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The book intends to present emerging Federated Learning (FL)-based architectures, 
frameworks, and models in Internet of Medical Things (IoMT) applications. It 
intends to build on the basics of the healthcare industry, the current data sharing 
requirements, and security and privacy issues in medical data sharing. Once IoMT 
is presented, the book shifts towards the proposal of privacy-preservation in IoMT, 
and explains how FL presents a viable solution to these challenges. The claims are 
supported through lucid illustrations, tables, and examples that present effective and 
secured FL schemes, simulations, and practical discussion on use-case scenarios in a 
simple manner. The book intends to create opportunities for healthcare communities 
to build effective FL solutions around the presented themes, and to support work 
in related areas that will benefit from reading the book. It also intends to present 
breakthroughs and foster innovation in FL-based research, specifically in the IoMT 
domain. The emphasis of this book is on understanding the contributions of IoMT to 
healthcare analytics, and its aim is to provide insights including evolution, research 
directions, challenges, and the way to empower healthcare services through federated 
learning.

The book also intends to cover the issues of ethical and social issues around the 
recent advancements in the field of decentralized artificial intelligence. The book 
is mainly intended for undergraduates, post-graduates, researchers, and healthcare 
professionals who wish to learn FL-based solutions right from scratch and build 
practical FL solutions in different IoMT verticals.
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Preface
This book discusses the introduction of Federated Learning (FL) integration in 
Internet of Medical Things (IoMT)-based ecosystems. With the rising concerns of 
privacy-preservation compliance worldwide, FL simplifies healthcare data privacy 
and allows local devices to collaboratively form shared prediction models, and thus 
ensures the privacy and anonymity of patient data. Thus, FL-based approaches are 
critical in assuring privacy laws and regulations that satisfy the outlook of the U.S. 
Healthcare Information Portability and Accountability Act (HIPAA), the European 
Union’s General Data Protection Regulation, and other laws across the globe. The 
book forms a self-contained and paced roadmap that starts with the basics of fun-
damentals of IoMT and patient-centric healthcare management, and successively 
builds the importance of healthcare informatics in IoMT. The book presents the ref-
erence architectures, models, frameworks, and assisted case studies that establish the 
importance of FL in today’s healthcare industry. The book discusses security-based 
and privacy-based FL solutions that assist and improve healthcare informatics and 
asserts the importance of decentralized learning over centralized models. The book 
also illustrates the applications of FL in edge/fog-based IoMT solutions that handle 
real-time streaming analytics. From a practical perspective, the book presents the 
practical simulation tools and platforms for the deployment of FL in IoMT. Finally, 
the book provides the importance of trusted FL, which mitigates adversarial attacks 
in IoMT ecosystems, and presents interesting use-cases and scenarios with practical 
FL deployments in IoMT ecosystems. Thus, the book covers the entire spectrum 
of FL-based solutions for IoMT from scratch and builds upon theoretical concepts, 
practical solutions, and security approaches. The book is presented in a simple and 
lucid writing style, is intended for both academia and healthcare industry profes-
sionals, and serves to address the issues of presenting FL in IoMT representing both 
implementation and security viewpoints. Readers of the book are expected to have 
a simple understanding of basic calculus, linear algebra, artificial intelligence (AI), 
and healthcare industry domain knowledge for an enriched reading experience. 
The purpose of this edited book is to propose the basics and introduction to FL in 
IoMT ecosystems. Through the book, we present effective and novel frameworks 
that can address security and privacy preservation concerns via FL models, and at 
the same time, ensure low-powered computational requirements. The book covers 
the tools, platforms, and case studies to integrate FL-based solutions for edge-fog 
ecosystems, and assisted IoMT in smart patient-centric healthcare. The book pro-
poses novel architectures that drive economically viable healthcare businesses, and 
serves key research directions among academia, healthcare industry professionals, 
and researchers.

The book is organized into three sections. The first section is focused on the back-
ground and preliminaries, which includes four chapters. The second part illustrates 
the security use-cases of IoMT with four well-structured chapters. Finally, the last 
section focuses on FL-based IoMT with five chapters.
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SECTION 1 BACKGROUND AND PRELIMINARIES

The opening Chapter 1, “Potentials of Internet of Medical Things: Fundamentals and 
Challenges,” presents insights of IoMT related to various factors to answer the basic 
curiosity of the reader, like how IoMT works, its framework, its technology front, its 
dependence on other sectors, etc. The chapter also discusses various initiatives taken 
by the government on IoMT fronts.

Chapter  2, “Artificial Intelligence Applications for IoMT,” presents how IoMT 
devices can use AI and cloud computing and enhance the degree of diagnostic with 
pace and accuracy. IoMT has the ability to enhance early diagnoses, even as addi-
tionally bearing in mind statistics series for analytics, making it a win-win scenario 
for patients and people who take advantage of it.

Chapter 3, “Privacy and Security in Internet of Medical Things,” brings an under-
standing of how IoMT is adopted in the medical field now and the various secu-
rity challenges, along with technological solutions. The chapter also discusses the 
advanced technologies used in IoMT devices, different IoMT devices, all the possi-
ble threats and challenges, and the security requirement for IoMT devices. Solutions 
started incorporating federated learning to enhance the accuracy and security of the 
devices.

Chapter  4, “IoMT Implementation: Technological Overview for Healthcare 
Systems,” discusses the role of federated learning in IoMT systems which provide 
security to end users. The study proposed consists of the architecture, benefits, and 
challenges of IoMT devices. With IoMT implementation in the healthcare domain, 
patients can control and manage their medical records in a better way. This technol-
ogy has the potential to ensure better health facilities for everyone.

SECTION 2 SECURITY USE-CASE OF IOMT

Chapter 5, “A New Method of 5G-Based Mobile Computing for Internet of Medical 
Things (IoMT) Applications,” presents methods that encompass efficient resource 
allocation and greater ability to carry out computation, communication, strategy, 
and control on the network. The proposed scheme in this chapter supports a content- 
centric network (CCN)-based framework over 5G as the primary motivator for 
mobile health (m-health) applications. A practical example has been discussed in the 
proposed scheme for m-health services, which forms one of the emerging applica-
tions of 5G and IoMT networks. A medical image containing the electronic patient 
record is embedded in the speech signal. The proposed technique has several advan-
tages like better management of resources, security, traffic unloading, and scalability

Chapter 6, “Trusted Federated Learning Solutions for Internet of Medical Things,” 
provides the reader with an overview of federated learning systems, with a focus on 
trustworthy cloud computing factors, and discusses the broad solutions to federated 
learning’s statistical challenges, system challenges, and privacy concerns, as well as 
the implications of implementing blockchain and other machine learning capabilities 
in the healthcare system.

Chapter  7, “Early Prediction of Prevalent Diseases Using Internet of Medical 
Things (IoMT),” presents cloud computing-based remote patient monitoring (RPM) 
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architecture, comprising a data collection module, a data preprocessing module, and 
a data analytics module, whereby stakeholders, doctors, patients, caregivers, and 
family members can access the analytics and prediction results computed by the 
model. Also, the recommendation module of the architecture will help patients with 
expert advice for the disease diagnosed.

Chapter 8, “Trusted Federated Learning for Internet of Medical Things: Solutions 
and Challenges,” provides current state-of-the-art solutions, adoption challenges 
and future research directions, and a framework for trusted federated learning in 
healthcare applications. As artificial intelligence (AI) models require high-quality 
and large-scale training datasets collected from diverse sources to mitigate bias and 
better aid prediction accuracy on the unseen data. With secure and trusted federated 
learning, an organization’s data can stay local and contribute to AI models’ training 
for building better-trained models with improved accuracy and generalization. Thus, 
the trusted federated learning approaches facilitate sharing the trained AI models 
across different participating healthcare organizations by breaking down barriers, 
increasing trust, and preserving privacy for better disease predictions and diagnoses 
that can increase the deployment of AI models in clinical practice.

Chapter 9, “Security and Privacy Solutions for Healthcare Informatics,” discusses 
the significance of protection and privacy in the healthcare system, possible cyber-
attacks, and network security to avoid active attacks, and also presents a novel study 
on decentralized storage for healthcare and the implications of quantum-safe block-
chain methodologies and their relevance to IoMT.

SECTION 3 FEDERATED LEARNING–BASED IOMT

Chapter 10, “IoT-Based Life-Saving Devices Equipped with Ambu Bags for SARS-
CoV-2 Patients” proposed a Internet of Things (IoT)-based healthcare system featur-
ing an automatically operated Ambu bag (the proprietary name for a self-inflating 
resuscitation bag) that might be utilized to save patients’ lives. The system can use 
a NodeMCU (node microcontroller unit, a low-cost open source IoT platform) to 
continually monitor the patient’s oxygen saturation, pulse rate, and body temperature 
by using a DS18B20 temperature sensor at room temperature from any location in 
the world.

Chapter  11, “Security and Privacy in Federated Learning–Based Internet of 
Medical Things,” discusses an FL-based healthcare system that secures and protects 
user privacy. The proposed framework uses the Paillier cryptosystem. It uses additive 
homomorphism for aggregating and training data in global data centers. Initially, the 
model collects the data specific to each organization and trains the model locally. 
Periodically, the data available in each data center is encrypted and sent to the global 
data center. At the global data center, the wearable resources and medical data are 
aggregated using the unique ID. Public key cryptography with additive homomor-
phism is applied to ensure secure data aggregation and training in the global data 
center. A trusted party is involved in generating private and public keys for the local 
and global data centers.

Chapter  12, “Use-Cases and Scenarios for Federated Learning Adoption in 
IoMT,” sheds light on the various divisions of federated learning in smart healthcare 
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use-cases. These divisions comprise FL for electronic health record (EHR) manage-
ment, remote health monitoring, medical imaging, and other exceptional use-cases. 
The chapter also browses through some of the recent use-cases of FL and shares 
deductions regarding FL’s reliability based on relevant empirical findings. In order to 
recognize FL in real-world settings, a section on real-world implementation is also 
stated. To finalize things, the future scope for this reasonably new field of study and 
various findings based on FL’s limitations is presented.

Chapter 13, “Blockchain for Internet of Medical Things,” focuses on the usage 
of the blockchain framework, its challenges, and further research in the healthcare 
domain. As healthcare data is used often by all stakeholders, confidentiality and 
integrity of this data should be protected from unofficial access attempts within the 
network as well as from external attackers. Ensuring EHR security is an important 
but challenging task. Therefore, to maintain a definite trust during an exchange of 
EHR among all stakeholders and to secure data from misuse, blockchain technology 
is required.

Dr. Pronaya Bhattacharya
Kolkata, India

Mr. Ashwin Verma
Ahmedabad, India

Dr. Sudeep Tanwar
Ahmedabad, India
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2 Federated Learning for Internet of Medical Things

1.1 INTRODUCTION

Internet of Things, or IoT, is shaping up the world fast and branching into various 
sectors to ease human labour in an advanced and efficient way. One such sector is 
medical. The medical technology (‘medtech’) industry produces and develops a broad 
array of products, from pregnancy testing kits to surgical tools, prosthetic joints, and 
MRI scanners. Internet of Medical Things (IoMT) is a connected infrastructure of 
health systems and services that allows these gadgets to generate, gather, scrutinize, 
and transfer data [1]. IoMT is a linkage of Internet-connected medical equipment, 
hardware infrastructure, and software applications that connect healthcare IT [2]. 
The path to IoT began with some graduate students of the computer science depart-
ment at Carnegie Mellon University connecting a modified Coke vending machine 
to the internet, back in 1982. This resulted in a smart device which would provide 
network status reports about inventory and temperature control.

The trend of wearable watches can be dated back to 1500 with Peter Henlein, a 
locksmith and clockmaker from Nuremberg, Germany, inventing small and watches 
to be worn as a necklace or attached to clothes. Today there is a wide market of 
watches with advanced escalation of technology which turns it into more than just a 
watch. Modern-day wearable technologies can connect to your smartphone and enable 
you to surf the internet, play music, make phone calls, text, and monitor heart rate, 
oxygen level, sleep, workout routines, calorie count, etc. [3]. Vaccine distribution with 
the help of drones and IoT devices helps to improve the proper vaccination in remote 
areas [4], and blockchain technology provides trust architecture in such scenarios [5]. 
IoT in the healthcare sector has transformed views of patient care and treatment in the 
field over recent decades. IoT in the healthcare system has been ingrained in current 
mechanisms, primarily in the context of real-time remote patient monitoring, health 
data collection and transfer, and end-to-end connectivity that aids in patient man-
agement automation at organizational units and facilitates interoperability, data flow, 
critical data analyzation and exchange, and machine communication. To maintain 
the trust in the sensitive medical records, we need cryptographic solutions [6] and 
if the volume of such medical records is high, it requires efficient access to that data 
[7]. In the context of health diagnostics, the IoT has aided in the transformation of 
routine clinical check-ups to become more patient and domestic rather than hospital 
centric. As a result, IoT in healthcare has helped to re-define monitoring, diagnos-
tics, treatments, and therapies in traditional healthcare viewpoints, lowering costs and 
mistakes [8]. IoMT in healthcare sector enables the rise of smart hospitals equipped 
with smart automated and optimized medical technology based on ICT infrastructure, 
which enhances patient care techniques. IoMT is not just confined to patient care tech-
niques; it also expands to various other areas, giving rise to a variety of services like 
telemedicine, telehealth, and remote robot surgery which may house smart hospitals. 
Providing patient treatment remotely is known as telemedicine, while providing non-
clinical care remotely is known as telehealth. In remote robot surgery, medical robots 
perform surgery while being supervised by a surgeon who is in a different location.

Figure 1.1 depicts an illustration of a digital health system in which data from var-
ious sources is first gathered (for example, remotely or physically) and then sent to an 
EHR (electronic health records) system. Unstructured data may be used to describe 
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information that has been collected by professionals and written in hospital records. 
It is simpler to process data in other systems, such as CRM (customer relationship 
management) systems, when it is collected from sensors and devices in a structured 
manner using designated data fields that users must fill out. Utilizing tools to evalu-
ate data and then assigning it to a predefined target within the network is made pos-
sible by the CRM. Patients and medical workers in the ecosystem receive additional 
inputs as a consequence of the processed data. Patients get outbound communication 
in the form of customized health regimens from physicians and healthcare special-
ists. The same CRM solution in the ecosystem notifies physicians and other therapeu-
tic workers about reminders and other notifications [9].

1.1.1 Contribution

IoMT  is a group of medical devices and applications that connect to healthcare 
information technology (IT) systems via online computer networks. Medical devices 
equipped with Wi-Fi–enabled machine-to-machine (M2M) communication, which 
is the basis of IoMT. Connecting to cloud platforms like Amazon Web Services 
(AWS) allows IoMT devices to store and process acquired data. IoMT is yet another 
name for healthcare IoT. IoMT is a part of IoT focused solely on solving healthcare 
and medical-related problems. The impact of IoMT on the healthcare sector market 
is hence undeniably positive and continues to reflect a bright scope. The IoMT mar-
ket is made up of smart devices including smartwatches and medical/vital monitors 
that are only used for healthcare purposes on the body, at home, in surrounding 
communities, health centres, or hospital settings, as well as any related real-world 
environment, telehealth, and other services. This technology, if applied in healthcare, 
can bring changes to in-home, on-body, in the community and in-hospital healthcare 
services. IoMT has a myriad of advantages—and some challenges, too.

FIGURE 1.1 Smart Healthcare System [9].



4 Federated Learning for Internet of Medical Things

Its reach and ways are yet being explored—and here in this chapter, the authors 
intend to delve into insights of IoMT in relation to various factors to answer the basic 
curiosity of the reader, like how IoMT works, its framework, the technology front, its 
dependence on other sectors, etc. The authors would also discuss on various initia-
tives taken by government on the IoMT front.

1.1.2 Chapter Layout

The chapter starts in Section 1.1 with introduction to the topic, covering how IoMT 
shaped its impact on society. The rest of this chapter is organized as explained fur-
ther. Section 1.2 presents the working of IoMT, including its framework, and talks 
about current scenarios of IoMT in India and in the world’s leading countries and 
dependence of the technology on other sectors. Section 1.3 covers economic view-
points like market distribution and profit and loss, while Section 1.4 discusses vari-
ous start-ups and Section 1.5 examines rivalries, awareness and trust on the part of 
public, and the impact of the COVID-19 pandemic on the same. Furthermore, a brief 
discussion on various pros and cons of IoMT is described in Section 1.6. Section 1.7 
offers deep insight on the various challenges to IoMT, followed by covering govern-
ment’s initiative in this area in Section 1.8. The chapter is summed up in Section 1.9, 
where conclusions are drawn to support the entire contents of the chapter.

1.2 WORKING OF INTERNET OF MEDICAL THINGS

The framework of IoMT can be mainly classified into the following three layers (see 
Figure 1.2).

Things Layer: The things layer is composed of equipment for patient moni-
toring, sensor systems, actuators, health records, controls for pharmacies, 
as generator for feeding schedules, and other items. This layer is in direct 
touch with the ecosystem’s users. At this layer, data from wearable tech, 
patient-health data, and distant healthcare data is gathered. To maintain 
the integrity of the data acquired, the devices utilized should be securely 
housed. The ecosystem’s local routers are in charge of connecting these 
devices to the fog layer. The data is further analyzed at the fog and cloud 
layers to offer pertinent information. Furthermore, healthcare professionals 
may access patient data using this router to decrease delays [9, 10].

Fog Layer: This one lies in the midst of the things and clouds layers. This layer 
entails local servers and gateway devices for a thinly dispersed fog network-
ing system. Local processing power is used by lower layer devices to give 
their users real-time responses. Additionally, the security and integrity of 
the system are monitored and maintained using these servers. Records from 
these servers must be routed through the gateway components of this tier 
toward the cloud layer for the further administration. Furthermore, health-
care professionals may access patient data using this router to decrease 
delays [9].
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FIGURE 1.2 Layers of IoMT [9].

Cloud Layer: Data storage and computing resources are part of the cloud layer, 
which is used to analyze data and create judgement systems from it. Large 
healthcare and medical firms may simply manage their daily operations 
thanks to the cloud’s extensive reach. The data produced by the healthcare 
system will be stored in this layer’s cloud resources, where analytical work 
can be done as needs arise in the future [9, 11].

Many opportunities are opened up by the growth of IoT products specifically for 
the healthcare industry, and the massive amount of data generated by these con-
nected devices has the potential to completely change the healthcare industry.

The four steps of IoT architecture can be thought of as steps in a process (See 
Figure 1.3). Each of the four phases is connected to the others in a way that allows 
information to be captured or interpreted at one level and thereafter transferred to 
another. By incorporating values into the process, new business opportunities are 
created and insights are produced [12].

Step 1: The initial phase is the deployment of interconnected devices, such as 
video systems, monitors, detectors, actuators, sensors, and actuators. These 
gadgets are what gather the data.

Step 2: Analogue information collected via sensors and other technologies 
must be converted into digital data in order to be processed further.

Step 3: The information is then pre-processed, standardized, and transmitted 
to a data centre or the cloud after being digitized and aggregated.

Step 4: The resulting data is processed and reviewed at the necessary level. 
Advanced analytics offers useful business insights for enhanced decision-
making when implemented to this data.
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By ensuring better care, optimal treatment results, and reducing rates for patients, as 
well as better processes and workflows, superior efficiency, and a quality therapeutic 
experience for healthcare professionals, IoT is revolutionizing the industry [12].

1.2.1 Current SCenario of ioMt in india

For a fast-developing country like India, healthcare is amongst the most crucial areas 
in requisites of need, economy, services, and revenue. The medical sector of India 
is supported by enhanced private investment and medical tourism. Medical tourism 
has two basic demands—excellent facilities and low costs. IoMT, as we discuss in the 
chapter, is just the way to achieve this. Government insists upon finding a promising 
solution that reaps profits and boosts economy of the country. IoMT can cut down 
healthcare expenses and provide effective and efficient treatment of the patients—not 
only to attract foreign patients, but the technology shall also help boost the facilities 
provided to the nation’s public, hence lowering the need for people to fly elsewhere 
for treatment.

IoMT is transforming hospital operations and facilitating the shift of healthcare 
services from hospitals to private residences. The recent COVID-19 pandemic has 
heightened the requirements for monitoring of patients remotely and the deployment 
of IoMT in outpatient and residential care scenarios, resulting in a surge in online 
consultation  and  observation, reducing the number of hospital visits, and thereby 
limiting transmission [13]. The recent pandemic has resulted in skyrocketing use 
of technology in various fields, including the healthcare sector. As the saying goes, 
“there’s opportunity in adversity”; the pandemic, too, has given way to enhanced tech-
nological advancements through innovation and invention. The new normal demands 
a paradigm shift to acclimate to digital outreach via telemedicine and e-pharmacy. 
On of the key changes unfolding is how healthcare services are not restricted only 
to hospitals anymore, but can be stretched to the comfort of the patient’s own home. 
Although many operations still need an in-patient stay in a hospital, a growing pro-
portion of care is now available outside of primary hospitals. Due to advancements 
in telemedicine, secondary and tertiary care set-ups now reasonably offer better care 
for fewer patient. One of the advantages served is that specialists who work solely 

FIGURE 1.3 Architecture of IoMT [12].
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for primary hospitals in major cities are no longer restricted to serving patients in 
person. Patients at secondary hospitals, tertiary institutions, and even remote clinics 
can be treated electronically. Patients and doctors may now monitor conditions at 
a previously unheard-of level thanks to smart gadgets. Applications for consumer 
devices like smartwatches and fitness bands deliver real-time data to patients and 
allow physicians to track data over time. Monitoring certain situations is achievable 
using medical-specific gadgets such as monitoring patches and heart rhythm moni-
tors. Lower-level hospitals might transfer more information to experts at main facili-
ties using services like DocBox, which captures and transmits up to three terabytes 
of structured data per patient every day. In India, IoMT innovation is already under 
way. Ansys and the Indian Institute of Technology Kanpur have formed a company 
to develop a modular, energy-efficient, and low-cost ventilator. The company Nocca 
Robotics Private Limited plans to create these ventilators with an IoMT functional 
design that will allow them to be controlled from a central place, allowing resources 
to be used more efficiently. In light of the COVID-19 pandemic, the need is evident, 
but the advantages of IoMT programmes in India will be considerably greater. If 
India’s healthcare system is to improve significantly, a greater emphasis on preven-
tative care is required. Improving general wellbeing relieves pressure on the medi-
cal system’s resources, while also lowering patient care costs. In a country where 
only approximately 15% of people have insurance, lowering prices is a key aspect in 
increasing people’s accessibility.

The improvements brought about by IoMT, artificial intelligence (AI), and other 
technology breakthroughs have the aptitude to completely overhaul India’s health-
care system. Providers will be better able to offer more preventative care as access, 
monitoring, inventory dependability, and new research all improve, resulting in a 
lower demand for reactive therapies. The data supplied by IoMT is intelligent and 
quantifiable, allowing for speedier and more precise diagnosis and more efficient 
and successful therapy. IoMT allows for remote clinical monitoring, preventative 
treatment, chronic illness, and administration of medications, and it aids to those 
needing succour with routine tasks—such as the aged and disabled—to subsist more 
independently or therapies that are reactive [14].

1.2.2 progreSS in ioMt in the WorLd’S Leading CountrieS

1.2.2.1 France
France has been ranked among one of the world’s best countries in the IT healthcare 
sector for 2022. Some of the reasons are listed as follows [15].

Doubled Healthcare IT: The 2012 Hospital Plan in France aims to increase 
expenditure on Hospital Information Systems (HIS) from 1.7% to 3%, put-
ting the country towards the bottom of the EU league table. Modernizing 
HIS is one of the plan’s overarching goals. The financial commitments 
are substantial. The Hospital Investment Plan 2012, according to the main 
French financial newspaper Les Echos, would require a €10 billion invest-
ment over five years.
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The ATIH: The Technical Agency for Hospitalization Information (known 
by its French acronym ATIH) was established in France in 2000, and this 
decision’s roots can be located there. The primary hospital information sys-
tem for the nation is coordinated technically by the ATIH, a government 
institution. Its purpose was to replace laborious, expensive, and slow tra-
ditional data handling and transmission processes between hospitals and 
local healthcare establishments, as well as to meet the demand for more 
regular administrative data access in domains like pathology, patient care, 
and diagnosis.

Smart Cards and Biometrics: With a focus on smart cards, a technology in 
which France has long been a pioneer, ATIH joined forces with another top 
IT programme in France. The allegedly smart health card, initially pre-
sented in 1998, was primarily designed to computerize medical services, 
simplifying and expediting this process. The CPS smart card, which is 
designed to give healthcare workers access to the e-health infrastructure, 
now has around 600,000 users. In addition, the Carte Vitale—for patients—
is used by about 60 million people. The year 2006 saw the new editioned 
Carte Vitale established (first in Brittany and the Pays de la Loire), with the 
goal of covering the whole population by 2010.

Activity-Based Hospital Financing: The development of new activity-based 
financing methods at hospitals in 2004 gave France’s healthcare IT reform 
programme a boost. This has prompted them to improve IT systems to guar-
antee that clinical activity is correctly recorded in order to be reimbursed. 
In addition, increased awareness of variables such as return on investment 
(ROI) and quality of care measures is increasing want for healthcare IT.

DMP: In order to create an electronic medical record for every French citizen 
covered by health insurance, the dossier medical personnel (DMP), some-
times known as a ‘personal medical file’, was formed in 2004. Comparable 
to similar programmes elsewhere in Europe, the DMP intends to improve 
information exchange and synchronization between medical practitioners 
and medical centres during the consultation process, diagnostic testing, 
and treatment in order to increase healthcare competence and eminence. 
By enabling patient record access at any location and at any time, the DMP 
aims to boost treatments continuum and efficacy overall.

1.2.2.2 United Kingdom
Government Support of Medtech: The best National Health Service (NHS), 

in the UK, creates a centralized network that permits the easy and quick 
construction of a medical technology product [15]. Digital health and medi-
cal technology are strongly backed by the NHS. It has long collaborated 
with the commercial and non-profit sectors to give the British people access 
to effective and affordable technology. The National Institute for Health 
and Care Excellence (NICE) and the National Institute of Health Research 
(NIHR) are two examples of government institutions that operate centrally 
and make it simple and obvious for developers to manufacture medical 
technology products. State support has been essential for organizations like 
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Sky Medical Technology. The Department of International Trade provides 
funds for the Foreign Market Introduction Service, which helps businesses 
set up meetings with prospective foreign clients and prepare for trade shows. 
Because of this, Sky Medical Technology has been able to successfully dis-
tribute its OnPulse technology throughout the world. The common peroneal 
nerve, located just behind the knee, is stimulated by the OnPulse device, 
which is integrated into a geko, a little device that is wrapped around a 
patient’s leg.

Using Robotics to Enhance the Digital Health Sector: This culture has con-
tributed to the United Kingdom’s position as a global leader in medical AI. 
Babylon Health, a mobile healthcare software that works in a similar way to 
Push Doctor and also has an AI chat bot that can diagnose patients, is one 
example. Similarly, Skin Analytics has been using a smartphone app to cre-
ate digital records of patients’ skin in order to enhance melanoma diagnosis, 
while Cambridge Cognition is using AI to better understand brain health. 
Another area where UK businesses are at the forefront is surgical robots. 
CMR Surgical is revolutionizing keyhole surgery with the Versius surgical 
robotics system. Versius, which will be available commercially later this 
year, claims to reduce the procedure’s learning curve from two or three 
years to a few weeks. It also allows the surgeon to stay sitting, reducing 
physical strain, and—as an outcome—the likelihood of fatigue-related pro-
cedural mistakes.

1.2.2.3 South Korea
South Korea is a technological trendsetter, boasting some of the world’s fastest inter-
net connections, and the government hopes to make the country the third most tech-
nologically competitive in the world by 2030 [16]. Healthcare has been identified 
as a high-growth industry. The Healthcare Innovation Park (HIP) at Seoul National 
University Bundang Hospital (SNUBH) was established in 2016 to foster industry-
academic collaborations in areas such as healthcare IT, medical genomics, and regen-
erative medicine. It was one of the first paperless hospitals when it opened in 2003.

Current State of Digital Health: BESTCare 2.0, a digital and all-encompassing  
healthcare system developed by SNUBH, is already utilized by around half 
of South Korea’s digital hospitals. Nonetheless, the healthcare Big Data 
industry in South Korea is predicted to develop at a rate of over 17% per 
year, outperforming the worldwide market. Management of healthcare ser-
vices are projected to be the rapidest expanding and largest segment in the 
congested Big Data market. This is reflected in HIP’s research funding of 
US$53 million in 2019, an increase of nearly 18% over 2018.

Reason Why SNUBH Is Flourishing in the Digital Health Sector: Staff 
and faculty have embraced new technology quickly and collaborated to 
find innovative solutions to user needs. The task force teams and commit-
tees that examine and evaluate user proposals for advancement include the 
Clinical Pathway Task Force, the Terminology Standardization Committee, 
and the EMR Task Force, to name just a few. Since early 2000s, when the 
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country’s hospital information system was created, these feedback channels 
have been operational, and they have managed to keep the system current 
and user-friendly.

1.2.3 teChnoLogy and other SeCtorS invoLved in ioMt

Technology of Blockchain: Blockchain technology works as a type of dis-
tributed ledger that keeps track of all transactions made across network 
computer nodes [9]. Blockchain addresses many of the safety issues that 
have been raised regarding medical systems, and IoT has fuelled growth in 
the distributed computing industries. The blockchain consists of blocks or 
nodes connected by a network, and the data sent between them is recorded 
and may be used for cross-referencing. Since these blocks incorporate data 
from earlier blocks, this method makes it easier to identify the precise loca-
tion of network criminals. Although the amount of data entering the health-
care environment is always increasing, adopting blockchain technology has 
an advantage that involves building trust. The increased demand for data 
transfers across the healthcare infrastructure may be satisfied by the block-
chain. Worldwide clinical research using blockchain for EHR systems is 
currently being conducted in hospitals.

Physically Unclonable Function (PUF) Devices: For the vulnerable com-
ponents of the IoMT ecosystem, PUF devices produce a distinct finger-
print. These unique fingerprints or signatures are the result of variances 
in how these devices are produced. These fingerprints can be employed to 
produce secret keys (cryptography keys) to protect end devices (sensors) 
in the IoMT environment, where they are susceptible to hardware tamper-
ing efforts. Figure 1.4 shows how PUF devices are mapped to the structure 
portrayed in the preceding section. In our mapping, the PUF devices are 
in the thing’s layer. When it concerns to the identification of IoMT devices 
inside the network, these devices are critical. After the fog layer, as depicted 
in Figure 1.4, additional specialized corporate security solutions given by 
service suppliers in the framework (such as AI/ML-based) assure security.

FIGURE 1.4 Model of PUF devices [9].
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Artificial Intelligence: On the basis of historical and real-time data, AI offers 
quick fixes for identifying fresh avenues for treating specific diseases. 
AI-based solutions have the potential to transform a number of elements 
of the healthcare industry. These will combine AI techniques for classifier 
construction, such as automating the collection of patient data, planning 
patient visits, choosing laboratory testing, treatment plans, medications, 
surgical therapies, and other activities. These classifiers could be enhanced 
and utilized as decision support tools. Natural language processing (NLP) 
approaches allow for extrication of information  from such unorganized 
pieces of data in the system for the rest of classifiers that cannot be acquired 
digitally. Test results, clinical assessment notes, notes from operations, 
and other patient-related discharge data are examples of this. Additionally, 
machine learning forecasts future events using historical data. It makes use 
of reinforced, unreinforced, or supervised learning to predict future events. 
Figure 1.5 shows how AI can be implemented in IoMT.

Software-Defined Networking (SDN): In IoMT, the network consists of two 
components: the data plane and the control plane. The control plane per-
forms the tasks that allow the data plane to perform the decisions that allow 
it to route traffic to its destination. SDN enables standard communication 
between the control plane and data plane. Among the popular SDN pro-
tocols, OpenFlow, Open vSwitch Database Management, and OpenFlow 
Configuration (OF-CONFIG) are only a few examples [17]. Since the inter-
faces between the data plane and control plane may be standardized using 
a standard SDN protocol, various data from the data plane may be obtained 
using the standard OpenFlow protocol from an external server (which 
might be in the cloud). Diverse e-healthcare applications may be devel-
oped on the cloud layer, allowing for the expansion of new e-healthcare  
applications.

FIGURE 1.5 AI in IoMT [9].
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1.3 ECONOMIC VIEWPOINT

1.3.1 Market diStribution, profit, and LoSS

1.3.1.1 Market Distribution
The IoMT market is tripartite, depending on the product range, such as the following.

• Wearable external medical devices
• Implanted medical devices
• Stationary medical devices

Again, depending on the relevance, the market can be divided into patient observa-
tion, treatment adherence, telemedicine, etc. The market is also divided into gov-
ernment agencies, patients, healthcare workers, etc., on the basis of end-users. In 
addition, the market is distributed across five primary geographical regions: Latin 
America, Europe, Asia-Pacific, North America, and the Middle East. The worldwide 
IoMT market is projected to escalate at a compound annual growth rate (CAGR) 
of 29.5% from 2016–2028, touching US$187.60 billion. The market is estimated to 
increase in response to rising IoT spending in healthcare and advances in health-
care IT. The market has benefited from the operation of the fourth-generation (4G) 
technology standard for broadband cellular networks. The telehealth industry is 
anticipated to grow and the market to be expanded by high-speed networking. The 
industry is likely to develop even faster in the future years as 5G networks become 
more widely used [18].

1.3.1.2 Profits
In 2020, the worldwide IoMT market was valued at US$41.17 billion. COVID-19 
has had a massive and unprecedented worldwide impact, with IoMT having a posi-
tive effect on demand across all areas throughout the pandemic [18]. According to 
research, the IoMT worldwide market will expand by 71.3% in 2020, compared with 
the average yearly rise from 2017–2019.

1.3.1.3 Loss
As IoMT witnesses skyrocketing profits, there are a few factors which affect its per-
formance in the market [19]. The following five key factors mentioned here, which if 
failed to be taken care of, can lead to losses in the IoMT market.

Platform Sizing: Sizing plays a key role for IoT platforms, just like for other 
applications. A cloud-based IoT platform does not equate to error-free per-
formance. Architects must adjust the thresholds in a way that the platform 
can easily set up new nodes as required for a flexible design system.

Gateway Sizing: The gateway oversees all interactions with endpoint sensors. 
Endpoint sensors can move around and lose their connections. When the 
device reconnects, the gateway guarantees that these signals are retained 
and provided to the IoT platform. The gateway may manage a few or hun-
dreds of devices, depending on the use-case. Because the gateway is the 
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principal node for interacting with all endpoint devices, it must function 
well. Because these gateways are small and portable devices with restricted 
hardware, determining thresholds is essential for benchmarking the IoMT 
platform’s performance.

Open-Source Technology and Open Standards: The cost of building IoMT-
enabled medical devices can be seen as one of the downsides or losses of 
the sector. Implementing open-source technologies and standards for IoMT 
devices, like Apache Ignite and Kubernetes, has various advantages, includ-
ing cost savings and simple access to corporate versions of required soft-
ware. To teach devices, open-sourced AI including Google’s TensorFlow 
can be employed. Open-source solutions are simple to use and scale, and 
they offer a cost-effective way to improve the performance of IoMT infra-
structure. Moreover, customers, suppliers, and system integrators will be 
able to deploy compatibility across IoMT platforms if open standards are 
adopted.

High Availability and Observability: Because IoMT devices are components 
of a distributed network, they must be able to connect to a business network 
quickly. Monitoring IoT apps must have a low overhead and function within 
device limits (memory, computing resource, and network connectivity).

Rules of Communication: A thorough understanding of process will aid in 
the design of endpoint behaviour. Every few seconds, gateways and sensors 
provide data and receive commands to deliver new messages. There are 
no standard protocols for establishing communication between IoT applica-
tions and devices in an IoT network. HTTP, AllJoyn, MQTT, XMPP, DDS, 
COAP, IoTivity, AMQP, and other IoT protocols are among them. The com-
munication protocol used is determined by the operational use-case and has 
an influence on an IoT platform’s performance.

1.4 START-UPS

With the rising influence of IoT in the healthcare sector, new start-ups are welcomed 
at a fast pace. In what follows we have tried to throw some light on three of the more 
than 1,300 IoMT start-ups running across the globe [20]:

Healthcare Originals: This U.S.-based startup company deals with smart 
monitors. Smart monitors identify the signs of various illnesses’ assaults 
(asthma, heart attack, epilepsy) prior to their development, allowing the 
wearer to control the situation before it becomes worse. When alarming 
changes are detected, smart monitors automatically send SMS messages 
and alerts to a registered caregiver.

Elfi-Tech: This company brought the idea of self-testing devices to the table. 
Patients may check their blood, urine, and other bodily fluids on demand with 
a surveillance system with self-testing options, which allows them to stay 
within the prescribed limits. The results of the test are instantly obtainable 
in the patient’s app or on the gadget, which is linked to the tester. The mDLS 
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device from Israeli company Elfi-Tech assesses cutaneous blood flow, blood 
velocity, coagulation, vascular health, and relative cardiac output (RCO) non-
invasively in addition to conventional metrics like pulse and mobility.

MedAngel: This Netherlands-based company finds a solution to upper temper-
ature limits. If any drug is harmed by being exposed to temperatures outside 
of its acceptable range, the consequences are severe. Smart sensors keep 
track of the temperature and the environment, alerting the user when some-
thing is about to go critically wrong or if the tablets are already damaged.

1.5 RIVALRY

The competitive face of IoMT market can be segmented into the following three tiers [21].

Tier 1: Players that are well-established corporations with a significant market 
share

Tier 2: Players with fast-growing enterprises
Tier 3: The inexperienced newbies

The rivalry depends on the level of the entrepreneur or businessperson. IoMT market 
distribution under various segments has been discussed in preceding sections. The 
more popular areas will have higher rates of competition. The trust of the public and 
the sceptical nature of the majority to experiment with companies also contribute to 
the difficulties faced by the lowest-tier players and disturbs the scale of fair opportu-
nities. Some of the major tycoons in this business are the following.

• Boston Scientific Corp.
• Johnson & Johnson Services, Inc.
• Cisco
• General Electric Company
• Koniklijke Philips N.V.
• IBM
• Medtronic
• BIOTRONIK
• Siemens Healthineers AG
• Hill-Rom Holdings, Inc. (Welch Allyn)

1.5.1 CoMpanieS and peopLe Contributing to ioMt

Numerous people have made noticeable contributions to the medical technology sec-
tor, giving IoMT the shape it has today and planting the grounds for future advance-
ments in the sector. These include the following.

The Remote Monitoring System: To create a remote monitoring system that 
might provide healthcare, Kaiser Foundation International and Lockheed 
Missiles and Space Company worked together in the 1970s. A  distant 
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location with few medical services was where the pilot programme was put 
into action [22].

Patient Monitoring System: With aid from his close friend Galileo, Santorio 
of Venice published directions for using a spirit thermometer to detect body 
temperature, as well as a pendulum to time pulse rate, back in 1625 [23].

Telehealth: Australia started one of the first radio communication–based 
telemedicine programmes in 1928. Using the telegraph, radio, and aircraft, 
Rev. John Flynn founded the Aerial Medical Service (AMS), which offered 
medical care to remote areas of the country [24].

Telemedicine: Teleradiology was the first type of telemedicine. Despite dis-
tance, telemedicine held the ability to provide rapid access to specialists. 
Any clinic may afford to set up a telemedicine site since it is so inexpensive 
to do so. Regardless of the mental disease, telepsychiatry is the suggested 
treatment [25].

Smartwatch: The first Linux wristwatch was created, developed, and manu-
factured by Steve Mann in 1998 [21]. Some of the best smartwatch brands 
include Mi, Fitbit, Samsung, HONOR, etc.

1.5.2 aWareneSS and truSt

IoMT has undoubtedly an enormous potential and a bright future. However, its 
growth can be hindered or slowed down by the way it is perceived by the pub-
lic. According to a Deloitte survey, 71% of 237 respondents in the IoMT business 
say healthcare providers and doctors are not ready to use data provided by IoMT. 
Furthermore, Cisco (2017) stated that around 75% of IoT initiatives fail, accentuat-
ing that the ‘human aspect’ is the most vital component in project success or failure. 
As a result, our empirical research aims to uncover the key elements driving human 
factors’ (healthcare providers’) doubt and reluctance to IoMT implementation. IoT-
related technologies are gaining traction as breakthrough developments in a variety 
of areas, including healthcare. However, IoMT’s ultimate success is dependent on its 
acceptance by potential users [26, 27].

1.5.3 iMpaCt of the pandeMiC

The demand of IoMT-enabled medical devices skyrocketed during the global chal-
lenge of pandemic. COVID-19 witnessed the breakthrough of the emerging digita-
lization of the healthcare sector, forcing the authorities and public to switch up their 
perspective on IoMT.

The IoMT market has witnessed an upsurge in the investments and profits amidst 
the global pandemic. Onometra, in an article published in India, stated that 48% 
medical devices are IoMT enabled i.e., connected via IoT. Furthermore, this figure is 
estimated only to rise to 68% in the coming years. IoMT has gained quite a popular-
ity in the past two years with its ability to track, test, and trace COVID-19 infections, 
hence proving to be extremely useful and akin to a boon in the dark times [24]. 
Researchers have worked in the field to predict the future of cases and requirement 
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of beds in such pandemics [28], with some solutions using federated learning (FL)-
based unmanned aerial vehicles (UAVs) to carefully observe the situation [29].

1.6 ADVANTAGES AND DISADVANTAGES OF USING IoMT

1.6.1 advantageS

Early Intervention: Key symptoms of a decline in health can be detected up 
early using linked medical devices and sensors that permit remote monitor-
ing, allowing clinicians to administer treatment before patients seek hospi-
talization [30].

Higher Accuracy of Diagnosis: A vital tool for doctors is equipment that can 
continuously monitor crucial health markers in a way that is not possible 
during a few office visits. Data analysis, for example, can help doctors iden-
tify diseases and suggest much more effective methodology by recording 
such things as heart rate, blood pressure, and blood sugar measurements 
across many weeks.

Better Treatment: Smart tablets with nano sensors that activate when con-
sumed are being utilized to monitor internal vitals, including core tempera-
ture and medicine efficacy. An article in The Scientist from 2019 [31] stated 
that the use of smart tablets in tracking the progress of cancer patients’ 
therapy allowed clinicians to determine when patients missed a dose of an 
oral chemotherapy medicine or strived to follow it effectually. This enabled 
the experts to intervene and correct the treatment strategy before any seri-
ous consequences occurred.

Cost-Effectiveness: By enabling remote consultations and treatments, IoMT 
can help patients avoid in-person appointments, which are expensive for 
health institutions to arrange. Practitioners could use remote video moni-
toring to monitor patients after they have been released from the hospital, 
remind them to take their medications on schedule, and identify warn-
ing indications for readmission. Additionally, the prompt transmission of 
patient details to medical personnel enables quicker treatment and progno-
sis, which ultimately results in cost savings.

Lowering the Financial Load on Healthcare Systems: Remote patient 
monitoring (RPM) with IoMT sensors and gadgets can eliminate neces-
sity of  clinical visits and hospitalizations, potentially saving the global 
healthcare industry US$300 billion each year. However, the possibility of 
IoMT to free up space and resources is just as appealing. The adoption 
of RPM technology, via  a one-year study of congenital heart diseases in 
Pennsylvania, resulted in a one-third reduction in hospitalized patients.

1.6.2 diSadvantageS

Security and Privacy: It gets harder to maintain the security of the data that 
IoT devices collect and transmit as they get better and find new applications 
[32]. IoT devices are not always a part of the plan, even if cybersecurity is a 
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primary concern. Attacks on the hardware, network, software, and internet 
must all be prevented, as well as physical manipulation of devices.

Technical Intricacy: IoT devices may appear to be performing simple tasks, 
like adding up swipes at a secured door, but they actually contain a lot 
of complex technology. Furthermore, it is feasible that they will negatively 
affect everything connected to that process or system if they are providing 
essential data to it. It is not a major deal if you count the swipes incorrectly 
at the door, but it might be disastrous if another piece of equipment com-
bines temperature readings with swipe data from the entrance—and fixing 
the problem is not always easy.

Assembling: Protocols and standards of IoT are not currently agreed upon, 
so devices from different manufacturers could be not in sync with current 
technologies. Deployment may be challenging because each one may need 
different hardware connections and configurations.

1.7 CHALLENGES TO IoMT

Any technology comes with some risk, some loose points which must be considered 
in order to achieve the best from that technology [33]. IoMT is no exceptions, follow-
ing are the challenges with needs to be addressed:

Security and Privacy: In 2018, 82% of healthcare businesses faced seri-
ous security events, as per the 2019 HIMSS (Healthcare Information and 
Management Systems Society) Cybersecurity Survey. In spite of the abun-
dance and dispersion of IoMT devices present in the network (usually 15–20 
pieces of medical equipment per bed), healthcare facilities are particularly 
vulnerable because of their reliance on antiquated technologies. According 
to manufacturer General Electric, most MRI (magnetic resonance imaging) 
equipment in hospitals is utilized for at minimum 11  years, while some 
devices are used for over 22  years before being replaced. Furthermore, 
according to KLAS Research, a third of connected medical equipment can-
not be patched, meaning that it is not updated to protect against new vulner-
abilities because its original manufacturer no longer supports it [34].

While a security flaw in any company is significant, an assault on a healthcare facil-
ity has the capacity to affect equipment that saves lives. The U.S. Food and Drug 
Administration (FDA), for example, has recently ordered warnings for pacemakers 
and insulin pumps that have been linked to security concerns. If these vital devices 
are compromised, catastrophic injuries—if not fatalities—may result.

Connectivity: When the risks are as severe as they are in the medical indus-
try, professionals, patients, and employees ought to be able to rely on 100% 
connection all the time. However, recent research under health IT infra-
structures looked at medical/healthcare devices that are connected and 
discovered that 45% of connections fail from the start. Limited network 
bandwidth, insufficient IT employees, or physical obstructions obstructing 
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a wireless signal can all cause these connections to fail. Those probabilities 
are unacceptable in the setting of a healthcare facility.

Human Error Reduction: Despite the fact that healthcare organizations are 
more complex and digital than ever, healthcare IT expenditures and work-
forces are not rising at the same rate, and in some cases are diminishing. 
The 30th annual U.S. Leadership and Workforce Survey from HIMSS finds 
that only 28% of hospitals say they have an acceptable number of employees 
working in health IT. According to the same study, only 37% of participants 
anticipated an increase in IT staff in 2019. As a result, IT directors must 
think about ways to streamline processes and systems while still improving 
overall quality and dependability. Network automation appeals to a lot of 
individuals [35].

1.8 GOVERNMENT INITIATIVES

Government has taken many steps and initiatives in order to promote these technolo-
gies for improvement of the healthcare sector of the country. A few are explained in 
what follows [27].

National Health Policy: The Union Budget 2018 allotted INR  3073  crores 
to the NITI Aayog to establish a digital economy using new technologies 
including AI, IoT, blockchain, and 3D printing to assist these efforts. The 
Ministry of Health and Family Welfare (MoHFW) is the nodal ministry in 
charge of developing and enforcing health and health-tech policies and stan-
dards. In relation to medical equipment, the National Health Policy (NHP) 
2017 favours local medical device manufacture in line with the “Make in 
India” initiative. Medical device regulation should also be strengthened, 
according to the public policy. Because medical equipment accounts for 
more than 70% of all imports into India, the strategy emphasizes the need to 
encourage domestic production. While the NHP 2017 outlines broad aims 
for medical devices, the Medical Device Rules (MDR) 2017, which took 
effect on January 1, 2018, establish medical device–specific laws in India. 
The MDR controls equipment designed for internal or external diagnostic 
use, treatment, mitigation, or prevention of sickness or disorders in humans, 
and it is granted under the Drug and Cosmetics Act 1940. Meanwhile, the 
United Nations praised the Ayushman Bharat initiative for establishing 
excellent health IT infrastructure.

Electronic Health Standards 2016: The EHR Standards were announced in 
2013 and amended in 2016 by the MoHFW in order to provide a consis-
tent standardized system for the generation and management of medical 
records by healthcare providers. The EHR standards’ main goal is to assure 
data semantic and syntactic interoperability across systems. The acceptance 
of a vast array of International Standards Organization (ISO) standards is 
referred to as the EHR standards. It also lays forth criteria for improving the 
functionality, usefulness, and integrity of IT for health in India, as well as 
promoting its wider adoption.
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Strategy to Implement AI: The use of AI in healthcare can help increase 
access to healthcare, especially in rural regions. It is suggested that cer-
tain applications might help India, including AI-driven diagnostics, tailored 
therapy, and early detection of future pandemics. The focus, according to 
the strategy plan, is on the impact of AI paired with robots and IoMT to 
solve healthcare challenges through training and research, early detection, 
diagnosis, decision-making, and therapy.

In this regard, the NITI Aayog is undertaking an effort to create a ‘Cancer Biobank’. 
This will be a pathology picture library with annotations and curation that will be 
utilized for cancer detection and therapy.

1.9 CONCLUSION

IoMT has been witnessing quite a positive response as the healthcare sector, and 
the public has started to be more accepting of it. IoMT has been transforming the 
conventional medical sector to provide a faster and more advanced perspective to the 
present healthcare sector. The continuous technological advancements and public 
belief has helped in the extensive use of IoMT services in the present-day world of 
the pandemic. It served as a boon for the doctors—as well as patients—as it gave way 
to crucial facilities like remote health monitoring systems.

Although IoMT can be perceived as all things good, it still has its disadvantages 
and challenges which are being continuously worked upon to pave the way for the 
bright and essential future of advancement in the medical sector via IoT. All around 
the globe, the governments of several developing and developed countries have been 
trying to provide better medical aid and keep up with the changing times. Hence, 
it becomes important to know about IoMT and understand its current scenario and 
future prospects to enhance the medical facilities of the country—and hence its 
economy and life expectancy.
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2.1 INTRODUCTION

The new deadly spreading respiratory illness coronavirus 2019 (COVID-19) has 
posed the greatest worldwide danger to human health since the 1918 influenza pan-
demic. The use of wearable sensors and Internet of Medical Things (IoMT) in patient 
management during infectious disease epidemics has opened up a flood of possibili-
ties. Until now, there has been a rapid increase in redirected research activities aimed 
at finding a long-term solution to this worldwide challenge [1]. In this digital technol-
ogy era, smart healthcare based on edge computing and IoMT is gaining attraction. 
The growing popularity of wearable gadgets has opened up new possibilities for 
infectious disease prevention. Wearable and implanted body area network devices 
are thus particularly beneficial for continuous patient monitoring [2].

Both caregivers and patients have embraced remote patient monitoring, screening, 
and treatment via telemedicine, which is facilitated by IoMT. Smart gadgets based on 
the Internet of Things (IoT) are gaining traction at a breakneck speed, especially in 
the wake of the worldwide epidemic. However, given the large scope of the problem, 
healthcare is expected to be the most difficult sector for IoMT to address [3]. Remote 
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or self-fitness tracking of various critical capabilities such as coronary heart rate, skin 
temperature, motion tracking, and tracking of contemporary fitness situations, vitamins, 
and rehabilitation of aged or infected patients is significantly going to lead to an increase 
in the average lifespan and a decrease in incidents and death. Within the forecast period 
of 2021–2028, The global market for IoMT is predicted to expand. According to Data 
Bridge Market Research, the market is predicted to grow at a compound annual growth 
rate (CAGR) of 23.0% from 2021–2028, with a total value of USD 1,84,592.31 million, 
the same also shown in the Figure 2.1. The rising demand for real-time healthcare solu-
tions around the globe is driving IoMT software industry forward [3].

2.2 AI- AND IoMT-FUELLED HEALTHCARE INDUSTRY GROWTH

Smart sensors with built-in intelligence are speeding up the development of a con-
nected ecosystem whereby data are collected and sent to centralised storage for fur-
ther processing and necessary action, which could pave the way for distant or at-home 
healthcare to become a popular option [4]. Wearable and electronic skin sensors that 
spread all over the body area network somehow improve the management of chronic 
disease, with improvements in sensor sensitivity and communication capability that 
allows the system to monitor the patient’s activity in real time. Such rising demand 
for remote monitoring of patient’s health requires a smart ecosystem that contains 
smartphones, applications, wearable gadgets, and improved infrastructure that paves 

FIGURE 2.1 Trends to be found in different regions for IoMT in the upcoming years.
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the foundation for connected smart healthcare facilities. AI, sensors, blockchain, and 
Big Data analytics are critical IoMT technologies since they benefit both consumers 
and establishments [5].

Personalised medication is possible with the help of connected IoMT infra-
structure that allows medical staff or doctor to construct individualised treatments 
depending on the medical needs and conditions of each patient, as the IoMT-based 
system generally follows the loop-based feedback system to improve the medication 
based on the knowledge of past medication on same disease.

Different technologies playing vital roles in making smart connected hospitals a 
reality include the following (see Figure 2.2).

• Big Data Analytics: Smart hospitals can use analytics to gather actionable 
insights and apply digital prescriptive maintenance to keep medical equip-
ment in good working order. Big Data analytics can be used to investigate 
electronic health records (EHRs) and hospital networks, as well as to regu-
late data keeping the privacy of the patients in the public domain for further 
research that will reduce the re-admissions of same patients [6].

• Blockchain: Current approaches for sharing medical records and patient 
health patterns in some specific populations can be developed using block-
chain technology. A blockchain network allows exchange of medical records 
among multiple hospitals and insurance company seamlessly keeping pri-
vacy of the sensitive information with the help of InterPlanetary File System 
(IPFS) protocol [7, 8]. Blockchain can also be used to stored the vaccination 
details of the patients, along with their personal information to reduce the 
hoarding of vaccination [9, 10].

FIGURE 2.2 Blockchain and AI-based IoMT healthcare ecosystem.

The main aim that IoMT focuses on is to remove needless data from the medical system so that doctors 
may concentrate on what they do best, diagnosing as well as treating patients. Because it is a technological 
evolution, developers must give standardised testing standards to persuade medical establishments of its 
safety and efficacy, as well as to realise its vast potential.
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• Artificial Intelligence (AI): This technology takes the huge statistics gen-
erated by IoT and analyses them using powerful algorithms to draw infer-
ences and predict medical diagnoses. IoT and AI are integrated to provide 
smart healthcare facility [11].

2.3 KEY TYPES OF IoMT DEVICES

The World Health Organization reports that “There are an estimated 2 million dif-
ferent kinds of medical devices on the world market, divided into over 7000 generic 
device classes”; these devices exist in a range of shapes and sizes, ranging from 
house monitoring devices to pulse oximeters and insulin pumps [12]. The Figure 2.3 
show the different categories apply to all of these solutions.

• Point-of-Care Devices: A  wide range of diagnostic equipment, known 
as point-of-care devices, is designed to produce results without laboratory 
environment. They are frequently used by doctors or patients home to anal-
yse the samples of biological fluids such as skin cells, blood and saliva.

• Smart Pills: Also known as intelligent drugs or electronic medications, 
smart pills are miniature electronic devices with ingestible sensors that are 

FIGURE 2.3 Types of IoMT devices.
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placed in medical capsules. Smart tablets can, among other things, monitor 
vital health indicators such as temperature, blood pressure, etc. These smart 
pills are administered to a precise region for imaging for accurate gastroin-
testinal illnesses.

• Personal Emergency Response Systems: Personal emergency response 
systems (PERS) for individuals, often known as medical warning systems, 
are medical devices that use a help button to summon assistance in the event 
of an emergency. People who have restricted mobility and require emer-
gency medical assistance, such as the elderly, can benefit from PERS.

• Clinical-Scale Wearables: Clinical wearables are IoT devices and plat-
forms that have been verified for use of administrative and health bodies 
such as the U.S. Food and Drug Administration (FDA). This group of gad-
gets is commonly used at home or in clinics in response to a physician’s 
prescription or suggestion. Their primary objective is to alleviate chronic 
illnesses and afflictions.

• Consumer-Scale Wearables: Consumer-scale wearables of several types 
are used to track key markers of personal health and body fitness. These have 
built-in sensors which collect and transmit data whenever a user engages in 
physical activity. Although such devices may be used for specialised health 
purposes in some cases, the majority of them are not authorised by medical 
officials.

• In-Hospital Devices and Monitors: Devices and monitors used in hos-
pitals range from big instruments such as MRI or CT scanners to smart 
devices that help with monitoring patients, personnel and supply manage-
ment, and more.

2.4  OVERVIEW OF HEALTHCARE INFORMATICS AND 
MANAGING EHRS IN HEALTH INFORMATICS

Health informatics is an interdisciplinary domain that focuses on use of technology 
to improve the healthcare facility, keeping the objective to develop standards and 
setup clinical guideline to enhance the management of EHRs among different enti-
ties. The ecosystem that works together is comprised of doctors, nurses, hospitals, 
and day care centres to provide better services. The information among the differ-
ent stakeholders must be shared securely and smoothly. The connected knowledge 
among different stakeholders must be aggregated to provide better healthcare to each 
patient. Health analytics professionals ensure how efficiently this connected stake-
holders communicate with other for better efficiency of the overall system [13].

The global healthcare informatics (HI) market was worth USD 18.6 billion in 2019 
and is predicted to rise to USD 32.7 billion by the end of 2026, with a CAGR of 8.4% 
from 2020–2026 [14] (see Figure 2.4). An EHR is a collection of medical records cre-
ated during clinical encounters and occurrences. With the proliferation of self-care and 
homecare devices and systems, valuable healthcare data is now created 24 hours a day, 
seven days a week, and has life-long clinical importance. These are designed to share 
data with other healthcare providers, such as laboratories and specialists, so they have 
data from all of the professionals involved in the patient’s treatment.
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All members of the team have instant access to the most up-to-date information 
with fully functional EHRs, enabling more coordinated, patient-centred treatment.

Benefits of EHRs include the following.

• Even if the patient is unconscious, the primary care physician’s information 
alerts the emergency room doctor to the patient’s life-threatening allergy, 
allowing care to be tailored accordingly.

• The lab results from last week are already in the record, so specialists can 
get the information they need without having to do further tests.

• Patients may access their own data and see a year’s worth of lab results, 
which can inspire them to take their prescriptions and maintain the lifestyle 
adjustments that have improved their numbers.

Ways of managing EHRs include the following.

• At all times, guaranteeing U.S. Health Insurance Portability and 
Accountability Act (HIPAA) compliance.

• Developing a data governance plan.
• Leveraging technology to simplify EHR data collection.
• Transferring data to a centralised cloud repository.
• Investing in customer relationship management in healthcare.

2.5 IMPROVING EHRS WITH AI

While AI is most commonly utilised in healthcare operations to enhance data 
search and retrieval, as well as to adapt treatment suggestions, it has the potential 

FIGURE 2.4 Trends to be found in different regions for HI in the upcoming years.
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FIGURE 2.5 Growth of AI in healthcare in recent years.

to make EHRs more user-friendly, as well. Because EHRs are complex as well as 
difficult to use, and are commonly blamed for leading to physician fatigue, this 
is an important goal. At the moment, customising EHRs to make them easier for 
doctors is mostly a manual effort, and the systems’ rigidity is a huge roadblock to 
progression. Machine learning (ML), in particular, has the potential to enable EHR 
systems adjust according to users’ desires in real time, resulting in better health-
care results and a better quality of life for doctors [15]. Figure 2.5 shows the growth 
of AI in recent year.

EHR AI capabilities are now limited, but we should expect them to dramatically 
increase in the future. They include the following.

• Human “Abstractors”: These can supply us with health review pro-
vider notes and extract structured data, using AI to assist them recognise 
areas of focus and discover new information, allowing them to work more 
efficiently.

• Algorithms for Diagnosis and/or Prediction: These are working along 
with network delivery models to develop Big Data prediction algorithms 
to alert clinicians about high-risk illnesses like sepsis and heart failure. To 
give decision help, each of these might be integrated into EHRs.

• Data Entry and Clinical Documentation: Natural language processing 
(NLP) captures clinical notes, allowing physicians to concentrate on their 
patients rather than keyboards and displays.

• Clinical Decision-Making Assistance: Previously, decision support was 
universal and rule-based, suggesting treatment alternatives. ML systems 
that learn from new data are being released by vendors today, allowing for 
more personalised care.

To make their systems easier to use, mainstream EHR manufacturers have started 
incorporating the AI, ML, and NLP capabilities for better clinical decision, interac-
tion with telemedicine and image analysis are all being used by businesses. The 
result will be integrated interfaces, access to data stored in the systems, and a variety 
of possible advantages.
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2.6  MACHINE LEARNING USE-CASES AND 
APPLICATIONS IN HEALTHCARE

In healthcare informatics, ML provides powerful analytical capabilities. As a result, 
the quality of the electronic information offered to clinicians is improving dramati-
cally. Doctors can readily obtain parameters such as the risk of a heart attack, renal 
failure, and hardening of the arteries. Patients’ indicators are derived from a range 
of blood pressure readings, ethnicity, family history, and the findings of their most 
recent medical examinations. Following that, crucial clinical insights are collected 
that helps doctors and care takes to formulate a care-plan to provide better healthcare 
facilities. Possible outcomes assist patients in estimating the cost of the surgery, mak-
ing therapy more reasonable [16].

Patients’ health results are unquestionably improved when patients are more 
involved. ML can provide automated message warnings as well as appropriate tar-
geted information that prompts action at critical times. In general, ML can person-
alise and improve the therapy process in a number of ways.

Following are some of the aspects where ML can be most useful.

• Diagnosis and Disease Identification: This is a wonderful place to start 
because ML is excellent at diagnosis. Many cancers and hereditary disor-
ders are difficult to identify, but ML could help in the early stages of many 
of them.

• Improvement in Health Records: Vector machines and ML-based optical 
character recognition (OCR) approaches could be used to classify records.

• Identifying the Most Effective Treatments: ML is also useful in the early 
stages of drug development for patients. Companies now are using AI-based 
technology to try to develop personalised drug combinations to cure acute 
myeloid leukaemia (AML).

• Making Diagnoses via Analysis of Medical Images: With its InnerEye 
project, Microsoft is transforming healthcare data analysis. This firm analy-
ses the images to process medical pictures in order to establish a diagnosis. 
ML will become more efficient in the near future, allowing for the analysis 
of even more data points in order to establish an automatic diagnosis.

• Surgery with AI: This is likely the most important use of ML, and it is 
expected to become more widespread in the near future.

2.7  DEEP LEARNING USE-CASES AND APPLICATIONS  
IN HEALTHCARE

Deep learning models’ computer power has enabled fast, accurate, and efficient 
healthcare operations. Deep learning networks are revolutionising patient care, and 
they play a critical role in clinical practise for health systems. The most often utilised 
deep learning techniques in healthcare include computer vision, NLP, and reinforce-
ment learning.

Medical practitioners and researchers are using deep learning to uncover hid-
den opportunities in data and better serve the healthcare business. Deep learning in 
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healthcare enables clinicians to precisely analyse any ailment and effectively treat it, 
resulting in improved medical judgements [17].

Some of the aspects where deep learning can be most useful:

• Healthcare Data Analytics: Deep learning models can assess structured 
and unstructured data in EHRs—such as clinical notes, laboratory test 
results, diagnoses, and prescriptions—at lightning speed and with the high-
est level of accuracy. Smartphones and wearable devices also provide vital 
lifestyle information. They have the ability to convert data by monitoring 
medical risk variables for deep learning models utilising mobile apps.

• Personalised Medical Treatments: By evaluating patients’ medical histo-
ries, symptoms, and tests, deep learning systems enable healthcare compa-
nies to provide individualised patient care. NLP extracts useful information 
from free-text medical data for the most common medical treatments.

• Auditing Prescriptions: Deep learning models can audit prescriptions 
against patient health information to discover and fix probable diagnostic 
errors or prescription errors.

• Fraud Detection: Deep learning systems also detect medical insurance 
fraud claims by examining fraudulent behaviours and health data from 
a variety of sources, including claims history, hospital related data, and 
patient characteristics.

• Genomics Analysis: Deep learning models improve the interpretability 
of biological data and provide a better understanding of it. Deep learning 
models’ complex data analysis capabilities aid scientists in their research 
into genetic variation interpretation and genome-based medicinal devel-
opment. Convolutional neural networks (CNNs) are widely used and allow 
scientists to extract properties from DNA sequence windows of a defined 
size.

• Mental Health Research: Researchers are using deep learning models to 
improve clinical practise in mental health. In continuing academic stud-
ies, deep neural networks, for example, are being utilised to understand 
better the effects of schizophrenia and other ailments on the brain. The 
researchers claim that trained deep learning models outperform ordinary 
ML models in a variety of areas. Deep learning algorithms, for example, 
can be taught to recognise important brain biomarkers.1.8. Challenges in 
IoMT.

Before widespread adoption of IoMT, various challenges and implications must be 
addressed, including confidentiality of information, information management, scal-
ing and upgrading, law, compatibility, and cost effectiveness.

Some of these challenges are the following (see Figure 2.6).

• Privacy and Security of Data: One of the main issues and concerns in 
IoMT applications is ensuring adequate internet security within clinical 
monitoring devices. The huge volume of sensitive patient health data shared 
across systems poses a security challenge that has yet to be overcome.
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• Data Management: Data management is the ability to acquire, combine, 
regulate, and maintain the data flow of information. Data filtering techniques 
such as data anonymisation, data integration, and data synchronisation are 
employed to provide only the information required by the application while 
concealing the rest.

• Scalability, Upgradation, Regulations, and Standardisation: Scalability 
refers to a medical device’s ability to respond to changes in the climate. As 
a result, a flexible and scalable system is one that can maintain consistency 
among connected devices while performing efficiently and quickly using 
available resources. A highly scalable system is more usable now and in 
the future. As IoMT technology develops and evolves, the need for regu-
lar updating of older devices has grown. This is still a struggle in today’s 
fast-paced world. EMR recording IoMT devices must also be validated. To 
accomplish this, researchers, organisations, and standardising bodies can 
collaborate.

• Interoperability: Different sectors have different criteria for supporting 
their apps. The variability of devices and data derived from various sources, 
largely owing to interoperator variance, also limits the scale of utilisation. 
Data exchange across several IoMT systems with varying features makes 
interoperability difficult. As a result, consistent interfaces are essential, par-
ticularly in programmes that allow cross-organisational cross-systems. The 
exchange of a wide range of data generates a vast volume of data in the 
IoMT world, and the procedures involved in handling that data, as well as 

FIGURE 2.6 Challenges in IoMT.
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controlling networked devices in an interoperable manner while consider-
ing energy constraints, remain major concerns.

• Cost Efficacy: In COVID-19 times, financial stress has increased to reach 
many individuals, enterprises, and even organisations, limiting widespread 
adoption of IoMT. As a result, cost efficacy becomes a major hurdle that 
demands careful consideration. The cost of the IoMT system’s creation, 
installation, and use must be reasonable.

• Power Consumption: Another stumbling block to widespread use of IoMT 
devices is their high power consumption. The majority of IoMT devices 
are powered by batteries, and once a sensor is mounted, it is necessary to 
replace the batteries on a regular basis or utilise a high-power battery. To 
help address the global energy issue, the current focus should be on develop-
ing sustainable healthcare equipment that can generate their own electricity 
or merging the IoMT system with renewable energy systems.

• Environmental Impact: To fulfil functions, the IoMT systems include a vari-
ety of incorporated biological sensors. These are created by combining mul-
tiple semiconductors that contain earth metals and other harmful substances 
that could harm the environment. As a result, regulatory agencies oversee and 
regulate the sensor manufacturing process. More research into the design and 
manufacture of sensors made of biodegradable materials is needed.

2.8  CHALLENGES IN THE INTEGRATION OF  
TECHNOLOGIES WITH IoMT

The integration of technologies with IoMT—even with advancements—is still a 
challenge in today’s times. Some result in the increase of cost beyond the expected 
scale; others are not yet suitable enough for scaling IoMT at a large pace [18, 19].

The challenges faced by each technology during the integration with IoMT are 
as follows.

Blockchain Challenges

Blockchain technology is used to provide security to the data for the IoMT 
domain. However, because to the opposing requirements of these two tech-
nologies, combining them is difficult and creates a number of obstacles, 
including the following.
• Processing: Blockchain mining require intensive computing and high 

energy usage, which resource-constrained IoMT devices cannot afford.
• Storage: In little time, IoMT devices generate a huge amount of data. 

This data must be analysed and stored in a secure manner on blockchain 
to maintain their integrity. The cost of storing the data on blockchain is 
very high. This huge data from IoMT devices create unnecessary costly 
ecosystem, which is not feasible.

• Mobility: Blockchain was designed to have stable network topology. 
Medical equipment devices that are implanted or worn, on the other 
hand, are continually moving and modifying the topology.
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• Real Time: In general, IoMT applications are mission-critical and 
require real-time updates and quick reaction. Creation of blocks, on the 
other hand, takes time. Every ten minutes, a 1-MB block is created in 
Bitcoin. It is difficult to group these data streams into blocks while main-
taining real-time requirements.

• Traffic Overhead: The constant communication between blockchain 
nodes is a substantial source of overhead traffic. IoMT devices with lim-
ited bandwidth cannot afford this.

Big Data Challenges

The challenges existing between Big Data and IoMT include the following [20].
• Storage of Data and Its Management: The data generated rapidly from 

IoMT devices is rapidly expanding. As the amount of data is generated is 
unlimited, it becomes expensive in terms of time to access the data. Managing 
such data and allowing stakeholders to update on time becomes critical.

• Data Visualisation: Systems receive data from heterogenous sources, 
and it is important to analyse this structured and semi-structured data 
which is in multiple formats. It is very difficult to find out facts by visu-
alising data in the form of graphs and charts directly, so in order to take 
precise measurements and make real-time decisions, we require better 
data visualisation techniques to enhance the efficiency of the system.

• Confidentiality and Privacy: Data generated from different IoMT 
devices requires complete privacy, as it contains sensitive information 
about the patients and their diagnosis reports. We therefore cannot store 
data in plan format and share the same without security.

• Integrity: IoMT devices and other sensors in the ecosystem which 
receive data share it with other IoMT devices and should guarantee no 
data loss. Sometimes the data is analysed and then forwarded to other 
edge computing devices, so devices must work in cooperation and ensure 
integrity of the data; i.e., it should not change in between communication.

• Power Requirements: The continuous sensing, receiving, and sending 
of data from one node to another requires processing which requires suf-
ficient hardware and uninterrupted power supply. As they are small in 
size, IoMT devices require efficient mechanisms and power supplies to 
perform such heavy tasks.

• Device Security: Storing the sensitive information of patients requires mea-
sures to protect that information during processing and transmission. Devices 
require a mechanism to defend against harmful and unauthorised use.

AI with IoMT: Key Challenges

The challenges existing between AI and IoMT include the following.
• Provability: AI-enabled organisations are unable to demonstrate plainly 

why and what they do. It’s no surprise that AI is a “black box.” People are 
sceptical about it since they do not understand how it makes decisions.
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• Information Security and Protection: To learn and make intelligent 
decisions, most AI systems rely on massive amounts of data. In order 
to learn and improve, AI frameworks consume data which is frequently 
sensitive and personal in nature. This renders it helpless in the face of 
complex concerns such as data loss and fraud.

• Genetic Susceptibility Calculation: An inherent problem with AI 
frameworks is that they are only as good—or as bad—as the data they 
are based on. Bad news is typically associated with racial, sex, or ethnic 
prejudices. Special computations are used to determine who is required 
to meet with a prospective employee, who has been granted bail, or 
whose advance has been approved. Such predispositions will most likely 
be emphasised more in the future, and a large number of AI frameworks 
will continue to be prepared to use bad data. As a result, it is critical to 
prepare these frameworks with unprejudiced data and to produce calcu-
lations that can be successfully understood.

• Information Shortage: The facts show that associations currently have 
access to more information than they have in the past. In any case, data-
sets that are critical for AI applications to learn from are rare. The most 
powerful AI machines are those that have been programmed to learn in 
a controlled manner. This preparation necessitates tagged data, which is 
data that has been sorted to make it ingestible by computers. Information 
with a unique identifier is not accessible. In the not-too-distant future, 
the computerised manufacturing of increasingly complex computations, 
which is mostly driven by profound learning, will only aggravate the 
problem.

• Algorithm Transparency: Transparent algorithms are essential not 
simply to comply with tight laws associated to drug development, and 
people also need to understand how algorithms create findings in general.

• Electronic Records Optimisation: There is still a lot of unstructured 
data scattered across many databases that has to be organised. When the 
scenario improves, personal treatment solutions will improve, as well.

2.9 EXPLAINABLE AI: ONE STEP AHEAD OF AI

AI is now omnipresent, with product and movie suggestions on Netflix and Amazon, 
as well as friend recommendations on Facebook and tailored advertisements on 
search result sites, and we have grown accustomed to AI making decisions for us in 
our daily lives. However, when making life-altering decisions like an illness diagno-
sis, it is crucial to understand why you are making that decision. The importance of 
describing AI outputs should be feasible and explainable at this point [21]. Figure 2.7 
trends of XAI in recent and upcoming years.

However, despite their apparent effectiveness in terms of results and forecasts, 
AI algorithms—particularly ML algorithms—suffer from transparency, making it 
challenging to get clarity into their underlying mechanisms of operation. This com-
plicates the dilemma, because putting important decisions in the hands of a system 
that is unable to explain itself carries clear risks.
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FIGURE 2.8 Market Revenue of XAI in recent and upcoming years.

FIGURE 2.7 Trends to be found in different regions for XAI in recent and upcoming years.

The global explainable AI (XAI) market is expected to grow at a CAGR of 18.4% 
from 2022–2030, from USD 4.4 billion in 2021 to USD 21.0 billion in 2030 (see 
Figure 2.8).

XAI has a number of advantages, including improved client retention and inven-
tory management. Understanding a model’s flaws is crucial to maximising its per-
formance. It is easier to improve models when you have a better grasp of why they 
failed. XAI is a useful tool for detecting system problems and removing biases in 
data, resulting in enhanced consumer trust. XAI aids in the verification of predic-
tions so that models may be fine-tuned and new insights can be gained to solve the 
situation at hand.

2.10 APPLICATIONS OF XAI

The potential benefit of choosing an AI-based healthcare system is always better, 
keeping in consideration that selecting untrustworthy AI is even more dangerous. 
To improve machine-based decisions, you need to know how and on what basis the 
decision was made; i.e., to improve the performance and develop more trust in AI 
which needs decisions to be explainable, as actions taken based on those decisions 
may severely affect patients. It will be more beneficial if AI makes prediction with 
proper explanation to the conclusion always help to verify and check the accuracy of 
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those decisions [22]. Based on ML algorithms, we predict the requirement of critical 
care unit such as bed and ventilators [23].

Major areas where XAI can be used in healthcare include the following.

• Allergy diagnosis
• Lung cancer diagnosis
• Traumatic brain injury (TBI) diagnosis
• Colorectal cancer diagnosis
• Chronic wound diagnosis
• Clinical diagnosis

Other areas where XAI can be employed include the following.

• Banking and Finance: Banking regulators like to examine overall busi-
ness volumes as well as the number of questionable actions recorded. Any 
ratio that deviates from the industry standard will be investigated by regula-
tors. In such circumstances, XAI can assist in the reduction of false posi-
tives. However, data misuse is reduced due awareness in many countries 
by introducing data policies and enforcing it as regulation, which includes 
Article 22 of the European Union’s General Data Protection Regulation 
(GDPR) on restrictions on fully automated decision making and Articles 
13–15 on the right to seek explanations for decisions made (though not 
explicitly stated). XAI systems [24] that are capable of producing excellent 
results and delivering clear explanations will gain adequate trust and satisfy 
regulatory standards, resulting in increased use of AI solutions in the sector. 
Cancellation of loans, increasing premium costs for healthcare insurance, 
and stock market predictions all have large financial risks. Therefore, XAI 
will solve the problem by providing explanation to the decisions made.

• Defence: XAI becomes significant in military activities because lethal 
autonomous weapon systems (LAWS) can inflict less damage if they can 
distinguish between a civilian and a combatant.

• Automobiles: Autonomous driving has been a developing subject and is the 
automotive industry’s future. Self-driving autos or driverless cars are excit-
ing as long as no mistakes are made [25]. In this high-stakes AI application, 
one wrong action will cost one or more lives. Explainability is important to 
understand and analyse a system’s limits and capabilities before moving to 
development phase [26]. Understanding the weaknesses of driverless vehi-
cle technology in the field when utilised by customers is critical in order to 
assess, explain, and rectify the issues as quickly as possible. To some extent, 
parking assistance is an important feature and voice assistants are relatively 
low-risk, whereas brake assistance and self-driving become critical—so in 
such cases, XAI will identify and correct the biasness in the system.

• Systems of Justice: In developed countries, AI- and ML-based systems 
are increasingly being used in decision-making process of any legal matter. 
ProPublica, a non-profitable and independent newsroom that produces inves-
tigative journalism, recently documented bias towards a single community by 
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reliving serial offender on payroll on repeat and multiple offence that create 
an unpleasant effect on society as well as reduces trust in higher authority; 
that is why fairness is required to protect individual rights [27].

2.11 CONCLUSION

In this chapter, the healthcare framework utilities and their applications were imple-
mented using AI techniques. Various AI-based techniques were discussed and utilised 
for the framework of the healthcare system. The case studies of the healthcare- 
based scenarios were undertaken and have been solved using ML techniques. The 
real-time healthcare operations and patient monitoring with necessary actions were 
automated using the ML and deep learning techniques. The chapter concluded with 
the utility of XAI for the IoMT-based healthcare system. The detailed illustration 
of the case studies and their learning were discussed briefly. For future work, the 
detailed analysis with Quality of Service (QoS) in IoMT has to be used and identi-
fied using the advanced AI techniques for the healthcare systems. Also, the targets 
have to be achieved for fog computing and edge computing challenges with respect 
to medical IoMT healthcare systems.
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3.1 INTRODUCTION

In recent years, portable medical devices and e-health–based applications have received 
huge popularity mainly due to the facts that they are inexpensive and adequately avail-
able, and because they produce quality data for their pricing [1]. Such trends are due to 
high modification and developments seen in health-based devices of Internet of Medical 
Things (IoMT). Even though such devices have evolved to show great performance at 
such a small scale and compact bodies, wearables like smartwatches have attracted much 
more attention due to their simplicity, rapidly evolving efficiency, and portability. In the 
recent past, people used to only use external devices for checking their sugar levels, blood 
pressure, etc. Such devices were not connected to any internet services in any manner, nor 
did not they have to store any data—their purpose ended after displaying the data to the 
user, and when data become huge we need systematic way to access those records [2, 3]. 
Fast forward to today’s time, and we have reached a phase when all the above mentioned 
devices and applications can do much more than a single task and they are connected 
to the internet for storage, exchange, and monitoring of data without the intervention of 
humans. Due to such developments, IoMT-based devices are prone to attacks, such as 
attacks on databases which can result in loss of data, attacks on the cloud server which 
can delay the processing of information and much more, direct attacks on the device 
such as denial of service (DoS) attacks which can even result in inaccessibility. Such 
vulnerabilities can cause major problems, as medical data are confidential and need to be 
protected which are vital for a person’s well-being. Apart from devices, there are plenty 
of IoMT-based applications (standalone applications or applications that enable connec-
tion of IoMT devices to mobile phones) [4]. One such platform is Ubiquitous Monitoring 
Environment for Wearable and Implantable Sensors, also known as UbiMon, which is 
an online platform which monitors, processes, analyzes, and stores data from implanted 
sensors in the body of the patient using cloud services. Another such platform that utilizes 
cloud services is Biokin, where processing is done using the information from different 
sensor nodes implanted in different parts of the body [5]. Security issues are faced by 
these healthcare devices are not only from hackers, but also corporations that sell such 
devices. This is where federated learning plays a major role which we will discuss in the 
later sections [6, 7]. Table 3.1 presents the comparative analysis of existing state-of-the 
art approaches in the field of IoMT and its related privacy and security issues. Major 
technologies used in IoMT are the following.

 1. Wi-Fi
 2. Cloud computing
 3. Zigbee
 4. Bluetooth
 5. Radio frequency identification (RFID)
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 6. Wireless sensor networks
 7. Global positioning systems

We will be discussing the previously mentioned technology later. The following are 
a few areas where such IoMT devices causes great concern.

 1. Data Integrity Issues: The accuracy of data throughout its life cycle. Data 
quality can be another term coined for data integrity.

 2. Data Storage Issues: Issues regarding safety considering the database that 
stores the medical/other personal records.

 3. Processing Power Issues: Accuracy and efficiency of computing power—
can be the size of the cache or the time cycles that affect them.

 4. Privacy Challenges: Data vulnerability is high, which is of great concern 
as these are confidential data.

 5. Security: Due to lack of security for IoMT devices, they are still vulnerable 
to many attacks.

(Continued)

TABLE 3.1
Comparative Analysis of Existing State-of-The Art Approach

References Paper Title Methodology Used Limitation

[10] IoMT Security: 
SHA3-512, AES-256, 
RSA and LSB 
Steganography

SHA-512 algorithm
AES-256 algorithm
RSA algorithm
LSB steganography 
algorithm

Not implementable on all IoMT 
devices with varying 
specifications

[9] Ubiquitous Monitoring 
Environment for 
Wearable and 

Implantable Sensors

Wireless communication
Time division Multiple 
access

Less secure
Less stability in biosensor 
materials

More effort is required for 
network and spectrum planning 
for TDMA

[20] Research and Analysis of 
Denial of Service 
Performance based on 
Service-Oriented 
Architecture

Extensible markup 
language

Service-oriented architecture
Simple Object Access 
Protocol

DoS Attack

DoS attack based on web service 
depletes the system’s resources

[11] Analysis of Security and 
Privacy Challenges in 
Internet of Things

Advanced Encryption 
Standard (AES)

Secure Hash Algorithm 
256 (SHA 256)

Redundancy algorithm

Complex software required for 
AES implementation; algebraic 
structure is simple

[8] Cloud Enabled Solution 
for Privacy Concerns in 
Internet of Medical 
Things

Cloud-enabled framework
AES algorithm
ABE algorithm
PDP algorithm

To encrypt data, the data owner 
must utilize the public keys of 
all authorized users for 
attribute-based encryption
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References Paper Title Methodology Used Limitation
[3] Considerations Towards 

Security and Privacy in 
Internet of Things Based 
E-Health Applications

Multi-agent architecture, 
Scala programming 
language, Jena 
Framework, Fuseki 
Database Server

Limited predictability, 
understandability, and control in 
multi-agent architecture

[12] Security and Privacy for 
IoMT-Enabled 
Healthcare Systems: 
A Survey

Elliptic curve 
cryptography, proxy-
based protection, IoMT 
security assessment 
framework

The ECC algorithm is more 
sophisticated and difficult to 
implement than RSA, so there 
is a higher risk of 
implementation mistakes. 
Proxy-based protection not 
compatible with all networks

[27] Towards Federated 
Learning at scale: 
System Design

Cloud-based distributed 
service, pace steering, 
actor programming 
model

Actors only process a single 
message at a time and sequential 
order is not carried out.

Federated learning faces few 
security threats (poisonal or 
adversarial attacks)

[30] Privacy-Preserving 
Federated Learning for 
Internet of Medical 
Things under Edge 
Computing

FL-based system
Edge computing 
Pseudo-random number 
generation, Diffie–
Hellman key exchange

Federated learning faces few 
security threats (poisonal or 
adversarial attacks)

Additional cost for data storage 
in edge devices

Security risk is present in local 
devices in edge computing

3.2 ADVANCED TECHNOLOGIES USED IN IoMT DEVICES

Let us discuss a few other advanced technologies that come under IoMT to get a 
clearer idea of the working and the overall structure.

3.2.1  ubiMon (ubiquitouS Monitoring environMent 
for WearabLe and iMpLantabLe SenSorS)

WSN is an innovation that can be applied in sizable variety of sectors in the tech-
nologies used in IoMT devices. This wireless network was created for the purpose of 
detecting, locating, localizing, observing, or tracking users. The aim of having this 
wireless technology for sensors that are embedded in the wearable health devices is 
for monitoring the users health levels at a fairly standard (normal) health stage so that 
any malformation that may occur in the future can be easily detected [17]. They can 
be mainly used for post-surgical care of minimal access surgery.

The proposed wireless (distributed) system consists of mainly of the following 
five elements (see Figure 3.1).

TABLE 3.1 (Continued)
Comparative Analysis of Existing State-of-The Art Approach
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FIGURE 3.1 UbiMon system diagram.

• BSN node
• Local processing unit
• Central server
• Patient database
• Workstation

 1. BSN Node: BSN node is a mini wireless intelligent module to monitor the 
patients. Each node is equipped with a embedded biosensor, such as ECG, 
oxygen saturation, or temperature indicator.

 2. Local Processing Unit: The main purpose of the local processing unit 
(LPU) is to accumulate all the data that is collected by the BSN node and 
transmit it. LPUs can also detect irregularities and give warnings to the 
users. They can be any portable device and the units also provide rout-
ing functionalities between the previously mentioned nodes and the central 
server through a Bluetooth connection or other methods (such as a wireless 
local area network [LAN]), depending on the range of transmission.

 3. Central Server: The purpose of the central server is to transfer all the data 
collected in the local processing unit and to load them into the user database 
so that the system can run an analysis in the trend of the health level of the 
user. Through this analysis, the server is able to detect any irregularity in an 
earlier stage itself.

 4. Patient Database: The patient database is for the storage of data which will 
be fed continuously.
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 5. Workstation: These are the end devices such as wearables or desktop com-
puters which enable health workers to run an analysis on the patient using 
the retrieved records. The workstations achieve both live health tracking, 
which provides the current health status, as well as the long-term health 
record of the patient.

3.2.1.1 Emergency Response Systems
3.2.1.1.1 Personal Emergency Response System
Nowadays, due to the increase in the population, access to immediate emergency 
services has become very difficult and challenging. In order to solve this problem, 
personal emergency response system (PERS) has been introduced which allows one 
to have timely access to emergency services. This system consists of the following 
parts:

 1. A transmitter which acts as a personal help button (PHB)
 2. A console which is linked to your phone
 3. An emergency monitoring center which analyzes data from different sensors

Help buttons are feather-light electromechanical devices which are much more 
comfortable and handy than a phone. During the time of emergency, you can sim-
ply use the help button which is present on the console or the transmitter. As soon 
as you press the help button, it immediately directs you to the emergency monitor-
ing system. The system will ask you how you are and you need to respond with 
what kind of help you need. Even if it is a false alarm, the monitoring center will 
make sure you get or you are provided with the service you need. It is the same 
case when you are not able to respond to the monitoring center after pressing the 
help button.

3.2.1.2 Benefits of PERS
• It is easy to use because one just has to simply press the help button during 

the need of emergency service
• It is relatively cheap and it is affordable to the general public
• It does not require any kind of charging because these are battery-powered 

devices
• It works effectively within a good amount of range
• It ensures your safety when you are living alone in your home

3.2.1.3 Limitations of PERS
• The monitoring fee is charged each month
• It is limited to a fixed range

3.2.2 MperS (MobiLe perSonaL eMergenCy reSponSe SySteM)

These are medical alert gadgets that allow people to be monitored about their health 
remotely. They are two-way communication devices which provide protection with 
the touch of a simple button. This is an ideal device for people becoming aged and 
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FIGURE 3.2 Mobile PERS device.

Source: www.towne.services/towne-monitoring/mpers-device/

for those living alone in their homes independently, and for people traveling around 
the world.

MPERS was created to the number of people visiting hospitals and also helps in 
promoting health at home with a simple button press (see Figure 3.2).

3.2.2.1 Benefits of MPERS
• It is water resistant
• It has a GPS which enables location tracking
• This device ensures one’s safety when living alone in one’s home.
• It is a two-way communication service
• It provides a peace of mind
• It is wireless

3.2.2.2 Limitations of MPERS
• It requires charging every two or three days
• Battery life is low
• There are instances when the GPS do not show the accurate location of the 

wearer

3.3 IoMT DEVICES

3.3.1 SurgiCaL robotS

Advancements in technology have resulted in the integration of robots that are 
designed precisely using high-end technology into the field of medical science. The 

http://www.towne.services
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purpose of such enhanced robots are to ease the work of humans, along with detec-
tion of minor errors that go unnoticed by humans. This is where a special domain or 
sector of robots called surgical robots is introduced. They are much more enhanced 
in providing services and are created using such precision to reduce the errors. Even 
though they are very helpful in the medical domain, the security and privacy threats 
they pose is challenging.

3.3.1.1 Security Issues and Vulnerabilities
Robotic issues are not limited to just one, but rather to many vulnerabilities that 
could be exploited to target the surgical robots by which the hacker can either cause 
damage or take control of the robots. Some of the security issues are the following.

• Lack of Confidentiality: This is because of the use of weak encryption 
algorithms which can easily be broken, resulting in the interception and 
exposure of sensitive data and design plans.

• Lack of Integrity: This is due to the use of weak message authentication 
protocols that can be compromised easily, thereby leading to the alteration 
of sensitive data.

• Lack of Verification: This does not include any kind of biometric features 
to prevent unauthorized access.

• Lack of Secure Networking: This renders the communication between 
robots and the doctors/medical staff insecure and prone to different kinds 
of attacks.

• Lack of Proper Authentication: This leads to unauthorized access using 
common usernames and passwords which can easily be exploited by any 
attacker/hacker.

• Lack of Security Patches: If there are no proper security patches, the 
chance of attacks such as data theft and remote access will be very high.

Surgical robotic systems are prone to vulnerabilities that can affect their perfor-
mance. Some of the vulnerabilities that are challenging are the following.

• Network Vulnerability: If there are no basic security measures to ensure 
network security, the system will be vulnerable to various attacks such as 
man in the middle, eavesdropping, sniffing, etc.

• Security Vulnerability: The adoption of new security measures without 
thorough testing can affect the performance of the surgical robotic system.

• Platform Vulnerability: The lack of regular software updates and firm-
ware patches are included in the platform vulnerability.

• Application Vulnerability: The lack of testing and evaluation of applica-
tions can affect the system’s performance. Hence, further testing is required.

3.3.2 ConneCted inhaLerS

According to a certain group of researchers, two in every three deaths due to asthma could 
be avoided or prevented by taking appropriate measures and proper medical treatment. 
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FIGURE 3.3 Connected inhaler and smartphone app.

Connected inhalers (refer Figure 3.3), help patients suffering from asthma and any other 
respiratory diseases. IoT-connected inhalers help to reduce the risk of attacks and ensure 
patient safety. This device also helps in collecting and storing the data from the environ-
ment which guides the doctor or health sector workers to know the reason behind the 
attack. The collected data can be pushed to some secure blockchain-based immutable 
storage to provide trust in the patient data [18, 19]. This helps the doctors or the healthcare 
workers to choose an optimal treatment plan for his/her patient.

Following are some of the benefits for the people using a connected inhaler.

 1. It collects and stores data
 2. It provides education about the health condition
 3. It provides tips on how to maintain hygiene and improve lifestyle
 4. It helps in monitoring any kind of symptoms the person may have, and it 

provides valuable feedback
 5. It alerts patients when they have left the inhaler at home
 6. It helps with understanding the reason or cause of an attack

These smart inhalers help reduce the time which is required for diagnosis. They 
are linked to the patient’s phone via a Bluetooth connection, which makes it handy. 
The data—such as time, date, and location—are recorded using a sensor technology 
which is inbuilt in the devices [20].

The connected inhalers transfer the data to an app which is installed on the 
patient’s mobile phone. The app also shows all the alert messages and other details 
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about the health condition of the patient. These alert messages pop up when the 
patient has left the connected inhaler at home. The app also sends reminder messages 
to ensure that the patient takes their medicine on time.

3.4 SECURITY AND PRIVACY CHALLENGES IN IoT

IoT has made significant contributions in a variety of fields, including business 
infrastructure and industrial control systems, in which an entire factory may be 
connected to the internet and operated through a smartphone, which is handy. IoT 
has also played a significant role in the healthcare industry. Regardless of all of 
the previously mentioned accomplishments, IoT’s security and privacy remain a 
significant concern. But why are security and privacy so challenging to attain? The 
following are the answers to the question. Many IoT systems are vulnerable to both 
hardware and software flaws that have yet to be addressed. There will be zero-
day attacks if a hacker takes advantage of those flaws. This might be disastrous 
for the entire company, as it will be difficult to counteract the attacks because the 
producers were unaware of the flaws. IoT has a bigger attack surface [21]. Because 
devices are connected to one another, multiple attacks are not only possible to a 
single device but to the whole network. Consumers have a very little understanding 
of IoT; they love it, but few grasp how it works, and they are unconcerned about 
security concerns.

3.5 CHALLENGES FOR IoMT TECHNOLOGY

An exponential increase in the threats to IoMT devices is witnessed in the trend 
as technology advances. This means that, despite improving standards of living, 
such medical devices with embedded technology are at great threat due to rising 
cyber threats. Due to the quick boost in the mobile industry, the electronics market is 
now filled with RFID (radio frequency identification) devices, smartwatches, health 
devices, and many other wireless connected devices. These devices make use of open 
networks for retrieving and transmitting data, which serves as a great threat as they 
become highly prone to different types of cyber-attacks. As most of the devices are 
getting introduced into IoT day by day, potential threats are also increasing. Thus, 
it has become one of the major requirements that networks are to be kept secure 
in today’s world. Privacy and the protection of sensitive data such as medical data 
is vital in such devices. Such data transmission through networks should undergo 
a standardized form of end-to-end encryption from both senders and receivers. In 
cases such as the use of poor encryption standards or in the absence of any encryp-
tion standard, the medical records stored in a database or that are transmitted across 
networks may be leaked or modified, which can be catastrophic for the patient. 
Patient information is further processed to predict the future pattern of patients with 
the help of artificial intelligence [22, 23].

The information that is collected by IoMT nodes and devices is large and requires 
greater power for processing the record. Another challenge is providing adequate stor-
age for the medical data. Storage of data in the cloud network is mostly preferred over 
other methods, mainly because of the high security they provide. Another challenge 
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is data integrity. Due to critical data that may be utilized for further research and 
are widely distributed, it is necessary to create effective and efficient platforms that 
maintain data integrity.

The use of different technologies used by wearable’s and sensors are represented 
in Figure 3.4.

Wi-Fi is mainly used for mobile X-ray technology and glucose meters in hospitals, 
whereas Bluetooth technology is used in short-range communication such as phone-
based glucose meters and pulse oximeters. Capturing systems and pulse oximeters 
make use of Zigbee technology. The detailed comparison of the technology men-
tioned in Table 3.2. The previously mentioned technologies face few challenges  
regarding the following.

• Safety
• Processing power
• Privacy
• Storage
• Data integrity

As the quantity and diversity of IoMT devices increases, there is an increase in the 
risk they face. Different types of cyber-attacks that might affect IoMT devices are 
hacking, intruding, Trojan horses, malware, and data theft. The protection of devices 
that store medical data from these kinds of cyber-attacks is of vital importance. Data 
transmission in wireless networks should be encrypted end to end. If there is no 
proper encryption over the wireless networks, sensitive medical data can be exposed 
to the public.

3.6 POSSIBLE CYBER-ATTACKS AGAINST IoMT

3.6.1 rogue aCCeSS point

There are several nodes or points in the network that are not to be accessed by unau-
thorized personnel. A hacker can make use of the security vulnerabilities to access 

TABLE 3.2
Technology Comparison [10]

Technology Wi-Fi Zigbee Bluetooth BLE RFID

State ✔ ✔

Range 32 100 10–100 15–30 1

Current Rate M – M - Y

Bandwidth 11 0.25 0.8 1 1–11

Data ✔ ✔ –

Audio ✔ ✔ –

Video ✔ –

Voice Voip –
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FIGURE 3.4 Technologies used for IoMT devices.

such points that are connected to an IoMT device, through which the hacker may get 
full access to the data and information of the IoMT device that is present at that par-
ticular point. The attacker will be able to steal data or perhaps even control various 
IoMT devices that are interconnected within the network. Figure 3.5 represents the 
IoT with rogue access point.
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3.6.2 Man-in-the-MiddLe attaCk

Any user can track the whereabouts of their home using devices such as an internet 
protocol camera. When the user installs such devices at their home, they can see 
what is happening at their home from any point in the world, as such cameras are 
connected to a network and they keep sending the data packets across the network 
[24]. As the device is connected to a network, it is prone to network attacks; a hacker 
can use several tools to intercept the data and modify or just view it from their side. 
The hacker does this by controlling the data packets that is transmitted from the 
device. Such incidents are caused due to poor encryption standards used in securing 
the network through which the data packets are transmitted and received. Such a 
situation when a criminal inserts himself into a communication between a user and 
an application, either to eavesdrop or to mimic one of the parties, making it look as 
though a legitimate information exchange is taking place is called man in the middle 
attack [11].

Figure 3.6 shows a man-in-the-middle attack being performed on a network.

3.6.3 deniaL of ServiCe (doS)

Another method of cyber-attack is denial of service (DoS), which consists of increasing/ 
flooding the network between hosts and which can result in either a delay in packet 
arrival (which can result in huge loss) or the packet being destroyed. This type of 
attack is very dangerous in the case of IoMT devices because medical records require 
integrity confidentiality and there should not be any delay or loss of packet in inter-
host or host–server communication. In DoS, the bandwidth of the receiving end 
(host) is overloaded with requests sent from the attacker’s device. The random access 
memory (RAM) of the server is also exhausted as the attackers concentrate on the 
software vulnerability to infiltrate. However, DoS attacks can easily be stopped as 

FIGURE 3.5 IoT network with installed rogue access point (AP).
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the process takes place from a single IP address. Figure 3.7 shows the basic structure 
of the attack.

3.7 REQUIREMENT OF SECURITY FOR IoMT DEVICES

IoMT devices come in the category of devices that require the most attention in 
security matters due to the sensitive nature that their data must possess, the confiden-
tiality that requires, and the accuracy that is expected. If the data packets undergo 
any delay due to increased network traffic due to DoS attacks or if the data pack-
ets are modified—i.e., the medical record of the patient is altered—results could be 
catastrophic to the patient. Medical personnel may take the wrong precautions or 

FIGURE 3.6 An attacker intercepts communication between wireless access point (WAP) 
and internet protocol (IP) camera.

FIGURE 3.7 An attacker floods the network with multiple zombie hosts, using up the server 
time and random access memory (RAM).
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suggest incorrect treatment due to such an incident. Thus, it is very important for 
such devices to ensure their security and the security of the network via which they 
are transmitting and receiving the data packets. IoMT devices require different levels 
of security for the data that is being transmitted and the sensors which produce the 
data.

3.7.1 SeCurity for data

3.7.1.1 Data Confidentiality
Transmission, collection, and storage of medical data through such devices should be 
strictly under the guidelines of legal regulations that have been set up by the govern-
ment, ensuring that the data will not be misused in the hands of unauthorized per-
sonnel. These data must not be overlooked, since once stolen by cyber thieves, they 
may be sold on the black market or the illegal dark web, which affects not only on 
the patient’s privacy but also financial and reputational harm. Personal data should 
be removed after it has been processed and is no longer necessary, with exceptions 
for archiving, scientific, historical, or statistical reasons, as stated in the European 
Union’s General Data Protection Regulation, Article 5(e) (Article 89).

3.7.1.2 Data Integrity
The major goal of data integrity in IoMT and healthcare systems is to ensure that the 
data arriving at the destination has not been tampered with in any manner during 
the wireless transmission. If attackers gain access to the data, they can alter it by 
exploiting the wireless network’s broadcast feature, which might put patients’ lives 
in peril. The ability to detect suspected illegal or malicious data alterations is cru-
cial for ensuring that the data has not been compromised. As a result, we must take 
proper measures to protect data from harmful assaults. Furthermore, the data integ-
rity saved on medical servers must be ensured, which means that the data cannot be 
tampered with. Attacks on the data packets such as DoS will affect the accessibility 
and availability of the data, which is of major concern [12].

3.7.2 SeCurity for SenSorS in ioMt deviCeS

Because the computing capabilities and power constraints of the medical devices and 
services are restricted, the most challenging aspects of the three-tier IoMT health-
care system are security and privacy at the sensor level. The majority of calculations 
are now done at the personal server level, and security solutions at the sensor level 
must be lightweight and have low communication overheads, according to a new 
method in sensor level security research.

3.7.2.1 Tamper Resistance
Sensors that detect the amount of light (photo-detection), pressure, or temperature 
around a component in IoMT devices are physically easy to steal, and they carry 
security information that might be revealed to an attacker. Reprogramming the envi-
ronmental sensors is simple, and it might lead to unnoticed listening to conversa-
tions. In IoMT healthcare systems, this physical theft issue should be addressed. 
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The medical devices must include tamper-resistant integrated circuits, which pre-
vent codes put on the devices from being read by a third party after they have been 
deployed.

3.7.2.2 Data Localization
On-body sensor position and placement in the environment are the two basic forms 
of sensor localization. The previous sensor localization systems were meant to deter-
mine whether the sensors are at the desired body positions. For applications like 
activity recognition, these forms of on-body sensor location identification are criti-
cal. The sensor localization for the Location of Things (LoT) is meant to find the 
sensor in the room or the patients wearing the sensor in a certain building. Because 
IoMT healthcare systems and medical devices are structured in such a way that they 
let devices to move in and out of the network coverage area often, real-time intrusion 
detection mechanisms are necessary. Figure 3.8 shows the location based interactive 
model of IoT.

3.7.2.3 Self-Healing
IoMT systems have integrated a technology that focuses on autonomous healing 
which was first proposed in autonomic computing, which is critical since IoMT 
devices must restart operations after network assaults. An IoMT system should be 
able to identify and diagnose assaults and apply appropriate security procedures with 
little human interaction in order to accomplish self-healing. In terms of network 

FIGURE 3.8 Location-based interactive model of IoT.
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FIGURE 3.9 Over-the-air programming.

communication overhead and processing complexity for medical and healthcare 
equipment, the methods used in self-healing should be simple. The administrators 
must determine the sort of autonomous security strategies to deploy in the network, 
as different forms of network assaults necessitate different detection and recovery 
approaches.

3.7.2.4 Over-the-Air Programming
This method is of vital importance due to the fact that most IoMT devices are con-
nected to a network and will require constant updates to keep them running smoothly 
with minimal or no errors. Over-the-air programming is a way to update the system, 
the configuration settings, and the software without the refusal of the device. This 
technique is also preferred due to its secure nature, and can be used to update the 
encryption standards used in securing the device information. It are widely used in 
the mobile phone industry for updates that cannot be avoided or refused. Another 
advantage for this mechanism is that data need not be backed up before updating 
of the software. The con to this mechanism is that since it is an autoupgrade to the 
device, if the new software or configuration is not compatible with the current ver-
sion of the device, there are possibilities that the device may face trouble upgrading 
or processing the data. This may be of vital concerns since the devices are for medi-
cal purposes. Figure 3.9 shows over-the-air programming.

3.7.2.5 Forward and Backward Compatibility
In real-time healthcare applications, malfunctioning medical sensors should be 
replaced on a regular basis. As a result, backward and forward compatibility is 
essential. The forward compatibility characteristic is that future messages cannot 
be read by medical sensors if they are sent after the sensor has left the network. 
Similarly, backward compatibility means that messages sent before cannot be read 
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by the sensor that has joined the network [12, 23, 25]. Compatibility concerns can be 
resolved by using over-the-air programming to distribute the most recent software 
update as soon as possible.

3.8 SECURITY ALGORITHMS USED IN IoMT

We can use cryptographic algorithms such as symmetric and asymmetric cryptogra-
phy to ensure the security of IoMT devices. The algorithms that we focus on under 
symmetric cryptography are advanced encryption standards (AES-256), and the ones 
that come under asymmetric are Rivest–Shamir–Adelman (RSA) [8]. Least signifi-
cant bit steganography is another security measure implemented. Finally, the hash 
algorithm is also used for keeping the data safe; SHA-512 is predominantly used.

IoMT devices will have constant data transmission with all available nodes. We 
will be applying the AES-256, RSA, LSB steganography and the SHA3–512 algo-
rithm in the security scheme [26]. (Note: SHA3–512 is a very secure hashing algo-
rithm and forms the confidentiality–integrity–availability triad, along with RSA and 
SHA-256.)

The implementation of the algorithm is described in the following steps. Let Alice 
be the sender and Bob be the receiver. The same is represented with the Figure 3.10.

Alice’s Side

 1. Using the SHA3–512 hashing algorithm, we hash the confidential medical 
data.

 2. The encryption using hash is applied to the result of the previous step using 
RSA algorithm with the help of the private key of Alice (PRa).

 3. Output in step 2, i.e., the encrypted message undergoes concatenation with 
K (symmetric key) using AES algorithm.

 4. Then LSB is embedded in the image after converting this encryption into 
bitstream; this process results in steganography

 5. The steganography data is transmitted.

Bob’s Side

 1. LSB-embedded steganography medical data is extricated.
 2. Using the symmetric key K used by Alice, we decrypt the message and 

divide it into two parts.

FIGURE 3.10 Flowchart of the security measure.
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FIGURE 3.11 Simple model of federated learning.

 3. One of the parts is again hashed using the same hashing algorithm 
(SHA3–256).

 4. The latter undergoes decryption using the public key belonging to Alice.
 5. A comparison is conducted to authenticate the data.

3.9 FEDERATED LEARNING

The confidentiality and integrity of data that is being processed in devices that come 
under the domain of IoMT are at risk from corporations, too. The companies that 
provide these devices use machine learning techniques to make their devices smarter 
and keep updating to improve the accuracy of the device. Traditionally, intelligence is 
implemented by collecting the user data and compiling them into a centralized server, 
where the data is assessed analyzed and later used to train the system to improve or 
upgrade itself [28, 15, 27]. Although the technology gets more advanced with help of 
this technique, such methods take place at the cost of the confidentiality of user data, 
and the back-and-forth client server communication can also affect user experience.

This is where federated learning comes into play. The main idea of federated 
learning is decentralized machine learning, whereby the user data is never sent to a 
centralized server; instead, the central server creates a model and sends them to suit-
able clients with enough data that could be used for learning. The model is deployed 
within suitable devices, and these devices train the model locally with their local data 
and create a new model, which is sent to the server. The server will collect models 
from multiple local devices and create a new master model which will function with 
greater accuracy than the previous model. The new model will then go through the 
same process over and over again, becoming more intelligent at the end of each 
round. Figure 3.11 shows the simple FL learning.
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3.9.1 federated Learning in ioMt

When it comes to IoMT devices, the speed with which data is transmitted and the 
storage of data are among the most important concerns. The conventional method 
of cloud computing will not serve the purpose of faster data transfer. This is where 
technologies like edge computing are of use. Edge computing will allow a faster rate 
of data transfer and storage by reducing the gap between the server and the storage. 
Still the main question remains: What about the privacy of such technologies? The 
privacy of user data needs to be guaranteed before, during, and after the transmission 
of data [29–31].

A combination of federated learning and edge computing is a privacy-preserving 
solution. The form of decentralized learning is preferred by the companies due to 
the ease with which their software can be upgraded, along with the security which 
it provides for the data by allocating local servers. This is more secure, since a per-
son’s medical information is particularly sensitive and will not leave their domain. 
Although this combination of federated learning and edge computing has the pros of 
distributed learning, better performance, faster data flow and storage, they also have 
some cons to their side [32]. If one of the clients which is found suitable for the feder-
ated learning model is of a malevolent characteristic, then they can tend to decrease 
the quality of the model by providing false or irrelevant data. Another issue is with 
the encryption mechanism used, whereby a major portion of the computing resources 
is being used up for encrypting the data that is being distributed [14, 33]. Figure 3.12 
shows the protection algorithm.

FIGURE 3.12 Protection algorithm.
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3.10 CONCLUSION

In the past few years, there has been a rapid rise in the number of IoMT devices in the 
healthcare sector, which has greatly helped many doctors and health service workers. 
There is a wide range of devices, including smartwatches, smart thermometers, con-
nected/smart inhalers, glucose level indicators, pulsometers, remote patient moni-
toring, mental health indicators, ingestible sensors, interconnected contact lenses, 
robotic surgery, insulin pumps, and many more. These smart devices have played a 
very important role in transforming and advancing health services and help a lot of 
patients residing in any corner of the world. Even though these devices are known 
for their substantially simplified monitoring and control due to a great network con-
nectivity, at the same time, it invariably introduces high risks to these devices. IoMT 
devices, like other IoT devices and systems, may be vulnerable to security risks and 
assaults. Due to the sensitivity and confidentiality of the data processed by IoMT 
devices, they are more prone to cyber-attacks. Much of the data loss due to cyber-
attacks takes place due to negligence in providing ample security measures to the 
devices or the networks through which such sensitive information is shared. The 
incorporation of machine learning in the form of a decentralized way—i.e., feder-
ated learning, along with the help of edge computing—brings a much more efficient, 
accurate, faster, and secure way to transmit and store data. They are the best for the 
task in IoMT devices, as their pros outweigh their cons.
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4.1 INTRODUCTION

The healthcare system plays a crucial role in the Indian economy. Healthcare systems 
support individuals to manage the lifestyle, which is in turn important for society. 
Availability of doctors, hospitals, and specialists are various challenges faced by 
the healthcare domain. As per a 2020 Union Ministry of India (UMI) survey, the 
doctor-to-patient ratio in India is 0.62:1000 [1]. With each passing year, the demand 
for quality healthcare solutions for people is increasing across the globe. This issue is 
being addressed through the use of emerging technologies. The term “smart health-
care” originated from “Smarter Planet” proposal by IBM in 2008 [46]. The smart 
healthcare unit consists of doctors, patients, medical research, medical devices, 
servers, and hospitals. With a smart healthcare system, monitoring and diagnosis 
of patients is easier for doctors, as it provides continuous monitoring of patients and 
confirms the state of patients. It facilitates retrieval of medical data in advance [2]. 
During the COVID-19 pandemic, the concept of the smart healthcare system is dras-
tically increasing for remote and contactless patient appointments, better diagnosis 
of patients, and improvements to quality of life. According to the UMI, with smart 
healthcare, the mortality rate could be reduced by about 26%. According to market 
research, the market is expected to be worth USD 345.59 billion by 2028. Figure 4.1 
shows different technologies that contribute to smart health systems.

IoT technology specific to the healthcare industry is known as Internet of Medical 
Things (IoMT) [3]. IoMT can be understood as a system consisting of several medical 
devices that are connected to an information technology (IT) server. With the help of 
IoT, real-time monitoring of patients, hospitals, and healthcare insurance policies can 
take place [3–5]. As the number of IoT-enabled devices increases, such technology 
which transmits huge data with low latency is increasingly needed. The developing 
fifth-generation (5G) technology standard for broadband cellular networks has also 

FIGURE 4.1 Overview of a smart healthcare system.
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given the huge contribution in IoMT. 5G supports uninterrupted connectivity between 
the users, high speed data transmission between devices and servers in healthcare. 
Therefore, 5G-enabled IoT is the driver of the healthcare industry. Machine learning 
is used to predict hospitalization and improve customer services. The Geographical 
Information System (GIS) is used to track the spread of disease. From the patient 
point of view, different smart wearable devices are available in the market like 3D 
printed pills, smart pulse oximeters, and smartwatches [40]. Doctors manage medi-
cal information through different platforms like electronic health records (EHRs), 
laboratory information management systems, radio frequency identification (RFID), 
and picture archiving and communication systems. These medical platforms are 
used to improve patient experiences. With the use of technologies, smart healthcare 
systems are able to reduce costs and overcrowding in the hospital. It can also pro-
vide quick emergency services and improve collaboration between entities of smart 
healthcare systems [6].

Section 4.1 has been an introduction to the chapter topic, a technological overview 
of IoT implementation for healthcare systems. Section 4.2 presents an overview of 
literature on the topic, while Section 4.3 describes the contributions of IoMT in the 
various domains. Section 4.4 describes the architecture and technology involved in 
IoMT. Section  4.5 describes the application, benefits, and different challenges of 
IoMT. Federated learning (FL) as it relates to IoMT is addressed in Section  4.6. 
Different healthcare devices available in the market are described in Section  4.7. 
Section 4.8 concludes the chapter.

4.2 LITERATURE SURVEY

Much research is going on in the medical domain and researchers are trying to incor-
porate the emerging trends such as IoT and AI for healthcare application for the 
ease of medical professionals and patients both. Table 4.1 shows the review points of 
researchers who contributed their research in healthcare services.

4.3 IoMT OVERVIEW

The basic blocks for IoMT system architecture are its physical layer, network layer, 
and application layer [7, 13, 8, 10] which is depicted in Figure 4.2.

4.3.1 phySiCaL Layer or perCeption Layer

This is the core layer of any IoMT system because all information is generated from 
the physical layer. Physical layer collects medical/health information of patients from 
different types of sensors and further transmits to a network layer. It includes vari-
ous sensors, actuators, and micro-electronic-mechanical systems (MEMS) devices. 
Sensors are the devices that identify changes in the environment and include RFID, 
medical and infrared sensors, smart device sensors, global positioning systems 
(GPS), and cameras. Sensors identify information through location, object, and geo-
graphic and convert this information into digital signals. Physical layer consists of 
the following two sub-layers.
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FIGURE 4.2 IoMT architecture.

TABLE 4.1
Existing Survey of IoT in Healthcare Services

References Contribution

M. S. Islam et al. [1] The authors discuss the application of IoT in different sectors like 
agriculture, smart homes, healthcare, etc. They also present the 
importance, applications, and benefits of IoT in healthcare.

M. Mamun-Ibn-
Abdullah et al. [2]

The authors discuss the utility of cloud-based computing in the IoT-based 
smart healthcare system and also propose the cloud/IoT-based application 
in healthcare.

Ahad et al. [7] The authors present architecture, taxonomy, and communication technology 
in context to smart health-care systems based on 5G.

J. Lloret [8] The authors present the architecture of smart e-health monitoring of chronic 
patients using 5G technology, including wearable devices to measure the 
different parameters of the body and smartphones are used for the 
processing, and they propose machine learning in Big Data for the 
database.

Dalal et al. [9] The authors discuss the importance of IoT in healthcare in the Indian 
economy. The authors also present the architecture, benefits, and 
applications of IoMT.

Tian et al. [10] The authors discuss the existing problems in healthcare and propose 
solutions for smart healthcare. Finally, they discuss the different 
technologies involved in smart healthcare. 

Javaid et al. [11] The authors present the importance of Big Data and cloud 
computing technology involved in smart healthcare and how IoMT are 
applicable in the treatment of COVID-19 patients and smart hospitals.

Dwivedi et al. [12] The authors present the role of IoMT applications case studies, advantages, 
and challenges for the healthcare system.
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FIGURE 4.3 Wearable devices.

4.3.1.1 Physical Interface Layer
Physical layer collects medical information of patients and monitors environmental 
information from different types of sensors. Generally, sensors can be categorized 
into two types: wearable sensors and unwearable sensors. Each category of sensor is 
grouped into separate nodes or devices.

4.3.1.1.1 Wearable Devices
These are biosensors that monitor different parameters like blood pressure, oxygen 
level, glucose level, and temperature level of patients through wireless technology 
and send consistent information to doctors (see Figure 4.3). Doctors analyze patient 
health information and counsel the patients regularly with the help of wearable 
devices [14, 15].

4.3.1.1.2 Unwearable Devices
Unwearable node is used to detect environmental situations that surround patients to 
provide advanced healthcare services. It includes different sensors like temperature 
and humidity sensors, light sensors, and passive infrared sensors.

4.3.1.2 Data Collection Layer
This layer collects the information/data from the physical interface and transfers that 
data to the network layer. Multipoint control unit and Wi-Fi are typically used in the 
data collection layer. Microcontrollers collect information from different types of 
sensors, perform data processing, and make the data ready for further transmission 
to a network layer.

4.3.2 netWork Layer

This layer provides the interface between physical layer and application layer. 
Network layer includes wearable/unwearable devices, microcontrollers like 
Raspberry Pi (which acts as a gateway due to its higher capability) and mobile appli-
cations. Gateway collects information from different microcontroller units (MCUs) 
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through message queue telemetry transport (MQTT) protocol. Figure 4.4 shows the 
components of IoMT network layer.

4.3.3 appLiCation/uSer interfaCe Layer

This layer is the backend of any IoMT system. Application layer or user interface 
layer stores the data. Cloud computing processes, data analytics, and data processing 
can take place on this stored data.

4.4 TECHNOLOGICAL STACK INVOLVED IN IoMT

Various technologies are involved in IoMT development, such as RFID, sensor tech-
nology, fog computing, cloud computing, nanotechnology, and wireless communica-
tion and technology, as shown in Figure 4.5 [3, 10, 16, 11, 17, 18].

4.4.1 rfid teChnoLogy

This technology is based on radio frequency identification (RFID) tags, which com-
municate through radio waves or microwaves for automatic retrieval of information. 
RFID features wireless communication, reliability, less power consumption, and 
highly efficient antenna technology. This technology is used in supply chain man-
agement and logistics to identify objects in buildings.

4.4.2 WireLeSS body area netWork (Wban)

WBAN transfers data from sensors to a nearby processing facility. It is compatible 
with other wireless technologies like Zigbee, Bluetooth, wireless local area network 
(WLAN), wireless sensor network, and wireless personal area network (WPAN). 
WBAN can help reduce costs in healthcare and improve patient quality of life by 
using various sensors. WBAN is a separate device that has communication capabil-
ity. Based on performance, WBAN can be classified in three types: personal devices, 
sensors, and actuators. Personal devices collect data from sensors, and communi-
cation can take place between two devices by activating the actuators. In WBAN 

FIGURE 4.4 IoMT network layer.
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FIGURE 4.5 Technology involved in IoMT.

application, nodes may be classified into different types such as implant node, sur-
face node, external node, connector, storage node, and relay. End nodes are sensors, 
while a relay transfers data between different sensors.

4.4.3 fog CoMputing

Edge computing is the subset of fog computing. It is assumed that fog is the 
standard, while edge is the concept. It allows more effective data processing by 
eliminating propagation delay. Therefore, this technique can be used in emer-
gency health services. Fog computing technique has significant advantages like 
data integrity, data security, and confidentiality. It plays a crucial role at the per-
ception layer and the network layer of IoMT architecture. It enhances computer 
performance, and maintains and provides network services between end users 
and cloud data centers.

4.4.4 SenSor teChnoLogy

Sensors are the backbone of IoMT systems. IoMT has various applications in terms 
of clinical and non-clinical contexts. IoMT is used to measure different parameters 
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of a patient like temperature, blood pressure, and glucose level with respect to clini-
cal contexts, while in terms of non-clinical context, IoMT is used to track locations 
of hospitals, specialists, and ambulances during emergencies. Sensors are broadly 
classified into two types (refer Figure 4.6).

4.4.4.1 Pulse Sensors
These measure the pulse, which can be used in emergency services like cardiac tests 
and remote patient monitoring systems. The wrist, fingertip, and earlobe are the con-
tact points where pulse can be measured. Wrist-wearable devices are more popular 
as it is comfortable to wear any device on wrist as compared to earlobe or fingertip. 
Pulse can also be measured from other sensors such as pressure sensors, ultrasonic 
sensors, RFID sensors, and photoplethysmography (PPG) sensors.

4.4.4.2 Respiratory Rate Sensors
These measure the breath rate. It is used in critical situations like asthma attacks, 
lung cancer, tuberculosis, etc. Other sensors—like pressure sensors, fiber optic sen-
sors, and stretch sensors—also measure respiratory rate, but according to research-
ers, stretch sensors provide more accuracy while other sensors suffer from noise 
interference.

4.4.4.3 Body Temperature Sensors
These measure the body temperature during fevers. According to researchers and 
doctors, thermistors-based sensors are preferred because they measure the body tem-
perature while recognizing and accepting reading errors.

4.4.4.4 Blood Pressure Sensors
These measure blood pressure which arises due to hypertension, which can lead to a 
heart attack. Blood pressure can be measured by pulse transit time (PTT), the time 
taken for the pulse from heart to other parts of the body like the wrist, chest, finger, 
etc. PTT can be more accurate when it is measured between chest and wrist, while 
errors may be introduced in other cases.

FIGURE 4.6 IoMT sensors.
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4.4.4.5 Pulse Oximeter Sensors
These measure oxygen level by retrieving PPG signals in the blood. This sensor can 
be used in diagnosis of COVID-19. PPG sensors contain two light-emitting diodes 
(LEDs) and are focused on the skin. Most of the light is absorbed by the hemoglobin, 
and that part which is not absorbed is calculated by photodiodes. These sensors are 
generally placed either on the fingertip or ear. Signal-to-noise ratio and PLL tracking 
methods are the two techniques that help in power reduction. It reduces power up to 
6× with a minimal margin of error (approximately 2%).

4.4.4.6 Passive Infrared Sensors
These are used to detect the position of a patient. They usually use radio waves 
and optical radiation to detect the presence of patients in its close proximity. The 
term passive sensor means that it does not participate in the process of identifying 
patients; apparently, it receives infrared radiation coming from the patient’s body in 
its surroundings.

4.4.5 CLoud CoMputing

Cloud computing technique is used for the processing block in IoMT architecture. 
It provides a variety of services like software service, platform service, and infra-
structure service. IoMT sensors generate large amounts of data. This data can be 
stored and processed with the help of a cloud network. The cloud provides an infi-
nite amount of resources in the data center. By using these resources, the healthcare 
industry can benefit from the stored and analyzed data for future use. Physicians and 
doctors can monitor and diagnose patients remotely with the help of the cloud in 
IoMT. It has a significant advantage, but the drawback is latency. Analytically gener-
ated data from the cloud must be transmitted over the internet for access by medi-
cal devices. There are platforms whereby multiple cloud providers come together 
to provide better services to the user to store patients’ sensitive information with 
competitive pricing [19]. This process takes a long time; therefore, cloud computing 
technique is not feasible in the emergency device. This drawback is eliminated by 
edge computing or fog computing.

4.4.6 gLobaL poSitioning SySteM

GPS is used by physicians and hospitals in the following ways.

 1. Track Fastest Route: During emergency services, it is assumed that ambu-
lance drivers must use the shortest path with minimal delay. GPS device is 
installed in the ambulance that helps drivers to choose an effective path to 
reach the destination.

 2. Calculate Time: GPS devices have the feature to calculate arrival time. 
Using this feature, healthcare workers and physicians are able to collect 
valuable tools and medication in advance before the patients arrive.

 3. Temperature Monitoring: Medicines are supposed to be kept at appropri-
ate temperature; otherwise, temperature can destroy the valuable medicine. 
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GPS has the capability to detect the temperature. Therefore, this system 
ensures that the medicine should be kept at the correct temperature.

 4. Resource Allocation: GPS enables allocation of resources to ensure the 
physicians and patients reach things on the time.

 5. Location Tracking: In GPS, location is tracked through a navigation satel-
lite. Therefore, the nearest ambulance is preferred to pick patients in order 
to save time and improve healthcare services.

 6. Equipment Tracking: Hospital equipment is very costly and there is always 
the possibility of theft. Therefore, an indoor GPS system can solve the prob-
lem of theft and the stolen equipment can be recovered immediately.

4.4.7 artifiCiaL inteLLigenCe

In healthcare, AI techniques are used to improve diagnosis (such as cancer therapy, 
computerized tomography [CT] scans, and X-rays), virtual healthcare assistants 
(VHAs), and healthcare bots. VHAs monitor patient information with the help of 
patient data, making it possible that doctors and patients are constantly in commu-
nication; informs pharmacies about prescription of patients; and reminds patients 
to take medication. Bots are mainly used for patient engagement. Healthcare bots 
incorporate the concept of image recognition, natural language programming, senti-
mental analysis, and data mining into the chat script.

4.4.8 big data

IoMT devices collect large amounts of patient information which needs to be ana-
lyzed properly to make a decision. An efficient solution to this problem is Big Data 
analysis and virtualization. Big Data collects large amounts of patient information 
on a variety of medical and climate sensors, temperature, locations, and geographical 
data. The data analytics process is performed by statistical analysis, cleaning, and 
extraction before referral to physician or patients [20].

4.5  MEDICAL DEVICES AVAILABLE IN THE MARKET  
FOR SMART HEALTHCARE SYSTEMS

Various examples of wearable devices used in healthcare include stationary med-
ical devices, continuous glucose monitoring (CGM) systems, connected inhalers, 
OpenAPS closed-loop insulin delivery, activity trackers during cancer treat-
ment, ingestible sensors, connected contact lenses, depression-fighting smart-
watch apps, and coagulation testing, sometimes using platforms such as Apple’s 
ResearchKit, Parkinson’s Project Blue Sky, and LEAF Patient Monitoring System 
[14, 15].

 1. Wearable Devices: These are biosensors that monitor different parameters 
like blood pressure, oxygen level, glucose level, and temperature level of 
patients constantly through wireless communication. By calculating these 
parameters, doctors can analyze and counsel patients remotely. Examples of 
wearable devices are Fitbits, smartwatches, and wearable monitors.
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TABLE 4.2
Applications of IoMT

S. No. Author Name Publishing Year Application

1. Islam et al. [1] 2020 Monitoring of blood pressure, glucose 
level, oxygen saturation, body temperature and 
electrocardiogram.

2. Verma et al. [21] 2020 Maintain industrial mechanics, managing pharma 
supply chains and controlling drug 
manufacturing environments, sales and 
marketing, and patient access.

3. App Development 
Agency [22]

2020 Remote patient monitoring through wearable 
apps, sensor technology.

4. Applications of IoT In 
Healthcare System by 
Harshith [13]

2020 Emergency care, distribution of medical 
information, research application, insurance 
companies, detection of how many patients 
are remaining in quarantine during COVID-19.

5. Dwivedi et al. [12] 2021 Testing and tracing of disease spread, smart 
hospitals and smart operating rooms, tele-
dentistry, 3-D scanning and printing, automatic 
robot-based healthcare automation, adverse drug 
reaction system.

 2. OpenAPS Closed-Loop Insulin Delivery: This system is designed to con-
trol insulin delivery by insulin pump. Using the OpenAPS system, glucose 
level can be adjusted for a certain range after a meal. It uses a CGM sen-
sor to determine glucose level and issue commands to the insulin pump to 
maintain the temporary basal rate as per requirements.

 3. Smart Drill: The smart drill is a brush that suggests the location and depth 
for drill operation during surgery. Drilling operation is based on resistance 
and bone density.

 4. Implant Devices: Implant devices gather information and send it to cloud 
computing infrastructure. They send information from the patients to doc-
tors regularly. These devices are placed either inside or the surface of the 
body. For example, brain implant devices are used to manipulate the brain 
and relieve pain or depression.

 5. Smart Inhalers: IoT-based inhalers monitor the frequency of asthma 
attacks and also alert the patient when any alarming situation arises.

 6. Ingestible Sensors: These can collect information such as stomach pH and 
gives insights into the digestive tract in a less invasive, non-surgical manner.

 7. Smart Contact Lenses: These are mounted on the surface and can be con-
trolled with eye blinking. With the help of these lenses, images can be cap-
tured and tasks can be carried by processing the acquired information.

4.5.1 appLiCationS, benefitS, and ChaLLengeS of ioMt

Contribution of IoMT in various applications is listed in Table 4.2.
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4.5.2 benefitS of ioMt

IoT has various advantages such as agriculture, education, smart homes, business and 
consumers, society, environments, markets, and also individuals. IoMT has made 
large contributions in the medical field also. Using IoMT, remote monitoring and 
diagnosis of patients is possible. IoMT collects patient data accurately with minimal 
cost and minimizes error risk while maintaining privacy. The following benefits are 
listed in Table 4.3 based on the contributions of IoMT.

4.5.3 ChaLLengeS of ioMt

There are numerous challenges as listed in Table 4.4 based on the contribution of 
IoMT.

4.6 FEDERATED LEARNING AND ITS PERSPECTIVE IN IoMT

Artificial intelligence greatly assists physicians in diagnosing patients remotely by 
studying patterns in the data generated by these devices. Conventional machine 
learning/deep learning (ML/DL) models require sensor data generated at the test 
end, so all sensor data must be transmitted to the central server in order to train data 
using ML/DL models—but transferring patient data to central servers may create 
significant security and privacy issues [33].

FL is the latest variation of ML, in which the ML model is used on individual 
machines to train data rather than transferring data to central servers; the ML model 
itself is used on individual devices to train data. Parameters from models trained on 

TABLE 4.3
Benefits of IoMT

S. No. Benefits References

1. • Reduce cost
• Collection of accurate data and minimize error.
• Improved outcomes of treatment
• Improved diagnostic accuracy because they have real-time patient data
• Low patient interaction and adherence to medication
• Quality of life is improved
• Improvement of disease management and prevention
• End user experience and patient care is improved
• Discovery of new methods for disease prevention

[14, 15]

2. • Healthcare equipment is cheaper
• More innovative
• Improve the economy of healthcare industry

[23]

3. • Improve patient safety
• Patient data are maintaining through EHRs
• Revenue-generating opportunity for different industry sectors like 

telecom, software, firmware, and many more

[24–27]
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TABLE 4.4
Challenges of IoT in the Healthcare System

S. No. Challenges References

1. • Security and privacy of data
• Amalgamation of various devices and protocols
• Scalability, upgradation, regulations and standardization
• Cost
• Energy limitation
• Massive amount of data generation
• Interoperability and manage device diversity
• Need for medical expertise

[1, 28, 29, 24]

2. • Computational limitation
• Memory limitation

[30]

3. • Needs high flexibility
• Data transmits from the sensor device to the cloud device and vice versa; 

as a result, quality degrades.
• Increasing the number of devices and sensors increases energy 

consumption/power consumption.
• Traditional approach in electrocardiograms (ECGs) increases the cost and 

possibilities of error

[31, 29]

4. • Intelligence in medical care
• Processing of data in real time
• System prediction

[32, 17, 24]

5. • Environment impact (Since in the IoMT system various biomedical 
sensors are designed through amalgamations of various semiconductor 
materials like earth metals and other toxic gas material, adverse effects in 
the environment result)

[12]

6. • Market impact:
• Physician and security policy compliance
• Overloading of data on healthcare facility

[25]

individual devices may be exported to ML/DL intermediate models for global train-
ing. In this way, FL can help maintain the confidentiality of patient data by not dis-
closing sensitive information to potential attackers. Currently, COVID-19 has grown 
into a global health emergency and endangers millions. To combat the coronavirus, 
related researchers have used emerging ML technologies to train the model for diag-
nosis [34]. However, due to unreliable communication channels and potential attack-
ers, a large amount of data collected may cause many security and privacy concerns 
during this time. With the aim to ensure the safety of the patient’s record in the refer-
ral process and training, integrated confidentiality learning becomes the best option.

4.6.1 arChiteCture of fL-baSed heaLthCare SySteMS

Framework of FL consists of certain steps, as shown in Figure 4.7. Initially, the cen-
tral server selects different related network parameters such as deciding whether the 
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identifying algorithm is based on prediction or classification, medical image pro-
cessing, or some other human-related application. In addition, the ML is selected, 
based on different configurable parameters and learning rates. In addition, the cen-
tral server determines clients participating in the FL process [35]. The central server 
determines the number of end nodes to participate in FL, then shares the first models 
between nodes. The end node trains the model based on different parameters such 
as local data and then the updated model is shared with the central model for aggre-
gation. Sometimes, we could use a federated mid-range integrated model, whereby 
weights are assigned to local models based on data size availability. Finally, the new 
global model is used to share the data with end nodes. The learning process contin-
ues in a repetitive manner until the desired accuracy is reached.

4.6.2 iMpaCt of fL in ioMt

New improved features for collaborative learning in FL allow its use in various fields, 
especially in IoMT. By adopting FL algorithms in IoMT, the local model parameters 
are connected or communicated, while the host data remains constant within local 
nodes [36]. This increases privacy and reduces information leakage. In addition, net-
work training on a variety of data enhances the capability of FL. Communication 
costs are reduced by loading only gradients rather than large datasets. These actions 
taken by FL enable effective bandwidth utilization and avoid network congestion on 
large IoMT networks [37, 38].

FIGURE 4.7 Architecture of a FL-based healthcare system.
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4.6.3 appLiCation of fL in ioMt SySteMS

S. No. Application Reference

1. EHR management
Image processing
Security and privacy in IoMT

[39–41, 24]

2. Cyber physical systems in IoMT [27, 42–45]

4.7 MARKET IMPACT OF IoMT

IoMT is amalgamation of health system and services, software applications, and 
different healthcare devices. It enables patients to constantly consult their doctors 
through the internet, which helps patients to reduce hospital visits. IoT-enabled 
healthcare providers are also supporting different industries like the data manage-
ment industry, the firmware industry, the telecom industry, and the software industry 
[46]. Some statistics are shown in Figure 4.8 which show that impact (in terms of 
percentage) of different industries in healthcare. This graph depicts why IoMT has 
become the digital health leader and will become and remain popular.

4.8 CONCLUSION

IoMT technology has potential to fulfill the demands of the healthcare indus-
try. Sensors, RFID, AI, Big Data, and GPS are the main technological stacks of 
IoMT-based smart healthcare systems. All these entities are briefly described in 
this chapter. Whole systems are virtually composed of a physical layer, a virtualiza-
tion layer and a network layer. Each layer has a significant role in the system and is 

FIGURE 4.8 Impact of different industries in IoMT.
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also mentioned in this study. Several devices used for remote surgery, smart drills, 
implants, and emergency devices were presented in this chapter. Rehabilitation sys-
tems, drug manufacturing, and remote patient monitoring are the few applications 
of IoT in the healthcare domain. Cost reduction, improved disease monitoring, and 
safety are a few of the benefits. In spite of having many benefits and applications, 
there are some challenges. Data security, system scalability capabilities, environ-
mental impacts, transmission, expertise availability and computational capabilities 
are major concerns. With all these facts, the market analysis of this technology in 
context to the healthcare domain is also performed. With above study, it is concluded 
that with the implementation of IoMT-based healthcare systems can result in better 
and timely measurement, real time monitoring, fast processing, and better medical 
data analysis.
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5.1 INTRODUCTION

Our modern societies have greatly been affected by mobile communications over 
the past few decades. The developing technology standards for broadband cellular 
mobile communications (1G–4G) have drastically changed the ways of sharing, 
accessing, and exchange of information among humans. The increase in mobile 
communications generates huge data traffic, and there is always a need for new 
and updated standards of communication that fulfil the ever-increasing rate of data 
from one device to another. This has ultimately led towards the higher genera-
tions of mobile communication world with higher data traffic and bulk connected 
devices.

5G communications are rapidly developing to undertake the challenges due to an 
increased growth in wireless data traffic. Among such tasks, the most difficult one 
for the future generation networks is to deal with how various devices like cameras, 
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connected sensors, smart-home grid appliances, etc., will connect to networks. The 
two leading market drivers for 5G networks are mobile internet and IoT.

Thus, in general, mobile internet and IoT applications can be classified into three 
use-cases, i.e., mMTC (massive machine-type communications), eMBB (enhanced 
mobile broadband) and URLLC (ultrareliable and low-latency communications). The 
main aspects of 5G currently being visualized are as follows.

• Fog computing
• Device-to-device communication
• Machine-to-machine communication
• e-health and m-health services

5.1.1 fog CoMputing

The term “fog computing” was first introduced by Cisco in 2012 [1]. It spreads the 
cloud-based internet with a midway layer among mobile devices and the cloud. The 
low latency and smooth service delivery between cloud and mobile is only possible 
because of fog computing. The geo-distributed fog servers that are the intermedi-
ate fog layer are installed at the edge of networks like bus terminals, parks, etc. 
A fog server resembles a cloud server which is light in weight with highly virtual-
ized computing system having capacity to store high volumes of data and facilitate 
efficient wireless communication. The gap between mobile users and the cloud is 
overcome by the use of fog servers. It directly communicates with users using Wi-Fi 
and Bluetooth. The important applications and functions of the cloud can be easily 
accessed with the help of fog servers. Thus, edge computing can broadly be used 
through fog computing with main focus on the local application that provide services 
and computational request.

The example and techniques in [2, 3] can be included in a fog computing 
framework.

5.1.1.1 Device-to-Device Communication
The incomparable number of connected devices in 5G communication networks is 
likely to reach 50 billion by 2020 and to assist such an enormous number of con-
nected devices, we require data rates to grow by a factor of 1,000. Some of the main 
requirements of 5G wireless networks includes e-health, e-banking, e-learning, and 
device-to-device (D2D) communication [4, 5]. The long two-hop route across the 
base station is replaced by a short one-hop route with less latency, reduced con-
sumption of power and greater spectral efficiency using D2D links. The transmission 
schemes for D2D cellular systems is constructed using geometric tools [6–8] and 
game theory [9, 10], and it can also be used for cellular offloading [11, 12]. Thus, in 
general, all these above techniques reveal that D2D communication links increase 
the overall network throughput provided.

5.1.1.2 Machine-to-Machine Communication
With the introduction of IoT, especially machine-to-machine (M2M) communi-
cations also known as 3GPP (3rd Generation Partnership Project), machine-type 
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communications (MTC) has a special requirement. Like the previous mobile gen-
erations, MTC calls for more capacity for human-type traffic (HTC). MTC simply 
refers to swapping of information among machines and the ecosystem. The exchange 
of information can be in between (one end M2M—other end M2M). Fundamentally, 
M2M communication is necessarily having one end as a machine, constituting it to 
be a fundamental part of the IoT services [13, 14].

5.1.1.3 e-Health and m-Health Services
In recent times, wearable technology has been introduced. The most recent trend for 
the growth of IoT services is interaction with humans with the help of sensors and 
actuators. The actuators which need to be installed at the patient’s home and its asso-
ciated centralized servers that are installed at hospitals enables automated commu-
nication between in-body or on-body sensors. With the help of this process, a patient 
can be remotely diagnosed for any kind of illness and based upon the diagnosis, 
drug dosage can be suggested to the patient, which is considered a big sub-domain of 
wearable technology. Similarly, another sub-domain of e-health service is m-health. 
Mobile health (m-health) states the use of medicine and public health by the mobile 
devices for health services, information, and data collection. The mobile device is 
used to collect all the relevant and related clinical health data of the community, 
including mobile telemedicine [15]. Thus, m-health operates within a range of objec-
tives that include improved access to healthcare and health-associated information 
(especially for those areas which are hard to reach), enhanced skills to identify and 
track diseases and prolonged access to current medical education, and better guid-
ance for health workers.

Although there are countless applications of 5G and IoT networks, such as deliv-
ering vaccine with UAV on 5G or 6G communication channels [16–18], and few 
of which were introduced in Section 5.1, the focus in this chapter has been laid on 
m-health services only. The chapter proposes an efficient, reliable watermarked data 
hiding and data transmission technique in 5G Networks for m-health services. The 
chapter has been structured as: Section 5.2 briefly introduces the filter bank mul-
ticarrier (FBMC) modulation technique used as a signal processing technique in 
5G Networks. Section 5.3 describes the watermarking model used in this chapter. 
Section 5.4 gives the details of the medical data (information about each medical 
image that has been used for test purposes in this chapter). A block diagram and 
description of the proposed technique is given in Section 5.5. Section 5.6 displays the 
simulation results, and finally, the chapter is concluded in Section 5.7.

5.1.1.4 Federated Computing and IoMT
Recent advancements in communication technologies and IoMT have transformed 
healthcare by exploiting artificial Intelligence (AI)-driven machines and systems. 
Centralized data collection and processing traditionally is core in the case of 
AI-based systems, but this is not feasible in the current scenario large volumes of 
patient records and privacy concerns related to sensitive information in the con-
nected network of hospitals [19]. In this context, federated learning (FL) can prove 
an emerging paradigm that enhance healthcare services by providing security for the 
sensitive data. This is possible by training the hospitals with local data and creating a 
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model at the local level to take decision for furthering these local models now sent to 
the global aggregator to generate a global updated model and further share the global 
model to all the local hospitals so all local models are updated and trained via all the 
data of different hospitals. FL can be used in data management, health monitoring, 
and COVID-19 management [20, 21]. In this chapter, we analyze several FL-based 
projects and the key findings.

5.2 FILTER BANK MULTICARRIER MODULATION

Filter bank multicarrier (FBMC) transmission has an added advantage over the 
OFDM (orthogonal frequency-division multiplexing) modulation technique. It over-
comes the main drawbacks (synchronization requirements and reduced spectral 
efficiency) of OFDM modulation. Due to the benefits, FBMC is considered as the 
most capable techniques of modulations for 5G networks. In OFDM, orthogonality 
is maintained for all the subcarriers, whereas in FBMC orthogonality is maintained 
in neighbouring sub-channels only. In FBMC, besides the IFFT/FFT operations, 
additional filtering is done at both the transmitting and receiving sides with the help 
of a filter bank called a prototype filter. The filter bank in FBMC overcomes the 
limitations of OFDM systems. There is no need to insert a cyclic prefix between 
the sub-channels in FBMC [22]. Moreover, for the generation of several carrier fre-
quencies, the zero frequency is exploited in the FBMC. This type of FBMC filter is 
categorized based upon the overlapping factor k. Such a filter has the order which is 
given by 2 × (k − 1), where k = 2, 3, 4. Further, k is basically a integer in time domain 
and number of frequency coefficients in the frequency domain as FFT filter coef-
ficients. Figure 5.1 shows the prototype filter with frequency response for K = 4. The 
frequency spreading technique is employed in the existing FBMC modulation tech-
nique. Therefore, with FBMC, it is easy to analyze as compared with other modula-
tion techniques [23].

5.2.1 fiLter bank iMpLeMentation

The block diagram of the filter bank is depicted in Figure  5.2. The filter bank 
(shown in Figure  5.1) with overlapping factor K, 2(K  −  1) carriers needs to be 

FIGURE 5.1 Prototype filter frequency coefficients and frequency response for K = 4.
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modulated by the data element, but in Figure 5.2, the filter bank needs to be mod-
elled as the following.

• IFFT size of KM, used to generate the carriers.
• The filter frequency coefficients are multiplied by data element [di(mM)] 

where M is multicarrier symbol and m is symbol index.
• 2(K − 1) inputs of the IFFT are fed by the data elements.
• IFFT gives a block of KM samples for each set of data. Since symbol rate is 

1/M, K consecutive IFFT outputs overlap in time domain.
• The overlap and sum operations are basically the output of the filter bank as 

shown in Figure 5.2:

Figure 5.3 shows the detailed process of implementation. The indices i and I + 2 
of the sub-channels do not overlap with indies I + 1. Thus, real and imaginary parts 
need to be processed separately in order to maintain orthogonality, and hence, offset 
quadrature amplitude modulation (OQAM) is the efficient technique to be used here. 
The complex data symbol consisting of real and imaginary data parts are transmit-
ted separately with imaginary parts delayed by N/2. Therefore, real part of IFFT of 
the filter bank is used for i and I + 2, and imaginary part for I + 1, or vice versa [24].

At the receiver, the extended FFT of size KM is basically the implementation 
method of filter bank. Therefore, at the output of FFT, the data elements are conva-
lesced by weighted de-spreading operation as shown in Figure 5.4.

5.3 WATERMARKING MODEL

During transmission of any kind of message in a wireless environment, the transmit-
ted message needs to be protected from any intentional or unintentional manipula-
tion. This is done by a robust way of hiding and securing information called digital 
speech watermarking in a host speech signal [25]. With advancement from 2G–5G 
networks, preservation of intellectual property rights is the need of the hour [26, 
27]. Intellectual property protection is currently the main driving force for copyright 
protection, authentication, and other digital rights management (DRM) purposes. 
A watermarking model consists of two main important blocks: a watermark embed-
der and watermark detector. The watermarked message is embedded into the host/

FIGURE 5.2 Filter bank implementation in transmitter.
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cover signal, which is then called as watermarked signal. This watermarked signal 
is then given to the watermark embedded as an input signal. In this chapter, the 
proposed watermarking model takes a 64 × 64-bit medical image (consisting of vital 
information related to a patient’s health) as a watermark message, and the cover sig-
nal consists of 4,096 samples of a speech signal. The schematic of the implemented 
technique is shown in Figure 5.5. In this scheme, the 64 × 64-bit watermarked signal 
is embedded in to the least significant bits of the speech signal. In the cover signal 

FIGURE 5.3 Frequency spreading with extended IFFT.

FIGURE 5.4 Frequency dispreading with extended FFT at receiver.
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FIGURE 5.5 Watermark model.

(speech signal), the LSB is modified due to the fact that it has least impact to the 
appearance of the carrier signal [28].

 1st    2nd    3rd    4th   5th    6th   7th   8th Watermark bits

Bits of host speech signal  

The mathematical description of the watermarking process is basically adding 
watermark signal wm(k) with host signal hs(k):

Where wm(k) is a 64 × 64-bit medical image
hs(k) is a test cover signal with 4,096 samples size.

Z(k) = hs(k) + wm(k; m, hs[k])

Where m is the message and hs(k) denotes the set (frame) of samples adjacent 
to the kth sample hs(k) [15].

5.4 MEDICAL IMAGES USED

Figure 5.6 depicts the medical images used for test purposed in this chapter. In total 
six standard medical images have been used for embedding purposes. The descrip-
tion of each of the image used is as follows.

Figure 5.6: Image 1

Diagnosis: Spondylolysis and Spondylolisthesis (Smith ABS—MedPix 
(2006]).
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History: A male in his 40s with the history of chronic back pain.
Findings: A grade II spondylolisthesis demonstrated with lateral radiograph

Figure 5.6: Image 2

Diagnosis: Chondrocalcinosis (Long JRL—MedPix [2008]).
History: 60-year-old male with left thumb pain.
Findings: Frontal, lateral, and oblique radiographs of the left hand demon-

strate chondrocalcinosis within the triangular fibrocartilage complex, as 
well as degenerative changes at the scaphotrapezial joint evidenced by joint 
space narrowing and subchondral sclerosis. The remainder of the osseous 
and soft tissue structures is unremarkable.

Figure 5.6: Image 3

Diagnosis: Azygous lobe (azygous fissure) (Long JRL—MedPix [2007]).
History: 26-year-old woman with a positive PPD (purified protein derivative, 

used to test for tuberclerosis), otherwise asymptomatic.
Findings: PA chest radiograph demonstrating a thin line extending from the 

right lung apex to an ovoid opacity in the right paratracheal region (denoted 
with two arrows) in a curvilinear fashion consistent with an azygous fissure, 
a normal variant.

FIGURE 5.6 Medical images used.
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Figure 5.6: Image 4

Diagnosis: Intraosseous lipoma of the distal femur confirmed by MRI (Carlson 
CLC—MedPix).

History: 50-year-old female with bilateral knee pain.
Findings: A geographic, lobulated, well marginated, radiolucent, expansile, 

medullary lesion with a thin rim of sclerosis and central calcific densities is 
seen on plain radiograph in the posterior aspect of the metadiaphysis of the 
distal right femur without cortical destruction. T1 and T2 weighted mag-
netic resonance images show the lesion to have signal isointense to fat and 
a sclerotic rim.

Figure 5.6: Image 5

Diagnosis: Persistent Left SVC (Barfield LB—MedPix).
History: A 63-year-old male with placement of a left subclavian line.

Figure 5.6: Image 6

Diagnosis: Freiberg infraction (Kang PK—MedPix [2007]).
History: Foot pain.
Findings: Flattening of the articular surface, subchondral lucency, and sub-

chondral sclerosis are seen at the head of the second metatarsal bone.

5.5 PROPOSED TECHNIQUE

The schematic of the proposed new method of 5G-based mobile computing for 
e-health applications is shown in Figure 5.7. A test recorded medical image is first 
processed and transformed into digital form, after which the watermark is embed-
ded into the test recorded digital speech signal. As per the system requirements, the 
parameters are defined. A  speech signal consisting of 4,096 samples acts as host 
signal in which a 64 × 64-bit medical image having 4,096 samples is embedded. This 
64 × 64-bit medical image contains the vital information about the patient’s health. 
The most common and widely used method for watermarking is the least significant 
bit algorithm (LSB), and this has been used in the proposed technique. In the host 
signal, the bits which are watermarked are embedded in the last position. The frame 
synchronization is not needed since it is not the frame-based technique. Moreover, 
the signal size determines the capacity of the watermark bits to be embedded. The 
algorithm first checks capacity and compatibility of the watermark based on the 
parameters set in the system. The FBMC modulation—both at the transmitting end 
and the receiving end—modulated the speech signal, i.e., combined (watermark and 
host signal) and subsequently to demodulate it using the receiver. The schematic of 
both the FBMC receiver and transmitter is depicted in Figure 5.8. The watermarked 
speech signal is given to symbol mapper which uses OQAM scheme to map symbols. 
The data bits are divided into two parts—one is real and another imaginary—and 
both parts are forwarded to extended IFFT filter. The sums of overlapped carri-
ers are sent through the additive white Gaussian noise (AWGN) channels. At the 
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FIGURE 5.8 Implementation of transmitter and receiver [1].

FIGURE 5.7 Block diagram of the proposed technique.
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FIGURE 5.9 Graphical representation of original and watermarked speech signals [3].

FBMC receiver, the signal is extended using fast Fourier transformation (FFT) and 
frequency de-spreaded through the prototype filter. The post processing of the fil-
tered symbols are being carried and watermark bits are taken out from de-mapped 
and speech signals. The retrieved and original watermarks are compared, and the 
signal processing modification is calculated.

5.6 SIMULATION AND RESULT ANALYSIS

Figure 5.9 depicts the original and watermarked speech signals. The graph clearly 
shows that there is no change in the pictorial representation of the original and 
retrieved speech signals. Figure 5.10 and Figure 5.11 give the comparison between 
spectral densities of FBMC and OFDM. The low out-of-band leakage is highlighted 
by plotting the power spectral density of the transmitted signal. FBMC has lower 
side lobes. This allows the usage of allocated spectrum, which helps in increasing the 
spectral efficiency in comparison with OFDM.

Tables  5.1–5.6 give the BER analysis of the retrieved watermarked medical 
images. In this technique, multicarrier modulation is used to process the signal, 
which consists of bank of prototype filters. The resultant FBMC signal is passed 
through the AWGN channel with different SNRs (signal-to-noise ratios). By analyz-
ing the results, it has been observed that despite severe attacks, the performance was 
found to be satisfactory. Figure 5.12 gives graphical representation of bit error rate 
(BER) analysis of retrieved watermarks.
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Table 5.7 gives the performance analysis of the reconstructed speech signal after 
the watermark is extracted at the receiver.

Figures 5.13–5.15 represent the performance analysis of the received speech sig-
nal in terms of peak signal-to-noise ratio (PSNR), mean square error (MSE), and 
bit error rate (BER), respectively. It is observed from the obtained graphs that the 
performance parameters of the received speech signal is enhanced with increasing 
SNR value.

FIGURE 5.10 Spectrum of speech signals using FBMC modulation.

FIGURE 5.11 Spectrum of speech signals using OFDM modulation.
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TABLE 5.1
BER of the Extracted Watermark for Image 1

Attack (AWGN) BER BER%

SNR of 1 0.0710 7.1

SNR of 2 0.04856 4.856

SNR of 3 0.03181 3.181

SNR of 4 0.01863 1.863

SNR of 5 0.00991 0.991

SNR of 6 0.00471 0.471

SNR of 7 0.00172 0.172

SNR of 8 0.00041 0.041

SNR of 9 0.00021 0.021

SNR of 10 0.000 0.00

TABLE 5.2
BER of the Extracted Watermark for Image 2

Attack (AWGN) BER BER%

SNR of 1 (dB) 0.08100 8.1

SNR of 2 (dB) 0.0576 5.76

SNR of 3 (dB) 0.0429 4.29

SNR of 4 (dB) 0.0294 2.94

SNR of 5 (dB) 0.0150 1.5

SNR of 6 (dB) 0.0095 0.95

SNR of 7 (dB) 0.0029 0.29

SNR of 8 (dB) 0.0010 0.1

SNR of 9 (dB) 0.0007 0.07

SNR of 10 (dB) 0.0001 0.01

TABLE 5.3
BER of the Extracted Watermark for Image 3

Attack (AWGN) BER BER%

SNR of 1 (dB) 0.0621 6.21

SNR of 2 (dB) 0.0534 5.34

SNR of 3 (dB) 0.0492 4.92

SNR of 4 (dB) 0.0249 2.49

SNR of 5 (dB) 0.0120 1.2

SNR of 6 (dB) 0.0085 0.85

SNR of 7 (dB) 0.0049 0.49

SNR of 8 (dB) 0.0026 0.26

SNR of 9 (dB) 0.0013 0.13

SNR of 10 (dB) 0.0008 0.08
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TABLE 5.4
BER of the Extracted Watermark for Image 4

Attack (AWGN) BER BER%

SNR of 1 (dB) 0.0928 9.28

SNR of 2 (dB) 0.0865 8.65

SNR of 3 (dB) 0.0741 7.41

SNR of 4 (dB) 0.0690 6.90

SNR of 5 (dB) 0.0417 4.17

SNR of 6 (dB) 0.0376 3.76

SNR of 7 (dB) 0.0129 1.29

SNR of 8 (dB) 0.0098 0.98

SNR of 9 (dB) 0.0023 0.23

SNR of 10 (dB) 0.0009 0.09

TABLE 5.5
BER of the Extracted Watermark for Image 5

Attack (AWGN) BER BER%

SNR of 1 (dB) 0.0865 8.65

SNR of 2 (dB) 0.0789 7.89

SNR of 3 (dB) 0.0620 6.20

SNR of 4 (dB) 0.0543 5.43

SNR of 5 (dB) 0.0399 3.99

SNR of 6 (dB) 0.0156 1.56

SNR of 7 (dB) 0.0094 0.94

SNR of 8 (dB) 0.0045 0.45

SNR of 9 (dB) 0.0007 0.07

SNR of 10 (dB) 0.0001 0.01

TABLE 5.6
BER of the Extracted Watermark for Image 6

Attack (AWGN) BER BER%

SNR of 1 (dB) 0.1045 10.45

SNR of 2 (dB) 0.0908 9.08

SNR of 3 (dB) 0.0861 8.61

SNR of 4 (dB) 0.0776 7.76

SNR of 5 (dB) 0.0610 6.10

SNR of 6 (dB) 0.0545 5.45

SNR of 7 (dB) 0.0373 3.73

SNR of 8 (dB) 0.0189 1.89

SNR of 9 (dB) 0.0088 0.88

SNR of 10 (dB) 0.0024 0.24
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5.7 CONCLUSION

Technology has intensely changed the scenarios of today’s world. The greater free-
dom and mobility offered by the wireless technologies compel organizations that 
depend on computers and wired technology to opt for wireless technology. One of 
leading regions of research within academia and industry growing at a faster rate is 
5G wireless technology. In this chapter, we present a novel approach that significantly 
improve features of digital speech watermarking system in 5G networks for m-health 
services. In this chapter, a new technique of speech watermarking is proposed using 

FIGURE 5.12 BER analysis of the extracted watermarks.

TABLE 5.7
Performance Analysis of the Reconstructed Speech 
Signal at the Receiver

SNR (dB) PSNR MSE % BER%

1 58.45 11.45 14.7

2 60.44 7.4 10.4

3 63.23 3.61 6.03

4 67.72 1.54 4.63

5 71.90 0.65 2.11

6 75.68 0.25 1.4

7 80.38 0.07 0.40

8 84.23 0.05 0.19

9 87.56 0.03 0.14

10 89.76 0.01 0.09
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FIGURE 5.13 Peak signal-to-noise ratio (PSNR) of the received speech signal.

FIGURE 5.14 Mean square error (MSE) of the received speech signal.

5G network. The techniques is simulated in the MATLAB environment against dif-
ferent variations of signal processing and channel attacks. With the obtained results, 
we conclude that proposed techniques which use least significant bit substitution and 
multicarrier modulation allows efficient receiving of watermarks, maintaining qual-
ity with less error rate.
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FIGURE 5.15 Bit error rate (BER) of the received speech signal.
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6.1 INTRODUCTION

In simple terms, cloud computing is the sharing of computing resources across the 
internet, resources that are adaptable, and economies of scale. Cloud computing 
refers to the circulation of computing services such as servers, storage, databases, 
networks, software, statistics, intelligence, and more with the cloud [1]. The mobil-
ity that cloud technology gives—both to the heavy user and to the commercial and 
business user—is another of the most significant outer uses of cloud computing. In 
cloud computing, the phrase “cloud” refers to a cluster of networks, analogous to a 
data centre, like the way real clouds are formed of water molecules. Cloud computing 
refers to any technology that provides hosted services through the internet. A cloud 
can be private or public. Virtualization and automated technologies are heavily used 
in cloud computing. In cloud services, users often pick a mediator provider for inter-
net access rather than building up personal infrastructure. Users are required to pay 
a subscription fee to utilize the cloud, and computing burden can be shifted to the 
cloud in order to reduce load. Figure 6.1 shows the network on a cloud framework.

Government and private industry both can benefit from the scalability and 
flexibility of cloud computing services [2]. Concerns have also been raised about 
whether cloud users can trust cloud services to maintain cloud tenant data, and 
whether could computing services can prevent malicious disclosure of sensitive or 
private data [3, 4].

FIGURE 6.1 Network on cloud [5].
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6.1.1 CoMponentS of CLoud CoMputing

Cloud computing consists of the following three basic components [6, 7, 8].

• Client End Devices: End users can interact with the cloud via client PCs.
• Servers Locations in a Distributed Manner: The servers are scattered 

around the world, yet they appear to be talking with one another.
• Data Centres: A collection of servers is called data centre.

6.1.2 CLoud CoMputing eCoSySteM and itS aSSoCiated ServiCeS

• Software as a Service (SaaS): The process of providing end applica-
tions as a service through the public internet is referred to as software 
as a service. Rather than introduce the software on their computer, the 
user can just connect to it through the internet. It relieves the user of the 
burden of maintaining complex software and hardware. SaaS users are 
not required to purchase, maintain, or update software or hardware. The 
only thing the user needs is an internet connection, and then accessing 
the software is pretty straightforward. Examples include Google Drive, 
Amazon Cloud, etc. [9].

• Platform as a Service (PaaS): Through PaaS, the customer can con-
struct their personal applications and codes using a platform as a service. 
Customer can build their own apps to run on the cloud computing environ-
ment. PaaS gives a specific mix of application servers and operating sys-
tems to obtain application management capacity. Examples include LAMP 
(Linux, Apache, MySQL, and PHP), J2EE, Ruby, etc. [1].

• Infrastructure as a Service (IaaS): IaaS delivers on-demand computer 
resources such as a storehouse for storing data, networking, operating systems, 
hardware, and storage devices. Customers who use IaaS can access services 
via a broad area network, such as the internet. By logging into web-based 
management systems,  the users can access the IaaS platform; a cloud cus-
tomer, for example, can create virtual computers or machines [10, 11].

6.1.3  kindS of CLoud CoMputing depLoyMent ModeLS  
and their CharaCteriStiCS

Public Cloud: A public cloud is a computer service supplied by third-party 
provider enterprises through the public internet. All users who want to uti-
lize these services are able to access them.

Private Cloud: Private cloud encompasses computing services distributed 
through the public internet or a private network, with services accessed 
by group of users rather than the general public. Private clouds provide 
greater security and privacy by utilizing a network security and internal 
hosting [12].
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Hybrid Cloud: The phrase “hybrid cloud” relates to the combination of 
private and public  cloud services. Each cloud in the hybrid cloud can be 
independently controlled, yet information and applications can be shared 
between them [13].

6.1.4 CLoud CoMputing arChiteCture

Cloud computing uses web-based tools and applications to retrieve resources from 
the internet. This allows the users to work remotely because the cloud can be used as 
“internet”. Therefore, it is not processed as traditional outsourcing, and this is also 
knows as massive computing. The application allocation should be dynamic in this 
case. There is no requirement to install or purchase any of the hardware or software. 
The goal of cloud computing is to enable users to access data from all technologies 
and applications without requiring extensive knowledge of them. This is reflected 
in the previous points—that to run a web-based application in the cloud ecosys-
tem, the requirement of a high computational computer is not necessary [14]. In the 
architecture of the cloud ecosystem, the task, information, and its various forms of 
services, such as XaaS (everything as a service) and others, are migrated into the 
cloud systems via the internet [15]. These services are then made available to the end 
users via the specific integrated software and are used in an on-demand manner. The 
architecture of the cloud ecosystem can be denoted as a stack of the layered model. 
This layered architecture is shown in Figure 6.2 and consists of the application func-
tionality layer, platform functionality layer, infrastructure functionality layer, and 
bare metal hardware functionality layer.

The description of each layer is defined as follows.

Hardware Layer: It manages the cloud’s physical and hardware resources. 
The hardware layer is in charge of trying to control physical servers, 
switches, adapters, and the power system. The hardware layer implementa-
tion is provided in the data centre. This data centre contains several servers 
that are linked together by routers and switches. Fault tolerance, hardware 
configuration, traffic management, and resource management are some of 
the issues that arise in the hardware layer.

Infrastructure Layer: in cloud computing, the infrastructure layer is also 
referred to as the “virtualization layer”. It is a critical object of cloud com-
puting. The infrastructure layer is based on key features such as virtualiza-
tion technology’s assignment of dynamic resources.

Platform Layer: The platform layer is composed of a operating system and 
the application framework. It stands at the top the infrastructure layer. The 
platform layer’s main purpose is to reduce the operating costs of directly 
installing apps into virtual machine containers if possible.

Application Layer: This layer is on the highest level of cloud architecture. It 
is formed of actual cloud applications. Cloud applications must have some 
of the characteristics such as lower operating costs, accessibility, and scal-
ability in order to achieve better performance.
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FIGURE 6.2 Cloud computing architecture [16].

6.2 FEDERATED LEARNING

Federated learning (FL) is a newly introduced technology that has piqued the interest 
of researchers eager to investigate its potential and applicability. Federated learning 
simply tries to answer the question: “Can we prepare the model without trying to trans-
fer data to a central location?”. Furthermore, federated learning allows for training 
without the need for data dissemination, which was not previously available with typi-
cal machine learning (ML) techniques. Google, Amazon, and Microsoft dominate the 
artificial intelligence (AI) market by providing cloud-based API and AI solutions [17]. 
Traditional AI approaches provide confidential user data to servers whereby models 
are trained. Federated learning emerges from the confluence of on-device AI and ML, 
blockchain technology, and cloud technologies and Internet of Things (IoT) [18].

Suppose that our centralized ML implementation will mean that all devices will 
have a local copy, which users will be able to use as needed [19]. The model will 
now begin to learn and train itself based on the data available by the users, gradually 
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growing wiser. The systems are then allowed to transfer training effectiveness from 
the local copy of the ML app to the central server. The same issue happens on many 
devices that have a local copy of the app. The findings will be collected on the cen-
tralized server, but this time without any user data [20].

Nowadays, the number of modern devices is rapidly increasing, resulting in data 
being generated in large amounts by data generation. These devices are now used 
with numerous sensors to generate data, which is critical for client-users.

6.2.1 federated Learning arChiteCture

In this section, we present federated learning architecture examples and introduce 
each architecture type independently.

6.2.1.1 Horizontal Federated Learning
A horizontal federated learning network standard structure is illustrated in Figure 6.3. 
Using this architecture, multiple firms have multiple clients who see themselves as 
much as K number of peoples who responded with the same sort of data and jointly 
train on an ML model with the assistance of a cloud server or parameter. Because 
in horizontal learning framework machine is trained at the local site with their local 
data and only gradients are sent to global server that aggregate the different updates 
from the different location, in this way no personal information is shared. This 
ensure the privacy of the patients data. The following four stages are often part of the 
preparation for such an event [21].

• The training gradient is computed locally by edge devices picking gradients 
using encryption and secret sharing, and masked results are then sent to the 
cloud platform.

FIGURE 6.3 Horizontal FL.
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• The encrypted aggregation that occurs on the server with no understanding 
of the edge devices.

• When the aggregated results are received by the server, they are sent back 
to the edge devices.

• The unencrypted gradients are then used to tailor the edge device’s learning.

6.2.1.2 Vertical Federated Learning
Assume that two companies, Company X and Company Y, would like to train a ML 
model together, and each company is responsible for its own data within its own 
business systems. This is a critical component of cloud computing. Infrastructure 
layer is based on key features such as virtualization technology’s dynamic resource 
assignment. However, Company Y has marked information that the algorithm must 
model. Both companies X and Y are unable to share data directly due to data protec-
tion and confidentiality concerns. To ensure security of the results, a third-party per-
son C is introduced into the training process of companies X and Y. We believe that 
individual C is trustworthy and does not work for Company X or Y, and that teams 
X and Y are both reputable but have a mutual interest in each other. Person C could 
be operated with the system like authorities or replaced with secured computer nodes 
like Intel Software Guard Extensions, so that Team X, a trustworthy third-party C, is 
a fair inference (SGXs). This FL system is divided into two parts, which are depicted 
in Figure 6.4.

6.2.1.3 Federated Transfer Learning
Transfer learning (TL) is a method to reuse a previously learned model for a new 
task, and it has lately been employed in surveillance, biometrics, medical, and 

FIGURE 6.4 Vertical FL [22].
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agricultural applications, to name a few. As shown in the vertical federated learn-
ing example presented above, Company Y has overlapping examples or samples, but 
these are extremely rare, and then this is attempting to learn the labels for all data 
about Company X. TL uses the same illustration of a feature between firms X and Y 
and assists in reducing label prediction error for the target company with the help of 
a source company, such as Company Y in the present case.

6.3 HEALTHCARE

Healthcare 1.0: The basic patient–clinician relationship is often referred to as 
Healthcare 1.0. The patient attends visits a hospital and consults a doctor 
and other healthcare stakeholders of the care team during such an encoun-
ter. Based on the consultation, test report, and diagnosis, the medical officer 
writes a prescription for pharmaceuticals and develops a treatment plan for 
an illness, as well as follow-up plans [23].

Healthcare 2.0: Along with substantial advances in the fields of health, life 
science, and biotechnology, a slew of innovative medical devices and equip-
ment have been designed, manufactured, and tested, and these are becom-
ing more popular, being employed in delivery of healthcare. Image testing 
equipment, and also surgical and life-associated equipment, is increasingly 
being used to aid in diagnosis, treatment, and monitoring at hospitals and 
other patient care settings. This is known as Healthcare 2.0 [24].

Healthcare 3.0: Many electronic health record (EHR) actions are time-
stamped and stored, and many manual tasks have been computerized and 
digitalized. Furthermore, telemedicine and remote care are now possible 
via the use of existing computer networks, and electronic visits are start-
ing to replace certain face-to-face meetings. The COVID-19 pandemic is 
increasing demand for remote medical appointments [23].

Healthcare 4.0: Healthcare 4.0 is coming into focus. In order to attain smart 
and related healthcare delivery, the current set of healthcare delivery 
methods is being transformed into a cyber-physical system made up of 
IoT, RFID (radio frequency identification devices), wearables, and various 
other medical devices, intelligent sensors, medical robots, etc. All these 
technologies are associated with the cloud ecosystems, analysis related to 
Big Data management, deep learning–based mechanisms, and the asso-
ciated artificial supported techniques, such as decision support, etc. In 
such a system, not only are healthcare companies and institutions linked, 
but also all instruments and technologies, as well as the patient’s home 
and communities. Furthermore, we may foresee proactive therapy, illness 
forecasting and prevention, customized medicine, and improved patient-
centred treatment employing AI tools [23]. Healthcare 4.0 has heralded 
a new era of smart, cybernate, and sustainable production, with consid-
erable gains in the process, product, and service productivity, quality, 
and/or customer happiness. The application of AI techniques to improve 
detecting, treating, coordinating, and communicating among patients, 
physicians, and other related and associated end users and stakeholders in 
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order to achieve personalized and patient-based and patient-centred smart 
healthcare administration, which encompasses the following views on 
classification and stratification.

 1. Prediction Analysis: To aid in diagnosis and prognosis, accurate fore-
casts of illness progress and consequences created on stratification and 
categorization can be generated for each patient. Such models should 
not only estimate risk levels, but also rank and interpret the elements 
that influence this prediction.

 2. Preventive and Proactive Care: The results of forecast analysis can be 
used to create preventive and proactive treatment programmes. Aside 
from preventing or reducing disease progression, we can increase pre-
scription error prevention and patient safety [16].

 3. Monitoring, Involvement, and Finest Treatment: Continuous moni-
toring of dangerous signs and other healthcare-related patient-specific 
serious factors, continuous analysis and prediction of patient condition, 
and dynamic updating of care complications and diagnosis plans, are 
necessary to improve patient outcomes and to support healthcare pro-
fessionals in making the best decisions for each patient.

Healthcare 5.0: The fifth generation of healthcare acknowledges the criti-
cal role of customers and shifts industry operational models forward into 
adapting to customer processes. It is a shift in mindset, from relationship 
management to customer-managed relationships. Instead of the other way 
around, health service providers in Healthcare 5.0 are trying to ask where 
they can fit into the lives of their customers [25–27]. The emphasis is on cus-
tomer models, fully understanding the healthcare industry’s customers [24]. 
Digital wellness will emerge as a result of Healthcare 5.0. Participants in 
the industry will shift their focus from simply treating patients to establish-
ing long-term relationships with individuals, making treatment an exception 
rather than the norm [24].

The new emphasis on digital wellness will create new ways of improving care 
quality [24].

Responsiveness: The proactive approach will accelerate the progression of 
preventive healthcare, for example, by encouraging us to change our ways 
and thus avoid adverse health scenarios through smart devices. In the event 
of an accident, self-driving cars may communicate with emergency services 
and share actual information about the condition of their passengers, pos-
sibly even sparking the production of customized body parts.

Fairness Financing: The digital economy’s players continue to astound us 
with new business models. If we can predict anything about the future of 
the health industry, it is that many health services will become available for 
free, while the financial models of others will change dramatically. Many 
more business models will emerge than those which rely on outright pay-
ments such as Medicare systems or insurance schemes. Digital wellness will 
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largely eliminate geographical boundaries, allowing for the greater contest 
between many service providers and, ideally, better patient outcomes.

6.3.1 heaLthCare and federated Learning

There is a greater emphasis on data security these days as a result of an unmatched 
increase in the number of exposed records, which will reach 8.4 million in the first 
quarter of 2020. IBM claims that in 2019–2020 reports, the average global price 
of a data breach reached 3.86 million, with the health industry leaderboard first at 
7.13 million. FL is an interesting technique that protects privacy and thereby lowers 
data leaks. Also, it corresponds to the distributed nature of healthcare data. Deep 
federated learning leverages deep learning technologies, as well as a number of sup-
plementary and high-performance models, to handle complicated and intensive FL 
tasks. This really is especially important in healthcare, a sector in which the amount 
of data is large and continually changing [28].

Deep learning would thus eliminate the necessity for featuring engineering 
approaches by employing the neural network stacking methodology in FL. As a 
result of the method being totally automated and requiring no human interaction, 
local training on edge devices will be improved [28–30].

6.3.2  federated Learning inforMation for heaLthCare data Study and 
itS anaLySiS: a fraMeWork toWardS the heaLthCare doMain

This subsection provides a decentralized FL framework for analyzing use of IoT 
for healthcare data, prompted by the need to ensure data privacy for patient popula-
tions that utilize IoT devices using AI technologies to monitor their overall health 
status and conditions while enabling a decentralized structure. IoT devices will be 
involved in the data capture, acquisition, and analytical techniques in this frame-
work [31]. The previous global interconnected model version is then used to analyze 
healthcare data in order to detect any issues. Following this, a local model training 
process must be completed and healthcare data collected and analyzed to identify 
any errors or problems. Following that, using data from the same IoT device, a 
local model learning process must be carried out autonomously of the modelling 
framework. After the local training process is completed, the model’s modification 
will be summed up as updates or sent to a cloud server without uncovering any 
kind of information that may related to personal or public data. Because the data 
is stored on the user’s device and the user is the only one who has access to it, the 
customer’s privacy will be protected. As only model updates are available on the 
centralized cloud server, the attack on it will not disclose any personal information 
of the patient. During the global model training phase, these notifications will be 
averaged. The model output global training programme will continually enhance 
performance and include new user scenarios. Following the learning of the global 
model, an enhanced version will be provided to the IoT devices that are partici-
pating [32]. The entire FL process will be repeated to keep the model up to date. 
Following training of the global model, the another updated tasks will be delivered 
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to the participating IoT nodes [33]. The whole federated learning procedure would 
be continued to keep the model up to date.

6.3.3 iMpLeMentation

This subsection recommends carrying out an experiment involving the use of DFL 
for skin disease diagnosis utilizing data received from IoT devices. The research is 
broken into two sections: constructing a global deep learning model that identifies 
skin illnesses via TL, and then utilizing FL to safeguard data privacy and enable 
decentralization. A dermatology dataset of roughly 10,000 photos was used to con-
struct a model for trying to detect skin disorders. This model will act as a modelling 
framework throughout the first phase of the process and will be shared with the 
participants. This will be considered as the first round of iteration where local par-
ticipant entity uses the global model.

Algorithms: To put in place a fully automated DFL procedure, the commu-
nity education data acquisition process must be addressed. This part is 
crucial for the IoT device local training phase. Algorithms 1–3 combine 
to build an improved FL algorithm that governs the input collection and 
learning stages of locally and globally deep learning models. During the 
first task cycle, the deep learning model that has been pre-trained will be 
shared with the IoT side, allowing users to diagnose skin conditions utiliz-
ing the approach (Algorithm 1). The data acquisition round (Algorithm 2) 
begins once the prediction procedure is complete. The user is requested 
to score the outcome on a 5-point scale in order to get training examples 
for local training since the model performs training using a picture with 
a label. If the rate is too high, the sample will be utilized as a training 
sample. Otherwise, the sample data will be rejected, and no local training 
will take place. Furthermore, until at least one training sample is provided, 
this user will be unable to participate in the federated average round, which 
is Algorithm 3. As a result, if just one member has completed the data- 
collecting procedure, the federated average round will begin. This step 
also ensures that the training data is of good quality and involves the client 
in the model output validation process [34]. The model performs well in 
the federated average round (Algorithm 3); output weight values would be 
broadcast to the participants for use in instantiating the local model, and 
the local training will then begin.

6.3.3.1 Experimental Setup and Results
6.3.3.1.1 Dataset
The Interactive Dermatology Atlas dataset [35] was used to train the skin disease 
identification model. The collection contains around 10,000 photos divided into 361 
categories. The images have been scaled to fit the dimensions 224 × 224 × 3. The 
algorithm for the same has been discussed herein.
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Algorithm 1: Starting Assignment Round

Input: Tpre-traine
Output: Tg
Tg: global model weights.
Tpre-trained: pre-trained model of weights

1: function Initial Round(Tpre-trained)
2: Tg ¡- Tpre-trained
3: send global weights(Tg) to all users
4: End
5: Return Tg

Algorithm 2: Initial Assignment Round

Input: users
Output: USERS
Training Sample: the image captured by the user(x) and the high rated.  
USERS: a subset of users performed the data acquisition round.

1: fun Data acqu(F(x))
2:  for U users perform
3:   Prediction Process Yi-F(X)
4:    if(user rating for Yi=3) then
5:     Training sample ¡-(x,y)
6:     USERS Users
7:    End
8:   End
9:  Return USERS

10: End

6.3.3.2 Experimenting with Federated Learning
First, the global model output weights will be disseminated to participants. Second, 
on the participant’s data, a local training process using the broadcast weights will 
be performed to update each participant model’s weights. Next, the global model 
weights will be changed as an average of the participant model modifications.

6.3.3.3 Results and Evaluation Strategy
This segment describes the evolution of the deep learning prototype from the ini-
tial model to four federated current average rounds based on accuracy, classification 
report parameters, receiver-operating characteristic curve and the area beneath the 
curve, timeframes, and ultimately adaptation period. It also contrasts the level of 
secrecy and operating cost vs. process complexity services supplied by DFL models 
and centralized models.



117Trusted Federated Learning Solutions for IoMT

6.3.3.4 Performance Calculations
Get the confusion matrix first, then compute the ML assessment metrics. A  test 
method that completely describes a model’s performance is the confusion matrix. 
In comparison to the actual class instances, it indicates the expected class instances. 
True positive, true negative, false positive, and false negative findings are produced 
by the confusion matrix [36].

Accuracy: This is the percentage of correct prediction samples from across all 
sample data that represent true positives and true negatives is referred to as 
accuracy. It counts the number of times this same model correctly classifies 
a data sample.

Classification Report: This is a report that summarizes the three major evalua-
tions of ML to ensure comprehensive accuracy: precision, recall, and F1 score.

Precision: This is the model’s reliability in making positive future predictions.
Recall: This is the percentage of identified positive data samples among all 

positive samples.
Macro Average: This measures the typical categorization measurement for 

every without taking into consideration the total number of items in the 
dataset for each category.

Algorithm 3: Federated Average Round

W: weights of user’s local model. R: Rate of learning
L: Loss function
V: if found weight value (option).
Input: USERS, Wx,Wy, training sample varibale R,L,V
Output: USERS, Wx

1: function Federated learning round1(Wx)
2:  if(USERS!= empty) then
3:    send global weights (Wx) to all USERS end
4:    for U in USERS do
5:     Wy ¡- Wx
6:     B ¡- (small-batches of training samples)
7:    for e in epochs do
8:     for k in k do
9:     Wy ¡ − Wy * −R * L(Wu,k)

10:    end
11:   end
12:   return Wy
13:  end
14:  public function Federated learning average(Wu,Wu)
15:    Wx ¡- ∀USERS(Wy ∗ V y)/USERS Wy
16: Return Wx =0
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6.4 FL SYSTEMS: CASE STUDY

In this case study, we will describe steganography and steganalysis, implementa-
tion of steganography on healthcare data, and finally, we will move towards naïve 
approaches to advanced approaches for steganography.

6.4.1 What iS Steganography?

Steganography is the process of hiding messages or information within non-secret 
text or data.

6.4.2 differenCe betWeen SteganaLySiS and Steganography

Steganography is the encoding of information on a viable object source, and stega-
nalysis is the decoding of information from the encoded object.

Stegano is a Python steganography module that we can use to encode and decode 
messages in an image, as shown in Figure 6.5.

We just hide a message in our image with two lines of code. Let’s try looking at 
the images to observe if there is any difference (see Figure 6.6). Figure 6.7 shows 
the original image vs stago image. Figures 6.8 and 6.9 show the RGB graph and 
extracted data from the main image respectively.

Surprised? Can’t tell the difference, can we?
Stegano also provides a function for decoding the message hidden in our image. 

Next, let’s try that.

6.4.2.1  We Can See the Text We Hide, But What Is Going  
On under the Hood?

The module makes use of a technology that produces a concealed channel in sec-
tions of the cover image where changes are expected to be low when compared to the 
human visual system (HVS). It conceals the information in the picture data’s least 
significant bit (LSB). This embedding method is basically based on the fact that the 
least significant bits in an image can be thought of as random noise, and they conse-
quently become not responsive to any changes on the image; this is one of the first 
and classical ways of doing steganography on images. In terms of how they conceal 
information, the well-known steganographic tools based on LSB embedding differ. 
Some of them alter the LSB of pixels at random, others modify pixels in specific 

FIGURE 6.5 Hiding data.
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FIGURE 6.6 AND FIGURE 6.7 Original image and stago image, comparing RGB values 
of both images.

FIGURE 6.8 RGB graph.



120 Federated Learning for Internet of Medical Things

portions of the image, and still others increase or decrease the pixel value of the LSB 
rather than changing the value.

6.4.2.2 K-Naïve Approach
So now what we understand how Stegano works and how one of the first and oldest 
ways of steganalysis works, we can use a naïve approach for detecting whether a mes-
sage has been encoded in a image file or not. The following presents a naïve approach.

• An RGB (red, green, and blue) image is stored in a form of 3-D NumPy 
array whereby each dimensions contains pixels of RGB colours. The values 
in this vary between 0 and 255. We can flatten the NumPy array into a vec-
tor of rdim × gdim × bdim. This will get us a feature vector for an image.

• Now we can find the cosine similarity between the two vectors of our nor-
mal image and encoded image, if they are alike then cosine dissimilarity 
(1-similarity) must be 1; else, it will be less than 1 and we can get an idea 
that something is wrong.

6.4.3 Let’S do thiS and See the reSuLtS

• We can see that we can find whether an information is hidden or not using a 
naïve approach without much effort.

• This naïve approach is not wrong, but not exactly correct because the infor-
mation is hidden in the DCT coefficients of the image rather than the RGB 
pixels. Figures 6.10–6.13 show the result of the performed operation.

6.5 CONCLUSION

We propose in this chapter a security feature in Internet of Medical Things 
(IoMT) using FL. In IoMT, FL can help with healthcare analytics using user-
generated data. It depicts a DFL proof-of-concept experiment for X-ray images. 

FIGURE 6.9 Extracted data from image.

FIGURE 6.10 Converting Vec-1 and Vec-2 into a NumPy array.
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The evaluation showed promising results for providing security. We implement 
code on X-ray images, and it showed promising results which will help in secur-
ing patient X-ray images and data. To that end, the proposed model may make 
possible the efficient and feasible integration of user-generated wellness and 
behavioral data.
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7.1 INTRODUCTION

A person’s health is critical for living a pleasant and productive life. Healthcare is the 
way of improving one’s health through disease identification, treatment, and preven-
tion. The World Health Organization (WHO) defines health as “a condition of complete 
mentally and physically well-being free of sickness and disability” [1]. The majority of 
existing healthcare employs administrative management and monitors patient case his-
tory, demographic data, drug stock maintenance diagnostics, billing, and prescriptions, 
which may end in manual errors that show a negative impact on patients. By integrat-
ing all decision support systems and critical data surveillance equipment through a 
network, smart healthcare based on Internet of Things (IoT) minimizes human errors 
and supports clinicians in detecting diseases more quickly and precisely. Internet of 
Medical Things (IoMT) refers to medical devices that may communicate data over 
a network without involving human efforts or computer interaction [2]. According to 
Gartner [3], a research and consultancy firm, 27 billion devices will be connected to the 
internet by 2025. In addition, the global IoT market will grow at a 16.9% annual rate. 
This substantial sum of money also involves the development of IoMT systems. IoMT 
has the potential to deliver cost-effective and novel services to the healthcare industry, 
notably by enabling further effective monitoring of patients hospitalized or those with 
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chronic conditions. The platform also offers a smart system that primarily consists of 
sensors and electronic control systems to procure biomedical signals through a patient, 
a peripheral device to handle the sensor information, a permanent or temporary stor-
age unit, a piece of network equipment to transfer the biomedical information over a 
network, and a visualization platform of artificial intelligence programmers to make 
decisions based on professional medical ease [4] and predict the future based on the 
past medical history [5, 6]. This study reviews IoMT-based remote health monitoring, 
smart hospitals, FDA-approved sensor tracking and improved chronic illness therapy. 
IoMT makes use of mobile technology and linked healthcare equipment that is now 
available in the end-user market at reasonable rates.

However, because of a shortage of compatibility among smart devices, the neces-
sity to integrate numerous systems, and data security, the adoption of IoMT solutions 
faces significant hurdles. To fully realize the promise of IoMT, designers of these 
applications need to be given tools that protect them from the intricacies that come 
with these issues [7, 8]. IoMT is also alternately known as the Medical Internet of 
Things (MIoT). It is a health-specific version of IoT whereby a physician can remotely 
and instantly measure various metrics of a patient’s health like body temperature, 
heart rate, and oxygen level, using a sensor system deposited on the body of a patient 
[9]. Figure 7.1 depicts several IoMT entities.

One of the most common diseases is diabetes. It causes adverse effects on many 
human organs, resulting in macrovascular alterations. Diabetes is a disease that 
occurs when blood sugar levels are abnormally high. Our bodies get their energy 
from glucose. Our carbohydrates are broken down into a minor form of glucose 

FIGURE 7.1 IoMT system.
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through metabolism. The concentration of glucose in the blood in diabetes can 
cause catastrophic damage to different body areas, including the eyes, kidneys, and 
heart. Diabetic retinopathy (DR), cataracts, glaucoma, and other vision problems 
can develop over time due to diabetes. According to statistics [10], about 382 million 
individuals have been diagnosed with diabetes, with the number potentially rising 
to 592 million, as shown in Figure 7.2. Diabetes affects people’s lives around the 
world, with women accounting for more than 50% of those affected. According to 
researchers [10], a group of Indian states been identified as having the highest preva-
lence of diabetes among women. Diabetes affects 1 in 10 women in the 35–49 age 
group in at least half of the 640 regions surveyed. The districts with more prevalence 
rate are in the states of Kerala, Tamil Nadu, Odisha, and Andhra Pradesh. In total, 
254 electoral districts have a very severe diabetes burden, whereas 130 have a mod-
erately high burden (range: 8.7%–10.6%). The weight is heaviest towards the south 
and east and lightest in the centre. The figure comes from a survey conducted in 
2015–2016 (National Family Health Survey) which includes district-level indicators. 
The demographic information of 2,35,056 people from 36 states and union territories 
was examined in order to determine disease prevalence and investigate relationships 
between disease and socioeconomic status, number of children, obesity, hyperten-
sion, and location, among other factors. Samples are collected to capture blood glu-
cose levels in both men and women, aiding in diabetes diagnosis.

Diabetes affected 10.5% of the population in 2020, according to diabetes sta-
tistics, and 45% of diabetic patients are completely unaware of their condition, as 
depicted in Figure  7.3 [9]. In 2045, diabetes patients are expected to increase by 
12.2%, compared to 11.35% in 2030 as shown in Figure 7.4 [11]. In terms of spending, 
966 billion US dollars were expended in 2021, as shown in Figure 7.5 [12].

Thyroid disease is a broad term for a chronic condition in which a person’s thy-
roid does not produce adequate hormones. Normally, the thyroid produces hormones 
essential to keep the human body running smoothly. The human body requires 

FIGURE 7.2 Diabetes worldwide.
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energy extremely faster if your thyroid produces too much thyroid hormone. Thyroid 
hyperthyroidism is the term for this condition. Newborns, teenagers, men, women, 
and the elderly all be affected by thyroid disease. It is possible that it is present from 
birth. It can also worsen as you become older. A woman is 5–8 times significantly 
more likely than a man to be detected with thyroid disease. Following are the signifi-
cant heredity symptoms of the thyroid.

• Thyroid disease runs in your family history.
• Type 1 diabetes, pernicious anaemia, lupus, rheumatoid arthritis, primary 

adrenal insufficiency, and Turner syndrome are all medical conditions.
• Taking an iodine-rich dietary supplement (amiodarone).

FIGURE 7.4 Diabetes future.

FIGURE 7.3 Undiagnosed people.
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• Age greater than 60.
• Radiation or thyroidectomy type treatment for cancer or a past thyroid 

condition.

Thyroid diseases are frequently induced by autoimmune reactions, which occur 
when the body’s immune system begins to target its own cells [13]. Diabetes puts 
a person at a larger chance of acquiring thyroid disease than persons who do not 
have it. Type 1 diabetes is an autoimmune condition. We are more prone to acquire 
another autoimmune condition if we have one already. The risk is reduced for per-
sons having Type 2 diabetes, but it still exists. You are more likely to develop thyroid 
disease later in your life if you have Type 2 diabetes. Thyroid disease affects around 
1 in 8 women at some stage in life. The risk is nearly 10 times higher in women than 
in men. Figure 7.6 shows the thyroid patient statistics in India [14].

7.2 CASE STUDIES

7.2.1 inteLLigent gLuCoSe Meter (igLu) With ioMt

Continuous glucose measurement (CGM) is required to treat diabetes with insulin 
secretion or medicines. A solution for measuring glucose levels in patients with dia-
betes is needed. Controlling diabetes through insulin secretion or dosing requires 
CGM device. At present, there are no smart healthcare solutions available to mea-
sure glucose. Diabetes patients need a solution for glucose monitoring. People will 
become more aware of dietary control through CGM. A diabetic patient may need 
to measure his glucose level from time to time. Blood glucose is typically measured 
using the traditional method, which is by pricking a blood drop. Currently available 
CGM devices do not always give accurate results, and also they are not cost-effective. 
To address these difficulties, This chapter employs a non-invasive device, iGLU, that 
works with IoMT architecture to deliver a cutting-edge smart healthcare solution 
[15]. The iGLU is a new non-invasive testing gadget that uses an optical detecting 

FIGURE 7.5 Expenditure on diabetes.
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FIGURE 7.7 Model iGLU with IoMT.

FIGURE 7.6 Population affected by thyroid disease.

approach to estimate continuous blood glucose levels. A non-invasive iGLU device 
that works with IoMT architecture to deliver a cutting-edge smart healthcare solution 
is proposed in this chapter, as shown in Figure 7.7. The iGLU is a new non-invasive 
testing gadget integrated with the IoMT framework enabling diabetic patients in 
remote areas to help them with diet and medication.

The proposed iGLU device employs a near-infrared (NIR) spectroscopy technique 
with various short wavelengths. The gadget has three channels, each equipped with an 
emitter and detector for a specific wavelength. The reflectance and absorption spectros-
copy are taken into account in order to detect the glucose molecules. This device fits 
best as it is cost-effective and gives high accuracy. Three channels of the output voltage 
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can be used to estimate blood glucose values with the optimization of the regression 
model. In order to predict the blood glucose level, the output voltages are used as input 
vectors. Testing the device on healthy, prediabetic, and diabetic patients by follow-
ing the protocol confirms the accuracy of the trained regression model. The proposed 
device best suits measurement as it is also tested on age groups of 17–75, and the non-
invasive blood glucose level measurement is accurate in the range of 80–420 mg/dl. 
Additionally, prototypes of iGLU were developed having a system on chip (SoC) that 
included light-emitting diodes (LEDs), an analogue-to-digital (ADC) converter with 
noise filtering capabilities, and detectors and frame acquisition controllability. A 16-bit 
ADC was used to process the collected data at a sampling rate of 128 samples per 
second. These data have been stabilized by coherence averaging, and the blood glucose 
levels are predicted using a deep neural network (DNN). Levenberg–Marquardt back 
propagation is used to train the sigmoid activation for DNN. Based on a comparison 
with a standard SD Check glucometer, the mean absolute relative difference (mARD) 
is 4.66%, the mean error (AvgE) is 4.61%, and the regression coefficient is 0.81.

In summary, iGLU is a new non-invasive glucose meter for smart healthcare. The 
device prototype uses specific wavelengths of NIR light to detect glucose molecules. 
For monitoring of patients, glucose values are stored in the cloud for later access by 
caregivers who use the IoMT framework.

7.2.2  ioMt-enabLed bLood gLuCoSe prediCtion With deep  
Learning and edge CoMputing

Predicting blood glucose (BG) levels is important for successful glycemic control 
in managing Type 1 diabetes (T1D). CGM and deep learning techniques have been 
shown as depicted in Figure 7.8 to be capable of improving BG prediction with the 
advent of IoMT. The chronic disease diabetes is characterized by hyperglycemia, 
affecting nearly 500 million people worldwide. People who have Type 1 diabetes 
(T1D) can receive lifelong treatment to keep their BG levels within safe limits because 
of the autoimmune destruction, which leads to absolute insulin deficiency. In order to 
accomplish this, the patient must consistently adhere to a set of self-care behaviors, 

FIGURE 7.8 Blood glucose prediction with deep learning.
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such as keeping track of BG levels, administering extrinsic insulin, and careful plan-
ning of diet and exercise [16]. Failure to do so increases the risk of hyperglycemia 
and hypoglycemia, resulting in a variety of temporary or deep-rooted complications. 
With the advancement in IoT, many CGM devices have been developed. The wide 
use of CGM has generated data in huge amounts and promising the development of 
artificial intelligence (AI) technology, mostly in the prediction of BG in machine 
learning algorithms [17]. Recent advances in deep learning–based models have 
brought them to the cutting edge in terms of accuracy. However, due to the increas-
ing demand for computational resources, these algorithms are difficult to implement 
for sustainable decision support in real-world clinical settings. Smartphone-based 
implementations, on the other hand, are limited due to their short span of battery life, 
and the fact that users need to carry their devices. Therefore, this chapter introduces 
a new deep learning model that uses attention-based stochastic recurrent neural net-
works to design IoMT-enabled wearable devices and implement embedded models. 
It includes a low-cost, low-power SoC that uses Bluetooth connectivity and edge 
computing to perform real-time BG prediction and hypoglycemia detection. In addi-
tion, a smartphone app is developed for visualizing BG trajectories and forecasts and 
a cloud and desktop platform for backing up and fine-tuning models.

Existing methodologies to implement deep learning models for BG prediction are 
primarily based on customized smartphone apps. However, these methods have some 
limitations, such as lack of portability, battery limitations, and mobile operating sys-
tem reliance. In this task, you will develop a new IoMT-enabled wearable device to 
implement how to use SoC for Bluetooth low energy (BLE) connectivity and edge 
computing. An attention mechanism is introduced for obtaining accurate BG pre-
dictions by a computationally efficient recurrent neural network (RNN). Evidential 
regression is used to improve the diagnosis of hypoglycemia and compute model 
uncertainty. The trained model was then implemented into the SoC of the reflected 
wearable device using improved circuitry to reduce the consumption of energy. After 
obtaining CGM measurements, the non-invasive wearable device uses real-time 
model inference to produce BG forecasts and hypoglycemia warnings to support a 
decision, which can later be integrated into APsystems. Finally, the predictive cor-
rectness of embedded models, performance analysis and edge computing execution, 
and testing of the effectiveness of wearable devices in ten simulations are evaluated.

There are in all three subsystems included: 1) monitoring and decision support, 2) 
medical intervention, and 3) platforms and servers. These are explained in the next 
section. IoMT-entitled wearable devices are central to monitoring and decision sup-
port systems. Wearable devices communicate with CGM over a Bluetooth connec-
tion to provide T1D users with real-time hypoglycemia detection and BG prediction. 
In order to coordinate treatment, the user can interact with the medical intervention 
subsystem. Data transfer between wearable devices and servers and platforms is for 
data backup, data visualization, and updating of embedded deep learning models.

 1. Monitoring and Decision Support: The core component of the proposed 
system is a CGM sensor that measures BG every five minutes and sends real-
time measurements to a dedicated wearable bracelet via BLE (Bluetooth 
low energy).
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 2. Medical Interventions: In this task, the use of insulin pumps is not com-
mon among people with T1D, so manual control of various clinical scenar-
ios is considered. After receiving predictions and alerts from the wearable 
device, T1D patients can search for the necessary interventions in advance 
and manually adjust existing treatments.

 3. Platforms and Servers: A smartphone app can connect to the bracelet via 
Bluetooth to visualize existing CGM measurements, forecasts, and past BG 
history while recording day-to-day activities such as meals, exercise, and 
health status. Train deep learning models and protect the data collected 
using a desktop application with a specially designed graphical user inter-
face (GUI). You can communicate with the bracelet via the universal serial 
bus (USB) port and transfer data to the Amazon cloud storage, i.e., AWSS3 
bucket.

In summary, this case study focuses on E3NN, a RNN model based on GRU with 
proof regression and attention mechanism, and develops a new IoMT-compatible 
wearable device that uses deep learning algorithms for predicting BG dynamically 
and hypoglycemic alert implementation edge computing on the SoC. As tested on 
three clinical datasets, the suggested model gained the best prediction accuracy 
for future BG levels as well as for impending hypoglycemia events with the few-
est amount of floating point operations per second (FLOPs) and model parameters 
when compared to the deep learning–based approaches analyzed. The results of the 
in silico study showed that integrating a wearable device with a T1D management 
system significantly improved the results of glycemic-controlled glycemic levels. In 
the future, wearable devices will be evaluated with the proposed algorithms in real-
world clinical trials, further investigation of hardware and software performance in 
real-world environments, and the modification of features and GUIs will be done 
according to user feedback.

7.2.3  refLeCtive beLief deSign–baSed big data anaLytiCS  
in ioMt for diabeteS

As the global population grows, the main challenge for society is to have a bet-
ter healthcare system. IoMT aspires to deliver a more comprehensive and pervasive 
health monitoring system. The most difficult issue has been the time required for 
web services in recent days. By keeping up with the current technological advances, 
three-dimensional (3D) videos can be downloaded at random intervals. The acquired 
voluminous data is obtained with minimum time for reliable data measurement. It 
will improve the ability of devices to allocate resources and provide faster speeds 
for diverse networks. The vital features of an intelligent healthcare system are high 
throughput, low delay, and reliability, all of which are critical for accurate and suc-
cessful consultation and diagnosis [18]. Currently, Big Data is widely used for ana-
lyzing large amounts of data for business people, predictors, and academics to make 
more accurate forecasts than traditional analysis [19–21]. Big data in healthcare aids 
in predicting epidemics, the treatment of diseases, the improvement of survival rates, 
and the avoidance of avoidable deaths [22]. As the world’s population grows and 
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people live longer lives, fast advances in medical treatment occur, and many deci-
sions are made due to these changes. Patients can make the best decisions at the 
appropriate moments because of Big Data. Metaheuristic algorithms face a new chal-
lenge from Big Data. As a result, this chapter proposes a metaheuristic optimization 
algorithm for Big Data processing in IoMT (DBN [deep belief network], CNN [con-
volutional neural network]) by integrating a gravity search optimization algorithm 
(GSOA) and a belief network that reflects a CNN. The architecture of the reflective 
belief design–based IoMT model is shown in Figure 7.9. According to the perfor-
mance analysis, the GSOA-DBN CNN is effective at predicting diseases. Therefore, 
the purpose of this study is to provide a metaheuristic method for the optimization 
and predictive analytics of diabetes data to predict the risk of a heart attack. The 
IoMT module is used in collecting the data, which is subsequently optimized using 
a gravitational algorithm, followed by data categorization using a DBN-based CNN. 
Finally, SVM (support vector machine) will be used to do predictive analysis based 
on the predictive image analysis.

For the proposed model, the dataset is collected from public healthcare, which 
comprises over 100,000 records with 55 different attributes: gender, age, race, num-
ber of drugs, number of procedures, readmissions, and number of diagnoses are 
only a few of them. The data was initially acquired using the IoMT module, and 
it was then clustered to improve the processing of the data. A metaheuristic algo-
rithm is used for data optimization, including the gravitational search optimization 
technique. The diabetes data were then categorized using these optimized data to 
determine the abnormal range. Then, a DBN was created in which CNN was used to 
perform categorization. The normal and pathological ranges of diabetes have been 
classified using this classification. It updated the hospital database to include the 

FIGURE 7.9 Reflective belief design–based IoMT model.
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normal diabetes range. It used a predictive image algorithm based on SVMs to ana-
lyze the abnormal diabetes range for the cardiac nerves and blood vessels. A dataset 
for diabetes is collected in the IoMT module. The data from the dataset is grouped 
in the data clustering phase, followed by data optimization using metaheuristic data 
optimization utilizing GSOA. The DBN-based CNN classification technique is used 
to classify the optimized data. The regular variety of diabetes is given to the sanato-
rium database, while an atypical variety of diabetes is despatched to the evaluation of 
predicting cardiac assault risk, with a purpose to be performed the use of numerous 
factors, primarily based completely on the categorization results.

The proposed method is implemented using the MATLAB program for perfor-
mance evaluation. A  few parameters of measures—including precision, accuracy, 
recall, and F1 score—are used to assess the efficiency of the suggested strategy. The 
quantization error was calculated using the U-matrix error rate of the topological 
error. The diabetes dataset was chosen as the basis for estimation. Data was ran-
domly selected from the dataset to test the model’s performance. They compared 
the approach with ACO, WOA, GA, and HA. In comparison with existing artificial 
neural network (ANN), KNN (k-nearest number), and NN, the suggested technique 
achieves 98% accuracy, 96% precision, 94% recall, and 92% F1 score. The compa-
rable results were that the suggested GSOA-DBN CNN outperformed ANN, NN, and 
KNN by more than 2%, 3%, and 4%, respectively. More than 2% of ANN precision, 
3% of NN precision, and 6% of KNN precision were attained. The F1 score reached 
is 2% of ANN, 3% of NN, and 4% of KNN, and the recall acquired is higher than 2% 
of ANN, 3% of NN, and 4% of KNN. The suggested GSOA-DBN CNN technique 
outperforms the existing AWO, WOA, and GA strategies by 0.2 peak signal-to-noise 
ratio (PSNR). Hybrid deep learning methods may be used in the future to improve 
the model’s efficiency.

7.3 LITERATURE SURVEY

This section explores strategies implemented using IoMT on diabetes and thyroid 
disease. According to research, a new health platform featuring humanoid robots has 
been created to assist an arising highly complex treatment approach to take care of 
diabetes. This same platform’s framework transforms the IoT technologies into an 
internet concept by leveraging current internet protocols to access and operate core 
network items. It contains microvascular channels, all of which contain a collection 
of clinical sensors attached remotely to a robotic system connected (through the web) 
to an internet illness management centre. A highly optimized model is developed, 
and its edge features and acceptance are effectively assessed in a health professional 
research study, demonstrating that patients and families are open to the suggested 
system’s implementation [23].

Under this research, a physics method is proposed based on electrodynamics, 
which describes all abnormal albumin fluxing mechanisms in the early stages of 
diabetic kidney disease (DKD) and is evaluated using the Monte Carlo approach. 
As per the computer models, the output could be acknowledged throughout cases in 
which a nanosensor would be expected to be capable of significantly defeating noise 
or background noise. Researchers have assigned a simulation error of the order of 
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15% to these experiments [24]. The study examines Zion China’s technological solu-
tion E-Follow Up, primarily based on conventional business analytics and informa-
tion collected from locations, gadgets, and the online cloud. They wished for a more 
intelligent, faster, and cheaper way to constantly and consistently serve data from the 
cloud and other forms of different information in this process. Its results show how 
they efficiently handled enormous data quantities and improved data analysis [25].

Researchers presented Saleem as an architecture for a diabetic management sys-
tem in this chapter. Its goal is to collect data on diabetic patients’ behaviour and 
health. The data is then evaluated and mined so that doctors and patients may see it. 
As a result, real-time data is used to assist judgments. Saleem only has the visualiza-
tion layer at this point. As a result, this version lacks the prediction layer. In the future, 
researchers will integrate a prediction layer that analyzes diabetes patients’ vital signs 
and compares them to other patients with similar symptoms using machine learning 
to forecast complications. The system should also give doctors recommendations to 
their patients based on their behaviour and lifestyle to avert future difficulties [26].

This study describes the architecture of DAMON, a tracking system that takes 
recorded and captured client information as input and operates it by using an stan-
dard template library (STL) framework that includes two monitoring strategies and 
reasons for its fundamental validity to get more appropriate decision guidance. The 
consumer can also be required to offer side-channel verification if it is proven that 
a selective admission is suspicious because it violates defined physiological stan-
dards or conflicts with other information sources. The system captures an entry of 
the authenticity of the data in a questionnaire based on the person’s extra response. 
Rather than raw data, authenticated data will now be used to make judgments [27].

This study aims to present a semantic-driven complex event processing technique 
for diabetic individuals who are at risk of cardiovascular disease (CVD). They have 
concentrated on the semantic modelling of medical events, in particular, propos-
ing various processing criteria. There are four phases to the planned architecture. 
The first was concerned with collecting clinical information from diverse and dis-
persed MCOs. The data was transformed from an ambiguous and unclear layout to a 
fully integrated and specific format within the second step. The third stage was also 
offered as an analysis of the patient’s condition, prediction of severe health compli-
cations, recommendation of appropriate treatment, and finally, notification of choice 
to the patient. The final phase is devoted to developing diagnostic and therapeutic 
choice assistance for clients, clinicians, and managers [28].

Researchers presented an IoT and machine learning–based healthcare platform 
to minimize the chances of diabetes by constant monitoring and forecasting. The 
no-contact IoT-based glucose detector and its interaction with the mobile application 
allow for handy and reduced continuous tracking and measuring of blood sugar lev-
els. They looked at a variety of machine learning models. They discovered that SVM 
significantly improved for diabetes estimation, with an accuracy of 80.5%, using 
a source data called practice fusion that contains more than 10,000 occurrences. 
Besides that, approaches such as grid search and K-fold cross-validation were used 
to optimize SVM-based machine learning model parameters, which enhanced effec-
tiveness by up to 82%. This same machine learning model’s prediction aids the user 
in keeping track of their health and making lifestyle modifications to minimize their 
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chances of diabetes. The designed methodology is among the most successful strate-
gies for constantly monitoring and measuring a person’s critical data to reduce diabe-
tes risk [29]. Generated by IoMT, the whole study establishes the concept of remote 
health monitoring and ambient assisted living. This study presents the FreeStyle Free 
sensor, which uses IoT technology that would allow CGM. It is a low-cost device that 
will enable doctors and caregivers to access information from afar. Libre monitoring 
processes the data obtained from various sensors and stores it in the cloud for future 
study. During the same time period, the glucose levels can be measured and analyzed 
using FreeStyle Libre software. Researchers suggest an IoMT-based framework for 
clinicians to monitor and evaluate glucose levels of people with diabetes from far-
away locations, which is precise and minimal in terms of cost [30].

A screening approach for a better successful thyroid illness assessment is given 
throughout the research work. A fundamental goal was also to increase the under-
standing of thyroid illness treatment. They used AI to get a diagnosis of thyroid 
illness. Using the machine learning approach, the method achieved 94.82% predic-
tion performance. The findings showed that this suggested technique could effi-
ciently understand the thyroid by computationally identifying and categorizing it 
using the suggested method. Furthermore, this finding confirmed that this method 
would be suitable to detect thyroid activity results of scientific testing and would 
therefore pave the road for different diagnoses to be supported by utilizing fresh 
diagnostic experiment records, which they are currently doing [31] In Simulink®, 
an upturned technique is utilized to construct a model of the sensing element that 
would be applied during thyroid surveillance. The suggested design was shown to 
be resource-intensive, with a temperature precision of +0.1°C in the 25°C–40°C 
bands. Additional study will focus on the execution of this framework, as well as 
the integration of several more similar modules for IoT [32]. This chapter has sug-
gested a technique for identifying thyroid cancer predicated using AI in the sug-
gested system. This strategy for thyroid cancer identification was already performed 
in Apache Spаrk utilizing MLlib, which is mainly developed with deep learning. 
Finally, mеdicаl imаging аnаlytics grades were listed. Both the test results are a 
good fit for this position, with 72.9% accuracy and a 78.7% sensitivity. Moreover, 
such results are also based on a relatively small number of entries [33]. As a result, 
this study aims to test the efficiency of computer-aided diagnosis and AI algorithms 
for thyroid nodule detection from bump pics. On the single side, researchers devised 
a radiomics approach for obtaining 302-sized summary statistics from already 
screened visuals with wide bandwidth. This overall result has been obtained after 
feature minimization using respondent agreed and LDA, accordingly. AI-based 
technique, from a different side, was created and verified by preprocessing and 
shaping a convolutional architecture. Radiology and computer learning–based algo-
rithms recorded the maximum precision on the validation dataset, with 66.81% and 
74.69%. The comparative result revealed that the AI-based approach outperforms 
the physical in terms of quality [34].

These discussed approaches lack comprehensive solutions and suggestions. These 
approaches do not address the recommendation module. Hence to overcome this 
lacuna, we proposed a model that provides personalized recommendations to deal 
with prevalent diseases.
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7.4 PROPOSED MODEL

We proposed an architecture to provide the chances of occurrence of prevalent dis-
eases like diabetes and thyroid disease, along with personalized recommendations 
and preventive measures helpful for each person in India, as shown in Figure 7.10. 
IoMT delivers a cost-effective system for real-time data maintenance, as depicted 
in Figure 7.11. The cloud computing framework is the most suitable technology to 
reach each system stakeholder. The data repository module, early prediction module, 
recommendation, preventive measures module, and visualization module are impor-
tant cornerstones of the proposed project [35]. The functional need for the prediction 
module is the early body symptoms of patients. Support for the same will be availed 
from a team of doctors and public and private health organizations. Supervised and 
unsupervised deep learning methodology will be applied to attain better prediction 
at an early stage for women. Verification and analysis of the developed model will 
be used to enhance the performance. Various visualization elements such as graphs, 
reports, rules, and charts are deliverable to stakeholders.

The government has launched various schemes to improve women’s health. In 
this work, we are planning to aid Pradhmantri Jan Arogya Yojana (PJAY) [36, 37]. 
The cloud computing framework is proposed to share computing resources and pro-
vide our model’s reachability to individuals, public and private health organizations, 
general practitioners, super specialists, and pathology and image providers as stake-
holders. As depicted in Figure 7.12, the proposed system architecture offers online 
services to stakeholders and PJAY. Online services consist of four modules: data 
repository, prediction, prevention, and visualization modules. Structured, unstruc-
tured and semi-structured data are pre-processed and aggregated into a data reposi-
tory. The prediction module will use advanced machine learning methods to detect 
the primary level of prediction and deep learning techniques to predict the secondary 
level. The primary level of early prediction requires basic attributes from pathol-
ogy tests. Less than 50% of the occurrence with the disease is notified as low-risk 
patient. Patients diagnosed with above 50% chances of disease are asked for fur-
ther necessary tests. Deep learning models will train specialized test results to give 
better accuracy. Preventive modules suggest preventive measures and personalized 
recommendations on a day-to-day life diet and exercise. The visualization module 
represents knowledge in a remarkable graphical format. An intended project can col-
laborate with PJAY to identify low-risk patients and high-risk patients for insurance 
purposes, and hence, it will reduce the nation’s economic burden.

The study of research papers approves that disease prediction is achieved through 
well-known machine learning methods, as shown in Figure 7.12. SVM, random for-
est with k-fold cross verification, and Naïve Bayes classifier on Pap smear test are 
well-known methods for detection of cervical cancer [38]. Disproportional distribu-
tion of data will lead to low accuracy in existing methods for the detection of cervi-
cal cancer. Data preprocessing and the CNN model of deep learning are the most 
suitable futuristic techniques to achieve worthy accuracy. Association rule mining, 
k-means clustering, random forest, and ANN assure good results in diabetes and 
thyroid disease research. ANN is the most suitable method for the prediction model, 
and it has achieved 75.5% accuracy. An RNN of deep learning model is applicable 
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FIGURE 7.12 Prediction module.

FIGURE 7.11 IoMT platform.
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here to deal with a larger dataset and automatic feature extraction. Two of the big-
gest challenges with traditional machine learning techniques are feature extraction 
and high-dimensional databases. In this project, we proposed to predict prevalent 
diseases in any person at an early age using deep learning models [39, 40].

Cloud framework interfaced with each stakeholder and proposed model consist 
of web portal for collecting online data and to provide user-friendly environment to 
the end-user. The online functionality process consists of the development of a data 
repository module, prediction module, prevention module, and visualization mod-
ule. Adapted machine learning methods will be applicable for primary-level predic-
tion of said diseases, and new approaches to be invented or hybrid techniques to be 
applied for secondary level of prediction [41]. Python, Java, and PHP programming 
languages will be used to achieve the same. SQL and NoSQL databases will be used 
to manage the data repository module. The developed technology can be clubbed as 
a module in PJAY for early detection of disease for corrective action on time and to 
reduce the economic burden on the nation. The intended work will provide health 
statistics and a list of low-risk and high-risk patients for insurance. Increased collab-
oration, resource availability, and simple ways to access data repositories, prediction 
modules, prevention modules, and visualization modules for stakeholders and PJAY 
is more effective by using cloud framework. Data mining and machine learning tech-
niques are proven methodologies to detect and predict the primary level of diagnosis 
for prevalent diseases in women. Convolution deep neural networks and other deep 
learning methods are more suitable for a large volume of image data. By selecting 
Big Data platforms like Apache Spark and Apache, Hadoop provides distributed 
implementation environment for parallel processing.

7.5 CONCLUSION AND FUTURE WORK

This chapter examines and summarizes IoMT-based systems for early prediction 
of prevalent diseases like diabetes and thyroid disease. It also tracks ingestible 
sensors, smart hospitals, mobile health, and a cloud-based enhanced framework 
for chronic illness treatment approaches and treatment and patient tracking sys-
tems connected with PJAY. Each user will be restricted in the future by security 
and privacy concerns. The proposed project will provide a single platform to all 
stakeholders, which will be both time-effective and cost-effective. Public and pri-
vate health organizations can identify low-risk patients and high-risk patients for 
prevention and hospitalization purposes, along with prevention measures from all 
super specialists and experts for each patient. Early prediction of disease will warn 
each future patient about a healthy diet and lifestyle. Healthy people lead to a 
healthy nation, and the early prediction will reduce the cost of insurance for PJAY.
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8.1 INTRODUCTION

Internet of Things (IoT) devices can collect data in real time and communicate it 
wirelessly to a gateway device for onward transmission to a central server with the 
required computing, storage, and data analytics capability. The vital signs moni-
toring through IoT for hospitalized patients offers many advantages compared to 
manual data collection [1]. Electronic health records (EHRs) can comprise clinical 
readings, symptoms, monitored data, etc., for a patient [2]. The data stored in spread-
sheets or other systems does not form part of patient EHR and can often be discarded 
[1]. A recent trend is to collect healthcare data through always-on low power devices 
termed as Internet of Medical Things (IoMT) [3]. IoMT allows wireless and remote 
devices to securely communicate over the network and thus data can be collected 
automatically and analyzed using machine learning (ML) techniques for predictions 
and determining future issues [1]. There are five segments in IoMT: on-body IoMT, 
in-home IoMT, community IoMT, in-clinic IoMT, and in-hospital IoMT [4]. On-body 
IoMT uses wearable devices such as smartwatches, smart glasses, and wristbands 
for health monitoring. In-home IoMT includes private emergency response systems, 
virtual telehealth services, and distance patient monitoring systems mainly used to 
manage chronic diseases. Community IoMT includes devices spread across a town 
or broader geographic area, for example, mobility services and emergency response 
intelligence systems. In-clinic IoMT devices are used for functional and therapeutic 
purposes. In-hospital IoMT utilizes devices presenting in the hospital for clinical and 
administrative use including product management, personnel emergency manage-
ment, resource management, environmental and energy monitoring, etc. [4].

The data collected by IoMT devices could be kept private to a patient, a depart-
ment, or a hospital and yet be part of a collaborative effort to train a global model. 
However, it would be more common for the data sharing to be at the hospital level 
[5]. The collected data can help with both the diagnosis of a disease and for long-
term health indicators monitoring both at homes and hospitals. The personal health-
care data is sensitive considering privacy, and restricted due to regulations, limiting 
the sharing of data [3]. In addition, there are risks posed due to connected medical 
devices of privacy leakage, cyber-attacks, and theft of personal data. The existing pri-
vacy preservation techniques are not sufficient for ensuring privacy due to statistical 
and linkage-based attacks that can compromise the privacy of patients’ healthcare 
data [6]. Privacy issues, risks, and regulations limit the utilization of IoMT data [7].

Advances in artificial intelligence (AI) and deep learning have revolutionized med-
ical healthcare in radiology, genomics, pathology, and other fields [8, 9]. One of the 
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challenges facing AI is that for most domains, data exists in local storage [10]. Thus, 
despite having AI algorithms with performance rivalling those of human domain 
experts, a model can be only as good as the data it is trained on and a lot of training 
data is required before model learning can take place [11]. The importance of hyper-
parameters, which define a model’s parameters, cannot be overlooked as these deter-
mine the model performance [12]. Healthcare systems and processes are complicated 
by their very nature. Due to data security and privacy protection rules, it is difficult 
for a medical institution to access and/or analyze medical data from other institutions. 
A robust ML model, on the other hand, can only be trained with enough data, which 
in most cases involves a significant quantity of data, especially for deep learning [13].

Following this introductory Section 8.1, the rest of this chapter is organized as fol-
lows. Section 8.2 explains the motivation to integrate federated learning and IoMT. 
Section 8.3 describes related work, which includes an in-depth literature review on 
federated learning. Section 8.4 discusses trusted federated learning. New architec-
tures are discussed in Section 8.5 for a trusted federated learning for IoMT. Finally, 
Section 8.6 provides the conclusion.

8.2 MOTIVATION

8.2.1 ioMt data Sharing for SMart heaLthCare

IoMT can be used for health monitoring in hospitals and homes. IoMT could include 
wearable devices, environmental sensors, and medical monitors [5]. In order to guard 
against the challenges facing data sharing through IoMT, each healthcare establish-
ment can avoid sharing its data with other research organizations and instead focus 
on developing its own custom models on its own data. This approach has several 
limitations. The medical data due to lack of trust and privacy remains fragmented 
in the different silos, missing the benefits of sharing the data to improve the model 
training and prediction process. The trained models thus would have biases due to 
data collection procedures, at time be unbalanced, and in any case, not taking advan-
tage of medical data elsewhere. The need therefore is not only to build trust in data 
sharing but also to provide for mechanisms for model improvement by incorporating 
diverse data [13].

Medical data is collected and held in various formats and—regardless of its 
particular format—can render improvement in disease diagnosis through sharing. 
Machine learning has proved its importance for disease diagnosis through use of 
high quality and abundant data. The medical data could be time series data such as 
electrocardiogram (ECG) data; electronic health records (EHRs); medical IoT data 
comprising blood pressure, heart rate, etc.; and image data. The intelligent deploy-
ment of IoT devices can provide around-the-clock and real-time data acquisition from 
remote and inaccessible places. In general, there are two types of things in IoMT. 
One is the sensors and devices that are attached to the patients, and the other is the 
specialized medical equipment and devices that are interconnected to the network.

Within the same institution, it is efficient to integrate and manage the data from 
IoMT via a cloud platform, which will improve the productivity of healthcare 
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delivery processes supported by the smart health applications. This can be illustrated 
as shown in Figure 8.1. However, when it is in a cross-organizational environment, 
due to policy control, regulations compliance and data protection, data sharing would 
become unrealistic and unfeasible, even if technologically it may be possible, e.g., 
with cloud computing.

8.2.2 ModeL Cooperation With federated Learning

The data from different organizations cannot be transmitted and stored at a central loca-
tion due to privacy and computation issues [14, 15]. Instead, the data can stay local and 
yet contribute to building better trained models with better classification accuracy and 
generalization using federated learning. In federated learning, a server orchestrates the 
sharing of the model parameters between the participating devices [14]. Federated learn-
ing models may require training of models on low-power devices or machines which 
could be incapable of processing large datasets compared to a high-end server [14].

The basic steps in training a model through federated learning are as follows.

• Model Selection: The model is selected and can then be shared with the 
individual participating devices for the federated learning algorithm. The 
server also selects the contributing devices or clients.

• Local Model Training: The model will be trained at each participating 
device with its local data. The server sends the model to the participating 
nodes for model training.

FIGURE 8.1 Cloud platform of IoMT data sharing for smart health applications.
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• Model Aggregation: The model parameters are then sent to the central 
server and are used to train a global model.

• Mode Improvement: The trained model can then be shared again with the 
participating devices for improving the model’s accuracy.

Figure  8.2 shows the model training locally at the participating hospitals with 
local data and sharing updates with a central server for updates to a global model. 
The model cooperation through trusted federated learning also helps to reduce the 
model biases due to different data acquisition equipment, data collection protocols, 
age and gender parameters, etc., and can result in better trained models useful by 
all. Thus, the trusted federated learning approaches facilitate sharing the trained 
AI models across different participating healthcare organizations by breaking down 
barriers, increasing trust, and preserving privacy for better disease predictions that 
can increase deployment of AI models in clinical practice. However, there are still 
issues for federated learning adoption relating to technical and security aspects [14]. 
Federated learning has gained prominence for privacy preservation in IoMT data 
sharing [5].

Federated learning as a solution is a decentralization approach for privacy pre-
serving, and sharing of data to train a model [16]. Thus, federated learning seeks to 
address data governance without the exchange of private data [8]. The distributed 
nature of federated learning is a good fit for the IoT data at the edge, as the collected 

FIGURE 8.2 Model cooperation with federated learning.
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data remains private local to the IoT device [3]. Compliance with the healthcare regu-
lations is thus ensured by avoiding a centralized model. Thus, the federated learning 
system architecture follows a client–server model with one central server facilitating 
cooperation in the model development with clients training the model on their local 
datasets, distributing the model, and ultimately sharing the model with an acceptable 
accuracy [17].

8.3 RELATED WORK, FRAMEWORKS, AND CHALLENGES

The term federated learning [18] describes a distributed ML approach by taking 
advantage of parallelism [17, 19]. With federated learning, the training can take place 
by the contributing users on the user data in a privacy-preserving way without shar-
ing the private data with others. Instead, the model parameters are shared which can 
be aggregated to create a joint or global trained model [5, 17, 19]. An advantage of 
the federated learning approach is the decoupling of direct access to the training data 
and the model training [18].

8.3.1 CategorieS of federated Learning

A survey of federated learning in data mining is provided in [20]. A categorization of 
federated learning systems using privacy mechanisms, communication architecture, 
scale of federation, data distribution, ML model, and motivation of federation is pro-
vided in [21]. The federated learning can be categorized as follows.

8.3.1.1 Vertical Federated Learning
Vertical federated learning has been proposed for vertically portioned data for gradi-
ent descent, classification, and other techniques [10]. This feature-based federated 
learning applies to the scenario when two datasets have the same sample ID space 
but different feature space [10, 11]. An example of vertical federated learning could 
be an insurance company and a hospital (different feature spaces) which have the 
same sample space (serving patients) [11, 22]. Thus, in this case, the feature dimen-
sion will increase for vertical federated learning [11]. There are relatively fewer stud-
ies for medical applications with vertical federated learning [11].

8.3.1.2 Horizontal Federated Learning
Horizontal federated learning is the recommended approach for limited sample size 
variability for model development [11]. This is useful for healthcare providers in dif-
ferent countries that will have similar user features for developing a model [11]. The 
total samples can thus be increased by aggregating the user samples from the partici-
pating healthcare providers [11]. Horizontal federated learning is required for sce-
narios when the datasets have different spaces in samples but share the same feature 
space [10]. This is also termed as sample-based federated learning [10]. An example 
of horizontal federated learning could be speech disorder detection whereby multiple 
speakers utter the same sentence (feature space) using different voices (sample space) 
[22]. Horizontal federated learning is the most common of the approaches for medi-
cal applications [11].
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8.3.1.3 Federated Transfer Learning
This is applicable to scenarios when the two datasets differ in terms of the samples 
and the feature space [10]. Federated transfer learning can use the shared AI mod-
els for better diagnosis accuracy [22]. For smart healthcare, an example could be 
disease diagnosis involving multiple participating countries’ hospitals with different 
patients (sample space) and different therapeutic programmes (feature space) [22]. It 
was found that the federated transfer learning as a technique was applied more often 
compared to vertical and horizontal federated learning [23]. A  model for human 
activity recognition was extended to Parkinson’s disease classification using transfer 
learning in the Fedhealth [24].

8.3.2 open fraMeWorkS for federated Learning

Federated learning provides the possibility to decouple the ability to do ML from the 
need to access centralized significant amounts of data. However, federated learning 
is not easy to implement realistically, both in terms of scale and system heterogeneity 
[25]. A number of research frameworks are available to support the study of scalable 
federated learning on healthcare data. Google proposed an open-source framework 
TFF (TensorFlow Federated) for ML and other computations on decentralized data 
[26]. The latest version (0.20.0) of TFF was released in February 2022. Developers 
can either use the federated learning algorithms included in TFF or experiment with 
new algorithms using TFF. TFF’s interfaces are composed of two layers: federated 
learning (FL) API and federated core (FC) API. TFF is distributed under the Apache 
2.0 licence.

FATE (Federated AI Technology Enabler) is an open-source project initiated by 
Webank’s AI Department to provide a secure computing framework to support the 
federated AI ecosystem [27]. FATE can be deployed on a single host or on multiple 
nodes. It has six major modules: FederatedML, FATE Serving, FATE Flow, FATE 
Board, Federated Network, and KubeFATE. Many common federated ML algo-
rithms, encryption tools, and secure protocols are implemented in the FederatedML 
module. FATE supports analysis of horizontal (homogeneous) and vertical (hetero-
geneous) data partitions. FATE provides algorithm level interfaces. Practitioners 
have to modify the source code of FATE to implement their own federated algo-
rithms, which is not easy for non-expert users [21]. FATE is also distributed under 
the Apache 2.0 licence. Flower is a comprehensive federated learning framework 
that offers facilities to execute large-scale federated learning experiments, and con-
siders richly heterogeneous federated learning device scenarios [25]. Flower core 
framework architecture includes both Edge Client Engine and Virtual Client Engine. 
Edge clients live on real edge devices and communicate with the server over remote 
procedure call (RPC). Virtual clients consume close to zero resources when inactive 
and only load models and data into memory when the client is being selected for 
training or evaluation [25]. With Flower, researchers are able to build experimental 
blocks both on the global and the local levels to quantify the system costs associated 
with running federated learning on real heterogeneous edge devices and to identify 
bottlenecks in real-world federated training. Again, Flower is open-sourced under 
Apache 2.0 licence.
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IBM Federated Learning is a Python framework with the main drivers as confi-
dentiality and privacy, provisions to move the data to the central server, and compli-
ance with regulatory requirements [13]. IBM Federated Learning can be extended 
by easily incorporating advanced features. It supports different ML technologies and 
is independent of ML frameworks, such as support for models (TensorFlow, Keras), 
deep reinforcement learning algorithms, decision trees, and linear classifiers [13]. 
IBM Federated Learning provides a foundation for development in enterprise and 
in academic and industry research, and can be used for private, public, and hybrid 
clouds [13].

PaddleFL is an open-source framework that makes it easy to deploy federated 
learning models in distributed clusters, and comparison and replication of federated 
learning algorithms [28]. PySyft is a Python library which can work with PyTorch 
and Tensorflow [29]. Federated learning and differential privacy (FL & DP) frame-
work is an open-source framework for federated learning and differential-privacy 
experimentation [30]. Some other federated learning frameworks proposed by 
researchers are a low-code federated learning platform (EasyFL) [31], a tier-based 
federated learning system (TiFL) [32], a self-adaptive federated learning framework 
for heterogeneous systems (FedSAE) [33], and a fair and accurate federated learning 
under heterogeneous targets with ordered dropout (FjORD) [34].

8.3.3 federated Learning heaLthCare SoLutionS and appLiCationS

Federated learning provides privacy-preserving data sharing. Federated learning has 
been proposed as a promising method to bridge the gap between the separation of 
medical data to protect patient privacy and training a strong deep learning model 
with a vast quantity of data. A  summary of federated learning architectures for 
healthcare data is provided in Table 8.1. A framework termed deep federated learn-
ing was proposed for IoT healthcare data collection and analysis for a skin disease 
detection, showing an improvement in the model performance [35]. An architecture 
for smart healthcare is proposed with an edge node and user layer [36]. The use of 
federated learning in healthcare applications are described in the following sections.

8.3.3.1 Federated Learning with EHR Data
Healthcare monitoring could be used through medical devices in the hospitals and 
wearable devices for in-house patients. A  key application for the emerging com-
munications standards is in healthcare for patients’ medical records [37]. Federated 
learning has been applied to address the various types of healthcare data. A review 
of federated learning for EHR is provided in [38], highlighting the extensive research 
on privacy and confidentially of data. It was reported that deep learning was the 
most common technique, with almost 79% of case studies using it. The authors also 
proposed an architecture for federated learning of EHR data [38].

An algorithm termed FT-IoMT Health was proposed for data aggregation from the 
participating clients, ensuring security and privacy by employing transfer learning 
[37]. The proposed model was validated using human activity detection and showed 
improved results compared to traditional ML models [37]. In a study by NVIDIA in 
collaboration with King’s College London, the successful development of a global 
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TABLE 8.1
Summary of Federated Learning Architectures for IoMT Data

Type of Data Issues Evaluation and Results Reference

IoMT device data Adaptive differential-privacy 
algorithm/edge nodes to avoid a 
single point of failure.

Diabetic dataset, better accuracy, 
resistance to poisoning attacks, 
and acceptable running time.

[36]

Ethereum smart contracts for 
data provenance and encryption 
for security and privacy.

COVID-19 detection on public 
datasets, attained above 90% 
accuracy in training and above 
85% in testing.

[39]

Deep federated learning 
framework.

Skin disease detection on 
Dermatology Atlas dataset, with 
an area under the ROC curve 
(AUC) of the model as 97%.

[35]

Wearable device 
data

Fedhealth framework for data 
aggregation and transfer 
learning.

Parkinson’s disease diagnosis 
achieved personalized healthcare 
ensuring privacy. 5.3% 
improvement over a 
no-federation model.

[24]

Heart activity data collected 
from smart bands.

Three datasets; better accuracy 
(87.55%) compared to the other 
selected models.

[7]

EHR Enables healthcare institutions 
for distributed data analysis, 
preserving patient 
confidentiality.

Leverages federated learning 
methodologies and practices.

[38]

Image
data

Brain tumour segmentation 
(BraTS) simulation of 32 
institutions

with six subjects per institution.

BraTS challenge dataset, 
federated learning segmentation 
of multi-modal data 
(Dice = 0.852) similar to models 
with shared data.

[40]

Fusion-based federated learning 
for COVID-19 detection.

Better performance compared to 
default setting for accuracy, and 
communications efficiency.

[15]

Ethereum blockchain–based 
secure framework for 5G 
networks using differential 
privacy.

Image classification on MNIST 
and CIFAR-10 can deter 
membership inference and 
poisoning attack.

[41]

Multi-modal data, 
chest X-rays, lab 
data, vital signs

COVID-19 oxygen requirement 
prediction.

AUC improvement of 16% across 
participating sites and an 
increase in generalizability of 
38% compared to models trained 
at a single site.

[42, 43]

General data Privacy protection with addition 
of differential-privacy noise.

MNIST dataset prevented a single 
point of failure and provided 
better protection against 
malicious interference.

[44]
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model was demonstrated by sharing the small client datasets for a segmentation task 
using BraTS 2018 dataset [45]. The federated learning model achieved similar per-
formance to that achieved without sharing the data [45]. The study also prevented 
restoration and reverse engineering of the dataset by using complex mathematical 
algorithms [45]. The patient data was encoded before sharing it with other clients 
using differential-privacy technique [45]. It was shown that it is possible to achieve 
similar performance as that of a large dataset by using the federated learning model 
without sharing the small datasets at the institutional level [45]. Many medical insti-
tutions can thus overcome the problem of data paucity by following the combined 
sharing and use of the small datasets in encoded form [45].

8.3.3.2 Medical Imaging via Federated Learning
Federated learning can be a solution for healthcare organizations with small image 
datasets which they are willing to use in conjunction with other healthcare organiza-
tions in order to develop better medical imaging AI models [45]. There are challenges 
for medical image classification using federated learning, as it is hard to quantify the 
contribution of different participating devices which could be based on image quan-
tity, quality, or diversity [45]. A research study at the University of Pennsylvania in 
collaboration with 29 other collaborating institutions around the world is developing 
a federated learning framework focusing on tumour segmentation in collaboration 
with Intel [46]. This was presented as the first use of federated learning techniques 
to real-world imaging data [46]. The performance of federated learning on a brain 
tumour segmentation (BraTS) dataset was compared with two other collaborative 
learning methods, institutional incremental learning (IIL) and cyclic institutional 
incremental learning (CIIL) and was found to perform better [40].

The recent outbreak of COVID-19 highlighted the importance for disease diag-
nosis with chest computerized tomography (CT) imaging [47]. However, the data 
sharing across the clinical storage has its challenges for ML-based models [47]. The 
challenges of data heterogeneity can be overcome as shown for a real-world project 
for COVID-19 region segmentation in chest CT images from China, Italy, and Japan 
[47]. The proposed framework with semi-supervised leaning was shown to have bet-
ter results compared to the conventional data sharing [47]. A dynamic fusion-based 
federated learning model is proposed for COVID-19 diagnostics on medical images 
[15]. The fusion method was used to select the participating clients based on local 
model performance in order to schedule the model fusion determined by the partici-
pating clients’ training time [15]. The proposed model was evaluated on a COVID-19 
detection dataset comprising X-ray and CT imaging [15].

8.3.3.3 Federated Learning with Medical IoT Data
A framework termed Fedhealth was proposed for wearable healthcare data using 
transfer learning for creating personalized models [24]. The personalized models are 
useful for solving personalized healthcare situations as a federated learning global 
model lacks personalization [24]. For the evaluation of Fedhealth, a public human 
activity recognition dataset comprising six activities collected from 30 users was 
used [24]. The results for Fedhealth were compared against the traditional ML mod-
els and it was shown that Fedhealth had the best classification accuracy [24]. The 
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wearable devices data can help to diagnose Parkinson’s disease [24]. The Parkinson’s 
disease dataset was used for diagnosis, and it was shown that the proposed feder-
ated transfer learning approach achieved effective symptom classification [24]. The 
authors concluded that the model updating with incremental learning—that is, a 
model updating with the arrival of new data—can further improve the proposed 
Fedhealth model [24].

A federated learning deep learning algorithm was proposed for heart activity 
IoT data [7]. The algorithms were tested on two different scenarios for a case study 
on stress recognition on photoplethysmography (PPG)-based heart activity signals 
[7]. The scenarios related to a centralized processing of data as in non-federated 
approach and the other was through federated learning for local training of model 
[7]. The results showed that the performance was improved without sacrificing 
privacy [7].

8.3.3.4 Health Text Mining via Federated Learning
Google has introduced natural language processing (NLP) through Pixel phones, 
Android messages and Gboard mobile keyboards [41]. A  survey of the federated 
learning algorithm for NLP covered language modelling, speech recognition, text 
classification, recommendation system, sequence tagging, and health text mining 
[41]. Due to the privacy concerns, federated learning is a favoured approach for health 
text mining and some of the tasks reported were patient representation learning and 
phenotyping, similarity learning, and predictive modelling [41]. The health data can 
exhibit bias towards communities, hospitals, and diseases and can be challenging 
for federated learning [41]. A  benchmarking framework, FedNLP, was proposed 
for evaluating the federated learning techniques on different tasks, that is, seq2seq, 
text classification, question answering, and sequence tagging [48]. The framework 
provided an interface for other models under different non-IID (non–independent 
and identically distributed) strategies for partitioning [48]. FedNLP can be used for 
evaluating and analyzing NLP tasks with federated learning [48]. NLP can also be 
useful for generating image labels consistently across different participating clients 
for ML, which can improve standardization [45].

8.3.3.5 Federated Learning with Multi-Modal Data
A federated learning model termed EXAM (electronic medical record [EMR] chest 
X-ray AI model) was proposed that collected data across 20 institutes for oxygen 
requirement prediction for COVID-19 patients by using inputs from chest X-rays, 
laboratory data and vital signs [42]. The use of federated learning enhanced the data 
science collaboration amongst the institutes for model development from heteroge-
neous datasets [42]. The federated learning global model was found to perform bet-
ter as compared to the local models, improving area under the RUC curve (AUC) 
from 0.75 to 0.920, and model generalization from 0.667 to 0.920, providing an AUC 
improvement of 16% across participating sites and an increase in generalizability of 
38% compared to trained model for a single site with its own data [42]. A biosens-
ing application was developed for Parkinson’s disease diagnosis by combining the 
acceleration and gyroscope signals [37]. Each of the symptoms of walking, postural 
normal tremor, resting tremor, arm swing, and balance were divided into five levels 
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ranging from normal to severe [37]. Data from three hospitals was used for evalua-
tion, and the proposed model showed optimum results [37].

8.3.4 CURRENT CHALLENGES FOR FEDERATED LEARNING

8.3.4.1 data quaLity

Data quality could vary widely across the different participating users and devices. 
Some participants may only have few samples, whereas others could have large data-
sets of high quality to contribute [19]. The quality of data can suffer from clutter 
and there is a possibility to get poor quality data which can drastically reduce the 
effectiveness of the trained model [22, 46]. It is important to safeguard the model 
parameters and the model while these are being shared over the network. A balance 
between the privacy and data sharing has to be maintained [19].

8.3.4.2 data diStribution and heterogeneity

Different calibrations, diverse medical equipment manufacturers, and different data 
acquisition techniques in various hospitals results in different data distributions [11, 
19]. The data of the participating devices is not uniformly distributed and is non-IID 
[46]. This was exemplified into different categories: (i) feature distribution skew, (ii) 
label distribution skew, (iii) same label but different features, (iv) same features but dif-
ferent labels, and (v) quantity skew [49]. These factors can violate the data consistency 
[50]. It was reported that in the initial stages of COVID-19 patients were provided high 
flow oxygen regardless of the need which could skew the model predictions [42].

With different participating devices having different data modalities, such as text, 
images, time series, etc., it is important that the central server should be able to 
intelligently handle the data heterogeneity through, for example, ensemble learning 
[22]. The data heterogeneity challenge can be mitigated by considering the hetero-
geneity aspects before the start of model training [3]. Data heterogeneity across the 
participating clients can result in difficulties in the model parameter selection, and 
algorithms are therefore needed to address this [11, 14].

8.3.4.3 Learning aLgorithMS

A model trained on a centralized dataset can be improved in accuracy by improving the 
data quality and by improving the model performance through hyperparameter tuning 
[12]. Federated learning—due to its very nature of decentralized data—does not provide 
insights into the data, and hyperparameter tuning would require tuning many models to 
select optimal hyperparameter values which would not work for the low-power partici-
pating devices [19]. Flexibility in configuration can help the participating devices [22].

8.3.4.4 ModeL preCiSion

The performance of a trained model can deteriorate over time, and the model would 
need to be trained again [19]. Therefore, alternative techniques such as continual 
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learning, progressive learning, and meta learning will be important [19]. For health-
care, the requirements are quite stringent for model predictions, and there is therefore 
a need to improve the prediction accuracy of the federated learning models to com-
pete against the trained models from the large medical datasets [50]. Semi-supervised 
learning was shown to produce better results and improved model generalizability by 
leveraging the supervision from labelled data and the available information of unla-
belled data [47]. There is a trade-off between the model performance and privacy, 
and it can affect the final model’s accuracy [8].

8.3.4.5 ModeL aggregation and ConSiStenCy

The model’s parameters are aggregated by the central server to create a global 
model. For this, the individual contributing devices have to write the parameters to 
the global server. The variation in data—that is, data heterogeneity—can result in 
the failure of the global model to converge to a single global model [46]. This could 
be due to low-performing nodes taking inordinately long time intervals before they 
can write to the central server [19]. The limited power and storage constraints of the 
IoT devices should be considered for the processing time and the model’s nature for 
these devices [3]. This challenge can be helped by use of lightweight ML models for 
the IoT devices [3].

8.3.4.6 CoMMuniCationS

The participating devices may be located at varying distances from each other, and 
in the case of large distances, the communication latency can be significant [5]. Edge 
devices are low powered and have limited communications facilities onboard. There 
is a requirement for an iterative exchange of the model’s parameters and the trained 
model [22]. This can easily be facilitated using optical communications networks; 
however, there is a need for optimization techniques for wireless communications 
[14]. In some cases, the low bandwidth and connection quality can result in signifi-
cant latency [19]. The transfer of the model updates introduces a heavy communica-
tion cost [15]. It is thus important to develop efficient algorithms for communicating 
the data, which can become problematic otherwise due to large number of model 
parameters and participating nodes [19, 22]. Due to the differences in the network-
ing and communications, the running of federated learning algorithms on different 
participating clients can vary which results in training time and weights updating 
[45]. This can make the debugging and optimization difficult [45]. The reduced band-
width for the wireless devices makes the communications difficult between the cen-
tral server and the participating clients, and in an extreme case, the model updates 
might fail during an update iteration [3].

The communications cost can be reduced through P2P (peer-to-peer) learning, 
model compression, and by the reduction of updates [50]. The data sharing and model 
exchange in a federated learning system can result in a computation and communica-
tion burden for the power-constrained IoMT devices [5]. Collection of personal data 
using IoMT and then processing it at a central server has privacy and communica-
tions challenges, especially for large datasets [19].
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8.3.4.7 deviCe heterogeneity

The participating devices can differ based on network connectivity, computing 
power, and hardware settings [46]. Due to heterogeneity of the participating devices, 
there is a need to reconcile the differences in storage, processing, and communica-
tion capability of the devices in federated learning [22]. There is a need to devise 
the model quantization, and one way to address is to admit devices based on their 
storage and processing capabilities, as otherwise it can increase the time for model 
convergence [14]. Much of the research has focused on mobile devices which have 
sufficient computing, storage, and power for training deep learning models, but novel 
algorithms are needed that can reduce the amount of processing and communications 
needs [19]. Device heterogeneity lowers the model performance due to the increased 
communications overhead for the transfer of model updates [15]. A dynamic fusion-
based ML approach was proposed to improve model performance and communica-
tion efficiency [15].

8.3.4.8 CLient ManageMent

In a decentralized model such as federated learning, the admittance and management 
of participating devices becomes a challenge to be managed [46]. The clients with 
smaller datasets have the incentive to get a global model trained on a collaborative 
larger dataset [42].

IoMT devices such as smartwatches and medical wearable devices can collect a 
lot of medical data such as blood pressure and heart rate [11]. This data can be used 
for device federated learning, but there is lack of communications and computing 
resources in wearable devices required for participating in federated learning train-
ing [11]. These devices have to be provided with incentive mechanism with rewards 
for good quality healthcare data and with penalties for harmful data contribution 
[11]. Before the federated learning becomes mainstream, some form of incentive 
mechanism has to be developed [10]. The model’s performance can be recorded and 
can encourage other organizations to participate by sharing the data and computa-
tion resources for the model training [10]. There are also incentives required for the 
organizations possessing high quality data to contribute [50]. Also, the participating 
clients—especially the mobile devices—require commitment of significant compu-
tation and communication resources and can be incentivized to participate [22, 50]. 
Data owners should also be incentivized to contribute the data [51]. Client manage-
ment by the central server has a single point of failure, as the central server could 
fail. Therefore, decentralized federated learning models have also been explored for 
IoMT [51]. It was shown that the centralized server could be replaced by blockchain 
that can prevent a single point of failure [44].

8.4 TRUSTED FEDERATED LEARNING

A lossless privacy-preserving tree-boosting system termed SecureBoost has been 
proposed for federated learning [52]. The proposed method constructs boosting trees 
across multiple participating parties using a privacy-preserving protocol [52]. The 
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authors proposed ways for reducing the information leakage and concluded their 
proposed framework to be as accurate as a non-federated version on two credit scor-
ing public datasets [52]. A lightweight scheme based on software-defined networking 
(SDN) is proposed to handle the federated learning communications for clients and 
central server based on data sharing using k-nearest neighbour (KNN) algorithm 
[53]. The proposed scheme was shown to provide better resource adjustment and 
Quality of Service (QoS) compared to conventional schemes [53].

8.4.1 attaCkS on data and ModeL

The collection of data from IoMT and its communication to a central server provides 
a very large attack surface that can be exploited by malicious agents [19]. Data is 
susceptible to adversarial attacks, as the data received cannot be validated against 
the source data, and the training phase attacks can be more serious than the inference 
phase attacks [46]. A taxonomy of privacy preservation techniques, such as homo-
morphic encryption, for healthcare data and description of the chosen techniques are 
provided by [6]. The security against the data updates can be ensured through the use 
of blockchain to select updates only from the trusted devices [52].

8.4.1.1 Model Inversion
The cooperation of trained models makes these susceptible to interception and de-
identification by the malicious nodes that are taking part in the training or model 
aggregation [39]. The risk of data interception during the client–server communi-
cation in a federated learning system should be safeguarded to enhance the secu-
rity and privacy of healthcare data to mitigate the risk of model inversion [42]. 
Model inversion attack is aimed at recreating data and can leak the patient’s data 
in the model training process [11]. The model inversion is aimed at exploiting a 
sensitive feature from the information about the other features and the predicted 
probability [11].

8.4.1.2 Model and Data Poisoning
An adversarial attack could affect the model by providing updates that alter the 
global model, thus poisoning the model to affect the model predictions [19, 22]. This 
could be achieved by manipulating the model gradients or training rules [46]. The 
integrity of the training data can be compromised through data poisoning attacks 
[46]. Poisoning attacks can result in the failure of the global model construction 
through submission of an error update by an unreliable device [54]. One of the types 
of data poisoning attack is label flipping during training, which can offset the model’s 
prediction by ascribing a wrong label to data [46].

8.4.1.3 Model Inference Attack
Inference attacks are aimed at accessing private data by inferring the private training 
data through system leakage by manipulation [46]. Prevention of these attacks can 
be achieved through homomorphic encryption, differential privacy, and multi-party 
computation [46]. The membership inference attacks can be carried out by the mali-
cious participants and can result in the federated learning model privacy leakage [54]. 
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This can happen through reverse engineering of the intermediate gradients to access 
sensitive information [54]. In spite of the local user data not leaving the device to the 
central server, it could still be possible to use the weights and gradients to reconstruct 
the original data [41]. Blockchain technology was used to implement a decentralized 
federated learning system to safeguard against the inference attack [44].

8.4.1.3.1 Differential Privacy
Differential privacy provides a privacy-preserving safeguard, and the mechanism 
will return statistically indistinguishable results for similar datasets [19]. This could 
be achieved by introducing some noise in the model [10, 19, 44]. The noise added 
before sending the updates obscures the samples presence in the dataset, and the 
model thus has a differential privacy [40]. Two random noises used for medical appli-
cations are Gaussian and Laplace [11]. The noise addition to the updates can gener-
ally slow down the training [40]. There is a trade-off between model performance 
and data leakage protection [50]. It was shown that partial weight-sharing scheme 
could reduce the risk of model inversion [42].

8.4.1.3.2 Homomorphic Encryption
Homomorphic encryption can ensure data privacy by parameter encryption during 
the exchange in the aggregation process [11]. Homomorphic encryption can offer 
protection against the model attacks but can result in an increase in the training time 
and the message size [42]. The federated learning model for IoMT was shared with 
the participants using homomorphic encryption to prevent the chances of informa-
tion leakage [37].

8.5  A CASE STUDY ON BLOCKCHAIN-BASED TRUSTED  
FEDERATED LEARNING

8.5.1 truSted federated Learning With bLoCkChain

Federated learning faces the fairness challenges due to multi-party involvement; one 
of the challenges is to achieve trustworthiness [55]. The central server has to be 
trusted by all the participating devices [56]. However, the assumption that the central 
server in a plain federated learning can be trustworthy is flawed [39]. Blockchain 
has a decentralized mechanism and can ensure secure transactions through strong 
cryptography [39]. A blockchain-based trustworthy federated learning architecture 
was proposed for enhancing the fairness with each client, and the central server had 
a blockchain node installed to hold a replica of the transaction data [55]. In federated 
learning collaboration, the trust level can vary between the parties [8]. The par-
ticipating parties in a federated learning consortium can be considered trustworthy, 
and therefore, the malicious activities such as extracting sensitive information can 
be disregarded [8]. This can reduce the need for countermeasures [8]. However, for 
large-scale federated learning systems, it is difficult to enforce a collaborative agree-
ment, and some clients can attempt to degrade performance, necessitating the need 
for encryption and authentication of the clients [8]. The trust and validation of the 
shared model and model parameters has to be ensured because a set of tampered 
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model parameters can affect the quality of the trained aggregated model [14]. It is 
important to have a trust in the generated global model by incorporating the explain-
ability of the model [46]. Blockchain technology can play a useful role in enabling 
trusted federated learning using decentralized architecture for secure sharing and 
validation of data [14]. The use of blockchain is important for IoMT data, as it can 
enhance trust in the system [57]. Blockchain technology is a natural fit for federated 
learning due to its decentralization and traceability [5]. Blockchain technologies are 
increasingly being used for problems relating to image retrieval, industrial equip-
ment, and patient health records [23].

The model cooperation in federated learning can be viewed as a process of trans-
actions of the locally trained models completed by the federated learning nodes. As 
such, we can replace the central server with a blockchain platform. After the local 
nodes complete their local model trainings, they submit their locally trained models 
as transactions to the blockchain platform and the new global model will be deter-
mined according to the consensus protocol on the blockchain platform. The model 
cooperation process is shown in Figure 8.3.

Although the above process ensures that the data remains private but sharing of 
model parameters in this process can be subject to interception and change [14]. 
Blockchain can help with the decentralization of the data and model cooperation 
for federated learning. The blockchain technology makes the protected records as 
tamper-proof and can therefore preserve the data integrity. Many different types of 
blockchains exist, and notable ones are private, public and consortium. A consor-
tium based blockchain would be a preferable approach for blockchain-based feder-
ated learning as that prevents the uninvited devices from joining the collaborating 
devices. Blockchain can be used to prevent network anomalies and intrusion aspects 
for the training and aggregation of the models [23].

FIGURE 8.3 Model cooperation in federated learning as transactions of locally trained 
models via blockchain platform.
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Zero-knowledge proof (ZKP) is an encryption method to prove a given statement 
with zero knowledge about the content of the statement and the identity of the prover 
[58]. ZKP can be used for implementation of blockchain [59]. Messaging is the prime 
application in the blockchain. The use of ZKP creates an end-to-end trust for parties 
of the messaging without leaking additional information. However, scalability can 
be a disadvantage due to the extensive overheads incurred in the interaction of ZKP.

8.5.2 bLoCkChain-baSed fraMeWorkS

We next describe some pertinent blockchain-based federated learning architectures 
that have been proposed to overcome the trust challenges. A blockchain-based fed-
erated learning model is proposed aimed at preventing the malicious users being 
involved in the federated learning model using smart contracts [54, 60]. An archi-
tecture for smart healthcare is proposed with an IoT blockchain cloud platform with 
a case study for medical data [16]. A  framework for privacy-preserving federated 
learning used blockchain for electronic health data for tracking the incentive mecha-
nisms for quality data contribution [51] and vaccine distribution to prevent fraud 
[61, 62]. The federated learning model was proposed for intelligent AI processing of 
IoMT with blockchain [51].

For the processing of medical images with patients related information stored 
on the images such as X-rays, it was proposed to store the patient’s related informa-
tion in the form of blockchain transactions [51]. The proposed model was tested on 
medical image data and it was concluded that it improved the performance of the 
convolutional neural network (CNN) model compared to a non-federated approach 
[52]. A  blockchain-based federated learning model (MPBC) was proposed that 
avoided the use of a centralized server, by storing the trained local model on the 
Interplanetary File System (IPFS) [44, 63]. The global model was stored in the 
blockchain [44]. The privacy protection was ensured through differential-privacy 
noise [44]. A cross cluster blockchain federated learning system was proposed for 
IoMT using cross-chain consensus protocol and the multiple clusters were connected 
together to limit the number of aggregated updates [5, 64]. Using image recogni-
tion as the learning task, the proposed architecture was evaluated by implementing 
the proposed consensus algorithms, simulating the latency by adding a delay [5]. 
The blockchain-based federated learning models can suffer due to problems of data 
sparsity [5]. A federated learning approach with blockchain for decentralized learn-
ing is proposed for training models with local and distributed patient data for IoMT 
[52]. A lightweight federated learning framework is proposed with blockchain smart 
contracts for trust management, authentication of participating federated nodes, and 
reputation of edge nodes, and distribution of the models [39]. The proposed frame-
work also included differential privacy for anonymization of COVID-19 patients’ 
data [39]. A blockchain-based Deep Learning–as-a-Service framework, BinDaaS in 
Healthcare 4.0 applications was proposed for sharing EHR records between multiple 
participating clients. The proposed architecture provided for disease prediction in 
addition to ensuring security for EHR. The proposed system was evaluated using the 
medical EHR dataset SemVal 2013 task 9.2 and showed improved results compared 
to traditional models [2].
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8.5.3 propoSed fraMeWork

We propose a trusted federated learning framework by combining the use of block-
chain, explainable AI (XAI) technologies and federated learning for IoMT data. The 
proposed architecture is shown in Figure 8.4. The medical data is collected by IoMT 
devices and communicated to the edge devices such as Raspberry Pi that have suf-
ficient processing, storage and communications resources to run deep learning mod-
els. These edge devices can also provide security by running advanced cryptographic 
algorithms. We propose the use of a permissioned blockchain for privacy protection, 
trustworthy data sharing, and data security for the collaborating hospitals. A consor-
tium blockchain suits the sharing of healthcare data, as clients can only participate 
if permitted, precluding any malicious or untrusted sources. The local updates are 
then sent to the central server using the blockchain and the global model updates 
are thereafter propagated to all the participating clients. We also propose use of an 
explainable artificial intelligence (XAI) [63] module at the central server that can 
help to enable a trusted framework. The collaborating clients can thus have a bet-
ter understanding of why a global model is making certain predictions which can 
increase the trust and adoption of the global model. With IoMT, it is important that 
the latency of the federated learning training is reduced. Fog computing can also be 
used to reduce the communications overhead and latency between the participating 
devices and the central server [19].

FIGURE 8.4 Trusted FL model for IoMT.
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8.6 CONCLUSION

In this chapter, we have covered the state-of-the-art applications and challenges of 
federated learning for healthcare applications. Federated learning provides many 
benefits for privacy preservation of healthcare data. There is no need to share the 
local private data, yet the model can be trained by sharing and aggregating the 
parameters for the participating devices. However, the machine learning model’s 
parameters can be altered and updated maliciously to negatively affect the model. 
We have proposed an architecture showing that further privacy and trust safeguards 
can be accomplished through the use of blockchain and explainable artificial intel-
ligence to validate the data sharing during communications.

There are issues surrounding the low power devices to reliably share the comput-
ing resources for the model training. Certain challenges would have to be circum-
vented for federated learning to become a mainstream technique. Trust in the global 
model’s predictions can be improved through explainability of the model’s predic-
tions; however, explainability is an open issue and a harder problem as the global 
model is an aggregate of local models.
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9.1 INTRODUCTION

The world as we know it in this day and age is being increasingly affected by immi-
nent technologies. Many technologies have become so paramount that they maintain 
unparalleled influence over people’s lives. With the evolution of information technol-
ogy (IT), its in-depth understanding has advanced as well, increasing the threat to 
data security and becoming the foremost concern for any institution. Domains such as 
healthcare informatics and defence become particularly vulnerable to data breaches. 
With the number of data infringements on the rise, the need is felt to reinforce the 
network to make data communication more secure and reliable. Data security encom-
passes varying levels of protection such as encryption, authentication, intrusion detec-
tion, virtual private networks (VPNs), and many more, with the primary pursuit of 
ensuring the integrity and privacy of the data. The healthcare information domain is 
an industry that relies immensely on data security, and its development has witnessed 
the enhancement of the healthcare system in almost every aspect [1]. Healthcare 
information systems are one of the most significant factors in improving the quality 
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of healthcare systems. Electronic health records (EHRs) are one such application of 
healthcare informatics aimed to mitigate the conventional difficulties by creating a 
decentralized system of patient records to provide universal data access, prompt medi-
cal assistance, and remote surveillance, to name a few benefits. These systems can 
not only organize patient records but may also improve the quality of service for the 
patient, reduce costs, and boost the overall performance of healthcare systems.

However, the privacy and security of health records are difficult to manage in the 
healthcare system. Patients must protect the privacy of their health records while 
consulting with healthcare stakeholders, while healthcare personnel must confirm 
the credibility of health reports received from labs. Similarly, the medical reports 
filed for insurance claims must be confirmed by insurance companies, and any 
unauthorized access to the sensitive health records of patients should be denied. 
Moreover, confidentiality, integrity, and privacy of healthcare data needs utmost 
attention while transmission over the internet and/or retaining data on a third-party 
server [2]. The last decade has witnessed a myriad of incorporations of IoT (Internet 
of Things) in the medical domain. Internet of Medical Things (IoMT) apparatuses 
like pacemakers, glucose monitors, thermometers, and more are facilitating patients 
self-monitoring their health, simplifying subsequent doctor visits. IoMT devices 
allow remote surveillance of less critical and infectious patients in the comfort of 
their own homes and let patients schedule their appointments. Healthcare informat-
ics permits doctors to access and maintain patient records through apps from any 
part of the world. The COVID-19 pandemic illuminated many critical problems in 
the traditional healthcare system and emphasized the advantages of IoMT in the 
medical industry. The number of IoMT devices is anticipated to surpass seven mil-
lion by 2026, according to Juniper Research [3]. The international market potential 
for IoMT is envisioned to surge to an astounding $158 billion evaluation by 2022 [4]. 
With such an expanse of IoMT, data security and protection become exceptionally 
crucial with the requirement to devise robust methods to protect the sensitive data 
of patients.

EHRs [5] prove to be extremely beneficial in the medical industry but are subject 
to various problems such as ownership as well as security and integrity of patient 
health records. The adoption of blockchain technology can aid in addressing these 
challenges by providing a secure and impenetrable medium for storing sensitive 
medical data. Blockchain [5–7] is a remarkable field of study finding applications 
in various domains, with finance being the most notable. The medical industry can 
likewise gain enormously from blockchain technology because of its aspects like 
security, confidentiality, privacy, and decentralization. Blockchain technology can 
be used to store EHRs by providing a secure platform and controlling user access 
to make patient data records decentralized and globally accessible. Moreover, we 
store vaccination records on blockchain to prevent vaccine forgery [8]. Explainable 
artificial intelligence is used nowadays to improve the predictions [9, 10]. Research 
describes blockchain technology as a distributed ledger that is mutual, immutable, 
and capable of being verified publicly, used for documenting the record of trades or 
transactions [2]. The sample utility of such an enhanced system can be seen below 
in Figure 9.1.
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In terms of protection, privacy, efficiency, clarity, and fault tolerance, blockchain 
has gained significant prominence in the financial domain, having the potential to 
change domains like e-governance, healthcare, and supply chains. Some key char-
acteristics that make blockchain technology extremely beneficial are the following.

 1. Transparency: All participants interested in the arrangement can use 
agreement, confirmation, and acceptance contracts to initiate and com-
plete transactions on the blockchain, making the system transparent in its 
activities.

 2. Immutability: Immutable transactions can aid process parties to maintain 
transparency while also bypassing unauthorized alterations.

 3. Authenticity: The digital signatures of the initiator and responder are usu-
ally required in a blockchain transaction. In some applications, smart con-
tracts are also utilized to ensure transaction legitimacy.

 4. Verifiability: Insiders and outsiders can both confirm the completed 
transactions using blockchain technology with the sharing and consensus 
processes.

 5. Ownership: In blockchain-based systems, the immutability of transactions 
in blocks, as well as the linkability of blocks, may give ownership control 
and accountability.

9.1.1 Chapter Layout

The chapter provides a novel study on blockchain-based protocols and associated 
technologies like federated learning for safeguarding the healthcare system, with 
a focus on patient data insurance, diagnosis statements, and the responsibility and 
clarity of assistance provided by various entities concerned in the medical domain. 

FIGURE 9.1 Sample blockchain-induced healthcare technology [2].
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The presented study addresses the issue of unlawful medical reports used to acquire 
or deny health insurance coverage. The chapter emphasizes how blockchain may 
solve this critical problem, allowing the users to receive excellent treatment from 
their insurance firms while also allowing the institution to verify the health report’s 
integrity. The chapter also comprises a description of EHRs and their challenges, 
cloud-based elementary approaches for EHR systems, MIoT, and security problems 
concerning them, as well as blockchain and associated technology, its applications in 
the medical domain, and a study on making those systems quantum secure.

9.2 BACKGROUND

Revolutionizing the healthcare system has become a need for societal growth with 
the rise of cloud computing, internet, machine learning, and blockchain, and the 
reachability of the internet has immensely expanded due to the increased mobile 
phone usage in applications varying from home devices to consumer devices [2]. It 
has improved the connectivity between service providers and consumers and formed 
a virtual link around the globe via networks and other means. Employing the tremen-
dous capabilities of blockchain, cloud computing, and edge technology, one might 
create a backend support application that would assist with responsibility, right, and 
elasticity attributes. Governing data permits, safeguarding privacy, and building 
connections are also important characteristics in influencing patients and service 
providers to encourage and use services in the healthcare domain [11]. Blockchain 
technology can be used to create a data-focused and disjointed architecture for han-
dling the safety of healthcare applications with separate servicing units controlling 
their actions recorded in distributed verifiable ledgers [2]. In a blockchain-driven 
healthcare system, various service units can be channelled through several edges that 
can manage resources intelligently using the cloud, which is powered by decentral-
ized immutable and public ledgers, making medical services visible, accountable, 
and auditable. In this chapter, we look at how blockchain technology can be used to 
protect health records and the domain of healthcare informatics in general in terms 
of tamper-proofing, responsibility, data rights, and privacy in the sector.

9.3 ELECTRONIC HEALTH RECORDS

Health or medical records can be defined as the overview of a patient’s medical 
records, allergies, and prescriptions. This section provides a synopsis on EHRs as 
described in [12]. Health records were once documented on paper and kept in folders 
according to conventional approaches. However, the evolution of computers in the 
1960s laid the foundation for EHRs. They have altered the format of health docu-
ments and revolutionized healthcare systems. They have made patients’ medical data 
easier to read and attain from virtually anywhere. EHRs are a primary focus of 
contemporary health informatics research, although the necessity for research from 
many viewpoints has also been noted. Recent EHR research has focused on the 
capabilities of existing approaches and underlying frameworks, as well as the use of 
medical records as a basis for proof-based medicine.



173Security and Privacy Solutions for Healthcare Informatics

The employment of EHRs quickly resulted in large magnitudes of healthcare data 
being discovered to be useful for epidemiologic research. On the other hand, second-
ary use of EHR data quickly indicated difficulties with the information’s rate for 
analysis and assessment. Numerous distortions have resulted due to the dissatisfac-
tory nature of the data. Moreover, there have been various circumstances when the 
data has been used for purposes other than that for which it was obtained. Medical 
data from health records could be used for clinical decision support (CDS), result-
ing in a unique significant field of healthcare informatics. When data storage and 
sharing over computer networks were envisioned, ownership and privacy became 
widespread concerns. Despite these impediments, there were numerous healthcare 
community networks that were in early steps of construction or functional to dif-
fering extents. Different healthcare providers—as well as administrative employees 
such as doctors, nurses, apothecaries, laboratory technicians, and radiologists— 
utilize various features of the EHRs. Large healthcare institutions and government 
bodies are acknowledging the significance of EHRs in deciding best suitable treat-
ments. However, issues such as medical coverage, data privacy, and protection of 
EHRs remain major impediments to their utility. With the rising urge in reducing 
patient’s approval before using their medical information, patients might feel reluc-
tant if confidentiality is not guaranteed. Mental health data is particularly susceptible 
and conceivably detrimental if privacy is broken. Due to differences in the state, 
country, and international rules, gaining permit to behavioural health records turns 
out to be even more challenging. The growing amount and reachability of EHRs 
also extends up further aspects for identifying novel disease information. The last 
decade has witnessed an advancement in Big Data and text mining concentrated on 
the identification of illness associations. Large-scale EHR information analysis of 
outcomes, patterns, temporal trends, and correlations are possible with Big Data. 
Numerous individuals consider that EHRs will be utilized in the expansion of Big 
Data analytics, bringing us from illness definition and documenting to prognosis, 
anticipative modelling, and conclusion optimization. Several nations, including 
Australia, Canada, England, Finland, and the United States, are working on develop-
ing a framework for national health data [13]. The same research also states that these 
projects intend to achieve the following goals.

 1. To make patients a part of decision-making in the usage of their medical data.
 2. The necessity to describe the fundamental data of these documents.
 3. The selection and execution of norms, terminologies, regulations, and nam-

ing conventions.
 4 The requirement to devise essential data protection framework and guidelines.
 5. The goal of creating unrestricted, consistent, and interoperable EHR tech-

niques for information interaction and data administration.

9.4 CLOUD-BASED EHR SYSTEMS

The cloud computing paradigm presents a possibility for electronic health systems 
to improve their quality and functionality. The risks of establishing EHRs on a 
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third-party CSP (cloud service provider) are emphasized in this section as exam-
ined in research [14], which also remarks on some recommendations for healthcare 
personnel to assure the privacy of medical data and make the process more manage-
able. Security concerns that CSPs need to decipher in their platforms are taken into 
account, as well. Cloud computing offers an excellent platform that is both effective 
and simple to deliver electronic health assistance in various situations. The elasticity 
of a cloud infrastructure gives numerous advantages, along with certain limitations 
that must be overcome. The authors of this research also stated that the capacity to 
intercommunicate medical data with other healthcare organizations and the incor-
poration of all the EHRs of a cluster of healthcare organizations to aid personnel to 
execute their tasks are the key benefits of employing a cloud-driven EHR adminis-
tration approach. The use of this layered service can be leveraged efficiently and the 
graphical description and use of the analogous services and related technologies are 
illustrated in Figure 9.2.

So, how can healthcare practitioners and clinical centres ensure that their patient 
data is secure, private, and confidential? The key challenge that a cloud-based elec-
tronic healthcare approach needs to address is the protection and privacy of infor-
mation hosted on the cloud [14]. This goal must be accomplished by both medical 
professionals and cloud providers, as positioning EHRs on the cloud requires a 
transition in perspective. The research also states that privacy and data security is 
of utmost importance when a medical service provider wants to use an electronic 
healthcare administration system based on the cloud, and that by assuring the data 
protection aspects of the healthcare forum, the security of patients’ sensitive data 
can be guaranteed [14]. To safeguard data from external attacks, transmission and 
network security procedures must be implemented. When patient data is hosted on 
the cloud, the medical records are stored on the CSP’s servers. What exactly does this 
imply? These businesses must ensure that their databases are secure so that unauthor-
ized people cannot access or modify the information. The research [14] also explains 
that due to the sensitivity of nature of patient data, it is critical to be conscious of 
the fact that security and privacy agreements are required when health records are 

FIGURE 9.2 The available layered services and their related domain specific utilities [2].
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moved to the cloud. CSPs must provide verification criteria that safeguard the secu-
rity of patient data to prevent unauthorized access. Governments must impose strict 
privacy rules on CSPs to safeguard patient data. The implementation of a legislative 
framework will aid in the creation of a safe environment. In some nations, privacy 
regulations have been enacted to govern and protect the privacy of patient records. 
The Health Insurance Portability and Accountability Act (HIPAA), for example, 
governs the safety of patient information in the United States, but each country’s 
policies are unique. Furthermore, to ensure data security and privacy, EHRs are gov-
erned by standards that contain data protection provisions such as the international 
standard HL7 (Health Level 7). A safe “health cloud” scenario will be accomplished 
by integrating these measures with cloud practices and protection measures enforced 
by CSPs.

This section provides a condensed view of the research article [14], whose authors 
describe the implementation of EHR administration techniques as a significant 
breakthrough in the healthcare system of the contemporary era. The number of peo-
ple using these technologies is steadily increasing. This type of practice is widely 
used in the majority of developed nations. They defined an EHR as documentation 
that contains details concerning the medical development in the treatment process 
of a patient, according to Spanish statute 41/2002. The uses of EHRs are outlined in 
this ordinance, which demands medical workers protect patients’ privacy. This type 
of data is ranked as “specially safeguarded” under Spanish legislation. The 15/1999 
law established this type of nomenclature to safeguard the privacy of sensitive patient 
information such that, excluding the circumstance of a crisis when the life of the 
patient is at stake, the patient’s authorization is mandated to collect and utilize this 
information. The research also describes that HIPAA handles and documents per-
taining to patient data protection conditions in the United States. The Privacy Rule 
and the Security Rule are two provinces of this law that address the improper use of 
personal information. The HIPAA Privacy Rule states that protected health informa-
tion (PHI) needs to be made unrestricted to deliver medical treatment to the patient, 
either with a court order or with the consent of the patient. The research also states 
that this rule requires informing patients about the utilization of their PHI by con-
cerned entities. Also, it is required by the Privacy Rule that entities having access 
to PHI be granted access to the smallest amount of patient information required to 
satisfy their tasks. As previously said, the healthcare personnel need to ensure and 
maintain the safety of EHRs, as well as install the necessary security methods to 
maintain patient data securely in the cloud.

9.4.1 ChaLLengeS in CLoud-baSed ehrS

The adoption of cloud-based EHRs represents a significant advancement in the evo-
lution of healthcare. As per the same research [14], cloud-based solutions make it 
possible to devise elastic platforms that are tailored to the requirements of users. 
This overall transformation is aided by the cost conservation provided by a cloud 
computing system (pay-per-use approach). Another significant benefit of storing 
EHRs in the cloud is that medical personnel or patients can access the data via the 
internet from virtually anywhere and at any time. With the current international 
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financial concerns, a compelling motivation for a corporation to migrate its health-
care framework to the cloud could be cost savings. As a result, when selling the 
benefits of cloud-based systems to prospective clients, CSPs must capitalize on this 
point. The research [14] states that to ensure the safety of their platforms, CSPs 
must implement various protection measures to ensure the safeguard of their cli-
ents’ data. The following sections present different measures incorporated by a CSP 
to ensure data protection in the context of EHR security. The exact level of data 
privacy must be maintained in a cloud-based her, as data is kept on the healthcare 
provider’s servers. Patients and medical staffers should be aware that their data will 
be maintained by a third-party service provider. Although the process of shifting 
sensitive health records to the cloud does not involve patients, healthcare profession-
als should educate them about this data migration. Patients should be made aware 
of all of the benefits that a cloud-based approach provides for the administration of 
their healthcare data, not just the notifications. Patients should be aware that data 
management is the duty of the CSP, as well as—to a lesser extent—the medical 
practitioner or healthcare organization. Privacy concerns should be addressed by 
both, patients and healthcare providers. Following is a condensation of major issues 
with cloud computing security [15].

• In cloud computing, CSPs provide all the services to the consumers, giving 
them complete authority over users’ data, known as a centralized system of 
management.

• The lack of standards among CSPs may compromise the migration of user 
data, causing reduced portability and data lock-ins, making users greatly 
dependent on the CSP.

• There is always a risk of data breach from internal management.
• Whenever clients ask for data to be wiped, it raises the issue of whether the 

desired portion of their data segment can be deleted accurately, resulting in 
“insecure or incomplete data deletion” [15].

• All the data in cloud computing is divided and transmitted, unlike in con-
ventional computing systems where it is stored locally. This data is prone to 
reply assaults and “sniffing” from malicious attackers during transmission, 
posing immense risks to data privacy.

These challenges make quite challenging the application of cloud computing in the 
healthcare domain, where security of sensitive patient data is of greatest importance.

9.5 INTERNET OF MEDICAL THINGS (IoMT)

As a worldwide network infrastructure in which everything linked to the internet 
has an identification and may intercommunicate with other gadgets connected to 
the internet, IoT will lead a substantial part in the internet’s future. Computers, cell 
phones, tablets, washing machines, and other electronic equipment are just a few 
examples. IoT is a vast network of interconnected gadgets having microchips that 
connects them all. These microchips monitor their environment and report back to 



177Security and Privacy Solutions for Healthcare Informatics

the network and humans. One of the most beneficial qualities of IoT is that it allows 
any physical entity to interact via the internet. The low-cost internet provides an 
excellent platform for an abundance of IoT devices. However, integrity, confidential-
ity, availability, and authenticity of data remain some of the main issues in IoT [16]. 
IoMT is an IoT application in the medical area that aims to improve the healthcare 
system’s accuracy, reliability, and productivity.

It has developed into a distinct field of research and has resulted in significant 
changes to healthcare systems. It has aided in remote patient–physician interaction, 
as well as the development of rehabilitation devices for people with diseases or dis-
abilities. Medical equipment can send a patient’s vital parameters to a platform, such 
as a secure cloud, where they can be stored and evaluated. The elderly and people 
with chronic diseases can receive special attention. electrocardiogram (ECG) moni-
tors, temperature monitors, glucose level monitors, medication management devices, 
and other MIoT devices are some of a few examples.

9.5.1 SeCurity ChaLLengeS of ioMt

IoMT devices and applications handle sensitive personal data, such as private 
health information, and they can be linked to a global information network to 
make them available at any time and from any location. MIoT devices encounter 
several issues, including the privacy of patient data records and virus assaults on 
devices that cause them to malfunction. If not addressed appropriately, these issues 
could obstruct the complete integration of IoT in the healthcare arena. As a result, 
to deliver more robust platforms, it is necessary to thoroughly identify and analyze 
various IoT safety challenges. Following are some of the security concerns with 
MIoT [16, 17]:

Data Modification: If patient medical data is intercepted by a malicious actor, 
either from the source node of an IoT-based device or during data exchange 
between nodes, that person could modify the data, thereby presenting the 
wrong data to caregivers who respond based on the wrong data, and this 
could spell disaster for the patient whose health is monitored using this 
device.

Impersonation: Every node on the network has an identity, and IoT-based net-
work devices are no exception, as they all have their unique identities which 
possibly may contain some of the patient’s information. If an intruder is able 
to steal this identity, that person could use it to spy on the patient’s health 
records.

Replay Attack: an attacker can retransmit the data exchanged between nodes 
on the network, and this may likely lead to treatment malfunction.

Eavesdropping: IoT devices make use of wireless channels to communicate, 
which makes it easier for an intruder to be able to listen to the communica-
tions between nodes—thus compromising the confidentiality of the patients’ 
data, which can then be used for more dangerous attacks than stealing the 
patient’s private information.
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Other attacks may be based on host and network properties, which include the 
following.

Hardware Attacks: An attacker can physically take and tamper with the 
device, removing the device’s program codes, security codes, and data, as 
well as reprogram the device’s program code with malicious codes, causing 
it to malfunction.

Software Attacks: A  malicious virus may attack the software (operating 
system, application software), causing IoT-based healthcare devices to 
malfunction.

Standard Protocol Attacks: An attacker could breach the confidentiality, 
authenticity, availability, and integrity of sensitive data by exploiting con-
ventional applications and network protocols.

9.6 DECENTRALIZED SECURITY

This section summarizes blockchain technology and its components as stated in 
research [2], which posits that transactions in a blockchain are aggregated into 
clusters known as blocks. A point or a node in the chain typically broadcasts a fresh 
transaction to all points. A point that discovers an answer to the system’s agree-
ment rules transmits it to all the other points, and the chain accepts the block only 
if it obeys all regulations. Eventually, the timestamp, hash of the accepted block, 
and agreement methods that connect to prior blocks are used to create a chain of 
blocks. The previous block’s hash value is used to connect the blocks in the chain. 
This acts as a timestamp, proving that the referenced block was present at the 
time the block that refers to it was created. The chronological sequence and valid-
ity of prior blocks are reinforced with each recent block added to the blockchain. 
The research defines blockchain as a data structure that may be used to create an 
immutable ledger which is publicly verifiable—that is, shared among the system’s 
distributed nodes. A typical blockchain system is made up of numerous nodes that 
do not trust each other completely. The transactions are agreed upon by all nodes 
in the system established on certain agreement rules and their order, which cannot 
be changed after they are complete. A typical blockchain data structure is shown 
in Figure 9.3 [2].

There are two types of blockchain systems: public and private. Any node in a pub-
lic blockchain system may connect or disconnect from the blockchain, making the 
chain distributed and decentralized. The blockchain governs membership and who 
can join private blockchains, so implied authentication of nodes is familiar to the rest 
of the nodes. Following are descriptions of the underlying technologies [1].

Hash Function: A cryptographic hash function is used in a blockchain sys-
tem to ensure that all transactions recorded in the blockchain are immu-
table. RIPEMD-160 and SHA-256 are widely employed hash algorithms in 
many blockchains out of several accessible hash algorithms in the literature. 
A cryptographic hash function is a pseudo-random process that meets one-
way and collision-resistant features.
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FIGURE 9.3 Visual representation of standard blockchain architecture [2].

Hash Tree: The Merkle tree accommodates a configurable number of transac-
tions in a block. A safe hash technique is employed in hashing transactions 
of the Merkle tree. A hash tree is a tree network in which the leaf nodes hold 
information, and the inside nodes are hashes of concatenation of their child 
nodes. Such a layout is extremely beneficial in determining whether infor-
mation exists or if any modifications have transpired in particular nodes. 
To safeguard the credibility of the ledgers, a blockchain utilizes a hash 
(Merkle) tree. Bucket hash trees are utilized in a hyperledger wherein states 
are clustered into a pre-set quantity of buckets [1]; Patricia Merkle Tree is 
used by Ethereum, which looks like a tree and includes key-value states as 
leaves. The hash tree’s main approach is to connect the blocks with a chain 
of cryptographic hash pointers, the contents of a block include the hash of 
its previous block. Any change to the previous block nullifies all following 
blocks immediately. Blockchain systems deliver secure and effective data 
architecture that can track all previous modifications to block states in a 
blockchain system by integrating hash pointers and Merkle trees.

Digital Signature: The authors of [2] also describe a digital signature as  
“a cryptographic method” for verifying the validity and source of data, as well 
as its integrity and nonrepudiation. The digital signature scheme is usually 
a 3-tuple algorithm. The signature verification pipeline takes the inscribed 
message and the associated public key and determines if it is true or false.

Consensus Protocol: As per the research [2], the contents of the ledger reflect 
past and present states, maintained using an agreement process decided 
upon by all parts of the blockchain. PoS (proof of space), PBFT (practical 
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Byzantine fault tolerance), and PoW (proof of work) are three important 
agreement methods.

Smart Contract: The calculation performed when executing a transaction is 
called a smart contract. Each node agrees on the intakes, outcomes, and 
states influenced by the smart contract implementation.

Given the possibility of blockchain in transforming the landscape of many appli-
cations currently controlled by a centralized database, healthcare is one of those 
sectors that demand transparent, accountable, testable services which can benefit 
consumers, patients, medical personnel such as doctors and nurses, and healthcare 
organizations like hospitals and insurance companies. The fundamental characteris-
tics of blockchain technology include the following [18, 19].

 1. Decentralization: Unlike traditional systems whereby data is reserved cen-
trally, blockchain uses nodes to distribute data across the grid. It causes the 
authority of data to be dispersed and managed by agreement arrived upon 
by intercommunicated information from the nodes linked on the network.

 2. Data Transparency: Since any information on the blockchain is not cen-
trally stored, and the rights to the data are shared by the entire blockchain 
of nodes, it cannot be altered by a single party, making it secure from unau-
thorized access.

 3. Data Security and Privacy: Cryptographic operations and secure hashing 
algorithms (SHAs) are employed to safeguard the data stored on the block-
chain. A  barrier for digital data can be created using one-way functions 
known as cryptographic hashes, making blockchain technology extremely 
robust and providing high security to sensitive data.

The predicaments encountered in blockchain technology include those mentioned in 
what follows [18].

 1. Absence of Universally Described Standards: There is an absence of 
defined sets of protocols and standards, making it difficult to incorporate 
this technology in different domains.

 2. Scarcity of Social Aptitudes: The faint awareness of blockchain could be a 
potential issue due to the technology still being in its early phases, and not 
fully understood by many.

 3. Storage and Scalability: Since all the nodes can observe the data on the 
blockchain, sensitive information about patients such as medications, medi-
cal history, and health conditions become susceptible. Moreover, this data 
could be extremely substantial, impeding the repository of blockchain.

9.7 FEDERATED LEARNING APPLICATIONS

This section offers a deeper insight into the domain and paradigm of federated learn-
ing (FL) [20] and its application to healthcare, its various underlying digitized coun-
terparts, and the concept of blockchain-based federated learning. The inclusion of 
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blockchain in this learning paradigm facilitates an enhanced security experience 
as mentioned before in the relevant sections. As described in the article [21], fed-
erated learning is an approach to model training whereby machines learn from a 
shared model collectively. Using proxy or representative data, the shared model is 
initially trained on the server. This model is then downloaded on each device, where 
it improves based on the federated data of the said device. The model is trained using 
locally accessible data by the device. The model changes are recapitulated in a ver-
sion upgrade, which is then delivered to the cloud. Individual updates and training 
data are saved on the device. The model is compressed using quantization and ran-
domized rotations to facilitate downloads of these changes in a rapid fashion.

A unified model is produced by averaging the models communicated by all the 
devices to the server. This process is repeated numerous times to obtain a high-
quality model [21]. The standard method for training for any machine learning model 
can be explained as uploading data to a server and then utilizing the obtained data to 
train models. This kind of training suffices when data security is not concerned, but 
when extremely sensitive data is at stake, this training method turns out to be prob-
lematic. To minimize data breaches, training models on a centralized server require 
huge storage capacity and exceptional protection [21].

Federated learning (FL) demonstrates a perspective transformation away from 
localized and centralized data lakes. Clinicians, patients, hospitals, and healthcare 
professionals in general are examples of stakeholders. Patients are often treated on 
a local level. FL implementation on a worldwide scale might assure optimum medi-
cal decisions independent of the treatment site. Patients in rural places, for example, 
might profit from the exact outstanding machine learning–aided diagnostics acces-
sible in clinics with plenty of cases [21]. The same is valid for unique or geographi-
cally unusual illnesses, which are more likely to have lesser repercussions if quicker 
and more precise examinations are possible. Federated learning might even lessen 
the barrier to being a data contributor by assuring patients that their information 
will remain with their organization and that data authorization may be cancelled. 
The standard topology and compute plans or the traditional version are graphically 
presented in Figure 9.4 [21].

Concerning the scope of this chapter, an interesting parallel and utility can be 
obtained for blockchain systems to enhance the federated learning methodologies 
in their totality. The conventional mechanisms associated with federated learning 
have a substantial degree of related predicaments. These can be remedied by using 
an underlying blockchain methodology and can be further explained by the follow-
ing [22].

 1. By using blockchain in place of a central aggregator, single-point failure 
may be prevented. In a blockchain FL system, the model aggregation will 
be performed by several clients.

 2. The verification technique can filter out untrustworthy data. Unreliable data 
will be recognized prior to the aggregation of local model updates, and only 
valid information gets included in the global model.

 3. Through incentive systems, more individuals and computational resources 
may be drawn. Economic incentives (for example, Bitcoin) might motivate 
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not just additional machines to partake in model training, and customers to 
behave by obeying the regulations.

 4. On the distributed ledger, learning data may be saved and shared. Once 
the data is stored on the distributed ledger, it is difficult to tamper with it. 
Meanwhile, authorized clients may get public data from the distributed led-
ger, increasing training efficiency.

To implement these techniques and successfully use a blockchain-induced FL 
model, the completely connected federated learning model (FuC-BCFL) based on 
the blockchain [22] framework is developed. FL clients operate as blockchain nodes 
in this situation, which means they not just prepare local models but furthermore val-
idate updates and develop new blocks. The federated learning model is decentralized 
as specified by the FuC-BCFL specification as each node of the chain has the option 
to partake in local training and a global model collection, and so the blockchain may 
serve as the central aggregator [22]. In such a system, there are two techniques for 
averaging the global model: one in which certain designated vertices gather the veri-
fied local model amendments and then run the collection algorithm, and the other in 
which all vertices partake in the global model accumulation [22]. The training data, 
consisting of validated global model updates, local model updates, and other infor-
mation generated during the learning procedure, is stored in the distributed ledger. 
Typically, the FuC-BCFL procedure may be characterized as clients gathering data 
and training models locally. Selected clients proceed by verifying the local model 
changes. Selected clients acquire confirmed local changes, which are subsequently 
used to update the global model. A new block that holds confirmed model changes is 
included in the dispersed log (distributed ledger) and eventually acts in accordance 
with the incentive system in which incentives are dispersed to participants [22].

When such a system is implemented in a real-time scenario, certain merits and 
demerits are observed. When every node contains a copy of the distributed ledger as 
the system is decentralized, the single-point failure can be avoided. The transfer of 
data to any central server is not needed, bypassing data privacy leakage and lower-
ing transmission expenditures. However, more computational resources are required 
because both FL and blockchain run on one network. Local training, as well as inte-
gration of the global model, is carried out to clients. The latency of transmission 
might be an issue to FuC-BCFL, as the bandwidth of blockchain is narrow. The lit-
erature also offers other implementations for a blockchain-induced FL system; other 
technologies, like Loosely Coupled BCFL and Flexibly Coupled BCFL, also propose 
certain merits and should be assessed carefully to make an informed decision for a 
specific utility [22].

9.8 QUANTUM-SAFE TECHNOLOGIES

The preceding sections offered a balanced viewpoint on security- and privacy-based 
necessities specific to smart healthcare and EHRs. When considering the MIoT para-
digm and the use of decentralized security, the sparsely correlated technologies of 
federated learning offer an interesting novel area of research. When the security of 
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such systems is considered, there is an evident need to make them secure enough and 
develop them according to cutting-edge quantum technologies. This section offers a 
novel and thorough understanding of quantum-safe methodologies for a blockchain 
system or blockchain-enhanced technology [23]. Many encryption methods now in 
use are vulnerable to quantum computing. It is estimated that the critical encryption 
method RSA2048 could possibly be broken by a quantum computer. Cryptographic 
protocols underpin many of the key subroutines in blockchain systems. Many of 
these protocols are vulnerable to quantum invasions. In this section, we look at vari-
ous cryptocurrencies based on blockchains—such as Ethereum, Bitcoin, ZCash, and 
Litecoin—and see how vulnerable they are to quantum attacks. We conclude by 
comparing the investigated cryptocurrencies and their underlying blockchain plat-
form, and their levels of susceptibility to quantum attacks [24].

As presented in the earlier sections, blockchain technology is based on two one-
way computational technologies, namely cryptographic hash functions and digital 
signatures. To produce a digital signature, most blockchain platforms use ECDSA 
(elliptic curve public-key cryptography) or RSA (the big integer factorization prob-
lem) [23]. The security of these methods is predicated on the idea that certain math-
ematical problems are computationally difficult [25]. A universal quantum computer 
might be able to solve these issues efficiently, rendering equivalent digital or virtual 
signature methods—including those employed in blockchain systems—less secure 
[23]. The quantum algorithm as mentioned in the original research article [26], in 
particular, solves the problem of discrete logarithms or the factorization of big inte-
gers in polynomial time. Another safety concern is connected with Grover’s search 
method [27], allowing for a quadratic speedup in generating the inverse hash func-
tion. This will allow a 51-percent assault, in which a coalition of malevolent actors 
regulating a majority of the network’s computer capacity monopolizes the mining of 
new blocks.

Transactions of other nodes could be damaged by such attacks, rendering the 
recordings of their spending transaction on the blockchain incomplete. More quan-
tum attacks on the blockchain and the potential functions of quantum algorithms in 
the mining operation are discussed in recent articles [28, 29]. Signing transactions 
can employ post-quantum digital signature techniques [30, 31] to improve the secu-
rity of the blockchain system due to their resistance to quantum computer assaults 
[23]. This resilience, however, is based on untested hypotheses. Also, post-quantum 
digital signatures are expensive computationally, making them ineffective against 
quantum assaults to control the mining hash rate of the network. Other techniques for 
distributed ledger maintenance, such as Byzantine fault tolerance (BFT) replication 
[32] and practical BFT replication [23], exist in addition to blockchains based on min-
ing principles. To the best of our understanding, all of the presented systems involve 
the use of digital signatures, making them susceptible to quantum attacks or pairwise 
authenticated channels. We should remark that the pairwise genuine channel assures 
tamper-proof transit of each message, but does not address the transferability [23]. 
To provide verification in the quantum age, quantum key distribution (QKD) should 
be employed, which provides unconditional (information-theoretic) protection estab-
lished on quantum physics laws [33, 34]. QKD can produce a private key among 
two parties linked by a quantum channel (for communicating quantum states) and 
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FIGURE 9.5 Creating a quantum-safe blockchain implementation [23, 38]: a) Each node 
that wishes to implement a transaction sends identical copies of that transaction to all other 
nodes; txnA, txnB, and txnC denote the transactions of nodes A, B, and C, respectively, that 
follow the protocol. Node D is an attacker trying to transmit corrupted renditions txnDa, 
txnDb, and txnDc to the nodes. b) Transaction contents. c) The parties enforce the broadcast 
rule to negotiate the unverified transactions and construct the block. They realize that the 
transactions commenced by node D are illegal and deny it [37].

a public classical channel (for post-processing). The machinery that enables QKD 
networks has been shown in several trials [35, 36] and is now widely accessible from 
a variety of commercial sources.

Research [23] describes a blockchain medium that fuses the initial BFT state-
machine reproduction without the need for digital signatures QKD for providing 
authentication.

The newer blockchain system can be understood by the following example 
(Figure 9.5).

The technique is considered resistant to not just the quantum computer’s currently 
known capabilities, but those that may be developed in the future, as well, making 
post-quantum cryptography schemes powerless. The value held by QKD for block-
chain systems may look contradictory, as QKD networks depend on node confidence, 
yet many blockchains lack such trust. It can also be contended that QKD cannot be 
employed for authentication, as it demands an established classical channel to oper-
ate. Every QKD transmission session, on the other hand, creates a huge quantity of 
shared secret material, a portion of which may be utilized for authentication in the 
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following sessions. As a result, a modest quantity of “seed” secret keys shared by the 
partakers prior to their first QKD session assures safe authentication for all forth-
coming transmissions [39]. QKD can therefore be operated in place of traditional 
digital signatures.

9.9 CONCLUSION

The chapter aimed to explore a robust and feasible solution for healthcare security, 
and privacy-driven methodologies that offer an enhanced security experience for the 
broad domain of smart healthcare. After assessing the recent literature and the avail-
able data on security solutions, this chapter offers a novel study on decentralized 
techniques that are extremely relevant to the current digitized era and healthcare 
associations. Initiating with IoMT, the need for a decentralized storage methodology 
can be understood, which heavily implicated federated methods for enhancing the 
stakeholder experience. The induction of a blockchain-based method also presents 
sufficient utility and is explored thoroughly. Due to the underlying methods of these 
systems being dependent on a blockchain storage technique, they are highly suscep-
tible to quantum computing platforms. The predicaments associated with possible 
large-scale quantum computers are remedied by the use of quantum key distributions 
and a modified system. The amalgamation of such technologies heavily supports a 
quantum-safe blockchain, by which—when coupled with the related technologies—
a robust, highly secure platform can be obtained for healthcare informatics. The 
predicaments associated with possible large-scale quantum computers are remedied 
by the use of quantum key distributions and a modified system. The amalgamation 
of such technologies heavily supports a quantum-safe blockchain, from which—
when coupled with the related technologies—a robust, highly secure platform can be 
obtained for smart healthcare informatics.
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10.1 INTRODUCTION

The COVID-19 epidemic has caused an unimaginable amount of fatalities since its 
outbreak. Due to the rising number of patients suffering from COVID-19, the need for 
ventilators has grown daily. Available resources and facilities are unable to cover the 
insurmountable gap between demand and supply, particularly in India. As a result, 
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individuals perished during the second wave because they were unable to even reach 
hospitals. This severe acute respiratory syndrome (SARS) originated in Wuhan city in 
China’s Hubei Province, from where it spread to the rest of the world [1]. This illness 
can spread from asymptomatic people before symptoms even appear [2]. Large drop-
lets released by sick patients during coughing and sneezing are used to transmit it. 
There is no difference in viral load between symptomatic and asymptomatic people, 
and viral loads are greater in the nasal cavity than in the throat, per research [3]. 
Patients with COVID-19 may also feel fever, breathlessness, a decrease in oxygen 
saturation, dry cough, nausea, vomiting, sore throat, headache, loss of taste, and phys-
ical pain [4]. If a patient has a high fever, low oxygen saturation, and an irregular pulse 
rate, they are regarded as critical patients. Shortness of breath and low oxygen satura-
tion levels are symptoms of hypoxemia and hypoxia, respectively. The likelihood of 
the patient surviving is decreased when hypoxemia and low pulse rate are combined. 
Patients occasionally fail to notice hypoxemia and an accelerating pulse, and as a 
result, they pass away without receiving the appropriate care. Therefore, it is crucial 
that COVID-19 patients’ health conditions—particularly their body temperature, 
heart rate, and oxygen saturation (SpO2) level—are regularly assessed. In such cir-
cumstances, IoT-based solutions may be advantageous to people for routine health 
examinations and ongoing patient health parameter monitoring [5, 6]. IoT technology 
has emerged as a crucial invention with multiple uses. It specifically indicates to any 
arrangement of physical objects which acquire and swap data across wireless net-
works without the involvement of a person [7, 8]. Nearly every country during the 
second wave was unable to handle the situation. For COVID-19 patients, regular body 
temperature and pulse rate monitoring is required. The number of pulses or beats per 
minute (bpm) is known as the pulse rate or beat rate. The average pulse rate for healthy 
people is determined to be between 60–100 beats per minute, while it is 70–75 bpm 
for adult males and females, respectively. Typically, the pulse rates of women older 
than 12 are higher than those of men [9, 10]. The pulse rate is observed to be abnormal 
in COVID-19 individuals, necessitating the assistance of an emergency medical assis-
tant. In a healthy adult, the body temperature ranges from 97.8°F (36.5°C) to 99°F 
(37.2°C) [10–12]. In addition to these causes, diseases like influenza, low-temperature 
hypothermia, and others can also affect body temperature. Hence, it becomes crucial 
to regularly check the body temperature of a patient with COVID-19. Now, in addition 
to heart rate and body temperature, oxygen saturation is a vital factor for treatment of 
COVID-19 patients. The usual range of the human body’s oxygen saturation (SpO2) is 
95–100%. A COVID-19 patient needs emergency medical attention if their SpO2 level 
is less than 95%. Silent hypoxia is caused by SARS-CoV-2 and is defined as SpO2 of 
90% without shortness of breath. Using a pulse oximeter to measure SpO2, silent 
hypoxia can be identified [11, 12]. A patient with COVID-19 who has low oxygen 
saturation is at higher risk of death. Monitoring of early symptoms including fever, 
cough, heart rate, and SpO2 levels becomes crucial for managing this contagious and 
fatal illness. To measure these values, a variety of tools and gadgets are on the market. 
For instance, most nations have easy access to fingertip pulse oximeters, which moni-
tor SpO2 and pulse rate [13]. The deluxe handheld pulse oximeter, which costs around 
USD 299 [14] and determines SpO2 and heart rate, is also an option. A wrist-worn 
pulse oximeter that measures SpO2 and heart rate is available over the counter. Like 
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above listed devices, this one lacks features for measuring body temperature. The 
wrist-worn pulse oximeter is somewhat pricey, coming in at USD 179. Analogue and 
digital thermometers are also sold on the market for measuring body temperature 
[15], although the majority of them are pricey [13]. The disadvantage of the currently 
available traditional equipment is that it is not Internet of Things (IoT)-based. 
Therefore, when patients are arriving in droves, it becomes challenging for a doctor to 
gather updates from every patient at once. Patients with significant symptoms of 
COVID-19 are in need of immediate monitoring. Patients can obtain COVID-19 
treatment utilizing their mobile phones at home thanks to technology [16]. The pulse 
rate of an individual is influenced by their age, physical stature, cardiovascular health, 
and emotional stability [17]. Since oxygen saturation and pulse rate are inversely cor-
related, when oxygen level of a patient drops, their pulse rate rises. All of these prob-
lems are resolved by using IoT technology. The IoT-based smart healthcare system 
functions as a real-time patient monitoring system, which can considerably benefit the 
current healthcare sector [18]. This is the rationale behind the rise in research interest 
in IoT-based smart healthcare equipment. In a study, the examined literature outlines 
the creation of smart healthcare monitoring systems in an IoT setting [19]. In this 
investigation, a temperature, SpO2, and heart rate sensor-equipped pulse monitoring 
system with an Android operating system was used. The measured data from a differ-
ent investigation, in which the SpO2 measurement sensor was not employed, was 
posted online [20]. An IoT-based lung function monitoring system that did not take 
temperature, SpO2, or pulse rate into account could be helpful for asthma patients 
[21]. Systems for monitoring heart rate using an Arduino, Android, or microcon-
trollers have been suggested in [22, 23]. The system [24] is based on cloud computing 
and the Arduino Uno, for which only a hardware prototype was created. There are not 
any statistics from actual testing, though. A mobile app-based heart rate monitoring 
system was established in [25]. The device detected the patient’s pulse rate using a 
pulse rate sensor, and Arduino was used to interpret the results. The experiment only 
employed a small number of sensors [25]. Additionally, research is at its height, and 
using their creative working theories, several authors have suggested various IoT-
based wireless health-monitoring systems. IoT-based smart solutions for estimating 
various health parameters for COVID-19 patients—like temperature, heart rate, and 
SpO2—have apparently not yet been introduced. In a study, a brand-new IoT-based 
smart health monitoring system is developed and used for COVID-19 patients to eval-
uate various vital signs like body temperature, pulse, and SpO2. Through a mobile 
application, the device may monitor and show measured values for human body tem-
perature, oxygen saturation level, and pulse rate, enabling the patient to seek medical 
assistance even if a doctor is not physically present. Doctors must inquire about the 
patient’s medical issues when caring for COVID-19 patients (including oxygen satura-
tion level and pulse rate). Patients with COVID-19 and other illnesses, including 
asthma and chronic obstructive pulmonary disease (COPD), can both benefit from 
this gadget. COPD contributed to 5% of all fatalities globally in 2005, and is expected 
to continue to be a global health issue in the future [26]. Because COVID-19–related 
mortality and morbidity have increased throughout the pandemic, there is a greater 
demand for ventilators. The hospitals have been burdened as a result of the hospitals 
being unable to provide ventilator assistance to the acute respiratory distress 
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syndrome (ARDS) patients who need it. A straightforward, manually operated bag 
valve mask (BVM) can also be used to ventilate patients in place of modern ventila-
tors, which are computerized devices. A BVM must deliver from 500–800 millilitres 
of air to an average male adult patient’s lungs in order for it to be successful, while 
400  ml might still be sufficient if additional oxygen is given [27]. An acceptable 
breathing rate is determined by squeezing the bag; for adults, this is 10–12 breaths per 
minute, whereas for children or infants, this is 20–25 [28]. In this pandemic, we have 
also been unable to locate any full protective-assisted ventilating equipment that may 
be employed prior to intubation, while patients are waiting for invasive mechanical 
ventilation, or after intubation [29]. The Indian Institute of Technology (IIT), 
Hyderabad, has recommended using an Ambu bag or BVM as an alternative to tradi-
tional ventilators for COVID-19 patients in life-threatening situations [30].

10.2 DIFFERENCE IN MANUAL VENTILATION

10.2.1 SeLf-infLating ventiLation bag vS. free fLoW infLating bag

In case of manually operated ventilators having a BVM device, good mask seal 
against the face is required so that the required pressure to inflate the lungs can be 
generated. At the same time, knowledge of using ventilation devices effectively in 
order to deliver a breath is also required. Understanding of these differences is pre-
requisite and important.

10.2.2 SpontaneouS vS. ManuaL ventiLation

With the help of a manual switch, the breathing mechanics can be changed from 
spontaneous ventilation to manual ventilation.

10.2.2.1 Spontaneous Ventilation
The diaphragm and the muscles between the ribs (intercostal muscles) contract dur-
ing inhaling during spontaneous breathing (Figure 10.1). The chest cavity is made 
larger by the movement of the ribs in an upward and outward direction caused by the 
contraction of the intercostal muscles, and it is also made larger by the movement 
of the diaphragm in a downward direction. Since pressure and volume are inversely 
related, the inner pressure of a container decreases as volume rises. The use of a 
syringe as an example makes the entire procedure easier to comprehend. When a 
syringe’s plunger is pulled back, the interior chamber expands, the interior pressure 
decreases as a result of the lower volume, and fluid is drawn into the chamber. In 
contrast to this contraction process, chest expansion causes the intrathoracic pressure 
to fall below atmospheric pressure, which allows air to enter the lungs if the airway is 
open, until the two pressures are equal. The rib cage is compressed during exhale by 
the natural elastic rebound of our chest wall. As the volume lowers and the pressure 
rises, the diaphragm relaxes and the chest cavity shrinks. Let us use the instance of 
inserting the syringe plunger inward to better comprehend the same. The remaining 
air is forced out through an unobstructed airway as intrathoracic pressure climbs 
above atmospheric pressure (minus some oxygen and carbon dioxide content).
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10.2.2.2 Manual Ventilation
Because a patient is mechanically ventilated, gas no longer passively flows into the 
lungs under the effect of negative intrathoracic pressure, and therefore, positive pres-
sure is necessary to inflate the lungs. As an alternative, you must use positive pressure 
to expand the lungs. Your manual breath must lift the chest wall, force the contents 
of your abdomen and diaphragm downward, and overcome the first alveolar surface 
tension in order to expand your lungs. In individuals with bronchospasm or pneumo-
nia, it is more difficult to overcome lower lung compliance to produce an adequate 
tidal volume because their lungs are stiffer. Additionally, a supine patient’s higher 
diaphragm works against them when the bag is squeezed; as a result, more pressure is 
needed to move the diaphragms—and the abdominal contents beneath them—down 
and out of the way in a supine patient than in an upright one. Ventilation is also ham-
pered by the patient’s obesity, which adds to the weight of the belly wall and its con-
tents. Manual ventilation must account for the fact that the diaphragm rests higher in 
the chest, the weight of the abdominal contents and chest wall, and the compliance 
of the lungs (Figure 10.2).

10.2.2.2.1 Bag-Valve-Mask Devices
If the seal is improper, ventilation will not occur. When ventilating a patient, it is 
crucial to make sure the patient is getting a good ventilation. Understanding the 
variations between the two types of BVM devices in use is the first step in doing this. 
Figure 10.3 depicts a BVM device, which contains flexible bag connected to either an 
endotracheal tube or ventilation mask by a pressure control valve.

Air is pumped into the lungs through a mask or artificial airway by compressing 
the bag, which opens valves. On the other hand, by opening the bag, the pressure 

FIGURE 10.1 Change of air pressure inside the thoracic cavity in spontaneous breathing 
during (a) inhalation and (b) exhalation.
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FIGURE 10.3 Common parts for bag-valve-mask devices.

FIGURE 10.2 Effect of lung compliance in manual ventilation.

inside the device is reduced. The patient in this situation exhales passively through 
a one-way valve. The clinician can usually compensate for the patient’s lungs’ com-
pliance (ease of inflation) by adjusting the pop-off valve to release at either higher 
or lower pressures. Additionally, it aids in preventing potential barotrauma by not 
overpressurizing the lungs.

There are two different kinds of ventilation bags: self-inflating and free-flowing 
bag types.

10.2.2.2.2 Self-Inflating Ventilation Bags
When we stop squeezing the self-inflating bag, it refills itself. The Ambu bag is the 
proprietary name for these self-inflating resuscitation bags. One can expand their 
lungs by squeezing the bag. If an oxygen source is attached, releasing pressure allows 
the bag to refill with both air and oxygen. Without additional oxygen, a self-inflating 
bag can give an oxygen concentration of 21%, but most sick or injured individuals 
need more oxygen than that. The bag has the ability to give O2 levels of 40%–60% 
when oxygen is supplied at a rate of 10–12 litres per minute. By adding a reservoir 
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bag and running O2 at 12–15 litres per minute, the concentration can be increased by 
up to 100%, providing the reservoir is given time to fill. A flow-inflation bag, on the 
other hand, is continuously filled with 100% oxygen.

Using a self-inflating bag requires that the bag be squeezed in a way that maxi-
mizes oxygen concentration. When the bag is empty and abruptly allowed to reload, 
it usually does so with ambient air rather than oxygen, whose inflow duration is 
constrained. It is best to release pressure on your hand gradually over the course of 
3–4 seconds to allow the bag to fill. Breakage of the mask seal should be prevented 
during the refilling procedure to prevent the bag from filling with ambient air instead 
of oxygen. Self-inflating bags cannot be used for successful “blow by” unless they are 
squeezed to push oxygen toward the patient.

10.2.2.2.3 Free-Flow–Inflating Ventilation Bags
An empty free flow inflation ventilation bag resembles a deflated balloon, while a self-
inflating bag when not in use looks like a softly inflated football. The flow-inflating 
bag must have an uninterrupted fresh oxygen flow. The flow-inflation bags will not 
automatically refill after the oxygen source is gone or disconnected. In order to pre-
vent bag deflation and allow the patient to breathe, it is important to maintain a good 
seal between the ventilation mask and the face. Even flow-inflation or inflow depen-
dent bags are often employed on anaesthetic machines and in other intensive care unit 
(ICU)-like settings because they enable finer control of tidal volume, better ventilation 
monitoring, and higher fraction of inspired oxygen (FiO2), the concentration of oxygen 
in the mix. However, they can be more challenging to utilize. The flow-inflating bag’s 
softness makes it easy to perceive changes in resistance and lung compliance.

While ventilating a neonate with a 500 ml bag, extremely fine tidal volume con-
trol is achievable, even if it is less than 50 ml. With each breath, the bag partially 
deflates—which is easily felt and seen—before it re-inflates by flow of gas during 
spontaneous ventilation. The degree of deflation can be used to estimate tidal vol-
ume. If the seal is broken, it is instantly apparent since the bag collapses. Contrary to 
self-filling bags, which may give you a fake sense of security as they are usually full 
even when filling of lungs is not proper, this type is filled all the time.

In contrast to self-filling bags, a flow-inflation bag cannot deliver positive pressure 
without a tight seal of the mask against the face. The flow-inflation bag deflates like a 
huge balloon when there is a poor seal. Emergency ventilation in flow-inflation bags 
is typically delivered by self-inflating bags because flow-inflation bags depend on an 
oxygen source and require more training. It does not matter what kind of ventilation 
gear is being utilized; what matters is making sure that the ventilation being done is 
sufficient. Chest rise, mask fogging, breath sounds, and end-tidal CO2 should always 
be periodically checked.

10.3 HISTORY OF AMBU BAGS

Following their early work on a suction pump, the Danish anaesthesiologist Henning 
Ruben and the German engineer Dr. Holder Hesse created the idea of the BVM 
in 1953. Their resuscitator, later known as an Ambu bag, was put into production 
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starting in 1956 by their own business, also known as Ambu. As a result, all bag 
valve masks are now referred to together under the trademarked name Ambu.

10.3.1 hoW to uSe aMbu bagS

The Air-Shields Manual Breathing Unit Bag is referred to as the Ambu. A person 
having difficulty breathing is helped with a particular kind of BVM. A procedure 
known as “bagging” is employed to use this, which is held and handled with the hand, 
to continuously give oxygen to a person’s lungs. The components of a BVM are a face 
mask and a non-rebreathing valve. A source of oxygen is connected to the bag’s other 
end (or air). Manual holding is used to keep the mask in place. Before intubation can 
be performed, the bag is squeezed to give the patient breathing through their mouth 
and nose (Figure 10.4).

10.3.2 CoMponentS of an aMbu bag

The BVM features a pliable air chamber. The chamber, which has a diameter com-
parable to an American football, is attached to the face mask by a shutter valve. 
Air is forced into the patient’s lungs by the machine when the face mask is securely 
fastened and the air chamber, or “bag,” is squeezed. The bag self-inflates when it is 
released, drawing in ambient air or low-pressure oxygen flow from a controlled cyl-
inder, and the patient’s lungs expand to the air through the one-way valve. The size 
requirements for various Ambu bag components for patients in various age groups 
are listed in Table 10.1.

FIGURE 10.4 How an Ambu bag is used.
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Indications

• A severe asthma attack, respiratory failure, or drug overdose.
• Brain injury or imminent drowning.
• If a patient starts breathing on their own but the breathing is laboured or 

shallow, an Ambu bag may be used to make breathing more effective.

10.3.3  hoW to uSe an aMbu bag ManuaL reSuSCitation  
bag vaLve MaSk (bvM)

Assemble Equipment

• If required, an oxygen supply with the proper tubing.
• As needed, adjust the mask’s size.
• If necessary, attach an adaptor for a tracheostomy tube.
• Inform the patient of the operation if it is not an emergency.
• If an oxygen order is placed, secure the oxygen tubing to the resuscitation 

bag.
• Attach a tracheostomy tube to the resuscitation bag.
• If the patient is able to breathe on their own, match the patient’s breaths 

to the manual breaths. Squeeze the resuscitation bag to provide air as the 
patient starts to breathe.

• Just enough bag pressure should cause the chest to elevate.
• The resuscitation bag should be squeezed at regular intervals to administer 

the recommended breaths per minute if the patient is unable to breathe on 
their own.

• Disconnect the tracheostomy tube from the resuscitation bag.
• Handwashing.

Instructions

• If the patient is not breathing, one should first try to find a technique to get 
them to do so. If the patient continues to be non-responsive, use the Ambu bag.

• Before utilizing the device, one should make sure the patient’s airways are 
clear of mucous.

TABLE 10.1
Required Sizes of Ambu Bag Parts for Different Age Groups

Adult Child Infant

Sizes 1600 ml 500 ml 500ml

Mask Size 4 Size 2 Size 1

Reservoir 1600 ml. bag 500 ml. bag 500 ml. Bag

Tubing Having suitable connectors at both ends for easy and safe connections
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• The patient must be lying flat on his back with their nose pointed upward. To 
assist in keeping this position, one can place a roll of a small towel beneath 
the patient’s shoulders.

• Attachment of face mask to the bag adaptor, the oxygen tubing to the regu-
lator on the tank, and the oxygen tubing to the bag must be verified. Hold 
the mask toward the patient’s face while squeezing the bag firmly with your 
thumb to apply pressure.

• The mask should be worn tightly over the patient’s mouth and nose. Make 
sure the chest of the patient rises when the Ambu bag is pressed, as it would 
if they were breathing normally.

• The Ambu bag should be squeezed once every 5–6 seconds for adult patients, 
compared to every 2–3 seconds for paediatric patient. If the patient is still 
having trouble breathing, keep bagging them up until either aid arrives or 
they start breathing properly.

• If the chest still does not rise, try moving the patient’s head or the mask 
before adding a little more pressure to the Ambu bag. The patient should be 
revived if the condition continues and the chest still does not rise. If this is 
the case, there must be an obstruction blocking the patient’s airway.

Risks

• Hyperventilation can be brought on by squeezing the bag too quickly, and 
this can result in respiratory alkalosis. By compressing the bag at the proper 
rate, this situation can be mitigated or avoided.

• Danger can be reduced and the trapped air in the stomach can be evacuated 
by inserting a nasal gastric tube.

10.4 BACKGROUND OF THE PROPOSED SYSTEM

The world is still reeling from the rapidly growing pandemic. The SARS-CoV-2 
virus causes COVID-19, an infectious sickness first identified in Wuhan, China, in 
December of that year. On March 11, 2020, the World Health Organization (WHO) 
declared it to be a pandemic. Symptoms of COVID-19 may appear 2–14 days after 
exposure. The incubation period is the period of time following exposure but before 
to the onset of symptoms. Even before one exhibits symptoms, COVID-19 can still 
spread (pre-symptomatic transmission). Respiratory issues, fever, coughing, and 
shortness of breath are a few common signs and symptoms. In severe situations, 
infection might result in pneumonia, SARS, and sometimes even death. As a result of 
their direct involvement in the diagnosis, treatment, and care of COVID-19 patients, 
healthcare workers become the subject of primary concern when treating such infec-
tious diseases. As a result, they are constantly susceptible to infection and have a very 
high risk of contracting the SARS-CoV-2 virus. Many of the difficulties hospitals and 
their workers face can be solved without the use of technology.

The new strain of the virus in second wave was found to be more powerful and 
infectious, which left younger and healthy people in critical conditions as compared 
to first wave of COVID-19. People were gasping for breath. A shortage of doctors and 
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healthcare workers gave rise to surge of cases; this was also having repercussions on 
the patients who were suffering with other critical illnesses as they face undue delays 
in getting treated.

The second COVID-19 wave in India exposed how ill-prepared the country’s 
healthcare systems were to deal with the sudden rise in daily cases. The unexpected 
increase of cases collapsed the country’s healthcare system. There was a shortage of 
hospital beds, oxygen, and medications. The shortage of oxygen supplies was also 
definitely a drawback. During first wave, there was shortage of personal protective 
equipment (PPE) kits, and in the second wave, more deaths were recorded due to the 
shortage of oxygen supplies and the hunt for medications by hospitals and relatives 
of patients. Cases were recorded en masse every day, and people in search of oxygen 
rushed to the hospitals and faced the problem of unavailability of ICU beds. People 
were struggling to gasp for breath. Because of limited resources/facilities to meet the 
emergency, a lot of people died. The major reason was that due to unavailability of 
hospital beds, people were bound to get treated at home—and when their situation 
worsened, they had to rush to the hospital, but in most of the cases, they could not 
make it because of scarcity of oxygen cylinders.

10.4.1 featureS of the propoSed SySteM

In the present work, we have developed an IoT-based wireless healthcare remote 
sensing device/system which could provide real-time online information about 
patients under observation either in home isolation or in hospital. Doctors at hospital 
and attendants at home can monitor their COVID-19 patients remotely. The system is 
smart enough to continuously sense a patient’s oxygen level, body temperature, and 
pulse rate. All the readings taken can be displayed on liquid crystal displays (LCDs) 
and can be monitored remotely using IoT. The major advantage of the system is that 
the monitoring of all parameters can be done from anywhere in the world because 
of IoT technology. The system not only measures the oxygen level of the patient, but 
also provides the support to the patients in home isolation. The system is equipped 
with an Ambu bag, so that the patient struggling with lower oxygen level can buy 
time to reach a hospital safely. This Ambu bag is operated automatically by using a 
DC motor. The frequency of inhalation can also be adjusted in the system.

Numerous features built into the system increase its usefulness. Since COVID-19 
is a highly infectious disease, the patient is being monitored remotely so that hospital 
staff and home caregivers have at least some interaction with the patient and have 
a lower risk of contracting the illness [31]. Through the use of a NodeMCU (node 
microcontroller unit, a low-cost open source IoT platform) Wi-Fi module, this system 
is connected to the internet and is capable of displaying real-time data that can be 
viewed and accessed via the internet via IoT technology from any location on the 
globe. The following is a list of the system’s features.

• As the disease is highly infectious, the remote monitoring and manage-
ment becomes necessary. The patient, if they are not critical, can also 
monitor the parameters like oxygen level, pulse value, and body tempera-
ture on their own.
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• With the help of IoT technology, the healthcare workers at a hospital or 
attendants at home can also monitor the previously mentioned parameters 
remotely, as frequent monitoring of oxygen levels and body temperature is 
required for COVID-19 patients [32].

• If the patient is in home isolation and suffocates suddenly due to drop of 
oxygen level, there is provision of Ambu bag that can be used to save the 
patient’s life while they are being rushed to the hospital. The Ambu bag is 
operated automatically—not manually—hence, it is user friendly.

• The frequency of inhalation in Ambu bag is also adjustable according to the 
requirement of patient’s age group.

A block diagram of the proposed system is shown in Figure 10.5.
The main components which are used in this system are as follow.

• Ambu bag assembly
• NodeMCU
• Pulse oximeter Sensor MAX30100
• Temperature sensor DS18B20
• OLEDs (organic light-emitting diodes)
• DC motor 12V/1A
• Buzzer

Some major components are described in the following subsections.

10.4.1.1 NodeMCU ESP8266 Pin Out
ESP-based boards require the esp8266 package to be loaded into Arduino IDE, 
even though NodeMCU ESP8266 based boards initially arrived with LUA scripting 

FIGURE 10.5 Block diagram of the proposed system.
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language for programming. This is because Arduino IDE is the most common tool 
used by electronic hobbyists to program development boards. Since the NodeMCU 
ESP8266 boards were first constructed for a different architecture but later merged for 
Arduino IDE, we needed GPIO pin mapping for the NodeMCU pinout (Figure 10.6), 
which is marked on the board from D0-D8 but is utilized in code.

10.4.1.2 MAX30100 Pulse Oximeter Sensor
In Figure 10.7, the MAX30100 sensor module is seen. It is a straightforward mod-
ule that interacts with the microcontroller via the I2C interface. It gives the linked 

FIGURE 10.6 Pin mapping of NodeMCU.

FIGURE 10.7 MAX30100 pulse oximeter sensor.
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microcontroller information about the SpO2 and pulse rate. Simply said, this sensor 
is employed to measure oxygen saturation. As a result, this module can be used to 
non-invasively monitor the blood’s oxygen saturation level and pulse rate. It makes 
use of optical components and photo detectors, with IR LEDs modulating the LED 
pulses. The LED current ranges from 0–50 mA. The power supply range for this 
pulse oximeter sensor is 1.8–5.5 volts.

10.4.1.3 Temperature Sensor DS18B20
Dallas Semiconductor Corp. makes a temperature sensor with a 1-Wire interface 
called the DS18B20. For two-way communication with a microcontroller, the novel 
1-Wire interface just needs one digital pin. The sensor typically comes in two form 
types. A TO-92 packaging transistor has the same appearance as a standard transis-
tor. The other is in the shape of a waterproof probe, which is more suited for measur-
ing objects that are far away, submerged, or underground.

The temperature sensor in Figure 10.8 (the DS18B20) is fairly accurate and oper-
ates without any additional parts. It has a 0.5°C accuracy range and can measure tem-
peratures between −55°C and +125°C. User configuration options for the temperature 

FIGURE 10.8 MAX30100 pulse oximeter sensor.
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FIGURE 10.9 OLED display.

sensor’s resolution include 9, 10, 11, or 12 bits, but 12-bit resolution (i.e., 0.0625°C 
precision) is the default setting at startup.

10.4.1.4 OLED Display
The 0.96-inch SSD1306 mode with 12864 pixels OLED display that we utilized for 
this project is depicted in Figure 10.9.

Because the OLED display does not need a backlight, there is an excellent con-
trast in low light. Additionally, compared to other displays, it uses less electricity. 
There are four pins on the display we are utilizing. It utilizes the I2C protocol for 
communication. Figure 10.10 displays the proposed system’s circuit diagram.

In Figure 10.10, the circuit diagram is shown the system is build with NodeMCU 
microcontroller board. NodeMCU is not able to provide that much current, which is 
required to operate DC motor; that is why an L298 motor driver module is used for 
operating the Ambu bag with the help of a 12V DC motor. This circuitry has three 
push buttons—one is used for any panic/emergency situation, the second for adult 
mode, and third for child mode. If any panic/emergency occurs, the patient will press 
the panic button; after pressing this button, the buzzer will blow and a notification/
message will be sent to the concerned doctor or home healthcare provider using 
Blynk app. The second and third push buttons are used to set up the frequency of the 
Ambu bag in adult or child mode. By using pulse width modulation (PWM) signal, 
we can change the voltage level of the DC motor, and by changing the voltage level 
of the DC motor, we can operate the Ambu bag with different frequencies according 
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FIGURE 10.10 Circuit diagram of proposed system.

to the different age groups. We can monitor the heart rate and SpO2 level with the 
help of MLX30100 pulse sensor module. the temperature of the patient can be mea-
sured by DS18B20 temperature sensor. All the measured values will be displayed 
on OLED. The MLX30100 pulse sensor module and OLED are connected with I2C 
protocol using SDA and SCL pin of NodeMCU D2 and D1 pin respectively. All the 
sensor data will be displayed over Blynk server using IoT and the range is all over 
the world.
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10.4.2 Setting up bLynk appLiCation

Utilizing the Google Play Store or Apple’s App 
Store, download the Blynk application for 
Android or iOS. Enter your email address and 
password to join up for the Blynk IoT cloud, 
and then click on the new project button to give 
the project a name. For instance, enter “IoT 
pulse oximeter” as the name, choose the 
NodeMCU board, and then pick Wi-Fi as the 
connection type. Finally, press the “Create” 
button as displayed in Figure 10.11(A).

The registered email address will receive the 
Blynk authentication token. This token will be 
necessary later when programming. To add two 
gauges and two value display widgets, tap the 
plus (+) icon on the main screen as illustrated in 
Figure 10.11(B).

As indicated in Figure 10.11(C), one gauge will 
show the BPM values, while another gauge will 
show the oxygen saturation level (SpO2).
Choose virtual pin V1 for BPM and enter a 
value between 0 and 130.
Choose the virtual V2 pin for the oxygen level 
and enter values between 0 and 100.
Due to the fact that they both behave similarly, 
we will likewise add the identical values to the 
value display.

 

FIGURE 10.11(A) Setting up the Blynk app.

FIGURE 10.11(B) Setting up gauge and 
display widget.

FIGURE 10.11(C) Setting up gauge and 
display widget.
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After setting all the widgets, the final interface 
of “IoT pulse oximeter” using ESP8266 and 
Blynk server is shown in Figure 10.11(D).

10.4.3 pCb iMpLeMentation and CirCuit

Figures 10.12(a)–(b) show lower and upper views of the printed circuit board (PCB) 
for the proposed system. DipTrace was used to prepare this PCB.

10.5 RESULTS AND DISCUSSION

The patient management issue with COVID-19 is addressed in this study in an elec-
tronic and environmentally responsible manner. The proposed system was put to the 
test in real time following its development, and the outcomes were good and appropri-
ate. As is common knowledge, it is essential to often check the temperature and pulse 
rate of COVID-19 patients, and the system is able to do so precisely utilizing IoT and 
the Blynk server. The system has three push buttons: one for panic situations, a second 
for adult mode and a third for child mode. By using the panic button, the patient can 
inform about any panic/emergency situation to doctors or concerned persons using 
IoT. The adult and child mode push buttons are used to set the frequency by which 
Ambu bag should be pressed, according to patient age group. The Ambu bag is oper-
ated by a DC motor. By using pulse-width modulation (PWM) signal, we can adjust 
the frequency of pressing the Ambu bag for adult or child mode.

Figure 10.13(a) shows the original picture of the proposed system. The user would 
be able to see the heart rate, SpO2, and temperature of patient in displayed results. 
This system transfers the data through IoT to the Blynk server, which is one of its cru-
cial parts (Figure 10.13[b]). The system is found to work successfully and all sensors 
also worked satisfactorily. Five individuals, ranging in age from 23–56, used the gad-
get during the testing phase. For each feature included in the system, the exact values 
were discovered. Table 10.2 lists the SpO2 level, pulse rate, and temperature measure-
ments for five separate users. The majority of patients have SpO2 levels of 97, which is 

FIGURE 10.11(D) Final user interface of 
the Blynk server.
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FIGURE 10.12 PCB prepared using DipTrace: (a) lower view; (b) upper view.

(a)

(b)
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near to the average values, as seen in Table 10.2. The measured values for the various 
participants were found to be comparable with the pulse rate. For many test individu-
als, different physiological data were measured. Comparing these measured values to 
those of other commercially available equipment, they were all extremely accurate. If 
the patient is in home isolation and suffocates suddenly due to drop of oxygen level, 
there is a provision of Ambu bag that can be used to save the life while the patient is 
rushed to the hospital. The Ambu bag is operated automatically, not manually; hence, 
it is user friendly. The frequency of inhalation in Ambu bag is also adjustable accord-
ing to the requirement of patient’s age group.

10.6 CONCLUSIONS

There is a global health catastrophe as a result of the COVID-19 epidemic, and thou-
sands of people are dying every day. We can minimize the losses or fatality rate by 
administrating proper treatments and making use of technology. During the second 
wave of COVID-19, the major problem was the inadequate supply of oxygen. India 
has had severe consequences as the virus hit the young population. Hence, it becomes 
necessary to come up with future control strategies. In this work, we have proposed 
a cost-effective and user friendly IoT-based life saving device equipped with Ambu 
bag for SARS-CoV-2 patients. The proposed system offers an excellent solution 
faced by COVID-19 patients when they gasp for breath for due to scarcity of oxygen 

FIGURE 10.13(A) Original photo of developed proposed system.
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FIGURE 10.13(B) Original photo of displayed sensor data over the Blynk server.

TABLE 10.2
Measured Values of SpO2, Pulse Rate, and Temperature for Five Different 
Patients/Users

Patient/User Age SpO2 (%) Pulse (BPM) Temperature (°C)

Patient 1 25 97 75 37

Patient 2 32 97 73 36

Patient 3 34 93 70 40

Patient 4 56 97 74 37

Patient 5 23 97 75 40

cylinders. The system is equipped with an Ambu bag, which works as a life-saving 
device when the patient suffers from a sudden drop of oxygen and making it to the 
hospital for an oxygen cylinder is not feasible. The system is capable of measuring/
monitoring of pulse rate, SpO2 level, and temperature, which is very important for 
COVID-19 patients. The system was tested with five patients and measured values of 
all parameters were found to be in good agreement with the values measured using 
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available devices in market. Future IoT-based sophisticated features can be added to 
the system to increase its use. To sum up, this approach is crucial for prolonging the 
lives of patients with COVID-19 over the world. Future upgrades could include the 
capability to track additional physiological functions of the human body.
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11.1 INTRODUCTION

The development and advancements in the internet and Internet of Things (IoT) has 
led to increased communication among the various entities in a system to transfer 
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data for analytics purposes. Nowadays, the use of IoT devices for monitoring the 
health-related parameters has improved and it is commonly referred to as Medical 
IoT or IoMT (Internet of Medical Things). In recent years, the healthcare sector has 
development phenomenally and has been a major contributor to revenue, research and 
employment. The COVID-19 pandemic is unfortunately one of the top reasons for the 
boom in the healthcare sector. Improvements in embedded technologies, communica-
tion protocols and wireless sensors networks are enabling the development of smart 
hospitals with IoT [1]. Years back, a physical checkup in the hospital was necessary for 
the diagnosis of diseases and prediction of abnormality in the human body. The doc-
tors had to monitor the patients throughout the course of treatment within the hospital 
premises. This resulted in increased financial stress for the patient. Nowadays, devices 
to monitor the oxygen level, glucose level, etc., are available at home and a visit to the 
hospital is made only if the condition of the patient is abnormal. The technological 
advancement has changed the healthcare industry into a patient-focused system [2, 3].

The most commonly used MIoT devices in the healthcare industry are smart-
watches, fitness trackers, wearable medical devices, SPO2 monitors, blood pressure 
monitors, blood glucose monitors, infusion pumps, ECG sensors, motion detection 
sensors, GPS enabled smart soles, embedded devices, radio frequency identification 
(RFID)-enabled monitoring devices, etc. Figure 11.1 shows few of the commonly 
used wearable devices that collect medical data from users. The data so collected 

FIGURE 11.1 Wearable sensors.
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may be analyzed to obtain meaningful inferences for assisting the doctors in provid-
ing better treatment plan.

A healthcare IoT solution not only monitors the health state of the patient but also 
helps to track details of all the people (nurses, technicians, specialists, intensive care 
units/intermediate care units [ICU/IMCU] in-charges, etc.) and assets associated 
with the hospital. GPS-enabled identification (ID) cards may be given to the users to 
monitor their movement. The assets may be enabled with RFID sensors which send 
data periodically to the cloud database. The medical IoT device has brought a signifi-
cant transformation in the way healthcare systems work. Table 11.1 lists the areas of 
use of medical IoT devices and its benefits.

Hence, a smart healthcare framework may be developed by using IoT in two major 
aspects: i) IoT-based asset tracking and ii) IoMT-based disease prediction. First, highly 
expensive equipment can have embedded RFID chips to facilitate their tracking within 
and/or outside the hospital premises. Second, steps toward smart healthcare are smart-
phone-based appointment registration, mobile application–based test report inquiries 
and sending real-time signals to intelligent agents for diagnosis. Several research works 
are carried out for intelligent decision making by creating machine learning (ML) and 
deep learning models to make valuable predictions from the collected data [4, 5].

The above advantages of an IoMT-based healthcare system come at the cost of 
compromising the security and privacy of patient health-related data. Since it con-
tains the personal data of patients, utmost importance should be given for the secu-
rity and privacy of data. As per HIPAA Journal [6] of the U.S. Health Insurance 
Portability and Accountability Act, the largest data breach happened in 2021, where 
715 times of 500 or more patients healthcare data is compromised. Hence, maintain-
ing the sensitive personal information of patient is essential.

TABLE 11.1
Usage of IoMT and Its Advantages

Use of IoMT Advantage

Automated asset tracking Periodic location monitoring of RFID-enabled assets
Prevention of theft of assets
Asset utilization management for optimized asset investments

Patient and staff tracking Tracking location of patients and employees
Assessment and prediction of patient flow
Optimization of daily tasks of doctors, nurses and technicians
Improvement in the safety of patients, doctors and other users of the 
system

Patient health monitoring Monitoring and assessment of patients in their real-time environments
Alerting healthcare professionals in case of abnormal health 
parameters

Analysis of patient’s data to improve treatment plan

IoT-based components of a 
smart hospital

Cloud-connected ward sensors for smart rooms lighting
Efficient utilization of natural resources (use of sensors for water use, 
automatic power cutoff in empty rooms, etc.)
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11.1.1 Chapter ContributionS

• A study on the various security and privacy issues associated with the feder-
ated learning framework is given.

• A privacy-preserving federated learning–based healthcare framework using 
Paillier cryptosystem is proposed.

• Agent-based realization of the privacy-preserving federated learning–based 
healthcare framework is discussed.

• Finally, a blockchain-based framework—along with future directions for 
further research in blockchain-enabled federated learning for healthcare 
systems—is discussed.

11.1.2 Chapter Layout

The chapter is organized as follows. Section  11.2 presents an overview of feder-
ated healthcare system. Section 11.3 provides the various security and privacy issues 
associated with the federated learning–based healthcare system. Section 11.4 deals 
with related work in the area. Section 11.5 discusses the proposed privacy-preserving 
federated learning–based healthcare framework. Section 11.6 explains the realiza-
tion of privacy-preserving federated learning–based healthcare framework, and the 
agent-based system implementation is provided here. Section  11.7 deals with the 
blockchain-based federated learning environment. Section 11.8 deals with the con-
clusion and future scope of the suggested framework.

11.2  OVERVIEW OF FEDERATED LEARNING 
IN HEALTHCARE SYSTEMS

Advances in IoMT and communication technologies have generated huge volumes of 
medical data. Initially, AI techniques required centralized data collection and pro-
cessing of data to make useful prediction. This may be difficult in realistic healthcare 
systems due to i) the voluminous data of modern healthcare networks and ii) data pri-
vacy concerns. Federated learning is a distributed platform that helps to maintain user 
privacy by creating and training a model at the end-devices rather than sending all 
patient information to centralized servers. Each data center and hospital stores patient 
details in the local server or private cloud and performs analysis of the data. After 
local training, the major inferences are shared among all the other entities which are 
part of the federated learning environment. Figure 11.2 shows an overview of the use 
of federated learning in healthcare systems. The patient-specific data collected in each 
hospital is maintained on the local server of each hospital. It contains the structured 
and unstructured data of the patients. It includes the X-ray, computerized tomography 
(CT) scan reports, magnetic resonance imaging (MRI) scan reports, prescriptions, lab 
reports, etc., of each patient. The local data pertaining to each patient is stored in a 
centralized server within each organization, which is used to make useful predictions.

The aggregation algorithm plays a major in federated learning. This algorithm 
runs on the global server. The global data center collects the local updates from all 
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FIGURE 11.2 Overview of federated learning in healthcare systems.

the connected local entities periodically, runs the aggregation algorithm and comes 
up with the global update. The most commonly used techniques for aggregation are 
as follows.

 1. Federated Averaging Algorithm: The device are trained with gradi-
ent decent algorithm and weights of the model are sent to the centralized 
server. The server returns the final weights by averaging the trained weights 
received from all the devices in the first cycle.

 2. Multi-Party Computation Averaging Algorithm: This deals with two or 
more medical data centers that have varied privacy restrictions, and helps 
to hide the private data of each data center from the others. This algorithm 
deals with federated averaging algorithm, along with fully homomorphic 
encryption.

 3. FedProx: This is used to handle heterogeneous data. It works by allowing 
varied amounts of work to be performed locally across devices dependent 
on their available systems resources, and then aggregating the partial solu-
tions supplied from the stragglers (instead of omitting data obtained from 
them) [7, 8].

 4. FedMA: This is designed to update the local parameter values of models 
that use CNN or LSTM in the local data center.



220 Federated Learning for Internet of Medical Things

Federated averaging algorithm, SCM-Avg algorithm and FedProx could be used to 
handle structured data, while FedMA is used for unstructured data.

11.3  SECURITY AND PRIVACY ISSUES IN FEDERATED 
LEARNING–BASED HEALTHCARE SYSTEMS

While setting up a federated learning–based healthcare system, the confidentiality, 
integrity and availability of the data must be adhered since it deals with the private 
data of the patient. Security attacks can occur in any of the following three entities.

• Within Hospital Premises: A data breach may happen in the local data 
center if the patient data is not secured properly within the hospital prem-
ises. It may compromise the confidentiality and integrity of patient data.

• Communication Network: A wired or wireless system may be used as the 
medium of data transfer between the local server and global server in any 
distributed environment. It is prone to various security and privacy threats 
in the system.

• Global Data Center: This may be a cloud-based or physical server, depend-
ing upon the FL framework. It performs the role of aggregating data from 
all local servers and sending updated value to them. In certain cases, the 
global data center might be compromised and may tend to exchange the 
local data from a model with the other to generated revenue for itself. In 
such cases, data security of all data centers is compromised.

The security threats in federated learning environment that can cause high impact on 
the complete system developed are shown in Figure 11.3.

FIGURE 11.3 Security threats in FL framework.
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11.3.1 poiSoning attaCkS

A hospital consists of multiple data centers. Several entities like lab technicians, 
nurses, physicians, specialists, doctors, etc., are associated with each medical center. 
All these entities have access to the training data, so there are high chances of data 
being modified. The local training dataset or the local model may be tampered with, 
leading to data poisoning and model poisoning, respectively; hence, it leads to propa-
gation of incorrect parameters within the model.

11.3.2 inferenCe attaCkS

By probing an ML model with varied input data and weighing the result, inference 
attacks try to disclose secret information. Inference attacks can be in a variety of 
forms. Membership inference (MI) is a sort of attack in which the adversary attempts 
to reconstruct the records used to train the model. Attribute inference (AI) is another 
sort of inference attack in which an attacker has only a partial understanding of a 
training record and attempts to estimate the missing attributes by modifying them 
until the model reaches its peak performance.

11.3.3 baCkdoor attaCkS

A backdoor attack is a method of injecting a harmful task into an existing model while 
maintaining the task’s correctness. Backdoor attacks are difficult and time-consuming to 
detect because they do not affect or modify the accuracy of the local model or the training 
data. It simply performs malicious tasks like collecting private data of patients and disclos-
ing them to third parties. Trojan threats behave in a similar manner as backdoor attacks.

11.3.4 MaLiCiouS ServerS

The global central server contains the data parameters of all the local hospitals. Once 
these parameter values from centralized servers are captured and interpreted, it may 
lead to disruption of the entire FL system. The security of the entire system may be 
at risk. Several attackers may try to take control over the centralized server for easy 
access to complete data parameters. Such servers are referred to as malicious servers.

11.3.5 CoMMuniCation overhead

Any distributed system is a collection of multiple entities connected via wired or 
wireless medium. Transferring large amounts of raw data over the network may lead 
to bandwidth issues and may also lead to security issues in the system. Multiple 
nodes may try to send and receive data at the same time, leading to communication 
overhead. Several messages may be dropped due to communication network failure.

11.3.6 eaveSdropping

Theft of information from one device to another device while the user is sending 
or receiving data over a network is known as an eavesdropping attack. This type of 
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attack is difficult to detect because the attacker silently steals the private data of the 
patients without affecting the regular transmission. This data can be used for organ 
theft, increased interest rates of medical insurance, etc. Although FL-based systems 
insist on sharing the local training model parameters instead of their actual data, the 
attackers try to extract meaning information of the original data with the available 
model parameter values that is being transmitted.

11.3.7 privaCy iSSueS

The major privacy issues in federated learning environment are as follows.

 1. Membership Inference Attacks: The training data from the global server 
is hacked using sophisticated technologies and the same is used to predict 
the designed model. Once an inference about the global model is made, the 
same may be used to attack the local server—thereby leading to a crash of 
the entire system.

 2. Accidental Data Outflow and Rebuilding through Inference: Patient 
data from the local center may be released accidentally. Using generative 
adversarial networks (GANs), the malicious client generates synthetic data 
that is similar to local training data. This helps to retrieve sensitive informa-
tion from other clients [9].

11.4 RELATED WORK

Several research works have been carried out in the area of federated learning to pre-
serve security and privacy of medical data [10]. The major ones are listed as follows.

11.4.1 SeCure MuLti-party CoMputation

In secure multi-party computation (MPC) protocol, multiple data centers and hospi-
tals train their model locally and exchange their model parameters without revealing 
their local data. In the first data center, an arbitrarily large number is added with 
the local parameter value and shared with the second data center. The second data 
center adds its local parameter value to the value obtained from first center and sends 
the result to the next. The same procedure is continued till the last data center. As 
a result, all nodes are aware of the average model parameters, but none of them can 
identify the local parameter of another node.

MPC protocol is secure because the data centers learn only the final global param-
eter value, and no other information about the patient’s private data.

11.4.2 differentiaL privaCy

Differential privacy is the concept that if the impact of making a random single sub-
stitution in the database is minimal enough, the query result cannot be used to infer 
much about a specific individual, and as a result, this helps to provide privacy of data. 
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Using the idea of differential privacy in federated learning helps to enhance privacy 
and security of the healthcare sector.

11.5  PRIVACY-PRESERVING FEDERATED LEARNING–
BASED HEALTHCARE FRAMEWORK (PPFLHF)

The objective of the chapter is to propose a privacy-preserving federated learning–
based healthcare framework (PPFLHF). Every hospital is associated with at least one 
medical data center. Medical data centers contain the structured and unstructured 
data of the patients. It includes the X-ray, CT and MRI scan reports, prescriptions, 
lab reports, etc., of each patient. The local data pertaining to each patient is stored in 
a centralized server within each organization, as shown in Figure 11.4.

First, useful predictions can be made with the available data in a medical data 
center by designing a model and training it locally. The same happens in every other 
medical data center. Second, the personal health data of individuals can be obtained 
from smartphones and other wearable devices. The data recorded by these devices 
is sent to a central location for storage and processing. Hence, the data from multiple 
vendors are collected, standardized and converted into a consistent format which 
could then be analyzed or used for ML training and inferencing. Finally, the data of 
a specific patient from the medical data center and the standardized third-party data 
center can be aggregated using a unique ID in the global data center.

FIGURE 11.4 FL-based healthcare framework.
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The global data model is then trained with the encrypted data from multiple data 
centers and the model parameters are passed back to local centers. The framework 
in Figure 11.4 would function efficiently if there is low computation overhead, and—
more importantly—if the security and privacy preservation in the network, medi-
cal data center, standardized third-party data center and global data center is not 
compromised.

11.5.1 privaCy preServation of data in MediCaL data CenterS

To ensure the privacy of the patient’s personal and health data in medical centers, a 
modified Paillier cryptosystem is used [11, 12]. Paillier cryptosystem is a combina-
tion of public key cryptography and additive homomorphism. The major operations 
on the cipher texts are i) two cipher texts can be added and ii) a cipher text can be 
multiplied by a plain text.

Key generation of an existing Paillier cryptosystem works as follows.

• Pick two large prime numbers p and q, randomly and independently. 
Confirm that gcd(pq, [p − 1][q – 1]) is 1. If not, start again.

• Compute n = p × q.
• Define function L(x) = (x − 1)/n.
• Compute λ as lcm (p − 1, q − 1).
• Pick a random integer g in the set Z* 

n2 (integers between 1 and n2).
• Calculate the modular multiplicative inverse μ = (L (gλ mod n2))–1 mod n. If 

μ does not exist, start again from step 1.
• The public key is (n, g). Use this for encryption.
• The private key is λ. Use this for decryption.

Encryption can work for any m in the range 0 ≤ m < n:

• Pick a random number r in the range 0 < r < n.
• Compute cipher text c = gm .rn mod n2.

Decryption presupposes a cipher text created by the encryption process, so that c is 
in the range 0 < c <n 2:

• Compute the plaintext m = L(cλ mod n2).μ mod n.

A trusted party is involved to generate private and public keys for the local and 
global data centers. In the original Paillier cryptosystem, each medical data cen-
ter encrypts the local model update parameters with the secret key SKP and the 
global data center can decrypt arbitrary ciphertexts with the public key PKP. For 
this reason, it becomes infeasible to use this technique for secure multi-party data 
aggregation.

In the modified encryption algorithm, the parameter “n” in public key of the origi-
nal Paillier PKP is split into “m parts” depending upon the number of medical centers 
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that are part of the FL environment, then secret keys are generated with the split “n” 
for each data center.

n → {n1, n2; . . . ; nm}

Generated secret keys : SKMCi = Sn 
t

i
 mod n2

Here the SKP is replaced with a specific key SKMCi for each medical data center. 
Hence, the original Paillier secret key SKP cannot decrypt cipher texts encrypted 
with modified secret key SKMCi. Specifically, each medical data center uses its secret 
key SKMCi to encrypt its local model attribute, which cannot be decrypted by central 
server. This helps to address the membership inference attacks and the unintentional 
data leakage at the global server.

Each local data center encrypts the local model parameters with the secret key 
generated. The data from each medical center MC1, MC2 . . . . MCM is encrypted 
with its own secret key SKMCi and is sent to the global data center. The global data 
center then aggregates the data obtained for all the medical centers, then use its key 
to decrypt the aggregated data. This prohibits the global data center from obtaining 
the parameter values from the local medical center. The global parameter values are 
then combined and delivered back to all medical data centers.

11.5.2 privaCy preServation in the Standardized third-party data Center

In the healthcare industry, there are numerous suppliers who produce a wide range of 
products. Most of these goods claim to follow traditional conventions and protocols 
during the design process. There is, however, a flaw in the logic. The third-party 
database collects health data from IoMT devices such smartwatches, fitness track-
ers, blood pressure monitors, blood glucose monitors, infusion pumps, ECG sensors, 
motion detection sensors, GPS equipped smart soles and so on. The information 
gathered by these devices is heterogeneous in nature. Thus, before the data can be 
used to train the prediction model, it must first be standardized [13].The data col-
lected from the smart devices are connected to a server. Each organization has its 
own storage module, which varies from the others. In order to make useful predic-
tions, the data from multiple industries are to be preprocessed and trained either by a 
centralized entity or by distributed entities.

To avoid an attack on IoMT devices, cryptographic algorithms may be used, along 
with identity authentication, authorization management and password encryption. 
Also, secure pairing protocols must all be evaluated and used by medical and sensor 
devices. Network protocols like Wi-Fi, Bluetooth, Zigbee, etc., must be integrated 
with secure routing algorithms and message integrity verification techniques [14].

11.6 REALIZATION OF PPFLHF

The privacy-preserving FL-based healthcare framework can be viewed as agent-
based software system in which individual software agents interact with each other 
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in a collaborative manner, autonomously following their individual objectives, gain-
ing access to resources and services, and occasionally generating effects for the enti-
ties that instigated those software agents.

Figure  11.5 shows the various agents required for the implementation of the 
PPFLHF system. An interface agent is implemented in each medical data center to 
provide assistance to a user with computer-based tasks. It interacts with the users of 
the hospital system like the receptionist, lab technicians, specialists, doctors, nurses 
and patients. An intelligent agent is maintained in each medical data center. It does 
the collection of data and preprocessing of data, and it trains the local model in each 
data center. It encrypts the local parameter values of the model and sends it to the 
global intelligent agent via the communication agent.

The communication agent acts as an intermediator between the local and global 
intelligent agents. It should ensure secure communication of data and avoid communi-
cation overhead. The global intelligent agent aggregates the data from local agents and 
decrypts model parameter values. It validates the data sent by the local agents and then 
broadcasts the updated values to all the entities in the system. The local models are 
then trained with the updated values for better accuracy and prediction. A local agent 
and a global storage agent are required for storing the raw data collected from the 
users. A local server or cloud-based storage can be used within each medical center or 
hospital. Each agent communicates with another agent to accomplish the overall task.

Hence, the major roles of the various agents are as follows.

 1. Interface Agent
 • Role: Collection of data.
 • Input: Obtained from IoMT devices, lab reports and prescriptions.
 • Output: Raw data passed to intelligent agent.

FIGURE 11.5 Agent-based PPFLHF system.
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 2. Intelligent Agent
 • Role: Preprocessing of data obtained from interface agent, training the 

local model with the data, calculating the model parameters, encrypting 
the local model parameters using Paillier encryption, and storing data 
and model predictions in local storage.

 • Input: Obtained from interface agent.
 • Output: Transferring encrypted data to communication agent.
 3. Communication Agent
 • Role: Secure communication of local model parameters from local data 

center to global data center.
 • Input: Obtained from local intelligent agent.
 • Output: Transferring encrypted data to global intelligent agent.
 4. Global Intelligent Agent
 • Role: Aggregation of encrypted messages from all medical centers, 

decrypting model parameter values using FedAvg algorithm, updating 
the global model with new values, transferring new parameter values 
to local agents and storing the values on an immutable global storage 
framework.

 • Input: Obtained from local intelligent agent via communication  
agent.

 • Output: Transferring updated parameters to individual data centers 
using communication agent.

11.7 BLOCKCHAIN-BASED PPFLHF

The blockchain framework is becoming popular these days due to its inherent fea-
tures that make security and privacy an integral part of its framework. Since the 
medical data deals with the private information of patients, the privacy and secu-
rity of data should not be compromised. The features of a blockchain-based system 
enable maintaining the security and privacy of data. The major features of block-
chain that makes it adaptable with federated learning framework is that it is a distrib-
uted and decentralized framework that provides immutability and traceability of the 
stored records [15–19]. BinDaaS is a framework for integrating deep learning and 
blockchain for securing patient data which uses lattice key and signature verification 
to avoid quantum attacks [20].

The agent-based system discussed in the previous section may be deployed 
on a blockchain framework. The blockchain framework may be distributed 
across all the medical data centers and the centralized global server, as shown 
in Figure  11.6. Every medical data center may be considered as a node in the 
network. After a local training of the model, the parameter values are sent to the 
global server. The global server aggregates the value and comes up with the new 
value. Every updated model parameter value may be added as a new node in the 
blockchain network.

A block will consist of the header and the data fields. The major components are 
as follows.
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Header

Time stamp, the time when the global server broadcasts the message to its local 
servers.

Hash of the previous block.

Data

Model parameter values of the global medical center.
There are three major types of blockchain systems [21, 22]:

 1. Public blockchain.
 2. Private blockchain.
 3. Consortium blockchain.

Public blockchain is permissionless, i.e., anyone with an internet connection can 
be a part of the system. The complete data may be available for all users who are 
part of the system. A private blockchain works within an organization only and is 
accessible for a group of people only. A consortium blockchain is a combination of 
public and private blockchain. It provides more security when compared to public 
blockchain and is less restrictive when compared to private blockchain. This frame-
work is most suitable for a healthcare system. Since several entities are part of the 

FIGURE 11.6 Blockchain-based PPFLHF system.
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blockchain framework, the new blocks are to be validated using consensus mecha-
nisms. Consensus mechanism is an agreement to be followed by all entities in the 
system to add a new block into the blockchain [23–28].

The following are the most often used platforms for building blockchain frame-
works. One of the most popular open-source blockchain, Ethereum, serves as the 
foundation for the creation of other applications. The Linux Foundation’s develop-
ment of Hyperledger Fabric aims to boost the use of blockchain technology across 
several industries. IBM blockchain was designed only for personal use with the goal 
of building a platform for open business transactions. Permission networks are built 
using the multichain open-source blockchain framework. This is employed by several 
businesses, both internal and external. A joint project using Ethereum and brainbot 
technology is called Hydrachain. Since it is an extension of the Ethereum platform, 
private ledgers that are beneficial to businesses can be created using it. R3 Corda is 
a permissioned blockchain and it focuses on interoperability ease of integration with 
the legacy system. It is mainly used in healthcare, trade and finance, and supply chain 
management.

However, any of these platforms could be used to create the blockchain frame-
work and integrate it with the existing healthcare systems.

11.8 CONCLUSION AND FUTURE SCOPE

This chapter gives a quick summary of how federated learning is used in health-
care systems. Attention is then shifted to the security and privacy concerns that 
may arise as a result of the development of a federated learning–based healthcare 
system. The use of a modified Paillier cryptosystem to create an efficient privacy-
preserving federated learning–based healthcare system was discussed, then an 
agent-based realization of the system was examined and its implementation on 
a blockchain framework was introduced. As a future enhancement, the storage 
agent may be implemented using blockchain technology and its associated com-
munication overhead may be analyzed. Appropriate consensus mechanisms may 
be proposed for federated learning healthcare frameworks to ensure security of 
private patient data.
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12.1 INTRODUCTION

The current medical scenario relies heavily on architecture that is either central 
server–based or utilizes the cloud for accessing data for purposes of analysis or pro-
cessing. Due to the increase in the amount of data and the number of Internet of 
Medical Things (IoMT) devices to solve any given purpose corresponding to the cur-
rent medical standards, this centralized method is neither appropriate nor efficient 
in terms of security and is also inefficient in terms of communication and networks 
with high scalability. When considered from a security perspective, significant con-
cerns are raised, such as leakage of private or sensitive information. At times, cen-
tralized databases can even witness breaches which put the stored data at substantial 
risk. Thus, in order to eradicate these shortcomings, we use a decentralized artificial 
intelligence (AI) architecture called federated machine learning. By implementing 
federated machine learning, standing tasks can be implemented at a much more scal-
able level and can also be privacy-preserving. It is also very cost-effective and hence 
an up-and-coming solution for approaching the given traditional context while using 
AI techniques such as federated learning (FL).

Figure 12.1 represents a stated centralized machine learning (ML) architecture 
and a federated machine learning architecture.

The following are the primary steps involved when dealing with a federated learn-
ing network.

 1. Network Setup
• The first step in setting up a federated network is to choose a node for 

aggregation of all local outputs and updates.
• Once chosen as an aggregation point, the remainder of the network 

requires local nodes for training its training data on locally run mod-
els. Thus, the aggregation server selects a number of underlying nodes 

FIGURE 12.1 Centralized ML and FL overview.
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to serve the stated purpose, which should be involved in the federated 
learning network.

 2. Training at Local Nodes
• After the set of local nodes and the convergence point is decided, the 

aggregation server distributes a model with all its corresponding required 
parameters to trigger the training of data locally within each local node 
of the network.

• Each model that is trained locally keeps on producing updates; these 
may include values such as weights or other raw forms of data which 
are then offloaded onto the network to be passed on to the aggregation 
point.

 3. Aggregation of Updates
• All the updates received from the locally trained nodes then meet a point 

of convergence, i.e., the aggregation server.
• Here, the aggregation server combines all the updates to form a resultant 

model.
• The resultant model is achieved by averaging parameters received from 

local nodes of the federated network per element with renewed weights 
as per the data corresponding to the aggregation server.

 4. Repeat Until the Best Iteration Is Achieved
• Once the resultant model has been updated upon the first iteration of 

the network, it redistributes the combined parameters that were formed 
back to the local nodes for initializing the next iteration of training the 
data locally.

• The network keeps on repeating this process till it has achieved its 
desired or optimal accuracy for its model.

Figure 12.2 represents a federated model that communicates with the aggregation 
server sending out a model for each local node to train on with global parameters, 
which are then altered based on the local training of data. It also depicts the transfer 
of each local node’s updates being offloaded towards the aggregation server and the 
distribution of an updated global model post-aggregating the received parameters at 
the aggregation server.

To further emphasize the functioning of Figure 12.2, a key concept that brings 
about the working mechanism in federated learning is the FedAvg algorithm dis-
cussed further in Section 12.1.2. In Figure 12.3, federated network’s steps are rep-
resented with examples of what can be considered a local training node. In the 
context of this chapter, a local data training node can be a hospital, home-based 
healthcare, or even personal gadgets like mobile phones, smartwatches, or other 
sensors.

12.1.1 reSearCh ContributionS

In this chapter, the authors mainly aim to understand the various use-cases of 
federated learning with its integration in IoMT devices and deduce whether FL 
is a reliable concept based on multiple factors such as time, cost, scalability, and 
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FIGURE 12.2 Communication between nodes in an FL network.

security. After an understanding of the significance of federated learning in the 
introduction section, the chapter initially presents information regarding the dif-
ferent types of federated learning, its requirements, and various limitations. Upon 
understanding the significance of federated learning and building a fundamental 
concept of understanding for readers, the authors present the essential scope of the 
chapter, i.e., use-cases of federated learning with IoMT. IoMT devices primarily 
help advance the field of healthcare. Thus, topics pertaining to healthcare such as 
managing electronic health records (EHRs), remote health monitoring, medical 
imaging, and other exceptional use-cases are discussed. The further sections dis-
cuss these use-cases in depth, followed by an additional section elaborating why 
federated learning can be a promising field from a healthcare perspective. A sec-
tion based on real-world applications concludes the examination of the effective-
ness and practicality of federated learning. Before concluding the chapter, based 
on the challenges required to be tended to, the future scope of federated learning 
is discussed in detail for an enhanced understanding of the topic. Finally, based on 
the different conclusions drawn from the various use-cases and empirical findings 
of recent use-cases, the authors state the conclusion drawn from the deductions 
proposed in the chapter.
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FIGURE 12.3 Medical-based FL architecture.

12.1.2 fedavg

Federated averaging (FedAvg) is an algorithm providing efficiency for communica-
tion for a vast sample space of clients holding distributed data for training models. 
In FedAvg, clients keep the data protected by training them locally and not sharing 
the actual data while creating a global model by passing their parameters onto an 
aggregation server. Stereotypically, most deep learning applications rely primarily 
on the alteration of their corresponding stochastic gradient descent (SGD). Thus, 
while developing FedAvg or federated averaging algorithm, authors in [1, 2] have 
applied SGD to an instance using federated optimization. In this case, a singu-
lar batch of gradient computation is applied every round of communication. This 
approach is efficient; however, it requires a large number of iterations for training 
a good model. Thus, [3] has utilized large-batch synchronous SGD similar to the 
experiments carried out in [4, 5]. In order to implement this approach, a fraction of 
clients is selected each round which computes the gradient of loss based on the data 
which these clients possess. This is referred to as FederatedSGD or FedSGD. Given 
such a set of FedSGD, the fraction of clients is considered a variable C equivalent to 
1, and a set learning rate η used by every client ‘k’ for computing the average gradi-
ent ‘g’ at the local models ‘w’. The central server aggregates gradients and applies 
an update. Each locally trained client takes a single step of gradient descent on the 
current model using its local data and the server, then takes a weighted average of the 
resulting model as its parameters. After this, the local clients can be reiterated mul-
tiple times before taking the step, which involves calculating the weighted average. 
This approach is termed as FedAvg or federated averaging algorithm. Figure 12.1 



238 Federated Learning for Internet of Medical Things

FIGURE 12.4 FedAvg.

and Figure 12.2 are the generalized illustrations of what goes behind the FedAvg 
algorithm. Figure 12.4 is another representation of the FedAvg.

In [4, 6], a number of challenges pertaining to federated learning algorithms have 
been reflected which include the following.

• Statistical Challenges: There is a significant difference between the distri-
bution of the data. It is such that any available data value fails to be repre-
sentative of the superset distribution.

• The Efficiency of Communication: The number of clients K is enormous, 
and it can exceed the average amount of training samples kept for inactive 
clients.

• Security and Privacy: For untrustworthy participants, further privacy 
safeguards are required. It’s hard to guarantee that all clients are equally 
trustworthy.

12.1.3 typeS of federated Learning for ioMt

Following is a very commonly known categorization of forms of federated learning.

• Horizontal federated learning
• Vertical federated learning
• Federated transfer learning
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These segregations mainly depend on the feature space and the sample space of 
the data being trained on the local node of the federated learning network.

A feature space is known as a set of all possible values from a selected feature or 
factors that make up a dataset. Furthermore, a sample space is the set of all possible 
outcomes for a test. Based on these terminologies and the differences between the 
types used by the local nodes in a federated learning network, we distinguish FL 
into different categories. For example, consider a classroom of people writing the 
same word on the chalkboard. In this case, the same word becomes our feature space 
which in this case is the same for all the students in the class, whereas the different 
handwriting of each student becomes our sample space.

Horizontal FL consists of IoMTs of the participant nodes training a global model 
shared with them by using data that consists of the same feature space but has a dif-
ferent sample space. It can be observed in Figure 12.5, which depicts the described 
scenario. This allows the local nodes on the federated network to implement the same 
learning model; for instance, a deep neural network model or a standard classifica-
tion ML model for training data. From there, the trained models will then offload 
their parameters or learned outputs to be passed on to the primary server for aggrega-
tion and updating of the end model.

Vertical federated learning involves using data that have different feature spaces 
and the same sample space. An instance of VFL can be a smart healthcare environ-
ment in which multiple nodes of the system such as personal entities, government 
entities, hospitals, or insurance companies (different types of features) tend to the 
same crowd of patients (same sample space), wherein their combined training of 
data locally helps achieve creation of the final end model. Figure 12.5 and 12.6 is 
an illustration of what a Horizontal and vertical federated architecture looks like. 
Encryption methods are used for dealing with issues in the context of data overlap-
ping and provide an additional layer of security for data exchange. Figure 12.7 repre-
sents the different FL categories and concepts of data overlapping.

The last of the most commonly used types of methods of federated learning is 
by using transfer learning. A transfer learning–based federated network consists of 

FIGURE 12.5 Horizontal FL.
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FIGURE 12.6 Vertical FL.

FIGURE 12.7 FL categories.
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different sample spaces and different feature spaces for each local training node. 
Thus, the transfer learning method helps reduce all the different values obtained 
and forge them into a common standard metric value for every local node on the 
federated network to train their model. Encryption is used to mask information of 
significant values in this type of federated network.

An example of federated transfer learning is having multiple medical centers 
which have different sets of patients (sample space) with different checkup facilities 
(feature space). Figure 12.8 is an illustration of transfer learning–based architecture.

12.2 LITERATURE REVIEW

Table 12.1 comprises a literature survey for federated learning for EHRs.
Table 12.2 comprises a literature survey for FL for medical imaging.
Table 12.3 comprises a literature survey for FL for remote monitoring using IoMT.
Table 12.4 comprises a literature survey for FL for detection of COVID-19.

12.3 MOTIVATION

12.3.1 LiMitationS of traditionaL heaLthCare SCheMatiCS

• Low-Security Aspects of Data: A  traditional artificial intelligence (AI) 
architecture makes use of central data warehouses or servers for the pur-
pose of extracting resources for training data. This may contain data of sig-
nificance to the patients which is at risk of being attacked. Since the server 
is centralized, in a situation where it is compromised, the compromised 

FIGURE 12.8 Federated transfer learning.
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server [26] under the influence of an untrustworthy party can lead to devas-
tating effects. These effects include data leakage, which may be a threat to 
the privacy of sensitive and personal information. Even though these cen-
tralized servers have high efficiency in training huge amounts of data, the 
security aspects pertaining to them can be much better [27].

• Lack of Training Datasets: In order to build a machine learning model 
which can achieve good accuracy, it is crucial that it undergoes training on 
a good number of data samples so that it can know what to do with any test 
case. In some cases, the model may even adapt to figuring out outlier sce-
narios relatively well. However, in the case of medical-related aspects, data-
sets are very small and insufficient to produce properly fed models [28]. In 

TABLE 12.1
Literature Survey: FL for EHRs

Ref. Federated 
Learning Type

Local Training 
Nodes

Aggregation 
Servers

Observation Drawbacks

[1] Horizontal Healthcare 
center

Cloud-based Combined learning 
approach used to train 
local nodes of the FL 
network

The conjunction of the 
stated algorithm for 
the local nodes must 
be ascertained 
effectively for the FL 
schematic

[3] Horizontal Mobile phones Database
server

Creating a model for 
predicting whether a 
patient should be 
admitted in the 
hospital using FL

Very simplistic 
approach and 
consists of a much 
less intricate analysis 
of the proposed 
scheme

[7] Horizontal Healthcare 
center

Database
server

Differential 
confidentiality-based 
federated learning 
schematic is used for 
training the local 
nodes of the FL 
network

Requires several 
considerations for 
real-world 
implementation of 
the proposed model

[7] Horizontal Healthcare 
locations with 
radiology 
centers

Cloud-based Utilizes split learning 
for training models of 
the local nodes in the 
federated learning 
network

Very simplistic and 
has no clear validity 
of the training 
difficulty

[8] Horizontal Healthcare 
center

Database
server

Trained model, based 
on uncertain birth 
prediction using 
federated learning

Evaluation and 
analysis of the 
training difficulty are 
required at each local 
node
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TABLE 12.2
Literature Survey: FL for Medical Imaging

Ref. Federated 
Learning Type

Local Training 
Nodes

Aggregation 
Servers

Observation Drawbacks

[9] Vertical Healthcare 
center

Cloud-based A federated learning 
schematic for 
variations in types of 
the local nodes

The trained model 
learning must be 
ascertained

[10] Horizontal Magnetic 
resonance 
imaging (MRI)

centers

Federated 
server

A schematic which 
offers better 
confidentiality for 
creating images of 
the brain

Improper evaluation of 
conjunction in the 
federated learning 
network

[11] Horizontal Websites with 
medical 
information

Database
centers

Model trained for 
brain imaging using 
magnetic resonance 
imaging using 
federated learning

Various physical aspects 
of the proposed 
methodology need to be 
taken into consideration

[12] Horizontal Healthcare 
center

Database
centers

Federated learning 
applied for 
identifying minor 
neuro-effects like 
headaches and loss of 
consciousness

A very simplistic 
approach that requires 
more dry runs and 
testing

[13] Horizontal Healthcare 
center

Database
centers

Differential 
confidentiality-based 
federated learning 
schematic used for 
medical imaging

Improper comparison 
between traditional 
deep learning methods 
and federated learning 
techniques proposed

desperate cases, the analyst must perform manual calculations, which may 
consume a fair amount of time and delay the data preprocessing period.

• Low End-Model Performance: As discussed previously, the issue of lack 
of sufficient training datasets may lead to a severe downfall in the required 
level of accuracy. Some medical test cases, such as cancer detection, can 
be based on very intricate details, and an incorrect prediction made for 
any patient may lead to extreme—even fatal—consequences for the patient. 
A very commonly known practice to increase the number of data samples is 
to apply data augmentation to the already existing dataset [29]; for instance, 
using general adversarial networks (GANs) for implementing data augmen-
tation. However, data augmentation does not contribute much to very low-
sampled datasets.

• Network Latency: There are several inconveniences caused during offload-
ing of data within the network to different nodes. These inconveniences 
include the following.
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• Congestion of a network if the data is large in size; for instance, if it 
involves audio or video.

• Network latency is caused due to huge amounts of data.
• At times, the nodes in the network which train the data locally do not 

have sufficient transmission power to offload the data onto the network.

TABLE 12.3
Literature Survey: FL for Remote Monitoring

Ref. Federated 
Learning Type

Local Training 
Nodes

Aggregation 
Servers

Observation Drawbacks

[14] Vertical Mobile phones Cloud-based A federated learning 
approach for remotely 
monitoring and 
identifying activities of 
a person

Needs increased 
security standards

[15] Federated 
transfer 
learning

Portable 
devices

Cloud-based A federated learning 
approach for remotely 
monitoring and 
identifying activities 
of a person using 
transfer learning 
technique

No clarity regarding 
transmission costs 
and training for the 
proposed model

[16] Horizontal Healthcare 
center

Cloud-based A federated learning 
approach that uses 
natural language 
processing (NLP) 
techniques for 
monitoring obesity

Needs increased 
security standards

[17] Vertical Mobile phones Cloud-based Using a mobile 
application for 
healthcare monitoring 
using a federated 
learning approach

Minimal comparison 
with independent and 
identically distributed 
(IID) learning 
techniques

[18] Horizontal Websites with 
medical 
information

Database
center

Health insurance 
instance analysis for 
the entirety of the 
United States using 
federated learning

Terms and conditions 
for the acceptance of 
federal information 
use needs approval 
for real-world 
application

[19] Horizontal Mobile phones Database
centers

Sentiment analysis using 
mobile phones

Revision of policy for 
maintaining 
confidentiality in 
mobile-based 
federated learning 
and appropriate usage 
of data
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TABLE 12.4
Literature Survey: FL for Detection of COVID-19

Ref. Federated 
Learning Type

Local Training 
Nodes

Aggregation 
Servers

Observation Drawbacks

[20] Horizontal Healthcare 
center

Database
centers

A combination learning-
based federated network 
for detection of 
COVID-19

The proposed model 
very simply lacks 
proper analysis

[21] Horizontal Healthcare 
center

Database
centers

Presents multiple 
approaches in federated 
learning schematic for 
detection of COVID-19

The conjunction of the 
algorithm used must 
be ascertained

[22] Horizontal Data
clients

Data
center

Identification of 
COVID-19 infections is 
done using a dynamic 
method of a combination-
based federated learning 
schematic

Must be ascertained 
with respect to 
learning accuracy

[23] Horizontal Healthcare 
center

Database
centers

A federated learning 
approach used for 
identifying COVID-19 
using a model trained on 
X-ray imaging of the 
chest

The unclear mention of 
data leakage during 
transmission and 
required security 
standards

[24] Vertical Healthcare
institution

Third-party 
aggregator

A federated learning 
approach used for 
identifying COVID-19 
using a model trained on 
computerized 
tomography (CT) scans

Improper comments in 
context to latency 
during the training 
phase

[25] Vertical Healthcare
institution

Cloud-based A federated learning 
approach used for 
segmentation of 
COVID-19 area of the 
chest using an 
international standard 
dataset

Requires more 
comments in context 
of the conjunctions of 
updates and 
transmission of data 
in the federated 
network

• High Expense: The offloading of a huge amount of data at a central server 
is very costly. All the above discussed issues caused during transmission 
can also require additional expenses to fix which makes it even costlier.

12.3.2 benefitS of fL’S integration in ioMt

• Increased Data Security: In a federated network, the local nodes only pass 
on the relevant parameters such as the gradient or weights for using it on the 
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aggregated server, while the raw data remains at the local nodes. In compar-
ison to a traditional AI centralized network, this is a much safer approach, 
since the compromising of any of the nodes might create far less damage 
to the overall network than the comparison of an entire central database. 
This significantly reduces the risk of major data leakage. Subsequently, if 
an attacker is to breach the network amidst data exchange, due to encryp-
tions used and the different representations of the data, it becomes difficult 
for the attacker to make sense of the data obtained. This increases security 
drastically and keeps safer the sensitive and personal data relevant to each 
patient [30].

• Minimal Loss of Performance: In context with the change in the overall 
performance of the FL-based AI system and that of the traditional central 
AI system, there is very minimal performance change. The FL-based sys-
tem allows us to perform tasks at a much higher scalability standard. The 
trade-off between the accuracy and utility of the system is very reasonable. 
However, the minimal change can be compensated by the security provided 
by the overall network, which is very significant.

• Ease of Communication: As far as the previously discussed transmis-
sion issues that are faced by traditional central server–based AI systems, 
an FL-based AI system significantly eradicates each issue. The parameters 
offloaded onto the network for transmission by each local node are gener-
ally much smaller in size [31] compared to raw data, and thus can be eas-
ily offloaded onto the network. Also, the power required to transmit these 
is significantly reduced while also improving the latency-related issues of 
the network due to the transmission data’s smaller size. Furthermore, the 
network also saves a lot of bandwidth while reducing the risk of network 
congestion due to the scenario created.

12.3.3 requireMentS

• A trustworthy aggregation server.
• Secured transmission of data and parameters between the aggregation 

server and the local nodes of the federated network.
• Proper computational requirements for training the data at the local nodes 

must be met.
• Only the dataset with the proper number of instances for appropriate train-

ing must be considered for training the local nodes of the federated network.

12.3.4 key ChaLLengeS

• Intercommunication between the local nodes.
• Balanced presetting of the local nodes such that each local node follows the 

same standard for training the datasets.
• Reduced quality of training of the local models due to lack of instances.
• Varying datasets are used by each local node for training and the data types 

such as audio/video or images.
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• Issues of IID-less (not independent and identically distributed) data for the 
training of local nodes.

• Security concerns in a context, such as aggregation server attacks for send-
ing off false updates by compromised local nodes.

12.4 FEDERATED LEARNING USE-CASES IN IoMT

In this section, we will shed light on the core federated learning applications cor-
responding to IoMT, such as the following.

• Federated EHR management
• Medical imaging using federated learning
• COVID-19 detection using FL
• Federated remote health monitoring

12.4.1  federated Learning for eLeCtroniC heaLth  
reCordS (ehr) ManageMent

AI and deep learning have played crucial roles in identifying and gaining knowledge 
regarding various health-related issues and stages of disease development. These are 
made possible by using information that can be accessed from EHRs of various facil-
ities such as hospitals and medical laboratories. These enable us to diagnose relevant 
diseases and carry out various research assessments for future use. The major issue 
pertaining to EHR is maintaining the privacy of the patients. The practice of remov-
ing the metadata of patients is not sufficient to maintain the required standard of 
privacy [32]. At times, other entities—apart from the hospitals—store the same sen-
sitive or private information. These may include insurance companies, government 
databases, or private companies seeking personal information for health benefits, 
which results in making it difficult to conceal the relationship between the informa-
tion and the patient.

Federated machine learning plays a vast role in fulfilling privacy-based short-
comings and helps carry out the solution searches just as effectively as traditional 
central-based AI systems using the data obtained from EHRs. Federated learning 
architectures also resolve the issue of handling privacy across multiple entities as 
mentioned before that use patients’ sensitive and personal data. A very convincing 
approach to federated learning is proposed in [3], whereby multiple hospitals, along 
with a cloud-based server, implement a federated architecture that aims at preserving 
the privacy of the data as well as working on using data appropriately for creating a 
machine learning model. The methodology consists of using perturbation techniques 
used in machine learning on the training data. Each hospital trains its local neural 
network model using the prepared training data, and the output is pushed onto the 
federal learning architecture. In doing so, the creation of data that is very difficult 
to revert back to its original state—and also, the federated property of the system 
makes it difficult for the attackers to retrieve the information at the same time.

Another method introduced in [33] uses pre-recorded heart diagnosis–related 
data to predict whether or not a person fits the condition for being hospitalized. The 
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training data obtained for serving the model comes from different sources, such as 
hospital diagnostic reports and patient gadgets like smartphones or smartwatches 
[34]. The models are trained locally on variables such as sex, age, and different physi-
cal characteristics of the patient. The configurations and the resultant outputs are 
then passed onto the federated scheme to a cloud server, where all these configura-
tions and outputs of previously trained local models are combined to form a singular 
final model which uses a support vector machine classifier. The proposed method 
ensures that no private information is lost during an exchange of data from the local 
to the central cloud server—and thus, the original information remains undisclosed.

To add an extra layer of security, [35] proposed a methodology that integrates 
noise to conceal each update that takes place in the local models before it is trans-
ferred to the proceeding parts of the federated network. The network uses multiple 
prediction models to perform FL training in order to achieve variable accuracies and 
choose the best one of the lot. The method adopted in the chapter used is differential 
privacy-based federated learning, wherein privacy loss in each aspect is a measure 
that evaluates the performance of the network.

The methodology proposed in [7] uses a concept known as split neural networks 
(SplitNNs). As the name suggests, the local deep neural networks are split into differ-
ent parts and are spread across different nodes of the federated network. The training 
data is trained at various radiology centers, and then the output generated is passed 
on to the network further. The training data is also split into different clients or 
can be retained at the corresponding client, as per the network’s requirement. Each 
SplitNN prepares its corresponding weights, which are then passed around in the 
network. In this way, the nodes of the network prevent raw information from being 
passed around and hence withhold the security standards of the network.

A very reliable method of securing the data exchange between nodes of a feder-
ated learning network is by using blockchain [36]. The methodology proposed in 
[37] integrates a decentralized blockchain schematic to build federated learning 
networks. As we know, a common federated learning network may consist of local 
nodes which train the training set onto deep neural networks and the resulting data 
travels to a primary node for a final combination of the data obtained from various 
nodes to form an end model. However, when integrating blockchain, the concept of 
immutable ledger comes into play which is handled by the nodes of the federated 
learning network. This helps in secure communication and, if needed, data anonym-
ity. Figure 12.8 consists of hospitals as its nodes that train medical or healthcare-
related data onto deep learning neural nets or standard deep learning models from a 
blockchain-based federated learning network.

In a federated machine learning network, there are certain issues like the lack of 
a genuine method to validate transmissions, the lack of real-time monitoring of the 
communication in the network, and the lack of a particular algorithm enforced on 
the network for the selection of its local nodes for training. Thus, to deal with these 
issues, there have been several methodologies proposed [38] in which the authenticity 
of each node is evaluated in a given federated network. In a standard federated learn-
ing network, an aggregation server is selected which prepares the end model based 
on the updates it receives from all the local nodes training the datasets. However, as 
proposed in [39], a blockchain helps achieve further decentralization of the network 
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FIGURE 12.9 FL for EHR management using blockchain.

and enables certain of its enhanced security aspects. Blockchain can also be used 
to store patients’ personal information, along with their vaccination and medication 
details [40, 41]. The final model, which was originally prepared at the aggregation 
server, is now prepared at each local mode of the network using a block consensus 
mechanism in the federated learning network using a peer-to-peer method.

Research has proposed the increased security aspects offered by the integration 
of blockchain and how it works on eradicating any compromised nodes of the feder-
ated network and also prevents any potential attacks from taking place [42]. Here, 
the blockchain’s key principles of competing to mine the next block are applied to 
the local nodes in the network, and every new block update is appended to the local 
ledgers. Figure 12.9 represents a single iteration of the blockchain-based federated 
learning network.

The following are the key steps involved in a blockchain-based FL (Figure 12.10).

 1. Training data on local nodes using their local datasets.
 2. After the preparation of each local model, the local nodes broadcast their 

trained models to all the other IoMTs (local nodes) of the network.
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 3 In the exchange of each locally prepared model across the network, each 
local node verifies the model it receives.

 4. After receiving each locally prepared model, each local node then focuses 
on mining the upcoming block for the chain based on all the models it has 
received.

 5. If the new block prepared by the local nodes is then verified—based on a 
first-come, first-served basis—and if the block gets verified, it is then added 
to the local ledger of local nodes of the federated network.

 6. Once a new block is added to the ledger, the network’s local nodes then train 
the data locally again for creating the next block, and a new round of com-
munication is initiated.

Similar to the previously discussed methods, other research [8, 43] proposes seri-
ous attempts at creating privacy-friendly federated learning networks in collabora-
tion with multiple hospitals as the network’s key participants for providing EHR 
records and local data training. The proposed methodology in [43] states a combi-
nation of hospitals, patients, healthcare facilities, and medical centers in order to 
enhance the analytical efficiency in order to obtain better results.

12.4.2 federated Learning for MediCaL iMaging

Using centralized AI techniques for creating models which predict image datas-
ets may require all of its participants to submit personal or sensitive images for the 
purpose of training to a central server. This method poses a high risk of the data 
being compromised. Thus, the introduction of FL for building medical-based image 
models has proved to be significantly safer in comparison to its traditional central 
AI-based schematic.

FIGURE 12.10 Single iteration of FL using blockchain.
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In [44], a common image space is created for the nodes of the federated network 
by transforming all of the images used at each node. This kind of federated model 
mainly focuses on solving the variation between each node. It consists of a cloud-
based global classifier. A generative adversarial network is set at each local node 
such that it generates an artificial image dataset by transforming raw data from each 
node as per the aimed image space. In this way, the network eradicates the issue 
of variations between each node of the network and the privacy of the raw data is 
retained. The proposed method saw an increase in the performance of the model 
by 0.13% compared to its corresponding non–federated learning–based method and 
also achieved a great accuracy score of 97% when used for classifying images related 
to prostate cancer.

Another methodology proposed in [44] uses federated learning for brain tumor 
segmentation. Each participant (for instance, magnetic resonance imaging [MRI] 
scanners) in the federated network comprises a deep neural network to train the data 
locally. Each local node has enough power to run its component deep neural nets 
and even consists of sufficient resources for training the model. The local nodes then 
offload the calculated weights of their deep neural nets onto the federated network 
to be transmitted to the aggregation server. The aggregation server uses averaging 
techniques to make sense and create a combined result. Federated learning may be 
self-sufficient in preventing data leakage; however, there are always risks of data 
alterations at different nodes of the network. Thus, in order to prevent this from 
happening, noise is added to the data which is used for training. This obscures the 
updates and makes it difficult to make sense of any data that is compromised.

A convolutional neural net based on the SqueezeNet computer vision model is 
implemented in [44] for classification purposes and has shown a significant rise in 
accuracy while testing its classification performance on various real-world datasets. 
Another implementation of FL on real-world datasets is done in [45], which classifies 
breast density. It even sheds light on the increase in performance compared to other 
techniques.

When it comes to X-ray–based federated learning imaging, a proposed methodol-
ogy in [46] represents an FL network that detects minor neuro-effects such as severe 
headaches, rendering mindlessness, and losing consciousness. The local nodes of 
the network, in this case being the hospitals, comprise a convolutional neural net-
work (CNN) based on DenseNet-121. The proposed model supports the propagation 
of involved features and their reuse, and even allows the reduction of parameters 
required to train the dataset in use.

12.4.3 federated Learning for Covid-19 deteCtion

COVID-19 has led to devastating effects worldwide. Research proposes a solu-
tion based on deep learning techniques using CNNs to diagnose COVID-19 using 
chest X-ray [46], while other research proposes the security concern related to the 
condition created due to the pandemic and states how it becomes more difficult to 
implement various solutions for practical use [47]. Federated learning can be an 
effective technique for the prevailing conditions. In order to maintain privacy, the 
local nodes of the federated network plane are deep learning models using various 
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datasets consisting of images, and after training, only offload their respective neces-
sary parameters like gradient or weight to converge at the aggregation server. There 
is no need to share the raw information, which could give rise to a potential threat to 
sensitive data which is stored at each local node.

Author [20] propose a blockchain-based federated learning architecture that con-
sists of an enhanced classification technique. This way, the data remains secure via 
two means: the federated network and the blockchain architecture. The test runs of 
the proposed model depict a very successful result, as well as very minimal loss of 
data, which was proved during the transmission phase. Author [48] proposed a con-
tact tracing scheme to detect the spread of viral infection and to predict the required 
resources at the time of pandemic using ensemble forecasting model is proposed by 
Prasad et al. [49]. Author [21] proposes the use of different deep learning techniques 
such as MobileNet/ResNet, and a third proposed a CNN for COVID-19 diagnosis 
which is integrated into a federated learning schematic with increased confidentiality- 
boosted solutions. Among the tested neural networks, ResNet provided the best 
results with its integration in a federated schematic. Figure  12.11 is a representa-
tion of a federated learning network that consists of local nodes training the model 
using GANs. Once that model is trained locally, it then uploads its parameters onto 
the federated network for it to have conversed at the aggregation server so that the 
end model updates itself and the next round of training the local nodes initiates. 
This keeps happening until the desired results are obtained at the end model on the 
aggregation server.

A variation-based approach is proposed in [22] which is based on a combinational 
federated learning method that consists of a time trial. Each local node trains its 

FIGURE 12.11 Single iteration of FL using blockchain.
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model as fast as possible. The aggregation server provides a specific time limit within 
which all the local nodes which have finished offloading their model parameters 
are selected as the federated network participants for the aggregation procedure. If 
a local node is not able to finish within the given time interval, it is excluded from 
the aggregation round for that iteration of the process. Author [23] utilizes chest 
X-ray imaging to classify patients who are diagnosed with COVID-19 among a patch 
of people who may or may not have COVID-19. The local node of the federated 
network comprises a CNN to train its local data. All the local nodes; after training 
their model forward their gradient or parameters for updating the global model at 
the central aggregation server. The proposed methodology ensures that the data’s 
confidentiality is maintained, which is very significant given the scenario created 
by the global pandemic. A similar approach is utilized in [50]. In [24], a combined 
learning-based is presented for the outlier effect caused in a patient’s lungs by the 
diagnosis of COVID-19.

12.4.4 federated Learning for reMote Monitoring of heaLth

Due to certain diseases which require the patient to be quarantined, remote access to 
the patient has become a necessity in diagnosing the patient’s condition and shielding 
from varying effects caused by the disease affecting the patient which may spread to 
other people. Thus, federated learning provides a promising solution to the proposed 
scenario. In [14], the proposed model consists of various peoples’ houses as the local 
nodes for training the local learning models, and a central server for the purpose of 
aggregating the updated parameters passed by these local notes has been used. These 
networks have been built such that there is very minimal leakage of data; hence, 
preventing any sensitive data from being exposed. Each local node train sets on a 
CNN which then outputs a value and forms parameters based on an unaltered form 
of the dataset such that it deals with the issue of imbalanced and independent and 
identically distributed data while also improving the predictions at each local node. 
The proposed methodology achieved a good experimental result for both balanced 
and unbalanced datasets while also reducing transmission expenses. Author [15] pro-
poses a federated learning architecture based on the principles of federated transfer 
learning for predicting the actions of a person remotely using their phones. Since the 
data is handled at the aggregation server and the phones are different in nature, the 
method of transfer learning has been considered. Transfer learning helps achieve 
a more structured training model. The proposed methodology shows an indication 
of an increased accuracy as compared to traditional federated learning algorithms. 
Another methodology proposed in [16] utilizes natural language processing with 
synchronous learning for monitoring obesity and the impact caused due to obesity 
while also keeping a lookout for other diseases.

Author [17] proposes a methodology that utilizes mobiles for creating an appli-
cation that helps identify whether a person is in a proper condition or experiencing 
adversities such as falling or other inconveniences of such. The proposed method-
ology uses actual instances of the world to train local models, which use neural 
networks for predicting the condition and actions performed by a person. In [18], a 
federal dataset is being utilized from various websites for protecting diseases such as 
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diabetes, heart-related diseases, and psychological diseases. Similar to most cases, 
the federated learning approach has achieved better accuracy and also provided a 
higher security standard to the architecture. In [19], a new methodology proposed 
uses the behavior with which a person uses their device keyboard for typing to 
predict the sentiments of a person, specifically whether the person is experiencing 
depression. The proposed method is called ‘FedMood’. The key factors affecting the 
outcome of the trained model include the habits comprising a patient’s keystrokes, 
the base of typing, specific use of words, and special characters or emoticons. The 
local nodes of the separated learning network train their datasets using deep neural 
networks and offload their relevant outputs to converge at the aggregation server. 
In [51], recovery of a person is examined using a federated learning approach with 
hospitals and healthcare centers as the local nodes of the federated learning network. 
The proposed methodology judges the outcome based on the patient’s characteristics 
and the effects of the treatment on the patient.

12.5  EMPIRICAL FINDINGS AND DEDUCING SIGNIFICANCE 
OF FL BASED ON A FEW VERY RECENT USE-CASES

This section of the chapter browses through some of the relatively recent federated 
learning use-cases and their empirical findings in order to present empirical facts 
of the reliability of federated learning and its utility in security aspects. Author [52] 
proposes recent implementations and their corresponding architectures with valida-
tions for their corresponding empirical findings. Some of these have been discussed 
further in what follows.

In [53], the authors have proposed a two-phased federated natural language pro-
cessing (NLP) methodology that uses phenotyping of comorbidities as means of 
drawing its output based on obesity. It was found that the proposed methodology not 
only increases the quality of data but also enhances the progressiveness of knowl-
edge throughout the system. In the proposed system, the centralized phenotyping 
evidently raised the F1 score compared to the standard centralized approach with an 
F1 score of 0.726, which were valid due to its consistency with previously recorded 
values. When the federated learning approach was adopted in the phenotyping 
stages, its F1 score reduced slightly without having much significance of 0.03 decre-
ment. When the centralized presentation of the system was converted to a federated 
learning environment, the phenotyping stage with centralized functioning displayed 
an F1 score of 0.715. When both the representation stage and the phenotyping stage 
followed the federated approach, by contrast, the F1 score increased to a result of 
0.724, which was comparable to the standard centralized system; however, the feder-
ated learning approach had a higher precision of 0.753 compared to the 0.749 of the 
standard centralized system. This leads to the opinion that federated learning is a 
reliable option with enhanced privacy standards.

In [54], a novel framework known as federated topic modeling is proposed. It 
utilizes novel methods of Metropolis-Hastings, normalization of topics, and seam-
less integration. In order to determine the effectiveness of the proposed system, it 
was tested using its integration with an automatic speech recognizer. This way, the 
proposed system is also examined for its utility as a real-world application. The 
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experiment conducted for the proposed system consisted of three parties of data, 
namely P1, P2, and P3. P1 consists of transcripts for 100 hours’ worth of record-
ings, whereas P2 and P3 comprise transcripts corresponding to 50 hours of record-
ing each. The evaluation metric used for the experiment is word error rate (WER). 
The lower the WER, the better the performance of the automatic sound recognition 
system. Automatic speech recognition (ASR) consisting of no additional capabilities 
showed a WER of 33.183%. The ASR consisting of topic modeling capabilities dis-
played a WER of 33.4%, 32.2%, and 33.0% for P1, P2, and P3, respectively. The ASR 
with federated topic modeling (FTM) displayed a WER of 30.0%. From the obtained 
results, it becomes evident that FTM is the go-to option out of these models. The 
proposed FTM model also solves two critical problems faced by industry-based topic 
modelers, which are scarcity of data and its corresponding privacy.

Author [55] proposes a federated learning approach in an attempt to achieve 
state-of-the-art (SOTA) performance while ensuring that the privacy of the data is 
retained. The proposed methodology aims at predicting hospital mortality among 
patients admitted to the intensive care unit (ICU). In the proposed methodology, two 
approaches have been taken. The first uses a linear regression algorithm, and the 
second using a multilayer perceptron. The evaluation metrics used for the experi-
ment for determining the performance are AUROC (area under the receiver operator 
characteristic curve) and AUPRC (area under the precision recall curve). It was found 
that standard linear regression displayed an AUROC of 0.8152 and an AUPRC of 
0.4030. The multilayer perceptron displayed an AUROC of 0.7925 and an AUPRC 
of 0.3900. In the federated setting, the linear regression model displayed an AUROC 
of 0.7890 and an AUPRC of 0.3659, whereas the multilayer perceptron in the feder-
ated setting displayed an AUROC of 0.7769 and an AUPRC of 0.3504. From this, it 
can be deduced that the performance was comparable to the traditional setting of the 
proposed system with an incremental difference in the privacy aspects of the system.

In [56], the difficulty of applying ANN in mobile networks is discussed. The 
proposed methodology is known as FEEL, i.e., Federated edge learning for por-
table devices such as mobiles is presented. In the proposed system, mobiles train 
parameters and offload them onto the network based on monitoring each patient. 
The offloaded parameters are then aggregated to build a model. Based on the results 
of the experiment, it was found that the traditional learning method of centralized 
architecture displayed a very stable and peak performance. The average F-score 
and accuracy were found to be 0.92 and 0.95. But in order to maintain privacy, this 
method cannot be implemented. Federated learning provides comparable results with 
an average F-score and accuracy of 0.88 and 0.91, respectively. From the results, it is 
evident that federated learning has fulfilled the privacy aspects of the system while 
maintaining comparable results. In [57], a framework for portable healthcare known 
as Fedhealth has been proposed. It deals with two major problems. The first problem 
is the existence of data in the form of isolated islands and how to tackle it. The sec-
ond issue is the failure to train the model on the cloud while inserting personalized 
input. In order to do so, the dataset used comprised human activities such as walking, 
going upstairs, going downstairs, sitting, standing, and lying down. The dataset was 
based on 30 users, each wearing a smart gadget for their monitoring purposes. The 
dataset was divided into a train-test split of 0.7 and 0.3. Results were calculated for 
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five patients based on three different learning algorithms—namely KNN (k-nearest 
number), SVM (support vector machine), and random forest—for comparison pur-
poses. It was found that for an average accuracy of all five patients combined, KNN 
displayed accuracy of 87.2%. As for the SVM classifier, the average accuracy was 
94.1%. The random forest classifier exhibits an average accuracy for five patients of 
90.5%. Compared to all these methods, the proposed Fedhealth displayed a stag-
gering average accuracy of 99.4%. Based on the results, it is safe to assume that in 
certain settings, federated learning is a much more promising approach.

In [58], data collected via means of a smart band for monitoring stress levels based 
on the behavior and activity of a patient’s heart is applied using federated learning. In 
the proposed methodology, the authors have analyzed the training of smaller datasets 
using various classifiers to search SVM and neural networks. For purposes of the 
experiment, the proposed methodology utilizes three datasets. The proposed system 
was trained using all permutations of the datasets both in the traditional and feder-
ated settings. It was found that the highest accuracy found was when Dataset 1 and 
Dataset 2 were trained in a federated setting; they displayed an accuracy of 87.55%, 
whereas the traditional machine learning accuracy was found to be 82.58% for the 
same corresponding datasets. It was also found that compared to previously exist-
ing studies for the same types of systems, the proposed system outperforms all the 
previously existing ones. The proposed system utilizes the combination of federated 
learning and multilayer perceptron to achieve the corresponding results.

In the context of blockchain applications for federated learning in healthcare, [59] 
proposes a blockchain-based Deep Learning–as-a-Service (BinDaaS). It involves the 
integration of deep learning techniques along with blockchain technology for trans-
ferring private EHRs among different users. The proposed system works at two lev-
els. The first level involves the authentication of users using a signature scheme based 
on lattice-based cryptography. The second phase involves the prediction of potential 
diseases based on current findings and various indicators of the patients involved. 
The proposed methodology has been compared to other previously existing systems 
in context to overall computation cost and computation cost for a final deduction of 
performance opinions. The system proposed by [60] displayed an overall computa-
tion cost of 505.72 ms, and a communication cost of 240 bytes for three messages 
exchanged. The system proposed by [61] displayed an overall computation cost of 
532.43 ms, and a communication cost of 456 bytes for four messages exchanged. The 
system proposed by [62] displayed an overall computation cost of 26.40 ms, and a 
communication cost of 544 bytes for two messages exchanged. The system proposed 
in [63] displayed an overall computation cost of 96.64 ms, and a communication cost 
of 176 bytes for three messages exchanged. The system proposed by [64] displayed 
an overall computation cost of 5.665 ms, and a communication cost of 228 bytes for 
four messages exchanged. Compared to all these, BinDaaS showed an overall com-
putation cost of 88.9 ms and a communication cost of 212 bytes for four messages 
exchanged. The proposed system also secures the network against various attacks 
such as replay attacks, side-channel attacks, distributed denial-of-service (DDoS) 
attacks, session-based attacks, provenance and auditability attacks, traceability 
attacks, signature-forgery attacks, signature verifiability attacks, quantum attacks, 
and known ciphertext attacks.
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12.6 REAL-WORLD APPLICATIONS

A collaborative healthcare project [65] regarding the feasibility of federated learning 
in medical imaging was done by the University of Pennsylvania and various other 
institutions globally, for which major support was provided via Intel by leveraging 
the capabilities of Intel Xeon processors and Intel SGX (software guard extensions) 
used for running FL functions at hospitals and cloud servers. It also helps in acceler-
ating deep learning algorithms and robust hardware tools and hereby building state-
of-the-art models for the protection of sensitive data, achieving a 90% accuracy rate 
on image datasets.

All healthcare data utilized for model training and data communications has been 
connected with blockchain to allow traceability and monitoring. Nvidia Corporation 
took part in this initiative recently by joining a healthcare project with King’s College 
London via Owkin platform running on NVIDIA Clara used to enable AI algorithms 
and trained at local hospitals to establish a platform for the UK’s National Health 
Service (NHS) [66]. In future large-scale federated healthcare projects, NVIDIA 
is creating on-device AI platforms for implementing FL functionalities on smart 
devices to handle medical image and video processing at high data rates. Primarily 
focusing on data analytics of two diseases, Alzheimer’s and Parkinson’s, results 
prove that FL can improve training-based performance for improved accuracy and 
hence shows high applicability in medical image analytics in terms of image-related 
disease diagnostics.

Medical institutions based in China, Italy, and Japan participated in a real-world 
FL project for COVID-19 region segmentation in chest computerized tomography 
(CT). The multi-national database was created consisting of a total number of 1,704 
scans from these three countries for setting up a framework. Evaluation is done via the 
experiments of semi-supervised learning of COVID-19 regions in three-dimensional  
(3D) CT. Better results were captured regarding ground truths and false positives; 
hence, FL proves to be a promising solution for collaborative projects and ensures no 
information leakage or hacks.

12.7 FUTURE SCOPE AND CHALLENGES

12.7.1 CoMMuniCation iSSueS in fL-baSed SMart heaLthCare

Communication, an essential part of FL users, and embedded servers play essen-
tial roles in FL-supported healthcare services. Proper allocation of communication 
resources significantly improve learning outcomes. This is especially important if 
one needs to deploy a large number of IoMT devices on the aggregation server for 
extensive link-template updates and low-link sample deployments. In this case, the 
aggregation server can select an appropriate set of IoMT devices using an effective 
planning policy, as reported in many existing studies [67–70]. Another critical issue 
in terms of connectivity is the dynamic and fast change of the radio channel between 
the IoMT device and the aggregation server, which affects the reliability and qual-
ity of training updates. One possible solution is to consider the impact of user dis-
turbance [71, 72] and to consider more reliable design goals such as downtime and 
availability of devices.
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12.7.2 Standard SpeCifiCationS for federated heaLthCare depLoyMent

Although there are many promising health outcomes supported by FL in the litera-
ture, there are no standard and universal results for assessing the performance of 
different approaches to the same issue. Several blockchain frameworks have been 
proposed for FL systems, for example, eliminating the need for a central server and 
managing local updates of IoMT devices. However, these approaches are difficult to 
compare because they are recommended for different status scenarios, and differ-
ent network parameters/datasets are used to evaluate performance. There are also 
important issues related to the universality and standardization of communication 
protocols, device hardware, deployment scenarios, and integration methods. IEEE 
Std 3652.1–2020 recently provided guidance on the architectural and design per-
spectives of FL [73], as well as the FL rating table and the performance statistics 
system.

12.7.3 quaLity of federated heaLthCare training data

Differences in computing power and data quality between hospitals can dramati-
cally reduce the quality of education. A promising solution, in this case, is to develop 
incentives for hospitals/medical institutions to use high-quality data for education 
and to report reliable updates to a unified server. Game theory and the blockchain are 
two critical tools for designing stimulation mechanisms [31, 74, 42, 75, 40]. The FL 
format should be easily adaptable and adaptable for nurses, physicians, and patients 
by flexibly configuring learning needs (e.g., changing data types, changing learning 
rates, changing or regressing the classification of learning objectives). These changes 
may affect FL models and default learning patterns (in FL users and embedded serv-
ers) that require the development of an adaptive FL approach. AI is a promising tool 
because it can use historical data to improve the adaptability of FL models to future 
events. Therefore, deep reinforcement learning (DRL) [76] uses a traditional method 
to create an incentive mechanism in case of poor performance when the size of the 
opportunity is large enough.

12.7.4 heaLth dataSet ConCernS

In some treatment scenarios, different clients may have different datasets—such 
as text, images, sound, and time series—and different data content, such as blood 
type, heart rate, face image, and body temperature. As usual, almost all FL methods 
in the literature are considered a single dataset with a limited number of features. 
For examples, [13] was tested in the diabetic retinopathy database and [4] was rec-
ommended for privacy-based FL-based healthcare but was evaluated in the EHR 
database. Moreover, although collaborating parties may have different models, a 
new heterogeneous FL approach should be developed in which a central server can 
explore this heterogeneity through the unique formation of the whole [77]. In this 
task, participants present a final strategy that allows them to use a heterogeneous set 
of models without having to combine data in one place.
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12.7.5 fL-baSed heaLthCare integration into advanCed netWorkS

Even though 5G networks (the fifth-generation technology standard for broadband 
cellular mobile communications) are not available completely, even commercially, 
they do exist. Numerous research and development works for future 6G wireless 
systems [78]. The coming 6G Industry 5.0 provides access to many applications, such 
as smart healthcare, smart grid, holographic television, and personalized body area 
networks. In addition, many new technologies are being introduced to meet stricter 
6G requirements, such as blockchain, compression probes, terahertz (THz) and vis-
ible light communications, 3D networks, quantum communications, and large-scale 
smart surfaces. Open-ended questions remain about how FL capabilities will be 
integrated into future 5G/6G medical devices and how 6G devices such as smart 
implants and portable devices will be used in a variety of FL-based healthcare and 
new healthcare services, which 6G will add for future research. For example, future 
e-health services will be enhanced by AI and FL capabilities to improve quality of 
life and reduce hospitalizations [79, 80].

12.7.6 fL With provabLe privaCy guarantee

While FL has excellent potential to protect the privacy of users’ data, the high sen-
sitivity of health data presents a number of privacy issues that need to be addressed 
appropriately, especially in the context of smart healthcare. According to [79], feder-
ated learning privacy concerns can be classified as the final attack of the member, 
accidental leakage of information, and generative hostility. For example, an attacker 
could use the global FL template to determine if a sample of data exists in the FL 
health dataset. Patient information can also be obtained when a patient’s device sends 
local model updates to central servers in hospitals and healthcare facilities. There is 
also an advanced encryption method for developing solutions for protecting personal 
information for medical FL systems and maintaining differential confidentiality. 
Many studies are considered to use differential confidence to continue to improve 
the confidentiality of the FL system [81, 13, 4, 2].

12.7.7 SeCurity iSSueS in fL-baSed SMart heaLthCare

In a smart care system based on FL, various client participants can act as attackers, 
trying to send toxic model updates or misinformation to compromise model integra-
tion. An attacker could also infect data attribute information while learning local 
data or change local updates while transferring templates between local clients and 
central servers [82]. On the server side, remote attackers can use their attacks to steal 
information about the accumulated global pattern, which leads to sensitive privacy 
issues, such as information leaks. Addressing these security vulnerabilities is a real 
challenge for smart FL-based healthcare systems. Several solutions should be con-
sidered, such as the use of differentiated confidentiality [5] to protect the training 
dataset against data corruption. In addition, the development of a secure integration 
method [6] is a promising solution to provide a double-mask structure to protect 
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clients from data falsification and attacks by encrypting local updates and sharing 
keys between the client and a central server [83, 84].

12.7.8 non–iid-neSS and data quaLity in fL-baSed SMart heaLthCare

In order to achieve the desired learning performance in FL-based medical systems, 
inconsistencies in medical datasets that can lead to learning FL in training are impor-
tant issues that need to be addressed [85]. For example, a hospital may have a higher 
prevalence of a particular type of regional disease than another hospital in a different 
geographical area. In this case, it is difficult to participate in federal data education 
because the distribution of labels varies by the medical institution. If this does not 
solve the problem of inconsistency, it can degrade or even interfere with learning 
the data. Therefore, solutions should be developed to overcome non-IID issues, such 
as generating additional subsets of datasets for equitable distribution to customers, 
in order to shape data in FL-based smart healthcare effectively. Another promising 
approach is to implement the movement of characteristics between heterogeneous 
customers by adjusting the distribution of characteristics on the customer side using 
the normalization of local batches before averaging local models. Quantitative indi-
cators are needed to assess non-IID data in the FL-based smart care sector, such 
as standard deviation, a curvature of label/function distribution, and accuracy and 
accuracy for homogeneous sections [86].

12.8 CONCLUSION

Federated learning is a quickly evolving field of study whose integration with IoMT 
can bring a significant change in the security perspective of medical data. The aim of 
the chapter is to understand whether federated learning (FL) is a very reliable subject 
in the context of increasing the confidentiality and security of data for transmission, 
and if it may also help achieve training a more scalable model for sensitive data. The 
chapter passes through some of the most important real-world applications that have 
been experimented with and simulated for research purposes, such as management 
of electronic health records, remote monitoring for the ill, and also diagnosis of dis-
eases such as COVID-19 and their effects. The chapter also sheds light on the empiri-
cal findings of various use-cases in order to derive an understanding of whether FL 
is reliable and secure or not. Based on the various use-cases studied in Section 12.4, 
we can understand the flexibility of federated learning to adapt to most healthcare 
requirements while providing immense utility for data. In Section 12.5, it very evi-
dent that federated learning under most circumstances may match the traditional 
learning mechanism of machine learning and, in some cases, even outperform them 
significantly. Section 12.6 directly introduces us to some of the real-world implemen-
tations of FL for making a statement in the context of its use. To conclude the chapter, 
key points pertaining to the challenges faced by FL schematics and also the future 
scope of FL in healthcare settings have been presented. To sum up its correspond-
ing characteristics in a short sense, it is a subject of high research potential, creating 
enhanced techniques related to AI in the future.
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13.1 INTRODUCTION

Internet of Things (IoT) defines a system of interrelated physical objects (or things) 
which are embedded with sensors/actuators and can collect and transfer data over wire-
less networks without human interference via the internet. IoT provides extended inter-
net connectivity not only to connect computers but also to connect our environmental 
things—including humans. Figure 13.1 shows an overall working of an IoT scheme, which 
is the methodology appearing in most of the works reviewed as the state of the art.

The IoT visualises a fully connected world. This domain has attracted variety 
of industries and many smart applications are developed and deployed in various 
domains like wearables, smart cities, automobile sector, smart parking, smart homes, 
environment, logistics, etc. IoT solutions provided in these domains are not only opti-
mising production but also digitising industries.

13.1.1 overvieW of internet of MediCaL thingS (ioMt)

Healthcare is one of the most promising IoT applications, and Internet of Medical 
Things (IoMT) is the set of medical devices and medical applications which are 

https://doi.org/10.1201/9781003303374-13


268 Federated Learning for Internet of Medical Things

linked to healthcare IT systems over the internet. It is an integration of software, 
hardware, network access, and sensors/actuators. Traditional IoMT uses cloud-
based architecture. Figure 13.2 shows cloud-based architecture for an IoMT. In this 
architecture, end nodes like wearables, sensors, mobile phones, and smart devices 
scan real-time data and transfer it to the cloud via gateways. Gateways are hard-
ware devices that facilitate communication between various IoT devices and the 
cloud. All stakeholders—like patients, doctors, and researchers—can access data 
from the cloud. Cloud-based IoMT architecture allows users to access data from 
anywhere and at any time. The concept of IoMT can be used in different healthcare 
applications like robot surgery, wireless capsule endoscopy, smart hospital informa-
tion systems, remote patient monitoring, etc. However, remote health monitoring of 
patients with various functionality like monitoring of senior citizens, SpO2 (oxygen 
saturation) monitoring, glucose monitoring, and depression and mood monitoring are 
attracting to researchers, as it increases lifespans of individuals, decreases mortality, 
and reduces the chances of contracting comorbid conditions [1].

Due to integration of the digital and physical worlds, medical organisations can 
easily monitor patients’ health—even from remote locations—and can suggest imme-
diate treatment with more accuracy, which in turn will help to improve patient health. 
It also makes workflow management of medical organisation more efficient [3]. With 
just a single click, a patient can get a proper line of treatments. Various entities use in 
IoMT, as shown in Figure 13.3 [3]. The patient’s data is stored in centralised servers, 
which repels many attacks that can be handled with applying cryptographic solutions 
to the system such as blockchain [4, 5] and artificial intelligence (AI) in healthcare 
[6]. With this data and past previous history, we track [7] and can predict the use of 
medical resources such as beds and ventilators [8, 9].

To illustrate IoMT, Consider the scenario that results of a magnetic resonance 
imaging (MRI) examination is sent from the MRI centre to the patient’s smartphone, 
or patient wears an activity tracker for sugar/blood pressure readings which is moni-
tored by doctor or other family members by smartphone. Here, one device is com-
municating with others; hence, it is machine-to-machine communication. According 
to [10], electronic medical record (EMR) data is list of information collected and 
provided by hospitals right from beginning of treatment through curing of the dis-
ease. Sensor data generated from various healthcare devices and data generated 
through EMRs together are considered healthcare Big Data. Figure 13.4 elaborates 

FIGURE 13.1 Overall working of IoT scheme.
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on the concept of EMR, and Figure 13.5 shows several types of sensors. IoMT plays 
a significant role in the healthcare industry. By compiling these huge medical data, 
along with proper investigation, IoMT can provide faster diagnosis and treatment to 
disease, and it also increases correctness, reliability, and productivity of electronic 
devices.

13.1.2 Why bLoCkChain in ioMt?

IoMT-enabled devices generate and transmit massive volumes of healthcare data, 
which is expanding at an exponential rate. According to a survey published by 
Stanford Medicine [11], in 2013, 153 exabytes of data were generated, and 2,314 
exabytes of data was expected to be produced in 2020, which itself indicates 15% 
of growth. According to one survey, the annual growth rate of healthcare industries 
is 27.3% and it was expected that by 2022, it will reach 29.84  billion  USD from 
8.92 billion USD in 2017 [10].

FIGURE 13.2 Cloud-based IoMT architecture [2].



270 Federated Learning for Internet of Medical Things

FIGURE 13.4 Electronic medical records [10].

FIGURE 13.3 Internet of Medical Things (IoMT) [3].
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Healthcare data generates sensitive—as well as personal—information, which 
attracts cybercriminals. The most common attack on EHRs is ransomware attack. 
According [12], a survey conducted by Accenture in February 2017, around 26% of 
medical records had been breached in the United States, and 80 million healthcare 
data from a health insurance company (Anthem Blue Cross) were breached in 2015.

Hacking, unintentional data disclosure, attacks by insiders, and physical damage 
are main causes for such type of breaches. Figure 13.6 shows distinct types of health-
care breaches [11, 13].

According to this survey, an average of approximately 380 USD is needed to pay 
for each breached healthcare record. A ransomware attack occurred in 2017 at an 
Arkansas provider whereby 128,000 patient data were breached. Universal Health 
Services, Inc. faces losses of $67 million after a cyberattack in September 2020. This 
UHS attack was one of the most highly publicised cyber incidents in 2020. The U.S. 
Department of Health and Human Services (HHS) Office for Civil Rights have pub-
lished statistics for U.S. healthcare data breaches occurring in 2021, which is shown 
in Table 13.1.

In the healthcare industry, various stockholders are patients, doctors, insurance 
companies, pathology laboratories, governing bodies, etc. As healthcare data is used 
often by all stakeholders, confidentiality and integrity of this data should be pro-
tected from unofficial access attempts from inside networks, as well as from external 
attackers. For example, being one of the stakeholders, insurance companies need 
access to patients’ data to analyse it and provide services accordingly, but unfortu-
nately, it is observed that often this data gets altered and leaked by companies [15]. 

FIGURE 13.5 Different types of sensor data [10].
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FIGURE 13.6 Different types of healthcare breaches [11].

TABLE 13.1
U.S. Healthcare Data Breaches Reported to the U.S. Department of 
Health and Human Services (HHS) Office for Civil Rights in 2021 [14]

Name of Organisation and U.S. State Number of Affected Records

Oregon Anesthesiology Group PC, Oregon 750,500

UF Health Central Florida, Florida 700,981

Sea Mar Community Health Centers, Washington 688,000

Wolfe Clinic, PC, Lowa 527,378

Health Net of California, California 523,709

Thus, it is necessary to maintain trust during exchange of EHRs among all stake-
holders. Though providing security and privacy to healthcare data is a very crucial 
and challenging task, it must be guaranteed. According to [16], to store and transfer 
data in such a way that its integrity, validity, and authenticity must be assured is 
called data security, and when only authorised users can access data, it is said that 
data privacy is maintained.

Though IoMT has the capability to connect billions of devices concurrently, 
due to which smart healthcare systems can deliver real-time service, developing a 
common security standard for these IoMT devices is quite challenging due to their 
heterogeneous nature. Even if IoMT has unlimited benefits, there are many issues 
like scalability, security, and privacy that should be taken into consideration. As 
we know, the traditional cloud-centric IoMT healthcare systems follow centralised 
client/server models and depend on the cloud to get personal health data and other 
medical services. In any server/client model, if the server goes down, the entire sys-
tem goes down—which leads to single-point failure; also, the centralised model can 
be exposed to data manipulation.

Therefore, blockchain technology can be the solution for moving IoMT systems 
into distributed systems which will preserve definite trust during exchange of EHR 
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among all stakeholders, secure data from misuse, and make this data available at a 
single click for emergency use which requires seamless access, transaction, and stor-
age management.

13.2  OVERVIEW OF BLOCKCHAIN TECHNOLOGY: 
ANALYSING ITS UNIQUE FEATURES

In [17], Satoshi Nakamoto, an anonymous person, introduces a concept of distributed 
and decentralised ledger technology for storing financial transactions called block-
chain technology. As the name suggests, blockchain represents chains of blocks and 
every block holds sets of transactions [18]. Some of the basic terminology that every 
learner should know follows.

Node: Every computer in network is called a node.
Ledger: Data exchange between nodes are called transactions; a ledger is a 

registry where all transactions are stored.
Hash Function: To prevent unauthorised access, the concept of hashing is 

used. Hash functions accept input (i.e., data which can be numeric, alpha-
betic, character-based, or media files) and convert into fixed-length output. 
Output generated using hash function is called as hash. Hashes can be 32-bit, 
64-bit, 128-bit, or 256-bit. Various hashing algorithms are used to compute 
hash function; SHA256 is most popular in blockchain implementation.

Depending on which blockchain platform is being used, the number of transac-
tions per block varies. To validate each transaction, blockchain uses the concept of 
distributed systems. Miners in the network verify every transaction, and then trans-
action gets store into distributed ledger.

Once a transaction gets stored into the blockchain ledger, it is difficult to roll back 
or delete a block and transaction. Each transaction is signed with a private key and 
then can be further verified with a public key. Every block is encrypted using crypto-
graphic hash function. Blockchain technology further permits dispersed preservation 
of encrypted data [19]. Table 13.2 shows characteristics of blockchain technology, 
and Figure 13.7 shows structure of blockchain [20].

As per the requirements of application, blockchain can be considered as public, 
consortium, or private blockchain. Table 13.3 shows comparison of various kinds of 
blockchain based on different characteristics.

13.2.1 bLoCkChain evoLution

Blockchain generation varies from Blockchain 1.0 to Blockchain 3.0. A distributed, 
peer-to-peer (P2P) ledger technology which was proposed by Santoshi Nakamoto 
and used for financial transactions is considered Blockchain 1.0. Due to the features 
of blockchain, it has attracted many researchers and has been explored in many com-
mercial applications. Newer concepts that were introduced in Blockchain 2.0 resulted 
in the smart contract.
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Smart contracts are just like conventional paper-based contracts. A smart con-
tract is nothing but a computer program written using computer language and 
executed automatically when some conditions are met. It does not require any 
involvement of any third party. Smart contracts can control privileges to access 
data and define what type of data exchange is possible among various parties. The 
advantage of using smart contract is that it reduces the cost required to sign, exe-
cute, and monitor contracts. It also improves the security of transactions. Ethereum 
is a popular example of Blockchain 2.0. To write a smart contract, solidity lan-
guage is used [22, 23].

TABLE 13.2
Characteristics of Blockchain Technology [21]

Blockchain Characteristics Description

Decentralised Third parties do not have access to any transactions. A local copy of 
data is maintained on each node in the network; therefore, even if any 
node goes down, this does not affect the remaining network and hence 
ensures robustness.

Secure All the blocks in blockchain are secured with cryptographic hash 
function.

Immutable No one can roll back or delete a transaction once it is stored in the 
blockchain.

Reliable Due to the decentralised nature of blockchain, failure of a node does not 
affect the remaining network and make the network less reliable.

Efficiency As there is no central authority to control any transaction, less 
processing time is required.

FIGURE 13.7 Structure of blockchain. Genesis block means the first block in a blockchain. 
Every block in blockchain is encrypted with cryptographic hash function. Every block holds 
a time stamp, set of transactions and hash calculated for the prior block. As the first block 
does not have hash of any block prior to it, hash of previous block will be considered as null 
and shows as {}.
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The advanced version of Blockchain 2.0 is called Blockchain 3.0, which places 
emphasis on providing solutions and services for non-financial applications.

13.2.2 hoW doeS bLoCkChain Work?

Whenever any transaction is wished to be added into blockchain, the validity of that trans-
action gets checked by dissimilar nodes of networks and only valid blocks get added into 
blockchain. Steps to add block or transaction into blockchain are shown in Figure 13.8.

The process by which this validation is checked is called consensus mecha-
nism. During consensus mechanism, various nodes execute algorithms to check  
the signature of blocks and only authenticated blocks are allowed to be added to the 
blockchain. Miners are nodes which participate in consensus mechanisms, with the 
process of execution known as mining. There are various popular consensus mecha-
nism like proof of work (PoW), proof of stake (PoS) and practical Byzantine fault 
tolerance (PBFT). Table 13.4 [24] explains comparison of these mechanisms.

13.2.3 bLoCkChain pLatforMS

Bitcoin, Hyperledger Fabric, and Ethereum are the most popular blockchain plat-
forms. Throughout a literature survey, it is noticed that most of the systems are 
designed or proposed either using Ethereum or Hyperledger Fabric as blockchain 
platform. Table 13.5 shows a comparison of these two popular blockchain platforms. 
In addition to these platforms, a few more blockchain tools are also available on the 
market; two of them are described in what follows.

IOTA [26]: It is cryptocurrency designed by IOTA foundation in Germany. 
Its architecture is known as IOTA tangle, which is specially designed for 
IoT applications. IOTA tangle is public blockchain. It does not have chain, 

TABLE 13.3
Comparison between Types of Blockchain [21]

Characteristics Public Blockchain Consortium
Blockchain

Private
Blockchain

Participation Anyone can participate Selected multiple participants/
organisations

Only one organisation

Read Permission Public Public or restricted Public or restricted

Immutability No one can not alter it Can be altered Can be altered

Efficiency Low High High

Centrality No central authority is 
required

Partially centralised Centralised

Participation Permissionless Permissioned Permissioned

Transactions per 
Second

3–20 data writes per 
second

1,000 data writes per second 1,000 data writes per 
second
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block, or minors; instead it uses a concept of directed acyclic graph to store 
transactions. PoW is used for consensus.

MultiChain [27]: It is a private permissioned blockchain. It can be used as 
platform to create and deploy private blockchain between different organ-
isations. It uses API to add data. It does not support smart contract imple-
mentation [28]

FIGURE 13.8 Working of blockchain.

TABLE 13.4
Consensus Used in Blockchain Technology

Property PoW PoS PBFT

Node Management Open Open Permissioned

Merits Provides a secure 
network

Energy consumption is 
less compared to PoW; 
processing of 
transactions is faster

Noteworthy energy usage 
reduction compared to 
PoW and PoS; transactions 
can be made without need 
for confirmation

Demerits It is expensive as it 
requires high 
processing power; 
electricity consumption 
is very high

It is less secure than 
PoW

Due to large communication 
overhead between nodes, it 
works with small 
consensus group sizes; 
vulnerable to Sybil attacks

Example Bitcoin [17] Ethereum Hyperledger Fabric [25]
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13.3 BENEFITS OF INTEGRATING BLOCKCHAIN WITH IoMT

Integration of IoMT with blockchain may have many benefits. Some of them are 
explained in what follows.

Decentralisation: As mentioned above, miners in blockchain verify the trans-
actions and check their validity and then add the transaction into a distrib-
uted ledger, and therefore, no central authority has control over the huge 
amount of data generated by IoT devices. The decentralised nature of block-
chain reduces the cost of installation and maintenance of centralised data 
storage like cloud. It also eliminates centralised traffic flow, thereby avoid 
single points of failure associated with it.

Security: IoMT with various heterogeneous devices requires a secured network 
for untrusted parties, and blockchain can provide it. Hackers are required to 
hack additional levels of encryption to get access for stored IoMT data. It is 
impossible to alter the existing data [29].

Anonymity: To process the transactions, miners in network use public address. 
Its own identity is kept private, i.e., you will get the address of a person but 
cannot identify with whom who are interacting. Such an environment is 
suitable for most IoMT applications when user identity needs to be kept 
private [30, 31].

Digital Trust: The healthcare domain always attracts cybercriminal, and data 
generated by IoMT wearable devices contain very personal and sensitive 
information about an individual. According to [32], 63.0% of people use 
online platforms for medical emergencies; out of these, only 62.4% trust 
their doctors or caretakers for sharing their data. All the stockholders in the 
healthcare domain want trust among themselves [33]. According to [34], 
security, identifiability, and traceability are the factors that must be main-
tained to achieve digital trust. Digital trust among stakeholders can provide 
better analysis of data and can also resolve issues of interoperability, i.e., 
collaboration of data among various organisations for research and other 
purposes [10].

In addition to this, blockchain with IoMT provides peer-to-peer messaging and 
file distribution between IoT devices without central authority.

13.4  CHALLENGES FOR INTEGRATING BLOCKCHAIN  
WITH IoMT

Integration of blockchain with IoMT can have many advantages; however, block-
chain technology has its own limitations and challenges. Some of them are men-
tioned in what follows [35, 36].

Scalability: IoMT networks contain large numbers of nodes. During block-
chain implementation, every block is broadcast and verified by all miners; 
this leads to scalability issues, as it increases broadcast traffic and processing 
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overhead as most of the IoT devices have limited bandwidth—this related 
overhead cannot be traced [37]. In addition to this, blockchain technology 
requires extremely high computation power which in turn requires higher 
consumption of electricity and it is not necessary that all stakeholders with 
multiple users are capable of maintaining decentralised blockchain archi-
tecture [10].

Storage: As mentioned earlier, IoMT devices produce mammoth amounts of 
data which need to be processed and stored in blockchain in such a way that 
integrity of this data can be maintained, which is major challenge. In block-
chain technology, all nodes maintain a local copy of data which is impos-
sible by IoMT devices due to their low computational resources and limited 
storage capacities [38]. Santoshi Nakamoto [17] proposed blockchain tech-
nology for financial transactions whereby the size of every transaction was 
small. Storing large files on-chain is expensive and increases processing 
speed. In addition, blockchain cannot store abstract data type data like MRI 
and X-ray images—and hence, scalability and storage issues of blockchain 
must be taken care to make blockchain more popular [39].

Selection of Consensus Algorithms: Selection of consensus algorithms in 
blockchain for IoMT is quite a challenging task, as consensus mechanisms 
utilise major resources of participating nodes while the majority of IoMT 
devices have restricted resources. Table 13.5 shows a comparative study of 
different consensus mechanisms [37].

Processing: Every IoMT device has different computing power. Some are not 
even able to run cryptographic algorithms at the same speed; on the other 
hand, processes of mining and cryptography in blockchain require more 
processing power and time, which can be difficult to manage by resource-
constrained IoMT devices [30, 38].

Real Time: Most IoMT applications need immediate and real-time response, 
whereas creation of blocks in blockchain is a time-consuming task. Different 
blockchain platforms take different block creation times. for example, in 
Bitcoin blockchain platform [17], block size is 1 MB, and a block is created 
every ten minutes, whereas in Ethereum, platform expected block time is 

TABLE 13.5
Comparison between Ethereum and Hyperledger

Characteristics Ethereum Hyperledger

Governance Ethereum Developer Linux –Foundation

Type of Platform Public, permission less Permissioned

Scalability Difficult to scale Easy to scale

Consensus Algorithm PoW, PoS PBFT, no-consensus

Currency Used Ether No currency required

Programming Language to Write Smart 
Contract

Solidity Go language, Java, Java Script
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10–19 minutes; therefore, selecting the proper blockchain platform is espe-
cially important—and to assemble all these data on blocks as per the real-
time expectations is really a big challenge.

Lack of Skills: As blockchain is recent technology, very few people have 
enough knowledge and skill about it. In blockchain with IoMT, IoT devices 
are used everywhere along with blockchain; hence, implementation of this 
concept is possible only if people are aware about this technology or at least 
eager to know about it [30].

13.4.1  SoLution to handLe MediCaL big data: off-Chain  
Storage and ipfS

Off-Chain Storage: IoMT generates huge volumes of data, also called Big 
Data. Blockchain technology was developed to handle financial transactions, 
which are small in size. Due to the distributed nature of blockchain, storage 
of large volumes of data on blockchain slows down the processing speed 
and initiates scalability issues [40]. In addition to this, blockchain is not able 
to hold abstract data types, and medical records like X-ray and MRI images 
cannot be stored on blockchain. Due to the immutable nature of blockchain, 
no one can delete transactions even if this feature is not required [41]. For 
example, after getting readings from wearable devices, doctors provide 
proper lines of treatment and patients are cured. This reading needs not to 
be stored perpetually, but due to blockchain’s immutable nature, no one can 
delete this information. So, to overcome this issue, Deloitte software has 
proposed the concept of off-chain storage [39]. Instead of storing everything 
on-chain, store only standardised data on-chain and maintain the remain-
ing data off-chain in a separate database; encrypt it with any cryptographic 
algorithms and links associated with that data must be store din blockchain. 
Advantages of using off-chain storage are as follows.
• Medical data of any size and any format can be stored.
• To achieve interoperability, it is necessary to provide access to restrict 

data—and this can be achieved through off-chain storage.
• Interoperable blockchain can improve data integrity and protect the digi-

tal identities of patients.
InterPlanetary File System (IPFS) [42]: Different authors have used vari-

ous forms of off-chain storage like traditional databases, central servers, 
cloud, etc. Few authors have used IPFS for data storage. IPFS is designed 
as protocol to store and access files, various applications, and data in a dis-
tributed manner [43]. Whenever any file is stored in IPFS, it is encrypted 
with cryptographic hash function and can be accessed with help of hash 
only [44]. Advantages of IPFS over traditional centralised storage sys-
tems is that it is a distributed, P2P, content-based file system. Basic dif-
ference in centralised storage system and IPFS is that whenever any file 
is uploaded on centralised storage, the node which uploads file will be 
provider and other nodes can access that file; whereas in IPFS, all nodes 
will perform as content providers and even if the original provider fails, 
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one can access the data. Figure 13.9 and Figure 13.10 explain the concepts 
of centralised storage and IPFS more clearly.

13.5  RELATED STUDIES: BLOCKCHAIN-BASED  
APPROACHES IN IoMT

Many researchers are working hard and contributing their efforts to develop a perfect 
blockchain-based solution for healthcare service. This section describes research that 
is either proposed or implemented blockchain for IoMT.

FIGURE 13.10 IPFS.

FIGURE 13.9 Centralised storage.
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In [15], the author has used two blockchains; one blockchain is used to store data 
gathered due to wearable devices, and EMRs are stored in the second blockchain. 
Machine learning algorithms are used for analysis of collected data and a report of 
analysis was sent to a doctor to take immediate action. PoS consensus mechanism is 
used in this proposal.

In [45], authors have formed a cluster of miners, and instead of storing patients’ 
data on each node, data will be stored in each cluster; this will help in data reduc-
tion and restrict the participation of all of miners during consensus. Also, to achieve 
scalability, a central server is used to store collected data and hash of it is stored on-
chain. To increase security and efficiency of the network and to reduce network costs, 
PBFT mechanism is used for consensus.

In [28], a Hyperledger Fabric–based system is proposed for patients’ remote 
healthcare monitoring with the use of two blockchain. The first blockchain is named 
as “medical device blockchain” and is used to store data produces by wearable 
devices—chain code is considered part of this blockchain only. The second block-
chain is named as “consultation blockchain” and it is used to maintain all the history 
of the patients records permanently. This blockchain also helps for interoperability 
of records.

In [46], the author proposed an Ethereum-based architecture to monitor diabetes 
patients remotely. Smart contracts are used to grant access to authenticated users.

In [47, 48], the author proposed a private Ethereum-based blockchain which 
is used for managing medical data using smart contracts. To manage access con-
trol mechanisms among various participants, Ethereum smart contracts are used. 
In this system, medical records are encrypted using cryptographic hash function 
and stored on an external server. Hash associated with medical record is saved on 
blockchain.

In [49], the author has used the concept of edge nodes and blockchain to provide 
attribute-based access control to electronic health data. To note the genuine access 
events and to execute smart contracts, concepts of blockchain are used. Edge nodes 
are used to store electronic health data. Hyperledger Fabric composer is used as a 
blockchain platform. XACML polity is used in this research.

In [50], the author mentioned that integration of IoT and blockchain is possible 
only if scalability issues for ledger and transaction execution rate in blockchain are 
handled properly. To restrict the number of transactions entering blockchain, use of 
a local peer network is proposed. In this proposal, Hyperledger Fabric framework is 
used.

In [51], the author introduces the concept of a centralised manager and overlay 
in lightweight scalable blockchain. In this proposal, centralised manager is used 
to handle the blockchain and store all transactions locally. It integrates various 
optimisation techniques which include different algorithms which ensure that this 
proposal is resistant against 12 various cyber security attacks; however, how to 
handle issue of scalability and storage at advanced levels are not mentioned in this 
research.

In [52], the author proposed an optimised, lightweight blockchain-base frame-
work with the name BIoMT. Implementation or evaluation of this proposal is not 
mentioned in this research, which consists of the following four levels.
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Device Layer: This layer consists of all medical devices which are used to 
collect healthcare data like sensors, wearable devices, etc. Elliptic curve 
cryptography is used at this layer for providing data privacy.

Facility Layer: Facility layer is used for managing IoMT devices and the con-
cept of bolster is used in this layer. A bolster is used as gateway which pro-
vides unique identity to devices based on their attributes.

Cloud Layer: This layer provides storage support. It gathers the data and forms 
an identical block. The user can request data by providing block number and 
hash of the block, which is known to authenticated users only.

Cluster Layer: Various medical facilities, cloud servers, and service provider 
are grouped together and form a cluster. Every cluster has one cluster head 
who communicates with other cluster heads; this will decrease the network 
overhead and delay, and it forms a distributed network that relates to block-
chain. In this proposal, data is encrypted before storing it onto the cloud, 
and hash associate with it is placed on blockchain.

In [3], EMRs are uploaded by healthcare provider and data is uploaded on 
blockchain. PoW is used as consensus mechanism. All data is stored on-chain, 
and hence may face issues of scalability, which is considered as future implemen-
tation task by the authors. As everything is stored on-chain, it will increase bur-
den to broadcast traffic and processing overhead, which are not discussed. Also, 
there are many disadvantages of using PoW, like energy consumption, which are 
not mentioned

In [53], authors have implemented an IoMT cloud-based framework which is used 
to monitor the progress of a neurological disorder. Wearable sensors are used to 
collect the data. The cloud is used as off-chain storage, and generated data is stored 
in encrypted format in the cloud. Ethereum smart contracts are used to share data 
among various parties, and a mobile application is developed to access data stored 
in the cloud. However, technical details regarding deployment of blockchain on 
Amazon Cloud was not clearly stated.

Tables 13.6 and 13.7 show the comparative studies of various existing systems.

13.6  RESEARCH GAPS IN INTEGRATION OF BLOCKCHAIN  
IN IoMT

This literature survey shows that there are significant research gaps that need to be 
addressed to integrate blockchain with IoMT successfully. A few prominent gaps are 
mentioned in what follows.

 1. Not a single framework has focused on data retention [55]; i.e., how long 
the patient’s records are stored. For example, In Australia, adults’ records 
are maintained for at least seven years after record generation, whereas for 
minors, medical records are maintained until their age of 25 [56].

 2. Most of the proposed models are patient-centric, which means patients have 
full access to and control of their data, but a limitation of such systems is 
that many patients are neither computer experts nor aware of what type of 
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TABLE 13.6
Analysis of Various Existing Systems

Research ID [15] [54] [45] [28]

Access Control
(Role Based/
Attribute-Based)

Patient-centric; 
others can view

Both Yes, but completely 
patient-centric

Yes

Interoperability Partial
(within
boundary)

Yes
(using FHIR)

No Yes

Integrity Yes Yes Yes Yes

Data Provenance Yes Yes Yes Yes

Scalability Yes Yes Yes Yes

Database Used
(On-Chain or 
Off-chain Data)

Cloud SQL Lite Central
server

Remote database 
and on-chain data

Consensus 
Mechanism

PoS PoW (Ether is 
required)

PBFT PBFT

Data Collection Wearable device and 
EMR

EMR Wearable
devices

Manual and 
wearable device

information should be shared with whom and when it should be shared, 
which may result in inefficient healthcare services [55, 57].

 3. IoT and blockchain are the leading domains. Integration of these technolo-
gies has attracted many researchers. Researchers have proposed various 
solutions for adopting blockchain in IoMT; however, most of the existing 
research do not mention technical details thoroughly [38, 59].

TABLE 13.7
Analysis of Various Already Existing Systems

Paper ID [46] [47] [49]

Access Control  
(Role-Based/Attribute-Based)

Yes Yes Attribute-based
access control

Interoperability Yes Yes Within institutional 
boundaries

Integrity Yes Yes Yes

Data Provenance Yes Yes Yes

Scalability Yes Yes Yes

Database Used  
(On-Chain or Off-Chain Data)

Cloud Local database Edge node

Blockchain Platform used Ethereum blockchain Ethereum blockchain Hyperledger Fabrics

Data Collection Wearable devices Manual (EHR) Sensors are used
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 4. Many researchers are storing basic information of individual on-chain, 
which will be immutable in blockchain; however, according to Article 17 
Section  2 of the European Union’s General Data Protection Regulation 
(GDPR), individual personal information should be mutable. Therefore, 
there is a need to obtain consent before storing and analysing any confiden-
tial data of individuals. With proper smart contracts, this problem can be 
resolved, but very few authors have taken care about addressing this [10].

 5. Interoperability in the healthcare domain means that healthcare data should 
be shared among various stakeholders for analysis and research within and 
across institutional boundaries, but it is challenging to attain interopera-
bility due the complexities of data [60]. Many researchers claim that they 
have handled issues of interoperability; however, to what extend this data is 
shared is not mentioned anywhere.

13.7 CONCLUSION

This chapter first describes the working of cloud-based IoMT systems and focuses 
on their main limitation: i.e., single-point failure, security, and privacy of generated 
data. It then explains why there is a need for blockchain technology and elaborates 
basic concepts required to understand blockchain technology and features of block-
chain technology that can overcome limitations of cloud-based IoMT. Further, this 
chapter focuses on benefits of integrating blockchain to IoMT. This chapter has 
provided challenges that should be addressed to achieve successful integration of 
blockchain with IoMT. To resolve scalability issues, on-chain and off-chain stor-
age, along with a distributed file system (IPFS), is also discussed. In addition to this 
existing literature, applications have been reviewed—and after comparing and ana-
lysing, research gaps have been identified and mentioned in the chapter. During the 
literature survey, it is observed that security of healthcare data is the only concern 
that is taken into consideration by most of the researchers while adopting blockchain 
with IoMT. Many the researchers focus on providing privacy, integrity, and confi-
dentiality to healthcare data. There can be various areas in the healthcare domain 
where IoMT—along with blockchain—can be used, but the majority of researchers 
have given preference only to implementing remote patient monitoring. Very few 
researchers have taken efforts to resolve issues of scalability and interoperability. 
Comparison of implemented or proposed systems with already existing systems is 
hardly mentioned in any research.

To summarise, this chapter gives extensive views on the current position of ongo-
ing research, and by identifying research gaps, it provides prominent direction for 
integrating blockchain with IoMT.
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