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Preface

Integrated energy systems are introduced to address efficient utilization of various
distributed energy resources in order to satisfy diverse types of energy demands,
such as electrical loads, heating loads, and cooling loads. The integrated energy
system is typically a complex system with the characteristics of heterogeneity,
hierarchical structure, complex network topology, multi-modal, hybrid variables,
and complex dynamics.

In recent years, there has been numerous research projects on the design, control,
and operation of the integrated energy systems, such as the CERT microgrid in
USA, the European MICROGRID project, and the new energy integration test
project in Japan. Besides, many researches have focused on the uncertainties of
renewable resources penetrated into power grids and the optimal operation of
microgrids. Those approaches usually focus on part of the integrated energy system
without considering the synergies between different operating interests. However,
as the types of renewable energy resources and energy demands increase, it is of
great importance to integrate the distributed energy systems and the power grid in
the integrated energy system in order to satisfy not only the electricity loads but also
the heating loads and cooling loads.

This book is dedicated to research on the core fundamental technologies of
integrated energy system planning and operation, which consist of three parts:
(1) Modeling of integrated energy systems, including modeling of the dynamic
behaviors of various energy devices as well as their connections to form an inte-
grated energy system model; (2) development of high-dimensional multi-objective
stochastic optimization algorithms, and (3) development of decision-making sys-
tems for determination of the final optimal solution of planning and operation of
integrated energy systems, selected from the Pareto sets of the multi-objective
optimization computation. The developed algorithms and methods are applied to
construct a power network based integrated energy system and investigate the
economy and reliability of integrated energy systems which could be achieved
using distributed CHP and CCHP, heat storages, and cool storages, and investigate
the smooth peaks and valleys of power generation and loads, respectively.
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We wrote this book in the belief that planning and operation problems of
integrated energy systems are critical to the integrated utilization of various energies
such as coal, wind power, solar energy, nuclear power, and hydropower for thermal,
cool and electric loads. This book is self-contained with adequate background
introductions underlying analytical solutions of the planning and operation prob-
lems of integrated energy systems and links to the publicly available toolboxes for
the implementation of the modeling, optimization, and decision-making method-
ologies. This book presents many examples of using benchmark systems and
realistic operating scenarios of integrated energy systems, which fully illustrate the
core fundamental technologies of modeling, optimization, and decision-making to
deal with the planning and operation problems of integrated energy systems. We
hope that this book will be useful for those postgraduates, academic researchers,
and engineers working in the area of integrated energy system planning and
operation.

We would like to thank Muhammad H. Rashid, Umamagesh A. P. and Megana
Dinesh, the editors of Springer, for their professional and efficient editorial work on
this book. Our thanks are also extended to all colleagues in the Smart Grid and Its
Automation Group, South China University of Technology, for all assistance
provided, and who have not been specially mentioned above.

This book is based on the work partly funded by the State Key Program of
National Natural Science Foundation of China (Grant No. 51437006).

Guangzhou, China Prof. Qing-Hua Wu
March 2019 Dr. Jiehui Zheng
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Chapter 1
Introduction

Abstract Along with the popularity of distributed energy generation and hybrid
energy appliances, the optimization of large-scale integrated energy systems (LSIES)
combining various kinds of energy has attracted increasing attention. In this chapter,
we discuss the main characteristics of LSIES. The LSIES can be depicted by the
characteristics of heterogeneity, hierarchical structure, complex network topology,
multimodal, hybrid variables, and complex dynamics. Additionally, conventional
techniques on modeling, optimization, and decision-making of the integrated energy
systems are investigated.

Keywords Large-scale integrated energy systems · Modeling methods ·
Multi-objective optimization · Multi-attribute decision-making

1.1 Main Characteristics of Large-Scale Integrated Energy
Systems

LSIES is a typical complex system with the characteristics of heterogeneity (Jean
2015), hierarchical structure (Rodrigo et al. 2014), complex network topology (Wang
et al. 2016), multimodal (Fabian et al. 2018), hybrid variables (Fiorentini et al. 2017),
and complex dynamics (Jose et al. 2018). In the last decades, modeling (Wei et al.
2017), optimization (Zheng et al. 2017), and dynamic analysis (Lim et al. 2015; Jie
et al. 2012) of LSIES with complicated structure were investigated quite intensively
with system security and reliability fully considered (Fig. 1.1).

Currently, an active research is focused on two aspects. On one hand, LSIES is
technologically more complex in structure and larger in scale. It is a typical heteroge-
nous system combinedwithmultiple sub-individuals: electrical power system (EPS),
natural gas system (NGS), and heating system (HS) (Liu andMancarella 2016). Each
sub-individual is a hierarchical system with various network topologies (Samantha
and Nathan 2018; Huang et al. 2017), and they interact with others through coupling
units such as combined heat and power (CHP) (Li et al. 2017). Different charac-
teristics of the coupling energies result in its features of heterogeneity and non-
linearity. Meanwhile, there are different components in the LSIES such as CCHP

© Springer Nature Singapore Pte Ltd. 2019
Q.-H. Wu et al., Large-Scale Integrated Energy Systems, Energy Systems
in Electrical Engineering, https://doi.org/10.1007/978-981-13-6943-8_1
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2 1 Introduction

Fig. 1.1 The framework of an IES

(Li et al. 2016), heat pumps (Ommen et al. 2014), or energy storage (Hemmati 2018;
Renaldi and Daniel 2017), which create lots of linkages among multi-vector energy
networks. The new technologies included in the overall optimisation of energy sys-
tems may cause computational difficulty during the optimization (Amirnekooei et al.
2012; Rahmani and Amjady 2017).

Furthermore, in a competitive energy market, each individual in LSIES optimizes
its own operation strategy to maximize its benefits. Due to the conflicting benefits
of system individuals, only part of the information can be exchanged between each
other (Nogales et al. 2003).

On the other hand, the heterogenous structure leads to hybrid variables and mul-
timodal dynamics of LSIES. In EPS, power travels at the speed of light and usually
reaches a steady state within seconds. In HS, the hydraulic process is slower, which
travels at the speed of sound, taking seconds to minutes to achieve the quasi-steady
state. By contrast, hot water runs even slower at the speed of mass flow rate, so it
takes minutes to reach a quasi-steady state (Pan et al. 2016). These characteristics
aforementioned lead to the complex dynamics and multimodal behaviour (Fabian
et al. 2018) of LSIES.
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1.2 Methodologies of Modeling, Optimization, and
Decision-Making for Integrated Energy Systems

1.2.1 Modeling for Integrated Energy Systems

Theoretical studies on the system modeling of LSIES have occurred in recent years.
Liu et al. (2016) presented an integrated electrical-hydraulic-thermal model to anal-
ysis the LSIES. Nonetheless, the optimal dispatch of heat network is not considered
in order to reduce the calculation difficulty. In Liu et al. (2016), a set of relevant
coupled equations which integrates electricity, heat, and gas networks was solved
by Newton–Raphson method. Nevertheless, the article sets the basis for operational
analysis of multi-energy systems at a district level. Once the system becomes larger,
the model breaks down.

Two of the major global challenges facing the world are responding to global
warming and ensuring energy security. Apart from the energy demand due to cli-
matic conditions, rapid economic development, growing population, and higher liv-
ing standards have increased the amount of energy consumption, a significant fraction
of which is used for building heating. Hence, it is necessary and important for a heat-
ing system to reduce fossil fuel consumption while ensuring the quality of heating.
As an important type of heating system, a district heating system is widely used to
meet the increasing heat demand from the viewpoint of energy saving (Stevanovic
et al. 2007; Namkhainyam et al. 2008; Gebremedhin 2012). A considerable amount
of research has been conducted to reduce the fossil fuel consumption of a district
heating system (Rosa and Christensen 2011; Roonprasang et al. 2008; Østergaard
et al. 2010; Zheng et al. 2012; Sperling and Möller 2012; Marbe and Harvey 2006;
Østergaard and Lund 2011; Ozgener 2010).

In practice, a higher resource efficiency can be achieved by combining heating
and cooling in a system instead of providing these energy services separately (Xu
et al. 2010; Rezaie and Rosen 2012; Chang et al. 2009). A district heating and cooling
(DHC) system, which produces hot and cold fluids, and then distributes them to the
residents via underground pipes, can ensure the security of supply, increase efficiency
and reduce fuel costs. Furthermore, it has been proved that the integrated utilization
of energy resources, including both nonrenewable energy and renewable energy, can
make energy supply sustainable and reliable concurrently (Jiang et al. 2014).

Based on DHC systems, combined cooling, heating and power (CCHP) system
is a kind of multi-generation energy system with cascade utilization of energy to
meet multiple demands, such as electricity, thermal, and cooling energy demands. A
CCHP system mainly includes the prime mover, electricity generator, heat recovery
system, thermally activated equipment, and the management and control system
(Cho et al. 2009; Xu and Qu 2013; Wang et al. 2014). As the rapid development of
the substantial energy like photovoltaic technologies and wind turbines, wind, and
solar energy are utilized more widely in the small-scale CCHP (Marano et al. 2012;
Nosrat et al. 2014; Ranjbar et al. 2014). However, there is still dearth of a more
refined model. On the one hand, many authors neglect the part-load performance of
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the generation units. As a consequence, the results are not so accurate in reality and
the designed system is usually faced with a variety of problems (Yuan et al. 2015). To
the author’s knowledge, the difference between constant characteristic modeling and
part-load characteristic modeling is significant and cannot be ignored (Zhou et al.
2013). On the other hand, further studies are still necessary to establish a relatively
accurate and comprehensive model including the sustainable energy such as solar
andwind energy.More attention should be paid to the influence of sustainable energy
on system generation units.

Along with the popularity of the coupling units, such as DHC and CCHP, large-
scale integrated energy systems (LSIES)was pushed to the fore. Researchers realized
that the present energy scenario that one source’s (e.g., coal, natural gas, and electric-
ity) predominance over the others is not efficient enough for an overall mixed energy
system (Quelhas et al. 2007), and a higher resource efficiency can be achieved by
coupling multiple energy carriers in one system in which power can be converted
arbitrarily between electrical, chemical, and thermal states instead of considering
them individually (Geidl and Andersson 2005). Ana Quelhas (2007) (Quelhas and
McCalley 2007) presented a multi-period generalized network flow model of the
integrated energy system in the United States. The integrated system incorporates
the production, storage, and transportation of coal, natural gas, and electricity in a
single mathematical framework, which address the issue that the current fragmented
decision-making environment in which decision-makers support strategies accord-
ing to their own value system may lead to efficiency losses, and an integrated energy
system and an overall optimization is needed.

LSIES is a network of multiple energy flows, such as electricity, thermal energy,
cooling energy, and natural gas flows. In IES, energy can be transmitted not only in
the form of electricity, but also in many forms such as heat, cold and natural gas. A
wide variety of models are available for analyzing the IES.

To model the multiple energy systems, Martin Geidl first proposed a concept of
Energy Hub (EH) in 2005, which exchanged power with the surrounding systems,
primary energy sources, loads and other components via hybrid input and output
ports (Geidl and Andersson 2007), he said that due to an increasing utilization of
gas-fired and other distributed generation technologies, increased couplings between
electricity, natural gas, and district heating power flow can be expected for the future
(Geidl and Andersson 2005). The energy hub proposed by Martin integrates the
power grid, natural gas pipeline network, district heating and cooling network, and
distributed generation to provide not only electricity but also heating and cooling
energy and hot water for users. Considering a system composed of several hubs, the
model can be split into two parts: hub power flow and network power flow. Each
model can be stated as a matrix, and based on this, Martin conducted more in-depth
research in the following articles (Geidl and Andersson 2005, 2007; Geidl et al.
2007).

Based on EH, a large amount of research has been done over recent years. But
most research (Parisio et al. 2011; Shahmohammadi et al. 2011; Zhang et al. 2015)
in this area paid more attention to the hub internal without considering the network
outside, and modeling of CCHPmicrogrid is a good example. Research on modeling
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of CCHP concentrates more on type selection of prime movers or chillers without
considering energy flow of the whole network (Gu et al. 2014).

Modeling of LSIES considering network energy flow is a hot topic in the area of
planning and operation of LSIES. Scala (2014) addressed the problem of optimal
energy flow management in multi-carrier energy networks in the presence of inte-
grated energy hubs. In his research, a gas pipeline was assumed to be the same as
an electrical network, and the bus voltage and the natural gas pressures in all gas
pipelines are simulated under hourly changed energy price and thermal load, the
results showed that compared to the voltage magnitudes and angles, the natural gas
pressures were always in a relatively stable state. Moein (2014) proposed a model
of coupling gas and electricity network and conclude that with energy hubs, the lo-
cal marginal costs of electricity and gas were decreased. It’s noteworthy that these
researchers both concentrated on the relatively stable gas pipeline network instead
of the cooling and heating pipeline network which is not so stable and may cause
significant energy loss.

As mentioned above, researchers preferred integrated models (Liu et al. 2016;
Shabanpour-Haghighi and Seifi 2015, 2016) of natural gas, electricity, and heating
and cooling energy. Themodeling is not accurate enough and difficult to be applied to
large-scale systems. An accurate integrated model is usually large, non-convex, too
time-consuming to solve, or even not convergent. In order to deal with this problem,
lots of simplifications need to be done to the integrated model. Therefore, some
important characteristics of the system may be lost. Besides, since the models are
established and solved in an integrated manner, it is difficult to modify the coupled
model to increase or decrease components.

In an integrated model, assumptions are made that the participants of the sys-
tem completely obey the arrangement of the whole system without considering their
own interests, which is the traditional operating paradigm developed for regulated
industries. Nevertheless, recent move to an open up energy market where system
individuals can make decisions on their own has touched off the requests for opera-
tional independence and information privacy. It is obvious that traditional centralized
optimizationmethods which need all information about the system are not applicable
for solving optimal operation problem of LSIES.

Traditional modeling methods for complex systems are mainly divided into two
types, one is linearmodelingmethod, and the other is nonlinearmodelingmethod. For
linear modeling method, state-space equations are widely used and simplifications
are done to complex systems. In this way,many details on important characteristics of
complex systems are lost. Additionally, hundreds of equations of a complicated sys-
temwouldmake themodel hard to solve. For nonlinearmodelingmethod, developers
model one same system in various ways. The accuracy, the boundary constraints, and
the order of equations may vary a lot from one model to another. This results to the
difficulty of comparison with disparate solutions drawn from one system. Therefore,
amore common and standardmodel which can distinctly represent a complex system
is essential.
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1.2.2 Optimization for Integrated Energy Systems

The optimization methods of LSIES is another focus of attention. Shabanpour-
Haghighi (2015, 2016) utilized teaching-learning based optimizationmethod to solve
energy flow of electricity, gas, and heat combined networks. The objective function
was to minimize the total operating costs of the system, which was composed of the
costs of natural gas, coal, biomass, and so on. A set of nonlinear equations based on
the nodal power balance of each network was solved by Newton–Raphson method.
In Liu et al. (2016), a multi-temporal simulation model was proposed to model a
multi-vector district energy system which integrates electricity, heat and gas net-
works in an integrated manner. Then the model was applied to a real case study of
University of Manchester to validate the efficiency of the optimization method. Liu
andMancarella (2016) emphasized that since CCHP, heat pumps, and electric boilers
create lots of linkages among multi-vector energy networks, an integrated electrical-
hydraulic-thermal method will play an important role in the analysis of IES. Jing
et al. (2014) presented a comprehensive model of integrated energy based district
heating and cooling system, and an optimal operating strategy was investigated to
optimize the daily running cost of the whole system. Zheng et al. (2015) developed
a multi-objective group search optimizer to optimize the power dispatch of a LSIES
with the selected objectives compromising the competing benefits of both the power
grid and the district heating and cooling units.

The optimization problems of LSIES may have one single-objective function
which is typically related to economic performances. However, the energy supply
reliability and CO2 emission reduction are getting more and more important in the
analysis of LSIES’s performance. Decreasing one of the different objectives would
increase the other one and vice versa. Therefore, amulti-objective optimization could
be utilized to obtain the global optima of the problems based on the priority of each
objective (Shabanpour-Haghighi and Seifi 2015).

A many-objective optimization problems (MaOPs) is a special kind of multi-
objective optimization problems (MOPs) with more than three objectives. With the
multiple conflicting demands faced by the industry today for superior quality, low
cost, higher safety, and so on, competitive edge could only be established by design-
ing the products and processes that account for as many performance objectives as
possible. It implies that many objectives need to be simultaneously dealt with, in
an optimization problem. However, it is hard to obtain the entire solution set of a
many-objective optimization problems (MaOPs) by multi-objective optimization al-
gorithms (such as NSGA-, GSOMP) because of the difficulties brought by the curse
of dimensionality (Wang and Yao 2016) (Fig. 1.2).
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Fig. 1.2 The relationships of objective functions in the multi-objective optimization

1.2.3 Decision-Making for Integrated Energy Systems

The major impediments in handling large number of objectives relate to stagnation
of search process (Deb and Saxena 2005), inefficiency of selection operators, high
computational cost, and difficulty in visualization of objective space (Saxena et al.
2013).

(1) Inefficiency of selection operators: with the increase in M , multi-objective
problem may well have a high-dimensional Pareto-set with complicated shapes, this
makes the most existing MOEAs and MGSO ineffective, whose primary selection
based on Pareto-dominance.

(2)High computational cost: if a continuousmulti-objective optimization problem
(with M objectives) meets the regularity property, the dimension of its POF can be
M − 1. Therefore, the number of points needed to approximate the whole POF
increase exponentially with M . The same phenomenon can be observed in discrete
problems.

(3) Difficulty in visualization of a POF for problems with M ≥ 4: finding a higher
dimensional Pareto-optimal surface is one important matter, but visualizing it for a
proper decision-making is another equally important matter.

There are more and more related researches that have been put forward to over-
come the difficulty of MaOPs, they can be roughly divided into the following three
classes:

(1) Scalarization technique: all objectives are converted into a single composite
objective by the weighed sum approach. With different vectors repeating the scalar-
ization process, there will be a number of Pareto-optimal solutions, then decision-
making can be implemented to complete the optimization. However, each Pareto-
optimal solution is independent to each other, thereby losing the parallel search ability
often desired in solving complex optimization problems.

(2) Involvement of decision-makers (DM): for a large number of objectives, it
can involve a decision-maker right in the beginning of the optimization process and
instead of finding the optimal solutions corresponding to a specific weight-vector or
varepsilon-vector, although this beats the dimensionality problem described earlier
by not finding points on the complete high-dimensional Pareto-optimal frontier and
also providing the decision-maker with a set of solutions in a region of interest to
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her or him, but this approach may only be a portion of the true Pareto-optimal front,
thereby reducing the number and dimensionality of target solutions, arriving at a
biased distribution of Pareto-optimal solutions (Deb and Saxena 2005).

(3) Objective reduction: because of considering the importance of complete
Pareto-optimal front, this approach is more suitable for solving the MaOPs with re-
dundant objectives. The greatest difficulty of MaOPs is the curse of dimensionality,
that is to say if N points are needed for adequately representing a one-dimensional
Pareto-optimal front, Nm points will be necessary to represent an M-dimensional
Pareto-optimal front. A lower dimensional Pareto-optimal front can be possessed by
eliminating objectives that are redundant.

In the absence of any other information, none of the generated Pareto-optimal
solutions can be said to be better than the other. Thus, preference information is in
demand to determine the ROI, and different types of preference information asked
from the DM include marginal rates of substitution, surrogate values for trade-offs,
classification of objective functions and reference points (Ruiz et al. 2015; Miettinen
and MaKela 2002). A reference point consists of aspiration levels, that is, objective
function values that are desirable or acceptable for the DM. However, there are addi-
tional cases of more than one decision maker with conflicting interest and different
importance level from a hierarchical viewpoint. We need to employ a negotiation
support system (Bechikh et al. 2013) to aggregate the DMs conflicting preferences.

It must be noted that the grid for the objective functions in the AUGMECON2
does not need to be constant throughout the whole process, but can be adjusted.
The number of efficient solutions generated AUGMECON2 is determined by the
length of equal interval, the longer the length of equal interval, the less the number of
efficient solutions. That is, the number of effective solutions is certain and artificially
controlled. As such, the interactive methods and the AUGMECON2 is a good match
to assist the DM to identify the most preferred efficient solution after a number of
iterations. In this way, the DMmay start with a coarse grid (longish equal interval) in
the early iterations to optimize MOPs or MaOPs, in order to cover quickly the whole
Pareto front. Subsequently, in the late iterations, when the DM is making fine tuning,
they can accordingly use a denser grid for investigating more thoroughly the ROI.
In the following section, we assume that the reference point below is the reference
point after negotiation. A reference point is given by q = (q1, q2, . . . , qk)T , where
qi is an aspiration value for the objective function fi provided by the DM, for all i =
1, . . . , k. Usually, a reference point is achievable if there is a feasible solution whose
objective values simultaneously achieve or improve the corresponding reference
levels; otherwise, the reference point is unachievable.

1.3 Contents of This Book

This book is organized as follows.
Chapter 2 introduces themodeling of large-scale integrated energy systems,which

consist of district heating and cooling systems, combined cooling heating and Power
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systems, energy hubs, and individual-based model for the LSIES. First the DHCs are
presented, including DHC station, water supply network, heating load, and cooling
load. In the modeling of CCHP, the wind turbine generator, gas turbine, and heat
recovery generator and load center are described. Moreover, the concept of energy
hubs is introduced, including gas turbine, energy storage battery, heat exchanger and
so on. Finally, an individual-based model is defined for LSIES along with several
IBMs for test IES.

Chapter 3 focuses on the multi-objective optimization algorithms dealing with
the multi-objective optimization problems. First, a multi-objective group search op-
timizer with adaptive covariance and Lévy flights is presented with three groups
applying different search strategies. Moreover, this chapter presents a novel multi-
objective evolutionary predator and prey strategy (EPPS) employing novel search
mechanisms to guarantee the global and local searching abilities. Comparisons be-
tween the EPPS and the state-of-the-art algorithms are summarized in this chapter.

Chapter 4 concentrates on the introduction ofmulti-attribute decision-making sup-
port system, including an improved entropyweightmethod, evidential reasoning, and
interval evidential reasoning. Furthermore, the relationship between different objec-
tives are analyzed using a framework of reduction for nonlinear many objectives.
The performance test is carried out and comparisons between these multi-attribute
decision-making analysis methods are discussed.

Chapter 5 deals with the planning problems of the LSIES considering the optimal
unit sizing for the LSIES and the multistage contingency-constrained co-planning
for the LSIES. In the unit sizing problem, the multi-objective interval optimization
model is first presented. Then the corresponding optimization and decision-making
methods are raised to solve the planning problem. In the multistage contingency-
constrained (MCC) co-planning problem, the MCC co-planning model is developed
with the consideration of contingency constraints. Afterwards, the solution method-
ology for the co-planning problem is introduced along with case studies in two
different simulation test systems.

Chapter 6 is concerned with the optimal operation of LSIES considering multiple
operating interests and various operating scenarios. Firstly, the optimal operation
of LSIES with distributed DHCs embedded is illustrated. The operating models of
electricity network and gas network are introduced, and the coordinated scheduling
strategy for the integrated electricity and gas networks is developed. Then an energy
trading game for LSIES considering conflict benefits is studied in this chapter. The
energy trading game of DESs and EUs integrated into the LSIES is introduced, and
simulation studies using a hybrid multi-objective optimization and game-theoretic
approach are conducted on a test IES.

1.4 Summary

In this chapter, the background of LSIES and the modeling, optimization and
decision-making for the LSIES are introduced first. The main characteristics of
LSIES has been presented and comparedwith the traditional power systems. Then the
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existing methodologies of modeling, optimization, and decision-making for LSIES
are summarized. Finally, the book outline is provided to give a clear view of the
entire contents.
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Chapter 2
Modeling of Large-Scale Integrated
Energy Systems

Abstract Large-scale integrated energy systems are networks of various energy
flows, such as electricity, thermal energy, cooling energy, and natural gas flows. In a
LSIES, energy can be transmitted not only in the form of electricity, but also in many
other forms such as thermal energy and natural gas. A wide variety of models have
drawn much attention, such as district heating and cooling systems, combined cool-
ing heating and power systems, and energy hubs. Each of these models is described
in detail in the following sections. This chapter presents the models of subsystems
of IES, such as district heating and cooling systems, combined cooling heating and
power systems. Moreover, we propose an individual-based model (IBM) for model-
ing LSIES.An individual is a basic unit consisting of a quintuple of input, knowledge,
state, function, and output sets. It can make decisions independently according to
accurate evolutionary mechanisms described by the function set. Additionally, the
individuals interact with others through input and output sets in a unified form. In this
way, a complex system can be decoupled into several independent individuals whose
internal characteristics are fully specified and hidden from the external environment.

Keywords Individual-based model · District heating and cooling systems ·
Combined cooling heating and power systems · Energy hubs ·
Large-scale integrated energy systems

2.1 District Heating and Cooling Systems

For the sake of simplicity, we have made the following assumptions for this model:

(1) The integrated energy-based DHC system is proposed for the residential build-
ings in hot-summer and cold-winter periods. The system operates in the heating
mode in winter and conversely cooling mode in summer.

(2) The proposed system is a small-scale system, using direct heating and direct
cooling because of the small heating and cooling areas.

(3) The site selection of a district heating and cooling station and the laying of
pipelines fully take into account the fairness of energy supply, and the supply
water temperature for each building is assumed to be the same.
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(4) The heat or cold losses of pipelines caused by water losses are neglected, here
we just consider heat and cold losses caused by thermal convection.

(5) Each building is regarded as a whole from the viewpoint of a network. The dry
bulb temperature or relative humidity inside each building is set as an average
value.

2.1.1 Description of the DHC System

Figure 2.1 illustrates a two-pipe direct district heating and cooling system located in
a residential area. The system includes a district heating and cooling station, a water
supply network, and terminal units. The district heating and cooling station consist of
two off-grid wind generators (Permanent Magnet Synchronous Generator, PMSG),
three absorption chillers, two reciprocating chillers, and heat producers including
a gas-fired hot water boiler, an electric water boiler, and a flat-plate solar water
heater. The water network, including water pipes, hot water pumps (P1, P3, P5, . . . ,
P2n+1), and chilled water pumps (P2, P4, P6, . . . , P2n+2), are employed to transport
hot water or cold water from the station side to terminal units in resident buildings.
Heating radiators and fan coil units are used as the terminal units for heating and
cooling of buildings, respectively. At the station side, valves (V3, V4, V5, V6, V7,
V8, V9) are closed and valves (V1, V2) are open during a heating season. During this
season, the chillers are not put into activated operation and the system just operates
in the heating mode. Conversely, valves (V3, V4, V5, V6, V7, V8, V9) are open and
valves (V1, V2) are closed during the cooling season. The absorption chillers and
the reciprocating chillers use thermal energy and electric energy as the driving force,
respectively, to supply chilled water for cooling in a coordinative manner. While the
operation mode of the system is changed, the set of circulating pumps being used
will be switched to the corresponding condition, as well as terminal units. It should
be noted that the circuit breaker (QF1) is switched off and the circuit breaker (QF2) is
turned on in a cooling season. This is because electricity-driven compression cooling
is much more energy efficient than heat-driven absorption cooling while electrical
power is utilized as an energy source.

2.1.2 District Heating and Cooling Station

2.1.2.1 Solar Water Heater

As we know, solar energy is uncertain and intermittent. In consideration of stability
and reliability, the water heater is used for water preheating as shown in Fig. 2.1. A
steady-state model of the water heater can be expressed by (Zhai et al. 2007)

PH3 = ηcNcolAcHT = M0cw (To3 − Ti3) (2.1)
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Fig. 2.1 Schematic diagram of a DHC system

where PH3 is the heat production of the heater, ηc is the efficiency of the solar
collector, Ncol is the number of solar collectors present at the site, Ac is the area of
a solar collector, HT is the total solar flux incident on the tilted collector, M0 is the
mass flow of water through the tank, and Ti3 and To3 are the inlet temperature and
the outlet temperature of the tank, respectively.

2.1.2.2 Off-grid Wind Power System

An off-grid wind turbine generator directly connected to resistive elements is used
for water heating. The detailed introduction to its model and control strategies can be
referred to Jiang et al. (2014). For eachwind speed, the resistance of heating elements
can be adjusted to a desired value according to a reference electrical rotating speed
so that the generator can operate at an expected output.

2.1.2.3 Electric Water Boiler

The energy supplied to the electric water boiler comes from the wind turbine genera-
tors and the power grid. The steady-state model of the electric boiler can be described
as (Dolan et al. 1996; Paull et al. 2009):

PH2 = η2
(
Ppur + PWG

) = M0cw (To2 − Ti2) (2.2)

where PH2 and η2 are the heat production and the operation efficiency of the electric
water boiler, respectively, Ppur is the electric power purchased from the power grid,
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M0 is the mass flow of water through the tank, cw is the specific heat of water, and Ti2
and To2 are the inlet temperature and the outlet temperature of the tank, respectively.

2.1.2.4 Gas-fired Water Boiler

A low temperature central gas-fired boiler investigated in Spreitzer et al. (2002) is
used for water heating. Under steady-state conditions, the model can be expressed
as

PH1 = η1qgBg = M0cw (To1 − Ti1) (2.3)

where PH1 and η1 are the heat production and the operation efficiency of the gas-fired
water boiler, respectively, qg is the calorific value of natural gas, Bg is the natural
gas consumption rate, M0 is the mass flow of water through the water compartment,
and Ti1 and To1 are the inlet temperature and the outlet temperature of the water
compartment, respectively.

2.1.2.5 Reciprocating Chiller

Reciprocating chillers are used in a wide range of commercial and industrial ap-
plications, and represent a substantial fraction of installed cooling systems. In this
research,we consider chiller operation at steady state only, namely, turnon and turnoff
transients are neglected. For a reciprocating chiller, its cooling rate can be expressed
as

Qc1 = COP1 · Ppur = Mc1cw
(
T in
evap1

− T out
evap1

)
(2.4)

where COP1 is the coefficient of performance of a reciprocating chiller, which is
defined as the cooling rate Qc1 divided by the electric power input Ppur, Mc1 is
the mass flow rate of chilled water through the chiller, and T in

evap1
and T out

evap1
are

the evaporator inlet temperature and outlet temperature of a reciprocating chiller,
respectively.

A simple model for predicting the performance of reciprocating chillers was uti-
lized (Gordon and Ng 1994). The model predicts specific functional dependences on
the key system variables, with three adjustable parameters that characterize chiller
irreversibility, which is described as follows:

1

COP1
= −1 + T in

cond1

T out
evap1

+
−A0 + A1T in

cond1 − A2

(
T in
cond1/T

out
evap1

)

Qevap1

(2.5)

where T in
cond1 is the condenser inlet temperature of a reciprocating chiller, Qevap1 is

the heat transfer to the evaporator, Qevap1 = Qc1, and the constants A0, A1, and A2

characterize the irreversibility (entropy generation) of a particular chiller.
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2.1.2.6 Absorption Chiller

Absorption chillers have become attractive as environmental concerns are accounted
for in chiller sector, in particular when either natural gas for firing the chiller is
abundant, or when low-grade thermal energy is available. Taking into account steady
state only, the cooling rate can be obtained as

Qc2 = COP2 · Qgen = Mc2cw
(
T in
evap2

− T out
evap2

)
(2.6)

where COP2 is the coefficient of performance of an absorption chiller, which is
defined as the cooling rate Qc2 divided by the input thermal power to the generator
Qgen, Mc2 is the mass flow rate of chilled water through the chiller, and T in

evap2
and

T out
evap2

are the evaporator inlet temperature and outlet temperature of an absorption
chiller, respectively.

A simple two-adjustable parameter model for predicting the performance pre-
sented was utilized (Gordon and Ng 1995). The approximate formula for COP2 is
given by

1

COP2
=

(
T in
cond2 − T out

evap2

T out
evap2

) (
T in
gen

T in
gen − T in

cond2

)

+

1

Qevap2

(
T in
gen

T in
gen − T in

cond2

)(

A3 − A4
T in
cond2

T in
gen

) (2.7)

where T in
cond2 and T in

gen are the condenser inlet temperature and the generator inlet
temperature of an absorption chiller, respectively, and the constants A3 and A4 char-
acterize the irreversibility (entropy generation) of a particular chiller.

2.1.3 Water Supply Network

2.1.3.1 Pressure Drop Model

To design the control strategy for circulating pumps, a water network pressure drop
model that characterizes the pressure drop on each individual component in the
system is developed. Figure 2.2 illustrates the simple structure of water network
pressure drop for the system. Variable speed circulating pumps are employed to
overcome the friction of a piping system and ensure the hydraulic balance of a
heating system. Pump curves and piping head loss curve are shown in Fig. 2.3. ωp

represents the rotational speed of a pump. As observed from Fig. 2.3, the operation
point of a pump is the intersection of both the piping head loss curve and the pump
curve (Ma and Wang 2009).

The pumps installed in the main supply pipeline is used to overcome the piping
pressure drop, which includes the pressure drop across the heat units or chillers,
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Fig. 2.2 Structure of the
water network pressure drop
model

Fig. 2.3 Characteristics of
pump head and piping head
loss

the fittings around pumps and the main supply and return pipeline. This can be
mathematically described as

H0 = (
SDHCS + Sp,tol + Ss + Sr

)
Ms

2 (2.8)

where H0 is the head of pump installed in the main supply pipeline, Ms is the water
flow rate of main pipelines, and SDHCS, Sp,tol, Ss and Sr are the flow resistance of
operating heat units or chillers, fittings around pumps, supply pipeline and return
pipeline, respectively.

The pump installed in the j th branch is used to overcome the friction of the j th
branch pipeline, which can be expressed as

Hj = Sj Mw j
2 (2.9)
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where Hj is the head of pump installed in the j th branch, and Sj and Mw j are the
flow resistance and the flow rate of the j th branch pipeline, respectively.

2.1.3.2 Temperature Drop Model

The temperature drops exponentially along water flow in a pipe. The outlet water
temperature of a pipe can be approximately determined by (2.10) (Awad et al. 2009)

Top =
{ (

Tip − Ta
)
(1 − γ) + Ta γ ≤ 1

Ta γ > 1
(2.10)

where γ = Kpl

cwMp
, Top, Tip, Mp, Kp and l are the outlet water temperature, inlet

water temperature, water flow rate, heat transfer coefficient and length of a pipe,
respectively, and Ta is the ambient temperature.

2.1.4 Heating Load

2.1.4.1 Load Calculation

Each building is regarded as a single block from the viewpoint of a heating network.
The heating load of building j is estimated based on the volumetric heat indexmethod
by (2.11)

QHL j = qV j Vj
(
Tn j − Ta

)
(2.11)

where subscript j represents building j ( j = 1, 2, . . . , n), QHL j , qV j , Vj and Tn j are
the heating load, volumetric heat index, peripheral volume and indoor temperature
of building j , respectively.

2.1.4.2 Heating Radiator Model

The model of a heating radiator presented in Jiang et al. (2014) is utilized and the
heat release rate is approximately calculated as follows:

Qrad j = Kr j Ar j

(
Tw,in j + Tw,out j

2
− Tn j

)

= a j Ar j

(
Tw,in j + Tw,out j

2
− Tn j

)1+b j
(2.12)
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where Qrad j , Tw,in j , Tw,out j , Kr j and Ar j are the heat release rate, the inlet water
temperature, the outlet water temperature, heat transfer coefficient, and the total heat
radiating area of the radiators installed in building j , respectively, and a j and b j are
experimentally determined parameters related to Kr j .

The heat transferred from the network to the radiators is determined by (2.13)

Qnet j = Mw j cw
(
Tw,in j − Tw,out j

)
(2.13)

where Qnet j is the heat transferred from the network to the radiators installed in
building j . When the system reaches steady-state conditions, the following balance
equation can be obtained:

QHL j = Qrad j = Qnet j . (2.14)

2.1.5 Cooling Load

2.1.5.1 Load Calculation

The total cooling load of a building, including sensible and latent load, is caused by
heat transferred through the building envelope (walls, roof, floor, windows, doors,
etc.) and heat generated by occupants, equipment, and lights. The sensible load
affects the dry bulb temperature, while the latent load affects the moisture content
of the conditioned space. In this research, the cooling load is calculated using the
CLTD/SCL/CLF method (Spitler et al. 1993) based on the designed data and hourly
based weather data of a typical summer day.

The factor values of CLTD, CLF and SCL can be obtained from tables presented
in AHSRAE fundamentals handbook (ASHRAE 1997). Since the ASHRAE tables
provide hourly CLTD values for one typical set of conditions, i.e., indoor designed
temperature of 78 ◦F, outdoormaximum temperature of 95 ◦Fwithmean temperature
of 85 ◦F, and daily range of 21 ◦F. Thus, the CLTD values should be corrected slightly
in other conditions. The correction of CLTD is expressed as

CLTDcorrected = CLTDtable + [(1.8Tmean + 32) − 85] − [(1.8Tn + 32) − 78]
(2.15)

where CLTDcorrected is the corrected CLTD value, CLTDtable is the CLTD value ob-
tained from ASHRAE table, Tn is indoor temperature, and Tmean is mean outdoor
temperature.

2.1.5.2 AHU Model

To predict the required chilled water flow rate of each building under different oper-
ating conditions, an air handling unit (AHU) model is assumed and used to represent
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all terminal units in the cooling mode. It can be concluded from (Ma andWang 2009;
Ni et al. 2006) that the required water flow rate for a given condition is strongly de-
pendent on the cooling load, air flow rate, and AHU inlet air and water temperatures.
An empirical formula presented in (Ma andWang 2009) is used to predict the perfor-
mance variations of an AHU associated with the changes of major variables, which
is given by

Mw = d0 (QCL)
d1 (Ma)

d2
(
ha,in − hw,in

)d3 (2.16)

where d0-d3 are coefficients, QCL is the total cooling load of a building, Mw and Ma

are the chilled water flow rate and the air flow rate of an AHU, respectively, ha,in
is the specific enthalpy of air at the inlet of AHU, hw,in is the specific enthalpy of
saturated air, whose temperature is the same as the AHU inlet water temperature.

2.2 Combined Cooling Heating and Power Systems

2.2.1 Description of CCHP Microgrid

Based on our previous work (Jing et al. 2014), a more detailed system is proposed
in Fig. 2.4. The model consists of solar-powered water heaters (SH), wind turbines
(WT), gas-fired boilers (GB), electric water boilers (EB), gas turbines (GT) with heat
recovery steam generator (HRSG), absorption chillers (AC), reciprocating chillers
(RC), and load center (LC) with HC.

The systemmainly works in two modes corresponding to one in winter as heating
mode, and the other in summer as cooling mode. In the heating mode, the magnet
valves V1 and V2 are open, while the magnet valves V3, V4, V5, and V6 are closed.
During this season, the chillers are not used and the system supplies power and
heating energy to the users at demand side. It is necessary to note that we assume that
excess electricity produced in the system cannot be sold back to the grid. Therefore,
surplus electricity may be wasted. In the cooling mode, the magnet valve V1 and
V2 are closed, while magnet valves V3, V4, V5, and V6 are open. The hot water is
converted to chilled water to meet user’s cooling energy demand.

2.2.2 Wind Turbine Generator

A grid-connected WT with a permanent magnet synchronous generator (PMSG) is
applied to generate electricity. The energy obtained from WT can be calculated as
follows:
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Fig. 2.4 Schematic diagram of CCHP microgrid

PWT (t) =

⎧
⎪⎪⎨

⎪⎪⎩

0 v < vci
0.5Cpρ0πr2v3 vci < v < vcr
Pr vcr < v < vco
0 v > vco

(2.17)

where PWT is the output power of WT, Pr is the rated output power, Cp is the power
coefficient, ρ0 is the density of outdoor air, vci, vco, and vr are the cut-in, cut-out, and
rated speed of WT, respectively.

2.2.3 Gas Turbine and Heat Recovery Steam Generator

The mathematical model of GT can be described by the following equations:

PGTin = BgVgGT

HHRSG = ηHRSGPGTin
PGTout = ηGTPGTin = Ṁ2cW(TOGT − TIGT)

(2.18)

where VGT is the natural gas consumption rate per second of the GT.
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2.2.4 Load Center

The LC is equipped with both household air conditioners, which can transform
electricity to cooling energy or heating energy. The energy equality constrains of LC
can be described as

Dp = Ppp + Ppc + Pph
Dc = Pcl + Ppc ∗ ηEC
Dh = Phl + Pph ∗ ηEH

(2.19)

where Ppc and Pph are electricity consumed by electric conditioner to generate cool-
ing and heating energy, respectively. Ppp is electricity consumed by other electrical
appliances.

2.3 Energy Hubs

2.3.1 System Description

The framework of typical EH presented in this section is illustrated in Fig. 2.5. The
EH includes energy supply terminals, energy conversion equipment terminals, and
end user terminals. As we can see in Fig. 2.1, utility grid, photovoltaic generation,
and natural gas form the energy supply terminals. As for energy conversion equip-
ment terminals, it consists of several component like gas turbine (GT), PV panel,
energy storage battery (ESB), heat recovery steam generator (HRSG) with afterburn-
ing (AB), absorption chiller (AC), heat exchanger (HE), and electric chiller (EC).
Besides, the end user terminals are composed of the electric load demand, hot water
demand, and cooling demand.

In EH, theGT,which can generate electricity and recoverable heat simultaneously,
is applied as power generator unit in the system. On the one hand, the electricity
supply needs to not only satisfy part electricity demand but also drive the EC, while
the electricity power provided by the GT is insufficient, the shortage part will be
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Fig. 2.5 Schematic diagram of an EH
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supplied by PV panel and public grid. Conversely, when the electricity power GT
provided exceeds the requirement, the excess electricity power will be stored in the
battery or sold back to the public grid. On the other hand, recovered heat is divided
into two parts.

One part is transformed by the HE to meet the hot water requirement of end users.
The other part is applied to drive the AC to work normally to generate the required
cooling load. Once the hot water obtained by heat exchanger can not completely
meet the hot water requirement, the rest requirement will be provided by the HRSG.
In terms of the cooling requirement, it can be gained from two ways: EC and AC,
respectively.

2.3.2 Gas Turbine

GT, which provides electricity and recoverable heat simultaneously, is regarded as a
power generation unit.

when considering the off-design characteristic of GT, the output of electricity, the
amount of thermal output, and the amount of gas fuel consumption have a coupling
relationship. And the output of electricity, the gas fuel consumption are completely
determined by the thermal output. Hence, the characteristic performance ofGT based
on off-design model is expressed below (Li et al. 2003):

PGT(t) = K1Q
2
GT(t) + K2QGT(t) + K3 (2.20)

PNG(t) = K4Q
2
GT(t) + K5QGT(t) + K6 (2.21)

VGT(t) = PNG(t)

LHV
(2.22)

where NG refers to natural gas, LHV indicates lower heating value.

2.3.3 Energy Storage Battery

For the purpose of shaving the peak demand and compensating the fluctuation of
renewable energy, ESB is employed in the EH.

What’s more, in this chapter, we choose the Lithium-ion (Li-ion) battery because
of its optimal energy-to-weight ratio and the slow loss of charge (Gao et al. 2002).
The state of charge (SOC) is its unique state variable.

Since charging and discharging cannot be performed simultaneously, Pc(t) and
Pd(t) have the mutually exclusive relationship which can be expressed through two
binary variables γch

ESB.t and γdis
ESB.t . In this way, the equations describing charge and

discharge can be formulated below (Chen et al. 2012):
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SOC(t+1) =(1− f )SOC(t)+ ηcPc(t)

E
γch
ESB.t−

Pd(t)

ηdE
γdis
ESB.t

γch
ESB.t + γdis

ESB.t = 1

∀t ∈ T

(2.23)

where T is total number of hours per day (24h).

2.3.4 Heat Recovery Steam Generator with Afterburning

The HRSG, which has the ability to significantly improve the energy efficiency by
recovering the high-grade waste heat, is more and more widely applied in cogen-
eration cycle systems (Liu et al. 2004). Generally speaking, HRSG turns the room
temperature water into hot water we need by recovering the waste heat generated
from the GT. During shutdown times of the GT, the hot water demand is met by the
thermal of complemental burning of natural gas. In actual operation, owing to the
difference in users’ need for steam temperature, HRSG is often operated under dif-
ferent parameters. Therefore, The efficiency and rated value of the HRSG is usually
different, which will affect the operation performance of the entire EH.

In order to simplify the complexity of the model, in this article, we consider the
thermal characteristics of the HRSG to be related to its rated thermal output QHRN

and its rated thermal efficiency ηHRN. The relationship of the QHRN and ηHRN can be
described as (Li et al. 2003)

ηHR(t)

ηHRN
= K7

(
QHR(t)

QHRN

)2

+ K8

(
QHR(t)

QHRN

)
+ K9 (2.24)

QHRin(t) = QAB(t) + QGT(t) (2.25)

QAB(t) = VAB(t)LHV (2.26)

2.3.5 Absorption Chiller

The AC has been studied by the majority of researchers due to its reliability and full
utilization in the low- grade heat of waste heat. Until now, there are three types of
absorption chillers for providinguserswith cooling requirement: single-, double-, and
triple-effect chillers. Furthermore, the temperature of heat resource is the key factor
to be considered when choosing the chiller. The thermal characteristics performance
of the AC can be presented as follows when the off-design characteristics of the AC
is considered in the model (Li et al. 2006):



28 2 Modeling of Large-Scale Integrated Energy Systems

COPAC(t)

COPACN
=

QAC(t)

QACN

K10

(
QAC(t)

QACN

)3

+K11

(
QAC(t)

QACN

)2

+K12

(
QAC(t)

QACN

)

+K13

(2.27)

QAC(t) = COPAC(t)QACin(t) (2.28)

where ACN is defined as input of absorption chiller.

2.3.6 Electric Chiller

Unlike the AC which can only be driven by the low-quality waste heat, the EC
can generate cooling by means of consuming electricity. Therefore, it is obvious
that the COP of EC is higher than AC on account of the consumption of high-quality
electricity. The thermal performance ofEC is formulated as followswhen considering
the off-design characteristics of EC (Li et al. 2006):

COPEC(t)

COPECN
=

QEC(t)

QECN

K14

(
QEC(t)

QECN

)2

+ K15

(
QEC(t)

QECN

)

+ K16

(2.29)

QEC(t) = COPEC(t)PEC(t) (2.30)

2.3.7 Heat Exchanger

Since the thermal efficiency of HE is basically the same under different thermal load
conditions, therefore in this section we considered a fixed thermal efficiency which
is represented as

ηHE(t) = ηHEN = QHEout(t)

QHEin(t)
(2.31)

where HEin and HEout represent the input and output of heat exchanger, respectively.

2.3.8 Photovoltaic Generation

Solar photovoltaic systems convert solar irradiation into electricity, which is needed
for photoelectric effects. The basic building block of solar photovoltaic power is
either solar cells or photovoltaic cells (Omer 2008). In this section, photovoltaic cell
is operated in accordance with the predictive output PS(t).
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2.4 Individual-Based Model for the LSIES

2.4.1 Definition of IBM

A compatible unified model for complex system, called individual-based model
(IBM) is proposed. IBM is composed of individual models Σ and system
models M .

An individual comprises of a quinary tuple of input, knowledge, function, state,
and output sets. A standard description of the basic IBM is given by

Σ = (I, K , X, F, O) (2.32)

where Σ is a mathematical description of an individual which can be described by
a quinary tuple. I is the input set, O is the output set, K is the knowledge set, X is
the state set, and F is the function set. Layout of internal mechanism of an IBM is
provided in Fig. 2.6

• The input of an individual at time t , denoted by it , is given by (2.33)

it = {(i, t)|i ∈ I, t ∈ T } (2.33)

where T is the time sequence of input and output information from the environ-
ment. I is input set which changes during a finite time interval. The information
of the environment can be transmitted in through this set.

I = {i1, i2, . . . , it } (2.34)

• The inherent knowledge of an individual at time t , denoted by kt , is given by
(2.35):

kt = {(k, t)|k ∈ K , t ∈ T } (2.35)

where K is the set of individual inherent attributes.

K = {k1, k2, . . . , kt } (2.36)

Fig. 2.6 Layout of internal
mechanism of an IBM
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The inherent knowledge usually composes of parameters, attributes, and structures
of an individual. The knowledge is continuously modified along the time as re-
quired. For example, k1 can be different from kt under the circumstance that fault
causing structural changes of the system.

• X t is the state of an individual at time t , which is an element of state set X .

xt = {(x, t)|x ∈ X, t ∈ [0, et ]} (2.37)

where et is the maximum time that capture the dynamic process of the system
(Fernando 2002).

X = {X1, X2, . . . , Xt } (2.38)

The state set records individual status which characterizes the dynamic process of
the individuals.

• F(·, ·, ·) is the transition function, which describes certain behaviors and mech-
anisms of an individual. It is a mapping from Xt × It → Xt+1. In this part, self-
evolution occurs spontaneously at time t + 1 according to the state, knowledge,
and input at time t . With this function, a system changes its state autonomously
without receiving any external stimulus (Liao and Wu 2013).

Xt+1 = F[Xt , kt , it ] (2.39)

Note that the function set is not only composed of differential equations on physical
regulation and constraints, but also unquantified individual rules.

• ot is the individual output at time t , is given by (2.40)

ot = {(o, t)|i ∈ O, t ∈ T } (2.40)

The specific information invoked by the environment will be updated in O.

O = {o1, o2, . . . , ot } (2.41)

Throughout this process, all information of the individual is hidden from the
environment except information in O. In this way, information privacy of the indi-
viduals can be protected. Also, autonomy in F means independent operation without
intervention from the environment.

The fully specified IBM consists of layered objects. One individual as the most
basic set is a part of a small system as part of a large system. Figure 2.7 expresses a
three-stage system and its mathematical model is depicted in (2.42).

Σi = (Ii , Ki , Xi , Fi , Oi ) i = 1, 2, 3, . . . , NL1

Σi j = (Ii j , Ki j , Xi j , Fi j , Oi j ) j = 1, 2, 3, . . . , NL2

Σi jk = (Ii jk, Ki jk, Xi jk, Fi jk, Oi jk) k = 1, 2, 3, . . . , NL3

(2.42)
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Fig. 2.7 IBM of a
hierarchical system
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where Σi , Σi j , and Σi jk represents for the large systems, small systems, and basic
units, respectively. NL1 ∼ NL3 represent for the numbers of IBMs on each level,
respectively.

A system model M is further expressed as

M = (V, T ) (2.43)

where V = {Σ |Σ ∈ V }, which is the sets of subindividuals. T is the incidence ma-
trix applied to describe the connections between the subindividuals. The constituent
element Ti j is evaluated by the following rules:
+1, if the output ofΣi flows to the input ofΣ j ;
−1, if the output ofΣ jflows to the input ofΣi ;
0, if there is no connection between the two individuals.

From this figure, we can see that in the hierarchical philosophy of IBM, a large
system contains several small systems and each small system contains basic IBMs,
and a complex system is fully described by modeling heterogeneous individuals by
their own rules. The individuals with various characteristics inside communicate
with others through input and output sets in a unified form. Furthermore, given the
fact that each individual is independent with respect to others, parallel activities can
be processed in different parts of the system.

2.4.2 IBM for the LSIES

2.4.2.1 Descriptions of LSIES

LSIES which is composed of a WSCC 3-generator-9-bus Hughes (1977) EPS and
6-node HS is modeled in this Section. There are two coupling units in the LSIES:
CHP 1 integrates generator 1 in EPS and thermal source 1 in HS. As an extraction
steam turbine CHP unit operating in the following electric load (FEL) mode, greater
electricity generation leads to more thermal energy. CHP 2 integrates generator 3 in
EPS and thermal source 2 in HS. As a gas turbine CHP unit operating in the following
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Fig. 2.8 The schematic diagram of 6-node HS

thermal load (FTL)mode, greater thermal energy generation leads to lower electricity
generation (Pan et al. 2016).

Figure 2.8 is the outline of IES and the corresponding IBM model is shown in
Fig. 2.9. There are four types of basic models in IES: the load center individuals, the
generator individuals, the source individuals, and the network individuals. Different
components inherit different basic models and makeup EPS and HS, as parts of
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LSIES. The subindividuals interact with others in a unified manner through input
and output sets. In this section, generalized energy flow is adopted to express the
correlations.

Dynamic analysis of LSIES is divided into several steps, note that the IBM for HS
is dynamically changing in different steps. Step 0 is when IES is stable and both of the
individuals are in a normal stage. And then a disturbance occurs and followed by step
1 within several seconds, the generator transient stage. In this step, most variables in
HS such as the mass flow rate and water temperature in the heating network remain
unchanged. Nevertheless, the transient process in EPS occurs and the power outputs
of generators are not the same with step 0. Afterward, the hydraulic process of HS
happens in a few seconds, followed by step 2, the hydraulic stage. The mass flow rate
of the water in the pipeline in this stage is no longer the same with step 1, although
the water temperature still remains unchanged. With the hot water running, step 3
comes within minutes. In this stage, the power flow in EPS, the mass flow rate and
water temperature in HS all change compared with the last step. In the following
steps, the status of one individual change because of the disturbance transformed by
the coupling components from the other individual until the whole system reaches a
steady state.

2.4.2.2 IBM for EPS

EPS is composed of several individuals such as the generators, the network, and the
load centers.All of the individuals can be described separately by IBMindependently.
Due to the space limitations, only the IBM for the integrated EPS is illustrated in
(2.44).

ΣEPS = (IEPS, KEPS, XEPS, FEPS, OEPS)

IEPS = {PG,3}
KEPS = {KEload, KENetwork, KGenerator}
XEPS = {P, Q, V }
FEPS = {(2.45) ∼ (2.47)}
OEPS = {PG,1}

(2.44)

where KEload, KENetwork, and KGenerator are the knowledge sets of electrical load
centers, electric network, and the generators, respectively. Parameter settings of the
corresponding individual can be found in these sets.

• Electrical load center: the electrical load center models are indicated as the fixed
active and reactive power demand at bus i . KEload = {PLoad, QLoad}.

• Generator: the fourth-order model is employed for the synchronous generator,
in which a IEEE DC-I exciter and a PSS is adopted for the control of syn-
chronous generators, the details can be found in Liu et al. (2014). KGenerator =
{Xd, X ′

d, Xq, X ′
q, T

′
d0, T

′
q0, E

′
f , TJ, Tm}. The generator individuals are expressed as
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T ′
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dE ′
q

dt
= E ′

f − E ′
q − (Xd − X ′

d)id

T ′
q0
dE ′

d

dt
= −Ed = −E ′

d + (Xq − X ′
q)iq

TJ
dω

dt
= Tm − Te = Tm − [E ′

qiq + E ′
di

′
d − (X ′

d − X ′
q)idiq]

dδ

dt
= ω − 1

(2.45)

• Electric network: KENetwork = {Gi j , Bi j }.

PGi = PDi + Vi
∑

j∈Ni

Vj (Gi j cos θi j + Bi j sin θi j )

QGi = QDi + Vi
∑

j∈Ni

Vj (Gi j sin θi j − Bi j cos θi j )
(2.46)

• Disturbances: To specify the disturbances and faults occurred in EPS, unquantified
rules are included within the IBM model, which are expressed as

if α = 1 then
when t ≥ TDis, PLoad = P̂Load, QLoad = Q̂Load ;

else if α = 2 then
when TDis ≤ t < TNor, G = Ĝ, B = B̂;
when t ≥ TNor, Ĝ =G, B̂ = B;

end if

(2.47)

where α is the disturbance type, and “1” represents for load variation and “2”
represents for fault. TDis and TNor are timewhen the disturbance occurs and cleared,
respectively. P̂Load, Q̂Load are active and reactive power demand after disturbances,
respectively. Ĝ and B̂ are network parameters after disturbances.

The EPS model in this section is implemented by a Matlab/Simulink based power
system simulation toolbox (PSST) proposed by Yao, more details can be found in
Yao et al. (2012).

2.4.2.3 IBM for HS

For HS, the quasi-steady model is applied to describe its hydraulic and thermal
characteristics, and the details of the model have been provided in Wang et al.
(2018). The IBM of HS is expressed in (2.48).
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ΣHS = (IHS, KHS, XHS, FHS, OHS)

IHS = {PG,1}
KHS = {KHload, KHNetwork, KSource}
XHS = {T,m, Φ}
FHS = {(2.49) ∼ (2.53)}
OHS = {PG,3}

(2.48)

where KHload, KHNetwork, and KSource are the knowledge sets of thermal load centers,
thermal network, and the sources, respectively. Parameter settings of the correspond-
ing individual can be found in these sets.

• Thermal load center: the thermal load center models are indicated as the fixed
thermal demand at bus i . KHload = {ΦLoad}.

• Thermal network: KHNetwork = {A, B, L , Ta, Tsource, kp,λ, cw}.
The hydraulic models of heating network:

Am = mq

Bhf = 0
hf = kpm|m|

(2.49)

where A,B are the network incidence matrix and loop incidence matrix of HS
individual, respectively (Liu et al. 2014).
The thermal models of heating network:

Φ = cwm(Tr − Ts)

Tse = (Ts − Ta)(1 − λL

cwm
) + Ta

(Σmout)Tout = Σ(m inTin)

(2.50)

• Source: KHNetwork = {U, kHP}.

Φ = U − 1
kHP

PG (2.51)

where U is coefficient of power heat output of CHP, and kHP is thermal to power
ratio of CHP.

• Disturbances: Unquantified rules which specify the disturbances and faults oc-
curred in HS are expressed as

if α=1 then
when t ≥ TDis, ΦLoad=Φ̂Load;

else if α=2 then
when TDis ≤ t < TNor, A= Â, B=B̂;
when t ≥ TNor, Â= A, B̂ = B;

end if

(2.52)
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where Φ̂Load is thermal energy demand after disturbances. Â and B̂ are network
parameters after disturbances.

• Stages: Unquantified rules which specify the stages of HS are expressed as

if 0 ≤ t < THydr then
mt = mt−1, Tt = Tt−1;

else if THydr ≤ t < TTher then
Tt = Tt−1;

end if

(2.53)

where THydr and TTher are time of hydraulic and thermal stages of HS.

2.4.2.4 IBM for LSIES

The system model for LSIES is illustrated as follows:

ΣIES = (VIES, TIES) (2.54)

where VIES = {ΣEPS,ΣHS}, TIES = [0 1; 1 0].

2.5 Summary

In this chapter, we establish the models of district heating and cooling systems,
combined cooling heating and power systems and energy hubs for analysis of LSIES.
Furthermore, an individual-based model (IBM), composed of individual models and
heterogeneous system models, is proposed for modeling and analysis of LSIES. A
quintuple of input, knowledge, state, function, andoutput sets is expressed to illustrate
a basic individual. Particular evolutionary mechanisms in the function set of the two
subindividuals, EPS and HS, ensure the models be described accurately with its own
particular characteristics. Furthermore, the two individuals interact with others in a
unified manner with generalized energy flow. Dynamic analysis of IES under four
types of disturbances and faults occurring in different individuals are investigated.
The IBMs are capable of simulating quantified system states and unquantified rules
simultaneously. The unquantified rules are modeled using the function set to depict
the relationships between different variables. More importantly, the IBMs are in an
open architecture which can be used to aggregate various individuals modeled by
different developers.
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Chapter 3
Multi-objective Optimization Algorithms

Abstract In the LSIES, multiple benefits of different operating interests are taken
into consideration. Hence, the planning and operation of LSIES are formulated as
multi-objective optimization problems, which should be tackled using the multi-
objective optimization algorithms. This chapter presents three multi-objective opti-
mization algorithms, i.e., the multi-objective group search optimizer with adaptive
covariance and Lévy flights (MGSO-ACL), multi-objective group search optimizer
with adaptive covariance and chaotic search (MGSOACC), and multi-objective evo-
lutionary predator and prey strategy (EPPS). Simulation studies conducted on bench-
mark functions are also carried out to investigate the performance of these algorithms.
In later chapters, these algorithms are employed to deal with the planning and oper-
ating problems of LSIES.

Keywords Multi-objective optimization algorithms · Non-dominated sorted
genetic algorithm · Multi-objective group search optimizer · Multi-objective
evolutionary predator and prey strategy

3.1 Formulation of the Multi-objective Optimization
Problems

3.1.1 Introduction

A many-objective optimization problems (MaOPs) is a special branch of multi-
objective optimization problems (MOPs) with more than three objectives. With the
multiple conflicting demands faced by the industry today for superior quality, low
cost, higher safety, and so on, competitive edge could only be established by design-
ing the products and processes that account for as many performance objectives as
possible. It implies that many objectives need to be simultaneously dealt with, in
an optimization problem. However, it is hard to obtain the entire solution set of a
many-objective optimization problems (MaOPs) by multi-objective optimization al-
gorithms (such as NSGA-, GSOMP) because of the difficulties brought by the curse
of dimensionality (Wang and Yao 2016).
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The major impediments in handling a large number of objectives are related
to stagnation of search process (Deb and Saxena 2005), inefficiency of selection
operators, high computational cost, and difficulty in visualization of the objective
space (Saxena et al. 2013).

(1) Inefficiency of selection operators: with the increase in M , a multi-objective
problem may well have a high-dimensional Pareto-set with complicated shapes,
this makes most existing MOEAs and MGSO ineffective, where primary selec-
tion is based on Pareto-dominance.

(2) High computational cost: if a continuous multi-objective optimization problem
(with M objectives) meets the regularity property, the dimension of its POF can
be M − 1. Therefore, the number of points needed to approximate the whole
POF increases exponentially with M . The same phenomenon can be observed
in discrete problems.

(3) Difficulty in visualization of a POF for problems with M ≥ 4: finding a higher
dimensional Pareto-optimal surface is an important matter, but visualizing it for
proper decision-making is equally as important.

An increasing number of related research has been put forward to overcome the
difficulty of MaOPs, which can be roughly divided into three classes:

(1) Scalarization technique: all objectives are converted into a single-composite
objective using the weighed sum approach. With different vectors repeating the
scalarization process, there will be a number of Pareto-optimal solutions, then
decision-making can be implemented to complete the optimization. However,
each Pareto-optimal solution is independent of each other, thereby losing the
parallel searchability often desired in solving complex optimization problems.

(2) Involvement of decision makers (DM): for a large number of objectives, it can
involve a decision maker from the outset of the optimization process instead
of finding the optimal solutions corresponding to a specific weight vector or
varepsilon vector, although this overcomes the dimensionality problemdescribed
earlier by not finding points on the complete high-dimensional Pareto-optimal
frontier and also providing the decision-maker with a set of solutions in a region
of interest to decision makers, but this approach may only be a portion of the true
Pareto-optimal front, thereby reducing the number and dimensionality of target
solutions, arriving at a biased distribution of Pareto-optimal solutions (Deb and
Saxena 2005).

(3) Objective reduction: because of considering the importance of complete Pareto-
optimal front, this approach is more suitable for solving the MaOPs with redun-
dant objectives. The greatest difficulty of MaOPs is the curse of dimensionality
(Deb et al. 2002), that is to say, if N points are needed for adequately repre-
senting a one-dimensional Pareto-optimal front, Nm points will be necessary to
represent an M-dimensional Pareto-optimal front. A lower dimensional Pareto-
optimal front can be possessed by eliminating objectives that are redundant.

Over the past decades, a number of multi-objective optimization algorithms have
been developed to solve the multi-objective optimization problem. The techniques



3.1 Formulation of the Multi-objective Optimization Problems 41

include non-dominated sorting genetic algorithm-II (NSGA-II) (Murugan et al. 2009;
Basu 2008), multi-objective particle swarm optimizer (MOPSO) (Wang and Singh
2008; Niknam et al. 2012), multi-objective differential evolution algorithm (MODE)
(Varadarajan and Swarup 2008), etc. Inspired by amulti-objective evolutionary algo-
rithm, group search optimizer with multiple producers (GSOMP) (Guo et al. 2012),
this chapter proposes a multi-objective group search optimizer with adaptive co-
variance and Lévy flights (MGSO-ACL) (Zheng et al. 2015) to solve the presented
multi-objective optimization problem of the optimal power dispatch of an LSIES
with distributed DHCs and wind power interconnected via a power grid.

TheMGSO-ACLconsists of three types of groupmembers: producers, scroungers,
and rangers. In each generation, the members conferred with the best fitness value of
each objective are chosen as the producers, and a number of members are randomly
selected as the scroungers, then the rest of members are named the rangers. The
producers are assigned to search for the best fitness value for their corresponding ob-
jectives, and perform the crappie search behaviorwhich is characterized bymaximum
pursuit angle,maximumpursuit distance, andmaximumpursuit height (O’Brien et al.
1986). The scroungers employ the concepts based on covariance matrix adaptation
evolution strategy (Hansen and Ostermeier 1996; Hansen et al. 2003) to design opti-
mum searching strategy.Moreover, Lévy flights, which are found to bemore efficient
than random walks for searching resource (Viswanathan et al. 1999; Reynolds et al.
2007), are employed by the rangers to increase the diversity of group in this chapter.
Applying theMGSO-ACL, a Pareto-optimal set can be obtained. The Pareto-optimal
set contains all the feasible and optimal solutions, called Pareto-optimal solutions. In
addition, the quality of the Pareto-optimal solutions can be measured by the metrics
utilizing the index of inverted generational distance (IGD), hypervolume (HV) (Wu
and Liao 2013), the mean Euclidian distance (MED), the spacing index, and the
number of Pareto-optimal solutions (NPS) (Durillo et al. 2010; de Athayde Costa e
Silva et al. 2013).

The optimal power dispatch of an integrated energy system consisting of dis-
tributed DHCs and wind power interconnected via a power grid is formulated as
a multi-objective optimization problem mathematically. The objectives can be ad-
dressed for the economy and reliability viewpoint of both the power grid and the
DHCs. Moreover, the optimization problem must satisfy various constraints afore-
mentioned to maintain the stable operation of the LSIES. Consequently, the problem
is a complex multi-objective optimization problem addressed with interval inequal-
ity constraints and nonlinear equality constraints, and it is tackled by the proposed
multi-objective group search optimizer with adaptive covariance and Lévy flights
(MGSO-ACL).

3.1.2 Nonlinear Constraints Handling

TheNewton–Raphsonmethod is widely used to solve the nonlinear power flow equa-
tions (Viana et al. 2013). However, in order to improve the computational efficiency,
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the fast coupled flow method (Rao et al. 1982) is applied to solve the equations.
The power flow Eqs. 3.6 and 3.7 can be rewritten in a general form: f (V, θ) = 0,

where V and θ are the voltage magnitude and phase angle of each bus node, respec-
tively. The corresponding Jacobian matrix, J , is the first derivative of f (V, θ). Ac-
cording to the definition of admittance in power systems, the value of self-admittance
is much larger than that of the injected power in a certain node (Viana et al. 2013).
As a result, the Jacobian matrix of the power grid can be decoupled into

−
[
JH JN
JM JL

] [
VΔθ
ΔV

]
=

[
ΔP/V
ΔQ/V

]
(3.1)

where the off-diagonal elements can be neglected because the resistor of transmis-
sion line is much smaller than the reactance. Therefore, JN = 0, JM = 0, and JH
is set as the node admittance matrix B ′ while JL is the imaginary part B ′′ of the
node admittance matrix excluding the generator nodes. Consequently, the modified
equations are −B ′Δθ = ΔP/V and −B ′′ΔV = ΔQ/V .

As a consequence, the variables (V, θ) are updated in the kth iteration as follows:

{
ΔV (k) = −B ′′−1ΔQ(V (k), θ(k))/V (k)

V (k+1) = V (k) + ΔV (k)
(3.2)

{
Δθ(k) = −B ′−1ΔP(V (k+1), θ(k))/V (k+1)

θ(k+1) = θ(k) + Δθ(k)
(3.3)

By solving the power flow equations, both the control variables and dependent
variables of the formulated power dispatch problem can be obtained for the next
optimization iteration. Furthermore, the boundary limits also need to be tackled.
As shown in the flowchart, the violation check of limits are executed during every
iteration in this chapter, and once the limits are violated, the corresponding population
will be dragged back into the feasible region randomly.

3.1.3 Pareto-Dominance Principle

The Pareto-dominance principle works based on the dominance concept to obtain a
set of optimal non-dominated solutions called the Pareto-optimal set. The vector X1

dominates X2 if

∀i, Fi (X1) ≤ Fi (X2), and ∃ j, Fj (X1) < Fj (X2) (3.4)

As shown in the flowchart shown in Fig. 3.1, the principle is applied by the pro-
posed methodology to obtain the Pareto-optimal solutions during the multi-objective
optimization procedure.
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3.2 Multi-objective Group Search Optimizer with Adaptive
Covariance and Lévy Flights

The flowchart of the proposed multi-objective group search optimizer with adaptive
covariance and Lévy flights is shown in Fig. 3.1. An individual of the optimization
algorithm, xi , represents the producer, scrounger, or ranger. It is a variable of the
considered power dispatch problem. All the individuals form a vector consisting of
all the variables. The producers, scroungers, and rangers are classified based on the
fitness value of all the individuals (He et al. 2009). The detailed explanations of the
steps are discussed as follows.

Fig. 3.1 The flowchart of the multi-objective optimization algorithm
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3.2.1 Producer Searching Strategy

In MGSO-ACL, the number of producers is equal to the number of objectives (Nob),
which means each producer is assigned to find the best fitness value Fp(x

(g)
p ), (p =

1, · · · , Nob) of its corresponding objective. The searching mechanism of a certain
producer is similar to that of the original GSO. Inspired by the foraging behavior of
animals, it uses a scanningmechanism to randomly sample three different directions:
straight, left- and right-hand side hypercube, respectively, which are formulated as
follows:

xs = x(g)
p + r1lmaxD(g)

p (ϕ(g)) (3.5)

xl = x(g)
p + r1lmaxD(g)

p (ϕ(g) − r2θmax/2) (3.6)

xr = x(g)
p + r1lmaxD(g)

p (ϕ(g) + r2θmax/2) (3.7)

where r1 ∈ R
1 is a normally distributed random number with mean 0 and standard

deviation 1, r2 ∈ R
n−1 is a uniformly distributed random sequence in the range (0,1),

ϕ
(g)

i ∈ R
n−1 is the head angle and the unit vector D(ϕ) ∈ R

n can be calculated from
ϕ via a polar to Cartesian coordinate transformation (He et al. 2009).

If the best point has a better resource than its current position, then the producer
will fly to this point. Otherwise the producer will stay in its current position and turn
its head to a new randomly generated angle:

ϕ(g+1) = ϕ(g) + r2αmax (3.8)

where αmax ∈ R
1 is the maximum turning angle.

On the other hand, if the producer cannot find a better area after a generations, it
will turn its head back to zero degree:

ϕ(g+a) = ϕ(g) (3.9)

where a ∈ R
1 is a constant.

3.2.2 Scroungers’ Behaviors with Adaptive Covariance

In this section, the adaptive covariance matrix obtained by cumulatively learning for
the information organized from the group members of each generation, is employed
to get a reliable estimator for determining the evolution path and step size for the
scroungers’ behaviors. The scroungers mainly perform the following three tasks: (1)
Scroungers partition the group members into an elite group and an inferior group
based on their fitness values, then the information gathered from the elite groupmem-
bers are used to generate a mean vector m by exponential weighting; (2) covariance
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matrix C, which is used to obtain an estimator for determining the evolution path
and step size, is updated by the mean vector; (3) the offsprings of scroungers are
updated by the evolution path and step size.

The offspring of kth organizer, x(g+1)
k , can be modeled as follows (Auger and

Hansen 2012):

x(g+1)
k = m(g) + σ(g)N (0,C(g)) k = 1, · · · ,λ (3.10)

where N (0, I) means a multivariate normal distribution with zero mean and unity
covariance matrix, σ > 0 is the step size, λ is the number of the scroungers, super-
script g denotes the generation number, (g = 0, 1, 2, · · · ), and n is the dimension of
the function.

Mean vector m(g) of the searching distribution is a weighted average of μ suc-
cessful individuals selected from the sample x(g)

1 , · · · , x(g)

λ . Covariance matrix C is
updated based on mean vector, and the evolution path and step size are accordingly
determined by the covariance matrix (Auger and Hansen 2012).

3.2.3 Rangers’ Walks

In this chapter, Lévy flights (Yang 2010) are introduced as rangers’ searching tech-
nique rather than the random walks. The step size value of the i th ranger is chosen
randomly as follows:

si = 0.01

(
ui
vi

)1/β

(x(g)

i − x(g)
p ) (3.11)

where u = φrandn(n), v = randn(n), β = 1.50, n is the number of variables. The
randn(n) function generates a uniform integer between [1, n], and the φ is computed
by

φ =
(

Γ (1 + β) sin(πβ/2)

Γ ((1 + β)/2)β2(β−1)/2

)1/β

where Γ denotes the gamma f unction.

Consequently, rangers will move to the new point following the direction as

x(g+1)
i = x(g)

i + randn(n)si (3.12)

In this way, the individuals, xi , of the MGSO-ACL are updated according to the
fitness value of the multiple objectives.



46 3 Multi-objective Optimization Algorithms

3.3 Multi-objective Group Search Optimizer with Adaptive
Covariance and Chaotic Search

The MGSOACC consists of three types of group members: producers, scroungers,
and rangers. In each search generation, the number of the producers is equal to that of
the objectives and each producer corresponds to the member with respect to the best
fitness value of the objective. The producers will scan the search field using white
crappie’s scanning strategies which are characterized by the maximum pursuit angle,
maximum pursuit distance and maximum pursuit height (Wu et al. 2008) to seek the
optimal resource. The scroungers adopt the adaptive covariance matrix (Hansen et al.
2003) in order to make the search strategy of scroungers be adaptive and to get a
reliable estimator for the paths and thus could enhance the local searchability of the
proposed algorithm. The detailed introduction to producers and scroungers can be
found in Wu et al. (2008).

In this section, chaotic search is employed as the rangers’ search strategy to
maintain the diversity of the group (Strogatz 2014). Chaos is a typical nonlinear phe-
nomenon in nature which is characterized by ergodicity, randomicity and sensitivity
to its initial conditions (Strogatz 2014). Because of the ergodicity and randomicity,
chaotic search is often incorporated into other evolutionary algorithms to enhance
their searchability (Jia et al. 2011; Talatahari et al. 2012). First, the chaotic sequence
is generated based on the logistic map (Strogatz 2014)

Table 3.1 Peseudocode of multi-objective interval optimization using MGSOACC
Set g := 1;
Input the parameters of the integrated energy system;
Initialize parameters of each member of MGSOACC;
Input the prediction interval of wind speed and solar irradiation;
Obtain the lower and upper bounds of the objective interval of each member by non-linear programming using (5.32);
Calculate the fitness values of initial members using (5.33);
WHILE (the termination conditions are not met)

FOR (each member in the group)
Choose producers : Select producers from the group. The number of producers is equal to the number

of objectives. The member with the best fitness value of the pth objective is selec-
ted as producer;

Perform producing : Each producer scans at zero degree and then scan laterally by randomly sampling
three points in the scanning field using (5)-(9) in [231];

Perform scrounging : Except the producers, randomly select 70% from the rest members to perform scr-
ounging:
1) Generate mean vector by exponential weighting [71];
2) Update covariance matrix to determine evolution path and update step-size us-
ing (30) in [256];

Perform ranging : Except the producers and scroungers, the rest members perfom ranging:
1) Generate the chaotic sequence using (6.26);
2) Rangers perform chaotic search using (6.27);

Update group : Select new producers and generate new group members;
END FOR
Calculate fitness : 1) Obtain the lower and upper bounds of the objective interval of each current me-

mber by non-linear programming using (5.32);
2) Calculate the fitness values of current members using (5.33);

Pareto selection : Update the Pareto solutions using fast non-dominated sorting technology and fix
the number of elements in the Pareto solution set as a constant by the crowded-
comparison operator [36];

g= g+1;
END WHILE
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u(g+1) = μ · u(g) · (1 − u(g)) (3.13)

where μ = 4 is the control parameter, u(g) ∈ [0, 1] ∧ u(0) /∈ {0.0, 0.25, 0.50,
0.75, 1.0}. g denotes the gth iteration.

After that, the position of the i th ranger is updated based on the chaotic search
shown as follows:

x(g+1)
i = x(g)

i + u(g+1) · (x(g)

i − Xi ). (3.14)

where Xi is the Pareto-optimal solution selected from Pareto-set randomly. The
peseudocode of the multi-objective interval optimization using MGSOACC is given
in Table3.1.

3.4 Multi-objective Evolutionary Predator and Prey
Strategy

TheEPPS is a population-based optimization algorithm,which takes inspiration from
the group living behaviors of dingo hunting and sheep escaping. The population of
EPPS is called a group and each individual within the group is called a member.
Each member represents a position vector of a n−dimensional search space and is
randomly positioned at the beginning. Here, n is the dimension of the objective func-
tion. In each generation, the members of the group are classified into four different
types, representing experienced predators, strategic predators, the prey, and its safe
location, to cope with three typical scenarios, predators hunting, prey scanning, and
prey escaping.

In EPPS, the member that corresponds to the best fitness value of the group is
chosen as the prey, and the member that corresponds to the worst fitness value of
the group is chosen as the safe location of the prey; the rest of the members are
classified randomly as either the experienced predator or the strategic predator. The
EPPS investigates three processes from the perspective of the predators’ hunting and
the prey’s escaping. When a group of predators locks onto a prey, the experienced
predators run experientially for hunting; the prey realizes the danger and tries to es-
cape from its dilemma by scanning for its safe location; as for the strategic predators,
they run strategically for hunting. The searching behaviors of the predators and the
prey are described in detail as follows.

3.4.1 Experienced Predators’ Searching Mechanism

For each search generation, a number of group members are selected as the expe-
rienced predators. The experienced predators will determine their search paths by
accumulatively learning for the successful paths of the predators of the group. Here,
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the successful paths indicate the directions of fitness value decreasing. In order to
get a reliable estimate for the paths, the experienced predators adopt the concept of
adaptive covariance matrix (Hansen et al. 2003). The adaptive mechanism is based
on the assumption that the successful evolutionary paths of the predators used in
recent past generations may also be successful in the following generation. Gradu-
ally, the most suitable evolutionary paths can be developed automatically to guide
the search behavior of each experienced predator in different evolutionary stages.
The predatory behavior of the i th experienced predator at generation (g + 1) can be
modeled as follows:

x(g+1)
i = m(g) + σ(g)N (0,C(g)), i = 1, · · · ,λ (3.15)

where m and C are mean value and covariance matrix of the predators, respectively,
developed by the position vectors of the predators of the group,N (0, I) corresponds
to a multivariate normal distribution with zero mean and unity covariance matrix,
σ(σ > 0) is the step size and λ is the number of the experienced predators.

During the search process of EPPS, if an experienced predator finds a better
location than the current prey and other predators, in the next search generation, it
will switch to be the prey and all the other predators, including the prey in the previous
search generation, will perform a huntingmechanism; and if an experienced predator
finds a worse location than the current safe location, in the next search generation,
it will switch to be the safe location and the prey performs the escaping mechanism
to this location. The prey and the strategic predator, which will be introduced in the
following paragraphs, are also implementing these switching mechanisms in each
search process. Thus, different types of members can play different roles during
each search generation, and even the same member can play different roles during
different search generations. Thereupon, EPPS could escape from local minima in
the earlier search bouts and obtain a good balance between its local exploration and
global exploitation abilities.

3.4.2 Prey’s Searching Mechanism

During each search generation, x p and xs denote the prey and its safe location,
respectively. When the prey is aware of its dangerous situation, it will scan its safe
location so as to escape from the dilemma.

In order to obtain an efficient search performance, the basic scanning strategy in-
spired fromwhite crappies (O’Brien et al. 1986), which is characterized bymaximum
pursuit angle and maximum pursuit height, is employed as the scanning directions
of the prey. Additionally, a scanning distance shown in Eq.3.5 has been proposed
based on the position vectors of the prey and its safe location to shorten the prey’s
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scope for searching, which enables the prey to explore the unreachable areas with a
higher probability than that reached by scanning the whole search scope (He et al.
2009).

Based on the scanning directions and scanning distance, the prey initially scans
at zero degree by using Eq. (3.16), and then scans laterally by randomly sampling
two points in the scanning field by using Eqs. (3.17) and (3.18). At the (g + 1)th
generation, the first position that the prey escapes by scanning at zero degree

xz = x(g)
p + l(g)

maxD
(g)
p (ϕ(g)) (3.16)

the second position in the right-hand side

xr = x(g)
p + l(g)

maxD
(g)
p (ϕ(g) + r1θmax/2) (3.17)

and the third position in the left-hand side

xl = x(g)
p + l(g)

maxD
(g)
p (ϕ(g) − r1θmax/2) (3.18)

where r1 ∈ R
n−1 is a uniformly distributed random sequence in the range (0,1),

ϕ(g) ∈ R
n−1 is the heading angle and the unit vector D(ϕ) ∈ R

n can be calculated
from ϕ via a polar to Cartesian coordinate transformation (Mustard 1964).

The scanning distance at the gth generation can be calculated as follows:

l(g)
max = ||x(g)

p − x(g)
s || =

√√√√ n∑
i=1

(x (g)
pi − x (g)

si )2 (3.19)

where xpi and xsi are the elements for the i th dimension of x p and xs , respectively.
If the fitness value of the current prey is worse than one of the other members’

fitness values, in the following generation, the new prey will be chosen from the
group and execute an escaping mechanism by turning its head to a new randomly
generated angle

ϕ(g+1) = ϕ(g) + r1αmax (3.20)

where αmax ∈ R
1 is the maximum turning angle.

If the fitness value of the current prey does not change after a generations, it would
turn its head back to zero degree

ϕ(g+a) = ϕ(g) (3.21)

where a ∈ R
1 is a constant.
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Fig. 3.2 The typical search
path of the strategic predator

3.4.3 Strategic Predators’ Searching Mechanism

The remaining members are selected as the strategic predators. Compared to the
experienced predators, the strategic predators will adjust their search paths according
to the prey’s position in each search bout. That is, the strategic predators do not run to
the prey’s position directly. Instead, they will flock to the prey’s escaping direction,
which is developed based on the position vectors of the prey and its safe location. At
the (g + 1)th generation, the i th strategic predator can be described as

x(g+1)
j = x(g)

p − r2 · (x(g)
p − x(g)

s ), j = 1, · · · ,μ (3.22)

However, in reality, the strategic predators may not be able to exactly catch the
prey’s escaping traces. In consideration of this, a perturbation vector has been added
to Eq. (3.22) so as to maintain group diversity for jumping out of the potential local
optima:

x(g+1)
j = x(g)

p − r2 · (x(g)
p − x(g)

s )

+ r3 · (x(g)
t1 − x(g)

t2 ) + r4 · (x(g)
t3 − x(g)

t4 )
(3.23)

where xt1 	= xt2 	= xt3 	= xt4 are randomly chosen from the set of strategic predators,
r2, r3, r4 are the uniformly distributed random numbers in the range [0, 1], and μ is
the number of the strategic predators.

Equation (3.23) can help the strategic predators exploremore resources distributed
around the prey and achieve their own historical best positions, rather than crowd
around the prey that is likely to be associated with a local optimum. The strategic
predator’s search path is shown in Fig. 3.2.

In order to maximize the chances of finding resources, there are several strategies
to restrict their search to a profitable patch. One of the most efficient strategies is
turning back into a patch when its edge is detected (Dixon 1959). In this section,
EPPS employs this strategy to handle the bounded search space: when a member
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Fig. 3.3 The typical search
paths of the predators and the
prey

is outside the search space, it will turn back into the search space by setting the
variables that violated bounds to its previous values.

It can be seen from the above description that the searching mechanisms of EPPS
are similar to DE, PSO, or covariance matrix adaptative evolution strategy (CMA-
ES) (Hansen et al. 2003). However, there are many differences with the most notable
being the distinction in the concept. EPPS is inspired from animal searching behavior
and group living theory which are adopted to develop an escaping mechanism and
a classification mechanism to construct a good balance between its local search
and global search abilities. Our EPPS consists of experienced predators, strategic
predators, the prey and its safe location, which have never been used to develop an
evolutionary computation algorithm. In addition, the search mechanisms of EPPS
are radically different from those of DE and PSO. The predator–prey procedure of
adjacent two generations in EPPS is presented in Fig. 3.3. It is worth mentioning that
in order to depict a dynamic predator–prey scenario, in this figure, we artificially
placed the prey and its safe location into two different positions, respectively, in
the adjacent two generations. Therefore, the experienced predators and the strategic
predators will adjust their search directions, respectively. The steps involved are
presented in Algorithm 1.

3.4.4 Numerical Studies

3.4.4.1 Experiments Setting

To evaluate the applicability of EPPS, we carry out numeral experiments on 20
canonical benchmark functions in 30-dimensional case. These test functions, which
are shown in Table3.2, can be classified into three groups. The first seven functions
f1 − f7 are unimodal functions. As the preservation of diversity in many EAs is at
the cost of slower convergence, the unimodal functions are used to test if EPPS has
the feature of fast convergence. The next seven functions f8 − f14 are multimodal
functions with many local optima. These functions are used to test the global search-
ability of EPPS in avoiding premature convergence. Finally, the last six functions
f15 − f20 are shifted and rotated with more complex characteristics, and can be used
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1: Generate initial group and set up parameters for each member;
2: Evaluate each member, and determine the prey and the safe location;
3: Set g := 0, the maximum number of generations := Max_Gen, population size := Pop,

and the index of the prey := index (0);
4: while g ≤ Max_Gen do
5: Calculate the scanning distance, l(g)

max, according to Eq.3.5;
6: for i = 1 : Pop do
7: if i == index (g) then
8: Perform prey’s search mechanism according to (2)-(4);
9: else if rand < 0.3 then
10: Perform experienced predators’ search mechanism according to (1);
11: else
12: Perform strategic predators’ search mechanism according to (9);
13: end if
14: end for
15: Modify the position of each members to satisfy the constraints, if necessary;
16: Calculate the fitness values of each member, and update the prey, the safe location and

index ;
17: g = g + 1;
18: end while

Algorithm 1: The pseudocode of EPPS algorithm

to compare the performance of different algorithms in a more systematic manner
(Chen et al. 2013).

All the simulations are carried out utilizing MATLAB 7.11 on an Intel Core i5,
3.1GHz computer with 4GB RAM. During each run, the maximum number of func-
tion evaluations is set to 150,000 for f1 − f14 and 300,000 for f15 − f20, respectively.
In order to make a coherent comparison, the fitness values below 10−16 are assumed
to be 0 in all experiments. To validate the effectiveness of EPPS, we compared EPPS
with group search optimizer (GSO) (He et al. 2009), the latest standard PSO (SPSO)
(Omran and Clerc 2011), covariance matrix adaptative evolution strategy (CMA-ES)
(Hansen et al. 2003), and differential evolution (DE) (Storn and Price 1997). The
selection of these EAs in the comparison is based on the following reasons. For one
thing, theCMA-ES and SPSOare characterized by its fast-converging feature on sim-
ple unimodal functions. Therefore, by comparing EPPS with CMA-ES and SPSO,
we can learn whether EPPS can present the fast-converging feature. For another,
GSO and DE selected in the comparisons are representative and well-performed
algorithms in terms of global searchability. Thus, by comparing EPPS with GSO
and DE, we can learn whether EPPS can prevent premature convergence while still
maintain the fast-convergence feature as well. To reduce statistical errors, each test
is repeated for 30 times independently.

The parameters of EPPS are set as follows: a = round(
√
n + 1) (round(X)

rounds the elements of X to the nearest integers), θmax = π/a2, αmax = θmax/2,
the population size is 200, σ(0) = 0.5, and the percentage of the strategic predators
is 30%. These parameters settings are, empirically, applied for all the benchmark
functions used in this section. Parameter settings of the GSO, DE, CMA-ES and
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Table 3.2 Twenty high-dimensional benchmark functions,wheren is the dimension of the function,
S is the search range, and fmin is the global minimum value of the function

Unimodal functions n S fmin

f1 = ∑n
i=1 x

2
i 30 [−100, 100]n 0

f2 = ∑n
i=1 |xi | + ∏n

i=1 |xi | 30 [−10, 10]n 0

f3 = ∑n
i=1

(∑i
j=1 x j

)2
30 [−100, 100]n 0

f4 = (x1 − 1)2 + ∑n
i=2 i(2x

2
i − xi−1)

2 30 [−10, 10]n 0

f5 = ∑n
i=1 (�xi + 0.5�)2 30 [−100, 100]n 0

f6 = ∑n
i=1 i x

4
i + random[0, 1) 30 [−1.28, 1.28]n 0

f7 = ∑n
i=1 i x

2
i 30 [−10, 10]n 0

Multimodal functions n S fmin

f8 = ∑n−1
i=1 (100(x2i − xi+1)

2 + (xi − 1)2) 30 [−30, 30]n 0

f9 = −∑n
i=1(xi sin(

√|xi|)) 30 [−500, 500]n –12569.5

f10 = ∑n
i=1(x

2
i − 10cos(2πxi ) + 10)2 30 [−5.12, 5.12]n 0

f11 = −20 exp

(
−0.2

√
1
n

∑n
i=1 x

2
i

)
− exp( 1

n

∑n
i=1 cos(2πxi )) +

20 + e

30 [−32, 32]n 0

f12 = 1
4000

∑n
i=1 x

2
i − ∏n

i=1 cos(
xi√
i
) + 1 30 [−600, 600]n 0

f13 = π
n

{
10sin2(ßy1) + ∑29

i=1(yi − 1)2[1 + 10sin2(ßyi+1)]
+(yn − 1)2

} + ∑30
i=1 u(xi , 10, 100, 4)

yi = 1 + 1
4 (xi + 1)

30 [−50, 50]n 0

f14 = 0.1
{
sin2(π3x1) + ∑29

i=1(xi − 1)2[1 + sin2(3πxi+1)]
+(xn − 1)2[1 + sin2(2πx30)]

} + ∑30
i=1 u(xi , 5, 100, 4)

30 [−50, 50]n 0

Rotated and shifted multimodal functions n S fmin

f15 = ∑n−1
i=1 (100(z2i − zi+1)

2 + (zi − 1)2)

z = M(
2.048(x−o)

100 + 1)

30 [−100, 100]n 0

f16 = −20 exp

(
−0.2

√
1

n

∑n
i=1 z

2
i

)
− exp( 1

n

∑n
i=1 cos(2πzi ))

+20 + e, z = M((x − o)

30 [−100, 100]n 0

f17 = ∑n
i=1(

∑kmax
k=0 [ak cos(2πbk (zi + 0.5))]) −

n
∑kmax

k=0 [ak cos(2πbk · 0.5)]
a = 0.5, b = 3, kmax = 20, z = M(

0.5(x−o)
100 )

30 [−100, 100]n 0

f18 = 1
4000

∑n
i=1 z

2
i − ∏n

i=1 cos(
zi√
i
) + 1, z = M(

600(x−o)
100 + 1) 30 [−100, 100]n 0

f19 = 10
n2

∏n
i=1(1 + i

∑32
j=1

|2 j zi−round(2 j zi )|
2 j )

10
n1.2 − 10

n2

z = M(
5(x−o)
100 + 1)

30 [−100, 100]n 0

f20 = g(z1, z2) + g(z2, z3) + · · · + g(zn−1, zn) + g(zn , z1)

g(x, y) = 0.5 + (sin2(
√

x2+y2)−0.5)
(1+0.001(x2+y2))2

, z = M(x − o) + 1

30 [−100, 100]n 0

*In f13 and f14, u(xi , k1, k2, k3) =

⎧⎪⎨
⎪⎩
k2(xi − k1)k3 , xi > k1
0, −k1 ≤ xi ≤ k1
k2(−xi − k1)k3 , xi < −k1

.

*In f15 − f20, o is a shifted vector and M is a transformation matrix. Please refer to Liao and
Stutzle (2013)
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SPSO used in the comparisons can be found in the original papers (He et al. 2009;
Storn and Price 1997; Hansen et al. 2003; Omran and Clerc 2011), respectively.

3.4.4.2 Results Analysis

Tables3.3, 3.4 and 3.5 lists the mean and standard deviation of the fitness values
obtained by EPPS, CMA-ES, DE, GSO, and SPSO over 30 independent runs on
functions f1 − f20. It should be mentioned that the algorithm that performs best in
one problem will be highlighted in boldface. In order to assess whether the results
obtained by EPPS are statistically different from the results obtained by the other
four algorithms, the nonparametric statistical test calledWilcoxonSigned-RankTests
(Conover and Conover 1980; Derrac et al. 2011) are employed for pairwise com-
parisons where the confidence level has been fixed to 95%. In the following tables,
an h value of one indicates that the performances of the two algorithms are sta-
tistically different with 95% certainty, whereas a h value of zero implies that the
performances are not statistically different. In addition, #+, #−, and # ∼ mean that
the performance of EPPS is significantly better than, significantly worse than, and
statistically equivalent to the performance of its rival in terms of the statistically
test results, respectively. For example, the simulation results obtained by comparing
EPPS with CMA-ES on unimodal benchmark functions are (2, 0, 5), which means
that EPPS achieves significantly better results than, significantly worse results than,
and statistically equivalent results to CMA-ES on 2, 0, and 5 problems, respectively.
In Zhan et al. (2009), it is claimed that the convergence speed can be measured by the
mean number of function evaluations required. Therefore, in the following tables,
if algorithm A can obtain a smaller fitness value than algorithm B within the same
number of function evaluations, it indicates that the convergence speed of algorithm
A is faster than that of algorithm B.

On unimodal functions f1 − f7, it is relatively easy to converge the global opti-
mum, and thus we focus on comparing the performance of the algorithms in terms
of solution accuracy and convergence speed. From the comparison of the results on
these functions, we can see that EPPS performs better than GSO in terms of the
mean and the standard deviation on f1 − f7. EPPS surpasses all other algorithms on
functions f4 and f6, and has the same performance as CMA-ES, DE and SPSO on
functions f1, f2, and f7.As for functions f3 and f5, EPPS performs better than three
other algorithms on f3 and two algorithms on f5. According to the results of the
nonparametric Wilcoxon Signed-Rank Tests, EPPS significantly outperforms four
other algorithms on f4 and f6. Overall, EPPS manages to find accurate solutions
within the same running conditions on all of these unimodal functions.

On multimodal functions f8 − f14, the global optimum is much more difficult
to locate. Therefore, in the comparison, we can study the performance of the al-
gorithms in terms of the solution accuracy, convergence speed, and reliability. In
Table3.5, it can be clearly seen that EPPS performs better than four other algorithms
on f8, f10 − f14 and three algorithms on f8 − f14 in terms of mean value and stan-
dard deviation. EPPS performs the same performance with GSO on function f9 in
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Table 3.3 Comparison of EPPS with CMA-ES, DE, GSO, and SPSO on benchmark functions
f1 − f7. All results have been averaged over 30 runs

f Algorithms EPPS CMA-ES DE GSO SPSO

1 Mean 0 0 0 1.9481E-8 0
Std. 0 0 0 1.1629E-8 0
h – 0 0 1 0

2 Mean 0 0 0 3.7039E-5 0
Std. 0 0 0 8.6185E-5 0
h – 0 0 1 0

3 Mean 0 0 8.7670E-6 5.7829 6.1780E-10

Std. 0 0 1.3560E-6 3.6813 7.5592E-10

h – 0 1 1 1

4 Mean 0 0.6667 0.8664 0.1078 0.7125

Std. 0 0 5.4937E-3 3.9981E-2 2.5918E-4

h – 1 1 1 1

5 Mean 0 0 0 1.6000E-2 0.9667

Std. 0 0 0 0.1333 1.2726

h – 0 0 1 1

6 Mean 1.1069E-5 0.2180 1.0816E-2 7.3773E-2 3.6191E-3

Std. 1.1103E-5 0.1692 1.1105E-2 9.2557E-2 4.8209E-2

h – 1 1 1 1

7 Mean 0 0 0 3.8926E-8 0
Std. 0 0 0 6.7362E-8 0
h – 0 0 1 0

(#+, #−, # ∼) – (2,0,5) (3,0,4) (7,0,0) (4,0,3)

terms ofmean value. According to the results of the nonparametricWilcoxon Signed-
Rank Tests, EPPS significantly outperforms four other algorithms on f8, f10 − f14.
These comparison results validate the capability of EPPS in optimizing multimodal
functions in terms of solution accuracy, convergence speed, and robustness.

On shifted and rotated functions f15 − f20, the dimensions of these functions
become nonseparable, and thus the resulting problems become more difficult for
EAs to solve. The comparison results on shifted and rotated functions are tabulated in
Table3.5. From the table, it can be seen that EPPS achieves significantly better results
than four other algorithms on functions f15, f17 − f20, and three other algorithms on
functions f15 − f20. Therefore, EPPS is among one of the best performance EAs for
solving these shifted and rotated functions within the compared set of algorithms.

The comparison of convergence rates among EPPS, CMA-ES, DE, GSO, and
SPSO is also carried out on the seven multimodal functions, by observing the evo-
lution of the fitness values recorded in the optimization process. Figure 3.4 only
shows the convergence rates on functions f8 − f13 since the convergence rates on
functions f13 and f14 are similar. For functions f10 − f13, it is obviously that EPPS
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Table 3.4 Comparison of EPPS with CMA-ES, DE, GSO, and SPSO on benchmark functions
f8 − f14. All results have been averaged over 30 runs

f Algorithms EPPS CMA-ES DE GSO SPSO

8 Mean 9.1667E-4 29.5072 8.3493 49.8359 33.1737

Std. 4.2813E-3 5.4334 2.2737 30.1771 31.2810

h – 1 1 1 1

9 Mean –
12569.4882

–8930.7622 –6680.9926 –
12569.4882

–9776.3545

Std. 1.9249E-4 672.6874 194.9523 2.2140E-2 375.5870

h – 1 1 0 1

10 Mean 0 49.2348 99.6636 2.7415 22.5064

Std. 0 11.6365 12.4016 1.4651 6.3818

h – 1 1 1 1

11 Mean 8.8818E-16 14.1209 7.3477E-8 2.6548E-5 0.9879

Std. 0 6.3862 1.4371E-8 3.0820E-5 0.8246

h – 1 1 1 1

12 Mean 0 6.3818E-4 1.9362E-8 3.0792E-2 5.8107E-3

Std. 0 7.5655E-4 5.3913E-8 3.0867E-2 7.7213E-3

h – 1 1 1 1

13 Mean 0 3.4606E-3 1.3629E-10 2.7648E-11 1.7316E-2

Std. 0 1.8862 3.3128E-10 9.1674E-11 6.1435E-2

h – 1 1 1 1

14 Mean 0 7.3223E-4 3.9023E-10 4.6948E-5 2.9116E-4

Std. 0 2.7904E-3 5.0326E-10 7.0010E-4 4.9549E-4

h – 1 1 1 1

(#+, #−, # ∼) – (7,0,0) (7,0,0) (6,0,1) (7,0,0)

converges much faster than the other four algorithms. As for function f8, EPPS has
a slower convergence rate at beginning and shows a faster convergence rate at end.
In addition, EPPS has almost the same performance as GSO on function f9.

3.4.4.3 Computation Complexity

In order to investigate the relationship between the dimensionality of the multimodal
functions to be solved and the number of consumed function evaluations, EPPS,
CMA-ES, DE, GSO, and SPSO are used to solve f14, over 30 independent runs,
whose dimensionality n is set to 15, 30, 50, 100, 150, 200, 250, and 300, respec-
tively. For different dimensions of the function, the iteration will be terminated when
the fitness value reaches an acceptable accuracy 1 × 10−3 or the function evaluations
reach themaximumnumber of function evaluations 3 × 106. The reason for choosing
function f14 is that this benchmark function is representative in function optimization
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Table 3.5 Comparison of EPPS with CMA-ES, DE, GSO, and SPSO on benchmark functions
f15 − f20. All results have been averaged over 30 runs

f Algorithms EPPS CMA-ES DE GSO SPSO

15 Mean 0 105.1028 177.8154 45.7762 201.1326

Std. 0 36.7813 58.9623 33.2185 97.6771

h – 1 1 1 1

16 Mean 20.0006 21.1835 21.0342 20.0362 20.7861

Std. 2.0012E-4 0.6389 0.8325 9.6251E-2 0.2711

h – 1 1 0 1

17 Mean 0.9014 46.2053 27.1266 17.6507 28.6448

Std. 0.7817 4.9311 3.6881 8.6319 2.9650

h – 1 1 1 1

18 Mean 0 13.1172 25.1039 1.4128E-3 13.6717

Std. 0 11.6325 16.7864 2.6925E-3 10.1201

h – 1 1 1 1

19 Mean 0.2827 5.7714 2.3029 0.3225 1.6543

Std. 0.3108 2.0183 1.4388 0.4128 1.3192

h – 1 1 1 1

20 Mean 11.4117 14.9326 13.4917 12.9826 13.2468

Std. 1.2309 2.6368 2.5771 2.0117 7.8195

h – 1 1 1 1

(#+, #−, # ∼) – (5,0,0) (5,0,0) (4,0,1) (5,0,0)

and the amount of the local optima of the benchmark function increases with increas-
ing dimension.Moreover, CMA-ES, DE, GSO, and SPSO could reach the acceptable
accuracy (1 × 10−3) in the 30-dimensional case. Figure 3.5 illustrates the number of
function evaluations consumed in optimizing f14 by the five algorithms where the
dimensionality is increased from 15 to 300. From the figure, it can be clearly seen the
number of function evaluations consumed by CMA-ES and SPSO increases sharply
as the dimensionality linearly increases. Even worse, these two algorithms could not
converge when the dimensionality reaches 50 and 60, respectively. DE and GSO
could converge to the acceptable accuracy and the number of function evaluations
consumed increases almost following 55000 × e(n/80). As for our proposed EPPS, it
always converges with different dimensions and the number of function evaluations
consumed increases almost following 10000 × e(n/80). That is to say, EPPS offers
a 5.5 times higher speed than DE and GSO in optimizing f14, which is measured
by the mean number of function evaluations needed to reach an acceptable solution.
Therefore, EPPS has more robust and much faster than CMA-ES, DE, GSO, and
SPSO.
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Fig. 3.4 The comparison of convergence rates among CMA-ES, DE, GSO, SPSO, and EPPS on
seven multimodal benchmark functions, f8 − f13, respectively

3.4.4.4 Performance Analysis

In order to exhibit the optimization process of EPPS, the scanning distance, lmax,

evaluated on functions f8 and f14 has been shown in Fig. 3.6. From the figure, we
can see that the scanning distance, lmax, does not shrink to zero with the increase of
generation numbers. This indicates that EPPS could maintain a global searchability
all the time with a certain level of population diversity. According to the results
shown in Tables3.3, 3.4, and 3.5, EPPS could effectively optimize these benchmark
functions and obtain more accuracy solutions in most cases. This implies that EPPS
achieves a good balance between its local searchability and global searchability.
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Fig. 3.5 The comparison of function evaluations consumed by EPPS, CMA-ES, DE, GSO, and
SPSO with different dimensionality, on function f14

According to the above comparisons and discussions, we can obtain the follow-
ing conclusions. First, based on the prey’s search mechanism, the diversity of the
group members has been maintained in the process of the whole optimization. Thus,
EPPS offers a novel global searchability. Second, the experienced predators’ search
mechanism can provide a reliable estimator for the evolution path and step size and
thus EPPS provides an efficient local search ability. Finally, based on the strategic
predators’ search mechanism, more resources distributed around the best member
are explored, which means that EPPS could preserve the group diversity without sig-
nificantly impairing the fast-converging feature and thus both its global searchability
and the local searchability are enhanced.

3.4.5 Comparison Between EPPS and Other State-of-the-Art
Algorithms

3.4.5.1 Comparison of EPPS with Seven Algorithms on Functions
f1 − f14

This section presents a comparative study of EPPS with other seven state-of-the-art
algorithms on functions f1 − f14. These algorithms are backtracking search opti-
mization algorithm (BSA) (Civicioglu 2013b), cuckoo search Algorithm (CK) (Civi-
cioglu and Besdok 2013), artificial cooperative search (ACS) (Civicioglu 2013a),
strategy adaptation based differential evolution algorithm (SADE) (Qin et al. 2009),
differential search algorithm (DSA) (Civicioglu 2012), biogeography based opti-
mization (BBO) (Simon2008), and comprehensive learning particle swarmoptimizer
(CLPSO) (Liang et al. 2006). Their experimental results on functions f1 − f14, which
were reported in references (Civicioglu 2013a, b), respectively, are directly adopted
for comparison in this section. In order to have a fair comparison, the maximum
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Fig. 3.6 Convergence of lmax evaluated on functions f8 and f14, respectively

number of function evaluations is set to 2,000,000, which is the same as that sug-
gested in Civicioglu and Besdok (2013), Civicioglu (2013a). The comparisons of the
mean value between EPPS and other seven algorithms are listed in Table 3.6.

It can be seen from Table3.6 that EPPS outperforms SADE, CLPSO, BBO, CK,
DSA, ACS, and BSA on functions f4, f6, f9, and f11, and has the same perfor-
mancewith these algorithms on functions f1, f2, f5, f7, f13, and f14. EPPS surpasses
CLGSO, BBO, DSA, and ACS on functions f3 and f8. As for function f12, SADE,
BBO, and BSA cannot find the global optimum. In addition, SADE also cannot find
the global optimum on function f10.

3.4.5.2 Comparison of EPPS with Two Algorithms on Functions
f15 − f20

iCMAES-ILS (Liao and Stutzle 2013) and NBIPOP-aCMA (Loshchilov 2013) are
within the rank of the top two algorithms for rotated and shifted benchmark functions
(Liao and Stutzle 2013). By comparing EPPS with these two algorithms, we can
validate the performance of EPPS more comprehensively.

Table 3.7 lists the simulated results obtained by EPPS, NBIPOP-aCMA and
iCMAES-ILS, including the best, worst, median, mean, and standard deviation. The
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Table 3.6 Comparison of EPPS with BSA, CK, ACS, SADE, DSA, BBO, and CLPSO on bench-
mark functions f1 − f14. All results have been averaged over 30 runs
f SADE CLPSO BBO CK DSA ACS BSA EPPS

1 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0

3 0 3.2611 7.7318 0 3.8238E-10 1.6643E-11 0 0

4 0.6667 7.1037E-4 0.6673 6.7783E-3 4.3093E-10 0.3333 0.6444 0

5 0 0 0 0 0 0 0 0

6 1.5317E-3 1.1305E-3 5.5095E-4 1.2437E-3 5.8586-3 1.4076E-3 1.9955E-3 0

7 0 0 0 0 0 0 0 0

8 2.1984E-2 2.7530 71.9104 0 0 0 0.3987 0

9 –
12569.4866

–
12214.1716

–
12569.4836

–
12569.4866

–
12569.4866

–
12569.4866

–
12569.4866

–
12569.4882

10 0.9950 0 0 0 0 0 0 0

11 0.9313 8.0000E-15 9.0000E-16 4.4000E-15 2.2200E-14 8.0000E-15 1.0500E-14 8.8818E-16

12 1.7239E-2 0 2.5964E-2 0 0 0 4.9307E-4 0

13 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 0

experimental results obtained by iCMAES-ILS and NBIPOP-aCMA, which were
reported in Liao and Stutzle (2013), Loshchilov (2013), respectively, are directly
adopted for comparison in this chapter, because the codes of these algorithms are not
available. From Table3.7, it is clearly seen that EPPS performs better than the other
two algorithms on functions f16, f17, and f20. EPPS has the same best fitness values
as iCMAES-ILS and NBIPOP-aCMA on functions f15, f18. As for function f19, the
best fitness value of EPPS is inferior to that of iCMAES-ILS and NBIPOP-aCMA,
respectively.

3.4.6 Application of EPPS to Three Real-World Problems

3.4.6.1 Solving Unit Commitment Problem

Unit commitment is a significant practical task for power system operation and
plays an important role in the deregulated electricity markets. The unit commitment
problem in a power system refers to finding a unit commitment schedule that mini-
mizes the commitment and dispatch costs, subject to various constraints (Lee et al.
2014). This problem is commonly formulated as a complex nonlinear and mixed-
integer combinational optimization problem with a series of prevailing equality and
inequality constraints (Zhao et al. 2013). Moreover, the number of combinations of
0–1 variables grows exponentially as being a large-scale problem. Therefore, the
problem is considered as one of the most difficult problems in power system.
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Table 3.7 Comparison of EPPS with iCMAES-ILS and NBIPOP-aCMA on benchmark functions
f15 − f20. All results have been averaged over 30 runs

f Algorithms Best Worst Median Mean Std

15 NBIPOP-
aCMA

0 0 0 0 0

iCMAES-ILS 0 0 0 0 0

EPPS 0 0 0 0 0

16 NBIPOP-
aCMA

20.80 21.01 20.95 20.94 4.80 × 10−2

iCMAES-ILS 20.80 21.00 20.90 20.90 6.23 × 10−2

EPPS 20.0000 20.0011 20.0000 20.0006 0.0002

17 NBIPOP-
aCMA

0.40 7.63 2.77 3.30 1.83

iCMAES-ILS 7.10 × 10−2 8.06 4.53 4.34 1.72

EPPS 3.4222 × 10−2 4.1381 0 0.9014 0.7817

18 NBIPOP-
aCMA

0 0 0 0 0

iCMAES-ILS 0 0 0 0 0

EPPS 0 0 0 0 0

19 NBIPOP-
aCMA

1.40 × 10−2 2.78 4.10 × 10−2 0.44 0.93

iCMAES-ILS 1.48 × 10−2 1.21 0.43 0.38 0.27

EPPS 5.7074 × 10−2 0.6915 0.2172 0.2827 0.3108

20 NBIPOP-
aCMA

11.12 13.64 13.13 12.94 0.60

iCMAES-ILS 12.10 15.00 14.50 14.40 0.74

EPPS 9.0741 12.3264 11.2537 11.4117 1.2309

In this section, in order to investigate the capability of EPPS to solve practical
problems, it is used to optimize a 10-unit system from literature (Kazarlis et al. 1996).
The mathematical formulation of unit commitment is shown as follows (Yang et al.
2015):

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize F = ∑T
t=1

∑N
i=1[ fi (Pt

i ) + ST t
i (1 − ut−1

i )]uti
subject to

∑N
i=1 P

t
i u

t
i = Pt

D∑N
i=1 P

t
i maxu

t
i ≥ Pt

D + Pt
R

Pi min ≤ Pt
i ≤ Pi max

T t
i,ON ≥ Ti,up

T t
i,OFF ≥ Ti,down

(3.24)

where
fi (P

t
i ) = ai + bi P

t
i + ci (P

t
i )

2 (3.25)
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Table 3.8 Simulation results of 10-unit system with 10% of spinning reserve

Algorithms Best cost($) Mean cost($) Worst cost($)

EP 564,551 565,352 566,231

PSO 564,212 565,103 565,783

IPSO 563,954 564,162 564,579

HPSO 563,942 NA NA

SA 565,828 565,988 566,260

QEA-UC 563,938 564,012 564,711

IQEA-UC 563,938 563,938 563,938

BCPSO 563,947 564,285 565,002

C&B 563,938 NA NA

GSA 563,938 564,008 564,241

GSO 563,938.5123 563,938.9536 563,939.2514

EPPS 563,937.6863 563,937.6872 563,937.8490

NA: not available

and

ST t
i =

{
Shi if T t

i,OFF ≤ Ti,down + T coldi
Sci if T t

i,OFF > Ti,down + T coldi
(3.26)

where fi is the fuel cost of the i th unit which is taken as quadratic function; N = 10
is number of generators; T = 24 is total scheduling period; Pt

i is generation of unit
i at time t ; uti ∈ {0, 1}, is ON/OFF status of unit i at time t (ON = 1 and OFF = 0);
ST t

i is start-up cost of unit i at time t ; ai , bi , ci represent the unit cost coefficients;
Shi is hot start-cost of unit i ; Sci is cold start-up cost of unit i ; T coldi is cold start
time of unit i ; Ti,down is minimum down time of unit i ; T t

i,OFF is continuous down
time of unit i up to time t .

In the equality and inequality constraints of (3.24), Pt
D denotes the system load

demand at time t ; Pt
R is spinning reserve at time t ; Pi min and Pi max are minimum

and maximum generation limit of unit i , respectively; T t
i,ON is continuously up time

of unit i up to time t and Ti,up is the minimum up time of unit i .
The scheduling time horizon T is chosen as one day with 24 intervals of one hour

each. The spinning reserve requirement is set to be 10% of total load demand. The
input data is described in Kazarlis et al. (1996).

The 10-unit system with 10% spinning reserve is considered in this subsection to
further demonstrate the effectiveness of the proposed algorithm. The optimum dis-
patch of committed generating units, fuel cost, start-up cost, and spinning reserve at
all the time horizons are shown in Table3.9. To validate the computational efficiency
of the proposed approach, the simulation results of EPPS are compared with those
obtained by EP (Juste et al. 1999), PSO (Zhao et al. 2006), IPSO (Zhao et al. 2006),
HPSO (Ting et al. 2006), SA (Simopoulos et al. 2006), QEA-UC (Chung et al. 2011),
IQEA-UC (Chung et al. 2011), C&B (Zheng et al. 2015), BCPSO (Chakraborty et al.
2012), GSA (Roy 2013), and GSO. From Table3.8, it is clearly suggested that EPPS
is computationally more efficient than the other methods in terms of solution quality.
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Table 3.9 Generation schedule of the 10-unit system with 10% of spinning reserve obtained by
EPPS for 24h
Hour Unit Operating Startup Reserve

1 2 3 4 5 6 7 8 9 10 cost($) cost($) %

1 455 245 0 0 0 0 0 0 0 0 13683 0 30

2 455 295 0 0 0 0 0 0 0 0 14554 0 21.33

3 455 370 0 0 25 0 0 0 0 0 16809 900 26.12

4 455 455 0 0 40 0 0 0 0 0 18598 0 12.84

5 455 390 0 130 25 0 0 0 0 0 20020 560 20.20

6 455 360 130 130 25 0 0 0 0 0 22387 1100 21.09

7 455 410 130 130 25 0 0 0 0 0 23262 0 15.83

8 455 455 130 130 30 0 0 0 0 0 24150 0 11.00

9 455 455 130 130 85 20 25 0 0 0 27251 860 15.15

10 455 455 130 130 162 33 25 10 0 0 30058 60 10.86

11 455 455 130 130 162 73 25 10 10 0 31916 60 10.83

12 455 455 130 130 162 80 25 43 10 10 33890 60 10.80

13 455 455 130 130 162 33 25 10 0 0 30058 0 10.86

14 455 455 130 130 85 20 25 0 0 0 27251 0 15.15

15 455 455 130 130 30 0 0 0 0 0 24150 0 11.00

16 455 310 130 130 25 0 0 0 0 0 21514 0 26.86

17 455 260 130 130 25 0 0 0 0 0 20642 0 33.20

18 455 360 130 130 25 0 0 0 0 0 22387 0 21.09

19 455 455 130 130 30 0 0 0 0 0 24150 0 11.00

20 455 455 130 130 162 33 25 10 0 0 30058 490 10.86

21 455 455 130 130 85 20 25 0 0 0 27251 0 15.15

22 455 455 0 0 145 20 25 0 0 0 22736 0 12.45

23 455 425 0 0 0 20 0 0 0 0 17645 0 10.00

24 455 345 0 0 0 0 0 0 0 0 15427 0 13.75

Total Cost ($) = 563937 559847 4090

3.4.6.2 Solving Economic Emission Dispatch Problem

In the past few years, the economic emission dispatch (EED) problem has become
an important active research area because it considers the pollutant emissions as well
as economic advantages. In general, the unit outputs of the best economic dispatch
does not lead to minimum pollution emissions and vice versa. Therefore, it could not
solve such problem simply by optimizing a single economic dispatch (ED) problem.
In this case, the emission dispatch is added as a second objective to the economic
dispatch problem which leads to combined economic emission dispatch (CEED)
(Venkatesh et al. 2003; Glotić and Zamuda 2015). In consideration of valve loading
effects, the characteristic of CEED is mathematically described as non-smooth and
non-convex generation objective function with heavy equality as well as inequality
constraints. In general, the formulation of CEED problem is expressed as follows:
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CT = F(P) + PλE(P) (3.27)

where the total cost function F($/h) can then be expressed as follows (Aragón et al.
2015):

F(P) =
NG∑
i=1

(ai + bi Pi + ci P
2
i + ∣∣ei × sin

(
fi × (Pi,min − Pi )

)∣∣) (3.28)

and the total emission function E(ton/h) is defined in the following equation (Gent
and Lamont 1971):

E(P) =
NG∑
i=1

10−2 (
αi + βi Pi + γi P

2
i + ξiexp(ηi Pi )

)
(3.29)

where Pi is the real power output of unit i , ai , bi , and ci are the cost coefficients of
unit i , ei , and fi are the coefficients of unit i reflecting valve point effects, NG is the
number of units, Pi,min is the minimum generation limit of i th unit, and αi ,βi , γi , ξi ,
and ηi are the emission coefficients of unit i . P is the vector of real power outputs
of units and defined as

P = [P1, P2, · · · , PNG ]T (3.30)

The Pλ = (Pλ1 , · · · , PλNG
) is the price penalty factor ($/ton) which is described as

follows (Venkatesh et al. 2003)

Pλi = ai + bi Pi,max + ci P2
i,max + ∣∣ei × sin

(
fi × (Pi,min − Pi,max)

)∣∣
10−2

(
αi + βi Pi,max + γi P2

i,max + ξiexp(ηi Pi,max)
) (3.31)

where Pi,max is the maximum output of unit i .
The quality and inequality constraints of CEED are given as follows:

NG∑
i=1

Pi = PD (3.32)

Pi,min ≤ Pi ≤ Pi,max (3.33)

where PD is the total load demand.
Here, a 40-generating units with valve point effects and emission is considered.

The input datas for this system come from Venkatesh et al. (2003). The best com-
promising cost of the test system obtained by EPPS is 191582.0515 $/h and the
best compromising solutions are listed in Table3.10. The simulation results ob-
tained by EPPS are compared to DE (Basu 2011), MBFA (Hota et al. 2010), DE-HS
(Sayah et al. 2014), PSO (Omran and Clerc 2011), GSO (He et al. 2009), and the
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Table 3.10 Best compromise solution found with EPPS for 40-unit system

Unit Pi,min Pi,max Generation Unit Pi,min Pi,max Generation

1 36 114 114 21 254 550 437.3795

2 36 114 114 22 254 550 437.5076

3 60 120 120 23 254 550 438.0195

4 80 190 178.2003 24 254 550 437.9089

5 47 97 97 25 254 550 437.8020

6 68 140 129.4232 26 254 550 437.7312

7 110 300 300 27 10 150 19.5172

8 135 300 299.5459 28 10 150 19.5123

9 135 300 298.6392 29 10 150 19.5183

10 130 300 130 30 47 97 97

11 94 375 307.5167 31 60 190 175.7608

12 94 375 306.9795 32 60 190 175.8295

13 125 500 433.9502 33 60 190 175.7765

14 125 500 409.2836 34 90 200 200

15 125 500 411.5396 35 90 200 200

16 125 500 411.2092 36 90 200 200

17 220 500 452.0986 37 25 110 104.2640

18 220 500 452.1572 38 25 110 104.2654

19 242 550 437.4438 39 25 110 104.2351

20 242 550 437.4653 40 242 550 437.5198

TP 10500 FC 128729.6391

TE 178569.2016 PPF 0.35198

EC 62852.7876 TC 191582.0515

TP: total power generation (MW); FC: fuel cost ($/h);
TE: total emission (ton/h); PPF: price penalty factor ($/ton);
EC: emission cost ($/h); TC: total generation cost ($/h).

comparison results are given in Table 3.11. It is clearly seen that EPPS could provide
better results than other methods in minimum, maximum and mean.

Convergence characteristic for minimum compromise cost of EPPS is shown
in Fig. 3.7. We can see from the figure that EPPS could converge to the global
optimum at very early iterations. The statistical results on CEEDover 30 independent
runs by EPPS are depicted in Fig. 3.8. From this figure, it is observed that EPPS
consistently produces solutions at or very near to the global optimum, indicating a
good convergence characteristic.
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Table 3.11 Comparison of compromise cost of different methods on 40-unit system

Methods Minimum total cost
($/h)

Maximum total cost
($/h)

Mean total cost ($/h)

DE 191594.5053 192251.3565 191695.4643

MBFA 190149.1967 NA NA

DE-HS 191589.5164 191828.5087 191607.8309

PSO 191598.5325 192305.1021 191699.3392

GSO 191588.5563 191852.2013 191611.3926

EPPS 191582.0515 191726.0181 191590.4817
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Fig. 3.7 Convergence of EPPS for minimum compromise cost
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Fig. 3.8 Compromise solution cost obtained by EPPS over 30 trials

3.4.6.3 Estimating the Parameters of an FM Synthesizer

The third real-world problem is to estimate the parameters of an FM synthesizer (Das
andSuganthan 2010). It is a highly complexmultimodal problemwith six parameters,
where the vector to be optimized is x = (a1,ω1, a2,ω2, a3,ω3). The fitness function
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is the summation of square errors between the estimated wave and the target wave
as follows:

f (x) =
100∑
t=0

(y(t) − y0(t))
2 (3.34)

where the estimated sound is

y(t) = a1 · sin(ω1 · t · θ + a2 · sin(ω2 · t · θ + a3 · sin(ω3 · t · θ))) (3.35)

and the target sound is

y0(t) = 1.0 · sin(5.0 · t · θ + 1.5 · sin(4.8 · t · θ + 2.0 · sin(4.9 · t · θ))) (3.36)

θ = 2π/100 and the parameters are defined in the range [−6.46.35].
The total number of function evaluations is set to 30000 for this problem. Ta-

ble3.12 summarizes the minimum, mean, maximum and standard deviation values
achieved by EPPS, compared with these of SLPSO (Li et al. 2012), APSO (Zhan
et al. 2009), CLPSO (Liang et al. 2006), CPSOH (Li et al. 2012), SPSO (Omran and
Clerc 2011), JADE (Li et al. 2012), HRCGA (Li et al. 2012), G-CMA-ES (Li et al.
2012), and GSO. Actually, the minimum value demonstrates the local searchability
of the algorithm, the mean value represents the quality of the results obtained by each
algorithm, the maximum value reveals the global searchability of the algorithm, and
the standard deviation value shows the robustness of the algorithm in optimizing
fitness function. It can be seen from Table3.12 that none of the nine algorithms can
find the global optimum for all the 30 independent runs. By observing the minimum
values, SLPSO, APSO, SPSO, JADE, HRCGA, and EPPS have found the global
optimum at least once in 30 runs, while CLGSO, CPSOH, G-CMA-ES, and GSO
did not manage to find the global optimum. As for the maximum value and standard

Table 3.12 Comparison of estimation error of an FM synthesizer

Methods Minimum value Maximum value Mean value Standard
deviation

SLPSO 0 13.79 4.18 26.99

APSO 0 34.22 11.33 41.13

CLPSO 0.007 14.08 3.82 23.53

CPSOH 3.45 42.53 27.08 60.61

SPSO 0 18.27 9.88 33.85

JADE 0 13.92 7.55 26.18

HRCGA 0 17.59 8.41 32.54

G-CMA-ES 3.326 55.09 38.75 16.77

GSO 0.002 16.89 8.76 32.21

EPPS 0 13.90 3.69 23.07
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deviation, EPPS ranks second, as SLPSO reaches a smaller value in maximum value
and G-CMA-ES reaches a smaller value in standard deviation. Additionally, EPPS
performs better than the other nine algorithms in terms of the mean value.

3.5 Summary

This chapter has focused on three multi-objective optimization algorithms, i.e., the
MGSO-ACL, MGSOACC, and EPPS. First, the MGSO-ACL consists of three types
of groupmembers: producers, scroungers, and rangers. In each generation, the mem-
bers conferred with the best fitness value of each objective are chosen as the pro-
ducers, and a number of members are randomly selected as the scroungers, then
the rest of members are named the rangers. The MGSO-ACL addresses the adap-
tive covariance and Lévy flights to increase its exploration and exploitation abilities.
Moreover, chaotic search is employed as the rangers’ search strategy to maintain
the diversity of the group. Chaos is a typical nonlinear phenomenon in nature which
is characterized by ergodicity, randomicity, and sensitivity to its initial conditions.
Therefore, theMGSOACC is developed utilizing the adaptive covariance and chaotic
search. Finally, this chapter has introduced a novel global optimization algorithm,
evolutionary predator and prey strategy (EPPS). The EPPS is conceptually simple
and easy to implement. To validate its applicability, EPPS has been applied to op-
timize 20 canonical benchmark functions, including unimodal, multimodal, shifted,
and rotated ones, and the results obtained have been compared with those of the other
EAs.
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Chapter 4
Multi-attribute Decision-Making
Support System

Abstract This chapter presents threemulti-attribute decision-making support meth-
ods, i.e., an improved entropy weight method, evidential reasoning, and interval evi-
dential reasoning. The decision-making methods based on ER and IER approaches
are used to determine a final optimal solution from the Pareto-optimal solutions
obtained by multi-objective optimization algorithms. The selection of independent
evidence for decision-making is investigated together with the study of multiple peo-
ple and multiple attributes involved in the decision- making process. The decision-
making method takes into account both the multiple objectives and the multiple
evaluation criteria representing the economy and reliability interests of different
operating parties in the LSIES. The performance of these methods are tested in an
integrated energy system to find a final operation solution.

Keywords Multi-attribute decision-making support system · Evidential
reasoning · Interval evidential reasoning

4.1 Introduction to Decision-Making Support System

The methods for solving MOPs has been classified into three categories by Hwang
and Masud (2019) based on the phase in which the DM is involved in the decision-
making process: The a priori methods, the interactive methods, and the a posteri-
ori methods. In a priori methods, the DM expresses his/her preference before the
optimization process (e.g., setting goals or weights to the objective functions). Nev-
ertheless, the a priori methods are very difficult and abstract for the DM to know
beforehand and to be able to accurately quantify his/her preference, either by means
of goals or weights. In a posteriori methods, all of the efficient (Pareto optimal)
solutions of the problem are generated and then the DM is involved among them to
select the most preferred one. This means that the DM has to inspect a large set of
solutions to find the most preferred solution, requiring both high computational and
cognitive efforts. However, corresponding to MaOPs, the number of all the efficient
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solutions is too huge to be selected as the most preferred one. In the interactive meth-
ods, phases of dialogue with the DM are interchanged with phases of optimization.
The DM progressively drives the search direction with his/her answer toward the
most preferred solution. The drawback is that DM never sees the whole picture (the
Pareto set) or an approximation of it. Hence, the most preferred solution is “most
preferred” in relation to what the DM has seen and compare so far. In fact, the DM
prefers to guide the search toward the preferred portion of the Pareto front which is
called region of interest (ROI) (Bechikh et al. 2013; Ruiz et al. 2015; Gong et al.
2011) rather than discover the whole Pareto front especially with the increase of the
number of objectives.

When the Pareto-optimal set is obtained by the MGSO-ACL, it is necessary for
system operators to determine a final optimal solution from the Pareto-optimal solu-
tions. In this chapter, an evidential reasoning (ER) approach (Tang et al. 2004; Chin
and Fu 2014) is applied to conduct decision-making for a final optimal solution,
with the preference of the operators. Compared with other decision-making methods
(Wang and Singh 2008; Niknam et al. 2012; Xiong et al. 2008), the ER makes a
decision with adequate evidence fully considering both the multiple objectives and
the multiple criteria in order to make full use of the operators’ knowledge. Instead of
using certain relative weights to multiple objectives as in Guo et al. (2012), the ER
takes into account the uncertainties of the operators’ cognition. Accordingly, the ER
is able to make a convincing decision, determining a final optimal solution which is
more preferable for the operators. Furthermore, it has the potential to conduct the
ER on the different variable spaces to diminish the region of interest, which can help
reduce the computational burden during the decision-making process.

4.2 The IEWMethod and Its Decision-Making Model

4.2.1 Relationship Between Two Objectives

Generally speaking, there are three kinds of relationships between objectives, that
is, conflict, harmony, and independence (Purshouse and Fleming 2003). When two
objectives conflict with each other, it means that the two objectives cannot be
improved at the same time. Good values for one implies bad values for the other.
The conflicting objectives are considered to be negatively correlated mathemati-
cally. On the contrary, a harmony relationship between two objectives means that
the improvement of one objective would result in an improvement of the other. Har-
monious objectives are denoted in parallel coordinate graphs by noncrossing lines
and are considered to be positively correlated mathematically. Therefore, the har-
monious objectives can be grouped into a single new compound objective through
the simple summation, or we can choose only one of them for optimization. Also,
there exists the situation where two objectives are not correlated to each other, that
is, they are in independent relationship. As a matter of fact, there are many ways to
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measure the degree of conflict or harmony between two objectives. In this section, a
simple method called Spearman’s rank correlation coefficient is utilized to compute
correlation degree which is introduced as follows.

4.2.2 Spearman’s Rank Correlation Coefficient

In statistics, Spearman’s rank correlation coefficient or Spearman’s rho, named after
Charles Spearman and often denoted by the Greek letter ρ, is a nonparametric mea-
sure of statistical correlation between two variables (Spearman 1904). It evaluates
how well the relationship between two variables can be described using a monotonic
function. If there are no repeated data values, a perfect Spearman correlation of +1
or −1 occurs when each of the variables is a perfect monotone function of the other.

The Spearman correlation coefficient is defined as Pearson correlation coefficient
between ranked variables. Let Xi j be the value for objective j in the solution i ,
then the mathematical formulation of the Spearman’s rank correlation coefficient
ρab between objectives a and b is given below:

ρab = 1 − 6
∑

d2
i

n(n2−1)

di = Kia − Kib

Ki j = rank of Xi j within X . j

(4.1)

where n is the number of solutions and di is the difference between ranks. Identical
values (rank ties or value duplicates) are assigned a rank equal to the average of
their positions in the ascending order of the values. Based on the Spearman correla-
tion coefficient matrix CM = {ρab}, (1 ≤ a ≤ M, 1 ≤ b ≤ M), the relation among
M objectives can be analyzed.

The sign of the Spearman correlation coefficient ρab indicates whether two objec-
tives a and b are in conflict, while the magnitude of ρab describes the conflict degree.
If ρab is a large positive value, the two objectives are highly positively correlated,
that is, the relationship between a and b is harmony. If ρab is a large negative value,
objectives a and b are highly conflicted. If ρab is around zero, it indicates that the
two objectives are not correlated and are independent with each other. The Spearman
correlation coefficient increases in magnitude as a and b become closer to be perfect
monotone functions of each other. When they are perfectly monotonically related,
|ρab| becomes 1.

Although this nonparametric correlationmeasure involves loss of information as it
ignores the specific values of the objectives, it owes advantages over other measures.
First, it works without the requirement of comparability between objectives and the
objectives can use different units without any conversion. Second, it is useful when
we do not have an acknowledgement of the relative importance of each objective, all
we want to know is the relationship between them. Third, it is robust and insensitive
to any previous normalization. Lastly, the correlation coefficient is easy to compute
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and can give a clear description of the relationship between two objectives, conflict,
harmony, or independence.

4.2.3 Objective Selection

With the Spearman correlation coefficient matrix, we can select the most conflicting
objectives for MOEAs. Here, we adopt the objective selection method used in Wang
and Yao (2015), and the details are shown in Algorithm1.

Require:
CM : the Spearman correlation coefficient matrix;
M : the number of objectives;
St = [1 : M] : a temporary set;
Sc = ∅ : the selected conflicting objectives.

1: while St �= ∅ do
2: if all the elements in CM are positive then
3: J = argmax(sum(CM (1 : M, j))); Find the most representative objective;
4: else
5: J = argmin(sum(CM (i, j))), where CM (i, j) < 0 and 1 ≤ i ≤ M ; Find the most

conflicting objective with the remaining objectives.
6: end if
7: Move f J from St to Sc;

Add value 0, 1 to CM (J, j) > 0 ( f j ∈ St) as C ;
Classify C into two clusters;
Delete the objectives in the cluster containing 1 from St.

8: end while
Ensure:

Sc : the selected conflicting objectives.

Algorithm 1: Pseudocode of objective selection

The objective selection algorithm first samples a number of solutions in the feasi-
ble space as the learning database and calculates the values of objectives correspond-
ing to the solutions, based on the objective value matrix, the Spearman correlation
coefficient matrix can be obtained, then the most conflicting objectives are selected
using Algorithm1.

Entropy is originally the concept in thermodynamics, and it is C. E. Shannon that
introduced this concept into the area of information theory, and imposed the entropy
a generalized concept (Shannon 2001). Entropy is a measure of uncertainty in the
information using probability theory. According to the entropy theory, the quantity
and quality of the information for decision-making is one of the important factors
to determine the accuracy and reliability of decision-making results. Utilizing the
characteristic of entropy that can measure the quantity of the useful information pro-
vided by the data, the EW method can be used to assign objective weights. Given
the set of alternatives and their attributes, the weight assigned to one attribute by
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the EW method represents the quantity of information that this attribute conveys to
the decision maker, and it also indicates the variance degree among the alternatives
with respect to this attribute. A broad distribution represents more uncertainty than
a sharply peaked one, so it assigns a small weight to an attribute if it has similar
attribute values among alternatives, since such an attribute does not help in differen-
tiating alternatives. The detailed description for EWmethod is presented as follows:

The decision-making matrix Dnm with n alternatives rated on m attributes is first
normalized as matrix Rnm . According to the definition of entropy, the entropy value
of the attribute j is calculated as

Hj = −k
n∑

i=1

fi j ln fi j , ( j = 1, 2, · · · ,m) (4.2)

fi j = Ri j
n∑

i=1
Ri j

(4.3)

where 0 ≤ Hj ≤ 1, and it is assumed that if ln fi j = 0, fi j ln fi j = 0; i = 1, 2, · · · , n;
j = 1, 2, · · · ,m.

The entropy weight which is an objective weight for attribute j is thus given by

ωe j = 1 − Hj
m∑

j=1
(1 − Hj )

, ( j = 1, 2, · · · ,m) (4.4)

where 0 ≤ ωe j ≤ 1 and
m∑

j=1
ωe j = 1.

If attribute j owns a subjective weight ωs j , then the comprehensive weight is

ω j = ωs jωe j
∑m

j=1 ωs jωe j
, ( j = 1, 2, · · · ,m). (4.5)

According to (4.4), when all entropy values Hj → 1( j = 1, 2, · · · ,m), a delicate
difference among the entropy values will bring about the change in the correspond-
ing entropy weight being multiplied. For instance, if the entropy value vectors for
attributes are (0.999 9, 0.999 8, 0.999 7) and (0.900 0, 0.800 0, 0.700 0), respectively,
the differences among the entropy values of the two vectors are not the same, how-
ever, they turn out to have the same entropy weight vector (0.166 7, 0.333 3, 0.500
0) when employing (4.4) for calculation. This manner to assign weights is obviously
improper, the reasons are as follows: First, a delicate difference among different
attributes means they provide basically the same amount of information, as a result
the corresponding entropy weights should be basically the same; Second, different
entropy value vectors provide different amounts of information, so they should be
given different entropy weights.
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To overcome the above disadvantages of the original EW method, we proposed
an IEW method, in which the expression of entropy weight is given as

ωe j =
{

(1 − H̄)ωe j1 + H̄ωe j2 Hj < 1
0 Hj = 1

, ( j = 1, 2, · · · ,m) (4.6)

ωe j1 = 1 − Hj
m∑

j=1,Hj �=1
(1 − Hj )

ωe j2 = 1/Hj
m∑

j=1,Hj �=0
(1/Hj )

(4.7)

where H̄ is the mean value of the all the entropy values which are not equal to 1, and
0 ≤ ωe j ≤ 1,

∑m
j=1 ωe j = 1. When all entropy values Hj → 0( j = 1, 2, · · · ,m), a

delicate difference among the entropy values will result in a multiple change of ωe j2.
This means that ωe j1 and ωe j2 have a complementary relationship. At the same time,
the mean value H̄ can control the proportions these two weights possessed, that is,
when H̄ is close to 0, ωe j2 will have little contribution to ωe j , and when H̄ is close
to 1, ωe j1 will have little contribution to ωe j . As a result, (4.6) and (4.7) can give a
reasonable entropy weight regardless of the extreme entropy values.

Then we apply the IEW method to assess the solutions with multiple objective
(attribute) values. The detailed illustration of IEW is given as follows:

(1) Denote the Pareto-optimal solution set obtained by the MOEAs as Xnm , it
contains n solutions represented by the rows and m objectives represented by the
columns. Normalize Xnm into Rnm as below.

For minimization problem:

ri j =
max
1≤i≤n

xi j − xi j

max
1≤i≤n

xi j − min
1≤i≤n

xi j
, (1 ≤ i ≤ n, 1 ≤ j ≤ m) (4.8)

For maximization problem:

ri j =
xi j − min

1≤i≤n
xi j

max
1≤i≤n

xi j − min
1≤i≤n

xi j
, (1 ≤ i ≤ n, 1 ≤ j ≤ m) (4.9)

where ri j denotes the normalized value of the j th objective in the i th solution.
(2) Calculate the entropy value for each objective.

Hj = −k
n∑

i=1

fi j ln fi j , ( j = 1, 2, · · · ,m) (4.10)

fi j = Ri j
n∑

i=1
Ri j

(4.11)
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(3) Employ the IEW method to calculate the weight ω j that should be assigned
to objective j .

ωe j =
{

(1 − H̄)ωe j1 + H̄ωe j2 Hj < 1
0 Hj = 1

, ( j = 1, 2, · · · ,m) (4.12)

ωe j1 = 1 − Hj
m∑

j=1,Hj �=1
(1 − Hj )

ωe j2 = 1/Hj
m∑

j=1,Hj �=0
(1/Hj )

(4.13)

ω j = ωs jωe j
∑m

j=1 ωs jωe j
, ( j = 1, 2, · · · ,m) (4.14)

where ωs j is the subjective weight the decision maker gives to objective j .

(4) Calculate the aggregation assessment value ui for each solution using below
equation.

ui =
m∑

j=1

ω j ri j (i = 1, 2, · · · , n) (4.15)

(5) Rank the solutions according to the aggregation assessment values, and the
larger value, the better solution.

The proposed IEWmethod can be used for decision-making without the interfer-
ence of the decision maker, despite that the decision maker can offer the subjective
weights for objectives. The IEWmethod makes full use of the information contained
in the solutions, so it is quite simple but rather effective, as there is nothing than the
solution itself that can express its quality.

4.3 Evidential Reasoning

The evidential reasoning approach is utilized to determine a final optimal solution
for a certain operating point. Consisting of multi-attribute analysis, multi-evidence
reasoning, and utility evaluation, the ER combines multiple evidence and provides
a suitable mechanism to map the assessment grades of utility evaluation. The multi-
attribute analysis, multi-evidence reasoning, and utility evaluation are related to the
Pareto-optimal solutions of the power dispatch problem. The calculation of the ER
is based on the values of the Pareto-optimal solutions. The overall framework of the
ER is shown in Fig. 4.1, and the detailed explanations of the corresponding steps are
discussed in detail as follows.
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Fig. 4.1 The framework of the evidential reasoning approach

4.3.1 Multi-attribute Analysis

A three-level hierarchy of attributes is taken into consideration in this chapter, with
the overall utility evaluation addressed at the top level and a set of basic attributes
addressed at the bottom level, which is shown in Fig. 4.1. The set of basic attributes
is given as follows:

E = {e1, e2, · · · , ei , · · · , eL} (4.16)

where ei is the i criterion assigned with a normalized weight ω = [ω1, · · · , ωi , · · · ,

ωL ](0 < ωi < 1). The weight ωi represents the relative importance of criterion ei ,
and

∑L
i=1 ωi = 1, where L is the total number of criteria. Considering the power

dispatch problem formulated in this chapter, the basic attributes can be the objectives
of the power grid: fuel cost Fgrid1, power loss Fgrid3, voltage stability Fgrid3, voltage
deviation Fgrid4, or the objective of the distributed DHCs FDHCs.

In order to assess the state of a certain attribute, a set of predefined evaluation
grades shown in Fig. 4.1 is presented:

H = {H1, H2, · · · , Hn, · · · , HN } (4.17)

where N is the number of evaluation grades. The set of the evaluation grades is set
as H = {poor, indifference, average, good, excellent, uncertain}, which is assigned
with six grades for each attribute.

The basic assessment S(ei ) for attribute ei is shown as the following distribution
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of degree of beliefs with regard to different levels of evaluation grades, which is
generated based on the preference of the system operators.

S(ei ) = {(Hn, βn,i ), n = 1, · · · , N , i = 1, · · · , L} (4.18)

which means that the attribute ei is assessed to the grade Hn with a degree of belief
βn,i (βn,i ≥ 0 and

∑N
n=1 βn,i ≤ 1). The assessment S(ei ) is complete if

∑N
n=1 βn,i =

1, and it is incomplete if
∑N

n=1 βn,i < 1.The casewhen
∑N

n=1 βn,i = 0denotes a com-
plete lack of information on ei . For example, the subjective judgement of the system
operators for a certain attribute of an alternative is 70%of {good}, 10% of {excellent},
the left 10% of {uncertain} due to the uncertainties of the operators’ cognition.
Then, we can get the basic assessment for this attribute as the following distribu-
tion S(e) = {(poor, 0), (indifference, 0), (average, 0), (good, 0.8), (excellent, 0.1),
(uncertain, 0.1)}.

4.3.2 Multi-evidence Reasoning

The ER processes the aggregation based on multiple evidence. A basic probabil-
ity mass mn,i represents the degree to the i th basic attribute ei supporting the
assessment of the general attribute y with the nth evaluation grade Hn . The mass
mn,i is calculated by mn,i = ωiβn,i . The remaining probability mass mH,i is unas-
signed to any individual grade and decomposed into two parts m̄H,i = 1 − ωi and
m̃H,i = ωi (1 − ∑N

n=1 βn,i ).
Let mn,I (i) be the combined probability mass calculated by aggregating the

first i (from 1 to i) assessments. m̄n,I (i) and m̃n,I (i) are the remaining probability
masses unassigned to any individual grade after aggregation of the first i assess-
ments. Assuming mn,I (1) = mn,1, m̄n,I (1) = m̄n,1, m̃n,I (1) = m̃n,1, the combination
of the i assessment with i + 1 assessment can be depicted by the following recursive
expression:

{Hn} : mn,I (i+1) = KI (i+1)[mn,I (i)mn,i+1

+ mH,I (i)mn,i+1 + mn,I (i)mH,i+1] (4.19)

mH,I (i) = m̄H,I (i) + m̃H,I (i)

{H} : m̃H,I (i+1) = KI (i+1)[m̃H,I (i)m̃H,i+1

+ m̄H,I (i)m̃H,i+1 + m̃n,I (i)m̄H,i+1] (4.20)

m̄H,I (i+1) = KI (i+1)[m̄H,I (i)m̄H,i+1] (4.21)

where KI (i+1) is defined as below for i = 1, 2, · · · , L − 1

KI (i+1) = [
1 −

N∑

t=1

N∑

j=1, j �=t

mt,I (i)m j,i+1
]−1

(4.22)
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After the aggregation of all the basic attributes, the combined degrees of belief βn

corresponding to the grade Hn , and the unassigned degree of belief βH representing
the incompleteness and uncertainty of the overall assessment, are calculated by the
following normalization formulation:

{Hn} : βn = mn,I (L)

1 − m̄H,I (L)

(4.23)

{H} : βH = m̃n,I (L)

1 − m̄H,I (L)

(4.24)

As a consequence, the overall assessment for the general attribute y can be updated
by the distribution of degree of beliefs ˜S(y) in (4.18) with regard to different evalu-
ation grades:

˜S(y) = S(e1) ⊕ S(e2) · · · ⊕ S(ei ) ⊕ · · · ⊕ S(eL)

= {(Hn, β̃n), n = 1, · · · , N } (4.25)

where ⊕ denotes the aggregation of two attributes. Accordingly, we can get the
overall assessment of each alternative by aggregation of the basic assessment for
each attribute according to the preference of the operators.

4.3.3 Utility Evaluation

When the distributed descriptions are not sufficient to make the evidential decision,
the concept of expected utility has been proposed (Yang and Xu 2002). In this case,
the utility of the attribute y can be used for ranking alternatives, which is given as
follows:

u(y) =
N∑

n=1

βnu(Hn) (4.26)

where it can be determined that as alternative a is preferred to another alternative b
if and only if u(y(a)) > u(y(b)).

However, in most cases, the assessment for a basic attribute is incomplete, which
meansβH > 0. Furthermore, threemeasures are addressed to characterize the assess-
ment for attribute y, i.e., the minimum, maximum, and averaged utilities which are
formulated as

umax(y) =
N−1∑

n=1

βnu(Hn) + (βN + βH )u(HN ) (4.27)
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umin(y) = (β1 + βH )u(H1) +
N∑

n=2

βnu(Hn) (4.28)

uavg(y) = (umax(y) + umin(y))

2
(4.29)

The alternative having the lower utility evaluation ranks lower, while the alterna-
tive having the higher utility evaluation ranks higher. As a consequence, the ranking
between two alternatives a and b can be assigned based on theirminimum,maximum,
and averaged utility evaluation. If umin(y(a)) > umax(y(b)), then a is preferred to
b; if and only if umin(y(a)) = umin(y(b)) and umax(y(a)) = umax(y(b)), then a is
indifferent to b; otherwise, averaged utility is applied to generate a ranking between
a and b.

4.4 Interval Evidential Reasoning

The framework of the IER is shown in Fig. 6.4. As shown in this figure, the IER
consists of three hierarchical steps: multi-attribute analysis, multi-evidence reason-
ing and utility evaluation. The detailed explanations of the corresponding steps are
discussed in detail as follows (Fig. 4.2).

4.4.1 Multi-attribute Analysis

Suppose a MADA problem has M alternatives am,m = 1, · · · , M , and a set of L
basic attributes addressed at the bottom level for each alternative. The set of basic
attributes is given as

E = {e1, e2, · · · , el , · · · , eL} (4.30)

where E is a set of attributes which is assigned with a normalized weight ω =
[ω1, · · · , ωl , · · · , ωL ](0 ≤ ωl ≤ 1). The weight ωl represents the relative impor-
tance of attribute el , and

∑L
l=1 ωl = 1.

Different from the original ER algorithm, the performance of each alternative can
be assessed to an individual grade or a grade interval. Accordingly, the complete set
of all individual grades and grade intervals for assessing each attribute, denoted by
Ĥ , can be represented by

̂H = {Hpq | p = 1, · · · , N , q = p, · · · , N } (4.31)
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Fig. 4.2 The framework of the interval evidential reasoning
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or equivalently

̂H =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

H11 H12 · · · H1(N−1) H1N

H22 · · · H2(N−1) H2N

. . .
...

...

H(N−1)(N−1) H(N−1)N

HNN

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(4.32)

where Hpp, (p = 1, · · · , N ) denote an individual grade while Hpq , p = 1, · · · , N ;
q = p + 1, · · · , N denotes the interval grade that is the union of the individual grades
Hpp and H(p+1)(p+1), · · · , Hqq .

Suppose alternative am is assessed on the basic attributes el using the assessment
grades Hpq . The basic assessment can be represented as follows:

S(am) = {(Hpq , βl(Hpq))| l = 1, · · · , L , Hpq ∈ ̂H} (4.33)

where βl(Hpq) is the basic belief degree based on the subjective judgment of the
system operators, which means that the attribute el is assessed to the grade Hpq with
a degree of belief βl(Hpq)(βl(Hpq) ≥ 0 and

∑
Hpq∈ ̂H βl(C) = 1).

4.4.2 Multi-evidential Reasoning

Similarly to the original ER algorithm, the IER also processes the aggregation based
on the multiple evidence. A basic probability mass function ml(Hpq) assigned to
each element in { ̂H} is defined as

ml(Hpq) = ωlβl(Hpq), l = 1, · · · , L , Hpq ∈ ̂H (4.34)

Besides, the remaining mass function mR
l , which is to be assigned depending on the

relative importance of other attributes, can be calculated by

mR
l = 1 −

∑

Hpq∈Ĥ
ml(Hpq)

= 1 − ωl

( ∑

Hpq∈Ĥ
βl(Hpq)

)
= 1 − ωl (4.35)

where mR
l represents the remaining role that other attributes can play in the assess-

ment, which should eventually be assigned to the assessment grades in a way depen-
dent on the importance of other attributes.

According to the D-S theory and the original ER aggregation rules, the recursive
aggregation of the IER can be illustrated as follows.
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Let s, s = 1, 2, · · · , L be the recursive number and the combination results of the
first s th attributes be denoted as mI(s)(·). In the first recursion s = 1, we have

mI(1)(Hpq) = m1(Hpq), Hpq ∈ ̂H (4.36)

mR
I(1) = mR

1 (4.37)

In the next recursion s + 1, we have

mI(s+1)(Hpq) = KI(s+1)

{
− mI(s)(Hpq)ms+1(Hpq)

+
p∑

i=1

N∑

j=q

[mI(s)(Hi j )ms+1(Hpq)

+ mI(s)(Hpq)ms+1(Hi j )]

+
p−1∑

i=1

N∑

j=q+1

[mI(s)(Hiq)ms+1(Hpj )

+ mI(s)(Hpj )ms+1(Hiq)]
+ mR

I(s)ms+1(Hpq)

+ mI(s)(Hpq)m
R
s+1

}
(4.38)

mR
I(s+1) = KI(s+1)m

R
I(s)m

R
s+1 (4.39)

where KI(s+1) is the scaling factor used to make sure that
∑

Hpq∈ ̂H mI(s+1)(Hpq) +
mR

I(s+1) = 1, which is calculated by

KI(s+1) =
{
1 −

N∑

p=1

N∑

q=p

p−1∑

i=1

p−1∑

j=i

[mI(s)(Hi j )ms+1(Hpq)

+ mI(s)(Hpq)ms+1(Hi j )]
}−1

(4.40)

Note that in (4.38) and (4.40), the summing up calculation
∑i2

i=i1
f (i) will not

be carried out when i1 > i2. Mathematically, we may say that
∑i2

i=i1
f (i) = 0 when

i1 > i2, and this convention applies throughout this section.
Applying the previous aggregation process recursively until all the L attribute

assessments are aggregated, the overall assessment of the alternative am can be
expressed as follows:

S̃(am) = S(e1 ⊕ e2 · · · ⊕ el ⊕ · · · ⊕ eL)

= {(Hpq , β̃(Hpq)), Hpq ∈ ̂H}
with β̃(Hpq) = mI(L)(Hpq)

1 − mR
I(L)

(4.41)
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where ⊕ denotes the aggregation of two attributes, and β̃(Hpq) is the overall assess-
ment assigned to the corresponding grade Hpq after the aggregation based on the
multiple evidence.

4.4.3 Utility Evaluation

When the distributed descriptions are not sufficient to make the evidential deci-
sion, the concept of expected utility has been proposed (Yang and Xu 2002). In this
case, the expected utility evaluations of the alternative am can be used for rank-
ing alternatives. Suppose u(Hpp) is the value of the assessment grade Hpp with
u(Hp+1,p+1) > u(Hpp) as it is assumed that the grade Hp+1,p+1 is preferred to Hpp.
Due to the interval uncertainty, the maximum, minimum, and average expected util-
ities are calculated for ranking alternatives. As the belief degree β̃(Hpq) can be
assigned to the best grade in the interval Hpq which is Hqq , if the uncertainty turns
out to be favorable to the assessed alternative, the the maximum utility evaluation
can be expressed as

umax(am) =
N∑

p=1

N∑

q=p

β̃(Hpq)u(Hqq) (4.42)

Similarly, in the worst case, if the interval uncertainty turns out to be against the
assessed alternative, i.e., the belief degree β̃(Hpq) assigned to Hpp, the worst grade
in the interval Hpq , then the minimum expected utility evaluation can be calculated
as

umin(am) =
N∑

p=1

N∑

q=p

β̃(Hpq)u(Hpp) (4.43)

Accordingly, the average of the expected utility evaluation is given by

uavg(am) = (umax(am) + umin(am))

2
(4.44)

The alternative having the lower utility evaluation ranks lower, while the alter-
native having the higher utility evaluation ranks higher. As a consequence, the
ranking between two alternatives am and an can be assigned based on their mini-
mum, maximum, and averaged utility evaluations. If umin(am) > umax(an), then am
is preferable to an to an extent of 100%; if and only if umin(am) = umin(an) and
umax(am) = umax(an), then am is indifferent to an; otherwise, the averaged utility
evaluation is applied to generate a ranking between am and an . In this case, the
extent to which the interval number [umin(am), umax(am)] ≥ [umin(an), umax(an)] is
calculated using the following equation:
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P(m > n) = max(0, um2 − un1) − max(0, um1 − un2)

(um2 − um1) + (un2 − un1)
(4.45)

where um1 and um2 are the minimum and maximum utility evaluations of alternative
m, while un1 and un2 are theminimum andmaximumutility evaluations of alternative
n, respectively.

4.5 Simulation Studies

Simulation studies are carried out on the modified IEEE 30-bus system with dis-
tributed DHCs and wind power generation integrated. The distributed energy units
are interconnected via the 30-bus power grid, hence the test system can be treated as
a LSIES. The detailed locations of generators, electricity loads, wind turbines, and
distributed DHCs are summarized in Table 4.1.

As for the wind turbines, the rated, cut-in and cut-out wind speeds are set as 12.5
m/s, 4.0 m/s and 20 m/s, respectively. In addition, the detailed parameter settings of
the DHC system can be found in our previous work (Jiang et al. 2014; Jing et al.
2014).

Applying the MGSO-ACL, the multi-objective optimization problem with one
objective addressed from the power grid and the other addressed from the distributed
DHCs, is optimized with comparisons with the original GSOMP. Figure4.3 shows
the best Pareto fronts obtained byMGSO-ACL and GSOMP. As shown in the figure,
it is obvious that MGSO-ACL outperforms GSOMP in terms of searching for better
converged and more evenly distributed non-dominated solutions.

4.5.1 The ER Method Performance Test

As for the Pareto-optimal solutions obtained by MGSO-ACL, the decision-making
method, evidence reasoning, is applied to determine a final optimal solution in order
to balance the interests of the power grid and the distributed DHCs. Taking the
Pareto-optimal solutions of the competing objectives [Fgrid1, FDHCs] as an example,
thus the objectives [Fgrid2, Fgrid3, Fgrid4] are treated as the multiple evaluation criteria
for decision-making. In order to comprehensively present the ER, five Pareto-optimal

Table 4.1 The detailed locations of different components in the modified IEEE 30-bus system

Components Node Components Node

Generators 1, 2, 5, 13 Wind farms 8, 11

Distributed DHCs 7, 12, 21, 30 Electricity loads the others
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Fig. 4.3 Pareto fronts obtained by MGSO-ACL and GSOMP for different objectives of power grid
and DHCs
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Fig. 4.4 The distributed assessments for the five selected solutions

solutions obtained byMGSO-ACL are selected, namely [O1,O2,O3,O4,O5], which
are shown in Fig. 4.3.

The corresponding values of the objectives and the evaluation criteria of the five
selected Pareto-optimal solutions are shown in Table 4.2. According to the results
shown in the table, it is difficult to simply choose a final optimal solution since the
objectives and evaluation criteria are in conflict with each other and none of the five
Pareto-optimal solutions are superior in terms of all the objectives and evaluation
criteria. Hence, the ER which takes into account all the multiple objectives and
the multiple evaluation criteria is applied to tackle the complex decision-making
problem.
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Table 4.2 The values of the objectives and the evaluation criteria of the five selected Pareto-optimal
solutions

Objectives Evaluation criteria

Solution [Fgrid1, FDHCs] [Fgrid2, Fgrid3, Fgrid4]
O1 [656.43, 44.85] [15.97, 0.996, 1.991]

O2 [655.82, 58.76] [14.79, 0.995, 1.956]

O3 [655.36, 83.38] [15.25, 0.990, 1.989]

O4 [655.21, 107.46] [14.71, 0.991, 1.737]

O5 [654.99, 248.76] [14.56, 0.997, 1.761]
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Fig. 4.5 Utility evaluations for the five selected solutions

Suppose the set of relativeweightsωi of the evaluation criteria [Fgrid2, Fgrid3, Fgrid4]
is ω = [0.2, 0.4, 0.4]. Because the objectives [Fgrid1, FDHCs] represent the econ-
omy benefits for the power grid and distributed DHCs, the evaluation criteria
representing the interests of reliability operation should be assigned with greater
weights. In addition, the set of evaluation grades is set as H = {poor, indifference,
average, good, excellent, uncertain}. Therefore, the subjective judgement can be set
based on the ranking of the evaluation criteria of the five selected Pareto-optimal
solutions. Note that without loss of generality, the evaluation grade H(uncertain)
of the subjective judgement is set as 0.1 for all the selected Pareto-optimal solu-
tions. Applying the multi-evidence reasoning of the ER, the assessments for the five
selected Pareto-optimal solutions by aggregating power loss, voltage stability, and
voltage deviations are, therefore, presented by the distributed assessments, which are
shown in Fig. 4.4 and Table4.3.

According to the distributed assessments for the Pareto-optimal solutions, it is
still not straightforward to distinguish them from each other, because the degrees of
their beliefs assessed to the evaluation grades are of no great significance. Hence,
the utility evaluation is applied in order to rank the solutions.
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Table 4.3 The distributed assessments for the five selected solutions

Solution Poor Indifferent Average Good Excellent Uncertain

O1 0.3660 0.2661 0.0990 0.0918 0.0918 0.0852

O2 0.2469 0.3208 0.1460 0.0932 0.0932 0.0998

O3 0.0921 0.1653 0.3970 0.1653 0.0921 0.0884

O4 0.0917 0.0990 0.3527 0.2820 0.0917 0.0828

O5 0.0919 0.1610 0.3532 0.2191 0.0919 0.0829

Therefore, the utility evaluations for the fivePareto-optimal solutions [O1,O2,O3,

O4,O5] are presented in Fig. 4.5. As shown in the figure, it is evident that the rank-
ing of the five selected solutions is O4 	 O5 	 O3 	 O2 	 O1. Hence, as for the
objectives [Fgrid1, FDHCs] and the evaluation criteria [Fgrid2, Fgrid3, Fgrid4], O4 can be
chosen as the final optimal solution which is determined with the preference of sys-
tem operators.

Considering other decision-making methods, like the fuzzy decision method
(Niknam et al. 2012; Xiong et al. 2008), the best compromised solution obtained
by these methods only considers the values of the multiple objectives of the Pareto-
optimal solutions. In this way, O3 is selected as the final solution. However, the
other evaluation criteria of O3 in terms of Fgrid2 and Fgrid4 perform worst for power
grid among the five alternatives. Thus, it can be concluded that the final solution
obtained by the fuzzy decision method considering only the multiple objectives is
not convincing enough. Furthermore, according to the Pareto-dominance principle
in (3.4), it is worthwhile to mention that each Pareto-optimal solution is an optional
choice, so multiple evaluation criteria apart from the objectives should be taken into
consideration. As a consequence, compared with the fuzzy decision method, ER is
more pragmatic for solving the complex decision-making problem of the optimal
power dispatch representing the competing interests of the power grid and the DHCs
interconnected in the LSIES.

In terms of the objectives [Fgrid2, FDHCs], [Fgrid3, FDHCs] and [Fgrid4, FDHCs],
applying the same decision-making procedure of the ER aforementioned, a final
optimal solution can also be selected from the corresponding Pareto-optimal solu-
tions.

4.5.2 The IEW Method Performance Test

To verify the rationality of the IEW method in assigning proper weights, we adopt
different types of entropy values, and compare the results with other methods, as
shown in Table 4.4. Here for convenience, we denote the original method as A, the
method in Zhou et al. (2007) as B, themethod in Lu et al. (2015) as C, and ourmethod
as D. It can be seen that when the entropy value vectors are too large or too small,
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Table 4.4 The entropy weights given by four different entropy weight methods against different
types of entropy values

Value type Entropy value A B C D

Hj → 1 0.999 9 0.166 7 0.333 3 0.333 2 0.333 3

0.999 8 0.333 3 0.333 3 0.333 3 0.333 3

0.999 7 0.500 0 0.333 4 0.333 5 0.333 4

0.900 0 0.166 7 0.296 3 0.166 7 0.267 9

0.800 0 0.333 3 0.333 3 0.333 3 0.330 5

0.700 0 0.500 0 0.370 4 0.500 0 0.401 6

Hj → 0.5 0.600 0 0.266 7 0.289 9 0.266 7 0.268 5

0.500 0 0.333 3 0.333 3 0.333 3 0.328 8

0.400 0 0.400 0 0.377 8 0.400 0 0.402 7

1.000 0 0.000 0 0.156 6 0.000 0 0.000 0

0.500 0 0.357 1 0.333 3 0.357 1 0.300 0

0.100 0 0.642 9 0.511 1 0.642 9 0.700 0

Hj → 0 0.300 0 0.291 7 0.277 8 0.291 7 0.269 7

0.200 0 0.333 3 0.333 3 0.333 3 0.321 2

0.100 0 0.375 0 0.388 9 0.375 0 0.409 1

0.000 3 0.333 3 0.333 3 0.333 3 0.333 3

0.000 2 0.333 3 0.333 3 0.333 3 0.333 3

0.000 1 0.333 4 0.333 4 0.333 4 0.333 4

our method can give more moderate and reasonable entropy weight vectors. When
the entropy values are all close to 0.5, the difference between the weight vectors
given by our IEW method and the original EW method is tiny, both of them are
reasonable. In particular, compared with other methods, our method gives a weight
vector which has more discrimination among the attributes for entropy value vector
(1.000 0, 0.500 0, 0.100 0).

Take the Pareto-optimal solution set consisting of 39 solutions and 5 objectives
obtained by the multi-objective optimization in Zheng et al. (2015) as the decision-
making data. Table 4.5 gives the Pareto-optimal solution set, the rank of solutions
given by the IEW method (rank1), and the rank by the PROMETHEE (rank2). It
can be seen that these two methods give basically the same ranking schemes and
both choose the 19th solution as the best solution, indicating the effectiveness of
the IEW method in decision-making. The decision-making method used in Zheng
et al. (2015) is ER, however, this method is complex and need the decision maker to
evaluate the solutions elaborately. So it only chooses the five solutions in boldface
from Table 4.5 for decision-making and only considers the last three objectives in
the decision-making process. We employ the IEW method and the PROMETHEE
method to rank these five solutions, and compare the results with the rank scheme
given by the ER (rank3). As shown in Table 4.6, all of these three methods give the
same rank scheme. However, the IEW method explicitly makes use of the quality
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Table 4.5 The rank schemes given by IEW and PROMETHEE for the solution set consisting of
39 solutions and 5 objectives

Solution Objective1 Objective2 Objective3 Objective4 Objective5 Rank1 Rank2

1 654.89 420.09 14.51 0.996 1.745 28 28

2 654.91 345.51 14.58 0.996 1.739 22 22

3 654.93 342.57 14.53 0.996 1.756 23 23

4 654.94 321.18 14.54 0.995 1.757 12 13

5 654.95 298.69 14.52 0.996 1.743 16 16

6 654.97 286.94 14.54 0.997 1.760 25 24

7 654.98 285.11 14.53 0.996 1.76 17 17

8 654.99 283.12 14.53 0.996 1.765 18 18

9 654.99 267.22 14.56 0.996 1.755 15 15

10 655.00 252.83 14.56 0.996 1.759 14 14

11 655.00 248.77 14.56 0.997 1.761 21 20

12 655.00 224.01 14.55 0.996 1.755 9 9

13 655.03 220.90 14.54 0.996 1.757 10 10

14 655.03 192.11 15.56 0.996 1.760 30 30

15 655.07 158.82 14.57 0.996 1.758 6 5

16 655.10 158.48 14.57 0.996 1.77 8 7

17 655.11 144.50 14.58 0.995 1.773 2 2

18 655.15 116.61 14.63 0.996 1.777 7 6

19 655.21 107.46 14.71 0.991 1.737 1 1

20 655.29 88.00 14.62 0.996 1.786 5 4

21 655.36 83.38 15.25 0.990 1.989 4 8

22 655.45 79.55 14.70 0.996 1.812 11 11

23 655.51 78.68 14.72 0.996 1.858 19 19

24 655.53 76.77 14.72 0.996 1.819 13 12

25 655.54 73.04 15.76 0.996 1.838 32 32

26 655.58 68.94 14.69 0.994 1.839 3 3

27 655.62 66.17 14.78 0.996 1.894 24 25

28 655.81 65.39 14.71 0.996 1.920 27 27

29 655.82 58.76 14.79 0.995 1.956 26 26

30 655.97 56.38 14.85 0.996 1.916 29 29

31 656.02 48.35 14.94 0.996 1.958 31 31

32 656.26 46.52 14.86 0.993 1.951 20 21

33 656.44 44.85 15.97 0.996 1.971 37 37

34 656.57 42.75 15.04 0.996 1.945 33 33

35 656.83 41.10 15.13 0.996 1.996 34 34

36 657.09 40.02 15.17 0.996 2.120 38 38

37 657.15 39.25 15.04 0.996 2.035 35 35

38 657.23 39.01 15.11 0.996 2.058 36 36

39 657.46 38.49 15.25 0.996 2.174 39 39
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Table 4.6 The rank schemes given by IEW, PROMETHEE, and ER for the solution set consisting
of 5 solutions and 3 objectives

Solution Objective3 Objective4 Objective5 Rank1 Rank2 Rank3

11 14.71 0.991 1.737 5 5 5

19 14.71 0.991 1.737 4 4 4

21 15.25 0.990 1.989 3 3 3

29 14.79 0.995 1.956 1 1 1

33 15.97 0.996 1.971 2 2 2

information of the solution represented by its numerical value, and doesn’t need the
decision maker to allocate the solutions into several evaluation degrees according to
their numerical value and then transform the evaluation degrees into utility value like
the ER. That is why the IEW method is suitable for online running. It can pick up
the final solution for decision maker automatically just using the information given
by the Pareto-optimal solution set.

4.6 Summary

This chapter has concentrated on threemulti-attribute decision analysis supportmeth-
ods, i.e., the IEW, ER, and IER which consists of multi-attribute analysis, multi-
evidence reasoning, and utility evaluation. The decision-making methods can com-
bine the complex multiple evaluation criteria to map the assessment grades of utility
evaluation. Compared with other decision-making methods, the presented multi-
attribute decision analysis support methods can make full utilization of the multiple
objectives including those which are not included for optimization directly. More-
over, the multi-attribute decision analysis support methods can also take into account
the uncertainty of the operators’ cognition as a quantifiable evaluation grade. It is
demonstrated the multi-attribute decision analysis support methods are effective in
making a convincing decision to satisfy the economy and reliability interests of the
power grid and the distributed DHCs.
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Chapter 5
Planning of the Large-Scale Integrated
Energy Systems

Abstract This chapter presents the planning problems of the LSIES considering
the optimal unit sizing and the multi-stage contingency-constrained co-planning,
respectively. First, a comprehensive framework including a multi-objective interval
optimizationmodel and evidential reasoning (ER) approach is introduced to solve the
unit sizing problemof small-scale integrated energy systems,with uncertainwind and
solar energies integrated. In the multi-objective interval optimization model, inter-
val variables are introduced to tackle the uncertainties of the optimization problem.
Aiming at simultaneously considering the cost and risk of a business investment,
the average and deviation of life cycle cost (LCC) of the integrated energy sys-
tem are formulated. Second, a multi-stage contingency-constrained co-planning for
electricity-gas systems (EGS) interconnected with gas-fired units and power-to-gas
(P2G) plants considering the uncertainties of load demand and wind power. The
MCC model considers the long-term co-planning for EGS with the short-term oper-
ation constraints, while enabling systems to satisfy N-1 reliability criterion. These
planning problems are solved utilizing the multi-objective optimization algorithms
and decision-making support methods introduced in the previous chapters.

Keywords Planning problems · Optimal unit sizing · Multi-stage
contingency-constrained

5.1 Introduction to Planning of the LSIES

Integrated energy systems (IESs) provide a valuable opportunity to efficiently and
sustainably utilize the energy, due to its ability to accommodate different energy
systems, involving electricity, gas, heating, and transport (Mancarella 2014; Wang
et al. 2017). Specially, the synergies between the electricity and gas systems are
dramatically increasing in recent years, in order to improve the efficiency and com-
pliance with the stringent environmental regulations (Zheng et al. 2017). According
to the monthly energy review provided by the U.S. Energy Information Adminis-
tration (EIA) U.S. Energy Information Administration (2019), the U.S. natural gas
consumption by electric sector has increased from 32% in 2007 to 39% in 2017.
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Furthermore, the new gas-fired generating units are expected to be projected for
the next decade, due to their low emissions and high efficiency. Consequently, the
necessity for devoting significant efforts to the coordinated expansion planning for
electricity systems and natural gas infrastructure continues to grow.

Increasing research interest has been directed towards the co-optimization expan-
sion planning of integrated electricity-gas systems, involving generation expansion
planning (GEP), transmission expansion planning (TEP) and natural gas grid expan-
sion planning (NGGEP). Since TEP and GEP can seriously influence NGGEP, these
three items are always simultaneously accomplished. In this context, a chance-
constrained and reliability programming optimization model for combined GEP and
NGGEP is reported in Odetayo et al. (2018). In Hemmati et al. (2017), coordina-
tion of GEP, TEP and energy storage systems in microgrids is analyzed by using
a strong meta-heuristic optimization algorithm. A two-stage robust optimization
problem of TEP and NGGEP is formulated in Shao et al. (2017) for enhancing
the power grid resilience. Hu et al. (2016) carries out a NSGA-II multi-objective
optimization for TEP and NGGEP. In Barati et al. (2015), a multi-period integrated
GEP+TEP+NGGEP framework for large-scale integrated energy systems is estab-
lished. Qiu et al. (2016) proposes a linear programming approach for expansion
co-planning in gas and electricity markets to minimize the total capital and opera-
tional cost, while satisfying the reliability and security requirements. Qiu et al. (2015)
develops a novel model on multi-stage flexible expansion co-planning under uncer-
tainties in a combined electricity and gas market. However, in most of the previous
research, only gas-fired generators are served as the linkage between electricity and
gas systems. Power-to-gas (P2G) plants (Colbertaldo et al. 2018) are not taken into
consideration. As an indispensable medium to transform the surplus wind power
into hydrogen or synthetic natural gas (SNG) (Parra and Patel 2016), P2G technol-
ogy has a direct influence on the collaborative planning and operation dispatch of
electricity-gas systems.

Although Guandalini et al. (2015) carries out the capacity configuration opti-
mization of P2G plants and gas turbines for improving wind energy dispatchabil-
ity, the security constraints of gas network are not considered. The collaborative
site-selection planning problem is investigated in Moskalenko et al. (2014), but the
detailed mathematical models are not given. The authors of Zeng et al. (2017) focus
on the coordinated expansion planning of P2G plants and gas-fired power generation
and propose a hybrid algorithm to solve the bilevel programming problem. How-
ever, the capacity expansion of transmission lines and gas pipelines is not included.
Wang et al. (2015) proposes a multi-stage co-planning of electricity-gas systems and
shows that P2G plants expansion planning (P2GEP) will influence the planning solu-
tion of TEP. Nevertheless, neither did it consider the uncertainties of load demand
and renewable wind energy, nor consider N-1 contingency.

Based on the above premises, this section presents a multi-stage contingency-
constrained co-planning (MCC) model for electricity-gas systems (EGS) intercon-
nected with gas-fired units and power-to-gas plants considering the uncertainties of
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load demand and wind power. The proposed MCC model considers the long-term
co-planning for electricity-gas systems with the short-term operation constraints,
including operational constraints of power system, natural gas fuel supply avail-
ability, physical limits of P2G plants and transmission N-1 contingency constraints.
The objective is to minimize the total co-planning cost (including investment cost,
operation cost and curtailed wind energy cost) across the planning horizon.

The proposedMCC is formulated as a mixed-integer linear programming (MILP)
problem, which can be solved by outer linearization algorithm (OLA) (Duran and
Grossmann 1986), branch and bound (BB) (Kelley 1960), and Benders decompo-
sition (BD) (Benders 1962). Due to the large size of the relaxed master program,
the work per iteration in the OLA is often great, which augments the computational
burden. The authors of Majidi-Qadikolai and Baldick (2016) adopt BB algorithm
to solve the TEP problem under just two different operation states. However, with
the increase of operation states, the number of decision variables raises in multiples
and the MILP problem becomes very hard to be solved. BD algorithm is applied
in Zhang et al. (2015), Roh et al. (2007) to decompose the initial co-optimization
planning model into several subproblems. Nevertheless, to evaluate all the possi-
ble contingencies of transmission lines has tremendously increased the number of
iterations.

In this section, an iterative Benders decomposition (IBD) method is presented
to solve the proposed MCC model. At the first step, in order to accommodate the
intermittent characteristic of load demand and wind power energy, we adopt affinity
propagation (AP) (Frey and Dueck 2007) clustering to determine a set of repre-
sentative scenarios. AP is a clustering algorithm based on the similarities between
data points and proves to be fast and efficient for large-scale data sets. Compared
with other cluster methods, like k-means, the main advantage of AP is its ability to
determine the number of clustered scenarios without pre-specification. Afterward,
the IBD method divides the initial MCC model into one master investment problem
and three subproblems (including pre-contingency check subproblem, N-1 check
subproblem and operation optimal subproblem). Furthermore, to reduce the num-
ber of iterations and improve the computational efficiency, a contingency screening
method based on line outage distribution factors (LODFs) (Guler et al. 2007; Guo
et al. 2009) is adopted to quickly detect and create the core contingency set to sat-
isfy the N-1 criterion, due to its straightforward way to calculate post-contingency
power flows. The iterative process will continue between master problem and each
subproblem until an economic, reliable, and fuel supply feasible solution is obtained,
by adding the corresponding Benders cut constraints. The final co-planning solution
offers electricity-gas systems planners the optimal capacity, location, installation
year of new transmission lines, gas pipelines, gas-fired units, and P2G plants.
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Fig. 5.1 Schematic diagram of two separate systems: a district heating system and a district heating
and cooling system

5.2 Optimal Unit Sizing for Integrated Energy Systems

5.2.1 Unit Sizing Problem Formulation

5.2.1.1 System Description

In this section, two small-scale integrated energy systems proposed in our previous
works, i.e., a small-scale direct district heating system (DH) (Jiang et al. 2014)
and a small-scale district heating and cooling system (DHC) (Jing et al. 2014), are
employed to conduct the unit sizing study. Figure5.1 shows the simplified schematic
diagram of the two systems, in which the right-hand side is the DH system and
the left-hand side is the DHC system. It should be noted that they are two separate
systems working independently.

The DH system integrates wind and solar energies to supply hot water to the
residential consumer for space heating (Jiang et al. 2014). The energy supply units
consist of a standalone wind turbine generator (WT), a flat-plate solar water heater
with solar collectors (SC), an electricwater boiler (EB), and a low-temperature central
gas-fired boiler (GB). The energy captured by WT is transferred to EB for hot water
heating. The energies come from the wind energy system and solar water heater are
given the first priority to be utilized to heat the water. If the heat generated from the
renewable energies cannot meet the heating load, electricity will be imported from
the utility grid to EB in order to cover the shortage. Meanwhile, GB will consume
natural gas to generate heat as well. Noted that the electricity consumed by various
water pumps is imported from the grid.

The DHC system makes joint use of wind energy, solar energy, and conventional
fossil fuel energies to supply the residential consumer with space heating in the
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heating season and to provide space cooling for them in the cooling season (Jing
et al. 2014). In the heating season, the DHC system operates in the heating mode,
the operation strategy of which is the same as that of the DH system. In the cooling
season, the absorption chiller (AC) utilizes the thermal energy generated by EB
(driven by WT), GB, and the solar water heater while the reciprocating chiller (RC)
is driven by the electricity directly imported from the utility grid. Considering the
higher transfer efficiency of RC than that of AC, the circuit breaker CB1 is switched
on and the CB2 is switched off in the cooling season. For the detailed descriptions
of the two systems, Jiang et al. (2014) and Jing et al. (2014) can be referred.

5.2.1.2 Optimization Problem Formulation

In order to apply the optimization technologies, the mathematical model of the opti-
mization problem should be developed first, which will be described in the following
subsections.

a. Decision variables

For the unit sizing problem of the integrated energy system, the decision variables
include the rated capacity of each energy supply unit and energy consumption of each
conventional fossil fuel unit (Ren et al. 2012), which are categorized as independent
and dependent variables in this section, respectively. Aiming at obtaining the optimal
unit sizing solution, the independent variables consist of the rated capacity (area) of
various energy supply units are expressed as follows.

X = [P rated
WT , P rated

SC , P rated
GB , P rated

EB , P rated
RC , P rated

AC ]T (5.1)

where X denotes a vector of independent variables. P rated
WT , P rated

GB , P rated
EB , P rated

RC and
P rated

AC represent the rated capacity of WT, GB, EB, RC, and AC, respectively. P rated
SC

represents the total area of SC.
The dependent variables including the energy consumption of conventional energy

supply units are presented as follows.

Y = [Ph
elec, Ph

gas]T (5.2)

where Y denotes a vector of dependent variables. Ph
elec and Ph

gas denote the elec-
tricity and natural gas consumed by EB/RC and GB during the hth operation hour,
respectively.

b. Objective function

Life cycle cost (LCC) is a cumulative cost throughout the lifespan of a project (Abbes
et al. 2014), which is often used to indicate the economic feasibility of the project.
Therefore, LCC of the integrated energy system will be analyzed in this section.
The components of LCC considered in this model can be divided into three parts
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including the initial investment cost, the operation cost as well as the residual cost.
The mathematical model of LCC is formulated as follows:

CLCC = Cin + Cop + Crc (5.3)

where CLCC denotes the life cycle cost of the integrated energy system. Cin denotes
the initial investment cost. Cop denotes the total operation cost. Crc represents the
residual cost of the energy supply unit.

A. Initial investment cost

The initial investment cost, Cin, is the initial amount of funds that should be totally
invested in purchasing the energy supply units, which includes the capacity (area)
dependent and independent costs, the installation cost and the subsidy of the renew-
able energy system.

Cin =
I∑

i=1

(
(1 + asti )ccapi P rated

i + f capi + si
)

(5.4)

where I denotes the total number of energy supply units. P rated
i denotes the rated

capacity (area) of the i th energy supply unit. ccapi denotes the capacity- (area) depen-
dent unit capital cost of the i th equipment. f capi represents the capacity (area) inde-
pendent cost. si denotes the subsidy of the renewable energy system. asti denotes the
installation cost coefficient of the i th energy supply unit which is took as a fraction
of its initial capital cost.

B. Operation cost

The operation cost, Cop, which should be paid to maintain the daily operation of the
system, is formulated as follows:

Cop =
N∑

n=1

(
Cn
mt + Cn

elec + Cn
gas + Cn

em

)
W (d, n) (5.5)

where N denotes the lifespan of the energy supply units. Cn
mt, Cn

elec, Cn
gas and Cn

em
denote themaintenance cost, the electricity cost, the natural gas cost and the emission
cost, respectively. W (d, n) denotes the present worth factor of the nth year, which
refers to the discount rate d, and it is given by

W (d, n) = (1 + d)−n (5.6)

The maintenance cost is composed of the fixed and variable ones, which are
depended on the capacity of the energy supply unit and the amount of energy pro-
duced, respectively (Guo et al. 2013). In addition, as the labor cost takes a large
portion of the cost that should be paid during the operation periods, it is also taken
into account in this model, which is treated as a constant annual salary according
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to the economic indicators reported in Dong and Xu (2015). The expression of the
maintenance cost is given as follows:

Cn
mt =

H∑

h=1

I∑

i=1

(
f mt
i ccapi P rated

i + amt
i Ph

i + asalary
)

(5.7)

where H denotes the total yearly operation hours. f mt
i and amt

i denote the fixed and
variable maintenance cost coefficients, respectively. asalary denotes the labor’s salary.
Ph
i denotes the hourly energy output of the i th unit.
The electricity cost can be calculated by the hourly electricity tariff multiplied by

the amount of electricity consumed by the electricity-driven unit and water pumps
during each hour.

Cn
elec =

H∑

h=1

chelec(P
h
elec + Ph

pump) (5.8)

where chelec denotes the hourly electricity tariff. Ph
pump denotes the hourly electricity

consumed by various water pumps. The detailed calculation of Ph
pump can be reffered

to Jiang et al. (2014).
The natural gas cost is the cost of the total natural gas comsumed by GB during

the operation periods, which can be calculated by the following equation:

Cn
gas =

H∑

h=1

cgasP
h
gas (5.9)

where cgas denotes the natural gas price.
As the great reduction of pollutant emissions is one of themost remarkable advan-

tages that motivates the development of integrated energy systems, the emission cost
is taken into consideration. It is the penalty on the environmental quality reduction
and ecological destruction caused by the emissions including CO, CO2, SO2, and
NOx from utility electricity and natural gas consumption, which can be calcuated as
follows (Ren et al. 2012; Ramakumar et al. 1993):

Cn
em =

H∑

h=1

G∑

g=1

γ g
(
Eg
elec(P

h
elec + Ph

pump) + Eg
gasP

h
gas

)
(5.10)

where G denotes the types of the pollutant emissions. γ g represents the environ-
ment value of the gth pollutant emitted. Eg

elec and Eg
gas represent the per unit amount

of the gth pollutants emitted by electricity and natural gas consumption, respectively.

C. Residual cost

The residual cost,Crc, consists of the decommission cost and the salvage value of the
equipment, both of which are the costs that should be paid (or received) at the end
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of the lifespan. Both of them are considered as fractions of the initial expenditure of
each energy supply unit.

Crc =
I∑

i=1

(
Cdc
i − C sv

i

)
W (d, N ) (5.11)

Cdc
i = adci ccapi P rated

i (5.12)

C sv
i = asvi ccapi P rated

i (5.13)

whereCdc
i andCdc

i denote the decommission cost and salvage value of the i th energy
supply unit, respectively. adci and asvi denote the fractions of decommission cost and
salvage value to the inital expenditure of the i th energy supply unit, respectively.

c. Constraints

In the unit sizing problem of the integrated energy system, the optimization con-
straints consist of the energy balance constraints and various energy supply units
performance and sizing constraints. As has been discussed above, the DHC system
operates the same way as the DH system does in the heating mode. Therefore, in
order to conduct a clear description, the constraints are divided into two categories,
including those of the heating mode and those of the cooling mode.

A. Heating mode

(1). Constraints on unit sizing: As for the DH system, the lower and upper bounds
of capacity of each unit should be limited in order to avoid over sizing which leads
to a profligacy of resources:

Pmin
i ≤ P rated

i ≤ Pmax
i (5.14)

where Pmin
i , Pmax

i and P rated
i denote the minimum, maximum and rated capacity

(area) of the i th energy supply unit, respectively.
In addition, the power generated from the wind energy system is input to EB.

Therefore, the rated capacity of WT should not exceed that of EB, which is given by

P rated
WT ≤ P rated

EB (5.15)

where P rated
WT and P rated

EB denote the rated capacity of WT and EB, respectively.
(2).Constraints on energy balance: At the operation stage, the output of the system

should balance the heating load at any time interval:

ηEB(P
h
WT + Ph

elec) + Ph
SC + ηGBP

h
gas = Qh

HL (5.16)
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where Ph
WT and Ph

SC denote the hourly output of WT and SC, respectively. ηEB and ηGB

represent the efficiency of EB and GB, respectively. Qh
HL denotes the hourly heating

load.
(3). Constraints on energy supply unit performance: The ouput of each energy

supply unit should not exceed its operation limit.

Pmin
GB ≤ ηGBP

h
gas ≤ P rated

GB (5.17)

Pmin
WT ≤ Ph

WT ≤ P rated
WT (5.18)

Pmin
SC ≤ Ph

SC ≤ P rated
SC (5.19)

Meanwhile, the total amount of electricity purchased from the utility grid and
imported from the wind energy system should not surpass the rated capacity of EB.

Pmin
EB ≤ ηEB(P

h
WT + Ph

elec) ≤ P rated
EB (5.20)

B. Cooling mode

(1). Constraints on unit sizing: In the cooling mode, besides the capacity (area)
constraints on the WT, SC, GB, and EB as shown in (5.14), the rated capacity of RC
and AC should also be limited.

(2). Constraints on operation: In the cooling season, the cooling load is supplied
by the electricity-driven unit RC and the heat-driven unit AC. Therefore, the energy
balance constraint can be expressed by

COPRCP
h
elec + COPACP

h
AC = Qh

CL (5.21)

where COPRC and COPAC denote the coefficient of performance (COP) of RC and
AC, respectively. Ph

AC denotes the hourly input energy of AC. Qh
CL represents the

hourly cooling load.
In this mode, the circuit breaker CB2 is switched off, which means that EB is

merely supported byWT. Therefore, the energy input into AC is primarily generated
by WT, SC, and GB. Hence, (5.21) can be reformulated as follows:

COPRCP
h
elec + COPAC

(
ηEBP

h
WT + Ph

SC + ηGBP
h
gas

)
= Qh

CL (5.22)

(3).Constraints on energy supply unit performance: In addition to the performance
constraints on WT, SC, and GB as shown in (5.14)–(5.15), the output of the RC and
AC should also be limited with their corresponding operation limit:

Pmin
RC ≤ COPRCP

h
elec ≤ P rated

RC (5.23)

Pmin
AC ≤ COPACP

h
AC ≤ P rated

AC (5.24)



106 5 Planning of the Large-Scale Integrated Energy Systems

Moreover, as the utility grid is no longer connected to EB in the cooling mode,
the constraint (5.20) becomes

Pmin
EB ≤ ηEBP

h
WT ≤ P rated

EB (5.25)

d. Renewable generations

(1). Wind energy: An off-grid wind turbine with PMSG (permanent magnet syn-
chronous generator) is applied in both the DH system and the DHC sytem. The
output power of the wind turbine is limited by its rated capacity, as well as its
designed parameters, including cut-in, cut-out, and rated wind speed. The mathe-
matical model based on cubic law clearly indicates the relationship between these
parameters, which is shown as follows (Thapar et al. 2011):

Ph
WT =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 0 ≤ vh < vci
v3ci + v3h
v3r − v3ci

P rated
WT vci ≤ vh < vr

P rated
WT vr ≤ vh ≤ vco

0 vh > vco

(5.26)

where vci, vr and vco represent the cut-in, rated, and cut-out wind speeds, respectively.
vh represents the hourly wind speed.

(2). Solar energy: In this study, solar collectors are employed to capture the solar
energy and transfer it to heat water. The hourly actual power available from the solar
collectors is given by

Ph
SC = ηSCrh P

rated
SC (5.27)

where ηSC denotes the efficiency of the solar collectors. rh denotes hourly solar
irradiation.

5.2.2 Multi-objective Interval Optimization Model

As for the integrated energy system, the integration of wind and solar energies brings
about uncertainty to the system. Generally, the higher the penetration of renewable
energyies is, the higher the level of uncertainty will be. To reduce the level of uncer-
tainty, forecasting the accurate variation of the renewable resource is important but
that is sometimes difficult because of its strong irregularity especially the wind speed
(Ai et al. 2013). However, as illustrated in Figs. 5.2 and 5.3, the wind speed and the
solar irradiation can be easily predicted by their lower and upper bounds (Zhou et al.
2014; Lorenz et al. 2009). Therefore, the wind speed vh and the solar irradiation rh
can be formulated as follows:

vh ∈ [vL
h, vR

h] (5.28)

rh ∈ [r L
h, r R

h ] (5.29)
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Fig. 5.2 Prediction interval
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where vLh and v
R
h denote the lower and upper bounds of the hourly wind speed, respec-

tively. rLh and rRh denote the lower and upper bounds of the hourly solar irradiation,
respectively.

As the uncertain variables are tackled as interval variables, the problem shown
in (5.3) is converted into an interval optimization problem with both linear and
nonlinear constraints. To well present the method, we write the problem (5.3) with
interval variables in its general form as follows:

min C(X, Y,U )

s.t. g(X,Y,U ) = 0
h(X,Y,U ) ≤ 0
U ∈ [UL,UR]

(5.30)

whereC denotes the objective function. X and Y represent the vectors of independent
and dependent variables as shown in (5.1) and (5.2) in Sect. 5.2.1.2, respectively. U
represents the vector of interval variables including the hourly wind speed vh and
solar irradiation rh , which are bounded by the lower bound UL and the upper bound
UR. g and h denote the equality and inequality constraints as described in Sect.
5.2.1.2, respectively.

It can be seen that C(X, Y, U ) is now an interval number, which is resulted by
the interval variables U . Therefore, the method for optimizing the interval objective
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is ctritical to the result. In the recent decades, a few studies have been conducted
on developing various interval optimization technologies. However, most of those
studies merely optimized the worst case (Zhou et al. 2014) or the average of objective
(Wang et al. 2011), which failed to consider the risk caused by the uncertainties (Li
et al. 2014a, b). Moreover, the optimal solution obtained by such kind of methods is
proved to be highly sensitive to the interval of the uncertain variables (Wu et al. 2012).
In order to address this problem, Jiang et al. (2008) proposed an interval optimization
model which took both the mean and risk into consideration by simultaneously
minimizing the average and deviation of the objective. First, in this method, the
average and deviation of the objective are, respectively, formulated as the midpoint
and radius of the objective interval as follows:

m(C(X, Y, U )) = 1

2
(CL(X) + CR(X))

τ (C(X, Y, U )) = 1

2
(CR(X) − CL(X))

(5.31)

where m and τ denote the value of the midpoint and radius of the objective interval,
respectively. CL(X) and CR(X) denote the lower and upper bounds of the objective
interval corresponding to a specific X , respectively, both of which can be simply
obtained by solving the following suboptimization problems:

CL(X) = min
U

C(X, Y, U )

CR(X) = max
U

C(X, Y, U )
(5.32)

As soon as the lower and upper bounds of the objective interval are available, the
average and deviation of it can be calculated through (5.31).

In interval method, for a minimization problem, an interval number, C1, is said to
be better than another,C2, if both themidpoint and radius ofC1 are smaller than those
of C2, i.e., m(C1) ≤ m(C2) and τ(C1) ≤ τ(C2). Therefore, the midpoint and the
radius of the objective should beminimized simultaneously, which can be formulated
as amulti-objective problem. In Jiang’smethod (Jiang et al. 2008), a weighting factor
is used to transfer the two objectives into a single-objective problem. It is no doubt
that the weighting factor could reflect the preference of the investor. Nevertheless, it
is sometimes difficult to judge the risk aversion attitude of the investor. Hence, in this
research, the average and deviation of the objective are directly treated as two conflict
objectives to obtain a trade-off relationship between them, by which the weighting
factor is no longer needed. By substituting (5.32) into (5.31), the multi-objective
interval optimization model can be formulated as follows:
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min [m(C(X, Y, U )), τ (C(X, Y, U ))]
s.t. m(C(X, Y, U )) = 1

2
(min

U
C(X, Y, U ) + max

U
C(X, Y, U ))

τ (C(X, Y, U )) = 1

2
(max

U
C(X, Y, U ) − min

U
C(X, Y, U ))

g(X,Y,U ) = 0
h(X,Y,U ) ≤ 0
U ∈ [UL,UR]

(5.33)

By the formulation of (5.33), the uncertain single-objective optimization problem
is now transformed into a deterministic multi-objective problem. Furthermore, the
problem (5.33) is actually a two-stage problem (Jiang et al. 2008) containing a first-
stage multi-objective optimization problem, i.e., simultaneously optimizing m and
τ , and two second-stage nonlinear optimization problems, i.e., obtaining the lower
and upper bounds of the objective interval. A multi-objective optimization algorithm
used to solve the two-stage problem (5.33) is developed, which will be discussed in
the next section.

5.2.3 Multi-objective Optimization Algorithm
and Decision-Making Method

The comprehensive framework including the optimization model and decision-
making method for solving the unit sizing problem of the integrated energy system is
illustrated in Fig. 5.4. As has been discussed in Sect. 5.2.2, the multi-objective inter-
val optimization model is first developed. Then, the model is solved by using the
multi-objective group search optimizer with adaptive covariance and chaotic search,
MGSOACC, to get Pareto-optimal solutions. Finally, the optimal unit sizing solution
is determined by the evidential reasoning (ER) approach. The detailed introduction
of the MGSOACC and ER approach will be discussed in this section.

5.2.4 Simulation Studies

5.2.4.1 Parameter Setting

In this section, the proposed comprehensive framework is tested on both the DH
system and the DHC system. The performance of the proposed MGSOACC is com-
paredwith the non-dominated sorting based algorithmNSGA-II as well as the animal
searching behavior based algorithm GSOMP (Wu et al. 2008; Guo et al. 2012). Each
of the three algorithms is evaluated in 30 independent runs with 15,000 function
evaluations in each run. The numbers of Pareto-optimal solutions for MGSOACC,
GSOMP and NSGA-II are all set to be 7.
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Fig. 5.4 The framework of the multi-objective interval optimization and decision-making

During the planning stage of the integrated energy system, reasonable assump-
tions and simplifications on its long-term operation are essential. With regard to the
hourly variation of wind speed, it seems not sensitive to the clock time because of its
strong irregularity. Contrarily, as shown in Fig. 5.3, it is evident that the hourly solar
irradiation variates significantly with the clock time. For instance, the solar irradia-
tion during the midday is usually much stronger than that in any other period in a
day. In order to compromise between the characteristic of the variation of daily solar
irradiation and the computational cost, the peak–low–even method which divides
the daily heating and cooling loads into three representative periods is used to stand
for the daily operation in this study (Tan et al. 2014). Table5.1 displays the energy
price, as well as the heating and cooling loads during the peak, even, and low periods
(Mao 2007). It should be noted that according to the human thermal comfort study
(Mao 2007), the peak heating load of residential consumer usually occurs during
when the electricity tariff is low while the low-heating load occurs during when the
electricity tariff is even. Table5.2 shows the forecasted intervals of wind speed and
solar irradiation during the corresponding hours, which are assumed to be valid for
both the heating and cooling seasons.
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Table 5.1 Demand and energy price during peak, even, and low periods

Item Unit Peak hours Even hours Low hours

18:00–24:00 08:00–18:00 00:00–08:00

Electricity tariff $/kWh 0.133 0.079 0.027

Natural gas price $/m3 0.482 0.482 0.482

Heating load kW 59.87 49.79 69.95

Cooling load kW 93.75 64.62 25.04

Table 5.2 Forcasted interval of wind speed and solar irradiation

Item Unit Daytime Midday Night

06:00–10:00 10:00–15:00 00:00–06:00

15:00–18:00 18:00–24:00

Solar irradiation W/m2 [150 300] [375 654] [0 0]

Wind speed m/s [5 14]

Table 5.3 Pollutant emission coefficient and cost factor

Item Unit Pollutant

CO CO2 NOx SO2

Electricity g/kWh 0.1083 623 2.88 6.48

Natural gas g/kWh 0.1702 184.0829 0.6188 0.000928

Environmental value $/kg 0.145 0.004125 1.25 0.875

The economic and technique parameters of the DH system and the DHC system
are given in Table5.4. In addition, for the wind turbine, the cut-in, cut-out, and rated
wind speeds are set as 3 m/s, 25 m/s and 10 m/s, respectively. It is assumed that the
subsidy of the wind energy system is 30% of its initial capital cost (Jiang et al. 2014).
The discount rate is set to be 5% in this study. The heating season and the cooling
season are assumed to be 5months and 4months per year, respectively. Suppose two
labors are employed to work in the DH/DHC station and the annual salary is set to
be 8026$ for each labor (Dong and Xu 2015). Table5.3 shows the pollutant emission
factors and the environmental values of electricity and natural gas.

5.2.4.2 Case I: DH System

Figure5.5 shows the Pareto-optimal solutions obtained by MGSOACC, NSGA-II
and GSOMP, respectively, which proves that the MGSOACC outperforms GSOMP
and NSGA-II in terms of searching for more evenly distributed and better con-
verged Pareto-optimal solutions. On the other hand, the spread over range of
MGSOACC is [393, 198, 78, 230] × [411, 237, 42, 412], which is wider than
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Table 5.4 The economic and technique parameter settings of DH and DHC systems

Item Unit Energy supply unit

WT SC EB GB RC AC

Capacity dependent cost $/kW
($/m2)

1123 225 67.88 100.5 80 105

Capacity independent cost $ – 4000 – – – –

Installation cost coefficient – 10% 10% 10% 10% 10% 10%

Fixed maintenance cost coefficient – 2% 2% 4% 5% 3% 4%

Variable maintenance cost $/kWh – – 0.006 0.004 – –

Life time year 20 20 20 20 20 20

Efficiency – – 78.8% 95% 90% – –

Coefficient of performance – – – – – 4 0.7

Fig. 5.5 Pareto-optimal
solutions obtained by
MGSOACC, NSGA-II and
GSOMP of DH system
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that of NSGA-II, [394, 315, 76, 934] × [410, 415, 44, 428], and that of GSOMP,
[394, 181, 77, 138] × [410, 963, 43, 657].

Figure5.6 shows the bar chart for the average and deviation of LCCof the obtained
7 solutions which are denoted as s1, s2, . . . , s7. It is evident that the average of LCC
will increase while the deviation of it decreases, which demonstrates that the aver-
age of the objective is conflict to the deviation. Therefore, there is no doubt that to
optimize the average and deviation of the objective simultaneously is necessary. To
further demonstrate the necessity, the obtained 7 Pareto-optimal solutions are com-
pared with the solution obtained by traditional single-objective interval optimization
which only the averagedLCC is optimized. The corresponding objective values of the
8 solutions are displayed in Table5.5. Noted that s0 is a single-objective optimization
solution obtained by GSO.

It can be seen that if s0 is accepted by the investor, the lowest investment cost
(average)will be achieved.However, the investor has to takeon ahigh risk (deviation),
which is about 20% of the total amount of investment. Although a tempting cost can
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Fig. 5.6 Average and deviation of LCC as for s1, s2, . . . , s7

Table 5.5 Cost, risk, and emission values as for s0, s1, . . . , s7
Solution Average of LCC ($)

(Cost)
Deviation of LCC ($)
(Risk)

Total pollutant emission (kg)
(Emission)

s0 392, 488 78, 399 1, 165, 554

s1 393, 198 78, 230 1, 163, 097

s2 395, 114 73, 108 1, 250, 414

s3 397, 168 64, 483 1, 287, 917

s4 399, 948 56, 383 1, 387, 194

s5 403, 322 50, 063 1, 456, 467

s6 407, 363 45, 634 1, 548, 158

s7 411, 237 43, 412 1, 684, 210

be achieved by s0, it will result in an unbearable risk to a business investment unless
the investor is aggressive enough. On the contrary, if s7 is accepted, the investment
risk will be reduced to 10.56%, which means that the s7 is not sensitive to the
uncertain environment of wind and solar energies. However, the averaged LCC of s7
is increased inevitably because it prefers a low risk without considering the increased
cost. Therefore, both the unit sizing solution s0 and s7 are not advisable for the investor
considering the economic performance.

The multi-objective interval optimization model provides different levels of cost
and risk obtained by achieving various unit sizing solutions under the uncertain
environment of wind and solar energies, by which the investor is able to trade off
between the conflict interests of cost and risk. In addition to that, pollutant emissions
indicating the environmental performance of the system should also be considered
at the decision-making stage. Therefore, to make a compromise between “cost”,
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Fig. 5.7 Minimum, average, and maximum utilities as for s1, s2, . . . , s7

“risk”, and “emission” as shown in Table5.5, ER approach is applied to make the
final decision.

By ranking the numerical magnitudes of the basic attributes, the basic assessments
for each Pareto-optimal solution can be assigned, which are presented in Table5.6.
As the economic benefits are the main consideration of a business investment, they
should be assigned with greater weights. Therefore, the relative weights of these
three basic attributes are set to be ω = [0.4, 0.4, 0.2]. Additionally, the evaluation
grades are set to be H = {Poor, Unsatisfied, Normal, Good, Excellent, Uncertain}. It
should be noted that to avoid loss of generality, the unassigned assessment for each
attribute is set to be 0.1.

By applying the evidence combination method of ER approach, the distributed
assessments can be obtained, the results of which are displayed in Table5.7. How-
ever, it is difficult to distinguish the pros and cons of the solutions merely from
the distributed assessments. Thus, the utility functions are applied to rank these
solutions. Figure5.7 shows the minimum, average, and maximum utilities for
each solution. It can be seen from Fig. 5.7 that the ranking of the 8 solutions is
s3 � s1 � s2 � s0 � s4 � s5 � s6 � s7. Therefore, s3 is selected as the final unit siz-
ing solution for the DH system as it gains the most average utility among the 8
solutions.

Furthermore, to verify the superiority of s3, it is compared with the unit sizing
solution s8 proposed in our previous work (Jiang et al. 2014). Table5.8 displays the
two unit sizing solutions and their corresponding objective values. It is clear that the
total installed capacity of renewable energy units of s3 is significantly larger than that
of s8. Though adopting s3 inevitably increases the initial investment, the averaged
LCC of it will be reduced because the high renewable utilization ratio of s3 achieves
a low operation cost during the life cycle of the DH system. Moreover, it can be seen
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Table 5.6 Basic assessments for s0, s1, . . . , s7
Solution Attribute Evaluation grade

Poor Unsatisfied Normal Good Excellent

s0 Cost 0 0 0 0.2 0.7

Risk 0.8 0.1 0 0 0

Emission 0 0 0.1 0.2 0.6

s1 Cost 0 0 0 0.3 0.6

Risk 0.6 0.3 0 0 0

Emission 0 0 0 0.2 0.7

s2 Cost 0 0 0.2 0.2 0.5

Risk 0.4 0.3 0.2 0 0

Emission 0 0 0.1 0.4 0.4

s3 Cost 0 0 0.2 0.3 0.4

Risk 0.1 0.2 0.6 0 0

Emission 0 0 0.3 0.3 0.3

s4 Cost 0.1 0.3 0.4 0.1 0

Risk 0 0.1 0.7 0.1 0

Emission 0 0 0.4 0.4 0.1

s5 Cost 0.2 0.4 0.3 0 0

Risk 0 0 0.4 0.4 0.1

Emission 0 0.2 0.5 0.2 0

s6 Cost 0.5 0.4 0 0 0

Risk 0 0 0 0.3 0.6

Emission 0.2 0.4 0.3 0 0

s7 Cost 0.7 0.2 0 0 0

Risk 0 0 0 0.1 0.8

Emission 0.6 0.3 0 0 0

Table 5.7 Distributed assessments as for s0, s1, . . . , s7
Solution Poor Unsatisfied Normal Good Excellent Uncertain

s0 0.3211 0.0401 0.0157 0.1155 0.4161 0.0915

s1 0.2404 0.1202 0.0000 0.1573 0.3908 0.0914

s2 0.1611 0.1208 0.1911 0.1513 0.2839 0.0918

s3 0.0389 0.0778 0.4110 0.1709 0.2126 0.0888

s4 0.0367 0.1537 0.5711 0.1404 0.0143 0.0837

s5 0.0773 0.1923 0.4114 0.1923 0.0386 0.0881

s6 0.2466 0.2436 0.0479 0.1228 0.2456 0.0934

s7 0.4152 0.1329 0.0000 0.0401 0.3205 0.0914
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Table 5.8 Unit sizing solutions and objective values as for s3 and s8
Solution Facility LCC

WT (kW) SC (m2) GB (kW) EB (kW) Average ($) Deviation ($)

s3 23 68 38 41 397, 168 64, 483

s8 20 15 45 40 401, 676 60, 295

Table 5.9 Pollutant emissions as for s3 and s8
Solution Pollutant Total pollutant emission (kg)

CO (kg) CO2 (kg) NOx (kg) SO2 (kg)

s3 431 1, 271, 649 5, 525 10, 312 1, 287, 917

s8 539 1, 403, 610 5, 991 10, 504 1, 420, 646

from Table5.9 that in comparison with s3, insufficient sizing of renewable units of
s8 leads to a heavier dependence on conventional energies and ultimately, a higher
pollutant emission.

It should be emphasized that the attributes considered in the decision-making
contains not only economic criteria but also environmental criterion. On one hand,
according to the return and risk relation in portfolio selection proposed byMarkowitz
(1952), the investor has to take on additional risk to gain more return, or reduce risk
by giving up expected profit, which demonstrates that there must be a compromise
between the two economic criteria. Therefore, although s8 gains a less deviation
indicating a lower risk, adopting it means more payment should be afforded by
the investor. On the other hand, as has been discussed above, inadequate sizing of
wind and solar energy units of s8 results in a huge increase in the amount of total
pollutant emission, which is up to about 1.33 × 105 kg. However, it is significantly
not worthwhile for a rational investor to covet a little reward by adopting s8 at such
a high price in terms of deterioration in both cost and emission. Hence, s3 is proved
to be a superior solution based on the comprehensive consideration of cost, risk, and
emission.

5.2.4.3 Case II: DHC System

For the DHC system, the Pareto-optimal solutions obtained by MGSOACC, NSGA-
II, and GSOMP are shown in Fig. 5.8. Better converged and more evenly distributed
Pareto-optimal solutions obtained by MGSOACC than those obtianed by NSGA-II
and GSOMP can be observed from the figure. Moreover, a wider spread range of
Pareto-optimal solutions is obtained by MGSOACC, [478, 098, 106, 668] × [491,
281, 72, 509], than that of either NSGA-II, [478, 366, 104, 451] × [491, 114, 72,
854], or GSOMP, [478, 484, 105, 971] × [491, 004, 74, 858].
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Fig. 5.8 Pareto-optimal solutions obtained byMGSOACC, NSGA-II and GSOMP of DHC system
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Fig. 5.9 Average and deviation of LCC as for z1, z2, . . . , z7

The average and deviation of LCC of the obtained optimal unit sizing solutions are
illustrated in Fig. 5.9, in which z1, z2, . . . , z7 represent the 7 solutions, respectively.
It is obvious that the less average of LCC the unit sizing solution gains, the more
deviation it takes on. As a solution that obtains the minimum average and the least
deviation does not exist, it is necessary to take both of them into consideration.

The corresponding objective values of the 7Pareto-optimal solutions are displayed
in Table5.10. It is noted that z0 is the unit sizing solution obtained by GSO with the
only consideration of averaged LCC. It can be seen from the table that z0 achieves
the least cost at the price of high risk which equals 22.55% of the cost. Such a high
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Table 5.10 Cost, risk, and emission values as for z0, z1, . . . , z7
Solution Average of LCC ($)

(Cost)
Deviation of LCC ($)
(Risk)

Total pollutant emission (kg)
(Emission)

z0 476, 843 107, 360 1, 584, 554

z1 478, 098 106, 668 1, 615, 891

z2 479, 102 98, 078 1, 627, 973

z3 480, 670 91, 018 1, 536, 278

z4 482, 850 85, 211 1, 618, 716

z5 485, 372 80, 224 1, 689, 910

z6 488, 622 76, 575 1, 760, 053

z7 491, 281 72, 509 1, 826, 498

Fig. 5.10 Minimum, average, and maximum utilities as for z0, z1, . . . , z7

risk may lead to a deficit of investment if it is accepted. Contrarily, z7 obtains the
minimum risk, namely 14.78% of the total averaged cost. However, the investor has
to undertake a more cost which is as high as 491,281$ if he accepts z7. Therefore,
for a shrewd businessman, z0 and z7 are undesirable.

As the same approach as that in Case I, ER approach is applied to make the final
decision in order to conduct a trade-off solution between cost, risk, and emission. The
relative weights ωi are also set to be ω = [0.4, 0.4, 0.2] in this case. Tables5.11 and
5.12 display the basic and distributed assessments for each Pareto-optimal solution,
respectively. Figure5.10 illustrates the utility evaluation results of all the solutions. It
is evident that the ranking of the 8 solutions is z3 � z1 � z0 � z4 � z2 � z5 � z6 �
z7. Therefore, through the ER approach, z3 is finally determined as the unit sizing
solution of DHC system.
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Table 5.11 Basic assessments for z0, z1, . . . , z7
Solution Attribute Evaluation grade

Poor Unsatisfied Normal Good Excellent

z0 Cost 0 0 0 0.2 0.7

Risk 0.8 0.1 0 0 0

Emission 0 0 0 0.4 0.5

z1 Cost 0 0 0.1 0.2 0.6

Risk 0.5 0.4 0 0 0

Emission 0 0 0.1 0.3 0.4

z2 Cost 0 0 0.2 0.3 0.4

Risk 0.3 0.5 0.1 0 0

Emission 0 0.2 0.5 0.2 0

z3 Cost 0 0 0.4 0.4 0.1

Risk 0.2 0.4 0.2 0.1 0

Emission 0 0 0 0.1 0.8

z4 Cost 0 0.4 0.3 0.2 0

Risk 0 0.3 0.3 0.3 0

Emission 0 0 0.5 0.2 0.2

z5 Cost 0.3 0.3 0.3 0 0

Risk 0 0 0.3 0.4 0.2

Emission 0.2 0.4 0.3 0 0

z6 Cost 0.4 0.4 0.1 0 0

Risk 0 0 0 0.35 0.55

Emission 0.5 0.4 0 0 0

z7 Cost 0.7 0.2 0 0 0

Risk 0 0 0 0.15 0.85

Emission 0.6 0.3 0 0 0

Table 5.12 Distributed assessments as for z0, z1, . . . , z7
Solution Poor Unsatisfied Normal Good Excellent Uncertain

z0 0.3220 0.0403 0.0000 0.1512 0.3947 0.0918

z1 0.2050 0.1640 0.0576 0.1347 0.3319 0.1069

z2 0.1215 0.2440 0.2210 0.1591 0.1620 0.0924

z3 0.0804 0.1609 0.2614 0.2320 0.1736 0.0917

z4 0.0000 0.2920 0.3509 0.2418 0.0294 0.0859

z5 0.1554 0.1920 0.3250 0.1583 0.0791 0.0902

z6 0.2610 0.2412 0.0405 0.1419 0.2229 0.0924

z7 0.4152 0.1329 0.0000 0.0601 0.3004 0.0914
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Table 5.13 Unit sizing solutions and objective values of z3 and z8
Solution Facility LCC

WT (kW) SC (m2) GB (kW) EB (kW) RC (kW) AC (kW) Average ($) Deviation ($)

z3 31 119 31 41 82 46 480, 670 91, 018

z8 20 15 45 40 95 21 488, 827 85, 124

Table 5.14 Pollutant emissions of z3 and z8
Solution Pollutant Total emission (kg)

CO (kg) CO2 (kg) NOx (kg) SO2 (kg)

z3 564 1, 517, 579 6, 511 11, 624 1,536, 278

z8 755 1, 942, 482 8, 278 14, 423 1,965, 938

Then, z3 is compared with the unit sizing solution z8, which is proposed in Jing
et al. (2014). The comparison results of the unit sizing solutions z3 and z8 are shown
in Table5.13. Recall that the decision is made upon the synthetical consideration of
investment cost and risk, as well as the total pollutant emission. It can be seen that
the deviation of z3 is higher than that of z8, which means a better adjustment of z8 to
all the uncertain renewable energies. However, such an improvement is achieved at
the price of a great waste of renewable sources caused by insufficient total installed
capacity of wind and solar energy units of z8, which is even less than a quarter of
that of z3. Reducing renewable utilization means an increasing burden on fossil fuel
energy, especially for the DHC systemwhich operates both in the summer and winter
time, because the energy balance constraints should always be satisfied at any time
slot. As a result, a higher operation cost and ultimately a higher averaged cost, with
even more pollutant emission is inevitably incurred if z8 is adopted. Furthermore,
reducing the utilization of renewable energy violates the intention of developing
green and clean energy system as we are now pursuing. Hence, it is not advisable for
the investor to adopt z8 considering the above factors. Alternatively, z3 is, therefore,
superior to z8 in terms of satisfying both economic and environmental requirements
(Table 5.14).

In this section, themulti-objective interval optimizationmodel has been presented
to solve the unit sizing problem of small-scale integrated energy systems considering
the integration of uncertain wind and solar energies. This model takes into account
both the cost and risk of business investment in the integrated energy system through,
respectively, manifesting them by the average and deviation of LCC, in the uncertain
environment of wind and solar energies. By converting the uncertain single-objective
problem into a deterministic multi-objective problem, the competing relationship
between cost saving and risk reduction are simultaneously considered. The result
obtained based on either of the DH and DHC system has verified the necessity of
considering both the cost and risk while solving the unit sizing problem of integrated
energy systems.
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Fig. 5.11 A framework of
electricity-gas systems
interconnected with gas-fired
units and P2G plants
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In addition, to address the problem, the multi-objective group search optimizer
with adaptive covariance and chaotic search is developed by employing chaotic
search to enhance the global searching capability. Comparing MGSOACC with
GSOMP and NSGA-II, the more evenly distributed Pareto-optimal solutions have
demonstrated the searchability of MGSOACC.

Furthermore, a multi-attribute decision-making approach is applied to process the
investor’s cognition on cost, risk, and emission. Comparison results obtained based
on both of the two case studies have demonstrated that the ER approach is efficient
in terms of determining a superior unit sizing solution with not only low cost and
acceptable risk but also low pollutant emission.

Finally, it is worth mentioning that the framework including optimization and
decision-making proposed in this section can be applied to guide the investment
behavior of the investor who has to take multiple interests into consideration, in
various business investments such as investment inmore comprehensive and/or larger
scale integrated energy systems with renewable energy integrated.

5.3 Multi-stage Contingency-Constrained Co-planning for
Integrated Energy Systems

5.3.1 Formulation of MCC Model

The proposed model of electricity-gas systems interconnected with gas-fired units
and P2G plants can be illustrated in Fig. 5.11. The systems include electricity trans-
mission system, gas supply system, gas-fired units, wind power energy, P2G plants,
electricity load and gas demand. Wind power resources give priority to electricity
load, while the surplus ones will be converted into hydrogen or synthetic natural gas
(SNG) via P2G plants to supply the gas demand. Thus, the combination of gas-fired
units and P2G plants realize the two-way coupling of electricity system and natu-
ral gas system. The detailed formulations of the MCC model can be described as
follows.
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5.3.1.1 Objective Function

The MCC model considers the long-term co-planning for EGS with the short-term
operation constraints. The objective (5.34) of theMCCmodel is to minimize the total
co-planning cost (consisting of investment cost, operation cost, and curtailed wind
energy cost under the normal operating condition), while meeting the transmission
N-1 contingency constraints.

min C = C
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where CL = {lk → (mk, nk) |k = 1, 2, ..., NCL }. lk represents the transmission line
from bus mk to nk . CP = {

p j → (
a j , b j

) | j = 1, 2, ..., NCP
}
. p j represents the gas

pipeline from node a j to b j . The first four items in (5.35) indicate investment costs
of gas-fired units, transmission lines, gas pipelines, and P2G plants, respectively.
The last item C

sal
is the salvage value of new assets. A higher salvage factor χ

indicates a lower depreciation at the end of the planning horizon (5.36). The operation
cost (5.37) includes those of gas suppliers and coal units for all selected scenarios
e ∈ {1, 2, ..., NE}, during each planning stage t ∈ {1, 2, ..., NT}. The penalty cost for
curtailed wind energy is expressed as (5.38). Note that in this study, two kinds of
generator units exist in the initial electricity-gas systems, including gas-fired units
and coal units. However, the expansion planning of coal units is not considered due
to their large CO2 emissions.
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5.3.1.2 Variables

The decision variables include binary variables X , Y , and Z , denoting the investment
states of gas-fired units, transmission lines, and gas pipelines; integer variable U
denoting the installed capacity of P2G plants, as well as continuous variables P

coal
,

f
supply

, and P
cur
, denoting the generation outputs of coal units, natural gas production,

and possible wind energy curtailment, respectively.

5.3.1.3 Constraints

TheMCCmodel is subjected to the following constraints, including sequential invest-
ment states of new assets, operational constraints of power system, natural gas fuel
supply availability, physical limits of interconnected media, and transmission N-1
contingency constraints. For all constraints, t ∈ {1, 2, ..., NT}, e ∈ {1, 2, ..., NE}.
(a) Sequential investment states of new assets

Xi,(t−1) ≤ Xi,t (5.39)

Ylk ,(t−1) ≤ Ylk ,t (5.40)

Zp j ,(t−1) ≤ Zp j ,t (5.41)

Note that once a candidate component is installed, its investment state will change
from 0 to 1 for the remaining years.

(b) Operational constraints of power system
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θre f = 0 (5.47)

The power balance is given in (5.42). The power flow in a new topology structure
is limited by (5.43)–(5.44). If a candidate line is not installed, Eq. (5.43) is relaxed
and (5.44) sets the flow to zero. The available energy outputs of coal units are limited
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by the physical characteristics (5.45). The wind power balance formulation of each
wind farm is described as (5.46). The angle of slack bus is set to zero (5.47).

(c) Natural gas fuel supply availability
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where EP = {
p j → (

a j , b j
) | j = 1, 2, ..., NEP

}
. The gas flow is a function of nodal

pressure and pipeline characteristics, which is generally solved by Newton method.
However, to accelerate the process, we use the simplified transportation model in
this long-term planning horizon. The node balance is given in (5.48). According
to Borraz-Sánchez and Ríos-Mercado (2009), the gas consumption of compressor
stations accounts for typically 3–5% of the transported gas. Therefore, the expression
of gas compressor is simplified as a coefficient k

com
multiplied by transported gas

(5.49). Pipeline gas flow is limited by the upper bound (5.50)–(5.51). The available
gas production is limited by the physical characteristics of the gas source (5.52).

(d) Physical limits of interconnected media
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The natural gas required by each gas-fired unit depends on its hourly dispatch
(5.53). The available energy outputs of existing and candidate gas-fired units are
limited by the physical characteristics (5.54)–(5.55). The energy conversion equation
of P2G plants is written as (5.56). The available energy input of P2G plants is limited
by the installed capacity (5.57).
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(e) Transmission N-1 contingency constraints

∣∣∣P
line

t,e,lk + ylk
(
θt,e,m − θt,e,n

)∣∣∣ ≤ M
(
1 − Dlk ,t

)
, ∀lk ∈ EL (5.58)

∣∣∣P
line

t,e,lk

∣∣∣ ≤ P
line,max

lk Dlk ,t , ∀lk ∈ EL (5.59)

Dt =

⎡

⎢⎢⎢⎢⎣

1 0 1 ... 1

1 1 0
. . . ...

... ...
. . .

. . . 1
1 1 ... 1 0

⎤

⎥⎥⎥⎥⎦
(5.60)

where EL = {lk → (mk, nk) |k = 1, 2, ..., NEL }. It is assumed that the N-1 con-
tingency of power system only occurs in the existing transmission lines. Equations
(5.58)–(5.59) indicate the power flow constraints of existing transmission lines under
pre- or post-contingency state. Dt (5.60) denotes a NEL × (NEL + 1) contingency
matrix at planning stage t , which contains 0 and 1 as the state of lines (0 indicates
the line on outage while 1 indicates in service). The first column of Dt represents the
pre-contingency condition, while the others represent the N-1 contingency states, in
which one line is on outage. If line lk during planning stage t is on outage, Dlk ,t = 0,
Equation (5.58) will be relaxed while (5.59) setting the flow to zeros.

5.3.1.4 Compact Form of the MCC Model

The MCC model above can be presented as a MILP problem in a compact form as
follows:

min
x,zk

C = cx + dz0 (5.61)

s.t. ax ≤ b (5.62)

ex + fzk ≤ g, ∀k = 0, 1, 2, ..., NEL (5.63)

ukx + vkzk ≤ rk, ∀k = 0, 1, 2, ..., NEL (5.64)

where x, zk are the decision variables. Specially, x includes the binary variables (cor-
responding to X , Y , and Z ), as well as the integer variable (corresponding to U ). zk

denotes the continuous variables (corresponding to P
coal
, f

supply
and P

cur
) in all pre-

and post-contingency states. For all line contingency states, k = 0, 1, 2, ..., NEL. We
point out that k = 0 denotes the pre-contingency state, i.e., normal operating con-
dition. Equation (5.62) represents the constraints of sequential investment states of
new assets. Equation (5.63) represents the operational constraints, including con-
straints of power system, natural gas fuel supply availability, and physical limits of
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interconnected media. Equation (5.64) corresponds to transmission N-1 contingency
constraints, in which the coefficient matrices uk , vk , rk change under the different
contingency states.

5.3.2 Solution Methodology

For the large-scale system, to check all possible outage of the transmission lines
will greatly increase the problem size. In this context, to improve the computational
efficiency, an iterative Benders decomposition (IBD) method is presented to solve
the proposed MCC problem (5.61)–(5.64), which is divided into master investment
problem, pre-contingency check subproblem, N-1 check subproblem, and operation
optimal subproblem. The flowchart of the proposed algorithm is shown in Fig. 5.12,
which can be summarized as the following steps:

• Step 1: Data process: scenarios reduction method based on AP clustering (see
Sect. 5.3.2.1).

• Step 2: The master investment problem finds the least cost investment plans over
the planning horizon (see Sect. 5.3.2.2).

• Step 3: The feasibility cut will be generated in case of the violation in the pre-
contingency check subproblem, which will be sent to the master investment prob-
lem to change the previous plan decision (see Sect. 5.3.2.3).

• Step 4: Then a contingency screening method based on line outage distribution
factors (LODFs) is applied to estimate the post-contingency flow to obtain core
contingency set CC. If any contingency exists, the corresponding N-1 check sub-
problemunder themost severe contingencywill be conducted and send a reliability
cut to master problem. Once all existing violations are removed, a reliable plan-
ning solution for electricity-gas systems is obtained, which satisfies all the N-1
contingency (see Sect. 5.3.2.4).

• Step 5: Finally, the operation optimal subproblem under all selected scenarios will
be executed to find an upper bound. If the stopping criterion is satisfied, the final
co-planning solution is obtained (see Sect. 5.3.2.5).

5.3.2.1 Scenario Reduction Method Based on AP Clustering

Though scenario-based method is widely used in stochastic optimization to capture
the fluctuation of uncertain variables, large-scale scenarios will increase the compu-
tation burden. Therefore, it is essential to apply clustering technique to obtain a set
of “clustered” and representative scenarios. The k-means algorithm is very simple
and widely used in solving many practical problems (Wang et al. 2018; Grigoras and
Scarlatache 2015). However, it is very sensitive to the initial partitions and extremely
relies on the number of clusters. On the contrast, affinity propagation (AP) enables to
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Fig. 5.12 Flowchart of the
proposed algorithm
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avoid most of the poor solutions caused by unlucky initializations, since it simulta-
neously regards all data points as candidate centers and gradually identifies clusters
(Frey and Dueck 2007). Although AP still does not guarantee global optimum, the
authors of Frey and Dueck (2007) have demonstrated its consistent superiority over
most of clustering techniques by several experiments.

The AP clustering can be summarized by the following procedure.

• Step 1: Initialization of algorithm, set r(i, k) = a(i, k) = 0. where responsibility
matrix r(i, k) indicates how strongly each data point i favors the candidate exem-
plar k over other candidate exemplars k ′; availabilities matrix a(i, k) indicates to
what degree each candidate exemplar k is available as a cluster center for the data
point i .

• Step 2: Update responsibility matrix r(i, k).

rt+1 (i, k) = s (i, k) − max
k �=k ′

{
at

(
i, k ′) + s

(
i, k ′)}
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where similarity matrix s(i, k) indicates how well the data point k is suited to
be the exemplar for data point i , which is usually set to a negative squared error
(Euclidean distance).

• Step 3: Update availability matrix a(i, k).

at+1 (i, k) = min
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⎨
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• Step 4: Introduce a damping factor λ to avoid oscillation.

rt+1 (i, k) ← (1 − λ) rt+1 (i, k) + λrt (i, k)

at+1 (i, k) ← (1 − λ) at+1 (i, k) + λat (i, k)

• Step 5: Repeat Steps 2–4 until the matrices r(i, k) and a(i, k) are stable or the
maximum number of iteration is reached.

In this study, the historical data includes 8760 hourly total electricity loads, total
non-power gas demands, as well as each wind energy source located in each wind
farm. After applying AP clustering, a set of representative scenarios will be obtained.

5.3.2.2 Master Investment Problem

The master investment problem (5.65) optimizes the planning decision over the
planning horizon.

min
x,ϕ

C lower = cx + ϕ (5.65)

s.t. ax ≤ b (5.66)

ϕ ≥ 0 (5.67)

where ϕ is a piecewise function of the optimal value of the operation optimal sub-
problem.C lower is a lower bound of the whole problem andwill be updated iteratively
by the operation optimal subproblem.

5.3.2.3 Pre-contingency Check Subproblem

Once the initial planning decision is identified by the above master investment prob-
lem, the pre-contingency check subproblem will be conducted. The objective (5.68)
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is to minimize the load curtailment for balancing purposes in the case of increasing
load and wind power at each planning stage. The pre-contingency check subproblem
is subjected to the operational constraints and pre-contingency constraints of existing
transmission lines. However, to check all possible realization of uncertain load and
wind power at each planning stage will greatly increase the computation complexity.
To reduce the computational effort, the scenarios with the minimum wind energy or
maximum load will be selected (Ugranli and Karatepe 2016; Kamyab et al. 2014).

min
z0,s0

h0 = 1T · s0 (5.68)

s.t. x = x∗ −→ (γ ) (5.69)

ex + fz0 ≤ g + s0 (5.70)

u0x + v0z0 ≤ r0 (5.71)

where 1T is the vector of ones; s0 is the slack variable corresponding to the power
balance constraints and nodal balance equation of natural gas network; h0 > 0means
that violations occur in the subproblem. x∗ is the solution of initial plan obtained from
the master investment problem; γ is the dual variable; u0, v0, r0 are the coefficient
matrices of the transmission N-1 constraints under the normal operating condition.

h0 + γ (x − x∗) ≤ 0 (5.72)

In order to eliminate the violations, the feasibility cut (5.72) will be generated
and sent to the master investment problem to update the initial solution to ensure no
load curtailment.

5.3.2.4 N-1 Check Subproblem

For the large-scale system, to check all possible outage of the transmission lines
will greatly increase the computational burden. In fact, only a small part of the N-
1 accidents are actually binding contingencies. If these core contingencies can be
identified in advance, the amount of redundant calculations can be greatly reduced.
For this reason, we utilize a contingency screening method based on LODFs to
quickly calculate the post-contingency flow of lines and create the core contingency
set. LODFs are defined as the impact of a line outage on post-contingency flows of
other lines. Although there are several different formulations to calculate LODFs
(Guler et al. 2007; Guo et al. 2009; Wood andWollenberg 2012), they are all derived
from the linear DC power flow equation. In this section, we use the direct calculation
method of LODFs (Guo et al. 2009) to calculate post-contingency flows by the
following equations:

PT DFlg,lk = Blg ,lgΨ
T

lg

[
Y ′]−1

Ψlk (5.73)
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PT DFlk ,lk = Blk ,lkΨ
T

lk

[
Y ′]−1

Ψlk (5.74)

LODFlg,lk = PT DFlg,lk

(
1 − PT DFlk ,lk

)−1
(5.75)

P
line

lg ,lk = P
line

lg + LODFlg ,lk P
line

lk (5.76)

where PT DFlg ,lk is Power Transfer Distribution Factors, defined as the impact of
injecting 1 MW at bus mk and withdrawing 1 MW from bus nk on flow in line lg .
LODFlg,lk will be equal to −1 when lk = lg , since the line flow is set to 0 as it is
on outage. We can utilize (5.76) calculate the post-contingency flow of line lg , i.e.,
P

line

lg ,lk as line lk is on outage.
To obtain the core contingency set, we have

Γlg ,lk = (P
line

lg ,lk − P
line,max

lg )/P
line,max

lg , ∀lk ∈ EL (5.77)

Δlk = {
lg

∣∣ Γlg,lk > 0
}
, ∀lk ∈ EL (5.78)

lk =

⎧
⎪⎨

⎪⎩

∑

lg∈Δlk

Γlg ,lk

/|Δlk |, Δlk �= ∅, ∀lk ∈ EL

0, Δlk = ∅, ∀lk ∈ EL

(5.79)

CC = {
lk | lk > 0

}
(5.80)

Equations (5.77)–(5.78) select overload lines when an outage lk occurs. Equation
(5.79) evaluates the severity under each contingency, where a higher Λ represents
a more severe contingency which should be taken into consideration first. The core
contingency set CC can be obtained via (5.80). Once the most severe contingency
state k = k ′ in the core contingency set is identified, N-1 check subproblem (5.81)
will be carried out to obtain the corresponding objective value and dual variable.

min
zk′ ,sk′

hk
′ = 1T · sk ′

(5.81)

s.t. x = x∗ −→ (π) (5.82)

ex + fzk
′ ≤ g + sk

′
(5.83)

uk ′
x + vk

′
zk

′ ≤ rk
′

(5.84)

where sk
′
is the slack variable; π is the dual variable; uk ′

, vk
′
, rk

′
are the coefficient

matrices of the transmission N-1 constraints under the most severe contingency
state k ′.



5.3 Multi-stage Contingency-Constrained Co-planning for Integrated Energy Systems 131

According to the standard N-1 criterion, the power system should be planned
and operated in a way to be able to supply all loads in case of one single outage in
system components. In our work, we assume that no gas demands is allowed to be
cut off during the N-1 contingency in power system. Therefore, the reliability cut
(5.85) which is similar to the feasibility cut (5.72), is generated and sent to master
investment problem to update the plan decision.

hk
′ + π(x − x∗) ≤ 0 (5.85)

5.3.2.5 Operation Optimal Subproblem

Once the reliable planning solution is obtained, the operation optimal subproblems
(5.86) under the normal operating condition for all selected scenarios at each planning
stage will be carried out, which are subjected to the operational constraints and pre-
contingency constraints.

min
z0

q = dz0 (5.86)

s.t. x = x∗ −→ (β) (5.87)

ex + fz0 ≤ g (5.88)

u0x + v0z0 ≤ r0 (5.89)

where β is the dual variable; the optimal value q represents the sum of operation cost
and curtailed wind energy cost under the normal operating condition, which will be
added into the investment cost to give the total co-planning cost C

upper = cx∗ + q. If
the solution is not optimal, the optimality cut (5.90) will be generated and sent to
master investment problem.

q + β(x − x∗) ≤ ϕ (5.90)

Through the above iterative process to solve the proposed MCC model, an eco-
nomic, reliable, and fuel supply feasible solution for long-term co-planning of EGS
will be obtained.

5.3.3 Case Studies

To illustrate the performance, the proposedMCCmodel is tested on amodifiedGarver
six-bus power system interconnected with a seven-node gas system, and a modified
IEEE 118-bus system interconnected with a 14-node gas system. The simulation
computation is completed in MATLAB using CPLEX solver.
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Fig. 5.13 Reduced data set using AP clustering

Table 5.15 Comparison of clustering performance of AP and k-means

Item CalinskiHarabasz (CH) DaviesBouldin (DB) Silhouette(Sil)

AP 1.1485 × 104 0.7610 0.5539

k-means 1.1099 × 104 0.8163 0.5106

The historical data of 8760 hourly loads and wind energy is obtained fromAEMO
(Australian Energy Market Operator 2019). After using AP clustering, the original
scenarios are classified into 96 groups, as shown in Fig. 5.13, in which the circle
labels represent the chosen scenarios. To visually demonstrate the effect of AP clus-
tering, Fig. 5.13 contains only two-dimensional variables. Different from k-means,
AP clustering selects a sample from each group as the cluster center.

To evaluate the performance of AP clustering, we use the following three popular
evaluation metrics by invoking the evalclusters function in MATLAB.

The comparison of clustering performance of AP and k-means is shown in
Table5.15. Index CH equals inter-cluster distances divided by proximity of intra-
cluster. Therefore, the larger CH, the closer the elements intra-cluster, and more
dispersed inter-cluster. Index DB calculates the similarity of elements inter-cluster,
so a lower DB corresponds to the better clustering results. Index Sil measures the
similarity of a element to its cluster over other clusters. And a higher Sil indicates
the elements favor their current clusters more strongly. In this context, AP performs
better than k-means.

5.3.3.1 The Modified Garver 6-Bus System and a 7-Node Gas Network

The modified Garver 6-bus system interconnected with a 7-node natural gas network
is depicted in Fig. 5.14. The modified Garver 6-bus system includes 1 coal unit, 2
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Fig. 5.14 A six-bus power system interconnected with a seven-node gas system

Table 5.16 Data of electricity lines

No. From bus To bus Reactance (p.u.) Capacity (MW) Capital cost (M$/MW)

L1 1 2 0.4 100 4

L2 1 4 0.6 100 6

L3 1 5 0.2 100 2

L4 2 3 0.2 100 2

L5 2 4 0.4 100 4

L6 2 6 0.3 100 3

L7 3 5 0.2 100 2

gas-fired units, 1 wind farm, 7 lines, and 3 electricity loads. In this study, we only
consider the reinforcement of lines, while the construction of new lines between
two buses where there was no original lines is not included (Ugranli and Karatepe
2016; Zhang et al. 2012). In themodified 7-node natural gas network, two gas sources
S1–S2, respectively, feed the gas-fired units and non-power gas loads. The electricity-
gas systems are connected by gas-fired units and candidate P2G plants. In general,
the candidate locations for P2G plants are near the wind farms and connect to the
nearest natural gas node. In this study,we assume that gas node 5 is closest to thewind
farm. The imaginary lines in Fig. 5.14 indicate the candidate equipment. A set of 7
candidate transmission lines L1–L7, 1 candidate gas pipeline P6(2–5), 2 candidate
gas-fired units G1–G2 and 1 candidate P2G plants P2G1(bus 6) are considered.

The data of electricity lines, natural gas pipelines, and generator units are listed
in Tables5.16, 5.17, and 5.18 (Garver 1970; Liu et al. 2009). The capital cost of
candidate equipments are obtained from Zhang et al. (2015), He et al. (2018).

The existing gas-fired units include a 150-MW at bus 3 and a 200-MW at bus 4.
The capacity of candidate gas-fired units is the same as the existing ones. The existing
coal units include a 360-MW at bus 1. The efficiency of P2G plants is assumed to
be 64% and the investment cost of P2G plants is 1.5 M$/MW Sterner (2009). This
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Table 5.17 Data of natural gas pipelines

No. From node To node Capacity (kcf) Capital cost (M$)

P1 1 2 8000 –

P2 2 4 8000 –

P3 4 7 10000 –

P4 3 5 8000 –

P5 5 6 10000 –

P6 2 5 8000 100

Table 5.18 Data of generator units

No. Bus Type Capacity (MW) Capital cost (M$/MW) Operational cost ($/MWh)

G1 3 Gas-fired units 150 0.6 –

G2 4 Gas-fired units 200 0.6 –

G3 1 Coal units 360 – 23.8

investment covers the electrolyzer, the methanation, the gas compression, power
electronics, piping, civil works, and control systems (Tichler et al. 2014).

A 20-year planning horizon is divided into five stages. The average growth rate of
total electrical load, non-power gas demand and wind energy at each planning stage
are assumed to be 10%, 10%, and 15%, respectively. The electricity load distribution
factors are 0.4, 0.3, and 0.3 for loads at bus 2, bus 4, and bus 5, respectively, while the
non-power gas distribution factors for nodes 1–3 are 0.25, 0.25, and 0.5. The discount
rate is 8%. The lifespan is assumed to be 40 years for all candidate equipment. The
gas fuel cost is 6.24$/kcf Zhang et al. (2015).

(a) Effect of considering N-1 contingency

In this part, two cases are designed as the following and their planning results are
presented in Table5.19.

Case 1: Without considering N-1 contingency.
Case 2: Base case MCC problem considering N-1 contingency. A complete N-1

analysis is performed on each transmission line.
The symbol G1,4 denotes the gas-fired units G1 are constructed and installed at

stage 4. As seen from Table5.19, without considering N-1 contingency, only two
gas-fired units, two transmission lines, as well as a 81-MW P2G plants are installed
in Case 1. While in Case 2, two extra transmission line L1(1–2), L7(3–5) and gas
pipeline P6(2–5) are built when considering N-1 criterion for all transmission lines.
In Case 2, once transmission line L2(1–4) or L5(2–4) is on outage, the electricity load
at bus 4 is mainly met by gas-fired units G2, which are supplied by gas supplier S1.
At stage 5, the gas supplier S1 face a fuel supply shortage. Therefore, gas pipeline
P6(2–5) has to be installed to link up two-area natural gas system to compensate fuel
supply shortage by delivering natural gas from gas supplier S2.
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Table 5.19 Optimal result with and without N-1 contingency

Constructed components Case 1 Case 2

Gas-fired units G1,4, G2,5 G1,1, G2,3

Transmission lines L3,1, L4,3 L1,5, L3,1, L4,1, L7,3

Gas pipelines – P6,5
P2G plants (MW) P2G1(81) P2G1(81)

Investment cost (M$) 282.3 573.6

Operation cost (M$) 4288.6 4283.7

Curtailed wind energy cost (M$) 2.3 2.6

Total co-planning cost (M$) 4572.1 4859.9

Table 5.20 Comparison of constructed components, total co-planning costs and wind power uti-
lization

Constructed components Model 1 Model 2

Gas-fired units G1,1, G2,3 G1,1, G2,3

Transmission lines L1,5, L3,1, L4,1, L7,3 L1,5, L3,1, L4,1, L6,4, L7,3

Gas pipelines P6,5 P6,5
P2G plants (MW) P2G1(81) –

Investment cost (M$) 573.6 625.0

Operation cost (M$) 4283.7 4265.6

Curtailed wind energy cost (M$) 2.6 26.1

Total co-planning cost (M$) 4859.9 4916.7

Wind power utilization 97.25% 88.78%

In addition, the constructed components of Case 2 are almost built ahead of that of
Case 1, to enable power system to satisfy N-1 criterion. Operation cost and curtailed
wind energy cost of these two cases are near. Though the total co-planning cost of
Case 1 outperforms that of Case 2, the optimal plan of Case 1 can not ensure power
system safe and reliable.

(b) Effect of P2G plants

To evaluate the economic merits of P2G plants and its impacts on the co-planning,
two following models are carried out.

Model 1: Base case MCC model.
Model 2: Without considering P2G plants.
Table5.20 lists the comparison of the constructed components, total co-planning

costs and wind power utilization. These two models obtain some same constructed
components, including two gas-fired units, four transmission lines, and one gas
pipeline. The main difference of optimum results reflect in the installation of P2G
plants and transmission lines L6(2–6). In Model 1, due to the physical limit of exist-
ing transmission line L6, 81-MWP2G plants (consisting of 2-MW, 17-MW, 15-MW,
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Fig. 5.15 Comparison of natural gas consumption and curtailed wind energy at each planning stage

23-MW and 24-MW installed at stage 1 to stage 5, respectively) are built to eco-
nomically convert excessive wind energy into synthetic natural gas (SNG). While in
Model 2, the relatively expensive candidate transmission line L6 is installed at stage
4 to utilize growing wind energy and prevent wind spillage. It should be mentioned
that the candidate L6 is not installed at stage 1, since during that time the penalty cost
for curtailed wind energy is lower than investment cost of installing a new line. For
this reason, Model 1 presents an obvious advantage in the investment cost, compared
with Model 2.

In addition, Model 1 pays less 23.5 M$ penalty cost for curtailed wind energy
thanModel 2. As shown in Fig. 5.15, due to the physical limit of installed P2G plants,
a small fraction of wind energy will be curtailed in those scenarios where the wind
energy is high but the probability of occurrence is low.While in Model 2, the surplus
wind energy has to be curtailed until the candidate L6 is constructed at stage 4.

Note that from stage 1 to stage 3, the natural gas consumption of Model 1 is
slightly lower than that of Model 2, with the help of P2G plants to produce SNG.
However, the situation is opposite from stage 4 to stage 5. This is because, during
those stages, the wind energy inModel 2 is completely utilized tomeet the increasing
demands. While in Model 1, the energy loss during the P2G process causes more
energy consumption of generation units and gas suppliers, thus leading to a little
higher operation cost. Nevertheless, the direct wind power utilization during the
planning horizon is increased from 88.78 to 97.25% due to the installation of P2G
plants.

To make a summary, this example illustrates that the proposed MCC model con-
sidering P2G plants can significantly improve wind power utilization by nearly 8%
and lead to a lower total co-planning cost.

(c) Effect of unit penalty cost of curtailed wind energy

Figure5.16a, b explores the effect of unit penalty cost of curtailed wind energy on the
optimal results. As the unit penalty cost increases, larger capacity of P2G plants are
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Fig. 5.16 Comparison of total co-planing cost, P2G capacity and curtailed wind energy under
different parameters

selected to utilize the surplus wind energy to avoid higher penalty cost for curtailing
wind energy in Model 1. Therefore, the total co-planning cost of Model 1 shows a
rising trend while curtailed wind energy with a downward trend. While in Model
2, as the unit penalty cost increases, the candidate transmission line L6 has to be
constructed in advance from stage 4 to stage 2.

Therefore, with P2G plants consideration, the total co-planning cost and curtailed
wind energy of Model 1 are always lower than those of Model 2.

(d) Effect of wind growth rate

Figure5.16c illustrates the total co-planning cost and total P2G capacity as a function
of wind power growth rate. The total co-planning cost in Model 1 decreases when a
higher growth rate of wind power is considered. This is because larger capacity of
P2G plants will be built to utilize the wind energy to greatly reduce the operation
cost. The total cost of Model 2 also shows a downward trend as a whole, but it is still
higher than that of Model 1.

(e) Effect of P2G efficiency and unit cost

To explore the influence of P2G efficiency and unit cost of P2Gplants on the optimum
results, the simulations under different efficiency and unit cost are carried out. With
a higher P2G efficiency, less energy loss during the process of P2G will be caused.
Therefore, a higher capacity of P2G plants will help to reduce the curtailed wind
power energy, as shown in Fig. 5.16d. In addition, with the advancement of P2G
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Table 5.21 Candidate transmission lines of IEEE 118-bus
No. Lines No. Lines No. Lines No. Lines No. Lines No. Lines No. Lines

L1 3–5 L5 30-17 L9 30–38 L13 82–83 L17 100–
103

L21 71–73 L25 90–91

L2 8–9 L6 8–30 L10 55–56 L14 83–85 L18 17–113 L22 86–87 L26 2–12

L3 8-5 L7 26–30 L11 38–65 L15 85–86 L19 12–117 L23 110–
111

– –

L4 11–12 L8 29–31 L12 77–78 L16 91–92 L20 9–10 L24 38-37 – –

technology, a lower unit cost will be beneficial to the installation of P2G plants,
which will be more economical and competitive compared with the transmission
line.

5.3.3.2 Modified IEEE 118-Bus System and 14-Node Gas Network

Amodified IEEE118-bus system interconnectedwith 14-node gas network is applied
here to further demonstrate the applicability of the proposed MCC model on large
systems, as shown in Fig. 5.17. The modified IEEE 118-bus system includes 42 coal
units, 10 gas-fired units, 3 wind farms, and 186 lines. Note that in the previous case
study, every corridor where a transmission line exists is considered to install another
candidate one. However, in a large-scale system, based on either previous operational
experience or physical and regulatory limits, it is practical to form a candidate line
set in which only a few valid or important candidate lines are listed (Wood and
Wollenberg 2012; Zhang et al. 2012). In this case study, 26 transmission lines are
selected as candidate ones, as shown in Table5.21.

Three-area 14-node gas networks feed 10 candidate gas-fired units G1–G10 and
non-power gas loads f1– f7, and are connected with 3 candidate P2G plants P2G1–
P2G3. Three candidate gas pipelines (imaginary lines P1–P3) are considered to link
the delivery areas. The data of candidate gas pipelines, gas-fired units and P2G plants
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Table 5.22 Candidate gas pipelines

No. From node To node Capacity (kcf) Capital cost (M$)

P1 2 13 8000 90

P2 5 6 8000 90

P3 6 10 10000 100

Table 5.23 Candidate gas-fired units

No. Node Bus Capacity (MW) Capital cost
(M$/MW)

G1 1 6 100 0.6

G2 2 12 200 0.65

G3 3 18 200 0.65

G4 4 25 100 0.6

G5 5 32 100 0.6

G6 6 56 200 0.65

G7 7 62 100 0.6

G8 10 89 200 0.65

G9 11 100 200 0.65

G10 12 113 100 0.6

Table 5.24 Candidate P2G plants

No. Node Bus Efficiency Capital cost (M$/MW)

P2G1 5 73 0.64 1.5

P2G2 6 91 0.64 1.5

P2G3 11 117 0.64 1.5

are listed in Tables5.22, 5.23 and 5.24. Other network parameters can be found in
Zhang et al. (2015), He et al. (2018).

In this study, a set of 26 candidate transmission lines L1–L26, 3 candidate gas
pipeline P1–P3, 10 candidate gas-fired units G1–G10 and 3 candidate P2G plants
P2G1–P2G3 are considered. Three cases are presented to illustrate the availability
and effectiveness of the proposed model.

Case 1: Without considering N-1 contingency.
Case 2: Base case MCC problem considering N-1 contingency using LODFs.
Case 3: MCC problem with all contingencies.
The comparison of constructed components, total co-planning cost and compu-

tation time in Case 1–3 are summarized in Table5.25. In Case 1, two new gas-fired
units and six new transmission lines are constructed to meet the increasing electricity
loads. New gas pipeline P3 is selected to deliver natural gas from gas supplier S2
to compensate the fuel supply shortages in S3. Moreover, 102-MW P2G plants are
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Table 5.25 Optimal result of constructed components, co-planning cost, and computation time

Constructed
components

Case 1 Case 2 Case 3

Gas-fired units G5,5, G6,5 G1,2, G2,5, G10,5 G1,2, G2,5, G10,5

Transmission lines L3,2, L9,2, L11,4, L2,4, L3,2, L4,4, L9,2,
L11,4,

L2,4, L3,2, L4,4, L9,2,
L11,4,

L20,5, L21,4, L25,4 L20,4, L21,2, L24,5,
L25,3, L26,3

L20,4, L21,2, L24,5,
L25,3, L26,3

Gas pipelines P3,3 P3,3 P3,3
P2G plants (MW) P2G1(102) P2G1(102) P2G1(102)

Investment cost (M$) 320.6 382.6 382.6

Operation cost (M$) 21479.5 21470.0 21470.0

Curtailed wind energy
cost (M$)

26.3 25.7 25.7

Total co-planning cost
(M$)

21800.1 21852.6 21852.6

Computation time
(sec)

311.9 852.1 18501.3

Table 5.26 Selected lines for contingency analysis using LODFs

Item Selected lines for contingency analysis

CC 4–5, 8–9, 8-5, 9–10, 2–12, 15–17, 23–24, 25–27, 26–30, 38–37

installed in the first wind farms to utilize the surplus wind energy. Compare with
Case 1, extra one gas-fired units and four new transmission lines are added in Case
2. For this reason, more investment cost is spent in Case 2 for enabling power system
to satisfy the N-1 criterion.

In Case 3, the MCC problem with all contingencies is also solved to compare
its results and computation time with MCC problem using LODFs to obtain core
contingency set (Case 2). Final results show that these two methods select the same
optimal plans with the same total co-planning costs. However, Case 2 is more than 20
times faster than Case 3. This is because only 10 contingency lines are selected after
using LODFs for contingency analysis, as shown in Table5.26, which are reduced
by over 94%.

The number of iteration in Case 2 is 43 with a relative rap of ε = 0.5%. The
convergence performance of the decomposition method is acceptable, as shown in
Fig. 5.18.

Therefore, case studies above verify the availability of the proposed MCC model
and the effectiveness of the proposed IBDmethod. The contingency handling strategy
possesses high computational efficiency.



5.4 Summary 141

Iteration
0 5 10 15 20 25 30 35 40 45

R
el

at
iv

e 
ga

p

10-4

10-2

100

102

Fig. 5.18 Iteration convergence

5.4 Summary

This chapter has presented the study of multi-stage contingency-constrained co-
planning (MCC) for electricity-gas systems (EGS) interconnected with gas-fired
units and P2G plants using iterative Benders decomposition (IBD). The simulation
results carried out on two different scales of EGS have demonstrated the following
conclusions:

First, the MCC model developed for EGS can be tackled by the proposed IBD
method, considering the long-term co-planning with the short-term operation con-
straints. The simulation results demonstrate that the MCC model considering P2G
plants can significantly improve wind power utilization by nearly 8% and lead to a
lower total co-planning cost, compared with the model without P2G plants. Accord-
ing to the simulation results of the sensitive analyses, the unit penalty cost of cur-
tailed wind energy, wind growth rate, and P2G efficiency have influences on final
co-planning solution of EGS.

Moreover, the simulation results illustrate that affinity propagation clustering per-
forms better than k-means in reducing the number of initial scenarios to an acceptable
levelwithout anypre-specification. The contingency accidents canbe reducedbyover
94% after using LODFs, which possessing high computational efficiency. Further-
more, the number of iteration in the large-scale test system is 43with the computation
time of 852.1 s, which is an accepted level for the long-term co-planning.

The proposed MCC model could be adopted by electricity-gas systems planners
or regional regulatory authorities for long-term coordination of electricity-gas sys-
tems. In addition, the IBD method could be extended to tackle the N-k contingency-
constrained problem in our future work.
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Chapter 6
Optimal Operation of Large-Scale
Integrated Energy Systems

Abstract The increasing share of variable renewable energy sources and the improv-
ing requirements on system security and reliability are calling for important changes
in the LSIES. The synergies between energy supply networks are of great impor-
tance to satisfy the development of LSIES. Hence, this chapter presents the study
of the coordinated scheduling strategy (CSS), in which, the models of the electricity
network and gas network are developed in detail, and the operation constraints of the
networks are fully considered. The purpose of the CSS is to optimize the conflicting
benefits of the electricity network and gas network for daily operation of the LSIES,
while satisfying the operation constraints. In the CSS, a multi-objective optimization
algorithm is applied to obtain a Pareto-optimal solution set, and a multiple attribute
decision analysis (MADA) using interval evidential reasoning (IER) is developed to
determine a final optimal daily operation solution for the LSIES.

Keywords Optimal operation · Coordinated scheduling strategy · Conflict
benefits · Energy trading game

6.1 Introduction to Operation of the LSIES

Until now, worldwide demand for natural gas has increased from 32% in 2007 to
39% in 2009 (Üster and Dilaveroğlu 2014), and it is estimated to grow at a rate of
2.9–3.2% per year until 2030 (EIA-US 2011).With the high integration of natural gas
in electricity power systems, the synergies between the gas network and electricity
network are dramatically increasing in order to reduce the operation cost and satisfy
the stringent environmental regulations (Chaudry et al. 2014).

As a significant kind of gas consumers, the gas-fired generator keeps a rising
proportion of the total generating capacity in power systems in the last decades,
owing to low cost, low carbon emission, and fast response (Qadrdan 2014). As an
energy conversion equipment transforming natural gas to electricity power, the gas-
fired unit serves as a linkage between the electricity network and gas network. More
importantly, with the development of distributed renewable resources and district
energy demands (Liu et al. 2016; Wu et al. 2013), the interconnections between
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the electricity network and gas network extend from the gas-fired generators to
various types of connectivity nodes, such as distributed heating and cooling loads
(Gebremedhin 2012; Jing et al. 2014), combined heating and power (CHPs), and
combined cooling heating and power (CCHPs) (Wang et al. 2015; Balcombe et al.
2015). Therefore, the interactions between the two networks are playing more and
more important roles along with the development of LSIES.

The synergies between the electricity network and gas network have a great influ-
ence on the two networks from the viewpoint of economics and security (Gil et al.
2016). From the economics point of view, the gas contracts of price and total gen-
eration could affect the unit commitment, economic dispatch, and daily scheduling
of the electricity network. From the security point of view, pressure losses, pipeline
contingencies, compressor outages, or supply disruptions might lead to forced out-
ages of thermal units or load shedding (Xu et al. 2015). Consequently, the synergies
between the electricity network and gas network embedded in the LSIES are worth
being investigated for the purpose of economics and security.

Extensive research has conducted on the planning and operation of the combined
electricity and gas networks. In Liu et al. (2009), the authors presented the devel-
opment of a security-based methodology for short term security-constrained unit
commitment (SCUC) considering the impact of natural gas transmission constraints.
Pricing flexible natural gas supply contracts under uncertainty in hydrothermal mar-
kets were discussed in Street et al. (2008). However, these papers considered either
the unit commitment (UC) of power system or the pricing of natural gas supply
contracts as the master problem rather than treated the electricity network and gas
network equally.

The natural gas and electricity optimal power flow was discussed in An et al.
(2003). Combined gas and electricity network planning of expansion and energy
hubs were presented in Hu et al. (2016) and Salimi et al. (2015), respectively. In Bai
et al. (2015), an interval optimization-based operating strategy for gas-electricity-
integrated energy systems was proposed. The demand response and wind power
uncertainties were taken into consideration. The authors of Zhang et al. (2015)
proposed a long-term interdependency of natural gas and electricity infrastruc-
tures, incorporating the natural gas transportation planning objective in the co-
optimization planning of power generation and transmission systems. In most of the
previous research, only the gas-fired generator has been considered as the linkage
between the electricity network and gas network (Street et al. 2008; Zhang et al.
2015).

With the increasing of the types of renewable energy resources and energy
demands, it is of great importance to extend the synergies of the two networks from
the single type to various other types like distributed generators and district heating
and cooling loads (Gebremedhin 2012; Jing et al. 2014; Wu et al. 2015). Moreover,
as the proportion of gas consumption rise, the gas network plays a significant role as
the electricity network from the perspectives of economics and security. Hence, it is
wise to treat the gas network and the electricity network coordinately.
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This chapter proposes a CSS to optimize conflicting benefits for the daily oper-
ation of the electricity and gas networks embedded in the IES. In the combined
electricity and gas networks of the IES, we regard both the gas-fired generators and
distributed district heating and cooling systems (DHCs) (Zheng et al. 2015) as the
interconnections between the two networks. In the case that the two networks are
managed by one company operating electricity and gas networks together, the CSS
could be achieved without any further effort. In the case that the two networks are
managed by two different companies separately, the CSS could be achieved by a
joint effort provided by a third party with negotiation between the two companies
considering their own business interests and being committed to their social duties.
In addition, the linkages of the two networks, gas-fired units, serve as gas consumers
of the gas network, but electricity power suppliers of the electricity network, which
means that the optimal daily operation of the integrated electricity and gas networks
must make a compromise of their own benefits through the synergies.

The CSS consists of a multi-objective optimization procedure and a MADA for
the daily operation scheduling of the IES. Based on the multi-optimization model
developed in this chapter, themulti-objective optimization procedure is adopted from
the multi-objective group search optimizer with adaptive covariance and Lévy flights
(MGSO-ACL), which is proved to be efficient for the multi-objective optimization
of the IES (Zheng et al. 2015). After the Pareto-optimal set obtained by the multi-
objective optimization procedure, theMADA using an IER is utilized to select a final
operation solution with adequate evidence fully considering the multiple criteria of
the electricity and gas networks and the society interests. In this way, the daily opera-
tion of the two networks with conflicting benefits can be tackled with a compromised
scheduling solution.

The rest of the chapter is organized as follows: Section6.2.1 formulates the mod-
els of the electricity and gas networks interconnected in the integrated energy system.
The coordinated scheduling strategy for the daily operation of the IES is developed in
Sect. 6.2.2. Section6.2.3 carries out the simulation studies to verify the performance
of the CSS developed for the daily operation of the IES, and to evaluate the interde-
pendency between the two networks. Finally, the last section draws the conclusion
of this chapter.

6.2 Optimal Operation of Integrated Energy Systems with
Distributed DHCs Embedded

6.2.1 Integrated Electricity and Gas Networks Modeling

The proposed model of electricity network and gas network integrated into the IES
can be illustrated in Fig. 6.1. The system includes electricity transmission system,
gas supply system, gas-fired generator, electricity load, gas load, and heating and
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Fig. 6.1 A framework of an IES with electricity and gas networks embedded

cooling load. The electricity network and gas network are closely interconnected
by the gas-fired generator and distributed DHC, which can be treated as energy
converters between these two energy networks. Noted that the distributed DHCs
addressed in this chapter consider the energy input of electricity power and natural
gas to serve the heating and cooling load. The models of the electricity network and
gas network are described in detail as follows, respectively.

6.2.1.1 Gas Network Model

The gas network is most commonly composed of gas well, gas pipelines, gas com-
pressors, interconnection points, gas storage stations, and gas loads (Qiu et al. 2015;
Zhang et al. 2016). In this chapter, gas pipelines, compressors, gas loads, and inter-
connection points are taken into consideration. The gas well is treated as a constant
pressure interconnection point, and it is assumed that the compressors are driven
by natural gas. Furthermore, the gas loads include the gas-fired generators and dis-
tributed DHCs, apart from the regular gas loads.

(1) Gas pipeline

The gas flow through a pipeline is driven by the pressure difference between the two
ends of a pipeline. Several equations have been proposed to compute the gas flow
through the pipeline. In this chapter, the most commonly used equation is used to
compute the gas flowG in a pipeline between gas network nodesm and n (Mokhatab
and Poe 2012; Schroeder et al. 2010; Martínez-Mares and Fuerte-Esquivel 2012):
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Gmn = sgn(πm,πn)
(77.54T0

π0

)
D2.5

mn

√
|πm

2 − πn
2|

LmnγGT a
mn Z

a fmn
(6.1)

where πm and πn are the pressures at nodes m and n, respectively; sgn(πm,πn) = 1
if (πm

2 − πn
2) > 0 and sgn(πm,πn) = −1 if (πm

2 − πn
2) < 0; T0 is the base tem-

perature, 520◦R; π0 is the base pressure, 14.65 psia; Dmn is the inner diameter of the
pipeline between nodes m and n, inch; Lmn is the length of pipeline between nodes
m and n, miles; γG is the gas specific gravity, 0.6; T a

mn is the average gas temperature;
According to the An et al. (2003), Bai et al. (2015), Zhang et al. (2015), Mokhatab
and Poe (2012), Schroeder et al. (2010), the average gas temperature T a

mn is practical
enough for the model of gas pipelines. Z a is the average gas compressibility factor;
and fmn is the friction factor of the pipeline, which strictly depends on the inner
diameter of the pipeline and can be given as a function of Dmn (Schroeder et al.
2010):

fmn = 0.032

(Dmn)
1/3 (6.2)

(2) Gas compressor

During the long transmission distance of gas in pipelines, the gas compressors are
installed to compensate for the loss of pressure due to the friction of pipelines. The
horsepower of compressor k connected between nodes m and n is mathematically
expressed as (An et al. 2003)

Hk = θkGk

[(πm

πn

)Zk
δk−1
δk − 1

]
(6.3)

where θk is the compressor constant dependingon temperature, compressor efficiency
and heat ratio; Gk the gas flow at compressor k; Zk the gas compressibility factor at
compressor k; and δk the specific heat ratio at compressor k.

The gas compressor must consume horsepower Hk to produce pressure. If the
compressor node is coupled with an electricity node, the power will be supplied by
the electricity network. In this case, Hk is regarded as an electricity load and will be
addressed in the power flow. Otherwise, the compressor will consume natural gas
directly from gas flow (Bai et al. 2015). The Hk is denoted as

Q(Hk) = akHk
2 + bkHk + ck (6.4)

where ak , bk , and ck are the coefficients of the gas consumption of the compressor
k. In addition, the horsepower Hk of compressor j has to satisfy the physical bound
of the compressor.
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Hmin
k ≤ Hk ≤ Hmax

k (6.5)

where Hmin
k and Hmax

k are the minimum and maximum allowed pressure of compres-
sor k, respectively.

The compression ratio between the outlet node m and inlet node n is subject to
the following constraint:

Rmin
k ≤ max(πm,πn)

min(πm,πn)
≤ Rmax

k (6.6)

where Rmin
k and Rmax

k are the minimum and maximum allowed compressor ratio,
respectively.

(3) Gas loads

From the perspective of the gas network model, the gas-fired generators and dis-
tributed DHCs are treated as the gas loads. The gas loads can be regarded as negative
gas injections at the gas load nodes. The gas consumption of the gas-fired units is
determined by its hourly power generation dispatch of the electricity network (Zhang
et al. 2016), which is denoted by

GGUi = αi + βi P
t
GUi + γi (P

t
GUi )

2, i ∈ GU (6.7)

where αi , βi , and γi are the gas function coefficients of gas-fired unit i , GU is the
set of gas-fired units. It is indicated that Gi is considered as a part of the gas loads
located in the gas network.

The system structure of the distributed DHCs applied in this chapter is presented
in Fig. 6.2. As shown in the figure, the DHC obtains the power input PDHC and gas
input GDHC from the electricity network and gas network, respectively. Meanwhile,
it serves the heating and cooling loads utilizing the boilers and chillers to transform
the power and gas input into heating and cooling demands (Wu et al. 2015). As a
consequence, we can get the transformation equations of the DHC, which are shown
as follows:

{
PDHC1 + PDHC2 = PDHC
COP1PDHC1 + COP2(η1PDHC2 + η2qgGDHC − Phd) = Pcd

(6.8)

where COP1 and COP2 are the coefficient of performance of the compression chiller
and absorption chiller, η1 and η2 are the operation efficiency of the electric water
boiler and gas-fired water boiler, respectively, and qg is the calorific value of natural
gas.

(4) Gas interconnected point

The gas interconnected point refers to the connected node of the gas network. At a
node j of the gas network, the nodal pressure constraint must be satisfied:



6.2 Optimal Operation of Integrated Energy Systems with Distributed DHCs Embedded 151

Fig. 6.2 The system structure of distributed DHCs

πmin
j ≤ π j ≤ πmax

j (6.9)

where πmin
j and πmax

j are the minimum and maximum allowed pressure, respectively.
Specifically, at the gas supply node, the available gas production is limited by the

physical characteristics of the gas well, which is given as

Qmin
j ≤ Q j ≤ Qmax

j (6.10)

where Qmin
j and Qmax

j are the minimum and maximum allowed gas supply of gas
well j , respectively.

Furthermore, at each node of the gas network, the nodal gas flow balance must
be satisfied to assure that the sum of the gas injection to a node is equal to zero.

∑

m∈n
Gmn +

∑

m∈n
Qn +

∑

m∈n
Qn(Hn) = 0 (6.11)

where
∑

m∈n is the set of nodes adjacent to node n. Noted that at least one nodal
pressure must be considered as a reference to compute all other unknown pressures,
and the gas injection computed at this reference point provides the gas flow balance
in the gas network.

6.2.1.2 Electricity Network Model

In the model of AC power flow, the active and reactive powers are taken into con-
sideration, the voltage magnitudes and angles of each bus are not constants. Hence,
the nonlinear power flow equations have to be tackled during the optimization pro-
cedure (An et al. 2003; Martínez-Mares and Fuerte-Esquivel 2012). In this chapter,
the electricity network is represented by a direct current (DC) power flow model
(Bai et al. 2015). Compared with alternating current (AC) power flowmodel, the DC
formulation is based on the same parameters, but with the following three additional
simplifying assumptions: (1) branches can be considered lossless; (2) all bus voltage
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magnitudes are close to 1 p.u.; (3) voltage angle differences across branches are small
enough (Overbye et al. 2004). In this way, the nonlinear power flow equations can
be transformed into a linear active power balance equation, without calculating the
reactive power. In spite of this, the DC power flow is still applicable for the electricity
network modeling proposed in this chapter.

Applying the DC power flow model, the nodal power balance for the electricity
network can be expressed in matrix form as

IGPG + IGUPGU − IdPd − IDHCPDHC = 0 (6.12)

where PG and PGU are the power output matrix of thermal units and gas-fired units,
respectively; Pd and PDHC are the load demand matrix of electricity and distributed
DHCs; IG, IGU, Id and IDHC are the incidence matrices of the thermal units, gas-fired
units, load demands of electricity, and distributed DHCs, respectively.

Apart from the power flow balance, the power output of a thermal unit has to
satisfy its physical limits, which are denoted by

Pmin
Gi ≤ PGi ≤ Pmax

Gi (6.13)

Pt
Gi

− Pt−1
Gi

≤ RUGi (6.14)

Pt−1
Gi

− Pt
Gi

≤ RDGi (6.15)

where Pmin
Gi and Pmax

Gi are the minimum and maximum allowed power output of
thermal unit i , respectively; RUGi and RDGi are the maximum ramping up and
ramping down rate of the thermal unit Gi .

Spinning reserve is generally supplied by the free capacity of generating units
which are able to be activated by the demand of system operators (Partovi et al.
2011). The satisfaction of spinning reserve requirements formulated in (6.16) is
significant for both real-time dispatching and daily scheduling in the operation of
electricity network.

NG∑

i=1

r tGi ≥ r tD (6.16)

where the hourly spinning reserve supply r tGi is given by (Niknam et al. 2013):

Upward: r tGi = min{(Pmax
Gi − Pt

Gi
),RUGi } (6.17)

Downward: r tGi = min{(Pt
Gi

− Pmin
Gi ),RDGi } (6.18)
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6.2.2 Coordinated Scheduling Strategy

The daily operation optimization for the IES presented in this chapter is related
to two different parties: the electricity network and gas network. Even though these
two networks simultaneously serve gas load, electricity load, and heating and cooling
load, they stand for conflict interests. Therefore, CSS is necessary to maximize the
profits of both the electricity network and gas network. The CSS proposed in this
chapter consists of a multi-objective optimization procedure and a multiple attribute
decision analysis framework, which are presented in detail as follows.

6.2.2.1 Multi-objective Optimization Procedure

Considering the competing benefits of the two networks, a multi-objective optimiza-
tion model is developed to optimize the operation cost of the electricity network and
gas network coordinately. As for the electricity network, the total power generation
cost (PGC) includes the fuel cost of thermal units FG(PG), start-up SUG and shut-
down cost SDG (Niknam et al. 2009). The gas supply cost (GSC) of the gas network
is the sum of gas production cost Qt

j minus the benefit of gas consumption Qt
k .

Hence, the objective function of the multi-objective optimization model formulated
for the IES considering the competing benefits of the electricity network and gas
network is given by

min
X

[ ∑

t

∑

i /∈GU
[FGi (P

t
Gi ) + SUt

Gi + SDt
Gi ],

λg

∑

t

∑

j

Qt
j (π

t
j ) − λl

∑

t

∑

k

Qt
k

]
(6.19)

where X is the control variable set: X = [P,π], λg and λl are the corresponding gas
prices of gas production and gas consumption, respectively. It should be noted that
λg and λl are normalized during the multi-objective optimization procedure to keep
the two objectives in the same number scale.

The corresponding constraints are related to the steady state of both the electricity
network and gas network, which are summarized as follows:

Gas network constraints: (1)–(11)
Electricity network constraints: (12)–(18)

In Zheng et al. (2015), the efficiency of multi-objective group search optimizer
with adaptive covariance and Lévy flights (MGSO-ACL) is verified for the multi-
objective optimization of the IES. Therefore, the MGSO-ACL is addressed to solve
the multi-objective optimization model proposed in this chapter. In the adopted
MGSO-ACL, two different producers are assigned for the electricity network and
gas network, respectively, to search for the optimal direction of the two different
objective functions. Meanwhile, the producers are sharing the same scroungers and
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Table 6.1 The pseudocode of the MGSO-ACL
Set g := 0;

Randomly assign the initial position x(g)p and head angles (g) of all members;

Calculate the fitness values of initial members for each objective: Fp(x
(g)
p );

WHILE (the termination conditions are not met)
FOR (each member i in the group)

Choose producer : Find the member which conferred the best fitness value of each
objective as producer xp;
Perform producing : The producers use a scanning mechanism to randomly sample three
different directions using (6.20)-(6.22), and get the best direction;
IF (randn(1)>P(Rangers))

Perform scrounging : Scroungers Perform scrounging with adaptive covariance
matrix using (6.25);

ELSE
Perform Ranging : Rangers will be dispersed from their current position
to perform ranging:
1) Choose a random step size value based on Lévy flights using (6.26);
2) Move to a new point using (6.27);

END IF

Calculate fitness : Evaluate fitness value Fp(x
(g)
p ) and run the Pareto-dominance principle;

END FOR
END WHILE
OUTPUT the best fitness value for each objective Fp(xbest) and the corresponding member xbest.

rangers to improve the efficiency of the searching process. The pseudocode of the
MGSO-ACL is shown in Table6.1, and its procedure is described as follows.

(1) Producer searching strategy

In adopted MGSO-ACL, the number of producers is equal to the number of objec-
tives (Nob), which means each producer is assigned to find the best fitness value
Fp(x

(g)
p ), (p = 1, . . . , Nob) of its corresponding objective. The producers use a scan-

ning mechanism to randomly sample three different directions: straight, left- and
right-hand side hypercube, respectively, which are formulated as follows:

xs = x (g)
p + r1lmaxD

(g)
p (ϕ(g)) (6.20)

xl = x (g)
p + r1lmaxD

(g)
p (ϕ(g) − r2θmax/2) (6.21)

xr = x (g)
p + r1lmaxD

(g)
p (ϕ(g) + r2θmax/2) (6.22)

where r1 ∈ R
1 is a normally distributed random number with mean 0 and standard

deviation 1, r2 ∈ R
n−1 is a uniformly distributed random sequence in the range (0,1),

ϕ
(g)
i ∈ R

n−1 is the head angle and the unit vector D(ϕ) ∈ R
n can be calculated from

ϕ via a polar to Cartesian coordinate transformation (He et al. 2009).
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If the best point has a better resource than its current position, then the producer
will fly to this point. Otherwise, the producer will stay in its current position and turn
its head to a new randomly generated angle:

ϕ(g+1) = ϕ(g) + r2αmax (6.23)

where αmax ∈ R
1 is the maximum turning angle.

On the other hand, if the producer cannot find a better area after a generations, it
will turn its head back to zero degree:

ϕ(g+a) = ϕ(g) (6.24)

where a ∈ R
1 is a constant.

(2) Scroungers’ behaviors with adaptive covariance

The adaptive covariance matrix, obtained by cumulatively learning for the informa-
tion organized from the group members of each generation, is employed to get a
reliable estimator for determining the evolution path and step size for scroungers’
behaviors.

The offspring of kth scrounger, x (g+1)
k , can be modeled as follows (Auger and

Hansen 2012):

x (g+1)
k = m(g) + σ(g)N (0,C (g)) k = 1, . . . ,λ (6.25)

where N (0, I) means a multivariate normal distribution with zero mean and unity
covariance matrix, σ > 0 is the step size, λ is the number of the scroungers, super-
script g denotes the generation number, (g = 0, 1, 2, . . .), and n is the dimension of
the function.

Mean vector m(g) of the searching distribution is a weighted average of μ suc-
cessful individuals selected from the sample x (g)

1 , . . . , x (g)
λ . Covariance matrix C is

updated based on mean vector, and the evolution path and step size are accordingly
determined by the covariance matrix (Auger and Hansen 2012).

(3) Rangers’ walks

In this chapter, Lévy flights (Yang 2010) are introduced as rangers’ searching tech-
nique rather than the random walks. The step size value of the i th ranger is chosen
randomly as follows:

si = 0.01

(
ui
vi

)1/β

(x (g)
i − x (g)

p ) (6.26)

where u = φrandn(n), v = randn(n),β = 1.50, and n is the number of variables. The
randn(n) function generates a uniform integer between [1, n], and the φ is computed
by
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φ =
(

Γ (1 + β) sin(πβ/2)

Γ ((1 + β)/2) · β · 2(β−1)/2

)1/β

where Γ denotes the gamma f unction.

Consequently, rangers will move to the new point following the direction as

x (g+1)
i = x (g)

i + randn(n)si (6.27)

In this way, the individuals, xi , of the MGSO-ACL are updated according to the
fitness value of the multiple objectives. Further details about the MGSO-ACL can
be referred to Zheng et al. (2015). Applying the MGSO-ACL, a Pareto-optimal set
for the daily operation of the IES can be obtained.

6.2.3 Simulation Studies

6.2.3.1 System Description

In this section, simulation studies conducted on a test-integrated energy system with
electricity network and gas network embedded are carried out to figure out coordi-
nated scheduling strategy for the daily operation. The test IES is adopted by a mod-
ified IEEE 30-bus system and a 15-node gas network, which is shown in Fig. 6.3.
The detailed parameter data can be found in An et al. (2003), Martínez-Mares and
Fuerte-Esquivel (2012).

As presented in the figure, two gas-fired units are connected to the electricity net-
work at buses 7 and 12, respectively. Moreover, three distributed DHCs are located
at buses 8, 11, 21, and 30 of the electricity network. The gas network consists of 15
nodes, which contains 2 gas source nodes (1,2), 2 gas load nodes (3,13), 2 nodes con-
nected to gas-fired units (8,15) and 3 nodes connected to distributed DHCs (4,9,14).
We can see from the figure that the electricity network is interconnected with the
gas network through the two gas-fired generators and three distributed DHCs. The
gas-fired units serve as gas loads in the gas network, and they are also power sources
for the electricity network. The distributed DHCs also serve as gas loads in the gas
network, and they can also exchange power with the electricity network.

The daily curves of electricity load, gas load, and heating and cooling load are
summarized in Fig. 6.4. Noted that the gas load shown in the figure only includes the
gas demand in gas load nodes (3,13) of the gas network, without the gas demands
of gas-fired units and distributed DHCs. Moreover, the heating and cooling load
demands are satisfied by the power from distributed DHCs.
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Fig. 6.3 The 15-node gas network coupled with the IEEE 30-bus network of the test IES

Fig. 6.4 The daily curves of electricity load, gas load, and heating and cooling load

6.2.3.2 Results Comparisons

The CSS proposed in this chapter is utilized to obtain the optimal daily operation
solution for the test IES. The multi-objective optimization algorithm, MGSO-ACL,
is evaluated in 100 independent runs, with comparisons with the non-dominated
sorting genetic algorithm II (NSGA-II) (Deb et al. 2002). The simulation results of
the PGC of the electricity network and the GSC of the gas network at t = 1 is shown
in Fig. 6.5. As presented in the figure, the operation costs of the electricity network
and gas network are in conflict with each other, and they compromise with each other
in order to reach both of their optimal solutions. The results imply that it is necessary
to optimize the two dependent interests coordinately, rather than simply optimizing
the sum of the two conflicting interests using single-objective optimization method.

For the metrics comparisons between MGSO-ACL and NSGA-II, the index of
hypervolume (HV), the mean Euclidian distance (MED), the spacing index (SI), the
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Fig. 6.5 Pareto-optimal fronts of MGSO-ACL and NSGA-II for the test IES at t = 1

Table 6.2 Metrics comparisons of Pareto-optimal fronts obtained by MGSO-ACL and NSGA-II

Algorithm NPS HV MED SI CT (s)

MGSO-ACL 29 0.0595 0.1874 0.0231 263.70

NSGA-II 23 0.0519 0.2607 0.0377 306.51

number of Pareto-optimal solutions (NPS), and computation time (CT) is addressed
to evaluate the quality (convergence and diversity) of the Pareto-optimal fronts. The
reference points for HV and MED are set as (527.9, 527.9) and (527.5, 527.7),
respectively.

According to the metrics comparisons shown in Table6.2, MGSO-ACL can find
more Pareto-optimal solutions than NSGA-II under the same number of independent
runs. Meanwhile, the values of HV and MED show that the Pareto-optimal fronts
obtained byMGSO-ACL have better quality of convergence and diversity than those
obtained by NSGA-II. In addition, SI regarding to MGSO-ACL is smaller, which
means that the Pareto-optimal solutions obtained by MGSO-ACL are distributed
more evenly. In addition, it can be seen from the table that the computation time
of MGSO-ACL is less than that of NSGA-II, which means MGSO-ACL is more
efficient. Therefore, it is demonstrated that MGSO-ACL finds a better set of Pareto-
optimal solutions, compared with NSGA-II.

In order to select a final operation solution for the test IES, the proposed MADA
method, IER, is applied to generate the overall assessments of all the alternative
solutions. As a consequence, we can get the ranking of all the solutions in the Pareto-
optimal set, which is shown in Table6.3.

As shown in the table, the optimal solutions of the electricity network and gas
network aremaking compromisewith eachother. Theobjective functions fele and fgas
cannot reach theminimum solution simultaneously. Consequently, theMADA-based
IER should be applied to select a final operation solutionwith adequate evidence fully
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considering both the multiple objectives and the multiple criteria of the electricity
network and gas network.

The set of basic attributes is E = {pressure deviation (PD), polution emission
(PM)}, which are reliability index of the gas network, and the environmentally
friendly index of the thermal units in the electricity network:

PD =
∑

|πi − πref |, PM =
∑

(τ0 j + τ1 j PG j + τ1 j P
2
G j )

where i and j are the indexes of nodes in gas network and thermal units; πref

is the reference pressure of each node in the gas network; τ0 j , τ1 j and τ2 j are
the pollution emission coefficients of thermal unit j . The values of PD and PM
will be figured out after the optimization procedure is finished. The set of cor-
responding relative weights for the attributes is set as the same in this chapter,
ω = [0.5, 0.5]. In addition, the set of evaluation individual grades is set as Hpp =
{poor, indifference, average, good, excellent}, and then the interval grades Hpq are
generated between the individual grades.

Applying the procedure of the IER, the utility evaluation of each solution given
by the maximum, minimum and average expected utility evaluation is summarized
in Table6.3. Accordingly, based on the utility evaluation, we can get the ranking
of the solutions in the Pareto-optimal fronts, assigning with the superior percentage
P(m > n) for the neighboring rankingm and n. For example, the 18th solution ranks
first with 74.58% more superior than the solution 17th ranking in the second place.
Accordingly, the 18th can be selected as the final operation point at this moment.

Applying the CSS over the 24-hr scheduling period, we can obtain the daily
operation solutions for the test IES. The physical meaning of the solution obtained
by the CSS method is the optimal daily operation point for the test IES, considering
the conflicting benefits of the electricity and gas networks and satisfying the operation
constraints. The daily operation point includes the power generation scheduling of
the thermal units, gas production scheduling of the gas wells, the power flow of
the electricity network and the gas flow of the gas network. The power generation
scheduling of the electricity network and the gas production scheduling of the gas
network are shown in Fig. 6.6 and Fig. 6.7, respectively.

As shown in Fig. 6.6, the optimal power outputs of the thermal units are related
to their generation costs to minimize the PGC of the electricity network. Hence the
power output of unit 1 which is with lower generation cost are higher than the other
units. Furthermore, it can be seen from the figure that the power outputs of units 2,
3, 4 are steady over the scheduling period, while the output of unit 1 fluctuates along
with the trend of the electricity load demand. This is because unit 1 is regarded as
the reference bus to balance the power demand. According to Fig. 6.7, the sum of gas
production in gas well 1 and gas well 2 keeps in a stable trend, and the gas production
of gas well 2 is lower than that of gas well 1 for its lower price to reduce the GSC of
the gas network. Compared to the load demand shown in Fig. 6.4, we can see that the
sum of gas production is much larger than the amount of gas load demand. The rest
of the gas production is utilized to serve the gas-fired units and distributed DHCs.



6.2 Optimal Operation of Integrated Energy Systems with Distributed DHCs Embedded 161

Fig. 6.6 The optimal power generation scheduling of the thermal units

Fig. 6.7 The optimal gas production scheduling of the gas wells

Moreover, the amount of electricity load is larger than the sum of power generation,
and the rest of the part is served by the gas-fired units or the distributed DHCs.

The PGC of the electricity network, the GSC of the gas network and the total
cost (TC) over the 24-hr are summarized in Table6.4, and compared with optimizing
the sum of the two conflicting interests using single-objective optimization method
(SOO). The results show that in the SOOmethod, not only the PGCor theGSCcannot
reach an optimal result, the TC of the two competing benefits is worse than that of the
CSS, either. From the results presented in Table6.5, we can see that compared with
those of the SOO, the daily cost savings of the CSS for the electricity network and
gas network are $19.32 and $27.13, respectively. Therefore, it is necessary to treat
the conflicting benefits of the two networks as two objectives using the proposed
CSS for the purpose of economics.
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Fig. 6.8 The optimal operation cost for the test IES over the 24-hr

In addition, the optimal operation costs of the electricity network, gas network
and the total cost are depicted in Fig. 6.8. Compared to the trend of cost solution with
the load demand shown in Fig. 6.4, the PGC of the electricity network is related with
the electricity load demand, while the GSC of the gas network do not vary along
with the variation of the gas load demand. This is because the gas load occupies only
a part of the total gas supply, instead, the gas-fired units and distributed DHCs take
the rest of the gas load demand.

6.2.3.3 Interdependency Analysis of the Electricity and Gas Networks

(1) Scenario 1: Variations of the electricity, gas, and heating and cooling loads

Furthermore, in order to evaluate the interdependencybetween the electricity network
and gas network, the variations PGC and GSC via the following variations of the
electricity, gas and heating and cooling loads are analyzed: (1) keeping the electricity
load and heating and cooling loads unchanged, the gas load varies from−25% to 25%
by a step of 5%; (2) keeping the gas load and heating and cooling loads unchanged,
the electricity load varies from −25% to 25% by a step of 5%; (3) keeping the gas
load and electricity load unchanged, the heating and cooling loads vary from −25%
to 25% by a step of 5%. The corresponding variation of the PGC and GSC of the
two networks are shown in Fig. 6.9, Fig. 6.10, and Fig. 6.11, respectively.

As shown in Fig. 6.9, the PGC randomly fluctuates less than $1.0 as the gas
load varies from −25% to 25%, while the GSC increases along with the gas load.
According to Fig. 6.10, we can see that as the electricity load rises, the PGC of the
electricity network increases almost linearly with a high slope, while the GSC of the
gas network stays steadily within an error of $1.5. By contrast, as the heating and
cooling load varies from−25% to 25% shownin Fig. 6.11, both of the PGC and GSC
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Table 6.4 The comparisons of daily operation costs obtained by the CSS and SOO

Time 1 2 3 4 5 6 7 8

CSS PGC 527.59 479.99 444.60 423.68 414.25 400.89 387.74 413.65

GSC 527.75 538.08 566.80 565.63 551.32 524.68 525.42 509.87

TC 1055.34 1018.07 1011.40 989.31 965.57 925.57 913.16 923.52

SOO PGC 528.01 482.14 445.33 424.13 415.14 401.98 387.43 413.25

GSC 529.41 538.94 569.38 565.80 552.51 523.96 526.37 519.73

TC 1057.42 1021.08 1014.71 989.93 967.65 925.94 913.80 923.98

Time 9 10 11 12 13 14 15 16

CSS PGC 447.02 541.45 590.29 605.39 630.32 644.96 669.35 684.60

GSC 506.41 503.99 507.21 508.85 510.98 521.01 519.22 514.78

TC 953.43 1045.44 1097.50 1114.24 1141.30 1165.97 1188.57 1199.38

SOO PGC 447.28 541.71 590.28 606.00 631.62 645.51 670.56 686.15

GSC 507.07 505.26 508.63 509.10 512.36 521.55 520.45 515.45

TC 954.35 1046.97 1098.91 1115.10 1143.98 1167.06 1191.01 1201.60

Time 17 18 19 20 21 22 23 24

CSS PGC 698.78 691.51 631.45 604.04 583.85 565.44 528.03 517.68

GSC 509.23 505.03 505.15 500.88 501.32 496.58 510.06 518.59

TC 1208.01 1196.54 1136.60 1104.92 1085.17 1062.02 1038.09 1036.27

SOO PGC 699.92 692.21 632.68 605.23 585.66 566.46 529.18 517.98

GSC 509.60 506.13 505.56 501.03 501.83 496.88 509.95 519.00

TC 1209.52 1198.34 1138.24 1106.26 1087.49 1063.34 1039.13 1036.98

Table 6.5 The comparisons of daily total costs obtained by the CSS and SOO

Method PGC ($) GSC ($) TC ($)

SOO 13145.85 12475.97 25621.82

CSS 13126.53 12448.83 25575.36

Cost savings ($/day) 19.32 27.13 46.45

tend to increase by different ramp rates, which means that the heating and cooling
load has an impact on the electricity network and gas network.

These interdependency analyses imply that the gas load only impacts the gas
network, and the electricity load only has a great influence on the electricity net-
work. Moreover, as the interconnected point via the distributed DHCs between the
electricity and gas networks, the heating and cooling load can affect the two net-
works simultaneously. Therefore, the interdependency of the electricity network and
gas network relies on the variations of the heating and cooling load, rather than the
electricity load or the gas load.

(2) Scenario 2: Variations on the numbers of the electric power driven compressors
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Fig. 6.9 The operation cost error via the variation of gas load

Fig. 6.10 The operation cost error via the variation of electricity load
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Fig. 6.11 The operation cost error via the variation of heating and cooling load

According to themodel of gas compressor in (6.3)–(6.6), the compressorwill enhance
the interdependency between the electricity and gas networks if it is coupled with an
electricity node. In this case, the input horsepower of the compressor is regarded as
an electricity load.
In order to further evaluate the interdependency between the electricity and gas net-
works via the variation of the number of electricity-driven compressor, we carry out
the following experiments: (1) keeping the electricity load and heating and cooling
loads unchanged, the gas load varies from −25% to 25% by a step of 5% with the
number of electricity-driven compressor Nc = 0, Nc = 2 and Nc = 4; (2) keeping
the gas load and heating and cooling loads unchanged, the electricity load varies
from −25% to 25% by a step of 5% with the number of electricity-driven compres-
sor Nc = 0, Nc = 2 and Nc = 4. The corresponding results are shown in Fig. 6.12
and Fig. 6.13, respectively.

According to the results, the number of the electricity-driven compressor will
strengthen the relationship between the PGC and the variation of the gas load. This
is because the power consumption of the compressor is related to the gas flow over
the compressor branch. Themore gas load demand, the more gas flow needed. Hence
the power consumption of the compressor increase, resulting in the rise of the PGC.
By contrast, the number of the electricity-driven compressor has little impact on the
interdependency between the GSC and the variation of the electricity load.
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Fig. 6.12 The operation cost error via the variation of gas load under different numbers of
electricity-driven compressor

6.3 Coordinated Scheduling Strategy for LSIES
Considering Conflict Benefits

6.3.1 Integrated Energy System Modeling

Figure6.14 shows the proposed IESwith multiple DENs embedded. The IES is com-
posed of an electricity utility network, a natural gas utility network, and a number of
DENs with multiple DESs and multiple EUs. The scenario of DES set in this section
is in summer to supply E&C energy to EUs. In each DEN, a number of DESs perform
as local energy suppliers purchasing E&G for generating and selling E&C energy
to EUs who determine their energy demands according to energy prices, but natural
gas cannot be directly transmitted from the DES to EUs in the IES. Considering the
fact that the distance between node to node in E&G networks is actually too long to
achieve non-electricity energy transmission, E&C energy demands of EUs are in a
perfectly satiated state thanks to the local DESs in each DEN.

In the latter part of this section, the mathematical models of electricity network,
gas network, and DENs with multiple DESs and EUs are described.
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Fig. 6.13 The operation cost error via the variation of electricity load under different numbers of
electricity-driven compressor
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Fig. 6.14 Framework of an IES with multiple DENs embedded
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6.3.1.1 Electricity Network Model

Optimizing the generation dispatch of the generators has a great effect on the optimal
operation of electricity networks, and this section considers a set of constraints from
the viewpoint of stable operation, power balance, and demand response (Li et al.
2016) which can be formulated as follows:

min Je(Ue, Xe) =
NG∑

ε=1

[αe
ε(PGε

)2 + βe
εPGε

+ γe
ε] (6.28)

s.t. ge(Ue, Xe) = 0 (6.29)

he(Ue, Xe) ≤ 0 (6.30)

where Je indicates the objective function which is usually the total operating cost
of generators. PGε

is the real power output of generator ε. αe
ε, βe

ε and γe
ε are the

corresponding coefficients of fuel cost. NG is the number of generators.Moreover,Ue

and Xe are the vectors of control variables and state variables in electricity network,
respectively. ge and he are equality and inequality constraints of electricity network,
respectively.

The vector of control variables Ue includes active outputs and voltages of gener-
ators, transformer tap ratios and reactive power generation of shunt devices, which
can be presented as follows:

Ue
T = [PG2 , . . . , PGNG

, VG1 , . . . , VGNG
,

T1, . . . , TNT , QC1 , . . . , QCNC
] (6.31)

where NT and NC are the total numbers of transformer tap rations and shunt devices,
respectively. In addition, the vector of state variables Xe in electricity network
includes active power of slack bus, voltages of load buses, generator reactive powers
and apparent power flows, which can be presented as follows:

Xe
T = [PG1 , VL1 , . . . , VLND

,

QG1 , . . . , QGNG
, S1, . . . , SNE ]

(6.32)

where ND and NE are the total numbers of load buses, and power network branches,
respectively.

The equality constraints ge(Ue, Xe) represent the balance bounds of active and
reactive power. Moreover, the inequality constraints he(Ue, Xe) involve bounds of
active and reactive power outputs of generators, transformer tap ratios, reactive power
generation of shunt devices, voltages of buses, and power flows of transmission lines.
The formulations of ge and he in detail can be referred to Zheng et al. (2015).
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6.3.1.2 Natural Gas Network Model

The natural gas transmission system commonly consists of gas wells, pipelines,
compressors and loads. Natural gas is injected from the gas wells and transmitted
through gas pipelines to gas loads. Noted that the optimization of the steady-state
natural gas problem takes the amount of gas infusion of gas wells (all but that of slack
node) and the compression ratios as controllable variables and determines the state
variables including gas flow in pipelines, nodal pressures (apart from slack node)
and the amount of gas infusion of slack node (Zhang et al. 2016).

(a) Pipeline model

The amount of gas flow between node ω and υ in a pipeline can be calculated by (An
et al. 2003)

fωυ = ρ(πω,πυ)Cωυ

√
| π2

ω − π2
υ | (6.33)

ρ(πω,πυ) =
{
1 πω ≥ πυ

−1 πω < πυ
(6.34)

where fωυ represents the gas flow between node ω and υ. πω and πυ denote pressures
at node ω and υ, respectively. Cωυ is the pipeline constant associated with length,
diameter, friction, temperature, and compressibility.

(b) Compressor model

Compressors plays a crucial role in the natural gas network, like compensating the
full of pressure of pipelines and holding the level of pressure within a certain range.
The natural gas flow through compressor τ , which locates between node ω and υ,
can be given as follows (Liu et al. 2009):

fωυ = ρ(πω,πυ)
Hτ

μ1 − μ2(Rτ )μ3
(6.35)

where μ1, μ2, and μ3 are parameters corresponding to the compressor design. Hτ

and Rτ represent the horsepower consumption and compression ratio of compressor
τ , respectively.

In this section, it is supposed that the power of the compressor is derived from
gas turbine, by which the amount of gas consumed can be expressed as

ξτ = αc
τ + βc

τ Hτ + γc
τ (Hτ )

2 (6.36)

where ξτ denotes the amount of gas consumed by compressor τ . αc
τ , β

c
τ , and γc

τ are
consumption coefficients of compressor τ , respectively.

(c) Optimal operation of gas network
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The optimal operation of gas network relates to the optimization of the gas dispatch
of gas wells considering a set of constraints, like stable operation, gas flow balance,
and demand response (De Wolf and Smeers 2000), which can be depicted as

min Jg(Ug, Xg) =
NGW∑

κ=1

[cgκ(Fκ)
2 + bgκFκ + agκ] (6.37)

s.t. gg(Ug, Xg) = 0 (6.38)

hg(Ug, Xg) ≤ 0 (6.39)

where Jg, Fκ, a
g
κ, b

g
κ, c

g
κ, NGW, Ug, Xg, gg, and hg indicate the same mathematical

implications as Eq. (6.28), the difference is that the physical objects described here
is gas wells of natural gas network.

Ug includes the amount of gas infusion of gas wells all but that of slack node
and compression ratios. In addition, Xg consists of gas infusion of slack node, nodal
pressures all but slack node and pipeline gas flows.

The equality constraints of gas network gg(Ug, Xg) are the balance bounds of gas
flow, which must be satisfied to guarantee that the sum of the gas input and the sum
of the gas output are consistent (Qiao et al. 2016).

AGWFκ − AP fωυ − ACξτ − ALL
g
l = 0 (6.40)

where AGW, AP, AC, and AL describe the incidence matrices of gas wells, pipelines,
compressors, and gas loads, respectively. Lg

l denotes the amount of gas load
of load l.

There is also a set of inequality constraints hg(Ug, Xg) demonstrating the physical
bounds of devices in gas network. The corresponding bounds of the amount of gas
infusion of gas wells, compression ratios, and nodal pressures can be described as
follows:

Fκ,min ≤ Fκ ≤ Fκ,max (6.41)

Rτ ,min ≤ max(πω,πυ)

min(πω,πυ)
≤ Rτ ,max (6.42)

πω,min ≤ πω ≤ πω,max (6.43)

6.3.1.3 District Energy Network

In the proposed IES, a number of I DENs, Ĩ = {1, 2, . . . , I }, are considered, each of
which serves energy transmission infrastructure to K DESs,ki = {1, 2, . . . , Ki }, and
N EUs, ℵi = {1, 2, . . . , Ni } locating in the region it covered. Figure6.15 describes
the illustrative diagram of the DEN. In each DEN, DESs will behave competitively
as energy suppliers, and therefore a localized competitive market forms. In another
word, each DES will compete with his rivals and trades with EUs because of its
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Fig. 6.15 Illustrative diagram of district energy network
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Fig. 6.16 Illustrative diagram of the distributed energy station

own benefit-seeking psychology. In this section, the E&C energy markets in each
DEN are assumed to be perfectly competitive so that all DESs would charge EUs
the uniform unit energy prices. In this section, the mathematical models of DES and
EU will be discussed. For the purpose of illustration, we will focus on describing the
DESs and EUs in one DEN, such as DEN i , ∀i ∈ Ĩ.

(a) Distributed energy station

Figure6.16 describes schematically the illustrative diagram of the DES. In DEN i ,
each DES will import natural gas, Gi,k , for providing EUs with E&C energy through
a gas turbine (GT), a heat recovery steam generator (HRSG), a absorption chiller
(AC), and a reciprocating chiller (RC). In addition, electricity, Ei,k , may also need
to be imported from the electricity network, if a more convenient generation way or
more profit can be achieved by doing so. The energy generation and conversion in
each DES can be expressed in the following matrix form:

[
eei,k
eci,k

]
=

[
1 (1−λi,k)η

e
GT,i

0 λi,kη
e
GT,iCOPRC,i +ηhGT,iηHR,iCOPAC,i

] [
Ei,k
Gi,k

]
(6.44)
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where ηe
GT,i and ηh

GT,i represent the electrical and thermal efficiencies of GT, respec-
tively. ηHR,i represents the efficiency of HRSG. COPRC,i and COPAC,i are the coef-
ficient of performance (COP) of reciprocating chiller and absorption chiller, respec-
tively. We assume that ηe

GT,i , η
h
GT,i , COPRC,i and COPAC,i for all DESs in each DEN

are the same. λi,k ∈ [0, 1] is the scheduling factor of DES k in i th DEN, representing
the proportion of electricity generated by GT to be distributed to generate cooling
energy.

As one of the profit organization in the IES, each DES tends to achieve its own
maximum profit, Ui,k, by setting the scheduling factor. In addition to the pursuit of
profits, all DES k ∈ ki , in DEN, i also need tomake sure the local supply and demand
balance. Hence

max
λi,k , pei , pci

Ui,k= pei e
e
i,k+ pci e

c
i,k−(cei Ei,k+cgi Gi,k+cfixi,k) (6.45)

s.t.
∑

k∈ki
eei,k =

∑

n∈ℵi

de
i,n (6.46)

∑

k∈ki
eci,k =

∑

n∈ℵi

dc
i,n (6.47)

pei ≥0, pci ≥0, 0≤λi,k ≤1, ∀k∈ki , ∀i ∈ Ĩ (6.48)

for DES k, ∀k ∈ ki , where pei and pci are the unit prices of E&C energy, respectively.
cei and c

g
i denote the node prices of E&G, respectively, which are the importing energy

prices determined by the place where the i th DEN locates, in the utility networks.
cfixi,k is the fixed cost of DES k. de

i,n and dc
i,n denote the E&C energy demands of EU

n, respectively.

(b) Energy users

EUs are nonprofit individuals, i.e., pure energy consumers, in the IES. Each EU aims
at obtaining its own maximum welfare, Wi,n , in the energy trading by deciding on
the amount of E&C energy to be consumed. Hence, the optimization problem of EU
n, ∀n ∈ ℵi is

max
de
i,n ,d

c
i,n

Wi,n =
[
ve
i,nd

e
i,n−

uei,n
2

(de
i,n)

2

]
(6.49)

+
[
vc
i,nd

c
i,n−

uci,n
2

(dc
i,n)

2

]
−(

pei d
e
i,n+ pci d

c
i,n

)

s.t. de
i,n ≥de,min

i,n , dc
i,n ≥0, ∀n∈ℵi , ∀i ∈ Ĩ (6.50)

where ve
i,n , u

e
i,n , v

c
i,n and uci,n are the satisfaction parameters of the quadratic utility

functions of consuming E&C energy, respectively. de,min
i,n describes the minimum

electricity demand of EU n.
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6.3.2 Energy Trading Game of DESs and EUs

This section presents a hierarchical Stackelberg game (Tushar et al. 2014) model
developed for analyzing the transactions of a variety of energies between DESs
and EUs in each DEN. The aforementioned game is a submodular game played
by DESs (Topkis 1979). The unit prices of E&C energy is drawn up by DESs,
then EUs make a choice about the amount of energies after receiving the price
information. Thus, theDESs play the role of forerunners, and the EUs are latecomers.
The Stackelberg Equilibrium is obtained in a closed form and its uniqueness is
corroborated. In addition, theCDCENswhich are related to the amounts and prices of
E&GthatDESspurchase fromutility networks are obtainedby thegame.Thedetailed
introduction of the hierarchical Stackelberg game will be discussed as follows.

As has been described in Sect. 6.3.1.3, in DEN i , ∀i ∈ Ĩ, DESs trade E&C energy
with their local EUs under the environment of perfectly competitive energy market.
In order to track the optimal behavior of each participant in the energy trading,
we establish a Stackelberg game model for analyzing the problem by respectively
endowing DESs and EUs as multiple forerunners and multiple latecomers in each
DEN i ∈ Ĩ. The Stackelberg game model can be defined as

Ψi = {ℵi ∪ ki , {si,n}n∈ℵi , {Si,k}k∈ki , {Wi,n}n∈ℵi ,

{Ui,k}k∈ki }, ∀i ∈ Ĩ
(6.51)

where ℵi and ki are the sets of DESs and EUs in the i th DEN, respectively. si,n is the
strategy set of EU n ∈ ℵi . de

i,n and dc
i,n . Si,k is the strategy set of each DES k ∈ ki ,

including the unit electricity price pei , unit cooling price pei , and scheduling factor
λi,k . Wi,n and Ui,k represent the payoff functions of EU n and DES k as shown in
(6.49) and (6.45), respectively.

6.3.2.1 Demand Side Analysis

In the energy trading, EUs individually determine their optimal E&Cenergy demands
in response to the prices set by DESs. It can be seen that (6.49) is strictly concave in
both de

i,n and d
c
i,n . Hence, given forerunners’ prices strategy, the first-order optimality

of problem (6.49) gives the efficient solutions of de
i,n and d

c
i,n with respect to pei and

pci , respectively, which are shown as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

de
i,n = ve

i,n

uei,n
− 1

uei,n
pei , ∀n ∈ ℵi , ∀i ∈ Ĩ

dc
i,n = vc

i,n

uci,n
− 1

uci,n
pci , ∀n ∈ ℵi , ∀i ∈ Ĩ

(6.52)
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The inequality constraints as follows are the achievement of (6.52) in (6.50) and
employed to meet the feasible region constraints on the consumption of E&C energy
of each EU.

pei ≤ min(ve
i,n−uei,nd

e,min
i,n ) ,∀n ∈ ℵi ,∀i ∈ Ĩ

pci ≤ min(vc
i,n) ,∀n ∈ ℵi ,∀i ∈ Ĩ

(6.53)

6.3.2.2 Supply Side Analysis

For eachDES k ∈ ki , the constrainedoptimization problem (6.45) canbe transformed
into a non-constrained one as followed by broadening the feasible region constraints
on pei , p

c
i and λi,k .

Li,k = pei e
e
i,k+ pci e

c
i,k−(cei Ei,k+cgi Gi,k+cfixi,k) (6.54)

+μi
k,1

⎛

⎝
∑

k∈ki
eei,k−

∑

n∈ℵi

de
i,n

⎞

⎠+μi
k,2

⎛

⎝
∑

k∈ki
eci,k−

∑

n∈ℵi

dc
i,n

⎞

⎠

where μi
k,1 and μi

k,2, ∀k ∈ ki , are the Lagrange multipliers. The complementarity
slackness conditions are

μi
k,1

⎛

⎝
∑

k∈ki
eei,k−

∑

n∈ℵi

de
i,n

⎞

⎠=0,
∑

k∈ki
eei,k−

∑

n∈ℵi

de
i,n =0

μi
k,2

⎛

⎝
∑

k∈ki
eci,k−

∑

n∈ℵi

dc
i,n

⎞

⎠=0,
∑

k∈ki
eci,k−

∑

n∈ℵi

dc
i,n =0

(6.55)

Then, by using (6.44) and (6.52) in (6.54), the first-order optimal condition for
maximizing Li,k gives

∂Li,k

∂ pei
=ηe

GT,i (1−λi,k)Gi,k+Ei,k+μi
k,1A

e
i =0 (6.56)

∂Li,k

∂ pci
=(Diλi,k+Oi )Gi,k+μi

k,2A
c
i =0 (6.57)

∂Li,k

∂λi,k
=(−ηe

GT,i p
e
i +Di p

c
i −μi

k,1η
e
GT,i +μi

k,2Di )Gi,k =0 (6.58)

∂Li,k

∂μi
k,1

=
∑

k∈ki
ηe
GT,i (1−λi,k)Gi,k+

∑

k∈ki
Ei,k−Be

i +Ae
i p

e
i =0 (6.59)

∂Li,k

∂μi
k,2

=
∑

k∈ki
(Diλi,k+Oi )Gi,k−Bc

i +Ac
i p

c
i =0 (6.60)



6.3 Coordinated Scheduling Strategy for LSIES Considering Conflict Benefits 175

where Ae
i =

∑
n∈ℵi

(
1/uei,n

)
, Be

i =∑
n∈ℵi

(
ve
i,n/u

e
i,n

)
, Ac

i =
∑

n∈ℵi

(
1/uci,n

)
, Di =ηe

GT,i

COPRC,i , Bc
i =∑

n∈ℵi

(
vc
i,n/u

c
i,n

)
and Oi =ηh

GT,iηHR,iCOPAC,i .
Let Fi =(ηe

GT,i )
2/Ae

i , Zi =D2
i /A

c
i , Hi =Di Oi/Ac

i and Ri =Di Bc
i /A

c
i −ηe

GT,i
Be
i /A

e
i . From (6.56), (6.57), (6.59) and (6.60), we obtain the closed-form expres-

sions of pei , p
c
i and λi,k as follows:

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

λi,k = Ae
i(Ki +1)(Fi −Hi )Gi,k+ηe

GT,i (Ki +1)Ei,k+Ae
i Ri

Ae
i(Ki + 1)(Fi +Zi )Gi,k

,

pei =−Xi1

∑

k∈ki
Gi,k−Xi2

∑

k∈ki
Ei,k+Xi3,

pci =−Yi1
∑

k∈ki
Gi,k−Yi2

∑

k∈ki
Ei,k+Yi3,

(6.61)

where ∀k ∈ ki ,∀i ∈ Ĩ and

Xi1 = ηe
GT,i (Hi + Zi )

Ae
i (Fi + Zi )

Yi1 = Oi (Fi + Zi ) + Di (Fi − Hi )

Ac
i (Fi + Zi )

Xi2 = Ae
i (Fi + Zi ) − (ηe

GT,i )
2

(Ae
i )

2(Fi + Zi )

Yi2 = Diη
e
GT,i

Ae
i A

c
i (Fi + Zi )

Xi3 = Be
i

Ae
i

+ ηe
GT,i Ki Ri

Ae
i (Ki + 1)(Fi + Zi )

Yi3 = Bc
i

Ac
i

− Di Ki Ri

Ac
i (Ki + 1)(Fi + Zi )

Furthermore, here are Gi,k > 0 and Ei,k ≥ 0 to guarantee λi,k ∈ [0, 1], Gi,k 	= 0.
In the following text, wewill focus on analyzing the uniqueness of the Stackelberg

Equilibrium of the energy trading game. Moreover, the requirements for validating
the optimal strategy of each DES k ∈ ki as shown in (6.61) will also be derived
through analyzing the property of the forerunner’s game, which clearly reveals how
the CDCENs are obtained.

A. Uniqueness of the Stackelberg Equilibrium

All DESs will charge their local EUs the uniform unit energy prices in perfectly
competitive energy markets, i.e., pei = pei,k and pci = pci,k , ∀k ∈ ki , ∀i ∈ Ĩ. Under
such market environment, it is evident that the market prices of E&C energy are
collectively set by all DESs in the energy trading. Therefore, there exists a price
competition that DESs in each DEN needs to compete with everyone else to seek
its own individual benefit, thus the price setting game of the DESs is mostly non-
cooperative. From analyzing the property of (6.45), it is interesting to find that by
strictly monotonic transforming the forerunner’s payoff function (Amir et al. 1999;
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Milgrom and Shannon 1994), i.e., logarithmic transformation, it satisfies the charac-
teristics of submodular. In microeconomics, submodularity indicates that even any
minor increase in one player always leads to the decrease in other marginal benefits
(Topkis 1979, 1978).

First, in order to mathematically guarantee a harmony antilogarithm, we take the
monotonic transformation of (6.45)

logU
′
i,k = log (ai,kUi,k + bi,k) (6.62)

where ai,k > 0 and bi,k , ∀i ∈ Ĩ, are constants.
Then, by taking the cross-partial derivatives of logU

′
i,k with respect to the strategy

of DES k, we have

∂2 logU
′
i,k

∂ pei ∂ p
c
i

=−a2i,kGi,k
[
ηe
GT,i(1−λi,k)Gi,k+Ei,k

]
(Diλi,k+Oi )

U
′2
i,k ln 10

(6.63)

∂2 logU
′
i,k

∂λi,k∂ pei
=−ai,kGi,k

[
ai,kηe

GT,i(Di +Oi )Gi,k+ai,k Di Ei,k
]
(pci −ϕi,k)

U
′2
i,k ln 10

(6.64)

∂2 logU
′
i,k

∂λi,k∂ pci
= ai,kGi,k

[
ai,kηe

GT,i(Di +Oi )Gi,k+ai,k Di Ei,k
]
(pei −φi,k)

U
′2
i,k ln 10

(6.65)

According to the definition of a log-submodular function as described in Top-
kis (1979), only when (6.63), (6.64) and (6.65) are all non-harmony, U

′
i,k is log-

submodular and therefore, the payoff function of DES k, U
′
i,k , is submodular. It is

evident that (6.63) is always non-harmony. In addition, as the denominators of (6.64)
and (6.65) are always harmony, their numerators should not be larger than zero. In
order to make the numerators of (6.64) and (6.65) less equal to zero, the following
inequality constraints must hold:

pei ≤ min
(
φi,k

)
, ∀k ∈ ki , ∀i ∈ Ĩ (6.66)

pci ≥ max
(
ϕi,k

)
, ∀k ∈ ki , ∀i ∈ Ĩ (6.67)

where

φi,k = ai,k Di (cei Ei,k + cgi Gi,k + cfixi,k) − bi,k Di

ai,kηe
GT,i (Di + Oi )Gi,k + ai,k Di Ei,k

ϕi,k = ai,kηe
GT,i (c

e
i Ei,k + cgi Gi,k + cfixi,k) − bi,kηe

GT,i

ai,kηe
GT,i (Di + Oi )Gi,k + ai,k Di Ei,k

If and only if both (6.66) and (6.67) are hold,Ui,k is submodular. The requirements
of a function to be submodular can be found in Topkis (1979).

Equations (6.66) and (6.67) limit the maximum electrical energy price and the
minimum cooling energy price. In addition, we should also meet (6.48) and (6.53).
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Collectively meeting the abovementioned constraints, there are

0 ≤ pei ≤ ψi,k , ∀n∈ℵi , ∀k∈ki , ∀i ∈ Ĩ (6.68)

max(ϕi,k) ≤ pci ≤ min(vc
i,n), ∀n∈ℵi , ∀k∈ki , ∀i ∈ Ĩ (6.69)

where ψi,k =min
(
min(ve

i,n−uei,nd
e,min
i,n ), min(φi,k)

)
.

Since all the feasible regions of pei and pci , both of which are non-empty, convex,
and compact, have been obtained, the submodularity of the DESs’ price setting game
can be ensured according to Theorem1 in Wei et al. (2017).

Submodularity of the forerunner’s game ensures the existence of pure strategic
Nash Equilibriums (Topkis 1979). Since the latecomers always react in a unique
response to the forerunners’ actions, the Stackelberg Equilibrium of the energy trad-
ing gamebetweenDESs andEUs in eachDEN i ∈ Ĩ is unique according toTheorem2
in Wei et al. (2017). The detailed proof of the submodularity of DESs’ price setting
game and the uniqueness of the Stackelberg Equilibrium of the energy trading game
can be referred to Wei et al. (2017).

In the course of the game, first, the initial values of pei , p
c
i are randomly set in

the feasible region, as (6.68) and (6.69) shown, and the E&C energy demands de
i,n

and dc
i,n of EUs can be obtained through the trade between DES and EUs. Second,

pei and pci are updated by the amount of unbalance between supply and demand
and pei+1 and pci+1 are obtained in the new iteration. Then the second step will be
repeated, until, the convergence conditions |pei+1 − pei | < θ and |pci+1 − pci | < θ are
simultaneously met and finally, pei and pci are determined.

B. Coupling demand constraints of electricity and natural gas

As mentioned before, the Stackelberg Equilibrium of the hierarchical Stackelberg
game model developed for analyzing the energy trading problem between DESs
and EUs in each district energy network DEN includes three parameters: scheduling
factor λi,k , unit price of electrical energy pei , and unit price of cooling energy pci .
And, the equilibrium solution has a direct effect on the amount of E&G produced by
the E&G networks.

In terms of the scheduling factor, it can be seen from the expression of λi,k as
shown in (6.61) that there are only two exogenous parameters, i.e., Gi,k and Ei,k ,
while all the others are constant parameters of DESs and EUs. Thus, the requirements
for λi,k are set to be within [0, 1] as for Gi,k and Ei,k , which are given as follows:

⎧
⎪⎨

⎪⎩

Ae
i (Hi +Zi )Gi,k−ηe

GT,i Ei,k ≥ Ae
i Ri

Ki +1
, ∀k∈ki , ∀i ∈ Ĩ

Ae
i (Hi −Fi )Gi,k−ηe

GT,i Ei,k ≤ Ae
i Ri

Ki +1
, ∀k∈ki , ∀i ∈ Ĩ

(6.70)

Similarly, close observation of the closed-form expressions of E&C energy prices
reveals that in each DEN i ∈ Ĩ, the energy prices are affected by all the input amounts
of natural gas and electricity of all the local DESs, i.e., Gi,k and Ei,k , ∀k ∈ ki .
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Equations (6.68) and (6.69) indicate the feasible regions of pei and pci , respectively,
which are deduced from the feasible region constraints on the E&C energy of each
EU and the requirements to ensure a submodular Ui,k . Equations (6.68) and (6.69)
reflect how the amounts and prices of E&G in wholesale market influence retail
prices of E&C energy traded between DESs and EUs. By substituting the closed-
form expressions of pei and pci into (6.68) and (6.69), respectively, we have

Xi3−ψi,k ≤Xi1

∑

k∈ki
Gi,k+Xi2

∑

k∈ki
Ei,k ≤ Xi3 (6.71)

Yi3−min
(
vc
i,n

)≤Yi1
∑

k∈ki
Gi,k+Yi2

∑

k∈ki
Ei,k ≤Yi3−max

(
ϕi,k

)
(6.72)

Therefore, the equations in CDCENs are simultaneous solutions of each parame-
ter’s closed-form expression and its feasible region constraints. Equation (6.70) is the
new constraints about the amount of E&G according to scheduling factor λi,k , (6.71)
is the new constraint about the amount of E&G according to unit price of electrical
energy pei , and (6.72) is the new constraint about the amount of E&G according to
unit price of cooling energy pci . Equations (6.71) and (6.72) jointly restrict the total
amounts of natural gas and electricity purchased by DESs in response to the prices in
each DEN, which indicates the correlation between the wholesale prices and DESs’
demands of natural gas and electricity. Equation (6.70) indicates that unless the input
amounts of natural gas and electricity of each DES k ∈ ki supplied by utility net-
works satisfy these two ranges, the optimal strategy of λi,k to be within [0, 1] will
be invalid. Equations (6.70), (6.71), and (6.72) are therefore the CDCENs, which are
obtained based on the requirements for the validations of each participant’s strategy
and the requirements for satisfying the submodularity of the game. It is shown that
the CDCENs are composed of the parameters of both the EUs’ demand characteris-
tics and DESs’ operating characteristics. By reflecting the relationship between the
amount and prices of E&G traded between DESs and utility networks, the CDCENs
depict the demand characteristics of DESs and denote the interactions between DESs
and utility networks.

6.3.3 The Hybrid Multi-objective Optimization and
Game-Theoretic Approach

A hybrid multi-objective optimization and game-theoretic approach (HMOGTA) is
presented to solve a coordinated operation strategy of the IES. For the conflicting
benefits ofE&Gnetworks considering theCDCENs, themulti-objective group search
optimizer with adaptive covariance and chaotic search (MGSOACC) (Wei et al.
2016) is applied to generate efficient solutions and simultaneously optimize their
own operating costs. Finally, the evidential reasoning (ER) approach (Yang and
Xu 2002) is employed to select a final operation solution. Figure6.17 illustrates the
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flowchart of HMOGTA and the detailed introduction of the HMOGTAwill be shown
as follows.

6.3.3.1 Optimization of the Conflicting Costs of Electricity and Gas
Networks

As both the E&G can satisfy the demands of DESs, there exists a substitutive rela-
tionship between the amount of them. The CDCENs demonstrating this kind of sub-
stitutive relationship reflect the conflicting relationship between the operating costs
of E&G networks. Therefore, we develop a multi-objective optimization model for
optimizing the conflicting costs of E&G networks:

min [Jg(Ug, Xg,Wg), Je(Ue, Xe,We)] (6.73)

s.t. gg(Ug, Xg,Wg) = 0

hg(Ug, Xg,Wg) ≤ 0

ge(Ue, Xe,We) = 0

he(Ue, Xe,We) ≤ 0

[Wg,We] ∈ CDCENs

(6.74)

where Wg denotes the vector of the interactive variables between natural gas net-
work andDESs.We denotes the vector of the interactive variables between electricity
network and DESs, i.e., WT

g = [G1,1 · · ·GI,KI , c
g
1 · · · cgI ] and WT

e = [E1,1 · · · EI,KI ,

ce1 · · · ceI ]. In this section, locational marginal prices (LMPs) are employed as whole-
sale prices of E&G, the detailed introduction of which can be referred to Dommel
and Tinney (1968). As have been shown in (6.70), (6.71), and (6.72), the CDCENs,
with respect to Wg and We, demonstrate the conflicting relationship between the
operating costs of E&G networks. Apart from gg, hg, ge, and he, the optimal opera-
tion of E&G networks should also consider the demand characteristics of DESs, i.e.,
the CDCENs. The CDCENs closely interconnect the utility companies and DESs in
terms of their interactions and can fairly help optimize individual objective of each
participant in the IES.

In this section, theMGSOACC and the ER approach are employed to deal with the
minimization of the conflicting costs of E&G networks. The MGSOACC, a multi-
objective optimization algorithm developed based on group searching behaviors of
animals, adopts adaptive covariance and chaotic search as searching strategies of
scroungers and rangers, respectively. The MGSOACC is employed in this chapter
for its better performance in terms of its convergence (Wei et al. 2016). Moreover, the
ER approach proposed in Yang and Xu (2002) is utilized for multi-attribute decision-
makingwith uncertainty.Multi-objective optimization and decision-makingmethods
have beenwidely used to solve the optimal scheduling problem (Zheng et al. 2017; Li
et al. 2014; Zheng et al. 2015). In this section, the MGSOACC is used to simultane-
ously optimize the operating costs of E&G networks in order to get Pareto-optimal
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Fig. 6.17 The flowchart of
hybrid multi-objective
optimization and
game-theoretic approach
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frontier. Afterward, the ER approach is employed to select a final solution from
Pareto-optimal frontier. The detailed introduction of the MGSOACC and the ER
approach can be referred to Wei et al. (2016) and Yang and Xu (2002), respectively.

6.3.3.2 Solution Method of the HMOGTA

A hybrid multi-objective optimization and game-theoretic approach (HMOGTA) is
presented to figure out the optimal operation problem of the IES. The energy trading
problem between DESs and EUs in each DEN is solved by the Stackelberg game
approach with the CDCENs obtained. The CDCENs, with regards to the interactive
variables between utility networks and DESs, can reveal the conflicting relation-
ship between the operating costs of E&G networks. Afterward, the minimization of
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Fig. 6.18 Integrated energy system composed of a 20-node natural gas network, a 30-bus electricity
network, and three DENs

conflicting costs of E&G networks in consideration of the CDCENs is solved by the
MGSOACC and the ER approach.

6.3.4 Simulation Studies

6.3.4.1 System Description

In this section, simulation studies are conducted on a test IES consisting of natural
gas network, electricity network, and DENs. As has been shown in Fig. 6.18, the test
IES consists of a 20-node natural gas network, a modified IEEE 30-bus system, and
3 DENs. It is worth mentioning that in the test IES, the coupling between electricity
and natural gas network are not considered. Electricity and natural gas network
individually transmit energy to each DEN, and all the units in electricity network are
assumed to be thermal power units.

It can be seen from the figure that 3 DENs connected to the electricity network
at buses 7, 12, and 21 as electricity loads, while they are connected to the natural
gas network at nodes 3, 6, and 15 serving as gas loads. As has been displayed in
Fig. 6.18, 6 EUs play the role of participants in energy trading in local energy market
in each DEN. In addition, 4 DESs are set to compete with each other in DEN 1 while
3 DESs are considered in each of the other two DENs. Therefore, there are totally
10 DESs who not only serve as the loads in both the E&G networks but also perform
as distributed energy suppliers for their local EUs.
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Fig. 6.19 Efficient solutions obtained by the MGSOACC of the IES

6.3.4.2 Results Analysis

The hybrid multi-objective optimization and Stackelberg game approach proposed
aforementioned is utilized to obtain the operation solution of the IES for fairly treating
each individual participant. The number of function evaluations of themulti-objective
optimization algorithm,MGSOACC, is set as 20,000. The optimization results of the
operating costs of E&G networks are shown in Fig. 6.19.

Figure6.19 illustrates the conflicting relationship of minimizing the operating
costs of the E&G networks, with consideration of the CDCENs.

Such a conflicting relationship reflects the fact that simultaneously minimizing
the operating costs of the E&G networks is impossible. Therefore, the ISO needs to
determine a final operation solution, which ensures the fair treatment to the E&G
networks. To achieve this, the ER approach is utilized to make the final decision. To
clearly present theER, 10 efficient solutions obtained by theMGSOACCare selected,
namely [S1,S2, . . . ,S10]. As the economic benefit is the key index to be considered
in this study, the operating cost of each network is set as the basic attribute in the ER
approach and the relative weights are equally set as ω = [0.5, 0.5]. In addition, the
evaluation grades are set as H = {Poor, Unsatisfied, Normal, Good, Excellent}.

By applying the procedure of ER, the ranking of the 10 selected alternatives ranked
based on their averaged utilities can be obtained, which is summarized in Table6.6.
It can be seen from the table that, solution S5 obtains the highest averaged utility,
which is therefore determined as the final operation solution for the E&G networks.
Table6.7, Figs. 6.20 and 6.21 display the results of DESs and EUs in each DEN as
for solution S5. We can see that even though the energy demands of EUs in DEN 1
are obviously larger than those in DEN 2 and DEN 3, the profits of DESs in DEN 1
are lower than those in the other two DENs. That is because the number of DESs in
DEN 1 is larger than that in both DEN 2 and DEN 3, which makes the competition
between DESs in DEN 1 intenser. Additionally, it can be observed that the profits of
all DESs in DEN 3 are lower than those of DESs in DEN 2. As is shown in Table6.7,
the retail prices of E&C energy in DEN 3 are nearly the same as those in DEN 2,
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Fig. 6.21 Cooling energy demands as for S5

respectively, which means that the energy demands of EUs and total incomes of
DESs in these two areas are almost the same. Therefore, it is the cost differences that
contribute to the profit differences of DESs in these two areas. Since EUs’ cooling
demands, which are all satisfied by consuming natural gas, are larger than electricity
demands, the amount of natural gas purchased by DESs is larger than the amount of
electricity. Thus the costs of DESs in DEN 3 are higher than those of DESs in DEN
2 for the higher wholesale price of natural gas in DEN 3.

In order to demonstrate the conflicting relationship of the operating costs between
the E&G networks subject to the CDCENs, and the necessity of employing an ISO to
coordinate their benefits, we compare the results obtained by the proposedHMOGTA
with those of the following cases:

Se: Minimizing the operating cost of electricity network (OCEN).
Sg: Minimizing the operating cost of natural gas network (OCNN).
Seg: Minimizing the aggregate operating costs of E&G networks (AOCENN).
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Table 6.7 The results of each DES as for S5
Item DEN 1 DEN 2 DEN 3

DES 1 DES 2 DES 3 DES 4 DES 1 DES 2 DES 3 DES 1 DES 2 DES 3

Ui,k ($/h) 12.783 13.108 13.215 12.508 15.348 14.961 14.814 14.182 14.572 14.413

Ei,k
(MW)

4.627 4.012 6.887 6.250 4.681 8.731 2.089 0.669 9.409 5.830

Gi,k
(MW)

11.266 13.824 14.907 11.338 15.088 14.297 11.200 12.592 12.094 14.870

pei
($/MW)

3.498 3.390 3.397

pci
($/MW)

1.795 1.801 1.803

cei
($/MW)

3.705 3.706 3.591

c
g
i
($/MW)

1.639 1.621 1.721

Table 6.8 Comparison of operating costs of E&G networks

Item Notation Je ($/h) Jg ($/h)

HMOGTA S5 584.35 577.66

Minimizing OCEN Se 386.35 665.68

Minimizing OCNN Sg 760.99 534.04

Minimizing AOCENN Seg 386.35 654.32

Table 6.9 The profits of DESs as for S5, Se, Sg, and Seg

Item DEN 1 DEN 2 DEN 3

U1,1 U1,2 U1,3 U1,4 U2,1 U2,2 U2,3 U3,1 U3,2 U3,3

S5 12.78 13.11 13.22 12.51 15.44 14.96 14.82 14.18 14.57 14.41

Se 10.14 9.97 10.09 10.16 3.61 8.90 4.47 3.99 6.36 5.18

Sg 9.98 9.86 7.42 5.91 9.68 12.93 11.41 13.75 11.05 10.25

Seg 11.96 11.84 11.19 11.53 14.10 13.87 13.89 11.31 11.04 10.93

Table 6.10 The amount of electricity traded between electricity network and DESs

Item DEN 1 DEN 2 DEN 3

E1,1 E1,2 E1,3 E1,4 E2,1 E2,2 E2,3 E3,1 E3,2 E3,3

S5 4.627 4.012 6.887 6.250 4.681 8.731 2.089 0.669 9.409 5.830

Se 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Sg 5.987 6.005 9.810 12.086 10.571 5.742 7.795 4.548 9.158 10.401

Seg 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
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Table 6.11 The amount of natural gas traded between natural gas network and DESs

Item DEN 1 DEN 2 DEN 3

G1,1 G1,2 G1,3 G1,4 G2,1 G2,2 G2,3 G3,1 G3,2 G3,3

S5 11.266 13.824 14.907 11.338 15.088 14.297 11.200 12.592 12.094 14.870

Se 27.969 30.559 22.036 15.352 34.922 15.801 31.158 29.936 22.117 25.528

Sg 6.186 6.188 6.574 6.805 7.844 7.276 7.516 7.140 7.674 7.824

Seg 28.475 27.888 13.916 25.102 25.924 20.715 25.528 22.808 24.662 24.688

Table 6.12 The wholesale prices and the retail prices of energies

Item DEN 1 DEN 2 DEN 3

pe1 pc1 ce1 cg1 pe2 pc2 ce2 cg2 pe3 pc3 ce3 cg3
Se 3.504 1.797 3.497 1.836 3.027 1.721 3.528 1.878 3.192 1.758 3.483 1.993

Sg 3.525 1.801 4.409 1.314 3.400 1.804 4.411 1.237 3.400 1.804 4.267 1.345

Seg 3.525 1.801 3.497 1.781 3.400 1.804 3.528 1.753 3.400 1.804 3.483 1.872

Note that the CDCENs are taken into consideration in all the four cases and all
parameters remain the same. It can be seen from Se and Sg, as shown in Table6.8,
that the solutions obtained by single-objective optimization methods achieve the
lowest operating cost of the corresponding utility network at the price of largely
increasing the cost of the other one, respectively (Table6.9). Tables6.10 and 6.11
display the amount of E&G traded between utility networks and DESs in different
cases, respectively, which demonstrate the fact that in order to diminish the operating
cost as much as possible, the operator of either the electricity or the natural gas
network will be prone to reduce the amount of energy traded without considering
the operation strategy of the other one. It is no doubt that reducing the load reduces
the operating cost of the corresponding utility network. As a result, as long as the
CDCENs are satisfied, any single-objective optimization method considering merely
the minimum operating cost of a specified utility network will increase the burden of
the other one by forcing it to supplymore energy regardless of how high the operating
cost it may suffer. However, for any rational participants in the IES, such kind of
bias is unacceptable as the single-objective optimization method fails to ensure a fair
treatment, which may eventually incur severe envy between them.

In terms of Seg, when optimizing the aggregate operating costs of E&G networks,
only natural gas will be traded with DESs as natural gas generation is much cheaper
than electricity. Therefore, unless the natural gas network is unable to supply enough
energy for DESs, the minimum aggregate operating costs of E&G networks will be
optimized merely by trading natural gas with DESs. Note that differing from Se, Seg
also ensures the optimal gas flow, by which the lower operating cost of natural gas
network under the condition of solely satisfying the CDCENs can be achieved. But
the operating cost of the natural gas network is still much higher than that obtained by
S5. In terms of this, the solution S5 obtained by the proposed HMOGTA successfully
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Fig. 6.22 Comparison of DESs’ profits as for S5 and Se

enables the ISO to fairly treat the benefits of the E&G networks without being partial
to any single utility network while forcing the other one to suffer huge losses.

As for DESs, Figs. 6.22, 6.23, and 6.24 illustrate the comparison results of DESs’
profits between S5 and the other three, respectively. Table6.12 shows the wholesale
prices and the retail prices of energies in these four cases. It can be seen from the
figures that all the profits of DESs obtained by S5 are significantly higher than those
obtained by the other three solutions. From Tables6.10 to 6.12, we can see that as for
solutions Se and Seg, all the amount of natural gas traded with DESs are much larger
than those in solution S5, which incurs higher LMPs of natural gas. Similarly, singly
minimizing the operating cost of natural gas network (Sg) results in larger amounts
of electrical energy traded as well as higher LMPs of electricity compared with those
of S5. Therefore, it is sufficient enough to argue that the wholesale price will increase
with the increase of the amount of energy traded. However, a high amount of energy
traded accompanying with a high wholesale price doubly increase the generation
cost of each DES, which will inevitably do great harm to the benefit of each of them.
Although Seg can effectively achieve the social optima, each DES surfers great loss
and it is not envy-free (Tushar et al. 2015) so that those who are treated unfairly
will definitely reject to accept this solution. Therefore, we can conclude that the
strategies in Seg, Se or Sg fail to fairly treat all participants in the IES. However,
in S5, coordinating the benefits of the E&G networks can reasonably determine the
interactive variables between utility networks and DESs, and balance the trading
amounts and the wholesale prices of E&G. By doing so, the cost of each DES can be
reduced, which will eventually bring about a harmony effect on increasing the profit
of each DES. Furthermore, in S5, all the retail prices of electricity are lower than the
wholesale prices, which enhances the economic efficiency of the IES. Therefore, the
idea of adopting theHMOGTAcanbalance not only the benefits ofE&Gnetworks but
also the trading amounts and the wholesale prices of E&G, by which fairly treating
various kinds of participants with different interests can be successfully achieved.
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This section has proposed a hybrid multi-objective optimization and game-
theoretic approach (HMOGTA) to solve the optimal operation of the IES. A Stackel-
berg game model has been developed to analyze the equilibrium strategies of DESs
and EUs in each DEN. The Stackelberg Equilibrium of the game has been obtained
in a closed form and the CDCENs of DESs have been derived based on the results
of the game. The CDCENs, which are composed of the parameters of both the EUs’
demand characteristics and DESs’ operating characteristics, indicate the correlation
between the wholesale prices and DESs’ demands of natural gas and electricity. The
CDCENsdepict the interactions between utility networks andDESs, and demonstrate
the substitutive relationship between the amount of E&G purchased by DESs.

The models developed for the IES can be tackled by the proposed HMOGTA,
considering the operational constraints and the individual benefit of each participant
in the IES. Simulation results have manifested the conflicting relationship between
the operating costs of the E&G networks with consideration of the CDCENs. The
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HMOGTA has successfully avoided partial treatment to any single individual while
forcing the others to suffer huge losses.Moreover, usingmulti-objective optimization
to solve the coordinated scheduling of E&G networks subject to the CDCENs not
only has fairly treated the benefits of these two utility networks but also has brought
about higher profits of all DESs, with the highest one up to 327%. The proposed
HMOGTA reasonably determines the interactive variables between the participants
and fairly treats the benefits of electricity network, gas network, DESs, and EUs in
the IES.

The proposed method promotes the active participation of various kinds of par-
ticipants with different objectives in the IES, by which the fair treatment for all
individual participants can be ensured.

6.4 Summary

This chapter presents the study of coordinated scheduling strategy to optimize con-
flicting benefits for daily operation of the integrated energy systems with electricity
and gas networks embedded. First, the models developed for the electricity and gas
networks can be tackled by the proposed CSS, considering the operation constraints
and the competing benefits of the two networks. Compared with the single-objective
optimization for the total operation cost, the CSS considers the operation costs of
the electricity network and gas network coordinately, and searches for the optimal
solutions for the two networks. Moreover, according to the simulation results of
sensitive analyses, the interdependency of the electricity network and gas network
is related to the variation of the heating and cooling load. Instead, the electricity
load and gas load only have an influence on their own network, but a tiny impact on
the interdependency between the two networks. On the other hand, the number of
electricity-driven compressors has an influence on the interdependency between the
gas load variation and the power generation of the electricity network.
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