
Edgar J. Treischl
Practice R

Edgar J. Treischl

Practice R

An interactive textbook

Author
Dr. Edgar J. Treischl
Researcher at the Chair of Empirical Economic Sociology
School of Business and Economics
Friedrich-Alexander-University Erlangen-Nuremberg
Findelgasse 7/9
90402 Nuremberg
Germany

ISBN 978-3-11-070496-9
e-ISBN (PDF) 978-3-11-070497-6
e-ISBN (EPUB) 978-3-11-070508-9

Library of Congress Control Number: 2022949290

Bibliographic information published by the Deutsche Nationalbibliothek
The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data are available on the internet at http://dnb.dnb.de.

© 2023 Walter de Gruyter GmbH, Berlin/Boston
Cover image: StudioM1 / iStock / Getty Images Plus
Printing and binding: CPI books GmbH, Leck

www.degruyter.com

Supplementary material

Practice R is a textbook for the social sciences. The corresponding R package Practi-
ceR gives access to the book’s tutorials, provides further materials, and templates to
help the reader learn R (see Chapter 2).

For more information, please scan the QR code or visit the PracticeR website:
https://edgar-treischl.github.io/PracticeR/

Contents
List of figures| IX

Part I: The first steps

1 Introduction| 3

2 First steps in R| 10
2.1 Introducing R and RStudio| 10
2.2 Base R| 23
2.3 Data types and structures| 30

3 Data exploration| 43
3.1 Categorical variables| 44
3.2 Continuous variables| 53
3.3 Explore effects| 60

4 Data manipulation| 69
4.1 The five key functions of dplyr| 70
4.2 Data manipulation with dplyr| 80
4.3 Workflow| 95

Part II: The basics

5 Prepare data| 111
5.1 Data import and export| 112
5.2 Missing data| 136
5.3 Categorical variables| 147

6 Analyze data| 154
6.1 Linear regression analysis| 155
6.2 Develop a linear regression model| 162
6.3 Visualization techniques| 179

7 Visualize research findings| 193
7.1 The basics of ggplot2| 195
7.2 The applied grammar of graphics| 215
7.3 Extensions of ggplot2| 236

VIII | Contents

8 Communicate research findings| 248
8.1 The basics of rmarkdown| 249
8.2 Create a document| 255
8.3 Create a template| 261

Part III: Beyond the basics

9 GitHub| 277
9.1 The Git(Hub) basics| 278
9.2 Install Git| 281
9.3 GitHub and RStudio| 284

10 Automate work| 292
10.1 Reports| 293
10.2 Text| 306
10.3 Emails| 313

11 Collect data| 324
11.1 PDF files| 325
11.2 Web scraping| 342
11.3 APIs| 353

12 Next steps| 363

Session info| 376

Bibliography| 378

Index| 384

List of figures
Fig. 1.1 Example tutorial| 4
Fig. 1.2 Gapminder bubble chart| 8

Fig. 2.1 The R console| 11
Fig. 2.2 Panes of RStudio| 13
Fig. 2.3 Auto-completion in RStudio| 14
Fig. 2.4 The Files pane| 16
Fig. 2.5 The Plots pane| 17
Fig. 2.6 The Tutorial pane| 20

Fig. 3.1 Pie chart vs Pac-Man| 48
Fig. 3.2 Pie chart pitfalls| 49
Fig. 3.3 Illustration of a box plot| 58

Fig. 4.1 The five dplyr functions| 70
Fig. 4.2 Structure of an R script| 100
Fig. 4.3 Section menu in RStudio| 101
Fig. 4.4 Snippet preview| 107

Fig. 5.1 Data import window| 113
Fig. 5.2 Long (A) and wide (B) data| 125
Fig. 5.3 Mutating joins| 131
Fig. 5.4 Full join (A) and inner join (B)| 131
Fig. 5.5 Left join (A) and right join (B)| 132
Fig. 5.6 The mechanisms of missing values| 139
Fig. 5.7 The naniar package| 147

Fig. 6.1 Linear association| 156
Fig. 6.2 Explained and unexplained variance| 160
Fig. 6.3 Anscombe’s quartet| 162
Fig. 6.4 Power analysis| 167
Fig. 6.5 Simpson’s paradox| 169
Fig. 6.6 The Datasaurus| 180
Fig. 6.7 Regression diagnostics overview| 182

Fig. 7.1 Global common era temperature reconstruction| 193
Fig. 7.2 Scatter plot example| 195
Fig. 7.3 Standard themes| 199
Fig. 7.4 Shape types in R| 205
Fig. 7.5 ColorBrewer palettes| 208
Fig. 7.6 The esquisse addin| 214
Fig. 7.7 The Export menu| 214
Fig. 7.8 Geoms for continuous variables| 219

Fig. 8.1 Create a new R Markdown document| 250

https://doi.org/10.1515/9783110704976-201

X | List of figures

Fig. 8.2 Render a document| 251
Fig. 8.3 The structure of an R Markdown document| 252
Fig. 8.4 The visual markdown editing mode| 256
Fig. 8.5 Menu of the visual markdown editing mode| 256

Fig. 9.1 GitHub code changes| 277
Fig. 9.2 GitHub Desktop| 284
Fig. 9.3 Create a GitHub repository| 285
Fig. 9.4 GitHub quick setup| 286
Fig. 9.5 Clone repository| 287
Fig. 9.6 Git pane| 288
Fig. 9.7 Push with the Git pane| 288
Fig. 9.8 Track changes of code| 291

Fig. 10.1 Interactive interface to knit documents| 300
Fig. 10.2 An automated scatter plot| 309
Fig. 10.3 Preview of an email| 313
Fig. 10.4 Preview of an improved email| 317
Fig. 10.5 The cronR package| 322

Fig. 11.1 Preview regular expressions| 329
Fig. 11.2 Firefox’s developer mode| 345
Fig. 11.3 The GitHub API| 355
Fig. 11.4 The plumber API| 361

Fig. 12.1 The shiny app| 373

|
Part I: The first steps

1 Introduction
R is a programming language and a powerful tool to analyze data, but R has a lotmore to
offer than statistics. To mention just a few options, R has many capabilities to visualize
data, to collect data (e.g., from a website), or even to create interactive dashboards.
From this perspective it is nowonder why R has a huge fan base. Unfortunately, learning
R can be though. People who struggle may say that the data handling is complicated,
some complain that R lacks a graphical interface, and probably all agree that beginners
face a rather steep learning curve. Regardless of our perception, the best way to learn R
is by means of practice. For this reason, this book introduces R, focuses on the most
important steps for applied empirical research, and explains how to use R in practice.
After reading and working on the materials in this book, you will be able to prepare
and analyze data, make visualizations, and communicate key research insights.

Who should read this book? Overall, the book introduces R and is written for
people with no prior knowledge about it. However, Practice R is a textbook for the
social sciences, and it is assumed that the reader has prior knowledge in statistics
and quantitative methods. Practice R might not be the first choice if you have yet to
learn what a standard deviation, Pearson’s r, or a t-test is. The same applies for topics of
quantitative empirical research. I presume that the reader has knowledge about research
designs, is familiar with the difference between cross-sectional and longitudinal data,
and other aspects that intermingle with statistics, seeing that quantitative methods are
a substantial part of the social science curriculum. Of course, this does not mean that
only (social science) students can profit from reading the book. A diverse audience –
holding the assumed prior knowledge – may use Practice R to become a proficient R
user.

To support you, the book is accompanied by an R package. An R package is a
software add-on and extends the capabilities of R. In our case, the PracticeR package
gives you access to tutorials to practice the discussed content, it provides the code of this
book, and also further materials (e.g., a template to create reports) that are supposed to
boost your skills. We will learn how to install R packages in the next chapter, but keep
in mind that all materials of the book become available once the PracticeR package is
installed.

Let me outline the idea of the tutorials and how they are related to the content
of the book. The tutorials summarize the content and aim to familiarize you with the
core concepts. The interactive tutorials are integrated in R and run on your computer.
By clicking on the Run button, R code will be executed, and the tutorial shows the
results. Don’t mind if something goes wrong, you can reload and start over at the click
of a button. As an illustration, Figure 1.1 shows a screenshot of the Basics of Data
Manipulation (Chapter 4) tutorial. It summarizes how to filter, arrange, and select data.
Irrespective of the topic, each tutorial probes you to apply the discussed content. The
exercises in the tutorials aim to increase your coding skills and they are ordered as-

https://doi.org/10.1515/9783110704976-001

4 | 1 Introduction

Fig. 1.1: Example tutorial

cendingly by difficulty. Sometimes I’ll ask you to adjust the R code, which gives you a
better understanding of how the code works. In most instances I will challenge you
with typical data analyzing problems. In the more advanced steps, you are supposed
to transfer the discussed content to a similar or a new concept. Don’t worry, hints are
provided to solve the exercises and the tutorials include the solutions. Now that the
scope is set, we can divulge the content of Practice R.

The content

Part I lays the foundation and outlines the first steps to work with R:
– Chapter 2 introduces R and RStudio, which is an integrated development environ-

ment to work with R. The chapter contains the most important steps to understand
how R behaves and outlines in depth how RStudio substantially helps us to in-
crease our R skills. We install both software packages and we discover some of
the cool features of RStudio. Next, I give a concise introduction of base R – the
programming language – which is essential for subsequent steps. Moreover, the
chapter makes you familiar with data types and structures.

– In Chapter 3 we start to explore data. We examine variables, we calculate and visu-
alize descriptive statistics, and we explore how variables are related. We estimate
the correlation between two variables, visualize the effect, and interpret the effect
size. Data exploration is crucial when we start to work with data. For this reason,
this chapter also highlights packages and ways to get a quick overview of new
and unfamiliar data. For example, some packages implement graphs to examine
several variables at once; others can generate a PDF report with summary statistics

1 Introduction | 5

for all variables of a particular data set. Thus, we explore variables, and we get in
touch with packages that help us to discover unfamiliar data.

– Chapter 4 focuses on data manipulation steps and introduces the dplyr package
(Wickham, François, et al., 2022). The latter is the Swiss pocketknife for manipu-
lating data. I introduce the main functions of the package and we will focus on
typical steps to prepare data for an analysis. Before we can dive into this topic
in the second part, we should take one step back. The last part of this chapter
highlights strategies to increase the workflow and, consequently, the efficiency of
our work. For example, you may wonder how much R code you need to remember
to become an efficient R user. The last section outlines in detail why there is no
need to memorize code and introduces strategies to handle (complicated) code.

Part II introduces the basics to analyze data, visualize results, and create reports:
– Chapter 5 outlines the data preparation steps required beforewe can start to analyze

data. We learn how to import data and how to cope with problems that may occur.
Depending on the data, the import step may induce errors, but the same may apply
during the data cleaning steps, and we should consider the concerns of missing
(and implausible) values. Finally, I introduce the main functions from the forcats
package (Wickham, 2022a). The package is made for categorical variables and is a
good supplement to our data manipulation skills since categorical variables are
often used in social sciences.

– We analyze data in Chapter 6. There is a broad range of possibilities to analyze data
with R, however, we apply a linear regression analysis, because it is the workhorse
of social science research. First, I give an non-technical introduction for people
with a different educational background. Next, we run an example analysis that
we will improve step by step. We learn how to develop the model, we examine
interaction effects, and we compare the performance of the estimated models. To
compare models and to examine the assumption of a linear regression analysis,
we also focus on visualization techniques.

– To visualize research findings, Chapter 7 concentrates on the ggplot2 package
(Wickham, Chang, et al., 2022). The package can be quite demanding in the begin-
ning, but wewill learn that creating a graphwithoutmuch customization is far from
rocket science. We first focus on typical steps to create and adjust a graph (e.g., ad-
just a title). Next, we increase the theoretical knowledge by exploring how ggplot2

works behind the curtain. Ultimately, there are a lot of packages that extend the
possibilities of ggplot2. The last section highlights some of these possibilities.

– Chapter 8 focuses on reporting. After the analysis and the visualization step, we
need to summarize the findings in a document and the rmarkdown packagemakes it
possible to create text documents with R (Allaire, Xie, McPherson, et al., 2022). An
rmarkdown file contains text, graphs, or tables, just like any other text document.
However, it is code-based and also contains output from R. Thus, we create tables
and graphs with R and include them in the rmarkdown document. Using code to

6 | 1 Introduction

create the report increases the reproducibility of the work andwe avoid introducing
errors, because we eliminated the need to transfer output from R into a word
processing software.

Part III completes the basics and focuses on topics that – at first glance – seem less
related to applied empirical research, but that will add to your skill set:
– Chapter 9 introduces Git, a version control system for code, and GitHub, a host for

Git-based projects. Think of Git/GitHub as a sort of cloud for code. Suppose you
changed a code, but you made a mistake. A version control system lets us travel
back in time to find out where the error occurred. GitHub marks changes of the
code and forces us to explain – in a fewwords – what happens to the code when we
make an update. GitHub has more advantages, but I guess the example makes clear
that a version control system is very valuable if you work with code on a regular
basis. Chapter 9 gives a short introduction, we learn the basics to send (receive)
code to (from) GitHub, and we connect RStudio with your GitHub account.

– Chapter 10 outlines the advantages of dynamic reports andhighlights thatwhenever
possible we are not supposed to repeat ourselves, instead we can automate the
boring manual stuff. Say we made a report with R, but the data for the report gets
an update. There is no need to manually re-estimate the results, re-create graphs,
or tables – create a dynamic report and let R recreate and update the document.
Chapter 10 introduces dynamic reports and discusses further steps to automate the
reporting process (e.g., to send reports automatically via email).

– Chapter 11 demonstrates that we can collect data with R. Consider you work with
a data set that lacks an important variable. Maybe you find this information on a
website or in a PDF report; or suppose you want to retrieve data from a social media
platform – your R skills help you in all those instances. The last chapter highlights
the possibilities of collecting data and underlines the main steps to retrieve data
from a PDF file, a website, and a web server.

– Finally, Chapter 12 outlines possible next steps and demonstrates that there are
many cool packages and features to discover. This chapter introduces topics, pack-
ages, and frameworks, that would otherwise not find a place in an introductory
book and we explore the next steps in connection to data preparation, analysis,
visualization, and reporting.

Practice R contains only a selection of the possibilities that R offers. Maybe you have to
prepare or analyze data, beyond what is covered in the book. Fortunately, R has a large
and helpful community and you can find a lot of information on the web. This book
introduces R and focuses on the main aspects of applied research, which is why I skip
some of the more sophisticated topics. Using info boxes, the book covers additional
topics and guidelines on where to find more information. Irrespective of the content,
Practice R was written with several guiding principles in mind.

1 Introduction | 7

Guiding principles

Practice R applies some rules or guiding principles that should help you to learn R.
Let’s outline a few things about the R code, the data, and learning strategies before we
start with the installation of R and RStudio.

In this book R code will be printed in the running text or via the console (#>). In the
running text, R code is typeset. Most of the time, R code and the output that the code
creates will be printed via the R console. For example, we can use R as a calculator. R
returns results via the console. Moreover, I add comments that describe what the code
does with a hash tag (#) :

Use R as a calculator:

1 + 2

#> [1] 3

R comes with a lot of implemented data sets for teaching purposes. I will use those and
toy data sets to introduce new concepts. Such data sets are clean and well prepared for
demonstrating how code works. For example, the next console displays a part of the
mtcars (Motor Trend Car Road Tests) data set. It contains fuel consumption (mpg) and
further design and performance variables about cars.

R comes with built-in data, for example, the mtcars data:

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

#> Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

I use such data because they are small and clean. Even though we might not be in-
terested in their content, they let us focus on how the code works, rather than what
each variable measures. The same applies to toy data sets – it’s fake data and just an
illustration of what the data may look like. More importantly, you must not download,
nor import a data set to apply the code. A toy data set also has advantages when it
comes to learning a new programming language. Toy data makes it possible to show
you how the data is generated, which establishes a deeper understanding of how data
needs to be prepared, and what the code actually does.

Toy data makes it easier to grasp the logic behind the code, but it will also help
you apply your skills to real data. Suppose you execute code, but R returns an error.

8 | 1 Introduction

Don’t get disappointed or frustrated, because we all make mistakes when we write code.
However, by using a toy data set first, you can be sure that the code does not contain
typos or other mistakes when it works. Unfortunately, you still have to figure out why
you get an error with the real data, but that’s a different story. Thus, we will often learn
the principles with clean data, but then you need to apply the knowledge to a real data
set.

Many R packages provide access to data. For example, do you know the Gapminder
project? To generate empirical insights about different areas of social life, theGapminder
project collected a broad data set and they created interactive graphs to visualize
their findings. Hans Rosling, Anna Rosling Rönnlund, and Ola Rosling initiated the
project, and they show us, for example, that income is associated with life expectancy
worldwide. The bubble charts from the Gapminder data are very famous to show this
association: the graphsdisplayhow life expectancy and income (gross domestic product
per capita) are related but differ between continents. Figure 1.2 shows the bubble chart
for the year 2007 that I made with the ggplot2 package.

Fig. 1.2: Gapminder bubble chart

Regardless of the bubble chart, the gapminder R package gives you access to the data
that I used for this graph. Or consider the PracticeR package. It contains data from the
General Social Science survey that we will prepare and analyze. In Chapter 4, I will
provide more information about the data and I introduce further data sources (e.g.,

1 Introduction | 9

European Social Survey). Thus, even though I use toy data to illustrate how code works,
there are many opportunities to apply and extend your R skills.

Finally, let me give you some advice regarding your R learning strategy. Try to
understand what the code does and how R “thinks”. At some point, code will get longer,
more complicated, and it will become harder to capture what is happening under the
hood. Please, do not feel intimidated – we will work on several strategies to work with
code, many R packages provide cheat sheets with the most important commands, and
you need not memorize code to create awesome things with R.Wewill circle back to this
point in Chapter 4, since in the beginning the R code will not be complicated. Maybe
one recommendation is already worth emphasizing: There is a simple solution to help
your future self understand what code does, add descriptive comments if you start to
write code.

I add comments for important steps

Do the same for your future self

Try to be explicit and outline what the code does

A last piece of personal advice: Play around with the code. The PracticeR package
gives you access to the code of each chapter. Please, do not just copy the code without
also applying and fooling around with it. Trust me, you will gain deeper insights if
you write code and apply the discussed concepts. For example, use a different data
set and rerun the discussed steps. Sometimes I will outline more than one solution
giving you an idea that there are always several ways to solve a problem. But what will
your document look like if you fooled around and tried a lot of things? The document
gets messy, and you may wish to have a clean version as a summary of the chapter. For
this reason, going beyond the convenience, I included the code of each chapter in the
PracticeR package.

There are more guiding principles. For example, all chapters are supposed to start
in a similar way. Before we dive into the topic of a chapter, I outline in more detail what
the section contains and highlight which data set and which packages are needed. But
before I can stick to this rule, we need to get in touch with R.

2 First steps in R
Learning R is a tough cookie. Most students in the social sciences have little program-
ming background, which is one of the reasons why some struggle to learn R. This book
will not cover how to program in detail, but introduces the basics of the R programming
language (base R). To this end, this chapter is your savior, yet also the dragon you must
slay in order to make the first substantial steps with R. Why is that?
– In Section 2.1, I show you how to install R and RStudio. This chapter will be a savior

because we work with RStudio, which is an integrated development environment
(IDE) for R. RStudio has many cool features that supports us to write code, get help,
or import files. This section outlines in detail its most important features: We learn
how to send code to R and we will examine the differences between R and RStudio
which will help you to learn and conquer R. We will take advantages of RStudio,
which is why I skipped some of the typical and sometimes complicated first steps
(e.g., to import data, see Chapter 5) when it comes to analyzing data. RStudio
simplifies such tasks, but unfortunately this does not mean that this chapter will
be a piece of cake, since you must defeat base R in order to progress.

– Section 2.2 will emphasize why knowledge about base R is useful to speed up the
learning curve. R is an object-oriented programming language and we need to
learn some of the core basics first. For example, we will create objects, we will
manipulate them, and we will write a simple function with R. Depending on your
prior experience, this might be the toughest section of the book, because learning
the core basics of R seems vaguely related to the typical steps of applied research.
The good news is, I try to cut this part down to its core, since I believe that learning
by practice is the most efficient way.

– In Section 2.3, we apply our baseR skills. I will outlinemore details about data types
and structures and we learn how to filter data. In the social sciences, we are often
interested in sub-groups and examine, for example, if there are any significant
differences between these groups. To prepare a subgroup analysis, we need to learn
how data can be sliced by applying our base R knowledge.

2.1 Introducing R and RStudio

R is an open-source software for Windows, Mac, and a variety of UNIX systems. Go
online and install the latest R distribution for your system with the installer from the R
Project website.

Download and install R:

https://www.r-project.org/

https://doi.org/10.1515/9783110704976-002

2.1 Introducing R and RStudio | 11

The comprehensive R archive network (CRAN) provides several servers to download
the installer. As outlined on their website, CRAN is “a network of ftp and web servers
around the world that store identical, up-to-date, versions of code and documentation
for R”. Choose one of the CRAN servers, but make sure to download an executable
installer which contains everything to start with. Execute the file, install R and, after
the installation is finished, go to the Windows Start Menu (or the application folder on
Mac) and open R. As Figure 2.1 displays, the R console opens and you can interact with
R if you insert code into the console after the prompt (>).

Fig. 2.1: The R console

Do me favor: Test if everything works by using R as a calculator. As Figure 2.1 also
illustrates, use your keyboard, type a mathematical equation into the console and press
enter. R solves the equation and returns the result via the console. Maybe this sounds
like a weird task, but it underlines that R has no graphical interface; R is a programming
language. As long aswe do not install any other software, we can only use the console to
work with R. The next console shows several examples of how to use R as a calculator.

Basic operations: +,-,*,/

5 * 5

#> [1] 25

Powers

3̂2

#> [1] 9

12 | 2 First steps in R

Square root

sqrt(16)

#> [1] 4

Natural logarithm

log(1)

#> [1] 0

Exponential function

exp(1)

#> [1] 2.718282

We apply functions to work with R in the same way as we apply exponential or other
mathematical functions. To give you another prominent example, use the print()

function and let R print the text string “Hello World”. Do not forget the parentheses of
the function and the quotationmarks around the text string (“Hello World”). Otherwise,
R does not know which words it should print.

Let R talk

print("Hello world")

#> [1] "Hello world"

Perhaps you are wondering why you should examine such code? It demonstrates
the differences between R and RStudio and you should use R at least once to get a
feeling for these differences. A lot of people work with RStudio because it provides
major advantages to R. To name a few: RStudio makes it easier to read code because
it contains a code editor that displays code in colors (syntax highlighting); RStudio
provides several features for data visualization; and RStudio makes it convenient to
import data. As an open-source software, RStudio is free to use for non-commercial
purposes and in Practice R we work only with it. But enough of the flattering. Go to the
RStudio website to download and install the latest desktop version for your operating
system.

Install RStudio (from Posit):

https://posit.co/downloads/

2.1 Introducing R and RStudio | 13

After the installation is done, open RStudio and you will see a similar window as
Figure 2.2 displays. To make the introduction a bit smoother, Figure 2.2 highlights the
different panes (windows) in RStudio with text labels and colored boxes. There are only
three panes the first time you open RStudio: The R console, the Environment, and the
Files and more pane. The panes on the right side contain further panes, which we will
discuss in the end. First, we will focus on the code pane and the R console.

Fig. 2.2: Panes of RStudio

2.1.1 The Code pane and the R console

We run code from an R script and RStudio has integrated a code pane for this purpose.
RStudio sends the code to R and you can see the results in the R console. After you have
created a new R script, RStudio looks exactly like Figure 2.2. To create a new R script
click on File in the tool bar, choose New File and then select R script. After you have
created the script, the code pane appears and shows an empty R script.

How do we work with an R script? Of course, you may use the console as well, but
an R script makes your code reusable. As Figure 2.2 highlights, RStudio has a Run button
in the code pane to execute code. For instance, use RStudio as a calculator and insert
one of the mathematical equations in the R script. Next, click inside the line of code
that should be executed and then press the Run button. RStudio executes the code and
jumps to the next line. Do not forget to click inside the line before you push the Run
button. Alternatively, select an entire line of the code that is supposed to be executed
solitarily. RStudio runs this selected code as well, but does not jump to the next line (of
code).

14 | 2 First steps in R

There is also a helpful shortcut to execute code. Click inside the line of code and
press <Ctlr/Cmd> + <Enter> on your keyboard. Try to memorize this shortcut because
it is faster than clicking a button. I assure you, the shortcut will become second nature.

Run code via the shortcut (Windows/Mac):

Press: <Ctlr/Cmd> + <Enter>

Can you do me a second favor? Run the print() function once more, but this time
in RStudio. Insert only the first four letters – just type 'prin' and see what happens.
RStudio shows code suggestions and explanations, as Figure 2.3 displays. RStudio
suggests all kinds of code that start with these letters and the auto-completion function
helps us finish the line. R does not make our lives easy in terms of writing code, but
RStudio does by providing suggestions to complete the code. Alternatively, press <TAB>
to activate the auto-completion.

Fig. 2.3: Auto-completion in RStudio

Auto-completion is amazing and works for characters (e.g., quotation marks) as well.
RStudio automatically adds the second if you insert the first parenthesis of the print
function. I guess you are less excited than I am: Imagine writing code but the code
returns an error due to a missing parenthesis. Thus, you need to check whether the
code contains both opening and closing parenthesis of the entire script. I can tell from
my experience that this really is a tedious task. I made such mistakes many times when
I started to learn a programming language and auto-completion reduces such pain.

Error messages give you some insights as to why the error occurs: For instance,
characters in the print function need to be enclosed by quotation marks. But what does
R return if we forget them?

Do not forget the quotation marks ("" or '') to print a string

print(Hello)

#> Error in print(Hello): object 'Hello' not found

2.1 Introducing R and RStudio | 15

R searches the Hello object and does not know that we wanted to print a string. Error
messages are often cryptic and hard to decipher – especially, but not exclusively, for
beginners. Do not feel discouraged by a cryptic error message. We will deal with typical
error messages in the tutorial of this chapter, but keep in mind that R will print a plus
sign (+) if the code is not complete. Say we run print("Hello" without the closing
parenthesis. R waits patiently until it gets one. At some point this might be the reason
why nothing seems to happen if you run the code, go to the console and press the
Escape key (<ESC>) to abort.

R has a great community, which is why you will often find a solution if you search
the web. Unfortunately, R is also a frequently appearing letter of the alphabet which
makes it necessary to combine the key words with R (e.g., regression analysis in R) to
get the search results that you are actually looking for. Moreover, RStudio may also
display an error message next to the code or highlight a potential problem. Feel free
and use R directly if such features seem irrelevant, but RStudio helps us a lot to reduce
the pain of learning R.

The smaller panes on the right side contain several tabs. Most of them outline their
purpose with their name. We will talk about those further panes later, but as a new R
user we should at least get in touch with several tabs of the Files and more pane: The
next subsections introduce the Files, the Plots, the Packages, the Help, and further
panes.

2.1.2 The Files pane

The Files pane shows the files of your working directory. The latter points to the path on
your computer where R searches for and exports files to (e.g., to import data, export a
graph). You probably have no idea which working directory you currently use. R returns
the current working directory if you run the getwd() function.

The getwd() function returns the current working directory

getwd()

#> [1] "C:/Users/Edgar/R/Practice_R"

At themoment, RStudio shows you the path and thefiles of the defaultworkingdirectory,
which can be changed in the settings of RStudio. As Figure 2.4 displays, the files pane
shows you the path on your computer that leads to this directory (in the head of the
pane) andmakes it possible to navigate from one folder to another. Later, we will import
data and export graphs, which will make it necessary to adjust the working directory.
However, even now it would be nice if you have access to all your R scripts in one place
(e.g., all scripts for this book). Create a new folder for your R scripts.

16 | 2 First steps in R

Fig. 2.4: The Files pane

Next, you can set the working directory manually by using the setwd() function with
the path to your working directory. Depending on your operating system and your
folder, the path to the folder may look like the paths displayed in the next console, but
hold on, there is no need to insert paths manually.

Windows

setwd("C:/Users/Edgar/R/Scripts")

Mac

setwd("~/R/Scripts/")

RStudio sets your working directory without the hassle of writing down the entire path.
Navigate to your directory via the Files pane, press theMore button and click on Set as
working directory. Now, look at your console. RStudio runs the setwd() function and
inserted the chosen path. Certainly, you do not want to repeat that step the next time
you open your script. So, copy your code from the console and paste it into your script.

Maybe you do not realize it yet, but setting a working directory manually can be
painful. Every typo in the path leads to an error. What happens if you move the folder
to a new place? You get an error message because the path is no longer valid. If your
script points to your working directory, please make sure that you put the command at
the top of your script. Putting the working directory in a prominent position makes it
easier for your future self and other people to adjust it. We learn how to improve this
awkward situation by using projects in RStudio (Chapter 4), which makes it possible to
work without the hassle of setting a working directory manually.

In addition, the files pane also comes with several convenient functions. You can
create a new folder, delete or rename files, all without leaving RStudio. TheMore button
lets you copy and move files, copy the folder path to the clipboard, or opens the folder
in a new window to name just a few options. Thus, create a structure and manage your
files directly from RStudio. Create several folders in your working directory and save
your R scripts in a folder named R, your data comes into the data folder, and so on. A
simple structure helps to increase our workflow and stay organized. In Chapter 4, we
talk about this topic in more detail.

2.1 Introducing R and RStudio | 17

2.1.3 The Plots pane

As the name reveals, graphs are displayed in the Plots pane. For example, the barplot()
function creates a bar graph. Copy the code from the next console and execute it. The
bar graph depicts random numbers that I have included in the code. Never mind how
the code works, we will cover that in the next sections. As Figure 2.5 illustrates, the Plot
tab shows up with the graph after the code is executed.

Copy and run the following code to generate a bar plot!

barplot(c(a = 22, b = 28, c = 33, d = 40, e = 55))

Fig. 2.5: The Plots pane

What else can we do with the plots pane? For example, sometimes the preview is too
small to see the details of a graph properly. RStudio has a small button to zoom in –
it opens a new window that lets you adjust the size. Or consider the export menu; at
some point we will save a graph as a file and RStudio has integrated an export function.
We learn more about those possibilities when we focus on visualizations (Chapter 7).
For the moment just keep in mind that such options exist.

We can zoom in to get a larger view of a graph, but RStudio gives you a lot of
freedom to arrange and resize each pane. Adjust the size of a panemanually by drawing
it smaller (or larger). For now this might be a fun fact, but at one point you may wish to
have a larger pane to examine a graph or more space for the script. The same applies

18 | 2 First steps in R

for the integrated tutorials, which we can adjust in size as well. To get access to the
book’s tutorials and materials, we need to learn how to install R packages.

2.1.4 The Packages pane

Packages aim to improve R and its functionality. The Packages pane lists all packages
that are installed onyour computer. If youhave installedR for thefirst time, thepackages
tab lists only core R packages; further packages need to be installed manually. Use
the code install.packages("name") to download and install a package from CRAN.
By running the install.packages() function, R searches the package, downloads the
files, and installs them locally.

Install a package with:

install.packages("package_name")

Caution: The package name needs to be enclosed in quotation marks

The next console prints the code to install the palmerpenguins and tidyverse packages.
The palmerpenguins package shares data about penguins (Horst et al., 2022); and
the tidyverse package includes several packages (e.g., dplyr, ggplot2, forcats) to
analyze data (Wickham, 2022d). After the installation of a package, the R console may
return some cryptic information. The next output shows what my console returned.

install.packages("palmerpenguins")

install.packages("tidyverse")

#>Try URL 'https://cran.rstudio.com/bin/4.0/palmerpenguins_0.1.0.tgz'

#>Content type 'application/x-gzip' length 3001738 bytes (2.9 MB)

#>==

#>downloaded 2.9 MB

#>The downloaded binary packages are in

#> /var/folders/0v/T//Rtmp4z29rO/downloaded_packages

Cryptic, but it seems as though the packages were installed, because R returns the
installation path of the package, how large the package is, and further details of the
download and installation process. R has finished the installation process if you see
the prompt again. After the installation is done, search within the Packages pane, both
packages should now be listed there. Give it a try and install the palmerpenguins and
the tidyverse packages on your own machine. We need both packages anyway.

2.1 Introducing R and RStudio | 19

There is second important command to make a package available each time you
start or restart R. You must load a package with the library() function before you can
use it. Remember, you have to install a package only once, but each time you start a
new R session, you must load it with the library() function. Often, R does not return
anything after you have loaded a package; everything works fine as long as R does not
return an error message.

Packages need to be installed only once

But: Load a package each time you start a new R session!

library(palmerpenguins)

Some packages return start-up messages. Consider the message from the tidyverse
package. It shows which packages are loaded (attached) and their possible conflicts
with other packages and base R.

library(tidyverse)

#> Attaching packages ------------------------------------ tidyverse 1.3.1

#> v ggplot2 3.3.6 v purrr 0.3.4

#> v tibble 3.1.7 v dplyr 1.0.9

#> v tidyr 1.2.0 v stringr 1.4.0

#> v readr 2.1.2 v forcats 0.5.1

#> Conflicts -------------------------------------- tidyverse_conflicts()

#> x dplyr::filter() masks stats::filter()

#> x dplyr::lag() masks stats::lag()

There are many R packages and some packages have identical function names. For
example, the dplyr package has a filter() function, but so does the R stats package.
R picks the function that was loaded last. To differentiate between those functions, we
separate the package name and the function with two colons (e.g. dplyr::filter). In
Practice R, you will see the same notation occasionally to make it clear which package
and function we are talking about.

Installing packages is not complicated but can be tricky. Suppose you try to install
a package. R tells you that several other packages are needed and asks for permission
to automatically install them. Unfortunately, this process sometimes fails. You will get
an error message when the required package is (still) not installed. In this situation
you need to install the dependencies on your own. In other instances, you need to
update some of the packages that are already installed, and R asks for your permission
to update. Please do so and get the latest CRAN version. RStudio helps you also with

20 | 2 First steps in R

this task. The Packages pane has an Update button which shows all packages that can
be updated. Before we can continue and inspect further panes, you need to install the
PracticeR package, which gives you access to the materials and tutorials of this book.

The Practice R package
The PracticeR package is not available on CRAN, which is why you cannot install it
directly, but you can download it from GitHub. GitHub is a version control system and
gives people access to code. To install a package from GitHub, you must install the
devtools package first, because the latter makes it possible to install a package from
GitHub (Wickham, Hester, Chang, et al., 2022).

The devtools package let you install packages from GitHub

install.packages("devtools")

Next, use the install_github() function from the devtools package to install the
PracticeR package. The function needs the web address of the package. In our case,
the following code installs the PracticeR package.

Install the PracticeR package

devtools::install_github("edgar-treischl/PracticeR")

After the package has been installed, go the Environment and more pane. You will
find the Tutorial pane which shows all available tutorials, including the tutorials from
the PracticeR package. Figure 2.6 guides your way to the tutorial pane. Click on a
corresponding Start tutorial button to run one of the tutorials. This runs the code that
creates the tutorial and starts the tutorial in the pane (or you can open the tutorials in
a browser). After you have finished the tutorial, you have to click on the Stop button in
the tutorial pane to stop the code from running in the background.

Fig. 2.6: The Tutorial pane

2.1 Introducing R and RStudio | 21

In addition to the tutorials, the PracticeR package also has some convenient functions.
Use the show_script() function to get the source code of Practice R. The function
copies the code for each chapter, opens a new tab in RStudio, and inserts the code in
a new script. If the function gets no valid input, it returns an error message with all
available script names.

Load a chapter script with show_script()

library(PracticeR)

show_script("chapter02")

R is an open-source software and some of the described code (and packages) may
change in the future. For this reason, the show_script() function downloads the latest
version of the source code that is discussed in this book. In consequence, the source
code may slightly differ compared to the printed version, but I will mention it in the
script if an update occurred.

Of course, you can download all book materials from the PracticeR website. How-
ever, there is no need to Google the website or copy the link to the PracticeRwebsite
manually. All important links of the book are available via the show_link() function,
which returns the link in the console and opens a new browser window with the link.
For example, insert pr_website and inspect the PracticeRwebsite. In this book I set
the option browse to FALSE, which prevents the browser for being opened and returns
the link only. If the function gets no valid input, it returns an error message with all
available key words.

Show_link opens a browser with the link

show_link("pr_website", browse = FALSE)

#> [1] "https://edgar-treischl.github.io/PracticeR/"

2.1.5 The Help pane

Sometimes we have no clue how code works and this is where the Help pane and help
files come into play. Use the help pane to search for unfamiliar code. All functions come
with a help file that contains a description and further information (e.g., options). Scroll
down the help file, because it usually includes examples at the end of the document.
The code illustrates how a function works and such examples often make it easier to
apply them. You may run examples from the online help with the example() function.
For instance, consider some example bar plots.

22 | 2 First steps in R

Run examples from the online help (press ESC to abort)

example(barplot)

Moreover, ask R for help. You can activate the help pane if you add a question mark (?)
before the code itself (e.g., ?barplot). Alternatively, search for a keyword within the
help files, as the next console summarizes.

Ask for help

?barplot

Search for keywords

help.search("keyword")

Vignettes and RStudio’s Addins provide even more help. The next info box introduces
both briefly and discusses the addin from the pkgsearch package (Csárdi & Salmon,
2022).

Vignettes and Rstudio’s Addins

There are additional sources that support you to work with R, among them are package vignettes and
RStudio’s Addins. Vignettes are extremely useful to get a deeper understanding about a package. They
are written from the author’s perspective and intend to show in detail how a package works. Vignettes
can be viewed in RStudio and you have access to the described code as well. So far, we have not yet
systematically dealt with a package, and I will highlight several vignettes in the course of the book, but
you should be aware that such resources exits. The browseVignettes() function displays all available
vignettes from a package in your browser; the vignette() function returns a specific vignette in the
viewer; and the edit() function opens the script and lets you copy and paste the code of a vignette.
You are not familiar with the dplyr package (which is a part of the tidyverse), but you can use the
package anyway to inspect how vignettes work.

#Browse vignettes from a package:

browseVignettes("dplyr")

#Inspect a vignette in the viewer by calling its name:

vignette("dplyr")

#Edit the code from a vignette:

edit(vignette("dplyr"))

Moreover, some R packages provide Addins for RStudio, which let you run advanced code and functions
without writing the code. For example, the pkgsearch package has a graphical interface to search for
packages on CRAN. This might not be necessary now, but imagine you have no idea whether there is a
package for a specific task. The addin let you search packages, explore new packages, and shows the
top packages on CRAN. Thus, such addins provide a convenient way to work with RStudio and run code
by clicking on a button. After the corresponding package is installed and RStudio is restarted, addins
will be listed in the RStudio’s addins menu.

2.2 Base R | 23

2.1.6 Further panes

The Environment and more pane encompasses several panes – it contains the Environ-
ment, the History, and the Connections panes. We will not discuss them in detail, but a
few words may clarify their purpose.

The Environment pane shows information about the working environment. The
environment pane is tricky to explain since we have not created any objects yet. We
will come back to this point later, but note that the pane lists objects, for example, a
data set that we have imported in an active session. This pane also helps us to import
data and get rid of objects from the workspace.

The History pane lists code that has been executed. Since we just started to work
with R, your history pane is (almost) empty. However, a long working session is not
required to understand why a history pane is valuable. Say we analyze data. We tried
to achieve something new, but at some point the code crashes. Or suppose you deleted
the code by accident. The history pane makes it possible to go back in time. We retrieve
code that worked or we can try to figure out where the mistake came from. Moreover,
you can also travel back in time with the arrow keys. Click into the console and press
the <arrow up> button on your keyboard once or several times to inspect the history.

The Connections pane is not important for us in this book, because it lets us connect
RStudio with different applications. Suppose you work with an online database. To
retrieve or to send data to the database, the connections pane helps to connect your
local computer with the database.

We come back to the functions of RStudio’s panes later, but let me outline what
happens if you close RStudio as last tip. Save your script and close RStudio. Be prepared,
there might be a pop-up that asks you if you want to save your work space in an .RData

file in your working directory. We will learn more about why it is not useful to save
our work space in Chapter 5, but in terms of reproducibility it should be enough to say
that we want R to start as a blank slate. Our old work from the past should be gone for
good if we start new, because otherwise it may interfere with the most recent analysis.
If you get bothered by the pop-up, go to RStudio settings (Tools > Global Options)
and remove the check mark from restoring the work space at start up and tell RStudio
that it never should save the work space on exit. Since we have established a basic
understanding of RStudio, we can now focus on base R.

2.2 Base R

R is a programming language and offers more possibilities than being software alone.
You can achieve great things without having a proper background as a programmer,
but a basic understanding of base R is nonetheless important. It can be abstract and
frustrating to learn base R. Please, do not worry, I try to cut this part down to its core.
However, we need some basics about objects and functions.

24 | 2 First steps in R

2.2.1 Objects

R is an object-oriented programming language which means that we must understand
which types of objects exist and how wemanipulate themwith the help of functions. In
R, we create new objects by using the assignment operator (<-). Suppose we analyzed
data and we want to have access to these results in a later step. We create the object by
assigning the results of a calculation to the object (e.g., result).

The object result refers to 5*5

result <- 5 * 5

result

#> [1] 25

R does not print the result of the assignment and lists your objects in the environment
pane. You must call the object once more, as the previous console shows, or use par-
enthesis as the next console illustrates. Furthermore, we may overwrite the object by
rerunning the code and instead of a number, the object may also refer to a character
string.

R does not print the result of the assignment

(result <- "Hello from the other side!")

#> [1] "Hello from the other side!"

We use the assignment operator not to save numbers; technically more accurate, we
create a binding that refers to the number, even though I say that we saved the object
to keep things as simple as possible. We create a binding to all sorts of objects, such
as the code to make a graph, the binding to data that we import, or save a calculation
result as an object. In all these instances, we use the assignment operator.

By assigning values to objects, we can manipulate them. As the next output shows,
we may run basic calculations: assign numbers to objects (a and b), build the sum of
these objects, and save the result again. Now, the object contains the result of the
simple computation, but the same applies if you import data or if you assign a graph to
an object.

AB(C) of the assignment operator

a <- 5

b <- 6

The result

2.2 Base R | 25

result <- a + b

result

#> [1] 11

We create new objects, manipulate them, or compare them. By applying mathematical
operators, R compares the objects and returns a Boolean expression that indicates
whether the comparison is TRUE or FALSE. To this end, we compare whether an object is
less than (or equal to), greater than (or equal to), exactly equal to, or not equal to.

Compare objects:

Is a less (<) than (or equal to =) b

a <= b

#> [1] TRUE

Is a greater (>) than (or equal to =) b

a >= b

#> [1] FALSE

Is a equal to (==) b

a == b

#> [1] FALSE

Is a not equal to (!=) b

a != b

#> [1] TRUE

R provides us with the corresponding results of the binding each time we call the object.
Especially during advanced analysis steps, we often save the results as a new object.
The assignment operator seems a bit bulky in the beginning but assigning objects
will become second nature. Maybe an RStudio shortcut helps to increase the learning
process.

Assign like a Pro, press:

#<Alt> + <-> (Windows)

26 | 2 First steps in R

#<Option> + <-> (Unix/Mac)

The assignment operator will appear out of nothing

One last recommendation regarding object names. It is up to you howobjects are named,
but R is case sensitive (a versus A) and has restrictions for object names. A name may
contain letters, numbers, points, and underscores, but cannot start with a number or
contain special characters (e.g., $). Perceive this restriction as an important convention,
since it forces us to provide a specific and descriptive name for an object (and the same
applies for variable names). The make.names() function illustrates this point. It returns
syntactically valid names and underlines that R does not allow numbers and special
characters.

No numbers

make.names(names = "1.wave")

#> [1] "X1.wave"

No special characters as names

make.names(names = "income_$")

#> [1] "income_."

Even if a name is valid, try to provide a descriptive, short name

make.names(names = "an_object_should_describe_its_content")

#> [1] "an_object_should_describe_its_content"

2.2.2 Functions

Depending on the type of object, we use different functions to manipulate them. This
sounds complex, but applying functions in R is not difficult. We have already applied
functions such as print(). Within the parentheses of each function, we must provide
the input for the function (here a text string) and options (optional arguments) of the
function, separated by commas. For example, the quote option lets us determine how
strings are printed.

RStudio suggests also the input of a function (e.g. object name)

my_string <- "Hello"

print(my_string, quote = FALSE)

2.2 Base R | 27

#> [1] Hello

Let’s see what thismeans by exploring base R functions. Saywe need a running number.
The combine (c()) function helps us with this task, because we can combine several
objects to a running number (running_number). By applying the c() function, all values
within the parentheses are combined to an atomic vector, a one-dimensional data array.

Combine function

running_number <- c(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

running_number

#> [1] 1 2 3 4 5 6 7 8 9 10

Objects, functions, or the assignment operator are not made to scare you. They will
help you to do very useful things. For example, some functions reduce your workload. I
generated the running number by hand. I was overambitious, since it is foolish to type
each number tediously by hand. The next console shows the last example again, but
this time I provide a list of numbers and R does the work for me. R counts from one to
ten and all we have to do is set a starting and an endpoint within the c() function.

Set a start and endpoint

running_number <- c(1:10)

running_number

#> [1] 1 2 3 4 5 6 7 8 9 10

A sequence and a repetition functionwork in similar ways andwe can let R do the boring
stuff again. R creates a sequence from zero to ten with the seq() function and we can
adjust the increment of the sequence with the by option.

The sequence function

seq(0, 10, by = 2)

#> [1] 0 2 4 6 8 10

In terms of a repetition, the rep() function returns each element a certain number of
times. The times option tells R how many times the repetition loops through the cycle,
while the each option tells R how often each element is repeated.

Repeat five times

rep(1:2, times = 5)

28 | 2 First steps in R

#> [1] 1 2 1 2 1 2 1 2 1 2

Repeat each element five times

rep(1:2, each = 5)

#> [1] 1 1 1 1 1 2 2 2 2 2

Such tasks seem artificial, because I did not make up a cover story as to why we need to
repeat those numbers. It’s almost like I said that the function repeats a string, say rep("I
am working like a machine!"). When do we need such a repetition? For example,
sometimes we need to generate a group number and we can use the repetition function
to give all observations of a group a unique indicator, without repeating ourselves.
Thus, such functions will help us to reduce the workload. However, functions have
more to offer than counting or repeating – we can use them for many different tasks.

Writing a function seems complicated, especially if you have only limited program-
ming experience. The good news is that there is no need to write functions – R and
a lot of R packages provide functions which are user-friendly and ready to use. The
bad news is that we still need to learn how to write a function because it will help to
understand how they work.

Suppose that we want to write amean function. We must tell R what the function
should do with each element of the input vector. The next output shows you first what
the basic code looks like. We tell R that our function should use the input x and we
must specify what exactly should happen with each element of x within the body (the
braces) of the function. Apparently, my first attempt is not working, since I describe
only with words what the function should do. However, this gives us the room to focus
on the code structure of a function:

The basic structure of a non-functioning function:

my_fun <- function(x) {

build the sum of x, divided by n

}

The next console shows you how a function works based on three steps. First, I create
a toy data set instead of talking about a vector. It is not necessary to save the input
before we write a function, but it helps to visualize that each element of xwill enter the
function instead of talking about a vector. In the second step, I generate the function. It
only returns each element (return(x)) and I assign it as an object (the return_input
function). In the last step, I apply the function with the data from the first step.

2.2 Base R | 29

1. The input

data <- c(3, 2, 1, 5, 8, 12, 1)

2. Create a function

return_input <- function(x) {

return(x)

}

3. Call and feed the function

return_input(data)

#> [1] 3 2 1 5 8 12 1

In order to calculate the mean, we have to get familiar with two other mathematical
functions. The sum() function creates the sum (of a vector), and we count the elements
of the vector with the length() function. Applying these functions is not complicated
and the next console illustrates how they work. We can hand over some data as input
or use the c() function to insert example values. The latter approach shows also that
functions can be combined.

Build the sum

sum(c(1, 2, 3))

#> [1] 6

The length

length(c(1, 2, 3))

#> [1] 3

Now thatwehave prepared all steps,we canfill in the ingredients for the mean_function.
Instead of returning each x, we have to divide the sum by its length to get the mean
and feed it with example data.

The mean_function

mean_function <- function(data) {

mean <- sum(data) / length(data) # save and create mean

return(mean)

}

mean_function(data)

30 | 2 First steps in R

#> [1] 4.571429

Eureka! We improved the first function and now it returns some useful information. Of
course, calculating a mean is probably not what you expected from this chapter, and I
am sure that you can anticipate how we calculate a mean without writing a function
first. The mean() function has been implemented for this purpose. This is not the main
point here; we learned how functions work. We can even improve our first result and
let R round the values for us. Put the mean() function inside the round() function and
by adjusting the digits option, it lets us determine the number of digits that should be
returned. This improves the first approach significantly.

The "real" mean

round(mean(data), digits = 2)

#> [1] 4.57

Writing a function is not rocket science. It seems complicated because we are not used
to writing functions, using loops (to run code repeatedly), or applying other coding
tricks. Many core concepts from base R seemmore complicated than they are. Using
the assignment operator, working with objects, and writing functions is not witchcraft.
I learned it and you will succeed at it as well. However, if it was witchcraft, a quote
from Harry Pottermay underline my point of view: “Every great wizard in history has
started out as nothing more than we are now: students. If they can do it, why not us?”
(Rowling, 2014).

Also, please keep in mind that R has fantastic packages which is why you won’t
have to dig deep every time you work with R. To be honest, some programming skills
help to generate a deeper understanding on how R works, especially if you create
something new or advanced. For this reason, we learned how to write a function, but
we will not work on our programming skills in general terms. Instead, we will learn
core concepts and how to apply them by focusing on specific tasks. To achieve this goal,
we need to increase our knowledge about data types and structures first.

2.3 Data types and structures

We learn how to analyze data in the next chapters. We learn how to import, clean, and
manipulate it. We will even save our results for the afterlife by creating reports with R.
Before we work with data, we need to talk about data types and data structures in R. A
data set may contain different data types, for example:
– Integers (int: 5, 9)
– Real numbers (doubles or dbl: 3.23, 7.44)
– Dates (dates: 2021-01-07) and times (times: 17:04:55 CEST)

2.3 Data types and structures | 31

– Strings and character vectors (chr: "Hello world")
– Factors (fctr for categorical variables: male, female)
– Logical (lgl: TRUE, FALSE)

However, if you are not sure what kind of object (or data type) you examine, inspect it
with the class() function.

Inspect the class of vector x

x <- "Hello world"

class(x)

#> [1] "character"

x <- c(TRUE, FALSE)

class(x)

#> [1] "logical"

So far, I have just played around with vectors; I did not explain where these values
came from, nor what they illustrate. Working with vectors – and toy data – is useful to
understand the main logic behind applied steps. Many packages for data manipulation
and analysis will do the hard job for us, but some knowledge about base R helps us
to understand how R handles vectors and other data structures (e.g., when we import
data).

A vector is an example of how data may look like in R. More precisely, it is an
example of a one-dimensional data structure. In principle, you could add another
dimension and create a matrix or a multidimensional array. Since our goal is applied
data analysis, we will mainly work with data frames and tibbles in this book, but I will
also briefly introduce lists.

2.3.1 Data frames

Suppose we imported a data set and each row has information about one observation
unit (e.g., person, etc.) and each column represents a value of a variable.With thewords
from the authors of the tidyverse, we say that such a data set is tidy. As Wickham and
Grolemund outline: “There are three interrelated rules which make a data set tidy:
1. Each variable must have its own column.
2. Each observation must have its own row.
3. Each value must have its own cell.” (Wickham & Grolemund, 2016, p. 149)

32 | 2 First steps in R

Of course, data must not be tidy and is often messy compared to this description.
Nonetheless R has different types of data structures, so let us first explore what a data
frame is. Based on the R base logic, we get a data frame (df) if we extend a vector and
combine multiple vectors as one object. This sounds complicated: First, we need two
vectors of identical length (an identical number of elements) in order to create a data
frame. We can apply the c() function to create two example vectors. Next, we combine
those vectors with the data.frame() function:

Create two vectors of identical length

sex <- c("Men", "Women")

age <- c(19, 28)

Combine them as data.frame

df <- data.frame(sex, age)

df

#> sex age

#> 1 Men 19

#> 2 Women 28

Why do we spend so much time making a data frame, instead of learning how to
import data? There are several reasons why we focus on data structures: You will
work with different data, and some analysis steps may differ depending on the data
structure. Furthermore, knowledge of data structures will reduce your struggle to learn
R. Regardless of the language you learn, at some point the code is not running and
you will get an error message. If you have no idea what the error means, you copy the
message and turn to Google for some help. It is likely that someone else had the same
problem and often you will see a reproducible example (reprex). A reprex includes
a small amount of data and all steps that are necessary to reproduce the error. This
gives other people the chance to understand and fix the problem. Thus, you need to
understand how a data frame can be generated to follow these leads.

Even though learning how to create a data frame is not vital in the beginning, it
is important to understand the logic behind it and you should be aware that you will
encounter different data types and structures. Now that we clarified what a data frame
is, let me outline the difference between a data frame and a tibble.

2.3.2 Tibble

The short answer is, that a tibble is essentially a data frame, but with some advantages
compared to regular data frames. Create a tibble with the corresponding tibble()

2.3 Data types and structures | 33

function from the tidyr package (which is a part of the tidyverse). It works the same
way as with a data frame and the functions returns the data if we do not assign it.

Create a tibble

library(tidyr)

tibble(

sex = c("Men", "Women"),

age = c(19, 28)

)

#> # A tibble: 2 x 2

#> sex age

#> <chr> <dbl>

#> 1 Men 19

#> 2 Women 28

Another form of tibble is a transposed tibble (tribble). Transposed tibbles are very useful
in creating small snippets of data and are very popular because they are easy to read.
People provide tribbles for reprexes, or you can add a tribble if you share your code
but not your data. As the console shows, the first line of a tribble is like the head of a
table and contains the variable names; each variable starts with the tilde (~) operator,
observations are separated with a comma until the last value of the last row.

Transposed tibbles

tribble(

~sex, ~age,

"Men", 19,

"Women", 28

)

#> # A tibble: 2 x 2

#> sex age

#> <chr> <dbl>

#> 1 Men 19

#> 2 Women 28

In our case there are only minor differences between a tibble and a data frame, which
is why I speak most of the time about data frames even if it is a tibble. However, a
tibble prints the data type after the variable name, which is a useful feature if you are
inspecting unfamiliar data. Moreover, the first line of the console returns the size of the
tibble and your console displays only the first ten rows.

34 | 2 First steps in R

I guess you cannot appreciate the last feature yet. Suppose you inspect a data frame
and you call it by its name. R will return the entire data in the console. You scroll up
and down to get an idea of what the data contains, and you get frustrated if you cannot
find the line with the variable names. Obviously, I am talking about myself, but the
tibble returns only the first ten lines (unless the default printing option is changed).

This is a nice feature, butwemust examine how the data.frame() function behaves
in terms of recycled vectors to see the real strength of a tibble. I claimed that vectors
need to be of identical length to create a data frame. Look at the next console, I was
wrong. It is possible to create a data frame with vectors of different lengths because R
recycles vectors.

R recycles vectors

data.frame(a = 1:6, b = 1:3, c = 1:2)

#> a b c

#> 1 1 1 1

#> 2 2 2 2

#> 3 3 3 1

#> 4 4 1 2

#> 5 5 2 1

#> 6 6 3 2

Base R recycles vectors and because b and c fits nicely into vector a – more precisely,
two and three times – we do not get an error message. R recycles vectors b and c and
reiterates two and three times to build the data frame. Look what happens if we try to
make a tibble with the same vectors:

A tibble does not recycle vectors, unless ...

tibble(a = 1:6, b = 1:3, c = 1:2)

#> Error:

#> ! Tibble columns must have compatible sizes.

#> * Size 6: Existing data.

#> * Size 3: Column `b`.

#> i Only values of size one are recycled.

Nothing. The last code did not even run! Instead, we produced an error – the console
warns us that the tibble columns must have compatible sizes and that only values of
size one are recycled. I am pretty sure that this example sounds artificial. You probably
ask yourself why you would create a data frame (or a tibble) anyway?

2.3 Data types and structures | 35

How about an example: Suppose we generate a new variable and we need an
indicator for six different groups. Thus, we assign numeric values for each group, but
unfortunately wemade amistake and assigned only two values instead of six. In aworst-
case scenario, wemay not even realize themistake because R recycles the vectorwithout
a warning. R recycles vectors because it has advantages in terms of programming and
how fast R executes code. However, we do not want to recycle the vectors because this
may introduce mistakes. Thus, tibbles support us to manage data frames and a vector
will not be recycled unless it has the exact same length or if we assign each element the
same (constant) value. Tibbles are also handy when it comes to variable names, which
we will explore later (see Chapter 5.1). Instead, we get in touch with lists.

2.3.3 Lists

Lists are much more flexible than data frames or tibbles and can contain any kind of
object. As the next output illustrates, lists are created with the list() function and in
our case it contains three different objects: a running number with integers and two
vectors, one with letters, and one with names. Each object of this list has a different
length. Thus, a list makes it possible to combine heterogeneous input in one object.

A list may combine heterogeneous input

my_list <- list(

"numbers" = 1:10,

"letters" = letters[1:3],

"names" = c("Bruno", "Justin", "Miley", "Ariana")

)

my_list

#> $numbers

#> [1] 1 2 3 4 5 6 7 8 9 10

#>

#> $letters

#> [1] "a" "b" "c"

#>

#> $names

#> [1] "Bruno" "Justin" "Miley" "Ariana"

Lists are very flexible, but harder to handle in terms of data management – especially
when we try to retrieve or manipulate data. Most of the time we work with data frames
and tibbles, but you need to be aware that different data structures behave differently.
To this end, wewill discover ultimately howwe slice data and get access to single values
of a data frame, a tibble, and a list.

36 | 2 First steps in R

Slice data
Let’s pretend we wanted to do some operations depending on whom we observe. First I
use a column vector with the names of persons, which makes it easier to grasp the logic
behind it.

How do we slice a vector?

x <- c("Bruno", "Justin", "Miley", "Ariana")

To get access to values of x, we must index or slice it with brackets. For instance, x[1]
returns the first element of x, x[2] the second one, and so on. Of course, we can apply
other tricks from base R to retrieve values faster. For example, x[-3] returns all names
except from the third element or x[2:3] slices the vector from the second to the third
element. Slicing is not complicated in the case of a one-dimensional vector, and the
next console shows the results of the discussed steps.

The first element

x[1]

#> [1] "Bruno"

The third element

x[3]

#> [1] "Miley"

All elements except the third

x[-3]

#> [1] "Bruno" "Justin" "Ariana"

From the second to the third element

x[2:3]

#> [1] "Justin" "Miley"

Slicing gets more complicated with a data frame, but there is no difference between
tibbles and data frames. Say we have observed the name, birth year, and sex of the
following persons:

2.3 Data types and structures | 37

#Example data

df <- tibble::tribble(

~names, ~year, ~sex,

"Bruno", 1985, "male",

"Justin", 1994, "male",

"Miley", 1992, "female",

"Ariana", 1993, "female"

)

We need to specify which row and column to slice. The first number refers to the row;
the second number refers to column. Thus, df[1, 1] returns the first element of the
first row and column.

The first row and the first column

df[1, 1]

#> # A tibble: 1 x 1

#> names

#> <chr>

#> 1 Bruno

However, if you do not provide a number, all rows and columns are returned. As the
next console shows, df[1,] returns the first row, but all columns of the data frame;
while we get all rows of the first column with df[, 1].

The first row

df[1,]

#> # A tibble: 1 x 3

#> names year sex

#> <chr> <dbl> <chr>

#> 1 Bruno 1985 male

The first column

df[, 1]

#> # A tibble: 4 x 1

#> names

#> <chr>

#> 1 Bruno

38 | 2 First steps in R

#> 2 Justin

#> 3 Miley

#> 4 Ariana

Of course, we can apply the same tricks as we have seen before. We can provide a
starting and an endpoint or call all rows except the one we mark with a minus (-) sign.

Start and endpoint

df[1:2,]

#> # A tibble: 2 x 3

#> names year sex

#> <chr> <dbl> <chr>

#> 1 Bruno 1985 male

#> 2 Justin 1994 male

All elements except the first row

df[-1,]

#> # A tibble: 3 x 3

#> names year sex

#> <chr> <dbl> <chr>

#> 1 Justin 1994 male

#> 2 Miley 1992 female

#> 3 Ariana 1993 female

The next console highlights a special case: we can slice an entire column vector with
the dollar ($) sign and the column name; keep this in mind because we apply the same
principle when we refer to variables in later steps.

Get (slice) a column vector with $

df$names

#> [1] "Bruno" "Justin" "Miley" "Ariana"

Unfortunately, slicing a list is a bit trickier because it has a nested structure. Consider
the my_list once more:

Consider what my_list contains

my_list

2.3 Data types and structures | 39

#> $numbers

#> [1] 1 2 3 4 5 6 7 8 9 10

#>

#> $letters

#> [1] "a" "b" "c"

#>

#> $names

#> [1] "Bruno" "Justin" "Miley" "Ariana"

If we index on the highest level, R returns the corresponding element of the list. Thus,
my_list[1] returns the first list, not the vector.

my_list[1] returns the first element (list), not the vector!

my_list[1]

#> $numbers

#> [1] 1 2 3 4 5 6 7 8 9 10

Provide additional brackets if you want to extract the vector:

Get the values of the first list

my_list[[1]]

#> [1] 1 2 3 4 5 6 7 8 9 10

To make this point clearer, suppose you must extract the first three elements of the first
list:

First three elements of the first list

my_list[[1]][1:3]

#> [1] 1 2 3

Say we make a mistake and execute my_list[1][1:3] instead. R returns the first list,
but the list contains only one object due to the slicing, the list of numbers. To put it
differently, the first list has only one element – the list of numbers – the second and
the third element of the list do no longer exist (R returns NULL) because we slice it.

You need to take the nested structure of a list into account

my_list[1][1:3]

40 | 2 First steps in R

#> $numbers

#> [1] 1 2 3 4 5 6 7 8 9 10

#>

#> $<NA>

#> NULL

#>

#> $<NA>

#> NULL

Slicing data and knowledge about base R really help us to handle and to analyze data,
but this probably seems abstract in the beginning. Let me give you one last example to
illustrate how slicing and knowledge about base R supports us in analyzing data. The
palmerpenguins package is made for teaching purposes and contains a data set with
variables about three different penguin species. We may use the penguins data and get
in touch with the penguin species Adélie, Chinstrap, and Gentoo.

Say we want to analyze each species separately listed in the penguins data and
from the summary statistics section we know that there are 152 observations for Adelie.
Thus, we slice the data and create a new data frame with Adelie penguins only. Instead
of referring to numbers, the species column should only contain observations for
Adelie.

Slice/subset of the data

adelie_data <- penguins[penguins$species == "Adelie",]

Did it really work? We may inspect the new data frame to see if it worked. The nrow()
function is also useful in this situation because we know howmany observation the
new data frame should have. It returns the number of rows and let us check the new
sample size. The counter part of the number of rows function is the ncol() function,
which does essentially the same for columns.

Number of rows

nrow(adelie_data)

#> [1] 152

Number of columns

ncol(adelie_data)

#> [1] 8

2.3 Data types and structures | 41

Next, we would do the analysis, but that is not the reason why I showed you this
example. In R there are always several ways to approach a task or a problem, and the
programming background helps us elaborate on our understanding of how R works
instead of applying packages first. There are many packages that provide functions to
work with R, and the latter will increase our skills as well. Consider how the filter()
function from the dplyr package works. I will introduce the package in Chapter 4
systematically. The next console shows how we can use the filter() function without
slicing the data. Can you tell me what the next code does just from reading the code
out loud?

The dplyr::filter function

library(dplyr)

adelie_data <- filter(penguins, species == "Adelie")

We apply a filter and include only observations where the species is equal to Adelie.
That’s closer to how humans think and easier to learn in the beginning. However, we
sliced data to get a better understanding about the R principles. Some of you may not
feel confident how base R works, but as the last example illustrates, there are many
packages that provide convenient functions to work with. In the next chapters we will
get in touch with different packages that help to improve your skills, without going into
the programming details. Overall, objects, functions, and other aspects about base R
may seem to have little to do with your goal, working with data. Be patient, we will get
in touch with the first steps to explore (unfamiliar) data in the next chapter, but first let
me summarize this chapter.

Summary

Congratulations, you have achieved themost challenging partwhen it comes to learning
R: the first steps and base R. Keep in mind that R is an object-oriented programming
language and we create objects with the assignment operator (<-). Everything can be
an object: we assign values to an object, but also graphs, data, or functions. Depending
on the object, we can apply different functions and adjust how a function behaves by
tweaking available options.

We also focused on data types and structures and I highlighted differences between
data frames, tibbles, and lists. There is no need to memorize how to make them, since
you will get in touch with them sooner or later. However, remember that different data
structures behave differently when it comes to analyzing data. We may need a different
approach depending on the examined data structure. Luckily, we will work with tibbles
and data frames most of the time, but I sliced data to illustrate this point.

If you still don’t knowwhat to think about base R, be aware that I feel your struggle.
I learned R as a student and many R packages we use today on a daily basis were

42 | 2 First steps in R

not available (or well known) at that time. Thus, I started my journey also with base

R. In several sessions I learned about objects, functions, or how data can be sliced.
However, I know frommy personal experience that learning base R is tough and can be
disappointing. Students come to class and expect to learn how to deal with data right
away. Instead they learn abstract concepts and do not get in touch with data. This is
not how I want to conceptualize introduction classes, and Practice R is also not meant
to show you all the ins and outs of base R.

I tried to cut it down to the most important principles, but at some point you start
to analyze data and will run into an error. In that case it is very useful to have some
understanding about base R, because you will see solutions in base R when you google
for an error. Fortunately, there are many excellent packages that help you to master
R and you will come across such solutions as well. These packages are often more
user-friendly than base R and we use them if they offer a simple and elegant solution
to analyze data, even though base R provides the most stable solutions.

3 Data exploration
Data exploration is an important step to analyze data. What does the data look like,
what kind of variables do we observe, and what about missing and implausible values?
There are a lot of questions when we start exploring data. The good news is that there
exists an easy way to find answers. Get in touch with and explore the data. This chapter
gives an overview about the typical first steps.

Suppose you examine if participants sex has an effect on life satisfaction (happi-
ness). We start by exploring how the variables are measured. How many men (women)
dowe observe? How is the outcome variable distributed andwhich preparation steps do
we need to analyze the data? Of course, the measurement of the variables determines
which analysis we apply, but the logic to explore and prepare data is roughly the same.

Talking about data analysis, I assume that you are familiar with statistic measures.
Can you explain what a median, a standard deviation, or a correlation expresses? If
the answer is no, consider reading a statistics textbook first, because I will not outline
what those measurements mean. Please, do not feel offended. Students in the social
sciences attend statistics classes and there is not much we can practice with R if I
introduce statistical concepts. There are a lot of excellent books that cover the statistical
background (e.g., see Bruce et al., 2020; Rajaretnam, 2015).

Overall, we apply two strategies. First, we use baseR to explore the data, to estimate
summary statistics and we make graphs. In Chapter 7, we will systematically work on
our visualization skills and get in touch with ggplot2, a package which provides many
opportunities to create visualizations. With base R you can create a lot of graphs with
little effort, which is why we start with this graphical approach. Second, there are many
R packages that focus on data exploration steps and they help us tremendously to
get a quick overview on unfamiliar data. For example, instead of creating a bar plot
to depict one variable, those packages provide functions to create a bar plot for each
categorical variable of the data frame. Thus, we explore variables, estimate statistics,
and use visualization to explore data in this chapter.
– In Section 3.1, we focus on categorical variables. We make tables and graphs to

explore how R handles categorical variables and we gain our first insights into
factor variables in general terms.

– In Section 3.2, we apply similar steps with numerical outcomes. We get in touch
with built-in functions to calculate summary statistics, make tables to inspect
several statistics at once, and we visualize numerical variables with histograms
and box plots.

– In Section 3.3, we make first attempts to analyze the data. We explore whether
one independent variable (x) has an effect on a dependent variable (y) by making
cross tables. In terms of numerical outcomes, we examine correlation coefficients,
scatter, and correlation plots.

https://doi.org/10.1515/9783110704976-003

44 | 3 Data exploration

You need to install several packages for this chapter. For instance, the correlation
package helps us to explore correlations; the corrplot package provides nice graphs to
depict correlations; and the summarytools package creates tables very efficiently. Make
sure that you have installed and loaded the following packages.

Setup of chapter 3

Remember you can install packages via: install.packages("name")

library(correlation)

library(corrplot)

library(DataExplorer)

library(effectsize)

library(forcats)

library(PracticeR)

library(summarytools)

library(tibble)

3.1 Categorical variables

In this chapter we work with the General Social Survey, which is a cross-sectional study
that observes adults in the United States since 1972. I included the data for the year 2016
(gss2016) in the PracticeR package. We installed the PracticeR package in the first
section. After the package is installed and loaded, the gss2016 data is available. The
latter is a large survey with many variables, and therefore, we use the smaller subset
(gss5) that I prepared for this chapter with the following variables only:
– Respondent’s age: gss5$age
– Respondent’s sex: gss5$sex
– Respondent’s ethnic background: gss5$race
– General happiness: gss5$happy
– Total family income: gss5$income

Before we start with categorical variables, how canwe explore (new) data? For example,
the glimpse() function helps us to get in touch with the data. As the next output shows,
it returns an overview of the data, the number of observations (rows), and the number
of variables (columns). It shows us a preview of each variable – after the $ sign – and
the type of data (e.g., <fct>).

Take a glimpse at your data frame!

df <- PracticeR::gss5

glimpse(df)

#> Rows: 2,867

3.1 Categorical variables | 45

#> Columns: 5

#> $ age <dbl> 47, 61, 72, 43, 55, 53, 50, 23, 45, 71, 33,~

#> $ sex <fct> Male, Male, Male, Female, Female, Female, M~

#> $ happy <fct> Happy, Happy, Happy, Happy, Happy, Happy, H~

#> $ race <fct> White, White, White, White, White, White, W~

#> $ income <dbl> 26, 19, 21, 26, 26, 20, 26, 16, 20, 20, 1, ~

As the output shows, the data contains several categorical variables. Among them,
factor variables such as sex or happy. The data also has numerical outcomes, such
as age and income. Remember that you can activate the help pane (?gss5) for more
information about code and data.

An alternative way to explore data is the str() function. It essentially returns
the same as the glimpse() function, but the latter has a nicer output. However, the
str()function makes it literally apparent that we inspect the structure of the data, not
the data itself. For example, we use the str() function to examine the structure of a
variable from the data frame. In the last section we sliced data and we learned that the
same principle applies if we want to apply a function to one variable of a data frame.
Type the name of the data frame, insert the dollar ($) sign, and the name of the variable.
Luckily, the auto-complete function from RStudio shows all variable names if we type
the name of a saved object (here a data frame) and the dollar sign.

Inspect the structure of a variable with $

str(df$sex)

#> Factor w/ 2 levels "Male","Female": 1 1 1 2 2 2 1 2 1 1 ...

The head() function is also useful to inspect data: it returns the head – the first six
elements (lines) – of a data frame. Sometimes it is sufficient to see the first six elements,
but we can adjust how many elements are returned by changing the n argument within
the function.

head shows the first 6 rows of the data as default

head(df, n = 3)

#> # A tibble: 3 x 5

#> age sex happy race income

#> <dbl> <fct> <fct> <fct> <dbl>

#> 1 47 Male Happy White 26

#> 2 61 Male Happy White 19

#> 3 72 Male Happy White 21

46 | 3 Data exploration

The head() function also has a counterpart, the tail() function which returns the
last (six) elements as default. Instead of looking only at a few lines, we can inspect
the entire data with View(). The function opens a new tab with the data set. The next
console prints only the code to inspect the data:

View the data set

View(gss5)

Now that we have a first overview about the data, we will focus on categorical variables.
We may count how often each category appears and display the result with a bar graph
(or another visualization). For example, howmanymale (female) participants are listed
in the gss5 data? As the next output shows, categorical variables are often stored as a
string or factor variable and wemust count how often each category – or level – appears.

The first five observations of sex

df$sex[1:5]

#> [1] Male Male Male Female Female

#> Levels: Male Female

By exploring the variable only, we have no idea how many men or women we observed.
How do we count such strings? The table() function counts and creates a very simple
table, but unfortunately it returns only absolute values.

A simple table

table(df$sex)

#>

#> Male Female

#> 1276 1591

Creating such a table is easy, but the table is not very informative. The function does
not display frequencies or the sum by default. The summarytools package lets us cre-
ate tables more efficiently (e.g., see Comtois, 2022). It provides functions to generate
frequency and cross tabulations, as well as tables for descriptive statistics. To explore
howmanymales (females) we observe, the freq() function creates a frequency table. It
returns, for example, absolute and relative frequencies, an indicator for missing values
(Not Available: <NA>), and the percentage of valid observations.

3.1 Categorical variables | 47

A frequency table

library(summarytools)

freq(df$sex)

#> Frequencies

#> df$sex

#> Type: Factor

#>

#> Freq % Valid % Valid Cum. % Total % Total Cum.

#> ------------ ------ --------- -------------- --------- --------------

#> Male 1276 44.51 44.51 44.51 44.51

#> Female 1591 55.49 100.00 55.49 100.00

#> <NA> 0 0.00 100.00

#> Total 2867 100.00 100.00 100.00 100.00

Next, we create a bar plot to visualize the counting result. We may use different visual-
izations to explore categorical data, but a bar plot is the classic approach visualizing
nominal and ordinal variables.

3.1.1 Bar plots

As the next console shows, I apply first the table() function and save the results as an
object (count_sex). Next, I use the barplot function and insert the object. The result of
the barplot() is displayed on the left side of the next output. For the sake of illustration,
I adjusted several arguments of the second barplot() function on the right side. For
instance, the main argument inserts a title, xlab adds a label for the x-axis, and ylab

for the y-axis.

Count sex

count_sex <- table(df$sex)

Left bar plot

barplot(count_sex)

Right bar plot

barplot(count_sex,

main = "Sex",

ylab = "Count"

)

48 | 3 Data exploration

Male Female

0
50

0
10

00
15

00

Male Female

Sex

C
ou

nt

0
50

0
10

00
15

00

Of course, a bar graph is not the only way to visualize a categorical variable, but a very
popular one. The same applies to pie charts, but in many instances they are a rather
flawed choice when it comes to exploring data, especially if the variable includes a lot
of categories. The next info box on pie charts outlines the main concerns about them.

Data exploration is more fun and goes a lot faster if we use packages that are made
for data exploration purposes. There are several packages you may want to consider if
you start to explore data. Let’s say we want to get a quick overview of all categorical
variables. That is a job for the plot_bar() function from the DataExplorer package,
which returns bar graphs for all categorical variables (Cui, 2020).

Pie charts

As Figure 3.1 shows, approximately 80 percent of all pie charts look like Pac-Man which underlines that
pie charts are both, popular and infamous. Why do many people – including myself – dislike pie charts?

Fig. 3.1: Pie chart vs Pac-Man

I am kidding, but pie charts are infamous because they make it hard to interpret values. A pie chart
does not display the numbers that we actually compare. Look at Figure 3.1. I claimed that 80 percent of
the observed pie charts look like Pac-Man. However, 80 percent of 360 degrees is 288 degrees. So,
pie charts do not display the observed numbers – they display angles of a circle. Angles are harder to
interpret since (most of the time) the angles don’t correspond with the underlying numbers.

3.1 Categorical variables | 49

To compare angles is especially difficult if there are many categories. Figure 3.2 shows a second
example. The graph display two pie charts based on fake data that summarize the number of fruits in
2010 and 2020. At the bottom of the graph, the same numbers are displayed as bar plot. If we would
examine this data with pie charts only, we may miss a significant pattern. As the bar plots highlight,
the order of the fruits changed completely and turned around between 2010 and 2020. In this example
pie charts are a bad design choice, since they do not reveal the pattern. Keep in mind that there is no
visualization that suits all purposes. It is our task to be aware of these limitations and the potential
pitfalls of a graph.

Fig. 3.2: Pie chart pitfalls

Depending on the data, such a plot may become quite large. If you work with a large
data set, you may want to slice the data, to get a clearer picture of individual variables
and I slice the output every now and then to create a smaller output for this book. Since
we use a small data frame, there is no need to filter or slice the data. In our case the
function returns a bar graph for participant’s sex, their happiness, and their ethnic
background.

Plot several bar graphs

library(DataExplorer)

plot_bar(df)

50 | 3 Data exploration

sex happy race

0 500 1000 1500 0 500 1000150020002500 0 500 1000 1500 2000

Other

Black

White

NA

Not happy

Happy

Male

Female

Frequency

Before we can go on to explore a data set, we should first learn more about factor
variables in order to work with categorical variables.

3.1.2 Factor variables

Categorical variables are often saved as factor variables. Look at our bar plot examples:
We get a text label for each graph because the variables are factor variables. Sometimes
you will encounter categorical variables without labels, or you will see labels that are
not optimal for our purposes (e.g., abbreviations such as f for females and m for males).
Thus, we need to know how R deals with factor variables to explore or manipulate
categorical variables.

In the case of participant’s sex, there are two levels defined and the data indicates
whether a person is either female or male. Since sex is a factor variable, missing values
(NA) are automatically excluded and a bar plot displays those text labels and not a
numerical indicator for each group. Often we have no idea what the variable contains
when we start to explore unfamiliar data. The levels() function displays all levels of a
factor variable.

Inspect the levels of a factor variable

levels(df$sex)

#> [1] "Male" "Female"

Factor variables have advantages in terms of computational power, and we can even
include them in an analysis without generating numerical indicators. Unfortunately,
they can also be confusing if you are not used to working with strings or characters.
Maybe you know that statistics software packages often store categorical variables as
integers. R works differently since we can work directly with strings. Nonetheless, R

3.1 Categorical variables | 51

also handles factor variables as integers. The typeof() functions returns the storage
mode of an object and in the case of a person’s sex, the letters are actually stored as
integers.

typeof returns the storage mode

typeof(df$sex)

#> [1] "integer"

We can create a factor variable by hand, which deepens our understanding of how
R deals with them. The next console illustrates how to create a factor variable with
fruit names. If R knows that fruit is a factor variable, only unique levels (fruits) are
returned and R sorts the levels alphabetically.

Create an example factor variable

fruit <- factor(c("pear", "apple", "apple", "cherry", "apple"))

fruit

#> [1] pear apple apple cherry apple

#> Levels: apple cherry pear

Imagine that we conducted a survey. We let the participants rate political topics (e.g.,
climate crisis), and ask them whether a topic is of low, medium, or high importance.
We need to take the sorting of this rating into account and sort the data in an ascending
(descending) way. The next console shows an illustration for an ordinal rating. I gener-
ated a rating variable with three levels (low, medium, high), but R sorts the ratings
alphabetically.

Create a rating variable

rating <- factor(c(

rep("low", 10),

rep("high", 2),

rep("medium", 7)

))

Inspect the order

levels(rating)

#> [1] "high" "low" "medium"

52 | 3 Data exploration

Such an order makes it complicated to read a table or to interpret a bar plot. To sort the
variable correctly, we need to specify the desired order using the levels option in the
factor() function.

Set the levels

rating <- factor(rating,

levels = c("low", "medium", "high")

)

levels(rating)

#> [1] "low" "medium" "high"

Suppose a data set contains participant’s sex, but the variables indicate whether a
person is female (F) or male (M). This is obviously a messy factor variable. Numerical
labels and abbreviations can be very confusing, even if we know what those letters
refer to. At least text labels are easier to read if we generate a table with such variables.

A messy factor variable

sex <- factor(c(

rep("F", 10),

rep("M", 7)

))

A messy table

table(sex)

#> sex

#> F M

#> 10 7

The table function does not return fancy tables anyway, but we have a really hard time
reading such a table, graph, or output if we mix up abbreviations and values. It is better
to include the levels and the corresponding labels for each category in the factor()
function.

Create or adjust the labels

sex <- factor(sex,

levels = c("F", "M"),

labels = c("female", "male")

)

3.2 Continuous variables | 53

table(sex)

#> sex

#> female male

#> 10 7

This is a simple illustration, but labels work regardless of how many levels (or observa-
tions) we examine. We increase our skills to handle factors with the forcats package
in Chapter 5.3, instead we focus now on continuous variables.

3.2 Continuous variables

Base R has built-in functions to calculate summary statistics and we already estimated
a mean() in Chapter 2. There are corresponding functions to estimate other summary
statistics. For instance, finding the minimal value with the min() function, estimating
a median() instead of the mean, or calculating the standard deviation with sd().

Minima

min(c(1, 5, 6, 8, 11))

#> [1] 1

Median

median(c(1, 5, 6, 8, 11))

#> [1] 6

Maxima

max(c(1, 5, 6, 8, 11))

#> [1] 11

Standard deviation

sd(c(1, 5, 6, 8, 11))

#> [1] 3.701351

54 | 3 Data exploration

Estimating summary statics is a piece of cake, but what happens if you apply one of the
summary statistics functions to explore the gss5 data without any data preparation
steps? What is the average age of the observed people?

Mean age

mean(df$age)

#> [1] NA

R tells us that the value is not available (NA). Try it with another function and the results
remain the same: R returns NA. Inspect the data one more time – it has missing values
and we cannot apply the summary functions without first dealing with this problem.
The summary functions return NA if a variable has a missing value.

Missing values

min(3, 5, 6, 8, NA)

#> [1] NA

To apply one of the functions, we must provide a logical indicator to state that missing
values (na.rm) should be removed (TRUE).

The na.rm argument removes missing values

mean(df$age, na.rm = TRUE)

#> [1] 49.15576

Keep in mind, excluding missing values may have strong implications and may distort
estimation results. It is fine to remove missing values when we explore data, but drop-
ping missing or implausible values is a serious concern and can be interpreted as data
falsification. We will elaborate on our knowledge to assess under which circumstances
it is (not) okay to drop missing values and revisit this topic in Chapter 5.

The base R functions to estimate summary statistics are straight forward, but they
return only one result at a time. To get a better intuition about the distribution of a
variable, we need to take all of them into account. The summary() function returns the
entire range and the number of missing values. How is age distributed?

Summary statistics of one variable

summary(df$age)

#> Min. 1st Qu. Median Mean 3rd Qu. Max. NA's

3.2 Continuous variables | 55

#> 18.00 34.00 49.00 49.16 62.00 89.00 10

As the summary() function shows, participants are on average 49 years old, with a
minimum of 18 and a maximum of 89, while this information is not available (NA) in
ten cases.¹Moreover, the summary() function returns a summary for all variables of a
data frame.

Summary statistics of the first four variables

summary(df[1:4])

#> age sex happy race

#> Min. :18.00 Male :1276 Happy :2407 White:2100

#> 1st Qu.:34.00 Female:1591 Not happy: 452 Black: 490

#> Median :49.00 NA's : 8 Other: 277

#> Mean :49.16

#> 3rd Qu.:62.00

#> Max. :89.00

#> NA's :10

Calculating summary statistics is no big deal, but what if you want to create a table for
a report with all summary statistics? How do we calculate the summary statistics for
several variables without much effort? There are different packages that help you to cre-
ate a descriptive statistics table without calculating any statistic by hand. For instance,
the descr() function from the summarytools package returns summary statistics for all
numerical variables with very little programming effort. As the next console shows, the
descr() function only expects a data frame as input and returns descriptive statistics
for all numerical variables which we will use to generate a table (see Chapter 8).

The descr() function returns descriptive summary statistics

library(summarytools)

descr(df,

stats = c("min", "mean", "sd", "max")

)

#> Descriptive Statistics

#> df

#> N: 2867

1 Sometimes you wish for a fine-grained result to inspect how a variable is distributed. The quantile()
function lets you adjust the probabilities and split the range of the variable, for example, in ten percent
increments.

56 | 3 Data exploration

#>

#> age income

#> ------------- ------- --------

#> Min 18.00 1.00

#> Mean 49.16 17.37

#> Std.Dev 17.69 5.83

#> Max 89.00 26.00

Furthermore, you can adjust which summary statistics are returned with the stats

option. If you do not provide input for the stats option, the function returns the entire
list of all computed summary statistics (e.g., for all numerical variables of gss2016
data). Next we get in touch with histograms and box plots.

3.2.1 Histograms

A common way to visualize the distribution of a continuous variable is a histogram.
The bars of a histogram do not represent distinct groups, instead they visualize the
frequency. The histogram splits the range of a numerical variable into sections (bins or
breaking points) and depicts the frequency of the estimated bins.

In base R we use the hist() function. The next console shows you two examples
which I made to explore how people’s age is distributed. On the left side you can see
the result of the basic hist() command. Additionally, I adjusted several options of
the hist() function on the right side. Even though we will not systemically learn how
to customize graphs in this chapter, we have to at least discuss the most important
parameters of the histogram. The number of bins (the option breaks) determines how
the distribution is shaped because it defines how many bins should be used. If you
increase (decrease) the number of bins manually it may not match exactly with the
graph due to the underlying algorithm used to create the histogram. In addition, I set
the freq argument to FALSE in order to examine the density instead of the frequencies;
I add a title (main); and a label for the axis (xlab).

Left histogram

hist(df$age)

Right histogram

hist(df$age,

breaks = 6,

freq = FALSE,

main = "Density",

xlab = "Age"

)

3.2 Continuous variables | 57

Histogram of df$age

df$age

Fr
eq

ue
nc

y

20 40 60 80

0
10

0
20

0
30

0
Density

Age
D

en
si

ty
20 40 60 80

0.
00

0
0.

01
0

0.
02

0
In the last sectionwe used the plot_bar() function to create a bar plot for all categorical
variables. The plot_bar() function has siblings to display continuous variables. For
example, the plot_density() function returns density plots and the plot_histogram()
returns histograms. As the next console shows, we get a histogram for age, income, or
for all continuous variables if we do not restrict the data.

Plot several histograms

DataExplorer::plot_histogram(df)

age income

25 50 75 0 10 20

0

100

200

0

50

100

150

value

Fr
eq

ue
nc

y

3.2.2 Box plots

A box plot displays the variation of the variable without making an assumption of the
underlying statistical distribution. With the help of boxes and whiskers, it splits the
range of a variable to depict the statistical dispersion. Figure 3.3 shows an example

58 | 3 Data exploration

which underlines how boxes and whiskers are interpreted. The box represents the
interquartile range (i.e., the difference between the 75th and 25th percentiles of the
data), the whiskers point to the minimum and maximum of the distribution, while
potential outliers are displayed as dots.

Fig. 3.3: Illustration of a box plot

Box plots are useful to compare groups. Which group has a higher (lower) median,
which one a wider range, and what about outliers? For instance, do men have a higher
income than women? Actually, income is a factor variable in the gss2016 data, but it
has many levels, which is why we can perceive it as quasi-numerical. In order to use
such a variable, we may create a numerical income variable first. So, keep in mind
that our variable does not measure income numerically, but income levels. I used the
as.numeric() function to prepare the data and the income variable is already numerical
(see Chapter 5).

We create a box plot with the corresponding function in base R, as the next plot
on the left side shows. The second plot on the right side illustrates several options of
the boxplot() function. As the next console shows, you can make several box plots to
compare groups if you provide an independent variable (e.g., sex), separated with a
tilde (~) operator. In addition, use the horizontal option to align the boxes horizontally
or vertically.

#Left box plot

boxplot(df$income,

horizontal = TRUE)

#Right box plot

boxplot(income~sex,

data=df)

3.2 Continuous variables | 59

0 5 10 15 20 25 Male Female

0
5

10
20

sex
in

co
m

e
Box plots are made to visualize the summary statistics, but they have limitations re-
garding the representation of data. The underlying distribution of each group might
be very different, but we merely see the distribution based on the displayed boxes and
not the data. Furthermore, the number of observations could be unevenly distributed
within groups and a visual representation of the data is not included. For instance, we
could display both boxes and data points in one graph and add the number of each
group in the graph (which we may make with ggplot2, see Chapter 7). Thus, graphical
procedures to visualize data have their limitations. This is the case for box plots, but
applies to other visualizations as well.

We explore variables to get familiar with the data, yet we can also create a report
for the entire data. For example, the create_report() function from the DataExplorer
package generates an automated HTML report with statistics and graphs. The report
shows the structure of the data, the number of missing values, and even a correlation
analysis. Such a document is awesome if you have little knowledge about the data.
Moreover, the create_report() function comeswith several options to adjust the report.
Maybe you wish a PDF instead of an HTML file (via output_file); or you want to give
the exported file a proper name (via output_format). The create_report() function
saves the file in the working directory.

Create a data report

library(DataExplorer)

create_report(insert_data,

output_file = "my_report.pdf",

output_format = "pdf_document"

)

The graphs from DataExplorer and other packages look different than the base R
graphs, becausemany packages use ggplot2 to create graphs. If you are not happy with
the look and feel of base R graphs, read the next info box and inspect the ggblanket
package (Hodge, 2022).

60 | 3 Data exploration

The ggblanket package

Chapter 7 focuses entirely on visualization and we need a complete chapter to introduce the ggplot2
package because it implements a theoretical position, plus there are many cool package extensions
that wait to get discovered. Moreover, we did not start with ggplot2 because the code to create and
customize a graph can become complex and base R provides many graphs to explore data quickly.

However, if you are not happy with the look and feel of base R graphs, inspect the ggblanket

package. It provides functions to simplify the visualization process, for many standard graphs with
ggplot2. As the next console illustrates, the package provides several gg_* functions, for example, to
make a bar graph or a histogram.

library(ggplot2)

library(ggblanket)

Left plot

gg_bar(df, x = sex)

Right plot

gg_histogram(df, x = age)

0

500

1,000

1,500

2,000

Male Female
Sex

C
ou

nt

0

50

100

150

200

20 40 60 80
Age

C
ou

nt

The package makes it convenient to create graphs and it returns ggplot2 objects. In consequence, all
knowledge that we are going to acquire in Chapter 7 can also be applied to graphs that are made with
the ggblanket package. The same applies to graphs from DataExplorer and other ggplot2 extensions.
As long as they return ggplot objects – and the class() function reveals what kind of object a package
returns – we can apply our acquired knowledge.

3.3 Explore effects

To explore effects implies that we examine the effect of an independent variable (x)
on a dependent variable (y). In other words, we start to analyze data. Maybe you are
wondering why we explore effects when this book has a chapter about data analysis.
We focus on numerical outcomes in Chapter 6 only and learn how to apply a linear

3.3 Explore effects | 61

regression analysis in R. You might be tempted to run a regression or another analysis
technique before you have explored the variables. This is a bad idea, because you miss
the opportunity to learn more about the data and its potential pitfalls (such as missing
values, outliers, etc.).

For this reason, we first explore effects in this section. We start simple and generate
a cross table to examine categorical outcomes and differences between groups. Next,
we extend our knowledge to numerical outcomes and determine whether two variables
are related, calculate correlation coefficients for two andmore variables, and use scatter
plots to visualize the effect.

3.3.1 Categorical outcomes

Suppose we examine life satisfaction (happy) and we ask whether male or female
persons are happier. The happy variable has two levels, which makes the interpretation
a piece of cake.

The levels of happy

levels(df$happy)

#> [1] "Happy" "Not happy"

Actually, I created a binary variable and I collapse two levels of the happy variable
(Very Happy and Pretty Happy from the gss2016 data). In Chapter 5, we learn how to
manipulate factor variables in detail with the help of the forcats package, but a first
glimpse does not harm. I collapsed levels with the fct_collapse() function, as the
next console illustrates with toy data.

Collapse level of a factor variable with fct_collapse

x <- c("Pretty Happy", "Not happy", "Very Happy")

forcats::fct_collapse(x,

Happy = c("Pretty Happy", "Very Happy")

)

#> [1] Happy Not happy Happy

#> Levels: Not happy Happy

So, we use the latter example to highlight why a cross table (contingency table) might
not be fancy but worth starting with. The table() function creates a cross table if we
include a second variable.

62 | 3 Data exploration

A simple table

table(dfsex, dfhappy)

#>

#> Happy Not happy

#> Male 1082 191

#> Female 1325 261

Again, the table is not very informative because it returns absolute values only. The
ctable function from the summarytools package returns a simple cross table with row
(r) proportions (prop) as the default. As the next console shows, obviously, there seems
to be no significant difference if we compare women and men in terms of happiness.

A cross table

summarytools::ctable(

x = df$sex,

y = df$happy,

prop = "r"

)

#> Cross-Tabulation, Row Proportions

#> sex * happy

#> Data Frame: df

#>

#> -------- ------- -------------- ------------- ---------- ---------------

#> happy Happy Not happy <NA> Total

#> sex

#> Male 1082 (84.8%) 191 (15.0%) 3 (0.2%) 1276 (100.0%)

#> Female 1325 (83.3%) 261 (16.4%) 5 (0.3%) 1591 (100.0%)

#> Total 2407 (84.0%) 452 (15.8%) 8 (0.3%) 2867 (100.0%)

#> -------- ------- -------------- ------------- ---------- ---------------

It becomes more complicated if more groups or levels are included, but the interpreta-
tion of a cross table is straight forward when both variables are binary. We can adjust
the default and print column (c) or total (t) proportions by adjusting the prop option.
Moreover, the function can even return the chi-square statistic, the odds ratio, and the
relative risk if you add the corresponding options.

Keep the numbers of the cross table in mind, because we could visualize the results
of the cross table with the help of a mosaic or spine plot. The width of the boxes on a
mosaic plot is proportional to the number of observations within each category that we
observe. Use the spineplot() function, insert the variables, and define the relationship

3.3 Explore effects | 63

by using the tilde (~) operator. The dependent variable is on the left side, while the
independent variable is on the right side of the tilde.

Boxes are proportional to the number of observations

spineplot(happy ~ sex,

data = df

)

sex

ha
pp

y

Male FemaleN
ot

 h
ap

py
H

ap
py

0.
0

0.
4

0.
8

As the spine plot shows, we observe slightlymore women thanmen, but the proportions
are almost the same and we do not observe any substantial differences. The actual
strength of a spline plot becomes visible if there is a substantial effect between groups
(see Chapter 7.3 for an example). Ultimately, we use scatter plots and estimate the
correlation coefficient to explore an effect on a continuous outcome.

3.3.2 Continuous outcomes

After we have explored the variables and checked the distribution, you may examine
whether two continuous variables are associated with each other. The gss5 data con-
tains participant’s age and income and we may assume that older participants have a
higher income. A scatter plot is the standard graph to explore the association between
two numerical variables. The plot() function depicts each observation of x and y in a
coordinate system with a dot (or another symbol via the pch option) if we insert two
numerical variables. Furthermore, the abline() function includes a linear regression
line, which gives us an impression of how the variables are related to each other. To
put it simply, the regression line shows us the expected value of y for a given x (see
Chapter 6 for more information about regression analyses). In addition, we may use a
different color (col) for the regression line, which often makes it easier to see the line.

Create a scatter plot (with filled circles and without a frame)

plot(

y = df$income, x = df$age,

64 | 3 Data exploration

pch = 20, frame = FALSE

)

And a red regression line

abline(lm(income ~ age, data = df),

col = "red"

)

20 30 40 50 60 70 80 90

0
5

10
20

df$age

df
$i

nc
om

e

As the scatter plot shows, there is no linear trend visible. Regardless of which prelimin-
ary conclusion we may arrive at, scatter plots are very useful to explore linear trends,
yet sometimes it can be tricky to tell if variables are correlated and, if so, how strong
the association is.

A correlation coefficient ranges from -1 to 1 and quantifies the strength of a linear
effect. The corresponding function in R is cor(). Insert y and x into the function and it
returns Pearson’s r by default. Furthermore, the cor function does not know what to
do if we have a missing values problem. As the next console shows, we can use only
complete observations by adding the use option. Excluding data is fine if you start to
explore data, but we must soon expand our knowledge about missing values!

By default, the cor function returns Pearson's r

cor_value <- cor(df$income, df$age, use = "complete")

cor_value

#> [1] 0.01747172

There is not even a moderate correlation between x and y and we cannot predict a
person’s income if we know their age. How did I come to this conclusion? A lot of
students in the social sciences learn the rules to interpret effect sizes proposed by
Cohen (1988). Cohen differentiates between very small (r < 0.1), small (0.1 <= r < 0.3),
moderate (0.3 <= r < 0.5) and large (r >= 0.5) effects. Such rules are arbitrary, but they
provide a convention to determine the effect size.

3.3 Explore effects | 65

There is a convenient way to assess whether the effect is small, moderate or large.
Let R – respectively the effectsize package – do that job for you (Ben-Shachar et
al., 2022). The interpret_r() function returns the effect size. Insert a value or the
corresponding correlation coefficient. With the rules option, you can apply different
rules to assess the effect. Let’s stick to Cohen’s (1988) rules and the last example to see
how it works. We have saved the correlation coefficient as cor_value. Just insert the
object into the interpret_r() function.

The effect size package interprets r

library(effectsize)

interpret_r(cor_value, rules = "cohen1988")

#> [1] "very small"

#> (Rules: cohen1988)

The cor() function is easy to apply but it does not evaluate whether the association is
statistically significant and we had to tweak the options to adjust for missing values.
The correlation package makes our life easier when we need to estimate correlation
coefficients (Makowski, Wiernik, et al., 2022). For instance, suppose we examine the
results of a survey that includes several items to measure a latent variable based on
several indicators (e.g., environmental consciousness). We get a very quick overview
about each variable and how they are related if we use the correlation package instead
of base R.

The correlation() function excludes non-numerical data, returns the statistical
significance, andwe can inspect the results for an entire data frame (correlationmatrix).
The next console shows the functionwith the build-in mtcarsdata set. The gss2016data
contains only a limited number of numerical variables. The mtcars data set contains
many numerical variables whichmakes it easier to see the real strength of the approach.
The next console illustrates it with three numerical variables from the mtcars data.

Estimate several correlation coefficients on the fly

library(correlation)

correlation(mtcars[1:3])

#> # Correlation Matrix (pearson-method)

#>

#> Parameter1 | Parameter2 | r | 95% CI | t(30) | p

#> --

#> mpg | cyl | -0.85 | [-0.93, -0.72] | -8.92 | < .001***

#> mpg | disp | -0.85 | [-0.92, -0.71] | -8.75 | < .001***

#> cyl | disp | 0.90 | [0.81, 0.95] | 11.45 | < .001***

66 | 3 Data exploration

Unfortunately, the more variables we include, the more complicated it becomes to
inspect each coefficient. We have to check each coefficient, assess the effect size and
determine if there is a small, moderate or large correlation between two variables. Some
of the variables are positively associated; others are negatively associated, whichmakes
it difficult to inspect each coefficient with such a table.

The corrplot package lets us create a correlation plot (Wei & Simko, 2021), which
depicts correlation coefficients with the help of color. As the next console shows, we
can use the corrplot() function to depict the correlation of the numerical variables
from the mtcars data. In order to do so, we calculate a correlation matrix (corr_matrix)
with the cor() function first, which creates a matrix with all correlation coefficients.
Next, we insert the objects in the corrplot() function for the default plot on the left
side. The plot on the right side shows several options.

Left plot: A correlation plot example

library(corrplot)

corr_matrix <- cor(mtcars)

corrplot(corr_matrix)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

m
pg

cy
l

di
sp

hp dr
at

w
t

se
c

vs am ge
ar

ca
rb

mpg

cyl

disp

hp

drat

wt

sec

vs

am

gear

carb

0.79

0.7

0.48

0.21

-0.21

-0.58

-0.56

-0.49

-0.13

0.27

0.71

0.6

0.17

-0.23

-0.69

-0.59

-0.52

-0.24

0.06

0.68

0.44

0.09

-0.71

-0.71

-0.7

-0.45

-0.09

0.66

0.42

-0.87

-0.85

-0.85

-0.78

-0.55

0.74

-0.55

-0.71

-0.81

-0.72

-0.57

-0.17

-0.43

-0.59

-0.71

-0.66

0.89

0.78

0.66

0.43

0.9

0.79

0.39

0.83

0.53 0.75

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

ge
ar

am

dr
at

m
pg

vs

se
c

w
t

di
sp

cy
l

hp

am

drat

mpg

vs

sec

wt

disp

cyl

hp

carb

As the plot on the right side shows, the package offers a lot of options. For example,
the order option lets you sort the variables (e.g., in accordance with their effect size);
estimate p-values (p.mat) to see if a correlation is (not) significant; we can display
the entire matrix or only upper or lower triangular matrix (type); and adjust whether
the coefficients on the diagonal (diag) are displayed. Consider the help files for more
information and the next console for the discussed options.

3.3 Explore effects | 67

Estimate p-values

p_values <- cor.mtest(mtcars, conf.level = 0.95)

Right plot

corrplot(corr_matrix,

order = "AOE",

p.mat = p_values$p,

type = "lower",

diag = FALSE

)

Ultimately, keep in mind that a correlation does not express whether two variables are
related. A correlation coefficient of zero implies only that there is no linear association
between the variables. In a similar sense, we cannot say that x is a cause for y even if
the correlation is large. We observe only the co-variation of the examined variables. We
will deepen those concerns and increase our knowledge about causality – at least a
bit – in Chapter 6. Before we summarize the chapter, the next info box outlines data
exploration tips for Excel users by introducing the rpivotTable package (Martoglio,
2018).

The rpivotTable package

Do you belong to the dark side of data exploration? Have you ever used Excel to explore data? As luck
would have it, R integrates several features of the dark side, which makes your decision easier in terms
of data exploration. Don’t get me wrong, I am not saying that Excel has no raison d’être, no right to exist,
but people often claim that data management steps are easier to apply with Excel. You can literally see
the data and exploring data is as easy as the click of a button. Give the rpivotTable package a try. The
package creates a graphical interface which lets you interact with data in the same way as with pivot
tables in Excel. Insert a data frame in the rpivotTable() function and it will open an interface in the
viewer.

Such tools are awesome when exploring unknown data quickly. I might sound like a James Bond
villain because I did not mention it in the beginning of this chapter. Can you believe it, there are
graphical interfaces for R which let you work with R just by clicking on a button? However, clicking
buttons may create a huge problem soon, which is the reason why I did not introduce interfaces.

Let me explain: Suppose you analyzed data with Excel. After three months the data gets an update.
Are you still able to remember all data preparation steps that you made? Without code, you cannot
reproduce your work and in absence of a script that does the work for you, you will have to remember
and repeat all these (manual) steps. Moreover, it is not only about reproducibility. Say you sent the
analysis to a colleague who realized that you made a mistake. The mistakes force you to rerun the
applied steps. If your script shows each step, it becomes easier to narrow down where the problem
might be coming from. Certainly, it’s up to you which side appears shinier, but it’s a bit more than
Excel-bashing from my side. Using a graphical interface will get you in touch with data, but using code
will make your work reproducible. You can see each step and, if you are lucky, see the errors as well.

68 | 3 Data exploration

Summary

This chapter introduced typical steps to explore data. We examined categorical and
continuous variables andwe started to discover how variables are related. Keep inmind
that graphs are especially valuable to explore data, variables and effects, even if our
first steps are preliminary in nature. Furthermore, I outlined that, besides functions and
graphs from base R, several packages to explore data are worth to consider. We used
the summarytools to create frequency and cross tables; the DataExplorer package
to visualize categorical and numerical variables; and the correlation package to
estimate several correlation coefficients efficiently. Those packages are not the only
ones available to explore data and I did not dissect all the functions that they provide, I
just highlighted some of the possibilities to explore data quickly. Inspect the packages
(e.g., vignettes, website) for more information. In addition, check out the GGally and
the skimr packages which also provide ideas and functions to explore data (Schloerke
et al., 2021; Waring et al., 2022).

Data exploration steps lay the groundwork for the next stages of applied research.
Exploring data helps us to get familiarized with the data, we get to know how the
variables are measured, and which analyses we may apply. In the next step we focus
on data manipulation steps in order to prepare variables for an analysis.

4 Data manipulation
The last chapter of Part I focuses on data manipulation steps. Up to this point we have
explored data and applied statistics. To become more efficient using R, you have to
transfer the acquired knowledge and apply it in different contexts. To prepare you for
this journey, Part II concentrates on the entire process of applied research, but before
we start over, this last chapter will focus on typical steps of data manipulation. You
can perform many typical steps of data manipulation with the dplyr package and with
the knowledge of base R that we have learned so far.
– In Section 4.1, we learn the five key functions of the dplyr package (Wickham,

François, et al., 2022). For instance, suppose the data is large, which is whywe can’t
work with the entire data set. The dplyr package helps you to focus on a narrow
data frame by introducing a filter() function that is more user-friendly than base

R solutions.
– Section 4.2 introduces additional features from the dplyr package. Most of the time

weworkwith data that was compiled by someone else. This implies that you have to
prepare data and generate new variables based on the values of other variables. For
example, a nominal variable contains several group levels, but we want to compare
only two of them. This section focuses on such steps and introduces additional
functions from the dplyr package to manipulate data. Moreover, in this section we
use actual survey data and I will introduce further data sources which give an idea
where to apply your dplyr skills next. Before we start to analyze data on a regular
base, the last section concentrates on how we work with R.

– Section 4.3 tries to increase the efficiency of our workflow and discusses how we
can improve working with R. Talking about workflow and efficiency might sound
boring, and you probably did not expect such a topic. However, some workflow
aspects are so essential, that I believe, we need to discuss them before we can dig
deeper. I give you some recommendations regarding scripts that will help you to
structure and reuse your work, I outline the advantages of RStudio’s projects, and I
introduce code snippets which aim to reduce the time and effort applying code.

You need to load the dplyr package which is included in the tidyverse package. In
case you are not following the course of the book, install it with install.packages().
Moreover, this chapter needs the following packages.

Setup of Chapter 4

library(dplyr)

library(magrittr)

library(PracticeR)

library(tidyr)

https://doi.org/10.1515/9783110704976-004

70 | 4 Data manipulation

library(tibble)

library(usethis)

4.1 The five key functions of dplyr

Figure 4.1 highlights the key functions (or verbs) from the dplyr package based on an
illustration of a small data set where boxes represent the cells of a data set. Figure 4.1
(A) displays the raw data. It contains three persons (ID) and we observed their sex and
year of birth.

Fig. 4.1: The five dplyr functions

There are five key functions to manipulate data: (1) Apply a filter and subset the data. As
Figure 4.1 (B) shows, we may examine male (m) persons only by using a filter() first.
(2) Arrange data. Figure 4.1 (C) illustrates that we can arrange() the years in ascending
(or descending) order. (3) Select variables, especially if a data set contains so many
variables that it is hard to see what is going on in the first place. Create a smaller data
set and, as Figure 4.1 (D) depicts, select one or several variables from the raw data. The
last two key functions are mutate() and summarize(). (4)Mutate new variables. For
example, estimate how old the participants are (in 2021) based on the year of birth
and mutate() a new age variable (see Figure 4.1 [E]). (5) Summarize the data. Figure 4.1

4.1 The five key functions of dplyr | 71

(F) highlights that we can estimate the average age of the participants or use other
functions to summarize the data.

So, let’s see how this works by using the implemented mtcars data set. To under-
stand what we are actually doing, we should first briefly inspect the data. As the next
output shows, the data comprises fuel consumption and other aspects about cars. For
instance, mpg contains how many miles per gallon a car runs and cyl is the number
of cylinders of the car’s engine. All eleven variables are numerical with thirty-two
observations. Moreover, I used the as_tibble() function to convert the data frame (df)
to a tibble, which makes the output a bit nicer.

The mtcars data set

df <- tibble::as_tibble(mtcars)

head(df)

#> # A tibble: 6 x 11

#> mpg cyl disp hp drat wt qsec vs am

#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 21 6 160 110 3.9 2.62 16.5 0 1

#> 2 21 6 160 110 3.9 2.88 17.0 0 1

#> 3 22.8 4 108 93 3.85 2.32 18.6 1 1

#> 4 21.4 6 258 110 3.08 3.22 19.4 1 0

#> 5 18.7 8 360 175 3.15 3.44 17.0 0 0

#> # ... with 1 more row, and 2 more variables: gear <dbl>,

#> # carb <dbl>

Often we work with larger data sets that have a lot more variables and observations.
Working with a large data set needs more computational power and there is always a
risk that you lose overview. In such a case we may use a filter() which helps us to
focus only on those variables we are interested in.

4.1.1 Filter

Use the filter() function to create a subset of the data based on values of variable(s).
Insert the data and outline the filter condition(s). We can use any mathematical argu-
ments to filter the data. For instance, restricting the data and creating a data frame that
contains cars with more than 100 horsepower (hp > 100).

Use one or more conditions to filter the data

filter(df, hp > 100)

72 | 4 Data manipulation

#> # A tibble: 23 x 11

#> mpg cyl disp hp drat wt qsec vs am

#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 21 6 160 110 3.9 2.62 16.5 0 1

#> 2 21 6 160 110 3.9 2.88 17.0 0 1

#> 3 21.4 6 258 110 3.08 3.22 19.4 1 0

#> 4 18.7 8 360 175 3.15 3.44 17.0 0 0

#> 5 18.1 6 225 105 2.76 3.46 20.2 1 0

#> # ... with 18 more rows, and 2 more variables: gear <dbl>,

#> # carb <dbl>

The dplyr package filters the data depending on the specified conditions and returns
a new data frame. Now only cars with hp > 100 are included, but we can use any
condition to filter the data. For example, our research question may only apply to a
certain age group and we can use a filter to get rid of observations that we do not want
to include in the analysis.

The next console shows several examples to highlight how logical and relational
operators can be implemented and combined to filter data.

Filter with logical and relational operators (see Chapter 2)

Cars with automatic transmission only (equal to: ==)

filter(mtcars, am == 0)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> Hornet 4 Drive 21.4 6 258.0 110 3.08 3.215 19.44 1 0 3 1

#> Hornet Sportabout 18.7 8 360.0 175 3.15 3.440 17.02 0 0 3 2

#> Valiant 18.1 6 225.0 105 2.76 3.460 20.22 1 0 3 1

#> Duster 360 14.3 8 360.0 245 3.21 3.570 15.84 0 0 3 4

#> Merc 240D 24.4 4 146.7 62 3.69 3.190 20.00 1 0 4 2

#> Merc 230 22.8 4 140.8 95 3.92 3.150 22.90 1 0 4 2

Cars with manual transmission only (not equal to: !=)

filter(mtcars, am != 0)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> Mazda RX4 21.0 6 160.0 110 3.90 2.620 16.46 0 1 4 4

#> Mazda RX4 Wag 21.0 6 160.0 110 3.90 2.875 17.02 0 1 4 4

#> Datsun 710 22.8 4 108.0 93 3.85 2.320 18.61 1 1 4 1

#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1

#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2

#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

4.1 The five key functions of dplyr | 73

And combine conditions

Cars with automatic transmission and (&) large horsepower

filter(mtcars, am == 0 & hp > 200)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> Duster 360 14.3 8 360 245 3.21 3.570 15.84 0 0 3 4

#> Cadillac Fleetwood 10.4 8 472 205 2.93 5.250 17.98 0 0 3 4

#> Lincoln Continental 10.4 8 460 215 3.00 5.424 17.82 0 0 3 4

#> Chrysler Imperial 14.7 8 440 230 3.23 5.345 17.42 0 0 3 4

#> Camaro Z28 13.3 8 350 245 3.73 3.840 15.41 0 0 3 4

Cars with large horsepower OR (|) high consumption

filter(mtcars, hp >= 250 | mpg > 25)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> Fiat 128 32.4 4 78.7 66 4.08 2.200 19.47 1 1 4 1

#> Honda Civic 30.4 4 75.7 52 4.93 1.615 18.52 1 1 4 2

#> Toyota Corolla 33.9 4 71.1 65 4.22 1.835 19.90 1 1 4 1

#> Fiat X1-9 27.3 4 79.0 66 4.08 1.935 18.90 1 1 4 1

#> Porsche 914-2 26.0 4 120.3 91 4.43 2.140 16.70 0 1 5 2

#> Lotus Europa 30.4 4 95.1 113 3.77 1.513 16.90 1 1 5 2

Keep in mind that the dplyr package never modifies, but creates a new data frame. Use
the assignment operator (<-) to save the results.

4.1.2 Arrange

Sometimes we need to arrange or sort the data, and whilst doing so we might even
realize that we made mistakes during the data manipulation step. Suppose we grade
an exam. The data contains the points pupils gained in a test and we must create a new
variable with their grades depending on their test score. Arrange the data to see if the
pupils get the right grades – arranged data makes it easier to spot possible problems
from the manipulation step.

Use the arrange() function to sort or arrange the order of single or several variables.
For example, we can arrange the cars from the lowest to the highest value of horsepower.

Arrange in an ascending order

arrange(df, hp)

#> # A tibble: 32 x 11

74 | 4 Data manipulation

#> mpg cyl disp hp drat wt qsec vs am

#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 30.4 4 75.7 52 4.93 1.62 18.5 1 1

#> 2 24.4 4 147. 62 3.69 3.19 20 1 0

#> 3 33.9 4 71.1 65 4.22 1.84 19.9 1 1

#> 4 32.4 4 78.7 66 4.08 2.2 19.5 1 1

#> 5 27.3 4 79 66 4.08 1.94 18.9 1 1

#> # ... with 27 more rows, and 2 more variables: gear <dbl>,

#> # carb <dbl>

Add a second variable and R will sort the data accordingly; or use desc() to sort the
data in a descending order:

Arrange in a descending order

arrange(df, desc(hp))

#> # A tibble: 32 x 11

#> mpg cyl disp hp drat wt qsec vs am

#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 15 8 301 335 3.54 3.57 14.6 0 1

#> 2 15.8 8 351 264 4.22 3.17 14.5 0 1

#> 3 14.3 8 360 245 3.21 3.57 15.8 0 0

#> 4 13.3 8 350 245 3.73 3.84 15.4 0 0

#> 5 14.7 8 440 230 3.23 5.34 17.4 0 0

#> # ... with 27 more rows, and 2 more variables: gear <dbl>,

#> # carb <dbl>

4.1.3 Select

The select() function helps us to focus on a subset of the data. The mtcars data is
neither messy nor big, but we can learn the principles of column selection anyway. Use
select() and specify which variables (e.g., mpg, hp) we want to keep from the data. The
dplyr package returns a new data frame that contains the selected variables only.

Select mpg and hp

select(df, mpg, hp)

#> # A tibble: 32 x 2

#> mpg hp

#> <dbl> <dbl>

#> 1 21 110

#> 2 21 110

4.1 The five key functions of dplyr | 75

#> 3 22.8 93

#> 4 21.4 110

#> 5 18.7 175

#> # ... with 27 more rows

Now your base R skills come into play. Remember, you can select several columns
without typing each of their names. Just choose a starting and endpoint and combine
them with a colon. For example, you can select all columns between two variables.

Select variables by providing a start and an endpoint
select(df, mpg:hp)

#> # A tibble: 32 x 4

#> mpg cyl disp hp

#> <dbl> <dbl> <dbl> <dbl>

#> 1 21 6 160 110

#> 2 21 6 160 110

#> 3 22.8 4 108 93

#> 4 21.4 6 258 110

#> 5 18.7 8 360 175

#> # ... with 27 more rows

Maybe we want to select all columns except the variables shown in the last output. This
is not a complicated task. We exclude them with the minus (-) sign. Thus, select all
variables expect all columns between mpg and hp.

Reverse the selection

select(df, -(mpg:hp))

#> # A tibble: 32 x 7

#> drat wt qsec vs am gear carb

#> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 3.9 2.62 16.5 0 1 4 4

#> 2 3.9 2.88 17.0 0 1 4 4

#> 3 3.85 2.32 18.6 1 1 4 1

#> 4 3.08 3.22 19.4 1 0 3 1

#> 5 3.15 3.44 17.0 0 0 3 2

#> # ... with 27 more rows

To manipulate variables implies that we have to focus on the variables that we need
to prepare for the analysis and select() helps us to generate a narrow data frame,

76 | 4 Data manipulation

but it returns a new data frame even if we select one variable (column vector). We can
examine if an object is a data frame with the is.data.frame() function.

Select returns a data frame

hp <- select(df, hp)

is.data.frame(hp)

#> [1] TRUE

However, sometimes we want to select the vector and not a data frame. This is the
difference between select() and pull(). The select() function returns a data frame,
while pull() extracts a column vector, as the next console illustrates.

Use pull to extract a variable/column vector

hp <- pull(df, hp)

is.vector(hp)

#> [1] TRUE

There are more tricks on how to select variables, especially regarding variable strings
and running numbers. For example, somedata sets contain several variables tomeasure
one construct, or there are several index variables with a running number. Hopefully
those variable names all start with the same string, so you can select them by adding
starts_with("var_") in the select function. The dplyr package checks the variables
names and includes variables whose name starts with the corresponding string. A
similar function exists for the last letters. Instead of looking at the first string characters,
the option ends_with("string") checks the end of the string. Or if the variables in
your data contain a running number, say the variables from var1 to var10, the option
num_range("var", 1:10) includes all ten variables.

4.1.4 Mutate

Raw data often does not contain variables that are prepared for the analysis. In this
case, we need to transform the data and generate a new variable that depends on the
values of other variables. Here mutate() comes into play, which adds a new variable (or
column). First, we need a narrow data set, otherwise we cannot see the added variables
in the output of the console. Let’s select the variable hp and assign the result as a new
data frame (df_small).

4.1 The five key functions of dplyr | 77

Create a small(er) subset

df_small <- select(df, hp)

head(df_small)

#> # A tibble: 6 x 1

#> hp

#> <dbl>

#> 1 110

#> 2 110

#> 3 93

#> 4 110

#> 5 175

#> # ... with 1 more row

For instance, let’s assume we have to report howmuch kilowatt (kw) a car’s engine has,
but the data contains only the gross horsepower (hp) of a car. We can extend the data
frame and generate the new variable kw by multiplying hp with a conversion factor.

Mutate and create new variables

conversion <- 0.74570

mutate(df_small,

kw = hp * conversion,

hp_new = round(kw * 1.34102, 2)

)

#> # A tibble: 32 x 3

#> hp kw hp_new

#> <dbl> <dbl> <dbl>

#> 1 110 82.0 110

#> 2 110 82.0 110

#> 3 93 69.4 93

#> 4 110 82.0 110

#> 5 175 130. 175

#> # ... with 27 more rows

The mutate() function extends the data and calculates a new variable. We can even
generate a second variable which depends on the values of the first variable. Look at
the variable hp_new. I had no idea how to transform horsepower into kilowatt, so I used
Google to find the conversion factor. To assess the approach, I reversed the calculation
and saved the results as an additional variable. Thus, you can generate several variables

78 | 4 Data manipulation

on the fly. In terms of datamanipulation, wemust checkwhether our datamanipulation
steps really work out. As the output shows, we can use other R functions (see Chapter
2) as well. Thus, use arithmetic operators (e.g., +, -), logical comparisons (e.g., <, ==),
and functions (e.g., log) to generate new variables.

Each time we extend the data set, we will extend the output, which makes it harder
to spot the variable and errors of the data manipulation step. Fortunately, mutate() has
a counterpart function called transmute(). As default, mutate() keeps all variables,
transmute() keeps only variables that are listed in the function and the new ones. As
the next console shows, use mtcars instead of the smaller data frame and create the
kw variable one more time, but now with transmute(). We get the same results, even
though we skipped the selection step.

Transmute keeps only new (or listed) variables

transmute(mtcars,

hp,

kw = hp * conversion

)

#> hp kw

#> Mazda RX4 110 82.0270

#> Mazda RX4 Wag 110 82.0270

#> Datsun 710 93 69.3501

#> Hornet 4 Drive 110 82.0270

#> Hornet Sportabout 175 130.4975

#> Valiant 105 78.2985

4.1.5 Summarize

We can calculate measurements of central tendencies (e.g., the mean) with the
summarize() function, which collapses vectors into a single value. For instance, let’s
calculate the average horsepower of the cars.

Summarize variables

df |>

summarize(mean_hp = mean(hp))

#> # A tibble: 1 x 1

#> mean_hp

#> <dbl>

#> 1 147.

4.1 The five key functions of dplyr | 79

You may wonder what the pipe operator (|>) does? To start, it is enough to know that
we can combine several datamanipulations steps without repeating the data name. The
pipe operator (|>)makes sure that we send the data to the next step and chains those
functions together. This point becomes clearer if we start to combine data manipulation
steps, for example, to estimate a mean for groups.

Let’s say we believe that cars with different transmissions (am: 0 = automatic, 1 =
manual) differ in terms of horsepower. To this end, we must group and assign the data
first with the group_by() function; in a second step, we estimate themean. The function
splits the data based on the values of am. After this step, we can use summarize() one
more time to estimate group-specific means.

Group by variables

compare_group <- group_by(df, am)

And summarize for the groups

summarize(compare_group, hp_mean = mean(hp))

#> # A tibble: 2 x 2

#> am hp_mean

#> <dbl> <dbl>

#> 1 0 160.

#> 2 1 127.

This goes way easier with the pipe (|>). The pipe is a key element in tidyverse, it
was first introduced by the magrittr package and many people work with the pipe in
R. As the package vignette describes, the pipe has two aims: “Decrease development
time and improve readability and maintainability of code. Or even shortr [sic]: make
your code smokin’ (puff puff)” (see Bache &Wickham, 2022). It puts the steps of your
analysis forwards, so you can combine several lines of code in one command. Sure, in
our example we have only two lines of code, but even in this case it is easier to read if
you get used to the pipe. Just think, next or then if you see a pipe.

Starting with R version 4.1.0, the native pipe (|>) is included in R, which has the
same purpose as the magrittr pipe (%>%). Regardless of which one you prefer, we chain
one function after another with the pipe. First we send the data in the preparation step,
then we group the data, and next we call the summary function for which we estimate
the group-specific mean.

Use the pipe operator to combine steps

df |>

group_by(am) |>

summarize(

80 | 4 Data manipulation

mean_hp = mean(hp)

)

#> # A tibble: 2 x 2

#> am mean_hp

#> <dbl> <dbl>

#> 1 0 160.

#> 2 1 127.

I hope these examples made dplyr, the pipe, and how functions can be chained a bit
clearer. In the next section, we will we apply the dplyr verbs and extend our knowledge
about the package. To this end, we manipulate data and focus on typical steps that are
necessary prior to analyzing data.

4.2 Data manipulation with dplyr

Most of time you will lay your hands on data that was pulled together by someone else
and you have to prepare the data for your own purposes. For example, you want to
analyze if there are any differences between male and female, but the corresponding
sex variable holds only zeros and ones instead of text labels. How can you transform the
variable? Or, assume we have to restrict the analysis sample to persons aged between
18 and 65, but the data set contains only birth years. Accordingly, we may create a new
variable with labels, calculate respondent’s age in order to restrict the analysis sample,
or we create any other variable needed for the analysis. This section focuses exactly on
such steps.

We learned in the last section how to use mutate() and transmute(). Both func-
tions help us to create new variables and we can combine them with further functions
to create new variables. We first focus on how we can manipulate variables. I will
demonstrate how to apply the if_else() function to create a new variable that checks
a condition. Next, we learn how to create complex conditionswith case_when(). Finally,
we talk about how we recode the values of a variable.

This time, we will not work with a tiny data set. We will increase our mutating
skills with gss2016 data from the PracticeR package. As the help file outlines, the data
contains an extract from the General Social Survey 2016, with a long list of variables.
Among them, respondent’s age, sex, and their happiness.

The gss2016 data

library(PracticeR)

head(gss2016)

4.2 Data manipulation with dplyr | 81

#> # A tibble: 6 x 33

#> year id ballot age childs sibs degree race sex

#> <dbl> <dbl> <labell> <dbl> <dbl> <lab> <fct> <fct> <fct>

#> 1 2016 1 1 47 3 2 Bache~ White Male

#> 2 2016 2 2 61 0 3 High ~ White Male

#> 3 2016 3 3 72 2 3 Bache~ White Male

#> 4 2016 4 1 43 4 3 High ~ White Fema~

#> 5 2016 5 3 55 2 2 Gradu~ White Fema~

#> # ... with 1 more row, and 24 more variables: region <fct>,

#> # income16 <fct>, relig <fct>, marital <fct>,

#> # padeg <fct>, madeg <fct>, partyid <fct>,

#> # polviews <fct>, happy <fct>, partners <fct>,

#> # grass <fct>, zodiac <fct>, pres12 <labelled>,

#> # wtssall <dbl>, income_rc <fct>, agegrp <fct>,

#> # ageq <fct>, siblings <fct>, kids <fct>, ...

In the last chapter we used implemented data which makes it easier to understand
the logic behind a function. Unfortunately, this does not mean that it becomes easier
to apply it in other instances and, as next step, you need to apply your knowledge
to data that was not created for teaching purposes. For this reason we learn how to
manipulate the gss2016 data in the next subsection, but you may use other data to
apply and increase your dplyr knowledge. As the next info box outlines, a lot of data is
available to apply your skills.

4.2.1 Manipulate, but check!

To err is human and we all make mistakes when we write code. A typo in the data
preparation step may affect your analysis substantially. Maybe you have forgotten one
little character, or sometimes you are not cautious enough and include a false character
by accident. Use select() to create a narrow data frame and inspect how your data
preparation steps affect the data. In this section we will also learn how to change
the order of variables with the relocate() function. Both functions help us to get an
overview of the data and to examine whether each preparation step worked out. Before
we increase our data mutating skills, let me first outline why it is important to inspect
data carefully.

82 | 4 Data manipulation

Apply your skills

So far, we used data from the General Social Survey (GSS) which examines residents of the United
States and it includes many behavioral and attitudinal questions. The GSS is conducted since 1972 and
you can download many different waves from their website. Go and visit their website to find out more
about the GSS and its topics.

The General Social Survey

https://gss.norc.org/

Maybe you have no specific interest in the United States, what about East Asia (e.g. East Asian Social
Survey) or South America (e.g., Latinobarómetro)? Or consider the European Social Survey (ESS). The
latter is also a cross-sectional survey that measures behavior and attitudes on various topics for many
European countries. After a short registration, the data is free of charge for non-commercial use. Again,
visit the ESS website (or from any other mentioned survey) to inspect the documentation of the data,
the topics, and the variables they include.

The European Social Survey

https://www.europeansocialsurvey.org/

Your data preparation skills will grow if you prepare data on a regular basis, but especially if you work
with data that was not prepared for the scientific community. The R community has established a weekly
challenge to prepare, analyze, and visualize data. The #TidyTuesday project publishes a new raw data
set for a broad range of topics. For example, they examined bee colony losses, student mobility, and
the pay gap in UK in 2022. Thus, there are a lot of resources, data, and inspiration available to apply
your dplyr skills. You can find more information about #TidyTuesday on their GitHub website:

PracticeR::show_link("tidy_tuesday")

Supposewewant to examine how old the survey respondents are andwe create a binary
variable that indicates whether a person is older than the respondents’ mean age. We
start by creating a variable that stores the mean age. We already know how to achieve
the first step, but let’s have a look at the output. Can you spot the new age variable?

First attempts ...

gss2016 |>

mutate(age_mean = mean(age)) |>

head()

#> # A tibble: 6 x 34

#> year id ballot age childs sibs degree race sex

#> <dbl> <dbl> <labell> <dbl> <dbl> <lab> <fct> <fct> <fct>

4.2 Data manipulation with dplyr | 83

#> 1 2016 1 1 47 3 2 Bache~ White Male

#> 2 2016 2 2 61 0 3 High ~ White Male

#> 3 2016 3 3 72 2 3 Bache~ White Male

#> 4 2016 4 1 43 4 3 High ~ White Fema~

#> 5 2016 5 3 55 2 2 Gradu~ White Fema~

#> # ... with 1 more row, and 25 more variables: region <fct>,

#> # income16 <fct>, relig <fct>, marital <fct>,

#> # padeg <fct>, madeg <fct>, partyid <fct>,

#> # polviews <fct>, happy <fct>, partners <fct>,

#> # grass <fct>, zodiac <fct>, pres12 <labelled>,

#> # wtssall <dbl>, income_rc <fct>, agegrp <fct>,

#> # ageq <fct>, siblings <fct>, kids <fct>, ...

Apparently not: age_mean is not even displayed in the console since we are nowworking
with a large data set that was not created for teaching purposes. By default, each new
variable is appended on the right side of the data, which is why I used a narrow data
frame in the last section to show you how mutate() works. Depending on the data set,
the console may not display all the variables, but we must check if all data preparation
stepsworked out. Moreover, even if the new variable is displayed, sometimeswe need to
visually compare variables to make sure that we did not introduce an error. Comparing
variables is tricky if there are a lot of variables listed between them.

As we know, we can select variables and create a smaller data frame that contains
only core variables needed for an analysis.

Select variables that are needed ...

gss2016 |>

select(age, income_rc, partners, happy) |>

mutate(age_mean = mean(age)) |>

head()

#> # A tibble: 6 x 5

#> age income_rc partners happy age_mean

#> <dbl> <fct> <fct> <fct> <dbl>

#> 1 47 Gt $170000 <NA> Pretty Happy NA

#> 2 61 Gt $50000 1 Partner Pretty Happy NA

#> 3 72 Gt $75000 1 Partner Very Happy NA

#> 4 43 Gt $170000 <NA> Pretty Happy NA

#> 5 55 Gt $170000 1 Partner Very Happy NA

#> # ... with 1 more row

Myfirst attempt to create the variable did notwork, because the age variable hasmissing
values. Keep in mind that data often contains missing and implausible values. Both

84 | 4 Data manipulation

may have serious implications for the analysis, which is why we will figure out how to
deal with the problem of missing values in Chapter 5. In this chapter we heroically and
unrealistically assume that we can exclude them without any severe consequences to
at least learn more about data manipulation.

The tidyr package lets us exclude missing values with the drop_na() function
(Wickham & Girlich, 2022). It drops all observations with missing values (NA), or for a
specific variable if you include the variable name inside the function. For example:

An example data

missing_example <- data.frame(x = c(1, NA, 3, NA))

Drop_na drops NA

tidyr::drop_na(missing_example, x)

#> x

#> 1 1

#> 2 3

Thus, apply the drop_na() function and combine it with the other steps to generate the
mean variable.

Combine steps ...

df <- gss2016 |>

select(age, income_rc, partners, happy) |>

drop_na() |>

mutate(age_mean = mean(age))

head(df)

#> # A tibble: 6 x 5

#> age income_rc partners happy age_mean

#> <dbl> <fct> <fct> <fct> <dbl>

#> 1 61 Gt $50000 1 Partner Pretty Happy 47.5

#> 2 72 Gt $75000 1 Partner Very Happy 47.5

#> 3 55 Gt $170000 1 Partner Very Happy 47.5

#> 4 53 Gt $60000 1 Partner Very Happy 47.5

#> 5 23 Gt $30000 1 Partner Very Happy 47.5

#> # ... with 1 more row

Both age variables are now visible, and we have created a new variable with the mean.
However, we wanted to create a binary variable that indicates if a person is older than

4.2 Data manipulation with dplyr | 85

the average. Thus, we need to compare age and age_mean, but unfortunately, there are
many variables between them, which makes it difficult to compare them visually. We
can relocate() variables to a new column. The option .after lets us determine where
the variable will be relocated.

Relocate variables to get a better overview

df |>

relocate(age_mean, .after = age)

#> # A tibble: 1,619 x 5

#> age age_mean income_rc partners happy

#> <dbl> <dbl> <fct> <fct> <fct>

#> 1 61 47.5 Gt $50000 1 Partner Pretty Happy

#> 2 72 47.5 Gt $75000 1 Partner Very Happy

#> 3 55 47.5 Gt $170000 1 Partner Very Happy

#> 4 53 47.5 Gt $60000 1 Partner Very Happy

#> 5 23 47.5 Gt $30000 1 Partner Very Happy

#> # ... with 1,614 more rows

The relocate() function moved the variable to the second column, right after age.
Before we continue, meet the counterpart of the .after option, because sometimes we
need to relocate .before another variable. Furthermore, there is no need to relocate
each time we generate a new variable, since we can also integrate this step in the
mutate() function.

Instead of selecting variables, create a variable list

varlist <- c("income_rc", "partners", "happy", "age")

Include relocate in the mutate step

df |>

select(all_of(varlist)) |>

drop_na() |>

mutate(age_mean = round(mean(age), 2), .before = age)

#> # A tibble: 1,619 x 5

#> income_rc partners happy age_mean age

#> <fct> <fct> <fct> <dbl> <dbl>

#> 1 Gt $50000 1 Partner Pretty Happy 47.5 61

#> 2 Gt $75000 1 Partner Very Happy 47.5 72

#> 3 Gt $170000 1 Partner Very Happy 47.5 55

#> 4 Gt $60000 1 Partner Very Happy 47.5 53

86 | 4 Data manipulation

#> 5 Gt $30000 1 Partner Very Happy 47.5 23

#> # ... with 1,614 more rows

It is super easy to introduce mistakes when we work with data. Thus, make sure that
you can see what is going on when you manipulate variables. The select() function –
but also transmute() and relocate() – helps us to get an overview. Since it is much
easier now to compare age with age_mean, let us learn how we create a variable that
indicates whether age is above (below) average with the if_else() function.

4.2.2 If else

The if_else() function is inspired by an if else statement from base R. An if else

statement checks a condition and assigns a value depending on whether the condition
is (not) fulfilled. Say we need to check howmany chocolate bars we have. The following
if else statement checks our chocolate bar stock and prints a message, depending on
the value of the stock. Currently we have three chocolate bars on the shelf, which is
why R picks the else condition.

The chocolate bar stock

chocolate <- 3

If else statement

if (chocolate > 5) {

print("Don't panic, there is enough chocolate!")

} else {

print("Jeeez, go and get some chocolate!")

}

#> [1] "Jeeez, go and get some chocolate!"

You may wonder what an if else statement has to do with our initial plan. Let me first
introduce the if_else() function from the dplyr package.¹ Say we have observed two
female participants and one male participant.

Example data

sex <- c("f", "m", "f")

sex

1 The function is also inspired by ifelse() function from base R. Both functions essentially do the
same thing, but we can include the if_else() function in the data manipulation steps.

4.2 Data manipulation with dplyr | 87

#> [1] "f" "m" "f"

The variable contains characters, but we wish to recode the variable into a binary
indicator. Just as the if else statement, the if_else() functions checks a condition
and depending onwhether the condition applies, returns a value. Let’s see how it works
based on the example sex data:

The dplyr::if_else function

if_else(sex == "f", 0, 1)

#> [1] 0 1 0

The first person is female, therefore if_else() returns zero. The second person gets
one since the if condition (sex == "f") is not met. The if_else() function works the
same way if we check numerical values and assign characters.

if_else with numerical input

sex <- c(0, 1, 0)

if_else(sex == 0, "female", "male")

#> [1] "female" "male" "female"

Let’s see how if_else() helps us to create a variable that indicates if a person is older
than the mean average. All we must do is adjust the condition:

Insert if_else in the mutation step

df |>

select(age, age_mean) |>

mutate(

older = if_else(age > age_mean, "older", "younger"),

.after = age_mean

)

#> # A tibble: 1,619 x 3

#> age age_mean older

#> <dbl> <dbl> <chr>

#> 1 61 47.5 older

#> 2 72 47.5 older

#> 3 55 47.5 older

#> 4 53 47.5 older

#> 5 23 47.5 younger

88 | 4 Data manipulation

#> # ... with 1,614 more rows

To create the indicator variable, I first created a variable with the mean value, but
this step was redundant and I included it only to illustrate that we should be cautious
whether our code works. There is no need to calculate the mean first, since we can
chain the discussed steps and apply it with the gss2016 data. Moreover, we probably do
not want to create a binary indicator, but a logical vector, as the next output illustrates.

Chain steps with gss2016 data

gss2016 |>

drop_na(age) |>

transmute(age,

older = if_else(age > mean(age), TRUE, FALSE)

)

#> # A tibble: 2,857 x 2

#> age older

#> <dbl> <lgl>

#> 1 47 FALSE

#> 2 61 TRUE

#> 3 72 TRUE

#> 4 43 FALSE

#> 5 55 TRUE

#> # ... with 2,852 more rows

The if_else() function makes it easy to create new variables, but what if we want to
check several conditions? Let me introduce the case_when() function for this purpose.

4.2.3 Case when

Often, we need to restrict the analysis sample to certain characteristics. Suppose we
need to restrict the analysis sample to adult persons excluding pensioners. Thus, we
need to create a variable that tells us if a person is younger, older, or in between the
age range. We can use the case_when() function if several conditions are involved.

As the next console shows, I created a new variable (older_younger), which indic-
ates if a person’s age is older, younger, or in-between. The function checks a condition:
in the first argument it checks if age is smaller or equal to 17, and in the last if age is
greater than or equal to 65. It returns the corresponding values (e.g. younger) when a
condition is true, which is separated in the code by the tilde (~) operator.

4.2 Data manipulation with dplyr | 89

First case_when attempt

df |>

transmute(age,

older_younger = case_when(

age <= 17 ~ "younger",

age > 17 & age <= 64 ~ "in-between",

age >= 65 ~ "older"

)

)

#> # A tibble: 1,619 x 2

#> age older_younger

#> <dbl> <chr>

#> 1 61 in-between

#> 2 72 older

#> 3 55 in-between

#> 4 53 in-between

#> 5 23 in-between

#> # ... with 1,614 more rows

Identifying persons within our age range illustrates the real strength of the case_when()
function sincewe can combine several conditions and variables to create a new variable.
Consider the second argument, the variable needs to identity persons who are older
than 17 and younger than 65.

However, we do not need that step as long as our data does not contain missing
values. The case_when() function uses the logic of the if else statements and run the
code in order. In a similar sense, instead of defining which values are in between, we
can add TRUE ~ "in-between" and all other observations get the corresponding label.
Toy data illustrate this point.

The case_when logic

x <- data.frame(age = c(17, 77, 51, 24))

x |>

transmute(age,

older_younger = case_when(

age <= 17 ~ "younger",

age >= 65 ~ "older",

TRUE ~ "in-between"

)

)

90 | 4 Data manipulation

#> age older_younger

#> 1 17 younger

#> 2 77 older

#> 3 51 in-between

#> 4 24 in-between

The last example showed you how to apply the case_when() function with a single
variable. You can, however, combine several variables, use any mathematical operator,
or even create the wildest of combinations. For example, maybe we want to compare
older and younger persons with a high score on the happiness variable compared to all
other persons. This is an erratic example, but it outlines that we can combine several
conditions and variables.

The next time you need to extract a range from a numerical variable, I hope you
remember the between() function. The latter represents a special case. The between()
function checks whether the observation of a numerical vector lies between a range,
which makes my last attempts obsolete.

Between selects observations between a certain range

df |>

transmute(age,

age_filter = between(age, 18, 65)

)

#> # A tibble: 1,619 x 2

#> age age_filter

#> <dbl> <lgl>

#> 1 61 TRUE

#> 2 72 FALSE

#> 3 55 TRUE

#> 4 53 TRUE

#> 5 23 TRUE

#> # ... with 1,614 more rows

Please do not feel offended that we learned the case_when() function first, because it
is ever so flexible when creating new variables. However, we can separate all persons
within a certain age rangewith just one line of code bymeans of the between() function.
Moreover, add a filter to finally restrict the analysis sample.

Restrict the analysis sample

df |>

transmute(age,

4.2 Data manipulation with dplyr | 91

age_filter = between(age, 18, 65)

) |>

filter(age_filter == "TRUE")

#> # A tibble: 1,351 x 2

#> age age_filter

#> <dbl> <lgl>

#> 1 61 TRUE

#> 2 55 TRUE

#> 3 53 TRUE

#> 4 23 TRUE

#> 5 32 TRUE

#> # ... with 1,346 more rows

4.2.4 Recode

We can resolve many data manipulation steps with the discussed functions but depend-
ing on your taste and prior experience, you may desire to know how to simply replace
values. To replace values works in principle the same way and we can use the ifelse
function to replace the values of a binary indicator.

Recode with if_else

sex <- c("m", "f", "m")

sex <- if_else(sex == "m", "male", "female")

sex

#> [1] "male" "female" "male"

Or with the help of the case_when() function should we want to replace several categor-
ies. Nevertheless, the dplyr package also has a dedicated recode() function. Consider
two examples of a binary indicator for sex. The first variable comes as characters (sex),
the second one as integers (sex_num).

Example df

df <- tibble::tribble(

~sex, ~sex_num,

"m", 1,

"f", 2,

"m", 1,

NA, NA

)

92 | 4 Data manipulation

Use recode_factor() to recode a character variable into a factor variable or recode()
in case of the numerical input.

Recode a factor variable

recode_factor(df$sex, m = "Men", f = "Women")

#> [1] Men Women Men <NA>

#> Levels: Men Women

Recode a numerical variable

recode(df$sex_num, `1` = 1, `2` = 0)

#> [1] 1 0 1 NA

To replace values implies that we need to be sure about what we replace. All those
previously created variables had only two levels, which made it easy to understand the
code. However, consider the next example. Instead of recoding directly, we may use
if_else() to recode and to create a new variable. This makes missteps easier to spot
and we can exclude variables that we no longer need in a next step.

Create new variables to check if any errors are introduced

df |>

select(sex) |>

mutate(sex_new = if_else(sex == "f", "female", "male"))

#> # A tibble: 4 x 2

#> sex sex_new

#> <chr> <chr>

#> 1 m male

#> 2 f female

#> 3 m male

#> 4 <NA> <NA>

4.2.5 Additional features

The last section introduced functions from the dplyr package, which will help you to
overcome many typical problems in manipulating data. The package has more to offer
than I can possibly outline in one chapter, which is why I focused on typical steps of
applied social science research. It is also an excellent idea to inspect the package’s
website and vignettes if you are faced with a problem that I did not discuss. This last
section highlights that you can solvemany problemswith the dplyr package, especially

4.2 Data manipulation with dplyr | 93

if you combine them with functions from other packages (of the tidyverse) and with
your base R skills. For illustration purposes, we use toy data and the mtcars data set
once more.

In the last chapter we calculated summary statistics, but now that we have a basic
understanding of dplyr, we can use summarize() to calculate several means or other
measures of central tendencies for numerical variables.

Calculate a mean

summarize(mtcars,

mpg = mean(mpg),

cyl = mean(cyl),

disp = mean(disp)

)

#> mpg cyl disp

#> 1 20.09062 6.1875 230.7219

Unfortunately, we have to repeat ourselves. We must call the mean function each time
and write down each variable. This goes way easier with across(), which lets you
select variables and apply a function such as mean().

Calculate a mean across variables

summarize(mtcars, across(mpg:disp, mean))

#> mpg cyl disp

#> 1 20.09062 6.1875 230.7219

We can even improve this step and include the everything() function which selects
all available variables.

Give me everything (if possible)

summarize(mtcars, across(everything(), mean))

#> mpg cyl disp hp drat wt qsec vs am

#> 1 20.09062 6.1875 230.7219 146.6875 3.596563 3.21725 17.84875 0.4375 0.40625

#> gear carb

#> 1 3.6875 2.8125

Did you realize that the mtcars data set has row names? The car’s models are listed as
row names, but not as a variable.

94 | 4 Data manipulation

rownames

head(mtcars)

#> mpg cyl disp hp drat wt qsec vs am gear carb

#> Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

#> Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

#> Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

#> Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

#> Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

#> Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

The row names may contain some useful information, but we have no access as long
as they are not a part of the data. The tibble package is a part of the tidyverse and it
includes the rownames_to_column() function. The function inserts the row names as a
column in the data.

Augment your dplyr skills with further packages

mtcars |>

tibble::rownames_to_column(var = "car") |>

head()

#> car mpg cyl disp hp drat wt qsec vs am gear carb

#> 1 Mazda RX4 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4

#> 2 Mazda RX4 Wag 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4

#> 3 Datsun 710 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1

#> 4 Hornet 4 Drive 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1

#> 5 Hornet Sportabout 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2

#> 6 Valiant 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1

Of course, most of the time you will not work with row names, but this is an illustration
of how we have not examined all the possibilities that dplyr and other packages of the
tidyverse provide to manipulate data.

It goes without saying that sometimes you will be faced with a problem that dplyr
(and other packages) do not explicitly cover. In such cases, you need to integrate your
R skills into the data preparation steps. For example, say you want to create a unique
identifier (e.g., a running number) for each observation. Is there a function that creates
such a variable? Maybe, but don’t forget your base R skills: use the nrow() function
and mutate() to count the number of rows. You may even arrange() the data first and
give it a running number according to a sorted variable.

4.3 Workflow | 95

Include your base R skills

mtcars |>

select(mpg) |>

arrange(mpg) |>

mutate(running_number = 1:nrow(mtcars)) |>

head()

#> mpg running_number

#> Cadillac Fleetwood 10.4 1

#> Lincoln Continental 10.4 2

#> Camaro Z28 13.3 3

#> Duster 360 14.3 4

#> Chrysler Imperial 14.7 5

#> Maserati Bora 15.0 6

The dplyr package gives you many possibilities to manipulate data, especially if we
combine it with other packages and your base R skills. We will extend our knowledge
about dplyr and other packages to prepare data in Chapter 5. Frommy opinion, learning
dplyr is often easier than achieving the same task with base R or another data ma-
nipulation approach, but many roads lead to Rome and, as the next info box outlines,
different approaches (e.g., dplyr vs. data.table, see Dowle & Srinivasan, 2022) have
different strengths to prepare data. Before we further improve our data preparation
skills, the next section discusses several topics on how to increase your work efficiency
and workflow.

4.3 Workflow

You might be wondering why I talk about workflow before we learn how to analyze
data in detail. Most of the R code in the first part was not very complicated. We will,
however, make some substantial progress in the second part of Practice R. The more
advanced things we perform with R, the more complex the code will become. Other
people, and your future self, may find it difficult to understand what the code does,
but we can learn some tricks to make the code easier to write, read, and thus, faster to
understand when revisited.

Increasing the workflow implies that we get better using R step by step. This is
a learning process. It depends on what you are trying to achieve and on your prior
experience. Perceive your first R code as like small children who learned how to walk.
The code is not the most elegant and some parts are probably a bit shaky. That’s okay.
It is exactly how we learn new things and improve ourselves.

96 | 4 Data manipulation

Data manipulation approaches

There are several approaches to work with data in R. Instead of using dplyr, we could achieve the same
task with base R. Consider the next examples which compare the code of both approaches. The next
console shows that the equivalent of the filter() function is the subset() function; the differences
between both approaches are minimal.

#Dplyr: filter data

mtcars |> filter(am == 0)

#Base: subset data

subset(mtcars, am == 0)

Maybe it’s hard to believe, but in some instances solutions from base R are easier to apply. Suppose
we need to extract a vector from a data frame. Instead of using the pull() function from dplyr, we only
need to extract the vector and assign the object.

#Dplyr: Pull a vector

mtcars |> pull(hp)

#Base: Extract the vector

hp <- mtcars$hp

Thus, keep in mind that there are always several approaches and that you will come across base R, as
well as other packages to manipulate data. However, dplyr is pretty verbal and often easier to apply
than base R. On the other side, base R provide the most stable solution (code), even though it is harder
to apply. For example, consider the variable names of the mtcars data.

colnames(mtcars)

#> [1] "mpg" "cyl" "disp" "hp" "drat" "wt" "qsec" "vs" "am" "gear" "carb"

The next console illustrates a complicated base R solution. Say we want to give the variable hp a proper
name. In base R we need to assign a new label for the column vector, but only for the variable name that
we want to change, which is why we need to slice it and then assign a new value. The dplyr is much
easier, since we can integrate this step when we select data (see Chapter 5 for more information).

#Base: Assign horsepower in the names column

names(mtcars)[names(mtcars) == "hp"] <- "horsepower"

#Dplyr: Change a variable name during the select step

mtcars |> select(horsepower = hp)

This chapter focused on dplyr because it’s the Swiss pocketknife for manipulating data and not difficult
to apply, but there are other approaches as well. For example, the data.table package provides fast
solutions to work with large data sets.

4.3 Workflow | 97

Let me give you an example. Suppose you calculate some simple statistics, say the
mean for a series of x variables, shown in the following console. This task is a piece of
cake, because you know how to apply the mean() function.

A small df

df <- tibble(

x1 = c(3.3, 3.5, 3, 4.4, 5.4),

x2 = c(3.1, 7.2, 8, 5.5, 4.3),

x3 = c(3.4, 3.1, 6, 6.2, 8.8)

)

mean(df$x1)

#> [1] 3.92

Thus, you calculate the mean, next you do the same for x2, and so on. This is a simple
example, but it illustrates that the code is not elegant and error prone, considering
that we repeat ourselves numerous times. How can we improve? Of course, we could
use our dplyr skills, but the colMeans() function calculates the means for all columns
with one line of code.

Column means

colMeans(df)

#> x1 x2 x3

#> 3.92 5.62 5.50

This is a substantial improvement compared to the repetitive task, but there is still
room for improvement. What happens if we need to estimate the median instead of
the mean? We can apply a function – such as the median or the mean – over a list or a
vector with lapply(), which returns a list with our results. We can also use sapply(),
which does essentially the same as lapply(), but sapply() tries to simplify the results.
If possible, it will return a vector instead of a list. Let’s see how this works for our simple
application:

Apply a function over a list or a vector

lapply(df, mean)

#> $x1

#> [1] 3.92

#>

98 | 4 Data manipulation

#> $x2

#> [1] 5.62

#>

#> $x3

#> [1] 5.5

Simplify the result, if possible

sapply(df, mean)

#> x1 x2 x3

#> 3.92 5.62 5.50

Now it does not matter anymore which function we apply: we could calculate the
standard deviation instead of the mean or the median. The code is also more elegant
than repeatedly running the same code. Thus, start simple and revise the work from
time to time. Catch up with your skill set and check whether you could improve the
code and become more efficient. However, the last part of this chapter will not focus on
code, but on tips and recommendations that aim to increase your coding skills in the
medium to long term.

First, we focus on scripts and we learn how to create a useful structure that helps
us stay organized – especially when a script becomes larger and harder to understand.
Next, I will introduce RStudio projects, because a project provides the environment to
stay organized. Finally, we get in touch with code snippets which help us to manage
complicated code.

4.3.1 Scripts

There are some general recommendations on how you should maintain code. The most
important one is:

Comments, comments comments!

Add useful comments that describe what the code does

I introduced comments in the first chapter to highlight what the code does. What else
can we learn about comments? Most obviously, comments will help your future self
and other people to work with your scripts. Maybe you don’t see just yet why using
comments is crucial. Probably your code is super easy to understand and you can
hardly imagine why some people should have problems to understand it. Of course,
you understand what your script does if you open it again, say, a week later. What

4.3 Workflow | 99

about a month, a year, several years from now? Comments help you to understand the
meaning of the code and, in consequence, to be efficient.

Suppose, youwant to perform an analysis based on an old script, but what happens
if the script does not have enough comments and is messy? You have no idea howmany
times I believed that I could do a quick analysis because I did a similar one in the past.
I open a confusing script with many steps, instead of a simple skeleton I could use as a
basis. Like this, I first have to figure out what the code actually does. Only then can I try
to run the script, but not without an error. Since I did not use the script for a long time, it
is not unlikely that some of the packages have been updated and work slightly different
now; or maybe my script was messy and I forgot to include all necessary parts. There
are a lot of possible causes as to why I run into an error, and a good documentation
cannot protect us against all odds. However, you are better equipped to reproduce your
work with a good documentation, and most of the time troubleshooting will take a lot
longer than the time you spent adding some useful comments.

What do I mean by useful comments? Try to be specific. Unspecific comments are
okay if your steps to prepare data are short and straightforward. However, in most
instances the steps to prepare data are the longest part of the script and you will quickly
lose oversight if you do not provide enough guidance to your future self or other users.
In the data preparation section of your script, you can use comments to make crucial
steps obvious. For instance, you could write down why the preparation steps should be
done in a certain way.

Don’t get me wrong, you do not have to put every word on a gold scale, especially
if the script is primarily for internal use. But even in such cases, it is worth considering
which comments would be helpful to quickly explain the contents of the script. To help
you with this task, RStudio makes it very convenient to use comments. You can turn
multiple lines into comments, or even turn multiple lines of comments into code by
applying a simple shortcut:

Pro tip

Turn multiple lines into comments and back again:

Press: Ctrl/Cmd + Shift + C

Increase the readability of a script and give it a structure with sections for each sub-
stantial part. Hash tags (#) will help you to structure the script. A typical R script to
analyze data may contain the following structure:

00 About

01 Packages

02 Data preparation

03 Data analysis

100 | 4 Data manipulation

04 Visualization

05 Further ado

The script may first contain some information about the file. Try to provide some back-
ground information: who has written the script, when was it written, and what was the
purpose.

Next, we typically load packages. It always is a good idea to load all necessary
packages first. The future user needs to knowwhether the script will runwith or without
installing additional packages. It is okay if your scripts become messy while you are
still busy defeating the (data) dragon. No matter what task you are trying to achieve,
in the heat of the moment you might want to load the corresponding package right
away should you find a solution for your quest. That’s fine, but when the battle is over,
go back and rearrange your script. Load all packages in the very beginning, because
there is a huge chance that when you load your package somewhere later in the script,
you might need their functions earlier. Try to stick to the rule that packages should be
loaded before you do anything else. Having a separate section instantly shows which
packages must be installed.

In the next steps you prepare the data and run the analysis. Preparing the data is
often the longest andmost difficult part. Particularly if we inspect older scripts, you will
wonder about some of the steps if there are no descriptive comments. The chances are
high that you will have forgotten what the data looks like and which steps are necessary
to prepare the data. Finally, we may create a section for the data visualization or export
– or anything else that was not included in the typical structure of the script.

Sections make your workflow efficient since you avoid searching the entire script
when you are only looking for a chunk of code from the data preparation section. Or, if
you use an old script as a template, it is much easier to go through a specific section and
adjust it for the new purpose instead a screening the entire script. Creating a structure
with hash tags also helps during the writing process of the script. Figure 4.2 shows
what the proposed structure looks like in RStudio’s code pane.

Fig. 4.2: Structure of an R script

There is a small arrow sign next to the number of the line in the script. RStudio auto-
matically creates sections in the script if you add a hash tag (#) in front of the section

4.3 Workflow | 101

name and at least four additional hash tags (or equal signs or dashes) at the end. Your
code will be folded (indicated by the double arrow) if you click on the arrow sign and
it appears again if you click once more. Thus, you can fold the code after you have
finished the first section and concentrate on the incomplete parts. Sections help us to
focus on a logical structure of the script and code folding makes working with longer
scripts more convenient.

Moreover, sections make it possible to jump directly from one section to another
with a mouse click. Figure 4.3 shows how RStudio has integrated a section menu that
displays the structure of a script. A small window that displays the sections will pop
up if you click on the button in the left corner of the script pane.

Fig. 4.3: Section menu in RStudio

Ultimately, your code style makes it easier (or harder) to read the script and grasp the
meaning. This book uses in many parts the tidyverse code style because the style is
implemented in RStudio, which makes it convenient to use in this book.² The tidyverse
style guide by Hadley Wickham is available online.

Visit the tidyverse style guide

https://style.tidyverse.org/

To stick to and apply code styling rules is demanding. We must learn those rules, apply
them consistently to improve the code, and undo any mistakes. This is a challenge, but
the pain is worth the trouble because it increases our efficiency. Let me give you an
illustration. The next console prints two versions of the same code. One applies the
tidyverse code style, while the other is a messy code. Which one is easier to read?

#Compare code

Version A:

df <-

mtcars |>

2 For example, the styler package inspects code, applies code style and converts the code accordingly
(Müller & Walthert, 2022). The package comes with an convenient addin as well.

102 | 4 Data manipulation

group_by(am) |>

summarize(

median_hp = median(hp),

count = n(),

sd = sd(hp),

min = min(hp)

)

#Version B:

df<-mtcars|>group_by(am)|>

summarize(

median_hp = median(hp), count = n(), sd = sd(hp), min = min(hp)

)

I will not go into detail about the tidyverse code style: you can stick to the rules you
encounter in this book, learn about other ways to style the code, or even create your
own style. It is not important which style you prefer, but I do hope you agree that
version A is easier to read than version B. Version A gives us a visual clue that several
variables are generated and we can spot the content if we write each variable on a new
line. Moreover, I deleted the white space around the pipe and the assignment operator;
and I did not use a new line after the first pipe in Version B. Call me a monster, but
hopefully you agree that the style of code increases its readability.

This gives you an idea what ugly code looks like and why we should stick to some
conventions to increase the readability. In the long run, these habits will save more
time than the one you spend writing comments, generating a structure, and sticking
to a coding style. Since we did not apply any advanced analysis with R so far, I only
discussed the most important aspects that I believe are helpful in the beginning, as
well as in the long run. Of course, there is much more to discover to become efficient,
such as RStudio projects.

4.3.2 Projects

RStudio projects contributes to increasing your work efficiency, because a project gives
you the right environment for your work. We did not talk about projects so far and you
have probably saved some of the discussed code as an R script somewhere on your hard
drive. This is fine in the beginning, but one day, you will open a script, and it is very
likely that you set the work directory and load data somewhere in the old script:

Set the working directory

setwd("/Users/edgar/my_scripts/")

4.3 Workflow | 103

Import data

df <- read_csv("my_data.csv")

Note that I use an absolute path to set the working directory. If the folder exists, R will
set my working directory to the folder my_scripts. In the second line of code, I used a
relative path and R searches for my_data.csv wherever my working directory points
to. So, what happens if you ever need to use another computer which has a different
structure of folders? What if someone else runs the script? R will return an error.

Absolute paths may not work if you cannot guarantee that the directory exists. On
the other hand, relative paths will work if you make sure that the working directory is
set correctly. RStudio helps us to setup the working directory and a project gives you
the environment for all files related to a certain project. If you use a project, there is no
need to provide absolute paths anymore since the working directory is attached to your
project. Moreover, your script still runs if you take the entire project folder and save it
somewhere else on your computer, use a new computer, or give the project to someone
else, because the working directory is set to the directory of the specific project.

Some may say that this is just a minor achievement since we only saved one line
of code. Trust me, you will appreciate this when you search your hard disk for a con-
siderable time to find data, or visualizations, or any project file. Maybe you are better
than me at remembering where all your files live, but one day you will migrate to a
new computer or something else will happen meaning that an absolute path will break.
Therefore, I can only recommend creating a project. It gives you the chance to focus on
a structure for project files. We can save R scripts in an R folder, save plots in the plots
or whatever folder structure might best work for you. Thus, creating a specific project
helps us to increase the reproducibility. Or in other words, it is a warm and cozy place
for your script(s) and other file(s) related to your project.

Creating a new project is not a difficult task and RStudio has integrated a Project
Wizard. There is a Project button in the right corner. Click the project button and create
a new project or use the menu (File > New Project). In both instances, a new window
opens with the project wizard and there are essentially three steps to create a new
project:
1. First, decide if you want to create the project in a new or existing directory (see

Chapter 9 for more information about version control).
2. Next, RStudio asks whether you want to create a special form of project (e.g., to

create an R package), select a new project.
3. Finally, give the project a name and tell RStudio where your project should be saved.

If you decided to create a new directory for the project – which is a very good idea –
then RStudio creates a new folder and inserts a .Rproj file. The latter is saved in
the project folder and contains the information about the project.

104 | 4 Data manipulation

Besides the fact you can save all your documents that belong to each other in one place,
workingwith projects has additional advantages. Each time you open a project, RStudio
opens a fresh environment for your project. You can see that RStudio has opened a new
instance after you created the project in the RStudio symbol which displays the project
name as well. Thus, you can open several RStudio instances and code from one project
will not interfere with code from another project.

Imagine you do not use RStudio projects but work on project A and B in one RStudio
instance. You have loaded a package while working on project A, but you forgot to
insert the same library in the script of project B. It is bitter, but you don’t get any error
because you have loaded it earlier, even though the library is never called in the script
of project B. Thus, the script will not work the next time you open it. R tells you that
some functions do not exist. Now, it is up to you to find out which package is missing.
Maybe this sounds unrealistic, but I have seen this issue more than once and I have
made the same mistake as well. You get an error if you have forgotten to update the
script for project B, but only if each project runs its own R instance.

To this end, always restart R (Session > Restart R) one more time before you
finish your script. You clean the entire environment by restarting R. This way, you make
sure that your script runs without any errors the next time you open it. Restarting R
several times is also useful if your script becomes longer, since you do not want to
debug the entire script from the start to the last line of code when you are about to
finish.

Sometimes you come across R scripts that start with the rm() function, which
removes one, several, or all listed objects (rm(list=ls())) from the environment. Of
course, we might be deemed to use code to remove objects, however, if you open your
RStudio project, a new instance starts with a clean slate without any old ghost from a
different project. The rm() function only removes objects that you have created, but
there might be other objects that interfere with the analysis from packages that have
been used in the beginning of the session. If you restart R, such dependencies become
quickly visible and can be adjusted. In a similar sense, the use_blank_slate() function
from the usethis package reminds us that we should not save the work space, nor load
the work space from an earlier session (Wickham, Bryan, et al., 2022). It adjusts the
settings, as the next console illustrates.

Create a blank slate:

usethis::use_blank_slate()

#> Setting RStudio preference save_workspace to 'never'

#> Setting RStudio preference load_workspace to FALSE

Why not? It is our goal to create code that executes all necessary steps since our work
needs to be reproducible.We should get the same results regardless of whether we rerun
our script on a different day or on another computer. For such reasons, we definitely do

4.3 Workflow | 105

not want to depend on obscure objects from the past. Go to the RStudio settings and
remove the check mark from restoring the work space at start up and do not save the
work space in an .RData file on exit (Tools > Global Options).

In larger projects, we may use one script to prepare the data, another one to run the
analysis or visualize the results. Create a script for all steps, put them all in the same
(R) folder, and use the source() function to run a script in the background.

Use source to outsource your R script

source("R/my_script.R")

RStudio also helps you in terms of longer and probably more complex code chucks
with code snippets.

4.3.3 Snippets

I still remember my first applied statistic course when I was a student. I learned how to
use SPSS (Statistical Package for the Social Sciences) and a lot of students in the class
were afraid. We had to memorize the code to pass the course, because SPSS had no
auto-completion. Imagine it, with R code. We had to memorize that the hist() function
returns a histogram.

A simple histogram

hist(data$x)

Learning such a simple code snippet is no big deal, butwhat if the code snippet is getting
substantially longer. Just for the sake of illustration, suppose you have to remember
several options from the hist() function to adjust the plot. You need to memorize that
you can adjust the title with the main option, add a label for the x-axis with xlab, fill
the bars with a color (col), and examine the frequency or the density with the freq
option. Look how complicated the code has become, and question yourself whether it
makes any sense to memorize such code.

A histogram with adjusted options

hist(mpg,

main = "My title",

xlab = "The x label",

col = "darkgray",

freq = FALSE

)

106 | 4 Data manipulation

Your skills do not increase when you memorize such code snippets, but is it necessary
to memorize as much code as possible to become an efficient user? All I can do today
with SPSS is generate a frequency table or calculate a mean without the help of Google.
Well, if I am honest, I have some serious doubts about the latter, too. Didn’t I learn hard
enough? The truth is that I am not an SPSS user. I only attended this particular course,
and it should not come as a surprise that I cannot remember much.

I share this story because I truly believe that we do not have to memorize com-
plicated code snippets to become an efficient R user. Irrespective of the programming
language, one should never memorize code chunks. It is more important to understand
what code does and how to use it, not how it is implemented. As you can recall, you can
use the help function if you do not know how code works, you can read the vignettes,
or google it. Often you will find that the code snippet for your purpose is only a few
clicks away. Using such a code snippet also increases your skills because you will need
to make a transfer in order to apply the code.

Unfortunately, searching for code snippets with Google takes time and reduces
your work efficiency. Moreover, it is annoying if you do not find the right snippet and
it becomes even more frustrating when you have to apply this strategy several times.
Trust me, I am speaking again from my own experience. Luckily for you, there is a
simple way to store and retrieve code snippets in RStudio.

Open RStudio, create a new script, type fun and press <TAB> on your keyboard. I
hope you are as stunned as I was when I first discovered how snippets work in RStudio.
The shortcut fun inserts the blank snippet to create a function. The snippet even assigns
a name for the function as the next output shows.

Insert fun and press TAB to insert the fun(ction) snippet

name <- function(variables) {

}

Snippets have predefined fields that need to be filled in. We can directly jump from
one to another field by using <TAB> on the keyboard. After your snippet is inserted, the
name of the function is preselected and you can directly insert a name for the function.
If you click <TAB>, RStudio jumps to the second field (variables) and you can type
again without using the mouse or any other devise. With the last <TAB>we enter the
function’s body. RStudio gives us a few pre-defined snippets to start with, but the best
thing about snippets is that you can add your own.

Open RStudio’s global options, go the second pane (Data), and scroll down
the window. You will find a button to manage your snippets. Alternatively, use the
edit_rstudio_snippets() function from the usethis package. It opens the document
that saves all snippets.

4.3 Workflow | 107

Use edit_rstudio_snippets() to edit your snippets directly

usethis::edit_rstudio_snippets()

The snippet document includes the snippet to create a function somewhere in between.
As the next console shows, the fun snippet is defined as follows:

#The structure of the fun snippet

snippet fun

${1:name} <- function(${2:variables}) {

${0}

}

To make a snippet is not difficult. Insert snippet, a name for your snippet, and then
the code. Let us inspect how the fun snippet works. We must insert a dollar sign and a
running number (${1}) for each snippet field. Thus, in the fun example, the first input
refers to the ${1:name} where we are supposed to insert the name of the function. If
you press <Tab> you jump to the second input ${2:variables}where we must insert
the variables that the function handles and so on. All the rest of the code remains the
same, although you may check the indentation before you test the snippet.

Let me give you one more piece of advice on how to use snippets efficiently. With
the help of the snippet, it is easy to create code, since wemust only remember the name
of the snippet. At some point you will have several snippets and, if you picked your
snippet name wisely, their name may immediately pop up, but you probably have to
think twice after a long and tiresome day. Figure 4.4 shows you how RStudio’s preview
may help in this situation:

Fig. 4.4: Snippet preview

All your own snippets will show up if their name starts with the same prefix (e.g., my_)
and you can scroll down the preview list to look for a snippet that did not come up
instantly. Thus, instead of giving your snippets unique names, use a system that helps
you to find the snippet (e.g., my_hist, etc.), even after a long day. Feel free to choose a
system and names that are most appealing to you, but I do hope that the last example
underlines that a consistent way of creating snippets will also improve your efficiency.

Thus, to become an efficient user, we should definitely remember what the hist()
function does. Sometimes when we just want to explore the data, a quick-and-dirty

108 | 4 Data manipulation

version of the histogram is enough. However, it is time to start creating snippets if you
have used Google several times to adjust the options of the hist() function or any other
task.

Summary

Congratulations, mission accomplished! You are now able to manipulate data, which
gives you the skills for your own missions. Of course, I know from personal experience
that learning R can be awkward. Everyone makes a lot of mistakes in the beginning. It’s
pointless to say, but you will learn R by writing many lines of code, which will include
an abundance of mistakes and errors. So, don’t think of an error as something you
are doing wrong – an error points to something you haven’t achieved yet. R has a big
community, and a lot of information is available online which helps you find a solution
– or at least some hints – to solve the problem. Have a look at the dplyr cheat sheet
available on the package website, which gives a compact overview of the possibilities
at hand.

The dplyr website

show_link("dplyr")

In addition, I tried to highlight the advantages of RStudio projects. Practice R focuses
on applying R, which is why I did not start with projects in the beginning, and why I
did not outline all advantages in great length. Start to use projects if you work with
R on a regular basis. To mention some of the obvious advantages, it helps you to fix
your working directory, it creates a new instance, and your file pane shows your project
folder. Check out Chapter 2 ofWhat They Forgot to Teach You About R by Jennifer Bryan
and Jim Hester. They dedicate an entire chapter to project-oriented workflow. Or read
Chapter 8 of R for Data Science by Wickham & Grolemund (2016) for more information
about advantages of projects.

What They Forgot to Teach You About R:

show_link("forgot_teach")

R for Data Science

show_link("r4ds")

|
Part II: The basics

5 Prepare data
In the last chapter, we practiced data manipulation steps with implemented and pre-
pared data. Unfortunately, data does not always come as clean as these examples imply.
Data can be messy, and we have to apply many preparation steps before we can work
with it. As a next step, it is a good idea to apply these concepts to a data set that is not
made for teaching purposes. Working with toy data makes it easier to understand the
logic, but at the end of the day you will close this book and import a data set. Therefore,
we focus on some of the typical steps and pitfalls you may come across when you
prepare data.
– In Section 5.1, we learn how to import (and export) data. This is not a difficult task,

nonetheless it is not unlikely that you will run into problems during or right after
this step. For instance, you get an errorwhen you try to analyze a numerical variable,
but some observations are stored as characters. Such mistakes are frustrating. We
need to learn how the data is encoded and develop coping strategies for typical
problems when cleaning the raw data. Thus, this section shows how to import
different file formats and then focuses on typical problems that may arise when
you start working with the imported data.

– In Section 5.2, we will increase our knowledge of missing data in theory and in
practice. Often, we realize that values are missing or implausible when we explore
the data. We need to deal with them, because missing values may seriously distort
the estimation results. Our decisions about missing values, should we ignore them,
may result in scientific misconduct and even data falsification. We will first lay
a theoretical background under which circumstances missing values have a sub-
stantial effect on the analysis. Next, we use R to identify missing values, replace
implausible and missing values, and we talk about patterns of missing values.

– In Section 5.3, we prepare categorical variables. This step is often needed before
we run an analysis, and we already discussed how R handles factor variables in
Chapter 3. In the social scienceswewill oftenworkwith categorical variables, which
is why we establish how the forcats package helps us to manipulate categorical
variables in an efficient manner (Wickham, 2022a).

The setup of Chapter 5

library(dplyr)

library(forcats)

library(janitor)

library(naniar)

library(readr)

library(tibble)

library(tidyr)

https://doi.org/10.1515/9783110704976-005

112 | 5 Prepare data

5.1 Data import and export

We can import data using different functions, depending on the file’s format. For in-
stance, many data sets can be downloaded as text files, often comma-separated value
(*.csv) files. In this case, each observation is separated with a comma and the readr
package lets us import csv and other text files (Wickham, Hester, & Bryan, 2022). As the
next console illustrates, provide the name of a file to import, or the path that leads to
the file if the data is not in the working directory.

Import a csv file

library(readr)

my_data <- read_csv("path_to_the_file/data.csv")

Maybe you have never seen a csv file before. Maybe you are familiar with files saved in a
format of other statistical software that is frequently taught in the social sciences (e.g.,
SPSS: *.sav file, Stata: *.dta file). I bet that you have at least worked with an Excel
file (*.xlsx). The read_excel() function from the readxl package lets you work with
an Excel file (Wickham & Bryan, 2022). Use the read_sav() function from the haven
package to import an SPSS file; the haven package also provides a solution for Stata, as
the next console illustrates (Wickham, Miller, et al., 2022).

Import a stata (spss) file

haven::read_stata("my_stata.dta")

R even has its own data format (R data file: .rda), but the logic of the applied steps is
(almost) identical regardless of the format. Before you continue to import data, consider
that RStudio has several features that help us a lot with this task. For instance, RStudio
has aData Preview. Themenu displays Import Options andwe even see and get the code
to import the data in the Code Preview. Let’s inspect how the features are implemented.

The data preview shows how the data will be imported, which helps to figure out if
something goes wrong. To see the data preview, go to the Environment pane and search
for the Import button or use the toolbar (File -> Import Dataset). We can import
text via R base or the readr package; import data from Excel; or files from statistic
software such as SPSS, SAS, and Stata. A data import window will appear after you
picked a format and Figure 5.1 shows a screen shot that illustrates the import window. I
imported a csv file and picked the second option from the menu (the From text (readr)
option). Irrespective of the imported file, the import window will only differ in terms of
the displayed import options.

With the import window, we are able to examine the header, scroll up and down to
inspect the data, and detect potential problems. For example, sometimes I try to import
a text file that is not a csv file and, therefore, the file contains a different character to

5.1 Data import and export | 113

separate values. We will learn how to solve such a problem by tweaking the options in
a minute, but with the help of the preview we quickly see if something went wrong. Of
course, this is not a guarantee that everything works fine, but at least we get a sneak
preview.

Fig. 5.1: Data import window

Import options lets us determine how the data is imported. RStudio has integrated
several options at the bottom of the menu, depending on the format of the file. When
importing a text file, you can select whether the first row includes a header with variable
names. Should missing values not be coded as NA (not available), we must declare how
they are saved in the file, and we have to adjust which delimiter is used to separate
observations. The latter takes care of the fact that the information in a text file may not
be separated by commas. Sometimes a file contains a tab (tab-separated values *.tsv)
or other character delimiters to separate values. Talking about different file formats and
options might be overwhelming. The good news is that you do not need to remember
them in detail – it is enough to know that such options exists. Because of the next
import feature, we don’t even have to remember the code when importing data.

Examine the code preview at the bottom right of the menu. RStudio shows the
code to import the file and there is no need to memorize the package, nor the function
name. The code preview makes it comfortable to import data. The import menu shows
the code to load the library, the function to import the data, and if you have adjusted
options manually, it shows that code as well. As the next console illustrates, I imported
data that contains the number of overweight people worldwide, and the code preview
displays the following code.

Copy the R code from the code preview
 overweight_world <- read_csv("~/data/overweight_world.csv")
View(overweight_world)

114 | 5 Prepare data

RStudio suggests an object name and includes the code for the viewer, which helps you
to inspect how the data was imported. Thus, use the import menu, but do not forget
to copy the code to import the data. There is even a copy button in the code preview.
For the next steps it is not necessary to import the same data, but I included the file
(overweight_world.csv) in the files folder of the PracticeR package, which means
that the file is already on your computer. The system.file() function returns the path
to the file and the next console shows how you can import it.

system.file returns the path of system files
overweight_path <- system.file("files", "overweight_world.csv",
package = "PracticeR"

)

overweight_world <- read_csv(overweight_path)

In terms of the logical steps, there is no big difference between data import and export,
but we are making a huge step into the future. For instance, we may want to export
and save data after we have cleaned it; or maybe you created a new data frame with
estimation results. Irrespective of the reason, use one of the write_() functions for
this job. The following console shows how the code works in terms of a csv file and the
readr package; it expects at least the exported object (e.g., the new data frame) and a
string with the name. The function will export the file to the current working directory.

Export data

write_csv(my_new_data, "my_new_data.csv")

I have barely touched the tip of the iceberg, and there is a lot more to learn about data ex-
port. How files and objects are exported largely depends on the file format. For instance,
in the case of a csv file, wemay need to tweak the options and adjust howmissing values
are handled (na = "NA") or whether column names (col_names) are (not) included. It
does not makemuch sense to learn all available options to export, but you should know
that you can export files in different formats. Use the write_dta()function to export a
file for Stata, or the write_sav() function if you require an SPSS file. Considering we
have only explored the fundamentals, make sure that you inspect the help files before
you start to export data.

I am focusing on files that you probably know or may use in the near future to
analyze data, hence I don’t provide a comprehensive list. There are more packages and
possibilities to get access to data. To mention a few, work with Google Sheets and the
googlesheets4 package (Bryan, 2022), or use the rjson package (Couture-Beil, 2022)
for JSON (JavaScript Object Notation) files. You may need the latter if you collect data
from the web. Even if you will never use those packages, it is good to know that a lot

5.1 Data import and export | 115

of options exist. There is even the possibility of copying and pasting data into your
R script. The next info box about the datapasta package outlines how the principle
works (McBain et al., 2020).

The datapasta package

Imagine, you have found data on a website, but you cannot download it. Do you really want to copy
and paste it all in an Excel sheet when you can include it straight into your R script in a nice and proper
way? The datapasta package converts the copied data and inserts it from your clipboard as a tibble, a
tribble, a data frame, or a vector. For example, consider the next console. I did not include this data
manually, I copied it and let the datapasta package do its job.

#Datapasta to copy and paste data

tibble::tribble(

~Country, ~`2011`, ~`2012`, ~`2013`, ~`2014`, ~`2015`, ~`2016`,

"Australia", 5.1, 5.2, 5.7, 6.1, 6.1, 5.7,

"Austria", 4.6, 4.9, 5.3, 5.6, 5.7, 6,

"Belgium", 7.1, 7.5, 8.4, 8.5, 8.5, 7.8,

"Canada", 7.6, 7.3, 7.1, 6.9, 6.9, 7.1,

"Chile", 7.1, 6.5, 6.1, 6.5, 6.3, 6.7

)

Give it a try and go the PracticeR website (see next console). It contains an example website with
tables that we will scrape in Chapter 11. However, there is no need for a sophisticated approach if we
collect only one table. Insert first the tribble_paste() function from the datapasta package in your
script, than go to the website and copy the table; ultimately go back to the R script and run the function.
The function will automatically insert the data in the script when you execute it.

#Go to:

show_link("webscraping")

#Copy and paste via:

datapasta::tribble_paste()

Like this, you can copy and paste data from a csv, an Excel file, or even a website, all with the help of
the datapasta package. The package even comes with an addin for RStudio which is why we don’t need
to remember the code. Just copy and insert it via the addin.

There are a lot of possibilities to import data and, at least in theory, it is simple. Un-
fortunately, there are several pitfalls when importing data, especially if the data is
messy. Sometimes variable names are hard to work with because they contain special
characters (e.g., $); or they have names that do not reveal what it measures (e.g. 2011).
In general terms, raw data is often messy and we need clean it before we can prepare
variables for an analysis. We need solutions for typical pitfalls that may occur during
or after importing data. First, I focus on steps during the data import, which makes it
necessary to increase our knowledge about encoding. Second, we talk about typical

116 | 5 Prepare data

cleaning steps for raw data. Third, we learn how data can be combined since a data set
can be split into several files.

5.1.1 Encoding

Suppose, you import data and run into an error. This happens if the data is messy, but
even well-prepared data from official sources may contain some errors. The import
menu shows how the data will be encoded and sometimes we see a problem right away,
but what shall we do? Let me give you a few examples of what can gowrong if we import
data, hopefully reducing your pain when you start working on your own.

Maybe you only recognize a problem after the data is imported. You have applied
several preparation steps and starting all over againhurts. Suppose anumerical variable
is encoded as a character vector, because some elements are characters, as the class()
function reveals.

A messy variable

x <- c("9", 9, 9, 2, 3, 1, 2)

class(x)

#> [1] "character"

We cannot apply a function for a numerical input if we do not convert the variable into
a numerical vector. There are several as.* functions that transform the input into a
different data type. Suppose we have a factor variable x and a numerical variable y.
The as.numeric() function generates unique numerical values for each level, while
the as.character() function makes a character vector from the numerical input.

As numeric

as.numeric(x)

#> [1] 9 9 9 2 3 1 2

As character

y <- c(3.11, 2.7)

as.character(y)

#> [1] "3.11" "2.7"

What happens if you need to adjust several variables because the data is a real mess?
Consider the raw data from the last section. I used it to show that the amount of

5.1 Data import and export | 117

overweight and obese people increased worldwide. As the next console reveals, the
data contains a column with the country name, an indicator for the prevalence of
overweight people, and a year variable with strange variable names.

A real example, what a mess!

overweight_world <- read_csv("data/overweight_world.csv")

head(overweight_world)

#> # A tibble: 6 x 5

#> entity code `2016` prevalenceofoverweight region

#> <chr> <chr> <dbl> <dbl> <chr>

#> 1 Afghanistan AFG 2016 19.7 Asia

#> 2 Albania ALB 2016 58.7 Europe

#> 3 Algeria DZA 2016 60.7 Africa

#> 4 Andorra AND 2016 68.1 Europe

#> 5 Angola AGO 2016 23.9 Africa

#> # ... with 1 more row

Such a data frame emphasizes that we need cleaning steps before we run an analysis,
at least to get rid of the odd variable names. We let readr decide how the variables
are encoded, and in terms of encoding there were no errors. What shall we do if there
is a mistake? In such cases it is convenient to know about the column specification.
The specs() function returns the column specification that the readr package used to
import the data.

Inspect the column specification

spec(overweight_world)

#> cols(

#> entity = col_character(),

#> code = col_character(),

#> `2016` = col_double(),

#> prevalenceofoverweight = col_double(),

#> region = col_character()

#>)

The column specification contains the information on how the readr package en-
coded each column of the data. For example, the last variable region is a character
column and readr made the right decision and declared the column as characters
(col_character()). How does the package figures that out?

118 | 5 Prepare data

The readr package inspects the first one thousand observations of each variable
and makes a guess about the stored information. In technical terms, different parsers
are used to retrieve the information and we can apply the guess_parser() function to
examine this procedure. As the next console illustrates, the guess_parser() returns the
guess of the readr package for a character, a numerical, and a logical vector (Wickham
& Grolemund, 2016, Ch. 11).

Guess_parser reveals the parser to encode data

guess_parser(c("Hello world"))

#> [1] "character"

guess_parser(c("2000,5", "2005,44", "2010,3"))

#> [1] "number"

guess_parser(c("TRUE", "FALSE"))

#> [1] "logical"

Hopefully, the readr package makes the right guess. What if a variable is messy and
contains first one thousand observations with characters? Or let’s say that you received
a newer version of the data and you want to make sure that a numerical variable will
be imported as a numerical variable, regardless of what it contains. In this case, we
must determine how variables are encoded.

Adjust the parser directly via the import menu. If you use RStudio to import data,
you can see this information in the header of the preview and change it manually. Go
back to the import menu and select Data. Click on the small arrow under the variable
name in the import menu. A small pop-up menu appears that shows all available
parsers. We can even exclude and skip the import of columns with the menu. After
we have changed a parser or excluded a variable, look at how the code preview has
changed. RStudio includes the column specification, as the next console illustrates.

Adjust the column specification if it is necessary

overweight_world <- read_csv("data/overweight_world.csv",

col_types = cols(

code = col_skip(),

`2016` = col_integer()

)

)

5.1 Data import and export | 119

I did not import several variables from overweight_world and I adjusted the column
specification slightly. The years are now imported as integers. Thus, the code to import
the data might have become more complicated, but we now are sure how the data will
be imported. Maybe you are lucky, maybe you must never adjust how readr imports
data, but remember that these possibilities exist should you run into an error.

What shall we do with missing values? We will focus in more detail on the problem
of missing values in section 5.2, but we should take missing values into account while
importing data. R expectsmissing values to be coded as NA, but accepts other characters
as well. Say you import data from a spread sheet, but the missing values are just empty
cells. Adjust how the data and missing values are imported with the RStudio import
menu. For example, the na option of the read_csv() function lets you pick different NA
indicators, even from empty cells in a spread sheet, while the read_excel() function
automatically sets empty cells to NA.

Refer to NA indicators with the na option

read_excel("data.xlsx",

na = "99"

)

5.1.2 Cleaning variable names

It is up to you how variables are named, but R has certain restrictions for variable
and object names. A name may contain letters, numbers, points, and underscores, but
cannot start with a number or contain special characters. What happens if we import
data that violates these restrictions? Suppose an Excel sheet contains a variable named
measurement 1 and a second one called 2016. It is not allowed to start with a digit, but
even the first variable breaks the rules since a blank space is included in the name.
What happens if we create a data frame or import such data? We run into an error.

#This code returns an error:

data.frame(

measurement 1 = 1,

2016 = 1)

#> Error: unexpected numeric constant in:

#> "data.frame(

#> measurement 1"

Wemay fix these problems by declaring the variables names as strings and put them in
backticks:

120 | 5 Prepare data

Insert backticks

data.frame(

`measurement 1` = 1,

`2016` = 1

)

#> measurement.1 X2016

#> 1 1 1

At least we can make a data frame out of this mess, but R inserts a point for the blank
space and the letter x before the digits. A tibble is more convenient when it comes to
variable names. A tibble does not change the name of the variables that violate the
name restrictions:

Tibble let us break name conventions

tibble(

`measurement 1` = 1,

`2016` = 2

)

#> # A tibble: 1 x 2

#> `measurement 1` `2016`

#> <dbl> <dbl>

#> 1 1 2

We should stick to the rules and provide a meaningful name that outlines what the
variable measures. In terms of the variable 2016, we are talking about a year which
is obviously a better name that does not violate the rules. Moreover, even if we can
create a variable with a blank space, we make our life more complicated since we need
backticks to refer to the variable. In a nutshell, the rules are not supposed to make you
struggle. On the contrary, if you give variables and objects names that explain what
they measure – or in term of functions what they do – your future self and other people
will thank you.

In the last section, I imported a data frame with a variable that consists of digits
only, but I did not get an error message. In other words, we do not reproduce this error
if we use the readr package to import data, because the package creates a tibble, not a
data frame, as the is_tibble() function reveals.

Is x a tibble?

tibble::is_tibble(overweight_world)

5.1 Data import and export | 121

#> [1] TRUE

Sometimes implemented data is also not as clean and consistent as we wish. For
example, the iris data provides measurements about flowers, but the variable names
are stored in Upper_Camel case and single words of each variable are separated with a
period. The names() function returns the column names.

The iris data

names(iris)

#> [1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

There is nothing wrong with this style, but messy data may contain variables with an
inconsistent style. For example, a mixture of:

#snake_case

my_var <- 1

#SCREAMING_SNAKE_CASE

MY_VAR <- 1

#camelCase

myVar <- 1

#Upper_Camel

MyVar <- 1

#kebab-case (hmm-mmmm)

my-var <- 1

Some people prefer camelCase, while other people use snake_case or a different style.
Of course, it is up to you which style you prefer, as long as you apply one consist-
ently. This sounds petty, but is the variable called Sepal.Length, Sepal_Length, or
sepal_length? It is confusing if not all variables are named in a consistent way. It
will increase your workload, because you must think twice how a variable is named.
Moreover, it is error-prone because R is case sensitive and returns an error that a variable
cannot be found if you apply the rules inconsistently. So, stick to one style.

Before we get rid of the inconsistent style of several variables, let’s first learn how
to rename a variable. There are several ways, but the dplyr package offers a convenient
solution to rename a variable. Use the rename() function and give dplyr a new name
for the old one.

122 | 5 Prepare data

Rename variable: new_name = variable

dplyr::rename(iris, sepal_length = Sepal.Length)

However, there is no need to rename variables, because we can include this step if we
select them.

Include rename() in select

iris |>

select(

new_var = Sepal.Length

)

#> # A tibble: 150 x 1

#> new_var

#> <dbl>

#> 1 5.1

#> 2 4.9

#> 3 4.7

#> 4 4.6

#> 5 5

#> # ... with 145 more rows

I picked the iris data because I prefer the snake_case rule, but the data applies a
different style. Certainly, we could rename each variable, but to rename a bunch of
variables is bothersome – at the very least it is a waste of time. How can we get rid of all
CamelCaseswithout spending too much time? Give the clean_names() function from
the janitor package a try (Firke, 2021). Just like the janitor in a school, the package
cleans the variable names – it converts them to the snake_case variables and we don’t
spend the entire day to clean each variable name manually!

The janitor package cleans data

iris |>

janitor::clean_names()

#> # A tibble: 150 x 5

#> sepal_length sepal_width petal_length petal_width species

#> <dbl> <dbl> <dbl> <dbl> <fct>

#> 1 5.1 3.5 1.4 0.2 setosa

#> 2 4.9 3 1.4 0.2 setosa

#> 3 4.7 3.2 1.3 0.2 setosa

#> 4 4.6 3.1 1.5 0.2 setosa

5.1 Data import and export | 123

#> 5 5 3.6 1.4 0.2 setosa

#> # ... with 145 more rows

You are no fan of the snake_case rule? Apply a different rule. The function returns
CamelCase or other styles by tweaking the case option. Thus, the janitor package
provides useful features to clean variable names without much effort. Of course, some
inconsistencies may remain. Consider the next console with messy variable names. I
created variable names that do not consistently apply a coding style. To examine how
R will handle those variable names, use the names() function.

Another messy data set

messy_data <- data.frame(

firstName = 1:2,

Second_name = 1:2,

`income in =C` = 1:2,

`2009` = 1:2,

measurement = 1:2,

measurement = 1:2

)

names(messy_data)

#> [1] "firstName" "Second_name" "income.in.." "X2009"

#> [5] "measurement" "measurement.1"

As the console shows, I used CamelCase, but not all words start with a capital letter. I
included a euro sign (=C), which is not a good idea because special signs are excluded
and the income variable gets two extra periods instead of the euro sign. Finally, I even
used a name (measurement) twice! The good news is, tibble() returns an errormessage
if a variable name is used twice and also gives some recommendations on how to fix
the problem.

Tibble checks duplicates and warns us

tibble(

measurement = 1:2,

measurement = 1:2

)

#> Error:

#> ! Column name `measurement` must not be duplicated.

#> Use .name_repair to specify repair.

#> Caused by error in `repaired_names()`:

124 | 5 Prepare data

#> ! Names must be unique.

#> x These names are duplicated:

#> * "measurement" at locations 1 and 2.

What about the other variable names? Does the clean_names() function get rid of
them? As the next console shows, all names are now consistent, but not all problems
are solved. In a very similar way, it is likely that some inconsistencies and manual steps
remain if you start to clean data.

Janitor gets rid of many crude names

names(messy_data |> janitor::clean_names())

#> [1] "first_name" "second_name" "income_in" "x2009"

#> [5] "measurement" "measurement_1"

Sometimes we are lucky and a data set comes as one file, but sometimes the data might
be split to several files. This is probable if we use data from a longitudinal study, which
often stores waves in separate files. Or sometimes we need to combine a survey with
data from other sources. In all of these examples we need to combine data, in order to
prepare the data for the analysis.

5.1.3 Combining data

We need to acknowledge that data can be stored in a wide or a long format whichmakes
it necessary to learn how to transform the data beforewe can combine it. The differences
between cross-sectional and longitudinal data outline the reason why different data
formats exist. Suppose we conducted a survey. In the first wave, we have observed two
variables (x and y) for several participants (ID). In case of cross-sectional data, each
row contains one observation and all variables get their own column. Say we have
measured x two times, while y is a time-constant variable (e.g., participant’s sex). Shall
we append each observation of the second wave, or shall we create a new variable that
indicates the time of the measurement?

In other words, shall we bring the data into the long or into the wide format. Fig-
ure 5.2 shows two small data sets, and each colored box represents a cell. If we append
the second measurement, the data becomes longer and is stored in the long format.
As Figure 5.2 (A) illustrates, the data contains two rows per person, which makes it
necessary to include a key (ID) and a time (t) variable.

However, wemay switch to the wide format, as Figure 5.2 (B) highlights. We include
a separate column with a running number for each time-varying variable. We must
ensure that both data sets have the same format when we are combining them. How
can we transform data from long (wide) into the wide (long) format?

5.1 Data import and export | 125

Fig. 5.2: Long (A) and wide (B) data

Consider the gapminder data (Bryan, 2017). It contains information about life expect-
ancy (lifeExp), the size of the population (pop), and the GDP per capita, (gdpPercap).
Those variables are time varying, while variables such as country and continent are
constant. The data comes in the long format and encompasses 142 countries and an
observational period from 1952 up to 2007.

library(gapminder)

head(gapminder)

#> # A tibble: 6 x 6

#> country continent year lifeExp pop gdpPercap

#> <fct> <fct> <int> <dbl> <int> <dbl>

#> 1 Afghanistan Asia 1952 28.8 8425333 779.

#> 2 Afghanistan Asia 1957 30.3 9240934 821.

#> 3 Afghanistan Asia 1962 32.0 10267083 853.

#> 4 Afghanistan Asia 1967 34.0 11537966 836.

#> 5 Afghanistan Asia 1972 36.1 13079460 740.

#> # ... with 1 more row

Transforming and combining real data is often tricky because the data needs to be
well prepared. Suppose we use the country name to match observations, but the key
variable includes typos. In such cases, we can’t match the observations. Or, suppose
we match data but we do not observe the same time period for all included countries.
In consequence, we introduce missing values which we will address in the last section
of this chapter. First, we learn the principles to transform and combine data with clean
data inspired by the gapminder data.

126 | 5 Prepare data

From long to wide
Suppose we observe data that includes two different types of outcomes for two different
countries: the GDP (gdp) and the population (pop) for Germany and the UK.

#A data frame (df) to illustrate:

df <- tibble::tribble(

~country, ~outcome, ~measurement,

"Germany", "gdp", 3.8,

"Germany", "pop", 83.24,

"UK", "gdp", 2.7,

"UK", "pop", 67.22

)

Note that gdp is measured in billions of USD, while population indicates how many
people live in each country, but measured in millions. Moreover, we do not know which
measurement we observed without a variable name. This makes it clear why we would
prefer a wide data set in this case.

The tidyr package helps us to transform the data from the long into thewide format
(Wickham & Girlich, 2022): The pivot_wider() function has two main arguments,
names_from and values_from. The first argument expects an input vector with variable
names. It is the outcome in the minimal example. Furthermore, we must outline where
the values of each variable come from (here measurement).

tidyr::pivot_wider converts long data into the wide format

df |>

pivot_wider(

names_from = outcome,

values_from = measurement

)

#> # A tibble: 2 x 3

#> country gdp pop

#> <chr> <dbl> <dbl>

#> 1 Germany 3.8 83.2

#> 2 UK 2.7 67.2

The pivot_wider() function comes with several options to adjust how the data is
transformed. For instance, suppose the outcome variable is very obscure and does not
outline what it measures at all. Instead, it only indicates the number of the outcome.

5.1 Data import and export | 127

df <- tibble::tribble(

~country, ~outcome, ~measurement,

"Germany", 1, 3.8,

"Germany", 2, 83.24,

"UK", 1, 2.7,

"UK", 2, 67.22

)

Nobody knows what a variable contains if the variable name consists only of num-
bers, so give the variable a name that reveals its content. We can set a prefix name
(names_prefix) and append a running number for each variable. The tidyr package
separates variable names with an underscore.

Add names_prefix

df |>

pivot_wider(

names_from = "outcome",

names_prefix = "outcome_",

values_from = "measurement"

)

#> # A tibble: 2 x 3

#> country outcome_1 outcome_2

#> <chr> <dbl> <dbl>

#> 1 Germany 3.8 83.2

#> 2 UK 2.7 67.2

We have examined one time-varying variable, but there might be several time-varying
(and constant) variables. The next tibble accounts for this point and makes the data
a bit more realistic. It contains several observations for each country (with random
values of x and y) and a time variable for each measurement.

df <- tibble::tribble(

~continent, ~country, ~time, ~x, ~y,

"Europe", "UK", 1, 0.78, 0.77,

"Europe", "UK", 2, 0.63, 0.98,

"Europe", "UK", 3, 0.07, 0.18,

"Asia", "Japan", 1, 0.26, 0.69,

"Asia", "Japan", 2, 0.07, 0.11,

"Asia", "Japan", 4, 0.16, 0.13)

128 | 5 Prepare data

We must include all time-varying variables in the values_from argument to transfer
the data from long into the wide format.

Include time-varying variables in values_from

df |>

pivot_wider(

names_from = time,

values_from = c(x, y), names_sep = "_"

)

#> # A tibble: 2 x 10

#> contin~1 country x_1 x_2 x_3 x_4 y_1 y_2 y_3

#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 Europe UK 0.78 0.63 0.07 NA 0.77 0.98 0.18

#> 2 Asia Japan 0.26 0.07 NA 0.16 0.69 0.11 NA

#> # ... with 1 more variable: y_4 <dbl>, and abbreviated

#> # variable name 1: continent

Did you notice that we generated missing values? Maybe you did not see it when the
data was still in the long format, but there are no observations for Japan (in the third
wave), while UK has missing in the fourth wave. All missing values are set to NA, but
sometimes we need additional missing values indicators (e.g., for robustness test). Fill
these gaps with the values_fill option, but keep in mind that the values are missing
regardless of the indicator.

Fill in missing values with, for example, 99:

df |>

pivot_wider(

names_from = time,

values_from = c(x, y),

values_fill = 99

)

#> # A tibble: 2 x 10

#> contin~1 country x_1 x_2 x_3 x_4 y_1 y_2 y_3

#> <chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 Europe UK 0.78 0.63 0.07 99 0.77 0.98 0.18

#> 2 Asia Japan 0.26 0.07 99 0.16 0.69 0.11 99

#> # ... with 1 more variable: y_4 <dbl>, and abbreviated

#> # variable name 1: continent

5.1 Data import and export | 129

From wide to long
Let’s pretend that we observed two countries and we measured x five times.

#Wide data frame

df <- tibble::tribble(

~continent, ~country, ~x1, ~x2, ~x3, ~x4, ~x5,

"Europe", "Germany", 0.18, 0.61, 0.39, NA, 0.34,

"Europe", "UK", 0.81, 0.35, 0.69, 0.22, NA

)

The pivot_longer() function transforms data from the wide into the long format. The
function has threemain arguments: (1) The cols argument expects columns that should
be transformed. (2) The names_to argument needs the name for a new variable. This
column will contain the measured outcome, but it does not exist in the data since we
are going to collapse several columns of the data. Therefore, we need to provide a string
with a new variable name. (3) The same applies to values_to. It creates a column for
the measurement. As the next console shows, I picked the variable names time and
outcome to illustrate how the code works but try to be more explicit than me.

pivot_longer convert wide data into the long format

df |>

pivot_longer(

cols = c(`x1`, `x2`, `x3`, `x4`, `x5`),

names_to = "time",

values_to = "outcome"

)

#> # A tibble: 10 x 4

#> continent country time outcome

#> <chr> <chr> <chr> <dbl>

#> 1 Europe Germany x1 0.18

#> 2 Europe Germany x2 0.61

#> 3 Europe Germany x3 0.39

#> 4 Europe Germany x4 NA

#> 5 Europe Germany x5 0.34

#> # ... with 5 more rows

It is not necessary to list each variable, especially if the variables have a running number.
Just provide a start and endpoint (x1:x5) instead of the complete list. Time-varying
variables have often the same variable name with a running number to differentiate
between the points of time. Instead of using a start and end point, we may use the

130 | 5 Prepare data

starts_with() argument. This option includes all variables that start with a certain
string. Moreover, the names_prefix() option will help us to get rid of the constant part
of the variable name (x) and includes the running number only.

Starts_with searches for variables strings

Adjust prefixes with names_prefix

df |>

pivot_longer(

cols = starts_with("x"),

names_to = "time",

names_prefix = "x",

values_to = "outcome"

) |>

head()

#> # A tibble: 6 x 4

#> continent country time outcome

#> <chr> <chr> <chr> <dbl>

#> 1 Europe Germany 1 0.18

#> 2 Europe Germany 2 0.61

#> 3 Europe Germany 3 0.39

#> 4 Europe Germany 4 NA

#> 5 Europe Germany 5 0.34

#> # ... with 1 more row

Again, the data has implicit missing values and there are no observations for Germany
in the fourth wave, while the UK lacks the fifth measurement. We must decide what we
do with those missing values. You can set values_drop_na to TRUE or FALSE.

To transform data can be tricky if even the mechanics seem simple. Make sure that
you did not introduce any error and inspect the data carefully before you go on with the
next steps. However, after the data has the same format, we are able to apply mutating
and filtering joins to combine it. In the next step we discover several ways to combine
data and we explore functions from the dplyr package that help us during the merging
process.

Mutating joins
Figure 5.3 shows two small data sets (A and B) with colored boxes to illustrate how data
joins work; each box represents one cell of the data and both contain two variables
from three persons. In order to combine data, each data set needs a unique identifier
variable. Here I gave each person a unique ID. In our case it is a running number, but
we could use a character variable as well. Data set A contains variable x, while data set

5.1 Data import and export | 131

B contains variable y. Note that both data sets differ in terms of the observed persons.
Persons 1 and 2 show up in both data sets; while person 3 is not listed in data set B;
and there is no information about person 4 in data set A.

Fig. 5.3:Mutating joins

How can we join both data sets? Figure 5.4 shows you what the data looks like if you
apply a full join (A) or an inner join (B). A full join creates a new data set with all possible
combinations of both data sets. In our case it includes all persons and all observations
of x and y. A full join may create a mess, especially if the data does not contain the
same observation units. Keep in mind that depending on how we combine data, we
need to deal with missing values either way. Figure 5.4 (B) shows the result of an inner
join. The inner join combines data only for observations that appear in both data sets.

Fig. 5.4: Full join (A) and inner join (B)

As Figure 5.5 further illustrates, we can also apply a left join (A) or a right join (B).
Suppose you work with data set A. A left join adds the variables of data B that can be
combined. In our example persons 1 and 2 get the corresponding values from data set
B, while person 3 is set to NA since there is no information that we can add. A right join

132 | 5 Prepare data

works exactly the other way around. We start with data set B and add all variables that
can be combined from data set A.

Fig. 5.5: Left join (A) and right join (B)

Let us create two data frames to see how it works with dplyr. As the next console
shows, I again created data frames for countries. The first data set contains the country
name (as the identifier) and their gross domestic product (gdp); the second data frame
contains the size of the population (pop) for some of the countries.

#Two example data sets

df1 <- tibble::tribble(

~country, ~gdp,

"Brazil", 1.44,

"China", 14.72,

"UK", 2.67

)

df2 <- tibble::tribble(

~country, ~pop,

"Germany", 83.24,

"Italy", 59.03,

"UK", 67.22

)

To combine them, insert both data frames into the inner_join() function and determ-
ine which variable should be used as the identifier with the by option.

Inner join
inner_join(df1, df2, by = "country")

5.1 Data import and export | 133

#> # A tibble: 1 x 3

#> country gdp pop

#> <chr> <dbl> <dbl>

#> 1 UK 2.67 67.2

As the output shows, the combined data set contains only UK since the latter is the only
observation that appears in both data frames. A full join reveals missing values and
works the same way.

Full join

full_join(df1, df2, by = "country")

#> # A tibble: 5 x 3

#> country gdp pop

#> <chr> <dbl> <dbl>

#> 1 Brazil 1.44 NA

#> 2 China 14.7 NA

#> 3 UK 2.67 67.2

#> 4 Germany NA 83.2

#> 5 Italy NA 59.0

Since Italy does not show up in the first data frame, the country is no longer included if
we apply a left join. Or turn around and apply a right join:

Left join

left_join(df1, df2, by = "country")

#> # A tibble: 3 x 3

#> country gdp pop

#> <chr> <dbl> <dbl>

#> 1 Brazil 1.44 NA

#> 2 China 14.7 NA

#> 3 UK 2.67 67.2

Right join

right_join(df1, df2, by = "country")

#> # A tibble: 3 x 3

#> country gdp pop

#> <chr> <dbl> <dbl>

#> 1 UK 2.67 67.2

134 | 5 Prepare data

#> 2 Germany NA 83.2

#> 3 Italy NA 59.0

The last examples only underlined that we create missing values, but if the data is not
prepared, we may not combine it or create a real mess. Filtering joins help us to identify
duplicates or observations that are (not) listed in a data set.

Filtering joins
Filtering joins do not create a new data frame; they return selected columns. Let’s
assume that you work with two similar data frames. Unfortunately, the data sets are
messy and contain duplicates that we need to get rid of. We need to be aware of what
the data contains in order to combine it: what have both data sets in common, why are
the duplicates generated in the first place, and how can we get rid of them?

#Two messy data sets

df1 <- tibble::tribble(

~country, ~gdp,

"China", 14.72,

"Germany", 3.85,

"UK", 2.67

)

df2 <- tibble::tribble(

~country, ~gdp,

"Brazil", 1.44,

"Germany", 3.85,

"UK", 2.67

)

Suppose you want to append variables but only for observations you observed in the
first instance. In this case,wemust examinewhich countries are listed in first data frame
that also appear in the second one. The semi_join() function returns observations of
the first data frame which also appear in the second one.

Semi join
semi_join(df1, df2, by = "country")

#> # A tibble: 2 x 2

#> country gdp

#> <chr> <dbl>

#> 1 Germany 3.85

5.1 Data import and export | 135

#> 2 UK 2.67

Since the data sets are messy, we certainly do not want to combine them, but now we
knowwhich countries of the first data set also appear in the second one. The counterpart
to semi_join() is the anti_join() function. It drops observations from the first data
set and returns only observations that are not listed in the second one.

Anti join

anti_join(df1, df2, by = "country")

#> # A tibble: 1 x 2

#> country gdp

#> <chr> <dbl>

#> 1 China 14.7

In a similar sense, set operations from base R such as the intersect() function (in-
tersection) helps us to reveal duplicates as well. The function returns observations
that appear in both data sets. Or consider the union() function. Germany and UK are
listed in both data set. The union() function combines both data frames and drops the
duplicates.

An union combines data frames and drops duplicates
union(df1, df2)

#> # A tibble: 4 x 2

#> country gdp

#> <chr> <dbl>

#> 1 China 14.7

#> 2 Germany 3.85

#> 3 UK 2.67

#> 4 Brazil 1.44

Keep in mind, the discussed mechanics to combine data are not hard to apply but we
can create a real mess if we combine data that is not well prepared. Inspect carefully
the unique identifier variable and generate some robustness checks before you go on
and analyze the data. In a similar sense, we need to deal with missing values.

136 | 5 Prepare data

5.2 Missing data

What should we do with missing or implausible values? Suppose you conducted a
survey and ask people to rate their life satisfaction on a scale from one (very unhappy)
to eleven (very happy). As the next console shows, I have created a vector (x) and
purposefully inserted missing values. We already saw that base R functions – such as
mean() – return NA. The mean of a vector with missing values is itself a missing value.
R does not even return an error message.

NAs in summary functions

x <- c(1, 2, NA, 4, 5, 99)

mean(x)

#> [1] NA

R checks if an element of the vector is numeric and we imitate this behavior with the
is.na() function. It checks for missing values and returns a logical vector for each
element of a vector.

is.na checks if a value is NA

is.na(x)

#> [1] FALSE FALSE TRUE FALSE FALSE FALSE

To use such a function in the case of missing values, we set the na.rm option to TRUE.
The option removes missing values before the function is executed, but is it wise to do
so?

na.rm removes NA

mean(x, na.rm = TRUE)

#> [1] 22.2

I included a second missing values indicator (99) in the example. It demonstrates,
in a non-technical fashion, why we not only need to deal with missing but also with
implausible values. As outlined, x has values from one to eleven. So, I included a
blunder, and we estimate a distorted mean if we do not exclude the implausible value.
We may declare 99 as a missing value, which solves the problem for the moment.

5.2 Missing data | 137

Shall we include na.rm?

x[x == 99] <- NA

mean(x, na.rm = TRUE)

#> [1] 3

The na.rm option gets rid of missing values, but for obvious reasons the mean will
remain distorted for as long as we do not acknowledge if and how many missing (and
implausible) values we observe. Are there any missing values indicators that we are not
aware of? How shall we deal with them? Some advice: Get to know your data – including
in terms of missing and implausible values. After cleaning the data and identifying
which variables are crucial for the analysis, examine how many observations have
missing or implausible values. I included a large missing value on purpose. Therefore,
it may seem artificial to say that missing values may have a strong impact on analysis
results. It might also appear that identifying implausible values is not a difficult task,
but this is only halfway true if you are familiar with the data and the measurement
of the examined variables. So, explore the data. You could even run a preliminary
analysis if you are aware that further robustness checks are needed to ensure that
missing values will not change the results. Perceive first results as preliminary, since
missing values and other problems (e.g., due to data preparation steps) may change
the results substantially.

It is okay if you do not realize that there is a missing value problem in the first step.
However, ignoring missing values may seriously distort results, and dropping missing
values may lead to scientific misconduct and data falsification. I can only give a very
brief introduction and show you why you need to learn more about missing values. In
principle, we have to clarify two questions: How many missing values do we observe?
And why are they missing? The first question is easier to answer, and we will use R
in the next subsection for this task, but before we dive into this, the mechanisms of
missing valuesmay shed light on the question of why the values are missing.

5.2.1 The mechanisms of missing values

The pioneer work goes back to Rubin (1987) and Little & Rubin (1987), respectively.
The authors developed a theoretical approach and estimation techniques to deal with
missing values. They outlined under which circumstances it is feasible to estimate
a plausible value to replace the missing value. Today, we apply multiple imputation
techniques which means that we estimate several plausible values for a missing value
to reflect the uncertainty of the measurement. Multiple imputation techniques are an
advanced statistical procedure and I will not explain such a complex topic in Practice
R. There are several textbooks that introduce the problem of missing values and how to
apply multiple imputation techniques (e.g., see Allison, 2001; Enders, 2010). Yet, we

138 | 5 Prepare data

still need to establish why we cannot ignore missing (and implausible) values, and the
mechanisms of missing values let us assess the seriousness.

Rubin and Little distinguish three different missing data mechanisms: Missing
completely at random (MCAR) implies that the probability of a missing value does not
depend on any other observation, regardless of whether it was observed or not. If the
probability of a missing value depends on other observed variables, but not on the
missing value of the variable itself, the values are missing at random (MAR). Ultimately,
an observation is missing not at random (MNAR) if the probability of observing a
missing value depends on the value of the unobserved variable itself (as well as on
other observed variables).

Rubin’s typology can be tricky to comprehend. Let me illustrate the mechanisms
with the help of simulated data. With simulated data we are able to generate data and
missing values on purpose. Creating such data makes it easy to examine the mechan-
isms of missing values and the consequences in terms of data analysis. Suppose we ask
people about their income and their highest educational degree in a survey. To simulate
data, we need to make assumptions on how the income variable is distributed (e.g.,
mean, dispersion). Regardless of which assumptions we make, I simulated an income

variable and I created an extra income variable for each missing value mechanism
based on the income variable. The rubin_simdata shows the result.

Summary of the simulated data

head(rubin_simdata)

#> # A tibble: 6 x 5

#> income income_mcar income_nmar income_mar education

#> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 2924. 2924. 2924. 2924. 9.85

#> 2 2755. 2755. 2755. NA 6.45

#> 3 2526. 2526. 2526. 2526. 9.19

#> 4 3559. 3559. 3559. 3559. 10.6

#> 5 2657. 2657. 2657. 2657. 11.6

#> # ... with 1 more row

Thus, the variable income_mcar has the same observations as income, but I deleted
15 percent of the observations randomly. For this reason, we know that the missing
values of income_mcar are missing completely at random. In a similar way, I created
income_mnar which takes into consideration that people with a higher income may
not reveal this information; and income_mar reflects that other observed variables
may explain the missing pattern. In the simulated data, people with a low and a high
educational background no longer tell us about their income.

5.2 Missing data | 139

Figure 5.6 shows a scatter plot for income and education for each missing mechan-
ism; I used two different colors to highlight which observations would have a missing
value. In this example, missing completely at randommeans that the reason why we
do not observe the income of a person does not depend on the income of the person
itself; or any other variables that we did (not) observe. As Figure 5.6 (A) highlights, some
observations with a higher or a lower income are missing, but there is no systematic
pattern, since I randomly dropped observations.

Fig. 5.6: The mechanisms of missing values

Maybe people with a high (or low) income do not want to share this information; maybe
because they do not trust us to keep this information safe. In this case, the missing
values are missing not at random because the income level determines whether we
observe the outcome. As Figure 5.6 (B) shows, we observe more missing values when
the income increases, meaning we would underestimate the income of the sample.
Ultimately, missing at randommeans that the missingness depends on other observed
variables, but not on the income of a person itself. In accordance with the simulated
data, people with a high and low educational background do not reveal their income
and Figure 5.6 (C) shows a clear cut-off point due to the simulation.

Often, we have doubts about the nature of the missing values. The patterns of
missing data determine how we can handle the problem from a statistical point of
view. This is also the reason why youmay encounter different missing values indicators.
Suppose you are examining whether job satisfaction explains why people move house.
Somepeoplemay not return the survey on purpose, butmaybe the questionnaire cannot
be delivered because the respondent has found a new job and moved to another city.
Say their e-mail address is no longer valid, resulting in invitations being returned to
sender. Such information is crucial if we try to reconsider how we deal with missing
values, because it can be related to the research topic and affects the data quality. Say
we did not observe a lot of people who moved. We may conclude that job satisfaction

140 | 5 Prepare data

has only a small effect on peoples’ decision to move if those who were unhappy with
their jobs already moved before we had the chance to ask them. Dealing with missing
values is a hard topic and information on why values are missing is crucial to deciding
how to deal with them.

In the next subsection, we shall pretend that we can exclude those missing values
without any consequence to our analysis – at least to learn how to deal with missing
values with R. This is a heroic assumption, and I will outline a few more words about a
systematic data loss at the end. First, we will use R to explore missing values, learn
how to replace them in order to run the analysis and robustness checks (e.g., with and
without implausible values), before we try to identify patterns of missing values.

5.2.2 Explore missing values

First of all, how can we estimate how many missing values we observe? Say we have
observed five persons, and we inspect the following variables with missing values. As
the next output shows, some variables do not contain any information. We have no
information for age_child2, while the number of missing values for all other variable
lies somewhere in between.

#Tiny data with NAs

df <- tribble(

~person, ~country, ~age, ~children, ~age_child2, ~sex,

1L, "US", NA, NA, NA, "Male",

2L, "US", 33, 1, NA, "NA",

3L, "US", 999, 1, NA, "Female",

4L, "US", 27, 1, NA, "Male",

5L, "US", 51, NA, NA, NA

)

We may use the is.na() function in combination with other functions to examine
whether missing data is a minor problem or a big issue. Apply the sum() function to
count how many missing values a variable has; or use the which() function to find out
at which position the information is not available.

How many missing value has the variable sex?

sum(is.na(df$sex))

#> [1] 1

5.2 Missing data | 141

At which position?

which(is.na(df$sex))

#> [1] 5

The variable sex seems to have only onemissing value and the which() function tells us
that the information is missing for person 5. Again, I included some errors to illustrate
that data can be messy. The information about person 5 is missing, but the NA is coded
as a string, which is why R does not recognize it. The same applies if a different missing
indicator is used. For instance, we observed 999 as the third person’s age, which is
obviously wrong. Before we deal with such mistakes, let us first stick to the regular
missing values indicators.

We can apply different functions to estimate the number of missing values, but
the naniar package provides lots of functions and graphs to explore missing values
(see Tierney et al., 2021). First, there is no need to count missing values manually since
the n_miss() function does the same job. It returns the number of missing values of a
vector (or a data set). Furthermore, the n_complete() function is its counterpart and
returns the number of complete values.

naniar provides functions and graphs to explore missing values

library(naniar)

n_miss counts number of missings

n_miss(df)

#> [1] 9

n_complete counts complete cases

n_complete(df)

#> [1] 21

Besides the counting function, the naniar package comes with many graphs to explore
missing values. For example, the vis_miss() function visualizes missing values. It
displays the number of missing values for each variable graphically for an entire data
set.

How many missings has the data?

vis_miss(df)

142 | 5 Prepare data

Consider the data frame with the missing values one more time. We still need to replace
implausible values and get rid of constant columns.

Inspect the data frame one more time

df

#> # A tibble: 5 x 6

#> person country age children age_child2 sex

#> <int> <chr> <dbl> <dbl> <lgl> <chr>

#> 1 1 US NA NA NA Male

#> 2 2 US 33 1 NA NA

#> 3 3 US 999 1 NA Female

#> 4 4 US 27 1 NA Male

#> 5 5 US 51 NA NA <NA>

Some of you might be wondering why a data set should contain an entire column
(age_child2) with missing values. You may encounter such data if you use process-
generated data and the empty column may only be a placeholder. This might happen
even if the data is generated by humans. The variable has the name age_child2 which
suggests the use of a filter question where all the participants who have fewer than
two children do not respond to this question. It has no consequences if we delete a
columnwithmissing values, sincewe lose no information. The same applies if a column
contains a constant, such as country. In both instances, we can get rid of them.

In Chapter 4, we used the select() function from dplyr. We can turn around the
procedure and exclude variables as well. We may select all variables except certain
ones, such as age_child2 or more, if you combine (c()) them. In addition, add a minus

5.2 Missing data | 143

sign (-) and you select everything but the variable(s). Drop everything but age_child2
and get rid of a constant column vector.

Select all variables, except -x

df |>

select(-c(age_child2, country))

#> # A tibble: 5 x 4

#> person age children sex

#> <int> <dbl> <dbl> <chr>

#> 1 1 NA NA Male

#> 2 2 33 1 NA

#> 3 3 999 1 Female

#> 4 4 27 1 Male

#> 5 5 51 NA <NA>

Sometimes missing values reflect the absence of the measurement. Consider the
children variable, which indicates how many children a person has. In this case
a missing value might imply a missing value or zero kids. For the latter case the
coalesce() function is useful as it replaces non-missing elements.

coalesce replaces NAs

children <- c(1, 4, NA, 2, NA)

coalesce(children, 0)

#> [1] 1 4 0 2 0

Wemay further restrict the analysis sample with the drop_na() function from the tidyr
package. In Chapter 4 we learned that, we could exclude all missing values of one
variable or exclude missing values from all variables if we leave the drop_na() function
empty.

Drop (all) NAs

library(tidyr)

df |>

select(-c(age_child2, country)) |>

drop_na()

#> # A tibble: 3 x 4

#> person age children sex

#> <int> <dbl> <dbl> <chr>

144 | 5 Prepare data

#> 1 2 33 1 NA

#> 2 3 999 1 Female

#> 3 4 27 1 Male

As the output shows, we still need to replace the character string for person two and
the alternative missing values indicator. Depending on the source of the data, there
might be several missing value indicators to address different missing value patterns.
We can convert values to NA with the na_if() function, as the next console illustrates.

na_if takes care of alternative missing values

x <- c(1, 999, 5, 7, 999)

dplyr::na_if(x, 999)

#> [1] 1 NA 5 7 NA

However, what shall we do with the NA in a string? For example, use the replace()
function. As the next console shows, I first mutate the data and I replace 999with NA.
The same trick works for the sex variable to replace the string with NA.

Replace values

df <- df |>

select(-c(age_child2, country)) |>

mutate(

age = replace(age, age == "999", NA),

sex = replace(sex, sex == "NA", NA)

)

df

#> # A tibble: 5 x 4

#> person age children sex

#> <int> <dbl> <dbl> <chr>

#> 1 1 NA NA Male

#> 2 2 33 1 <NA>

#> 3 3 NA 1 Female

#> 4 4 27 1 Male

#> 5 5 51 NA <NA>

What shall we do if we cannot guarantee that implausible values are false? Excluding
implausible values may have strong implications on the estimation results. So, we need
to check whether excluding such observations have consequences for the analysis.

5.2 Missing data | 145

Create an indicator to account for implausible values and run an analysis twice to
compare your results with and without implausible values.

The tidyr package comes with the corresponding replace_na() function which
lets us replace NAs. For example, replace missing values of sex with a separate text
string (e.g., Not available) and include them in the analysis. This makes it possible to
compare the results with and without those observations.

Replace NAs

df |> replace_na(list(sex = "Not available"))

#> # A tibble: 5 x 4

#> person age children sex

#> <int> <dbl> <dbl> <chr>

#> 1 1 NA NA Male

#> 2 2 33 1 Not available

#> 3 3 NA 1 Female

#> 4 4 27 1 Male

#> 5 5 51 NA Not available

Or consider the age variable one more time. We could create a new variable
(age_missing) that indicates if the information is missing with the help of the
if_else() and the is.na() function. By creating an additional variable, we are able to
run the analysis twice and compare our results with and without implausible values
(see Chapter 6).

Replace NAs with if_else

df |>

replace_na(list(sex = "Not available")) |>

mutate(age_missing = if_else(is.na(age), "Missing", "Not-missing"))

#> # A tibble: 5 x 5

#> person age children sex age_missing

#> <int> <dbl> <dbl> <chr> <chr>

#> 1 1 NA NA Male Missing

#> 2 2 33 1 Not available Not-missing

#> 3 3 NA 1 Female Missing

#> 4 4 27 1 Male Not-missing

#> 5 5 51 NA Not available Not-missing

There are no consequences if we drop an entire column with missing values or with a
constant. We need to clean the data, but we do not lose any information if we delete

146 | 5 Prepare data

such messy parts. Unfortunately, the situation changes completely when we exclude
observations without knowing the consequences and the underlying missing patterns.

5.2.3 Identifying missing patterns

As the mechanisms of missing values highlight, we do not need to worry about the
consequences of missing values if we know that the missings are completely at random.
How likely is this the case? And what should we do with doubts about the nature of
missingness? There might be a systematic missing value pattern and we must examine
if there are anymissing patterns visible. Unfortunately, we cannot examine if the loss of
data is missing not at random (MNAR), because we did not observe the missing values
of the variable itself. However, we can inspect missing patterns between variables to
see if missing values depend on the outcome of another variable.

Suppose you create a scatter plot. If one of the variables has a missing value, R
(automatically) excludes those missing values when creating a scatter plot. Logically,
we cannot display what we do not observe. However, the naniar package offers several
graphical procedures to explore missing data patterns, and the geom_miss_point()

function provides a simple solution to explore variables with missing values. The
function replaces a missing value with a value ten percent below the minimum value
of the observed variable. When we use the scatter plot one more time, missing values
are now included, and we can examine if there are any systematic patterns.

Figure 5.7 shows two scatter plots based on the simulated data aboutmissing values
(rubin_simdata). As outlined, I simulated data and deleted observation to illustrate
the missing mechanisms. As Figure 5.7 (A) highlights, a regular scatter plot excludes
missing values; the naniar package makes those observations visible (Figure 5.7 B),
even if we do not know how much income the observed participants would make.
However, we clearly see that the observedmissing values do not depend on educational
attainment, in accordancewith the simulated data for themissing completely at random
mechanism.

The naniar package provides more graphs to identify missing patterns. Inspect
the package vignette for more ideas on how to explore missing values.¹ Dealing with
missing values is a hard topic, but at least, we made first steps to assess the problem
and we are now aware that a systematic loss of data may have severe consequences.

We focused on typical data manipulation steps in Chapter 4, but I skipped essential
functions from the forcats package which help us to manipulate categorical data.
Creating new variables is often the last step before we apply a first analysis and the
forcats package is a good supplement for our dplyr skills.

1 The functions of the naniar package are easy to apply, but they use the ggplot2 package to create
graphs, which we will cover in Chapter 7 and for this reason the book includes the graph only.

5.3 Categorical variables | 147

Fig. 5.7: The naniar package

5.3 Categorical variables

In the social sciences, we often work with categorical variables and we started to exam-
ine factor variables in Chapter 3. Several independent variables may be saved as factor
variables and are, most likely, not prepared for our purpose. Till now, we did not work
systematically on our skills to manipulate factor variables. The forcats package offers
many functions to manipulate categorical variables (fct_*) and this section introduces
the package (Wickham, 2022a). It includes a sample of categorical variables from the
General Social Survey (gss_cat), which we use to explore the package’s functions, but
we stick to two variables. Suppose we need to run separate analyses for people who
are (not) married (marital) and differentiate between different religions (relig) as
robustness checks.

forcats == for categorical variables

library(forcats)

df <- gss_cat |>

select(marital, relig)

head(df)

#> # A tibble: 6 x 2

#> marital relig

#> <fct> <fct>

#> 1 Never married Protestant

#> 2 Divorced Protestant

148 | 5 Prepare data

#> 3 Widowed Protestant

#> 4 Never married Orthodox-christian

#> 5 Divorced None

#> # ... with 1 more row

Both are factor variables and fct_count() returns how often each level appears.

Count levels

fct_count(df$marital)

#> # A tibble: 6 x 2

#> f n

#> <fct> <int>

#> 1 No answer 17

#> 2 Never married 5416

#> 3 Separated 743

#> 4 Divorced 3383

#> 5 Widowed 1807

#> # ... with 1 more row

The order of the factor variablemight be arbitrary, but sometimes a neworder is useful to
inspect the data or tomake a visualization. Change the order of the levelsmanually with
the fct_relevel() function. As the next console illustrates, the two levels (Married,
Never married) now come first and we can count again to make sure that no errors are
introduced.

Relevel manually

f <- fct_relevel(

df$marital,

c("Married", "Never married")

)

fct_count(f)

#> # A tibble: 6 x 2

#> f n

#> <fct> <int>

#> 1 Married 10117

#> 2 Never married 5416

#> 3 No answer 17

#> 4 Separated 743

#> 5 Divorced 3383

5.3 Categorical variables | 149

#> # ... with 1 more row

Suppose we need to create a binary variable that indicates if a person is (not) married.
We have already work with the recode() function from dplyr. The forcats package
also includes the fct_recode() function, which does the same. We recode all values to
Not married to create a binary indicator; and may set the level No answer to NA.

Recode levels

f <- fct_recode(df$marital,

"NA" = "No answer",

`Not married` = "Never married",

`Not married` = "Separated",

`Not married` = "Divorced",

`Not married` = "Widowed"

)

fct_count(f)

#> # A tibble: 3 x 2

#> f n

#> <fct> <int>

#> 1 NA 17

#> 2 Not married 11349

#> 3 Married 10117

The code works, but look how often I repeated myself to create such a binary indicator.
A lot of levels make a manual recode approach nasty; we may introduce errors, and
it takes a lot of time. How can we improve this step? Or consider the religion (relig)
variable. The variable has sixteen unique levels as the fct_unique() function reveals.
We certainly need a better approach in this case.

Unique levels

fct_unique(df$relig)

#> [1] No answer Don't know Inter-nondenominational

#> [4] Native american Christian Orthodox-christian

#> [7] Moslem/islam Other eastern Hinduism

#> [10] Buddhism Other None

#> [13] Jewish Catholic Protestant

#> [16] Not applicable

#> 16 Levels: No answer Don't know Inter-nondenominational ... Not applicable

150 | 5 Prepare data

Howshouldwe recode such variables? Collapse a factor variable if we are only interested
in certain levels or a binary variable that indicates if someone is (not) religious. The
same applies to marital. The fct_collapse() function collapses several levels to one,
for example, all people who are not married (anymore).

Collapse levels

f <- fct_collapse(df$marital,

`Not married` = c(

"Never married",

"Separated",

"Divorced",

"Widowed"

)

)

fct_count(f)

#> # A tibble: 3 x 2

#> f n

#> <fct> <int>

#> 1 No answer 17

#> 2 Not married 11349

#> 3 Married 10117

A similar but different approach offers the fct_other() function. It comes with the
keep option and we can specify which levels to keep.

Keep selected levels and others

f <- fct_other(df$marital,

keep = c("Married", "No answer")

)

fct_count(f)

#> # A tibble: 3 x 2

#> f n

#> <fct> <int>

#> 1 No answer 17

#> 2 Married 10117

#> 3 Other 11349

5.3 Categorical variables | 151

How many levels of a factor shall we consider in the analysis? Certainly, we cannot
answer such a question without any detail about the hypothesis, but we certainly need
to consider the largest groups and levels. The fct_infreq() function counts levels and
returns them ordered. As the next console shows, I added the head() function to adjust
the number of returned levels.

Sort in frequency

f <- fct_infreq(df$relig)

fct_count(f) |> head(n = 6)

#> # A tibble: 6 x 2

#> f n

#> <fct> <int>

#> 1 Protestant 10846

#> 2 Catholic 5124

#> 3 None 3523

#> 4 Christian 689

#> 5 Jewish 388

#> # ... with 1 more row

Suppose we want to differentiate between the five largest groups. Again, we may use
recode() or one of the other discussed functions, but in such cases the fct_lump()
function is helpful. It lumps together the largest levels and adds the remaining levels to
the category other. As an additional step, I used fct_infreq() to make sure I did not
make any mistakes.

Lump together

f <- fct_lump(df$relig, n = 5)

f <- fct_infreq(f)

fct_count(f)

#> # A tibble: 6 x 2

#> f n

#> <fct> <int>

#> 1 Protestant 10846

#> 2 Catholic 5124

#> 3 None 3523

#> 4 Other 913

#> 5 Christian 689

#> # ... with 1 more row

152 | 5 Prepare data

The forcats package provides more functions to combine factors, change the order, or
to add levels of a factor variable. I introduced the package to prepare you for the data
preparation step. Consider the package documentation, vignette, and its cheat sheet
for more information.

Ultimately, the info box about the copycat package outlines, why you already have
code snippets for dplyr, forcats, and other packages of the tidyverse at your disposal
before I give a short summary of this chapter.

The copycat package

The copycat package is not an R package that lives on CRAN, it is a package that I created for myself and
for the students in my classes. Getting fluent in a (programming) language takes some time and we all
forget how code works if we do not apply our knowledge on a regular basis. The copycat package was
created for this purpose. It is a small package to copy, paste, and manage code snippets. The package
comes with code snippets (minimal examples) that run with implemented data. Thus, copycatwas built
as a personal package, but it may help (new) R users to manage code snippets.

It returns code snippets for the core tidyverse packages based on code from the cheat sheets
(the CopyCatCode data frame). So, if you cannot remember how the fct_count() function works, just
let copycat search for the corresponding code snippet. The package comes with a graphical interface
which lets you pick a package in the viewer, choose a function and then it inserts the code snippet in
your R script by clicking on the button. You find the copycat addin in the RStudio addins menu after
the package is installed. Alternatively, use the copycat() function, it searches for the function name,
copies the code and save it to your clipboard, as the next console illustrate.

Explore copycat addin

library(copycat)

copycat::copycat_addin()

Or copy code snippets from CopyCatCode

copycat("fct_count")

#> [1] "Copied that: fct_count(gss_cat$race)"

You may also use copycat for your own code snippets if you are not happy with the examples that the
packages provides. The packages has more functions to copy code, which are described in the vignette
of the package. Remember, copycat is living only on my Github account, use the install_github

function from the devtools package should you want to give it a try.

#Install CopyCat from GitHub:

devtools::install_github("edgar-treischl/CopyCat")

5.3 Categorical variables | 153

Summary

Data preparation is the most important step before we can analyze data and is therefore
crucial to the entire research cycle. This step is time consuming since we need to
consider how the data is imported, how the information is coded, and how the data
needs to be prepared for the analysis. Take all the time you need for this step as you
may draw wrong conclusions if errors are introduced. Moreover, don’t expect a linear
process, because you will switch back and forth between the typical steps of applied
research. Suppose you started to prepare and analyze data. At a certain point you realize
that an important variable is missing. You go back, prepare the variable and rerun the
analysis, but now you might get weird results. If you made a mistake, you need circle
back to the preparation step again. I guess you get my point why the process is not
linear.

Sinceweworkwith different files, different types of data, and apply different kind of
analysis, writing about data preparation is also not an easy task. Keep in mind that this
chapter tried to give you an overview about typical steps and pitfalls when it comes to
data preparation, and that I did not focus on a file format. Remember, RStudio provides
cool features to import data and there are specific packages for this task. The readxl
package helps you with Excel files or consider the haven package for a variety of other
formats such as SPSS, Stata, or SAS. Check out the documentation of the corresponding
packages if you run into an error.

6 Analyze data
How large is the effect of school education on income? Does life satisfaction increase
income? Or how large is the difference in income between men and women (gender
pay gap)? There are many statistical procedures to analyze data, but a linear regression
analysis is the workhorse of the social sciences and we may use the latter to examine
the effect on a continuous outcome. This chapter introduces the method briefly, shows
typical steps to develop a linear regressionmodel, and focuses on graphical procedures.
– Section 6.1 introduces the main idea of a linear regression analysis in a non-

technicalmanner.Many students in the social sciences can apply a linear regression
analysis, or at least got the theoretical underpinning in a statistics class. This gives
us room to focus on the implementation in R and I introduce the topic only briefly
in the first section. To be crystal clear, you will not learn much in the first section if
you already have profound knowledge about linear regression analysis. We tackle
the following questions: (1) What is the main idea of a linear regression analysis?
(2) How are the coefficients of a linear regression interpreted? (3) What is R2?

– Section 6.2 recaptures the main functions to run a regression analysis. We focus
on typical steps to develop and compare regression models. We start simple with
a bivariate regression model which we improve gradually. We start to control for
variables that may distort the estimate of the main effect; we discuss which kind
of variable should (not) be included in the model; we explore how we can com-
pare several models (and their performance) efficiently; and we examine further
improvements (e.g., interaction effects, non-linear effects).

– In Section 6.3, we focus on graphical procedures. We concentrate on visualizations
for regression assumptions and regression results. A linear regression relies on
several assumptions and the last section outlines why graphics in particular are
important. I summarize the assumptions of a linear regression and we inspect
different graphical approaches (and statistical tests) to check for violations. Finally,
we learn how to visualize regression coefficients with dot-and-whisker plots in
detail.

The setup of Chapter 6

library(broom)

library(dotwhisker)

library(dplyr)

library(estimatr)

library(effectsize)

library(forcats)

library(ggeffects)

library(HistData)

library(huxtable)

https://doi.org/10.1515/9783110704976-006

6.1 Linear regression analysis | 155

library(interactions)

library(jtools)

library(lmtest)

library(tidyr)

library(palmerpenguins)

library(performance)

library(PracticeR)

library(see)

6.1 Linear regression analysis

Suppose your friends are expecting a baby. They are extremely curious what the baby
may look like. Will the baby resemble the father, the mother, or both? One thing seems
to be sure: since they are both tall, they assume that their baby will also be tall, maybe
even taller than they are. Are they right? What is the relationship between parents’ and
child’s heights?

If you are familiar with the regression to the mean phenomenon, you may come to
a different conclusion. Tall (small) parents will most likely have tall (small) children,
but they will not be taller (smaller) than their parents, otherwise humans would one
day become either giants or dwarfs. Sir Francis Galton (1822-1911) described this phe-
nomenon as regression to the mean and it illustrates that to regress implies to trace
back: A dependent variable is traced back to one (or more) independent variable(s).
I use this example to illustrate the main idea of a regression analysis. We predict the
effect of a binary or a continuous variable x (here, parents’ height) on a continuous
outcome y (here, child’s height).

Install and load the HistData package (Friendly, 2021). It provides several historical
data sets, including the data Galton collected to examine the effect of parents’ on child’s
height. The Galton data contains the height of 928 children in inches (child) and the
mid-parental height (parent; average of father and mother).

The HistData package gives you access to the Galton data

head(Galton)

#> parent child

#> 1 70.5 61.7

#> 2 68.5 61.7

#> 3 65.5 61.7

#> 4 64.5 61.7

#> 5 64.0 61.7

#> 6 67.5 62.2

156 | 6 Analyze data

Why dowe apply a linear regression analysis?We examine if there is a linear association
between x and y andwe fit a line in accordance with the observed data. I created several
scatter plots that examine if x and y are related and they illustrate the main idea of a
linear regression with the Galton data.¹ As Figure 6.1 (A) shows, it looks like parents’
height is related to their offspring’s height, since smaller (larger) parents on average
have smaller (larger) kids.

Fig. 6.1: Linear association

With the help of a regression analysis, we try to find a line that describes the association
between the observed variables. As Figure 6.1 (B) shows, I added a line manually. I
guessed where the line intersects the y-axis (intercept) and how steep or flat the line
goes (slope). If you have no idea which intercept and slope to pick, you may come
up with some random guesses, just as I did, but the line does not fit the data. Most
observations are beneath the line and the distance between single observations and
the line is not equally distributed. Consequently, we make a systematic error if we apply
such a model to predict a child’s height. By using a model, we want to describe the
association that fits well for all observations. Figure 6.1 (C) shows the line when fitted
with a linear regression analysis. A regression analysis estimates the effect of x on y
by tracing the regression line that summarizes the observed points, and we are able to
predict – on average – how many units a child’s height increases if the parents’ height
is increased by one unit.

1 This section shows graphs to illustrate the basic concepts of a linear regression analysis, but not the
code to make the graphs. All figures are made with the ggplot2 package (see Chapter 7).

6.1 Linear regression analysis | 157

To understand a linear regression analysis, we need to get in touch with its com-
ponents. We assume that the child’s height (y) can be explained as a linear function of
three components:

y = β0 + β1x1 + ϵi

β0 notes where the line intersects the y-axis (intercept); β1 captures the slope and
determines to steepness of the association. Ultimately, we predict the outcome, but
not without mistakes, which reflects the error term ϵi or the residual of the regression
analysis (e.g., other variables also explain the outcome).

To estimate a linear regressionwith R, we run the lm() functionwith the dependent
and one (or several) independent variable(s), separated with the tilde (~) operator. As
the next console shows, a child’s height increases on average by 0.6463 (β1) inches if
the parents’ height goes up by one unit.

The lm function

model <- lm(child ~ parent, data = Galton)

model

#>

#> Call:

#> lm(formula = child ~ parent, data = Galton)

#>

#> Coefficients:

#> (Intercept) parent

#> 23.9415 0.6463

By applying a model, we can predict the average increase – or decrease in the case of a
negative association – of y with the help of the intercept and the slope. Suppose the
parents are 68 inches tall. To make a prediction, take the intercept, multiply β1 with
parents’ height, and build the sum.

How tall will a child be on average if the parents are 68 inches?

23.9415 + 68 * 0.6463

#> [1] 67.8899

Calculating predictions manually clarifies how a regression analysis works, but the
predict() function is more comfortable. The function applies our model and predicts
the outcome for new observations (new_data).

158 | 6 Analyze data

Generate example data

new_data <- data.frame(parent = c(55, 68, 75))

Apply the model with predict

predict(model, new_data)

#> 1 2 3

#> 59.48751 67.88929 72.41332

My random guesses to find the slope and the intercept did not lead to a satisfying solu-
tion, but how does a regression analysis find the estimated parameters? This question
points to the estimation technique and scrutinizes how well a model describes the
relationship (model accuracy).

6.1.1 Estimation technique

Essentially, we fit a straight line into a cloud of data by running a regression analysis.
This depiction may help to visualize the technique. Unfortunately, the data cloud
becomes a pane if we add a second independent variable. In such cases we need to
search a pane in a three-dimensional space that fits the data. We may further extend
the model and examine the effect of n independent variables in an n-dimensional space.
Even if we stick to a bivariate analysis, how does a linear regression find the best
solution for a given data set?

A linear regression applies an ordinary least square (OLS) estimation. Imagine the
scatter plot from the beginning. Sometimes the prediction is larger than the observed
value and lies above the regression line. Sometimes a prediction is smaller than the
observed value and falls under the line. Obviously, we want to minimize the error
and get the best prediction based on the observed values. The OLS estimator picks
parameters by minimizing the sum of the squared error. This point may become clearer
if one sees the steps needed to calculate the slope manually.

To calculate the slope, we divide the covariance (cov) of x and y by the variance of
x (variance_x). As the last two lines of the next console illustrate, the variance of x is
the sum of the squared error from the mean. A linear regression minimizes the sum of
the squared error, because otherwise positive and negative error would cancel each
other out. Moreover, a larger error should have more weight on the estimator since we
make a larger mistake. The next console summarizes the steps to calculate the slope
manually.

Calculate the slope manually

Galton |>

summarise(

6.1 Linear regression analysis | 159

mean_x = mean(parent),

mean_y = mean(child),

cov = sum((parent - mean_x) * (child - mean_y)),

variance_x = sum((parent - mean_x)̂2),

slope = cov / variance_x

)

#> mean_x mean_y cov variance_x slope

#> 1 68.30819 68.08847 1913.898 2961.358 0.6462906

Speaking about the error, how well does the model explain the outcome? Formally
expressed, what’s the accuracy of the model?

6.1.2 Model accuracy

The summary() function provides more information about the model, which includes
information about the model accuracy. Compared to the output of the lm function,
summary() returns the standard error, t-values, and the probability to assess the statist-
ical significance for each regression coefficient.

The summary function gives more information about the model

summary(model)

#>

#> Call:

#> lm(formula = child ~ parent, data = Galton)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -7.8050 -1.3661 0.0487 1.6339 5.9264

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 23.94153 2.81088 8.517 <2e-16 ***

#> parent 0.64629 0.04114 15.711 <2e-16 ***

#> ---

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#>

#> Residual standard error: 2.239 on 926 degrees of freedom

#> Multiple R-squared: 0.2105, Adjusted R-squared: 0.2096

160 | 6 Analyze data

#> F-statistic: 246.8 on 1 and 926 DF, p-value: < 2.2e-16

In order to assess the error, R returns R2 in the penultimate line of the last output.
R2 is an indicator of the accuracy of the model. It ranges from 0 to 1 and conveys the
proportion of the variance from the outcome that can be explainedwith the independent
variable. In our case, we can explain approximately 21 percent of the observed variance.

To understand R2, let us think about the estimation technique and the variance
we observe. Figure 6.2 illustrates that we minimize the error to fit the line and gives
us an idea how large the error might be. What would a regression line look like if x
could not explain the outcome at all? The line would be flat and the distance between
each observed value to its predicted value is the maximum variance and error we can
make. Figure 6.2 (A) highlights this point. The plot does not show a regression line, it
displays a constant line (the mean of y as the best guess). If we imagine a flat line, we
can literally see the total variance, highlighted with red lines.

Fig. 6.2: Explained and unexplained variance

To assess the accuracy of the model, we split the variance into an explained and an
unexplained part. Figure 6.2 (B) shows the explained variance – it is the green area
between a flat line from Figure 6.2 (A) and the regression line that we actually fit. The
green area marks the part of the variance that we can explain with the regression
analysis. Since we know the total and the explained variance, R2 brings them into
proportion and tells us how much of the variance of y can be explained by x.

We may use further characteristics of the parents to predict the child’s height,
especially if we want to increase the accuracy. Add further independent variables by
using the plus (+) sign and R provides the beta coefficient for all independent vari-
ables. Each additional independent variable increases the chance that the prediction
is getting better. Since the explained variance increases by chance, the adjusted R2

6.1 Linear regression analysis | 161

takes the number of independent variables into account and penalizes models with
a larger number of independent variables. Therefore, use the adjusted R2 in case of a
multivariate analysis, which makes it possible to compare nested models.

How large is large in terms of R2? Didwe observe a small,medium, or large effect? In
Chapter 3, we used the effectsize package to interpret the effect size (Ben-Shachar et
al., 2022) andwe got in touchwith the rules by Cohen (1988). The package does the same
for R2. The summary function returns several indicators about the regression, including
R2 (r.squared). As the next console shows, assign the results of the summary() function
(e.g., sum_model) and use the interpret_r2() function to assess the effect.

Get summary

sum_model <- summary(model)

Interpret R2

effectsize::interpret_r2(sum_model$r.squared,

rules = "cohen1988"

)

#> [1] "moderate"

#> (Rules: cohen1988)

This section outlined the main idea of a linear regression with a classical example,
but in order to apply a model, we need to reconsider how we develop and improve a
model. Which variable should (not) be included to predict an outcome? And which
assumptions does the model make and are they – eventually – violated?

I started this chapter by claiming that a linear regression can be used to examine
a linear effect, which is why we explored the variables with scatter plots. Graphical
procedures are very valuable to assess the regression assumptions, since the relations
between the variablesmust not be linear. Wewill get in touchwith a variety of graphical
procedures in the last section of this chapter, but a prominent example illustrates this
point. Francis Anscombe (1973) has provided simulated data that underline why we
should use graphical procedures to examine effects. Each of his data sets contain two
variables (x and y) with eleven observations only. He created four data sets and each
data set is (almost) identical in terms of statistical measures (e.g., mean, correlation),
but we can see a very different picture if we examine them. Figure 6.3 showsAnscombe’s
quartet: he generated a scatter plot for each case (Data I-IV).

Each graph emphasizes how one or several observation(s) may impact the results
of a linear regression analysis and the relationship between the observed variables is
different in each case. In the first case, we actually see a linear relationship between x
and y. However, a relationship between two variables must not be linear and there is
a non-linear relationship in the second case. In the third case, an outlier distorts the

162 | 6 Analyze data

analysis,while the analysis of the last illustration is strongly affected by one observation.
All other observations are stacked upon each other and there is clearly no linear pattern.

R = 0.82

R = 0.82

R = 0.82

R = 0.82

Data III Data IV

Data I Data II

5 10 15 5 10 15

4

8

12

4

8

12

x

y

Fig. 6.3: Anscombe’s quartet

In the next two sections we increase our skills to develop a linear model and we use
different approaches to examine the assumptions of a linear regression. I tried to express
all technical terms and concepts, at least briefly, but the next sections might be harder
to follow if you have never heard about linear regression analysis, especially with
regard to the assumptions of a linear regression analysis. Consider reading first Wolf
& Best (2014) or Young (2017) to get a broader understanding about linear regression
analysis and its assumptions in general terms, or James et al. (2013) for An Introduction
to Statistical Learning with Applications in R.

6.2 Develop a linear regression model

We now focus on typical steps to elaborate and improve a model. We use the penguins
data from the palmerpenguins package as an example analysis. We examine if we can
predict the body mass (body_mass_g) of the penguins, considering their sex, species,
and other variables. Doing so, we apply the following steps:
– We start simple: we run a bivariate model to estimate an effect of x on y. Next, we

run a multivariate analysis to illustrate that we may not identify the true effect of x
on y when we do not control for confounding variable(s). The latter is known as
omitted variable bias. A third variable z may affect x and y and the effect might
even be spurious if z is a common cause for x and y. For this reason, we need to
control for further confounding variable(s).

6.2 Develop a linear regression model | 163

– Confounding implies that we need to think about causality to elaborate a model.
Has x an effect on y or is it the other way around? Knowledge about the causal
structure is key when analyzing data and I can only introduce the core idea that is
necessary to elaborate a model. This point underlines that we need to think about
which variables should (not) be included in the model.

– Typically, we develop models step by step. Start with a simple model, control for
variables which may distort the results, and then inspect how the results change.
We apply the same logic to improve a model. For example, maybe there is an
interaction effect between two independent variables. Regardless of what we do,
develop, compare, and improve models step by step to see the consequences of
your choices.

– Assess the performance of model(s). Creating models step by step implies that we
need to compare their predictive performance gradually.

– Ultimately, I highlight next steps to further improve the model. For example, check
for non-linear effects or maybe we need to transform the outcome. The last steps
are not a comprehensive list and model development is a huge topic, but learning
how to estimate a non-linear effect and other data transformation steps are not
very complicated, use your base R skills or other package from the R community to
further improve the model.

6.2.1 Start simple

Before we apply a linear regression model, we must prepare the data and examine the
variables. For this reason I use the penguins data, because we do not need to prepare
much to predict the body mass (body_mass_g) of a penguin. The variable is numerical
and the next console shows a summary of the examined variables.

The penguins

library(palmerpenguins)

varlist <- c("body_mass_g", "species", "sex", "bill_length_mm")

penguins |>

select(all_of(varlist)) |>

summary()

#> body_mass_g species sex bill_length_mm

#> Min. :2700 Adelie :152 female:165 Min. :32.10

#> 1st Qu.:3550 Chinstrap: 68 male :168 1st Qu.:39.23

#> Median :4050 Gentoo :124 NA's : 11 Median :44.45

#> Mean :4202 Mean :43.92

164 | 6 Analyze data

#> 3rd Qu.:4750 3rd Qu.:48.50

#> Max. :6300 Max. :59.60

#> NA's :2 NA's :2

Let us estimate the effect of species on body_mass_g; the former is a factor variable
with three levels. In order to include a non-numerical variable in the analysis, we may
start with a dummy variable. The if_else() function lets us create a variable that
indicates a certain level or group (e.g., Adelie).

Create a dummy

penguins_df <- penguins |>

mutate(species_bin = if_else(species ==

"Adelie", "Adelie", "Others"))

Make sure that the data preparation steps don’t contain anymistakes. Inspect the entire
data frame or use a function such as fct_count() to examine if we still observe the
right number of observations after the data preparation steps.

Check the data preparation steps

fct_count(penguins_df$species_bin)

#> # A tibble: 2 x 2

#> f n

#> <fct> <int>

#> 1 Adelie 152

#> 2 Others 192

As outlined in the last section, the lm() function runs a linear regression, and the
summary() function returns a summary of a model.

The first model

m1 <- lm(body_mass_g ~ species_bin, data = penguins_df)

summary(m1)

#>

#> Call:

#> lm(formula = body_mass_g ~ species_bin, data = penguins_df)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -1897.91 -486.09 24.34 452.09 1702.09

6.2 Develop a linear regression model | 165

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 3700.66 54.31 68.14 <2e-16 ***

#> species_binOthers 897.24 72.67 12.35 <2e-16 ***

#> ---

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#>

#> Residual standard error: 667.3 on 340 degrees of freedom

#> (2 observations deleted due to missingness)

#> Multiple R-squared: 0.3096, Adjusted R-squared: 0.3075

#> F-statistic: 152.4 on 1 and 340 DF, p-value: < 2.2e-16

Compared to Adelie, other species have on average significantly more (897.24 gram)
body mass. I created the dummy variable to highlight that we are allowed to include a
numerical or a binary variable as dependent variables in the analysis. However, species
is a factor variable and there was no need to create the dummy variable in the first
place. R creates a dummy variable for each category of a factor and omits one level
from the equation if we include it in the analysis. In our case, R omits the first level
(Adelie) if we include species instead of the binary indicator. We need to interpret the
coefficients compared to the omitted reference group.

Factor variables can be included

lm(body_mass_g ~ species, data = penguins)

#>

#> Call:

#> lm(formula = body_mass_g ~ species, data = penguins)

#>

#> Coefficients:

#> (Intercept) speciesChinstrap speciesGentoo

#> 3700.66 32.43 1375.35

We need to pick the reference group based on theoretical assumptions and the
relevel() function helps us with this task. Specified by the ref option, relevel
rearranges the data and moves the groups. For example, lets takes the second group
(Chinstrap) as reference group.

Relevel the reference group

penguins$species <- relevel(penguins$species, ref = 2)

166 | 6 Analyze data

Run model again

lm(body_mass_g ~ species, data = penguins)

#>

#> Call:

#> lm(formula = body_mass_g ~ species, data = penguins)

#>

#> Coefficients:

#> (Intercept) speciesAdelie speciesGentoo

#> 3733.09 -32.43 1342.93

Regardless of which reference group you pick, suppose you apply an analysis but the
effect is not statistically significant. Does this mean that that there is no effect between x

and y? I can only emphasize to examine the effect size instead of focusing on statistical
significance only, because in some instances you will work with large data and even
very small effects may become significant due to large sample size and a high statistical
power. Conversely, you may not find a significant effect due the lower statistical power,
even if an effect is large. This may sound abstract, so keep in mind that statistical
significance depends on the effect size, the sample size, and further characteristics
of the analysis. The next info box about power analysis and the pwr package gives
you more information how the discussed parameters determine if it’s likely to find a
significant effect (Champely, 2020).

Power analysis

Run a power analysis to estimate the sample size with a high statistical power to find a significant
effect; or estimate the statistical power for a given sample size with R. The power of a statistical test is
defined as 1 minus the Type II error probability. If you are not familiar with sampling, this definition is
hard to understand. Say we have a statistical power of 0.8, which implies a probability of 80 percent
that we correctly reject the null hypothesis in cases where there is no effect between x and y. Many
researchers perceive a statistical power of 0.8 as sufficient.

The statistical power depends on the number of observations, but also on the strength of the effect.
If an effect is small, we need a larger sample size to detect an effect with a sufficient certainty. However,
a small sample might be large enough if the effect is large. A power analysis helps us to understand
the relationship between sample size, effect size, and statistical power. Figure 6.4 visualizes the result
of a power analysis and displays the power depending on the sample size for four different effect sizes.
In the case of a small effect (r = 0.1), 300 observations are not sufficient to achieve a high statistical
power. In the case of a large effect (r = 0.5), a small sample of 28 observations has a high statistical
power. How do I know the exact number?

6.2 Develop a linear regression model | 167

Fig. 6.4: Power analysis

The pwr package provides different functions to estimate the sample size or the statistical power for
different analysis techniques (e.g., correlation). In order to do so, we must make assumptions about the
effect size (r) and the statistical power to detect the effect. Moreover, we must specify a significance
level (e.g., 95 percent) and decide which type of hypothesis testing we apply. The pwr.r.test() returns
the number of participants for a large effect of (r = 0.5)with sufficient power, as the console illustrates.

#Use the pwr package to run a power analysis

pwr::pwr.r.test(r=0.5, power=0.8, n=NULL, sig.level=0.05, alternative = "two.sided")

#> approximate correlation power calculation (arctangh transformation)

#>

#> n = 28.24841

#> r = 0.5

#> sig.level = 0.05

#> power = 0.8

#> alternative = two.sided

Moreover, we need to examine if maybe a third variable is responsible for the effect,
especially since we work with observational data. The effect between x and y could be
spurious and other variables might be the reason why we observe a significant effect.

It is important to identify variables that may distort the analysis and it is up to
you to elaborate on which one. Let’s control for penguin’s sex, the variable is a factor
variable with two levels. We create a multivariate analysis and add further independent
variables with the plus (+) sign. As the next console shows, I add both independent
variables and save the model as m2.

Control for confounding variables

m2 <- lm(body_mass_g ~ species + sex, data = penguins)

summary(m2)

168 | 6 Analyze data

#>

#> Call:

#> lm(formula = body_mass_g ~ species + sex, data = penguins)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -816.87 -217.80 -16.87 227.61 882.20

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 3399.31 42.13 80.680 <2e-16 ***

#> speciesAdelie -26.92 46.48 -0.579 0.563

#> speciesGentoo 1350.93 48.13 28.067 <2e-16 ***

#> sexmale 667.56 34.70 19.236 <2e-16 ***

#> ---

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#>

#> Residual standard error: 316.6 on 329 degrees of freedom

#> (11 observations deleted due to missingness)

#> Multiple R-squared: 0.8468, Adjusted R-squared: 0.8454

#> F-statistic: 606.1 on 3 and 329 DF, p-value: < 2.2e-16

Maybe my intuition was not too bad since Adelie is no longer significant, but I only
included the variable to illustrate that we need to control for other variables in the case
of observational data. If we control for a third variable z, we can estimate the effect
of x on y independently from z. However, do we need to control for sex? We need to
think about the causal relationship of the examined variables to answer the question
whether a variable should (not) be included to estimate the effect.

6.2.2 Think about causality

We applied a linear regression analysis with observational data. We only examined if
the variables are correlated, but we do not know if x causes y. In case of cross-sectional
data, we cannot even say what comes first. Maybe y is a cause for x. There are several
reasons why knowledge about the causal relationship between the observed variables
is crucial, even if we work with observational data.

Of course, the analysis of this chapter is just an illustration, and even if we assume
that the data has no flaws and we made no mistakes, some of the conclusion might be
premature. Instead of the penguins, suppose we examined the effect of happiness on
income. We believe that married people create more income and are happier, which
is why we control for the marital status. However, higher income could also increase

6.2 Develop a linear regression model | 169

the chance that somebody is married and we cannot assess what came first with cross
sectional data. Irrespective of the hypothesis, is the martial status a confounder or a
collider variable?We need to think about causality to build a better model and elaborate
a deeper understanding of why x and y are related.

The Simpson’s paradox helps us to clarify this point. The next plot shows two scatter
plots that illustrate the described scenario with simulated data. Figure 6.5 (A) displays
the overall effect of income on happiness, while Figure 6.5 (B) displays the same scatter
plot but now male and female observations are highlighted with color. As Figure 6.5 (A)
shows, there is a positive linear trend, however, we may come to opposite conclusions
if we run an analysis for each sex. How is it possible that we observe a positive overall
effect, but an opposing negative effect when separating female and male participants?
The Simpson’s paradox outlines that we may observe a positive or a negative effect, but
the effect can be reversed for a subgroup. Which finding should we trust? To find an
answer to such questions, we need profound knowledge about the causal relationship
of the discussed variables.

Fig. 6.5: Simpson’s paradox

The data for Figure 6.5 was simulated, but the paradox is not fake. It is possible to
observe a positive or negative effect which vanishes or is reversed if we stratify the
data (based on a third variable). Hence, the estimation of the effect of x on y could be
distorted if we ignore the clustered data. I picked the variable sex on purpose, since
variables such as income or happiness cannot affect a person’s sex. In such an instance
we should stratify the data first and calculate the effect separately for each group before
we calculate the overall effect. In this example, sex is a confounding variable which we
must include as a control variable.

170 | 6 Analyze data

However, a variable could also be a collider or amediator. Practice R does not focus
on causality, since the latter is an advanced methodological topic. The causality and
correlation info box provides a brief summary, and I can only underline that causality
is crucial for everyone who works with data. Read Firebaugh (2008) for an intuitive
introduction; Imbens & Rubin (2015) to learn more about statistical methods to study
causal relationships; andPearl &Mackenzie (2019) to climbup the “ladder of causation”.
Knowledge about causality does not help us to learn R, which is why the info box about
causality is the only resource in this book.

Causality and correlation

Students in the social sciences learn two rules about causality and correlation. As Firebaugh outlines:
“No causation without correlation”, but unfortunately “correlation does not prove causation” (see
Firebaugh 2008: p. 121). In other words, a correlation does not imply that there is causal link from x to y.
Two variables may share a common cause, which is the reason why we observe a significant correlation.

The latter is known as spurious correlation and quantitative textbooks discuss many examples.
Why are the number of churches and bars associated? Do religious people open bars? Or the other way
around: Do bar visitors become religious? Both variables share a common cause, larger cities have
more bars and more churches. If we control for the size of the city, the number of bars and churches
should no longer be significantly correlated in case of a spurious correlation.

The social science often works with observational data and therefore has a long tradition to control
for potential confounders. Since more knowledge about causality emerged in the social sciences,
perspectives have changed. Today, we are warned that causality may result in an overcontrol bias
that distorts estimation results. The latter underlines the need for strategies to examine the causal
relationship between variables, instead of focusing on confounding variables only. From a causal
inference perspective, we need to takemediator and collider variables into consideration.

A mediator variable represents a causal mechanism between two variables. A mediator channels
an effect, we may discover an explanation why x and y are associated when we include a mediator in a
multivariate analysis. Unfortunately, you will not get an unbiased estimator for the effect of x on y if we
control for the variable since it (partly) explains the effect. The situation is different for a collider: both,
x and y affect the collider variable, but not the other way around. If we add a collider in a model, we may
create an association between x and y that otherwise would not exist. To put it simply, we induce an
association between x and y via the collider and, consequently, draw wrong conclusions. Mediator and
collider variables underline that we must not control for all kinds of third variables. It is not necessary
to control a mediator and we must not include a collider in the model.

There is too much more to learn about causality to fit into one info box. The purpose of this book
is about learning R. Hence, I do not make any assumption or claims about the causal structure in this
book. Causality does not matter much in terms of learning R. However, it matters a great deal for a data
analysis and you should keep the research design and limitations of the data in mind.

In summary, we need theoretical claims about the underlying causal structure. A cor-
relation coefficient does not reveal if x is a cause of y. We cannot assess the causal
structure without knowledge about the topic and a sound research design to identify
causal effects. At least, we must observe the examined variables more than once to
distinguish what came first – the cause or its effect. We started already to compare

6.2 Develop a linear regression model | 171

models as we examined how potential confounder variables affect the results. The next
section illustrates the need to develop models step by step.

6.2.3 Develop models step by step

Up to this point, we have estimated two models: The first model (m1) included only
one independent variable, while the second model (m2) took control variables into
consideration. This is the typical procedure to develop and improve amodel. Comparing
the output of two (or more) models is tricky. Nobody wants to scroll up and down to see
how the parameters of two models have changed. The huxtable package creates tables
and we learn more about this topic in Chapter 8. The package can also generate a table
comparing models. Compare multiple models with the huxreg() function (Hugh-Jones,
2022).

Compare models

m1 <- lm(body_mass_g ~ species, data = penguins)

m2 <- lm(body_mass_g ~ species + sex, data = penguins)

But use huxreg to compare them!

huxtable::huxreg(m1, m2)

#> ===

#> (1) (2)

#> ---------------------------------

#> (Intercept) 3733.088 *** 3399.311 ***

#> (56.059) (42.133)

#> speciesAdelie -32.426 -26.924

#> (67.512) (46.483)

#> speciesGentoo 1342.928 *** 1350.934 ***

#> (69.857) (48.132)

#> sexmale 667.555 ***

#> (34.704)

#> ---------------------------------

#> N 342 333

#> R2 0.670 0.847

#> logLik -2582.337 -2387.797

#> AIC 5172.673 4785.594

#> ---------------------------------

#>

#>

#> Column names: names, model1, model2

172 | 6 Analyze data

Visualizations are crucial in terms of applied data analysis and they are the second
most important tool to develop and compare models. Visualizations helps us to focus
on the bigger picture instead of comparing the raw numbers of each coefficient. Do we
see any substantial difference if we compare them graphically? Visualizations help us
greatly to understand what is going on when we analyze data.

The jtools package provides convenient functions to visualize regression results
with dot-and-whisker plots (Long, 2022) which we can use right from the start. The latter
displays a regression coefficient with a dot and the confidence intervals with whiskers.
To visualize the result of a model, insert one or several models into the plot_summs()
function, as the next console highlights.

jtools returns a dot-and-whisker plot

jtools::plot_summs(m1, m2)

sexmale

speciesGentoo

speciesAdelie

0 500 1000 1500

Estimate

Model

Model 1

Model 2

Such dot-and-whisker plots make it easier to compare models and to focus on the bigger
picture. We see how the coefficients change when we compare models, control for
variables, and we see confidence intervals change or overlap. In the last subsection,
we learn how to improve this plot (e.g., get rid of the ugly variable names). Before we
elaborate on such minor details, there is still plenty of room to improve the model.

We should at least learn how interaction effects are implementedwithin R. Suppose
we examine if two independent variables interact with each other and the main effect
of x on ymay depend on the value of a third variable (interaction effect). For example,
maybe sex interacts with species or bill_length_mm. Irrespective of the hypothesis,
include an interaction effect with an asterisk (*). Both variables – species and sex

– are factor variables, but of course we could also estimate an interaction between a
nominal or ordinal variable and a numerical outcome, or an interaction between two
numerical outcomes. To illustrate this point, I estimated twomodels and I included two
interactions, the interaction between species and sex and between bill_length_mm

and sex.

Interaction of two categorical variables

m3 <- lm(body_mass_g ~ species * sex, data = penguins)

Interaction between a categorical and a numerical variable

m3a <- lm(body_mass_g ~ bill_length_mm * sex, data = penguins)

6.2 Develop a linear regression model | 173

summary(m3)

#>

#> Call:

#> lm(formula = body_mass_g ~ species * sex, data = penguins)

#>

#> Residuals:

#> Min 1Q Median 3Q Max

#> -827.21 -213.97 11.03 206.51 861.03

#>

#> Coefficients:

#> Estimate Std. Error t value Pr(>|t|)

#> (Intercept) 3527.21 53.06 66.474 < 2e-16 ***

#> speciesAdelie -158.37 64.24 -2.465 0.01420 *

#> speciesGentoo 1152.54 66.83 17.246 < 2e-16 ***

#> sexmale 411.76 75.04 5.487 8.19e-08 ***

#> speciesAdelie:sexmale 262.89 90.85 2.894 0.00406 **

#> speciesGentoo:sexmale 393.33 94.08 4.181 3.73e-05 ***

#> ---

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

#>

#> Residual standard error: 309.4 on 327 degrees of freedom

#> (11 observations deleted due to missingness)

#> Multiple R-squared: 0.8546, Adjusted R-squared: 0.8524

#> F-statistic: 384.3 on 5 and 327 DF, p-value: < 2.2e-16

There is a significant effect between species and sex, but is it a large effect? Inspecting
interaction effects visually offers often a clearer picture how the variables are related.
Visualize the interaction effectswith the interactionspackage (Long, 2021), as the next
console highlights. The cat_plot() visualizes an interaction effect between categorical
variables; the interact_plot() does essentially the same for the interaction with a
numerical variable.

library(interactions)

Left: cat_plot for categorical predictors

cat_plot(m3,

pred = species, modx = sex,

point.shape = TRUE, vary.lty = FALSE

)

174 | 6 Analyze data

Right: Interaction plot

interact_plot(m3a,

pred = bill_length_mm, modx = sex,

interval = TRUE, plot.points = FALSE

)

3500

4000

4500

5000

5500

Chinstrap Adelie Gentoo

species

bo
dy

_m
as

s_
g

sex female male

A: cat_plot

3000

4000

5000

40 50 60

bill_length_mm

bo
dy

_m
as

s_
g

sex female male

B: interact_plot

The cat_plot() function displays point estimates and confidence intervals for each
group, which help us to see if and how large the difference between the groups is. We
can see that there is a significant interaction effect between sex and species since
the confidence intervals do not overlap, and the effect seems quite substantial for
Gentoo. The interact_plot() returns a line plot with confidence bands and shows us
the interaction between the categorical and the numerical outcome.

6.2.4 Performance

We estimate models step by step. To improve a model, you may include an interaction
effect, but was it worth in terms of performance? There are several performance in-
dicators to examine the model fit. Load the performance package, to get a convenient
function to estimate the performance. The r2() function makes it easy to retrieve R2,
all it needs is the model name (Lüdecke, Makowski, Ben-Shachar, Patil, Waggoner, et
al., 2022).

Compare model performance, for example:

m1 <- lm(body_mass_g ~ species, data = penguins)

m2 <- lm(body_mass_g ~ species + sex, data = penguins)

R2

6.2 Develop a linear regression model | 175

library(performance)

r2(m1)

#> # R2 for Linear Regression

#> R2: 0.670

#> adj. R2: 0.668

Are you aware that R2 is not the only performance indicator? Depending on the model,
inspect AIC, BIC, and further indicators with the help of the compare_performance()
function from the performance package. Use the metrics option to get the most common
performance indicators, all that are available, or only those that are of interest, as the
next console illustrates.

Compare performance

compare_performance(m1, m2,

metrics = c("AIC", "BIC", "R2_adj")

)

#> # Comparison of Model Performance Indices

#>

#> Name | Model | AIC (weights) | BIC (weights) | R2 (adj.)

#> --

#> m1 | lm | 5172.7 (<.001) | 5188.0 (<.001) | 0.668

#> m2 | lm | 4785.6 (>.999) | 4804.6 (>.999) | 0.845

#>

#> Warning:

#> When comparing models, please note that probably not all models were

#> fit from same data.

The function makes it convenient to compare several models and specifications, and
it even provides a rank option to find the model with the best fit. Did you see that the
performance package returned a warning that not all models were fit from the same
data. My console shows this warning because m2 includes sexwhich hasmissing values.
We tried to elaborate models step by step, but we did not prepare the data to run the
analysis. I neglected this topic to focus on the analysis step. To compare models implies
that we need to compare them on fair grounds. We need to make sure that the same
observations are used for all models before we compare them.

Moreover, we need to examine what influence missing and implausible values have
on our estimation results (see Chapter 5). In order to run a model with the same sample,
create a filter condition or, as the next code shows, use the drop_na() function and

176 | 6 Analyze data

re-estimate and re-evaluate the models before the data loss takes place. To this end, we
can compare nested models that rely on the same observations.

Drop observations that will be dropped in later steps

penguins <- penguins |>

tidyr::drop_na(sex)

Rerun the model

m1 <- lm(body_mass_g ~ species, data = penguins)

The more indicators (and models) we take into consideration, the trickier it gets to com-
pare. The compare_performance() function helps us to inspect the model performance
graphically.² It returns a radar plot from the see package that depicts all performance
indicators of each model (Lüdecke, Makowski, Patil, et al., 2022). Even though a graph-
ical approach also has its limitations with regard to the number of models, assign the
results of the compare_performance() function and plot it. As the radar plot shows,
the second model outperforms the first model.

Radar plot

library(see)

result <- compare_performance(m1, m2)

plot(result)

AIC_wt

AICc_wt

BIC_wt

R2

R2_adjusted

RMSE

Sigma

Models

m1 (lm)

m2 (lm)

Comparison of Model Indices

2 In cases when you need to apply any additional steps with the performance parameters, the glance()
function from the broom package returns performance indicators as a tidy data frame (Robinson et al.,
2022).

6.2 Develop a linear regression model | 177

6.2.5 Next development steps

To develop models includes more steps than I will outline in depth, especially if you
apply a linear regressionmodel with data set that was not created for teaching purposes.
For example, consider non-linear effects. In the tutorial of this chapter we use the
gss2016 data and examine the relationship between life satisfaction and income. A
third variable such as age may have an effect on x and y, but the linear trend may
diminish as people get older. At a certain point in life, people’s life satisfaction lowers
because of, for example, physical health problems. This may lead to a misspecification
of the model if there is a non-linear age effect that we did not consider (see Chapter 6.3
for graphical approaches). You can generate a squared age variable and including it in
the model.

Make a squared age variable

gss2016$age_sqr <- gss2016$agê2

Or consider income. An income variable is often skewed, and we transform the variable
to improve the model fit. The transformer() function from PracticeR transforms a nu-
merical variable, applies several transformations (e.g., log()), and returns a histogram
for each transformation. The latter may help to examine which transformation may
lead to be a better fit.

Transform a numerical outcome

PracticeR::transformer(gss2016$income)

inverse 1/square 1/cubic

sqrt log 1/sqrt

cubic square identity

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

1 2 3 4 5 0 1 2 3 0.25 0.50 0.75 1.00

0 5000 1000015000 0 200 400 600 0 10 20
0.00
0.04
0.08
0.12

0.0
2.5
5.0
7.5

10.0
12.5

0
5

10
15

0.000
0.001
0.002

0.0
0.5
1.0
1.5

0
5

10
15

0e+00
3e−05
6e−05
9e−05

0.0
0.2
0.4
0.6
0.8

0
5

10
15

Transformation

D
en

si
ty

income transformed

In the case of income, a logarithm is often used to transform the variable, which changes
the interpretation but not how we estimate the model. The same applies to polynomial

178 | 6 Analyze data

terms or to other improvements. Thus, develop the model step by step and compare
your results.

Finally, one last word about regression tables. Do not transfer (regression) results
manually. In Chapter 8, we learn how to create documents and (regression) tables
with R. However, the jtools package might be the right choice if you need to export a
regression table right away. Consider the next console and table 6.1; it summarizes the
results from a model. The export_summs() function from the jtools package creates
this table and it only needs the results of a model. In addition, I added a list with
variable names instead of using the original text labels.

Model

model <- lm(body_mass_g ~ sex, data = penguins)

Create a list with text labels

library(jtools)

coef_names <- c(

"Intercept" = "(Intercept)",

"Male" = "sexmale"

)

Create a table

export_summs(model, coefs = coef_names)

Tab. 6.1

Model 1

Intercept 3862.27 ***

(56.83)

Male 683.41 ***

(80.01)

N 333

R2 0.18

*** p < 0.001; ** p < 0.01; * p < 0.05.

6.3 Visualization techniques | 179

The jtools package returns the table via the console, but it lets us export the table also
as a Word document. Add the two options to.file and file.name to the export_summs
function. Moreover, jtools package provides further options to adjust the regres-
sion table. For example, the scale option provides standardized coefficients and
error_format may include the confidence interval or other measures into the doc-
ument.

Export the table, but learn how to make a report (and tables) with R!

export_summs(model,

scale = FALSE, coefs = coef_names,

error_format = "{statistic})",

to.file = "docx", file.name = "test.docx"

)

Keep in mind, in Chapter 8 we will focus on documents and tables in detail, but the
jtools package might be the right choice if you need to export a single regression
table only. Instead of talking about tables, the next section highlights visualization
techniques.

6.3 Visualization techniques

In Chapter 7, we learn in detail how to visualize research findings. In this subsection
we begin with two types of visualization for regression analysis. I discuss graphs (and
statistical tests) to examine the assumptions of a linear regression first. Furthermore, I
have already underlined the importance of graphs in comparing and developingmodels
and we got in touch with dot-and-whisker plots. The second section elaborates on these
skills and shows how we can improve such plots to communicate research results.

6.3.1 Regression assumptions

Graphs are very helpful to examine the assumptions of a linear regression. Anscombe’s
quartetmade that clear but there is another prominent example that underlines this
point. Consider Figure 6.6. Do you have any idea what the graphs depict? Scatter plots
with random noise? Is it just a coincidence that the data looks like a star, a circle, or a
dinosaur? The data was simulated by Matejka & Fitzmaurice (2017) to highlight why
visualization are important when it comes to data analysis. They show that algorithms
are able to generate any kind of distribution and before we run any analysis, we should
at least visually inspect each variable. Each simulated data set is (almost) identical in
terms of statistical measures (e.g. correlation coefficient), but the data can be generated

180 | 6 Analyze data

in any shape, even as a datasaurus. The datasauRus package provides the data if you
want to inspect it (Davies et al., 2022).

Fig. 6.6: The Datasaurus

R has several built-in diagnostic plots to inspect the assumptions quickly. To inspect
them, run and save the results of a model first. Next, use the plot() function and insert
the model, it returns the built-in diagnostic plots one after the other. For example,
inspect the residuals vs fitted plot to examine if there is a non-linear relationship
between the independent variables and the outcome. Or consider the scale-location
plot, it depicts standardized residuals, and you can check if the model violates the
homoscedasticity assumption.

This section will focus on graphs and statistical tests to examine the assumptions
of a linear regression and further concerns which are not an assumption but may distort
the estimation results (e.g., multicollinearity, outliers, and influential cases), based on
the following example model.

Example model

model <- lm(body_mass_g ~ bill_length_mm + sex, data = penguins)

We use several packages to check the assumptions of a linear regression, especially
the performance package. It has integrated many functions and plots to explore the
assumptions. In addition, the lmtest package provides several statistical tests to exam-
ine the assumptions; and the estimatr package lets us apply (cluster) robust standard
errors.

6.3 Visualization techniques | 181

The performance package
Overall, the performance package provides a good first orientation because it has
several check functions (with visualizations) to inspect the assumptions of a linear
regression. Use the check_model() function for a quick overview about potential viola-
tions: it returns six diagnostic plots and it even helps with the interpretation of each
graph.

Get a quick overview

x <- check_model(model)

plot(x)

Figure 6.7 displays the result of the check_model() function. Moreover, the package
provides functions (and plots) to address the assumptions individually. For example,
use the package to examine outliers (influential cases),multicollinearity, and linearity
assumption. In terms of outliers and influential cases, we need to understand how
single observation affect a linear regression. Thus, we need to understandwhat leverage
and influencemean. An observation has a high leverage if it has an extreme value on
an independent variable and in consequence may have a substantial effect on the
estimation results. Furthermore, an observation is said to be influential if its removal
changes the regression coefficients significantly. There are several statistical measures
to identify outliers and influential cases. A lot of students have heard of Cook’s distance
(or Cook’s D), which combines information of the residual and leverage to identify
outliers and influential cases (Cook, 1977). The higher the value of Cook’s D, the higher
the influence, and we may check each observation that exceeds a certain threshold (as
a convention: 4/n). R has the corresponding function to calculate Cook’s D.

Identify outliers with Cook’s D

cookD_model <- cooks.distance(model)

cookD_model[1:3]

#> 1 2 3

#> 0.0008550359 0.0001002037 0.0012814026

However, Cook’s D is not the only measure to identify influential observations. I will
not introduce further measures, because the performance package includes Cook’s D
and other statistics to identify outliers. As outlined in the help file of the performance
package, the check_outliers() function: “locates influential observations (. . .) via
several distance and/or clustering methods” (Lüdecke, Makowski, Ben-Shachar, Patil,
Waggoner, et al., 2022). You can get all or explicitly pick a certain measure – such as
Cook’s D – with the method option.

182 | 6 Analyze data

0e+00

2e-04

4e-04

6e-04

2000 4000 6000
body_mass_g

D
en

si
ty

Observed data Model-predicted data

Model-predicted lines should resemble observed data line
Posterior Predictive Check

-1000

0

1000

3500 4000 4500 5000 5500
Fitted values

R
es

id
ua

ls

Reference line should be flat and horizontal
Linearity

0.0

0.5

1.0

1.5

3500 4000 4500 5000 5500
Fitted values

|S
td

. r
es

id
ua

ls
|

Reference line should be flat and horizontal
Homogeneity of Variance

283

329314

321282

0.7

0.7

-20

-10

0

10

20

0.00 0.01 0.02 0.03
Leverage (hii)

St
d.

 R
es

id
ua

ls

Points should be inside the contour lines
Influential Observations

1

2

3

5

10

bill_length_mm sex

Va
ria

nc
e

In
fla

tio
n

Fa
ct

or
 (V

IF
, l

og
-s

ca
le

d)

Low (< 5)

High collinearity (VIF) may inflate parameter uncertainty
Collinearity

-2

0

2

-3 -2 -1 0 1 2 3
Standard Normal Distribution Quantiles

Sa
m

pl
e

Q
ua

nt
ile

s

Dots should fall along the line
Normality of Residuals

Fig. 6.7: Regression diagnostics overview

6.3 Visualization techniques | 183

Search for influential observations

check_outliers(model)

#> OK: No outliers detected.

#> - Based on the following method and threshold: cook (0.79).

#> - For variable: (Whole model)

The check_* functions return visualizations of the result when we assign the result of
the function and plot it. The package even includes instructions on how to interpret
the results. As the check_outliers plot indicates, outliers and influential observations
will show up outside the contour line.

Plot influential observations

x <- check_outliers(model)

plot(x)

283
329

314
321282

0.7

0.7

−20

−10

0

10

20

0.00 0.01 0.02 0.03
Leverage (hii)

St
d.

 R
es

id
ua

ls

Points should be inside the contour lines
Influential Observations

The package also helps us to address the multicollinearity assumption: The latter
expresses that two (or more) variables are a linear combination of one another. Inspect
the variance inflation factor (VIF) and the tolerance (1/VIF) to examinemulticollinearity.
Both express whether a variable might be a linear combination of each other. Again,
the performance package helps us with this task because the check_collinearity()
function returns them. The package documentations outlines even a rule of thumb to
interpret: “A VIF less than 5 indicates a low correlation of that predictor with other
predictors. A value between 5 and 10 indicates a moderate correlation, while VIF values
larger than 10 are a sign for high, not tolerable correlation of model predictors” (see
Lüdecke, Makowski, Ben-Shachar, Patil, Waggoner, et al., 2022).

VIF values

check_collinearity(model)

#> # Check for Multicollinearity

#>

184 | 6 Analyze data

#> Low Correlation

#>

#> Term VIF VIF 95% CI Increased SE Tolerance Tolerance 95% CI

#> bill_length_mm 1.13 [1.05, 1.36] 1.07 0.88 [0.73, 0.95]

#> sex 1.13 [1.05, 1.36] 1.07 0.88 [0.73, 0.95]

Next, we use the performance and ggeffects package to examine the linearity assump-
tion. A linear regression assumes a linear relationship between x and y, but we fit a
straight line even if the relationship is not linear. Thus, we should use a scatter plot to
examine the variables before you even apply an analysis. Certainly, a scatter plot may
reveal whether the relationship is (not) linear in a bivariate analysis.

What shall we do in the case of a multivariate analysis? Inspect the residuals vs
fitted plot (Figure 6.7: Linearity or the built-in diagnostic plots) to examine if there is
a non-linear relationship between the independent variables and the outcome. The
residuals should spread around a horizontal line if variables are associated in a linear
fashion.

A slightly different approach is offered by the ggeffects package (Lüdecke, 2022).
It inserts the residuals in a scatter plot instead of the observed values. The next plot
illustrates this point with simulated data from the ggeffects package. The left plot
shows a regular scatter plot, and we may not realize that there is a non-linear trend.
The right plot includes the residuals and an extra line to display the functional form of
the residuals.

−10

0

10

−2 0 2
x

y

Scatter plot

−5

0

5

10

15

−3 −2 −1 0 1 2 3
x

y

Residual plot

Keep in mind that I used simulated data for the last graph since it includes a non-
linear trend on purpose. Inspect the documentation if you want to use the ggeffects
package and consider to transform the variables if you come across a non-linear effect.

6.3 Visualization techniques | 185

Ultimately, we explore how the lmtest and the estimatr package help us to address
the homoscedasticity and the independence of error assumption.

The lmtest and the estimatr package
We can make an error if we predict the outcome, but is the error systematic? We assume
that the variance of the error is constant (homoscedastic), but the assumption is violated
if the variance of the error is heteroscedastic. We may make a larger or smaller mistake
depending on the observed value of x. If the variance of the error is constant, we should
not see a clear pattern. The next plot depicts the standardized residuals against the
fitted values, as the check_heteroscedasticity() function returns.

check_heteroscedasticity

x <- check_heteroscedasticity(model)

plot(x)

0.0

0.5

1.0

1.5

3500 4000 4500 5000 5500
Fitted values

|S
td

. r
es

id
ua

ls
|

Reference line should be flat and horizontal
Homogeneity of Variance

In cases of equal variance, we should see a horizontal line and points should spread
without a distinct pattern. In the case of the penguins data, we need to examine both in
more detail since the assumptions are clearly violated. If the picture is not that clear, use
a statistical test. The lmtest package provides several tests to examine the assumptions
of linear regression models (Hothorn et al., 2022). For example, the Breusch & Pagan
(1979) test assumes as null hypothesis that the variance of the error is homoscedastic,
whichwemust reject. The check_heteroscedasticity() also calls theBreusch&Pagan
test and helps us with the interpretation, as the next console illustrates.

Breusch & Pagan test (1979)

lmtest::bptest(model)

#>

186 | 6 Analyze data

#> studentized Breusch-Pagan test

#>

#> data: model

#> BP = 88.775, df = 2, p-value < 2.2e-16

check_heteroscedasticity

check_heteroscedasticity(model)

#> Warning: Heteroscedasticity (non-constant error variance) detected

#> (p < .001).

What shall we do in case of a heteroscedastic error? To transform the variables may
help and you can use robust standard errors to take into consideration that the error is
non-constant. The lm_robust() function from the estimatr package provides different
types of standard errors (for example, the stata equivalent HC1), but further options
are available (Blair et al., 2022).

Robust standard errors

library(estimatr)

robust_model <- lm_robust(body_mass_g ~ bill_length_mm + sex,

data = penguins,

se_type = "stata"

)

Bothpackages alsohelpus to address the independence of error assumption:weassume
that the error of one observation does not depend on the error of another observation.
Suppose we compare children from different classes. All children from one class are
exposed to the same conditions. Thus, observations from children of the same class
are more similar than observations from children of different classes. In consequence,
the error is not independent and observations from different classes build a cluster. We
may even have a second cluster if we compare different schools and classes.

In such a case we need a robust regression (lm_robust()), but this time we need to
specify a cluster variable. In the case of the penguins, all penguins of the same island
are exposed to the same conditions and may be considered as a cluster.

Cluster robust

cluster_model <- lm_robust(flipper_length_mm ~ bill_length_mm + sex,

data = penguins,

clusters = island

)

6.3 Visualization techniques | 187

A second reason why the independence of an error assumption might be violated is
auto-correlation. Suppose you measure the skills of children several times. It is likely,
that the error of the first measurement is correlated with the secondmeasurement since
the same child was tested. In the case of time-series data, use the Durbin-Watson test
(dwtest) to check for correlated residuals.

Run a Durbin-Watson test in case of auto-correlation

lmtest::dwtest(model)

Further assumptions
A linear regression relies on further assumption which I will not outline in detail, since
the performance package includes them. For example, a linear regression assumes that
the error is normally distributed and there are several tests and graphical procedures.
The check_normality() function uses the shapiro.test to examine if the standardized
residuals are normally distributed, and the function also visualizes the results. Consider
transforming the examined variables if the normality assumption is violated.

check_normality

check_normality(model)

Ultimately, you should be aware that a linear regression relies on even more assump-
tions. Unfortunately, they are harder to address, especially in terms of applying R. For
example, we need to assume that the model includes all relevant variables. In order to
decide which variable is (not) relevant to explain the outcome, theoretical assumptions
and knowledge about the causal structure of the examined variables is needed. Think
about omitted variables that are of high relevance to explain the outcome; or maybe
we have included irrelevant control variables that do not change the bigger picture at
all? Thus, theoretical assumptions and knowledge about the causal structure should
guide your way to addressing this assumption. The same applies to measurement error:
we cannot prove that there is no measurement error, which underlines the import-
ance of robustness checks. For example, we may exclude extreme but plausible cases
which may induce measurement error. Unfortunately, this does not solve the problem
in general terms but it increases the confidence if the results are not affected. Instead
of talking about regression assumptions, the next section focuses on skills to visualize
and communicate regression results.

6.3.2 Visualize regression results

Visualizations are an important tool to communicate the results of an analysis. As
outlined, the jtools package provides convenient functions to visualize regression

188 | 6 Analyze data

results with dot-and-whisker plots. To create a dot-and-whisker plot, just insert a model
object into the plot_summs() function, as the first plot on the left side highlights. In
addition, plot_summs() can also return a plot for several models, as illustrated in the
second plot on the right. Moreover, the plot_summs() function comes with several
handy options. For example, the scale option returns standardized coefficients, the
model.names option allows us to give descriptive names for eachmodel; and, as the next
console shows, we can get rid of ugly text strings (e.g., bill_length_mm) by providing
coefficient (coefs) names.

Two example models

m1 <- lm(flipper_length_mm ~ bill_length_mm,

data = penguins

)

m2 <- lm(flipper_length_mm ~ bill_length_mm + sex,

data = penguins

)

Left: plot_summs from jtools returns a dot-and-whisker

plot_summs(m1)

Right: add coefficient labels

plot_summs(m1, m2, coefs = c(

"Bill length" = "bill_length_mm",

"Male" = "sexmale"

))

bill_length_mm

0.0 0.5 1.0 1.5

Estimate

Male

Bill length

−1 0 1 2 3

Estimate

Model

Model 1

Model 2

You may not realize it, but the jtools package makes it convenient to visualize regres-
sion results. The package only needs the model, it picks colors and inserts a vertical
reference line in the plot. The jtoolspackage is an excellent start to visualize regression
results, especially to compare and develop models.

Let us inspect how we create dot-and-whisker plots with the dotwhisker package,
which gives us even more possibilities to visualize and communicate regression results
(Solt & Hu, 2021). In order to make a dot-and-whisker plot, we need a data frame with
the name of the variables, the estimates of the analysis, and the standard errors. In

6.3 Visualization techniques | 189

other words, tabular or tidy data, as the corresponding function from the broom package
illustrates (Robinson et al., 2022).

broom::tidy returns a tidy data of your model

broom::tidy(m1, conf.int = TRUE)

#> # A tibble: 2 x 7

#> term estim~1 std.e~2 stati~3 p.value conf.~4 conf.~5

#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 (Interce~ 127. 4.67 27.2 3.65e-87 118. 136.

#> 2 bill_len~ 1.69 0.105 16.0 1.74e-43 1.48 1.90

#> # ... with abbreviated variable names 1: estimate,

#> # 2: std.error, 3: statistic, 4: conf.low, 5: conf.high

Just like jtools, the dotwhisker package includes this step and creates a dot-and-
whisker plot with the dwplot() function. Creating a simple version works essentially
the same way; refer to the model to display the regression estimates. The function
returns only the dot and the whisker of the coefficient, without a vertical reference line.
You can add one with the vline option and adjust its position (xintercept); color and
linetype. As the next console underlines, the dotwhisker package is more complex as
the first approach but is also more flexible.

library(dotwhisker)

Left: the dwplot

dwplot(m1)

Right: add a reference line

dwplot(m1, vline = geom_vline(

xintercept = 0,

color = "black"

))

bill_length_mm

1.5 1.6 1.7 1.8 1.9

bill_length_mm

0.0 0.5 1.0 1.5

190 | 6 Analyze data

To compare models, we must include them as a list in the dwplot() function. Further-
more, model_order lets you adjust the order of the displayed models.

Include several models as list

dwplot(list(m1, m2))

Sort/resort models via model_order

dwplot(list(m1, m2),

model_order = c("Model 2", "Model 1")

)

sexmale

bill_length_mm

−1 0 1 2 3

model

Model 1

Model 2
sexmale

bill_length_mm

−1 0 1 2 3

model

Model 2

Model 1

In a similar way, order the variables manually with the option vars_order, starting
from the top to the bottom of the graph. Or, provide a descriptive text label for the
predictors (relabel_predictors).

Results are displayed on the next page:

Sort variables

dwplot(m2,

vars_order = c("sexmale", "bill_length_mm")

)

Relabel variables

dwplot(m2) |>

relabel_predictors(c(

bill_length_mm = "Bill length",

sexmale = "Male penguins"

))

The dotwhiskerpackage providesmore optionswhich I cannot discuss in detail, inspect
the package vignette for more information. Irrespective of the options, let us presume
that we have combined some of them to create a fully customized plot. The next console

6.3 Visualization techniques | 191

bill_length_mm

sexmale

−1 0 1 2 3

Male penguins

Bill length

−1 0 1 2 3

shows the code to create such a graph. Please, don’t get intimidated by the code. There
is no need to inspect each line of code, just take a look at the final plot.

#The final plot

dwplot(list(m1, m2),

dot_args = list(size = 2),

vline = geom_vline(xintercept = 0,

colour = "black",

linetype = 2),

model_order = c("Model 1", "Model 2")) |>

relabel_predictors(c(bill_length_mm = "Bill length",

sexmale = "Male penguins"))+

ggtitle("Results")+

theme_minimal(base_size = 12)+

xlab("Effect on body mass") +

ylab("Coefficient") +

theme(plot.title = element_text(face = "bold"),

legend.title = element_blank()) +

scale_color_viridis_d(option = "plasma")

Male penguins

Bill length

−1 0 1 2 3
Effect on body mass

C
oe

ffi
ci

en
t

Model 1

Model 2

Results

Now, you really understand why packages such as jtoolsmake our life easier. Maybe
you cannot believe it, but creating such a customized plot can be worth the trouble,

192 | 6 Analyze data

since you can adjust all aspects to your needs. That is the reason why I introduced both
approaches in this section, although we prefer the simpler solution when we develop
models.

Can you do me a favor and examine how I added the title in the last plot? I used
ggtitle() from the ggplot2 package. In the next chapter we will learn how to visualize
research findings from the ground with ggplot2. Regardless of which approach you
apply, the jtools and the dotwhisker packages actually return a ggplot2 object. This
implies that everything you will learn in the next chapter will also work for plots that
are made with jtools, dotwhisker, and other packages that rely on ggplot2 to create
graphs.

Summary

This chapter introduced the main principles to apply a linear regression analysis. We
estimated the effect of one (or several) independent variable(s) on a continuous outcome.
Keep in mind that building a model takes time and experience. For this reason, we
started simple and I tried to underline the need to improve the model step by step.
We compare how the results change if we control for confounding variables or if we
transform the outcome. Many students in the social sciences know – at least in theory –
how a linear regression works, which is why I decided to focus on practical steps and
how they are applied with R. In consequence, I did not explain many concepts in detail.
Even though I concentrated on the practice steps, I could have spent much more time
talking about different specifications (e.g., log-linear model) or further advanced topics
and improvements (e.g. splines). I guess it’s up to you to discover these topics, but with
R you have an excellent companion to analyze data. For example, consider reading
Gelman et al. (2020) to learn more about Regression and Other Stories.

E-book: Regression and other stories

PracticeR::show_link("regression")

Finally, Chapter 12 introduces the nuts and bolts of logistic regression, since the latter
is also often part of the standard curriculum in the social sciences.

7 Visualize research findings
The first steps to prepare and to analyze data are behind us and it is time to visualize the
results.Maybe youdid not expect an entire chapter about visualizations, but they are the
most powerful tool to communicate central insights of the analysis. A good visualization
makes it easier for your audience to grasp and even memorize results. Unfortunately, a
graph may not clearly communicate the results or leave room for interpretation, which
is why some people may have a hard time to understand it. Visualize your research
findings, but try to draw a coherent and clear picture of it.

A graph should transport the main insight or finding. To illustrate this point, Fig-
ure 7.1 shows an updated version of the hockey stick graph (Mann et al., 1999).¹ It depicts
the temperature anomaly with a line plot and shows that the temperature rises like a
hockey stick in the late 20th century. The hockey stick graph was one of the first graphs
to scrutinize climate change. Suppose you don’t know anything about climate change.
Would you believe that we face a serious problem because the temperature rises like a
hockey stick? How we assess research findings also depends on prior knowledge, but
some people lack that knowledge, and in consequence may doubt climate change. This
is one of the reasons why we are supposed to make visualizations, but also why we
must question ourselves, did we make the graph’s message obvious (enough)?

Fig. 7.1: Global common era temperature reconstruction

Don’t get me wrong, I am not saying that the hockey stick graph is not well suited
for its purpose. The question is how can we improve our work and make it easier for

1 The graph was made with the help of the hockeystick package (Cortina, 2022). The package provides
data and many graphs about climate change.

https://doi.org/10.1515/9783110704976-007

194 | 7 Visualize research findings

the audience to understand the main message? Do we have the data, the technical
equipment, and the visualization skills to convince our peers and to make the broader
public understand that global warming is a pressing issue?

In this chapter I introduce the ggplot2 package and we lay the foundation to
create high-quality graphs to communicate key research insights (Wickham, Chang,
et al., 2022). The package offers many possibilities to visualize data and implements
a theoretical framework – the grammar of graphics – which outlines how graphs are
composed. Regardless whether we talk about a dot plot, a bar graph, or a pie chart,
we can create many different graphs with ggplot2, and knowledge about the grammar
of graphics lets us adjust all aspects of a graph; in principle we could even invent a
new one! This sounds complicated and to be honest with you, such an endeavor would
result in a long and complicated code. That is not a bad thing. Let me explain.

The ggplot2 package has well-established default options and you may not bother
with tiny details of a graph if you are happy with it. Of course, you can make some
adjustments, like adding a title, but we do not need to customize the entire graph if we
are happy with the default version. The ggplot2 package is not complicated as long
as we create standard graphs (e.g., bar graph, etc.). Profound knowledge about the
underlying framework is not necessary to make our first graph.
– In Section 7.1, we focus on the basics of data visualization. We apply steps which

are typical for almost all (scientific) graphs.We learn how tomake labels, adjust the
legend, and pick some colors. Such steps are easy to apply, but they are essential
to communicate clearly. I hope that this first section proves that you can adjust a
default version quickly for your needs.

– To understand how ggplot2 works, we get in touch with the grammar of graphics
in Section 7.2. I introduce several terms that refer to the individual components of a
graph. We concentrate on the grammar of graphics to get a deeper understanding
of ggplot2. We create one specific plot in the first section, but by the end of the
second section you will be able to create many graphs. Please, don’t get me wrong. I
don’t say that you will be able to create a high quality graph in no time. That would
be a lie and I am not a teaching wizard! However, you will be able to create many
different graphs as we will lay the foundation to apply the grammar of graphics.

– In Section 7.3, we explore packages that extend the possibilities of ggplot2. There
are too many ggplot2 extensions to discuss them all in detail. Some packages
help you to create text boxes for annotations, some improve how we can combine
several graphs into one, and some support us to make advanced graphs such as
maps, animations, and other fancy things. Thus, this section is like a picture book
showing you potential next steps to visualize research findings. Now that the scope
it set, let us dive into the basics.

The ggplot2 package is included in the tidyverse package. Furthermore, you need the
following packages:

7.1 The basics of ggplot2 | 195

#Libraries for section 7.1

library(ggplot2)

library(ggthemes)

library(palmerpenguins)

library(PracticeR)

library(RColorBrewer)

library(showtext)

7.1 The basics of ggplot2

Let us make a scatter plot to examine the association between the body mass
(body_mass_g) and the bill length (bill_length_mm) with the penguins data from the
palmerpenguins package. Figure 7.2 shows two different versions of the same scatter
plot. Figure 7.2 (A) shows the default version of a scatter plot made with ggplot2, while
Figure 7.2 (B) displays an improved version. We will learn all necessary steps to improve
the default version in this section.

Fig. 7.2: Scatter plot example

We start with the minimal code to create a scatter plot and we adjust it step by step:
(1) We focus on the main ggplot() function. Next, I outline the steps to change the
appearance of the graph: (2) We learn how to adjust the labels (axes, title, etc.), (3) the
theme, (4) the font type, (5) the colors, (6) the legend, and (7) we will export a graph.
Certainly, this is a less-than-ideal recipe to make a graph, but you need to apply the
discussed steps anyway.

196 | 7 Visualize research findings

7.1.1 The ggplot() function

Each time youmake a graph with ggplot2, use the ggplot() function, you insert a data
frame, and specifywhich variables to visualize. Include the latter in the aes() (aesthetic)
function which maps variables to graphical objects (geoms). In a minimal version, I
insert bill_length_mm as x and body_mass_g as y variable in the aes() function. In
the case of a scatter plot, ggplot() takes the observed values and displays them with
points in a coordinate system. However, the data will not be displayed if we use the
ggplot()function only. We must add a geometrical object (geom_*) with a layer.

The next console returns three graphs to illustrate this point. The first graph on the
left side shows only that the graphical interface is opened. The aes() function adds
a default coordinate system and the variables, but without any visual representation
of the data. Add a second layer with a plus (+) sign and the geom_point() to create a
scatter plot, as the third plot on the right side highlights.

#Left plot: The ggplot function

ggplot(data = penguins)

#Center: The aes function

ggplot(data = penguins, aes(x = bill_length_mm, y = body_mass_g))

#Right plot: Add layers with a + sign!

ggplot(data = penguins, aes(x = bill_length_mm, y = body_mass_g))+

geom_point()

3000

4000

5000

6000

40 50 60
bill_length_mm

bo
dy

_m
as

s_
g

3000

4000

5000

6000

40 50 60
bill_length_mm

bo
dy

_m
as

s_
g

So,weneed to specify how todepict the data andwe thenadd (+) a geomas anadditional
layer. Each graph starts with the ggplot() function, and we adjust all sorts of graphical
aspects with layers. We can add the labels of the axis, modify the legend, or change the
colors with an additional layer. The layers are the reason why ggplot2 is powerful. By
the end of this chapter, we will be more familiar with layers, but irrespective if we add a

7.1 The basics of ggplot2 | 197

label for a bar graph or a scatter plot, the code to add the labels is often identical. You
cannot add a layer that exists only for a certain graph, but you can recycle a lot of code
by changing the data, the variables, and the geom. Wait till the end of this chapter if
this seems obscure.

Before you go on and you try it on your own, let me give some advice. Take care
that each layer is added with a plus (+) sign at the end of the line; and that each new
layer starts on a new line. I can’t say how often I stared at a code and wondered why
R did not return a graph. In most instances I forgot to add a plus sign for a new layer
or I deleted a layer and forgot to delete the plus sign. R expects us to deliver a layer if
the code ends with a plus sign and waits patiently until it gets one. At some point this
might be the reason why nothing happens if you run code. The console prints a plus
sign if R expects to get another layer and you may use the <ESC> button to abort the
call.

The next console shows the minimal code for the scatter plot one more time. We
use it as a starting point to examine how a layer changes the appearance of a graph. As
the next console displays, we can skip the data argument and I inserted the name of
the data frame only. The same applies to x and ywithin the aes() function. You may
skip these arguments, since it makes the code a bit more elegant.

#The minimal code

ggplot(penguins, aes(bill_length_mm, body_mass_g))+

geom_point()

Talking about elegance, let’s get rid of the ugly axes labels (e.g., variable names spelled
in snake case).

7.1.2 Labels

Give the axes proper text labels. It helps to communicate the graph’s message clearly.
Variable names are often not optimal and do not have the same aim as text labels.
Variable names should be concise and are often saved in small letters, which looks
odd in a graph. Labels give us the possibility of providing more information about the
variables, because even a very_long variable name may lead to confusion.

The steps to add a label are easy and there is little to explain. As the next code
highlights, add a label for the x-axis (xlab()) and the y-axis (ylab()). If the graph needs
a title, use the ggtitle() function.

#Provide precise labels for the axis and a title

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g))+

geom_point()+

198 | 7 Visualize research findings

xlab("Bill length")+

ylab("Body mass")+

ggtitle("Palmer penguins")

Depending on the purpose of the graph, it could be useful to provide a title, a caption,
and other annotations to help the audience understand the main message. Such texts
may not be necessary if you, for example, describe your work in detail at a conference.
But what happens if you share the slides of the presentation? Someone inspects the
work and youwill not be there to explain it. Thus, descriptive textsmay help to transport
the message.

A smooth alternative for all those text labels offers the labs() function. You can
modify the axis labels, provide a title, subtitle, tag, and captionwith the labs() function.
Such steps seem trivial, but compare the scatter plot with the default version. The
audience now gets a chance to understand what is going on.

#Combine all texts with the labs function

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g))+

geom_point()+

labs(title = "Palmer penguins",

subtitle = "Is bill length and body mass associated?",

tag = "Fig. 1",

x = "Bill length",

y = "Body mass",

caption = "Data source: The palmerpenguins package")

3000

4000

5000

6000

40 50 60
Bill length

Bo
dy

 m
as

s

Is bill length and body mass associated?
Palmer penguins

Data source: The palmerpenguins package

Fig. 1

7.1 The basics of ggplot2 | 199

Did you run the code on your computer? Did you realize that my graphs look slightly
different than yours? There is a simple explanation: I picked a different default theme
for this book.

7.1.3 Themes

We can adjust all graphical aspects that determines the graphical appearance with
ggplot2. Before we focus on the nitty-gritty details, let us first explore the theme_*

functions, which are predefined rules to style a graph. Themes are very useful since
they change the appearance with just one line of code. The ggplot2 package includes
several themes. For example, add the theme_minimal() or the theme_gray() as a layer.
The theme_minimal() should look familiar, since graphs in this book aremadewith this
theme, the theme_gray() is the default ggplot2 theme. Regardless of the choice, not
all themes work for all purposes. To get a first overview about the implemented themes,
Figure 7.3 shows six standard themes from the corresponding theme_* functions.

Fig. 7.3: Standard themes

Wemay add theme_minimal() as a layer or set a favorite theme permanently with the
theme_set() function.

#Set a different default theme, for example:

theme_set(theme_minimal())

If you didn’t like the standard themes, give the ggthemes extension package a shot
(Arnold, 2021). It provides several themes, among them The Economist, an Excel, and a
Stata theme. Give it a try by adding the corresponding theme function.

200 | 7 Visualize research findings

#The ggthemes package provides more themes

library(ggthemes)

#Left: Stata style

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g))+

geom_point()+

theme_stata()

#Right: Excel "style"

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g))+

geom_point()+

theme_excel()

30
00

40
00

50
00

60
00

40 50 60
bill_length_mm

bo
dy

_m
as

s_
g

3000

4000

5000

6000

40 50 60

bill_length_mm

bo
dy

_m
as

s_
g

The ggplot2 package gives us full control to customize a graph and this also applies to
the theme() function, regardless of which predefined theme you apply. For example,
the next console shows how to modify two different theme elements by adjusting
the theme() layer. I changed the color and the angle of the axis text. Furthermore,
I increased the text size of the title, and the text is bold in the second plot on the
right. Customizing a theme is complicated, since we can change a lot of elements. In
consequence, the theme() function may become quite complicated, as the next console
illustrates.

#Left: Adjust the axis.text

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g))+

geom_point()+

theme(axis.text = element_text(color="gray", angle=45))

#Right: Change how the plot.title is displayed

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g))+

7.1 The basics of ggplot2 | 201

geom_point()+

ggtitle("Title")+

theme(plot.title = element_text(size=16, face="bold"))

30
00

40
00

50
00

60
00

40 50 60

bill_length_mm

bo
dy

_m
as

s_
g

3000

4000

5000

6000

40 50 60

bill_length_mm

bo
dy

_m
as

s_
g

Title

There are too many theme() options and parameters that determine how a graph is
plotted to discuss all of them. Run ?theme if you are searching for something specific;
R returns a list of all theme elements, or use Google to find out how to change a theme
aspect. This might be too overwhelming in the beginning and it is probably for the best
if we stick to the predefined themes for now; just keep in mind that a plot can be fully
customized.²

The same applies to fonts. We could change the font type and the font size of the
title, subtitle, and the caption separately, but that’s not a useful workaround. Let’s see
if we can find a better solution in the next subsection since the right font size depends
on the font type anyway.

7.1.4 Fonts

Suppose you want to use a fancy font type to transport the graph’s main message. The
showtext package offers a convenient way to work with font types (Qiu, 2022). Do you
know which font types are installed on your computer? And where they live? Font
files are saved in a system directory (e.g., C:\Windows\Fonts), but wait a minute before
you hunt them down, because showtext helps you with this task. The font_paths()
function shows the directories where the package searches for font types and you have
access to all listed fonts.

2 You may even create your own theme function when you have more experience with ggplot2. This
sounds quite complicated, but in principlewe copy a predefined theme and change only specific aspects.

202 | 7 Visualize research findings

#font_paths shows you where your font types live

font_paths()

#> [1] "/Library/Fonts"

#> [2] "/System/Library/Fonts"

#> [3] "/System/Library/Fonts/Supplemental"

#> [4] "/Users/edgartreischl/Library/Fonts"

Wait just amoment longer before you visit these directories. The font_files() function
returns all font types of this directory. As the next console shows, I assigned the result
of the font_files() function and I printed a subset, but only to create a smaller output
for this book. The font_files() function returns the file and the family name for all
font files that showtext has found.

#font_files returns the path, file, and family name of fonts

df <- font_files()

df[1:5, 1:3]

#> path file family

#> 1 /Library/Fonts Arial Unicode.ttf Arial Unicode MS

#> 2 /System/Library/Fonts Apple Braille Outline 6 Dot.ttf Apple Braille

#> 3 /System/Library/Fonts Apple Braille Outline 8 Dot.ttf Apple Braille

#> 4 /System/Library/Fonts Apple Braille Pinpoint 6 Dot.ttf Apple Braille

#> 5 /System/Library/Fonts Apple Braille Pinpoint 8 Dot.ttf Apple Braille

Now that we know the file and family name of the installed fonts, how does it
work? Add a font type by proving its name (or the path to the file). Next, we run the
showtext_auto() function which lets us render the text of the graph with showtext.
Finally, we need to refer to the imported font type. For example, change the font type
with base_family within the theme function. As the next console highlights, I used the
American Typewriter font for the first plot on the left side.

library(showtext)

#Add a font

font_add(family = "American Typewriter",

regular = "AmericanTypewriter.ttc")

showtext_auto()

#Include the font within the theme, as the left plot shows:

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g))+

7.1 The basics of ggplot2 | 203

geom_point()+

ggtitle("Font: American Typewriter")+

theme_minimal(base_family = "American Typewriter")

On the right side, I used Pacifico as the font type. Working with font type is hard work,
especially if the font type is not installed. Wemust rerun the entire script to find its path
and the name of the font. What happens if we do not know which font type fits best for
our purpose? We rerun our script more than once before we are happy with the results.
Fortunately, we need not install a font type locally, as the second plot demonstrates.
The Pacifico font comes from Google Fonts, and I did not install it locally. The Google
platform stores a lot of font types, and we get access with the font_add_google()

function. It downloads the file and makes the font temporary available. The steps to
use fonts from Google are pretty much the same as before:

#Add a font from Google: https://fonts.google.com/

font_add_google("Pacifico")

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g))+

geom_point()+

ggtitle("Font: Pacifico")+

theme_minimal(base_size = 12, base_family = "Pacifico")+

theme(plot.title = element_text(size=14))

Examine the theme_minimal() function of the last code. The base_familyoption inserts
the new font type. The option base_sizeworks in a similar way for the font size. The
choice for a font size depends on the font type. If it is clear which font type it should
be, just insert the base_size argument in the predefined theme() function, which sets
a reasonable base size for all regular texts of the graph. Even if we use the base_size

204 | 7 Visualize research findings

argument, we can increase (decrease) font sizes separately, for example, to give the
plot title (plot.title) a larger spot.

7.1.5 Colors

The R community is very colorful and so is R. It includes 657 different predefined colors.
Inspect them with the colors() function.

#colors() returns implemented colors

colors()[1:4]

#> [1] "white" "aliceblue" "antiquewhite" "antiquewhite1"

Colors are harder to handle because there are so many possibilities and it depends on
your goals. Do you want to pick colors to make the graph look nice or do you want to
convey information with the colors? And for which kind of graph? Do you want to color
the circles of a scatter plot or fill a geometrical object?

As long as a color is not used to convey information, it is not difficult to adjust
colors. For example, add the color and the fill argument inside the geom function.
The fill option lets us fill a geom and the color option modifies the border of a geom.
The next console shows how we adjust colors for a bar graph and a scatter plot. The
left plot shows a bar graph (geom_bar()) with white bars and a black border. The right
plot adjusts the color for a scatter plot.

#Left: Bar plot with colors

ggplot(penguins, aes(x = species))+

geom_bar(fill = "white", color = "black")

#Right: Scatter plot with colors

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g))+

geom_point(fill = "red", color = "black", shape = 21)

7.1 The basics of ggplot2 | 205

Examine the code for the second plot. The fill option fills a geometrical object, but the
default symbol of a geom_point() cannot be filled. In order to use the fill aesthetic,
we must use a shape that can be filled. For this reason, I used a different shape in the
geom_point() function. Keep in mind that you can only use the fill option if there is
something that can be filled. This applies to other aesthetics as well, such as line types.
Changing the shape makes it necessary to know which shapes are available and what
their corresponding numbers are. There is no need to remember which number refers
to which shape, because I included a graph in the PracticeR package that depicts
the available shapes. Run the show_shapetypes() function and it returns a graph that
shows the shapes, as Figure 7.4 displays.

#Which shape shall it be?

PracticeR::show_shapetypes()

Fig. 7.4: Shape types in R

By the way, I created a similar graph for the line types. You get different types of
lines using their corresponding number. The next console shows only the code, but
show_linetypes() function returns the line types (and the corresponding numbers) as
a graph.

#Line types

PracticeR::show_linetypes()

Insert fill or color inside the geom() function, but should you want to convey inform-
ation, use them inside the aes() function. In the next section, we learn more about the
underlying theory, but it will help us to understand how ggplot2 works if we discover
a bit more about aesthetic mappings.

Each geom has specific aesthetics to map data. As a first step, we define which
variable is mapped as x and y, and we may use further aesthetics such as color, shape,
or fill to map information. See what happens if we insert the color argument inside

206 | 7 Visualize research findings

the aes() function. For example, use the categorical variable island to color the points
of the scatter plot, to accentuate between the islands the penguins are coming from.
In addition, the second plot includes the shape argument, which gives each island its
own color and shape.

#Left: Add color aesthetic

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g,

color = island))+

geom_point()

#Right: Add shape aesthetic

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g,

color = island ,

shape = island))+

geom_point()

Maybe you are less enthusiastic about this plot than I am. Think of it! First, we modified
only the appearance of a graph, but now we depict information with colors and shapes.
One aesthetic is enough to show where our penguins live, but the last plot illustrates
that aesthetics can be combined.

How can we adjust colors to map information? As before, we could include the
colors inside the geom_(), but this is not an efficient way to work with colors. There are
several scale_ functions which determine how geometric objects are scaled. There is
a scale function for the axis, for the position of geometrical objects, but also for the
colors. To apply a scale_ function, we need to consider for which aesthetic mapping we
want to change the color. This sounds abstract and we elaborate more on these skills in
the next section. For now, it suffices to understand that the scale_fill_manual() lets
you manually fill objects, while scale_color_manual()works with the color aesthetic.
Comparing a bar graph with a scatter plot underlines this point.

7.1 The basics of ggplot2 | 207

#Left: scale_fill_manual

ggplot(penguins, aes(x = species, fill = island))+

geom_bar()+

scale_fill_manual(values = c("red", "blue", "lightblue"))

#Create a color palette with color names or hexadecimal code

my_palette <- c("#e63946", "#457b9d", "#a8dadc")

#Right: scale_color_manual

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g,

color = island))+

geom_point()+

scale_color_manual(values = my_palette)

The last output illustrates, we have to provide a color for each group (island) if we adjust
the colors manually, otherwise ggplot2 grumbles. We can also make a color palette, as
the second plot showed. The ggplot2 package even understands hexadecimal color
codes. This might be useful if you need very specific colors and there are plenty of
websites to create color palettes with hexadecimal codes. A color is defined by three
successive hexadecimal numbers. Each hexadecimal number represents one color of
the red, green, and blue (RGB) color space.

Picking colors is tediouswork. Fortunately, ggplot2 and further R packages provide
color palettes. For example, ColorBrewer (https://colorbrewer2.org) provides several
color palettes and is a website to check if the palette is colorblind or photocopy safe.
Figure 7.5 shows a selection of color palettes and ggplot2 includes all palettes from the
Colorbrewer package (Neuwirth, 2022). Keep in mind that there is no need to remem-
ber the names of all the palettes, because Figure 7.5 is made with the RColorBrewer
package. The display.brewer.all() function returns all color and Figure 7.5 shows
the sequential ones.

#The display.brewer.all function shows palettes from ColorBrewer

RColorBrewer::display.brewer.all()

208 | 7 Visualize research findings

Fig. 7.5: ColorBrewer palettes

To use a color palette is not complicated, but which one should you pick? This chapter
does not introduce color theory, but we should be aware of the effect that different types
of color palettes have. Pick a sequential set of colors (e.g., Blues) to display a numerical
or ordered variable, a qualitative palette (e.g., Set1) in case of a categorical variable;
or use a diverging color palette (e.g., RdBu) if the variable has a center. Once you have
made your choice, add the scale_fill_brewer() (or scale_color_brewer for color)
layer with the palette name, as the next code shows.

#scale_color_brewer

ggplot(penguins, aes(x = bill_length_mm,

y = body_mass_g,

color = island))+

geom_point()+

scale_color_brewer(palette = "Set1")

7.1 The basics of ggplot2 | 209

The ggplot2 package even includes the viridis color scales from the viridis package,
which are created to increase the readability, especially to reduce the chance that color-
blind people won’t be able to distinguish between colors (Garnier, 2021). The package
contains eight color palettes with viridis as default, but maybe an alternative (e.g.,
magma, plasma, mako) suits you better. Use one of the scale_color_viridis_* functions
to apply them. For example, for a discreet or continuous variable. Moreover, did you
realize that the text labels of the last bar graph overlap? The coord_flip() function
flips the coordinates of the bar graph, which fixes the overlap of the text labels.

#Left: scale_fill_viridis_d and coord_flip

ggplot(penguins, aes(x = species,

fill = island))+

geom_bar() +

coord_flip()+

scale_fill_viridis_d(option = "viridis")+

#Right: scale_color_viridis_c

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g,

color = bill_length_mm))+

geom_point()+

scale_color_viridis_c(option = "mako")

There are a lot of colors and possibilities to consider andmaybe it is hard to believe, but
I tried to cut down this subsection to the most important color facts. I will not mention
colors anymore, but the next info box about the paletteer package gives further hints
about how to use colors palettes (Hvitfeldt, 2021), for example, from the rtist (Okal,
2020) or the tayloRswift package (Stephenson, 2021).

210 | 7 Visualize research findings

The paletteer package

There are a lot of packages that provide color palettes. For example, the rtist package provides several
color palettes based on famous paintings such as the The Great Wave off Kanagawa (Hokusai), The
Night Watch (Rembrandt), or The Scream (Munch). The rtist_help() function returns all available
color palettes from the rtist package. Or who is your favorite music artist? Miley Cyrus, Rihanna, or
Taylor Swift? I am kidding, but the tayloRswift package provides color palettes based on Taylor Swift
album covers. Irrespective of your musical taste, the paletteer package gives us access to palettes
from several packages and we can include them directly in our code.

For example, let us use the munch palette from rtist and the lover palette from the tayloRswift
package. In case of a discreet color palette, the paletteer_d() function returns the following hexa-
decimal values:

#paletteer_d returns discreet color palette

paletteer::paletteer_d("tayloRswift::lover")

#> #B8396BFF #FFD1D7FF #FFF5CCFF #76BAE0FF #B28F81FF #54483EFF

The package also comes with corresponding scale() functions. Refer to palletes name like a function
(via ::) within the scale_fill_paletteer_d() function in case of a discreet color palette. The next
console illustrates the code to use the paletteer package and two example scatter plots.

#The paletteer package gives you access to several palettes

library(paletteer)

ggplot(penguins, aes(body_mass_g, flipper_length_mm, color = island))+

geom_point()+

scale_color_paletteer_d("rtist::munch")+

ggtitle("rtist::munch")

Did you realize that ggplot2 automatically adds a legend if we add an additional
variable in the aes() function? Learning some basic on how ggplot2 handles legends
is the last step to finalize the scatter plot.

7.1 The basics of ggplot2 | 211

7.1.6 Legend

A legend is important to understand the graph, but it can be painful to make manual
adjustments and find the right position. Change its position (legend.position) inside
the theme() function. As default, the legend is displayed on the right side, but the
legend can also be displayed on the left, top, or bottom of the graph. Moreover, insert
none to discard the legend.

#Left: Discard the legend

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g,

color = island))+

geom_point()+

theme(legend.position = "none")

#Right: Display the legend on the right, left, top, or bottom

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g,

color = island))+

geom_point()+

theme(legend.position = "bottom")

Depending on the data and the type of graph, it may take some time to find the best pos-
ition. It is also possible to adjust the legend’s position manually by proving coordinates.
Give it a try if all predefined positions don’t suit.

There remains only one step to reproduce the graph from the beginning, we need
to adjust the title and labels of a legend. Look at the last examples, island is printed
in lower case and depending on a variable name; we may get ugly text labels for the
legend. We can refer to the scale_color_discrete function to create a nice text label
for the title name and all labels. Or in a similar approach, remove the entire legend
title by changing legend.title to element_blank(), as the second plot on the left side
shows.

212 | 7 Visualize research findings

#Left: Adjust the legend title and labels

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g,

color = island))+

geom_point()+

scale_color_discrete(

name = "The Island:",

labels = c("A", "B", "C"))

#Right: Remove the legend title

ggplot(penguins, aes(x = bill_length_mm, y = body_mass_g,

color = island))+

geom_point()+

theme(legend.title = element_blank())

Certainly, playing around with the legend and similar changes are minor issues, but
such adjustments are often needed to finalize a graph. At least, you are now able to
remove the legend or adjust the text labels. Next we learn how to export a graph.

7.1.7 Export

We discussed all aspects that are necessary to reproduce Figure 7.2 (B). We learned
many small steps on the last pages. The good news is, almost all steps can be applied
regardless if you create a scatter plot or another visualization. Wemay change the geom
to create a different graph, but a lot of the code can be recycled.

Let us combine all steps and assign our graph as an object (scatter_plot) in order
to export it. We have come quite far, the entire code looks impressive:

7.1 The basics of ggplot2 | 213

#the penguins scatter plot

scatter_plot <- ggplot(penguins, aes(x = bill_length_mm,

y = body_mass_g,

color = island))+

geom_point()+

theme_minimal(base_size = 12, base_family = "Ramaraja")+

labs(tag = "Fig. X",

title = "Palmer penguins",

subtitle = "Is bill length and body mass associated?",

x = "Bill length",

y = "Body mass",

caption = "Data source: \nThe palmerpenguins package",

color = "The Islands:")+

theme(plot.title = element_text(size = 14))+

scale_color_viridis_d(option = "viridis")

Before we learn how to export the graph, let me say a few words about that code. I
tried to convince you that it is not necessary to memorize code in Chapter 4. Know-
ledge about ggplot2 boosts your visualization skills but such a new framework can
be overwhelming. Create a snippet for a ggplot or build a template for the next graph
that includes most of the typical steps. Maybe the code to customize a plot is still too
complicated and too long to remember, especially if a graph is for internal use only.

Irrespective of the reasons, you have ggplot2 at your disposal and you need not
even remember most of the discussed code from this chapter to create a basic graph,
because the esquisse package has a ggplot2 builder (Meyer & Perrier, 2022). It provides
a graphical interface (addin) to make ggplot2 graphs and lets us apply the discussed
steps without code. Just pick variables and insert labels, or adjust your legend, all from
the interface. As the esquisse info box outlines, the ggplot2 builder creates the plot
and, more important, it returns the code to create a graph.

The esquisse package

The esquisse package helps us to create a graph even if we have little knowledge about ggplot2. The
latter provides a graphical interface for RStudio to explore data with ggplot2, as Figure 7.6 shows.
The addin opens a new window and you can pick data and variable(s) to create a graph. Variables are
displayed at the top of the window; drag them into the corresponding field to create the plot.

Such a tool is awesome if you have little experience working with ggplot2. It is true that you need
not remember one line of code to create a basic version of the graph. There is a code button on the right
side bottom of the window that returns the code. The next time you restart R, the code is already at
your fingertips, more importantly, the graph can be reproduced.

214 | 7 Visualize research findings

Fig. 7.6: The esquisse addin

Of course, our knowledge about ggplot2 lays the foundation to understand how graphs
are made and how we can improve it beyond the possibilities of the ggplot2 builder.
Thus, do not take it personally that I waited until the end of this section to introduce
the esquisse package. We got a first impression how ggplot2 works and of course we
are free to use such tools as long as we can reproduce our work.

Let us now explore how we export a graph. There are several ways, but RStudio
makes this task convenient. Figure 7.7 shows RStudio’s plots pane and there is an export
button (highlighted in red) in the middle of the pane. Press the button and export a
graph as an image or as a PDF file. After you have pressed the button, the Save Plot as
Image window appears with several options to export an image: the format (e.g., .png
file), the export directory, and the file name.

Fig. 7.7: The Export menu

7.2 The applied grammar of graphics | 215

You are probably familiar with image files, but have you ever heard about vector graphs?
Vector graphs create images directly from geometric shapes which leads, in a nutshell,
to a scalable high-quality file. You can test if an image is a vector graph by zooming in
without seeing pixels or distorted graphical elements. If possible, export a graph as a
vector graph (e.g., .svg) or save your work as PDF file, because elements in a PDF file
are embedded as vectors graph. Some software does not work (well) with vector graphs
and sometimes there is no necessity for it. In such instances, an image file is just fine.

Using the export button is a piece of cake, but maybe you need to export several
graphs in a row andwe can do so by running the ggsave() function. The function export
the last plotted graph if you do not provide the object name. Furthermore, it comes
with several arguments to adjust the export, as the next console highlights for our
scatter_plot. The file option determines the output format (e.g., .png); export the
graph in a specific size with the width and the height option (e.g, here A5); ultimately,
dpi controls the plot resolution with 300 dots per inches as default.

#The ggsave function exports a plot

ggsave(scatter_plot,

file = "output_file.png",

width = 210,

height = 148,

units = "mm",

dpi = 300)

In this section we explored ggplot2. We applied different styles and adjusted several
aspects of a scatter plot. To understand how ggplot2 works, we have to step back and
ask, from a theoretical point of view, what most visualizations have in common. How
are graphs composed, regardless whether we are talking about a scatter plot, a bar
graph, or a pie chart? To this end, we need to apply the grammar of graphics.

7.2 The applied grammar of graphics

The grammar of graphics provides a theoretical foundation and outlines the essential
components of a graph (Wilkinson, 2005). The term might sound odd, but think about
the grammar as a visualization language that describes individual components of a
graph. As we know, graphs use geometrical objects to depict data and the grammar of
graphics gives us the language - geoms - to talk about it. In this section, we get in touch
with five general aspects from the grammar of graphics:
1. Geoms: Are geometrical objects to depict data (e.g., the dots)
2. Statistical transformation: Each visualization rests upon statistical transformations

(e.g., a regression line)

216 | 7 Visualize research findings

3. Mapping aesthetics: The aesthetic properties determine how the information is
displayed (e.g., shape and color)

4. Facets: Split a graph in several sub-graphs (e.g., one for each group) with facets
5. Coordinate system: A graph is embedded in a coordinate system (e.g., the Cartesian

coordinate system)

Wickham (2016) developed ggplot2which implements the principles of the grammar
of graphics with layers. The latter implies that we add layers to the ggplot() function
that defines individual aspects of each graph. The layered grammar of graphics frame-
work allows us to change all aspects of a graph and all graphs are based on the same
framework or grammatical style. I already tried to outline this, but this is the reason
why ggplot2 is such a powerful tool. It allows us to adjust core elements separately.

In this section we examine, for example, how the gross domestic product (GDP)
and life expectancy are related with the gapminder data (Bryan, 2017). However, we
do not focus on the nitty gritty details of one specific plot, but examine how ggplot2

applies the grammar of graphics. As the next console shows, the gapminder data starts
with six observations for Afghanistan from 1952 up to 1977. Moreover, the next console
shows all packages for this section.

#The setup for section 7.2 #####

library(dplyr)

library(ggbeeswarm)

library(ggforce)

library(ggplot2)

library(palmerpenguins)

library(patchwork)

#The gapminder data

library(gapminder)

head(gapminder)

#> # A tibble: 6 x 6

#> country continent year lifeExp pop gdpPercap

#> <fct> <fct> <int> <dbl> <int> <dbl>

#> 1 Afghanistan Asia 1952 28.8 8425333 779.

#> 2 Afghanistan Asia 1957 30.3 9240934 821.

#> 3 Afghanistan Asia 1962 32.0 10267083 853.

#> 4 Afghanistan Asia 1967 34.0 11537966 836.

#> 5 Afghanistan Asia 1972 36.1 13079460 740.

#> # ... with 1 more row

7.2 The applied grammar of graphics | 217

We cannot include all observations of all years in one static plot. For this reason, I
restricted the data (gapminder_07) to the latest observation period (2007); I excluded
observations from Oceania, since the number of countries is limited. Furthermore, I
create a new variable for the population size (population) and for GDP (gdp) to increase
the readability of the graphs. The new population variable measures the population
in millions; gdp per thousand dollar.

#Create a smaller data frame

gapminder_07 <- gapminder |>

filter (year == 2007 & continent != "Oceania") |>

mutate(population = pop/1000000,

gdp = gdpPercap/1000)

In the last section we created a scatter plot, and our minimal example included three
components. We gave ggplot() a data frame, decided which variables to map within
the aesthetics function, and we chose a geom to map the data. Let’s use the minimal
example to examine how gdp and lifeExp (life expectancy) are related.

#Minimal code for a scatter plot

ggplot(gapminder_07, aes(x = gdp, y = lifeExp)) +

geom_point()

The main conclusion is not surprising: People in richer countries have access to health
care, can afford medical treatments, and higher income makes it easier to follow up on
activities with life-prolonging effects. For such reasons, GDP is positively associated
with life expectancy in many countries. Nevertheless, the minimal code skips a lot of
aspects. For example, where are the color and the coordinate system coming from? We
know that ggplot2 picks the default option if we use the minimal code. In the next
subsections we explore how ggplot2 implements the grammar of graphics step by step.

In conclusion, we use this smaller data frame to get in touch with the grammar of
graphics and we inspect, geoms to visualize numerical outcomes, the statistical trans-

218 | 7 Visualize research findings

formation that runs in the background, mapping aesthetics and positional adjustments,
facets, and why each visualization is embedded in a coordinate system. To this end,
you will be able to decompose the ggplot() function and it underlines that each geom
offers unique possibilities and limitations to visualize data.

7.2.1 Geoms

The decision to start with a scatter plot was arbitrary. We could have used a different
visual representation to depict the same data. In the grammar of graphics language,
we assigned a geometrical object to the values. The ggplot2 package includes many
geoms. We can use the minimal code from the last graph and create an entirely different
graph when we pick a different geom.

Before we analyze the relationship of two variables, we should examine the distri-
bution of each variable, maybe with a histogram. The corresponding geom is called
geom_histogram() and I am convinced that you know how to adjust the minimal code
to make a histogram for lifeExp. Or maybe you want to create a density plot. We need
only change the corresponding geom, as the next console illustrates.

#Left: The geom_histogram

ggplot(gapminder_07, aes(x = lifeExp)) +

geom_histogram()

#Right: The geom_density

ggplot(gapminder_07, aes(x = lifeExp)) +

geom_density()

There are more options to depict continuous variables and Figure 7.8 shows four other
geoms that we may use to visualize the distribution of lifeExp. Each geom depicts the
data based on different aesthetic mappings. Thus, each geom has default options, such

7.2 The applied grammar of graphics | 219

as the shape, the size of shape (points), or the type of a line. All those graphs have in
common that they map the data in a coordinate system, and we need only provide the
data, specify which variables to display, and pick a geom to visualize the data.

0

5

10

15

40 50 60 70 80
lifeExp

co
un

t

geom_area()

0.00

0.25

0.50

0.75

1.00

40 50 60 70 80
lifeExp

co
un

t

geom_dotplot()

0

5

10

15

40 50 60 70 80
lifeExp

co
un

t

geom_freqpoly()

40

60

80

100

−2 −1 0 1 2
x

y
geom_qq()

Fig. 7.8: Geoms for continuous variables

Different geoms have strengths and weaknesses in visualizing data. For example, a bar
graph does a good job in depicting an outcome for a discreet variable, but what if we
want to explore a time trend? A line plot does a better job in this case. Keep the main
message of the graph in mind to pick the geom. You need to figure out what the graph
should display and which geom best suits this purpose. Once you have figured it out,
you may focus on typical aspects to make the visualization, but in the beginning it’s all
about the geom. Note also that not every graph relies on a unique geom: we need to
think about the geometrical object that builds a graph. For example, the scatter plot:

#Does geom_scatter exist?

ggplot(gapminder_07, aes(x = gdp, y = lifeExp)) +

geom_scatter()

#> Error in geom_scatter(): could not find function "geom_scatter"

A geom_scatter does not exist. To inspect how the variables are related, a scatter
plot displays the values of x and y with points (geom_point()). Moreover, we need to
combine two geoms to summarize the relationship of the examined variables (e.g., to

220 | 7 Visualize research findings

add a line) by applying the geom_smooth() function and by examining its statistical
transformation.

7.2.2 Statistical transformation

Statistical transformation is an essential step to visualize data. Consider the steps to
create a simple bar graph: we count the number of observations for each continent and
display them with bars.

#The data transformation step ...

gapminder_07 |> count(continent)

#> # A tibble: 4 x 2

#> continent n

#> 1 Africa 52

#> 2 Americas 25

#> 3 Asia 33

#> 4 Europe 30

#And the bar graph

ggplot(gapminder_07, aes(x = continent)) +

geom_bar()

We see the numbers right in front of us, which makes it easier to understand what the
visualization displays. A lot of people have such a procedure in mind when they talk
about a visualization. A graph may only display raw numbers, but the data transform-
ation steps are vital for the visualization process. We cannot neglect this point any
longer.

7.2 The applied grammar of graphics | 221

Do you realize that we do not need the last data preparation step in order to make
the graph? We did not visualize the counting, ggplot2 counted as we made the bar
graph. If we want to depict the counted numbers, we must use geom_col() function.
There are two ways to generate a bar graph, and the main difference comes from the
statistical transformation. A geom_col does not apply any transformation, it uses the
statistics option (stat = "identity") as a default and displays the values as they
are, while geom_bar() creates a counting variable. This is not trivial, because such a
variable does not exist in the data. By default, geom_bar() creates an internal counting
variable in order to display the numbers. We can inspect this process if we write down
the statistical transformation that geom_bar() applies to generate the counting variable
(after_stat()):

#geom_bar fills in the counting!

ggplot(gapminder_07) +

geom_bar(aes(x=continent, y = after_stat(count)))

Keep the statistical transformation of a graph in mind if you start to create visualiza-
tions. Creating such a bar graph seems trivial, but other graphs include sophisticated
statistical transformations. If you don’t provide any information about the statistical
transformation, ggplot2 picks a default, but sometimes we don’t get what we need.
Suppose you use a scatter plot to examine if there is a linear association between GDP
and life expectancy. Is a linear function appropriate to describe the association between
the variables? We may examine the relationship by adding a geom_smooth().

#Minimal example for a scatter plot with geom_smooth

ggplot(gapminder_07, aes(x = gdp, y = lifeExp)) +

geom_point() +

geom_smooth()

222 | 7 Visualize research findings

There is clearly a non-linear trend, especially for countries with lower GDP. A linear
function seems not to be appropriate to describe the relationship between x and y.
Different statistical transformation can be used to generate a graph and the last scatter
plot did not include a regression line. We used the geom_smooth() function without any
adjustments and as default, it applies the LOESS function to describe the association
– a locally estimated scatter plot smoothing (Cleveland, 1979) – it fits the line locally
based on the observed cases. The latter results in a smooth regression line to describe
the association between the variables, but is not the result of a linear regression.

In Chapter 6, we learned that fitting a straight line is not a good idea in case of a
non-linear association. As Anscombe’s Quartet underlined, the assumptions of a linear
regression analysis are violated if x and y are not associated in a linear fashion. How
do we include a linear fit and a quadratic term in the scatter plot? To add a regression
line and confidence bands, insert the linear (lm) method inside the geom. Moreover, we
need to insert a formula to depict mathematical functions such as a polynomial term
(e.g., y ~ poly(x, 2). The next console shows two plots. The left plot displays the
scatter plot with a linear regression line. The second plot highlights that we can add a
quadratic term (or other mathematical functions) to describe the association.

#Left: Linear fit

ggplot(gapminder_07, aes(x = gdp, y = lifeExp)) +

geom_point() +

geom_smooth(method = "lm", formula = y ~ x)

#Right: A quadratic term

ggplot(gapminder_07, aes(x = gdp, y = lifeExp)) +

geom_point() +

geom_smooth(method="lm", formula = y ~ poly(x, 2))

7.2 The applied grammar of graphics | 223

In a nutshell, a graph is often more than just a simple visual representation of raw
numbers and rests upon statistical transformations. The default option might be a good
start, but the LOESS function does not lead to the same results as a linear fit.

7.2.3 Mapping aesthetics

We pick a geom to visualize data. This decision affects the appearances of a graph and
not all geoms work with all aesthetics. We cannot change the line type if the geom
does not include one. So, how do we change the aesthetic mappings and, in terms of
visualization, why should we care? Which mapping aesthetics can we apply if we use
a geom_point()? As the R documentation outlines, we can adjust several aesthetics,
among them, alpha (opacity), color, fill, shape, size, and stroke.

Let us recall that we talked about aesthetic mappings in the last section. We started
from a purely data-driven perspective and elaborated that we can use colors in a graph,
for instance, to distinguish between two groups. The gapminder includes life expectancy
for different countries and continents. We can include the latter to see if the association
differs between continents. As we know, we could map information with different
colors or use different shapes for each continent. Use color palettes or adjust the color
manually. As the next console shows, I pick the colors manually and insert them
in the scale_color_manual() function. I used only two different colors to highlight
observations from Africa compared to other continents. We could do the same and
pick shapes manually if the default shapes are not well suited to distinguish between
groups.

#Left: Map with color

ggplot(gapminder_07, aes(x = gdp, y = lifeExp,

color = continent)) +

geom_point()+

scale_color_manual(values = c("red", "gray", "gray", "gray"))

#Right: Map with shapes

ggplot(gapminder_07, aes(x = gdp, y = lifeExp,

shape = continent)) +

geom_point()+

scale_shape_manual(values = c(0, 2, 3, 14))

224 | 7 Visualize research findings

Sometimes it is not enough to pick distinct shapes or colors, especially when there
are too many groups, or if geometric objects overlap. That’s where the opacity (alpha)
comes into play. Add alpha inside a geom (the opacity of the geom is set to 1 as default)
or use it as an aesthetic.

#Left: Alpha

ggplot(gapminder_07, aes(x = gdp, y = lifeExp,

color = continent)) +

geom_point(alpha = .5)

#Right: Map with alpha

ggplot(gapminder_07, aes(x = gdp, y = lifeExp,

alpha = continent)) +

geom_point()

The last example used a discrete variable to map information, but of course we can use
a numerical variable as well. Maybe the association between GDP and life expectancy
differs in terms of population size. Increase the size of the point with the size aesthetic,
as the next plot on the left side shows. If we include the color and the size aesthetics,
it becomes clearer how the gapminder bubble chart is made (see Chapter 1).

7.2 The applied grammar of graphics | 225

#Left: Include color

ggplot(gapminder_07, aes(x = gdp, y = lifeExp,

color = continent)) +

geom_point()

#Right: Include color and size

ggplot(gapminder_07, aes(x = gdp, y = lifeExp,

color = continent,

size = population)) +

geom_point()

Keep in mind that the more aesthetics we add, the more information is displayed and
maybe the graph becomes too complex. What is your audience’s domain knowledge?
Does the graph clearly communicate its message? We will catch up on this point in
the facets section where we learn to split the graph in several subplots to reduce the
complexity. Before we jump to facets, we briefly inspect positional adjustment of a
geom function.

Positional adjustments
Positional adjustments are the fine-tuning to draw geoms. In the case of a scatter plot,
we can prevent the over-plotting of single dots by adding position_jitter() to the
geom_point() function. The jitter adds a little bit of random noise to prevent over-
plotting. Let us inspect how this works by creating a simple dot plot that depicts life
expectancy for each continent.

The next console shows three plots and strategies to prevent over-plotting. As
the first plot on the left side shows, I tried to reduce the size of each point, but this
does not help much to avoid over-plotting. To add some random noise, I used the
position_jitter() function, as the second plot in the center shows. Of course, there

226 | 7 Visualize research findings

are limitation to reduce over-plotting and in this example it becomeshard to differentiate
which observations belongs to which continent. A beeswarm plot (from the ggbeeswarm
package, see Chapter 7.3) helps to reduce such over-plotting by adding vertical noise,
as the third plot on the right sight illustrates (Clarke & Sherrill-Mix, 2017). Moreover I
use the stat_summary() function to plot the median to further improve the graph.

#Left: A dot plot

ggplot(gapminder_07, aes(x = continent, y = lifeExp)) +

geom_point(size = 1)

#Center: Add position_jitter

ggplot(gapminder_07, aes(x = continent, y = lifeExp)) +

geom_point(size = 1, position=position_jitter())

#Right: A ggbeeswarm plot

ggplot(gapminder_07, aes(x = continent, y = lifeExp)) +

geom_beeswarm(size = 1, cex = 3)+

stat_summary(fun = "median", color = "red",

size = 1, geom = "point")

Thus, a geom has specific positional adjustments which further determine how graph-
ical objects are displayed. Let me give you a second example. Consider a bar graph. If
we do not provide any positional adjustment, ggplot2 returns a stacked bar graph and
each category is displayed on top of each other. However, each bar is displayed side
by side if we add dodge as position. Or consider the fill position, it creates relative
proportions and standardize each bar, which makes it easier to compare groups. Unfor-
tunately, the gapminder data has only factor variables with many levels (e.g., country),
which makes it harder to examine this behavior. For this reason, I use to the penguins
data from the palmerpenguins to illustrate this point.

#Left: Position stack is the default

ggplot(penguins, aes(x = species, fill = island))+

7.2 The applied grammar of graphics | 227

geom_bar(position = "stack")

#Right: Position fill

ggplot(penguins, aes(x = species, fill = island))+

geom_bar(position = "fill")

Instead of speaking about the fine-tuning, facets substantially help to communicate
complex data.

7.2.4 Facets

Wemay transport the graph’s message with colors, shapes or any other aesthetics, but
there are clear limitations with respect to human perception and the complexity of a
graph. Consider the next console. I created a density plot but I should split the graph
into smaller sub-graphs. I played around with colors for each continent, but the lines
overlap and we are having a hard time to compare the distribution for each continent.
Sub-graphs make it easier to compare the density of each continent.

#A messy density plot - how could we improve it?

ggplot(gapminder_07, aes(x = lifeExp, color=continent)) +

geom_density()

228 | 7 Visualize research findings

Thus, we split the last graph into four subplots. For example, we can create a plot with
four columns for each included continent if we add cols = vars(continent) in the
facet_grid() function.

#Split a graph with facet_grid

ggplot(gapminder_07, aes(x = lifeExp)) +

geom_density()+

facet_grid(cols = vars(continent))

It becomes much easier to see how life expectancy is distributed in each continent if we
compare the last plot with the sub-plots. In general terms, we add facet_grid() as a
layer and provide a discrete variable for a horizontal split by columns or a vertical split
by rows. The next output compares both splits.

#Left: Split by columns (on the vertical axis)

ggplot(gapminder_07, aes(x = lifeExp)) +

geom_density()+

ggtitle("A: facet_grid(cols = vars(x))")+

facet_grid(cols = vars(continent))

#Right: Split by rows (on the horizontal)

ggplot(gapminder_07, aes(x = lifeExp)) +

geom_density()+

ggtitle("B: facet_grid(rows = vars(x))")+

facet_grid(rows = vars(continent))

7.2 The applied grammar of graphics | 229

A split by columns is better suited here. Look at the distribution of Africa in the right
split by rows plot, we hardly see any differences if we compare the distributions. This
example shows us that we must decide how to depict information based on both
theoretical and practical grounds. Due to the orientation of the page and the number
of groups, a split by columns provides a better picture in this case since it compresses
the distribution vertically.

Many people use a shortcut: for a split by rows, add facet_grid(x ~ .); or add
facet_grid(. ~ x) for a split by columns. Did you realize that I inserted a period (.)
in the shortcut? It is a placeholder for a second variable to split. For example, let’s split
the graph by two different years and for each continent. I restricted the data to the
last observations period so this will not work without some extra effort to prepare the
data. As the next console shows, I used a filter to get the first and the last observation.
Next, I split the graph to display life expectancy for each year and continent with
facet_grid().

#Split by facet_grid(row . column)

gapminder |>

filter (year == 1952 | year == 2007) |>

filter (continent != "Oceania") |>

ggplot(aes(x = lifeExp)) +

geom_density()+

facet_grid(year ~ continent)

230 | 7 Visualize research findings

Facets can also be placed or wrapped next to each other using the facet_wrap() func-
tion instead of splitting the plot into grids. Defined by the number of rows and columns,
facet_grid() builds a matrix of panels in which the graphs are built. As the package
authors outline in the documentation: “It is most useful when you have two discrete
variables, and all combinations of the variables exist in the data” (Wickham, Chang,
et al., 2022). Thus, facet_wrap() is more efficient in terms of space and is the right
choice if the variable has many levels. The steps to apply a facet_wrap() are the same.
Facets can be wrapped horizontally or vertically. However, we must tell R the number
of the columns (ncol) or the number of rows (nrow) to determine how many subplots
are included.

The gapminder data comes with a long observational period. Let’s explore how
life expectancy developed over time, for example, in Europe. I claimed that we cannot
create one static graph considering all those time periods. Obviously, I was wrong. The
facet_wrap() function helps to visualize a time trend and we see how the distribution
is changing from one year to another.

#Vertical facet, but wrapped

gapminder |>

filter (continent == "Europe") |>

ggplot(aes(x = lifeExp)) +

geom_density()+

facet_wrap(year ~ ., nrow = 2)

For a fair comparison of sub-plots, fixed coordinates are important and ggplots applies
the same scale to each sub-plot. Sometimes it might be useful to provide different scales
for different groups, especially if we explore the data. For this reason, scales can be set
free for x-axis (free_x), y-axis (free_y) or for both within the facet function. Please
keep in mind that the audience will wonder why the scales differ if you do not explicitly
outline it. It may look like fraud or as a hugemistake if you fail to explain why the scales
differ.

7.2 The applied grammar of graphics | 231

Almost all figures in this chapter contained two or more graphs, which makes it
easier to compare different versions of a graph. However, they are not made with a
facet, since they often display different versions of a graph. The patchwork package
makes it possible to combine plots and the corresponding info box outlinesmore details
(Pedersen, 2022b).

The patchwork package

The patchwork package helps you to combine and create customized graphs. Suppose you have gener-
ated several graphs and saved them as objects (p1, p2, and p3). To illustrate how the package lets us
combine graphs, I created three different graphs and assigned them to objects, but it does not matter
which graphs we combine.

#Create several plots, for example:

p1 <- ggplot(gapminder_07, aes(x = gdp, y = lifeExp)) +

geom_point() +

ggtitle("p1")

Add a graph and put each graph next to each other with the plus (+) operator. Moreover, the package
also provides the pack operator (|) which puts each plot beside each other; while the stack operator (/)
builds a pile to stack them. As the next console highlights, we can combine them to create customized
graphs.

#Combine graphs

library(patchwork)

p1 + (p2 / p3)

40

50

60

70

80

0 10 20 30 40 50
gdp

lif
eE

xp

p1

40
50
60
70
80

0 10 20 30 40 50
gdp

lif
eE

xp

p2

01020304050

Africa Americas Asia Europe
continent

co
un

t

p3

Check out the vignette of the patchwork package. It offers more functions to combine graphs (e.g.,
annotations) and outlines in detail how the package works.

232 | 7 Visualize research findings

Irrespective whether we speak about one graph, several combined graphs, or sub-plots,
when we talk about the scale we point to the coordinate system and the next subsection
outlines more about the topic.

7.2.5 Coordinate system

A lot of people who are interested in data visualization loathe pie charts. I don’t like
pie charts too because they do not display proportions well (see pie charts info box in
Chapter 3). The funny thing is, we create a pie chart to learn more about the coordinate
system. For the sake of illustration, let’s say that we counted fruits.

#Fake data for a pie chart ...

data <- tribble(

~fruits, ~Percentage,

"Apples", 50.0,

"Bananas", 30.0,

"Cherries", 20.0

)

The next console shows two plots. First, I make a bar graph to display the fruits

variable. This time, we must adjust our minimal code since the observations sum
up to 100 percent, which is why I added the width option in the geom_col function.
Furthermore, I plot the number of observed fruits (as y) and I use the fill aesthetic to
highlight the categories. As the plot on the left side shows, we get a bar plot and you
may wonder what the latter has to do with a pie chart. See what happens if we add
the coord_polar() function (polar coordinate system) to the second plot on the right
side. We get a bull’s eye chart, it looks like a dartboard and the inner circle is called the
bull’s eye.

#Left: A bar plot

ggplot(data, aes(x = "", y = Percentage, fill = fruits))+

geom_col(width = 1)

#Right: The bull's-eye chart

ggplot(data, aes(x = "", y = Percentage, fill = fruits))+

geom_col(width = 1) +

coord_polar()

7.2 The applied grammar of graphics | 233

As default, the ggplot2 package uses the Cartesian (coord_cartesian) coordinate sys-
tem, but there are other coordinate systems aswell.Weneed the polar coordinate system
to make a pie chart and we must determine which variable should be used to map the
slices of the pie chart. As the next console shows, I add theta inside the coord_polar()
function to create the pie chart; it uses y to map the angle of each slice. As the second
plot shows, the polar coordinate system vanishes if we use the theme_void() function
to get rid of the axis labels. A typical pie chart without any visible coordinate system
appears.

#Left: Add theta = "y" to get a pie chart

ggplot(data, aes(x = "", y = Percentage, fill = fruits))+

geom_col(width = 1, stat = "identity")+

coord_polar(theta = "y")

#Right: The theme_void "finalizes" the pie chart

ggplot(data, aes(x = "", y = Percentage, fill = fruits))+

geom_col(width = 1)+

coord_polar(theta = "y")+

theme_void()

Such pie charts give us the impression that they float in the blank space, but the
coordinate system determines how the geom will be displayed. Keep in mind that we

234 | 7 Visualize research findings

can use different coordinate systems or apply transformations to restrict the scale. Most
of the time ggplot2() provides reasonable values of the scale, but sometimes we must
inspect only a part of the data closer. Thus, what happens if we want to zoom in to see
only a selective part of the data? In order to do so, we need to adjust the upper and
lower limit of x and y within the coordinate function.

In the gapminder example, we discovered a non-linear trend between life expect-
ancy and GDP, which is why we want to inspect certain observations closer. Adjust
the coordinate system and add xlim inside the coord_cartesian() function. What
would happen if we did not know that we are supposed to set xlim only inside the
coord_cartesian() function? As the next output highlights, that would be a terrible
idea because the xlim() function replaces observation outside the limit with NA. The
plot is generated after this step and excluding cases distorts the graph. Look how both
graphs differ if we apply the limit wrong (left side) or correct (right side).

#Left plot: Never use xlim outside of the coordinate system!

ggplot(gapminder_07, aes(x = gdpPercap, y = lifeExp)) +

geom_point() +

geom_smooth(method = "lm", formula = y ~ x)+

xlim(c(0, 10000))+

ggtitle("xlim")

#Right plot

ggplot(gapminder_07, aes(x = gdpPercap, y = lifeExp)) +

geom_point() +

geom_smooth(method = "lm", formula = y ~ x)+

coord_cartesian(xlim = c(0, 10000))+

ggtitle("coord_cartesian(xlim)")

If we make a scatter plot with restricted data, it almost looks like there is a linear trend.
The observed countries may not scatter perfectly around the regression line, but wemay

7.2 The applied grammar of graphics | 235

not discover the non-linear trend and consequently come to a wrong conclusion. Re-
member, use the lim function only within the coord_cartesian() function, otherwise
the data gets restricted and you may create a bogus.

The x-axis now starts at the new minimum and has a new maximum value. Appar-
ently we could do the same with y (ylim); but please be cautious and make sure that
everybody knows that the data is restricted, otherwise it gives the impression that you
have manipulated it to build your case. Instead, apply the facet_zoom() function from
the ggforce package which is an extension for ggplot2 (Pedersen, 2022a). As the next
console highlights, it shows the reader graphically that we have zoomed in and only
display a smaller subset of the data. The overall plot is displayed above.

#Zoooom in with ...

library(ggforce)

ggplot(gapminder_07, aes(x = gdpPercap, y = lifeExp,

color = continent))+

geom_point()+

facet_zoom(xlim = c(0, 10000))

Next, we explore further ggplot2 extensions and potential next steps.

236 | 7 Visualize research findings

7.3 Extensions of ggplot2

The last section focused on the grammar of graphics, which emphasized why ggplot2
is such a successful package. The acquired knowledge helps you to visualize research
findings and the package provides many ways to visualize data. Keep inmind that every
visualization was invented for a specific purpose and each visualization has limitations
in how efficiently it can communicate findings. For example, a box plot displays the
summary of a distribution, but it does not depict the data. Visualizing data goes hand
in hand with a reduction of information. In consequence, we may miss some important
patterns if we don’t dig deep enough. Or some graphs are not well suited to transport
the message.

Against this background it is good to know that there are many additional packages
to visualize data. This section introduces packages that extend the possibilities of
ggplot2, but there are too many extensions to discuss them all here. Some packages
change the way we handle text (ggtext, see Wilke, 2020); some give us the tools to
apply statistical methods (survminer for survival analysis, see Kassambara et al., 2021);
and others let us create animated graphs (gganimate, see Pedersen & Robinson, 2022).
Visit the package website to get a broad overview of the possibilities.

#The ggplot2 website

#https://exts.ggplot2.tidyverse.org/

Due to the large number of extensions, this section does not provide an all-
encompassing overview. Instead, it is like a picture book that shows potential next
steps. I concentrated on packages providing an additional geom. You may create any
kind of visualization regardless whether a corresponding ggplot2 extension exists.
Most of the time you will find a lot of helpful resources online even if a specific graph is
not implemented as a ggplot2 extension. However, it is very convenient if a package
provides an extension, since we can build on the acquired knowledge.

Thus, this section cannot fully appreciate the hard work many authors have put in,
but it gives a first impression in three steps: (1) I describe each visualization. (2) I show
you an example for each graph. (3) Each subsection ends with a minimal code example
to create such a graph with implemented data. The code for the minimal examples is
included in the PracticeR package.

By relying on implemented data, you get a first impression how these packages
work without the hassle of running many data preparation steps. Of course, the fine-
tuning will take more time and effort. I hope the minimal examples make it easier to
discover the possibilities of visualizing data with R. Now, sit back and get inspired by
the many ggplot2 authors and extensions.

7.3 Extensions of ggplot2 | 237

Alluvial

Alluvial charts are awesome to highlight the flow of a process or how proportions
develop over time. As the example plot shows, I used the titanic data which indicates
who survived the sinking of the Titanic. The alluvial chart depicts how the three socio-
demographic variables (sex, age, class) are related in terms of survival. As the plot
shows, most persons who did not survive were male, adults, and crew members.

Create an alluvial plot with the ggalluvial package (see Brunson & Read, 2020). The
geom_stratum() returns boxes that display the frequency of each group level and the
geom_alluvium draws the flow from one level to another. The package vignette also
outlines how to create an alluvial chart.

#Minimal code example #####

library(ggplot2)

library(ggalluvial)

#A wide data format

titanic_wide_format <- data.frame(Titanic)

ggplot(data = titanic_wide_format,

aes(axis1 = Class, axis2 = Sex, axis3 = Age, y = Freq)) +

geom_alluvium(aes(fill = Survived)) +

geom_stratum()

238 | 7 Visualize research findings

Beeswarm plots

A beeswarm plot is a categorical scatter plot that shows the distribution of a numerical
variable, shaped for each category (Clarke & Sherrill-Mix, 2017). Just like a scatter plot,
a beeswarm plot displays single observations with points. Unfortunately, sometimes
there are too many observations to display, and in consequence, points are no longer
visible. Beeswarm plots help to reduce such over-plotting by adding vertical noise.

For example, the following plot depicts the age of Titanic passengers, compared for
those who did (not) survive and single points are colored by passenger’s sex. What do
you say, how old were people who did (not) survive? Did more men or women perish?

The ggbeeswarm package includes geom_quasirandom() which adds quasi-random
noise to each observation as a default method, even though it has several methods to
reduce over-plotting (e.g., pseudorandom, smiley).

#Minimal code example #####

library(titanic)

library(ggbeeswarm)

ggplot(titanic_train, aes(Survived, Age,

color = Sex)) +

geom_quasirandom(method = "quasirandom")

7.3 Extensions of ggplot2 | 239

Choropleth maps

Create a choropleth map with ggplot2. The latter displays a geographical area (or
region) and, for example, fills the shape of the area. The next plot displays the number
of arrests in the US. It takes time and effort to create a choropleth map, but the result is
worth the trouble.

In addition, the ggmap package helps to create maps (Kahle et al., 2022; Kahle & Wick-
ham, 2013), because we need to draw the shape of each area (e.g., country shape) first.
The shape must be displayed by its longitude and latitude before we can fill the area or
display numbers that describe the area. Theminimal code does not need any additional
package and shows an example from the ggplot2 cheat sheet. If the corresponding
geographical areas can be matched with the data, geom_map() draws the map and fills
each area with the observed value.

#Minimal code example #####

#Source: This example comes from the ggplot2 cheat sheet!

map <- map_data("state")

data <- data.frame(murder = USArrests$Murder,

state = tolower(rownames(USArrests)))

ggplot(data, aes(fill = murder))+

geom_map(aes(map_id = state), map = map)+

expand_limits(x = map$long, y = map$lat)

240 | 7 Visualize research findings

Dumbbell and lollipop charts

The ggplot2 package lets you build a graph from scratch, but creating a visualization
is hard work. The ggcharts package is for the lazy cats and gives access to a lot of
common charts (Neitmann, 2020). The package has implemented those graphs with
its own functions, and we don’t have to create each step on our own. Furthermore,
the package returns ggplot2 objects, which implies that you can apply your ggplot2
knowledge as well.

For example, create a dumbbell or a lollipop chart. I used the former to examine
how life expectancy increased between 1952 and 2007 based on the gapminder data.
The example shows the top 10 European countries with the highest increase in life
expectancy.

#Minimal code example #####

library(ggcharts)

data("popeurope")

dumbbell_chart(popeurope,

x = country,

y1 = pop1952, y2 = pop2007,

top_n = 10)

7.3 Extensions of ggplot2 | 241

Hexbin map

Build a hexbin map with ggplot2. It displays hexagons as shapes. Actually, this graph
is as an Easter egg since we do not need any additional package to make this plot. There
are a lot of great extensions for ggplot2, but you can create many graphs with ggplot2

alone and we did not explore all geoms. For example, the geom_polygon() function
creates the hexbin map and here it shows US unemployment rates.

The graph is inspired by r-graph-gallery.com website. It shows a great variety of
(ggplot2) visualization, provides a lot of resources to create plots, and has articles that
discuss the limitations of graphs as well. Have you ever seen a radar, a stream, or a
sunburst chart? Visit the website and learn how to make them.

#Minimal code example #####

#There are many graphs (and code) to explore on:

#www.r-graph-gallery.com

242 | 7 Visualize research findings

Mosaic plots

Mosaic (or spine) plots are very powerful when visualizing descriptive results, and we
created one with base R in Chapter 3. However, mosaic plots are also implemented in
ggplot2. The ggmosaic() package provides the corresponding geom (Jeppson et al.,
2021). The illustration uses the titanic data and depicts the effect of passenger’s sex
on survival. Obviously, more women than men survived the accident.

As the minimal code illustrates, the geom_mosaic comes with a product() function to
estimate frequencies for each category and fills each box accordingly.

#Minimal code example #####

library(ggmosaic)

ggplot(data = titanic) +

geom_mosaic(aes(x = product(Sex),

fill = Survived))

7.3 Extensions of ggplot2 | 243

Ridge plots

Compare the distribution of a numeric variable with a ridge plot (Wilke, 2021). In the
example, I used the gapminder data to inspect how life expectancy differs between
continents in 2007. As the plots shows, Europe has the highest, while Africa had the
lowest life expectancy. The distribution is much wider in Africa compared to other
continents.

The ggridges package comes with data and a lot of illustrative examples provided by
ClausWilke, the author of the package. As the code from the vignette illustrates, explore
how the weather (temperature) develops within a year.

#Minimal code example #####

library(ggridges)

#Minimal code by Claus Wilke:

ggplot(lincoln_weather, aes(x = `Mean Temperature [F]`, y = Month,

fill = stat(x))) +

geom_density_ridges_gradient(scale = 3,

rel_min_height = 0.01) +

scale_fill_viridis_c(name = "Temp. [F]",

option = "C")

244 | 7 Visualize research findings

Treemaps

You can visualize hierarchical data with a treemap, because the area of the rectangle
is chosen proportionally to the size of each cluster. Before he was banned, Donald
Trump was a huge fan of Twitter and Axios collected and categorized his tweets. Some
tweets were about the media, democrats, and the grand old party (GOP), with further
subgroups within each category. I used this data and the treemapify package tomake a
treemap (Wilkins, 2021).Mr. Trump tweeted a lot about “themedia” and the “Democrats”
in 2019.

The data of the last plot is not available, but you can use the gapminder data to explore
how treemapify works.

#Minimal code example #####

library(treemapify)

library(gapminder)

data <- gapminder::gapminder |>

dplyr::filter(year == 2007 & continent == "Europe")

ggplot(data, aes(area = gdpPercap,

fill = lifeExp,

label = country)) +

geom_treemap() +

geom_treemap_text(color = "white",

grow = TRUE)

7.3 Extensions of ggplot2 | 245

Waffle charts

Do not make a pie, make a waffle. Waffle charts depict a whole (or part of the whole),
and it gives the audience visual clues to assess the size of each group, especially if each
square represents exactly one percentage point. The example plot illustrates the “leaky
pipeline” in academic careers. Did you know that after each transition step in higher
education (e.g., graduation, Ph.D.), more men than women remain in the system? The
sex ratios become more and more skewed till the end of the academic pathway. I used
a waffle chart to illustrate the leaky pipeline for Germany in 2020.

The waffle package makes it easy to create waffle charts (Rudis & Gandy, 2017). It only
needs a numerical input to create the chart and the function returns a ggplot2 object.

#Minimal code example #####

library(waffle)

parts <- c(66, 22, 12)

waffle(parts, rows = 10)

246 | 7 Visualize research findings

Word clouds

Use a word cloud to depict the result of a text analysis. A word cloud displays, for
example, the frequency of words by its font size. The plot shows the word cloud of a
children’s book that I made with the ggwordcloud package (Le Pennec & Slowikowski,
2022). Do you know which one? A white rabbit and the queen of hearts play a big role
in this book.

Creating a word cloud is not rocket since, but working with text is a complicated topic in
the beginning. Fortunately, there is no need to learn text mining first, the ggwordcloud
package includes data to make word clouds. Consider reading Text Mining with R by
Silge & Robinson (2017) to learn more about text mining.

#Text Mining with R:

#PracticeR::show_link("text_mining")

#Minimal code example by Erwan Le Pennec

library(ggwordcloud)

#set a seed (starting point)

set.seed(123)

ggplot(love_words_small, aes(label = word,

size = speakers)) +

geom_text_wordcloud() +

scale_size_area(max_size = 30)

7.3 Extensions of ggplot2 | 247

Summary

The ggplot2 package provides fantastic opportunities to visualize research findings.
Unfortunately, all of its possibilities can be overwhelming. Keep in mind that the
package implements the principles of the grammar of graphics with layers and that
we created a scatter plot without much knowledge about ggplot2 in the first section.
The latter illustrates that we do not need to remember all details to create a plot, but
that we have the possibilities to create a plot that fulfills all of our requirements. Thus,
use base R or the minimal code to make a graph that will not last long, for example to
explore data. In all other instances, the gglot2 package provides everything you need
to adjust the graph for specific needs.

Practice R gives an introduction, but of course there is much more to learn about
ggplot2. Consider reading R Graphics Cookbook by Chang (2012), it provides a lot of
details on how to make and improve graphs. If you are not interested in specific graphs
but want to learn more about the package itself, read ggplot2: Elegant Graphics for Data
Analysis by Wickham (2016).

#R Graphics Cookbook

show_link("r_graphics")

#ggplot2: elegant graphics

show_link("ggplot2")

There are also plenty of excellent books about data visualization that are worth to con-
sider. For example, Fundamentals of Data Visualization: A Primer onMaking Informative
and Compelling Figures by Wilke (2019) or Data Visualization: A Practical Introduction
by Healy (2019).

#Fundamentals of Data Visualization

show_link("fundamentals_dataviz")

#Data Visualization

show_link("dataviz")

8 Communicate research findings
Did you prepare the data? Did you run all analysis steps and visualize the results? Then
it is time to write down the research findings. But is it time to close R and switch to a
text program like Word? We can write a document, a report, or even a book with R and
the rmarkdown package (Allaire, Xie, McPherson, et al., 2022). The document will not
look like an R script; it will look like any other text document with tables and graphs.
Actually, you are holding the result of an rmarkdown document in your hands.

Please don’t get me wrong, I am not saying that you should never use Word again.
There is no reason to use R if the document does not contain any content from R.
However, if you write down the empirical results of your thesis, or if the document
containsmore than one plot made with R, consider writing at least the results section in
one piece with rmarkdown. There are several good reasons why we should consider R for
this task. Most importantly, we reduce the chance of generating errors if we eliminate
the need to transfer results.

Furthermore, we increase our capacity to reproduce the results when we skip
manual steps. Let me outline this thought. Suppose you are describing the mtcars

data. Say the mean average of the mpg variable is 20.09 with a standard deviation of
6.03. I cannot remember how many times I checked a document to make sure that the
inserted values are correct. I am sure that the numbers of this document are correct,
because I used inline code in the rmarkdown file of this chapter, as the following console
highlights.

#inline code:

`r mean(mtcars$mpg)`

If you insert such code in an rmarkdown document, R runs the function while the
document is being created and inserts the values. Of course, you may connect a Word
documentwithExcel, but yourR skills are integrated into onedocumentwith rmarkdown.
If the data gets an update, there is no need to check whether the values are still correct.
The same applies, for example, for tableswith regression results or any other calculation
you made with R. Everything will be reproduced if you rerun the rmarkdown document.

I am not claiming that I have never transferred research result from a statistics
software to Word, but consider all the wasted time: I formatted the text, updated tables,
and, foremost, I tried to be very cautious not to make a mistake, which slowed downmy
efficiency. With rmarkdown, all the magic happens in a single document, which helps us
to focus on the writing part. Do me and your future self a favor: Do not transfer research
results manually.

Besides the discussed advantages, is learning rmarkdown really worth the trouble?
From my point of view, there are at least two additional advantages. First, you can
convert an rmarkdown document into many formats, for example, into a PDF file or

https://doi.org/10.1515/9783110704976-008

8.1 The basics of rmarkdown | 249

a Word document, with just the click of a button. Or say your findings need to be
accessible on a website, then just create an HTML file.

Second, knowledge about rmarkdown lays the foundation to make books, presenta-
tions, and websites, just to mention potential next steps. In this chapter, we learn how
rmarkdownworks and we get in touch with Markdown, a markup language to format
text. Learning a new language sounds crazy, but Markdown is easy to apply, and we
use it only to format text. Knowledge about rmarkdown and Markdown will boost your
skills, because there are packages that rely on (or work in similar ways as) rmarkdown.
Instead of creating a PDF, we use other packages and Markdown to create (online)
books, presentations, or even interactive documents. Thus, rmarkdown is an excellent
starting point and I hope that I cleared all possible doubts.
– In Section 8.1, we focus on the basics of rmarkdown. We explore a simple template

andwewill clarify themain purpose of each individual component of an rmarkdown
file.

– In Section 8.2, we extend our knowledge and we talk about the basics to create
documents from scratch. We format text with Markdown; we explore the magic
behind rmarkdown and learn why it is possible to create different documents from
an rmarkdown file; and finally we will see how R handles our code.

– In Section 8.3, we start to create a template for a scientific document. For this
purpose the PracticeR package includes a template which we will rebuild step by
step. We focus on aspects that are typical for a scientific document (e.g., abstract,
citations, etc.) and we learn how to integrate research findings that are made in R.

The Setup for Chapter 8

library(dplyr)

library(flextable)

library(HoRM)

library(huxtable)

library(jtools)

library(PracticeR)

library(stargazer)

library(summarytools)

library(tibble)

8.1 The basics of rmarkdown

The first steps to create an rmarkdown (.Rmd) document are easy, because RStudio
provides a template that includes everything we need. Go to the toolbar and click on
File; choose New File and pick R Markdown. As Figure 8.1 shows, a window appears
and asks you to insert a document title, the author’s name, and to pick a default output
format. Give the document at least a title and choose the HTML output option. You can

250 | 8 Communicate research findings

change the format of the output later, but the first steps are easier to apply if we make it
an HTML file. The latter will be created on the fly and the viewer pane shows a preview
of it.

Figure 8.1 also highlights that RStudio has further templates. Several R packages
provide templates to create documents, and I have included two templates in the
PracticeR package. A minimal template just like the one RStudio provides if you create
a new file; and a template for Section 8.3.¹ Thus, create a new file, but keep in mind
that you have the discussed steps already at your disposal if you pick the template from
the PracticeR package (via From Template). I will outline more about templates in the
next section.

Fig. 8.1: Create a new R Markdown document

Create a new file. After you clicked on the OK button, RStudio opens an rmarkdown

template which contains R code and text. Figure 8.2 shows a screenshot of the template
with some annotations to help you to get going. RStudio itself gives us a hint about
what we are supposed to do with the template. They write on line twelve: “When you
click the Knit button a document will be generated that includes both content as well
as the output of any embedded R code chunks within the document.” What the heck,
the Knit button? Chunks? We will clarify this new vocabulary in a minute, but first, look
at Figure 8.2. I tried to outline these steps. RStudio converts the Rmd template into an
HTML file if you click on the Knit button. RStudio asks you first to save the file if you
click on the button for the first time. The HTML file appears in the viewer pane after
you have saved the file and knit the document.

Scroll down in the viewer to examine what the template contains and compare it
with the Rmd file. The viewer pane shows the rendered output of the Rmd file, just as any

1 The minimal PracticeR template is identical with the RStudio template. Use the former if the RStudio
template should be updated in the near future and does no longer match with the described steps.

8.1 The basics of rmarkdown | 251

browser displays such an HTML file. The template contains a title, a header, R code is
displayed in boxes, and the template includes a plot as well. If you think the viewer is
too small to inspect the output, click on the built-in Open in a new window symbol in
the viewer. It opens the browser and shows the document.

Fig. 8.2: Render a document

Thus, we create a document that is based on the Rmd file. The document includes R
code, output from the console, and text. When we knit a document, R sends the content
of the Rmd file to knitr (Xie, 2022b), a package that provides the engine to execute the
file. To put it simply, knitr weaves the content of the document together. I will outline
in more detail what happens in the next section, but for now it is enough to understand
that knitr combines text, R code, and output from the console in the document.

Before we dive deeper into the topic, let us focus on the structure of the template. In
principle, each Rmd file consists of three different parts: a meta section, text formatted
in Markdown, and R code chunks. Figure 8.3 shows where to find these parts and I
outline the purpose of each part step by step.

First, each Rmd file contains a meta section or a header which starts and ends with
three dashes (---). The meta section defines the document type and applies the global
settings for the entire document by means of fields. To make your life a little bit more
complicated, the fields of the meta section are written in yet another markup language.
The name is not a joke: the language really was originally called yet another markup
language (YAML). I outline more about the YAML header in Section 8.3, when we start
to create a template. As the next console shows, the header of the template includes
fields for the document title, the name of the author, and the date. Moreover, we
define which output the file creates, in our case an HTML document (html_document).

#The YAML header/meta section

title: "Title"

252 | 8 Communicate research findings

author: "Edgar Treischl"

date: "9 2 2022"

output: html_document

Fig. 8.3: The structure of an R Markdown document

Second, the template includes text, and we use Markdown to format it. To get a first
idea on how Markdown works, look at the HTML file and compare it with the code. We
will learn more about Markdown in the next section, but the template gives us some
clues. For example, the document includes two hashtags (##) which will be translated
as a second header. Markdown is a simple markup language and RStudio makes it
comfortable to work with Markdown. So, don’t be afraid about it.

Finally, the template contains different types of R chunks which we need to inspect
inmore detail. The first is called the setup chunk and the template also includes regular
R chunks – one that displays code, and another one that makes the graph. Regardless of
whether we talk about the setup or a regular R chunk, each starts with three backticks;
which open the r chunk and another three backticks to close it, everything in between
will be treated as R code:

#R code chunk example:

{r }

mean(x)

8.1 The basics of rmarkdown | 253

It sounds tedious to create code chunks. Andwhere are those backticks on the keyboard?
As Figure 8.3 highlights, RStudio has an Insert new code chunk button and there is also
a shortcut to include an empty code chunk. Hover with your mouse over the button
and wait until RStudio reveals its secret.

Chunks may have a label and we can adjust how the code is handled with chunk
options. Put both inside the braces, as the next output illustrates.

#Chunk label and chunk options

```{r chunk-label, chunk-option}

#Don't forget comments for your chunks!

mean(x)

```

Consider the setup chunk to learn more about chunk options. The setup chunk has
a similar task as the header of the document, but this time to set up R. Compared to
regular chunks, the setup chunk is used to run code that is not important for readers.
For example, we include global settings that define how the code and the output are
displayed, or we load libraries that run in the background. For this reason, the setup
chunk is not included in the document and the chunk option include is set to FALSE.
Chunk options can also be put inside a chunk if the line starts with a hashtag and a
vertical bar (#|), as the next console highlights.

#Put chunk label and options inside via: #|

```{r}

#| my-chunk, include = FALSE

```

You can set options globally for the complete document or for each chunk individually.
Inside the R setup chunk, we set the global chunk options, even though the template
includes only one chunk option (opts_chunk) at the moment:

the setup chunk: all code will be printed by default

knitr::opts_chunk$set(echo = TRUE)

The latter calls the knitr package and sets the chunk option echo globally to TRUE. This
implies that the R code of all chunks will be displayed in the document. If you set the
option to FALSE, no code appears in your document. Well, as long as we choose not to
change the option in an individual chunk. Maybe this all sounds abstract; we explore
more details about chunk options in the next section. For now, keep in mind that they
determine how R handles code and the output of the console.

In contrast to options, the meaning of chunk labels is easier to grasp. Suppose you
have a long document with many chunks, just give them unique names and you can

254 | 8 Communicate research findings

inspect chunks in a small menu in the left corner of the code pane, as Figure 8.3 shows.
If you click on a chunk (or a section), you will jump to this point in the document.

If you insert chunks via the button, you may realize that R is not the only program-
ming language we can include in the document. I cannot outline much about these
possibilities in Practice R, but the next info box underlines that we can integrate further
engines and run, for example, Python with the reticulate package (Ushey et al., 2022).

The reticulate package

You can run a rmarkdown document with different engines. For example, the reticulate provides an
interface to work with Python from RStudio. Python is a general-purpose programming language and
the use of Python is widespread within the data science community. This info box cannot introduce
Python, however, it shows that the reticulate package embeds Python in RStudio.

You need to install Python and the reticulate package, before you are able to embed Python in
active R session, run Python scripts, or embed Python code and its output in an rmarkdown document.
The package sends the code to Python and integrates the result in the rmarkdown document. The next
code demonstrates this point and underlines how effective your R skills already are. I import some
Python libraries, load example data (mpg) and make a visualization. Irrespective of the data and the
graph, the code to create the graph should be very familiar. I used the plotnine library which is an
implementation of the grammar of graphics in Python.

#Import libraries and make a plot

from plotnine.data import mpg

from plotnine import ggplot, aes, geom_bar

ggplot(mpg) + aes(x="class") + geom_bar()

2seater compact midsize minivan pickup subcompact suv
class

0

20

40

60

co
un
t

That’s amazing, even if you have never worked with Python you can apply your ggplot2 skills. But never
mind about Python, the important point is that there are more engines to run code from RStudio and
the reticulate package provides an interface for Python. Inspect the package documentation for more
information how to combine Python and R.

8.2 Create a document | 255

Now that you are familiar with the structure of an rmarkdown file, let us focus on the
basics of creating a document.

8.2 Create a document

Towrite documentswith rmarkdown, we first learn the basics ofMarkdown.Next, we talk
about Pandoc which helps us to understand how the document is created. Ultimately,
we talk about the most import chunk options that determine how R handles code and
output.

8.2.1 Markdown

The next console shows three examples to illustrate how Markdown works. We use
the latter to format text and to structure the document. A document is structured
with hashtags (#). One hashtag creates the first header (the title) of a document. If we
provide two hashtags, we create a second header, and so on. To format text is also
straightforward. If we provide two asterisks (**) before and after one or several words,
the word becomes bold. A word or sentence is displayed in italic letters if we use one
asterisk at the beginning and the end. Moreover, the next console also shows how to
make a list with indented dashes (-). Overall, that’s not very complicated, don’t you
think?

A Markdown example

Header 1

Make a text **bold** or *italic*

Header 2

Make a list:

- Item 1

- Item 2

- subitem

This gives you a first idea about Markdown and why I will not discuss the latter in detail.
I do not spend much time on Markdown because RStudio includes a visual markdown
editing mode, which makes a lesson about text formats almost redundant. As Figure 8.4

256 | 8 Communicate research findings

highlights, the visual markdown editing mode starts by clicking the Visual button on
the top left side of the code pane (and you can switch back to the source code). If you
don’t see the editing mode, you are working with an older version of RStudio. Go and
install the latest version.

Fig. 8.4: The visual markdown editing mode

Similar to a Word document, the editing mode applies the WYSIWYG (what you see is
what you get) principle, it shows the text outline, and it comes with a menu to format
text. As Figure 8.5 shows, structure the document with headings, make a word bold, or
insert a picture just by clicking on the symbol. This is a great feature since it allows us
to focus on our main task of creating a document.

Fig. 8.5:Menu of the visual markdown editing mode

Like this, you can use Markdown without the need for detailed knowledge. Give it a
try. Click inside your document, start the visual markdown editing mode, and insert
a table or a picture. If you have finished, switch back to the source editor and check
how the script has changed. RStudio inserted the Markdown code. As the next console
illustrates, I used the visual markdown editing mode to make a table. Each column of a
table is separated with a vertical bar (|) in Markdown. Creating tables in Markdown is
bothersome, but the visual markdown editing mode did the job for me.

8.2 Create a document | 257

#A table in Markdown

| Col1 | Col2 | Col3 |

|------|------|------|

| | | |

| | | |

| | | |

I could spend a lot of time showing you how Markdown works. The alternative is that
you work it out by yourself. I may sound like a villain in a James Bond movie, but what
strategy do you believe will have the strongest impact on your skills? Use RStudio’s
visual markdown editor to learn more about how to format text, how to include a
picture, or how to insert a footnote. Moreover, consider the rmarkdown website and the
cheat sheet, it shows also how to write with Markdown.

The rmarkdown website

https://rmarkdown.rstudio.com/

Instead of formatting text, wemust clarifywhat happens afterwe have fed the document
with text, graphs, or other content. How dowe get an HTML file if we knit the document,
and why is it possible to create a PDF or a Word document from the same Rmd file? The
short answer: Pandoc.

8.2.2 Pandoc

With Pandoc running in the background, it is possible to create different files from
a single rmarkdown file. Pandoc makes it possible to convert files from one markup
language format – such as Markdown – into another one. For this reason, wemay insert
HTML code in the rmarkdown file. As long as we create an HTML file, the HTML code
will be translated just as a browser does it if we visit a website. With Pandoc we are
able convert a file to HTML, Word, and other formats.

For example, click on the arrow next to the knit button and choose Word as output.
RStudio renders the document and adds the code to create the Word file. As the next
console shows, RStudio adds the default word_document to the output field.

#Render the file as word_document

output:

word_document: default

258 | 8 Communicate research findings

The latter comes with one restriction: Microsoft Word (or OpenOffice) is needed for
a Word document and LaTeX is needed to convert the document into a PDF file. In
a nutshell, LaTeX is a typesetting language designed to produce high-quality text
documents. You may need to learn LaTeX if you write a book, and some journals also
ask you to submit your article as a LaTeX file. You can learn more about LaTeX and
Pandoc in the info box about file conversion.

File conversion:

The rmarkdown package uses Pandoc to convert files into different formats. This makes it possible to
insert HTML code if we create an HTML or use LaTeX code in the case of a PDF file. Let’s see how this
works based on a minimal example for each language. Inspect the following Markdown code:

Header 1

Header 2

bold and *italic* text

As we know, we format headings with hashtags (#) in Markdown, but we could use the HTML code as
well. For instance, the code <h1>Title</h1> displays the same first heading as # Title. The second
header translates to <h2>Header 2</h2> in HTML. The following code shows the output of how the
Markdown code is translated into HTML.

<h1>Header 1</h1>

<h2>Header 2</h2>

bold and <i>italic</i> text

Markdown makes it easy to format code and we can include HTML code if the output is an HTML file. Do
you have any idea why we cannot insert HTML code when we create a PDF file? We use LaTeX to create a
PDF file and, to put it plainly: LaTeX does not speakHTML.Wemust, therefore, provide the corresponding
LaTeX code if we generate a PDF. For instance, we can make a text bold with \textbf{bold} or italic with
\emph{italic}. Basic knowledge about HTML or LaTeX is helpful to customize a document, but it might
not be necessary, depending on your goal. Some basics to format texts are not that difficult, neither in
HTML nor in LaTeX. Just keep in mind that LaTeX does not speak HTML, nor will a web browser speak
LaTeX – only Pandoc knows them all. We may thus add HTML or LaTeX code where needed. Pandoc
inspects the document for the corresponding code and converts a # Header 1 into <h1>Header 1</h1>

if we create a HTML or into \section{Header 1} in the case of a PDF file. The next console shows the
minimal example in LaTeX.

\section{Header 1}

\subsection{Header 2}

\textbf{bold} and \emph{italic} text

Learning LaTeX is hard, and much more complicated than Markdown. Learning LaTeX
is not worth the trouble if you need a document only to show the results of an analysis.
In this case, let rmarkdown do the hard work for you. You will, however, need to install

8.2 Create a document | 259

a LaTeX distribution in some instances before you can create PDF files. A distribution
should be installed automatically, but you should know that the tinytex package
runs in the background and provides a LaTeX distribution (Xie, 2022c). If you run
into an error, install the package first. After the installation is done, install the LaTeX
distribution via the install_tinytex() function:

Install a latex distribution

tinytex::install_tinytex()

Next we examine how chunk options determine how our R code will be handled.

8.2.3 Chunk options

Up until this point, we have inspected the R setup chunk and we saw how to exclude
an entire chunk by setting the chunk option include to FALSE. Which further chunk
options exist? For example:
– Echo is responsible if code will be displayed. Set echo to FALSE and code will not

be displayed, but evaluated and executed.
– Eval determines if code will be evaluated. The results of a chunk will not show

up in the document if eval is set to FALSE, but the code will be displayed in the
document.

– The R chunks return messages and warnings from the console. Such information
are useful while we create a document, but may look odd in a final version of the
document. Messages and warnings will not be displayed if the options message
and warning are set to FALSE.

Remember, we can include global chunk options in the R setup chunk and define how
R knits the document. We don’t have to check that each chunk is correctly knitted if
we consider how R should knit the document by default. Of course, there is always the
possibility to switch back and adjust chunks individually should the default option not
fit. In a research document, we probably want to evaluate all chunks, but our reader
might not be interested in the R code, the warnings, and the messages from the console,
which is why I set them to FALSE, as the next console illustrates.

Example setup

knitr::opts_chunk$set(

eval = TRUE,

echo = FALSE,

warning = FALSE,

260 | 8 Communicate research findings

message = FALSE

)

The rmarkdown package makes it easy to include a graph: just insert the code in an R
chunk. If you want to display only the results (graph), set the chunk option eval to TRUE
and echo to FALSE. Further chunk options that determine how graphs will be displayed
are also worth discussing:
– Adjust the height and the width of a graph with the corresponding chunk options.

The default options are fig.width = 6.5 and fig.height = 4.5. Depending on
the content and the output format, you may want to increase (decrease) the size of
a graph.

– By the way, adjusting your graph size with fig.width and fig.height has no effect
on image files that are included in your document. Consider the out.width chunk
to adjust the size of the file. Alternatively, insert the file in your rmarkdown file and
use the visual editor to modify the appearance. You can adjust several options and
attributes with a double click on the picture in the visual markdown editing mode,
including the width, height, and the caption.

– Regardless whether a graph is included from a file or from code chunk, a caption is
always a good idea to refer to. The chunk option fig.cap inserts a capture.

– Create a folder for all images. The chunk option fig.path will save all image files
that are created from a chunk in a given folder.

Consider to include such parameters in the setup chunk. Moreover, give a chunk that
creates a graph a chunk label and the image file will get the same name as the corres-
ponding chunk label. The next console summarizes the discussed chunk options.

Improved example setup

knitr::opts_chunk$set(

further options ...

fig.width = 7,

fig.height = 5,

fig.path = "images/"

)

All these options are not an all-encompassing list. Have a look at the rmarkdownweb-
site and the cheat sheet for further information about chunk options. Moreover, the
opts_chunk$get() function returns a list of chunk options, which is why I skip the
output of the next console.

8.3 Create a template | 261

opts_chunk$get() returns chunk options and defaults

str(knitr::opts_chunk$get())

I have one last chunk option for the future heavy user: You can include a cache in the R
setup chunk. R checks whether the result of a chunk has already been evaluated and
the chunk will only be evaluated the first time the document is rendered or when you
change it. Thus, a cache may save time in rendering the document, but take care that
all chunks are up to date before submitting your work. By using a cache, one chunk
may depend now on another chunk and we need to address this problem (with the
dependson option, see Wickham & Grolemund, 2016, p. 432). Before you go on and
adjust the setup chunk, let’s explore the PracticeR template because it includes the
discussed chunk options and creates a template for a scientific report.

8.3 Create a template

Suppose we make a template for a thesis, a paper, or any other scientific document.
What should the template contain? A scientific document needs at least a cover page
with a title, author name, and an abstract. Depending on the scope of the work, we
may want to include a table of contents and we should also set up a bibliography to
automatically insert citations and references. Again, this not an all-encompassing list,
but it gives us a reasonable start to learn a few things about the meta section, because
that’s where we define the output.

In the next step, we include elements that are typical for a research report and we
explore how to manage citations with R. Moreover, we learn how to make tables in R
and integrate them in the document.

8.3.1 Meta section

Let’s inspect the meta section of the minimal template from the beginning. The meta
section determines how the file will be structured. It contains information about the
title, the author, the date, and the output field. Those are YAML commands and,
depending on the template, you may add such fields to the meta section (see e.g.,
?pdf_document to inspect the options for PDF files).

#The YAML header of the minimal template

title: "Template Title"

author: "Author Name"

date: 'Last update: 2023-01-24'

262 | 8 Communicate research findings

output: pdf_document

In this section I will show you step by step how we can change the minimal template
and adjust it for our purposes. Thus, this section outlines how the PracticeR template
is built step by step. Create a new file from templates, pick the PracticeR template, and
save the file in a new folder. The template includes the following steps.

First, we manage the output of the document. If you change the output in your
own document, add a colon (:) after the document type (pdf_document:). Be careful,
indentation is important for YAML code. Make sure that all sub-fields that determine
the output are indented to the top field (output). The next console shows the meta
section of the PracticeR template, I add several fields to structure the document as a
first step:
– I included a table of contents (toc) and the toc_depth field defines how many

headings are listed.
– By default, sections are not listed with numbers, but you can print them with the

number_sections field.
– The highlight field determines which style is used to print the code. I use the

style kate in this book, but feel free to use the default or another style (e.g., tango,
monochrome, or the espresso style, see Xie (2022a), p. 79).

– Moreover, I included a preamble LaTeX file (preamble.tex) that will be executed
before the body of the main text (before_body). You find the LaTeX file in the same
directory as the document after you created it – it includes a placeholder for contact
details and inserts a new page before the main text starts. The next console shows
the YAML code:

#First step: Adjusted the output

output:

pdf_document:

toc: yes

toc_depth: '2'

number_sections: yes

highlight: kate

includes:

before_body: "preamble.tex"

In a second step, I add an abstract with the corresponding field; I include a
bibliography file (MyBib.bib); and I change how citations are styled by pointing to a
Citation Style Language (csl) file (apa.csl). In terms of citations, R use the files and
display citations in accordance with the citations of the text.

8.3 Create a template | 263

#Second step

abstract: A very short abstract.

bibliography: MyBib.bib

csl: apa.csl

Including those fields in the meta section is not complicated, but maybe you have no
idea how to manage citations or what a bibliography file is. Before I show you how to
include citations in the text, the info box about citation management software outlines
in a nutshell how such software work.

Citation management software:

Have you ever used Zotero, Citavi, or any other software to manage references? If the answer is no, stop
reading and download Zotero (www.zotero.org), an open-source software to manage your references.
With the help of a citation management software, you can import references and refer to them in a text
document. Thus, there is no need to manually make references, use a citation management software.

Such software tools let you collect citations (e.g., with the browser) and export the references as a
bibliography (.bib) file, which contains the information of all references of a bibliography. Consider the
next console, it illustrates the content of a bibliography file with the information about a book from
Little & Rubin (1987). If we refer to little_1987 in the text, the following book will be cited:

#A bib file (.bib) example:

@book{little_1987,

address = {New York},

title = {Statistical {Analysis} with {Missing} {Data}},

publisher = {Wiley},

author = {Little, Roderick J. A. and Rubin, Donald B.},

year = {1987},

}

We use such files to refer to authors and publications and a list with all cited publications will show
up at the end of the document automatically. Moreover, citations management systems can also be
used to determine the citation style. Suppose you plan to publish your work in a specific journal. The
Zotero Style Repository offers a lot of csl files to style citations. If you are lucky and you find one for the
journal, you get the desired citation style without any effort. Or, think of different academic disciplines
and departments that prefer different citations styles. You can download many csl files from the Zotero
Style Repository. Put the name of the csl file in the directory and citations will be printed accordingly.
If you do not provide a csl file, rmarkdown applies the Chicago author-date style by default.

In order to include publications in the document, R needs the bibliography file and we
need to refer to the reference name with the at (@) sign. In the visual mode, you may
access and manage your references also via the citation menu (Insert > Citation).

264 | 8 Communicate research findings

Depending on your citation style, you may use one of the following options to refer to a
publication:
– Refer directly to a publication with an in-text citation, such as Little & Rubin

(1987), by using the at sign and the reference name in the document. For example:
@little_1987.

– If several authors are cited, such as (Enders, 2010; Little & Rubin, 1987), put
them into brackets and separate each reference with a semicolon: [@enders_2010;
@little_1987].

– Page numbers and additional text, such as (e.g., see Little & Rubin, 1987, p. 1), can
also be included in the brackets: [e.g., see @little_1987, p. 1].

Of course, there are more structural aspects of a scientific document that are worth
discussing. You have three options if you are not happy how the template looks so far.
First, and due to the PDF output, you could learn more about LaTeX. This sounds like
bad advice; maybe I should have refrained from telling you that LaTeX is complicated to
learn. Nonetheless, you may consider learning a few things in LaTeX should you work
with PDFs on a regular basis. LaTeX is not complicated if you just want to change some
minor aspects of a document. For example, consider the preamble file of the PracticeR
template. I insert a cover page with help of the LaTeX code \newpage. It will insert a
new page and puts the remaining text on the next page.

A second option goes in a similar direction, but with a completely different drift.
Was it necessary to create our own template? The rticles and several other R packages
provide rmarkdown templates. The former provides templates for Elsevier, Springer, or
the PLOS journals (Allaire, Xie, Dervieux, et al., 2022). Of course, you can use such
templates as well.

If you are still not sure whether writing a document in R is a good idea, then this last
optionmight sway you over. Suppose you already have aWord template with fancy style
rules. This Word document may serve as a template from which you can create a new
Word document with R. The rmarkdown package extracts the style of a Word template
and knits the document accordingly. Save the template in your working directory and
refer to it in the meta section. Add the reference_docx field and point to the Word
template. Even though you work with a Word document, the analysis is reproducible
and the document can get an update.

#reference_docx uses your docx as reference to format the output

title: "My Template"

output:

word_document:

reference_docx: Template.docx

8.3 Create a template | 265

Ultimately, we learn how to make tables with R. This will boost your work efficiency,
because then you will be able to generate all content of a scientific document (text,
graphs, and tables) from a single and reproducible file.

8.3.2 Tables

What would you say, which James Bond actor is the best? And which one drank the
most martinis, or who had the most love affairs? Was it Daniel Craig, Richard Moore, or
Pierce Brosnan? The question probably came as a surprise to you, but if making a table
sounds boring, then let’s at least fool around with the data. The HoRM package includes
data about the Bond movies (Young, 2021). As always, install and load the package
before you run the steps on your computer. As the next console shows, it will be easier
for us if we generate a table with a selection of the variables from the JamesBond data
only. I selected the movie title, the name of the Bond actor, the number of (romantic)
conquests, the number of martinis, the number of killings, and the average movie
rating. Remember, the help function provides more information about the data.

library(HoRM)

library(dplyr)

data("JamesBond")

Select variables from JamesBond

bond_data <- select(JamesBond,

Movie, Bond, Conquests, Martinis,

Killings = "Kills_Bond",

Rating = "Avg_User_IMDB"

)

Let’s say we want to create a summary table that show which of the Bond actors is the
most popular, deadly, or successful. We use our dplyr knowledge to group the data
by each Bond actor and make a summary for all numeric variables. Apparently, Pierce
Brosnan was the most brutal James Bond actor, while Daniel Craig got the best ratings
and also drank the most martinis.

Group by each Bond, give me the mean of each variable

bond_data |>

group_by(Bond) |>

summarise(across(where(is.numeric), ~ round(mean(.x), 2)))

#> # A tibble: 6 x 5

266 | 8 Communicate research findings

#> Bond Conquests Martinis Killings Rating

#> <fct> <dbl> <dbl> <dbl> <dbl>

#> 1 Daniel Craig 2.25 2.75 20.8 7.3

#> 2 George Lazenby 3 1 5 6.8

#> 3 Pierce Brosnan 2.5 1.25 33.8 6.47

#> 4 Roger Moore 2.71 0.29 12.9 6.61

#> 5 Sean Connery 2.67 0.67 12 7.2

#> # ... with 1 more row

How can we make a table from this output? Are we supposed to create a table like we
do in Word? Decide how many columns and rows the table has and apply some styles
to format the table? Since we write this document in Markdown, we could do the same
and insert a table in Markdown. But what happens if the data gets an update? If we
create tables manually, then we must update the table too and there is always a chance
that some mistakes happen if you transfer figures manually. Of course, this does not
happen if we skip manual steps and use R to make the tables.

To be honest with you, creating good tables is a complex topic and I could have
written an entire chapter about tables. This is especially the case because there are
different packages specialized on tables for each output format. For this reason, we will
not learn how to make tables in general terms; we will only make a table for summary
statistics, and one for analysis results (e.g., a linear regression). Both tables are essential
for a report and make a good start to see how R helps us to create reproducible results.

Summary statistics
I often use the stargazer package to create a table for summary statics since I work
with PDF files most of the time (Hlavac, 2022). The package is very easy to apply: use
the stargazer() function, the name of the data, and the type of output.

Stargazer returns a table for summary statistics

library(stargazer)

stargazer(bond_data, type = "text")

#>

#> ==

#> Statistic N Mean St. Dev. Min Max

#> --

#> Conquests 24 2.542 0.779 1 4

#> Martinis 24 1.083 1.316 0 6

#> Killings 24 17.000 11.348 1 47

#> Rating 24 6.858 0.517 6.000 7.900

#> --

8.3 Create a template | 267

As the last console shows, it returns the summary statistics as text, but also the LaTeX
or HTML code if you change the type option. As always, the package has more options
to tweak and improve the table. Add a title, round the number of digits, or determine
which summary statistics (summary.stat) are returned. Table 8.1 was created with the
following code and we must set the results chunk option and to asis. By adjusting
the chunk option, the result of the console is interpreted as it is (see Chapter 10.2 for
more information).

Some options to improve the table

stargazer(bond_data,

type = "latex",

digits = 2,

title = "Summary statistics",

summary.stat = c("sd", "min", "max", "n")

)

Tab. 8.1: Summary statistics

Statistic St. Dev. Min Max N

Conquests 0.78 1 4 24
Martinis 1.32 0 6 24
Killings 11.35 1 47 24
Rating 0.52 6.00 7.90 24

Unfortunately, the package has no reproducible solution for Word. For this reason, we
examine the flextable package, which helps us to generate tables for PDF, HTML, and
Word (Gohel & Skintzos, 2022).

To make a table with summary statistics, we must first calculate each statistic
for each variable that we use in the analysis. Our R skills would definitely profit from
this data preparation step, since we have to bring them together in a tidy format. In
this chapter we will not focus on data management steps, since I want to convince
you that making tables in R is the last essential step to communicate research results
efficiently. Instead, let us recall what we learned in Chapter 3. Several packages – such
as summarytools (Comtois, 2022) – provide convenient functions to describe data. We
learned that descr() does the heavy lifting for us and calculates the summary statistics.
All we must do is provide the corresponding stats options and decide which one we
want to report. In addition, if we set the transpose option to TRUE the output almost
looks like a summary statistics table.

268 | 8 Communicate research findings

#Calculate summary stats

library(summarytools)

table <- descr(bond_data,

stats = c("n.valid", "min", "mean", "max", "sd"),

transpose = TRUE)

table <- as.data.frame(table)

table

#> N.Valid Min Mean Max Std.Dev

#> Conquests 24 1 2.541667 4.0 0.7790276

#> Killings 24 1 17.000000 47.0 11.3482425

#> Martinis 24 0 1.083333 6.0 1.3160107

#> Rating 24 6 6.858333 7.9 0.5174492

There are only two more things we need to take care of. First, we may want to round the
numbers; and our variable names are included as row names, so we must put them in
their own column with the rownames_to_column() function from the tibble package.

Round results and add rowname to the data

table <- table |>

round(digits = 2) |>

tibble::rownames_to_column(var = "Variable")

table

#> Variable N.Valid Min Mean Max Std.Dev

#> 1 Conquests 24 1 2.54 4.0 0.78

#> 2 Killings 24 1 17.00 47.0 11.35

#> 3 Martinis 24 0 1.08 6.0 1.32

#> 4 Rating 24 6 6.86 7.9 0.52

Look what happens if we add exactly one line of code to our data preparation step for
the Bond movies. We add the flextable() function and it returns a table:

Make a flextable

table |>

flextable::flextable()

8.3 Create a template | 269

Variable N.Valid Min Mean Max Std.Dev

Conquests 24 1 2.54 4.0 0.78

Killings 24 1 17.00 47.0 11.35

Martinis 24 0 1.08 6.0 1.32

Rating 24 6 6.86 7.9 0.52

The flextable() package gives you a lot of options to create tables with R. The package
provides features to export tables and will also help to create tables for a multivariate
analysis. Just to give you some impression of how the package works, inspect what
happens if you add a theme (e.g., theme_vanilla()) and I used the autofit() function
for the last table. The theme_vanillamakes theheader bold and the autofit() function
adjusts the width of the table.

Such steps seem straight forward, but creating a table from the ground up is a
complicated task. If we make such basic tables, there is not much that we must learn.
However, we should put more effort into our tables if we want to create something
special or customized. For example, you could add a picture of each James Bond, or
even include a graph that describes the examined variables in the table. However, this
is not the purpose of this chapter, instead we need to acknowledge the importance of
the topic. If the data gets an update, if you include (exclude) variables from the analysis,
or if you change anything that affects the results, the table gets an update after you knit
the document again.

Multivariate analysis
Let’s run a linear regression and summarize the results. The workflow to create a table
for a different kind of analysis technique is the same, regardless of whether we report
the results of a linear regression, logistic regression, or another analysis technique.
Depending on the statistical procedure, we must adjust certain aspects of the table, but
these are merely minor adjustments.

Let us estimate if the rating for a Bond movie depends on any of the examined
variables. A Bond movie should be entertaining and, in consequence, people may give
better ratings if a movie is full of action. The same applies to the number of drinks or
love affairs. The number of martinis, conquests, and killings may explain the movie’s
rating, even though these are quick-and-dirty assumptions.

We use the huxtable package to create regression tables (Hugh-Jones, 2022). We
already used the package to compare models, and we can translate the results of
the huxtable package into a flextable. The huxtable package provides several nice
features to adjust our regression tables and we can also use it to create tables for PDF,
Word, or HTML files. As the next output shows, I estimate two example models (m1 and

270 | 8 Communicate research findings

m2) to make the table. The huxreg function returns the models via the console or as a
table if we include the code in an R chunk.

Two example models

m1 <- lm(Rating ~ Conquests, data = bond_data)

m2 <- lm(Rating ~ Conquests + Martinis, data = bond_data)

Show my models via huxreg()

library(huxtable)

huxreg(m1, m2, error_pos = "right")

Tab. 8.3

(1) (2)

(Intercept) 6.814 *** (0.376) 6.675 *** (0.471)

Conquests 0.017 (0.142) 0.052 (0.159)

Martinis 0.048 (0.094)

N 24 24

R2 0.001 0.013

logLik -17.723 -17.577

AIC 41.447 43.154

*** p < 0.001; ** p < 0.01; * p < 0.05.

We get a regression table, just like we have seen before – but think of it! The book in
your hands is a PDF file, which implies that the huxreg function returns the LaTeX code
to create the table. Thus, the huxtable package figured out that I knit my document as
a PDF, but you can also create an HTML file, or a Word document.

Depending on the purpose, you may want to tweak some options to improve the
table. First, let us create a list of all models (modelfits) and give each element of the
list a name. In doing so, our model names will be included as labels in the header of
the table.

create a list with models and labels

modelfits <- list(

8.3 Create a template | 271

"Model 1" = m1,

"Model 2" = m2

)

In addition, we may improve the table with respect to:
– Coefficients: Sometimes, a lot of variables are included, and we may split the table

in two – one for the body of the document and another one for the appendix. The
option omit_coefs omits variables from the table.

– Statistics: Maybe it is not necessary to show the entire list of all default statistics.
Adjust the list of statistics and, as the next console highlights, we can give each
statistic a proper text label for the table.

– Round numbers: Round the report results with number_format; the reader will
thank you.

– Note: The next code also adds a note to provide more information about the model,
the variables, and other important information.

The improved table (see Tab. 8.4):

huxreg(modelfits,

omit_coefs = "(Intercept)",

statistics = c(`Number of observations` = "nobs", `R²` = "r.squared"),

number_format = 2,

note = "Note: Some important notes."

)

Tab. 8.4

Model 1 Model 2

Conquests 0.02 0.05

(0.14) (0.16)

Martinis 0.05

(0.09)

Number of observations 24 24

R² 0.00 0.01

Note: Some important notes.

272 | 8 Communicate research findings

The huxreg function comes withmany possibilities to adjust a regression table. I cannot
discuss all of them in detail. Maybe you want to replace the crude names of certain
variables with text labels, or maybe you want to change the significance levels and
display significant coefficients in bold. That’s all possible. Go on and inspect the huxreg
vignette which provides more options and improvements for the (regression) table.

The huxreg vignette shows more options how to adjust the table

vignette("huxreg", package = "huxtable")

Creating tables for research results might be quite complicated in the beginning, but it
boosts your skills and increases your work efficiency. Keep in mind that we can make a
flextable from a huxtable by adding the as_flextable() function. This might not be
necessary, but it highlights that you can make further adjustments with the flextable
package. The flextable package also provides a convenient way if you want to export
your work only. As the next console illustrates, export the table as a Word, PowerPoint,
or HTML file.

Export, for example as .html, .pptx, or Word (docx) file:

flextable::save_as_docx(table, path = "./table.docx")

Let me give you one last advice how to handle long code chunks. Suppose your doc-
ument contains a long code chunk, for example, for a ggplot2 graph to visualize the
regression results. It is not convenient to have all that code within your document, even
if the code is not displayed in the document. Put the source() function in your setup
chunk and point to the .R script that generates the graph; or any other results from R
that should be available but not displayed in the document.

For example, the code to visualize the regression results of the last analysis does
not live in the Rmd file of this chapter. Instead, I put it in a separate script called
regression_results.R and I make the results of that script available via the source()
function.

Use source to run R script in the background

source("regression_results.R")

In this file, I created and saved the plot (as regression_plot). If I insert the object name
in an R chunk, it returns the graph. Apparently, none of the examined variables has
an effect on the James Bond movie ratings, but the code that creates this graph is not
included in the Rmd file of this chapter; I only need to call the object once more.

8.3 Create a template | 273

The result of the regression_results script

regression_plot

Killings

Martinis

Conquests

−0.2 0.0 0.2 0.4
Estimate

Model 1

Model 2

James Bond Movie Ratings

One last word on how life becomes trickier with LaTeX. It could be that you first
need to install the corresponding LaTeX packages. They should be installed on the
fly and the discussed R packages included them in the LaTeX file. The huxtable pack-
age offers two useful functions that you may consider if you run into an error. The
report_latex_dependencies() function returns packages that are needed to create the
table, and you can even install LaTeX packages via the install_latex_dependencies()
function, as the next console summarizes.

Use report_latex_dependencies to inspect the LaTeX packages

huxtable::report_latex_dependencies()

The install_latex_dependencies function installs them via R

huxtable::install_latex_dependencies()

Summary

This chapter introduced the rmarkdown package and I wrote this chapter to underline
that we do not need to manually transfer results. When we write a document with
rmarkdown there will be no need to worry how the analysis results come into the text
document. We reduce potential sources of manual errors, and we can make updates of
our analysis by just rendering the document again. Writing a document with rmarkdown

is not difficult, but creating a document in a way that suits your needs might be a
demanding task. We worked on a template for this reason, but I cannot discuss all
rmarkdown features. Check out the rmarkdown website, it shows a lot of next steps and
a gallery with examples.

274 | 8 Communicate research findings

I cannot close this chapter without mentioning some of the possibilities which
are at your disposal. As outlined in the introduction, your rmarkdown skills are the
foundation to create books with bookdown, (Xie, 2022a), websites with rmarkdown or
distill (Dervieux et al., 2022), and presentations with xaringan (Xie, 2022d). Chapter
12 covers some of those opportunities, but there are more packages out there. For
example, create a resume with vitae (O’Hara-Wild & Hyndman, 2022) or a scientific
poster with posterdown (Thorne, 2019).

I outlined also a fewbasics aboutHTML, LaTeX,Markdown, andYAML. I focused on
the output and I tried to avoid going into too much detail on how they work, especially
where LaTeX is concerned. Depending on the preferred output, it is useful to learnmore
about those languages. Nevertheless, I did not want to elaborate toomuch, since we can
make a report with limited knowledge about those languages. If you need more help
with rmarkdown, visit the bookdownwebsite. It lists many books about R, among them R
Markdown Cookbook by Xie et al. (2020) or bookdown: Authoring Books and Technical
Documents with R Markdown by Xie (2016) which show in detail how documents are
made with R.

The bookdown website:

show_link("bookdown_website")

Bookdown

show_link("bookdown")

R Markdown Cookbook:

show_link("rmarkdown_cookbook")

|
Part III: Beyond the basics

9 GitHub
Git is a version control system for code and GitHub is an host (website) for Git-based
projects. Think of Git/GitHub as some sort of cloud system to manage code. Git/GitHub
has a technical background and was developed for programmers, but there are several
reasons why such a version control system is valuable for applied research, even if you
already work with a cloud service. Most importantly, GitHub helps us to increase the
reproducibility of our work and it traces the change of code. On GitHub, each project
gets its own repository, which is essentially a folder that contains all project files. A
repository can be private – which means that it is only visible for yourself – or you can
share it by making it public. People may reuse your code and hopefully reproduce your
results, even if they do not have their own GitHub account.

GitHub keeps track of our code. Suppose we work on a project and we tried to
improve the code, but we made a mistake. GitHub marks changes to the code and each
time we make an update of a project we are forced to explain – in a few words – what
happened to the code. A version control system lets us travel back in time to find out
where a possible error occurred. Figure 9.1 illustrates this feature with code from the
PracticeR package. I changed the source code of the package and GitHub marks code
in red that has been changed and at the same time displays the new version in green.

Fig. 9.1: GitHub code changes

GitHub is not made to handle large data sets or text documents; it does not keep track
of each word. For example, look at line 1 of Figure 9.1. I changed only one word in a text
field of the package, but GitHub marks the entire block. Other systems are better suited
to track changes in text documents and files (e.g., Google Docs), but GitHub is made to
keep track of code.

In a similar vein, the steps of applied empirical research do not necessarily proceed
in a sequential manner. Say you analyze data, but the next day you realize that an
important control variable ismissing. You go back, prepare the data and run the analysis
again. Unfortunately, you made a mistake in the data preparation step. Again, you
circle back, and you will probably create a new version each time you improve the

https://doi.org/10.1515/9783110704976-009

278 | 9 GitHub

analysis substantially. In the final project stage, the folder contains a lot of files and
you will probably end up with several final versions (e.g., data_prep_final_v4). But
do you know what happened in-between? Can you remember what you have changed a
week, a month, a year ago? We may add comments to explain what happens in each
new version. However, GitHub makes it possible to see the changes and forces us to
explain what happened to the code.

Unfortunately, Git(Hub) is full of jargon and hard to learn in the beginning. For this
reason, this chapter introduces Git/GitHub briefly and in a non-technical fashion:
– Section 9.1 highlights additional advantages of GitHub to further push your motiva-

tion. We start to elaborate on the technical terms and processes of working with
GitHub.

– Section 9.2 guides you through the installation process. I ask you to create a GitHub
account and install Git.

– Section 9.3 outlines in detail how to work with GitHub and RStudio: we create a
repository and connect RStudio with your GitHub account. We get in touch with
the RStudio Git pane to apply the basics steps.

There is so much more we could learn when working with GitHub, but this chapter
only highlights that the principle steps to work with GitHub and RStudio are not rocket
science. As a last step, we inspect how GitHub makes it possible to travel back in time
and we talk about problems and conflicts that we possibly need to resolve.

Chapter 9 needs the following packages:

library(devtools)

library(gitcreds)

library(gh)

library(PracticeR)

library(usethis)

9.1 The Git(Hub) basics

Git(Hub) is a large struggle in the beginning:¹ It takes time to setup and to acquire the
experience working with GitHub; it is full of jargon which makes it hard to learn; and
even if you managed the setup, at some point you will face problems that I did not
mention. Learning GitHub is hard, but definitely worth the trouble. Before we dive
into the jargon, let me try to convince you that GitHub is worth the trouble with three
additional features that a typical cloud system (e.g. Dropbox) probably cannot deliver:
(1) GitHub facilitates cooperation. (2) Code on GitHub is accessible everywhere. (3)

1 As outlined, Git and GitHub are two different things, but I will only use the two terms in a differentiated
way where it is necessary (e.g., Git code, the GitHub website).

9.1 The Git(Hub) basics | 279

GitHub has additional features beyond code managing, such as running apps, hosting
websites, and automating building steps.

GitHub facilitates cooperation by allowing people to simultaneously work on a
project. Of course, team members could send files around, but this often results in
chaos with different file versions in several mails, each containing part of the changes.
Or suppose the files live somewhere in the cloud. Why has someone else opened the
file, exactly when we start to work on the project? GitHub allow us to create a branch,
making it possible that each team member can work on the project. The changes can
then be combined (merged) after the work is done. GitHub even tries to match branches
automatically and shows conflicts between versions that need to be solved.

Code on GitHub is accessible everywhere. For example, consider the
gapminder_plot() function. As the next console illustrates, it returns the bubble chart
for the gapminder data that I introduced in Chapter 1.

Show me the gapminder plot

gapminder_plot()

The graph is created automatically when I render this document, but the code to create
the graph is not included here. The book is built with rmarkdown (see Chapter 8), and
the setup chunk of this chapter includes the url_source() function from the devtools
package (Wickham, Hester, Chang, et al., 2022). The code to create the plot is saved
on my GitHub account and the function collects and runs the code to create the plot.
Irrespective where you are and which computer you use, code that lives on GitHub can
be retrieved via the source_url() function. On GitHub, you can also inspect the raw
(text) version of the code which the source_url() function collects.

280 | 9 GitHub

source_url runs code from GitHub

script <- "./raw.githubusercontent.com/username/file.R"

devtools::source_url(script)

GitHub has more advantages that I can outline. You can run apps, host websites, and
GitHub even allows us to automate building steps. Let me outline this last point in
more detail. Suppose you are working for an NGO which conducts a large survey on a
regular base. You are responsible to prepare the data, run some analysis, and make
a report. More specifically, you are supposed to do so each time the data gets a new
release. In Chapter 10, we will learn how to automate this process with R, but GitHub
also helps with this task. With GitHub Actions, we can run a workflow and automate a
work process. GitHub Action is event-driven, which means that we can implement a
workflow that runs each time a specific event has occurred. For example, we can create
a workflow that is triggered each time our files get an update and - depending on our
workflow – they can trigger specific jobs. In our case we let GitHub Actions run an R
script and rebuild the report automatically each time the event occurred.

Thus, GitHub has more to offer then this chapter could possibly show, and I hope
that these advantages motivate you to get in touch with GitHub. Before we install and
work with GitHub, let us clarify some of the technical jargon.

You already know that files live in a repository, actually there are two different kinds
of repositories if your computer is connected with GitHub: A local repository on your
computer and a remote repository on GitHub. If a repository is public, you can inspect
it in your browser to get a first idea about GitHub. For example, visit the PracticeR
package repository. This is not very exciting, but it outlines that the repository contains
all files that are necessary to build the package and you cannot visit my local repository.

Inspect a GitHub repository. For example:

show_link("pr_github")

In order to track changes, we send files to GitHub or get files from a remote repository.
In the GitHub universe, we push code from a local repository to GitHub; while pull
turns it around and we retrieve code from GitHub. Suppose we worked on a project and
we changed our code. We save the files, but this will not change the remote GitHub
repository. The changes will only show up if we intentionally push the new version
to GitHub. Or imagine you are working with a colleague who made some substantial
improvements. You need to pull the latest version of the remote repository before you
start to contribute to this project.

Before we push files, we have to commit changes. Commits are actually the part
where version control comes into play. Without version control, we save the document
and everything that has been changed is gone. A commit tracks changes of the code
and should be done consciously. Therefore, GitHub asks you to stage files and add

9.2 Install Git | 281

a commit message. Don’t worry, we need not write a novel, but the commit message
should help us to understand what changed. Suppose you add a new histogram in a
project, the commit message, "Add histogram"might be enough to understand which
part of the code has been changed. In addition, GitHub gives each commit a unique
label – a secure hash algorithm (SHA, e.g., 992bb07) – whichmakes it possible to restore
a repository to a certain point in time. So, keep in mind, we stage files by adding a
commit message, before we push it to GitHub.

There is no need to make a commit every time the code changes. It all depends
on the project and your sense of security. Just save your files as you would do without
using GitHub. Changes appear in the GitHub repository only after you pushed the code
to GitHub. GitHub has more jargon that I will not outline in detail, but you should at
least know what branches, forks, issues, and pull requests are:
– Branches are an extra project line to safely develop and integrate a new feature.

Suppose you want to add a feature to the project, but you are unsure if it works
and the branch gives you the room to try something new. If the feature is a success,
branches can be merged, but if the new feature was a failure, the main branch
remains unaffected.

– Forks are interconnected repositories, for example, to examine a repository from
someone else.

– Issues encompass a list of all code issues (e.g., to report a bug) of a repository.
GitHub enforces cooperation between programmers and by default gives all repos-
itories an issue page.

– Pull requests also aim to increase cooperation. Suppose you found a bug in an R
package, a pull request makes it possible to copy the file of the R package, develop
a solution and get in touch with the author. Pull requests facilitate this process
because the author sees which commits have been made and files can be merged if
the author agrees on the solution.

In conclusion, GitHub is somewhat complicated, but the discussed advantages may
outweigh the initial struggle. Moreover, this paragraph only introduced the GitHub
jargon, and we inspect the main steps in detail in the next section.

9.2 Install Git

Go to GitHub and create a free GitHub account. Pick a username that clearly states your
name as this makes it easier for people to find your profile and work.

Create a GitHub account

https://github.com/

282 | 9 GitHub

Next, install Git on your computer. Go to the website, download and install Git.

Install Git on:

https://git-scm.com/downloads

Git has no interface to work with, but we can check if Git runs by using the command
line. RStudio has integrated the shell or – depending on your operating system – the
terminal. Go to the R console in RStudio. The pane has several tabs, including the shell.
Or use the toolbar (Tools > Shell) to open a new shell window. You can check if Git
has been installed by inserting the Git code git --version. If Git runs, it returns the
installed version.

#Which git version is running?

git --version

#> git version 2.30.0

In principle, Git is made to run via the shell. Learning Git code is an additional effort
and we will use RStudio and certain R packages for the most important steps, especially
to make the introduction as smooth as possible. I nevertheless provide both approaches
since some Git code basics may have a larger impact in case you run into an error.

Before we can work with GitHub, you must introduce yourself by giving Git your
name and email address. Make sure that you use the same name and email address as
your GitHub account. If you are still in the shell, you can introduce yourself with the
following Git code:

#Introduce yourself: name and email

git config --global user.name "User Name"

git config --global user.email "email@address.com"

To check if the last step worked, ask Git to list the global settings. In my case, the shell
returns my email address, my username, and further cryptic global settings.

#List global settings

git config --global --list

#> user.email=edgar.treischl@MyProviderName.com

#> user.name=edgar-treischl

#> filter.lfs.clean=git-lfs clean -- %f

#> filter.lfs.smudge=git-lfs smudge -- %f

9.2 Install Git | 283

#> filter.lfs.process=git-lfs filter-process

#> filter.lfs.required=true

With respect to R, the gh package (Bryan &Wickham, 2022) and the usethis package
(Wickham, Bryan, et al., 2022) have functions to configure and work with GitHub. For
example, the use_git_config() function lets you introduce yourself with R, instead of
using the shell.

Introduce yourself with R

library(usethis)

use_git_config(

user.name = "Jane Doe",

user.email = "jane@example.org"

)

The same applies to further Git commands. For example, the next console illustrates
the Git code to add a new file, to commit a message, and to push it to a repository. The
next code only illustrates the principle.

#How to push code via the shell:

#Add a new_file

git add new_file.txt

#Add commit message

git commit --message "I finally add new_file"

#And puuuush....

git push

You may use the shell to add a file, make a commit, and push, but Git clients include
those features. There are several Git clients available to interact with GitHub (e.g.,
GitHub Desktop, GitKraken). Instead of focusing on Git commands, let us explore the
advantages of a Git client. In the next section we explore how RStudio has integrated
Git in detail, but the GitHub Desktop (or other clients) might be an option to consider if
you need to manage your files outside of RStudio. GitHub Desktop is free of charge and
Figure 9.2 shows a screenshot of it.

AGit client providesmany functions toworkwithGitHub. I’d say themost important
one is that it gives us a graphical interface which makes it more convenient to work
with GitHub, especially in the beginning. For example, GitHub Desktop automatically
checks the version of a file and it shows graphically if you can push or pull code. The
RStudio Git pane has those functions integrated, but you may want to download an
additional client when you work with GitHub on a regular basis. In the beginning it
might not be necessary to use an additional client, but keep in mind that several Git

284 | 9 GitHub

clients exist. Instead of exploring additional features of GitHub Desktop, we connect
RStudio with your GitHub account in the next step and I show in detail how they work
together.

Fig. 9.2: GitHub Desktop

9.3 GitHub and RStudio

Let’s connect RStudio with your GitHub account. There are several ways, but I will show
you only how a personal access token (PAT) works, since this is a convenient way to
establish the connection. Instead of a password, a token (long text string) will be used
to connect your account.

Go to the GitHub website and sign in. The usethis package will show you where
you can create a PAT, but first you need to sign in for this purpose. Next, switch back
to RStudio and run the create_github_token() function. It opens the GitHub website
and shows you the page where the token can be created.

Go to the GitHub website to create a token:

https://github.com/settings/tokens

usethis::create_github_token()

Essentially, the function points you to the Developer settings of your GitHub account;
there we are able to create a PAT. The function also picks some recommended scopes to
create a PAT. For example, it inserts a note that describes the purpose of the PAT. These
options are not very important in the beginning; stick to the default values and create
the PAT. Scroll down the page, create the PAT, and most importantly, copy your token.

9.3 GitHub and RStudio | 285

After you have copied the token, run the gitcreds_set() function from the
gitcreds package (Csárdi, 2022). The function will ask for the token and connect
RStudio with your GitHub account.

Give RStudio your token

gitcreds::gitcreds_set()

Now check if RStudio is connected with your account. The gh_whoami() function shows
who you are on GitHub.

Check who you are

gh::gh_whoami()

#> {

#> "name": "Edgar Treischl",

#> "login": "edgar-treischl",

#> "html_url": "https://github.com/edgar-treischl",

#> "scopes": "gist, repo, user, workflow",

#> "token": "ghp_...w0sd"

#> }

To show you how GitHub and RStudio work together, you need to create a repository.
The repository is for illustration purposes only, so don’t be afraid to make mistakes. I
will show you later how you can delete it. Go to the GitHub website and make a new
repository via the navigation bar, or you can go the repositories tab on your GitHub
profile. Figure 9.3 highlights the necessary steps to create a new repository.

Fig. 9.3: Create a GitHub repository

286 | 9 GitHub

The repository needs a name and we need to decide whether it shall be a public or a
private repository. Create a test repository and make it public. Furthermore, GitHub
asks about your opinion on several repository files:
– README file: You may initialize the repository with a README file. This gives

visitors an idea what the repository contains.
– License file: You may determine under which license the work is published (e.g.,

creative commons license).
– gitignore file: Lists files that are not supposed to be upload to GitHub. They remain

locally available, but will not show up on GitHub.

You can ignore these files and pick the default settings. They are not important for the
first steps. Next, we clone the repository – I use this term explicitly, because it’s a vital
part in the GitHub universe. It implies that we copy all files from the GitHub repository
and create the same folder as a local repository.

There are several ways to clone the repository. After you created your repository,
GitHub displays a page with Quick setup instructions. Figure 9.4 shows a screen shot of
this step. If you have installed GitHub Desktop, you can also use the Setup in Desktop
button on the left side to get a local copy. Moreover, the website shows the HTTPS and
SSH path to your repository. Press the copy button on the GitHub website and copy the
HTTPS link.

Fig. 9.4: GitHub quick setup

We can clone a repository from the shell and the following console shows the cor-
responding Git code. However, RStudio’s project wizard has integrated this step in a
convenient way and you don’t need code to clone a repository.

#Clone a repository from the shell

git clone https://link_to_your_project.git

Instead of using the shell, create a new project, pick the option Version control, and
choose GitHub. After those steps, the project wizard opens a window in which we can
insert the copied repository path, as Figure 9.5 shows for a test repository. RStudio will

9.3 GitHub and RStudio | 287

build the project directory name from the URL. Moreover, you should pick a directory
where all your GitHub repositories will be saved before you create the project.

Fig. 9.5: Clone repository

The steps to clone a repository from GitHub can also be achieved with the usethis

package (Wickham, Bryan, et al., 2022). The create_from_github() function needs the
HTTPS link and a destination directory (destdir) where the repository will be saved. It
will copy the files from GitHub and will create a local repository.

Clone a repository with R

usethis::create_from_github(

"https://github.com/username/repository.git",

destdir = "~/local/path/repo/"

)

Once RStudio has created the project and cloned the repository, the Git pane should be
visible. A restart may do the trick if the Git pane does not show up immediately as one
of the RStudio panes. Alternatively, go the RStudio settings and enable version control
manually, restart RStudio and open your project again.

As Figure 9.6 illustrates, RStudio integrates the most important functions to work
with GitHub and I used a test repository to outline them. Use the pane tomake a Commit,
Push and Pull code, or inspect code Differences or the History of the repository. The
Git pane shows you, based on colored symbols, which files in your local repository
have been changed:Modified files (e.g., graphs.R) are marked in blue; Deleted files are
marked in red (e.g., model.R); new files (e.g., test_file.R) are marked in yellow with
a question mark, because GitHub has no history about this file. After you stage them,
they are marked green and are displayed as Added files (e.g., new_model.R) and finally
Renamed files are marked in purple (e.g., analysis_v77.R).

288 | 9 GitHub

Fig. 9.6: Git pane

Let’s check if we can push code to GitHub. Create a new R scripts, and save it in your
local repository. For now, it isn’t important what the file contains; just create one to test
if you can push code to GitHub. After you have created the file, go to the GitHub pane
and press the commit button to see the review window. The window shows all changes
between the local and the remote repository.

As Figure 9.7 depicts, we need four steps to push code to GitHub: (1) Set a check
mark and stage files. As illustrated, you need to stage all files if you have worked on
a real project. Press <Ctrl/Cmd> + <A> to select all files and stage them. (2) Insert a
descriptive commit message. As a best practice, consider the changes you made. Here I
just insert a few words to test if I can add a test file. (3) Click the Commit button to add
the commit message. And finally, (4) push it to GitHub.

Fig. 9.7: Push with the Git pane

After we committed and pushed the code, RStudio opens a window that shows what
actually happens in the background. The next console illustrates what the window
may look like. It displays the path to Git, the commit message, the SHA, and – in my
case – it tells us that one file has been changed. Those messages may seem cryptic in
the beginning, but as long as you don’t get an error message everything seems to have
worked.

9.3 GitHub and RStudio | 289

#> >>> C:/./././././Git/bin/git.exe commit -F

#> >>> C:/././././././git-commit-message-45b8696c483e.txt

#> [main 241afad] Changed X

#>

#> 1 file changed, 1 insertion(+), 1 deletion(-)

After you committed and pushed the code, go back to the GitHub website and inspect
your repository. If everything worked, the changes should now be included in the
remote repository. GitHub displays the commit message next to your username and
also the time of your last push.

We created this repository only for illustration purposes. If you do not want to keep
it, go to the main repository site and examine the settings. Scroll down the general
settings page and you will find the possibility to change or delete a repository. Be
cautious: There is no recycle bin on GitHub and youwill permanently delete a repository.
Moreover, keep in mind that the local repository remains untouched if you delete it on
GitHub.

There is much more to learn when it comes to GitHub, at least let me outline how
typical code merging conflicts can be solved and how to undo mistakes.

9.3.1 Conflicts

GitHub lets you work with other people on the same project, and you will need to
pull code if someone else has changed the repository since the last time you worked
on the project. Thus, pulling code from the repository should be the first step when
you work on a shared project. GitHub retrieves the code and merges it with your local
repository. Unfortunately, sometimes GitHub cannot merge files automatically, leading
to a merging conflict. A conflict may even occur between your local and the remote
repository if competing changes have been made. GitHub will throw an error message
when it cannot merge two (or more) files, and we cannot push our code.

GitHub inserts conflict markers (<<<<<<<, =======, >>>>>>>) that outlines the con-
flict between the local and the remote repository. If you are the repository’s owner,
it will be up to you to decide which version of the code should be used, or how the
versions should be combined. Delete the conflict markers and the code that creates the
conflict.

Such merge conflicts further illustrate that there is always the chance that you will
run into an error and that you cannot push or pull certain code. GitHub has a large
community, and therefore, you will find many solutions for typical problems on the
web. For example, consider the GitHub Docs website which has a dedicated page about
merge conflicts and gives a broader overview if you run into an error.

290 | 9 GitHub

GitHub Docs:

https://docs.github.com/en

The git_sitrep() function from the usethis package returns a situation report on your
current Git/GitHub status and the latter also reveals hints onwhatmight be the problem.
I also ran into an errorwhile Iwrote this chapter. As the next console illustrates, I needed
to renew my token. For security reasons, tokens are only valid for a limited time.

Get a situation report on your current Git/GitHub status

usethis::git_sitrep()

#> * GitHub user: 'edgar-treischl'

#> * Token scopes: 'gist, repo, workflow'

#> x Token lacks recommended scopes:

#> - 'user:email': needed to read user's email addresses

#> Consider re-creating your PAT with the missing scopes.

#> `create_GitHub_token()` defaults to the recommended scopes.

#> x Can't retrieve registered email addresses from GitHub.

#> Consider re-creating your PAT with the 'user' or at least 'user:email'

9.3.2 Undo mistakes

GitHub keeps track of code and makes it possible to travel back in time. As we saw,
GitHub marks code differences, which is the main distinction to other version control
systems. Each time you make a commit and push, GitHub takes a snapshot of the
repository. We did not yet change much, but once you start working with GitHub on a
regular basis, you can inspect changes between the local and the remote repository in
the differences (diff) window of the git pane. In the same sense, git status returns
the actual status and git diff returns differences between your local and the remote
repository.

#Inspect status and differences

git status

git diff

Furthermore, go to the Git pane and press the History button. RStudio has integrated
the commit history and shows changes, as Figure 9.8 highlights. All commits are shown
in the header, and you can inspect what happened to the code if you choose a commit
from that list. It shows the subject, the author, the date, and the SHA of the commit.

RStudio shows a link to the file on the right side. This makes it convenient to travel
back in time. Just click View file to revisit the code at that particular point in time. In
addition, you may also use the secure hash algorithm to reset your repository, but be

9.3 GitHub and RStudio | 291

cautious, because you may loose information. It’s certainly good to know that such
possibilities exist, but it remains safer to inspect an old file than to make a (hard) reset.

Fig. 9.8: Track changes of code

Summary

This chapter gave a brief and non-technical introduction to GitHub, especially to em-
phasize that GitHub is a valuable tool for applied (social science) research. GitHub
helps us to increase the reproducibility of our research, it facilitates cooperation by
allowing people to simultaneously work on a project, and GitHub keeps track of code
changes.

This chapter does not intend to give you a comprehensive overview of all GitHub
functions, instead the aim is humbler for a good reason. Consider Pro Git by Chacon &
Straub (2014) if you want to increase your Git skills.

Pro Git

show_link("pro-git")

The book explains everything you need to know about Git in a mere 519 pages, which is
why I did not even try to give you a comprehensive overview in this chapter. Instead, I
emphasized the advantages of GitHub. I tried to make the entry into the GitHub world
as informal as possible and I outlined the workaround with RStudio. Keep in mind that
you don’t need to become a GitHub expert in order to get the advantages of a version
control system.

10 Automate work
Suppose somebody asks you to analyze how life expectancy has developed in Belgium
and you should summarize the results in a report. The data includes many countries,
so you apply a filter and create tables and graphs specifically for the report. The next
day, you get asked to make the same report, but this time for Spain. No big deal, right?
You make a copy of the document, adjust the filter, and change the text. But what
comes next? A report for yet another country or year? Different countries and years
are placeholders of categorical variables. How can we create a report that is flexible
enough for each group level? And how can we automate this process. We should try to
avoid repeating ourselves, in terms of code and when we create such reports.

In this chapter, you will learn how to make a dynamic report with rmarkdown. We
will create a document that serves as a template to create several documents on the
fly. For this purpose, the document includes a parameter (e.g., country name), which
makes it possible to recreate the same document for a different country, year, or any
other parameter as needed. All we must do is change the parameter and recreate the
document.

Talking about dynamic documents sounds like I try to encourage you to be lazy,
but there is a good reason why I introduce this topic. There are better ways to use
your limited time and resources. Changing a few lines of code is fine, but creating the
same document repeatedly is a waste of time. A dynamic report not only reduces the
workload, the work also becomes less error-prone when we automate the creation steps.
Thus, the main objective of this chapter is to create a dynamic report, learn more about
automation, and avoiding the need to repeat ourselves.
– In Section 10.1, we create a dynamic document and learn how to automate the

process. Based on an example analysis with the palmerpenguins, we learn how to
include parameters and update the document. Furthermore, there is a lot of room
for improvements when many documents are created. Our time is too precious to
manually render each document or give each file a unique name. Let R do the work
for you.

– In Section 10.2, we create text for the document. Say the report contains a descrip-
tion of the data and a few sentences that outline the main findings for each country.
Unfortunately, R cannot write the entire text, but there are several packages that
help us to automatically describe the data or the report’s statistical findings.

– In Section 10.3, we use R to send reports via email. After we have finished the
document, we may send it to another person. If we can automate creating the
documents, why should we now manually send it? There is no need for a copy and
paste approach. Even if we are not supposed to send the reports via email, we gain
further insights in functional programming in this last step.

https://doi.org/10.1515/9783110704976-010

10.1 Reports | 293

As always, the PracticeR package gives you access to the source code, but in this
chapter we develop functions to create documents; and we improve them step by
step. For this reason, I created a GitHub repository (penguins_report) with a clean,
final version of the code. The files contain all steps to create and send documents
automatically. Thus, the repository may help in case you run into any error. Download
the files from my GitHub account or use the create_from_github() function from the
usethis package to clone the repository. In addition, the next console shows also the
packages for Chapter 10.

Get the link to the repository

penguins_report <- PracticeR::show_link("penguins_report",

browse = FALSE

)

Clone the GitHub repository of this chapter:

usethis::create_from_github(penguins_report,

destdir = "~/path/to/your/local/folder/"

)

Setup of Chapter 10

library(beepr)

library(blastula)

library(correlation)

library(dplyr)

library(effectsize)

library(flextable)

library(ggplot2)

library(glue)

library(here)

library(palmerpenguins)

library(purrr)

library(PracticeR)

library(report)

library(tibble)

library(tidyr)

10.1 Reports

To create a dynamic report, we first need an example analysis. In this chapter I use the
penguins data from the palmerpenguins package to illustrate how to automate a report,
but the focus does not lie on the data or the analysis (Horst et al., 2022). The penguins

294 | 10 Automate work

data has observations for three different years, as the distinct() function and the
next console reveals (Wickham, François, et al., 2022). Let’s pretend that the report
includes several tables and graphs based on the penguins data, but for the report we
need observations from the year 2007 only.

How many distinct years has the penguins data?

dplyr::distinct(penguins, year)

#> # A tibble: 3 x 1

#> year

#> <int>

#> 1 2007

#> 2 2008

#> 3 2009

Consider the next console. It displays the code to create a scatter plot and examines
how bill_length_mm and body_mass_g are related. Irrespective of the variables and
steps to prepare the data, we use a filter() to restrict the data for a specific year and
we create a scatter plot with the ggplot2 package.

An example scatter plot

penguins |>

filter(year == 2007) |> # here comes the filter

ggplot(aes(bill_length_mm, body_mass_g, color = species)) +

geom_point() +

ggtitle("2007")

In the next section we make a dynamic document based on this code snippet. The
rmarkdown package lets us define parameters (e.g., year) and makes it possible to
create a document for each level of the parameter with the same template. Our code
remains almost untouched; we only change the parameters.

10.1.1 Parameters

The next console shows the meta section (YAML) of a corresponding rmarkdown docu-
ment. If we include the parameters (params) field, it allows us to render a document
with different values of the parameter. Do not forget the indentation if you try this on
your own.

10.1 Reports | 295

title: "Dynamic Reports"

author: "Edgar"

output: pdf_document

params:

year: 2007

By including params in the meta section, we can define and then refer to default values
in the document. Actually, I inserted the same params fields in the rmarkdown document
of this chapter of the book. Look what params$year returns if I insert it in the console.
It returns the value of the params. If I change the default value in the YAML to 2008,
params$year will return 2008.

The default value of params$year is:

params$year

#> [1] 2007

Examine the code for the scatter plot from the beginning again. If we insert params$year
inside the filter() function, we are able to refer to params$year to create the plot.
Moreover, I included the parameter in the ggtitle() function, which makes it a bit
easier to check which group level is used. The rest of the code remains the same.

Insert a parameter to filter the data

penguins |>

filter(year == params$year) |> # insert the params

ggplot(aes(bill_length_mm, body_mass_g, color = species)) +

geom_point() +

ggtitle(params$year)

3000

4000

5000

6000

40 50 60
bill_length_mm

bo
dy

_m
as

s_
g species

Adelie

Chinstrap

Gentoo

2007

296 | 10 Automate work

Suppose the report contains several graphs. To create the report for a different year
(value), we need to change the default value of the params in the YAML and then render
the document again. All graphs get an update and we must not change the code in the
rest of the document.

We can create dynamic tables aswell. Supposewewant tomake a table that displays
the body mass for each species. Insert the params in the data preparation step and the
table will get an update when we change the year. First, I create the output for a table
that includes the params field; and as second step, flextable() returns the output as
a table.

Create output of the table

df <- penguins |>

filter(year == params$year) |>

group_by(species) |>

drop_na() |>

summarise(`body mass` = round(mean(body_mass_g), 1))

Create a table

df |> flextable()

species body mass

Adelie 3714.2

Chinstrap 3694.2

Gentoo 5100.0

Use your time to improve the document, not for creating the same document over and
over again. For example, create dynamic tables for your purpose with the flextable
package (Gohel&Skintzos, 2022). Sincewe reduce the effort by automating the reporting
process, we may spend more time to create tables or other content that improves the
final document. As the next console shows, I created a table that shows several plots for
each species. It is just an example to underline that the flextable, the reactable (Lin,
2022) and other R packages to create tables offer much more possibilities to make and
improve tables. The next example is made with the kableExtra package (Zhu, 2021).

Do some fancy stuff instead of boring repetitions

This code may not work ;)

df |> fancy_stuff()

10.1 Reports | 297

Species Mean Boxplot Histogram Lineplot

Adelie 3706.16

Chinstrap 3733.09

Gentoo 5092.44

Notice, we can include a data set and variable names as parameter in the YAML:

params:

year: 2007

data: penguins

x: body_mass_g

y: flipper_length_mm

Technically it is not necessary, but we are able to run the document with a different
data frame if we include the name of the data. Consider the get() function. It returns
the data insert by the data parameter.

Get returns the values of the object

df <- get(params$data)

glimpse(df)

#> Rows: 344

#> Columns: 8

#> $ species <fct> Adelie, Adelie, Adelie, Adelie, ~

#> $ island <fct> Torgersen, Torgersen, Torgersen,~

#> $ bill_length_mm <dbl> 39.1, 39.5, 40.3, NA, 36.7, 39.3~

#> $ bill_depth_mm <dbl> 18.7, 17.4, 18.0, NA, 19.3, 20.6~

#> $ flipper_length_mm <int> 181, 186, 195, NA, 193, 190, 181~

#> $ body_mass_g <int> 3750, 3800, 3250, NA, 3450, 3650~

#> $ sex <fct> male, female, female, NA, female~

#> $ year <int> 2007, 2007, 2007, 2007, 2007, 20~

A parameter only returns the default value. Keep that in mind when you include
independent and dependent variables as parameters. For example, I included the
body_mass_g and the flipper_length_mm (as x and y parameter) variables in the doc-
ument of this chapter. Parameters return their default values and consequently text

298 | 10 Automate work

strings in case of variable names. This is the reason why we cannot apply a function
such as cor(), since it needs a numerical input.

Keep in mind what a param returns

class(params$x)

#> [1] "character"

The cor function needs a numerical input

cor(params$x, params$y)

#> Error in cor(params$x, params$y) : 'x' must be numeric

Hence, we need a different approach when we include variable names instead of levels.
For example, the correlation package lets us pick variables as text stings (Makowski,
Wiernik, et al., 2022).

The correlation function let us select variable as strings

cor_xy <- penguins |>

correlation(select = params$x, select2 = params$y)

cor_xy

#> # Correlation Matrix (pearson-method)

#>

#> Parameter1 | Parameter2 | r | 95% CI |t(340) | p

#> --

#> flipper_length_mm | body_mass_g | 0.87 | [0.84, 0.89] | 32.72 |< .001***

#> p-value adjustment method: Holm (1979)

#> Observations: 342

Or consider the aes_string() function from the ggplot2 package. It lets us work with
text strings instead of variables. Insert the params in the function to render a scatter
plot for the examined variables.

#Insert params via the aes_string function

ggplot(penguins, aes_string(x = params$x,

y = params$y)) +

geom_point()

10.1 Reports | 299

3000

4000

5000

6000

170 180 190 200 210 220 230
flipper_length_mm

bo
dy

_m
as

s_
g

Finally, suppose wewanted to run a (linear) model with parameters. We need to create a
formula (f)with the params, but since they return text strings,weneed the as.formula()
function. The latter converts the text stings as a formula. As the next console outlines,
we first create text strings with the help of the paste() function before we can apply
the formula. The paste() function combines strings and separates them with a blank
space as default, the collapse option collapses two or more strings to one, while the
sep option let us determine how the strings are separated.

The as.formula function understands the input as a formula

f <- as.formula(

paste(params$y,

paste(c(params$x, params$z), collapse = " + "),

sep = " ~ "

)

)

print(f)

#> body_mass_g ~ flipper_length_mm + bill_length_mm

The object f is only the formula for the model, but we can insert it in the lm() function
to run a model with those parameters. Now, even the model gets an update when we
pick different parameters.

Run the model with params

model <- lm(f, data = penguins)

model

#>

#> Call:

#> lm(formula = f, data = penguins)

#>

300 | 10 Automate work

#> Coefficients:

#> (Intercept) flipper_length_mm bill_length_mm

#> -5736.897 48.145 6.047

The discussed approach still includes a lot of repetitive work, especially if many docu-
ments are needed. For example, we must give each document a unique name when we
render it manually. A boring task, but a good example to further explore how we can
automation such steps.

10.1.2 Automate the report

RStudio has integrated an interactive user interface to knit a document with parameters.
Click on the arrow next to the Knit button, pick Knit with parameters and a menu shows
up that lets you enter values before the document is rendered. Figure 10.1 shows a
screenshot of the interface.

Fig. 10.1: Interactive interface to knit documents

If we tweak the YAML in the template, we are even able to include predefined choices
for a drop-down menu to pick values. The next console shows the code that makes the
interactive user interface a bit more user friendly. You can give each params a text label,
a default value, define an input selector, and predefined choices become available in
the drop-down menu.

params:

data: penguins

year:

label: "Year"

value: 2007

input: select

choices: [2007, 2008, 2009]

10.1 Reports | 301

This is a pretty cool feature to create one document, but it illustrates that many manual
steps are needed to create several documents on the fly. In order to automate a report,
we need to change the default value(s) in the meta section, but there is no need to touch
the document or the menu. Use the render() function from rmarkdown to create a new
document and include the values of the params as a list. The render function needs an
Rmd file (here a template) and values for the included params.

rmarkdown::render knits/renders the document

rmarkdown::render(

"template.Rmd",

params = list(year = 2007)

)

To further automate this process, we may adjust several options. First, add the clean
option in the case of PDF files (pdf_document). As outlined in Chapter 8, Pandoc runs
in the background and creates several Markdown and LaTeX files. Set the clean option
to TRUE and all files that are only necessary to create the output will be discarded after
the PDF file is rendered. Furthermore, we should give each document a unique name
with the output_file option. It expects a text string (e.g., report) as file name:

The clean and output_file option

rmarkdown::render(

"template.Rmd",

"pdf_document",

clean = TRUE,

output_file = "report",

params = list(year = 2007)

)

If we create a document for each year, all documents should have a distinct name
that we can include as a vector in the render() function. As long as we create a small
number of reports, we could make a vector manually. However, recall that the pull()
function pulls a vector and we can combine it with the distinct() function. We get a
vector with each distinct year to build unique file names.

Create a vector with unique years

years <- distinct(penguins, year) |>

pull(year)

years

302 | 10 Automate work

#> [1] 2007 2008 2009

Next, we create a second vector with the file names. We need a string that starts with the
distinct name of each group, the document name (e.g., _report), and the file extension.
As the following example outlines, we may use the paste0() function to create a file
name for each year:¹

The paste function pastes strings together

paste0(years, "_report.pdf")

#> [1] "2007_report.pdf" "2008_report.pdf" "2009_report.pdf"

We insert paste0() into the render() function; when we now render the reports in the
same order as the vector, each document will get an unique name.

This code does not yet work, but give the output_file a unique label

rmarkdown::render(

"template.Rmd",

"pdf_document",

output_file = paste0(year, "_report.pdf"),

clean = TRUE,

params = list(year = year)

)

Unfortunately, the code of the last console is not yet working, since we still need to
define for which year the document should be created. In the last code, year is a
placeholder to create the output_file and in the params list. Create a function (e.g.,
render_report) to make the report for a certain year and include the discussed steps.
The function needs only a year as input, it searches for the template in the working
directory, and renders the document for a specific year.

Create a function to render the report

render_report <- function(year) {

rmarkdown::render(

"template.Rmd",

"pdf_document",

output_file = paste0(year, "_report.pdf"),

clean = TRUE,

1 The paste() and the paste0() function do essentially the same, but the latter without inserting a
separator.

10.1 Reports | 303

params = list(year = year)

)

}

In terms of work efficiency, we should save all reports and templates in corresponding
folders. The here package is useful in this situation (Müller, 2020). With the help of
the latter, we can determine where our template lives or where our reports should be
savedwithout the hassle of having to adjust the working directorymanually. The here()
function returns the working directory.

here helps you to set the directory

here::here()

#> [1] "/Users/Edgar/Practice R/Chapters/10_Automation"

Now we can build a relative file path to refer to the template and to save the rendered
documents in a specific folder. The next time we start over, we can build a report even
for a different project as long as the folders exist. Suppose all reports shall be saved
in a folder called report_files. Insert the name inside the here() function to build a
relative path.

Create relative file paths

here("report_files")

#> [1] "/Users/Edgar/Practice R/Chapters/10_Automation/report_files"

It doesn’t matter anymore in which project folder the script is stored, the code runs
smoothly as long as the corresponding folder exists in the project. As the next console
shows, I included the here() function within the setwd() function twice. First, I adjust
the working directory to search for the template.Rmd in the Rmds folder. After the report
is rendered, the report will be saved in the report_files folder as the output directory
(output_dir).

Render the document for each continent

render_report <- function(year) {

setwd(here("Rmds")) # here is the template

rmarkdown::render(

"template.Rmd", "pdf_document",

output_file = paste0(year, "_report.pdf"),

output_dir = here::here("report_files"), # here will be the result

304 | 10 Automate work

clean = TRUE,

params = list(year = year)

)

}

A function helps us a lot in making reports, but depending on the number of reports,
the code is quite repetitive. Shall we run the render_report() function several times to
create all documents? This is bothersome and repetitive, since wemust call the function
for each year. There are different approaches to render several documents in a row,
including a very simple solution I have yet to introduce. A for loop lets us create the
documents for all years. Loops iterate and repeat code several times for each element.
Consider the next console: The loop prints each element i of the sequence from 1 to 3.

For loops: Loop through a task

for (i in 1:3) {

print(i)

}

#> [1] 1

#> [1] 2

#> [1] 3

We can use this principle to render several documents. Remember, we already have
a vector with distinct values (years) and we use this to render the document for each
year. More specifically, we apply the render_report() function for each year in years.

Apply render_report for each year

for (year in years) {

render_report(year)

}

Depending on the number of reports, the loop takes some time. If you do not want to
wait until R has finished this job (or other time consuming tasks), consider the beepr
package (Bååth, 2018). The beep() function plays a sound as soon as the job is done.

#The beepr package informs you if the job is done:

for(year in years) {

render_report(year)

};beepr::beep("ping") #pinnnng ;)

10.1 Reports | 305

Loops are fine if there is only one parameter involved, but what shall we do if we create
a document for different years and countries? We may loop through two variables, but
such nested loops become ugly and hard to read. In Section 10.3, we will learn how to
avoid such loops and apply a function several times.

Before we move on, can you still remember what we have done in Chapter 2? We
created a simple mean function to illustrate how functions works. Look where you are
standing now, you created a function to achieve a specific goal. Maybe you did not
realize it, but you could further improve the function and create an R package that
makes your functions available. Imagine, you start R and could load your own package.
Package development is a bit trickier, but it might be worth the trouble. The next section
introduces automated texts for the report, but consider reading first the next info box.
It outlines in detail why you should at least think about an R package to make your
work easily accessible.

R Package Development

An info box about package development probably comes as a surprise. This book only introduces R and
even though R packages extend the possibilities, developing them can be complicated. At the same
time, an R package can also be perceived as the ultimate goal to automate work processes. Suppose
you created several functions in order to create and send the report and all functions live in an R script
in your project folder. If you stick them all together in an R package with some effort in terms of package
development, other people and your future-self get access to those functions.

An R package might be a good idea even if you don’t plan to share your code. The creation an R
package forces us to consider how to make our work reusable and reproducible. It lets us think about
what the code should achieve even if we change some of the current working parameters. Thus, don’t
think of giant R packages (e.g., ggplot2 dplyr) when it comes to package development. An R package
may only contain functions that you apply on a regular basis, tailored to your specific needs and suited
for your repetitive tasks.

For example, consider the PracticeR package again. The latter lives only on my GitHub account
and I decided against publishing it on CRAN since it only accompanies the book. Keeping it on my
GitHub account gives me the freedom to update it each time the R landscape changes or when I find an
error. I introduced GitHub in Chapter 9, not only for this purpose, but because you can do the same for
your own package and give people access to your code.

This info box does not try to introduce package development; however, it tries to convince you
that package development is not as complicated as it may seem, especially not if you don’t have any
intentions to publish it (on CRAN). RStudio and several packages provide an excellent infrastructure
to create a package. Consider reading R Packages: Organize, Test, Document and Share Your Code by
Hadely Wickham (2015). The book outlines in ample detail how to make your work reproducible and
reusable.

#R Packages:

show_link("r_packages")

306 | 10 Automate work

10.2 Text

Maybe you did not expect a section about automated text, because the creation of
text seems complicated. True, R cannot write the document, but we are able to create
fragments of text with the report package. The latter returns texts to describe objects,
for example, text for the descriptive statistics or the parameters of a model (Makowski,
Lüdecke, et al., 2022). In a similar way, the effectsize package interprets effects and
we may use it to build our own report functions (Ben-Shachar et al., 2022).

Let’s start with a few simple sentences to show you how text from the console can
be included in the rmarkdown document. Suppose we describe the species variable of
the penguins data, and we want report how often a species appears. We could combine
insights from the last section and use params in order to create texts, but it is not
necessary to understand how it works.

For this reason, I assigned an object (param_specie) instead of using parameters.
The code also becomes clearer if we see the assigned value of a parameter in the output.
In order to create a sentence, we need to count how often a species like Adelie appears.

Calculate the number for params$species: Adelie

param_specie <- "Adelie"

number <- penguins |>

filter(species == param_specie) |>

summarise(number = n()) |>

pull(number)

number

#> [1] 152

Next, we combine the text, the parameter (param_specie), and the number. Like the
paste() function, the glue package has convenient functions to paste strings (Hester
& Bryan, 2022). As the next console shows, just glue a string together. Refer to objects
(or a parameter) within braces ({}) and build a sentence.

Glue them together

glue::glue("- We observed {param_specie} {number} times.")

#> - We observed Adelie 152 times.

How can we include the output of the (last) console in a document? The results chunk
option lets us determine how the results are handled in an rmarkdown document. Add

10.2 Text | 307

the chunk option and set it to asis. By adjusting the chunk option, the result of the
console is interpreted as it is.

```{r, results='asis'}

#Glue them together with the chunk-option: results = 'asis'

glue("- We observed {param_specie} {number} times.")

```

The glue function returns a character vector which will be rendered as text in the
document if we adjust the results option. Thus, the next time you render the document
for a different species, the text will update automatically. The next console shows how
the last console will be interpreted if the results option is set to asis.

Glue them together with the chunk-option: results = 'asis'

glue("- We observed {param_specie} {number} times.")

– We observed Adelie 152 times.

We may build longer sentences or include different statistics, but the principle to build
such static sentences remains the same.Maybe this feels like amachine is talking to you.
We could improve the sentences and pick some affirmative or negative words randomly
for more variation. Such a procedure can be a good start to automate text for a report,
but it would take a lot of time and effort to create customized solutions, especially
when we know that R packages are available to generate standard texts automatically.
The following subsection highlights functions from the report and the effectsize

packages to create automated texts that describe data, effects, and models.

10.2.1 Describe data

Addadescriptionof thedata if thedocument contains an empirical analysis. Our readers
need information about the data and examined variables before the empirical findings
are presented. The report() function helps us with this task. It uses all variables,
counts levels, and estimates statistics to describe the data. Use the report() function
in combination with the summary() function, which returns a (shorter) summary text.

Describe the data

report::report(penguins) |>

summary()

#>The data contains 344 observations of the following 8 variables:

#>

308 | 10 Automate work

#>- species: 3 levels, namely Adelie (n = 152), Chinstrap (n = 68) ...

#>- island: 3 levels, namely Biscoe (n = 168), Dream (n = 124) and ...

#>- bill_length_mm: Mean = 43.92, SD = 5.46, range: [32.10, 59.60],...

#>- bill_depth_mm: Mean = 17.15, SD = 1.97, range: [13.10, 21.50], ...

#>- flipper_length_mm: Mean = 200.92, SD = 14.06, range: [172, 231]...

#>- body_mass_g: Mean = 4201.75, SD = 801.95, range: [2700, 6300], ...

#>- sex: 2 levels, namely female (n = 165), male (n = 168) and ...

#>- year: Mean = 2008.03, SD = 0.82, range: [2007, 2009]

In addition, the report_participants() function returns typical information about the
characteristics of a sample, such as age, sex, or education. The penguins data does not
includemost of these variables, but the reportpackageprovides a code snippet to create
a data frame that illustrates the function. In a nutshell, the report_participants()
function only needs the corresponding column names.

Create a small data frame

df <- data.frame(

"Age" = c(22, 23, 54, 21, 8, 42),

"Sex" = c("F", "F", "M", "M", "M", "F"),

"Education" = c(

"Bachelor", "PhD", "Highschool",

"Highschool", "Bachelor", "Bachelor"

)

)

Describe the participants

report_participants(df,

age = "Age",

sex = "Sex",

education = "Education"

)

#> [1] "6 participants (Mean age = 28.3, SD = 16.6, range: [8, 54];

#> Sex: 50.0% females, 50.0% males, 0.0% other; Education: Bachelor,

#> 50.00%; Highschool, 33.33%; PhD, 16.67%)"

Of course, we may apply our R skills to further tweak these sentences to our purpose,
but compared to the simple sentences from the start, the report package conveniently
generates descriptive texts about the data. However, we did not purposefully build
these sentences manually to learn how it works, but to describe effects.

10.2 Text | 309

10.2.2 Describe effects

Suppose we examine the association of two variables, and we make an automated
report for a lot of countries. Certainly, the examined effect depends on the observed
countries. For this reason, we want to create scatter plots that depict the variables
and describe the effect with a sentence. For example, Figure 10.2 shows a scatter plot
which displays the effect of bill length (bill_length_mm) on body mass (body_mass_g).
I included a text box with the interpretation of the effect, it includes the effect size,
direction, and the correlation coefficient. How can we build such sentences? And if
we automate our document, how do we get an update of the text? First, I estimate the
correlation (corr_estimate) with the correlation package.

Fig. 10.2: An automated scatter plot

Calculate the correlation between param X and Y

x <- "bill_length_mm"

y <- "body_mass_g"

corr_estimate <- penguins |>

correlation(select = x, select2 = y)

corr_estimate$r

#> [1] 0.5951098

Next, we use the effectsize package to get an interpretation of the effect. The
interpret_r() function returns the effect size for the correlation.

310 | 10 Automate work

The interpret_r function interprets the effect

effect <- interpret_r(corr_estimate$r, rules = "cohen1988")

effect

#> [1] "large"

#> (Rules: cohen1988)

After we have estimated the correlation, extract the coefficient, round it, and save the
results (r_xy). To build the sentence with these values, combine the objects and the
text with glue().

Round() the calculation for the text

r_xy <- round(corr_estimate$r, 2)

Glue() them together

cor_sentence <- glue("There is a {effect} effect between {x} and {y}.

(r = {r_xy}).")

cor_sentence

#> There is a large effect between bill_length_mm and body_mass_g.

#> (r = 0.6).

To get more variation, we may determine if the effect is positive or negative. As the next
console shows, I assign a string (direction) as a placeholder. Next, if() checks if the
estimated correlation is smaller than zero and replaces the string if the condition is
fulfilled.

Check if effect is positive/negative

direction <- "positive"

if (r_xy < 0) {

direction <- "negative"

}

Now we can combine all steps and build a function (report_correlation) that returns
the sentence. The function needs data and two numerical variables to run.

Bring all steps together:

report_correlation <- function(data, x, y) {

corr_estimate <- data |>

10.2 Text | 311

correlation(select = x, select2 = y)

r_xy <- interpret_r(corr_estimate$r)

r_round <- round(corr_estimate$r, 2)

direction <- "positive"

if (r_round < 0) {

direction <- "negative"

}

cor_sentence <- glue("There is a {r_xy} {direction} effect

between {x} and {y} (r = {r_round}).")

return(cor_sentence)

}

We should use a different data set to test whether the function works. Built-in data sets
are clean and made for teaching purposes, and therefore not the best choice to test a
function, but we can try our first report function with it anyway.

Does the function work?

report_correlation(

data = iris,

x = "Sepal.Length",

y = "Sepal.Width"

)

#> There is a small negative effect between Sepal.Length and Sepal.Width

#> (r = -0.12).

The correlationpackage returnsmore information thanPearson’s r. Feel free to include
t-statistics, confidence intervals (CI), or the number of observations in your function.

t-statistic

corr_estimate$t

#> [1] 13.6544

Confidence intervals: CI_low and CI_high

corr_estimate$CI_low

312 | 10 Automate work

#> [1] 0.522004

Number of observations

corr_estimate$n_Obs

#> [1] 342

10.2.3 Describe models

Finally, we can use the report package to describe different types of models. Consider
a linear regression model as an example.

An example model

model <- lm(body_mass_g ~ flipper_length_mm, data = penguins)

The report_model() function returns a description of the estimated model and the
report_performance() function does the same for the performance of the model.

What kind of model do we have?

report_model(model)

#> linear model (estimated using OLS) to predict body_mass_g with

#> flipper_length_mm (formula: body_mass_g ~ flipper_length_mm)

What about the performance?

report_performance(model)

#> The model explains a statistically significant and substantial

#> proportion of variance (R2 = 0.76, F(1, 340) = 1070.74, p < .001,

#> adj. R2 = 0.76)

The report package offers more functions: use it to report findings of a general linear
model (e.g., logistic regression), mixed models, or just for a t-test. For example, the
t.test() function runs a one and two sample t-test and the report package returns an
interpretation.

Report package returns reports for several procedures

t-test:

penguins_ttest <- t.test(penguins$body_mass_g ~ penguins$sex)

report(penguins_ttest)

10.3 Emails | 313

#> Effect sizes were labelled following Cohen's (1988) recommendations.

#>

#> The Welch Two Sample t-test testing the difference of penguins$body_mass_g

#> by penguins$sex (mean in group female = 3862.27; male = 4545.68)

#> suggests that the effect is negative, statistically significant, and

#> large (difference = -683.41, 95% CI [-840.58, -526.25], t(323.90) = -8.55,

#> p < .001; Cohen's d = -0.94, 95% CI [-1.16, -0.71])

Of course, it takesmore time and effort to finalize the report, but the discussed functions
help us to provide text. What shall we do if we have rendered all files? If you normally
send the reports via email, consider using R to send them automatically.

10.3 Emails

There are several packages to send emails with R, but the blastula package evenmakes
it possible to create HTML formatted emails (Iannone & Cheng, 2020). None of your
(future) receivers will question that you did not use a regular email software.

To work with blastula, we need to compose an email first. As the next console
shows, the corresponding compose_email() function expects you to deliver the content,
i.e. the body of the mail. The blastula package creates an HTML version of the email
and shows a preview in the viewer pane when you call the object (email) once more.
Figure 10.3 shows a screenshot of an email.

Create/Compose a (first) mail

email <- blastula::compose_email(

body = "Hello,

I just wanted to give you an update of our work.

Cheers, Edgar"

)

email

Fig. 10.3: Preview of an email

314 | 10 Automate work

Of course, this is only a test email. We first need to learn how to send an email before we
can improve the content. In order to send emails, you need to provide the credentials
for your SMTP (simple mail transfer protocol). Email software use the latter to connect
with the mail server and to authorize the request. The package provides a convenient
solution if you are using a Gmail account. As the next console illustrates, use the
create_smtp_creds_key() function and insert your email address. The function stores
the credentials in the systemkey value and returns a prompt that asks for your password.

For a gmail user only

create_smtp_creds_key creates a system key-value

create_smtp_creds_key(

id = "gmail",

user = "user_name@gmail.com",

provider = "gmail"

)

If you use a different email provider, youwill have to providemore details for your email
account. The create_smtp_creds_file() function creates a JSON credential file in your
working directory with the necessary information to connect with the SMTP server. It
contains information about the email account (e.g., username), the host (e.g., host,
port), and the transfer protocol that is used to send emails (e.g., use_ssl). Use Google
and search for your account details. All providers have a webpage with instructions
and specifics.

Create a smtp credentials file

create_smtp_creds_file(

file = "my_mail_creds",

user = "user_name@gmail.com",

host = "smtp.gmail.com",

port = 465,

use_ssl = TRUE

)

Do keep inmind that the credential contains sensitive information. Creating a credential
file is the most convenient way to explore how the process works, but you definitely do
not want to share such a file. Moreover, you may provide the information whenever you
send an email, but I’d stick to the first approach since it is more convenient to show
you how it works.

After the credential key is set or a credential file is available, we are ready for a
first trial. Send the composed email with the smtp_send() function; insert to whom

10.3 Emails | 315

the email needs to be sent and from which address it is coming. Furthermore, insert a
subject and the name of your credentials file (here my_mail_creds). The email will
be sent via the smtp_send() function and the console informs you if it was a success.

Send the email with smtp_send

email |>

smtp_send(

to = "john.doe@test.com",

from = "edgar.doe@test.com",

subject = "Update on X",

credentials = creds_file("my_mail_creds")

)

Next, we improve the email. We insert a plot in the email and include a report as an
attachment.

10.3.1 Improve the email

We started with a simple version of the email, but including a graph and an attachment
is far from complicated.Wewill start with a graph in the body of the email. The blastula
package comes with the add_ggplot() function and lets us add a ggplot2 graph to the
email. As the next console illustrates, create a plot, add it with add_ggplot() function
which creates an HTML version of the plot, and save the result as an object (mail_plot).

Create any plot, for example:

plot <- penguins |>

ggplot(aes(bill_length_mm, body_mass_g)) +

geom_point()

Create a plot for the mail

mail_plot <- blastula::add_ggplot(plot_object = plot)

To include the plot or another object in the email, refer to the object with braces ({})
inside the body of the email. Create a new object for the body text (body_text) and insert
the mail_plot. Additionally, we can refer to other objects as well to make the template
more flexible. For example, I add a name as a placeholder for the email recipient
which will be included inside the body_text.

Who gets the email

recipient <- "Mr. Smith"

316 | 10 Automate work

The improved email:

body_text <-

md(glue(

"

Dear {recipient},

I just wanted to send you an update of my work, see the corresponding

graph (and file in the attachment).

{mail_plot}

Best regards,

Edgar

"

))

Did you see the md() function inside the body_text? It interprets the input asMarkdown
(see Chapter 8) and Figure 10.4 shows the result of the body_text and the new email.
The font type of the header is larger and in bold because I includedMarkdown to format
the text. In order to see the new email, rerun the compose_email() function and refer
to the body_text.

Compose the email again

email <- compose_email(body = body_text)

email

Finally, we can add a file as an attachment. As the next console highlights, the
add_attachment() function includes an attachment before we send the email. The
function needs the name of the file that will be attached from the working directory.

add_attachment before the file is send

email |>

add_attachment(file = "report.pdf") |> ## add attachment

smtp_send(

to = "jane.doe@test.com",

from = "edgar.doe@test.com",

subject = "Update on X",

credentials = creds_file("mail_creds")

)

10.3 Emails | 317

Fig. 10.4: Preview of an improved email

Now that we have a basic understanding of how to send files, let’s automate the process
and send several reports automatically.

10.3.2 Automate emails

Essentially, we need two things to send emails automatically: the email address and
the report for each recipient. First, create a function to send the emails (send_mails)
which includes all previously discussed steps. The function needs the mail address
and the name of the report that will be sent as an attachment.

Make a function

send_mails <- function(mail, report) {

email |>

add_attachment(file = report) |>

smtp_send(

to = mail,

from = "edgar.doe@test.com",

subject = paste0("Update on ", report),

credentials = creds_file("mail_creds")

)

}

By creating a function, we are able to send an email in a convenient way since we
only need to provide a mail address and the report name. However, sending email
after email is bothersome, how can we automate this process? First, we need data that

318 | 10 Automate work

contains both variables, the mail address and the corresponding report. Consider the
following example data.

Example data

df <- tibble::tribble(

~emails, ~report,

"oliver.brown@aol.com", "2007_report.pdf",

"emma.davies@aol.com", "2008_report.pdf",

"elizabeth.jones@aol.com", "2009_report.pdf"

)

Suppose we are unfortunate and we do not have such a data frame. Of course, we know
the emails addresses and which report each person gets; so we can generate a data
frame. If all reports are saved in one folder, use the list.files() function to create a
vector with each file name and then combine it with the corresponding email addresses.
For example, the report_files folder on my GitHub repository contains reports for
each year (like we made in this chapter) and list.files() lists them.

List all files of a directory

list.files(

path = "~/Documents/GitHub/penguins_report/report_files",

pattern = ".pdf",

full.names = FALSE

)

#> [1] "2007_report.pdf" "2008_report.pdf" "2009_report.pdf"

We can now combine both variables and create a data frame, but be cautious how the
variables are sorted and combined. Consider reading Chapter 5 if you have no idea how
to combine (merge) data sets. For now, I assume that we have prepared data to send
the emails.

We created several reports with a for loop and we may use a similar approach to
send emails. Unfortunately, a loop is complicated when we use two variables instead
of one (vector). Say we use a loop to apply the send_mails() function and we need to
insert the correct email and the corresponding report file. We need to loop over each
row, from the first until the last row, plus subset the data to fill in the function. As the
next console highlights, even if we only print the emails and the report names to check
if the loops works, creating such a loop is quite complicated.

A for loop is getting complicated ...

for (row in 1:nrow(df)) {

10.3 Emails | 319

name <- df$emails[row]

report_name <- df$report[row]

report <- paste("Send", report_name, "to:", name)

print(report)

}

#> [1] "Send 2007_report.pdf to: oliver.brown@aol.com"

#> [1] "Send 2008_report.pdf to: emma.davies@aol.com"

#> [1] "Send 2009_report.pdf to: elizabeth.jones@aol.com"

The purrr package improves R’s capacities of functional programming and provides
an efficient solution to automate this process (Henry & Wickham, 2022). Thanks to the
purrr package, the code of the for loop will be reduced to exactly one line. Before we
apply it to send several emails, let us inspect how purrrworkswith an analysis example
that underlines how we can reduce our workload if we learn more about functional
programming.

Suppose you apply a linear regression analysis, and you need to compare the
results of two groups. For example, is the effect of an examined independent variable
larger for male or female penguins? As the next console shows, we start to examine
male penguins. We use the lm() function and apply a filter to run a regression for male
penguins.

Estimate a model for male penguins

male_penguins <- penguins %>%

filter(sex == "male") %>%

lm(body_mass_g ~ bill_length_mm, data = .)

Never mind about the example, but what is the next step? We save the results of the
model, we copy the code, change the filter to female, and rerun the model to compare
them. That is a lot of steps just to compare the performance of two models. The purrr
package reduces the number of steps by running a function several times and it makes
the code less clunky. Take a look at the next console. First, we split() the data by
.sex, then we apply the map() function from purrr to apply the lm() function for each
split.

#Apply a map function

penguins %>%

split(.$sex) %>%

map(~ lm(body_mass_g ~ bill_length_mm, data = .))

#> $female

320 | 10 Automate work

#>

#> Call:

#> lm(formula = body_mass_g ~ bill_length_mm, data = .)

#>

#> Coefficients:

#> (Intercept) bill_length_mm

#> 537.75 78.97

#>

#>

#> $male

#>

#> Call:

#> lm(formula = body_mass_g ~ bill_length_mm, data = .)

#>

#> Coefficients:

#> (Intercept) bill_length_mm

#> 1337.32 69.97

The function returns a list that contains the regression results for female and male
observations. In general terms, the map() function applies a function (such as lm()
or a formula) to a list (or a vector) and returns a list, the map2() applies a function to
two lists (or vectors) and returns a list; while pmap() can be used for parallel, multiple
inputs.

Applying a function several times is not restricted to the lm() function. If we want
to know if the examined variable has a larger effect on female (male) penguins, we
need to apply the summary() function and extract R² from the result. See what happens
if we use the pipe and apply the map() function to extract R² of each model.

Run a model, apply a summary, and get R² for each model

penguins %>%

split(.$sex) %>%

map(~ lm(body_mass_g ~ bill_length_mm, data = .)) %>%

map(summary) %>%

map_dbl("r.squared")

#> female male

#> 0.3379035 0.2273012

This is amazing, especially if we compare the purrr approach with the previously
described steps without any functional programming. Consider the purrr website
to learn more about it, since we have only seen the tip of the purrr iceberg here. For

10.3 Emails | 321

example,maybe the function should return a different output. There are several variants
of map_ functions that return different outputs, as the map_dbl() of the last console
illustrates. The map_dbl() function returns a double vector instead of a list. Or consider
the map_dfc() function that returns a data frame.

Thus, use purrr to send one specific report to one specific recipient. The map2()
function iterates over two vectors and applies the function. It takes each element of
both inputs (mail_adresses and reports) and applies it to the send_mails function.

map2 takes two inputs and applies a function

map2(mail_adresses, reports, send_mails)

Introducing purrr on the last pages of this chapter is certainly not ideal. However, you
should at least know a basic example of purrr and where to find more resources if you
start to automate, iterate, and purrr on a regular basis.

Visit the purrr website:

https://purrr.tidyverse.org/

Ultimately, suppose you need to create a weekly report. Do you want to run the code
each weak manually? A computer will not forget the task and saves us a lot of time. The
cronR package will give you a lot of spare time, because it helps us to run an R script
automatically and on schedule (Wijffels, 2022). The last info box gives a few hints how
the package works.

The cronR package

Cron lets you execute processes (or code) at a certain time on Unix-based operating systems (or
alternatively use a task scheduler for Windows). The cronR package comes with a convenient addin, as
Figure 10.5 shows. Select the R script and pick a time for the Cron job to run. The cronR package waits
until the launch time and runs the script automatically. Keep in mind that this approach is only working
if your computer is not switched off, but a cloud-based implementation (e.g., via GitHub Actions) of the
Cron job lifts that restriction.

After you scheduled the Cron job, you might wonder how you can know for sure that the job was
done without any errors? GitHub Actions informs you if the job fails, but you can establish a similar
process if the script runs on your computer. For example, the tryCatch() function catches all warnings
and errors of the script and saves them. After the Cron Job is done, send them via email to your account.
By automating this last step, you will get an update about the job status, if all ran smoothly, you can
focus on your non-repetitive work.

322 | 10 Automate work

Fig. 10.5: The cronR package

Summary

This chapter introduced dynamic reports as an illustration of how to automate your
work. Keep inmind that we are not supposed to repeat ourselves in terms of code; I tried
to highlight this principle in this chapter. We started with a basic analysis and then
learned how to include params in the meta section of the document. Parameters are a
powerful tool to automate various stepswhen creating a document. The same principles
applied as we created text and emails. In the latter case, we saw how packages such as
report or effectsize help us to automatically add text in the document, and we also
learned to write our own report functions. In terms of emails, we made first steps in
functional programming to automate the sending of emails.

All of these examples illustrate there are a lot of manual steps involved, even
when we use the right tools. It also reminds us that we should elaborate strategies
to reduce redundant steps which gives us the chance to focus on the important ones.
Consider reading the third part of R for Data Science by Wickham & Grolemund (2016)
or Hands-On Programming with R by Grolemund (2014) if you want to learn more about
programming.

R for Data Science

show_link("r4ds")

Hands-On Programming

show_link("hands_on_R")

10.3 Emails | 323

Consider a dynamic report even if there are only a limited number of documents needed,
since the approach is less error-prone once the template is set up. Of course, making
a template takes more time and effort than creating the second report from the first
one. However, it also gives you the opportunity to revisit the code, find errors, and fix
them. Thus, instead of repeating yourself, make the report and then use it as a draft for
a dynamic report.

11 Collect data
Suppose you run an analysis and you need to control the gross domestic product (GDP)
of each country, but the data does not contain that specific variable. You search for
additional data sources and the OECD website lists the GDP of the examined countries.
How can we extract information from an external resource – such as a website – and
combine itwith the datawehave onhand?UseR to collect data fromaPDFfile, awebsite
(web scraping), or from a web server using an application programming interface (so
called APIs). In this chapter, we lay the groundwork and I show you how each approach
works.

Introducing three different approaches to collect data seems like sheer madness.
Why not focus on one of these topics and explain it in a bit more detail? Consider web
scraping, what information shall we collect from which website? The main principle
to collect data from a website is always the same, regardless of whether we scrape a
simple or a complex one. However, if we extract information from a complex website,
we need to talk about many step in detail, but the approach may only work for this
particular website. The same applies to PDFs and APIs: a reliable solution needs to
consider how the information is structured in a specific PDF document. And each API
works essentially the same way, but how we exchange data depends on the application.
Thus, this chapter raises awareness that it is possible to collect data from different
external resources and focuses on the bigger picture.
– In Section 11.1, we extract data from a PDF report. This seems old-fashioned, but

it isn’t an unrealistic showcase. Many PDF reports are published without giving
access to the data. Irrespective if we extract information from a PDF file or a website,
we need to know how R handles text strings and unstructured data. For this reason,
we learn how to extract data from a PDF, because the knowledge about string
manipulation is helpful in other areas as well.

– In Section 11.2, we explore how web scraping works. First, we build a foundation
and I introduce HTML (Hyper Text Markup Language). Next, we explore and extract
data from an example website to learn the main principles. Web scraping is a
demanding task. To further improve our skills, we will see how specific HTML
elements (attributes) help us to extract information.

– In Section 11.3, learn more about the theoretical background of APIs. There are
many R packages to retrieve data from APIs (e.g., from social media platforms),
but ultimately we will develop an approach that let us retrieve data from an API
without a specialized package.We learn howwe canmake a request from a server to
retrieve data. By doing so, we extend our knowledge how APIs and corresponding
packages that let us retrieve data from an API work.

https://doi.org/10.1515/9783110704976-011

11.1 PDF files | 325

Set the engine for Chapter 11

library(DemografixeR)

library(dplyr)

library(gapminder)

library(httr)

library(pdftools)

library(purrr)

library(PracticeR)

library(rvest)

library(stringr)

library(stringi)

library(tibble)

library(tidyr)

11.1 PDF files

In order to extract information from a PDF file, we need to increase our skills on how to
work with strings first. R imports the content of a PDF file as character strings and, thus,
as unstructured data. We therefore need to learn how to manipulate these to extract the
desired information. To this end, this section introduces regular expressions (regex)
and the stringr package (Wickham, 2022c), before we extract a table from a PDF file.

11.1.1 Regular expressions

Suppose we have imported a PDF file as plain text, as the following strings underline.
Each string contains the name and birth year of a person. String manipulation and
regular expressions help us extract this information.

Example strings

library(stringr)

strings <- c(

"Tom. 2000",

"Olivia: 99"

)

The stringr package provides functions to manipulate strings. For example, the
str_extract() function extracts a search string – a pattern – and returns a vector that
indicates which strings it includes. Or suppose we want to extract only observations
that include a certain pattern, such as a name. This is a job for str_subset(), which
returns the elements of a vector that matches the pattern.

326 | 11 Collect data

The search pattern

pattern <- "Tom"

Extract a string

str_extract(strings, pattern)

#> [1] "Tom" NA

Subset a string

str_subset(strings, pattern)

#> [1] "Tom. 2000"

Thus, we subset or extract a pattern from strings, but what exactly do we mean by
a pattern? A pattern can be anything that is typical for the examined strings. In our
example, each string starts with the name of the person, a punctuation, and digits.

We build a pattern based on regular expressions, a language to describe the patterns
of the examined strings. For example, thematch character for any word character is
\w (non-word characters: \W); and the match character for digits is \d (non-digits: \D).
If we insert them as a search string with two back slashes (\\), we retrieve the first
character or digit.

Extract a string with regular expressions

str_extract(strings, "\\w")

#> [1] "T" "O"

str_extract(strings, "\\d")

#> [1] "2" "9"

To extract the digits of the years, we need a regex that returns all digits. Unfortunately,
we cannot insert \d four times, because the approach is not flexible enough, as the next
console shows.

Search for four digits

str_extract(strings, "\\d\\d\\d\\d")

#> [1] "2000" NA

11.1 PDF files | 327

Not all numbers consist of four digits, which is why we get NA in the second case.
Apparently, I did not describe the pattern precisely enough, because the string consists
of one or more digits. Insert a plus sign (+) to indicate if the string has one or more
digits.

A + indicate if a character appears one or more times

str_extract(strings, "\\d+")

#> [1] "2000" "99"

The plus sign is a metacharacter used to build patterns. The next console shows further
metacharacters based on simple strings to illustrate their function.

Does a character appear? A ? matches a character 0 or 1 times

x <- c("Haïti", "Haiti", "Honduras")

str_extract(x, "Ha\\ï?i?ti")

#> [1] "Haïti" "Haiti" NA

How often does it appear? A * matches a character 0 or more times

x <- c("9", "99", "981")

str_extract(x, "9\\d*")

#> [1] "9" "99" "981"

A . matches any single character, e.g., to extract the usernames

x <- c("edgar-doe@test.com", "jane.doe@test.com")

str_extract(x, "\\w+.\\w+")

#> [1] "edgar-doe" "jane.doe"

Metacharacters help us to describe a pattern, but why do we need two back slashes
for a regex? Consider the strings from a shoppinglist. It lists products in a formatted
manner, but the raw string seems weird. The writeLines() function lets us examine
how R handles (raw) strings.

How R handles strings

shoppinglist <- "Cheese,

Fish/Chips,

328 | 11 Collect data

Strawberries"

writeLines(shoppinglist)

#> Cheese,

#> Fish/Chips,

#> Strawberries

Why are the strings not outlined? The shoppinglist contains special characters that
we cannot see. The string has a new line for each product, and I used <TAB> to outline
them. Both are special characters, and we need to escape them with a back slash (\) to
restore the meaning of the characters. For example, we may insert \n for a new line, or
\t for <TAB>.

shoppinglist contains new lines (\n)

shoppinglist <- "Cheese\nFish/Chips\nStrawberries"

writeLines(shoppinglist)

#> Cheese

#> Fish/Chips

#> Strawberries

Thus, we escape special characters in R, but a regular expression applies exactly the
same logic. For this reason, we need to include two back slashes (\\) to work with them.
As the next console demonstrates, a period (.) is a metacharacter that matches any
single character (without \n); and we need to escape it (\\.) when we want to match a
period, otherwise we use the metacharacter to extract the strings.

Print the strings once more

strings

#> [1] "Tom. 2000" "Olivia: 99"

Escape to identify strings with a period

str_extract(strings, "\\w+\\.")

#> [1] "Tom." NA

Otherwise, a . is a meta character

str_extract(strings, "\\w+.")

11.1 PDF files | 329

#> [1] "Tom." "Olivia:"

Regular expressions are a real struggle and hard to apply, especially if we do not use
them on a regular basis. The following examples will further illustrate how regexes
work and why it often takes several steps to build them. You not only need to make sure
that the regex matches all intended patterns, but also that only the intended cases are
returned. The str_view_all() function and an example string help us with this task.
As Figure 11.1 depicts, the function displays the strings in the viewer and marks which
characters are matched by the regex. I insert the search string (aeiou) as a character
class ([]) to match vocals. Irrespective of the search pattern, use the str_view_all()
function and example strings to test your regex.

The str_view_all function shows matched strings

[aeiou] is a character class for lower vocals

str_view_all(strings, "[aeiou]")

Fig. 11.1: Preview regular expressions

A character class is also a metacharacter to build patterns. Instead of writing each
character, character classes ([]) help us to identify strings and the stringr package
includes several. For example, we can extract numbers with the [:digit:] and letters
with the [:alpha:] class.

[:alpha:] == letters

str_extract(strings, "[:alpha:]+")

#> [1] "Tom" "Olivia"

[:digit:] == digits

str_extract(strings, "[:digit:]+")

#> [1] "2000" "99"

330 | 11 Collect data

There are more character classes: extract lower and upper case letters, the punctuation
(punct), or the combination of letters and numbers (alnum). The next console illustrates
each of them with a simple string.

Example string

string <- c("abc", "ABC", "123", ",?()")

Lowercase

str_extract(string, "[:lower:]+")

#> [1] "abc" NA NA NA

Uppercase

str_extract(string, "[:upper:]+")

#> [1] NA "ABC" NA NA

Letters and numbers

str_extract(string, "[:alnum:]+")

#> [1] "abc" "ABC" "123" NA

Punctuation

str_extract(string, "[:punct:]+")

#> [1] NA NA NA ",?()"

Let us build a more realistic scenario and learn step by step how to create a regex.
Suppose the strings are sentences that include the exact birth dates that we need to
extract.

strings <- c(

"Tom is born on 29 May 2000.",

"Olivia has her birthday on 19 August 1999."

)

Let’s start with the date. In order to extract the date, we may use ranges as a character
class and quantifiers. Each date starts with digits, the name of the month, and the
year. The digits are within the range of zero and nine. Ranges work the same way as

11.1 PDF files | 331

predefined character classes (e.g., [:digit:]), so it is a question of what you prefer.
For example, extract the first digit.

Create a range with -

str_extract(strings, "[0-9]")

#> [1] "2" "1"

Or use character classes

str_extract(strings, "[:digit:]")

#> [1] "2" "1"

More importantly, the day contains one or two digits, and we quantify such patterns
with braces ({}). To this end we can determine how often each character appears.

Use a quantifier {}: exactly 1 (or n) times

str_extract(strings, "[0-9]{1}")

#> [1] "2" "1"

1 (n) or more times

str_extract(strings, "[0-9]{1,}")

#> [1] "29" "19"

Between n (1) and m (2)

str_extract(strings, "[0-9]{1,2}")

#> [1] "29" "19"

Thus, quantifiers help us to describe the pattern precisely, but keep inmind that outliers
may break the rules and we may introduce an error if the extracted string is not within
the quantified range. Next, the word for themonth. Eachmonth starts with a capitalized
letter ([A-Z]) and has one or more lowercase letters ([a-z]+).

Regex are case sensitive: [A-Z] for upper, [a-z] for lowercase

str_extract(strings, "[0-9]{1,2} [A-Z][a-z]+")

#> [1] "29 May" "19 August"

332 | 11 Collect data

Finally, we need to add a regex for the year, which has at least two digits and we save
the result as dates.

Extract and save the dates:

dates <- str_extract(strings, "[0-9]{1,2} [A-Z][a-z]+ [0-9]{2,}")

dates

#> [1] "29 May 2000" "19 August 1999"

Now that we have the dates, we still need to extract the days, the month, and the year
with anchors. The circumflex (̂) indicates the start of a string, while the dollar sign ($)
points the end of the string.

Start of a string: ̂

str_extract(dates, "̂[0-9]+")

#> [1] "29" "19"

End of a string: $

str_extract(dates, "[0-9]+$")

#> [1] "2000" "1999"

We apply similar steps to extract the name of each person and the month; then we put
all steps together to create a data frame.

Further ado

day <- str_extract(dates, "̂[0-9]+")

year <- str_extract(dates, "[0-9]+$")

month <- str_extract(dates, "[A-Z][a-z]+")

name <- str_extract(strings, "̂[A-Z][a-z]+")

df <- data.frame(name, day, month, year)

df

#> name day month year

#> 1 Tom 29 May 2000

#> 2 Olivia 19 August 1999

Regular expressions are hard to apply, but we need a basic understanding about them
to work with strings. Be patient with yourself if your regex is not working immediately,

11.1 PDF files | 333

all people struggle to apply them. The good news is, the stringr package helps us to
work with strings. The next subsection does not include regular expressions, since they
make the code harder to read. Instead, we focus on the main functions of the stringr
package.

11.1.2 The stringr package

The stringr package has a lot of functions to handle strings efficiently (Wickham,
2022c). For example, the last steps to split the dates were not really necessary if we
knew how the package could join and split strings. The str_split_fixed() function
splits strings whenwe adjust the number of words that are included (n) and the pattern
how to split them (e.g., blank space).

str_split_fixed splits the string

dates |>

str_split_fixed(pattern = " ", n = 3)

#> [,1] [,2] [,3]

#> [1,] "29" "May" "2000"

#> [2,] "19" "August" "1999"

The str_c() function does the exact opposite; it joins strings of two or more vectors.

Example strings

days_str <- c("29", "19")

month_str <- c("May", "August")

years_str <- c("2000", "1999")

str_c combines strings (sep adds an string separator)

str_c(days_str, month_str, years_str, sep = " ")

#> [1] "29 May 2000" "19 August 1999"

The stringr package has two example data sets (fruit and sentences) and we do not
need to generate example strings to see how stringr works.

Some fruits?

head(fruit)

#> [1] "apple" "apricot" "avocado" "banana" "bell pepper"

334 | 11 Collect data

#> [6] "bilberry"

Or sentences:

head(sentences)

#> [1] "The birch canoe slid on the smooth planks."

#> [2] "Glue the sheet to the dark blue background."

#> [3] "It's easy to tell the depth of a well."

#> [4] "These days a chicken leg is a rare dish."

#> [5] "Rice is often served in round bowls."

#> [6] "The juice of lemons makes fine punch."

Both data sets may help you to explore and apply the functions of the stringr package
andwe use a shorter vector with fruits to explore how the package lets us detect,mutate,
and replace strings. The stringr package has several functions to detect matches. The
str_detect() function checks if a string includes a search string (pattern) and returns
a Boolean operator as a result. The str_count() function does essentially the same,
but it returns a binary indicator. The latter makes it possible to count how often the
pattern appears.

Example fruits

fruits <- c("apple", "banana", "pear", "pineapple")

Detect a search pattern

str_detect(fruits, "apple")

#> [1] TRUE FALSE FALSE TRUE

How often appears the search pattern

str_count(fruits, "apple")

#> [1] 1 0 0 1

The str_starts() function checks if a string starts with a pattern, while we locate the
position of the search string with str_locate().

Strings that start with a pattern

str_starts(fruits, "apple")

#> [1] TRUE FALSE FALSE FALSE

11.1 PDF files | 335

And at which location

str_locate(fruits, "apple")

#> start end

#> [1,] 1 5

#> [2,] NA NA

#> [3,] NA NA

#> [4,] 5 9

Unstructured data is by definition messy and text often contains character signs that
have no value for us (e.g., =C). In such cases, we mutate and replace strings. As the next
console shows, the str_replace() function replaces a search string (e.g., the letter a)
with the new string (e.g., 8), while the str_replace_all() function replaces all strings
that match.

Replace (all) strings

fruits <- c("banana", "apricot", "apple", "pear")

str_replace(fruits, "a", "8")

#> [1] "b8nana" "8pricot" "8pple" "pe8r"

str_replace_all(fruits, "a", "8")

#> [1] "b8n8n8" "8pricot" "8pple" "pe8r"

As always, the discussed functions are only a selection of the possibilities and the
package has more to offer. For example, sometimes we need to count the length of a
string (str_length) or sort strings (str_sort) alphabetically.

Lengths of strings

str_length(fruits)

#> [1] 6 7 5 4

Sort strings

str_sort(fruits, decreasing = FALSE)

#> [1] "apple" "apricot" "banana" "pear"

336 | 11 Collect data

Check out the package website (and the cheat sheet) for more information. If you face a
problem that you cannot solve with the stringr package, consider also the stringi
package (Gagolewski et al., 2022). As Wickham (2022c) described on the stringr web-
site, the package: “focusses on the most important and commonly used string ma-
nipulation functions whereas stringi provides a comprehensive set covering almost
anything you can imagine.” Next, we extract data (character strings) from a PDF file.

11.1.3 Pdftools

In this section, we use the pdftools package to extract data from a PDF file (Ooms,
2022). As a showcase, we extract unemployment rates from the OECD Labour Force
Statistics report (2021, p. 36). The PracticeR package includes the file and the extracted
(raw) data of the PDF file, so you don’t need to download the PDF file to apply the
discussed steps. As the next console shows, the data contains unemployment rates (as
a percentage of the labor force) between 2011 and 2020.

The unemployment data

head(PracticeR::unemployment)

#> # A tibble: 6 x 11

#> Country `2011` `2012` `2013` `2014` `2015` `2016` `2017`

#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 Australia 5.1 5.2 5.7 6.1 6.1 5.7 5.6

#> 2 Austria 4.6 4.9 5.3 5.6 5.7 6 5.5

#> 3 Belgium 7.1 7.5 8.4 8.5 8.5 7.8 7.1

#> 4 Canada 7.6 7.3 7.1 6.9 6.9 7.1 6.4

#> 5 Chile 7.1 6.5 6.1 6.5 6.3 6.7 7

#> # ... with 1 more row, and 3 more variables: `2018` <dbl>,

#> # `2019` <dbl>, `2020` <dbl>

By extracting this table, you may realize that the steps depend on the PDF file and its
structure. Different steps are necessary to extract data for a different PDF file. For this
reason, I put the emphasis on regular expressions and the stringr package in this
chapter, which built the foundation to extract data irrespective from which PDF file.

In a similar vein, this section will underline that importing a PDF as text is a piece
of cake, but it is difficult to work with unstructured data and it may take a lot of steps
before we get a clean data set. Is it worth extracting data from a PDF file? This certainly
depends on the complexity of the task. Suppose you have a large and consistent PDF
file where each table has the same format: then you will be able to extract all tables
in a jiffy. Unfortunately, the code breaks if each table has a different format and other
irregularities. In this case you may wish to consider other options as well.

11.1 PDF files | 337

In order to extract information from a PDF file, we may download it and save it in
the working directory. However, I included the file (oecd_table) in the files folder of
the PracticeR package, which means that the file is already on your computer. The
system.file() function returns the path to the file.

System.file returns the path of system files

oecd_table <- system.file("files", "oecd_table.pdf",

package = "PracticeR"

)

Next, use the pdf_text() function from the pdftools package to extract information
from the file. The function scans the document and extracts the content as plain text.

Read the content of a pdf file via pdf_text

raw_text <- pdftools::pdf_text(oecd_table)

I already applied this step and the PracticeR package includes also the raw text
(unemployment_raw) of this table. Inspect the raw data in the console. The pdf_text()
extracts all texts as strings, and depending on the PDF file, the output of the console
can be very long, which is why I do not print it in this book.

Before I can inspect the content in the console, I use the str_split() function
to split the string after each new line (\n). The function returns a list, which is why I
apply the as_vector() function from purrr to create a vector. Now, if I use the head()
function, the console shows the first six lines of the text.

str_split splits the raw text after each new line

text <- str_split(raw_text, "\n")

text <- as_vector(text)

head(text)

#> [1] " INTERNATIONAL COMPARISONS"

#> [2] ""

#> [3] " Table 29. Unemployment as a percentage of labour force"

#> [4] "Percentage"

#> [5] " 2011 2012 2013 2014 2015

#> 2016 2017 2018 2019 2020"

#> [6] "Australia 5.1: 5.2: 5.7:

#> 6.1: 6.1: 5.7: 5.6: 5.3: 5.2: 6.5:"

338 | 11 Collect data

We imported a real mess – the PDF contains blank spaces, punctuation marks, and
empty lines. Inspect the PDF file and the raw data before you start to extract the data.¹
For example, consider how values for Belgium and several other countries are saved. As
the next console shows, I picked also amessy table because some of the unemployment
rates are split into two rows and contain vertical bars (|).

Inspect for irregularities

text[17:18]

#> [1] "Belgium 7.1: 7.5: 8.4: 8.5: 8.5: 7.8 |\n"

#> [2] " :7.1: 5.9: 5.4: 5.5 |"

For this reason, we need to replace those values from the raw_text and rerun the steps
from the last console. Otherwise, those observations will show up in separate rows.

Replace extra lines and |

text <- str_replace_all(raw_text, pattern = "\\|\n", "")

text <- str_replace_all(text, pattern = "\\|", "")

Rerun first step

text <- str_split(text, "\n")

text <- as_vector(text)

Next, we need to identify where the table starts and ends in order to extract the data.
The first entry is Australia and the last table entry starts with United States. The
str_which() function tells us the positions of those search strings.

str_which returns at which position(s) the string appears

str_which(text, "Australia")

#> [1] 6

str_which(text, "United States")

#> [1] 193

Try to find such landmarks to isolate the data from the PDF document, especially if you
want to extract several tables. Compare each table to find a pattern to exclude them.

1 Inspect the PDF file, for example, with your browser and the browseURL() function.

11.1 PDF files | 339

Most tables in the OECD report contain those countries, which is why the approach
also works for a different table in the report. So, let’s create an object that indicates the
start and the end point of the table. This makes it possible to subset the text.

Use the position to extract the data

start <- str_which(text, "Australia")

end <- str_which(text, "United States")

Slice the data from the start to the end

text_df <- text[start:end]

head(text_df)

#> [1] "Australia 5.1: 5.2: 5.7: 6.1: 6.1:

#> [2] ""

#> [3] ""

#> [4] ""

#> [5] ""

#> [6] "Austria 4.6: 4.9: 5.3: 5.6: 5.7:

Still a mess! This clearly illustrates why we cannot recycle the code if we extract data
from a different PDF file. A different report probably has different landmarks, and we
need to identify those patterns to extract the data. In this chapter we extract only one
table to illustrate the procedure. In a real application, we may need to extract several
tables, illustrating the need to find a pattern that matches for all (or at least most)
tables that we want to extract, otherwise the code breaks and a lot of manual steps are
necessary.

As the next step, we need to get rid of the colons (:), blank spaces, and the
empty lines. Use the str_replace_all() function for colons, trim blank space with the
str_trim() function and tell R to keep elements only if they are not (!=) empty.

Discard

text_df <- str_replace_all(text_df, ":", "")

Trim blank spaces

text_df <- str_trim(text_df)

Keep everything that is not (!=) empty

text_df <- text_df[text_df != ""]

head(text_df)

#> [1] "Australia 5.1 5.2 5.7 6.1 6.1

#> [2] "Austria 4.6 4.9 5.3 5.6 5.7

#> [3] "Belgium 7.1 7.5 8.4 8.5 8.5

#> [4] "Canada 7.6 7.3 7.1 6.9 6.9

340 | 11 Collect data

#> [5] "Chile 7.1 6.5 6.1 6.5 6.3

#> [6] "Colombia 10.9 10.4 9.7 9.2 9.0

To split the strings and to create columns, apply the str_split_fixed function. The
table from the PDF file has eleven columns and between each string are two or more
blank spaces. Additionally, I make a tibble for a nicer output.

Split vector

text_split <- str_split_fixed(text_df, " {2,}", n = 11)

Create data

df <- tibble::as_tibble(text_split)

head(df)

#> # A tibble: 6 x 11

#> V1 V2 V3 V4 V5 V6 V7 V8 V9

#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>

#> 1 Australia 5.1 5.2 5.7 6.1 6.1 5.7 5.6 5.3

#> 2 Austria 4.6 4.9 5.3 5.6 5.7 6.0 5.5 4.8

#> 3 Belgium 7.1 7.5 8.4 8.5 8.5 7.8 7.1 5.9

#> 4 Canada 7.6 7.3 7.1 6.9 6.9 7.1 6.4 5.9

#> 5 Chile 7.1 6.5 6.1 6.5 6.3 6.7 7.0 7.4

#> # ... with 1 more row, and 2 more variables: V10 <chr>,

#> # V11 <chr>

Now the data looks almost like any other data frame, but it still does not have useful
column names.Wemay extract the string with the variable names, but since the column
names are year numbers, we can recreate the sequence, combine it with a string for
the first column (country), and use the names() function to add the column names
(colum_names).

Create a vector

colum_names <- c("country", seq(2011, 2020, by = 1))

For the column names

names(df) <- colum_names

head(df)

#> # A tibble: 6 x 11

#> country `2011` `2012` `2013` `2014` `2015` `2016` `2017`

#> <chr> <chr> <chr> <chr> <chr> <chr> <chr> <chr>

#> 1 Australia 5.1 5.2 5.7 6.1 6.1 5.7 5.6

#> 2 Austria 4.6 4.9 5.3 5.6 5.7 6.0 5.5

11.1 PDF files | 341

#> 3 Belgium 7.1 7.5 8.4 8.5 8.5 7.8 7.1

#> 4 Canada 7.6 7.3 7.1 6.9 6.9 7.1 6.4

#> 5 Chile 7.1 6.5 6.1 6.5 6.3 6.7 7.0

#> # ... with 1 more row, and 3 more variables: `2018` <chr>,

#> # `2019` <chr>, `2020` <chr>

Unfortunately, we’re still not finished. We must apply the str_remove_all function to
remove strings that refer to footnotes. I remove letters (alpha) from the 2020 variable.

The strings include footnotes, for example:

str_subset(df$`2020`, "e")

#> [1] "3.8 e" "4.5 e"

Remove footnote signs

df$`2020` <- str_remove_all(df$`2020`, "[:alpha:]")

After the data preparation steps, use the slice_max() or slice_min() function from
the dplyr package to inspect countries with the highest (lowest) unemployment rates.

Which country has the highest unemployment rates?

df |>

select(country, `2020`) |>

slice_min(order_by = `2020`, n = 5)

#> # A tibble: 5 x 2

#> country `2020`

#> <chr> <chr>

#> 1 Chile 10.8

#> 2 Turkey 13.1

#> 3 Spain 15.5

#> 4 Colombia 16.1

#> 5 Greece 16.3

At first glance this output looks good, but why are the unemployment rates not sorted?
We extracted the information from characters and R still treats the unemployment rates
as characters. Thus, we need to transform the variable into a numerical vector.

Don't forget that we imported characters from a PDF!

df$`2020` <- as.numeric(df$`2020`)

342 | 11 Collect data

df |>

select(country, `2020`) |>

slice_min(order_by = `2020`, n = 5)

#> # A tibble: 5 x 2

#> country `2020`

#> <chr> <dbl>

#> 1 Czech Republic 2.5

#> 2 Japan 2.8

#> 3 Poland 3.2

#> 4 Germany 3.8

#> 5 Netherlands 3.8

All the last data preparation steps clearly underline that importing a PDF as text is a
piece of cake, but it is difficult to work with unstructured data, at least we need to put
some effort in the preparation steps. If you are lucky, the tables will also be available
on a website. Not as a download, but embedded in the HTML file that we can scrape.

However, extracting data from a PDF or a web server are not the only options at
your disposal to retrieve data. Maybe the data is not stored locally, but in a relational
database. SQL (Structured Query Language) is a prominent language to work with a
relational database and you can connect R to a database as well. Before we learn more
about web scraping, the next info box outlines some tips to learn SQL and demonstrates
why the dbplyr package may help (Wickham, Girlich, et al., 2022).

11.2 Web scraping

In this section we scrape data from the PracticeRwebsite. We learn how to scrape texts,
links, and data to illustrate the principle. To this end, we need to establish some basics
about HTML, and we will get in touch with further web-related languages. Before you
continue, visit the website to get an idea of what it contains. The discussed steps will
be easier to follow if you know what it looks like. Go and visit and the webscraping
website from the PracticeR package:

The PR website has a web scraping page:

show_link("webscraping", browse = FALSE)

#> [1] "https://edgar-treischl.github.io/PracticeR/articles/web_only/

#> webscraping.html"

Regardless of the website we scrape, all rely on the same HTML structure.

11.2 Web scraping | 343

SQL and the dbplyr package

Suppose the data does not live on a web server, but in an SQL database. Your dplyr knowledge will
help you to work with SQL because the dbplyr package works with databases and is a sibling of the
dplyr package. The next data preparation step shows an example. I used the mtcars data and created
a mean value of mpg for each of the two am group levels.

#An example data preparation step

mtcars |>

group_by(am) |>

summarise(mpg = mean(mpg, na.rm = TRUE))

am mpg

1 0 17.1

2 1 24.4

Use the dbplyr package to translate this data preparation step into SQL – the package even returns
the SQL code. First, we need to establish an example SQL connection to see how dbplyr translates the
code into SQL but that is not the important point here (see Chapter 12 for more information).

#Establish a connection

library(DBI)

con <- dbConnect(RSQLite::SQLite(), dbname = ":memory:")

dbWriteTable(con, "mtcars", mtcars)

mtcars_sql <- tbl(con, "mtcars")

In the next console I assign the data preparation steps from the beginning (data_prep) and the
show_query() function translates the steps to SQL code. Thus, the dbplyr package translates your code
and skills into SQL which may offer new opportunities to retrieve data.

#Save the data preparation steps as an object

library(dbplyr)

data_prep <- mtcars_sql |>

group_by(am) |>

summarise(mpg = mean(mpg, na.rm = TRUE))

#Inspect the SQL query for the last data preparation step

data_prep |> show_query()

<SQL>

SELECT `am`, AVG(`mpg`) AS `mpg`

FROM `mtcars`

GROUP BY `am`

344 | 11 Collect data

11.2.1 HTML

Consider the next console, it shows the minimal code of a website. Each HTML file
starts with an <html> and ends with an </html> tag. HTML tags may have children and
include further tags. The <html> tag includes the <head> and a <body> tag. Each HTML
element has an opening tag (e.g., <body>), optional attributes (e.g., id), and a closing
tag (e.g., </body>). Everything between the opening and a closing tag belongs to the
tag.

The <head> is not important to scrape data, because it includes information about
the website and not its content; it usually includes the language of the website, the
<title>, or an external <script> that is loaded when we visit the website. The actual
content of the document – headings, texts, and pictures – can be found inside the
<body> tag, which is why we need to inspect the latter more closely.

<!-- I am an HTML comment -->

<!-- A basic website -->

<html>

<html lang="en">

<head>

<meta charset="utf-8">

<title>Title</title>

<link rel="stylesheet" href="style.css">

<script src="script.js"></script>

</head>

<!-- page content -->

<body>

<h1>Webscraping</h1>

<p>This is an example text.</p>

</body>

</html>

Consider the <h1> tag in the body; it creates the first header and text between the
opening and the closing tag (Webscraping) is interpreted as the first header. Elements
like <h1> are called block tags, because they form the overall structure of the document.
Further examples are text paragraphs <p>; as well as ordered () and unordered
() lists. In addition, there are also inline tags. Consider the paragraph (<p>) tag
after the first heading. The word example is enclosed by a bold () inline tag. The
browser will display the word example in bold letters.

A browser can show the HTML source code andmodern browsers include developer
tools to examine the code of a website (e.g., via the right-click context menu). The latter
mode makes it convenient to explore the source code. Figure 11.2 shows a screenshot
from Firefox’s developer mode for the PracticeR website. On the left side, the website

11.2 Web scraping | 345

is shown; on the right side the source code is displayed. If you select an element of the
source code, the developer mode highlights the corresponding elements of the website
that the source code creates. As Figure 11.2 illustrates, I search for the code that creates
the table header and the developer mode selects the result of the HTML code. This basic
understanding of HTML should be enough to scrape a simple website.

Fig. 11.2: Firefox’s developer mode

11.2.2 Websites

To scrape a website, install and load the rvest package (Wickham, 2022c). Create an
object (pr_site) with the address of the website and use the read_html() function to
read the content of the website.

Get the website address

library(rvest)

pr_site <- show_link("webscraping", browse = FALSE)

read_html reads the website

pr_html <- read_html(pr_site)

The read_html() function scrapes the website and saves the content as an extensible
markup language (XML) object. XML is a language to exchange data used in many
web-based applications. The next console shows a minimal XML file with information
about R books. XML files are built upon nodes, and in this example each book is inside
the catalog node. We need to extract such nodes to get access to the information of the
HTML file. The basics of HTML already pay off, since all information about the books is
listed with an opening and closing tag, and the code should look pretty familiar.

<?xml version="1.0"?>

<catalog>

<book id="book1">

<author>Wickham, Hadley</author>

346 | 11 Collect data

<title>Mastering Shiny</title>

<genre>Shiny</genre>

</book>

<book id="book2">

<author>Hvitfeldt, Emil; Silge, Julia</author>

<title>Supervised Machine Learning for Text Analysis in R</title>

<genre>Machine learning</genre>

</book>

</catalog>

How do we work with XML files? The rvest package lets us examine the document
without much XML knowledge, but it remains helpful to know that we get an XML file
should we start to scrape more complex websites. Let’s keep it simple to illustrate the
principle. Inspect the nodes of the HTML file with the html_node() function; we may
even include all of its children with the pipe and the html_children() function. Say
we want to inspect the body node and all children of the website.

Body node with all children

pr_html |>

html_node("body") |>

html_children()

#> {xml_nodeset (3)}

#> [1] Skip to contents<...

#> [2] <nav class="navbar fixed-top navbar-light navbar-expand-lg bg-light...

#> [3] <div class="container template-article">\n\n\n\n<script src="webscr...

The function extracts the code of the body and all of its children, and returns them
as a list. If we do not need the entire node, we can just extract single elements with
the html_elements() function. For example, we extract the heading (h1) and the para-
graphs (p).

Extract elements h1

pr_html |> html_elements("h1")

#> {xml_nodeset (1)}

#> [1] <h1>Webscraping</h1>

11.2 Web scraping | 347

Extract elements p

pr_html |> html_elements("p")

#> {xml_nodeset (5)}

#> [1] <p>Welcome to the example website to learn web scraping with R.

#> On this website you find content such as links and tables.</p>

#> [2] <p></p>

#> [3] <p>Developed by <a href="https://www.edgar-treischl.de/"

#> class="external-link">Edgar Treischl.</p>

#> [4] <p></p>

#> [5] <p>Site built with <a href="https://pkgdown.r-lib.org/"

#> class="external-link">pkgdown 2.0.6.</p>

Data
Consider the next console. It highlights that we can use the minimal_html() function
to create a minimal html file (object) in R. Creating a minimal file makes it easier to
understand the next steps and we can test if our code to scrape data works. Using the
 tag, I created an unordered list that contains sentences with names and years of
age. Irrespective of which kind of information we want to extract, it is complicated to
extract if the information is embedded in an unstructured way.

A minimal html website

html <- minimal_html(

"<body>

<p>A unordered list:<p>

Tom is 15 years old.

Pete is 20 years old.

Ingrid is 21 years old.

"

)

Maybe you have a premonition on how to solve this problem. Use stringr and your
regular expression skills to extract the information. First, we extract the corresponding
elements.

Get elements

html |>

html_elements("li")

#> {xml_nodeset (3)}

348 | 11 Collect data

#> [1] Tom is 15 years old.

#> [2] Pete is 20 years old.

#> [3] Ingrid is 21 years old.

If we extract single elements, we extract HTML code. In case of text strings,
html_text2() discards the HTML code and returns only the character strings.²

Get text

txt <- html |>

html_elements("li") |>

html_text2()

txt

#> [1] "Tom is 15 years old." "Pete is 20 years old."

#> [3] "Ingrid is 21 years old."

Next, we apply our stringr knowledge to extract the desired information.

Extract names

stringr::str_extract(txt, "[A-Z][a-z]+")

#> [1] "Tom" "Pete" "Ingrid"

Extract age

stringr::str_extract(txt, "[0-9]+")

#> [1] "15" "20" "21"

Our life becomes easier if the data is included as table. The next console shows you
how a table is structured in HTML. A table is created with the corresponding <table>
tag. Inside the tag, each table row is embedded with a <tr> tag. In our case, it includes
also a table header (<th>) and the data is listed inside the table data (<td>) tag.

<!-- The <table> tag -->

<html>

...

2 There are two html_text functions. Similar to the unstructured content of a PDF file, the raw text of a
website can be messy. The html_text() function returns the raw text, while the html_text2 discards
noise such as blank spaces.

11.2 Web scraping | 349

<body>

<table>

<tr>

<th>Name</th>

<th>Age</th>

</tr>

<tr>

<td>Tom</td>

<td>15</td>

</tr>

</table>

</body>

</html>

The structure makes it convenient to extract the data. Use the html_table() function
to extract a table from the website (pr_html). I included the unemployment rates from
the OECD Labour Force Statistics report on the website.

Get tables

pr_html |>

html_element("table") |>

html_table()

#> # A tibble: 38 x 11

#> Country `2011` `2012` `2013` `2014` `2015` `2016` `2017`

#> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

#> 1 Australia 5.1 5.2 5.7 6.1 6.1 5.7 5.6

#> 2 Austria 4.6 4.9 5.3 5.6 5.7 6 5.5

#> 3 Belgium 7.1 7.5 8.4 8.5 8.5 7.8 7.1

#> 4 Canada 7.6 7.3 7.1 6.9 6.9 7.1 6.4

#> 5 Chile 7.1 6.5 6.1 6.5 6.3 6.7 7

#> # ... with 33 more rows, and 3 more variables:

#> # `2018` <dbl>, `2019` <dbl>, `2020` <dbl>

Unfortunately, you will not always be so lucky, and the data might not be saved as a
table, or the website is large and includes many tables. What shall we do in cases of
a large website that contains many tables? HTML attributes facilitate how we select
specific parts of an HTML file.

An HTML element may have one or several attributes, which provides further
information about the element and its behavior. For example, the anchor (<a>) tag
creates a hyperlink. The href attribute determines the destination of the link, while

350 | 11 Collect data

the target attribute determines where the link will be opened (e.g., in a new tab). The
next console shows the code of a link to the W3Schools website, which illustrates the
<a> tag, and the link gives more information about HTML tags.

<!-- The a tag -->

Click here

We can extract information for specific attributes with the html_attr() function. Sup-
pose we scrape a website, but the information is spread over several sub-pages. For
this reason, we need to extract all links from the main page. We can extract these links
via the href attribute from the <a> tag.

Get elements with attributes

pr_html |>

html_elements("a") |>

html_attr("href") |>

head()

#> [1] "#main" "../../index.html"

#> [3] "../../articles/PracticeR.html" "../../reference/index.html"

#> [5] "#" "../../articles/web_only/News.html"

Attributes help us to extract data, especially if we combine them with knowledge about
CSS.

CSS
Cascading style sheets (CSS) are used to separate the formatting of an HTML file from
its content. It may seem that CSS has nothing to do with web scraping if we inspect
how we can format a website with CSS. Be patient, some knowledge about CSS will
substantially increase your skills to select and to scrape data.

Suppose you created a personal website and youwant to format several paragraphs
(p) in a specific manner. Of course, we could use inline-blocks, but they are not efficient
and make the code messy. With CSS, we can apply rules to format the entire website,
save the style in an external file, and include the file in the meta section of the website.
To apply the styling rules, we refer to the CSS file with the <link> tag in the head. In
addition, I insert three paragraphs that wewill style with CSS as the next console shows.

<!-- All <p> elements should get a text color -->

<head>

<link rel="stylesheet" href="CSS_File.css">

11.2 Web scraping | 351

</head>

<body>

<h1>My Blog</h1>

<p>This is my first paragraph.</p>

<p class="alert">I am an important paragraph.</p>

<p id="unique">Look, a unicorn.</p>

</body>

With the help of CSS, we can refer to all <p> elements of the website and give them a
specific text color (or other aspects that determine the appearance). The next console
shows the corresponding CSS code.

/* All <p> elements get a red text color */

p {

color: red;

}

Instead of changing each paragraph manually, we define the style for all paragraphs in
the CSS file. An HTML element may have a class attribute, which makes it possible to
give all elements of a certain class the same properties. Suppose we want to display
important messages in red. The second paragraph of the example code has the alert
class. We can refer to a class property with the CSS class (.) selector and the name of
the class attribute.

/* Elements with the class (.) = "alert" will be red */

.alert {

color: red;

}

All elements of the class alert are displayed in red, but we can combine both ap-
proaches if we want to color only paragraphs in red (p.alert).

/* All p elements with the class (.) = "alert" will be red */

p.alert {

color: red;

}

Thus, we may refer to all elements or change only the appearance for certain elements
of the class. Ultimately, an HTML element may have a unique id attribute, which makes

352 | 11 Collect data

it possible to refer to this specific element only. The corresponding CSS selector is a
hashtag (#) and the last paragraph included unique as id attribute.

/*Apply rules uniquely with id attributes: */

#unique {

color: red;

}

Irrespective of text properties, CSS selectors help us to pick certain elements of awebsite
because we can apply the same logic. For example, we may select elements of a certain
class attribute (e.g. .table). In our case, it at least reveals that the Practice R website
has two tables. Unfortunately, they share the same class.

Get class via .

pr_html |> html_elements(".table")

{xml_nodeset (2)}

[1] <table class="table" id="table1">\n<colgroup...

[2] <table class="table" id="table2" style="text-align:left; font-si...

Here we may use the id attribute to differentiate between the tables, and you can select
them with the corresponding selector. Insert a hashtag (#) and the id attribute in the
html_elements() function to inspect the second table.

Get id attribute via

pr_html |>

html_elements("#table2") |>

html_table()

#> State Capital Population GDP..in.billions.

#> 1 Baden-Württemberg Stuttgart 11,069,533 461

#> 2 Bavaria Munich 13,076,721 550

#> 3 Berlin Berlin 3,644,826 125

#> 4 Brandenburg Potsdam 2,511,917 66

#> 5 Bremen Bremen 682,986 32

#> 6 Hamburg Hamburg 1,841,179 110

In a nutshell, the principles of web scraping are not complicated, but it can become
quite complex depending on how a website is built, and also on your prior experience
working with HTML, XML, and CSS. This section gave you a first impression, even
if it only tries to convince you that scraping might be worth considering, although it

11.3 APIs | 353

is demanding. One last tip: you can also install a selector gadget (browser addin). It
allows you to manually pick elements of the website and it shows information about an
HTML element (e.g., attribute name) graphically. Such tools make it easier to extract
specific elements and the rvest website outlines how a selector gadget works in more
detail.

The rvest website

https://rvest.tidyverse.org/

Before you start web scraping, also check if the website has an API, because that is
the most convenient way to retrieve data. If the website has one, check if there is an R
package that offers you an interface to work with the API. The next section provides
more information how APIs work.

11.3 APIs

An application programming interface (API) connects technical interfaces with each
other. Say your smartphone synchronizes with your computer; they exchange inform-
ation via an API that runs on a server and hosts the data. This sound unrelated in
terms of data analysis, but when an API is available we can connect R to the server and
retrieve the data.

Working with APIs can be intimidating, depending on the API and your prior
experience. Most of the time you will need to identify yourself to the API before you
can make a request to get the data. We thus need to know how an API communicates
and we need to prepare the retrieved data before we can process it. To see how APIs
work, let us stick to a simple API that does not require authentication.

The DemografixeR package (Brenninkmeijer, 2020) gives access to the Gender-
ize API. The API predicts a person’s sex based on a first name. All we need to re-
trieve the data from the API is a vector with names and the genderize() function. The
DemografixeR package sends the names to the genderize.io API, fetches the results
from the algorithm that runs on their server, and returns the prediction.

The genderize API

library(DemografixeR)

names <- c("Edgar", "James", "Veronica", "Marta", "Fritz")

genderize(names, simplify = FALSE)

#> name type gender probability count

#> 1 Edgar gender male 0.99 16632

#> 2 James gender male 0.99 117309

354 | 11 Collect data

#> 3 Veronica gender female 0.99 47316

#> 4 Marta gender female 0.98 184145

#> 5 Fritz gender male 0.95 3715

Never mind about the algorithm. The important point is that the DemografixeR package
provides an interface to retrieve the data from the API. How does the package retrieve
the information? In many cases, an API returns a JavaScript Object Notation (JSON)
file. You can inspect how it works with your browser. The next console shows the web
address that let us send a first name to the genderize.io API and the prediction for the
name is displayed in the browser. We need to include the information that is send to the
API within the web address (?name=). The next console shows the result for my name.

Inspect the API via the browser:

https://api.genderize.io/?name=edgar

My browser returns:

{"name":"edgar","gender":"male","probability":0.99,"count":16632}

How we interact with an API, which parameters it needs to return data depends on
the application, but the principle is identical for each API. We send parameters to
a web server to get the results. For this reason, it is important to inspect the API’s
documentation.

Understanding the main idea of APIs is straightforward, but how do we retrieve
data and what shall we do if there is no package that lets us interact with an API?
Packages for APIs make a request to a server, retrieve data, and return the result in the
console. With a little effort and the httr package (Wickham, 2022b), you can do that on
your own. In the last chapter, I introduced GitHub. GitHub has an API which can be
used to get information about GitHub accounts and repositories. More precisely, we
will use this API and the httr package to get access to code that lives on GitHub.

Consider the show_script() function from the PracticeR package. If you have an
internet connection: the source code of each Practice R chapter does not come from the
installed package, it lives on GitHub. The function copies the code and creates a new
script. However, if we do not insert any value, it returns an error message that lists all
available files from the corresponding GitHub account.

show_script knows which scripts are available

PracticeR::show_script()

#> Error in `PracticeR::show_script()`:

#> ! Please run `show_script()` with a valid file name as an argument.

#> Valid examples are:'chapter02', 'chapter03', 'chapter04', 'chapter05',

11.3 APIs | 355

#> 'chapter06', 'chapter07', 'chapter08', 'chapter09', 'chapter10',

#> 'chapter11', 'chapter12'

We don’t need an API to generate the chapter names, but we could use the httr package
to fetch data from the GitHub account with all available files names of a repository.
Interaction with such an API is not rocket science if we know how the httr package
works. Let us recreate this function with the GitHub API – a function that returns a
vector with available .R files from a GitHub account. First, inspect the GitHub API.

Inspect the GitHub API

https://api.github.com/

Next, we need to create a link to retrieve data from a GitHub repository, but the search
query of the GitHubAPI is quite complicated. I used the API to searchwithin the Practice
R (edgar-treischl/Scripts_PracticeR/) repository (repo:). Moreover, I restricted the
search query to R files (+extension:R). As Figure 11.3 illustrates, using a browser the
API has found several files and returns a long list with information; this includes the
name, the path, and further information about the items of the GitHub repository.

Fig. 11.3: The GitHub API

In order to get access to these API results, we need to create the strings of the web
address (git_url). As the next console highlights, I split the URL in four parts: the first
part of the GitHub link (gitlink), complemented by the author, the repository name,
as well as the extension parameter. Splitting the git_urlmakes it easier to recycle our
work. We can retrieve data for another repository by changing the input.

Build the link for the API

gitlink <- "https://api.github.com/search/code?q=repo:"

author <- "edgar-treischl"

repository <- "Scripts_PracticeR"

Put them together

356 | 11 Collect data

git_url <- paste0(

gitlink,

author, "/",

repository, "/",

"+extension:R"

)

git_url

#> [1] "https://api.github.com/search/code?q=repo:edgar-treischl/

#> Scripts_PracticeR/+extension:R"

Next, we need to understand how httr and the request method works. You make a
request if you interact with a server, and there are four common methods to do this:
POST, PUT, DELETE, and GET. You may ask to create new information (POST), update
existing information (PUT), or delete information (DELETE) from the server. In our case,
we want to get (GET) information.

The httr package has implemented those functions; we get the same information
that the browser returns with the GET() function. As the next console shows, I assign
the result of the request as response. Youmay call the response object to get some basic
information about the retrieved data (date, status, etc.). The GET() function retrieves
the same information from the API as Figure 11.3 showed, but now as a JSON file.

GET a response from the Github API

response <- httr::GET(git_url)

response

#> Response [https://api.github.com/search/code?q=repo:edgar-treischl/

#> Scripts_PracticeR/+extension:R]

#> Date: 2022-12-01 17:05

#> Status: 200

#> Content-Type: application/json; charset=utf-8

#> Size: 65.6 kB

#> {

#> "total_count": 11,

#> "incomplete_results": false,

#> "items": [

#> {

#> "name": "chapter08.R",

#> "path": "R/chapter08.R",

#> "sha": "b585e344f41de97819be1bb2c76a591b6a1a46ac",

11.3 APIs | 357

#> "url": "https://api.github.com/repositories/458778179/contents/ ...

#> "git_url": "https://api.github.com/repositories/458778179/git/ ...

JSON is used to exchange the data; essentially, it returns attribute-value pairs (e.g.,
"total_count": 11). Do not worry if you are not familiar with JSON, because we can
extract information of the response with the content() function. Depending on the
API and the response, we may however wish to extract it differently. For this reason, we
can determine how the information is extracted with the as option (e.g., as text, as
raw). If possible, the content can be parsed into an R object. In our case, the content
function creates a list (response_parsed) and extracts the information from the JSON
file.

Parse the content

response_parsed <- httr::content(response, as = "parsed")

class(response_parsed)

#> [1] "list"

The next data preparation steps are not that important, since they may depend on the
API. All GitHub files are saved as items in the response_parsed list. We can make a
vector of each item and bind them together with bind_rows() function from the dplyr
package.

Prepare data

parsed_tree <- response_parsed$items

df <- dplyr::bind_rows(parsed_tree)

df

#> # A tibble: 506 x 8

#> name path sha url git_url html_~1 repos~2 score

#> <chr> <chr> <chr> <chr> <chr> <chr> <named> <dbl>

#> 1 chapter08~ R/ch~ b585~ http~ https:~ https:~ <int> 1

#> 2 chapter08~ R/ch~ b585~ http~ https:~ https:~ <chr> 1

#> 3 chapter08~ R/ch~ b585~ http~ https:~ https:~ <chr> 1

#> 4 chapter08~ R/ch~ b585~ http~ https:~ https:~ <chr> 1

#> 5 chapter08~ R/ch~ b585~ http~ https:~ https:~ <lgl> 1

#> # ... with 501 more rows, and abbreviated variable names

#> # 1: html_url, 2: repository

358 | 11 Collect data

In addition, theGitHubAPI returns a lot of duplicate names, since it includes all changes
made to the listed files. The stri_unique() function returns only unique strings, or in
our case, unique file names. To create a nicer output, we can sort them as last step.

stringi::stri_unique returns unique strings

git_scripts <- df$name |>

stringi::stri_unique() |>

stringr::str_sort()

head(git_scripts)

#> [1] "chapter02.R" "chapter03.R" "chapter04.R" "chapter05.R" "chapter06.R"

#> [6] "chapter07.R"

Now you have a list with all available R files of the repository. Thus, we started to create
a wrapper function for the GitHub API, which is essentially the same as an API package
may offer, even if this is only our first approach. We need to put more effort into the
function and, for example, deal with errors and other problems if we develop such a
function.

Creating a wrapper function illustrates that you can retrieve data even if there
is no dedicated R package. Let’s put all the steps together and create a function
(which_gitscripts). Because I split the link and inserted the repository name
as a variable inside the function, we can now use which_gitscripts() for other
repositories as well.

#Create your own wrapper function

which_gitscripts <- function(repository) {

#Make URL

author <- "edgar-treischl"

git_url <- paste0("https://api.github.com/search/code?q=repo:",

author, "/",

repository, "/",

"+extension:R")

#Get response

response <- httr::GET(git_url)

response_parsed <- httr::content(response, as="parsed")

parsed_tree <- response_parsed$items

#Prepare response

df <- dplyr::bind_rows(parsed_tree)

11.3 APIs | 359

git_scripts <- df$name

git_scripts_unique <- stringi::stri_unique(git_scripts)

listed_script <- stringr::str_sort(git_scripts_unique)

return(listed_script)

}

For example, which files does the penguins_report repository contain? You may re-
cognize some of the script names from Chapter 10. I created this GitHub repository to
render reports and send mails.

A test run

which_gitscripts("penguins_report") |> head()

#> [1] "01_render_reports.R" "02_send_mails.R" "utils.R"

Keep in mind that the discussed steps are essentially the same regardless of the used
API. For example, the Weather API returns a weather forecast.

The weather API

https://www.weatherapi.com/

Again, we need to learn first how the API works, but the main steps are the same: we
create the search query, get the response, and prepare the response in order to process
it. However, you need to register to useWeather API. For this reason, we need to include
a key inside the weather_url and the code will not work on your computer until you
have a valid key. All the remaining steps are then essentially the same, as the next
console demonstrates.

Create url

weather1 <- "http://api.weatherapi.com/v1/current.json?"

place <- "Munich"

weather2 <- "&aqi=no"

Insert your KEY

weather_url <- paste0(weather1, key, place, weather2)

Get response

response <- httr::GET(weather_url)

response_text <- httr::content(response, as = "parsed")

360 | 11 Collect data

Prepare response

df <- response_text$current

weather <- as.data.frame(df)

I picked Munich as a location. So, how’s the temperature and the weather condition
right now in Munich?

Today is

Sys.Date()

#> [1] "2023-01-23"

The temperature (in celsius)

weather$temp_c

#> [1] 1

And how is the weather?

weather$condition.text

#> [1] "Overcast"

In summary, check out if you can get data from an API and look out for a dedicated
R package to collect data before you start on your own. There are many package that
provide access to APIs. For example, the rtweet package collects Twitter data (Kearney
et al., 2022); or tuber connects you with the YouTube API (Sood, 2020). Maybe you are
lucky and you find one, if not, you can create your own functions to retrieve data. Do
not forget that a lot of companies restrict access and sometimes you need an account to
retrieve data. That is the reason why I used freely accessible APIs. Inspect the corres-
ponding packages and conditions of the API carefully if you plan to collect data from
YouTube, Twitter, or any other API.

To work with APIs may seem quite impressive, but the principles are not complic-
ated. It takes some time and effort to connect to and retrieve information from an API,
but it is worth the trouble. With help of the plumber package (Schloerke & Allen, 2022),
you are even able to create your own API, as the next info box outlines. Probably you
do not plan to create an API, but it highlights once more how APIs work and I could
not talk about APIs without highlighting such a cool R feature and package.

11.3 APIs | 361

The plumber package

The plumber package makes it possible to setup an API that can be hosted on a server. One info box
is certainly not enough to outline how the package works, but an example may give you a first idea.
Suppose the API should return the GDP for a specific country. You created the return_gdp function,
which returns the GDP for a country and a given year.

#Which country?

return_gdp("Spain")

#> 28821.

The plumber package lets us add API functions by inserting special comments in a script. For example,
we create a new API and give it a title (@apiTitle) and a description (@apiDescription):

#* @apiTitle Test API

#* @apiDescription Get the GDP

Next, we need to specify which parameters or input the API needs (e.g., param country) and what kind
of data the API returns. In this example, it returns a value and we apply the postmethod. Moreover, we
need to add the function that the API should apply.

#* Returns most recent GDP for a country

#* @param country

#* @post /calculate_gdp

#Insert FUN here

After we insert the parameters, the package lets us create an API, which is running on a virtual server.
The package shows the API interface in the viewer pane and you can test if it works. As Figure 11.4
highlights, the preview lets us insert a country name and, if we made no mistakes, the API returns the
GPD.

Fig. 11.4: The plumber API

362 | 11 Collect data

Summary

This chapter demonstrates that we can collect data with R. It may take some time
and effort to extract data from a PDF, but it might be worth the trouble if we can
extract a lot of information. The same applies to web scraping and APIs. Both may
appear overwhelming if you have little knowledge about web-based technologies and
languages, but I showed you that scraping data is not rocket science. Regardless of
the source, you can answer unique research questions when you collect data and then
combine it with available data. Consider reading Automated Data Collection with R by
Munzert et al. (2014) if you want to learn more about the topic.

Before you start to collect data, also keep the stringr package in mind. It has many
functions to manipulate strings. I introduced the package to extract data from a PDF,
but knowledge about strings may also help us to scrape data or work with unstructured
data, especially in combination with regular expressions. Don’t forget to check out the
cheat sheet to get an overview of all functions used to manipulate strings.

Inspect the stringr website

https://stringr.tidyverse.org/

12 Next steps
The last chapter highlights potential next steps. I briefly introduce topics, packages,
and frameworks that would otherwise not find a place in this book. The discussion
is not complete by itself, since R and in particular the R community offers too many
possibilities. The last section underlines that there aremany cool packages and features
to discover. We explore next steps related to data preparation, analysis, visualization,
and reporting.

Setup Chapter 12

library(DBI)

library(dplyr)

library(dbplyr)

library(gapminder)

library(ggplot2)

library(ggrepel)

library(lubridate)

library(margins)

library(parameters)

library(titanic)

library(tibble)

library(shiny)

Data preparation

In Practice R, we worked with cross sectional data only and most of the time we manip-
ulated data with the dplyr package. We also extended our knowledge about categorical
variables and strings with the forcats and the stringr package. What about other
types of data? How can we manipulate longitudinal data? There is so much more to
explore when it comes to your next data preparation steps, but the good news is that
we did not explore all functions from the introduced packages. Consider the dplyr

package once more, it provides functions to work with longitudinal data. Suppose you
have observed the following three persons in 2019 and 2020.

#Example data

df <- tribble(

~person, ~year, ~income,

1, 2019, 1821,

1, 2020, 2291,

2, 2019, 1971,

2, 2020, 2146,

https://doi.org/10.1515/9783110704976-012

364 | 12 Next steps

3, 2019, 3544,

3, 2020, 2877

)

For example, we may need a lag and a lead variable in order to work with longitudinal
data. A lag variable is lagged in time and has the value from a previous wave, while a
lead variable points to the next observational period. Create a lead variable with the
lead() function; or, as the next console shows, generate a lag variable. In our case, the
income in the first wave (2019) is the lag income for the second wave (2020). Group the
data by person and create a new variable with the lag() function.

Create a lag variable

df |>

group_by(person) |>

mutate(income_lag = lag(income))

#> # A tibble: 6 x 4

#> # Groups: person [3]

#> person year income income_lag

#> <dbl> <dbl> <dbl> <dbl>

#> 1 1 2019 1821 NA

#> 2 1 2020 2291 1821

#> 3 2 2019 1971 NA

#> 4 2 2020 2146 1971

#> 5 3 2019 3544 NA

#> # ... with 1 more row

Of course, this snippet does not prepare you to work with longitudinal data, but it
illustrates that a package such as dplyr offers many opportunities, and sometimes
you are already familiar with the package that provides a solution for a specific task.
Remember, many packages come with vignettes and dplyr has further functions and
vignettes to discover.

Sometimes, you will need other packages (or approaches) to prepare data. For
example, we did not work with time and date variables, but the lubridate package
provides functions to manipulate them (Spinu et al., 2022). Consider the date variable
from the lakers basketball data that comes with the package. The variable indicates
the date of a basketball game as integers. How can we transform the date?

Use lubridate to prepare time and date variables

x <- lakers$date[1]

x

12 Next steps | 365

#> [1] 20081028

The ymd() function converts the integers to a date, it saves the date as year, month, and
day. Moreover, the year(), the month(), and the day of a month (mday) function extract
each piece of information separately:

The ymd() function converts integers to a date
dates <- ymd(x)
dates

#> [1] "2008-10-28"

Still an integer?

class(dates)

#> [1] "Date"

Extract the day of a month

mday(dates)

#> [1] 28

Extract month

month(dates)

#> [1] 10

Extract year
year(dates)

#> [1] 2008

In order to improve our data preparation skills, there aremore packages andpossibilities
to explore. Let me give you one last example: Suppose the data does not live on a hard
drive, but in an SQL database. As outlined in Chapter 11, your dplyr knowledge will
help you to work with SQL because the dbplyr package works with databases and is a
sibling of the dplyr package (Wickham, Girlich, et al., 2022).

To connect R with a database, we need to establish a connection using the
dbConnect() function from the DBI package, which provides the database interface
(Wickham &Müller, 2022). It needs a driver (drv, e.g., from the odbc or other packages),

366 | 12 Next steps

database specific arguments (e.g., host name, port number), and authentication
details (e.g., user, password). After we connected R, we can make queries (e.g., update,
filter data, etc.) and send or retrieve data from the database. The next console illustrates
the procedure.

Establish a connection to the database

library(DBI)

con <- DBI::dbConnect(

drv = odbc::odbc(),

host = "host",

port = 3306,

dbname = "database_name",

user = "user",

password = "password"

)

Working with a database may seem complicated, especially if you only started to learn
SQL. The good news is, the RSQLite package helps you to learn SQL and we must not
connect R to a data base for the first steps (Müller et al., 2022). The package relies on
SQLite (a lightweight SQL database engine) and lets you make some dry runs on your
local memory. Thus, we can test if an SQL code works and improve our skills without
establishing a connection. The next console shows an SQL code example. It selects the
variable mpg from the mtcars data and limits the output to three lines.

#A SQL example:

SELECT mpg FROM mtcars LIMIT 3;

In order to test this SQL code, we need to establish a connection as well. Insert the
SQLite() function in the dbConnect() function and the memory argument as a database
name. As a result, we pretend that we work with a database and use the memory of the
local hard drive.

Establish a connection to the local memory

con_myDB <- dbConnect(

drv = RSQLite::SQLite(),

dbname = ":memory:"

)

Next, we need to feed the local database by creating an example table with the
dbWriteTable() function. As the next console highlights, we connect to the database

12 Next steps | 367

(con_myDB) and create a new table based on the mtcars data. To check if we were
successful, the dbListTables() function returns all tables of the database.

Write a table into the "database"

dbWriteTable(

conn = con_myDB,

name = "mtcars",

value = mtcars

)

List all tables

dbListTables(con_myDB)

#> [1] "mtcars"

Now we can test the SQL code. The dbGetQuery() functions sends queries to the data-
base and returns the result via the console.

Get SQL Query

dbGetQuery(con_myDB, "SELECT mpg FROM mtcars LIMIT 3;")

#> mpg

#> 1 21.0

#> 2 21.0

#> 3 22.8

In Practice R, we used data that was not (too) complicated to prepare, but this does
not imply that you are not prepared to work with longitudinal data, dates, and you
may even connect RStudio to a database. Of course, it will take some time and effort to
take such next steps, but I am confident that you will find solutions to prepare the data,
even if this book did not cover them.

Data analysis

In Chapter 6, we learned how to run a linear regression analysis. Sometimes, other
methods are better suited to analyze the data. Say you examinewho has access to public
health services. How often do people go to a physician and can we explain disparities
between social groups? Regardless of the hypothesis, the outcome is a count variable
and we may apply a Poisson regression (see Tang et al., 2012).

Suppose the data contains information about patients who are sick. If we have
observed the time and measured how long these people are sick, we can examine the

368 | 12 Next steps

survival time given that they have a certain disease. In this case you may apply an
event history analysis (see Brostrom, 2021). However, if the data does not contain the
exact time, but a binary outcome that indicates who has (not) survived, you may run a
logistic regression (see Best & Wolf, 2014). Never mind if these topics are new, I will not
introduce them in the last section, but depending on the outcome, you may want to
run a different statistical analysis.

The tidymodels package provides a common framework – a series of packages
for modeling and machine learning – which we could use to apply different analysis
techniques (Kuhn & Wickham, 2022). What does this mean? Let’s say an analysis is
like a car. Each car comes with one specific engine. What if we could swap the engine
or let the car have different driving modes? In terms of a linear regression, you may
use the linear engine. What if you were asked to apply a different statistical analysis
on another day? If your analysis is embedded in the tidymodels package, all you have
to do is change the engine to use a different estimation technique. All the rest – how
the code works, which estimates the model returns, how the output is formatted – is
identical. Such a framework gives us the opportunity to focus on the content and we
do not have to learn how the code works for a specific method.

Unfortunately, we need to know at least two different estimation engines to apply
the tidymodels. For this reason, I show you the nuts and bolts of logistic regression
in this section, especially since the latter is also a standard analysis technique in the
social science curriculum.

Nuts and bolts of logistic regression

Why do some people smoke? Why do some students get a degree when others fail? In
the social sciences we are often interested in examining binary outcomes (0/1) and you
may use a logistic regression for this purpose. A logistic regression tries to classify the
outcome and the approach was created because the assumptions of a linear regression
might be violated in the case of a binary outcome.

The Titanic example is a classic to introduce a logistic regression and the corres-
ponding titanic package gives you access to the data. For instance, examine if more
women than men survived the Titanic. The outcome Survived indicates if a person has
survived (1) or not (0).

The Titanic data

library(titanic)

Select variables, for example:

titanic_df <- titanic::titanic_train |>

dplyr::select(Survived, Sex)

12 Next steps | 369

Inspect

head(titanic_df)

#> Survived Sex

#> 1 0 male

#> 2 1 female

#> 3 1 female

#> 4 1 female

#> 5 0 male

#> 6 0 male

Run a logistic regression with the glm() function and adjust which generalized model
you want to use with the family option. Apply a logistic regression with the logit

option, but you can use other functional forms (such as a probitmodel) as well. The
summary() function returns the most important information about the model.

Minimal code to run a logistic regression

logit_model <- glm(Survived ~ Sex,

family = binomial(link = "logit"),

data = titanic_df

)

Print a summary

summary(logit_model)

#>

#> Call:

#> glm(formula = Survived ~ Sex, family = binomial(link = "logit"),

#> data = titanic_df)

#>

#> Deviance Residuals:

#> Min 1Q Median 3Q Max

#> -1.6462 -0.6471 -0.6471 0.7725 1.8256

#>

#> Coefficients:

#> Estimate Std. Error z value Pr(>|z|)

#> (Intercept) 1.0566 0.1290 8.191 2.58e-16 ***

#> Sexmale -2.5137 0.1672 -15.036 < 2e-16 ***

#> ---

#> Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

370 | 12 Next steps

#>

#> (Dispersion parameter for binomial family taken to be 1)

#>

#> Null deviance: 1186.7 on 890 degrees of freedom

#> Residual deviance: 917.8 on 889 degrees of freedom

#> AIC: 921.8

#>

#> Number of Fisher Scoring iterations: 4

Even though it seems a good idea to apply a logistic regression exclusively in terms of
a binary outcome, a lot of people also use linear models (linear probability model) to
analyze a binary outcome. There are several reason why this is the case, but one reason
is that estimates from a logistic regression are tough to interpret.

Consider the logit_model. Due to its assumptions, the estimate of the logistic
regression is a logarithm of the odds (log-odds) and the glm() function returns them. In
our case the log-odds indicates a negative effect and fewermen thanwomen survived the
Titanic. How can we assess the log-odds? The estimate for male passengers (Sexmale)
compared to female is −2.51. We can only say that the effect is negative and significant.

A lot of people have a hard time in explaining what this figure means. Instead of
the log-odds, we can estimate odds ratios or predicted probabilities. Both are easier to
interpret and most studies do not report log odds, but odds ratios or predicted values.
An odds ratio is a ratio of two odds and the estimates are interpreted as a multiplicative
factor. To examine odds ratios, use the parameters() function from the parameters
package and exponentiate the coefficients (Lüdecke, Makowski, Ben-Shachar, Patil,
Højsgaard, et al., 2022). As the next console shows, the model indicates that men’s odds
to survive is reduced by the factor 0.08 compared to the odds of women.

#Inspect odds ratios with the parameters package

logit_model|> parameters::parameters(exponentiate = TRUE)

#> Parameter | Odds Ratio | SE | 95% CI | z | p

#> --

#> (Intercept) | 2.88 | 0.37 | [2.24, 3.72] | 8.19 | < .001

#> Sex [male] | 0.08 | 0.01 | [0.06, 0.11] | -15.04 | < .001

The margins package delivers average marginal effects (AME) and men’s chances to
survive are on average reduced by 55 percent as the next console shows (Leeper, 2021).
As always, the package offer more than I can outline. Inspect the package’s vignette
if you want to calculate marginal effects at means, marginal effects at representative
cases, or for marginal effect plots.

12 Next steps | 371

Inspect marginal effects with the margins package

logit_margins <- margins::margins(logit_model)

summary(logit_margins)

#> factor AME SE z p lower upper

#> Sexmale -0.5531 0.0296 -18.6975 0.0000 -0.6111 -0.4951

In summary, I did not highlight all of the analysis techniques to boast about the possib-
ilities; instead it should illustrate that you can run a Poisson regression, do an event
history analysis or apply a logistic regression (and furthermodels) with R. Youmay even
use the tidymodels package and swap the engine. Check out the tidymodelswebsite
since the frameworks encompass several packages and contains more features than I
could possibly highlight as a next step.

The tidymodels website

https://www.tidymodels.org/

Visualization

Practice R has a large focus on visualization, because it’s my belief that visualizations
are of great importance to communicate findings from empirical research. I introduced
ggplot2 and several extensions in Chapter 7, but this does not imply that there is
nothing left to explore when it comes to visualization. For example, create interactive
visualizations from a ggplot2 graph with the ploty package (Sievert et al., 2022); make
animated graphs with gganimate (Pedersen & Robinson, 2022); or visualize time-series
data with dygraphs (Vanderkam et al., 2018).

Furthermore, I only introduced the ggplot2 extensions that implement geoms, but
there are many more packages that increase our visualization skills. For example, the
ggrepel package provides functions to avoid overlapping text labels (Slowikowski,
2022). The next console shows two scatter plots made with the gapminder data. See
how the first scatter plot that displays text labels (A) improves when we apply the
geom_text_repel() function instead of the geom_text() function (B). It’s fantastic
how ggrepel improves the scatter plot by replacing one line of code. It substantially
reduces the overlapping of the country names.

Gapminder data

gapminder_df <- gapminder |>

filter(year == "2007" & continent == "Europe")

Left Plot: geom_text

ggplot(gapminder_df, aes(gdpPercap, lifeExp, label = country)) +

372 | 12 Next steps

geom_point(color = "red") +

labs(title = "A: geom_text()") +

geom_text()

Right plot: geom_text_repel

ggplot(gapminder_df, aes(gdpPercap, lifeExp, label = country)) +

geom_point(color = "red") +

labs(title = "B: geom_text_repel()") +

geom_text_repel()

Albania

Austria
Belgium

Bosnia and Herzegovina

Bulgaria

Croatia
Czech Republic

Denmark

Finland

France

GermanyGreece

Hungary

Iceland

Ireland

Italy

Montenegro

Netherlands
Norway

Poland

Portugal

Romania

Serbia
Slovak Republic

Slovenia

SpainSweden
Switzerland

Turkey

United Kingdom

72

74

76

78

80

82

10000 20000 30000 40000 50000
gdpPercap

lif
eE

xp

A: geom_text()

Albania

Bosnia and Herzegovina

Bulgaria

Croatia

Czech Republic
Denmark

France

Greece

Hungary

Iceland

Ireland

Italy

Montenegro

Norway

Poland

Portugal

Romania

Serbia

Slovak Republic

Slovenia

Spain

Sweden

Switzerland

Turkey72

74

76

78

80

82

10000 20000 30000 40000 50000
gdpPercap

lif
eE

xp

B: geom_text_repel()

Unfortunately, I did not emphasize enough why text labels are important to communic-
ate the graph’s message. Inspect the ggplot2website to learn more about text labels,
and the ggrepel documentation to discover more about the package and its possibilit-
ies.

Or consider the shiny package (Chang et al., 2022). In a strict sense, shiny does
not belong in this section because it is not a visualization (technique), but shinymakes
it possible to create interactive dashboards with visualizations. The package includes
several example apps that demonstrate how shiny apps work. Figure 12.1 shows one
of these examples. The 01_hello app displays a slider and a histogram. Shiny apps
are reactive and let user interact with data. In the app, the user can adjust the number
of bins with the slider on the left side. The shiny package reacts and recreates the
histogram on the right side, in accordance with the selected number of bins.

The shiny package is awesome and the examples will help you to make the first
app. As the next console illustrates, use the runExample() function to explore one of
the example apps. And don’t forget to check out the website, because the package has
more didactic apps to explore.

12 Next steps | 373

Inspect example shiny apps: 01_hello, 02_text, etc.

library(shiny)

runExample("01_hello")

Fig. 12.1: The shiny app

I decided not to introduce shiny in a systematic manner. We focus on typical steps of
applied research, and unfortunately, this does not (yet) include dashboards. If you
want to learn shiny, the website has plenty of information to start with, apart from the
example apps. There are video tutorials and many shows cases. In addition, check out
Mastering Shiny by Wickham (2021) to learn more about shiny apps.

Mastering Shiny:

PracticeR::show_link("master_shiny")

Reporting

Finally, there are also several next steps to consider about reporting. We learned how
to create (dynamic) documents with rmarkdown, but maybe your ambition is larger and
you are about to write a book. The bookdown package provides a framework to write (e-)
books with R (Xie, 2022a).

How about a website? Creating a basic website is easy with rmarkdown and you
can see first results after four simple steps. Go the RStudio menu and create a new
project for the website, chose the simple R Markdown website as project type, choose a
directory for the website files, and render it. The rmarkdown website shows the steps in
more detail and provides further information on how to personalize the website.

Quarto might also be a next step to consider. Quarto is an open-source publish-
ing system and a multi-language extension for rmarkdown. Quarto allows you to work

374 | 12 Next steps

with other programming languages (e.g., Python, Julia) and the procedure to render
documents is almost identical to rmarkdown. However, Quarto introduces new features
and templates to create articles, reports, presentations, and more. Go and this visit the
Quarto website for more information.

Quarto website:

https://quarto.org/

Instead of focusing on books, websites, or Quarto, this last subsections highlights the
possibility of creating a presentation. More precisely, I will highlight the possibility to
create HTML slides with R. Maybe this seems odd, since you expect me to talk about a
PowerPoint presentation or at least a PDF instead of an HTML file. Keep in mind that
you already have the rmarkdown skills to create a PowerPoint presentation. Moreover, do
we really need a PowerPoint presentation if you can show slides in all modern browsers
and export the file as a PDF? I am not trying to convince you to abandon PowerPoint or
any other Microsoft product (forever). I would never say such a thing. All I am saying
is that an HTML presentation gives us an excellent alternative to conventional slides,
because we can include all kinds of interactive web applications.

For example, the xaringan package implements remark.js in R, which is a Java
Script package to create HTML slides (Xie, 2022d). The package includes a template
called the ninja presentation which gives you a comprehensive impression of what
xaringan has to offer. The template includes many examples of how to create a present-
ation. You may feel a bit overwhelmed if you start to work with this template. It shows
you how to highlight R code, how to insert interactive tables, and it even includes amap.
Including such fancy things in your presentation is more complicated than creating a
simple presentation, but I believe you don’t need much time and assistance to create
slides with R.

For this reason I created a minimal xaringan template and included it in the
PracticeR package as the last goodie. Create a new rmarkdown file from the templates
and use the PracticeR slides template. It shows the typical first steps to create a present-
ation. For example, it shows that texts are formatted with Markdown, you can insert
R code via chunks, and there is a meta section to define the global settings of the
document.

It goes without saying that you need to learn a few tricks to create slides. For
example, individual slides are separated with a line that contains three dashes (---)
and youmay add a new slide at the end of the template to see how it works. However, the
first slide does not start with three dashes, because the xaringan package automatically
creates the title slide from the information of the meta section. Set the seal field in the
YAML to false if you want to create your own title slide.

Furthermore, the xaringan package provides many CSS themes and fonts to style
slides (or you can create your own style). To apply a theme, change the css field in the

12 Next steps | 375

YAML of the template and pick one of the predefined style (or refer to your own CSS
file). For example, how about the chocolate, robot, or the metropolis theme? Inspect
the minimal template and the package documentation to learn more about the package.
There is even an extension package for xaringan, examine the xaringanExtra package
if you need extra styles, to embed the picture of a webcam into the slides, or for fancy
slide transitions (Aden-Buie & Warkentin, 2022).

If you need a PDF file of your slides, use the chrome_print() function from the
pagedown package (Xie et al., 2022). The function converts the HTML file and saves it in
your working directory.

chrome_print exports the file as a PDF
pagedown::chrome_print("my_presentation.html")

Finally, there is only one thing left to say: At the time this book was written, the CRAN
package repository had 18993 available packages stored and thus many potential next
steps for you to explore. The last chapter lists all R packages to build this book with the
bookdown package (Xie, 2022a).

Session info

#Session info of Practice R

sessioninfo::session_info()

#> - Session info ---

#> setting value

#> version R version 4.1.1 (2021-08-10)

#> os macOS Big Sur 10.16

#> system x86_64, darwin17.0

#> ui X11

#> language (EN)

#> collate en_US.UTF-8

#> ctype en_US.UTF-8

#> tz Europe/Berlin

#> date 2023-01-23

#> pandoc 2.19.2 @ /Applications/RStudio.app/Contents/Resources/app/quarto

#>

#> - Packages ---

#> package * version date (UTC) lib source

#> assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.1.0)

#> bookdown 0.31 2022-12-13 [1] CRAN (R 4.1.2)

#> cli 3.4.1 2022-09-23 [1] CRAN (R 4.1.1)

#> colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.1.1)

#> DBI 1.1.3 2022-06-18 [1] CRAN (R 4.1.2)

#> digest 0.6.31 2022-12-11 [1] CRAN (R 4.1.2)

#> dplyr 1.0.10 2022-09-01 [1] CRAN (R 4.1.2)

#> evaluate 0.19 2022-12-13 [1] CRAN (R 4.1.2)

#> fansi 1.0.3 2022-03-24 [1] CRAN (R 4.1.2)

#> fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.1.0)

#> generics 0.1.3 2022-07-05 [1] CRAN (R 4.1.2)

#> ggplot2 3.4.0 2022-11-04 [1] CRAN (R 4.1.2)

#> glue 1.6.2 2022-02-24 [1] CRAN (R 4.1.1)

#> gtable 0.3.1 2022-09-01 [1] CRAN (R 4.1.2)

#> htmltools 0.5.4 2022-12-07 [1] CRAN (R 4.1.2)

#> knitr 1.41 2022-11-18 [1] CRAN (R 4.1.2)

#> lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.1.2)

#> magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.1.2)

#> munsell 0.5.0 2018-06-12 [1] CRAN (R 4.1.0)

#> pillar 1.8.1 2022-08-19 [1] CRAN (R 4.1.2)

https://doi.org/10.1515/9783110704976-013

12 Session info | 377

#> pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.1.0)

#> purrr 0.3.5 2022-10-06 [1] CRAN (R 4.1.2)

#> R.cache 0.16.0 2022-07-21 [1] CRAN (R 4.1.2)

#> R.methodsS3 1.8.2 2022-06-13 [1] CRAN (R 4.1.2)

#> R.oo 1.25.0 2022-06-12 [1] CRAN (R 4.1.2)

#> R.utils 2.12.2 2022-11-11 [1] CRAN (R 4.1.2)

#> R6 2.5.1 2021-08-19 [1] CRAN (R 4.1.0)

#> rlang 1.0.6 2022-09-24 [1] CRAN (R 4.1.1)

#> rmarkdown 2.19 2022-12-15 [1] CRAN (R 4.1.2)

#> rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.1.2)

#> scales 1.2.1 2022-08-20 [1] CRAN (R 4.1.2)

#> sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.1.0)

#> stringi 1.7.8 2022-07-11 [1] CRAN (R 4.1.1)

#> stringr 1.5.0 2022-12-02 [1] CRAN (R 4.1.2)

#> styler 1.8.1 2022-11-07 [1] CRAN (R 4.1.2)

#> tibble 3.1.8 2022-07-22 [1] CRAN (R 4.1.2)

#> tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.1.2)

#> utf8 1.2.2 2021-07-24 [1] CRAN (R 4.1.0)

#> vctrs 0.5.1 2022-11-16 [1] CRAN (R 4.1.2)

#> xfun 0.35 2022-11-16 [1] CRAN (R 4.1.2)

#> yaml 2.3.6 2022-10-18 [1] CRAN (R 4.1.2)

#>

#> [1] /Library/Frameworks/R.framework/Versions/4.1/Resources/library

#>

#> --

Bibliography
Aden-Buie, G., & Warkentin, M. T. (2022). xaringanExtra: Extras and Extensions for xaringan Slides.

https://CRAN.R-project.org/package=xaringanExtra
Allaire, J., Xie, Y., Dervieux, C., R Foundation, Wickham, H., Journal of Statistical Software, Vaidy-

anathan, R., Association for Computing Machinery, Boettiger, C., Elsevier, Broman, K., Mueller,
K., Quast, B., Pruim, R., Marwick, B., Wickham, C., Keyes, O., Yu, M., Emaasit, D., . . . Hyndman, R.
(2022). rticles: Article Formats for R Markdown. https://github.com/rstudio/rticles

Allaire, J., Xie, Y., McPherson, J., Luraschi, J., Ushey, K., Atkins, A., Wickham, H., Cheng, J., Chang, W.,
& Iannone, R. (2022). rmarkdown: Dynamic Documents for R. https://CRAN.R-project.org/packag
e=rmarkdown

Allison, P. D. (2001).Missing data. Sage.
Anscombe, F., J. (1973). Graphs in Statistical Analysis. The American Statistician, 27(1), 7–21.
Arnold, J. B. (2021). ggthemes: Extra Themes, Scales and Geoms for ggplot2. https://CRAN.R-project.

org/package=ggthemes
Bååth, R. (2018). Beepr: Easily Play Notification Sounds on any Platform. https://CRAN.R-project.org/

package=beepr
Bache, S. M., & Wickham, H. (2022).magrittr: A Forward-Pipe Operator for R. https://CRAN.R-project.

org/package=magrittr
Ben-Shachar, M. S., Makowski, D., Lüdecke, D., Patil, I., & Wiernik, B. M. (2022). effectsize: Indices of

Effect Size. https://CRAN.R-project.org/package=effectsize
Best, H., & Wolf, C. (2014). Logistic regression. In H. Best & C. Wolf (Eds.), SAGE Handbook of Regres-

sion Analysis and Causal Inference (pp. 153–171). Sage.
Blair, G., Cooper, J., Coppock, A., Humphreys, M., & Sonnet, L. (2022). estimatr: Fast Estimators for

Design-Based Inference. https://CRAN.R-project.org/package=estimatr
Brenninkmeijer, M. (2020). DemografixeR: Extrapolate Gender, Age and Nationality of a Name. https:

//CRAN.R-project.org/package=DemografixeR
Breusch, T. S., & Pagan, A. R. (1979). A Simple Test for Heteroscedasticity and Random Coefficient

Variation. Econometrica, 47(5), 1287–1294. https://doi.org/10.2307/1911963
Brostrom, G. (2021). Event History Analysis With R (2nd ed.). CRC Press.
Bruce, P., Bruce, A., &Gedeck, P. (2020). Practical Statistics for Data Scientists: 50+ Essential Concepts

Using R and Python (2nd ed.). O’Reilly.
Brunson, J. C., & Read, Q. D. (2020). ggalluvial: Alluvial Plots in ggplot2. https://CRAN.R-project.org/

package=ggalluvial
Bryan, J. (2017). gapminder: Data from Gapminder. https://CRAN.R-project.org/package=gapminder
Bryan, J. (2022). googlesheets4: Access Google Sheets using the Sheets API V4. https://CRAN.R-proj

ect.org/package=googlesheets4
Bryan, J., & Wickham, H. (2022). gh: GitHub ’API’. https://CRAN.R-project.org/package=gh
Chacon, S., & Straub, B. (2014). Pro Git (2nd ed). Apress.
Champely, S. (2020). pwr: Basic Functions for Power Analysis. https://CRAN.R-project.org/package=

pwr
Chang, W. (2012). R Graphics Cookbook (1st ed.). O’Reilly.
Chang, W., Cheng, J., Allaire, J., Sievert, C., Schloerke, B., Xie, Y., Allen, J., McPherson, J., Dipert, A., &

Borges, B. (2022). shiny: Web Application Framework for R. https://CRAN.R-project.org/packag
e=shiny

Clarke, E., & Sherrill-Mix, S. (2017). ggbeeswarm: Categorical Scatter (Violin Point) Plots. https://CR
AN.R-project.org/package=ggbeeswarm

https://doi.org/10.1515/9783110704976-014

12 Bibliography | 379

Cleveland, W. S. (1979). Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of
the American Statistical Association, 74(368), 829–836. https://doi.org/10.1080/01621459.1
979.10481038

Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Routledge Academic.
Comtois, D. (2022). summarytools: Tools to Quickly and Neatly Summarize Data. https://CRAN.R-proj

ect.org/package=summarytools
Cook, R. D. (1977). Detection of Influential Observation in Linear Regression. Technometrics, 19(1),

15–18. https://doi.org/10.2307/1268249
Cortina, H. (2022). hockeystick: Download and Visualize Essential Climate Change Data. https://CRAN

.R-project.org/package=hockeystick
Couture-Beil, A. (2022). rjson: JSON for R. https://CRAN.R-project.org/package=rjson
Csárdi, G. (2022). gitcreds: Query git Credentials from R. https://CRAN.R-project.org/package=gitcre

ds
Csárdi, G., & Salmon, M. (2022). pkgsearch: Search and Query CRAN R Packages. https://CRAN.R-

project.org/package=pkgsearch
Cui, B. (2020). DataExplorer: Automate Data Exploration and Treatment. https://CRAN.R-project.org/

package=DataExplorer
Davies, R., Locke, S., & D’Agostino McGowan, L. (2022). datasauRus: Datasets from the Datasaurus

Dozen. https://CRAN.R-project.org/package=datasauRus
Dervieux, C., Allaire, J., Iannone, R., Presmanes Hill, A., & Xie, Y. (2022). distill: R Markdown Format for

Scientific and Technical Writing. https://CRAN.R-project.org/package=distill
Dowle, M., & Srinivasan, A. (2022). Data.table: Extension of data.frame. https://CRAN.R-project.org/

package=data.table
Enders, C. K. (2010). Applied Missing Data Analysis. Guilford.
Firebaugh, G. (2008). Seven Rules for Social Research. University Press Group.
Firke, S. (2021). janitor: Simple Tools for Examining and Cleaning Dirty Data. https://CRAN.R-project.

org/package=janitor
Friendly, M. (2021). HistData: Data Sets from the History of Statistics and Data Visualization. https:

//CRAN.R-project.org/package=HistData
Gagolewski, M., Tartanus, B., Unicode, others;, Inc., et al. (2022). stringi: Fast and Portable Character

String Processing Facilities. https://CRAN.R-project.org/package=stringi
Garnier, S. (2021). viridis: Colorblind-Friendly Color Maps for R. https://CRAN.R-project.org/packag

e=viridis
Gelman, A., Hill, J., & Vehtari, A. (2020). Regression and Other Stories. Cambridge University Press.
Gohel, D., & Skintzos, P. (2022). flextable: Functions for Tabular Reporting. https://CRAN.R-project.or

g/package=flextable
Grolemund, G. (2014).Hands-On Programming with R: Write Your Own Functions and Simulations (1st

ed.). O’Reilly.
Healy, K. (2019). Data Visualization: A Practical Introduction. Princeton University Press.
Henry, L., & Wickham, H. (2022). purrr: Functional Programming Tools. https://CRAN.R-project.org/

package=purrr
Hester, J., & Bryan, J. (2022). glue: Interpreted String Literals. https://CRAN.R-project.org/package=

glue
Hlavac, M. (2022). stargazer: Well-Formatted Regression and Summary Statistics Tables. https://CR

AN.R-project.org/package=stargazer
Hodge, D. (2022). ggblanket: Simplify ggplot2 Visualisation. https://CRAN.R-project.org/package=

ggblanket
Horst, A., Hill, A., & Gorman, K. (2022). palmerpenguins: Palmer Archipelago (Antarctica) Penguin

Data. https://CRAN.R-project.org/package=palmerpenguins

380 | 12 Bibliography

Hothorn, T., Zeileis, A., Farebrother, R. W., & Cummins, C. (2022). lmtest: Testing Linear Regression
Models. https://CRAN.R-project.org/package=lmtest

Hugh-Jones, D. (2022). huxtable: Easily Create and Style Tables for LaTeX, HTML and Other Formats.
https://CRAN.R-project.org/package=huxtable/

Hvitfeldt, E. (2021). paletteer: Comprehensive Collection of Color Palettes. https://CRAN.R-project.or
g/package=paletteer

Iannone, R., & Cheng, J. (2020). blastula: Easily Send HTML Email Messages. https://CRAN.R-project.
org/package=blastula

Imbens, G. W., & Rubin, D. B. (2015). Causal Inference for Statistics, Social, and Biomedical Sciences.
An Introduction. Cambridge University Press.

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An Introduction to Statistical Learning.
Springer.

Jeppson, H., Hofmann, H., & Cook, D. (2021). ggmosaic: Mosaic Plots in the ggplot2 Framework. https:
//CRAN.R-project.org/package=ggmosaic

Kahle, D., & Wickham, H. (2013). ggmap: Spatial Visualization with ggplot2. The R Journal, 5(1), 144–
161. https://journal.r-project.org/archive/2013-1/kahle-wickham.pdf

Kahle, D., Wickham, H., & Jackson, S. (2022). ggmap: Spatial Visualization with ggplot2. https://CR
AN.R-project.org/package=ggmap

Kassambara, A., Kosinski, M., & Biecek, P. (2021). survminer: Drawing Survival Curves using ggplot2.
https://CRAN.R-project.org/package=survminer

Kearney, M. W., Revilla Sancho, L., & Wickham, H. (2022). rtweet: Collecting Twitter Data. https://CR
AN.R-project.org/package=rtweet

Kuhn, M., & Wickham, H. (2022). tidymodels: Easily Install and Load the Tidymodels Packages. https:
//CRAN.R-project.org/package=tidymodels

Le Pennec, E., & Slowikowski, K. (2022). ggwordcloud: A Word Cloud Geom for ggplot2.
Leeper, T. J. (2021).margins: Marginal Effects for Model Objects. https://CRAN.R-project.org/packag

e=margins
Lin, G. (2022). Reactable: Interactive Data Tables Based on React Table. https://CRAN.R-project.org/

package=reactable
Little, R. J. A., & Rubin, D. B. (1987). Statistical Analysis with Missing Data. Wiley.
Long, J. A. (2021). interactions: Comprehensive, User-Friendly Toolkit for Probing Interactions. https:

//CRAN.R-project.org/package=interactions
Long, J. A. (2022). jtools: Analysis and Presentation of Social Scientific Data. https://CRAN.R-project.

org/package=jtools
Lüdecke, D. (2022). ggeffects: Create Tidy Data Frames of Marginal Effects for ggplot from Model Out-

puts. https://CRAN.R-project.org/package=ggeffects
Lüdecke, D., Makowski, D., Ben-Shachar, M. S., Patil, I., Højsgaard, S., & Wiernik, B. M. (2022). para-

meters: Processing of Model Parameters. https://CRAN.R-project.org/package=parameters
Lüdecke, D., Makowski, D., Ben-Shachar, M. S., Patil, I., Waggoner, P., & Wiernik, B. M. (2022). per-

formance: Assessment of Regression Models Performance. https://CRAN.R-project.org/packag
e=performance

Lüdecke, D., Makowski, D., Patil, I., Ben-Shachar, M. S., Wiernik, B. M., & Waggoner, P. (2022). see:
Model Visualisation Toolbox for easystats and ggplot2. https://CRAN.R-project.org/package=see

Makowski, D., Lüdecke, D., Ben-Shachar, M. S., Patil, I., & Wiernik, B. M. (2022). report: Automated
Reporting of Results and Statistical Models. https://CRAN.R-project.org/package=report

Makowski, D., Wiernik, B. M., Patil, I., Lüdecke, D., & Ben-Shachar, M. S. (2022). Correlation: Methods
for Correlation Analysis. https://CRAN.R-project.org/package=correlation

12 Bibliography | 381

Mann, M. E., Bradley, R. S., & Hughes, M. K. (1999). Northern Hemisphere Temperatures During the
Past Millennium: Inferences, Uncertainties, and Limitations. Geophysical Research Letters, 26(6),
759–762. https://doi.org/10.1029/1999GL900070

Martoglio, E. (2018). rpivotTable: Build Powerful Pivot Tables and Dynamically Slice & Dice your Data.
https://CRAN.R-project.org/package=rpivotTable

Matejka, J., & Fitzmaurice, G. (2017). Same Stats, Different Graphs: Generating Datasets with Varied
Appearance and Identical Statistics through Simulated Annealing. Proceedings of the 2017 CHI
Conference on Human Factors in Computing Systems, 1290–1294. https://doi.org/10.1145/30
25453.3025912

McBain, M., Carroll, J., Gelfand, S., Owlarn, S., & Aden-Buie, G. (2020). Datapasta: R Tools for Data
Copy-Pasta. https://CRAN.R-project.org/package=datapasta

Meyer, F., & Perrier, V. (2022). esquisse: Explore and Visualize Your Data Interactively. https://CRAN.R-
project.org/package=esquisse

Müller, K. (2020). here: A Simpler Way to Find Your Files. https://CRAN.R-project.org/package=here
Müller, K., & Walthert, L. (2022). styler: Non-Invasive Pretty Printing of R Code. https://CRAN.R-projec

t.org/package=styler
Müller, K., Wickham, H., James, D. A., & Falcon, S. (2022). RSQLite: SQLite Interface for R. https://CR

AN.R-project.org/package=RSQLite
Munzert, S., Rubba, C., Meißner, P., & Nyhuis, D. (2014). Automated Data Collection with R: A Practical

Guide to Web Scraping and Text Mining (1st ed.). Wiley.
Neitmann, T. (2020). ggcharts: Shorten the Distance from Data Visualization Idea to Actual Plot. https:

//CRAN.R-project.org/package=ggcharts
Neuwirth, E. (2022). RColorBrewer: ColorBrewer Palettes. https://CRAN.R-project.org/package=RCol

orBrewer
O’Hara-Wild, M., & Hyndman, R. (2022). vitae: Curriculum Vitae for R Markdown. https://CRAN.R-

project.org/package=vitae
Okal, T. (2020). rtist: A Color Palette Generator. https://CRAN.R-project.org/package=rtist
Ooms, J. (2022). pdftools: Text Extraction, Rendering and Converting of PDF Documents. https://CRAN

.R-project.org/package=pdftools
Pearl, J., & Mackenzie, D. (2019). The Book of Why: The New Science of Cause and Effect. Penguin.
Pedersen, T. L. (2022a). ggforce: Accelerating ggplot2. https://CRAN.R-project.org/package=ggforce
Pedersen, T. L. (2022b). patchwork: The Composer of Plots. https://CRAN.R-project.org/package=pa

tchwork
Pedersen, T. L., & Robinson, D. (2022). gganimate: A Grammar of Animated Graphics. https://CRAN.R-

project.org/package=gganimate
Qiu, Y. (2022). showtext: Using Fonts More Easily in R Graphs. https://CRAN.R-project.org/package=

showtext
Rajaretnam, T. (2015). Statistics for Social Sciences. Sage.
Robinson, D., Hayes, A., & Couch, S. (2022). Broom: Convert Statistical Objects into Tidy Tibbles. https:

//CRAN.R-project.org/package=broom
Rowling, J. K. (2014). Harry Potter and the Order of the Phoenix. Bloomsbury Children’s Books.
Rubin, D. B. (1987).Multiple Imputation for Nonresponse in Surveys. Wiley.
Rudis, B., & Gandy, D. (2017). waffle: Create Waffle Chart Visualizations in R. https://CRAN.R-project.

org/package=waffle
Schloerke, B., & Allen, J. (2022). plumber: An API Generator for R. https://CRAN.R-project.org/packag

e=plumber
Schloerke, B., Cook, D., Larmarange, J., Briatte, F., Marbach, M., Thoen, E., Elberg, A., & Crowley, J.

(2021). GGally: Extension to ggplot2. https://CRAN.R-project.org/package=GGally

382 | 12 Bibliography

Sievert, C., Parmer, C., Hocking, T., Chamberlain, S., Ram, K., Corvellec, M., & Despouy, P. (2022).
plotly: Create Interactive Web Graphics via plotly.js. https://CRAN.R-project.org/package=plotly

Silge, J., & Robinson, D. (2017). Text Mining with R: A Tidy Approach. O’Reilly.
Slowikowski, K. (2022). ggrepel: Automatically Position Non-Overlapping Text Labels with ggplot2. ht

tps://CRAN.R-project.org/package=ggrepel
Solt, F., & Hu, Y. (2021). dotwhisker: Dot-and-Whisker Plots of Regression Results. https://CRAN.R-

project.org/package=dotwhisker
Sood, G. (2020). tuber: Client for the YouTube API. https://CRAN.R-project.org/package=tuber
Spinu, V., Grolemund, G., & Wickham, H. (2022). lubridate: Make Dealing with Dates a Little Easier.

https://CRAN.R-project.org/package=lubridate
Stephenson, A. (2021). tayloRswift: Color Palettes Generated by Taylor Swift Albums. https://CRAN.R-

project.org/package=tayloRswift
Tang, W., He, H., & Tu, X. M. (2012). Applied Categorical and Count Data Analysis. Taylor & Francis.
Thorne, B. (2019). posterdown: Generate PDF Conference Posters Using R Markdown. https://CRAN.R-

project.org/package=posterdown
Tierney, N., Cook, D., McBain, M., & Fay, C. (2021). naniar: Data Structures, Summaries, and Visualisa-

tions for Missing Data. https://CRAN.R-project.org/package=naniar
Ushey, K., Allaire, J., & Tang, Y. (2022). reticulate: Interface to Python. https://CRAN.R-project.org/pa

ckage=reticulate
Vanderkam,D., Allaire, J., Owen, J., Gromer,D.,& Thieurmel, B. (2018).dygraphs: Interface toDygraphs

Interactive Time Series Charting Library. https://CRAN.R-project.org/package=dygraphs
Waring, E., Quinn, M., McNamara, A., Arino de la Rubia, E., Zhu, H., & Ellis, S. (2022). skimr: Compact

and Flexible Summaries of Data. https://CRAN.R-project.org/package=skimr
Wei, T., & Simko, V. (2021). Corrplot: Visualization of a Correlation Matrix. https://CRAN.R-project.or

g/package=corrplot
Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd ed.). Springer.
Wickham, H. (2021).Mastering Shiny: Build Interactive Apps, Reports, and Dashboards Powered by R.

O’Reilly.
Wickham, H. (2022a). forcats: Tools for Working with Categorical Variables (Factors). https://CRAN.R-

project.org/package=forcats
Wickham, H. (2022b). httr: Tools for Working with URLs and HTTP. https://CRAN.R-project.org/packag

e=httr
Wickham, H. (2022c). stringr: Simple, Consistent Wrappers for Common String Operations. https://CR

AN.R-project.org/package=stringr
Wickham, H. (2022d). tidyverse: Easily Install and Load the Tidyverse. https://CRAN.R-project.org/pa

ckage=tidyverse
Wickham, H., & Bryan, J. (2022). readxl: Read Excel Files. https://CRAN.R-project.org/package=readxl
Wickham, H., Bryan, J., & Barrett, M. (2022). usethis: Automate Package and Project Setup. https:

//CRAN.R-project.org/package=usethis
Wickham, H., Chang, W., Henry, L., Pedersen, T. L., Takahashi, K., Wilke, C., Woo, K., Yutani, H., & Dun-

nington, D. (2022). ggplot2: Create Elegant Data Visualisations Using the Grammar of Graphics.
https://CRAN.R-project.org/package=ggplot2

Wickham, H., François, R., Henry, L., &Müller, K. (2022). dplyr: A Grammar of DataManipulation. https:
//CRAN.R-project.org/package=dplyr

Wickham, H., & Girlich, M. (2022). tidyr: Tidy Messy Data. https://CRAN.R-project.org/package=tidyr
Wickham, H., Girlich, M., & Ruiz, E. (2022). dbplyr: A dplyr Back End for Databases. https://CRAN.R-

project.org/package=dbplyr
Wickham,H., &Grolemund,G. (2016).R forDataScience: Import, Tidy, Transform, Visualize, andModel

Data. O’Reilly.

12 Bibliography | 383

Wickham, H., Hester, J., & Bryan, J. (2022). readr: Read Rectangular Text Data. https://CRAN.R-projec
t.org/package=readr

Wickham, H., Hester, J., Chang, W., & Bryan, J. (2022). devtools: Tools to Make Developing R Packages
Easier. https://CRAN.R-project.org/package=devtools

Wickham, H., Miller, E., & Smith, D. (2022). haven: Import and Export SPSS, Stata and SAS Files. https:
//CRAN.R-project.org/package=haven

Wickham, H., &Müller, K. (2022).DBI: R Database Interface. https://CRAN.R-project.org/package=DBI
Wijffels, J. (2022). cronR: Schedule R Scripts and Processes with the cron Job Scheduler. https://CRAN

.R-project.org/package=cronR
Wilke, C. O. (2019). Fundamentals of Data Visualization: A Primer on Making Informative and Compel-

ling Figures. O’Reilly.
Wilke, C. O. (2020). ggtext: Improved Text Rendering Support for ’ggplot2’. https://CRAN.R-project.or

g/package=ggtext
Wilke, C. O. (2021). ggridges: Ridgeline Plots in ’ggplot2’. https://CRAN.R-project.org/package=ggri

dges
Wilkins, D. (2021). treemapify: Draw Treemaps in ’ggplot2’. https://CRAN.R-project.org/package=tr

eemapify
Wilkinson, L. (2005). The Grammar of Graphics (2nd ed.). Springer. https://doi.org/10.1007/0-387-

28695-0
Wolf, C., & Best, H. (2014). Linear regression. In H. Best & C. Wolf (Eds.), The SAGE Handbook of Re-

gression Analysis and Causal Inference (pp. 57–81). Sage.
Xie, Y. (2016). Bookdown: Authoring Books and Technical Documents with R Markdown. Chapman;

Hall/CRC.
Xie, Y. (2022a). Bookdown: Authoring Books and Technical Documents with R Markdown. https://CR

AN.R-project.org/package=bookdown
Xie, Y. (2022b). knitr: A General-Purpose Package for Dynamic Report Generation in R. https://CRAN.R-

project.org/package=knitr
Xie, Y. (2022c). tinytex: Helper Functions to Install andMaintain TeX Live, andCompile LaTeXDocuments.

https://CRAN.R-project.org/package=tinytex
Xie, Y. (2022d). xaringan: Presentation Ninja. https://CRAN.R-project.org/package=xaringan
Xie, Y., Dervieux, C., & Riederer, E. (2020). R Markdown Cookbook. Chapman; Hall/CRC.
Xie, Y., Lesur, R., Thorne, B., & Tan, X. (2022). pagedown: Paginate the HTML Output of R Markdown

with CSS for Print. https://CRAN.R-project.org/package=pagedown
Young, D. S. (2017). Handbook of Regression Methods (1st ed.). Chapman; Hall/CRC.
Young, D. S. (2021). HoRM: Supplemental Functions and Datasets for "Handbook of Regression Meth-

ods". https://CRAN.R-project.org/package=HoRM
Zhu, H. (2021). kableExtra: Construct Complex Table with kable and Pipe Syntax. https://CRAN.R-proj

ect.org/package=kableExtra

Index
Anscombe’s quartet 161
API 353
arrange see dplyr
as.character 116
as.formula 299
as.numeric 116
assignment operator 24

boxplot 58
browseURL 338

c 27
class 31
colMeans 97
colors 204
column specification 116, 117
Cook’s D 181
cor 64
correlation 65

data.frame 32, 119
DataExplorer
– create_report 59
–plot_bar 48
–plot_density 57
–plot_histogram 57
devtools
– install_github 20
–source_url 279
dplyr
– across 93
–anti_join 135
–arrange 73
–between 90
–bind_rows 357
– case_when 88
–distinct 294
–ends_with 76
–everything 93
–filter 71
– full_join 133
–group_by 79
– if_else 86
– inner_join 132
– intersect 135
– lag 364
– lead 364

– left_join 133
–mutate 76
–na_if 144
–num_range 76
–pull 76
– recode 91
– recode_factor 92
– relocate 81
– rename 121
– right_join 133
– select 74
– semi_join 134
– slice_* 341
– starts_with 76
– summarize 78
– transmute 78
drop_na 143
dwplot 189
dwtest 187

effect size see package effectsize
email see package: blastula
example 21
export data 114

factor 51
filter see dplyr
font type see package: showtext
for loop 304
forcats
– fct_collapse 150
– fct_count 148
– fct_infreq 151
– fct_lump 151
– fct_other 150
– fct_recode 149
– fct_relevel 148
– fct_unique 149
function 26

get 297
getwd 15
ggplot2
–aes 196
–aes_string 298
–alpha 224
– coord_cartesian 233

https://doi.org/10.1515/9783110704976-015

12 Index | 385

– coord_polar 232
– facet_grid 228
– facet_wrap 230
–geom_bar 221
–geom_col 221
–geom_density 218
–geom_histogram 218
–geom_point 196
–geom_smooth 222
–geom_text 371
–ggplot 196
–ggsave 215
– labels 197
– legend 211
–position_jitter 225
– scale limits 234
– scale_* 206, 223
– stat_summary 226
– theme_set 199
– themes 199
glimpse 44
glm 369
grammar of graphics 216
graphs
–alluvial 237
–bar plot 47
–beeswarm 238
–box plot 57
– choropleth map 239
–dot-and-whisker 172, 187
–dumbbell 240
–heat map 66
–hexbin map 241
–histogram 56
– lollipop 240
–mosaic 242
–pie chart 48
– ridge 243
–scatter plot 63
– treemap 244
–waffle 245
–word cloud 246

head 45
help 21
help.search 22
HTML 342
huxreg 171

if 310
ifelse 86
import data 112
install.packages 18
interaction effects see interactions package
is.data.frame 76
is.na 136

labels 52
lapply 97
length 29
letters 35
levels 50
library 19
linear regression see lm
list 35
list.files 318
lm 157, 164
lm_robust 186
logistic regression see glm

markdown 255
max 53
mean 30
median 53
min 53
missing values 136
mutate see dplyr

names 121
ncol 40
nrow 40

objects 24

package
–beepr 304
–blastula 313
–bookdown 373
–broom 176
– correlation 65, 298
– corrplot 66
–data.table 96
–DataExplorer 48
–datapasta 115
–dbplyr 343
–DemografixeR 353
–devtools 20, 279
–dotwhisker 188

386 | 12 Index

–dplyr 70
–dygraphs 371
–effectsize 64, 161, 306
–esquisse 213
–estimatr 186
–flextable 267
– forcats 147
–ggalluvial 237
–gganimate 236, 371
–ggbeeswarm 238
–ggcharts 240
–ggeffects 184
–ggforce 235
–ggmap 239
–ggmosaic 242
–ggplot2 195
–ggrepel 371
–ggridges 243
–ggtext 236
–ggthemes 199
–ggwordcloud 246
–gh 282
–gitcreds 285
–glue 306
–googlesheets4 114
–here 303
–HistData 155
–HoRM 265
–httr 354
–huxtable 171, 269
– interactions 173
– janitor 122
– jtools 172, 187
– lubridate 364
–margins 370
–naniar 141
–pagedown 375
–palmerpenguins 40
–parameters 370
–patchwork 231
–pdftools 336
–performance 181
–ploty 371
–plumber 360
–PracticeR 20
–purrr 319
–pwr 166
–RColorBrewer 207
– readr 112

– report 307
– reticulate 254
– rjson 114
– rmarkdown 249
– rpivotTable 67
– rticles 264
– rvest 345
– shiny 372
– showtext 201
– stargazer 266
– stringi 336, 358
– stringr 325
– summarytools 46, 267
– survminer 236
– tibble 120
– tidymodels 368
– tidyr 126, 143
– tinytex 259
– treemapify 244
–usethis 283
– viridis 208
–waffle 245
–xaringan 374
pandoc 257
paste 299
paste0 302
performance
– check_collinearity 183
– check_heteroscedasticity 185
– check_normality 187
– check_outliers 181
pipe operator 79
plot_summs 172
power analysis 166
PracticeR
– show_linetypes 205
– show_link 21
– show_script 21
– show_shapetypes 205
predict 157
print 12
purrr
– as_vector 337
–map 319
–map2 320
–pmap 320

quantile 55
Quarto 373

12 Index | 387

R scripts 98
r2 174
read_* 112
regular expressions 326
relevel 165
rep 27
replace 144
replace_na 145
report
– report 307
– report_model 312
– report_participants 308
– report_performance 312
rm 104
rmarkdown
– chunk options 259
– chunks 252
–params 294
– reference_docx 264
– render 301
robust regression see estimatr package
round 30
rpivotTable 67
RStudio projects 102
rvest
–html_attr 350
–html_children 346
–html_elements 346, 352
–html_node 346
–html_table 349
–html_text 348
–minimal_html 347
– read_html 345

sapply 97
sd 53
select see dplyr
seq 27
setwd 16
shapiro.test 187
Simpson’s paradox 169
snippets 105
source 105, 272
spineplot 62
split 319
str 45
stringr
– remove 341
–str_c 333
– str_count 334

– str_detect 334
– str_extract 325
– str_length 335
– str_locate 334
– str_replace 335
– str_sort 335
– str_split_fixed 333
–str_starts 334
– str_subset 325
– str_trim 339
–str_view_all 329
– str_which 338
subset 96
sum 29
summarize see dplyr
summary 54
summarytools
– ctable 62
–descr 55
– freq 46
system.file 114

t.test 312
table 46
tables 265
–descriptive statistics 267
–dynamic reports 296
–multivariate analysis 269
tail 46
tibble 33
– rownames_to_column 94
tidyr
–pivot_longer 129
–pivot_wider 126
tribble 33
typeof 51

union 135

View 46
vignettes 22

which 140
write_* 114
writeLines 327

XML 345

yaml 251

	Contents
	List of figures
	Part I: The first steps
	1 Introduction
	2 First steps in R
	3 Data exploration
	4 Data manipulation
	Part II: The basics
	5 Prepare data
	6 Analyze data
	7 Visualize research findings
	8 Communicate research findings
	Part III: Beyond the basics
	9 GitHub
	10 Automate work
	11 Collect data
	12 Next steps
	Session info
	Bibliography
	Index

