequence X (0) is known as the 
all-data GM(1,1); 

(2) ∀k0 > 1, the GM(1,1) model established on the tail sequence X (0) = 
(x (0) (k0), x (0) (k0 + 1), . . . ,  x (0) (n)) is known as a partial-data GM(1,1); 

(3) If x (0) (n + 1) stands for a piece of new information, then the 
GM(1,1) model established on the prolonged sequence X (0) = 
(x (0) (1), x (0) (2), . . . ,  x (0) (n), x (0) (n + 1)) is known as a new-information 
GM(1,1);
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(4) The GM(1,1) model established on X (0) = ((x (0) (2), . . . , x (0) (n), x (0) (n + 1)) 
with the new information added and the oldest piece x (0) (1) of information 
removed is known as a metabolic GM(1,1). 

Example 7.5.1 Let 

X(0) = (60.7, 73.8, 86.2, 100.4, 123.3) 

and x (0) (6) = 149.5 is a piece of new information. Try to establish a model with 
X(0), a model of new information, and a metabolic EGM(1,1). 

Solution (1) The model with X(0). From  

X(0) = (60.7, 73.8, 86.2, 100.4, 123.3) 

We have 

â = (BT B)−1 BT Y =
[
a 
b

]

=
[ −0.17241 
55.889264

]

The time response sequence is as follows 

x̂ (1) (k) =
(

x (0) (1) − 
b 

a

)

e−a(k−1) + 
b 

a 
= 384.865028e0.17241k − 324.165028 

Then we obtained the simulation sequence of X(0) as follows 

X̂ (0) = (60.7, 72.41804, 86.04456, 102.2351, 121.4721) 

The corresponding error sequence is 

ε = (0, 1.38196, 0.155434, −1.8351, 1.827829) 

where ε(k) = x (0) (k) − x̂ (0) (k). 
Therefore, we got the average relative error

Δ = 
1 

4 

5∑

k=2

Δk = 1.34% 

where Δk = |ε(k)| 
x (0)(k) . 

(2) The model of new information. In inserting a piece of new information x (0) (6) = 
149.5, the data sequence became
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X (0) = (60.7, 73.8, 86.2, 100.4, 123.3, 149.5) 

We have 

â = (BT B)−1 BT Y =
[
a 
b

]

=
[−0.180888 
54.254961

]

Its time response sequence is as follows: 

x̂ (1) (k) =
(

x (0) (1) − 
b 

a

)

e−a(k−1) + 
b 

a 
= 360.63748e0.180888k − 299.93748 

The simulation sequence of the new information sequence X(0, the corresponding 
error sequence ε, and the average relative error Δ are as follows: 

X̂ (0) = (60.7, 71.50736, 85.68587, 102.6757, 123.0342, 147.429) 

ε = (0, 2.29264, 0.514129, −2.2757, 0.265712, 2.07041)

Δ = 
1 

5 

6∑

k=2

Δk = 1.51% 

(3) The metabolic EGM(1,1). In adding a piece of new information x (0) (6) = 149.5, 
and deleting a piece of old information x (0) (1) = 60.7, we have  

X(0) = (73.8, 86.2, 100.4, 123.3, 149.5) 

and 

â = (BT B)−1 BT Y =
[
a 
b

]

=
[−0.187862 
62.830896

]

The corresponding time response sequence is: 

x̂ (1) (k) =
(

x (0) (1) − 
b 

a

)

e−a(k−1) + 
b 

a 
= 408.251645e0.187862k − 334.451645 

And the simulation sequence of the metabolic sequence X(0, the corresponding 
error sequence ε, and the average relative error Δ are as follows: 

X̂ (0) = (73.8, 84.37234, 101.8093, 122.85, 148.2391)
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ε = (0, 1.827657, −1.4093, 0.45, 1.2609)

Δ = 
1 

4 

6∑

k=3

Δk = 1.18% 

Compared with these different results, it implies that the simulation accuracy 
can be improved by appropriately choosing the data to be used in the process of 
modeling. From the three different error sequences, we can see that for the simulation 
accuracy of value x(0)(5), both the new information model and the metabolic model 
are better than the model in (1). This implies that the new information EGM(1,1) 
and the metabolic EGM(1,1) have better prediction abilities than the old model. As 
a matter of fact, in the development process of a grey system, there always exists 
some stochastic interferences or driving forces entering the system as time goes on, 
so that the consequent development of the system is accordingly affected. 

Therefore, when using the EGM(1,1) model to do predictions, high accuracy can 
be achieved only for the first or the second data values after the last origin value 
x(0)(n). In general, the farther away into the future, and the farther away from the last 
origin value, the weaker the prediction ability of EGM(1,1) becomes. In practical 
applications, one needs to constantly consider those interferences and driving factors 
entering the system as time goes on and promptly add new pieces of information to the 
original sequence X(0) and establish consequent new information EGM(1,1) models. 

From the simulation accuracy of value x(0)(6), it can be seen that the metabolic 
model is better than the new information model. From the angle of prediction, it can 
be seen that the metabolic model is the best prediction model. As the system develops 
further, the significance of the older data reduces so that, when new data are added, 
the older data are deleted promptly, and the constantly renewing modeling sequence 
can better reflect the current characteristics of the system. Specifically, as the accu-
mulation of quantitative changes increases, a jump or sudden change in the system 
will occur. At this very moment, compared with the older system, the current system 
is completely different. Hence, the practice of deleting old data is very reasonable. 
Indeed, the ongoing replacement of old data can avoid computation difficulties in 
modeling due to the fact that increased information can increase computer storage 
space requirements tremendously. 

7.6 The Fractional Grey Model 

Definition 7.6.1 Assume that X (0) 
1 = (x (0) 

1 (1), x (0) 
1 (2), · · ·  , x (0) 

1 (n)) is a non-
negative sequence, then. 

x
(

p 
q

)

(k) = 
k∑

i=1 

Ck−i 
k−i+ p q −1x

(0) (i )
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is called a p 
q order accumulation operator. Let C0 

p 
q −1 = 1, Ck+1 

k = 0, k = 
0, 1, . . . ,  n − 1, 

Ck−i 
k−i+ p q −1 =

(
k − i + p q − 1

)(
k − i + p q − 2

)
· · ·
(

p 
q + 1

)
p 
q 

(k − i )! . 

Then X
(

p 
q

)

=
(

x
(

p 
q

)

(1), x
(

p 
q

)

(2), · · ·  , x
(

p 
q

)

(n)

)

is called a p q order accumula-

tion sequence (Wu et al., 2013). 

Definition 7.6.2 Assume that X (0) = (
x (0) (1), x (0) (2), · · ·  , x (0) (n)

)
is a non-

negative sequence, then 

α(1) x
(
1− p q

)

(k) = x
(
1− p q

)

(k) − x
(
1− p q

)

(k − 1) 

is called a p q

(
0 < p q < 1

)
order inverse accumulation operator. And 

α

(
p 
q

)

X (0) = α(1) X
(
1− p q

)

=
(

α(1) x
(
1− p q

)

(1), α(1) x
(
1− p q

)

(2), · · ·  , α(1) x
(
1− p q

)

(n)

)

is called a p q

(
0 < p q < 1

)
order inverse accumulation sequence. 

Definition 7.6.3 Assume that X (0) = (
x (0) (1), x (0) (2), · · ·  , x (0) (n)

)
is a non-

negative sequence, and X
(

p 
q

)

=
(

x
(

p 
q

)

(1), x
(

p 
q

)

(2), · · ·  , x
(

p 
q

)

(n)

)

is the p q order 

accumulation sequence of X (0), then the following 

x
(

pq 

q

)

(k + 1) = β1x
(

p 
q

)

(k) + β2(k = 1, 2, . . .  n − 1) (7.30) 

is called a p q order accumulation discrete grey model (Wu et al., 2013). 

Theorem 7.6.1 Assume that x
(

p 
q

)

(k + 1) = β1x
(

p 
q

)

(k) + β2 is called a 
p 
q order 

accumulation discrete grey model, then

[
β2 

β1

]

= (BT B
)−1 

BT Y 

where
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B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

1 x
(

p 
q

)

(1) 

1 x
(

p 
q

)

(2) 
... 

... 

1 x
(

p 
q

)

(n − 1) 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

x
(

p 
q

)

(2) 

x
(

p 
q

)

(3) 
... 

x
(

p 
q

)

(n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

Definition 7.6.4 Assume that X (0) = (x (0) (1), x (0) (2), . . . , x (0) (n)) is a non-
negative sequence, p(0 < p < 1), then. 

α(1) x (1−p) (k) + az(0) (k) = b (7.31) 

is called a grey model of GM(p,1). 

where α(1)x (1−p) (k) is the p order difference of x (0) (k). We can calculated the 
1 − p order accumulation of x (0) (k) at first, then acted by the first order inverse 
accumulation operator on x (1−p) (k) α(1)x (1−p) (k) = x (1−p) (k) − x (1−p) (k − 1), let

[
a 

b

]

= (BT B)−1 BT Y 

where 

B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

−z(0) (2) 1 
−z(0) (3) 1 

... 
... 

−z(0) (n) 1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

α(1)x (1−p) (2) 
α(1)x (1−p) (3) 

... 
α(1)x (1−p) (n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

and z(0) (k) = x
(0) (k)+x (0) (k+1) 

2 . 
The whitening equation of the model GM(p,1) as follows 

d px (0) (t) 
dt  p 

+ ax (0) (t) = b (7.32) 

Let x̂ (0) (1) = x (0) (1), we obtained the time response sequence of (7.32) by  
fractional Laplace transform 

x (0) (k) =
(

x (0) (1) − 
b 

a

) ∞∑

i=0 

(−at p)i

⎡(pi + 1) 
+ 

b 

a 
(7.33) 

where ⎡(pi + 1) is Gamma function. 

Example 7.6.1 Let
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X(0) = (247.839, 273.021, 289.014, 285.208, 288.818, 297.078) 

Please try to build a 0.1 order accumulation discrete grey model. 
Solution: The 0.1 order accumulation sequence of X (0) as follows 

X(0.1) = (247.839, 297.805, 329.947, 338.667, 351.141, 366.983), 

From

[
β2 

β1

]

= (BT B
)−1 

BT Y , we have  

x̂ (0.1) (k + 1) = −126.356 × 0.6101k−1 + 374.195 

The simulated sequence is x̂ (0.1) (k) = (247.839, 297.105, 327.163, 345.501, 
356.689, 363.515), its 0.9 order accumulation sequence is 

x̂ (1) (k) = (247.839, 520.160, 806.460, 1098.811, 1392.639, 1685.479), 

Acted by a first order inverse accumulation operator, we have 

x̂ (0) (k) = (247.839, 272.321, 286.299, 292.351, 293.828, 292.841). 

7.7 The Models of GM(r,h) 

7.7.1 The Model of GM(0,N) 

Definition 7.7.1 Assume that X (0) 
1 = (x (0) 

1 (1), x (0) 
1 (2), . . . , x (0) 

1 (n)) is a data 
sequence of a system’s characteristic variable, 

X (0) 
2 = (x (0) 

2 (1), x (0) 
2 (2),  . . . ,  x (0) 

2 (n)) 
X (0) 
3 = (x (0) 

3 (1), x (0) 
3 (2),  . . . ,  x (0) 

3 (n)) 
· · ·  · · ·  · · ·  · · ·  · · ·  · · ·  

X (0) 
N = (x (0) 

N (1), x
(0) 
N (2),  . . . ,  x (0) 

N (n)) 

the data sequences of relevant factors, and X (1) 
i the accumulation generated sequence 

of X (0) 
i , i = 2, 3, . . . ,  N . Then 

x (1) 
1 (k) = a + b2x (1) 

2 (k) + b3x (1) 
3 (k) +  · · ·  +  bN x (1) 

N (k) (7.34) 

is called the model of GM(0,N). Because this model does not contain any derivative, 
it is a static model. Although its form looks like a multivariate linear regression
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model, it is essentially different from any of the statistical models. In particular, the 
general multivariate linear regression model is established on the basis of the original 
data sequences, while the model of GM(0,N) is constructed on the accumulation 
generation of the original data (Deng, 1985; Liu,  2021). 

Theorem 7.7.1 Assume X (0) 
i and X (1) 

i (i = 1, 2, . . . ,  N ) as given in Definition 7.6.1, 
let 

B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

1 x (1) 
2 (2) x (1) 

3 (2) · · ·  x (1) 
N (2) 

1 x (1) 
2 (3) x (1) 

3 (3) · · ·  x (1) 
N (3) 

· · ·  · · · · · · · · ·  · · ·  
1 x (1) 

2 (n) x (1) 
3 (n) · · ·  x (1) 

N (n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x (1) 
1 (2) 
x (1) 
1 (3) 

... 
x (1) 
1 (n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

then the least squares estimate of the parametric sequence â = [a, b1, b2, . . . ,  bN ]T 
is given by 

â = (BT B)−1 BT Y. 

Example 7.7.1 Let 

X (0) 
1 = (2.874, 3.278, 3.307, 3.39, 3.679) = {x (0) 

1 (k)}5 1 
be a data sequence of a system’s characteristic variable, and 

X (0) 
2 = (7.04, 7.645, 8.075, 8.53, 8.774) = {x (0) 

2 (k)}5 1 
the data sequences of a relevant factor. Try to establish the model of GM(0,2). 

Solution Assume the model of GM(0,2) as follows: 

X (1) 
1 = bX (1) 

2 + a 

From 

B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x (1) 
2 (2) 1 
x (1) 
2 (3) 1 
x (1) 
2 (4) 1 
x (1) 
2 (5) 1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

= 

⎡ 

⎢ 
⎢ 
⎣ 

14.685 1 
22.76 1 
31.29 1 
40.064 1 

⎤ 

⎥ 
⎥ 
⎦, Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x (1) 
1 (2) 
x (1) 
1 (3) 
x (1) 
1 (4) 
x (1) 
1 (5) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

= 

⎡ 

⎢ 
⎢ 
⎣ 

6.152 
9.459 
12.849 
16.528 

⎤ 

⎥ 
⎥ 
⎦ 

We have 

b̂ =
[
b 
a

]

= (BT B)−1 BT Y =
[

0.412435 
−0.482515

]
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Table 7.13 Simulation results with errors 

Ordinality Real data 
x (0) (k) 

Simulated values 
x̂ (0) (k) 

Errors 
ε(k) = x (0) (k) − x̂ (0) (k) 

Relative errors

Δk = |ε(k)| 
x (0)(k) (%) 

2 3.278 3.153 0.125 3.8 

3 3.307 3.331 −0.024 0.7 

4 3.390 3.518 −0.128 3.8 

5 3.679 3.619 0.06 1.6 

It follows that 

x̂ (1) 
1 (k) = 0.412435x (1) 

2 (k) − 0.482515 

Therefore, the simulation results are as shown in Table 7.13. 
The average relative error is

Δ = 
1 

4 

5∑

k=2

Δk = 
1 

4 

5∑

k=2 

|ε(k)| 
x (0)(k) 

== 2.475% 

7.7.2 The Model of GM(1, N) 

Definition 7.7.2 Assume that X (0) 
i and X (1) 

i (i = 1, 2, . . . ,  N ) as given in Definition 
7.6.1. Let  X (1) 

i be the accumulated sequences of X (0) 
i , i = 1, 2, ..., N , and Z (1) 

1 the 
adjacent neighbor average sequence of X (1) 

1 . Then, 

x (0) 
1 (k) + az(1) 

1 (k) = 
N∑

i=2 

bi x
(1) 
i (k) (7.35) 

is called the model of GM(1,N) (Deng, 1985; Liu,  2021). 

The constant (−a) is known as the system’s development coefficient, bi x
(1) 
i (k) the 

driving term, bi the driving coefficient, and â = [a, b1, b2, . . . ,  bN ]T the sequence 
of parameters. 

Theorem 7.7.2 For the previously defined terms X (0) 
i , X (1) 

i , and Z (1) 
1 , i = 1, 2, ..., N , 

let
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B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

−z(1) 
1 (2) x (1) 

2 (2) · · ·  x (1) 
N (2) 

−z(1) 
1 (3) x (1) 

2 (3) · · ·  x (1) 
N (3) 

· · · · · · · · ·  · · ·  
−z(1) 

1 (n) x (1) 
2 (n) · · ·  x (1) 

N (n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x (0) 
1 (2) 
x (0) 
1 (3) 

... 
x (0) 
1 (n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

Then the least squares estimate of the sequence â = [a, b1, b2, . . . ,  bN ]T of 
parameters satisfies 

â = (BT B)−1 BT Y. 

Example 7.7.2 Let 

X (0) 
1 = (2.874, 3.278, 3.307, 3.39, 3.679) = {x (0) 

1 (k)}5 1 
is a data sequence of a system’s characteristic variable, and 

X (0) 
2 = (7.04, 7.645, 8.075, 8.53, 8.774) = {x (0) 

2 (k)}5 1 
the data sequences of a relevant factor. Try to establish the model of GM(1,2). 

Solution Assume that the model of GM(1,2) is as follows: 

x (0) 
1 (k) + az(1) 

1 (k) = bx (1) 
2 (k) 

From 

X (1) 
1 = [x (1) 

1 (1), x (1) 
1 (2), x (1) 

1 (3), x (1) 
1 (4), x (1) 

1 (5)] 
= (2.874, 6.152, 9.459, 12.849, 16.528) 

X (1) 
2 = [x (1) 

2 (1), x (1) 
2 (2), x (1) 

2 (3), x (1) 
2 (4), x (1) 

2 (5)] 
= (7.04, 14.685, 22.76, 31.29, 40.064) 

We have 

Z (1) 
1 = [z(1) 

1 (2), z(1) 
1 (3), z(1) 

1 (4), z(1) 
1 (5)] 

= (4.513, 7.8055, 11.154, 14.6885) 

It follows that 

B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

−z(1) 1 (2) 
−z(1) 1 (3) 
−z(1) 1 (4) 
−z(1) 1 (5) 

x(1) 
2 (2) 
x(1) 
2 (3) 
x(1) 
2 (4) 
x(1) 
2 (5) 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

−4.513 

−7.8055 

−11.154 

−14.6885 

14.685 

22.76 

31.29 

40.064 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

x(0) 
1 (2) 
x(0) 
1 (3) 
x(0) 
1 (4) 
x(0) 
1 (5) 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

3.278 

3.307 

3.390 

3.679 

⎤ 

⎥ 
⎥ 
⎥ 
⎦
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Table 7.14 Simulation results with errors 

Ordinality Real data 
x (0) (k) 

Simulated values 
x̂ (0) (k) 

Errors 
ε(k) = x (0) (k) − x̂ (0) (k) 

Relative errors

Δk = |ε(k)| 
x (0)(k) (%) 

2 3.278 3.265 0.013 0.4 

3 3.307 3.254 0.053 1.6 

4 3.390 3.530 −0.140 4.1 

5 3.679 3.614 0.065 1.8 

Therefore, we have 

â =
[
a 
b

]

= (BT B)−1 BT Y =
[
2.2273 
0.9068

]

and 

x (0) 
1 (k) + 2.2273z(1) 

1 (k) = 0.9068x (1) 
2 

That is, 

x̂ (0) 
1 (k) = −2.2273z(1) 

1 (k) + 0.9068x (1) 
2 

The simulation results are as shown in Table 7.14. 
The average relative error is

Δ = 
1 

4 

5∑

k=2

Δk = 
1 

4 

5∑

k=2 

|ε(k)| 
x (0)(k) 

= 1.975% 

7.7.3 The Grey Verhulst Model 

The GM(1,1) model is suitable for sequences that show an obvious exponential 
pattern and can be used to describe monotonic changes. As for non-monotonic 
wavelike development sequences, or saturated sigmoid sequences, one can consider 
establishing a grey Verhulst model. 

Definition 7.7.3 Assume that X (0) is a sequence of raw data, X (1) the accumulation 
sequence of X (0), and Z (1) the adjacent neighbor average sequence of X (1). Then, 

x (0) (k) + az(1) (k) = b[z(1) (k)]α (7.36) 

is known as the power model of GM(1,1). Also,
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dx (1) /dt  + ax (1) = b(x (1) )α (7.37) 

is known as the shadow equation of the power model of GM(1,1) (Deng, 1985). 

Theorem 7.7.3 The solution of the whitenization equation of the power model of 
GM(1,1) is 

x (1) (t) =
{

e−(1−a)at [(1 − a)

∫

be(1−a)at dt  + c]
} 1 

1−a 

(7.38) 

Theorem 7.7.4 Let X (0), X (1), and Z (1) be defined as above. Let 

B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

−z(1) (2) 
−z(1) (3) 

... 
−z(1) (n) 

[z(1) (2)]α 

[z(1) (3)]α 

... 
[z(1) (n)]α 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

x (0) (2) 
x (0) (3) 

... 
x (0) (n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

Then the least squares estimate of the parametric sequence â = [a, b]T of the 
power model of GM(1,1) is 

â = (BT B)−1 BT Y. 

Definition 7.7.4 When the power α = 2 in the power model of GM(1,1), the resultant 
model 

x (0) (k) + az(1) (k) = b(z(1) (k))2 (7.39) 

is known as the grey Verhulst model; and 

dx (1) /dt  + ax (1) = b(x (1) )2 (7.40) 

is known as the whitenization equation of the grey Verhulst model (Deng, 1985). 

Theorem 7.7.5 

(1) The solution of the Verhulst whitenization equation is 

x (1) (t) = 1 

eat [ 1 
x (1)(0) − b a (1 − e−at ) 

= ax (1) (0) 
eat [a − bx (1)(0)(1 − e−at ) 

That is 

x (1) (t) = ax (1) (0) 
bx (1)(0) + [a − bx (1)(0)]e−at 

(7.41)
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(2) The time response sequence of the grey Verhulst model is 

x̂ (1) (k + 1) = ax (1) (0) 
bx (1)(0) + [a − bx (1)(0)]e−ak 

(7.42) 

The Verhulst model is mainly used to describe and study processes with saturated 
states (or sigmoid processes). For instance, this model is often used in the prediction 
of human populations, biological growth, reproduction, and economic life span of 
consumable products. From the solution of the Verhulst equation, it can be seen that 
when t → ∞, if  a > 0, then x (1) (t) → 0; if  a < 0, then x (1) (t) → a b . That is, there 
is a sufficiently large t such that for any k > t , both x (1) (k + 1) and x (1) (k) will be 
sufficiently close to each other. In this case, x (0) (k + 1) = x (1) (k + 1) − x (1) (k) ≈ 0, 
which means that the system approaches distinction. 

In practice, one often faces sigmoid processes in the original data sequences. 
When such an instance appears, we can simply take the original sequence as X (1) 

with its accumulation generation as X (0) to establish a grey Verhulst model to directly 
simulate X (1). 

Example 7.7.3 Assume that the expenditures on the research of a certain kind of 
torpedo are given in Table 7.15. Try to employ the grey Verhulst model to simulate 
the data and make predictions (Liang et al., 2005). 

The accumulated expenditures are given in Table 7.16. 
From Theorem 7.7.5, we compute the parameters as follows: 

â = [a, b]T =
[ −0.98079 

−0.00021576

]

so that the whitenization equation is 

dx (1) /dt  − 0.98079x (1) = −0.00021576(x (1) )2 . 

By taking x (1) (0) = x (0) (1) = 496, we obtain the time response sequence

Table 7.15 Expenditures on the research of a certain kind of torpedo (in million Yuan) 

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 

Expenditure 496 779 1187 1025 488 255 157 110 87 79 

Table 7.16 Accumulated expenditures (in ten thousand Yuan) 

Year 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 

Expenditure 496 1275 2462 3487 3975 4230 4387 4497 4584 4663 
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Table 7.17 The simulation results with errors 

Ordinality Actual data 
x (0) (k) 

Simulated data 
x̂ (0) (k) 

Error 
ε(k) = x (0) (k) − x̂ (0) (k) 

Relative error

Δk = |ε(k)| 
x (0)(k) 

2 1275 1119.1 155.9 0.12226 

3 2462 2116 346 0.14053 

4 3487 3177.5 309.5 0.08876 

5 3975 3913.7 61.3 0.01541 

6 4230 4286.2 −56.2 0.01328 

7 4387 4444.8 −57.8 0.01318 

8 4497 4507.4 −10.4 0.0023 

9 4584 4531.3 52.7 0.0115 

10 4663 4540.3 122.7 0.02631 

x̂ (1) (k + 1) = ax (1) (0) 
bx (1)(0) + [a − bx (1)(0)]e−ak 

= −486.47 

−0.10702 − 0.87378e−0.98079k 
. 

On the basis of this formula, we produce the simulated values x̂ (1) (k) as shown 
in Table 7.17. 

From Table 7.17, we can obtain the average relative error

Δ = 
1 

9 

10∑

k=2

Δk = 4.3354% 

and predict the research expenditure for the year of 2005 on the special kind of 
torpedo as 

x̂ (0) 
1 (11) = x̂ (1) 

1 (11) − x̂ (1) 
1 (10) = 9.0342. 

This value indicates that the research work on the torpedo is nearing its conclusion. 

7.7.4 The Self-memory Grey Model 

For unimodal series or nonlinear saturated growth series, self memory GM(1,1) 
power model can also be established to describe its evolution law (Guo et al., 2015; 
Liu et al., 2017; Liu,  2021). 

Definition 7.7.5 Assume that 

F(x, t) = −ax (1) + b(x (1) )γ (7.43)
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where x is variable, t is time, then formula (7.43) is called a self-memory dynamic 
equation. 

Definition 7.7.6 Assume that β(t), |β(t)| ≤ 1 is a memory function, the variable 
x, memory function β(t) and self-memory dynamic equation F(x, t) all meet the 
conditions of continuity, differentiability, integrability, then following 

βt xt − β−px−p − 
0∑

i=−p 

xm i (βi+1 − βi ) − 
t∫

t− p 

β(τ)F(x, τ)dτ = 0 (7.44) 

is called a self-memory prediction model. 

Where T = {t−p, t−p+1, . . . ,  t−1, t0, t} is the time set. 
Let xm −p−1 ≡ x−p, β−p−1 ≡ 0, we can obtained the following 

xt = 
1 

βt 

0∑

i=−p−1 

xm i (βi+1 − βi ) + 
1 

βt 

t∫

t−p 

β(τ)F(x, τ)dτ = S1 + S2 (7.45) 

where S1 is the self-memory item which represents the influence of historical statis-
tical data on the predicted value xt , S2 is other effective item which represents the 
influence of the dynamic equation F(x, t) = −ax (1) + b(x (1) )γ on the predicted 
value xt within the backtracking period [t−p, t0]. 

In (7.45), we use addition to approximately replace integration and difference 
to approximately replace differentiation and let xm i = 1 

2 (xi+1 + xi ) ≡ yi , Δti = 
ti+1 − ti = 1 further, then we obtained the discrete self-memory prediction model as 
follows 

xt = 
−1∑

i=−p−1 

αi yi + 
0∑

i=−p 

θi F(x, i) (7.46) 

where αi = (βi+1 − βi )
/

βt , θi = βi
/

βt , and F(x, t) = −ax (1) + b(x (1) )γ. 

Theorem 7.7.6 Assume that 

Xt 
L×1 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

xt1 
xt2 
... 
xtL  

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, Y 
L×(p+1) 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

y−p−1,1 y−p,1 · · ·  y−1,1 

y−p−1,2 y−p,2 · · ·  y−1,2 
... 

... 
. . . 

... 
y−p−1,L y−p,L · · ·  y−1,L 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, A 
( p+1)×1 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

α−p−1 

α−p 
... 

α−1 

⎤ 

⎥ 
⎥ 
⎥ 
⎦

⎡
L×( p+1) 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

F(x, −p)1 F(x, −p + 1)1 · · ·  F(x, 0)1 
F(x, −p)2 F(x, −p + 1)2 · · ·  F(x, 0)2 

... 
... 

. . . 
... 

F(x, −p)L F(x, −p + 1)L · · ·  F(x, 0)L 

⎤ 

⎥ 
⎥ 
⎥ 
⎦ 

, ⊖
( p+1)×1 

= 

⎡ 

⎢ 
⎢ 
⎢ 
⎣ 

θ−p 

θ−p+1 
... 
θ0 

⎤ 

⎥ 
⎥ 
⎥ 
⎦
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Let Z = [Y, ⎡], W =
[
A

⊖

]

. 

then the least squares estimate of the parametric vector W =
[
A

⊖

]

satisfies 

W = (ZT Z )−1 ZT Xt (7.47) 

7.7.5 The Models of GM(r,h) 

In this subsection, we focus on the investigation of the structure of the models of 
GM(r,h), and its relationships with models GM(1,1), GM(1,N), GM(0,N), and the 
grey Verhulst model. 

Definition 7.7.7 Assume that X (0) 
i = (x (0) 

i (1), x (0) 
i (2), · · ·  , x (0) 

i (n)), i = 1, 2, ..., h, 
where X (0) 

1 stands for a data sequence of a system’s characteristic, and X (0) 
i , i = 

2, 3, · · ·  , h data sequences of relevant factors. Let. 

α(1) x̂(1) 
1 (k) = x̂(1) 

1 (k) − x̂(1) 
1 (k − 1) = x̂(0) 

1 (k) 

α(2) x̂(1) 
1 (k) = α(1) x̂(1) 

1 (k) − α(1) x̂(1) 
1 (k − 1) = x̂(0) 

1 (k) − x̂(0) 
1 (k − 1) 

· · ·  · · ·  · · ·  · · ·  · · ·  · · ·  

α(r ) x̂(1) 
1 (k) = α(r−1) x̂(1) 

1 (k) − α(r−1) x̂(1) 
1 (k − 1) = α(r−2) x̂(0) 

1 (k) − α(r−2) x̂(0) 
1 (k − 1) 

and z(1) (k) = 1 2 (x
(1) (k) + x (1) (k − 1)), then 

α(r) x̂ (1) 
1 (k) + 

r−1∑

i=1 

ai α
(r−i ) x (1) 

1 (k) + ar z(1) 
1 (k) = 

h−1∑

j=1 

b j x
(1) 
j+1(k) + bh (7.48) 

is referred to as the model of GM(r,h). The GM(r,h) model is a rth order grey model 
in h variables. 

Definition 7.7.8 In the model of GM(r,h), −â = [−a1, −a2, . . . ,  −ar ]T is referred 
to as the development coefficient vector,

Σh−1 
j=1 b j x

(1) 
j+1(k) the driving term, and b̂ = 

[b1, b2, . . . ,  bh]T the vector of driving coefficients. 

Theorem 7.7.7 Let X (0) 
1 be a data sequence of a system’s characteristic, X (0) 

i , i = 
2, 3, . . . ,  h, the data sequences of relevant factors, X (1) 

i the accumulation sequence 
of X (0) 

i , Z (1) 
1 the adjacent neighbor average sequence from X (1) 

1 , and α
(r−i ) X (1) 

1 the 
(r − i )th order inverse accumulation sequence of X (1) 

1 . Define
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B = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

−α(r−1)x(1) 
1 (2) −α(r−2)x(1) 

1 (2) · · ·  −α(1)x(1) 
1 (2) −z(1) 1 (2) x(1) 

2 (2) · · ·  x(1) 
h (2) 1 

−α(r−1)x(1) 
1 (3) −α(r−2)x(1) 

1 (3) · · ·  −α(1)x(1) 
1 (3) −z(1) 1 (3) x(1) 

2 (3) · · ·  x(1) 
h (3) 1 

· · · · · · · · · · · · · · · · · ·  · · ·  · · ·  · · ·  
−α(r−1)x(1) 

1 (n) −α(r−2)x(1) 
1 (n) · · ·  −α(1)x(1) 

1 (n) −z(1) 1 (n) x(1) 
2 (n) · · ·  x(1) 

h (n) 1 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

, 

Y = 

⎡ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎣ 

α(r)x(1) 
1 (2) 

α(r )x(1) 
1 (3) 
. 
. 
. 

α(r )x(1) 
1 (n) 

⎤ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎦ 

then the parametric sequence ĉ = [−â, b̂]T = 
[−a1, −a2, . . . ,  −ar ; b1, b2, . . . ,  bh]T of the least squares estimate satisfies 

â = (BT B)−1 BT Y. 

The model of GM(r,h) is the general form of grey systems models. In particular, 

(1) When r = 1 and h = 1, the previous (7.48) reduces to: 

dx (1) 
1 /dt  + a1x (1) 

1 = b1 and α(1) x (1) 
1 (k) + a1z(1) 

1 (k) = b1 

which is the model of GM(1,1). 

(2) When r = 1 and h = N, the previous (7.48) takes the form of 

x (0) 
1 (k) + a1z(1) 

1 (k) = 
N∑

i=2 

bi x
(1) 
i (k) 

which is the GM(1,N) model. 

(3) When r = 0 and h = N, the previous model (7.48) is  

x (1) 
1 (k) = b1x (1) 

2 (k) + b2x (1) 
3 (k) +  · · ·  +  bN−1x

(1) 
N (k) + bN 

which is the GM(0,N) model. 

(4) When r = 1 and h = 1, and b1 in the model of GM(1,1) is changed to b(z(1) (k))2, 
then we have the following grey Verhulst model: 

x (0) (k) + az(1) (k) = b(z(1) (k))2 . 

Based on this discussion, it can be seen that models GM(1,1), GM(1,N), GM(0,N), 
etc., are all special cases of model GM(r,h). So, it is very important to further the 
study of model GM(r,h).
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7.8 Practical Applications 

Example 7.8.1 (Liu, 1991) Let us look at the revenue predictions of private enter-
prises at Changge County, Henan Province, The People’s Republic of China, which 
we mentioned in Example 4.3.1. For the years from 1983 to 1986, the overall business 
revenue of private enterprises in Changge county was recorded as. 

X = (10155, 12588, 23480, 35388) 

We obtained the following second-order buffered sequence 

XD2 = (27260, 29547, 32411, 35388) 

in Example 4.3.1 by a second-order average weakening buffer operator (AWBO) as 
follows: 

x(k)d = 1 

n − k + 1 
[x(k) + x(k + 1) + · · · +  x(n)], k = 1, 2, . . . ,  n 

We denote the XD2 as X(0), that is, let 

X(0) = (27260, 29547, 32411, 35388). 

Then the 1-AGO sequence X(1) of X(0) is as follows 

X (1) = (x (1) (1), x (1) (2), x (1) (3), x (1) (4)) = (27260, 56807, 89218, 124606). 

Assume that 

x0 (k) + az1 (k) = b 

Based on the least squares method, we obtain the estimated values for a and b as 
follows: 

â = −0.089995, b̂ = 25790.28 

Thus, the resultant whitenization equation of EGM(1, 1) is given by 

dx (1) 

dt  
− 0.089995x (1) = 25790.28 

and its time response sequence is

{
x̂ (1) (k + 1) = 313834 e0.089995k − 286574 

x̂ (0) (k + 1) = x̂ (1) (k + 1) − x̂ (1) (k)
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From these results, we obtain the simulated sequence 

X̂ = ( ̂x(1), x̂(2), x̂(3), x̂(4)) = (27260, 29553, 32337, 35381) 

with the sequence of errors 

ε(0) = (ε(0) (1), ε(0) (2), ε(0) (3), ε(0) (4)) = (0 − 6, 74, 7) 

The sequence of relative errors

Δ =
[∣
∣
∣
∣
ε(0) (1) 
x (0)(1)

∣
∣
∣
∣,

∣
∣
∣
∣
ε(0) (2) 
x (0)(2)

∣
∣
∣
∣,

∣
∣
∣
∣
ε(0) (3) 
x (0)(3)

∣
∣
∣
∣,

∣
∣
∣
∣
ε(0) (4) 
x (0)(4)

∣
∣
∣
∣

]

= (0, 0.0002, 0.00228, 0.0002) 

And the average relative error

Δ = 
1 

4 

n4∑

k=1

Δk = 0.00067 = 0.067% < 0.01

Δ4 = 0.0002 = 0.02% < 0.01 

Therefore, the accuracy of our simulation is in level one. 
Now, we can compute the absolute degree ε of grey incidences of X and X̂ . 

|s| =
∣
∣
∣
∣
∣

3∑

k=2 

[x(k) − x(1)] +  
1 

2
[x(4) − x(1)]

∣
∣
∣
∣
∣
= 11502

∣
∣ŝ
∣
∣ =

∣
∣
∣
∣
∣

3∑

k=2 

[x̂(k) − x̂(1)] +  
1 

2 
[x̂(4) − x̂(1)]

∣
∣
∣
∣
∣
= 11430.5

∣
∣ŝ − s

∣
∣ =

∣
∣
∣
∣
∣

3∑

k=2 

[x(k) − x(1) − ( ̂x(k) − x̂(1))] +  
1 

2 
[x(4) − x(1) − ( ̂x(4) − x̂(1))]

∣
∣
∣
∣
∣

= 71.5 

Thus, 

ε = 1 + |s| + ∣∣ŝ∣∣
1 + |s| + ∣∣ŝ∣∣+ ∣∣ŝ − s

∣
∣

= 1 + 11502 + 11430.5 
1 + 11502 + 11430.5 + 71.5 

= 0.997 > 0.90 

That is, the degree of incidence is in level one. 
Compute the ratio of mean square deviations C :
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x = 
1 

4 

4∑

k=1 

x(k) = 31151.5, S2 1 = 
1 

4 

4∑

k=1 

(x(k) − x)2 = 37252465, S1 = 6103.48 

ε = 
1 

4 

4∑

k=1 

ε(k) = 18.75, S2 2 = 
1 

4 

4∑

k=1 

(ε(k) − ε)2 = 4154.75, S2 = 64.46 

It follows that 

C = 
S2 
S1 

= 
64.46 

6103.48 
= 0.01 < 0.35 

which is in level one. 
Compute the small error probability. From 

0.6745S1 = 4116.80 

|ε(1) − ε| = 18.75, |ε(2) − ε| = 24.75, |ε(3) − ε| = 55.25, |ε(4) − ε| = 11.75 

Therefore 

p = P(|ε(k) − ε| < 0.6745S1) = 1 > 0.95 

With our accuracy checks in place, we can apply the grey model

{
x̂ (1) (k + 1) = 313834e0.089995k − 286574 

x̂ (0) (k + 1) = x̂ (1) (k + 1) − x̂ (1) (k) 

to make predictions. Here, we list five predicted values as follows: 

X̂ (0) = [x̂ (0) (5), x̂ (0) (6), x̂ (0) (7), x̂ (0) (8), x̂ (0) (9)] 
= (38714, 42359, 46348, 50712, 55488) 

These predictions indicated an average 9.4% annual growth. When we look back 
today, this predicted rate of growth agreed very well with the recorded values over 
the time span of our predictions. 

Example 7.8.2 Subgrade settlement prediction (Guo et al., 2015). 
Subgrade settlement is one important indicator affecting road safety because the 

major hidden danger could result in road traffic accidents. So subgrade settlement 
prediction is one of the major research topics in the field of geotechnical engineering. 
Three monitoring points (Points A, B and C) at certain roadbed sections of Beijing-
Harbin freeway (G102 line) were arranged, the method of single point extensometer 
was employed to monitor its subgrade settlement.
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Table 7.18 The accumulated subgrade settlement data of monitoring points A, B and C (unit: mm) 

Period Number of days Accumulated subgrade settlement value 

Point A Point B Point C 

1 35 13.42 9.89 12.03 

2 50 15.38 12.20 15.60 

3 65 22.18 16.27 19.57 

4 80 23.30 17.66 20.80 

5 95 24.55 19.07 22.03 

6 110 25.41 20.85 23.38 

7 125 26.91 21.91 24.60 

8 140 28.02 23.40 25.79 

9 155 28.44 23.77 26.36 

10 170 28.64 24.12 27.16 

The three groups of accumulated subgrade settlement data at different monitoring 
points are listed in Table 7.18 (Liu et al., 2013). 

Step 1: Analyze the coupling relationship between the data of different monitoring 
points. 

Analyze the coupling relationship between the data of different monitoring points 
to determine whether the data of monitoring points A, B and C are relevant. Let 

X1= (13.42,15.38, 22.18,23.30, 24.55,25.41, 26.91,28.02, 28.44,28.64) 
X2 = (9.89, 12 · 20, 16 · 27, 17.66, 19.07, 20.85, 21 · 91, 23.40, 23.77, 24.12) 
X3= (12.03,15.60, 19.57,20.80, 22.03,23.38, 24.60,25.79, 26.36,27.16) 

Calculate the grey absolute relational degree between X1,X2, and X3 respectively, 
we have 

ε12 = 0.9923, ε13 = 0.9721, ε25 = 0.9648 

The results shows that there is coupling relationship and certain relationship exists 
of the data at monitoring point A, B and C. 

Step 2: Determining the self-memory dynamic equation.
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⎧ 
⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎩ 

dx (1) 
1 

dt 
+ 4.0920x (1) 

1 + 2.8789x (1) 
2 − 7.0870x (1) 

3 = 7.2671 

dx (1) 
2 

dt 
+ 1.7787x (1) 

1 + 1.5361x (1) 
2 − 3.3707x (1) 

3 = 7.4767 

dx (1) 
3 

dt 
+ 1.9224x (1) 

1 + 1.5285x (1) 
2 − 3.5145x (1) 

3 = 10.9312 

(7.49) 

The matrix form dX (1)
/
dt = −AX (1) + B of Eq. (7.49) was taken as the dynamic 

kernel F(X, t) of the self-memory equation of the SMGM(1,3) model. 

Step 3: Deducing the self-memory prediction equation system. 

The value of retrospective order is determined as p = 1 by trial calculation method 
under the principle of minimum error of fitting root-mean-square. Then the self-
memorization equation system of the SMGM(1,3) model can be established for 
subgrade settlement forecasting as follows. 

⎧ 
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ 

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ 

x1t = 
−1∑

i=−2 

α1i y1i + 
0∑

i=−1 

θ1i F1(x, i ) 

x2t = 
−1∑

i=−2 

α2i y2i + 
0∑

i=−1 

θ2i F2(x, i) 

x3t = 
−1∑

i=−2 

α3i y3i + 
0∑

i=−1 

θ3i F3(x, i ) 

(7.50) 

Step 4: Estimate the memory coefficients matrix by the least square method. 

W = [W1, W2, W3] = 

⎡ 

⎢ 
⎢ 
⎣ 

α1,−2 α2,−2 α3,−2 

α1,−1 α2,−1 α3,−1 

θ1,−1 θ2,−1 θ3,−1 

θ1,0 θ2,0 θ3,0 

⎤ 

⎥ 
⎥ 
⎦ = 

⎡ 

⎢ 
⎢ 
⎣ 

−0.0520 0.0890 0.0260 
1.0468 0.9067 0.9712 
0.2141 0.3616 0.2931 
1.2761 1.2769 1.2702 

⎤ 

⎥ 
⎥ 
⎦ 

Step 5: Simulation 

Substituting the memory coefficient matrix into Eq. (7.50), The simulation values 
of original subgrade settlement data matrix X (0) can be obtained. 

The simulated values and their corresponding APE of three compared models, 
SMGM(1,3), GM(1,1) and MGM(1,3) are presented in Tables 7.19, 7.20, and 7.21 
respectively.

Step 6: Simulation accuracy comparison
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Table 7.19 The simulated values and APE of the SMGM(1,3), GM(1,1) and MGM(1,3) at point 
A (unit: mm) 

No. Actual value GM(1,1) MGM(1,3) SMGM(1,3) 

Simulated 
value 

APE/% Simulated 
value 

APE/% Simulated 
value 

APE/% 

1 13.42 – – – – – – 

2 15.38 18.931 23.088 16.283 5.871 – – 

3 22.18 20.333 8.327 21.182 4.500 22.168 0.055 

4 23.30 21.839 6.270 23.276 0.103 23.331 0.132 

5 24.55 23.456 4.456 24.601 0.208 24.625 0.307 

6 25.41 25.193 0.854 25.715 1.200 25.105 1.201 

7 26.91 27.059 0.554 26.775 0.502 27.229 1.184 

8 28.02 29.063 3.722 27.824 0.700 27.913 0.381 

9 28.64 31.216 8.994 29.057 1.456 28.594 0.161 

10 28.44 30.298 6.533 30.340 6.681 29.746 4.591 

Table 7.20 The simulated values and APE of the SMGM(1,3), GM(1,1) and MGM(1,3) at point 
B (unit: mm) 

No. Actual value GM(1,1) MGM(1,3) SMGM(1,3) 

Simulated 
value 

APE / % Simulated 
value 

APE / % Simulated 
value 

APE / % 

1 9.89 — — — — — — 

2 12.20 14.171 16.156% 12.625 3.484% — — 

3 16.27 15.484 4.831% 15.789 2.956% 16.258 0.075% 

4 17.66 16.920 4.190% 17.713 0.300% 17.737 0.434% 

5 19.07 18.488 3.052% 19.256 0.975% 19.165 0.496% 

6 20.85 20.202 3.108% 20.662 0.902% 20.373 2.288% 

7 21.91 22.075 0.753% 22.001 0.415% 22.222 1.423% 

8 23.40 24.121 3.081% 23.300 0.427% 23.520 0.512% 

9 23.77 26.357 10.883% 24.654 3.719% 24.527 3.186% 

10 24.12 26.624 10.381% 25.131 4.192% 24.842 2.993%

The values of accuracy criteria (MSE, AME and MAPE) of different subgrade 
settlement prediction models are shown in Table 7.22.

From the viewpoint of error analysis, the multi-variable models of MGM(1,3) and 
SMGM(1,3) always show lower error values than the uni-variable model GM(1,1). 
It is shown that the multi-point prediction models can take the relationship among 
variables into account, and are able to adequately reflect the integral evolution laws of 
subgrade settlement system. The self-memory technique helped model SMGM(1,3) 
to further reduce the modeling errors compared with the traditional model MGM(1,3).
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Table 7.21 The simulated values and APE of the SMGM(1,3), GM(1,1) and MGM(1,3) at point 
C (unit: mm) 

No Actual value GM(1,1) MGM(1,3) SMGM(1,3) 

Simulated 
value 

APE/% Simulated 
value 

APE/% Simulated 
value 

APE/% 

1 12.03 – – – – – – 

2 15.60 17.443 11.814 16.044 2.846 – – 

3 19.57 18.696 4.466 19.085 2.478 19.564 0.032 

4 20.80 20.039 3.659 20.810 0.048 20.836 0.171 

5 22.03 21.479 2.501 22.153 0.558 22.107 0.351 

6 23.38 23.022 1.531 23.378 0.009 23.084 1.266 

7 24.60 24.676 0.309 24.558 0.171 24.771 0.694 

8 25.79 26.449 2.555 25.719 0.275 25.886 0.374 

9 26.36 28.349 7.546 26.954 2.253 26.813 1.720 

10 27.16 29.087 7.095 27.445 1.049 27.412 0.927

Table 7.22 Simulation error of different subgrade settlement prediction models 

Monitoring point Model MSE AME MAPE (%) 

Point A MGM(1,3) 3.924 1.595 10.174 

OMGM(1,3) 3.088 1.511 9.277 

SMGM(1,3) 0.170 0.316 1.572 

Point B MGM(1,3) 4.538 1.665 10.096 

OMGM(1,3) 3.336 1.542 9.017 

SMGM(1,3) 0.232 0.370 1.741 

Point C MGM(1,3) 5.200 1.735 10.051 

OMGM(1,3) 3.700 1.607 8.961 

SMGM(1,3) 0.343 0.451 2.026 

Subgrade system MGM(1,3) 4.554 1.665 10.107 

OMGM(1,3) 3.375 1.553 9.085 

SMGM(1,3) 0.248 0.379 1.780

Meanwhile, the model SMGM(1,3) has passed the modeling simulation and predic-
tion accuracy test, and the single-step and two-step rolling prediction precisions are 
also generally superior than that of the other two grey models. In summary, the model 
SMGM (1,3) markedly promoted the predictive performance compared with other 
grey prediction models.
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Chapter 8 
Combined Grey Models 

Along with the disciplinary development of systems science and systems engineering, 
methods and modeling techniques established for systems evaluation, prediction, 
decision-making, and optimization are enriched constantly. Generally, each method 
and every model have their strengths and weaknesses, so in practical applications 
several different methods and modeling techniques are combined to form hybrid 
methods or techniques in order to successfully deal with the problems at hand. Such 
combinations and mixtures are used to capitalize upon the strengths and advantages 
of different methods so that they complement each other and at the same time improve 
the weaknesses of individual methods and modeling techniques. This explains why 
combined or mixed systems are superior to individual component methods. Addi-
tionally, the availability of many different methods and modeling techniques also 
provides us with different ways to deal with information and systems. Therefore, 
how to combine and mix different methods and techniques has become a research 
direction with wide-ranging applicability in areas of data mining and knowledge 
discovery. 

8.1 Grey Econometrics Models 

8.1.1 Determination of Variables Using the Grey Relational 
Principles 

In analyzing systems, due to the complications of mutually crossing influences of 
the endogenous variables, at the very start of modeling, the first problem that needs 
to be addressed is how to select the variables that will be part of the eventual model. 
To revolve this problem, the researcher needs not only rely on his qualitative analysis 
of the system, but also have sufficiently adequate tools for conducting quantitative
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analysis. Grey relational analysis model provide an effective method for this class of 
problems. 

Let y be an endogenous variable of the system of our concern (for systems 
with many endogenous variables, these variables can be studied individually), and 
x1, x2, . . . ,  xn be pre-images of influencing factors that are correlated either posi-
tively or negatively to y. Calculate the grey relational degree εi between y and xi , i = 
1, 2, . . . ,  n, at first. For a chosen lower threshold value ε0, when εi < ε0, remove the 
variable xi out of consideration. By doing so, some of the system’s endogenous vari-
ables with weak grey relational degrees with y can be removed from further consid-
eration. Assume that the remaining illustrative variables of y are xi1 , xi2 , . . . ,  xim . 
Next, consider the grey relational degrees εi j ik (i j , ik = i1, i2, . . . , )im between these 
remaining variables. For a chosen threshold value ε'

0, when εi j ik ≥ ε'
0, the variables 

xi j and xik are seen as the same kind so that the remaining variables are divided into 
several subsets. Now, choose one representative from each of these subsets to enter 
into the eventual model. By going through this possess, the resultant econometrics 
model can be greatly simplified without losing the needed power of explanation. At 
the same time, to a certain degree the difficult problem of collinearity of the variables 
can be avoided. 

8.1.2 Grey Econometrics Models 

In econometrics, there are many different kinds of models, such as linear regression 
models in one or multiple variables, nonlinear models, systems of equations, among 
others. When estimating the parameters of these models, one often faces phenomena 
that are difficult to explain. For instance, the coefficients of the major illustrative 
variables are nearly zero; the signs of some estimated values of the parameters do not 
agree with reality or contradict theoretical economic analysis; small vibrations in a 
few individual observations cause drastic changes in many other estimated parametric 
values. Among the main reasons underlying these difficulties are: 

(1) During the time period the observations are done, the internal structure of the 
system goes through major changes; 

(2) There is a problem of collinearity between the illustrative variables; and 
(3) There are randomness and noise in the observed data. 

For the first two scenarios, there is a need to repeat the investigation of the model 
structure or a need to recheck the illustrative variables. For the third scenario, one 
can consider establishing models using the GM(1,1) simulated values of the orig-
inal observations to eliminate the effect of the randomness or noise existing in the 
available data. The combined grey econometrics model, obtained this way, can more 
accurately reflect the relationship between the system’s variables. At the same time, 
the prediction results made on the endogenous variables of the grey econometrics 
model system, which is based on the GM(1,1) predicted values of the illustrative 
variables, possess more solid scientific foundation than qualitative estimate values
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of the illustrative variables. Besides, by comparing the results of grey predictions of 
the endogenous variables with those obtained out of econometrics models, one can 
further improve the reliability of the predictions. 

The steps for establishing and applying grey econometrics models are as follows: 

Step 1: Design the theoretical model. Study the economic activity of interest closely. 
According to the purpose of the investigation, select the variables that will potentially 
enter the model. Discover the relationships between these variables based on theories 
of economic behavior and experience and/or analyze the sampled data. Develop 
the mathematical expressions, which are the theoretical model, that describe the 
relationships between these variables. This stage is the most important and difficult 
phase of the entire modeling process, and the following work need to be done: 

(1) Study relevant theories of economics 

Theoretical models summarize the fundamental characteristics and laws of develop-
ment of the objective matters. They are abstract pictures of reality. Therefore, in the 
stage of model design, one first needs to conduct a qualitative analysis using economic 
theories. With different theories, various models can be established. For instance, 
according to the theory of equilibrium of labor markets, the rate y of wage increase 
is related to the unemployment rate x1 and inflation rate x2, that is, y = f (x1, x2). 
The greater the unemployment rate increases, the smaller the rate of wage increase 
due to the fact that the supply of labor is clearly greater than the demand. This is 
the well-established Alban W. Phillips curve, which has been widely accepted and 
applied in the economic models of Western countries. However, this model may not 
necessarily hold true in the socialist market economy of China. As a second example, 
according to Keynes’s theory of consumption, it is believed that, on average, when 
income grows, people tend to increase their consumption. However, the degree of 
increase in consumption is not as high as that of income. Assume that y stands for 
consumption, and x for income. Then, a mathematical expression for the relationship 
between these variables is 

y = f (x) = b0 + b1x + ε 

where the parameter b1 = dy/dx  stands for the marginal consumption tendency, and 
ε a random noise, representing the inherent randomness of consumption. According 
to Keynes, 0 < b1 < 1. However, Simon Kuznets does not agree with Keynes’s 
opinion of a declining marginal consumption tendency. His work indicates that there 
is a stable proportion of increase between consumption and income. That is, the 
previous model is only a product of Keynes’s theory. 

(2) Variables and the form of the eventual model 

The established model should reflect the objective economic activity. However, it is 
impossible for such a reflection to include all details. This is why we need reasonable 
assumptions. Employing the method of this section to select the major variables to 
be included in the model using grey relational analysis will help to eliminate minor
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relationships and factors. It focuses on the dominant connections while simplifying 
the eventual model, making it convenient to handle and apply. 

The specific works of this stage of model design include: (i) Determine which 
variables to include, which ones are dependent variables, and which ones are inde-
pendent. Here, each independent variable is also known as illustrative variable. (ii) 
Determine the number of parameters to be included in the model and their (positive 
or negative) signs. (iii) Determine the mathematical form of the model expression. 
Is it linear or nonlinear? 

(3) Collection and organization of statistical data 

After having decided on which variables to consider, one needs to collect all the 
relevant data. That is the foundation of establishing models. Generally speaking, all 
the collected raw data need to be statistically categorized and organized so that they 
become the empirical evidence of the characteristics of the problem of concern and are 
systematically usable for the purpose of modeling. The basic types of statistical data, 
as discussed in Chap. 3, include behavioral sequences, time series, index sequences, 
horizontal sequences, among others. 

Step 2: Establish the GM(1,1) model and obtain its simulated values. In order to 
eliminate the random effect or error noise existing in the observational values of 
individual variables of the model, establish the GM(1,1) models for the individually 
observed sequences and then apply the simulated values of these GM(1,1) models 
as the base sequences on which to construct the eventual model. 

Step 3: Estimate the parameters. After having designed the econometrics model, the 
next task is to estimate the parameters, which are the constant coefficients of the 
quantitative relationship between the chosen variables of the model. They connect 
the individual variables within the model. More specifically, these parameters explain 
how independent variables affect the dependent variable. Before using observed data 
to make estimations, these parameters are unknown. After the form of the model 
is established on the basis of the GM(1,1) model, simulated sequences solve the 
estimated values of the parameters using an appropriate method, such as that of least 
squares estimate. As soon as the parameters are clearly specified, the relationships 
between model variables become known and the model can be determined. 

The estimated values of the parameters provide realistic and empirical contents 
and verification for the theories of economics. For instance, in the previously 
mentioned consumption model, if the estimated value of parameter b1 is b̂1 = 0.8, it  
not only classifies the realistic content of the marginal consumption tendency, but also 
provides a piece of evidence for the assumption of Keynes’s theory of consumption 
that this parameter is between 0 and 1. 

Step 4: Test the model. After the parameters are estimated, the abstract model 
becomes specific and determined. However, to determine whether or not the model 
agrees with objective reality, and whether or not it can explain realistic economic 
processes, it still has to go through tests. The tests consist of two aspects, the test 
of economic meanings and statistical tests. The test of economic meanings checks
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whether or not the individual estimated values of the parameters agree with economic 
theories and relevant experiences. Statistical tests check the reliability of the estimate, 
the effectiveness of the data sequence simulation, the correctness of various econo-
metrics assumptions, as well as the overall structure of the model and its prediction 
ability using the principles of statistical reasoning. It is only after the model passes 
through these tests that it can be applied in practice. If the model does not pass the 
tests, then the model needs to be modified and improved. 

Step 5: Apply the established model. Grey econometrics models have been mainly 
employed to analyze economic structures, evaluate policies and decisions, simulate 
economic systems, and predict economic development. Each application process is 
also a process of verifying the model and its underlying theory. If the prediction 
contains small errors, it means that the model is of high accuracy and quality, with 
a strong ability to explain reality and an underlying theory that agrees with reality. 
Otherwise, the model and the economic theory on which the model was initially 
developed need to be modified. 

Combined grey econometrics models can be employed not only to situations 
of known system structures, but also to situations of system structures that need 
further study and exploration. Combined grey econometrics models have produced 
satisfactory results in practical applications. To this end, please consult Liu and Lin 
(2006, pp. 247–254) and Liu and Zhu (1996) to see how applications are carried out. 

8.2 Combined Grey Linear Regression Models 

Combined grey linear regression models can improve the weakness of original linear 
regression models where no exponential growth is considered. They can also improve 
the weakness of GM(1,1) models that do not involve enough linear factors. Thus, 
such combined models are suited for studying sequences with both linear tendencies 
and exponential growth tendencies. For such a sequence, the modeling process can 
be described as follows. 

Definition 8.2.1 Assume that X (0) = {
x (0) (1), x (0) (2), ..., x (0) (n)

}
is a 

sequence of raw data. Its first order accumulation sequence is X (1) ={
x (1) (1), x (1) (2), ..., x (1) (n)

}

x̂ (1) (k) = C1e
−vk + C2k + C3 (8.1) 

is called a combined grey linear regression model, where v, C1, C2, C3, are  
parameters that need to be estimated. 

In fact, combined grey linear regression model (8.1) is a simulation model of X (1), 
which can be seen as the sum of a linear regression model of y = ak + b and an 
exponential model of y = C1e−ak + C2. 

From the model GM(1,1), we can obtain



208 8 Combined Grey Models

x̂ (1) (k + 1) =
(
x (0) (1) − 

b 

a

)
e−ak + 

b 

a 
(8.2) 

Let C1 =
(
x (0) (1) − b a

)
, C3 = b a , which can be written as shown below: 

x̂ (1) (k + 1) = C1e
−ak + C3 (8.3) 

By adding a linear term C2k to formula (8.3), we can obtain the same formula as 
(8.1). 

Lemma 8.2.1 Assume that X (0) and X (1) are the same as in Definition 8.2.1, then 
the parameter v in formula (8.1) can be estimated by the following formula (8.4): 

V̂ =
Σn−3 

m=1

Σn−2−m 
k=1

~Vm(k) 
(n − 2)(n − 3)/2 

(8.4) 

where Ṽm(k) = ln[ym(k + 1)/ym(k)], ym(k) = x (1) (k + m + 1) − x (1) (k + m) − 
x (1) (k + 1) + x (1) (k), k, m = 1, 2, ..., n − 3. 

Theorem 8.2.1 Assume that X (0) and X (1) are the same as in Definition 8.2.1. Let  

X (1) = 

⎡ 

⎢⎢⎢ 
⎣ 

x (1) (1) 
x (2) (2) 

... 
x (1) (n) 

⎤ 

⎥⎥⎥ 
⎦ 

, C = 

⎡ 

⎣ 
C1 

C2 

C3 

⎤ 

⎦, A = 

⎡ 

⎢⎢⎢ 
⎣ 

ev 1 1  
e2v 2 1  
... 

... 
... 

eın  n 1 

⎤ 

⎥⎥⎥ 
⎦ 

, 

then we have the matrix form (8.5) of (8.1): 

X (1) = AC (8.5) 

Therefore, we have 

C = ( AT A)−1 AT X (1) (8.6) 

With the estimated values of parameters, ν, C1, C2, C3, the following formula 
(8.7) can be used as a simulating or forecasting model: 

x̂ (1) (k) = C1e
−ẏk  + C2k + C3 (8.7) 

From Eq. (8.7), it can be seen that if C1 = 0, then the first order accumulation 
sequence stands for a linear regression model. If C2 = 0, then the accumulation 
sequence stands for a GM(1,1) model. This new model improves the weaknesses
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Table 8.1 The original sequence of recorded subsides 

Time 9502 9504 9506 9508 9510 9512 9602 9604 

Amount of subside 12 22 31 43 51 57 75 83 

of the original linear regression model with no exponential growth and that of the 
GM(1,1) model where no linear factors are considered. 

By applying the inverse accumulation generation operator to Eq. (8.7), we can 
obtain the simulated and predicted values X̂ (0) of the original sequence. 

Example 8.2.1 At a certain observation station of ore and rock movement, the 
sequence of recorded subsides of a specific location from February 1995 to April 
1996 is given in Table 8.1. Try to make predictions for the sinking dynamics of this 
specific location (Han & He, 1997). 

Solution Due to the small amount of available data, grey systems models are the 
most appropriate models for this prediction task. However, grey systems models 
employ exponential functions to simulate accumulation generated sequences. They 
are generally only suitable for modeling situations of exponential development, as 
it is difficult for such models to describe linear tendencies of change. Therefore, in 
this case study we will apply a grey linear exponential regression model to predict 
the subsides of the specified location. 

The original sequence of data is. 

X (0) = (12, 22, 31, 43, 51, 57, 75, 83). 

Its first order accumulation sequence is 

X (1) = (12, 34, 65, 108, 159, 216, 291, 374). 

For different m values, from Eqs. (8.6) and (8.7) we obtain the estimated value 
V̂ = 0.02058096 for v. Also, from Eq. (6.10), we obtain the estimated value of C: 

C = (AT A)−1 AT X (1) = (21750.995, −439.9523, −21751.078) 

Thus, the combined model of the first order accumulation generation sequence is 

x̂ (1) (k) = 21750.995e0.020580966 − 439.9523k − 21751.078 

Out of this model, we obtain the simulated and predicted values for each of the 
time moments as listed in Table 8.2.
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Table 8.2 Simulated and predicted values and their errors 

Time 9502 9504 9506 9508 9510 9512 9602 9604 9606 9608 

x (0) (k) 12 22 31 43 51 57 75 83 

x̂ (0) (k) 12.34 21.75 31.35 41.15 51.15 61.36 71.79 82.43 93.29 104.38 

Error (%) −2.85 1.15 −1.12 4.31 −0.30 −7.66 4.28 0.69 

8.3 Grey Cobb–Douglas Model 

In this section, we study the Cobb–Douglas or production function model. Let K be 
the capital input, L the labor input, and Y the production output. Then, 

Y = A0e
γ t K α Lβ 

is known as the C-D production function model, where α stands for capital elasticity, 
βlabor elasticity, and γ the parameter for the progress of technology. The log-linear 
form of this production function model is given below: 

ln Y = ln A0 + γ t + α ln K + β ln L 

For given time series data of the production output Y , capital input K , and labor 
input L , 

Y = (y(1), y(2), . . . , y(n)), K = (k(1), k(2), . . . ,  k(n)), and L = (l(1), l(2), . . . ,  l(n)) 

one can employ the method of multivariate least squares estimate to approximate the 
parameters ln A0, γ , α, and β. 

When Y , K , and L represent the time series of a specific department, district, 
or business, it is often the case that, due to severe fluctuations existing in the data, 
the estimated parameters contain errors leading to incorrect results. For instance, the 
estimated coefficient γ for progress of technology is too small or becomes a negative 
number; the estimated values α and β for elasticity go beyond their reasonable 
ranges. Under such circumstances, if one considers using the GM(1,1) simulated 
data of Y , K , and L as the original data for their least squares estimates, then to a 
certain degree they can eliminate some of the random fluctuations, produce more 
reasonable estimated parameter values, and obtain a model that can more accurately 
reflect the relationship between the production output and labor, and capital inputs 
and the progress of technology. 

Definition 8.3.1 Assume that 

Ŷ = ( ̂y(1), ŷ(2), . . . ,  ̂y(n)), 

K̂ = (k̂(1), k̂(2), . . . , k̂(n)), and 

L̂ = (l̂(1), ̂l(2), . . . ,  ̂l(n))
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are respectively the GM(1,1) simulated sequences of Y , K , and L . Then Ŷ = 
A0eγ t K̂ α L̂β is known as the grey model of production function. 

In the grey production function model, although no grey parameters appear explic-
itly, it stands for an expression that combines the idea of grey systems modeling into 
the C-D production function model. That is, this model possesses a very deep inten-
sion of the greyness. It embodies the non-uniqueness principle of solutions and the 
absoluteness principle of greyness. This is why, in practical applications, this model 
has produced satisfactory results. To this end, please consult Liu et al. (2004) and 
Liu and Lin, 2006, pp. 256–258) to see how applications are carried out. 

8.4 Grey Artificial Neural Network Models 

8.4.1 BP Artificial Neural Model and Computational 
Schemes 

Each artificial neural network is made up of a large amount of elementary informa-
tion processors, known as neurons or nodes. The model with multi-layered nodes, or 
the scheme known as error back propagation, represents the currently well developed 
and widely employed artificial neural network system and computational method. 
It translates the input–output problem of an available sample into a nonlinear opti-
mization problem. It is a powerful tool that can be employed to uncover the laws 
and patterns hidden in large amounts of data. The use of artificial neural networks 
to simulate data sequences has several latent advantages. First, it has the ability to 
model multiple kinds of functions, including nonlinear functions, piecewise defined 
functions, among others. Secondly, artificial neural networks are unlike the tradi-
tional methods of distinguishing data sequences, which, to work properly, must have 
presumed types of functional relationships between data sequences. This means that 
artificial neural networks can establish the needed functional relationship by using 
the attributes and intension naturally existing in the provided data variables, without 
presuming the kinds of distributions the parameters satisfy. Thirdly, this method 
possesses the advantage of making use of available information very efficiently, 
while avoiding the problem of losing the real meanings and pictures of the data due 
to various combinations, such as additions of positive and negative values of data 
mining methods. That is, the artificial neural networks method is especially useful 
for improving the GM(1,1) model. 

Figure 8.1 shows a back propagation network with three layers. The network 
consists of an input layer, an implicit (or latent) layer, and an output layer. An entire 
process of learning consists of forward and backward propagation. The particular 
scheme of learning is given below:

(1) Apply random numbers to initialize Wi j  (the connection weight between nodes 
i and j of different layers) and θ j (the threshold value of node j);
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Fig. 8.1 A back propagation 
neural network 

(2) Feed in the preprocessed training samples {X PL} and {YPK }; 
(3) Compute the output of the nodes of each layer, Opj  = f

Σ
i (Wi j  Ipi − θ j ) for 

the pth sample point, where Ipi stands for the output of node i and the input of 
node j ; 

(4) Compute the information error of each layer. For the input layer, δpk = 
Opk(ypk −Opk)(1−Opk); for the latent layer, Opi = Opi (1− Opi )

Σ
i δpi Wi j  ; 

(5) For the backward propagation, the modifiers of the weights are Wi j  (t + 1) = 
αδpi Opi +Wi j  (t), and the modifiers of the thresholds θ j (t + 1) = θ j (t) + βδpi , 
where α stands for the learning factor and β the momentum factor for accelerated 
convergence; and 

(6) Calculate the error E p = (
Σ

p

Σ
k )(Opk − Ypk )

2/2. 

8.4.2 Steps in Grey BP Neural Network Modeling 

The steps to establish a grey BP neural network model are as follows: 

Step 1: Assume that a time series
{
x (0) (i )

}
, i = 1, 2, . . . ,  n, is given. We then obtain 

the restored values x̂ (0) (t), i = 1, 2, . . . ,  n, using the outputs of the GM(1,1) model. 

Step 2: Establish the back propagation network model for the error sequence{
e(0) (k) = x (0) (k) − x̂ (0) (k)

}
,k = 1, 2, . . . ,  n. 

If the order of prediction is S, it means that we use the information of e(0) (i − 1), 
e(0) (i − 2), …,  e(0) (i − S) to predict the value at the ith moment; we will treat 
e(0) (i−1), e(0) (i−2),…,  e(0) (i−S) as the input sample points of the back propagation 
network training, while using the value of e(0) (i ) as the expected prediction of the 
back propagation network training. By using the back propagation computational 
scheme outlined earlier, train this network through enough amount of cases of error 
sequences so that output values (along with empirical test values) are produced in 
ways that correspond to different input vectors. The resultant weights and thresholds 
represent the correct internal representations through the self-learning and adaptation
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of the network. A well trained back propagation network model can be an effective 
tool for error sequence prediction. 

Step 3: Determine the simulation values of
{
e(0) (k) = x (0) (k) − x̂ (0) (k)

}
, k = 

1, 2, . . . ,  n. Assume that the simulation sequence is
{
ê(0) (k)

}
, k = 1, 2, . . . ,  n, which 

is obtained by the BP neural network. 

Step 4: Based on
{
x̂ (0) (i )

}
and

{
ê(0) (k)

}
, i, k = 1, 2, . . . ,  n, we have the  following  

result 

x̂ (0) (i, k) = x̂ (0) (i ) + ê(0) (k) (8.8) 

which is the predicted sequence of the grey artificial neural network model. 

Example 8.4.1 Given the actual yearly investments in environmental protection over 
a period of time of a certain location, and the GM(1,1) simulations and relevant errors 
in Table 8.3, establish an artificial neural network model for the error sequence 
(Dong & Yang, 1998). 

Solution Based on and using the GM(1,1) error sequence data given in Table 8.3, we  
apply the previously outlined method to establish a back propagation network model. 
Our projected back propagation network will have three characteristic parameters, 
one latent layer, within which there are 6 nodes, and one input layer within which 
there is one node. Let the learning rate be 0.6, the convergence rate 0.001, and the 
variance limited within the range of 0.01. Let us conduct the training and testing 
of the network on a computer. Then, Table 8.4 lists the simulation results of the 
combined back propagation network model.

Table 8.3 The GM(1,1) 
simulations and errors 

Year Investment x (0) (i ) GM(1,1) simulation 

x̂ (0) (i ) 
Errors e(0) (k) 

1985 110.20 110.20 0 

1986 146.34 164.39 −19.05 

1987 185.36 187.65 −2.29 

1988 221.14 214.22 6.92 

1989 255.16 244.54 10.52 

1990 289.18 279.17 9.01 

1991 320.54 319.69 1.85 

1992 352.79 363.81 −11.02 
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Table 8.4 Simulation results 
of the grey artificial neural 
network model 

Year Actual value 
x (0) (i ) 

Simulated value 
x̂(i, k) 

Relative errors 
(%) 

1988 221.14 221.12 0.01 

1989 255.16 255.29 0.05 

1990 289.18 289.11 0.02 

1991 320.54 320.79 0.08 

1992 352.79 352.70 0.03 

8.5 Grey Markov Model 

8.5.1 Grey Moving Probability Markov Model 

Definition 8.5.1 Assume that {Xn, n ∈ T } is a stochastic process. If for any 
whole number n ∈ T and any states i0, i1, . . . ,  in+1 ∈ I , the following conditional 
probability satisfies 

P(Xn+1 = in+1|X0 = i0, X1 = i1, . . . ,  Xn = in) = P(Xn+1 = in+1|Xn = in) 
(8.9) 

then {Xn, n ∈ T } is known as a Markov chain. Equation (8.9) is seen without any 
post-effect. It means that the future state of the system at t = n + 1 is only related to 
the current state at t = n, without any influence from any other earlier state t ≤ n−1. 

For any n ∈ T and states i, j ∈ I , the following 

pi j  (n) = P(Xn+1 = j |Xn = i) (8.10) 

is known as the transition probability of the Markov chain. If the transition probability 
pi j  (n) in this equation does not have anything to do with the index n, then {Xn ,n ∈ T } 
is known as a homogeneous Markov chain. For such a Markov chain, the transition 
probability pi j  (n) is often denoted as pi j  . Because our discussion will be mainly 
on homogeneous Markov chains, the word “homogeneous” will be omitted. When 
all the transition probabilities pi j  (n) are placed in a matrix, such as P = [pi j ], this  
matrix is referred to as the transition probability matrix of the system’s state. 

Proposition 6.1 The entries of the transition probability matrix P satisfy 

(1) pi j  ≥ 0, i, j ∈ I ; and 
(2)

Σ
j∈I pi j  = 1, i ∈ I 

The probability p(n) 
i j  = P(Xm+n = j |Xm = i ), i, j ∈ I, n ≥ 1 is known as the 

nth step transition probability of the given Markov chain, and P (n) = [p(n) 
i j  ] the nth 

step transition probability matrix.
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Proposition 6.2 The nth step transition probability matrix P (n) satisfies 

(1) p(n) 
i j  ≥ 0, i, j ∈ I ; 

(2)
Σ

j∈I p
(n) 
i j  = 1, i ∈ I ; and 

(3) P (n) = Pn 

Any Markov chain with grey transition probabilities is known as a grey Markov 
chain. When studying practical problems, due to a lack of sufficient information, it 
is often difficult to determine the exact values of the transition probabilities. In such 
cases, it might be possible to determine the grey ranges pi j  (⊗) of these uncertain 
probabilities based on available information. When the transition probability matrix 
is grey, the entries of its whitenization P̃(⊗) = [  ̃Pi j  (⊗)] are generally required to 
satisfy the following properties: 

(1) P̃i j  (⊗) ≥ 0, i, j ∈ I ; and 
(2)

Σ

j∈I 
P̃i j  (⊗) = 1, i ∈ I . 

Proposition 6.3 Assume that the initial distribution of a finite-state grey Markov 
chain is PT (0) = ( p1, p2, . . . ,  pn) and the transition probability matrix P(⊗) = 
[Pi j  (⊗)]. Then, the system’s distribution of the next sth state is 

PT (s) = PT (0)Ps (⊗) (8.11) 

That is, when the system’s initial distribution and the transition probability matrix 
are known, one can predict the system’s distribution for any future state. 

8.5.2 Grey State Markov Model 

Assume that a stationary process X (0) satisfies the condition of Markov chains. If we 
divide it into n states and each of the states ⊗i is expressed by 

⊗i = [ai , bi ], (i = 1, 2, . . . ,  s) 

where ai , bi are constants and determined according to the states. The steps to 
establish a grey state Markov model are outlined next. 

Step 1: Determine the states for a stationary process X (0) which satisfies the condition 
of Markov chains 

⊗i = [ai , bi ], (i = 1, 2, . . . ,  s) 

Step 2: Compute the initial probability distribution. Assume that there are s different 
states ⊗1, ⊗2, . . . ,  ⊗s. If state ⊗i (i = 1, 2, . . . ,  s) occurs Mi times in total in M 
experimentations, then the frequency of Mi can be calculated by
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fi = 
Mi 

M 
(i = 1, 2, . . . ,  s) 

We can use fi (i = 1, 2, . . . ,  s) as an approximation of the initial probability 
pi (i = 1, 2, . . . ,  s), that is, let fi ≈ pi (i = 1, 2, . . . ,  s) 

Step 3: Compute the transition probability. Just like computing the initial probability, 
we take the frequency as an approximation of the transition probability. 

Firstly, we calculate the one step transition frequency of ⊗i → ⊗ j (from state 
⊗i transfer to state ⊗ j through one step) by 

fi j  = f (⊗ j |⊗i ) 

If state ⊗i (i = 1, 2, . . . ,  s) occurs Mi times in total in M experimentations, let 
Mi j  be the number of transfers to the state ⊗ j from Mi state ⊗i . Then we have 

fi j  = 
Mi j  

Mi 

Then, if fi j≈ pi j  , we have the transition probability matrix P = (pi j  )s×s . Simi-
larly, we can calculate the approximation of m steps transition probability as follows 
(8.12): 

pi j  (m) = 
Mi j  (m) 
Mi 

, (i = 1, 2, . . . ,  s) (8.12) 

where Mi j  (m) is the number of transfers to the state ⊗ j from Mi state ⊗i through 
m steps. 

Step 4: Prediction using the transition probability. Assume that the object of 
prediction is located at state ⊗k , then consider the kth row of P . If  

max 
j 

pk j  = pkl 

then it can be inferred that, at the next time moment, the system will most likely 
transform from state ⊗k to state ⊗l . If there are two or more entries in the kth row 
of P that are equal or roughly equal, then the direction of change in the system’s 
state is difficult to determine. In this case, one needs to look at the two-step or n-step 
transition probability matrix P (2) or P (n), where n ≥ 3.
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8.6 Combined Grey-Rough Model 

Grey systems theory and rough set theory are two mathematical tools developed 
to address uncertain and incomplete information. To a certain degree they comple-
ment each other. They both apply the idea of lowering the preciseness of expression 
of the available data to gain the extra generality of the expression. In particular, 
grey systems theory employs the method of grey sequence generations to reduce 
the accuracy of data expressions, while rough set theory makes use of the idea 
of data scattering to uncover patterns hidden in the data by ignoring unnecessary 
details. Neither grey systems theory nor rough set theory requires any prior knowl-
edge, such as probability distribution or degree of membership. On one hand, rough 
set theory investigates rough, non-intersecting classes and concepts of roughness, 
with emphasis placed on the indistinguishability of objects. On the other hand, grey 
systems theory focuses on grey sets with clear extension and unclear intension, with 
emphasis placed on uncertainties caused by insufficient information. Thus, if rough 
set theory and grey systems methodology are mixed, their individual weaknesses 
both in theory and application can be improved so that greater theoretical strength 
and practical applicability can be achieved (Jian & Liu, 2005). 

8.6.1 Rough Membership, Grey Membership and Grey 
Numbers 

Rough set theory can be seen as an expansion of the classic set theory. It makes use of 
rough membership functions to define rough sets, where each membership function 
is explained and understood as those of conditional probabilities. 

The concepts of rough approximation sets and rough membership functions of 
the rough set theory are closely related to those of greyness of grey numbers. When 
either μX (x) = 0 or  μX (x) = 1, the object is assured either to belong or not to belong 
to set X. In such cases, the classification is definite and clear; the involved greyness 
is the smallest. If 0 < μX (x) <  1, then object x belongs to set X with the degree 
of confidence μX (x). In this case, object x projects a kind of grey state of transition 
between definitely being in set X and definitely not being in X. When μX (x) = 0.5, 
the probability of object x to either belong to set X or not to belong to X is 50%. 
For this situation, the degree of uncertainty is the highest. That is, the degree of 
greyness is the highest. When the rough membership function μX (x) is near 1 or 0, 
the uncertainty for object x to belong or not to belong to set X is decreased, and the 
corresponding degree of greyness should also decrease. The closer to 0.5 the rough 
membership is, the greater the uncertainty for object x to belong or not to belong to set 
X; the corresponding degree of greyness is also greater in such cases. We categorize 
all rough membership functions into two groups: upper and lower rough membership 
functions, where a rough membership function is upper if its values come from the 
interval [0.5,1], denoted μX (x); the corresponding grey membership function is also
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referred to as upper and denoted by gX (x). A lower rough membership function is one 
that takes values from the interval [0,0.5], denoted μ

X 
(x). The corresponding grey 

membership function is referred to as a lower grey membership function, denoted 
g
X 
(x). 
Evidently, upper, lower and general rough membership functions satisfy the 

following properties: 

(1) μX (x) = 1 − μ
X 
(x); 

(2) μX∪Y (x) = μX (x) + μY (x) − μX∩Y (x); and 
(3) max(0, μX (x) + μY (x) − 1) ≤ μX∩Y (x) ≤ min(1, μX (x) + μY (x)). 

Based on the discussion above, we introduce the following definition of grey 
membership functions using the concept of rough membership functions. 

Definition 8.6.1 Assume that x is an object with its field of discourse U . That is, 
x ∈ U . Let  X be a subset of U . Then mappings from U to the closed interval [0, 1]: 

μX : U → [0.5, 1], μ| →  gX (x) ∈ [0, 1], and 
μ

X 
: U → [0, 0.5], μ

∣∣∣→ g
X 
(x) ∈ [0, 1] 

are respectively referred to as upper and lower grey membership functions of X , 
where μX ≥ μ

X 
; gX (x) and gX 

(x) are respectively referred to as upper and lower 
grey membership functions of object x with respect to X . 

The defined concept of grey membership functions based on rough membership 
functions is depicted in Fig. 8.2. 

Definition 8.6.2 Assume that x ∈ U , X ⊆ U , the grey number scale of the uncer-
tainty for x to belong to X is gc, the grey number scale of the upper grey membership 
function gX (x) is gc, and the grey number scale of the lower grey membership 
function g

X 
(x) is g

c 
. Then the greyness scales gc and gc of the upper grey number

Fig. 8.2 A conceptual depiction of grey membership functions 
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and the lower grey number of the greyness scales gc of different grey numbers are 
respectively given as outlined below. 

The greyness of white numbers (gc = 0): if μX (x) = 0, then g
c 
= 0; if μX (x) = 

1, then gc = 0. 
For first class grey numbers (gc = 1): if  μX (x) ∈ (0,0.1], then g

c 
= 1; if 

μX (x) ∈ [0.9,1), then gc = 1. 
For second class grey numbers (gc = 2): if  μX (x) ∈ (0.1,0.2], then g

c 
= 2; if 

μX (x) ∈ [0.8,0.9), then gc = 2. 
For third class grey numbers (gc = 3): if  μX (x) ∈ (0.2,0.3], then g

c 
= 3; if 

μX (x) ∈ [0.7,0.8), then gc = 3. 
For fourth class grey numbers (gc = 4): if  μX (x) ∈ (0.3,0.4], then g

c 
= 4; if 

μX (x) ∈ [0.6, 0.7), then gc = 4. 
For fifth class grey numbers (gc = 5): if  μX (x) ∈ (0.4,0.5), then g

c 
= 5; if μX (x) 

∈ (0.5, 0.6), then gc = 5. 
The greyness of black numbers (gc > 5): if  μX (x) = 0.5, then g

c 
= gc > 5.  

When μX (x) ∈ [0,1], g
X 
(x) = 0 and gX (x) = 1. In this case, there is no uncertain 

information, so it is referred to as the greyness of white numbers. That is, gc = g
c = gc = 0. When μX (x) = 0.5, g

X 
(x) = gX (x) = 1, the degree of uncertainty for 

object x to belong or not to belong to set X reaches its maximum, which is referred 
to as the greyness of black numbers gc > 5. From Definition 8.6.1, it follows that 
the higher the greyness of a grey number, the less clear the information is; the lower 
the greyness of a grey number, the clearer the information is. 

From Definition 8.6.1, it can be readily obtained that μX (x) = 1 − μ
X 
(x). If we  

use the greyness of the upper grey number to represent the degree of uncertainty for 
object x to belong to set X, and the greyness of the lower grey number to illustrate 
the degree of uncertainty for object x not to belong to set X, then these two degrees 
of uncertainty are supplementary. 

According to Definition 8.6.2, the scale of the greyness of a grey number is 
determined by the grey interval to which the maximum rough membership value of 
the information granularity could belong. Thus, the whitenizations of grey numbers of 
different degrees of greyness are defined as the maximum possible rough membership 
value of the grey numbers of corresponding scales. For example, if the possible 
maximum rough membership value of a certain conditional subset computed out of 
the available decision-making table is μX (x) = 0.75, because 0.75 ∈ [0.7,0.8), then 
μX (x) = 0.75 stands for the white value of such a grey number whose upper greyness 
is gc = 3. 

8.6.2 Grey Rough Approximation 

Definition 8.6.3 Assume that S = (U, A, V, f ), A = C ∪ D, X ⊆ U , P ⊆ C , and 
the greyness scale gc ≤ 5 of a grey number. Then
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apr  gc 
P 
(X ) =

⋃{ |IP (x) ∩ X | 
|IP (x)| ≤ gc

}
(8.13) 

and 

apr  gc P (X ) = ∪
{ |IP (x) ∩ X | 

|IP (x)| > g
c

}
(8.14) 

are respectively referred to as the gc-lower approximation and gc-upper approxima-
tion of X with respect to IP , where the upper rough membership function corre-
sponding to the upper scale gc of grey-number greyness satisfies μX (x) ∈ (0.5, 1], 
and the lower rough membership function corresponding to the lower scale g

c 
of 

grey-number greyness satisfies μ
X 
(x) ∈ [0, 0.5). 

The gc-lower approximation of the set X ⊆ U under the grey-number greyness 
scale gc equals the union of all the equivalence classes of U that belong to X , with 
grey-number greyness scales less than or equal to the upper grey-number greyness 
scale gc. The  gc-upper approximation is equal to the intersection of all the equivalence 
classes of U that belong to X , with grey-number greyness scales greater than the lower 
grey-number greyness scale g

c 
. 

Definition 8.6.4 The quality of gc-classification is 

γ gc P (P, D) = 
| ∪

{
|X∩IP (x)| 

|IP (x)| ≤ gc
}
| 

|U | (8.15) 

The classification quality γ gc P (P, D) measures the percentage of the knowledge in 
the field of discourse that can be clearly classified for a given grey-number greyness 
scale gc ≤ 5, in the totality of current knowledge. 

For a given grey-number greyness scale gc ≤ 5, let approximate reduction 
redgc 

P (C, D) stand for the set of attributes with the minimum condition that still 
produces clear classification without containing any extra attributes. 

In rough set theory, the classification of the elements located along the boundary 
regions is not clear. Whether or not an element in such a region can be clearly classified 
is determined most commonly by the pre-fixed greyness scale. The concept of grey 
rough approximation so defined is analogous to that of variable precision rough 
approximation. When the interval grey numbers in which the upper greyness scale 
gc and the lower greyness scale gc of the grey-number greyness gc of the grey rough 
approximation respectively belong to their corresponding white values, the grey 
rough approximation is consequently transformed into rough approximation under 
the meaning of variable precision rough sets. Evidently, variable precision rough 
approximation can be seen as a special case of grey rough approximation. When 
compared to models of variable precision rough sets of the sets of variable precision, 
whether or not elements in a relatively rough set X can be correctly classified is 
mostly determined by the pre-fixed maximum critical confidence threshold parameter
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β. This is where classification can be done if smaller than or equal to the upper 
bound of β, and indistinguishability appears when this upper bound is surpassed. 
However, the parameter of the maximum critical confidence threshold β in general 
is difficult to determine beforehand, especially for large data sets. In other words, the 
parameter of maximum critical confidence threshold β generally stands for a grey 
number. Thus, the concept of interval grey numbers provides a practical quantitative 
tool which appoints upper and lower endpoints. For cases where we cannot obtain 
much information about the degree of accuracy of the actual data, this method of 
representation becomes extremely useful. 

Proposition 8.6.1 Given the greyness scale gc ≤ 5, the following hold true: 

(1) apr  gc P (X ∪ Y ) ⊇ ·apr  gc P (X ) ∪ apr  gc P (Y ); 
(2) apr  

ge c 
P (X ∩ Y ) ⊆ aprgc 

P 
(X ) ∩ apr  gc 

P 
(Y );; 

(3) apr  gC p (X ∪ Y ) ⊇ apr  gC p (X ) ∪ apr  gC p (Y ); and 
(4) aprgc P (X ∩ Y ) ⊆ aprgc P (X ) ∩ aprgc P (Y ) 

Proof 

(1) For any X ⊆ U and Y ⊆ U , and given the greyness scale gc, we have  

|IP (x) ∩ (X ∪ Y )| 
|IP (x)| ≥ 

|IP (x) ∩ X | 
|IP (x)| 

and 

|IP (x) ∩ (X ∪ Y )| 
|IP (x)| ≥ 

|IP (x) ∩ Y | 
|I P (x)| . 

Therefore, apr  gc P (X ∪ Y )⊇ apr  gc P (X ) ∪ apr  gc P (Y ). 

(2) For any X, Y ⊆ U, and given the greyness scale gc ≤ 5, we have  

|IP (x) ∩ (X ∩ Y )| 
|IP (x)| ≤ 

|IP (x) ∩ X | 
|IP (x)| 

and 

|IP (x) ∩ (X ∩ Y )| 
|IP (x)| ≤ 

|IP (x) ∩ Y | 
|IP (x)| . 

Therefore, apr  gc 
P 
(X ∩ Y ) ⊆ apr  gc 

P 
(X ) ∩ apr  gc 

P 
(Y ). Similarly, we can prove (3) 

and (4). QED. 

Proposition 8.6.2 
apr  gc 

P 
(X ) ⊆ apr  gc P (X)
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Proof Let x ∈ apr  gc 
P 
(X ). Because the equivalence relation IP is reflective, we have 

x ∈ IP (x). From Definition 8.6.2, it follows that gc ≤ 5 and that the interval grey 
number to which the rough membership value corresponding to the upper grey-
number greyness scale belongs is greater than the interval grey number to which 
the rough membership value corresponding to the lower grey-number greyness scale 
belongs. Hence, we have x ∈ apr  gc P (X ) and consequently apr  gc P 

(X )⊆apr  gc P (X ). QED  

8.6.3 Combined Grey Clustering and Rough Set Model 

When employing the expansion dominant rough set model to probabilistic decision-
making, one needs to have a multi-criteria decision-making table. However, in 
many practical applications involving uncertain multi-criteria decision-making, the 
researcher has to rely on existing data sets to generate his multi-criteria informa-
tion table instead of being able to obtain their own multi-criteria decision making 
table. For instance, we can easily collect the financial data of a publically-traded 
company, such as income per share, net asset per share, net profit, reliability, oper-
ating profit, and so on. Based on the collected financial data, we can establish a multi-
criteria information table. Given that such a company’s style of decision-making is 
unknown ahead of time, it is difficult to classify it according to whether it presents 
a high risk, moderate risk, or low risk decision-making style. Thus, it is also diffi-
cult, if not impossible, to generate a relevant multi-criteria decision-making table. 
Therefore, dominant rough set models and expanded dominant rough set models 
cannot be directly employed to conduct decision-making analysis of these problems. 
However, the method of grey clustering of grey systems theory generally groups 
objects into different preference categories by considering attribute preference infor-
mation and decision-makers’ preference behaviors. In particular, the method of grey 
fixed weight clustering provides an effective way to transform a multi-criteria infor-
mation table, which is made of preferred attributes of various dimensions, into a 
multi-criteria decision-making table. For instance, based on the collected financial 
data of companies, the distributions of the preferred attributes’ values of the criteria, 
and the preferred behaviors of the decision-makers, we can establish possibility func-
tions. On this basis, we can group the companies into different risk classes, such as 
high risk, moderate risk, and low risk class. 

When considering the strengths of the methods of dominant rough sets and grey 
fixed weight clustering, we can construct a hybrid method combining grey fixed 
weight clustering and dominant rough sets, where grey fixed weight clustering can 
be seen as a processing tool used before the method of dominant rough sets is 
employed. The purpose of doing so is to generalize the dominant rough sets to a 
method that can be employed to conduct decision-making analysis based on multi-
criteria information tables, and to extract the most precise expression of knowledge 
from the multi-criteria information table.
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By following the steps below, one can establish the needed model combining grey 
fixed weight clustering and dominant rough sets: 

(1) Develop a system of knowledge expressions using the values of preferred 
conditional attributes (criteria); 

(2) Determine the ordered decision-making evaluation grey classes g according to 
the specific circumstances; 

(3) Establish the possibility function for the field of each criterion. Let the possibility 
function of the kth subclass of the jth criteria be f k i (·) (  j = 1, 2, . . . ,  m; k = 
1, 2, . . . ,  g); 

(4) Determine the clustering weight η j , j = 1, 2, …, m, for each criterion; 
(5) Based on the observed value xij, i = 1, 2, …, n, j = 1, 2, …, m, of object i with 

respect to criterion j, compute the coefficients σ k i = Σm 
j=1 f 

k 
j (xi j  )η j of the grey 

fixed weight clustering i = 1, 2, …, n, k = 1, 2, …, g; 
(6) Obtain the clustering coefficient vector 

σi = (σ 1 i , σ  2 i , ..., σ g i ) = 

⎛ 

⎝ 
m∑

j=1 

f 1 j (xi j  )η j , 
m∑

j=1 

f 2 j (xi j  )η j , ... 
m∑

j=1 

f g j (xi j  )η j 

⎞ 

⎠; 

(7) Generate the clustering coefficient matrix

∑
= (σ k i ) = 

⎡ 

⎢⎢⎢ 
⎣ 

σ 1 1 σ 2 1 ... σ g 1 
σ 1 2 σ 2 2 ... σ g 2 
... 

... 
... 

... 
σ 1 n σ 2 n · · ·  σ g n 

⎤ 

⎥⎥⎥ 
⎦

; 

(8) Based on the clustering coefficient matrix Σ, determine the classes to which 
individual objects belong. If max 

1≤k≤g
{σ k i } =  σ k∗ 

i , then object i belongs to grey 

class k∗; 
(9) Establish the decision-making table using preferred conditional attributes and 

preferred decision-making grey classes; and 
(10) Employ the method of dominant rough sets to conduct decision-making 

analysis. 

8.7 Practical Applications 

Example 8.7.1 Let us look at how to choose regional key technologies using a 
hybrid model combining the methods of grey fixed weight clustering and dominant 
rough sets. For a specific geographic area, the evaluation criteria system and relevant 
evaluation values for its key technologies are given in Table 8.5 (Liu & Jian, 2009).
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Table 8.5 The criteria system for evaluating key regional technologies 

Code Meaning of criterion Criterion weight Evaluation values 

a1 Time lag of technology 0.1 A: >10 years; B: 5–10 years; C: 
3–5 years; D: <3 years 

a2 Time length technological 
bottleneck existed 

0.09 A: >10 years; B: 5–10 years; C: 
3–5 years; D: <3 years 

a3 Ability to create own 
knowledge right 

0.14 A: complete own right; B: partial 
right; C: no right at all 

a4 Coverage of technology 0.09 A: widely applicable; B: applied in 
profession; C: special technique 

a5 Promotion and lead of 
technological fields 

0.11 A: strong; B: relatively strong; C: 
general; D: weak 

a6 Time needed for technology 
transfer 

0.07 A: within 1 year; B: 1–3 years; C: 
4–5 years; D: >5 years 

a7 Input/output ratio 0.13 A: high; B: relatively high; C: 
normal; D: low 

a8 Effect on environmental 
protection 

0.12 A: strong; B: relatively strong; C: 
normal; D: weak 

Based on the evaluations of relevant experts on 11 key technologies candidates, 
we generate the knowledge expression system as shown in Table 8.6. 

In the following graph we present a decision-making analysis for this region’s 
key technologies candidates. 

For the evaluation criteria of the region’s key technologies, the preference orders 
are the  same  as  A > B > C > D. Quantify the set of criteria evaluations by letting 
the set be V = (A, B, C, D) = (7, 5, 3, 1). According to practical needs, we divide 
each criterion into three grey classes of decision-making: the class of weak need

Table 8.6 The knowledge system on key regional technologies 

U a1 a2 a3 a4 a5 a6 a7 a8 

a1 B B C B D C B A 

a2 D D B B C B C D 

a3 D D B B C A D A 

a4 B C C B B B A C 

a5 B B B B C B B C 

a6 D D B B B B B C 

a7 D D B C D A C C 

a8 C B B C C C B C 

a9 B B B B A B A B 

a10 C B B B B B B B 

a11 B B B B C B C B 
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Fig. 8.3 Possibility 
functions of the three grey 
classes

for key technologies (coded with 1), the class of general need for key technologies 
(coded with 2), and the class of strong need for key technologies (coded with 3). 
Let us take the possibility function of the class of weak need as the measurement of 
the low bound, that of the class of general need as the moderate measurement, and 
that of the class of strong need as the measurement of the upper bound. For details, 
see Fig. 8.3. Based on decision-making goals and specific distributions of experts’ 
evaluation values, we introduce the possibility functions for each grey class as shown 
in Table 8.7. 

From formula σ k i = Σm 
j=1 f 

k 
j (xi j  )·η j , we can compute the clustering coefficient 

for each grey class of each key technology. Based on such coefficients we can estab-
lish the evaluation decision-making (Table 8.8) for choosing key technologies for 
the region.

Because the values of all the conditional attributes have the preference order A > 
B > C > D, these attributes contain preference information. Based on the decision-
making attributes, the comprehensive evaluation can be divided into three preference 
ordered classes: Cl1 = {1}, Cl2 = {2}, Cl3 = {3}. Based on this result, we divide the 
field of discourse and obtain the following unions of the decision-making classes: 

Cl≤ 
1 = Cl1, with the comprehensive evaluation 1 (the need for key technologies 

is weak); 
Cl≤ 

2 = Cl1 ∪ Cl2, with the comprehensive evaluation ≤ 2 (the need for key 
technologies is at most moderate); 

Cl≥ 
2 = Cl2 ∪ Cl3, with the comprehensive evaluation ≥ 2 (the need for key 

technologies is at least moderate); 
Cl≤ 

3 = Cl1 ∪ Cl2 ∪ Cl3, with the comprehensive evaluation ≤ 3 (the need for key 
technologies is at most strong); and. 

Cl≥ 
3 = Cl3, with the comprehensive evaluation 3 (the need for key technologies 

is strong). 
A reduction found by using the method of dominant rough sets is {a2, a7}. The 

sets D≥ and D≤ of the least amounts of preference rules generated from this reduction 
are respectively given in Tables 8.9 and 8.10.

Based on the set D≥ of preference decision-making rules generated by employing 
our hybrid model that combines grey fixed weight clustering and dominant rough
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Table 8.7 Possibility functions for key regional technologies 

Criterion 
name 

Weak need class (1) Moderate need class (2) Strong need class (3) 

Time lag of 
technology 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

1 

3 − x 
0 

1 ≤ x < 2 
2 ≤ x < 3 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

x − 2 
4 − x 
0 

2 ≤ x < 3 
3 ≤ x < 4 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0.5x − 1.5 
1 

0 

3 ≤ x < 5 
5 ≤ x ≤ 7 
otherwise 

Time length 
technological 
bottleneck 
existed 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

1 

3 − x 
0 

1 ≤ x < 2 
2 ≤ x < 3 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

x − 2 
4 − x 
0 

2 ≤ x < 3 
3 ≤ x < 4 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0.5x − 1.5 
1 

0 

3 ≤ x < 5 
5 ≤ x ≤ 7 
otherwise 

Ability to 
create own 
knowledge 
right 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

1 

5 − x 
0 

3 ≤ x < 4 
4 ≤ x < 5 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

x − 4 
6 − x 
0 

4 ≤ x < 5 
5 ≤ x < 6 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

x − 5 
1 

0 

5 ≤ x < 6 
6 ≤ x ≤ 7 
otherwise 

Coverage of 
technology 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

1 

5 − x 
0 

3 ≤ x < 4 
4 ≤ x < 5 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

x − 4 
6 − x 
0 

4 ≤ x < 5 
5 ≤ x < 6 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

x − 5 
1 

0 

5 ≤ x < 6 
6 ≤ x ≤ 7 
otherwise 

Promotion 
and lead of 
technological 
fields 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

1 

2 − 0.5x 
0 

1 ≤ x < 2 
2 ≤ x < 4 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0.5x − 1 
3 − 0.5x 

0 

2 ≤ x < 4 
4 ≤ x < 6 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0.5x − 2 
1 

0 

4 ≤ x < 6 
6 ≤ x ≤ 7 
otherwise

(continued)
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Table 8.7 (continued)

Criterion
name

Weak need class (1) Moderate need class (2) Strong need class (3)

Time needed 
for 
technology 
transfer 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

1 

2 − 0.5x 
0 

1 ≤ x < 2 
2 ≤ x < 4 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0.5x − 1 
3 − 0.5x 

0 

2 ≤ x < 4 
4 ≤ x < 6 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0.5x − 2 
1 

0 

4 ≤ x < 6 
6 ≤ x ≤ 7 
otherwise 

Input/output 
ratio 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

1 

4 − x 
0 

1 ≤ x < 3 
3 ≤ x < 4 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

x − 3 
3 − 0.5x 

0 

3 ≤ x < 4 
4 ≤ x < 6 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0.5x − 2 
1 

0 

4 ≤ x < 6 
6 ≤ x ≤ 7 
otherwise 

Effect on 
environmental 
protection 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

1 

2.5 − 0.5x 
0 

1 ≤ x < 3 
3 ≤ x < 5 
otherwise 

f (x) = 

⎧ 
⎪⎪⎨ 

⎪⎪⎩ 

0.5x − 1.5 
3.5 − 0.5x 

0 

3 ≤ x < 5 
5 ≤ x < 7 
otherwise 

f (x) =
{
0.5x − 25 5 ≤ x ≤ 7 

0 otherwise

Table 8.8 Evaluation decision-making table for key regional technologies 

a a1 a2 a3 a4 a5 a6 a7 a8 a 

a1 B B C B D C B A 3 

a2 D D B B C B C D 1 

a3 D D B B C A D A 1 

a4 B C C B B B A C 3 

a5 B B B B C B B C 2 

a6 D D B B B B B C 1 

a7 D D B C D A C C 1 

a8 C B B C C C B C 2 

a9 B B B B A B A B 3 

a10 C B B B B B B B 2 

a11 B B B B C B C B 2
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Table 8.9 Set D≥ of preference rules 

Rule Confidence (%) Support number 

If the length of time for technology bottleneck to exist ≥ C 
and input/output ratio = A, then the urgency for needing key 
technologies = 3 (strong) 

100 2 

If the length of time for technology bottleneck to exist ≥ B 
and input/output ratio ≥ C, then the urgency for needing key 
technologies ≥ 2 (moderate) 

100 5 

If the length of time for technology bottleneck to exist = D, 
then the urgency for needing key technologies = 1 (weak) 

100 4 

Table 8.10 Set D≤ of preference rules 

Rule Confidence (%) Support number 

If the length of time for technology bottleneck to exist ≤C 
and input/output ratio = A, then the need for key 
technologies = 3 (strong) 

100 2 

If the length of time for technology bottleneck to exist ≤ B 
and input/output ratio ≤ C, then the need for key 
technologies ≤ 2 (moderate) 

100 1 

If the length of time for technology bottleneck to exist = D, 
then the need for key technologies = 1 (weak) 

100 4

sets, all the 11 key technologies considered are correctly classified. That is, the quality 
of classification is 100%. Based on the set D≤ of preference decision-making rules, a 
total of 7 key technologies are classified correctly so that the quality of classification 
is 63.6%. 
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Chapter 9 
Techniques for Grey Systems Forecasting 

9.1 Introduction 

No matter what needs to be done, one should always get familiar with the situation, 
think through the details, make educated predictions, and lay out a detailed plan 
before he could potentially arrive at his desired successful conclusions. For matters 
as great as international affairs, national events and citizens’ lives, the development 
of regional or business entities, and for matters as small as daily work or living 
arrangements, scientifically sound predictions are needed everywhere. 

Prediction is about foretelling the possible course of development of societal 
events, political matters, economic ups and downs, and so on, using scientific methods 
and techniques based on attainable historical and present data so that appropriate 
actions can be planned and carried out. In short, prediction is about making scientific 
inferences regarding the evolution of materials and events ahead of time. General 
prediction includes not only static inference about unknown matters based on what is 
known within a specific time frame, but also dynamic inference about the future based 
on history and the present state of affairs of a certain matter. A specific prediction is 
a dynamic forecast within which a scientific inference about the future evolution of 
a certain event is given. 

Grey prediction makes scientific, quantitative forecasts about the future states of 
systems based on understandings of unascertained characteristics of such systems. It 
makes use of sequence operators on the original data sequences in order to generate, 
treat, and excavate the hidden laws of systems evolution, so that grey systems models 
can be established to predict future outcomes. All the methods of the grey systems 
theory studied so far can be employed to make predictions. For a given problem, 
the appropriate prediction model is chosen by making use of the conclusions of a 
sufficiently and carefully done qualitative analysis. Also, the choice of models should 
vary along with changing conditions. Each model chosen has to be tested through 
many different methods in order to decide its appropriateness and effectiveness. Only 
the models that pass various tests can be meaningfully employed to make predictions 
(Deng, 1990; Liu & Guo, 1991; Liu,  2021).
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Definition 9.1.1 Let X (0) = (x (0) (1), x (0) (2), . . . , x (0) (n)) be a sequence of raw 
data, X̂ (0) = ( ̂x (0) (1), x̂ (0) (2), . . . , x̂ (0) (n)) the simulated data out of a chosen 
prediction model, ε(0) = (ε(1), ε(2), ...ε(n)) = 

( 
x (0) (1) − x̂ (0) (1), x (0) (2) − 

x̂ (0) (2), ..., x (0) (n) − x̂ (0) (n) 
) 
the error sequence, and 

Δ = 
(|||| 

ε(1) 
x (0)(1) 

||||, 
|||| 

ε(2) 
x (0)(2) 

||||, . . . ,  
|||| 

ε(n) 
x (0)(n) 

|||| 

) 
= {Δk}n 1 

the relative error sequence. Then: 

(1) For k ≤ n, Δk = 
||| ε(k) 
x (0)(k) 

||| is known as relative error of the simulation at point k, 

and Δ = 1 n 
Σn 

k=1 Δk the average relative error; 
(2) 1 − Δ is known as the average relative accuracy, and 1 − Δk the simulation 

accuracy at point k, k = 1, 2, . . . ,  n; and 
(3) For a given α, when Δ < α  and Δn < α  hold true, the prediction model is said 

to be error-satisfactory. 

Definition 9.1.2 Let ε stand for the absolute grey relational degree between the raw 
data X (0) and the simulated values X̂ (0). If for a given ε0 > 0 the absolute grey 
relational degree ε satisfies ε >  ε0, then the simulation model is said to be grey 
relational satisfactory. 

Definition 9.1.3 Assume that the sequences X (0), X̂ (0), and ε(0) are the same as 
above, and consider the relevant means and variances 

x = 
1 

n 

nΣ 

k=1 

x (0) (k), S2 1 = 
1 

n 

nΣ 

k=1 

(x (0) (k) − x)2 

and 

ε = 
1 

n 

nΣ 

k=1 

ε(k), S2 2 = 
1 

n 

nΣ 

k=1 

(ε(k) − ε)2 . 

(1) If for a given C0 > 0, the ratio of root-mean-square deviation (RMSD) is 
C = S2 S1 

< C0, then the model is said to be RMSD ratio satisfactory. 
(2) If p = P(|ε(k) − ε)| < 0.6745S1) is seen as a small error probability and for a 

given p0 > 0, when p > p0, then the model is said to be small-error probability 
satisfactory. 

The discussion above shows three different ways to test a chosen model. Each of 
them is based on observations of the error to determine the accuracy of the model. 
For both the mean relative error Δ and the simulation error, the smaller they are, 
the better. With regards to the grey relational degree ε, the greater it is the better. As
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Table 9.1 Commonly used scales of accuracy for model testing 

Accuracy scale Threshold 

Relative error 
α 

Grey relational degree 
ε0 

RMSD 
C0 

Small error probability 
p0 

1st level 0.01 0.90 0.35 0.95 

2nd level 0.05 0.80 0.50 0.80 

3rd level 0.10 0.70 0.65 0.70 

4th level 0.20 0.60 0.80 0.60 

for the RMSD ratio C , the smaller the value is, the better. This is because a small 
C indicates that S2 is relatively small, while S1 is relatively large. This means that 
the error variance is small while the variance of the original data is large, so that the 
errors are relatively more concentrated with little fluctuation compared to the original 
data. Therefore, for better simulation results, the smaller S2 is when compared to S1, 
the better. With regards to small error probability p, as soon as a set of α, ε0, C0, 
and p0 values are chosen, a scale of accuracy for testing models is determined. The 
most commonly used scales of accuracy for testing models are listed in Table 9.1. 

In most applications published so far in the area of grey systems, the most 
commonly used is the criterion of relative errors. 

9.2 Interval Forecasting 

If a given sequence of raw data is chaotic and it is difficult for any model to pass the 
accuracy test, the researcher will then have trouble producing accurate quantitative 
predictions. In this case, one can consider providing a range for future values to fall 
within (Deng, 1985; Liu et al., 2017). 

Definition 9.2.1 Let X (t) be a zigzagged line. If there are smooth and continuous 
curves fu(t) and fs(t), satisfying that for any t , fu(t) <  X (t) <  fs(t), then fu(t) 
is known as the lower bound function of X (t), fs(t) the upper bound function, and 
S = {(t, X (t))|X (t) ∈ [  fu(t), fs(t)] } the value domain of X (t). If the upper and 
lower bound of X (t) are the same kind of function, then S is known as a uniform 
domain. When S is a uniform band with exponential functions as its upper and lower 
bounds fu(t) and fs(t), then S is known as a uniform exponential domain. If a 
uniform band S has linear upper and lower bound functions fu(t) and fs(t), then S 
is known as a uniform linear domain or a straight domain for short. If for t1 < t2, 
fs(t1) − fu(t1) <  fs(t2)− fu(t2) always holds true, then S is known as a trumpet-like 
domain. 

Example 9.2.1 Let X (0) = (x (0) (1), x (0) (2), . . . ,  x (0) (n)) be a sequence of raw data, 
and its accumulation generation be X (1) = (x (1) (1), x (1) (2), . . . ,  x (1) (n)). Define
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Fig. 9.1 A trumpet-like 
domain 

σmax = max 
1≤k≤n

{x (0) (k)}, σmin = min 
1≤k≤n

{x (0) (k)} 

and respectively take the upper and lower bound functions fu(n + t) and fs(n + t) 
of X (1) as follows: 

fu(n + t) = x (1) (n) + tσmin, fs(n + t) = x (1) (n) + tσmax. 

That is, both the upper and lower bound functions of a proportional band are 
increasing straight lines of time with slopes σmin and σmax, respectively. 

Then S = {(t, X (t))|t > n, X (t) ∈ [  fu(t), fs(t)]} is known as the proportional 
domain (see Fig. 9.1). 

Example 9.2.2 For a sequence X (0) of raw data, let X (0) 
u be the sequence corre-

sponding to the curve that connects all the low points of X (0), and X (0) 
s the sequence 

corresponding to the curve of all the upper points of X (0). Assume that 

x̂ (1) 
u (k + 1) = 

( 
x (0) 
u (1) − 

bu 
au 

) 
exp(−auk) + 

bu 
au 

and 

x̂ (1) 
s (k + 1) = 

( 
x (0) 
s (1) − 

bs 
as 

) 
exp(−ask) + 

bs 
as 

are respectively the GM(1,1) time response sequences of X (0) 
u and X (0) 

s . Then 

S = {(t, X (t)) 
|||X (t) ∈ [  ̂X (1) 

u (t), X̂ (1) 
s (t)]} 

is known as a wrapping domain (see Fig. 9.2).

Example 9.2.3 For a given sequence X (0) of raw data, let us take m different sub-
sequences to establish m GM(1,1) models with the corresponding parameters âi = 
[ai , bi ]T ; i = 1, 2, . . . ,  m. Let
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Fig. 9.2 A wrapping 
domain

−amax = max 
1≤i≤m

{−ai }, −amin = min 
1≤i≤m

{−ai }, and 

x̂ (1) 
u (k + 1) = 

( 
x (0) 
u (1) − 

bmin 

amin 

) 
exp(−amink) + 

bmin 

amin 

x̂ (1) 
s (k + 1) = 

( 
x (0) 
s (1) − 

bmax 

amax 

) 
exp(−amaxk) + 

bmax 

amax 

Then S = {(t, X (t)) 
|| 
|X (t) ∈ [  ̂X (1) 

u (t), X̂ (1) 
s (t)]} is known as a development 

domain. The wrapping domain and development domain are exponential domains. 

Definition 9.2.2 For a sequence X (0) = (x (0) (1), x (0) (2), . . . ,  x (0) (n)) of raw data, 
let fu(t) and fs(t) be a upper and a lower bound function of the accumulation 
sequence X (1) of X (0). For any k > 0, 

x̂ (0) (n + k) = 
1 

2
[ fu(n + k) + fs(n + k)] 

is known as basic prediction value, and x̂ (0) 
u (n + k) = fu(n + k) and x̂ (0) 

s (n + k) = 
fs(n + k), respectively, the lowest and highest predicted values. 

Example 9.2.4 The data (in tens of thousands) for car sales in a certain city are given 
as follows: 

X (0) = (x (0) (1), x (0) (2), x (0) (3), x (0) (4), x (0) (5), x (0) (6)) 
= (5.0810,4.6110, 5.1177,9.3775, 11.0574,11.3524) 

where x (0) (1) = 5.0810 is the annual sales for the year of 2010, …, and x (0) (6) = 
11.3524 for the year of 2015. Try to make a prediction using development domain. 

Solution: Take the following sub-sequences 

X (0) 
1 = (x (0) (1), x (0) (2), x (0) (3), x (0) (4), x (0) (5), x (0) (6)) 

= (5.0810,4.6110, 5.1177,9.3775, 11.0574,11.3524)
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X (0) 
2 = (x (0) (1), x (0) (2), x (0) (3), x (0) (4), x (0) (5)) 

= (5.0810,4.6110, 5.1177,9.3775, 11.0574) 

X (0) 
3 = (x (0) (2), x (0) (3), x (0) (4), x (0) (5), x (0) (6)) 

= (4.6110,5.1177, 9.3775,11.0574, 11.3524) 

X (0) 
4 = (x (0) (3), x (0) (4), x (0) (5), x (0) (6)) 

= (5.1177,9.3775, 11.0574,11.3524) 

Based on each of these sub-sequences, let us establish the corresponding the 
models of EGM(1,1): 

dx (1) 

dt  
+ ai x (1) = bi , i = 1, 2, 3, 4 

Their individual parameters âi = [ai , bi ]T , i = 1, 2, 3, 4, are given below: 

â1 = [a1, b1]T = [−0.2202, 3.4689]T , â2 = [a2, b2]T = [−0.3147, 2.1237]T 
â3 = [a3, b3]T = [−0.2013, 5.0961]T , â4 = [a4, b4]T = [−0.0911, 8.7410]T 

Because 

−amin = min 
1≤i≤4

{−ai } =  min{0.2202, 0.3147, 0.2013, 0.0911} =  0.0911 = −a4 

−amax = max 
1≤i≤4

{−ai } =  max{0.2202, 0.3147, 0.2013, 0.0911} =  0.3147 = −a2 

the upper bound time response sequence of the development domain is 

⎧ 
⎪⎨ 

⎪⎩ 

x̂ (1) 
s (k + 1) = 

( 
x (0) (1) − 

b2 
a2 

) 
e−a2k + 

b2 
a2 

= 11.8293e0.3147k − 6.7483 

x̂ (0) 
s (k + 1) = x̂ (1) 

s (k + 1) − x̂ (1) 
s (k) 

That is, x̂ (0) 
s (k + 1) = 11.8293e0.3147k − 11.8293e0.3147k−0.3147 = 3.1938e0.3147k . 

Thus, the highest predicted values are x̂ (0) 
s (7) = 21.1029, x̂ (0) 

s (8) = 28.9078, and 
x̂ (0) 
s (9) = 39.5993. Because the starting value of X (0) 

4 is x (0) (3), the lower bound 
time response sequence of the development domain is 

⎧ 
⎪⎨ 

⎪⎩ 

x̂ (1) 
u (k + 3) = 

( 
x (0) (3) − 

b4 
a4 

) 
e−a4k + 

b4 
a4 

= 101.0672e0.0911k − 95.9495 

x̂ (0) 
u (k + 3) = x̂ (1) 

u (k + 3) − x̂ (0) 
u (k + 2) 

That is, x̂ (0) 
u (k+3) = 101.0672e0.0911k−101.0672e0.0911k−0.0911 = 8.8003e0.0911k . 

Therefore, we obtain the lowest predicted values: x̂ (0) 
u (7) = 12.6694, x̂ (0) 

u (8) =
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13.8777, and x̂ (0) 
u (9) = 15.2014. From the highest and lowest predicted values, we 

obtain the basic prediction values: 

x̂ (0) (7) = 
1 

2
[x̂ (0) 

s (7) + x̂ (0) 
u (7)] =  16.8862 

x̂ (0) (8) = 
1 

2
[x̂ (0) 

s (8) + x̂ (0) 
u (8)] =  21.3928 

x̂ (0) (9) = 
1 

2
[x̂ (0) 

s (9) + x̂ (0) 
u (9)] =  27.4004 

Based on the qualitative analysis of the estimated amount of car ownership in the 
given city and the improvement in public transportation systems, we conclude that 
the lowest predicted values are the most reliable. 

9.3 Grey Distortion Forecasting 

The basic idea of grey distortion prediction is essentially the prediction of abnormal 
values. The kinds of values that are considered abnormal are commonly determined 
based on individuals’ experiences. The objective of grey distortion predictions is 
to provide the time moments of the forthcoming abnormal values so that relevant 
parties can prepare for the worst ahead of time (Deng, 1985; Liu et al., 2017). 

Definition 9.3.1 Let X = (x(1), x(2), . . .  ,  x(n)) be a sequence of raw data. Then 

(1) For a given upper abnormal value ξ , the sub-sequence of X 

Xξ = (x[q(1)], x[q(2)], . . .  ,  x[q(m)]) 
= {x[q(i )]|x[q(i )] ≥  ξ ; i = 1, 2, . . . ,  m} 

is known as the upper distortion sequence. 
(2) For a given lower abnormal value ζ , the sub-sequence 

Xζ = (x[q(1)], x[q(2)], . . .  ,  x[q(l)]) = {x[q(i )]|x[q(i )] ≥  ζ ; i = 1, 2, . . . ,  l} 

is known as the lower distortion sequence. Together, these upper and lower 
distortion sequences are referred to as distortion sequences. Because the 
idea behind the discussion of distortion sequences is the same, in the 
following discussion we will not distinguish between upper and lower distortion 
sequences. 

Definition 9.3.2 Assume that X = (x(1), x(2),  . . .  ,  x(n)) is a sequence of raw data. 
The following sub-sequence of X.
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Xξ = (x[q(1)], x[q(2)], . . .  ,  x[q(m)]) ⊂ X 

is a distortion sequence. Then, 

Q(0) = (q(1), q(2), . . .  ,  q(m)) 

will be referred to as the distortion date sequence. Distortion prediction is about 
finding patterns, if any, through the study of distortion date sequences to predict future 
dates of occurrences of distortion. In grey system theory, each distortion prediction is 
realized through establishing GM(1,1) models for relevant distortion date sequences. 

Definition 9.3.3 If Q(0) = (q(1), q(2), . . . , q(m)) is a distortion date sequence, the 
following 

Q(1) = (q(1)(1) , q(2)(1) , . . . ,  q(m)(1) ) 

is the 1-AGO sequence of the distortion date sequence Q(0),Z (1) is the adjacent 
neighbor mean generated sequence of Q(1), and 

q(k) + az(1) (k) = b 

is referred to as a distortion model of GM(1,1). For the available sequence X = 
(x(1), x(2), . . .  ,  x(n)) of raw data, if n stands for the present and the last entry 
q(m)(≤ n) in the corresponding distortion date sequence Q(0) represents when the 
last abnormal value occurred, then the predicted value q̂(m + 1) represents the next 
forthcoming abnormal value and for any k > 0, q̂(m + k) stands for the predicted 
date for the kth abnormal value to occur in the future. 

Example 9.3.1 The following sequence gives the annual average precipitations (in 
mm) of a certain region for 17 years, where x(1), x(2), …,x(17) are respectively the 
data for the years of 2005, 2006, …, 2021: 

X = (x(1), x(2), x(3), x(4), x(5), x(6), x(7), x(8), x(9), x(10) 
x(11), x(12), x(13, x(14), x(15), x(16), x(17)) 

= (390.6, 412.0, 320.0, 559.2, 380.8, 542.4, 553.0, 310.0, 561.0, 300.0 
632.0, 540.0, 406.2, 313.8, 576.0, 586.6, 318.5) 

Take ξ = 320 mm as a lower abnormal (drought) value. Carry out a drought 
prediction for this specific region. 

Solution: If ξ = 320, we obtain the following lower distortion sequence 

Xξ = (x(3), x(8), x(10), x(14), x(17)) = (320.0, 310.0, 300.0, 313.8, 318.5) 

with the corresponding distortion date sequence



9.3 Grey Distortion Forecasting 237

Q(0) = (q(1), q(2), q(3), q(4), q(5)) = (3, 8, 10, 14, 17) 

and it’s 1-AGO sequence 

Q(1) = (3, 11, 21, 35, 52) 

The mean sequence based on consecutive neighbors of Q(1) is given by 

Z (1) = (7, 16, 28, 43.5) 

Let q(k) + az(1) (k) = b. From  

B = 

⎡ 

⎢⎢ 
⎣ 

−7 1  
−16 1 
−28 1 

−43.5 1  

⎤ 

⎥⎥ 
⎦, Y = 

⎡ 

⎢⎢ 
⎣ 

8 
10 
14 
17 

⎤ 

⎥⎥ 
⎦ 

it follows that 

â = 
[ 
a 
b 

] 
= (BT B)−1 BT Y = 

[−0.25361 
6.258339 

] 

Therefore, the GM(1, 1) ordinality response sequence of the distortion date 
sequence is 

q̂(1) (k + 1) = 27.667e0.25361k − 24.667 
q̂(k + 1) = q̂(1) (k + 1) − q̂(1) (k) 

That is, 

q̂(k + 1) = 27.667e0.25361k − 24.667e0.25361(k−1) = 6.1998e0.25361k 

Thus, we can obtain a simulated sequence for Q(0) as follows: 

Q̂(0) = ( ̂q(1), q̂(2), q̂(3), q̂(4), q̂(5)) 
= (6.1998, 7.989, 10.296, 13.268, 17.098) 

From 

ε(k) = q(k) − q̂(k), k = 1, 2, 3, 4, 5 

we obtain the error sequence as follows: 

ε(0) = (ε(1), ε(2), ε(3), ε(4), ε(5))
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= (−3.1998, 0.011, −0.296, 0.732, −0.098) 

And from 

Δk = 
|||| 
ε(k) 
q(k) 

||||; k = 1, 2, 3, 4, 5 

it follows that the sequence of relative errors is 

Δ = (Δ2,Δ3,Δ4,Δ5) = (0.1%, 2.96%, 5.1%, 0.6%) 

From this sequence, we calculate the average relative error 

Δ = 
1 

4 

5Σ 

k=2 

Δk = 2.19% 

With 1 − Δ = 97.81% as the average relative accuracy, and 1 − Δ5 = 99.4%. 
Therefore, we can use 

q̂(k + 1) = 6.1998e0.25361k 

to carry out our predictions. Because 

q̂(5 + 1) = q̂(6) ≈ 22, q̂(6) − q̂(5) ≈ 22 − 17 = 5 

we predict that in five years, counting from the time of the last drought in 2021, there 
might be a drought. In order to improve the accuracy of our prediction, we can take 
several different abnormal values to build various models to make predictions. 

9.4 Wave Form Forecasting 

When the available data sequence vibrates widely with large magnitudes, it is often 
difficult, if not impossible, to find an appropriate simulation model. In this case, one 
can consider making use of the pattern of fluctuation of the data to predict the future 
development of the wavy movement. This kind of prediction is known as a wave 
form forecasting (Deng, 1985; Liu et al., 2017). 

Definition 9.4.1 Let X = (x(1), x(2), . . .  ,  x(n)) be the sequence of raw data, then 

xk = x(k) + (t − k)[x(k + 1) − x(k)] 

is known as a k-piece zigzagged line of the sequence X, and
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{xk = x(k) + (t − k)[x(k + 1) − x(k)] k = 1, 2, . . . ,  n − 1} 

the zigzagged line, still denoted by using X. 

Definition 9.4.2 Assume that X is a zigzagged line, let 

σmax = max 
1≤k≤n

{x(k)} and σmin = min 
1≤k≤n

{x(k)}. 

Then. 

(1) For any ∀ξ ∈ [σmin, σmax], X = ξ is known as the ξ -contour (line); and 
(2) The solutions (ti , x(ti ))(i = 1, 2, . . .)  of system of equations 

( 
X = {x(k) + (t − k)[x(k + 1) − x(k)]|k = 1, 2, . . . ,  n − 1 } 
X = ξ 

is called the ξ -contour points. The ξ -contour point is the intersection of the zigzagged 
line X and the ξ -contour line. 

Proposition 9.4.1 If on the ith segment of X there is a ξ -contour point, then the 

coordinates of this point are given by 
( 
i + ξ −x(i ) 

x(i+1)−x(i ) , ξ  
) 
. 

Proof The equation of i-piece zigzagged line of the sequence X is as follows: 

X = x(i ) + (ti − i )[x(i + 1) − x(i)] 

From 
( 
X = x(i ) + (ti − i )[x(i + 1) − x(i )] 
X = ξ 

We have 

ti = i + ξ − x(i ) 
x(i + 1) − x(i ) 

Definition 9.4.3 Let Xξ = (P1, P2, . . . ,  Pm) be the sequence of ξ -contour points of 
X such that point Pi is located on the ith segment. Let 

q(i ) = ti + ξ − x(ti ) 
x(ti + 1) − x(ti ) 

, i = 1, 2, . . . ,  m 

Then Q(0) = (q(1), q(2), . . . , q(m)) is known as the ξ -contour time moment 
sequence. By establishing a GM(1,1) model using this ξ -contour moment sequence, 
one can produce the predicted values for future ξ -contour time moments:
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q̂(m + 1), q̂(m + 2), . . . ,  ̂q(m + k). 

Definition 9.4.4 The lines X = ξi (i = 0, 1, 2, . . .  ,  s), where ξ0 = σmin, ξ1 =
1 
s (σmax − σmin)+ σmin, …  ξi = i s (σmax − σmin)+σmin, …,  ξs−1 = s−1 

s (σmax − σmin)+ 
σmin, ξs = σmax are known as equal time distanced contours. When taking contour 
lines, one needs to make sure that the corresponding contour moments satisfy the 
conditions for establishing valid GM(1,1) models. 

Definition 9.4.5 Let X = ξi (i = 1, 2, . . . ,  s) be s different contours, 

Q(0) 
i = (qi (1), qi (2), . . . ,  qi (m1), i = 1, 2, . . . ,  s, 

stand for the sequence of ξi -contour time moments, and 

q̂i (mi + 1), q̂i (mi + 2), . . . ,  ̂qi (mi + ki ), i = 1, 2, . . . ,  s 

the GM(1,1) predicted ξi -contour time moments. If there are i /= j such that 

q̂i (mi + li ) = q̂ j (m j + l j ), 

then these values are known as a pair of invalid moments. 

Proposition 9.4.2 Let q̂i (mi + j ), j = 1, 2, . . . ,  ki , i = 1, 2, . . . ,  s, be the  GM(1,1)  
predicted ξi -contour time moments. After deleting all invalid predictions, order the 
rest in terms of their magnitudes as follows: 

q̂(1) <  ̂q(2) <  · · ·  < q̂(ns), 

where ns ≤ k1 + k2 +  · · ·  +  ks . If X = ξ ̂q(k) is the contour line corresponding to 
q̂(k). Then the predicted wavy curve of X (0) is given below: 

X = X̂ (0) = {ξ ̂q(k) + [t − q̂(k)][ξ ̂q(k+1) − ξ ̂q(k)] |k = 1, 2, . . . ,  ns }. 

9.5 System Forecasting 

9.5.1 The Five-Step Modeling Process 

Generally, when studying a system one should first establish a mathematical model 
through which the overall functionality of the system, abilities of coordination, inci-
dence relations, causal relations, and dynamic relationships between different parts 
can be quantitatively investigated. This kind of study has to be guided by an early 
qualitative analysis, and there must be close connection between the quantitative
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and qualitative studies. As for the development of the system’s model, one generally 
goes through the following five steps: development of thoughts, analysis of relevant 
factors, quantification, dynamics, and optimization. This is the so-called five-step 
modeling (Deng, 1985). 

Step 1: Develop thoughts and form concepts. Through an initial qualitative analysis, 
one clarifies his goal, possible paths and specific procedures, and then verbally and 
precisely describes the desired outcomes. This is the initial language model of the 
problem (see Fig. 9.3). 

Step 2: Examine all the factors involved in the language model and their mutual 
relationships in order to pinpoint the causes and conclusions. Then, construct a line-
drawing to depict the causal relationships (Fig. 9.3). Each pair (or a group) of causes 
and effect form a link. A system might be made up of many of such links. At the 
same time, a quantity can be a cause of a link and also a consequence of another link. 
When several of these links are connected, one obtains a line drawing of many links 
that organically form the system of our concern (Fig. 9.4). 

Step 3: Quantitatively study each causality link and obtain an approximate quanti-
tative relationship, which is a quantified model. 

Step 4: For each link, collect additional input–output data, on which dynamic GM 
models are established. Such dynamic models are higher level quantitative models. 
They can further reveal the relationships between input and output, and their laws of 
transformation. They are the foundation of systems analysis and optimization.

Fig. 9.3 Depicted causal relationships 

Fig. 9.4 Line drawing of an abstract system 
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Step 5: Systematically investigate the established dynamic models by adjusting their 
structures, mechanisms, and parameters, in order to arrive at the purpose of opti-
mizing the outcome and realizing the desired conclusions. Models obtained in this 
way are known as optimal models. 

The procedure of five-step modeling is such a holistic process that at five different 
stages five different kinds of models are established: language models, network 
models, quantified models, dynamic models, and optimized models. In the entire 
process of modeling, the conclusions of the next level should be repeatedly fed back 
so that the modeling exercise itself becomes a feedback system making the model 
system as perfect as possible. 

9.5.2 System Models for Prediction 

For a system with many mutually related factors and many autonomous controlling 
variables, no single model can reflect adequately the development and change of the 
system. To effectively study such a system and to predict its future behaviors, one 
should consider establishing a system of models (Deng, 1985; Liu et al., 2020). 

Definition 9.5.1 Assume that 

X (0) 
i = 

( 
x (0) 
i (1), x (0) 

i (2), . . . , x (0) 
i (n) 

) 
, i = 1, 2, ..., m, 

are sequences of raw data for the state variables of a system, and 

U (0) 
j = 

( 
u(0) 
j (1), u(0) 

j (2), . . . , u(0) 
j (n) 

) 
, j = 1, 2, . . . ,  s, 

are sequences of data of the control variables. Then the following 

x (0) 
1 = a11z(1) 

1 + a12x (1) 
2 +  · · ·  +  a1m x (1) 

m + b11u(1) 
1 + b12u(1) 

2 +  · · ·  +  b1su(1) 
s 

x (0) 
2 = a21x

(1) 
1 + a22z(1) 

2 +  · · ·  +  a2m x (1) 
m + b21u(1) 

1 + b22u(1) 
2 +  · · ·  +  b2su(1) 

s 

. . .  . . .  . . .  . . .  . . .  . . .  . . .  .  . .  . . .  .  . .  . . .  . . .  .  . .  . . .  . . .  . . .  . . .  

x (0) 
m = am1x

(1) 
1 + am2x

(1) 
2 +  · · ·  +  ammz

(1) 
m + bm1u

(1) 
1 + bm2u

(1) 
2 +  · · ·  +  bmsu

(1) 
s 

du(1) 
1 

dt  
= c1u(1) 

1 + d1, 
du(1) 

2 

dt  
= c2u(1) 

2 + d2, ..., 
du(1) 

s 

dt  
= csu(1) 

s + ds 

are known as system models for prediction. As a matter of fact, each system model 
for prediction consists of m DGM(1,m + s) and s EGM(1,1) models. If we write the 
previous system models for prediction using the terminology of matrices, we have 

( 
X (0) = AX (1) + BU (1) 

U (0) = CU (1) + D
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where X (1) = (x (1) 
1 , x (1) 

2 , · · ·  , x (1) 
m )

T , U (1) = (u(1) 
1 , u(1) 

2 , . . . ,  u(1) 
s )T , A = [akl]m×m , 

B = 
[ 
bpq 

] 
m×s , C = diag 

[ 
c j 

] 
s×s , and D = 

[ 
d j 

] 
s×1. 

X is known as the state vector, U the control vector, A the state matrix, B the 
control matrix, C the development matrix, and D the grey effect vector. 

Proposition 9.5.1 For the previous system models for prediction, the time response 
sequences are given as follows: 

x̂ (0) 
i (k) = ai1x (1) 

i (k) + ai2x (1) 
2 (k) +  · · ·  +  aim  x

(1) 
m (k) + bi1u(1) 

1 (k) 

+ bi2u(1) 
2 (k) +  · · ·  +  bisu(1) 

s (k), i = 1, 2, ..., m 

û(0) 
j (k) = (1 − ec j )(u(0) 

j (1) − 
d j 

c j 
)e−c j (k−1) , j = 1, 2, ..., s 

9.6 Practical Applications 

Example 9.6.1 Let us look at a wavy curve prediction for the (synthetic) stock index 
of Shanghai stock exchange. Using the stock index data of the stock index weekly 
closes of Shanghai stock exchange, the time series plot from February 21, 1997, 
through to October 31, 1998, is shown in Fig. 9.5 (Dang & Liu, 2009). 

Let us take 

ξ1 = 1140, ξ2 = 1170, ξ3 = 1200, ξ4 = 1230, ξ5 = 1260 
ξ6 = 1290, ξ8 = 1350, ξ7 = 1320, ξ9 = 1380. 

Then the corresponding ξi -contour time moment sequences are given below:

Fig. 9.5 Shanghai stock 
exchange index (Feb. 21, 
1997, to Oct. 31, 1998) 
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(1) For ξ1 = 1140, 

Q(0) 
1 = {q1(k)}7 1 = (4.4, 31.7, 34.2, 41, 42.4, 76.8, 78.3) 

(2) For ξ2 = 1170, 

Q(0) 
2 = {q2(k)}12 2 = (5.2, 19.8, 23, 25.6, 26.9, 31.2, 34.8, 39.5, 44.6, 76, 76.2, 79.2) 

(3) For ξ3 = 1200, 

Q(0) 
3 = {q3(k)}11 3 = (5.9, 19.5, 24.8, 25.2, 26.5, 30.3, 46.2, 53.4, 55.4, 75.5, 79.7) 

(4) For ξ4 = 1230, 

Q(0) 
4 = {q4(k)}10 4 = (6.5, 19.2, 28.3, 29.5, 49.7, 50.8, 56.2, 76.4, 82.9, 85) 

(5) For ξ5 = 1260, 

Q(0) 
5 = {q5(k)}7 5 = (7, 14.2, 16.5, 16.4, 18.8, 56.7, 75.2) 

(6) For ξ6 = 1290, 

Q(0) 
6 = {q6(k)}5 6 = (8.3, 13.4, 16.9, 56.2, 74.6) 

(7) For ξ7 = 1320, 

Q(0) 
7 = {q7(k)}6 7 = (8.8, 12.8, 60.2, 71.8, 72.7, 73.6) 

(8) For ξ8 = 1350, 

Q(0) 
8 = {q8(k)}6 8 = (9.6, 12.5, 61.8, 69.8, 70.9, 71.8) 

(9) For ξ9 = 1380, 

Q(0) 
9 = {q9(k)}4 9 = (10.8, 12.4, 64.1, 69) 

Applying the 1-AGO on Q(0) 
i (i = 1, 2, . . . ,  9) produces Q(1) 

i (i = 1, 2, . . . ,  9), 
whose EGM(1,1) response sequences are respectively given by:

q̂(1) 
1 (k + 1) = 113.91e0.215k − 109.51, q̂(1) 

2 (k + 1) = 98.58e0.159k − 93.83, 

q̂(1) 
3 (k + 1) = 102.08e0.166k − 96.18, q̂(1) 

4 (k + 1) = 151.66e0.160k − 145.16, 

q̂(1) 
5 (k + 1) = 13e0.435k − 6, q̂(1) 

6 (k + 1) = 21.94e0.539k − 13.64, 

q̂(1) 
7 (k + 1) = 185.08e0.192k − 176.28, q̂(1) 

8 (k + 1) = 193.19e0.186k − 182.57,
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Fig. 9.6 The predicted wavy 
curve of Shanghai stock 
exchange index (Nov. 1998 
to March 2000) 

q̂(1) 
9 (k + 1) = 45.22e0.490k − 35.39

By letting q̂i (k + 1) = q̂(1) 
i (k + 1) − q̂(1) 

i (k), we obtain the following ξi -contour 
prediction sequences, i = 1, 2, . . . ,  9, 

Q̂(0) 
1 = ( ̂q1(12), q̂1(13)) = (99.8, 127.7) 

Q̂(0) 
2 = ( ̂q2(13), q̂2(14), q̂2(15)) = (96.8, 116.7, 131.4) 

Q̂(0) 
3 = ( ̂q3(12), q̂3(13), q̂3(14)) = (95.7, 114.2, 133.8) 

Q̂(0) 
4 = ( ̂q4(11), q̂4(12), q̂4(13)) = (110.9, 134.2, 152.8) 

Q̂(0) 
5 = ( ̂q5(8), q̂5(9)) = (94.2, 148.8) 

Q̂(0) 
6 = ( ̂q6(6)) = (135.5) 

Q̂(0) 
7 = ( ̂q7(7), q̂7(8), q̂7(9)) = (101.9, 123.4, 149.5) 

Q̂(0) 
8 = ( ̂q8(7), q̂8(8), q̂8(9)) = (105, 119.8, 144.6) 

Q̂(0) 
9 = ( ̂q9(5)) = (122.3) 

Based on these predictions, we construct the predicted wavy curve for the 
Shanghai stock exchange index for the time period from November 1998 to the 
end of 1999 (see Fig. 9.6). 
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Chapter 10 
Grey Models for Decision-Making 

10.1 Introduction 

Deciding on what actions to take based on actual circumstances and pre-determined 
goals is known as decision-making. The essential meaning of decision-making is to 
make a decision or to choose a course of actions. Decision-making not only plays an 
important part in various kinds of management activities, but also appears throughout 
every person’s daily life. The concept of decision-making can be divided into two 
categories: general and specific. In the general category, each decision-making stands 
for an entire process of activities, including posting questions, collecting data, estab-
lishing a goal, making, analyzing, and evaluating a plan of action, implementing the 
plan, feedback, and modifying the plan. In the specific category, decision-making 
only represents the step of choosing a specific plan of action out of the entire decision-
making process. Also, some scholars understand decision-making as choosing and 
picking a plan of action under uncertain conditions. In this case, the choice can be 
most likely influenced by the decision maker’s prior experience, attitude, and will-
ingness to take a certain amount of risk. Grey decision-making is about making a 
decision using decision models that involve grey elements or that combine general 
decision model and grey systems models. Its focus of study is on the problem of 
choosing a specific plan. 

In this chapter, we define an event as the problem waiting to be resolved, the event 
needing to be handled, and the current state of a system’s behavior. Events are where 
we begin our investigation. 

Definition 10.1.1 Events, countermeasures, objectives, and effects are known as the 
four key elements of decision-making (Deng, 1986). 

Definition 10.1.2 The totality of all events within the range of a research is known 
as the set of events of the study, denoted A = {a1, a2, . . . ,  an}, where ai , i = 
1, 2, 3, . . .  ,  n, stands for the ith event. The totality of all possible countermeasures 
is known as the set of countermeasures, denoted B = {b1, b2, . . . ,  bm} with b j , 
j = 1, 2, . . . ,  m, be the  jth countermeasure.
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Definition 10.1.3 The Cartesian product A × B = {
(ai , b j )|ai ∈ A, b j ∈ B

}
of the 

event set A and the countermeasure set B is known as the set of decision schemes, 
written as S = A× B, where each ordered pair si j  =

(
ai , b j

)
, for any ai ∈ A, b j ∈ B, 

is known as a decision scheme. 

For example, in the decision-making on what to plant in agriculture, weather 
conditions can be used as the set of events, with a normal year denoted as a1, a  
drought year as a2, and a flood year as a3. Then, the set of events is 

A = {a1, a2, a3} 

Different strains of crops can be seen as countermeasures, with corn denoted as 
b1, Chinese sorghum as b2, soybeans as b3, sesame b4, potatoes and yams as b5, …;  
then the countermeasure set is given as 

B = {b1, b2, b3, b4, b5, · · ·} 

Therefore, the set of decision scheme is 

S = A × B = {s11, s12, . . . ,  s15, . . . ,  s21, . . . ,  s25, . . . ,  s31, . . . ,  s35, . . .} 

where si j  = (ai , b j ). 
Here, events and countermeasures are simple. Therefore, the constructed deci-

sion schemes are relatively simple, too. In practical decision-making, events are 
often complicated, consisting of many kinds of simple events, so the countermea-
sures are complicated, too. Hence, the resultant decision schemes can be extremely 
complicated. 

Let us continue to use the previous agricultural decision-making example. The 
set of events is the organic body consisting of weather, soil, irrigation, fertilizer, 
agricultural chemicals, work force, and technology. The countermeasures are not 
simply the individual strains of crops, but various proportional combinations of many 
different strains of crops. Let us define a1 as an event characterized by a normal year, 
loam, 50% effective irrigation area, sufficient fertilizer and agricultural chemicals, 
sufficient work force, and medium level of technology. Additionally, let us define 
a2 as an event characterized by a drought year, black earth, 50% effective irrigation 
area, sufficient fertilizer and work force, lack of agricultural chemicals, and medium 
level of technology. Then, we have the set of events: 

A = {a1, a2, . . .} 

Let us write b1 as the countermeasure including 30% corn + 10% Chinese sorghum 
+ 10% soybeans + 15% sesame + 15% potatoes and yams + 10% others. Also, let 
us write b2 as the countermeasure including 10% corn + 20% Chinese sorghum + 
30% soybeans + 30% sesame + 10% others. Then, we have the countermeasure set:
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B = {b1, b2, . . .} 

Now, the decision scheme s11 = (a1, b1) is that, under the conditions of a normal 
year, loam, 50% effective irrigation area, with sufficient fertilizer and agricultural 
chemicals, sufficient workforce, and medium level of technology, we should plant 
30% corn, 10% Chinese sorghum + 20% soybeans + 15% sesame + 15% potatoes 
and yams + 10% others. 

Let us look at the example of teaching scheduling. The collection of all course 
offerings of a fixed semester at a certain school can be seen as the set of events; 
all teaching faculty of this school, and various teaching methods, such as laboratory, 
interns, and multimedia, are seen as the set of countermeasures. Based on the circum-
stances, one teacher can teach several courses, or several teachers teach one course 
together. The work load could be 100% teaching, or 60% teaching, 20% laboratory, 
10% interns, and 10% multimedia and others. 

For a given decision scheme si j  ∈ S, evaluating the effects under a set of pre-
determined objectives and deciding on what to take and what to let go based on 
evaluation is the decision-making we discuss in this chapter. In the following sections, 
we will study several different kinds of grey decision-making methods (Deng, 1986; 
Liu & Guo, 1991). 

10.2 Grey Target Decisions 

Definition 10.2.1 Let S = {si j  = (ai , b j )
∣∣ai ∈ A, b j ∈ B } be a set of decision 

schemes, u(k) 
i j  the effect value of decision scheme si j  with respect to objective k, and 

R the set of all real numbers. Then u(k) 
i j  : S }→ R, defined by si j  }→ u(k) 

i j  , is known as 
the effect mapping of S with respect to object k. 

Definition 10.2.2 If u(k) 
i j  = u(k) 

ih  , then we say that the countermeasures b j and bh of 
event ai are equivalent with respect to objective k, written as b j 

∼= bh ; and the set 

B(k) 
i = {b|b ∈ B, b ∼= bh } 

is known as the effect equivalence class of countermeasure bhof event ai with respect 
to objective k. 

Definition 10.2.3 If k is such an objective that the greater the effect value is the 
better, and u(k) 

i j  > u(k) 
ih  , then we say that the countermeasure b j is superior to bh in 

terms of event ai with respect to objective k, written as b j � bh . The  set  B(k) 
ih  = 

{b|b ∈ B, b � bh } is known as the superior set of countermeasure bh of event ai 
with respect to objective k. 

Similarly, we can define the concept of superior classes of countermeasures for 
situations where the closer to a fixed moderate value the effect value is the better, 
and where the smaller the effect value is the better.
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Definition 10.2.4 If u(k) 
i j  = u(k) 

ih  , then events ai and a j are said to be equivalent in 
terms of the countermeasure bh with respect to objective k, written ai ∼= a j . The  set  

A(k) 
jh  = {a|a ∈ A, a ∼= ai } 

is known as the effect equivalence class of events of the countermeasure bh with 
respect to objective k. 

Definition 10.2.5 If k is such an objective that the greater the effect value is the 
better, and u(k) 

ih  > u(k) 
jh  , then we say that event ai is superior to event a j in terms of 

countermeasure bh with respect to objective k, denoted ai � a j . The  set  

A(k) 
jh  =

{
a
∣∣a ∈ A, a � a j

}

is known as the superior class of event a j in terms of countermeasure bh with respect 
to objective k. 

Similarly, the concept of superior classes can be defined for situations where the 
closer to a fixed moderate value the effect value is the better, and where the smaller 
the effect value is the better. 

Definition 10.2.6 If u(k) 
i j  = u(k) 

hl , then scheme si j  is equivalent to scheme shl under 
objective k, denoted si j  ∼= shl . The  set  

S(k) = {s|s ∈ S, s ∼= shl } 

is known as the effect equivalence class of scheme shl under objective k. 

Definition 10.2.7 If k is such an objective that the greater the effect value is the 
better, and u(k) 

i j > u(k) 
hl , then scheme si j  is said to be superior to scheme shl under 

objective k, denoted si j � shl . The  set  

S(k) 
hl = {s|s ∈ S, s � shl } 

is known as the effect superior class of scheme shl under objective k. 

Similarly, the concept of superior classes for scheme effects can be defined for 
scenarios where the closer to a fixed moderate value the effect value of a scheme is 
the better, and where the smaller the effect value of the scheme is the better. 

Proposition 10.2.1 Assume that S = {si j  = (ai , b j )
∣∣ai ∈ A, b j ∈ B } /= ∅  and 

U (k) =
{
u(k) 
i j

∣∣ai ∈ A, b j ∈ B
}
is the set of effects under objective k, and

{
S(k)

}
the 

set of effect equivalence classes of schemes under objective k. Then the mapping 
u(k) :{S(k)

} → U (k), defined by S(k) }→ u(k) 
i j  , is bijective.
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Definition 10.2.8 Let d(k) 
1 and d(k) 

2 be the upper and lower threshold values of the 

decision effects of si j  under objective k. Then S1 =
{
r
∣∣∣d(k) 

1 ≤ r ≤ d(k) 
2

}
is known as 

the one-dimensional grey target of objective k, u(k) 
i j  ∈ [d(k) 

1 , d(k) 
2 ] a satisfactory effect 

under objective k, the corresponding si j  a desirable scheme with respect to objective 
k, and b j a desirable countermeasure of event ai with respect to objective k. 

Proposition 10.2.2 Assume that u(k) 
i j  stands for the effect value of scheme si j  with 

respect objective k. If  u(k) 
i j  ∈ S1, that is, si j  is a desirable scheme with respect to 

objective k. Then for any s ∈ S(k) 
i j  , s is also a desirable scheme. That is, when si j  is 

desirable, all schemes in its effect superior class are desirable. 
The discussion above applies to cases involving a single objective. Nevertheless, 

grey targets of decision-making with multi-objectives can also be addressed. 

Definition 10.2.9 Assume that d(1) 
1 and d(1) 

2 are the threshold values of decision 
effects of objective 1, d(2) 

1 and d(2) 
2 the threshold values of decision effects of objective 

2. Then 

S2 =
{
(r (1) , r (2) )

∣∣∣d(1) 
1 ≤ r (1) ≤ d(1) 

2 , d(2) 
1 ≤ r (2) ≤ d(2) 

2

}

is known as a grey target of two-dimensional decision-making. If the effect vector 

of scheme si j  satisfies ui j  =
{
u(1) 
i j  , u

(2) 
i j

}
∈ S2, then si j  is seen as a desirable scheme 

with respect to objectives 1 and 2, and b j a desirable countermeasure for event ai 
with respect to objectives 1 and 2. 

Definition 10.2.10 Assume that d(1) 
1 , d(1) 

2 ; d
(2) 
1 , d(2) 

2 ; . . .  ; d(s) 
1 , d(s) 

2 are respectively 
the threshold values of decision effects under objectives 1, 2, …, s. Then the following 
region of the s–dimensional Euclidean space 

Ss =
{
(r (1) , r (2) , . . . ,  r (s) )

∣∣∣d(1) 
1 ≤ r (1) ≤ d(1) 

2 , d(2) 
1 ≤ r (2) ≤ d(2) 

2 , . . . ,  d(s) 
1 ≤ r (s) ≤ d(s) 

2

}

is known as a grey target of an s–dimensional decision-making. If the effect vector 
of scheme si j  satisfies 

ui j  = (u(1) 
i j  , u

(2) 
i j  , . . . ,  u(s) 

i j  ) ∈ Ss 

where u(k) 
i j  stands for the effect value of the scheme si j  with respect to objective k, 

k = 1, 2, . . . ,  s, then si j  is known as a desirable scheme with respect to objectives 
1, 2, …, s, and b j a desirable countermeasure of event ai with respect to objectives 
1, 2, …, s. 

Intuitively, the grey targets of a decision-making essentially represent the location 
of satisfactory effects in terms of relative optimization. In many practical circum-
stances, it is impossible to obtain the absolute optimization so that people are happy
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if they can achieve a satisfactory outcome. Of course, based on the need, one can 
gradually shrink the grey targets of his decision-making to a single point in order 
to obtain the ultimate optimal effect, where the corresponding scheme is the most 
desirable, and the corresponding countermeasure the optimal countermeasure. 

Definition 10.2.11 The following equation 

Rs =
{
(r (1) , r (2) , . . . ,  r (s) )

∣∣∣(r (1) − r (1) 
0 )2 + (r (2) − r (2) 

0 )2 +  · · ·  +  (r (s) − r (s) 
0 )2 ≤ R2

}

is known as an s-dimensional spherical grey target centered at r0 = 
(r (1) 

0 , r (2) 
0 , . . . ,  r (s) 

0 ) with radius R. The vector r0 = (r (1) 
0 , r (2) 

0 , . . . ,  r (s) 
0 ) is seen as 

the optimum effect vector. 

For r1 = (r (1) 
1 , r (2) 

1 , . . . ,  r (s) 
1 ) ∈ R, 

|r1 − r0| =
[
(r (1) 

1 − r (1) 
0 )2 + (r (2) 

1 − r (2) 
0 )2 +  · · ·  +  (r (s) 

1 − r (s) 
0 )2

]1/2 

is known as the bull’s-eye distance of vector r1. The values of this distance reflect 
the superiority of the corresponding decision effect vectors. 

Definition 10.2.12 Let si j  and shl be two different schemes, and ui j  = 
(u(1) 

i j  , u
(2) 
i j  , . . . ,  u(s) 

i j  ) and uhl = (u(1) 
hl , u

(2) 
hl , . . . ,  u(s) 

hl ) their effect vectors, respectively. 
If

∣∣ui j  − r0
∣∣ ≥ |uhl − r0| (10.1) 

then scheme shl is said to be superior to si j  , denoted shl � si j  . When the equal sign in 
Eq. (10.1) holds true, schemes si j  and shl are said to be equivalent, written shl ∼= si j  . 

If for i = 1, 2, . . . ,  n and j = 1, 2, . . . ,  m, ui j  /= r0 always holds true, then the 
optimum scheme does not exist, and the event does not have any optimum counter-
measure. If the optimum scheme does not exist, however, there are h and l such that 
for any i = 1, 2, . . . ,  n and j = 1, 2, . . . ,  m, |uhl − r0| ≤

∣∣ui j  − r0
∣∣ holds true, that 

is, for any si j  ∈ S, shl � si j  holds, then shl is known as a quasi-optimum scheme, ah 
a quasi-optimum event, and bl a quasi-optimum countermeasure. 

Theorem 10.2.1 Let S = {si j  = (ai , b j )
∣∣ai ∈ A, b j ∈ B } be a set of schemes, and 

Rs =
{
(r (1) , r (2) , . . . ,  r (s) )

∣∣∣(r (1) − r (1) 
0 )2 + (r (2) − r (2) 

0 )2 +  · · ·  +  (r (s) − r (s) 
0 )2 ≤ R2

}

an s-dimensional spherical grey target. The S becomes an ordered set with 
“superiority” as its order relation ≺.
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Theorem 10.2.2 There must be quasi-optimum scheme in the set of decision 
schemes of (S,�). 

Proof This is a restatement of Zorn’s Lemma in set theory. 

Example 10.2.1 Consider event a1 of reconstructing an old building. There are three 
possibilities: b1 = renovate the building completely; b2 = tear down the building 
and reconstruct another; and b3 = simply maintain what the building is by fixing 
up minor problems. Let us make a grey target decision using three objectives: cost, 
functionality, and construction speed. 

Solution Let us denote the cost as objective 1, the functionality as objective 2, and 
the construction speed as objective 3. Then, we have the following three decision 
schemes: 

s11 = (a1, b1) = (reconstruction, renovation), 
s12 =

(
a1,b2

) = (reconstruction, new building), and 
s13 = (a1, b3) = (reconstruction, maintenance). 

Evidently, different decision schemes with respect to different objectives have 
different effects; and the standards for measuring the effects are also accordingly 
different. For instance, regarding cost, the lesser the better; for functionality, the 
higher the better; and for speed, the faster the better. Let us divide the effects of the 
decision schemes into three classes: good, okay, and poor. 

The effect vectors of the decision schemes are respectively defined as follows: 

u11 =
(
u(1) 
11 , u

(1) 
11 , u

(3) 
11

)
= (2, 2, 2), 

u12 =
(
u(1) 
12 , u

(2) 
12 , u

(3) 
12

)
= (3, 1, 3), and 

u13 =
(
u(1) 
13 , u

(2) 
13 , u

(3) 
13

)
= (1, 3, 1). 

Let the bull’s eye be located at r0 = (1, 1, 1) and compute the bull’s-eye distances 

|u11 − r0| =
[(

u(1) 
11 − r (1) 

0

)2 +
(
u(2) 
11 − r (2) 

0

)2 +
(
u(3) 
11 − r (3) 

0

)2]1/2 

= [
(2 − 1)2 + (2 − 1)2 + (2 − 1)2

]1/2 = 1.73 

|u12 − r0| =
[(

u(1) 
12 − r (1) 

0

)2 +
(
u(2) 
12 − r (2) 

0

)2 +
(
u(2) 
12 − r (3) 

0

)2]1/2 

= [
(3 − 1)2 + (1 − 1)2 + (3 − 1)2

]1/2 = 2.83
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|u13 − r0| =
[(

u(1) 
13 − r (1) 

0

)2 +
(
u(2) 
13 − r (2) 

0

)2 +
(
u(3) 
13 − r (3) 

0

)2]1/2 

= [
(1 − 1)2 + (3 − 1)2 + (1 − 1)2

]1/2 = 2 

where |u11 − r0| is the smallest. So, the effect vector u11 = (2, 2, 2) of the decision 
scheme s11 enters the grey target. Hence, renovation is a satisfactory decision. 

10.3 Other Approaches to Grey Decision 

10.3.1 Grey Relational Decision 

The bull’s-eye distance between a decision effect vector and the center of the target 
measures the superiority of the scheme in comparison with other schemes. At the 
same time, the grey relational degree between the effect vector of a decision scheme 
and the optimum effect vector can be seen as another way to evaluate the superiority 
of a decision scheme. 

Definition 10.3.1 Let S = {si j  = (ai , b j )
∣∣ai ∈ A, b j ∈ B } be a set of decision 

schemes, and ui0 j0 = {u(1) 
i0 j0 

, u(2) 
i0 j0 

, . . . ,  u(s) 
i0 j0

} the optimum effect vector. If the decision 
scheme corresponding to ui0 j0 satisfies ui0 j0 /∈ S, then ui0 j0 is known as an imagined 
optimum effect vector, and si0 j0 the imagined optimum scheme. 

Proposition 10.3.1 Let S be the same as above and the effect vector of scheme si j  
is ui j  = {u(1) 

i j  , u
(2) 
i j  , . . . ,  u(s) 

i j  }, for  i = 1, 2, . . . ,  n, j = 1, 2, . . . ,  m. 

(1) When k is an objective such that the greater its effect value is the better, let 

u(k) 
i0 j0 

= max1≤i≤n,1≤ j≤m

{
u(k) 
i j

}
; 

(2) When k is an objective such that the closer to a fixed moderate value u0 its effect 
value is the better, let u(k) 

i0 j0 
= u0; and 

(3) When k is an objective such that the smaller its effect value is the better, 

let u(k) 
i0 j0 

= min1≤i≤n,1≤ j≤m

{
u(k) 
i j

}
, then ui0 j0 =

{
u(1) 
i0 j0 

, u(2) 
i0 j0 

, . . . ,  u(s) 
i0 j0

}
is the 

imagined optimum effect vector. 

Proposition 10.3.2 Assume the same as in Proposition 10.3.1 and let ui0 j0 ={
u(1) 
i0 j0 

, u(2) 
i0 j0 

, . . . ,  u(s) 
i0 j0

}
be the imagined optimum effect vector, εi j  the grey abso-

lute relational degree between ui j  and ui0 j0 , for  i = 1, 2, . . . ,  n, j = 1, 2, . . . ,  m. 
If for any i ∈ {1, 2, . . . ,  n} and j ∈ {1, 2, . . . ,  m} satisfying i /= i1 and j /= j1, 
εi1 j1 ≥ εi j  always holds true, then ui1 j1 is a quasi-optimum effect vector and si1 j1 a 
quasi-optimum decision scheme. 

Grey relational decisions can be made by following the following steps:
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Step 1: Determine the set of events A = {a1, a2, . . . ,  an} and the set of counter-
measures B = {b1, b2, . . . ,  bm}. And then construct the set of decision schemes 
S = {si j  = (ai , b j )

∣∣ai ∈ A, b j ∈ B }. 
Step 2: Choose the objectives 1, 2, …, s, for the decision-making. 
Step 3: Compute the effect values u(k) 

i j  of the individual decision scheme si j  , 
i = 1, 2, . . . ,  n, j = 1, 2, . . . ,  m, with respect to objective k, obtained in the 
decision effect sequence u(k) 

u(k) = (u(k) 
11 , u

(k) 
12 , . . . ,  u(k) 

1m; u(k) 
21 , u

(k) 
22 , . . . ,  u(k) 

2m; . . .  ; u(k) 
n1 , u

(k) 
n2 , . . . ,  u(k) 

nm); 
k = 1, 2, . . . ,  s. 

Step 4: Compute the average image of the decision effect sequence u(k) with 
respect to objective k, which is still written the same as 

u(k) = (u(k) 
11 , u

(k) 
12 , . . . ,  u(k) 

1m; u(k) 
21 , u

(k) 
22 , . . . ,  u(k) 

2m; . . .  ; u(k) 
n1 , u

(k) 
n2 , . . . ,  u(k) 

nm); 
k = 1, 2, · · ·  , s 

Step 5: Based on the results of Step 4, write out the effect vector ui j  ={
u(1) 
i j  , u

(2) 
i j  , . . . ,  u(s) 

i j

}
of decision scheme si j  , for  i = 1, 2, . . . ,  n, j = 

1, 2, · · ·  , m. 
Step 6: Compute the imagined optimum effect vector ui0 j0 ={
u(1) 
i0 j0 

, u(2) 
i0 j0 

, . . . ,  u(s) 
i0 j0

}
. 

Step 7: Calculate the grey absolute relational degree εi j  between ui j  and ui0 j0 , 
i = 1, 2, . . . ,  n, j = 1, 2, . . . ,  m. 
Step 8: From  max1≤i≤n,1≤ j≤m

{
εi j
} = εi1 j1 , the quasi-optimum effect vector ui1 j1 

and the quasi-optimum decision scheme si1 j1 are obtained. 

Example 10.3.1 Let us look at grey relational decision-making regarding the 
evaluation of looms. 

Solution Let us denote the event of evaluating loom models by a1. Then the event 
set is A = {a1}. There are three loom models under consideration: Model 1: purchase 
projectile loom, which is treated as countermeasure b1; Model 2: select air jet loom, 
which is treated as countermeasure b2; Model 3: choose rapier loom, which is treated 
as countermeasure b3. Thus, the set of countermeasure is B = {b1, b2, b3}, and the 
set of decision schemes is S = {

si j  = (ai , b j )
∣∣ai ∈ A, b j ∈ B

} = {s11, s12, s13}. 
Now, let us determine the objectives. According to the functionality of looms, 

eleven objectives are chosen. The weft-insertion rate (m/min) of the looms is objective 
1. The efficiency of the looms is objective 2. The total investment (in ten thousand 
US$) on the looms is objective 3. The total energy cost (W/a) is objective 4. The total 
area (m2) of the land to be occupied by the looms is objective 5. The total manpower 
(person) is objective 6. The quantity of weft yarn waste (cm/weft) is objective 7. 
The cost of replacement parts (ten thousand Yuan/a) is objective 8. Noise (dB) is
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Table 10.1 Objective values for the looms 

Model Projectile loom Air jet loom Rapier loom 

Weft-insertion rate (m/min) 1000 1200 800 

Efficiency (%) 92 90 92 

Total investment (10 K US$) 880 336 612 

Total energy consumption (W/a) 374 924 816 

Total land needed (m2) 1760 1092 2124 

Total manpower (person) 18 22 24 

Quantity of weft yarn waste (cm/weft) 5 6 10 

Cost of parts (10 K ¥/a) 37 35 75 

Noise (dB) 85 91 91 

Quality Best Good Fine 

Adaptability Good Better Best 

objective 9. The quality of the produced fabric is objective 10. And, the adaptability 
of the type of loom is objective 11. 

Under the assumptions that the above-mentioned three loom models produce 
the same kind of grey fabric meeting the same set of requirements, and that these 
looms will produce the same amount of annual output, let us conduct the associated 
computations for the said loom models. Our quantitative calculations lead to relevant 
values for the objectives, some of which determined from the literature and field 
investigations (see Table 10.1). 

In the following equations, we compute decision effect sequences Uk(k = 
1, 2, . . . ,  11) with respect to the objectives. 

For objective 1,we have U (1) = (u(1) 
11 , u

(1) 
12 , u

(1) 
13 ) = (1000, 1200, 800). 

For objective 2,we have U (2) = (u(2) 
11 , u

(2) 
12 , u

(2) 
13 ) = (92, 90, 92). 

For objective 3,we have U (3) = (u(3) 
11 , u

(3) 
12 , u

(3) 
13 ) = (880, 336, 612). 

For objective 4,we have U (4) = (u(4) 
11 , u

(4) 
12 , u

(4) 
13 ) = (374, 924, 816). 

For objective 5,we have U (5) = (u(5) 
11 , u

(5) 
12 , u

(5) 
13 ) = (1760, 1092, 2124). 

For objective 6,we have U (6) = (u(6) 
11 , u

(6) 
12 , u

(6) 
13 ) = (18, 22, 24). 

For objective 7,we have U (7) = (u(7) 
11 , u

(7) 
12 , u

(7) 
13 ) = (5, 6, 10). 

For objective 8,we have U (8) = (u(8) 
11 , u

(8) 
12 , u

(8) 
13 ) = (37, 35, 75). 

For objective 9,we have U (9) = (u(9) 
11 , u

(9) 
12 , u

(9) 
13 ) = (85, 91, 91). 

For objective 10,we have U (10) = (u(10) 
11 , u(10) 

12 , u(10) 
13 ) = (best, good, fine). 

For objective 11,we have U (11) = (u(11) 
11 , u(11) 

12 , u(11) 
13 ) = (good, better, best). 

Quantify the last two qualitative objectives as follows:
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U (10) = (u(10) 
11 , u(10) 

12 , u(10) 
13 ) = (9, 8, 7) 

U (11) = (u(11) 
11 , u(11) 

12 , u(11) 
13 ) = (8, 7, 9) 

We now compute the average images of the decision effect sequences for each of 
the objectives: 

U (1) = (1, 1.2, 0.8); U (2) = (1.01, 0.98, 1.01); U (3) = (1.44, 0.55, 1.01) 
U (4) = (0.53, 1.31, 1.16); U (5) = (1.06, 0.66, 1.28); U (6) = (0.84, 1.03, 1.13) 
U (7) = (0.71, 0.86, 1.43); U (8) = (0.76, 0.71, 1.53); U (9) = (0.96, 1.02, 1.02) 
U (10) = (1.13, 1, 0.87); and U (11) = (1, 0.87, 1.13) 

We also compute the effect vectors Ui j  of decision schemes si j  , i = 1, j = 1, 2, 3: 

U11 = (u(1) 
11 , u

(2) 
11 , . . . ,  u(11) 

11 ) 
= (1, 1.01, 1.44, 0.53, 1.06, 0.84, 0.71, 0.76, 0.96, 1.13, 1), 

U12 = (u(1) 
12 , u

(2) 
12 , . . . ,  u(11) 

12 ) 
= (1.2, 0.98, 0.55, 1.31, 0.66, 1.03, 0.86, 0.71, 1.02, 1, 0.87), and 

U13 = (u(1) 
13 , u

(2) 
13 , . . . ,  u(11) 

13 ) 
= (0.8, 1.01, 1.01, 1.16, 1.28, 1.13, 1.43, 1.53, 1.02, 0.87, 1.13) 

According to the principle of constituting optimum reference sequences, from the 
average images of the decision effect sequences of the objectives, it follows that: 

For objective 1, the greater the effect value is the better, so U (1) 
i0 j0 

= max
{
u(1) 
i j

}
= 

u(1) 
12 = 1.2; 

For objective 1, the higher the effect value is the better, so U (2) 
i0 j0 

= max
{
u(2) 
i j

}
= 

u(2) 
11 = 1.01; 

For objective 3, the smaller effect value is the better, so U (3) 
i0 j0 

= min
{
u(3) 
i j

}
= 

u(3) 
12 = 0.55; 

For objective 4, the smaller effect value is the better, so U (4) 
i0 j0 

= min
{
u(4) 
i j

}
= 

u(4) 
11 = 0.53; 

For objective 5, the smaller effect value is the better, so U (5) 
i0 j0 

= min
{
u(5) 
i j

}
= 

u(5) 
11 = 0.66; 

For objective 6, the smaller effect value is the better, so U (6) 
i0 j0 

= min
{
u(6) 
i j

}
= 

u(6) 
11 = 0.84; 

For objective 7, the smaller effect value is the better, so U (7) 
i0 j0 

= min
{
u(7) 
i j

}
= 

u(7) 
11 = 0.71;
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For objective 8, the smaller effect value is the better, so U (8) 
i0 j0 

= min
{
u(8) 
i j

}
= 

u(8) 
12 = 0.71; 

For objective 9, the smaller effect value is the better, so U (9) 
i0 j0 

= min
{
u(9) 
i j

}
= 

u(9) 
11 = 0.96; 

For objective 10, the higher effect value is the better, so U (10) 
i0 j0 

= max
{
u(10) 
i j

}
= 

u(10) 
11 = 1.13; and 

For objective 11, the higher effect value is the better, so U (11) 
i0 j0 

= max
{
u(11) 
i j

}
= 

u(11) 
13 = 1.13. 

That is, we obtain the following optimum reference sequence: 

Ui0 j0 = (u(1) 
i0 j0 

, u(2) 
i0 j0 

, . . . ,  u(11) 
i0 j0 

) 
= (1.2, 1.01, 0.55, 0.53, 0.66, 0.84, 0.71, 0.71, 0.96, 1.13, 1.13) 

From ui j  and ui0 j0 , we compute the absolute grey relational degrees: 

ε11 = 0.628, ε12 = 0.891, ε13 = 0.532 

From the definition of grey relational decision-making, it follows that because 
max

{
εi j
} = ε12 = 0.891, U12 is the quasi-optimum vector and s12 the quasi-optimum 

decision scheme. That is to say, in terms of producing general grey fabric, the air jet 
loom is the best choice among the available loom models. 

10.3.2 Grey Development Decision 

Grey development decision-making is done based on the development tendency or 
the future behaviors of the decision scheme of concern. It does not necessarily place 
specific emphasis on the current effect of the scheme. Instead it focuses more on the 
change of the decision effect over time. This method of decision-making can be and 
has been employed for long-term planning as well as the decision-making of large 
scale engineering projects and urban planning. It looks at problems from the angle 
of development while attempting to make feasible arrangements and avoiding repe-
titious constructions so that great savings of capital and manpower can be achieved. 
What we have discussed earlier are static decision schemes with a fixed time moment. 
Because we now involve the concept of time, as time moves, constantly changing 
decision effects are considered. 

Definition 10.3.2 Assume that A = {a1, a2, . . . ,  an} is a set of events, B = 
{b1, b2, . . . ,  bm} a set of countermeasures, and S = {si j  = (ai , b j )

∣∣ai ∈ A, b j ∈ B } 
the set of decision schemes. Then,
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u(k) 
i j  = (u(k) 

i j  (1), u
(k) 
i j  (2), . . . ,  u(k) 

i j  (h)) 

is known as the decision effect time series of scheme si j  with respect to objective k. 

Definition 10.3.3 Let the decision effect time series of the scheme si j  with respect 
to objective k be 

u(k) 
i j  = (u(k) 

i j  (1), u
(k) 
i j  (2), . . . ,  u(k) 

i j  (h)) 

â(k) 
i j  =

[
a(k) 
i j  , b

(k) 
i j

]T 
the least squares estimate of the parameters of the EGM(1,1) 

model of u(k) 
i j  . Then the inverse accumulation restoration of the EGM(1,1) time 

response of u(k) 
i j  is given by 

û(k) 
i j  (l + 1) =

[
1 − exp(a(k) 

i j  )
]

·
[

u(k) 
i j  (1) − 

b(k) 
i j  

a(k) 
i j

]

exp
(
−a(k) 

i j  · l
)

Assume that the restored sequence through inverse accumulation of the EGM(1,1) 
time response of the decision effect time series of the scheme si j  with respect to 
objective k is 

û(k) 
i j  (l + 1) =

[
1 − exp(a(k) 

i j  )
]

·
[

u(k) 
i j  (1) − 

b(k) 
i j  

a(k) 
i j

]

exp
(
−a(k) 

i j  · l
)

When objective k satisfies that the greater the effect value is the better, if 

(1) max1≤i≤n,1≤ j≤m

{
−a(k) 

i j

}
= −a(k) 

i0 j0 
, then si0 j0 is known as the optimum scheme 

of development coefficients with respect to objective k; 

(2) max1≤i≤n,1≤ j≤m

{
û(k) 
i j  (h + l)

}
= û(k) 

i0 j0 
(h+l), then si0 j0 is known as the optimum 

scheme of predictions with respect to objective k. 

Similarly, the concepts of optimum schemes of development coefficients and 
predictions can be defined for cases of objectives satisfying that the smaller the 
effect value is the better, and that the closer to a moderate value the effect value is the 
better, respectively. In particular, for objectives satisfying that the smaller the effect 
value is the better, one only needs to replace “max” in the items (1) and (2) above 
by “min”; if k is an objective satisfying that the closer to a fixed moderate value the 
effect value is the better, one can determine the moderate value of the development 
coefficients or predicted values at first; then define the optimum scheme based on the 
distances of the development coefficients or predicted values to the moderate value. 

In practical applications, one may face the scenarios that either both the optimum 
scheme of development coefficients and predictions are the same, or that they are
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different. Even so, the following theorem tells us that eventually these optimum 
schemes would converge into one. 

Theorem 10.3.1 Assume that k is such an objective that the greater its effect value is 
the better, si0 j0 is the optimum scheme of development coefficients, that is, −a(k) 

i0 j0 
= 

max1≤i≤n,1≤ j≤m

{
−a(k) 

i j

}
, and û(k) 

i0 j0 
(h + l + 1) is the predicted value for the decision 

effect of si0 j0 . Then there must be l0 > 0 such that 

û(k) 
i0 j0 

(h + l0 + 1) = max 
1≤i≤n,1≤ j≤m

{
û(k) 
i j  (h + l0 + 1)

}

That is, in a sufficiently distant future, si0 j0 will also be the optimum scheme of 
predictions. 

Proof See Liu and Lin (2006, pp. 340–341) for details. 

Similar results hold true for those objectives satisfying either that the smaller the 
effect value is the better or that the closer to a fixed moderate value the effect value 
is the better. 

At this junction, careful readers might have noticed that Theorem 10.3.1 does not 
state the case that there are some increasing and decreasing sequences among decision 
effect time series at the same time. As a matter of fact, for objectives satisfying that 
the greater the effect value is the better, there is no need to consider decreasing 
decision effect time series. For objectives satisfying that the smaller the effect value 
is the better, all increasing decision effect time series are deleted in advance in all 
discussions. As for objectives satisfying that the closer to a moderate value the effect 
value is the better, one can consider only either increasing or decreasing decision 
effect time series depending on the circumstances involved. 

10.3.3 Grey Clustering Decision 

Grey cluster decision is useful for synthetic evaluations of objects with respect to 
several different criteria so that decisions can be made about whether or not an object 
meets the given standards for inclusion in or exclusion from a set. This method has 
often been employed for classification decision-making regarding objects or people. 
For instance, school students can be classified based on their individual capabilities 
to receive information, to comprehend what is provided, and to grow so that different 
teaching methods can be applied and different students can be enrolled in different 
programs. As a second example, based on different sets of criteria, comprehen-
sive evaluations can be done for general employees, technicians, and administrators 
respectively so that decisions can be made regarding who is qualified for his/her job, 
who is ready for a promotion, and so on.
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Definition 10.3.4 Assume that there are n objects to make decisions on, m criteria, 
s different grey classes, the quantified evaluation value of object i with respect to 
criterion j is xi j  , f k j (∗) are the possibility functions of the kth grey class with respect 
to the jth criterion, and wj is the synthetic decision-making weight of criterion j such 
that

∑m 
j=1 wj = 1, i = 1, 2,…, n, j = 1, 2, …,m, k = 1, 2, . . . ,  s. Then 

σ k i = 
m∑

j=1 

f k j (xi j  )wj 

is known as the decision coefficient for the object i to belong to grey class k; 
σi = (σ 1 i , σ  2 i , . . . , σ  s i ) is known as the decision coefficient vector of object i, i = 
1, 2, . . . ,  n; and

∑ = (σ k i )n×s the decision coefficient matrix. If max1≤k≤s
{
σ k i
} = 

σ k∗ 

i , then the decision is that the object i belongs to grey class k
∗. 

In practical applications, it is quite often the case that many objects belong to the 
same decision grey class at the same time, while there is a constraint on how many 
objects are allowed in the grey class. When this occurs, we can further determine 
individual objects’ precedence in grey class k∗ on the basis of the size of integrate 
clustering coefficients. 

10.4 Multi-attribute Intelligent Grey Target Decision 
Model 

In this section, we will study a new decision model, which is constructed on the basis 
of four new functions of uniform effect measures. This new decision model suffi-
ciently considers the two different scenarios of whether or not the effect values of the 
objectives actually hit the targets with very clear physics significance. First, a grey 
target is defined as a satisfying region, which a decision maker wants to reach, with 
an inside ideal point across multiple objectives. To facilitate the uniform distance 
measure of a decision strategy to the pre-defined grey target, four kinds of measure 
procedures are designed including the effect measures for benefit-type objectives 
and cost-type objectives, the lower effect measure for moderate-type objectives, and 
the upper effect measure for moderate-type according to three types of decision 
objective including benefit objective, cost objective, and non-monotonic objective 
with a most preferred middle value. Then, a matrix of synthetic effect measures can 
be easily obtained based on the uniform distance measure of a decision strategy to 
the grey target over different objectives. Based upon the obtained matrix informa-
tion, different decision strategies can be evaluated easily and comprehensively. The 
proposed method has a clear physical meaning as missing target, hitting target as 
well as hitting performance (Liu et al., 2013; Liu et al., 2017; Liu,  2021).
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10.4.1 The Uniform Effect Measure 

Definition 10.4.1 

(1) Let k be a benefit type objective, that is, for k the larger the effect 
value is the better, and the decision grey target of objective k is u(k) 

i j  ∈ 
[u(k) 

i0 j0 
, maxi max j

{
u(k) 
i j

}
], that is, u(k) 

i0 j0 
stands for the threshold effect value of 

objective k. Then 

r (k) 
i j  = u(k) 

i j  − u(k) 
i0 j0 

max 
i 

max 
j

{
u(k) 
i j

}
− u(k) 

i0 j0 

(10.2) 

is referred to as the effect measure of a benefit-type objective. 
(2) Let k be a cost-type objective, that is, for k the smaller the effect 

value is the better, and the decision grey target of objective k is u(k) 
i j  ∈ 

[mini min j
{
u(k) 
i j

}
, u(k) 

i0 j0
], that is, u(k) 

i0 j0 
stands for the threshold effect value of 

objective k. Then 

r (k) 
i j  = u(k) 

i0 j0 
− u(k) 

i j  

u(k) 
i0 j0 

− min 
i 

min 
j

{
u(k) 
i j

} (10.3) 

is referred to as the effect measure of cost-type objective. 
(3) Let k be a moderate-value type objective, that is, for ηk the closer to a moderate 

value A the effect value is the better, and the decision grey target of objective 
ηk is u

(k) 
i j  ∈ [A − u(k) 

i0 j0 
, A + u(k) 

i0 j0
], that is, both A − u(k) 

i0 j0 
and A + u(k) 

i0 j0 
are 

respectively the lower and upper threshold effect values of objective k. Then, 

(i) When ηk , 

r (k) 
i j  = 

u(k) 
i j  − A + u(k) 

i0 j0 

u(k) 
i0 j0 

(10.4) 

is referred to as the lower effect measure of moderate-value type objective. 
(ii) When u(k) 

i j  ∈ [A, A + u(k) 
i0 j0

], 

r (k) 
i j  = 

A + u(k) 
i0 j0 

− u(k) 
i j  

u(k) 
i0 j0 

(10.5) 

is referred to as the upper effect measure of moderate-value type objective.
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The effect measures of benefit-type objectives reflect the degrees of both how close 
the effect sample values are to the maximum sample values and how far away they are 
from the threshold effect values of the objectives. Similarly, the effect measures of 
cost-type objectives represent how close the effect sample values are to the minimum 
effect sample values and how far away the effect sample values are from the threshold 
effect values of the objectives; the lower effect measures of moderate-value type 
objectives indicate how far away the effect sample values that are smaller than the 
moderate value A are from the lower threshold effect value, and the upper effect 
measures indicate how far away the effect sample values that are greater than the 
moderate value A are from the upper threshold effect values of the objectives. 

For situations of missing targets, there are the following four different possibilities: 

(1) The effect value of a benefit-type objective is smaller than the threshold value 
u(k) 
i0 j0 

, that is, u(k) 
i j  < u(k) 

i0 j0 
; 

(2) The effect value of a cost-type objective is greater than the threshold value u(k) 
i0 j0 

, 

that is, u(k) 
i j  > u(k) 

i0 j0 
; 

(3) The effect value of a moderate-value type objective is smaller than the lower 
threshold effect value A − u(k) 

i0 j0 
, that is, u(k) 

i j  < A − u(k) 
i0 j0 

; and 
(4) The effect value of a moderate-value type objective is greater than the upper 

threshold effect value A + u(k) 
i0 j0 

, that is, u(k) 
i j  > A + u(k) 

i0 j0 
. 

In order for the effect measures of each type of objective to satisfy the condition 
of normality, that is, r (k) 

i j  ∈ [−1, 1], without loss of generality, we can assume that: 

For a benefit-type objective, u(k) 
i j  ≥ −  maxi max j

{
u(k) 
i j

}
+ 2u(k) 

i0 j0 
; 

For a benefit-type objective, u(k) 
i j  ≤ −  mini min j

{
u(k) 
i j

}
+ 2u(k) 

i0 j0 
; 

For cases where the effect value of a moderate-value type objective is smaller 
than the lower threshold effect value A − u(k) 

i0 j0 
, u(k) 

i j  ≥ A − 2u(k) 
i0 j0 

; and 
For cases where the effect value of a moderate-value type objective is greater than 
the upper threshold effect value A + u(k) 

i0 j0 
, u(k) 

i j  ≤ A + 2u(k) 
i0 j0 

. 

With these assumptions, we have the proposition below. 

Proposition 10.4.1 The effect measures r (k) 
i j  (i = 1, 2, . . . ,  n; j = 

1, 2, . . . ,  m; k = 1, 2, . . . ,  s), as defined in Definition 10.4.1, satisfy the following 
properties: 

(1) r (k) 
i j  is non-dimensional; (2) the more ideal the effect, the larger r (k) 

i j  is; and (3) 

r (k) 
i j  ∈ [−1, 1]. 

Definition 10.4.2 r (k) 
i j  (i = 1, 2, . . . ,  n; j = 1, 2, . . . ,  m; k = 1, 2, . . . ,  s), as  

defined in Definition 10.4.1, is called uniform effect measure of decision scheme 
si j  . 

For decision scheme si j  of hitting the target, r
(k) 
i j  ∈ [0, 1]; and for decision scheme 

si j  of missing the target, r (k) 
i j  ∈ [−1, 0].
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Definition 10.4.3 For a given set S, define R(k) =
(
r (k) 
i j

)

n×m 
as the matrix of uniform 

effect measure of S with respect to objective k. For  si j  ∈ S, ri j  = (r (1) 
i j  , r

(2) 
i j  , · · ·  , r (s) 

i j  ) 
is known as the vector of uniform effect measure of the decision scheme si j  . 

10.4.2 The Weighted Synthetic Effect Measure 

Definition 10.4.4 Assume that ηk stands for the decision weight of objective k, 
k = 1, 2, . . . ,  s, satisfying

∑s 
k=1 ηk = 1, then

∑s 
k=1 ηk · r (k) 

i j  is called a weighted 
synthetic effect measure of the decision scheme si j  , which is still denoted as ri j  =∑s 

k=1 ηk · r (k) 
i j  ; and R = (ri j  )n×m is known as the matrix of weighted synthetic effect 

measures. 

In the case of weighted synthetic effect measures, ri j  ∈ [−1, 0] belongs to the 
decision scheme si j  of missing the target, while ri j  ∈ [0, 1] belongs to the decision 
scheme si j  of hitting the target. For the decision scheme of hitting the target, we 
can further compare the superiority of events ai , countermeasures b j , and decision 
schemes si j  respectively by using the magnitudes of the weighted synthetic effect 
measures, i = 1, 2, . . . ,  n, j = 1, 2, . . . ,  m. 

Definition 10.4.5 (1) If max1≤ j≤m
{
ri j
} = ri j0 , then b j0 is known as the optimum 

countermeasure of event ai ; (2)  If  max1≤i≤n
{
ri j
} = ri0 j , then ai0 is known as the 

optimum event corresponding to countermeasure b j ; (3)  If  max1≤i≤n,1≤ j≤m
{
ri j
} = 

ri0 j0 , then si0 j0 is known as the optimum decision scheme. 

The weighted multi-attribute grey target decision can be made by following the 
steps below: 

Step 1: Based on the set A = {a1, a2, . . . ,  an} of events and the set B = 
{b1, b2, . . . ,  bm} of countermeasures, construct the set of decision schemes S = 
{si j  = (ai , b j )

∣∣ai ∈ A, b j ∈ B }; 
Step 2: Determine the decision objectives k = 1, 2, . . . ,  s; 
Step 3: Determine the decision weights η1, η2, · · ·  , ηs of the objectives; 
Step 4: For each objective k = 1, 2, · · ·  , s, compute the corresponding observed 
effect matrix U (k) = (u(k) 

i j  )n×m ; 
Step 5: Determine the threshold effect value of objective k = 1, 2, . . . ,  s; 
Step 6: Calculate the matrix R(k) = (r (k) 

i j  )n×m of uniform effect measures of 
objective k = 1, 2, . . . ,  s; 
Step 7: From  ri j  =

∑s 
k=1 ηk · r (k) 

i j  , compute the matrix of synthetic effect measures 
R = (ri j  )n×m ; and 
Step 8: Determine the optimum decision scheme si0 j0 . 

The proposed model here has a unique feature of clear physical meaning presented 
as missing target, hitting target and hitting performance of different decision strate-
gies with a pre-defined grey target. The distance of a strategy to the grey target over
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different objectives is calculated through effect measure functions as follows: the 
concept of upper effect measure reflects the distance of the observed effect value 
from the maximum observed effect value; the concept of lower effect measure indi-
cates the distance between the observed effect value from the minimum observed 
effect value; and the concept of moderate effect measure tells the distance of the 
observed effect value from the pre-defined most preferred effect value in the middle. 

To aggregate the performance of a strategy over different objectives, one can make 
use of the concept of upper effect measure for benefit objectives where the larger or 
the more the effect sample values are the better; for cost objectives where the smaller 
or the fewer the effect sample values are the better, one can utilize the concept of 
lower effect measure. As for non-monotonic objectives that require “neither too large 
nor too small” and/or “neither too many nor too few,” one can apply the concept of 
moderate effect measure. The effect measure for benefit and cost type objectives, the 
lower effect measure for moderate type, and the upper effect measure for moderate 
type can be further integrated as uniform effect measures by incorporating weight 
information over different objectives. The value of uniform effect measures is located 
in the interval of [−1, 1] and has a crystal physical meaning: if a strategy hits the 
target, the value will be positive and the larger the closer to the ideal point in the grey 
target; if a strategy misses the target, the value will be negative. The new model has 
been applied to the selection of the supplier of a key component used in the production 
of large commercial aircrafts and this application confirmed its feasibility. 

Example 10.4.1 Let us look at the selection of the supplier of a key component used 
in the production of large commercial aircrafts (Liu et al., 2010; Liu et al., 2013; Liu,  
2021). 

In China, the production of large commercial aircrafts is managed using the model 
of main manufacturers—suppliers, where a great amount of key components comes 
from international suppliers. So, the scientific approach to decision-making regarding 
the selection of relevant suppliers is a key determinant of the success or failure 
of the operation. As a typical decision-making problem involved in the production 
process of sophisticated products, the selection of suppliers is generally accomplished 
through public bidding. Usually the main manufacturer first lists his demands, then 
each potential supplier puts together their proposal to outline how they meet the 
needs of the manufacturer. After collecting the proposals, the manufacturer compre-
hensively evaluates all the suppliers’ submissions to select the optimum proposal 
and sign the purchase agreement. As for what factors actually affect the manufac-
turer’s decision, it is an extremely complicated matter. In order to arrive at educated 
and scientifically sound decisions, there is a need to analyze all the involved factors 
closely and holistically. 

During the selection of international suppliers for a specific key component of the 
production of large commercial aircrafts, there were there suppliers accepted into 
the second round of the tender. To decide on the eventual supplier, let us go through 
the following steps.
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Table 10.2 The objectives’ evaluation system 

Objective Quality Price Delivery Design Competitiveness 

Unit Qualitative Million US$ Month Qualitative Qualitative 

Order # 1 2 3 4 5 

Weight 0.25 0.22 0.18 0.18 0.17 

Step 1: Establish the sets of events, countermeasures, and situations. Let us 
define event a1 as the selection of a supplier for the said component for the 
production of large commercial aircrafts. So, the set of events is A = {a1}. 
Define the selection of supplier 1, supplier 2, or supplier 3 to be our coun-
termeasures b1, b2, and b3, respectively, so that the set of countermeasures 
is B = {b1, b2, b3}. Therefore, our set of situations in this case is S ={
si j  =

(
ai , b j

)|ai ∈ A, b j ∈ B, i = 1; j = 1, 2, 3
} = {s11, s12, s13}. 

Step 2: Determine the decision objectives. Through three rounds of surveys with 
relevant experts, the following 5 objectives are considered: quality, price, time of 
delivery, design proposal, and competitiveness. 

Among these objectives, competitiveness, quality, and design proposal are 
qualitative. They are scored by relevant experts’ evaluations, and the higher the 
evaluation scores the better. That is, they are benefit-type objectives. Let us take 
the threshold value u(k) 

i0 j0 
= 9, k = 1, 4, 5. For the objective of cost, the lower 

the cost the better. So, it is a cost-type objective. Let us take the threshold value 
u(2) 
i0 j0 

= 15. The objective of time of delivery is one of moderate-value type. The 
main manufacturer desires the delivery at the end of the 16th month with 2 months’ 
deviation allowed. That is, u(3) 

i0 j0 
= 2, the lower threshold effect value is 16 − 2 = 

14, and the upper threshold effect value is 16 + 2 = 18. 
Step 3: Determine the decision weights of the objectives. To this end, we apply 
the Analytic Hierarchy Process (AHP) method (see Table 10.2 for details). 
Step 4: Determine the effect sample vectors of each of the objectives: 

U (1) = (9.5, 9.4, 9), U (2) = (14.2, 15.1, 13.9), U (3) = (15.5, 17.5, 19), 
U (4) = (9.6, 9.3, 9.4), U (5) = (9.5, 9.7, 9.2). 

Step 5: Assign the threshold effect values for the objectives. Because competi-
tiveness, quality, and design proposal are all benefit-type objectives, let us take 
the threshold values u(k) 

i0 j0 
= 9, k = 1, 4, 5. Because price is a cost-type objective, 

let us take the threshold value u(2) 
i0 j0 

= 15. Because time of delivery is a moderate 
value-type objective and the main manufacturer desires the delivery at the end 
of the 16th month with a tolerance of ±2 months, we set u(3) 

i0 j0 
= 2, the  lower  

threshold effect value 16 − 2 = 14, and the upper threshold effect value 16 + 2 
= 18. 
Step 6: Calculate the vectors of uniform effect measures. For the three qualitative 
objectives, competitiveness, quality, and design proposal, we employ the effect
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measures of benefit-type. For the objective of price, we utilize the effect measures 
of cost-type. For the objective of time of delivery, we apply the lower and upper 
effect measures. Thus, we obtain the following vectors of uniform effect measures: 

R(1) = [1, 0.8, 0], R(2) = [0.73, −0.09, 1], R(3) = [0.75, 0.25, −0.5], 
R(4) = [1, 0.5, 0.67], and R(5) = [0.71, 1, 0.29]. 

Step 7: From  ri j  = ∑5 
k=1 ηk · r (k) 

i j  , we compute the following vector of synthetic 
effect measures: 

R = [r11, r12, r13] = [0.8463, 0.4852, 0.2999]. 

Step 8: Make the final decision. Because r11 > 0, r12 > 0, r13 > 0, it means that 
all these three suppliers have hit the target. This result implies that it is reasonable 
for these suppliers to enter the second round of the tender. However, based on 
max1≤ j≤3

{
r1 j
} = r11 = 0.08463, it follows that the main manufacturer should 

sign the agreement with supplier 1. 

10.5 On Paradox of Rule of Maximum Value and Its 
Solution 

The thought and methodology of statistical decision emerged in Britain in the late 
eighteenth century (Bayes, 1763). L. J. Savage built the system of Bayesian Deci-
sion Theory in the book titled The foundations of statistics in 1954. According to 
Bayesian Decision Theory (Savage, 1954), the reasonable action subject abide by the 
principles of maximum subjective expected utility in their decision-making. In 1969, 
R. Nozick published his article on the Newcomb Paradox (Nozick, 1969), which led 
to a major divergence of views in Bayesian Decision Theory and gave rise to Causal 
Decision Theory (Lewis, 1973) and Evidential Decision Theory, also known as D-S 
Theory (Dempster, 1968; Shafer, 1976). A. Gibbard and W. Harper tried to solve the 
Newcomb Paradox by defining two different expected utilities named as U-utility 
and V-utility in 1978 (Gibbard and Harper, 1978). Then, in 1981 E. Eells thought that 
people could solve the Newcomb Paradox by revising the principles of maximum 
utility (Eells, 1981). J. M. Joyce put forward a general theory of conditional beliefs to 
illuminate the nature of causal beliefs and their role in rational choice (Joyce, 1999). 
It was concluded that there is less difference than is usually thought between causal 
decision theory and evidential decision theory (Joyce, 1999). S. Burgess thought 
that the resolution of the Newcomb problem was unqualified (Burgess, 2004), and 
in 2010 D. H. Wolpert and G. Benford proved that two Bayes nets are incompatible 
based on game theory (Wolpert & Benford, 2010). 

In the course of decision-making, people need divide their decision objects into 
different classes or clusters, then compare and sort the objects in the same class or
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cluster to help them choose the right object or objects. All types of cluster evalu-
ation models, such as statistical clustering analysis (Tryon, 1939), fuzzy clustering 
(Bezdek, 1981), and grey clustering evaluation models such as grey variable weight 
clustering model (Deng, 1986), grey fixed weight clustering evaluation model (Liu, 
1993), grey cluster evaluation model using end-point triangular possibility functions 
(Liu & Zhu, 1993; Liu,  2006), grey cluster evaluation model using center-point trian-
gular possibility functions (Liu et al., 2011, 2012), and grey cluster evaluation model 
using mixed triangular possibility functions (Liu et al., 2014; Liu, Yang, & Fang, 
2015; Liu, Zhang, & Jian, 2015) use the rule of maximum value of component of 
cluster coefficient vector σi = (σ 1 i , σ  2 i , . . . , σ  s i ) as a basis for determining ascription 
of decision objects. 

In cases where more than one object belongs to a class or cluster, people may be 
confronted with a decision paradox. For example, assume that δ1 = (0.4, 0.35, 0.25) 
and δ2 = (0.41, 0.2, 0.39) are the clustering coefficient vectors of objects 1 and 2, 
respectively. It is demonstrably the case that objects 1 and 2 both belong to class 1, 
according to the principles of maximum value of clustering coefficient. Also, object 
2 is better than object 1 given that 0.41 > 0.4. However, if we were to consider 
the values of all the components of δ1, δ2 in an integrated manner, object 1 could be 
perceived as being superior to object 2. This is a paradox. 

In this section, we try and find a solution for the decision paradox by using weight 
vector group with kernel, weighted comprehensive clustering coefficient vector and 
a two-stages decision model (Liu et al., 2018; Liu et al., 2022). 

10.5.1 The Weight Vector Group with Kernel 

Clustering coefficient vectors cannot be compared with each other because usually 
they are not unit vectors. Therefore, firstly all clustering coefficient vectors need to 
be unitized. 

Definition 10.5.1 Assume that σi = (σ 1 i , σ  2 i , · · ·  , σ  s i ), i = 1, 2, · · ·  , n are n clus-
tering coefficient vectors, δk i = σ k i∑s 

k=1 σ k i 
, δk i is called unitized clustering coefficient 

of decision-making object i belonging to class k. Clearly, δk i (k = 1, 2, · · ·  s) satisfy∑s 
i=1 δ

k 
i = 1. 

Definition 10.5.2 δi = (δ1 i , δ2 i , . . . , δs i ); (i = 1, 2, . . . ,  n) is called unitized clus-
tering coefficient vectors of decision-making object i . The following conclusion 
about unitized clustering coefficient vector δi is also suitable for non-unitized 
clustering coefficient vector σi . Therefore, the “unitized” can be omitted. 

Sort the components of δi according to their values, that is, δ
k1 
i ≥ δk2 i ≥  · · ·  ≥  

δ
kl 
i ≥  · · ·  ≥  δks i . 

Definition 10.5.3 Assume that max1≤k≤s
{
δk i
} = δk∗ 

i , then δ
k∗ 

i is called the maximum 
component of clustering coefficient vector δi .
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Given that all the corresponding coefficients of two decision coefficient vectors 
δi , δ j are equal, then there is no difference between δi , δ j . When two objects i, j 
belong to a class k* and the maximum component δk

∗ 

i > δk
∗ 

j , it means that δi is better 
than δ j by the rule of maximum value; but it is possible to think that δ j is better than 
δi if we consider the values of all the components of δ1, δ2 in an integrated manner. 
This is a decision paradox of rule of maximum value. 

To solve the decision paradox of rule of maximum value, firstly the weight vector 
group of kernel clustering is defined. The basic step to solve the paradox is to cluster 
the information which is included in other components around δk i , and supporting 
objects i come under class k into component k. Then it is necessary to obtain a 
new decision coefficient vector which contains factors included in other components 
around δk i . 

Definition 10.5.4 Assume that there are s classes of decision-making, and real 
numbers wk ≥ 0, k = 1, 2, . . . ,  s, let 

η1 = 1
∑s 

k=1 wk 
(ws, ws−1, ws−2, . . . ,  w1), 

η2 = 1 

ws−1 +∑s 
k=2 wk 

(ws−1, ws, ws−1, ws−2, . . . ,  w2), 

η3 = 1 

ws−1 + ws−2 +∑s 
k=3 wk 

(ws−2, ws−1, ws, ws−1, . . . ,  w3), 

· · ·  , 

ηk = 1
∑s−1 

i=s−k+1 wi +∑s 
i=k wi 

(ws−k+1, ws−k+2, . . . ,  ws−1, ws, ws−1, . . . ,  wk), 
· · ·  , 

ηs−1 = 1 

ws−1 + 
s∑

k=2 
wk 

(w2, w3, . . . ,  ws−1, ws, ws−1), 

ηs = 
1 

s∑

k=1 
wk 

(w1, w2, w3, . . . ,  ws−1, ws), 

then ηk(k = 1, 2, . . . ,  s) is called a weight vector group with kernel. 

Note: s-dimensional vector ηk = (η1 
k , η

2 
k , . . . , η

s 
k)(k = 1, 2, . . . ,  s) is the multi-

plication of scalar ak = 1∑s−1 
i=s−k+1 wi+∑s 

i=k wi 
with vector ζk , where the function of 

scalar factor ak is to ensure ηk(k = 1, 2, . . . ,  s) is a normalized vector. Also, the 
k-th component of vector factor ζk(k = 1, 2, · · ·  , s) is ws , which is the maximum 
component of ζk . Then the k-th component ws can be taken as a center, and the other 
components on both sides of the k-th component ws descend step by step. The k-th 
component with the largest contribution for the decision-making object belongs to
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grey class k, so the k-th component of ζk should take the maximum weight ws . The  
values of other components are set by the principle which states that “the compo-
nent which is closest to the k-th component has the largest contribution for object I 
belonging to class k, so it is given the largest weight; the component which is farthest 
from the k-th component has the smallest contribution for object I belonging to class 
k, so it is given the smallest weight”. 

10.5.2 The Weighted Comprehensive Clustering Coefficient 
Vector 

Definition 10.5.5 Assume there are n decision objects and s different grey classes, 
then ωk 

i = ηk · δT i is called the weighted coefficient of kernel clustering for decision-
making of object i about grey class k. And  

ωi = (ω1 
i , ω

2 
i , . . . , ω

s 
i ); i = 1, 2, . . . ,  n 

is called the weighted comprehensive clustering coefficient vector of object i. 

Definition 10.5.6 Let max1≤k≤s
{
ωk 
i1

} = ωk∗ 

i1 
, max1≤k≤s

{
ωk 
i2

} = ωk∗ 

i2 
, when ωi1 > 

ωi2 , then decision object i1 is better than decision object i2 in grey class k
∗. 

Definition 10.5.7 Let max1≤k≤s
{
ωk 
i1

} = ωk∗ 

i1 
, max1≤k≤s

{
ωk 
i2

} = ωk∗ 

i2 
, 

· · ·  , max1≤k≤s
{
ωk 
il

} = ωk∗ 

il , in other words, objects i1, i2, . . . ,  il all belong to grey 
class k∗. Also,  ωi1 > ωi2 > · · ·  > ωil , and if the number of objects contained in the 
decision grey class k∗ is l1, then objects i1, i2, . . . ,  il1 are called the taken object of 
grey class k∗, and the rest of the objects are called the candidates of grey class k∗. 

The two stages decision model to solve the decision paradox by the weight vector 
group with kernel and the weighted comprehensive clustering coefficient vector can 
be constructed step by step as outlined below. 

Stage 1 

Step 1: Compute normalized clustering coefficient vector δi 

δi = (δ1 i , δ
2 
i , . . . , δ

s 
i ); (i = 1, 2, . . . ,  n) 

Step 2: Estimate the distinguishability of the clustering coefficient vectors of 
objects belonging to class k*. If the order of priority of the objects i belonging to 
class k* is easy to identify, turn to step 6; in cases where the order of priority of 
the objects belonging to class k* is difficult to identify, turn to step 3; 

Stage 2 

Step 3: Set the weight vector group with kernel (η1, η2, . . . , ηs);
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Step 4: Calculate the weighted comprehensive clustering coefficient vector of 
decision object i 

ωi = (ω1 
i , ω

2 
i , . . . , ω

s 
i ); i = 1, 2, . . . ,  n; 

Step 5: Determine object i belonging to grey class k∗ by max1≤k≤s
{
ωk 
i

} = ωk∗ 

i ; 
Step 6: Sort the decision objects which belong to class k* according to the values 
of δk

∗ 

i1 
, δk

∗ 

i2 
, . . . , δk

∗ 

il 
for case where there are l objects belonging to class k∗. 

10.5.3 Several Functional Weight Vector Groups with Kernel 

Proposition 10.5.1 Assume that 

η1 = 2 

s(s + 1) 
(s, s − 1, s − 2, . . . ,  1) 

η2 =
(

1 
s(s+1) 

2 + (s − 2)

)

(s − 1, s, s − 1, s − 2, . . . ,  2) 

η3 =
(

1 
s(s+1) 

2 + (2s − 6)

)

(s − 2, s − 1, s, s − 1, . . . ,  3) 

. . . ,  

ηk = 

⎧ 
⎨ 

⎩ 
1 

s(s+1) 
2 +

[
(k − 1)s − k(k−1) 

2

]

⎫ 
⎬ 

⎭ 

(s − k + 1, s − k + 2, . . . ,  s − 1, s, s − 1, . . . ,  k), . . . ,  

ηs−1 = 2 
s(s+1) 

2 + (s − 2) 
(2, 3, . . . ,  s − 1, s, s − 1) 

ηs = 2 

s(s + 1) 
(1, 2, 3, . . .  ,  s − 1, s) 

Then ηk(k = 1, 2, · · ·  , s) is a weight vector group with kernel. 

Proposition 10.5.2 Assume that 

η1 = 1
∑s 

k=1 
1 
2k

(
1 

2 
, 
1 

22 
, 
1 

23 
, . . . ,  

1 

2s−1 
, 
1 

2s

)

η2 =
(

1 
1 
22 +

∑s−1 
k=1 

1 
2k

)(
1 

22 
, 
1 

2 
, 
1 

22 
, 
1 

23 
, . . . ,  

1 

2s−1

)

η3 =
(

1 
1 
23 + 1 22 +

∑s−2 
k=1 

1 
2k

)(
1 

23 
, 
1 

22 
, 
1 

2 
, 
1 

22 
, 
1 

23 
, . . . ,  

1 

2s−2

)
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· · ·  , 

ηk =
{

1
∑k 

i=2 
1 
2i +

∑s−k+1 
i=1 

1 
2i

}(
1 

2k 
, 

1 

2k−1 
, . . . ,  

1 

22 
, 
1 

2 
, 
1 

22 
, . . . ,  

1 

2s−k+1

)

· · ·  , 

ηs−1 = 1 
1 
22 +

∑s−1 
k=1 

1 
2k

(
1 

2s−1 
, 

1 

2s−2 
, . . . ,  

1 

22 
, 
1 

2 
, 
1 

22

)

ηs = 1
∑s 

k=1 
1 
2k

(
1 

2s 
, 

1 

2s−1 
, . . . ,  

1 

23 
, 
1 

22 
, 
1 

2

)

Then ηk(k = 1, 2, . . . ,  s) is a weight vector group with kernel. 

Proposition 10.5.3 For case s = 10, assume that 

η1 = 
1 

5.5 
(1, 0.9, 0.8, 0.7, . . .  ,  0.1) 

η2 = 
1 

6.3 
(0.9, 1, 0.9, 0.8, . . .  ,  0.2) 

η3 = 
1 

6.9 
(0.8, 0.9, 1, 0.9, . . .  ,  0.3) 

· · ·  , 

ηk = 1 

1 +∑k 
i=1 0.(10 − i ) +∑9 

i=k 0.i 
(0.(10 − k), 0.8, 0.9, 1, 0.9, . . .  ,  0.k) 

· · ·  , 

η9 = 
1 

6.3 
(0.2, . . . ,  0.8, 0.9, 1, 0.9) 

η10 = 
1 

5.5 
(0.1, . . . ,  0.7, 0.8, 0.9, 1) 

Then ηk(k = 1, 2, . . . ,  s) is a weight vector group with kernel. 

10.6 Practical Applications 

Example 10.6.1 Strategic supplier selection for the C919 cooperative development. 
C919 is the first large commercial aircraft developed by Commercial Aircraft Corpo-
ration of China Ltd (COMAC). Many domestic and overseas suppliers joined the 
development program. Suppliers A and B took part in the development task of the 
C919 program for a specific key component. One of the two suppliers, either A or 
B, should be chosen and confirmed as a strategic supplier according to COMAC’s 
criteria. A dilemma for strategic supplier selection will be presented to demonstrate 
the feasibility of the two-stage decision model based on the weight vector group
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with kernel and the weighted comprehensive clustering coefficient vector to solve 
the selection dilemma (Liu et al., 2018; Liu et al., 2022; Liu et al., 2017; Liu,  2021). 

The consulting group collected all data according the evaluation index system, 
which was determined in advance. Then the clustering coefficient vectors of A and 
B are defined as follows: 

δA = (δ1 A, δ
2 
A, δ

3 
A, δ

4 
A, δ

5 
A) = (0.246, 0.338, 0.292, 0.124, 0) 

δB = (δ1 B, δ2 B , δ
3 
B , δ

4 
B , δ

5 
B ) = (0.089, 0.352, 0.312, 0.197, 0) 

Here, classes 1, 2, 3, 4, 5 correspond to ‘especially excellent’, ‘excellent’, ‘good’, 
‘moderate’, and ‘poor’, respectively. 

From max1≤k≤5
{
δk A
} = 0.338 = δ2 A, max1≤k≤5

{
δk B
} = 0.352 = δ2 B , it is known  

that the two suppliers A and B both belong to class ‘excellent’. It seems that B should 
be selected and confirmed as the strategic supplier if we compare the clustering 
coefficients δ2 A of A belonging to class excellent with δ

2 
B of B belonging to class 

excellent, because δ2 A = 0.338 < δ2 B = 0.352. But we found that the clustering 
coefficients δ1 A = 0.246 of A belonging to class ‘especially excellent’ is greater than 
the clustering coefficients δ1 B = 0.089 of B belonging to class ‘especially excellent’ if 
we compare δA and δB in an integrated way. Therefore, the values of each component 
of the clustering coefficient vectors δA and δB should be integrated by a weight vector 
group with kernel. 

The weight vector group with kernel presented in proposition 2 is used to integrate 
the values of each component of the clustering coefficient vectors δA and δB . Notice 
that s = 5. We obtain: 

η1 = 
32 

31

(
1 

2 
, 
1 

22 
, 
1 

23 
, 
1 

24 
, 
1 

25

)
, η2 = 

16 

19

(
1 

22 
, 
1 

2 
, 
1 

22 
, 
1 

23 
, 
1 

24

)
, 

η3 = 
4 

5

(
1 

23 
, 
1 

22 
, 
1 

2 
, 
1 

22 
, 
1 

23

)
, η4 = 

16 

19

(
1 

24 
, 
1 

23 
, 
1 

22 
, 
1 

2 
, 
1 

22

)
, 

η5 = 
32 

31

(
1 

25 
, 
1 

24 
, 
1 

23 
, 
1 

22 
, 
1 

2

)

Then, from ωk 
j = ηk · δT j , j = A, B, we have  

ω1 
A = η1 · δT A = 

32 

31

(
1 

2 
, 
1 

22 
, 
1 

23 
, 
1 

24 
, 
1 

25

)
(0.246, 0.338, 0.292, 0.124, 0)T = 0.26 

ω2 
A = η2 · δT A = 

16 

19

(
1 

22 
, 
1 

2 
, 
1 

22 
, 
1 

23 
, 
1 

24

)
((0.246, 0.338, 0.292, 0.124, 0)T = 0.27 

ω3 
A = η3 · δT A = 0.23, ω4 

A = η4 · δT A = 0.16, ω5 
A = η5 · δT A = 0.10 

ωA = (ω1 
A, ω

2 
A, ω

3 
A, ω

4 
A, ω

5 
A) = (0.26, 0.27, 0.23, 0.16, 0.10) 

ω1 
B = η1 · δT B = 0.19, ω2 

B = η2 · δT B = 0.25, ω3 
B = η3 · δT B = 0.24,
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ω4 
B = η4 · δT B = 0.19, ω5 

B = η5 · δT B = 0.12 
ωB = (ω1 

B , ω
2 
B , ω

3 
B , ω

4 
B , ω

5 
B ) = (0.19, 0.25, 0.24, 0.19, 0.12) 

When comparing the weighted comprehensive clustering coefficient vectors of 
ωA and ωB , we found that ω1 

A = 0.26 > ω1 
B = 0.19, ω2 

A = 0.27 > ω2 
B = 0.25; at  

the same time, ω4 
A = 0.16 < ω4 

B = 0.19, ω5 
A = 0.10 < ω5 

B = 0.12. 
So, it can be judged that the supplier A is better than vendor B. Supplier A should 

be selected and confirmed as the strategic supplier. The outcome can provide a basis 
for COMAC’s strategic supplier selection. 

We can obtain the same conclusion if the weight vector group with kernel 
presented in proposition 1 or proposition 3 is used to integrate the values of each 
component of the clustering coefficient vectors δA and δB . 

It is directed against the decision paradox that the conclusion we arrive at by 
comparing the maximum components δk i and δ

k 
j of δi and δ j is in conflict with the 

conclusion we arrive at by comparing δi and δ j , in an integrated way. The decision 
paradox that the value of the maximum component δk i of δi is close to the maximum 
component δk j of δ j is solved effectively. 
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Chapter 11 
Grey Control Systems 

11.1 Introduction 

As a scientific concept, the so-called control stands for a special effect a controlling 
device exerts on controlled equipment. It is a purposeful, selective and dynamic 
activity. A control system contains at least three parts, including a controlling device, 
controlled equipment, and an information path. A control system made up of these 
three parts is known as an open loop control system, as shown in Fig. 11.1. Each 
open loop control system is quite elementary in that the input directly controls the 
output, with no resistance against disturbances.

A control system with a feedback return is known as a closed loop control system, 
as shown in Fig. 11.2. The closed loop control system materializes its control through 
the combined effect of the input and the feedback of the output. One of the outstanding 
characteristics of closed loop systems is their strong ability to assist disturbances, 
with their outputs constantly vibrating around pre-determined objectives. Therefore, 
closed loop control systems possess a degree of stability.

A grey control system stands for such a system whose control information is 
only partially known, and is known as a grey system for short. The control of grey 
systems is different to that of general white systems, mainly due to the existence of 
grey elements in such systems. Under such conditions, one first needs to understand 
the possible connection between the systems’ behaviors and the parametric matrices 
of the grey elements, how the systems’ dynamics differ from one moment to the next 
and, in particular, how to obtain a white control function to alter the characteristics of 
the systems and to materialize control of the process of change of the systems. Grey 
control contains not only the general situation of systems involving grey parameters, 
but also the construction of controls based on grey systems analysis, modeling, 
prediction, and decision-making. Grey control thinking can reveal the essence of the 
problems at hand and help materialize the purpose of control.
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Fig. 11.1 Open loop control system

Fig. 11.2 Closed loop control system

11.2 Controllability and Observability of Grey System 

The concepts of controllability and observability are two fundamental structural 
characteristics of systems seen from the angle of control and observation. This section 
focuses on the problems of controllability and observability of grey linear systems. 

Definition 11.2.1 Assume that U = [u1, u2, . . . ,  us]T is a control vector, X = 
[x1, x2, . . . ,  xn]T a state vector, and Y = [y1, y2, . . . ,  ym]T the output vector. Then

(
Ẋ = A(⊗)X + B(⊗)U 
Y = C(⊗)X 

(11.1) 

is known as the mathematical model of a grey linear control system, where A(⊗) ∈ 
Gn×n, B(⊗) ∈ Gn×s, C(⊗) ∈ Gm×n . Correspondingly, A(⊗) is known as the grey 
state matrix, B(⊗)the grey control matrix, and C(⊗) the grey output matrix. 

In some studies, to emphasize the fact that U, X, and Y change the dynamic 
characteristics of the system over time, we also respectively write the control vector, 
state vector, and the output vector as U (t), X (t), and Y (t). 

The first group of equations 

Ẋ (t) = A(⊗)X (t) + B(⊗)U (t) (11.2) 

in the mathematical model of grey linear control systems in Eq. (11.1) is known as 
the state equation, while the second group of equations 

Y (t) = C(⊗)X (t) (11.3)
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is known as the output equation. 

Definition 11.2.2 For a given precision and an objective vector J =[ j1, j2, . . . ,  jm]T , 
with a controlling device and a control vector U (t) such that the output of the system 
can reach objective J while satisfying the required precision through controlling the 
input, then the system is said to be controllable. 

Definition 11.2.3 For a given time moment t0 and a pre-determined precision, if 
there is t1 ∈ (t0, ∞) such that based on the system’s output Y (t), t ∈ [t0, t1], one 
can measure the system’s state X (t) within the required precision, then the system 
is said to be observable within the time interval [t0, t1]. If for any t0, t1, the system is 
observable within the interval [t0, t1], then the system is said to be observable. 

According to control theory, it follows that whether or not a grey system is control-
lable or observable is determined by whether or not the controllability matrix and the 
observability matrix, made up of A(⊗), B(⊗), are of full rank. That is, the following 
result holds true. 

Theorem 11.2.1 For the system in Eq. (11.1), define 

L(⊗) = [B(⊗) A(⊗)B(⊗) A2 (⊗)B(⊗) · · ·  An−1 (⊗)B(⊗)]T 

D(⊗) = [C(⊗) C(⊗)A(⊗) C(⊗)A2 (⊗) · · ·  C(⊗)An−1 (⊗)]T 

Then the following hold true (Su & Liu, 2008): 

(1) When rank(L(⊗)) = n, the system is controllable; and 
(2) When rank(D(⊗)) = n, the system is observable. 

Based on this result, the following four theorems can be established. 

Theorem 11.2.2 For the system in Eq. (11.1), if the grey control matrix B(⊗) ∈ 
Gn×n satisfies B(⊗) = diag[⊗11, ⊗22, …,  ⊗nn], where each grey entry along the 
diagonal is non-zero, then the system is controllable. 

Theorem 11.2.3 For the system in Eq. (11.1), if the grey output matrix C(⊗) ∈ Gn×n 

satisfies C(⊗) = diag[⊗11,⊗22, …,  ⊗nn], where each grey entry along the diagonal 
is non-zero, then the system is observable. 

Theorem 11.2.4 For the system in Eq. (11.1), if the control matrix B(⊗) ∈ Gn×n 

satisfies B(⊗) = diag[⊗11,⊗22, …,  ⊗mm , 0, …, 0] with  rankB(⊗) = m < n, and 
the grey state matrix A(⊗)n×n = diag[0, …, 0, ⊗m+1,1, ⊗m+2,2, …,  ⊗n,n−m] with 
rankA(⊗) = n − m < n, then the system is controllable. 

Theorem 11.2.5 For the system in Eq. (11.1), if the grey output matrix C(⊗) ∈ 
Gm×n satisfies C(⊗) = diag[⊗11,⊗22, …,  ⊗mm] with rankC(⊗) = m < n and the 
grey state matrix.
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A(⊗) = 

⎛ 

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝ 

0 · · ·  0 ⊗1,m+1 0 · · · 0 
0 · · ·  0 0  ⊗2,m+2 · · · 0 
... · · ·  

... 
... 

... · · · ... 
0 · · ·  0 0 0  · · ·  ⊗n−m,n 

0 · · ·  0 0 0 · · · 0 
... · · ·  

... 
... 

... · · ·  
... 

0 · · ·  0 0 0  · · · 0 

⎞ 

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ 

, rankA(⊗) = n − m < n, 

then the system is observable. 

11.3 Transfer Functions of Grey System 

The concept of transfer functions stands for a fundamental relationship between the 
input and output of time invariant, linear grey control systems. Its rich connection 
with the expressions of the systems’ state spaces can be described by using the 
concepts of controllability and observability. 

11.3.1 Grey Transfer Function 

Definition 11.3.1 Assume that the mathematical model of an nth order linear system 
with grey parameters is given as follows: 

⊗n 
dnx 

dtn 
+ ⊗n−1 

dn−1x 

dtn−1 
+  · · ·  +  ⊗0x = ⊗  ·  u(t) (11.4) 

After applying Laplace transform to both sides of this equation, we obtain 

G(s) = 
X (s) 
U (s) 

= ⊗ 
⊗nsn + ⊗n−1sn−1 +  · · ·  ⊗1 s + ⊗0 

(11.5) 

where L(x(t)) = X (s) and L(u(t)) = U (s). Equation (11.5) is known as a grey 
transfer function, which is the ratio of the Laplace transform of the response x(t) 
of the nth order grey linear control system and the Laplace transform of the driving 
term u(t). In fact, the transfer function represents a fundamental relationship between 
the input and output of a first order grey linear control system. From the following 
theorem, it follows that each nth order grey linear system can be reduced to an 
equivalent first order grey linear system. 

Theorem 11.3.1 For an nth order grey linear system as shown in Eq. (11.4), there 
is an equivalent first order grey linear system.
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Proof Assume that the given nth order grey linear system is 

⊗n 
dnx 

dtn 
+ ⊗n−1 

dn−1x 

dtn−1 
+  · · ·  +  ⊗0x = ⊗  ·  u(t) 

Let 

x = x1, 
dx  

dt  
= 

dx1 
dt  

= x2, 
d2x 

dt2 
= 

dx2 
dt  

= x3,  . . . ,  
dn−1x 

dtn−1 
= 

dxn−1 

dt  
= xn. 

Therefore, we have 

dxn 
dt  

= −⊗0 

⊗n 
x1 − 

⊗1 

⊗n 
x2 − 

⊗2 

⊗n 
x3 −  · · ·  −  

⊗n−1 

⊗n 
xn + 

⊗ 
⊗n 

u(t) 

and the nth order system is reduced to the following first order system 

Ẋ (t) = A(⊗)X (t) + B(⊗)U (t) 

where X (t) = [x1, x2, . . . ,  xn]T , U (t) = u(t), 

A(⊗) = 

⎡ 

⎢⎢⎢⎢⎢⎣ 

0 1 0  · · ·  0 
0 0 1  · · ·  0 
· · ·  · · ·  · · ·  · · ·  · · ·  
0 0  · · ·  · · · 1 

−⊗0 
⊗n 

−⊗1 
⊗n 

· · ·  · · ·  −⊗n−1 

⊗n 

⎤ 

⎥⎥⎥⎥⎥⎦ 
, and B(⊗) = 

⎡ 

⎢⎢⎢⎢⎢⎢⎣ 

0 
0 
... 
0
⊗ 
⊗n 

⎤ 

⎥⎥⎥⎥⎥⎥⎦ 
. 

This ends the proof. 

11.3.2 Transfer Functions of Typical Links 

A grey control system that is symbolically written in an equation is also known as 
a grey link. When the transfer function of a link is known, from the relationship 
X (s) = G(s) · U (s) and the Laplace transform of the driving term, one can obtain 
the Laplace transform of the response. Then, by using the inverse Laplace transform, 
one can produce the response x(t). The relationship between the driving and response 
terms is depicted in Fig. 11.3. 

In the following definition, let us look at the transfer functions of several typical 
links.

Fig. 11.3 The driving and 
response terms 
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Fig. 11.4 The grey proportional link 

Definition 11.3.2 The link between driving term u(t) and response term x(t) 
satisfying 

x(t) = K (⊗)u(t) (11.6) 

is known as a grey proportional link, where K (⊗) is the grey magnifying coefficient 
of the link. 

Proposition 11.3.1 The transfer function of a grey proportional link is 

G(s) = K (⊗) (11.7) 

The characteristics of a grey proportional link are that when a jump occurs in the 
driving quantity, the response value changes proportionally. This kind of change and 
relationship between the drive and response are depicted in Fig. 11.4. 

Definition 11.3.3 When driven by a unit jump, if the response is given by 

x(t) = K (⊗)(1 − e−tT  ) (11.8) 

then the link is known as a grey inertia link, where T stands for a time constant of 
the link. 

Proposition 11.2.2 The transfer function of a grey inertial link is given by 

G(s) = 
K (⊗) 

T · s + 1 
(11.9) 

The characteristics of a grey inertia link are that when a jump occurs in the driving 
quantity, the response can reach a new state of balance only after a period of time. 
Figure 11.5 provides a block diagram and the curve of change of the response of a 
grey inertia link when K̃ (⊗) = 1.
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Fig. 11.5 The grey inertia link 

Definition 11.3.4 When the drive and response are related as follows, the link is 
known as grey integral link: 

x(t) =
{

K (⊗)u(t)dt (11.10) 

Proposition 11.3.3 The transfer function of a grey integral link is given below: 

G(s) = 
K (⊗) 
s 

(11.11) 

For a grey integral link, when the drive is a jump function, its response is x(t) = 
K (⊗)ut , as shown in Fig. 11.6. 

Definition 11.3.5 If the response and the drive are related as follows, the link is 
known as a grey differential link:

Fig. 11.6 The grey integral link 
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x(t) = K (⊗) 
du(t) 
dt  

(11.12) 

Proposition 11.3.4 The transfer function of a grey differential link is given as 
follows: 

G(s) = K (⊗)s (11.13) 

The characteristics of a grey differential link are that when the drive stands for a 
jump, the response becomes an impulse with an infinite amplitude. 

Definition 11.3.6 If the drive and response are related as follows, the link is known 
as a grey postponing link, where τ(⊗) is a grey constant: 

x(t) = u(t − τ(⊗)) (11.14) 

Proposition 11.3.5 The transfer function of a grey postponing link is given below: 

G(s) = e−τ(⊗)s (11.15) 

For a grey postponing link, when the drive is a jump function, it takes some time for 
the response to react accordingly. For details, see Fig. 11.7. 

The figure above represents some typical links met in practical applications. Many 
complicated devices and systems can be treated as combinations of these typical links. 
For instance, when the grey proportional link is combined with a grey differential 
link, one can obtain a grey proportional differential link. When a grey integral link is 
connected with grey postponing link, one establishes a grey integral postponing link. 
Along the same lines, multi-layered combinations can be developed for practical 
purposes. One of the purposes of studying grey transfer functions is that we can 
investigate the stabilities and other properties of systems by looking at the extreme 
values of relevant transfer functions.

Fig. 11.7 The grey postponing link 
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11.3.3 Matrices of Grey Transfer Functions 

Matrices of grey transfer functions can be employed to express a fundamental rela-
tionship between the multi-inputs and multi-outputs of grey linear control systems. 
In particular, for the following grey linear control system

(
Ẋ (t) = A(⊗)X (t) + B(⊗)U (t) 
Y (t) = C(⊗)X (t) 

Employing Laplace transforms produces

(
sX  (s) = A(⊗)X (s) + B(⊗)U (s) 
Y (s) = C(⊗)X (s) 

and

(
(sE  − A(⊗))X (s) = B(⊗)U (s) 
Y (s) = C(⊗)X (s) 

If (sE  − A(⊗)) is invertible, then we can further obtain
(
X (s) = (sE  − A(⊗))−1 B(⊗)U (s) 
Y (s) = C(⊗)X (s) 

That is, we have Y (s) = C(⊗)(sE  − A(⊗))−1 B(⊗)U (s). 

Definition 11.3.7 The m n  matrix below is known as the matrix of grey transfer 
functions: 

G(s) = C(⊗)(sE  − A(⊗))−1 B(⊗) (11.16) 

Definition 11.3.8 For an nth order grey linear system, if the state grey matrix A(⊗) 
of the corresponding equivalent first order system is non-singular, then 

lim 
s→0 

G(s) = −C(⊗)A(⊗)−1 B(⊗) (11.17) 

is known as a grey gain matrix. If the grey gain matrix −C(⊗) A(⊗)−1 B(⊗) is used 
to replace the transfer function G(s), then the system is reduced into a proportional 
link. Because Y (s) = G(s)U (s), when m = s = n, if  G(s) is non-singular, we have 
the following: 

U (s) = G(s)−1 Y (s) (11.18) 

Definition 11.3.9 The following matrix is known as a grey structure matrix:
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G(s)−1 = B(⊗)−1 (sE  − A(⊗))C(⊗)−1 (11.19) 

When the grey structure matrix is known, to make the output vector Y (s) meet 
or close to meet a certain expected objective J (s), one can determine the system’s 
control vector U (s) through G−1(s) · J (s). Additionally, we can also discuss the 
controllability and observability of systems by using matrices of grey transfer 
functions. 

11.4 Robust Stability of Grey System 

Stability is a fundamental structural characteristic of systems. It stands for an impor-
tant mechanism for a system to sustain itself and is a prerequisite for the system to 
operate smoothly. This is why stability is studied in systems control theory and it is a 
key objective in relevant engineering designs. Each physical system has to be stable 
before it can be employed in practical applications. 

The stability of grey systems focuses on the investigations of informational 
changes. It also focuses on whether or not the grey system of concern stays stable or 
can recover to its stability when the whitenization value of a grey parameter moves 
within the field of discourse. The existence of grey parameters complicates the study 
of grey systems stability, and puts them at the center of attention of control theory 
and control engineering. 

In grey systems modeling, there is a distinction between having a postponing term 
and not having such a term; there is also a difference between having a random term 
and not having such a term. Ordinarily, grey systems without involving any random 
and postponing term are known as grey systems; those involving postponing terms 
without any random terms are grey postponing systems, and those involving random 
terms are known as grey stochastic systems. In this section, we will study the problem 
of robust stability of these three kinds of systems. 

11.4.1 Robust Stability of Grey Linear Systems 

The study of systems’ stability is often limited to systems without the effect of any 
external input. This kind of system is known as an autonomous system. A simple 
grey linear autonomous system can be written as follows:

(
ẋ(t) = A(⊗)x(t) 
x(t0) = x0, ∀t ≥ t0 

(11.20) 

where x ∈ Rn stands for the state vector, and A(⊗) ∈ Gn×n is the matrix of grey 
coefficients.
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Definition 11.4.1 If A( ̃⊗) is a whitenization matrix of the grey matrix A(⊗), then

(
ẋ(t) = A( ̃⊗)x(t) 
x(t0) = x0 

(11.21) 

is referred to as a whitenization system of the system in Eq. (11.20). 
Ordinarily, we assume that the matrix A(⊗) of grey coefficients of the system in 

Eq. (11.20) has a continuous matrix cover: 

A(D) = [La, Ua] = {A( ̃⊗) : ai j  ≤ ⊗̃ ≤  ai j  , i, j = 1, 2, . . . ,  n}, 

where Ua = (ai j  ), La = (ai j  ). 

Definition 11.4.2 If any whitenization system of the system in Eq. (11.20) is stable, 
then the system in Eq. (11.20) is referred to as robust stable. 

The ordinary concept of a system’s (robust) stability represents the (robust) 
asymptotic stability of the system. 

Theorem 11.4.1 If there is positive definite matrix P such that 

PLa + LT 
a P + 2λmax(P)||Ua − La||In < 0 

then the system in Eq. (11.20) is robust stable (Su & Liu, 2009). 

Proof Let us take the Lyapunov function V (x) = xT Px . For any whitenization 
matrix A( ̃⊗) ∈ A(D), let us compute the derivative of V (x) with respect to t along 
the trajectory of the whitenization system and obtain 

. 
V (x) = 2xT P A( ̃⊗)x = xT

(
PLa + LT 

a P
)
x + 2xT PΔAx 

≤ xT
(
PLa + LT 

a P + 2λmax(P)∥ Ua − La∥ In
)
x < 0, ∀x /= 0 

≤ xT
(
PLa + LT 

a P + 2λmax(P)∥ Ua − La∥ In
)
x < 0, ∀x /= 0 

This implies that the system in Eq. (11.20) is robust stable. QED. If in 
Theorem 11.4.1 we let P = In , then we have the result shown below. 

Corollary 11.4.1 If 

||Ua − La|| < −λmax( 
La + LT 

a 

2 
) (11.22) 

holds true, then the system in Eq. (11.20) is robust stable. If we employ another form 
of decomposition A( ̃⊗) = Ua − ΔA of the whitenization matrix A( ̃⊗) to study the 
robust stability of the system in Eq. (11.20), then much like in Theorem 11.4.1 and 
Corollary 11.4.1 we can obtain the following results.
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Theorem 11.4.2 If there is a positive definite matrix P such that 

PUa + U T a P + 2λmax(P)||Ua − La||In < 0 

then the system in Eq. (11.20) is robust stable (Su & Liu, 2009). 

Corollary 11.4.2 If 

||Ua − La|| ≤ −λmax( 
Ua + U T a 

2 
) (11.23) 

holds true, then the system in Eq. (11.20) is robust stable. Both Corollaries 11.4.1 
and 11.4.2 respectively provide us a meaning result, because Ua − La in fact stands 
for the matrix of disturbance errors of the system in Eq. (11.20); Eqs. (11.22) and 
(11.23) indicate that when the norm of the disturbance error matrix varies within 
the range of (0, λ), the system in Eq. (11.20) will always be stable, where λ = 
max

{
−λmax

(
La+LT 

a 
2

)
, −λmax

(
Ua+U T a 

2

)}
. 

Theorem 11.4.3 If La + LT 
a +λmax[(Ua − La)+(Ua − La)

T ]In < 0, then the system 
in Eq. (11.20) is robust stable; if Ua + U T a − λmax[(Ua − La) + (Ua − La)

T ]In > 0, 
then the system is instable (Su & Liu, 2009). 

Example 11.4.1 Let us consider the robust stability problem of the following 2-
dimensional grey linear system: 

ẋ(t) =
( [−2.3, −1.8] [0.6, 0.9] 

[0.8, 1.0] [−2.5, −1.9]
)
x(t) 

Solution Through computations, we have 

||Ua − La|| = 0.8072 < −λmax( 
La + LT 

a 

2 
) = 1.3000 

La + LT 
a + λmax[(Ua − La) + (Ua − La)

T ]In = −1.7759In < 0 

These inequalities indicate that, by using Corollary 11.4.1 or Theorem 11.4.3, we  
can conclude that this given system is robust stable. 

11.4.2 Robust Stability of Grey Linear Time-Delay Systems 

The phenomena of timely postponing are very common. They are often the main 
reason for causing instability, vibration, and poor performance in systems. Therefore, 
it is very important to investigate the stability problem of postponing systems. In
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particular, let us look at the following n-dimensional linear postponing autonomous 
system:

(
ẋ(t) = Ax(t) + Bx(t − τ),  ∀t ≥ 0, 
x(t) = φ(t), ∀t ∈ [−τ, 0] (11.24) 

where x(t) ∈ Rn stands for the system’s state vector, A, B ∈ Rn×n the known 
constant matrices, τ >  0 the amount of time of postponing, and φ(t) ∈ Cn[−τ, 0] 
the nth dimensional space of continuous functions. 

Definition 11.4.3 If at least one of the matrices A, B of constants in the linear 
postponing system in Eq. (11.24) is grey, then this system is referred to as a grey 
linear postponing autonomous system, denoted as

(
ẋ(t) = A(⊗)x(t) + B(⊗)x(t − τ),  ∀t ≥ 0, 
x(t) = φ(t), ∀t ∈ [−τ, 0]. (11.25) 

In the following equation, we assume that the constant matrices in the system 
in Eq. (11.25) are all grey and have continuous matrix covers; that is, A(⊗), B(⊗) 
respectively have the following form of matrix covers: 

A(D) = [La, Ua] = {A( ̃⊗) : ai j  ≤ ⊗̃ ≤  ai j  , i, j = 1, 2, . . . ,  n}, 
B(D) = [Lb, Ub] = {B( ̃⊗) : bi j  ≤ ⊗̃ ≤  bi j  , i, j = 1, 2, . . . ,  n} 

where Ua = (ai j  ), La = (ai j  ), Ub = (bi j  ), Lb = (bi j  ). 

Definition 11.4.4 If A( ̃⊗), B( ̃⊗) are respectively whitenization matrices of 
A(⊗), B(⊗), then

(
ẋ(t) = A( ̃⊗)x(t) + B( ̃⊗)x(t − τ),  ∀t ≥ 0, 
x(t) = φ(t), ∀t ∈ [−τ, 0]. (11.26) 

is referred to as a whitenization system of the system in Eq. (11.25). 

Definition 11.4.5 If any whitenization system of the system in Eq. (11.25) is stable, 
the system in Eq. (11.25) is referred to as robust stable. 

Based on whether or not the robust stability condition of a grey postponing system 
depends on the amount of postponing, the robust stability condition can be divided 
into two classes: postponing independent and postponing dependent. In particular, 
the condition for a robust stable system to be postponing independent is that for 
any time postponing τ >  0, the system is robustly asymptotic stable. Because this 
condition does not require the amount of postponing, it is appropriate for the study 
of the stability problem of postponing systems whose amounts of postponing are 
uncertain or unknown.
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The condition for a robust stable system to be postponing dependent is that for 
some values of postponing τ >  0, the system is robust stable, while for some other 
values of the postponing τ >  0, the system is not stable. That is why the system’s 
stability is dependent on the amount of postponing. 

Theorem 11.4.4 If there are positive definite matrices P, Q and positive constants 
ε1, ε2 such that the symmetric matrix 

⎛ 

⎜⎜⎝
Φ PLb P P  

LT 
b P −Q + ε2||Ub − Lb||2 In 0 0  
P 0 −ε1 In 0 
P 0 0 −ε2 In 

⎞ 

⎟⎟⎠ < 0 

where Φ = LT 
a P + PLa + Q + ε1||Ua − La||2 In , and In stands for the identity 

matrix (the same symbol will be used for the rest of this chapter), then the system in 
Eq. (11.25) is robust stable (Su, 2012). 

Theorem 11.4.5 If there are positive definite matrices P, Q, N and positive 
constants ε1, ε2 such that the symmetric matrix 

⎛ 

⎜⎜⎜⎜⎜⎝

⎡ PLb ρ In P P  
LT 
b P −Q + ε2||Ub − Lb||2 In 0 0 0  

ρ In 0 −N 0 0  
P 0 0  −ε1 In 0 
P 0 0 0 −ε2 In 

⎞ 

⎟⎟⎟⎟⎟⎠ 
< 0 

where ⎡ = LT 
a P + PLa + Q + ε1||Ua − La||2 In and N = N −1, ρ  = √

τ , then the 
system in Eq. (11.25) is robust stable. 

Example 11.4.2 Let us look at the following 2-dimensional grey linear postponing 
system

(
ẋ(t) = A(⊗)x(t) + B(⊗)x(t − τ),  ∀t ≥ 0, 
x(t) = φ(t), ∀t ∈ [−τ, 0]. 

Assume that the upper and lower bound matrices of the continuous matrix covers 
of the grey constant matrices A(⊗), B(⊗) are respectively give as follows: 

La =
(−4.38 0.20 

0.19 −4.33

)
, Ua =

(−4.26 0.29 
0.27 −4.22

)
; 

Lb =
(−0.93 0.21 

0.23 −0.86

)
, Ub =

(−0.88 0.24 
0.26 −0.82

)
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According to Theorem 9.10, by using the solver in the LMI (linear matrix 
inequality) control toolbox, we obtain the behavioral solution as follows: 

P =
(
9.4642 0.6983 
0.6983 9.8228

)
, Q =

(
28.0088 −0.0340 
−0.0340 27.8605

)
, 

ε1 = 30.0826, ε2 = 30.2461. 

Now from Theorem 9.11, by using the solver in the LMI (linear matrix inequality) 
control toolbox, we obtain the behavioral solution below: 

P =
(
6.8592 0.5061 
0.5061 7.1191

)
, Q =

(
20.2294 −0.0246 
−0.0246 20.1920

)
, N =

(
0.0456 0 

0 0.0456

)
, 

ε1 = 21.8024, ε2 = 21.9209, τ  = 2.7035 

These results indicate that the system considered in this example is robust 
stable. And the maximum allowed postponing length of time as obtained from 
Theorem 11.4.5 is 2.7035. 

11.4.3 Robust Stability of Grey Stochastic Linear Time-Delay 
System 

The mathematical model that describes a stochastic system is generally the Itto 
stochastic differential equation, where the often seen n-dimensional Itto stochastic 
differential postponing equation is

(
dx(t) = Ax(t) + Bx(t − τ)  + [Cx(t) + Dx(t − τ)]dw(t), ∀t ≥ 0, 
x(t) = ξ(t), ξ(t) ∈ L2 

F0 
([−τ, 0]; Rn), ∀t ∈ [−τ, 0]. (11.27) 

where x(t) ∈ Rn stands for the system’s state vector, A, B, C, D ∈ Rn×n known 
constant matrices, τ >  0 the time of postponing, and w(t) a 1-dimensional 
Brownian motion defined on a complete probability space (Ω , F , {Ft }t≥0 , P). 
L2 
F0 

([−τ ,  0]; Rn) stands for the totality of all F0-measurable stochastic variables 
ξ = {ξ(t) : −  τ ≤ t ≤ 0} that take values from C([−τ ,  0] ;  Rn) satis-
fying sup

−τ ≤t≤0 
E |ξ(θ )|2 < ∞, while C([−τ ,  0] ;  Rn) stands for the totality of 

continuous functions φ : [−τ ,  0] →  Rn . Under the initial condition x(t) = 
ξ(t) ∈L2 

F0 
([−τ ,  0] ;  Rn), the system in Eq. (11.27) has an equilibrium point x(t ; ξ), 

and corresponds to the initial value ξ(t) = 0, x(t ; 0) ≡ 0. 
There are several different concepts of stability for stochastic systems. In the 

following, we list four of the important stabilities.
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Definition 11.4.6 The equilibrium point x(t) ≡ 0 of the system in Eq. (11.27) is  
referred to as stochastically stable, if for each ε >  0, lim 

x0→0 
P(sup 

t>t0 
|x(t; t0, x0)| > 

ε) = 0. 

Definition 11.4.7 The equilibrium point x(t) ≡ 0 of the system in Eq. (11.27) is  
referred to as stochastically asymptotically stable, if it is stochastically stable and 
lim 
x0→0 

P( lim 
t→+∞ 

x(t; t0, x0) = 0) = 1. 

Definition 11.4.8 The equilibrium point x(t) ≡ 0 of the system in Eq. (11.27) is  
referred to as large-scale stochastically asymptotically stable, if it is stochastically 
stable and for any t0, x0, P( lim 

t→+∞ 
x(t; t0, x0) = 0) = 1. 

Definition 11.4.9 The equilibrium point x(t) ≡ 0 of the system in Eq. (11.27) is  
referred to as mean square exponential stable, if there are positive constants α >  
0, β  >  0 such that E |x(t; t0, x0)|2 ≤ α|x0|2 exp(−βt), t > t0. 

A grey system is stochastic if it involves grey parameters. Concepts related to grey 
stochastic systems are generally introduced based on relevant concepts of conven-
tional stochastic systems. Considering the problems we will study, let us provide the 
following definitions. 

Definition 11.4.10 If at least one of the matrices A, B, C, D of the stochastic linear 
postponing system in Eq. (11.27) is grey, then the system is referred to as a grey 
stochastic linear postponing system, written as follows: 

⎧⎨ 

⎩ 

dx(t) = A(⊗)x(t) + B(⊗)x(t − τ)  + [C(⊗)x(t) + D(⊗)x(t − τ)]dw(t), 
∀t ≥ 0, 

x(t) = ξ(t), ξ(t) ∈ L2 
F0 

([−τ, 0]; Rn), ∀t ∈ [−τ, 0]. 

(11.28) 

In this section, we assume that all the coefficient matrices of the system in 
Eq. (11.28) are grey with continuous matrix covers. That is, the matrix covers of 
the grey matricesA(⊗), B(⊗), C(⊗), and D(⊗) are respectively given as follows: 

A(D) = [La, Ua] = {A( ̃⊗) = ( ̃⊗ai j  )n×n : ai j  ≤ ⊗̃ai j  ≤ ai j }, 
B(D) = [Lb, Ub] = {B( ̃⊗) = ( ̃⊗bi j )n×n : bi j  ≤ ⊗̃bi j ≤ bi j }, 
C(D) = [Lc, Uc] = {C( ̃⊗) = ( ̃⊗ci j )n×m : ci j  ≤ ⊗̃ci j ≤ ci j }, 
and 

D(D) = [Ld , Ud ] = {D( ̃⊗) = ( ̃⊗di  j  )n×n : di j  ≤ ⊗̃di  j  ≤ di j }, 

where La = (ai j  )n×n , Ua = (ai j  )n×n , Lb = (bi j  )n×n , Ub = (bi j  )n×n , Lc = (ci j  )n×n , 

Uc = (ci j  )n×n , Ld = (di j  )n×n , and Ua = (di j  )n×n .
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Definition 11.4.11 If A( ̃⊗), B( ̃⊗), C( ̃⊗), and D( ̃⊗) are arbitrary whitenization 
matrices of the grey matrices A(⊗), B(⊗), C(⊗), and D(⊗), respectively, then 

⎧⎪⎨ 

⎪⎩ 

dx(t) = A( ̃⊗)x(t) + B( ̃⊗)x(t − τ)  + [C( ̃⊗)x(t) + D( ̃⊗)x(t − τ)]dw(t), 
∀t ≥ 0, 

x(t) = ξ(t), ξ(t) ∈ L2 
F0 ([−τ, 0]; Rn ), ∀t ∈ [−τ, 0]. 

(11.29) 

is referred to as a whitenization system of the system in Eq. (11.28). 

Definition 11.4.12 If any whitenization system of the system in Eq. (11.28) is large-
scale stochastic asymptotic stable, that is, 

lim 
t→∞ 

x(t; ξ)  = 0 a.s. 

then the system in equation (11.28) is said to be large scale stochastic robust 
asymptotic stable. 

Definition 11.4.13 If any whitenization system of the system in Eq. (11.28) is mean 
square exponential stable, that is, there are positive constants r0 and K such that the 
equilibrium points of whitenization systems of the system in Eq. (11.28) satisfy 

E |x(t, ξ  )|2 ≤ Ke−r0t sup
−τ ≤θ≤0 

E |ξ(θ )|2 , t ≥ 0, 

or equivalently 

lim 
t→∞ 

sup 
1 

t 
log E |x(t; ξ)|2 ≤ −r0, 

then the system in Eq. (11.28) is said to be mean square exponential robust stable. 

Theorem 11.4.6 For the system in Eq. (11.28), if there is a positive definite 
symmetric matrix Q and there are positive constants εi , i = 1, . . . ,  6, satisfying 
M + N < 0, then for any initial condition ξ ∈ C p F0 ([−τ ,  0] ;  Rn) the following 
holds true: 

lim 
t→∞ 

x(t ; ξ)  = 0 a . s. 

That is, according to Su (2012), the system in Eq. (11.28) is large-scale stochastic 
robust asymptotic stable, where 

M = QLa + LT 
a Q + (ε1 + ε2)Q + ε−1 

1 λmax(Q) · ||Ua − La||2 Inc 
+ (1 + ε4)(1 + ε5)LT 

c QL  + (1 + ε−1 
4 )(1 + ε5)λmax(Q)||Uc − Lc||2 In
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and 

N = ε−1 
2 (1 + ε−1 

3 )λmax(Q)||Ub − Lb||2 In + ε−1 
2 · (1 + ε3)LT 

b QLb 

+ (1 + ε−1 
5 )(1 + ε6)LT 

d QLd + (1 + ε−1 
5 )(1 + ε−1 

6 )λmax(Q)||Ud − Ld ||2 In. 

Theorem 11.4.7 For the system in Eq. (11.28), if there are positive definite 
symmetric matrix Q and positive constants εi , i = 1, . . . ,  6, satisfying K + L < 0, 
then for any initial condition ξ ∈ C p F0 ([−τ ,  0] ;  Rn), the following holds true: 

lim 
t→∞ 

x(t ; ξ)  = 0 a . s 

That is, the system in Eq. (11.28) is large-scale stochastic asymptotic stable, where 

K = QLa + LT 
a Q + (ε1 + ε2)Q + [ε−1 

1 λmax(Q)trace(GT 
a Ga) 

+ (1 + ε4)(1 + ε5)trace(LT 
c Lc) + (1 + ε−1 

4 )(1 + ε5)λmax(Q)trace(GT 
c Gc)]In, 

and 

L = [ε−1 
2 (1 + ε−1 

3 )λmax(Q)trace(GT 
b Gb) + ε−1 

2 (1 + ε3)trace(LT 
b Lb) 

+ (1 + ε−1 
5 )(1 + ε6)trace(LT 

d Ld ) + (1 + ε−1 
5 )(1 + ε−1 

6 )λmax(Q)trace(GT 
d Gd )]In. 

If we let the matrix and constants in Theorems 11.4.6 and 11.4.7 be ε1 =  · · ·  =  
ε6 = 1 and Q = In , then we can obtain the following corollaries, respectively. 

Corollary 11.4.3 If the upper and lower bound matrices of the continuous matrix 
covers of the coefficient matrices of the system in Eq. (11.28) satisfy 

La + LT 
a + 2LT 

b Lb + 4LT 
c Lc + 4LT 

d Ld 

< −(2||Ub − Lb||2 + ||Ua − La||2 + 4||Ud − Ld ||2 + 4||Uc − Lc||2 + 2)In 

then the system in Eq. (11.28) is large-scale stochastic asymptotic stable. 

Corollary 11.4.4 If the upper and lower bound matrices of the continuous matrix 
covers of the coefficient matrices of the system in Eq. (11.28) satisfy 

La + LT 
a + [2trace(LT 

b Lb) + 4trace(LT 
c Lc) + 4trace(LT 

d Ld )]In 
< −(trace(GT 

a Ga) + 2trace(GT 
b Gb) + 4trace(GT 

c Gc) + 4trace(GT 
d Gd ) + 2)In 

then the system in Eq. (11.28) is large-scale stochastic asymptotic stable. 

Theorem 11.4.8 For the system in Eq. (11.28), if there are positive definite 
symmetric matrix Q and positive constants εi , i = 1, . . . ,  3, satisfying
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QLa + LT 
a Q + (ε1 + ε2)Q + ε−1 

1 λmax(Q)||Ua − La||2 In 
< −[(1 + ε3)λmax(Q)trace(MT 

c Mc) + ε−1 
2 λmax(Q) trace(MT 

b Mb) 
+ (1 + ε−1 

3 )λmax(Q)trace(MT 
d Md )]In 

then the system in Eq. (11.28) is large-scale stochastic robust asymptotic stable. If 
in Theorem 11.4.8 we let ε1 = ε2 = ε3 = 1 and Q = In , then we have the corollary 
below. 

Corollary 11.4.5 If the upper and lower bound matrices of the matrix covers of the 
grey coefficient matrices in the system in Eq. (11.28) satisfy 

La + LT 
a + 2In + ||Ua − La||2 In + 2trace(MT 

c Mc)In 

< −[ trace(MT 
b Mb) + 2trace(MT 

d Md )]In 
then the system in Eq. (11.28) is large-scale stochastic robust asymptotic stable. 

Theorem 11.4.9 For the system in Eq. (11.28), if there are positive definite 
symmetric matrix Q and positive constants εi , i = 1, . . . ,  6, satisfying λmax(M) + 
λmax(N ) <  0, then for any initial condition ξ ∈ C p F0 ([−τ ,  0] ;  Rn), the following 
holds true: 

E |x(t, ξ  )|2 ≤ Ke−r0t sup
−τ ≤θ≤0 

E |ξ(θ )|2 , t ≥ 0, 

or equivalently, 

lim 
t→∞ 

sup 
1 

t 
log E |x(t; ξ)|2 ≤ −r0. 

where the matrices M, N are the same as in Theorem 11.4.6, K = τ er0 τ λmax(N )+λmax(Q) 
λmin(Q)

, 
and r0 is the unique real root of the following equation r0λmax(Q) + λmax(M) + 
er0τ λmax(N ) = 0, then the system in Eq. (11.28) is mean square exponential robust 
stable. 

11.5 Several Typical Grey Control Models 

Grey control stands for the control of essential grey systems, including the situation 
of general control systems involving grey numbers, by constructing controls through 
employing the thinkingv methods of grey systems analysis, modeling, prediction, 
and decision-making.



296 11 Grey Control Systems

11.5.1 Control of Redundancy Removal 

The dynamic characteristics of grey systems are mainly determined by the matrices 
G(s) of grey transfer functions. So, to realize effect control over the systems’ dynamic 
characteristics, one of the effective methods is to modify and correct the matrices of 
transfer functions and the structure matrices (Deng, 1965, 1985). 

Definition 11.5.1 Assume that G−1(s) is a system’s structure matrix, and G−1∗ (s) 
an objective structure matrix, then

Δ−1 = G−1 
∗ (s) − G−1 (s) (11.30) 

is known as a structural deviation matrix. From G−1(s)Y (s) = U (s) and G−1∗ (s) =
Δ−1 + G−1(s), we obtain (G−1∗ (s) − Δ−1)Y (s) = U (s). That is, 

G−1 
∗ (s)Y (s) − Δ−1 Y (s) = U (s) (11.31) 

Definition 11.5.2 −Δ−1Y (s) is referred to as a superfluous term. The control through 
a feedback of Δ−1Y (s) to cancel the superfluous term is known as a control of 
redundancy removal (Deng, 1965). Through the effect of the feedback of Δ−1Y (s), 
the system G−1(s)Y (s) = U (s) is reduced to 

G−1 (s)Y (s) + Δ−1 Y (s) = U (s)(G−1 (s) + Δ−1 )Y (s) = U (s) 

That is, G−1∗ (s)Y (s) = U (s) has already processed the desired objective structure. 
The number of entries in the structural deviation matrix Δ−1, used in a control 

with abandonment, directly affects the number of components in the controlling 
equipment. So, when considering the economics, reliability, and ease of application 
of a dynamic system, one must keep the number of elements in the deviation matrix
Δ−1 as low as possible. That is to say, in the objective structural matrix, one should 
try to keep the corresponding entries of the original structure matrix. The idea of 
control with abandonment is depicted in Fig. 11.8.

11.5.2 Grey Relational Control 

Definition 11.5.3 Assume that Y = [y1, y2, . . . ,  ym]T stands for the output vector, 
and J = [ j1, j2, · · ·  , jm]T the objective vector. If the components of the control 
vector U = [u1, u2, . . . ,  us]T satisfy 

uk = fk(γ (J, Y )); k = 1, 2, .  .  .  ,  s (11.32) 

where γ (J, Y ) is the grey relational degree between the output vector Y and the 
objective vector J , then the system control is known as a grey relational control.
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Fig. 11.8 Control of redundancy removal

Fig. 11.9 The grey 
relational control system 

A grey relational control system is obtained by attaching a grey relational 
controller to the general control system. It determines the control vector U through 
the grey relational degree of γ (J, Y ) so that the grey relational degree between the 
output vector and the objective vector does not go beyond a pre-determined range. 
The idea of the grey relational control system is depicted in Fig. 11.9. 

11.5.3 Control of Grey Prediction 

All the various kinds of controls studied earlier are about applying controls after 
first checking whether or not the system’s behavioral sequence satisfies some 
pre-determined requirements. Such post-event controls evidently suffer from the 
following weaknesses:
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Fig. 11.10 Grey predictive control 

(1) Expected future disasters cannot be prevented; 
(2) Instantaneous controls cannot be done; and 
(3) Adaptability is weak. 

The so-called grey predictive control is designed based on the system’s future 
behavioral tendency, which is predicted using the system’s behavioral sequences and 
the patterns discovered from the sequences. This kind of control can be employed 
to avoid future adverse events from happening; it can be implemented in a timely 
fashion, and possesses a wide range of applicability. 

The idea of a grey predictive control system is graphically shown in Fig. 11.10. Its  
working principle is that first one must collect and organize the device’s behavioral 
sequence of the output vector Y; secondly, one must use a prediction device to 
compute the predicted values for the future steps; and lastly, one must compare the 
predicted values with the objective and determine the control vector U so that the 
future output vector Y will be as close to the objective J as possible. 

Definition 11.5.4 Assume that ji (k), yi (k), ui (k) (i = 1, 2, . . . ,  m) are respec-
tively the values of the objective component, output component, and control 
component at time moment k. For  i = 1, 2, . . . ,  m, let  

ji = ( ji (1), ji (2), . . . , ji (n)) 
yi = (yi (1), yi (2), . . . , yi (n)) 
ui = (ui (1), ui (2), . . . , ui (n)) 

For the control operator f : ( ji (λ), yi (λ)) → ui (k), 

ui (k) = f ( ji (λ), yi (λ)) (11.33) 

when k > λ, the system is known as a post-event (or after-event) control; when 
k = λ, the system is known as an on-time control; and when k < λ, the system is 
known as a predictive control. 

Definition 11.5.5 If the control operator f satisfies 

f ( ji (λ), yi (λ)) = ji (λ) − yi (λ) (11.34)
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That is, 

ui (k) = ji (λ) − yi (λ) (11.35) 

then when k > λ, the system is known as an error-afterward control; when k = λ, 
the system is known as an error-on-time control; and when k < λ, the system is 
known as an error-predictive control. 

Definition 11.5.6 Let yi = (yi (1), yi (2), . . . ,  yi (n))(i = 1, 2, . . . ,  m) stand for a 
sample of output components and its GM(1,1) response formula be given as follows:

(
y
Δ(1) 
i (k + 1) = (yi (1) − bi ai )e

−ai k + bi ai 
y
Δ(0) 
i (k + 1) = y

Δ(1) 
i (k + 1) − y

Δ(1) 
i (k) 

If the control operator f satisfies 

ui (n + k0) = f ( ji (k), y(0) 
i (k)), n + k0 < ki , i = 1, 2, . . . ,  m (11.36) 

then the system control is known as a grey predictive control. 
In a grey predictive control system, predictions are often done using metabolic 

models. So, the parameters of the prediction device vary with time. When a new data 
value output is produced and accepted by the sampling device, an old data value is 
removed so that a new model is developed. Accordingly, a series of new predicted 
values are provided. Doing so guarantees the strong adaptability of the system. 

Example 11.5.3 Let us look at the EDM (electric discharge machining) grey control 
system (Yang & Zheng, 1996). The investigation on the control systems of EDM 
machines has been an important effort in the field of electric discharge machining. 
Each EDM can be seen as a stochastic time-dependent nonlinear system involving 
many parameters. Applications mainly include those situations when the conven-
tional controls of linear, constant coefficient systems cannot produce adequate 
outcomes. The current commonly employed EDM control systems are established 
based on modern control theory. The frequently applied self-adaptive control systems 
generally employ mathematical models of approximation with accompanied high 
costs without actually realizing optimal results. Grey control is not like precise math-
ematical models based on complete knowledge of a system as addressed in modern 
control theory. It is also unlike fuzzy control, where the system is treated as a black 
box as all the information about the internal working of the system is disregarded, 
which leads to low accuracy controls. The parameters, structures, and other aspects 
of grey models vary with time. Such dynamic modeling can be highly appropriate for 
the study of EDM machines with high degrees of uncertainty and produce relatively 
more satisfactory control effects. 

For EDM control systems, the objects of control are EDM machine tools, where 
outputs need signals from the testing of EDM machine tools as well as the control
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quantity U, that is, the signals about the control of the EDM machine tools. 
EDM control systems, in general, mean the control over systems that serve EDM 
machine tools. For instance, let us look at the traditional gap-voltage feedback servo 
control system. Due to a lack of linear relationship between the gas voltage, gap 
size, discharge strength, discharge state, and servo reference voltage, the effect of 
employing only one gap-voltage feedback servo control system is not very good. 

In order to make up for the insufficiency of single loop controls, one can employ 
double-loop controls with the inner loop being the traditional gap-voltage feedback 
control and the outer loop being an impulse discharge rate feedback control that 
instantaneously adjusts the inner loop. The block-design chart of this control system 
is depicted in Fig. 11.11. Figure 11.11 shows that this control design represents a 
system of two loops. Based on the collected sequence of gap voltage readings Ug(K ), 
the inner loop employs the GM model to predict the next moment U

Δ

g(K+i+1). Here, 
i stands for the prediction steps, which are then fed into the input end to determine 
the servo reference voltage value Us , which is a proportionality coefficient. The 
outer loop establishes a GM model based on a sequence Y (K ) of output values to 
predict the next steps Y

Δ

(K + i + 1). When these predicted values are compared with 
requirements Y ∗, a sequence e(K ) = Y

Δ

− Y ∗ of errors is found. These error values 
are then fed back into the system to adjust the proportionality coefficient K1 and the 
servo reference voltage Us , in order to adjust the inner loop. That is,

ΔU = K1(Y 
∗ − Y

Δ

), Us = K2U
Δ

g − ΔU 

Therefore, Us = K2U
Δ

g − K1(Y ∗ − Y
Δ

), where parameters K1, K2 are determined 
by experiments. 

Example 11.5.4 Let us now look at the grey predictive control for the vibration 
of a rotor system (Zhu & Zhi, 2002). The theory and methods for active vibration 
control of rotors have caught more attention in recent years. Many new control 
theories, such as neural network theory, time-delay theory, self-learning theory, fuzzy 
theory, and H∞ theory have gradually been employed in research on active control

Fig. 11.11 EDM control system 
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Table 11.1 Sampled data of I 0(k) and x0(k) when the transducer’s sensitivity is 104 V/m 

I 0(k)(A) 0.1 0.125 0.175 0.225 0.325 

x0(k) (dm m) 1.4 1.35 1.2 0.9 0.65 

theory of rotors, leading to some good outcomes. For a Jeffcott symmetric rotor 
follower system with an electromagnetic damper as its executor, we employ control 
theory and methods of grey predictions to investigate an active amplitude control of 
vibration. We first establish a grey predictive control module with the GM(1,1) as 
its main component. In the vibration control system of the rotor, let I 0(k) and x0(k), 
k = 1, 2,  . . .  ,  n, respectively be electric current inputting into the electromagnetic 
damper and the corresponding maximum output amplitude of the rotor vibration. By 
employing the available experimental measurement results from the literature, we 
obtain a set of data of I 0(k) and the relevant x0(k), as shown in Table 11.1, when the 
sensitivity of the transducer is 104 V/m. 

Based on the mechanism of the GM(1,1) model, we establish the following 
modification model of the system based on the errors of the grey predictions: 

a
Δ(0) 

(k + 1) = −a[x (0) (1) − β]e−ak + δ(k − i )(−a')[q(0) (1) − β ']e−a'k 

where a = 0.1862; x (0) (1) = 1.4;β = 9.3298; a' = 0.14; q(0) (1) = 0.36; β ' = 
3.78, and 

δ(k − i ) =
(
1 k ≥ i 
0 k < i 

The design of our grey predictive control of the rotor system is shown in Fig. 11.12. 

Fig. 11.12 Grey predictive control of the rotor system
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Table 11.2 Simulations and actual measurements 

I (A) X1m (m) X2m (m) X3m (m) e12 (%) e13 (%) e23 (%) 

0.1 1.41 × 10–4 1.4 × 10–4 1.4 × 10–4 0.71 0.71 0 

0.125 1.27 × 10–4 1.227 × 10–4 1.35 × 10–4 3.5 −5.93 −9.11 

0.175 1.03 × 10–4 0.949 × 10–4 1.2 × 10–4 9 −13.8 −20.92 

0.225 0.83 × 10–4 0.745 × 10–4 0.9 × 10–4 11.4 −7.78 −17.22 

0.325 0.55 × 10–4 0.46 × 10–4 0.65 × 10–4 19.57 −13.38 −29.23 

In this control system, the displacement signal of the rotor system is measured 
by the eddy current transducer. The sampling equipment collects the data from the 
amplitude recorder, and through the effect of the grey prediction controller, control-
ling voltage is produced. This voltage is transformed into a controlling electric current 
through the current amplifier. Then, when this electric current flows through the stator 
coil of the electromagnetic damper, an electromagnetic force is created, which in turn 
controls the amplitude of vibration of the rotor within the expected range so that the 
system’s stability is achieved. 

For this grey predictive control system developed for the vibration of the said 
Jeffcott symmetric rotor follower, our computer simulation, when compared to the 
physical measurements of the amplitudes, indicates that the maximum amplitudes 
under the control are only about 7% of those physically observed without the control 
imposed on the rotor system. Table 11.2 respectively provides the results of the 
maximum amplitudes of two separate computational simulations and the actual 
measurements X1m , X2m , and X3m , along with the change in the static electricity i of 
the electromagnetic damper, when the sensitivity of the transducer is k1 = 104 V/m, 
and the corresponding errors e12, e13, and e23 between X1m and X2m , X1m and X3m , 
and X2m and X3m . 
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Chapter 12 
Spectrum Analysis of Sequence 
Operators 

12.1 Introduction 

Behavioral prediction of a system under the influence of shocking disturbances has 
always been a difficult problem. In this case, the available data of the system’s 
behavior can no longer truthfully reflect the law of change of the system. At this 
situation, if we directly established our model and made our predictions using the 
severely affected data without first considering the disturbance, then our predictions 
would most likely fail. This is because the model would not have described the true 
state of change of the underlying system. Therefore, one of the main tasks of grey 
forecasting is to uncover the laws of change of certain system variables themselves 
based on the available data of the system (Liu, 1991). 

As usually, a general data sequence composited by various factors of trend and 
noise (Fig. 12.1a), cycles (Fig. 12.1b), shock disturbance by long-duration impulse 
(Fig. 12.1c), shock disturbance by transient impulse (Fig. 12.1d), and some factors 
be ignored (Fig. 12.1e), even some factors joining with noise or be seen as noise 
(Fig. 12.1a). The evolution rule of data series may change at some points which are 
called change points (Page, 1955). Before and after the change points, people need 
to use different models to describe the change rule of data series. The difference may 
be the change of model form, or the change of one or some parameters in the model 
(Fig. 12.1f).

It’s very difficult to analyze and discriminate the factors of a data sequence in 
time domain. Thanks to spectrum analysis, we can transfer data in time domain to 
frequency domain by Fourier transformation. Then analyze and discriminate various 
factors of a data sequence in frequency domain (Liu et al., 2020).
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Fig. 12.1 Various factors of a data sequence

12.2 Spectrum Analysis of Time Series Data 

Changhai Lin et al. introduced spectrum analysis into grey system theory firstly in 
2019 (Lin et al., 2019, 2022). 

Generally, system data is presented in the form of time series data. Due to the influ-
ence of system disturbance, there will be some deviation between the observed data 
and the original behavior data series. It is of great significance for people to under-
stand the evolution law of system to analyze and recognize the influence of system 
disturbance factors correctly. The spectrum analysis of time series data provides us a
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Fig. 12.2 Decomposition and synthesis of white light 

new perspective to understand time series data, which is another form of time series 
data. 

Spectral analysis is an important term proposed by Isaac Newton. He first used 
the concept of spectral analysis in his paper submitted to the Royal Society in 1672 
(Newton, 1672). In this paper, Newton mentioned the famous prism experiment. 
As we all know, prism can decompose sunlight into seven colors. The principle 
is to decompose the light of different colors from the white light by using the 
different refractive index of the medium to the light of different colors. In the experi-
ment, Newton also used two positive and negative inverted prisms. Through the first 
prism, white sunlight was decomposed into different colors of light, while the second 
inverted prism synthesized different colors of light into white sunlight. In the whole 
process of decomposition and synthesis, the essence of light has not changed. Prism 
can be seen as a conversion tool to show the characteristics of light (Newton, 1672) 
(Fig. 12.2). 

The knowledge of physics tells us that every color of light represents a frequency 
range in visible light. Color analysis of light belongs to the scope of spectrum anal-
ysis.Spectrum analysis, as the name implies, its research on the object is carried 
out in the frequency domain. In the process of system analysis, the data of system 
behavior observed in the real physical world are mostly time series data recorded 
based on time, which can be abstracted as a function of time and belong to the scope 
of time domain. The spectrum analysis of time series data is based on signal decom-
position. With the help of the mathematical tool of Fourier transform, the spectrum 
analysis regards the time series signal as the superposition of sine waves or cosine 
waves with different periods and amplitudes. The sine wave or cosine wave with 
different periods and different amplitudes is defined as the frequency content with 
one amplitude in frequency domain. The conversion process of time series data from 
time domain to frequency domain can also be expressed as the process of mapping 
different frequency content of time signal to frequency domain. 

The spectrum analysis of time series data is a method of information mining. Infor-
mation that is not easy to find in time domain analysis can be found through spectrum 
analysis. By decomposing and analyzing the time series data, we can quantitatively
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analyze the periodic law contained in the time series data. The magnitude and propor-
tion of different frequency content can be quantitatively analyzed by calculating the 
frequency amplitude at different frequency points of time series signal. 

12.3 Filtering Effect of Mean Operator and Accumulation 
Operator 

The classical model of grey system - mean GM (1,1) is based on accumulation 
operator and mean operator. The dual effects of accumulation operator and mean 
operator produce magical effects, so that people can use the mean GM (1,1) to 
obtain high simulation and prediction accuracy based on few data. 

In 1987, Professor Deng Julong studied the grey exponential law of the accu-
mulation operator (Deng, 1987), and found that the the randomness of grey data 
sequence can be weaken under the action of the accumulation operator and show the 
variation law of the exponential function. Referring to the digital signal processing 
(DSP) system, we will study the mean operator and accumulation operator in the 
frequency domain through Z-transform, as well as the filtering effect of their series 
action. The contents and main conclusions of this section are based on the research 
of Lin et al. (2020). 

12.3.1 Filtering Effect of Mean Operator 

The general 2-term weighted moving average operator can be rewritten into the 
following form 

y[n] = b0x[n] + b1x[n − 1] b0 + b1 = 1 (12.1) 

Equation (12.1) can be regarded as the transfer function of DSP signal system, 
the following Eq. (12.2) can be obtained from Z transformation. 

Y [z] = b0 X [z] + b1 X [z]z−1 (12.2) 

From Eq. (12.2), it is easy to obtain the frequency domain expression of the 
transfer function of the digital filter system corresponding to the 2-term weighted 
moving average operators as follows 

H [z] = 
Y [z] 

X [z] 
= b0 + b1z−1 (12.3) 

Let b0 = b1 = 0.5, The frequency domain expression of the transfer function 
of the digital filter system corresponding to the mean operator can be obtained as
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Fig. 12.3 The frequency domain curve of mean operator equivalent filter transfer function 

follows 

H [z] = 
Y [z] 

X [z] 
= 0.5 + 0.5z−1 (12.4) 

It can be seen from Fig. 12.3 that when the frequency content is 0, the frequency 
amplitude is 1, and when the frequency content is greater than zero, the frequency 
amplitude is less than 1. And the higher the frequency content, the smaller the 
frequency amplitude. That is, the mean operator has the effect of low-pass filtering, 
the low-frequency part (Evolution Law) of the data remains basically unchanged 
under the action of the mean operator, and the high-frequency part (fluctuation or 
disturbance) will be compressed and suppressed. Through spectrum analysis, it is 
further confirmed that the randomness of grey data sequence can be weaken and the 
real evolution law will be presented under the action of mean operator. 

12.3.2 Filtering Effect of Accumulation Operator 

The first order accumulation operator (1-AGO) can be rewritten into the following 
form 

y[n] = x[n] + y[n − 1] (12.5)
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Equation (12.5) can be regarded as the transfer function of DSP signal system, 
the following Eq. (12.6) can be obtained from Z transformation. 

Y [z] = X [z] + Y [z]z−1 (12.6) 

From Eq. (12.6), it is easy to obtain the frequency domain expression of the 
transfer function of the digital filter system corresponding to 1-AGO as follows 

H [z] = 
Y [z] 

X [z] 
= 1 

1 − z−1 
(12.7) 

From Eq. (12.7) and z = e jω, it follows  that  

(1) When 0 ≤ ω ≤ π/3, |H[ω]|>1. The amplitude of output Y[ω] will be greater 
than the amplitude of input X[ω].The system amplifies the input spectrum. 

(2) When ω <  π/3, |H[ω]| < 1. The amplitude of output Y[ω] will be less than 
the amplitude of input X[ω]. The system compresses or suppresses the input 
spectrum. 

(3) z = 1 is the pole of the transfer function of the digital filter corresponding to 
1-AGO. 

The frequency domain curve of transfer function of 1-AGO equivalent filter as 
shown in Fig. 12.4. 

The first-order accumulation operator equivalent digital filter belongs to low-pass 
filter, that is, the low-frequency content (less than a critical frequency) in the input

Fig. 12.4 The frequency domain curve of transfer function of 1-AGO equivalent filter 
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signal can pass through or be amplified. The high frequency content (greater than a 
critical frequency) in the signal will be compressed or suppressed. 

The data fluctuation and random disturbance of general discrete data series belong 
to high-frequency content. These information will be suppressed during the action 
of 1-AGO equivalent digital filter. Aperiodic system evolution law belongs to low-
frequency signal, which can pass through or be amplified in the process of 1-AGO 
equivalent digital filter. It is also proved that for general non-negative quasi smooth 
sequences, the randomness can be reduced by the action of accumulation operator, 
showing an approximate exponential growth law. 

Since the transfer function of digital filter corresponding to 1-AGO has pole, 
and the frequency content ω = 0 is its pole. This means that when the frequency 
content is 0, the transfer function of 1-AGO corresponding digital filter has infinite 
amplification effect. Furthermore, the conclusion of theorem 4.7.3 of this book is 
confirmed from the mechanism: the function of accumulation operator shouldn’t 
over. That is, if the action sequence of the r-th accumulation operator of X (0) has 
obvious exponential law, the application of AGO operator will destroy its regularity 
and turn the exponential law grey. 

12.3.3 Filtering Effect of Series Operator 

Let the corresponding digital filter transfer functions mean operator (12.4) and accu-
mulation operator (12.7) be denoted by HE(z) and HA (z) respectively. According to 
the transfer function calculation formula of series system, the transfer function of 
equivalent filter of the series operator of 1-AGO and mean operator can be obtained 
as follows 

H [z] =  HA(z)HE(z) 

= 1 

1 − z−1 
· (
0.5 + 0.5z−1

)

= 
0.5 + 0.5z−1 

1 − z−1 
(12.8) 

The frequency domain curve of series equivalent filter of the 1-AGO and mean 
operator as shown in Fig. 12.5.

As can be seen from the comparison with Fig. 12.4 that The accumulation operator 
acting alone or the accumulation operator acting in series with the mean operator 
can produce similar amplification effect on the low-frequency part of the signal. But 
for the high-frequency part of the data sequence (fluctuation and noise), the series 
operator 

H [z] =  HA(Z)HE(Z)
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Fig. 12.5 The frequency domain curve of series equivalent filter of the 1-AGO and mean operator

has stronger suppression effect than the accumulation operator acting alone. The 
signal-to-noise ratio of the series operator sequence is significantly improved. This 
also proves from the mechanism why the mean GM (1,1) model can obtain high 
simulation and prediction accuracy based on small data in most cases. 

12.4 Spectrum Analysis of Buffer Operator 

In order to solve the prediction problem of impact disturbance system, Liu Sifeng 
proposed the concept of buffer operator, established the axiom system of buffer 
operator, and designed the widely used average weakening buffer operator (AWBO) 
(Liu, 1991). Please refer to Chap. 4 of this book for details. 

Let the x(k)d in the following AWBO 

x(k)d = 1 

n − k + 1 
[x(k) + x(k + 1) +  · · ·  +  x(n)]; k = 1, 2, . . . ,  n 

be denoted by y(k). The AWBO can be rewritten into the following formula (12.9) 

y(k) = 1 

n − k + 1

[
n∑

i=1 

x(i ) − 
k−1∑

i=1 

x(i )

]

k = 1, 2, . . . ,  n (12.9) 

Replace k with k−1, we have
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y(k − 1) = 1 

n − k + 2

[
n∑

i=1 

x(i) − 
k−2∑

i=1 

x(i )

]

k = 2, . . . ,  n (12.10) 

Eliminate the denominator at the right end of Eqs. (12.9) and (12.10), we have 

y(k)(n − k + 1) =
[

n∑

i=1 

x(i ) − 
k−1∑

i=1 

x(i)

]

k = 1, 2, . . . ,  n (12.11) 

y(k − 1)(n − k + 2) =
[

n∑

i=1 

x(i ) − 
k−2∑

i=1 

x(i )

]

k = 2, . . . ,  n (12.12) 

Subtract Eqs. (12.11 and 12.12), we obtain 

y(k)(n − k + 1) − y(k − 1)(n − k + 2) = 
k−2∑

i=1 

x(i) − 
k−1∑

i=1 

x(i ) (12.13) 

Therefore 

y(k)(n − k + 1) − y(k − 1)(n − k + 2) = −x(k − 1), k = 2, 3, . . . ,  n (12.14) 

The digital signal processing expression corresponding to Eq. (12.14) as follows 

Y (Z )(n − k + 1) − Y (Z )Z−1 (n − k + 2) = X (Z)Z−1 k = 2, 3, . . . ,  n (12.15) 

So, the transfer function of AWBO can be obtained 

H (Z) = 
Y (Z ) 
X (Z ) 

= Z−1

[
(n − k + 1) − (n − k + 2)Z−1

] (12.16) 

The actual data simulation results show that the AWBO equivalent digital filter 
also belongs to low-pass filter. For the low-frequency part of the input signal, the 
amplitude of the spectrum of the AWBO action sequence is higher than that of the 
reference, which means that AWBO has amplification effect on the low-frequency 
content in the sequence. For the high-frequency part of the input signal, the amplitude 
of the spectrum of the AWBO action sequence is lower than the reference amplitude, 
indicating that AWBO has the effect of restraining, attenuating or blocking the high-
frequency content in the sequence. The high-frequency part of the input signal of the 
impact disturbance system is mainly composed of impact disturbance components. 
Therefore, AWBO can weaken the impact disturbance (Lin et al., 2021, 2022).
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Appendix 
Introduction to Grey Systems Modeling 
Software 

A.1 Introduction 

In 1982, Julong Deng initiated and established grey systems theory. Currently, grey 
systems theory is widely applied in areas such as social sciences, economics, agri-
culture, meteorology, military and science, providing solutions to a large number 
of practical problems and challenges met in everyday life. Various versions of grey 
systems modeling software have played a very important role in such large scale 
practical applications of grey systems theory. Along with the rapid development of 
information technology, high level programming languages have gradually matured, 
applications of computing packages have been routinized, and grey systems modeling 
programs have also become sophisticated. 

In 1986, Xuemeng Wang and Jiangjun Luo (Wang & Luo, 1986) created their 
grey systems modeling software using BASIC language and published Programs of 
Grey Systems’ Prediction, Decision-Making, and Modeling. In 1991, Xiuli Li and 
Ling Yang (Liu & Guo, 1991) respectively developed grey modeling software using 
GWBASIC and Turbo C. In 2001, Xuemeng Wang, Jizhong Zhang, and Rong Wang 
published the book entitled “Computer Procedures for Grey Systems Analysis and 
Applications,” in which they listed the structure and procedure codes established for 
grey modeling (Wang et al., 2001). All of these computer software packages were 
developed on the DOS platform and have become obsolete in the more user-friendly 
Windows framework. 

In 2003, Dr. Bing Liu (Liu et al., 2003) developed the first grey systems modeling 
software for Windows using VisualBasic6.0. As soon as this package was available, 
it was most welcomed in the community of scholars and practitioners of the grey 
systems research, and became the first choice of application in the field of grey 
systems modeling. With the evolution of software development technology, changes 
in computer operation, and continued grey theory research progress, some of the 
weaknesses of such software packages came to the fore, including the following:
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• Data entry was tedious. 

The single worksheet frame limited the operational flexibility on data sequences. 
It was especially inconvenient when large amounts of data were dealt with in 
clustering analysis and grey decision-making. Additionally, the only available 
way for data entry made users feet tired so that the efficiency and accuracy of data 
entry were greatly affected. 

• The classification of the modules was not scientifically sound. 

This software system divided modules according to the number of data partici-
pating in the modeling process. However, the modules should have been designed 
according to functions. 

• The software system could not show relevant computational procedures. 

Most of the users of grey systems theory are scientists and practitioners. The 
purpose of their use of the software system was mainly their scholarly works. 
This means that, other than the computational outcomes, such professionals are 
also very interested in knowing specific procedural details. However, the original 
software package could only provide the final results of the computation and was 
unable to reveal relevant computational details. 

• The system’s capability was disconnected from the most recent research. 

Grey systems theory has been an extremely active area of the broader systems 
science. In particular, in recent years some works with high practical value have 
appeared. However, the software system was not upgraded along with research 
progress, causing the software to become obsolete in terms of its functions and 
capability. 

• Problems with the choice of package development. 

VisualBasic6.0 is a graphics-based software development tool created by 
Microsoft Company. Due to its simplicity, functionality, versatility, and other 
strengths, as soon as it was introduced it was welcomed by many software devel-
opers. However, VisualBasic6.0 is an IDE (integrated development environment) 
based on BASIC, a typical programming language with many known weaknesses 
that greatly limit its applicability in scientific computing. This is because scientific 
computing requires high levels of accuracy. Thus, grey systems modeling software 
developed using VisualBasic6.0 inherently suffers from many weaknesses. 

A.2 Software Features and Functions 

On one hand, an ideal grey systems modeling software package needs to have the 
computational power to handle practical models, and on the other hand it has to 
deal with user confirmation, registration, and other functionalities. The software 
system accompanying this book sufficiently combines the capabilities of the C/S 
(client/server) and B/S (Browser/Server) modules, where the C/S part completes
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computational functions, while the B/S part handles the relevant operations that serve 
the user and his communication with the server. With a view to improve existing 
systems, the design of this package focuses more on the reliability, practicality, 
compatibility, upgradability, accuracy, operational convenience, visual appeal and 
user friendliness (Zeng et al., 2011). This package has the following characteristics:

• Data entry is convenient and fast. 

For data sequences of the same kind, the package provides a rectangular window 
into which the user can simply copy the sequences with one operation. For grey 
clustering and grey decision-making modules that involves large amounts of data, 
it is evidently inconvenient to employ the traditional way of entering data values. 
In such instances, the user can enter data in an Excel document and then open the 
data file into this package system. This software system makes use of the powerful 
data entry ability of Excel while making data entry convenient for the user. 

• Modules are designed according to functionalities. 

In software engineering, a module is a relatively independent system unit of 
procedures. Each such unit of procedures handles and materializes a relatively 
independent task. In other words, it contains a group of independent procedures. 
Each program module has its own external characteristics, such as its own name, 
label, and interfaces. During the design of this software package, the developer 
scientifically organized the contents of grey systems theory, defined the relevant 
functions and related modules. 

• This system provides operational details as well as periodic results. 

For modules with complicated computational procedures where intermediate 
results are also important, the system provides a textbox that can store and show 
multi-line operational details. The user can monitor data changes in each compu-
tational step so that he can further understand how the model operates. Also, the 
software interface provides relevant information to remind the user of the relevant 
formulas employed in the model. 

• The functionalities of the modules are greatly expanded. 

Based on current practical applications of grey systems theory, combined with the 
most recent research results, this software system is the most up-to-date system 
available in the market. It includes: weakening operators (mean weakening buffer 
operators, geometric mean weakening buffer operators, weighted mean weak-
ening buffer operators), strengthening operators (mean strengthening buffer oper-
ators, geometric mean strengthening buffer operators, weighted mean strength-
ening buffer operators), grey incidence analysis (relative degree of incidence, 
closeness degree of incidence), clustering analysis (based on center-point trian-
gular whitenization weight functions), grey prediction (GM(1, n) and DGM(1,1) 
models), grey decision analysis (intelligent grey target decision making), among 
other contents.
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Table A.1 The basic constitution of the grey system modeling software 

Grey system modeling software B/S part User info 

Statistics 

C/S part Grey sequence operators 

Grey relational analysis 

Grey clustering evaluation 

Grey forecasting 

Grey decision-making 

• The degree of accuracy of the computational results can be adjusted. 

The computation precision of different systems is different. In this software system 
there is a ComboBox, which can select of computational precision. Therefore, the 
user can choose the desired degree of accuracy for his work. 

• The operation of the software system is convenient and easy to learn. 

This software system is based on the Windows interface using pull-down menus, 
where the commonly employed modeling techniques of grey systems theory are 
effectively gathered together. The user only needs to have an elementary under-
standing of how a desktop PC works to successfully use this software system. 
At the same time, this system has a relatively strong ability to locate and correct 
mistakes. When an illegal operation is performed, the system will provide an 
accurate and detailed hint. 

• This system is developed using Visual C#. 

C# is an object-oriented programming language created by Microsoft and an 
important part of Microsoft’sv .NET development environment. Also, Microsoft 
Visual C# is an integrated development environment (IDE) constructed on C# by 
Microsoft. It is designed for the operation of many application software packages 
created on the .NET framework. C# possesses powerful capabilities, type safety, 
object orientation, and other superb functions. It is currently the main development 
tool of C/S software architecture. 

A.3 Main Components 

The new edition of the grey system modeling software consists of five modules 
including grey sequence operators, grey relational analysis models, grey clustering 
evaluation models, grey forecasting models and grey models for decision-making, 
given the currently available research on grey systems theory and its practical appli-
cations (Table A.1). The software system modules are shown in Tables A.2, A.3, 
A.4, A.5 and A.6.
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Table A.2 Grey sequence operators 

Grey sequence operators Weakening operators Average weakening buffer 
operator (AWBO) 

Weighted average weakening 
buffer operator (WAWBO) 

Geometric average weakening 
buffer operator (GAWBO) 

Weighted geometric average 
weakening buffer operator 
(WGAWBO) 

Strengthening operators Even strengthening buffer 
operator (ESBO) 

Average strengthening buffer 
operator (ASBO) 

Weighted average 
strengthening buffer operator 
(WASBO) 

Information mining operators Accumulating generation 
operator 

Inverse accumulating 
generation operator 

Even operator by adjacent 
neighbor 

Operator of stepwise ratio 

Table A.3 Grey 
relational analysis models 

Grey relational analysis 
models 

Deng’s model of degree of grey 
relational model 

Absolute degree of grey 
relational model 

Relative degree of grey 
relational model 

Synthetic degree of grey 
relational model 

Closeness degree of grey 
relational model 

Similitude degree of grey 
relational model
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Table A.4 Grey clustering evaluation models 

Grey clustering evaluation models Grey clustering model of variable weight 

Grey clustering model of fixed weight 

Grey clustering model using center-point mixed triangular 
possibility function 

Grey clustering model using end-point mixed triangular 
possibility function 

Table A.5 Grey forecasting 
models 

Grey forecasting 
models 

Singular variable 
models 

Even GM(1,1) 

Original difference 
GM(1,1) 

Even difference 
GM(1,1) 

Discrete grey model 

Grey Verhulst model 

Multi-variable 
models 

Model GM(0, N) 

Model GM(1,N) 

Table A.6 Grey models for 
decision-making 

Grey models for 
decision-making 

Weighted multi-attribute grey target 
decision 

Two stages model for 
decision-making 

A.4 Operation Guide 

A.4.1 The Confirmation System 

To verify legal ownership, the user needs to enter his account number and password 
before he can actually start using the system. However, if every time the user uses 
the system he has to confirm his legal ownership of the software package, it will 
become an annoyance. So, to guarantee the legal ownership of the user and maintain 
the operational simplicity of the system, the system applies the XML-based client 
programming technique. When the user attempts to run the program for the first time, 
the system will prompt him to provide the needed account number and password. 
The provided data will then be delivered through the internet to the database located 
at the server to verify their legality. When the user attempts to use the program on 
different, subsequent occasions, he can directly enter the main interface window 
without having to enter his account number and password again.

On the first time of confirmation, if the user does not have an account number 
or password, he needs to click on the “User registration” button (see Fig. A.1) to
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Fig. A.1 The confirmation window

register for a free user account (B/S). If the user forgets his password, he can click on 
the “Recall password” button to retrieve his password. Figure A.2 is the flow chart 
of confirmation. 

Fig. A.2 The confirmation flow chart
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Fig. A.3 The main interface window 

A.4.2 Using the Software Package 

After successful confirmation of legal ownership, the user will enter the system’s 
main interface window, as shown in Fig. A.3. Various grey systems theory modules 
(and their sub-modules) are administrated through menus. 

Figure A.4 provides the flow chart of various sub-modules of the system. 

I Data Entering 

Before running the program, one needs to first enter data into the software package 
and specify the system parameters. As mentioned earlier, there are two ways to input

Fig. A.4 Sub-modules 
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data. One can directly enter data into the provided text box or import data from an 
external Excel document. For those modules that require large amounts of data, the 
only way provided for entering data is through importing data from Excel documents. 
The following sections look at the details of these two data entering methods. 

• Enter data directly into the provided text box. 

With VisualC#, there are two kinds of controllers available for direct data entry. 
One is the TextBox controller, and the other the ComboBox controller. The former 
controller is used to develop the standard Windows’ editing controller of the text-
box, which is used to acquire the user’s input or show what is already stored in the 
storage space. When entering data into the text-box, right click the mouse inside 
the text box. When the cursor blinks inside the text box, one can start entering data. 
The ComboBox of the Windows’ window group is mainly used to show data in a 
down-drop list box. As a default, ComboBox consists of two parts: the top is a text 
box in which the user is allowed to enter data, and the bottom is a list box where 
the user can make selections. It is because the ComboBox consists of the text box 
on the top and the list box at the bottom that it is named a ComboBox. When using 
the ComboBox to enter data, the user needs to first check whether or not the list 
box contains the data he wants. If so, he can simply use the mouse to directly make 
the selection; otherwise, he needs to enter data into the text box on the top. The 
detailed procedure for entering data in the ComboBox is similar to that of operating 
the TextBox and is therefore omitted here. 

Note: When entering data using either the TextBox or the ComboBox, the state 
of entry method needs to be adjusted to half-angle. Data values entered in the state 
of full angle will be treated by the program as illegal data, which will directly affect 
the normal operation of the program and potentially lead to unexpected outcomes. 

• Import data from an Excel document. 

Both the TextBox and ComboBox can only accept small amounts of data values. For 
entering large sums of information, the use of either the Textbox or the ComboBox is 
inefficient, and can also lead to errors. To resolve the problem of entering large sums of 
data values when dealing with grey clustering and grey decision-making, for instance, 
it is very often the case that large amounts of information are involved, and this 
software system makes use of the powerful Excel. First enter and edit the needed data 
in Excel, and then use the provided interface to import the Excel data into the software 
system. Excel is one of the components of Microsoft Office. It is a tabulated testing 
and computing software developed for Microsoft Windows and Apple’s Macintosh. 
Its straightforward interface, excellent capabilities of computation and graphics make 
it the most widely employed PC software used for data analysis. Through Excel, our 
software package system can conveniently acquire data. 

Each Excel document generally contains three tables, respectively labeled as 
Sheet1, Sheet 2, and Sheet3. When an Excel document opens, it generally shows 
Sheet1. When entering data according to the system’s requirements, one can directly 
type in the corresponding values in the relevant rows and columns. Upon finishing
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data entry into the Excel document, one can employ our system’s input function to 
import the Excel data. When importing an Excel data document, first select the path 
from which the Excel file is located. As soon as the importing path and location of 
the file is confirmed, the data will be successfully imported. In fact, the process of 
importing data connects the Excel file to our system through a specific path so that 
the data in the Excel file can be mapped into the database controller DataGridView. 

DataGridView is a database controller of VisualC#, which can exactly and entirely 
reveal data from a source file. Through the DataGridView controller of VisualC#, 
data can be acquired from an Excel file. However, our system does not provide 
any of the editing capabilities of DataGridView. In other words, if it is found in 
DataGridView that there is an error in the data, this error cannot be corrected directly 
within DataGridView. Instead, one has to return to the original Excel file to make 
the correction and then reimport the entire corrected file back into the grey systems 
modeling package. 

Notes: 

• The DataGridView controller does not have any editing capability. To make 
changes in the data, one has to do it in the original Excel file. 

• When entering data into an Excel document, one needs to do so in the mode 
of “half-angle.” All data entered in the mode of “full-angle” will be treated as 
illegal entries, which will directly affect the normal operation of the grey systems 
modeling package, and potentially lead to unexpected outcomes. 

• The table names of the Excel file have to be the default Sheet1, Sheet2 and/or 
Sheet3 without any modification, otherwise the import of data will be affected. 

• The data entry field of Excel is very large. However, one often needs only a few 
rows and columns. Make sure that there are no symbols or blank cells accidently 
entered into other area of the field. Otherwise, the data transfer will be affected. 

II Model Computations 

(1) Grey sequence operators 

Click on “Sequence generation.” From the pull-down menu that appears, select 
the module according to the practical modeling need. The corresponding detailed 
modeling interface appears. Let us use the “average weakening buffer operator” as 
an example to illustrate how to apply grey sequence generations. What is shown in 
Fig. A.5 is the interface of the mean weakening buffer operator.

This interface window contains three main areas: the first shows the original data 
sequence, which is the area for data entry or importing data; the second area shows 
the “order and outcome precision,” in which it is possible to adjust the order of the 
operator being applied and the corresponding precision of the computational outputs 
based on one’s modeling needs; and the third the area is where computational results 
are shown. After the data entry is completed, click on the “mean weakening buffer 
operator (AWBO)” button. Immediately, the generated sequence will appear in the 
generated sequence window. Figure A.6 shows a work sheet of an Excel document.
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Fig. A.5 The interface of the mean weakening buffer operator

Fig. A.6 The required Excel file format 

When applying this Excel capability and importing data from Excel, the user has to 
follow this shown format exactly. 

(2) Grey relational analysis models 

Similar to the generation of grey sequences, there are two ways to input data for all 
parts of relational analysis, so such data entry details are omitted here. However, this 
is not valid for Deng’s degree of grey relation due to the need for a large amount of 
data. For Deng’s degree of grey relation, this software system allows only data entry 
through Excel documents without the option of direct data entry. Figure A.7 shows 
the editing format of an Excel document, while Fig. A.8 shows the complete work 
interface.

(3) Grey clustering evaluation models 

Similar to Deng’s degree of grey incidence, grey clustering evaluation also requires 
a large amount of original data. However, in grey clustering evaluation it is possible
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Fig. A.7 The required Excel file format 

Fig. A.8 The complete work interface of Deng’s degree of grey relation

to have several different types of data, including objective-criterion data, possibility 
functions, and criteria weights. Therefore, for grey clustering evaluation, the system 
again provides only one way to enter data, which is by importing Excel files. The 
key to using this part of the functions is to correctly edit the different types of data in 
the Excel documents. Sheet1 contains the objective-criteria data (Fig. A.9), Sheet2 
the corresponding possibility functions (Fig. A.10), and Sheet3 the weights of the 
criteria (Fig. A.11).

Figure A.12 shows the operating interface of a grey clustering analysis. As for how 
to apply grey variable weight clustering and analysis based on center-point mixed
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Fig. A.9 The objective-criteria data 

Fig. A.10 The corresponding whitenization weight functions 

Fig. A.11 The weights of the criteria
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Fig. A.12 The operating interface of a grey clustering evaluation 

triangular possibility functions, the operational details are similar and therefore 
omitted. 

(4) Grey prediction models 

Grey prediction models stand for an important part of grey systems theory. The 
operation of each individual prediction model is roughly the same. So, let us use 
the EGM(1,1) model to illustrate how to use the software system. The main steps 
include: enter or import data; click the “computation, simulation, prediction” button 
to compute the model parameters and the simulated values, and select the simula-
tion accuracy; enter the desired number of predicted values, then click “prediction 
results.” Figure A.13 shows the operational interface of the EGM(1,1) model.

(5) Grey decision-making 

This part of the software package contains two modules, namely the multi-attribute 
grey target decision-making model and the two-stage model for decision-making. 

The data layout of an intelligent grey target decision-making model is the same 
as that of any synthesized objective decision-making model, except that there is an 
additional column of threshold value, as shown in Fig. A.14, where the interval [14, 
18] means that the lower effect threshold value is 14 and the upper effect value 
is 18. Figure A.15 shows the entire operating page of an intelligent grey target 
decision-making model.
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Fig. A.13 The operational interface of the GM(1,1) model

Fig. A.14 The exact layout of data page for multi-attribute grey target decision-making
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Fig. A.15 The entire operating page of multi-attribute grey target decision-making



Memorabilia of the Establishment 
and Development of Grey System Theory 
(1982–2021) 

In 1982, professor Julong Deng has published the first paper on Grey System Theory 
in System and Control Letters. 

In 1984, the first national academic conference on grey system theory and 
applications which chaired by professor Julong Deng was held in Taiyuan. 

In 1985, Wuhan grey system consulting department was established. 
In 1985, professor Julong Deng has published the first book on Grey System 

Theory by National Defense Industry Press (In Chinese). 
In 1986, the course of grey system theory is included in the postgraduate 

training plan at both of Huazhong University of Science and Technology and Henan 
Agricultural University. 

In 1987, Wuhan (National) Grey System Research Association which professor 
Julong Deng served as the president was established. 

In 1989, the first Journal of “The Journal of Grey System” which edited by 
professor Julong Deng was released by “Research Information Ltd” in the UK. 

In 1990, a research direction for training doctoral students in the field of grey 
system theory has set up at system engineering discipline of Huazhong University 
of Science and Technology. 

In 1991, the grey system research office which professor Julong Deng served as 
the director was established in the Automation Department of Huazhong University 
of Science and Technology. 

In 1996, The 9th national grey system academic conference attended by scholars 
from both sides of the Taiwan Strait was held in Wuhan. 

In 1997, Regional Grey System Society of Taiwan was established. 
In 2000, with the approval of the Academic Degrees Committee of the State 

Council, Nanjing University of Aeronautics and Astronautics has established a 
doctoral degree authorization point for management science and Engineering which 
Grey System Theory is listed as the first leading research direction.
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In 2000, Institute for Grey Systems Studies was established at Nanjing University 
of Aeronautics and Astronautics. 

In 2002, the first Doctor’s Forum on Grey System Theory was held in Nanjing. 
In 2004, both the number of publications on grey system theory and the number 

of citations of IGSS at NUAA are ranked No.1 in web of science. 
In 2005, the Grey System Society of China, CSOOPEM, was approved by the 

Chinese Association for Science and Technology and Ministry of Civil Affairs, 
China. 

In 2006, for the first time, the national grey system academic conference was 
supported by China Higher Science and Technology Center which professor Tsung-
Dao Lee served as the director. 

In 2007, the first IEEE International Conference on Grey Systems and Intelligent 
Services was held in Nanjing. 

In 2007, the Technical Committee of IEEE SMC on Grey Systems was established. 
In 2008, the course of grey system theory of Nanjing University of Aeronautics 

and Astronautics was rated as a National Excellence Course. 
In 2009, Xuesen Qian, the first winner of the National Highest Science and Tech-

nology Award of China, sent professor Sifeng Liu and Dejin Song a letter to encourage 
their research work. 

In 2010, the team with professor Sifeng Liu as the chief expert was rated as a 
National Excellence Teaching Team of China. 

In 2010, the Journal of “Grey Systems-Theory and Application” which edited by 
professor Sifeng Liu was launched by Emerald Group in the UK. 

In 2012, the course of grey system theory of Nanjing University of Aeronautics 
and Astronautics was selected as a National Excellence Sharing Course of China. 

In 2012, the first Workshop of European grey system research collaboration 
network chaired by professor Yingjie Yang was held at De Montfort University. 

In 2013, professor Julong Deng, the founder of Grey System Theory, passed away. 
In 2013, the 2013 IEEE International Conference on Grey Systems and Intelligent 

Services was held in Macau. 
In 2013, Professor Sifeng Liu was selected for a Marie Curie International 

Incoming Fellowship (FP7-PEOPLE- IIF-GA-2013-629051) of the European Union. 
In 2014, an international network project entitled “Grey Systems and Its Appli-

cations” (IN-2014-020) directed by professor Yingjie Yang was funded by The 
Leverhulme Trust. 

In 2014, a book Series of Grey Systems in Chinese which edited by professor 
Sifeng Liu were launched by Science Press. 

In 2015, the International Association of Grey System and Uncertain Analysis 
(GSUA) was established. 

In 2015, the first International Congress of GSUA was held in Leicester, UK. 
In 2017, Polish Scientific Association of Grey Systems which Dr. Rafał Mierzwiak 

served as the founding president was set up. 
In 2017, the 2017 IEEE International Conference on Grey Systems and Intelligent 

Services was held in Stockholm, Sweden.
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In 2017, the book Grey System Theory and Its Applications, which authored by 
Prof. Sifeng Liu and published by Science Press, is identified as the No.1 top sited 
books in the pandect of natural science of China. 

In 2017, Professor Sifeng Liu has been selected to be one of the top 10 shortlisted 
promising scientists in the MSCA 2017 Prizes. 

In 2018, the course of grey system theory of Nanjing University of Aeronautics 
and Astronautics was selected as a National Excellence Online Open Course. 

In 2018, Grey Systems Society of Pakistan was established. 
In 2019, Turkish Association of Grey Systems Theory which professor Erdal 

Aydemir served as the founding president was established. 
In 2019, the 2019 International Congress of GSUA was held in Bangkok, Thailand. 
In 2019, Angela Dorothea Merkel, then German Chancellor, praised professor 

Julong Deng, the founder of grey system theory, and professor Sifeng Liu, a developer 
of grey system theory. 

In 2020, the 2020 International Congress of GSUA was held in Nanjing. 
In 2020, the course of grey system theory of Nanjing University of Aeronautics 

and Astronautics was selected as a National first class offline course. 
In 2020, the course of grey system theory of Nanjing University of Aeronautics 

and Astronautics was selected as a National first class online course. 
In 2021, a book Series of Grey Systems which edited by professor Sifeng Liu 

were launched by Springer-Nature Group. 
Sifeng Liu. 
Institute for Grey Systems Studies Nanjing University of Aeronautics and 

Astronautics.



Farewell to Our Tutor 

The memorial speech by Sifeng Liu on behalf of students of Prof. Deng. 
At 12:15 in the afternoon on June 22, 2013, our most beloved tutor, Professor Deng 

Julong, saw the end of his eighty-year life journey and left us forever. Professor Deng 
Julong was a tireless lifelong pioneer and founder of Grey System Theory, so the 
world has lost a visionary. In recent days, dark clouds gathered and there was a long 
period of wet weather: it was God’s crying for the death of a great scholar. 

Prof. Deng graduated from the Department of Electrical Engineering of the 
Huazhong Institute of Technology in 1955 and then taught at the Department of 
Automatic Control. In the 1960s, he put forward the idea of control with abandon-
ment. In the 1970s, the method of control with abandonment became a typical control 
method internationally. In 1982, he pioneered Grey System Theory and created a 
brand new subject area in the history of science. His academic achievements were 
highly respected by many in the scientific circles. 

In Prof. Deng’s academic career of 60 years, there existed neither holidays, week-
ends nor a line between service and retirement. Prof. Deng was the editor of The 
Journal of Grey System, an international journal, for 24 years. In his capacity as editor 
he screened articles, checked the contents of their experiments and edited them in 
English; he was dedicated and tireless. Until the last moment of his life, he was still 
working on publishing a scholarly book. 

I still remember 1983, when I first participated in a course on Grey System Theory. 
The mimeographed teaching materials had a blue cover and were presented as a book. 
It was like finding a treasure, as the book attracted me deeply. The book really inspired 
me, as I was a young scholar who was going through a period of confusion and lack 
of direction for academic study. The book shone with sparkles of wisdom and built 
a lighthouse for a knowledge seeker who was in the mist of trying to find his way 
in academic research. This book became the light in my life’s journey. From then 
onwards I forged an indissoluble bound with Grey System Theory.
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My most unforgettable memory is the first time I joined Prof. Deng’s compre-
hensive course on Grey System Theory in Yu Jiashan’s air-raid shelter in 1986. The 
course deepened my understanding and awareness of many scientific problems in 
Grey System Theory. In 1995, when I was about 40 years old, I formally became a 
disciple of Prof. Deng, and from then on I took on the mission of disseminating and 
developing Grey System Theory. 

Today, Grey System Theory is accepted by academics worldwide. A variety of 
academic works on grey system theory have been published in different languages, 
including English, Japanese, Korean and Romanian. In 1989, the British journal 
entitled The Journal of Grey System was launched. In 1997, a Chinese publication 
named Journal of Grey System was launched in Taiwan. Later in 2004, this same 
publication started to be published in English. In 2011, Emerald launched a new 
journal entitled Grey system: Theory and application. 

Since November 2007, the biennial IEEE International Conference on Grey 
System and Intelligent Services has been successfully held in Nanjing, China, 
attracting scholars from different parts of the world. The fourth IEEE International 
Conference on Grey System and Intelligent Services will be held at the University 
of Macau, in November 2013. 

Currently, a significant number of scholars from China, United States, England, 
Germany, Japan, Australia, Canada, Austria, Russia, Turkey, the Netherlands, Iran, 
and others, have been involved in the research and application of Grey System Theory. 
Many countries have begun to recruit and cultivate doctoral and other postgraduate 
students in the area of Grey System Theory. To date, more than 100 students have 
graduated and received Ph.D.s in this area, and tens of thousands of graduate students 
have carried out their research on Grey System Theory. 

At the Nanjing University of Aeronautics and Astronautics, Grey System Theory 
has become an important course for undergraduate, masters and doctoral students 
from many different colleges. 

In 2008, Grey System Theory was selected for a national course award in China. 
In 2013, it was selected as an open learning course, free of charge to all lovers of 
Grey System Theory. 

Currently, there are more than 70 projects on Grey System Theory research and 
applications funded by the National Natural Science Foundation of China. Many 
projects have been supported by the European Union, the United Kingdom, USA, 
Canada, Spain, Romania and other countries. 

In 2012, De Montfort University in the UK funded and organized the first Euro-
pean collaboration network for Grey System research, and representatives from 14 
European Member States attended the session. 

Grey System Theory, as an emerging discipline, has carved its place in science 
and demonstrated strong vitality. 

Farewell to our tutor! 
God bless you!
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(Prof. Sifeng Liu is a former Ph.D. Student of Prof. Julong Deng. Currently Prof. 
Liu works at the Nanjing University of Aeronautics and Astronautics. He also serves 
as the founding director of the Institute for Grey Systems Studies, the founding chair 
of the IEEE SMC Technical Committee on Grey Systems, and the president of Grey 
Systems Society of China.)
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