
Let Us JAVA
6th Edition

Yashavant Kanetkar

www.bpbonline.com

http://www.bpbonline.com

SIXTH REVISED AND UPDATED EDITION 2023

Copyright © BPB Publications, India

ISBN: 978-93-5551-315-1

All Rights Reserved. No part of this publication can be stored in a retrieval system
or reproduced in any form or by any means without the prior written permission
of the publishers.

LIMITS OF LIABILITY AND DISCLAIMER OF WARRANTY
The Author and Publisher of this book have tried their best to ensure that the
programmes, procedures and functions described in the book are correct. However,
the author and the publishers make no warranty of any kind, expressed or implied,
with regard to these programmes or the documentation contained in the book. The
author and publisher shall not be liable in any event of any damages, incidental or
consequential, in connection with, or arising out of the furnishing, performance or
use of these programmes, procedures and functions. Product name mentioned are
used for identification purposes only and may be trademarks of their respective
companies.

All trademarks referred to in the book are acknowledged as properties of their
respective owners.

To View Complete
BPB Publications Catalogue
Scan the QR Code:

www.bpbonline.com

http://www.bpbonline.com

Dedicated to
Nalinee and Prabhakar Kanetkar

- Yashavant Kanetkar

iii

About The Author
Through his books and Quest Video Courseware DVDs on C, Java, C++,
Data Structures, VC++, .NET, Embedded Systems, etc. Yashavant
Kanetkar has created, moulded and groomed lacs of IT careers in the last
two decades. Yashavant's books and Quest DVDs have made a
significant contribution in creating top-notch IT manpower in India and
abroad.

Yashavant's books are globally recognized and millions of students /
professionals have benefitted from them. Yashavant's books have been
translated into Hindi, Gujarati, Japanese, Korean and Chinese languages.
Many of his books are published in India, USA, Japan, Singapore, Korea
and China.

Yashavant is a much sought-after speaker in the IT field and has
conducted seminars/workshops at TedEx, IITs, RECs and global software
companies.

Yashavant has recently been honored with the prestigious
"Distinguished Alumnus Award" by IIT Kanpur for his entrepreneurial,
professional and academic excellence. This award was given to top 50
alumni of IIT Kanpur who have made significant contribution towards
their profession and betterment of society in the last 50 years.

In recognition of his immense contribution to IT education in India, he
has been awarded the "Best .NET Technical Contributor" and "Most
Valuable Professional" awards by Microsoft for 5 successive years.

Yashavant holds a BE from VJTI Mumbai and M.Tech. from IIT Kanpur.
Yashavant's current affiliations include being a Director of KICIT Pvt. Ltd.
and KSET Pvt. Ltd. He can be reached at kanetkar@kicit.com or through
http://www.kicit.com.

iv

mailto:kanetkar@kicit.com
http://www.kicit.com

Acknowledgments
Let Us Java is not an outcome of my work alone. A book on such a
dynamic language required inputs, help and suggestions from several
people. Topmost amongst them were our students at Nagpur training
center and the participants in various seminars and workshops. Their
inputs have gone a long way in getting this book in the shape and form
in which you are holding it.

Over the years, I have used Java to build many applications. All these
practical experiences and usage scenarios are factored into Let Us Java.

I am indebted to Manish Jain of BPB Publications who had a faith in this
book idea, believed in my writing ability, whispered the words of
encouragement and made helpful suggestions from time to time. I hope
every author gets a publisher who is as cooperative, knowledgeable and
supportive as Manish.

I thank my family for enduring the late nights, the clicking keyboard and
mostly for putting up with yet another marathon book effort.

v

Contents
1. An Overview of Java 1

The Evolution 3
The Birth of Java 4
What is Java? 5
Traditional Programming Model 5
How is Java Different? 7
How Java Addresses Security? 8
Java or C++? 9
The Java Environment 9
Tools of the Trade 10
Exercise 12
KanNotes 15

2. Getting Started 17
Java Data Types 19

Rules for Constructing Constants 21
Rules for Constructing Variable Names 22

Java Keywords 23
The First Java Program 24
Compilation and Execution 28
One More Program 28
Exercise 29
KanNotes 31

3. Java Data Types and Instructions 33
Data Types Revisited 35

Integer Types 35
Real Types 36
char Data Type 37
boolean Data Type 37

Receiving Input 38
Command-line Arguments 41
Java Instructions 42
Type Declaration Instruction 43
Arithmetic Instruction 44

Type Conversion in Arithmetic Instruction 46
Explicit Conversion 48
Hierarchy of Operations 49
Associativity of Operators 50

vi

Constant Variables 51
Console Output in Java 50

println()and format() Functions 51
Control Instructions in Java 53
Exercise 54
KanNotes 57

4. Decision Control Instruction 59
Decisions! Decisions! 61
The if-else Statement 61
More Complex Decision Making 64

The else if Clause 65
The & and | Operators 68
The ! Operator 69
Hi erarchy of Operators Revisited 70

A Word of Caution 70
The Conditional Operators 71
Exercise 73
KanNotes 77

5. Loop Control Instruction 79
Loops 81
The while Loop 81

Tips about while 83
The for Loop 86

Partial for Loops 87
Nesting of Loops 88
Multiple Initializations in the for Loop 89

The do-while Loop 90
The break Statement 90
The continue Statement 92
Common Usage 94
Exercise 94
KanNotes 98

6. Case Control Instruction 101
Decisions using switch 103

The Tips and Traps 105
switch Versus if-else Ladder 107
Exercise 107

vii

KanNotes 108

7. Functions 111
What is a Function? 113

Why use Functions? 118
Passing Values between Functions 118
Exercise 122
KanNotes 127

8. Advanced Features of Functions 129
Function Overloading 131
Functions with Variable Number of Arguments 132
Recursion 134
Exercise 137
KanNotes 139

9. Introduction to OOP 141
The Beginning... 143
Structured Programming 144
Object-Oriented Programming 146
Characteristics of OOP 148

Objects 148
Classes 149
Inheritance 149
Polymorphism 151
Containership 151
Reusability 151

Exercise 152
KanNotes 155

10. Classes and Objects 157
Classes and Constructors 163
Object Destruction 166
Terminology 167
A Complex Class 168
The this Reference 172
Static Data and Functions 174
Static Block 175
Passing Objects to a Function 176
Exercise 177
KanNotes 181

viii

11. Arrays 185
What are Arrays 187

A Simple Program using Array 187
More on Arrays 189

Array Initialization 189
Bounds Checking 190
Passing Array Elements to a Function 191
Passing Array Reference to a Function 192
Returning an Array 193

Common Array Operations 193
Array of Objects 195
Multi-Dimensional Arrays 197

Passing and Returning 2-D Array 198
Jagged Array 200
Resizing of Arrays 202
Exercise 204
KanNotes 206

12. Strings and Enums 209
What are Strings? 211
More about Strings 212
Splitting Strings 216
StringBuilder Class 217
Array of Strings 217
Sorting Strings 219
Enumerations 221
Use of Enumerated Data Type 221
Exercise 225
KanNotes 228

13. Inheritance 229
Uses of Inheritance 234
Constructors in Inheritance 237
The final Keyword 240
Incremental Development 241
Other Code Reuse Mechanisms 242
Exercise 243
KanNotes 245

14. Polymorphism 247
What is Polymorphism? 249

ix

Abstract Classes and Functions 252
Abstract Functions - Practical Example 256
Interfaces 258
Practical Uses of Interfaces 260

Interfaces-Focused View 261
Interfaces-Different Implementation 264
Interfaces-Unrelated Inheritance 266

Exercise 268
KanNotes 270

15. Exception Handling 273
Exception Handling in Java 276
Catching Multiple Exceptions 283
The finally Block 285
User-defined Exceptions 287
A More Practical Example 289

Define the Exception Class 291
Throw an Exception 292
The try Block 292
The Exception Handler (catch Block) 292
How the Whole Thing Works? 292

A Few Tips... 293
Exercise 294
KanNotes 295

16. Effective Input/Output 299
Expectations From an I/O System 301
File, Directory and Drive Operations 301
The Java Streams Solution 306
Stream Classes 308
Byte and Character Operations 309
Reading Strings from a File 312
Record I/O 313
User-defined Streams 315
File Encryption/Decryption 318
Exercise 322
KanNotes 324

17. Multithreading 327
Multitasking and Multithreading 329
Multithreading in Java 330

x

Launching Threads 332
Launching Multiple Threads 335
Another Way to Launch Threads 338
A Practical Multithreading Example 340
Synchronization 343
The Synchronized Block 346
Inter-thread Communication 346
Thread Priorities 347
Exercise 347
KanNotes 350

18. Generics 353
Generic Functions 355
Multiple Argument Types 360
Generic Classes 361
Bounded Generics 366
Exercise 367
KanNotes 369

19. Java Collections 371
Why a New Approach? 373
Array of Names and Numbers 375
Maintaining a Stack 377
Maintaining a Linked List 378
Maintaining a Tree 379
Maintaining a HashMap 382
Using the Algorithms 383
Exercise 385
KanNotes 387

20. User Interfaces 389
A Simple Swing Application 391
Event Handling 394
One More GUI Application 396
Adapter Classes 399
What Next? 400
Exercise 401
KanNotes 402

21. JDBC 403
Data Organization 405

xi

Common Database Operations 405
Database Operations through Java 407
JDBC Architecture 407
JDBC Driver Types 408
MySQL Database Installation 409
Common JDBC API Components 409
Putting it to Work 410
Exercise 415
KanNotes 417

22. Network and Internet Programming 419
Networking Concepts 421
Networking Model 423
Protocols 424
Packets 425
IP Addresses 426
Sockets 426
Port Numbers 427
Getting Started... 428
What's The Time Now 430
Communicating with Whois Server 432
Give Me the Home Page 433
Two-Way Communication 434
Multiuser Chat Application 438
File Transfer Using UDP 443
Exercise 446
KanNotes 447

23. Miscellany 449
CLASSPATH Variable 451
strictfp Modifier 451
Packages 452

Creating and Using a Package 452
Split Packages 454
Different Packages, Same Type 456
Nested Packages 458
Package FAQs 459
Packages and Access Mechanism 460
Bitwise Operators 461

Periodic Tests I, II, II, IV, V 465
I Index 477

xii

You remain well-grounded when you know your roots. Same is
true about Java. So a look at how it came into existence and
where it stands amongst other programming languages...

1

2 Let Us Java

• The Evolution
• The Birth of Java
• What is Java?
• Traditional Programming Model
• How is Java Different?
• How Java addresses Security?
• Java or C++?
• The Java Environment
• Tools of the Trade
• Exercises
• KanNotes

Chapter 1: An Overview of Java 3

B
efore we can begin to write programs in Java, it would be interesting
to find out what really is Java, how it came into existence and how
does it compare with other computer languages. Also, it is important
to know what tools we are going to use for executing programs in this book,

from where to get them and how to install them. In this chapter, we would
briefly outline these issues.

The Evolution
Approaches to programing keep evolving all the time. These approaches are
more or less driven by the computing needs of those times. When these
needs cannot be addressed by languages of that era, a need is felt for a new
language. These needs have become more and more complex over the
years.

In the early days of computing when the need was that a machine should
somehow be able to execute instructions, programming was done by
manually keying in the binary machine instructions. So long as the
programming task was small, programmers were ready to take the pains of
keying in instructions in binary.

As the tasks became more complex and the program lengths increased,
need was felt for a new language that could make it easier to write
programs. That's when Assembly language was invented. In Assembly,
instead of binary, small abbreviations were used to write instructions.
These abbreviations were nothing but representations of binary
instructions. This made life much easier for the programmer. The assembly
language programs were very efficient.

As the demands of computing increased, it was felt that learning and using
Assembly language are not very easy. To address this need, many languages
were invented. These included FORTRAN, BASIC and COBOL. But these
turned out to be suitable for specific domains. For example, FORTRAN
found widespread acceptance in scientific and engineering applications,
whereas, COBOL was typically used for building business applications like
payrolls, inventory management, etc.

These languages suffered from three important limitations. They are as
follows:

(a) They could not be used apart from the domains that they were
supposed to serve. So a change in domain necessitated a programmer
to learn a new language.

(b) They could not be used to write system-level code that could interact
with hardware easily.

4 Let Us Java

(c) All these languages were not designed around structured programming
principles. Hence, in programs of sizeable length it became difficult to
follow the flow of control.

As a result, a feeling started growing—could there not be a universal
programming language that could address all these three concerns? The
answer came in the form of C language. It was invented by Dennis Ritchie at
AT&T's Bell Laboratories. Since it was designed by a programmer, and not
driven by a committee, it addressed the needs of programmers very well.
These included speed, efficiency and brevity. Programmers loved it and it
soon became a dominant programming language. This dominance
continued for almost two decades.

As new hardware evolved, and computers gained widespread acceptance,
demands from the program grew multi-fold. The complexity of programs hit
the roof, and this is where C language started showing signs of strain. It
simply didn't contain those elements that could handle the complexity of
the problem being solved. There was a need for a fresh approach to handle
the complexity. This gave birth to a new way of organizing the program,
called Object Oriented Programming (OOP). C++ was based on these
principles and was invented by Bjarne Stroustrup at AT&T's Bell Labs. 1990
was the decade of C++. Since C++ was built on foundation of C, it became
easier for programmers to migrate to this new language quite quickly. It
was largely accepted that C++ is a prefect language and there would be
possibly no need for a new language. But this belief got dented as you
would see in the next section.

The Birth of Java
C and C++ were being used for building most applications till late 1990s. The
computing world was more or less divided into three camps—Intel,
Macintosh and Solaris. Compliers were available that targeted these
microprocessors and created machine language instructions that could get
executed on these microprocessors. This was alright for the PC world.
However, the microprocessor diversity was too much in consumer
electronics world. The microprocessors used in washing machines,
microwave ovens and other such devices were so many that creating a full-
fledged compiler for each microprocessor was impractical. So a thought
started taking shape to create new language that could be used to create
software that could run on different microprocessors embedded in various
consumer electronic devices. This was the initial motivation that led to the
birth of Java.

Thus creation of an architecturally neutral and portable language for
consumer electronics devices was the primary factor for Java to come into

Chapter 1: An Overview of Java 5

existence. However, it gained impetus for a very different reason. World
Wide Web and the Internet were growing like wildfire, and its programming
needs were similar to those that Java was trying to address. There were all
types of machines that were getting connected to the Internet. A language
was needed that could be used to create programs that could run on
machines connected to the Internet and had different microprocessors and
operating systems. Java fitted this bill perfectly, because it was designed
from ground up with this motive in mind, namely, platform-independence
(portability).

So it may not be an exaggeration to state that had Internet and World Wide
Web not caught the fancy of the world at the same time in which Java was
growing, Java would have possibly remained a language to be used only in
the consumer electronics world.

With that historic perspective under our belt, I think we are well poised to
begin learning Java.

What is Java?
Java is a programming language developed at Sun Microsystems in 1995. It
was designed by James Gosling. The language derives much of
its syntax from C++ (and its predecessor, C), but is simpler to use than
C++. Reputation of Java has spread wide and far and has captured the
imagination of most software professionals. Literally thousands of
applications are being built today in Java for different platforms including
desktop, web and mobile.

Possibly why Java seems so popular is because it is reliable, portable and
easy to use. It has modern constructs that are required to represent today's
problems programmatically. Java, like C++ makes use of a principle called
Object-Oriented Programming (OOP) to organize the program. This
organizing principle has lots of advantages to offer. We would be discussing
this in detail in Chapter 9.

Let us now try to understand how Java achieves portability and reliability.

Traditional Programming Model
When we execute a program on any computing device like PC, Laptop,
Tablet or Smartphone, the instructions in it are executed by the
microprocessor present in that device. However, the microprocessor
cannot understand the instructions written in languages like C, C++ or Java.
Hence, these instructions have to be first converted into instructions that
can be understood by the microprocessor. These converted instructions are
in machine language. This conversion process is known as compilation.

6 Let Us Java

The machine language instructions understood by a microprocessor are
often called its Instruction Set. Problem is that instruction sets of different
microprocessors are different. Thus, instructions of an Intel microprocessor
are different than those of an ARM microprocessor. Therefore, any program
being executed on a specific microprocessor needs to be converted into
machine language instructions which that microprocessor understands.
Thus, for the same program, corresponding machine language instructions
would be different for different microprocessors. Hence, if a program is
compiled for one microprocessor it may not work on another
microprocessor. To make it work on another microprocessor it would have
to be compiled for that microprocessor again. This is shown in Figure 1.1.

Any running program needs to make use of services of an Operating System
(OS) during its execution. These include services like performing
input/output, allocating memory, etc. You must be aware of the fact that
on the same microprocessor, different OS can be used. For example,
suppose there are two laptops having same Intel Pentium microprocessor.
On one laptop one can run Windows whereas on the other, one can run
Linux. But since the way these OSs' offer different services is different,
during conversion to machine language these changes have to be
accommodated. So for the same program, machine language instructions
for Intel + Windows combination would be different than those for Intel +
Linux combination. This is shown in Figure 1.2.

Chapter 1: An Overview of Java 7

Figure 1.1 and Figure 1.2 depict a scenario called "write once, compile
anywhere". It means to make the same program work on a different
microprocessor + OS combination we are not required to rewrite the
program, but are required to recompile the program for that
microprocessor + OS combination. This is the approach taken by popular
traditional languages like C and C++.

How is Java Different?
Java takes a different approach than the traditional approach taken by
languages like C and C++. It lets application developers follow a "compile
once, run anywhere" scenario. This means that once a Java program is
compiled, it can get executed on different microprocessors + OS
combinations without the need to recompile the program. This makes Java
programs immensely portable across different microprocessors + OS
combinations. The microprocessor + OS combination is often called
"Platform". Hence Java is often called a platform-independent language or
architecturally neutral language. Java programs are considered portable
since they can be used on different microprocessor + OS combination
without making any changes in them.

Java achieves this "compile once, run anywhere' and platform
independence magic through a program called Java Virtual Machine (JVM).
When we compile Java programs, they are not converted into machine
language instructions for a specific microprocessor + OS combination.
Instead, our Java program is converted into bytecode instructions. These
bytecode instructions are similar to machine code, but are intended to
be interpreted by JVM. A JVM provides an environment in which Java
bytecode can be executed. Different JVMs are written specifically for
different host hardware and operating systems. For example, different
JVMs are written for Intel + Windows combination, ARM + Linux
combination, etc.

8 Let Us Java

During execution, the JVM runtime executes the bytecode by interpreting it
using an Interpreter program or compiling it using a just-in-time (JIT)
compiler. JIT compilers are preferred as they work faster than interpreters.
During interpretation or JIT compilation, the bytecode instructions are
converted into machine language instructions for the microprocessor + OS
combination on which the program is being executed. This perfectly
facilitates executing Java programs on different machines connected to
Internet.

A Java program is typically stored in a .java file, and the bytecode is usually
stored in a .class file. A complex program may consist of many .class files.
For easier distribution, these multiple class files may be packaged together
in a .jar file (short for Java archive). The working of a Java program
discussed above is shown in Figure 1.3.

Java programs (.java)
--

Java Compiler

Java bytecode (.class/.jar)
"------------------------------------ —

Interpreter/JIT Compiler

____________________________i____________________________
Machine Language Instructions for microprocessor + OS combination

Figure 1.3

How Java addresses Security?
Let us first understand what typically happens when we use some web
application on the Internet. Through browser on our
PC/Laptop/Tablet/Smartphone we use a URL to reach the application
present on some web server on the Internet. The web application sends
HTML that gets rendered in our browser. However, except for the simplest
of web applications, along with the HTML some executable Java program is
also sent to our browser. This program is often small and is called Applet.
The purpose of the applet is to make the web application more responsive.
For example, if we enter a password, it should be possible to check whether
it follows rules for password creation or not right there within the browser
using the downloaded applet, rather than sending the password to server

Chapter 1: An Overview of Java 9

and get it verified. This certainly improves user experience. This is because
the check is being performed on the machine itself rather than on the
server machine. This saves a roundtrip to the server.

But when we download an applet, there is always a possibility that the
applet may contain malicious code like a Virus or Trojan horse that would
cause harm to our machine. JVM prevents this from happening by
restricting the applet code from accessing other resources of your machine,
other than what it is supposed to. This makes applets secure. Thus JVM
solves two dicey issues in one shot—portability as well as security.

Java or C++?
After learning C, it is often a question whether one should migrate to Java
or C++. Answer is both; and that too in any sequence that you want. Though
both are Object Oriented programming languages, neither is an advanced
version of the other. Learning one before the other would naturally help to
learn the second.

It is important to note that both address different sets of problems. C++
primarily addresses complexity, whereas Java addresses portability and
security. In my opinion, both languages would continue to rule the hearts of
programmers for years to come.

As you start learning Java, you would find that there are many features in it
that are similar to C and C++. This is not by accident, but by intent. Java
designers knew that they had to provide a smooth transition path to
learners of Java language. That is why Java uses a syntax which is similar in
many ways to that of C and it follows many of the object oriented features
of C++, though in a refined fashion.

The Java Environment
We know that JVM contains an Interpreter / JIT that converts bytecode into
microprocessor + OS specific machine language instructions. Since
instruction sets vary from microprocessor to microprocessor, there exist
different JVMs for different platforms. Thus, though any JVM can run any
Java program, JVMs themselves are not portable.

JVM is distributed along with a set of standard class libraries that
implement the Java Application Programming Interface (API). The Java APIs
and JVM together form the Java Runtime Environment (JRE). If your need is
only to execute Java programs on your machine, all that you need is JRE.
For example, if you wish to play a Java-based game on your machine, you
need to install only JRE on your machine for the game to run.

10 Let Us Java

However, if you wish to also develop programs on your machine, you need
Java Developer Kit (JDK). JDK contains tools needed to develop the Java
programs, as well as JRE to run the programs. The tools include compiler
(javac.exe), Java application launcher (java.exe), Appletviewer, etc.
Compiler converts Java code into bytecode. Java application launcher opens
a JRE, loads the class, and calls its main() method. Figure 1.4 shows all
these pieces of Java environment.

Tools of the Trade
To create and run Java programs you need to install two software on your
PC. These are

(a) Java Development Kit (JDK)
(b) Integrated Development Environment like NetBeans or Eclipse

JDK is often also called Standard Edition Development Kit or Java SE 19 JDK
or simply Java 19, where 19 is the version number. As years roll by, the
version number would go on increasing. JDK contains JVM, JRE, Java
compiler and debugger. A compiler is needed to convert the Java program
into its equivalent bytecode. A debugger is needed to detect, analyze and
eliminate bugs in the program. Java 19 can be downloaded using the link

https://www.oracle.com/java/technologies/download

On this download page, select the appropriate verion number, OS
(Windows/Mac/Linux) and the Microprocessor (x86 or X64) and download
the JDK. Next step is to install the downloaded JDK. This is a fairly simple job
and I am sure you would be able to do this easily. You simply have to
double click the downloaded installer file jdk-19_windows-x64_bin.exe

https://www.oracle.com/java/technologies/download

Chapter 1: An Overview of Java 11

(assuming Windows and 64-bit machine configuration), and the installer
would guide you through the installation process.

When you are developing a Java program you need an editor to type the
program. Small Java programs can be typed in one file. But more
sophisticated programs may be split across multiple files. To let you type
the program, manage multiple files of your program, compile it and debug
it, you need a tool that can let you carry out these tasks in a visual and user­
friendly manner. This tool is often called an Integrated Development
Environment (IDE). Some of the popular IDEs used for building Java
programs include NetBeans, Eclipse and IntelliJ. All programs in this book
have been created using NetBeans IDE. It can be downloaded using the link
www.netbeans.org.

Online Java Compilers
With ubiquitous availability of Internet, if you wish, you can completely
avoid installation of JDK and IDE on your machine. Using a browser, you can
connect to any of the following to type, compile and execute your Java
programs:

https://www.onlinegdb.com/
https://www.tutorialspoint.com/compile java online.php

The limitation of using online compilers is that you need a steady Internet
connection while you are using them. Most of these compilers compile our
program using the gcc compiler.

While using the online compilers like the one at onlinegdb.com you have to
remember to choose the language (Java in our case) from the dropdown.
Next, we have to type our program and click the Run/Execute button. When
we do so our typed program is sent to the web server where it is compiled
and executed. The output created on execution is then sent back and
displayed in the browser. If any errors are found in the program during
compilation they are also relayed back and displayed in the browser.

Onlinegdb.com also has provisions to create multi-file Java programs,
supply command-line arguments, debug a program using the debugger,
create folders and store multiple files in it. From the point of view of
security, online compiler is not a preferred choice for serious software
development in Java. Nevertheless, a good option with zero installation and
configuration headaches when you are learning Java.

We are now on surer grounds. We now have the historical perspective of
what led to creation of Java, what problems it primarily attempts to solve,
and what tools we need to install to begin Java program development. It

http://www.netbeans.org
https://www.onlinegdb.com/
https://www.tutorialspoint.com/compile_java_online.php
onlinegdb.com
Onlinegdb.com

12 Let Us Java

would be a good idea to attempt the exercise on the next page to help you
fix these ideas, before we formally begin learning Java language from next
chapter onwards.

[A] Match the following:

(a) Creator of Java (1) Provides security and portability
(b) JRE (2) Platform dependent
(c) Java Program (3) Bjarne Stroustrup
(d) JVM (4) Contains compiler and debugger
(e) NetBeans (5) Needed for executing Java programs
(f) Creator of C++ (6) IDE
(g) JDK (7) Platform independent
(h) Stuctured Lang. (8) Converts Bytecode into m/c language
(i) OOP Language (9) Java
(j) JVM (10) James Gosling
(k) Java Compiler (11) C
(l) Java Interpreter (12) Converts Java program into Bytecode
(m) Java API (13) Library of classes

[B] State which of the following statements are True or False:

(a) Different microprocessors use different Instruction sets.

(b) Same JVM is used for all microprocessor + OS combination.

(c) We can get by just installing JRE on a machine on which we intend to
only execute Java programs.

(d) NetBeans is just an IDE and doesn't have a Java compiler built in it.

(e) The Java compiler converts instructions in Java into machine language
instructions.

(f) JRE and JDK both are part of JVM.

(g) The way I/O and memory management is done is same across different
OSs.

Chapter 1: An Overview of Java 13

(k) To run a Java program you need to install JDK.

(l) Java was conceived to create portable programs for the consumer
electronic devices.

(m) Multiple .class files can be packaged together to create a .jar file.

(n) During execution Java Interpreter converts Bytecode instructions into
machine language instructions.

(o) Instruction set for Intel x86 and Arm microprocessor are different.

[C] Which of the following is highlighting feature of C, C++ and Java?

(a) Structured
(b) Object Oriented
(c) Portable
(d) Secure
(e) Suitable for Internet programming
(f) Simple syntax
(g) Architecturally neutral
(h) Management of complexity

[D] Pick up the correct alternative for each of the following questions:

(a) Which of the following is CORRECT about Java programs?
(1) Compile often, run once
(2) Write once, compile anywhere
(3) Write often, compile anywhere
(4) Compile once, run anywhere

(b) In traditional programming languages, if a program has been compiled
for Intel x86 + Windows combination, what should be done to make
the program work on Intel x86 + Linux combination?
(1) The program should be rewritten
(2) The program should be recompiled
(3) The program should be reassembled
(4) No need to do anything, the same program would work on the new

combination

(c) At what stage does byte code get converted into machine language
instructions?
(1) during compilation
(2) during assembly
(3) during preprocessing
(4) during execution

14 Let Us Java

(d) Java is
(1) microprocessor-independent language
(2) platform-independent language
(3) OS-independent language
(4) library-independent language

(e) For the same Java program to run on different devices we need
(1) appropriate JVM for those devices
(2) appropriate compiler for those devices
(3) appropriate interpreter for those devices
(4) appropriate preprocessor for those devices

(f) If we are to merely execute a Java program on a machine, then which of
the following must be installed on that machine?
(1) JVM
(2) JRE
(3) JDK
(4) Java API

(g) Which of the following statement is CORRECT?
(1) Different microprocessor use same instruction sets
(2) Different platforms use same JVM
(3) To execute a Java program we need to install JDK
(4) To execute a Java program we need to install JRE

[E] Answer the following:

(a) Why programs written for Linux on a x86 machine do not work on a
Windows x86 machine?

(b) If on a machine we wish to develop as well as execute Java programs,
should we install JDK or JRE?

(c) Why are programs written in Java considered to be more portable than
those written in C and C++?

(d) Why is Java language considered to be architecturally neutral?

(e) What were the pain points that led to creation of Java language?

(f) What are the different components of Java environment?

(g) What do you mean by a computing platform?

Chapter 1: An Overview of Java 15

2 categories of software :

- System software - OS, Compilers, Device Drivers
- Application software - software for desktop/laptop, Web, Mobile

Technologies used in Java world for different platforms :

- Desktop - J2SE, Mobile - J2ME, Web - J2EE

• Reasons of popularity of Java :

- Same language for varied applications
- Rapid Application Development (RAD) possible
- Easy development cycle
- Easy to manage large projects

• Acronymns:

- API = Application Programming Interface
- JVM = Java Virtual Machine
- JRE = Java Runtime Environment
- JDK = Java Development Kit

• API = Library of classes in form of packages

• JVM = Memory Manager + Interpreter / Just In Time (JIT) compiler

• JRE = JVM + API

• JDK = JRE + Development tools like javac, java, debugger

• NetBeans, Eclipse are popular development environments

• Nebeans and Eclipse internally use javac, java, debugger

• Different JREs and JDKs have to be downloaded for different
Hardware + OS combination

• For execution of Java programs only JRE is needed

• To create and execute Java programs JDK + NetBeans are needed

16 Let Us Java

• In C / C++ our program on building is converted into machine language
instructions.

• In Java on compiling our program is converted into ByteCode
instructions.

During execution of Java programs the ByteCode instruction are
converted into machine language instructions and these insrtuctions
are executed.

Byte code instructions of a .java file are stored in corresponding
.class file.

f For multiple .java files a .jar (Java Archive) file is created.

• To achieve portability C/C++ use Write once, Compile anywhere
principle

• To further improve portability Java uses Compile once, Run
anywhere principle

It is good to wet your feet, before you take a dip. See how to
create a small program in Java...

17

18 Let Us Java

• Java Data Types
Rules for Constructing Constants
Rules for Constructing Variable Names

• Java Keywords
• The First Java Program
• Compilation and Execution
• One More Program
• Exercises
• KanNotes

Chapter 2: Getting Started 19

Four important aspects of any language are the way it stores data, the
way it operates upon this data, how it accomplishes input and
output, and how it lets you control the sequence of execution of

instructions in a program. We would discuss the first three of these
building blocks in this chapter.

Java Data Types
Before we write our first Java program, it is important to understand
how data is represented in Java. This is done using a data type. A data
type specifies two things:

(a) What value can the data type take?
(b) What operations can be performed on the data type?

For example, an integer data type can take values in the range
-2147483648 to +2147483647, and operations like addition, subtraction,
multiplication, division, etc., can be performed on it. Similarly, a boolean
data type can take a value true or false, and permits comparison
operations on it.

Based on where a data type can be created in memory, it is called a
primitive type (often also known as a value type) or a reference type.

Java forces primitive data types to get created only in stack and
reference types only on heap. For example, an integer (like 2341) always
gets created in stack, whereas a string (like "Quest") always gets created
in heap. The guiding principle on the basis of which Java does this
decision making is—all data types that are small in size are created in
stack, and all those that occupy larger memory chunks are created in
heap.

A primitive type as well as a reference type can be further categorized
into pre-defined and user-defined categories. Here pre-defined means
the data types that Java provides ready-made, whereas user-defined
means those data types which a common user like us can create. For
example, integer is a pre-defined primitive data type, whereas an
Enumeration is a user-defined value type. Figure 2.1 shows the different
categories of data types available in Java. Note that the pre-defined
value types are often also called Primitives.

20 Let Us Java

Figure 2.1
Amongst all the data types shown in Figure 2.1, to begin with, we would
concentrate on the pre-defined value data types. To use the data types
in a Java program, we have to create constants and variables. A constant
is nothing but a specific value from the range of values offered by a data
type, whereas a variable is a container which can hold a constant value.
The container is typically a memory location and the variable is the
name given to the location in memory. For example, if we use an
expression x = 5, then the constant value 5 would be stored in a memory
location and a name x would be given to that location. Whenever, we
wish to retrieve and use 5, we just have to use the variable name x. This
is shown in Figure 2.2.

Figure 2.2

Chapter 2: Getting Started 21

As the name suggests, value of a constant cannot change (fixed),
whereas, value of a variable's can change (vary). A constant is often
called a literal, whereas, a variable is also known as an identifier. Figure
2.3 gives list of commonly used pre-defined primitive data types along
with the range of values that they can take and the numbers of bytes
they occupy in memory.

Data Type Range Size in bytes

char Oto 65535 2

int -2147483648 to +2147483647 4

float -3.4e38 to +3.4e38 4

Figure 2.3
There are certain rules that one needs to observe while creating
constants and variables. These are discussed below.

Rules for Constructing Constants
(a) If no sign precedes a numeric constant, it is assumed to be positive.

(b) No commas or blanks are allowed within a constant.

(c) The bytes occupied by each constant are fixed and do not change
from one compiler to another.

(d) Only a float constant can contain a decimal point.

(e) A float constant must be followed by a suffix f.

(f) A float constant can be expressed in fractional from (example
314.56f) or exponential form (example 3.1456e2).

(g) A character constant is a single alphabet, a single digit or a single
special symbol enclosed within single inverted commas. Both the
inverted commas should point to the left. For example, 'A' is a valid
character constant, whereas 'A' is not.

Given below are examples of some valid constants.

22 Let Us Java

426 +78.23 -8000 -7605
true 'A' '+' '3'

Rules for Constructing Variable Names
(a) A variable name is any combination of alphabets, digits,

underscores (_) and dollars ($).

(b) The first character in the variable name must be an alphabet,
underscore or dollar.

(c) No commas or blanks are allowed within a variable name.

(d) Variable names are case-sensitive. So, abc, ABC, Abc, aBc, AbC are
treated as different variables.

While creating variable names, conventions given below are commonly
followed.

(a) A variable name usually begins with an alphabet. Ex. speed, average

(b) A variable representing money usually begins with $. Ex. $interest,
$salary.

(c) If a variable name containing multiple words, the words are either
connected using underscore or follow a camel-case notation. Ex.
current_speed, currentSpeed, avg_salary, avgSalary.

While following these rules and conventions, one must avoid the
temptation of creating long variable names as it unnecessarily adds to
the typing effort.

The rules remain same for constructing variables of any type. Naturally
the question follows—how is Java able to differentiate between these
variables? This is a rather simple matter. Java compiler makes it
compulsory for us to declare the type of any variable name that we wish
to use in a program. Here are a few examples showing how this is done.

Ex.: int si, m_hra ;
float bassal ;
char code ;

Since, there is no limit on maximum allowable length of a variable name,
an enormous number of variable names can be constructed using the

Chapter 2: Getting Started 23

above-mentioned rules. It is a good practice to exploit this enormous
choice in naming variables by using meaningful variable names.

Thus, if we want to calculate simple interest, it is always advisable to
construct meaningful variable names like prin, roi, noy to represent
Principal, Rate of interest and Number of years rather than using the
variables a, b, c.

Java Keywords
Keywords are the words whose meaning has already been explained to
the Java compiler. When we make the declaration like the one shown
below,

int age ;

age is a variable, whereas int is a keyword. When this declaration is
made, we are telling the compiler that the variable age be treated as a
variable of type integer. But we don't have to be so elaborative, just int
age conveys the same meaning. This is because the meaning of the
keyword int has already been explained to the Java compiler.

The keywords cannot be used as variable names because if we do so, we
are trying to assign a new meaning to the keyword which is not allowed.
There are only 48 keywords available in Java. Figure 2.4 gives a list of
these keywords for your ready reference. A detailed discussion of each
of these keywords would be taken up in later chapters wherever their
use is relevant.

Figure 2.4

abstract class final int return throw

assert continue finally interface new switch

boolean default float long synchronized throws

break do for native short transient

byte double if package static try

case else implements private strictfp void

catch enum import protected super volatile

char extends instanceof public this while

24 Let Us Java

The First Java Program
Armed with the knowledge of variables, constants and keywords, the
next logical step is to combine them to form instructions. However,
instead of this, we would write our first Java program now. Once we
have done that we would see in detail the instructions that it made use
of.

Before we begin with our first Java program, do remember the following
rules that are applicable to all Java programs:

(a) Each instruction in a Java program is written as a separate
statement. Therefore, a complete Java program would comprise a
series of statements.

(b) Blank spaces may be inserted between two words to improve the
readability of the statement. However, no blank spaces are allowed
within a variable, constant or keyword.

(c) All statements are in small case letters.

(d) Every Java statement must end with a semicolon (;).

Let us now write our first Java program. It would simply calculate simple
interest for a set of values representing principal, number of years and
rate of interest.

// Calculation of simple interest
package calofsi ;
public class CalOfSi
{

public static void main (String[] args)
{

float p, r, si ;
int n ;
p = 1000.50f ;
n = 3 ;
r = 15.5f ;
si = p * n * r / 100 ;
System.out.println (si) ;

}
}

Chapter 2: Getting Started 25

Now a few useful tips about the program...

- Comment about the program should either be enclosed within /
*/ or be preceded by //. For example, the first statement in our
program is a comment.

*

- Though comments are not necessary, it is a good practice to begin a
program with a comment indicating the purpose of the program, its
author and the date on which the program was written.

- Sometimes it is not very obvious as to what a particular statement
in a program accomplishes. At such times, it is worthwhile
mentioning the purpose of the statement (or a set of statements)
using a comment. For example

/* formula for simple interest */
si = p * n * r / 100 ;

- A comment can be split over more than one line, as in,

/* This is
a multi-line
comment */

Such a comment is often called a multi-line comment.
- A Java program is a collection of one or more packages. Each

package can contain multiple classes. Each class may contain
multiple functions. Each function can contain multiple instructions.
This typical organization of a Java program is shown in Figure 2.5.

- Every instruction used in a Java program should belong to a
function. Every function must belong to a class and every class
must belong to a package. In our program, there is a package called
calofsi, a class called CalOfSi and a function called main(). package
and class both are keywords.
Right now we do not want to go into the details of package and a
class. We would learn about packages and classes in later chapters.
But it would be a good time to get introduced to the concept of a
function.

26 Let Us Java

Package!

class!

function!
{

instruction!
instruction2

}
function2
{

instruction!
instruction2

}

Java Program

Package2

dass2

fu notion 1
{

instruction!
instruction2

}
function2
{

instruction!
instruction2

}

class3

function!
{

instruction!
instruction2

}

class4

function!
{

instruction!
instruction2

}

Figure 2.5

main() is a function. A function contains a set of statements.
Though a Java program can contain multiple functions, to begin
with, we would concentrate on only those programs which have
only one function. All statements that belong to main() are
enclosed within a pair of braces { } as shown below.

public static void main (String[] args)
{

statement 1 ;
statement 2 ;
statement 3 ;

}

Chapter 2: Getting Started 27

- The way functions in a calculator return a value, similarly, functions
in Java also return a value. Since we do not wish to return any value
from main() function, we have to specify this using the keyword
void before main(). main() is always preceded by the keyword
static. The purpose of this keyword and detailed working of
functions would be discussed in Chapters 9 and 7 respectively.

- Any variable used in the program must be declared before using it.
For example,

int p, n ; /* declaration */
float r, si ; /* declaration */
si = p * n * r / 100 ; /* usage */

- Any Java statement always ends with a semicolon (;). For example,

float r, si ;
r = 15.5f ;

- In the statement,

si = p * n * r / 100 ;

* and / are the arithmetic operators. The arithmetic operators
available in Java are +, -, * and /. Java is very rich in operators.
There are totally 41 operators available in Java.

- Once the value of si is calculated, it needs to be displayed on the
screen. Unlike other languages, Java does not contain any
instruction to display output on the screen. All output to screen is
achieved using ready-made library functions. One such function is
println(). We have used it to display the value contained in si on
the screen.

- Actually, println() is a function of Printstream class, and out is a
static object defined in a System class. We would learn classes,
objects and static members in Chapter 8. As of now, let us just use
the syntax System.out.println() whenever we wish to display
output on the screen.

- If we wish we can print multiple values using println() function.
This is shown below.

System.out.println (si + " " + p + " " + n + " " + r) ;
System.out.println ("Simple interest = Rs. " + si) ;
System.out.println ("Principal = " + p + " Rate = " + r) ;

28 Let Us Java

The output of these statements would look like this...

465.2325 1000.5 3 15.5
Simple interest = Rs. 465.2325
Principal = 1000.5 Rate = 15.5

Compilation and Execution
We need to carry out the following steps to create, compile and execute
our first Java program. It is assumed that you have installed JDK and
NetBeans as per the instructions in Chapter 1.

(a) Start NetBeans from Start | All Programs.

(b) Select File | New Project from the File menu. Select 'Java' from
'Categories' list box and 'Java Application' from 'Projects' box. Click
on 'Next' button.

(c) Give a proper name for the project in 'Project Name' text box (say
CalOfSi). Choose suitable location for the project folder, then click
on Finish.

(d) NetBeans would provide a skeleton program that would contain a
package statement, a public class CalOfSi and a function main(), all
defined in a file called CalOfSi.java. Note that the name of the file
and the name of the public class are same in all Java programs.

(e) Type the statements of our simple interest program in main().

(f) Save the program using Ctrl+S.

(g) Compile and execute the program using F6.

One More Program
We now know how to write an elementary Java program, type it,
compile it and execute it. These are the steps that you will have to carry
out for every program. So to help you fix your ideas, here is one more
program. It calculates and prints average value of 3 numbers.

/* Calculation of average /*
package calofavg ;
public class CalOfAvg

Chapter 2: Getting Started 29

{
public static void main (String[] args)
{

int x, y, z, avg ;
x = 73 ;
y = 70 ;
z = 65 ;
avg = (x + y + z) / 3 ;
System.out.println (avg) ;

}
}

[A] Which of the following is invalid variable name and why?

BASICSALARY _basic basic-hra
#MEAN group. 422
population in 2006 over time mindovermatter
SINGLE hELLO queue.
team'svictory Plot # 3 2015_DDay

[B] Point out the errors, if any, in the following Java statements:

(a) int = 314.562f 150 ;*

(b) name ='Aja/;

(c) varchar = '3';

(d) 3.14f r r h = vol_of_cyl ;* * *

(e) k = (a b) (c + (2.5fa + b) (d + e) ;*

(f) m_inst = rate of interest amount in rs ;*

30 Let Us Java

(j) k = ((a b) + c) (2.5f a + b) ;* *

(k) a = b = 3 = 4 ;

(l) count = count + 1 ;

(m) date = '2Mar 11' ;

[C] Pick up the correct alternative for each of the following questions:

(a) Which of the following is the correct way to write a comment?

(1) // This is a comment
(2) / This is a comment
(3) / This is a comment*
(4) / This is a / comment / /* * * *

(b) The maximum value that an integer constant can have is:

(1) -2147483647
(2) 2147483647
(3) 3.4 x 1038
(4) -3.4 x 1038

(c) A Java variable cannot start with:

(1) An alphabet
(2) A number
(3) A special symbol other than underscore
(4) Both (2) and (3) above

(d) Which of the following is odd one out?

(1) +
(2) -
(3) /
(4) **

[D] Answer the following:

(a) Assume a suitable value for Ramesh's basic salary. His dearness
allowance is 40% of basic salary, and house rent allowance is 20% of
basic salary. Write a Java program to calculate his gross salary.

(b) Assume a suitable value for distance between two cities (in km.).
Write a Java program to convert and print this distance in meters,
feet, inches and centimeters.

Chapter 2: Getting Started 31

(c) Assume suitable values for marks obtained by a student in five
different subjects are input through the keyboard. Write a Java
program to find out the aggregate marks and percentage marks
obtained by the student. Assume that the maximum marks that can
be obtained by a student in each subject is 100.

(d) Assume a suitable value for temperature of a city in Fahrenheit
degrees. Write a Java program to convert this temperature into
Centigrade degrees and print both temperatures.

(e) Assume suitable values for length and breadth of a rectangle, and
radius of a circle. Write a Java program to calculate the area and
perimeter of the rectangle, and the area and circumference of the
circle.

• Constants = Literals -> Cannot change
Variables = Identifiers -> May change

• Data. Types : 1) Primitives (value types') 2) Reference types

• Primtive types :

- Char - 2 bytes
- Integers - byte, short, int, long (sizes - 1, 2, 4, 8 bytes)
- Real - float, double (sizes - 4, 8 bytes respectively)
- Boolean - true / false (1 bit)

• Derived types (classes) :

- Library : String, System, Exception, etc.
- User-defined : CalOfSi, CalOfAvg, etc.

Variable names are case-sensitive and should begin with an alphabet

• Total keywords = 48. Example : int, char, float

• A Java, program is a. collection of one or more packages

• Each package can contain multiple classes

32 Let Us Java

• Each class may contain multiple functions

• A variable must belong to either a function or a class

• No global functions or variables in Java

• public class is accessible from outside the package

• public function is accessible from outside the class

• 3 types of comments :

- Single line - //
- Multiline - / ... /* *
- Documentation - /.... /** *

Well begun is half done! Learn the basic building blocks of Java
language...

33

34 Let Us Java

• Data Types Revisited
Integer Types
Real Types
char Data Type
boolean Data Type

• Receiving Input
• Receiving Input - One More Way
• Command-line Arguments
• Java Instructions
• Type Declaration Instruction
• Arithmetic Instruction

Type Conversion in Arithmetic Instruction
Explicit Conversion
Hierarchy of Operations
Associativity of Operators
Constant Variables

• Console Output In Java
println() and format() Functions

• Control Instructions in Java
• Exercises
• KanNotes

Chapter 3: Java Data Types and Instructions 35

In the last chapter we wrote programs with bare minimum knowledge
of data types and instructions. As a result, the programs worked only
for specific data. If they are to work with other data it would necessitate

changes in the program, which is not a good idea. In this chapter we
propose to rectify this situation. For that, we have to have more in­
depth knowledge of data types and instructions. There is a lot of ground
to cover here. Let us begin with the data types.

Data Types Revisited
So far we have used only an int to deal with integer values and float to
deal with real values. However, Java provides many flavors of integers
and reals. Let us begin with integers.

Integer Types
Java provides 4 types of integers—byte, short, int and long of sizes 1
byte, 2 bytes, 4 bytes and 8 bytes respectively. Figure 3.1 shows
different types of integers available in Java along with their sizes and
ranges.

Data Type Range Bytes Default Value

byte -128 to +127 1 0

short -32768 to +32767 2 0

int -2147483648 to +2147483647 4 0

long -9223372036854775808 to +9223372036854775807 8 0

Figure 3. 1

Let us now discuss some finer points associated with integer types.
(a) By default, number without a decimal point is treated as an int.

During assignment, if the value being assigned exceeds the range of
the variable, an error occurs. This is shown below.

byte a = 300 ; // error
short b = 40000 ; // error
int c = 2200000000 ; // error

(b) If we wish to treat an integer as a long integer, we have to add a
suffix L or l at its end, as in

long int a = 365l * 1000 ;

36 Let Us Java

(c) We can use underscores between digits in a number to improve the
readability of our code, as shown below.

long creditCardNo = 1211_5178_9212_4231L ;

Note that we cannot use underscore at the beginning or at the end
of a number, or prior to suffix L.

Real Types
Real numbers can be represented as float and double. The difference
between them is the number of bytes occupied by each, their ranges
and their precision. This is shown in Figure 3.2.

Data Type Range Default Value Bytes

float ±1.5 x 10’45 to ±3.4 x 1038 O.Of 4
double ±5.0 x 10'324 to ±1.7 xlO308 0.0 8

Figure 3. 2

There are some finer points associated with these real types. These are
discussed below.
(a) By default, a number with a decimal point is treated as a double. If

we wish to treat it as a float, we need to add a suffix f or F at the end
of it to make it a float, as shown below.

float x = 3.5 ; // error
float y = 3.5f ; // correct
double d = 3.5f ; // correct
double e = 3.5 ; // correct

(b) If we want an integer number to be treated as double, use the suffix
d or D, for example,

double a = 3d ;

(c) Any number of underscores can be used between digits in a number
to improve the readability of your code, as shown below.

float pi = 3.14_28_57F;

Chapter 3: Java Data Types and Instructions 37

Note that we cannot use underscore at the beginning or end of a
number, prior to suffix F, or adjacent to decimal point.

(d) If the value of a float / double is too small or too large then instead
of using the normal notation it is easier to specify the number in
exponential notation. This is shown below.

float a = 0.0000341295f ; // normal notation
double b = 3214.23221 ; // normal notation
float c = 3.41295e-5f ; // exponential notation
double d = 3.21e3 ; // exponential notation

(e) A real number is stored in a float / double it is stored in binary form.
During conversion of decimal number into binary, some precision
may be lost. So two real numbers that otherwise appear equal,
when represented in binary numbers of different precisions, might
turn out to be unequal. For example, 5.375 and 5.375f are not equal.
When 5.375 is treated as double, it is represented as a 64-bit binary
number, whereas when it is treated as a float, it is represented as a
32-bit binary number, resulting in some loss of precision.

char Data Type
A char data type represents a character expressed in Unicode format.
The Unicode format has slowly replaced its predecessor, ASCII format.
Characters in most of the known written languages used in the world
can be represented using Unicode format.

In addition to the normal form, a character constant can also be
specified using Unicode representation. This is shown below.

char ch = 'X' ; // character literal
char dh = '\u0058' ; // Unicode

Unicode representation can take a minimum value of '\u0000' (or
decimal 0) and a maximum value of '\uffff' (or decimal 65535).

boolean Data Type
boolean data type can take Boolean values, true and false. A variable of
the type boolean can either be assigned a Boolean value or an
expression which evaluates to a Boolean value. This is shown below.

boolean a = false ;
System.out.println ("a = " + a) ;

38 Let Us Java

boolean b = 4 > 2 ;
System.out.println ("b = " + b) ;

The output of this code snippet would be...
a = false
b = true

We should not use true / false as variable names. Lastly, unlike
languages like C and C++, in Java true is not 1 and false is not 0. This is
indicated in the following statements:

int a ; boolean b ;
a = 3 < 4 ; // error
b = 3 < 4 ; // works

Receiving Input
In the simple interest program of Chapter 2, we assumed the values of
p, n and r to be 1000.5, 3 and 15.5. Every time we run this program we
would get the same value for simple interest. To calculate simple
interest for some other set of values, we would be required to replace
the existing set with the new set of values, and again compile and
execute the program. Thus, the program is not general enough to
calculate simple interest for any set of values without being required to
make a change in the program.

To make the program general, the program should ask the user to
supply the values of p, n and r through the keyboard during execution.
When the user supplies these values, they can be read by the program
using the functions of Scanner class as illustrated in the program given
below.

// Calculation of simple interest
package sibyreceivinginput ;
import java.util.* ;
public class SiByReceivingInput
{

public static void main (String[] args)
{

float p, r, si ;
int n ;
System.out.println ("Enter values of p, n and r") ;
Scanner sc = new Scanner (System.in) ;

Chapter 3: Java Data Types and Instructions 39

p = sc.nextFloat() ;
n = sc.nextInt() ;
r = sc.nextFloat() ;
si = (p * n * r) / 100 ;
System.out.println ("Simple interest = Rs. " + si) ;

}
}

Let us now see what happens when we execute this program. To begin
with, the first println() outputs the message 'Enter values of p, n, r' in
the output window of NetBeans. In this window we are supposed to
supply three numbers either in same line or in three distinct lines.

Our program should read each of these numbers. To do this, we have to
first create an object of type Scanner through the statement

Scanner sc = new Scanner (System.in) ;

Here System.in represents the keyboard.

In Chapter 9 we would learn what objects are and how to create them.
For now, let us do it mechanically. To be able to use the class Scanner
we have to add the following statement at the beginning of our
program, below the package statement:

import java.util.* ;

As mentioned earlier, the classes in Java library are organized in
different packages. Through the above statement we are importing all
(*) the classes present in the package java.util. This makes the class
Scanner available for use.

Once Scanner object is created we have called the functions nextInt()
and nextFloat() to receive int and float from keyboard. Lastly, simple
interest is calculated and printed out using the values received as input.

In this program we have received integer and float using the Scanner
object. Given below are statements through which we can receive other
data type values.

Scanner sc = new Scanner (System.in) ;
byte age = sc.nextByte() ;
short villagePopulation = sc.nextShort() ;
long mobile = sc.nextLong() ;

40 Let Us Java

double salary = sc.nextDouble() ;
Boolean status = sc.nextBoolean() ;
char sex = sc.next().charAt (0) ;
String name = sc.nextLine() ;

Note that to receive a character we have to receive a string by calling
next() and then obtain the character at 0th position from this string by
calling charAt() function.

Receiving Input - One More Way
There is one more way to receive input from keyboard. It makes use of
InputStreamReader and BufferedReader objects instead of Scanner
object. The following program shows how to use these objects.

package sibyreceivinginput ;
import java.io.* ;
public class SiByReceivingInput
{

public static void main (String[] args) throws Exception
{

float p, r, si ;
int n ;
InputStreamReader isr ;
BufferedReader br ;
isr = new InputStreamReader (System.in) ;
br = new BufferedReader (isr) ;
System.out.println ("Enter values of p, n and r") ;
p = Float.parseFloat (br.readLine()) ;
n = Integer.parseInt (br.readLine()) ;
r = Float.parseFloat (br.readLine()) ;
si = (p * n * r) / 100 ;
System.out.println ("Simple interest = Rs. " + si) ;

}
}

Here we have first created two objects of type BufferedReader and
InputStreamReader. Then we have called the readLine() function
thrice. To be able to use the classes BufferedReader and
InputStreamReader, we have to import them from java.io package.

The numeric values that we supply to the three readLine() functions is
treated as string of characters, rather than as numbers. So we need to

Chapter 3: Java Data Types and Instructions 41

convert the strings into numbers. This conversion is done by the
parseFloat() and parseInt() functions. These functions belong to a
library classes called Float and Integer, respectively. The converted
values are then assigned to respective variables. Lastly, simple interest is
calculated and printed out.

If we supply wrong input to readLine(), then conversion of this input
into an int / float through parseInt() / parseFloat() would result into
an error during execution. There are different ways to take care of this
possible error. Of these, we have chosen the easiest one—by writing
throws Exception besides main(). We would not get into the details of
this and the other mechanisms to handle errors that occur during
execution. These mechanisms are discussed in detail in Chapter 14.

Command-line Arguments
In our simple interest program, instead of reading values using the
Scanner object during execution, we can provide the values at
command-line itself. This would be another way of supplying input to
the program. The modified program would look like this...

// Calculation of simple interest
package siusingcmdlineargs ;
import java.lang.* ;
public class SiUsingCmdLineArgs
{

public static void main (String[] args)
{

float p, r, si ;
int n ;
p = Float.parseFloat (args[0]) ;
n = Integer.parseInt (args[1]) ;
r = Float.parseFloat (args[2]) ;
si = p * n * r / 100 ;
System.out.println ("Simple interest = Rs. " + si) ;

}
}

To supply the values of p, n and r as command-line arguments, Right
click on the project name siusingcmdlineargs in the projects window of
NetBeans and select 'Properties' from the menu that pops up. On doing
so, the Project Properties window is displayed. In this window choose

42 Let Us Java

'Run' from 'Categories' and type the values 1000.50f 3 15.5f in the
'Arguments' text box.

Now you can compile and execute the program as usual using F6. When
we execute the program, the command-line arguments are available in
main() as an array (collection) of strings in args. From this collection we
can access the individual strings using args[0], args[1] and args[2].
These strings contain the values that we gave as command-line
arguments. However, we cannot perform arithmetic on these strings. So
it is necessary to first convert them into numbers. This conversion into
float and int is done using the statements:

p = Float.parseFloat (args[0]) ;
n = Integer.parseInt (args[1]) ;
r = Float.parseFloat (args[2]) ;

Note that int and float are primitives whereas Float and Integer are
classes. These classes have functions like parseFloat() and parseInt().
The converted numbers are assigned to p, n and r. Finally, simple
interest is calculated and printed out. To be able to use Integer and
Float classes we must import them from java.lang package.

Java Instructions
Now that we have written a few programs, let us look at the instructions
that we have used in these programs. There are basically five types of
instructions in Java. The purpose of each of these instructions is given in
Figure 3.3.

Instruction Purpose

Type declaration To declare the type of variables used in a Java
program

Arithmetic To perform arithmetic operations between constants
and variables

Control To control the sequence of execution of various
statements in a Java program

Exception Handling To handle situations when errors occur during
execution of a Java program

Advanced Instructions for thread synchronization, for handling
arithmetic overflow, etc.

Figure 3. 3

Chapter 3: Java Data Types and Instructions 43

Since, the elementary Java programs would usually contain only the type
declaration and the arithmetic instructions; we would discuss only these
two instructions at this stage. The other types of instructions would be
discussed in detail in the subsequent chapters.

Type Declaration Instruction
This instruction is used to declare the type of each variable being used in
the program. Any variable used in the program must be declared before
using it in any statement.

Ex.: int bas ;
float rs, grosssal ;
char name, code ;

There are several subtle variations of the type declaration instruction.
These are discussed below.

(a) While declaring the type of variable we can also initialize it as shown
below.

int i = 10, j = 25 ;
float a = 1.5f, b = 1.99f + 2.4f * 1.44f ;

(b) The order in which we define the variables is sometimes important
sometimes not. For example,

int i = 10, j = 25 ;

is same as

int j = 25, i = 10 ;

However,

float a = 1.5f, b = a + 3.1f ;

is alright, but

float b = a + 3.1f, a = 1.5f ;

is not. This is because here we are trying to use a even before
defining it.

(c) The following statements would work:

44 Let Us Java

int a, b, c, d ;
a = b = c = 10 ;

However, the following statement would not work:

int a = b = c = d = 10 ;

This is because we are trying to use b (to assign to a) before defining
it.

Arithmetic Instruction
A Java arithmetic instruction consists of a variable name on the left hand
side of =, and variable names and constants on the right hand side of =.
The variables and constants appearing on the right hand side of = are
connected using arithmetic operators like +, -, *, and /.

Ex.: int budget ;
float alpha, beta ;
budget = 3200 ;
beta = 0.5f ;
alpha = beta + 3.2f * 2 / 5 - 3 ;

Here,

*, /, -, + are the arithmetic operators
= is an assignment operator
2, 3, 5 and 3200 are integer constants
0.5f and 3.2f are float constants
budget is an integer variable
alpha, beta are float variables.

The variables and constants together are called 'operands'. While
executing an arithmetic statement the operands on right hand side are
operated upon by the 'arithmetic operators' and the result is then
assigned, using the assignment operator, to the variable on left hand
side.

A Java arithmetic statement could be of three types. These are as
follows:
(a) Integer mode arithmetic statement - This is an arithmetic statement

in which all operands are either integer variables or integer
constants.

Chapter 3: Java Data Types and Instructions 45

Ex.: int i = 10, king, issac = 23, noteit = 45 ;
i = i + 1 ;
king = issac * 234 + noteit - 7689 ;

(b) Real mode arithmetic statement - This is an arithmetic statement in
which all operands are either real constants or real variables.

Ex.: float qbee, si, prin = 100.55f, noy = 1.5f, roi = 5.5f ;
qbee = 23.123f / 4.5f * 0.3442f ;
si = prin * noy * roi / 100.0f ;

(c) Mixed mode arithmetic statement - This is an arithmetic statement
in which some operands are integers and some are real.

Ex.: float si, prin = 100.55f, noy = 1.5f, roi = 5.5f, avg ;
int a = 10, b = 20, c =30, num = 40 ;
si = prin * noy * roi / 100.0f ;
avg = (a + b + c + num + 10.5f) / 5 ;

Though Arithmetic instructions look simple to use, one often commits
mistakes in writing them. Let us take a closer look at these statements.
Note the following points carefully:
(a) Java allows only one variable on left hand side of =. This means, z = k

* l is legal, whereas k l = z is illegal.*

(b) In addition to the division operator Java also provides a modular
division operator (%). This operator returns the remainder on
dividing one operand with another. Thus the expression 10 / 2 yields
5, whereas, 10 % 2 yields 0. Note that on using %, the sign of the
remainder is always same as the sign of the numerator. Thus -5 % 2
yields -1, whereas, 5 % -2 yields 1.

(c) Modular division can also be done on floats. If a and b are floats
then a % b is computed as a - n b, where n is the largest possible
integer that is less than or equal to a / b. Thus 16.5f % 1.25f yields
0.25.

*

(d) An arithmetic instruction is at times used for storing character
constants in character variables.

char a, b ;
a = 'F' ;
b = '+' ;

46 Let Us Java

When we do this, the Unicode values of the characters are stored in
the variables.

(e) Arithmetic operations can be performed on ints, floats and chars.
Thus the statements,

char x = 'a', y = 'b' ;

int z ;
z = x + y ;

are perfectly valid, since the addition is performed on the Unicode
values of the characters and not on characters themselves. The
Unicode values of 'a' and 'b' are 97 and 98, and hence they can be
added.

(f) No operator is assumed to be present. It must be written explicitly.
In the following example, the multiplication operator after b must be
explicitly written:

a = c.d.b(xy) usual arithmetic statement
b = c * d * b * (x * y) Java statement

(g) If we want to perform an exponentiation operation, we can get it
done this way:

double a ;
a = Math.pow (3.0, 2.0) ;

Here pow() function is a function in the Math class. It is being used
to raise 3.0 to the power of 2.0. Note that we should always use
double values with pow().

There are many other mathematical functions in Math class, like
sqrt(), abs(), sin(), cos(), tan(), log(), log10(), etc.

Type Conversion in Arithmetic Instructions
In order to effectively develop Java programs, it is necessary to
understand the rules that are used for the implicit conversion of real and
integer values. These are mentioned below. Note them carefully.

(a) An arithmetic operation between an integer and integer always
yields an integer result.

(b) An operation between a real and real always yields a real result.

Chapter 3: Java Data Types and Instructions 47

(c) An operation between an integer and real always yields a real result.
In this operation, the integer is first promoted to a real and then the
operation is performed. Hence the result is real.

I think a few practical examples shown in Figure 3.4 would put the issue
beyond doubt.

Operation Result Operation Result

5/2 2 2/5 0
5.0/2 2.500000 2.0/5 0.400000
5/2.0 2.500000 2/5.0 0.400000
5.0/2.0 2.500000 2.0/5.0 0.400000

Figure 3. 4

Here are a few more implicit conversion rules.

(a) An operation between any byte, short, int or chars results into an
int. Hence, the result of these operations should always be assigned
to an int variable. Otherwise, an error would be reported. The
following code segment illustrates this:

byte a = 100, b = 50 ;
byte c = a + b ; // error, as resulting int cannot be assigned to a byte
int d = a + b ; // works

short l = 45, m = 20 ;
short n = l + m ; // error, as resulting int cant be assigned to a short
int p = l + m ; // works

char ch = 'A', dh = 'B' ;
char eh = ch + dh // error, resulting int cant be assigned to a char
int fh = ch + dh ; // works

(b) During assignment, the type on left hand side may not be same as
type on right hand side. In such a case, if the value of right hand side
is within the range of type on left hand side then no error results.
The following code snippet illustrates this point:

byte s ;
s = 20 ; // though 20 is an int, it is within range of byte
short a ;

48 Let Us Java

a = 100 ; // though 100 is an int, it is within range of short

If value of right hand side is not within the range of type on left hand
side then an error is reported. For example,

byte s ;
s = 200 ; // error as 200 is not within range of byte
short a ;
a = 40000 ; // error as 40000 is not within range of short

(c) A char can be implicitly converted to short, int, long, float, or
double. However, there are no implicit conversions from other types
to the char type. The following code snippet illustrates this:

float a = 'A' ; // works
char ch = a ; // error

Explicit Conversion
At times we are required to explicitly convert one type into another. This
is done using a type casting operation. Let us consider an example.

float a, b ;
int x = 6, y = 4 ;
a = x / y ;
b = (float) x / y ;
System.out.println ("Value of a = " + a) ;
System.out.println ("Value of b = " + b) ;

And here is the output...

Value of a = 1.0
Value of b = 1.5

Here x and y are both integers, hence x / y yields an integer, 1. If we
don't want the quotient to be truncated, then we can use type casting
as we have done in the next statement. Type casting involves putting a
pair of () around the data type. In our program the expression (float)
causes the variable x to be converted from type int to type float before
being used in the division operation.

Here is another example of type casting:

float a = 6.35f ;
System.out.println ("Value of a on type casting = " + (int) a) ;

Chapter 3: Java Data Types and Instructions 49

System.out.println ("Value of a = " + a) ;

And here is the output...

Value of a on type casting = 6
Value of a = 6.35
Note that the value of a doesn't change permanently as a result of
typecasting. Rather, it is the value of the expression that undergoes type
conversion when we do typecasting.

Hierarchy of Operations
While executing an arithmetic statement, which has two or more
operators, we may have some problems as to how exactly does it get
executed. For example, does the expression 2 * x - 3 * y correspond to
(2x) - (3y) or to 2(x - 3y)? Similarly, does A / B * C correspond to A / (B *
C) or to (A / B) * C? To answer these questions satisfactorily, one has to
understand the 'hierarch/ of operations. Hierarchy decides the order in
which the operations in an expression are performed. The hierarchy of
commonly used operators is shown in Figure 3.5.

Priority Operator Description

1st */% Multiplication, Division, Modular division
2nd + - Addition, Subtraction

3rd_________ = Assignment

Figure 3. 5

Within parentheses the same hierarchy as mentioned in Figure 3.5 is
operative. Also, if there are more than one set of parentheses, the
operations within the innermost parentheses would be performed first,
followed by the operations within the second innermost pair and so on.

An example would clarify the issue further.

Example 3.1: Determine the hierarchy of operations and evaluate the
following expression, assuming that i is an integer variable:

i = 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8

Stepwise evaluation of this expression is shown below.

50 Let Us Java

= 2 * 3 / 4 + 4 / 4 + 8 - 2 + 5 / 8
= 6 / 4 + 4 / 4 + 8 - 2 + 5 / 8
= 1 + 4 / 4 + 8 - 2 + 5 / 8
= 1 + 1 + 8 - 2 + 5 / 8
= 1 + 1 + 8 - 2 + 0
= 2 + 8 - 2 + 0
= 10 - 2 + 0
= 8 + 0
= 8

operation: *
operation: /
operation: /
operation: /
operation: +
operation: +
operation : -
operation: +

Note that 6 / 4 gives 1 and not 1.5. This is because operations between
two integers always evaluates to an integer. Similarly, 5 / 8 evaluates to
zero, since 5 and 8 are integers.

Associativity of Operators
When an expression contains two operators of equal priority, the tie
between them is settled using the associativity of the operators. All
operators in Java have either Left to Right associativity or Right to Left
associativity. Let us understand this with the help of a few examples.

Consider the expression a = 3 / 2 * 5 ;

Here there is a tie between operators of same priority, that is between /
and *. This tie is settled using the associativity of / and *. Both enjoy Left
to Right associativity. Therefore firstly / operation is done followed by *.

Consider one more expression.

a = b = 3 ;

Here both assignment operators have the same priority. So order of
operations is decided using associativity of = operator. = associates from
Right to Left. Therefore, second = is performed earlier than first =.

Consider yet another expression.

z = a * b + c / d ;

Here * and / enjoy same priority and same associativity (Left to Right).
Compiler is free to perform * or / operation as per its convenience, since
no matter which is performed earlier, the result would be same.

Note that the precedence and associativity of all operators is
predetermined and we cannot change it.

Chapter 3: Java Data Types and Instructions 51

Constant Variables
Many a times we have to use constant values in a program. For example,
values of pi, Plank's constant or Avogadro's number. Suppose we need
the value of pi at several places in a Java program. It would be a bad idea
if we directly use the value 3.14 at all these places, as we might commit
a typing error at one of the places and this error would go unnoticed by
the compiler. To avoid this we can store the value 3.14 in a float variable
pi, and then use this variable wherever we need the value of pi. This
solution suffers from the limitation that being a variable, pi is liable to
change. So if by mistake we assign a new value to this variable, the
compiler would not be able to report this as an error.

A solution for this is to declare the variable as a constant variable using
the keyword final. This is illustrated in the code snippet given below.
final float pi = 3.14f ;
float radius = 1.5f ;
float area = pi * radius * radius ;

Console Output in Java
The screen and keyboard together are called a console. We have already
seen how to use the object of Scanner class to receive input from
keyboard. To send output to screen two functions are popularly used
println() and format(). Let us understand these functions now.

println() and format() Functions
So far we have used println() function to send output to the screen.
Given below is an example of its usage.

int avg = 346 ;
float per = 69.5f ;
System.out.println ("Output:") ;
System.out.println ("Average = " + avg + "\n" + "Percentage = " + per) ;

This code snippet would produce the following output:

Output:
Average = 346
Percentage = 69.5

In the first println() we have merely printed the string Output:, whereas
in the next we have converted the integer avg and float per into strings
and then appended them at the end of Average = and Percentage =,

52 Let Us Java

respectively. We have also put a \n in between to display the strings in
two different lines. Also note that the output of each println() function
appears on a new line because it prints the output and sends the cursor
to the next line.

If we wish to control the format in which the output is displayed on the
screen, we should use the format() or printf() function instead of
println() function. They can be used to control details like where the
output appears on the screen, how many spaces are present between
the two values, the number of places after the decimal points, etc. Its
general form looks like this...

System.out.format ("format string", list of variables) ;

The different format specifiers that can be used in the format string of
the format() function are shown in Figure 3.7.

Format Specifier Used for printing

%d Integers in Decimal form
%e Real numbers in Exponential form
%f Real numbers in Fractional form
%o Integers in Octal form
%X or %x Integers in Hexadecimal form |

Figure 3.7

We can also provide four optional specifiers with the above format
specifications—width, zero, comma and sign. Their usage is shown in the
following code snippet:

int num = 762432 ;
System.out.format ("%10d\n", num) ;
System.out.format ("%010d\n", num) ;
System.out.format ("%+10d\n", num) ;
System.out.format ("%,10d\n", num) ;
System.out.format ("%+,10d\n", num) ;
System.out.format ("%10.2f\n", 5.05) ;
System.out.format ("%10.2f\n", 413.25) ;

Here is the output of this code snippet.

Chapter 3: Java Data Types and Instructions 53

0000762432
+762432
762,432

+762,432
5.05

413.25

Width indicates the number of columns to be reserved for printing the
number. For example, %10d indicates that the decimal integer be
printed in 10 columns. If the number to be printed is smaller than the
columns reserved for printing it, the number is right aligned. If we want
to left-align the number we have to use %-10d. If width turns out to be
smaller than what is required for printing the number, the width gets
ignored.

The specifier %010d prints the number right-aligned in 10 columns with
suitable number of zeros padded on the left. %+10d adds a + sign at
beginning of the number. Had the number's value been negative a - sign
would have been displayed. %,10d introduces comma in the number to
make it more readable. Finally, %+,10d combines the effect of , and +.

The specifier %10.2f right aligns the double in 10 columns with 2 places
beyond decimal point.

Control Instructions in Java
As the name suggests, the 'Control Instructions' enable us to specify the
order in which the various instructions in a program are to be executed
by the computer. In other words, the control instructions determine the
'flow of control' in a program. There are four types of control
instructions in Java. They are:
(a) Sequence Control Instruction
(b) Selection or Decision Control Instruction
(c) Repetition or Loop Control Instruction
(d) Case Control Instruction

The Sequence control instruction ensures that the instructions are
executed in the same order in which they appear in the program.
Decision and Case control instructions allow the computer to take a
decision as to which instruction is to be executed next. The Loop control
instruction helps computer to execute a group of statements repeatedly.

54 Let Us Java

In the following chapters, we are going to learn these instructions in
detail.

[A] Evaluate the following expressions and show their hierarchy.

(a) g = big / 2 + big 4 / big - big + abc / 3 ;*
(abc = 2.5f, big = 2, assume g to be a single)

(b) on = ink act / 2 + 3 / 2 act + 2 + tig ;* *
(ink = 4, act = 1, tig = 3.2f, assume on to be an int)

(c) s = qui add / 4 - 6 / 2 + 2 / 3 6 / god ;* *
(qui = 4, add = 2, god = 2, assume s to be an int)

(d) s = 1 / 3 a / 4 - 6 / 2 + 2 / 3 6 / g ;* *
(a = 4, g = 3, assume s to be an int)

(e) t = c + a y y / b ;* *
(a = 2.2, b = 0.0, c = 4.1, y = 3.0, assume t to be an float)

(f) R = x x + 2 x + 1 / 2 x x + x + 1 ;* * * *
(x = 3.5, assume R to be an float)

[B] Evaluate the result of the following statements.

(a) g = 10 / 5 /2 / 1 ;
(b) b = 3 / 2 + 5 4 / 3 ;*
(c) a = b = c = 3 + 4 ;
(d) x = 2 - 3 + 5 2 / 8 % 3 ;*
(e) z = 5 % 3 / 8 3 + 4*

[C] Convert the following equations into corresponding Java
statements:

(a)
8.8(a + b)2/c-0.5 + 2a/(q + r)

(a + b)*(l/m)

Chapter 3: Java Data Types and Instructions 55

7.7b (xy + a) / c - 0.8 + 2b
(d) A =

(x + a) (1 / y))

[D] Match the following:

(a) Range of char (1) true4 bytes
(b) Range of int (2) 2 bytes
(c) Range of float (3) -2147483648 to 2147483647
(d) Size of int (4) -3.4e38 to +3.4e38
(e) Size of float (5) 4 bytes
(f) Size of char (6) 0 to 65535
(g) Value of bool (7) 4 bytes
(h) Size of book (8) 1 bit

[E] Fill in the blanks:

(a) Each character in Java is represented as a _________ character and
not as a ASCII character.

(b) All trignometric functions like sin(), cos(), tan(), etc. are present in
 class.

(c) The result of an arithmetic operation between two byte values
results into.

(d) Addition of a byte and a short results into a.

(e) A _____ can be implicitly converted to short, int, long, while
performing arithmetic operation on it.

(f) In Java explicit conversion from one type into another can be done
using a operation.

(g) If priority of two operators is same then the order of evaluation is
decided by _____ of operators.

[F] State which of the following statements are True or False:

(a) The output of the println() function is always displayed on a fresh
line.

(b) In System.out.println(), println() is a function of PrintStream class,
and out is a static object defined in a System class.

(c) We can print values of four variables using the following statement:

56 Let Us Java

System.out.println (si, p, n, r) ;

(d) All command-line arguments are received by main() as strings.

(e) An integer value can be assigned to a short provided the value is
within the range of short.

(f) It is not possible to implicitly convert a float to a double.

(g) The following two statements are same:

double a = (double) (2.5f + 3.5f) ;
double a = (double) 2.5f + 3.5f ;

(h) Associativity of operators comes into play only when precedence of
two operators is same.

(i) Following is the correct way to define a constant variable:

final float epsilon = 0.1241f ;

[G] Answer the following:

(a) Two numbers are input through the keyboard into two locations C
and D. Write a Java program to interchange the contents of C and
D.

(b) If a five-digit number is input through the keyboard, write a Java
program to calculate the sum of its digits.

(c) If a five-digit number is input through the keyboard, write a Java
program to reverse the number.

(d) In a town, the percentage of men is 52. The percentage of total
literacy is 48. If total percentage of literate men is 35 of the total
population, write a Java program to find the total number of
illiterate men and women if the population of the town is 80,000.

(e) A cashier has currency notes of denominations 10, 50 and 100. If
the amount to be withdrawn is input through the keyboard, write a
Java program find the minimum number of currency notes of each
denomination the cashier will have to give to the withdrawer.

Chapter 3: Java Data Types and Instructions 57

• 2 ways to make the program general :

- Receive input from keyboard
- Receive input from command-line on starting program execution

• Procedure to receive input from command-line in Windows

C:\> javac myprogram.java
C:\> java myprogram.class cat dog parrot

• Procedure to receive input from command-line in Linux

$ javac myprogram.java
$ java myprogram.class cat dog parrot

Procedure to receive input from command-line in NetBeans under
Windows

- Right click Project | Properties
- From the dialog that pops up select "Run"
- Enter "Arguments" as cat dog parrot

• A program can receive input from keyboard using functions of
Scanner class as shown below :

Scanner scn = new Scanner (System.in) ;
int n = scn.nextInt() ;

• A program can receive input through command-line arguments. These
arguments are received as strings. If the strings contain numbers
then these numeric strings should be converted to integer / float as
show below :

int n = Integer.parseInt (args[1]) ; // method 1
int n = Integer.valueOf (args[1])).intValue() ; // method 2
float p = Float.parseFloat (args[0]) ; // method 1
float p = (Float.valueOf (args[0])).floatValue() ; // method 2

• Integer type :

- 4 types - byte, short, int, long. Most common - int

58 Let Us Java

- Number without a decimal point is byte, short, int, long depending
on range in which it fits
Ex.: 35 - byte 400 - short 45000 - int

- Value being assigned should not exceed the range of the variable

• Real type :

- 2 types - float, double. Most common - float
- double is used to deal with very big real values
- By default number with a decimal point is double
- Value being assigned should not exceed the range of the variable

• Boolean type :

- Boolean can take a value true or false
- Result of a Boolean expression is true / false
- Do not use true / false as variable names
- true is not 1 and false is not 0

• Arithmetic Instruction :

- On LHS of = only variable can occur
- + - / % are Arithmetic Operators*
- No operator is assumed to be present
- Do exponentiation using pow() function

Ex. : double a = Math.pow (2.0, 5.0) ;
- Other funs. - s^rtQ, absQ, , co$Q, tanQ, logQ,...
- Widening conversions take place automatically

Ex. : long l = 40000 * 2 ;
- Narrowing conversions report errors. Ex. : short s = 40000 ;
- Possible loss of precision is reported as error

All but the simplest of logics would involve decision making on
the go. Learn how to make decisions in a Java program...

59

60 Let Us Java

• Decisions! Decisions!
• The if-else statement
• More Complex Decision Making

The else if Clause
The & and | Operators
The ! Operator
Hierarchy of Operators Revisited

• A Word of Caution
• The Conditional Operators
• Exercises
• KanNotes

Chapter 4: Decision Control Instruction 61

We all need to alter our actions in the face of changing
circumstances. If the weather is fine, then I will go for a stroll. If
the highway is busy, I would take a diversion. If the pitch takes spin, we

would win the match. If she says no, I would look elsewhere. If you like
this book, I would write the next edition. You can notice that all these
decisions depend on some condition being met. Java language too must
be able to perform different sets of actions depending on the
circumstances. In this chapter, we will explore ways in which a Java
program can react to changing circumstances.

Decisions! Decisions!
In the programs written in Chapters 2 and 3, the instructions in them got
executed sequentially. However, in many programming situations, we
want one set of instructions to get executed in one situation, and an
entirely different set in another situation. Such situations are dealt with
in Java programs using a decision control instruction. A decision control
instruction can be implemented in Java using:
(a) The if-else statement
(b) The conditional operators
Now let us learn each of these and their variations in turn.

The if-else Statement
Like most languages, Java uses if-else to implement the decision control
instruction. The general form of if statement looks like this:

if (this condition is true)
{

execute statement1 ;
execute statement2 ;

}
else
{

execute statement4 ;
execute statement5 ;

}

The keyword if tells the compiler that what follows is a decision control
instruction. The condition following the keyword if is always enclosed in
a pair of parentheses. If the condition is true, then the statements 1, 2

62 Let Us Java

are executed. If the condition is false, then statements 4, 5 are
executed.

But how do we express the condition itself in Java? And how do we
evaluate its truth or falsity? We express a condition using Java's
'relational' operators. They allow us to compare two values to see
whether they are equal to each other, unequal, or whether one is
greater than the other. Here's how they look and how they are
evaluated in Java.

this expression is true if

x==y xis equal toy
x !=y x is not equal to y
x < y x is less than y
x > y xis greater than y
x <= y x is less than or equal to y
x >= y x is greater than or equal to y

Figure 4.1

The relational operators should be familiar to you except for the
equality operator == and the inequality operator !=. Note that = is used
for assignment, whereas, == is used for comparison of two quantities.
Let us understand the usage of relational operators using a simple
program based on Example 4.1.

Example 4.1 : In a company an employee is paid as under:

If his basic salary is less than Rs. 1500, then HRA = 10% of basic salary
and DA = 90% of basic salary. If his salary is either equal to or above Rs.
1500, then HRA = Rs. 1500 and DA = 98% of basic salary. If the
employee's salary is input through the keyboard write a program to find
his gross salary.

Now let us look at the program that implements this logic.

// Calculation of gross salary
package calofgrosssalary ;
import java.util.* ;

public class CalOfGrossSalary

Chapter 4: Decision Control Instruction 63

{
public static void main (String[] args)
{

float bs, gs, da, hra ;
Scanner scn ;

scn = new Scanner (System.in) ;
bs = scn.nextFloat() ;
if (bs < 1500)
{

hra = bs * 10 / 100 ;
da = bs * 90 / 100 ;

}
else
{

hra = 1200 ;
da = bs * 98 / 100 ;

}
gs = bs + hra + da ;
System.out.println ("Gross salary = Rs. " + gs) ;

}
}

Here is some sample interaction with the program.

Enter basic salary
1200
Gross salary = Rs. 2400.0

Enter basic salary
2000
Gross salary = Rs. 4660.0

A few points worth noting...

(a) The group of statements in { } after the if is called an 'if block'.
Similarly, the statements in {} after the else form the 'else block'.

(b) Notice that the else is written exactly below the if. The statements
in the if block and those in the else block have been indented to the
right. This formatting convention is followed throughout the book to
enable you to understand the working of the program better.

64 Let Us Java

(c) Had there been only one statement to be executed in the if block
and only one statement in the else block we could have dropped the
pair of braces.

(d) In the first run of the program, the condition evaluates to true, as
1200 (value of bs) is less than 1500. In this case the statements in
the if block get executed. In the second run, the condition evaluates
to false, as 2000 (value of bs) is greater than 1500. Now the
statements in the else block get executed.

(e) It is perfectly all right if we write an entire if-else construct within an
if block or else block. This is called 'nesting' of if-else statements.

(f) At times we may not wish to do anything if the condition in if fails. In
such a case we should drop the else and the associated else block.

More Complex Decision Making
Sometimes the decision making becomes complex. We may wish to
execute a set of statements if multiple conditions are true, or one out of
multiple conditions is true. To deal with such situations Java provides
logical operators, &&, 11 and 1. These are to be read as 'AND' 'OR' and
'NOT', respectively.

The first two operators, && and ||, allow two or more conditions to be
combined in an if statement. Let us see how they are used in a program.
Consider the following example:

Example 4.2 : The marks obtained by a student in 3 different subjects are
input through the keyboard. The student gets a division as per the
following rules:
Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division
Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail
Write a program to determine the division obtained by the student.

Here is the program that implements this logic.

// Determining student's division
package studentdiv ;
import java.util.* ;

Chapter 4: Decision Control Instruction 65

public class StudentDiv
{

public static void main (String[] args)
{

int m1, m2, m3, per ;
Scanner scn ;

scn = new Scanner (System.in) ;
System.out.println ("Enter marks in three subjects") ;
m1 = scn.nextInt() ;
m2 = scn.nextInt() ;
m3 = scn.nextInt() ;
per = (m1 + m2 + m3) * 100 / 300 ;

if (per >= 60)
System.out.println ("First division") ;

if ((per >= 50) && (per < 60))
System.out.println ("Second division") ;

if ((per >= 40) && (per < 50))
System.out.println ("Third division") ;

if (per < 40)
System.out.println ("Fail") ;

}
}

As can be seen from the second if statement, the && operator is used to
combine two conditions. 'Second division' gets printed if both the
conditions evaluate to true. If one of the conditions evaluates to false
then the whole expression is treated as false.

We could have implemented the same logic without using logical
operators, by using nested if - else statements. You may try doing this. If
you do so you would observe that the program unnecessarily becomes
lengthy.

The else if Clause
There is one more way in which we can write program for Example 4.1.
This involves usage of else if blocks as shown below.

66 Let Us Java

// else if ladder demo
package elseifladderdemo ;
import java.util.* ;

public class ElseIfLadderDemo
{

public static void main (String[] args)
{

int m1, m2, m3, per ;
Scanner scn ;

scn = new Scanner (System.in) ;
System.out.println ("Enter marks in three subjects") ;
m1 = scn.nextInt() ;
m2 = scn.nextInt() ;
m3 = scn.nextInt() ;
per = (m1 + m2 + m3) * 100 / 300 ;

if (per >= 60)
System.out.println ("First division") ;

else if (per >= 50)
System.out.println ("Second division") ;

else if (per >= 40)
System.out.println ("Third division") ;

else
System.out.println ("Fail") ;

}
}

You can note that this program reduces the indentation of the
statements. In this case, every else is associated with its previous if. The
last else goes to work only if all the conditions fail. Also, if the first
condition is satisfied, other conditions are not checked. Even in else if
ladder, the last else is optional.

Another place where logical operators are useful is when we want to
write programs for complicated logics that ultimately boil down to only
two answers. This is shown in Example 4.2 given below.

Example 4.2: A company insures its drivers in the following cases:
- If the driver is married.
- If the driver is unmarried, male and above 30 years of age.

Chapter 4: Decision Control Instruction 67

- If the driver is unmarried, female and above 25 years of age.
In all other cases, the driver is not insured. If the marital status, sex and
age of the driver are the inputs, write a program to determine whether
the driver is to be insured or not.

Here after checking a complicated set of instructions the final output of
the program would be one of the two—either the driver should be
ensured or the driver should not be ensured. Since these are the only
two outcomes this problem can be solved using logical operators.

If we list down all those cases in which the driver is insured, then they
would be:

(a) Driver is married.
(b) Driver is an unmarried male above 30 years of age.
(c) Driver is an unmarried female above 25 years of age.

Since all these cases lead to the driver being insured, they can be
combined together using && and || as shown in the program below.

// Insurance of driver - using logical operators
package driverinsurance ;
import java.util.* ;

public class DriverInsurance
{

public static void main (String[] args)
{

char sex, ms ;
int age ;
String str ;
Scanner scn ;

scn = new Scanner (System.in) ;
System.out.println ("Enter age, sex, marital status") ;
age = scn.nextInt() ;
sex = scn.next().charAt (0) ;
ms = scn.next().charAt (0) ;

if ((ms == 'M') || (ms == 'U' && sex == 'M' && age > 30)
|| (ms == 'U' && sex == 'F' && age > 25))

System.out.println ("Driver is insured") ;

68 Let Us Java

else
System.out.println ("Driver is not insured") ;

}
}

In this program, it is important to note that:

- The driver will be insured only if one of the conditions enclosed in
parentheses evaluates to true.

- For the second pair of parentheses to evaluate to true, each
condition in the parentheses separated by && must evaluate to
true.

- Even if one of the conditions in the second parentheses evaluates to
false, then the whole of the second parentheses evaluates to false.

- The last two of the above arguments apply to third pair of
parentheses as well.

The & and | Operators
Consider the following code snippet:

int a = 1, b = 1, c = 5, d ;
if (a > 3 && (b = c + 4) > 1)

d = 35 ;
System.out.println (b) ;

On execution we would expect the output to be 9. However, the output
turns out to be 1. This so happens because the expression (b = c + 4) >
1 doesn't get evaluated once a > 3 fails. This is known as short-circuiting.
This can be prevented by rewriting the if as follows:

if (a > 3 & (b = c + 4) > 1)
d = 35 ;

Note that we have used the operator & instead of &&. Using & ensures
that both conditions are evaluated even if the first condition turns out to
be false. Figure 4.2 summarizes the effects of using &&, ||, & and |
operators.

Chapter 4: Decision Control Instruction 69

Expression Condition? is evaluated

conditionl && condition?
conditionl & condition?
conditionl 11 condition?
conditionl | condition?

Only if conditionl is true
Always
Only if conditionl is false
Always

Figure 4.2

The ! Operator
So far we have used only the logical operators && and ||. The third
logical operator is the NOT operator, written as !. This operator reverses
the result of the expression it operates on. For example, if the
expression evaluates to true, then on applying ! operator to it results
into a false. Vice versa, if the expression evaluates to false, then on
applying ! operator to it makes it true. Here is an example of the NOT
operator applied to a relational expression.

! (y < 10)

This means "not y less than 10". In other words, if y is less than 10, the
expression will be false, since (y < 10) is true. We can express the same
condition as (y >= 10).

The NOT operator is often used to reverse the logical value of a single
boolean variable, as in the expression

if (! flag)

This is another way of saying

if (flag == 0)

Does the NOT operator sound confusing? Avoid it if you want, as the
same thing can be achieved without using the NOT operator.

Figure 4.3 summarizes the working of all the three logical operators.

70 Let Us Java

Operands Results
X y !x !y x&&y x &y x II y x 1 y
false false true true false false false false

false true true false false false true true

true false false true false false true true

true true false false true true true true

Figure 4. 3

Hierarchy of Operators Revisited
Since we have now added the logical operators to the list of operators
we know, it is time to review these operators and their priorities. Figure
4.4 summarizes the operators we have seen so far. The higher the
position of an operator is in the table, higher is its priority.

Operators Type

1 Logical NOT
* / % Arithmetic and modulus
+ - Arithmetic
<><=>= Relational
== != Relational
&& & Logical AND
II 1 Logical OR
= Assignment

Figure 4. 4

A Word of Caution
A common mistake while using the if statement is to write a semicolon
(;) after the condition, as shown below.

if (i == 5) ;
System.out.println ("Reached here") ;

Chapter 4: Decision Control Instruction 71

The ; makes the compiler to interpret the statement as if you have
written it in following manner:

if (i == 5)
;

System.out.println ("Reached here") ;

Here, if the condition evaluates to true, the ; (null statement, which
does nothing on execution) gets executed, following which the println()
gets executed. If the condition fails, then straightaway the println() gets
executed. Thus, irrespective of result of the condition, the println() gets
executed. Compiler would not point out this as an error, since as far as
the syntax is concerned, nothing has gone wrong, but the logic has
certainly gone awry. Moral is, beware of such a pitfall.

The Conditional Operators
The conditional operators ? and : are sometimes called ternary
operators since they take three arguments. In fact, they form a kind of
foreshortened if-then-else. Their general form is,

expression 1 ? expression 2 : expression 3

What this expression says is: "if expression 1 is true, then the value
returned will be result of expression 2, otherwise the value returned will
be result of expression 3". Let us understand this with the help of a few
examples.

(a) int x, y ;
y = x > 5 ? 3 + 4 : 4 + 7 ;

This statement will store 7 in y if x is greater than 5, otherwise it will
store 11 in y.

(b) int y ;
y = a >= 65 && a <= 90 ? 1 : 0 ;
System.out.println (y) ;

Here 1 would be assigned to y if a >=65 && a <=90 evaluates to true,
otherwise 0 would be assigned.

The following points may be noted about the conditional operators:

72 Let Us Java

(c) If we use a function in ? part or in : part the function has to return a
value, which can then be assigned to a variable. If we use a function
that returns nothing (void) it would result in an error. This is
illustrated in the following examples:

Ex.: double j ;
j = ang > 45 ? Math.sin (0.5) : Math.cos (0.5) ;

This would work as the sine or cosine value returned would get
assigned to j.

Ex.: int x ;
x = act == 1 ? System.out.println ("Amitabh") :

System.out.println ("All and sundry") ;

This would not work as println() function doesn't return anything,
so assignment to x cannot happen.

Ex.: double j ;
System.out.println (j = 3 > 4 ? 4.4 : 3.3) ;
System.out.println (3 > 4 ? 4.4 : 3.3) ;

These statements would work indicating that conditional operators
can be used even inside println() function.

(d) The conditional operators can be nested as shown below.

int big, a, b, c ;
big = a > b ? (a > c ? 3: 4) : (b > c ? 6: 8) ;

(e) Check out the following conditional expression:

a > b ? g = a : g = b ;

This would result in an error, because the result of the expression g
= a or g = b on being returned is not being assigned to any variable.
The error can be overcome by rewriting the statement as

g = a > b ? a : b ;

The limitation of the conditional operators is that after the ? or after
the : , only one statement can occur.

Chapter 4: Decision Control Instruction 73

[A] What will be the output of the following programs:

(a) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int a = 300, b = 0, c ;
if (a >= 400)

b = 300 ;
c = 200 ;

System.out.println (b + " " + c) ;
}

}

(b) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int x = 10, y = 20 ;
if (x == y) ;

System.out.println (x + " " + y) ;
}

}

(c) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int i = -4, j, num = -4 ;
j = i < 0 ? 0 : num * num ;
System.out.println (j) ;

1

74 Let Us Java

public static void main (String[] args)
{

int k, num = 30 ;
k = (num > 5 ? (num <= 10 ? 100 : 200) : 500) ;
System.out.println (k) ;

}
}

[B] Point out the errors, if any, in the following programs:

(a) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int x = 10 ;
if (x >= 2) then

System.out.println (x) ;
}

}

(b) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int x = 10, y = 15 ;
if (x % 2 = y % 3)

System.out.println ("Carpathians") ;
}

}

(c) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

char spy = 'a', password = 'z' ;
if (spy == 'a' or password == 'z')

System.out.println ("All the birds safe in the nest") ;
}

}

(d) package sampleproject ;

Chapter 4: Decision Control Instruction 75

public class SampleProject
{

public static void main (String[] args)
{

int a = 5, b = 6 ;
a == b ? System.out.println (a) ;

}
}

(e) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int x = 10, y = 20 ;
boolean ret ;
ret = (x == 20 && y != 10) ? true : false ;
System.out.println (ret) ;

}
}

[C] Attempt the following:

(a) If cost price and selling price of an item is input through the
keyboard, write a program to determine whether the seller has
made profit or incurred loss. Also determine how much profit he
made or loss he incurred.

(b) Any integer is input through the keyboard. Write a program to find
out whether it is an odd number or even number.

(c) Write a program to find the absolute value of a number that is
entered through the keyboard.

(d) If the ages of Ram, Shyam and Ajay are input through the keyboard,
write a program to determine the youngest of the three.

(e) Write a program to check whether a triangle is valid or not, when
the three angles of the triangle are entered through the keyboard.
A triangle is valid if the sum of all the three angles is equal to 180
degrees.

(f) If the three sides of a triangle are entered through the keyboard,
write a program to check whether the triangle is valid or not. The

76 Let Us Java

triangle is valid if the sum of two sides is greater than the largest of
the three sides.

(g) If the three sides of a triangle are entered through the keyboard,
write a program to check whether the triangle is isosceles,
equilateral, scalene or right angled triangle.

(h) Given the length and breadth of a rectangle, write a program to find
whether the area of the rectangle is greater than its perimeter.

(i) Given the coordinates (x, y) of a center of a circle and its radius,
write a program which will determine whether a point lies inside
the circle, on the circle or outside the circle. (Hint: Use Math.sqrt()
and Math.pow() functions)

(j) Given a point (x, y), write a program to find out if it lies on the X-
axis, Y-axis or on the origin, viz. (0, 0).

(k) Any year is entered through the keyboard, write a program (using
logical operators) to determine whether the year is leap or not.

(l) What will be the result of the following expressions:

int a = 10 ;
int b = 20 ;
a > 5 && b != 5
a != 0 & b < 34
a > 45 || b > 45
a == 10 | b == 20
a > 5 && b != 3 || a + b >= 10
a > 5 || b != 3 && a + b >= 10

(m) Using conditional operators determine

(1) Whether the character entered through the keyboard is a
lower case alphabet or not.

(2) Whether a character entered through the keyboard is a special
symbol or not.

(3) Whether a character entered through the keyboard is a digit or
not.

(4) Whether a character entered through the keyboard is
alphanumeric or not.

Chapter 4: Decision Control Instruction 77

Control instructions control the sequence of execution of
instructions in a program

4 4 types of control instructions :

1) Sequence 2) Decision 3) Repetition 4) Case

• Three forms of decision control instruction :

if (condition)
statement1 ;

else
statement2 ;

{ } are optional here

if (condition)
{

statement1 ;
statement2 ;

}
else
{

statement3 ;
statement4 ;

}

{ } are necessary

if (condition1)
statement1 ;

else if (condition2)
statement2 ;

else if (condition3)
statement3 ;

else
statement4 ;

else goes to work if
the 3 ifs fail

Condition is built using relational operators < > <= >= == !

a = b is assignment. a == b is comparison

• More complex decision making can be done using logical operators

• Logical operators are &&, ||, &, | and !

Usage of Logical Operators :

&&, II, &, | - To combine two conditions (not numbers)

! - To negate the result of a condition (not number)

• Working of logical operators :

78 Let Us Java

condition1 && condition2 - True only if both conditions are true

condition2 goes to work only
condition1 is true

condition1 & condition2 - True only if both conditions are true

- Both conditions are always evaluated

condition1 || condition2 - True if any one condition is true

condition2 goes to work only
condition1 is false

if

if

condition1 | condition2 - True if any one condition is true

- Both conditions are always evaluated

! condition - If condition is true ! condition is false

- If condition is false ! condition is true

• Hierarchy :

! * / % + - < > <= >= && & || | =

• Unary operator - needs only 1 operand. Ex. !

b Binary operator - needs 2 operands. Ex. + - * / % < > <= >=
== != && || & |

• ! (a <= b} is same as (a > b). ! (a >= b) is same as (a < b)

• Conditional operators ? : are ternary operators

• General form : result = condition ? value1 : value2

• value1 and value2 must be of same type

• ? : can have only 1 statement each

• ? : can be nested

: always go together. : is not optional

• Always parenthesize assignment operation if used with

If anything is worth doing, it is worth doing often. Learn how to
repeat instructions in a Java program...

79

80 Let Us Java

• Loops
• The while Loop

Tips about while
• The for Loop

Partial for Loops
Nesting of Loops
Multiple Initializations in the for Loop

• The do-while Loop
• The break Statement
• The continue Statement
• Common usage
• Exercises
• KanNotes

Chapter 5: Loop Control Instruction 81

The programs that we have developed so far used either a sequential
or a decision control instruction. These programs were of limited
nature, because when executed, they always performed the same series

of actions, in the same way, exactly once. In programming we frequently
need to perform an action over and over, often with variations in the
details each time. The mechanism, which meets this need, is the loop
control instruction, and loops are the subject of this chapter.

Loops
The versatility of the computer lies in its ability to perform a set of
instructions repeatedly. This involves repeating some portion of the
program either a specified number of times or until a particular
condition is being satisfied. There are three methods by way of which
we can repeat a part of a program. They are:

(a) Using a for statement
(b) Using a while statement
(c) Using a do-while statement

Let us now understand each of these methods of looping.

The while Loop
It is often the case in programming that you want to do something a
fixed number of times. Perhaps you want to calculate gross salaries of
ten different persons, or you want to convert temperatures from
Centigrade to Fahrenheit for 15 different cities. The while loop is ideally
suited for such situations. Let us look at a simple program that uses a
while loop.

// Calculation of simple interest for 3 sets of p, n and r
package siusingwhileloop ;
import java.util.* ;

public class SiUsingWhileLoop
{

public static void main (String[] args)
{

float p, r, si ;
int n, count ;
Scanner scn ;
count = 1 ;

82 Let Us Java

scn = new Scanner (System.in) ;
while (count <= 3)
{

System.out.println ("Enter values of p, n and r") ;
p = scn.nextFloat() ;
n = scn.nextInt() ;
r = scn.nextFloat() ;
si = p * n * r / 100 ;
System.out.println ("Simple interest = Rs. " + si) ;
count = count + 1 ;

}
}

}

And here are a few sample runs of this program...

Enter values of p, n and r
1000
5
13.5
Simple interest = Rs. 675.0
Enter values of p, n and r
2000
5
13.5
Simple interest = Rs. 1350.0
Enter values of p, n and r
3500
5
3.5
Simple interest = Rs. 612.5

The program executes all statements after the while 3 times. The logic
for calculating the simple interest is written within a pair of braces
immediately after the while keyword. These statements form what is
called the 'bod/ of the while loop. The parentheses after the while
contain a condition. So long as this condition remains true, all
statements within the body of the while loop keep getting executed
repeatedly. To begin with, the variable count is initialized to 1 and every
time the simple interest logic is executed, the value of count is
incremented by one. The variable count is often called a 'loop counter'

Chapter 5: Loop Control Instruction 83

or 'index variable'. When the value of count reaches 4, the condition in
while fails and the loop is terminated.

Tips about while
Note the following points about while...

- The statements within the while loop would keep on getting
executed till the condition being tested remains true. When the
condition becomes false, the control passes to the first statement
that follows the body of the while loop.

- The condition being tested may use relational or logical operators as
shown in the following examples:

while (i <= 10)
while (i >= 10 && j <= 15)
while (j > 10 && (b < 15 || c < 20))

- The statements within the loop may be a single line or a block of
statements. In the first case, the braces are optional. Thus,

while (i <= 10)
i = i + 1 ;

is same as

while (i <= 10)
{

i = i + 1 ;
}

- Almost always, the while must test a condition that will eventually
become false, otherwise the loop would be executed forever,
indefinitely.

int i = 1 ;
while (i <= 10)

System.out.println (i) ;

This is an indefinite loop, since i remains equal to 1 forever. The
correct form would be as under.
int i = 1 ;
while (i <= 10)
{

84 Let Us Java

System.out.println (i) ;
i = i + 1 ;

}
- Instead of incrementing a loop counter, we can even decrement it

and still manage to get the body of the loop executed repeatedly.
This is shown below.

int i = 5;
while (i >= 1)
{

System.out.println ("Make the computer literate!") ;
i = i - 1 ;

}
- It is not necessary that a loop counter must only be an int. It can

even be a float.

float a = 10.0f ;
while (a <= 10.5f)
{

System.out.println ("Raindrops on roses...") ;
System.out.println ("...and whiskers on kittens") ;
a = a + 0.1f ;

}
- Even floating-point loop counters can be decremented. Once again,

the increment and decrement could be by any value, not necessarily
1.

- What will be the output of the following code snippet?

int i = 1 ;
while (i <= 10) ;
{

System.out.println (i) ;
i = i + 1 ;

}

This is an indefinite loop, and it doesn't give any output at all. The
reason is, we have carelessly given a ; after the while. This would
make the loop work like this...

while (i <= 10)

Chapter 5: Loop Control Instruction 85

{
System.out.println (i) ;
i = i + 1 ;

}

Since the value of i is not getting incremented, the control would
keep rotating within the loop, eternally. Note that enclosing
println() and i = i +1 within a pair of braces is not an error. In fact
we can put a pair of braces around any individual statement or a set
of statements without affecting the execution of the program.

- Instead of incrementing a loop counter using the statement i = i + 1,
we can use any of the following two forms to get the same result:

i++ ;
i = i += 1 ;
Note that the increment operator ++ increments the value of i by 1,
every time the statement i++ gets executed. Similarly, to reduce the
value of a variable by 1, a decrement operator -- is also available.
However, never use n+++ to increment the value of n by 2, since
Java doesn't have the operator +++.

+= is a compound assignment operator. It increments the value of i
by 1. Similarly, j = j + 10 can also be written as j += 10. Other
compound assignment operators are -=, *=, / = and %=.

- The ++ and -- operators can be combined with some other operation
like assignment, printing or testing of a condition. In such cases the
the position of ++ decides the order of operations.
If ++ is used before the variable it is called pre-incrementation and
iff it is present after the ++ then it is called post-incrementation.
The following examples would clarify their usage:

int i = 1 ;
while (i++ < 10) // first test the condition, then increment i
while (++i < 10) // first increment i, then test the condition
j = ++i ; // first increment i, then assign to j
j = i++ ; // first assign i to j, then increment i
System.out.println (++i) ; // first increment i, then print it
System.out.println (i++) ; // first print i, then increment it

86 Let Us Java

The for Loop
for is probably the most popular looping instruction. Unlike a while loop,
the for loop allows us to initialize, test and increment the loop counter
in a single line as shown below.

for (initialize counter ; test counter ; increment counter)
{

do this ;
and this ;
and this ;

}

Let us write down the simple interest program using for. Compare this
program with the one, which we wrote using while.

// Calculation of simple interest for 3 sets of p, n and r
package siusingforloop ;
import java.util.* ;

public class SiUsingForLoop
{

public static void main (String[] args)
{

float p, r, si ;
int n, count ;
Scanner scn ;

scn = new Scanner (System.in) ;
for (count = 1 ; count <= 3 ; count = count + 1)
{

System.out.println ("Enter values of p, n and r") ;
p = scn.nextFloat() ;
n = scn.nextInt() ;
r = scn.nextFloat() ;
si = p * n * r / 100 ;
System.out.println ("Simple Interest = Rs. " + si) ;

}
}

}

Let us now examine how the for statement gets executed:

Chapter 5: Loop Control Instruction 87

- When the for statement is executed for the first time, the value of
count is set to an initial value 1.

- Now the condition count <= 3 is tested. Since count is 1, the
condition is satisfied and the body of the loop is executed for the
first time.

- Upon reaching the closing brace of for, control is sent back to the for
statement, where the value of count gets incremented by 1.

- Again the test is performed to check whether the new value of
count exceeds 3.

- If the value of count is less than or equal to 3, the statements within
the braces of for are executed again.

- The body of the for loop continues to get executed till count doesn't
exceed the final value 3.

- When count reaches the value 4, the control exits from the loop and
is transferred to the statement (if any) immediately after the body of
for.

It is important to note that the initialization and incrementation part of
a for loop can be replaced by any valid expression. Thus the following
for loops are perfectly OK.

for (i = 1 ; i <=10 ; System.out.println (i++))
;

Scanner scn = new Scanner (System.in) ;
for (i = scn.nextInt() ; i <= 10 ; i++)

System.out.println (i) ;

Partial for Loops
We can drop the initialization, test (condition) or incrementation part of
a for loop. Thus all the following loops would be correct and would print
numbers from 1 to 10.

// Method 1 - Normal for loop
int i ;
for (i = 1 ; i <= 10 ; i = i + 1)

System.out.println (i) ;

// Method 2 - Drop initialization

88 Let Us Java

int i = 1 ;
for (; i <= 10 ; i++)

System.out.println (i) ;

// Method 3 - Drop initialization and incrementation
int i = 1 ;
for (; i <= 10 ;)
{

System.out.println (i) ;
i++ ;

}

// Method 4 - Drop initialization, incrementation and test
int i = 1 ;
for (; ;)
{

System.out.println (i) ;
i++ ;
if (i > 10)

break ;
}

Note that in spite of dropping initialization / incrementation / test, the
two semicolons in the for loop are always necessary.

The for loop in Method 4 behaves like an infinite loop. Hence we have
checked the value of i against 10. If it goes beyond 10, we terminate the
for loop using the break statement.

Nesting of Loops
The way if statements can be nested, similarly whiles and fors can also
be nested. To understand how nested loops work, look at the program
given below.

// Demonstration of nested loops
package nestedforloopsdemo ;

public class NestedForLoopsDemo
{

public static void main (String[] args)
{

int r, c, sum ;

Chapter 5: Loop Control Instruction 89

for (r = 1 ; r <= 3 ; r++) // outer loop
{

for (c = 1 ; c <= 2 ; c++) // inner loop
{

sum = r + c ;
System.out.println ("r = " + r + " c = " + c +

" sum = " + sum) ;
}

}
}

}

When you run this program, you will get the following output:

r = 1 c = 1 sum = 2
r = 1 c = 2 sum = 3
r = 2 c = 1 sum = 3
r = 2 c = 2 sum = 4
r = 3 c = 1 sum = 4
r = 3 c = 2 sum = 5

Here, for each value of r, the inner loop is cycled through twice, with the
variable c taking values from 1 to 2. The inner loop terminates when the
value of c exceeds 2, and the outer loop terminates when the value of r
exceeds 3.

Multiple Initializations in the for Loop
The initialization expression of the for loop can contain more than one
statement separated by a comma (,). For example,

for (i = 1, j = 2 ; j <= 10 ; j++)

Multiple statements can also be used in the incrementation expression
of for loop; i.e., you can increment (or decrement) two or more
variables at the same time. However, only one statement is allowed in
the test expression. This expression may contain several conditions
linked together using logical operators.

Use of multiple statements in the initialization expression also
demonstrates why semicolons are used to separate the three
expressions in the for loop. Had commas been used, they could not also
have been used to separate multiple statements in the initialization
expression, without confusing the compiler.

90 Let Us Java

The do-while Loop
The do-while loop looks like this:

do
{

this ;
and this ;
and this ;

} while (this condition is true) ;

There is a minor difference between the working of while and do-while
loops. This difference is the place where the condition is tested. The
while tests the condition before executing any of the statements within
the while loop. As against this, the do-while tests the condition after
having executed the statements within the loop.

This means that do-while would execute its statements at least once,
even if the condition fails for the first time. The while, on the other hand
will not execute its statements if the condition fails for the first time.

The break Statement
We often come across situations where we want to jump out of a loop
instantly, without waiting to get back to the conditional test. The
keyword break allows us to do this. When break is encountered inside
any loop, control automatically passes to the first statement after the
loop. A break is usually associated with an if. Let's consider an example
where break statement would make sense.

Example 5.1: Write a program to determine whether a number is prime
or not. A prime number is one, which is divisible only by 1 or itself.

All we have to do to test whether a number is prime or not, is to divide it
successively by all numbers from 2 to one less than itself. If remainder of
any of these divisions is zero, the number is not a prime. If no division
yields a zero then the number is a prime number. Following program
implements this logic:

// Prime number or not
package primenumberproject ;
import java.util.* ;

public class PrimeNumberProject

Chapter 5: Loop Control Instruction 91

{
public static void main (String[] args)
{

int num, i ;
Scanner scn ;

scn = new Scanner (System.in) ;
System.out.println ("Enter a number ") ;
num = scn.nextInt() ;

i = 2 ;
while (i <= num - 1)
{

if (num % i == 0)
{

System.out.println ("Not a prime number") ;
break ;

}
i++ ;

}

if (i == num)
System.out.println ("Prime number") ;

}
}

In this program, the moment num % i turns out to be zero, (i.e., num is
exactly divisible by i), the message "Not a prime number" is printed and
the control breaks out of the while loop.

Why does the program require the if statement after the while loop at
all? Well, there are two ways the control could have reached outside the
while loop:

(a) It jumped out because the number proved to be not a prime.
(b) The loop came to an end because the value of i became equal to

num.

When the loop terminates in the second case, it means that there was
no number between 2 to num - 1 that could exactly divide num. That is,
num is indeed a prime. If this is true, the program should print out the
message "Prime number".

92 Let Us Java

The keyword break, breaks the control only from the while in which it is
placed. So in case of nested loops if we use break in the inner loop, the
inner loop would be terminated. What if we wish to break out of the
outer loop? Well, we just have to name the outer loop and use break to
take the control out of the named loop. The following program
illustrates how this can be done:

first : while (i++ <= 100)
{

while (j++ <= 200)
{

if (j == 150)
break first ;

else
System.out.println (i + " " + j) ;

}
}

Note that we have now given a name to the out while loop—first. When
the condition j == 150 is satisfied the statement break first gets
executed. As a result, control goes outside the loop named first, i.e., the
outer while loop.

The continue Statement
In some programming situations, we want to take the control to the
beginning of the loop, bypassing the statements inside the loop, which
have not yet been executed. The keyword continue allows us to do this.
When continue is encountered inside any loop, control automatically
passes to the beginning of the loop.

A continue is usually associated with an if. As an example, let's consider
the following program.

// Demo of usage of continue keyword
package continuedemoproject ;

public class ContinueDemoProject
{

public static void main (String[] args)
{

int i, j ;

Chapter 5: Loop Control Instruction 93

for (i = 1 ; i <= 2 ; i++)
{

for (j = 1 ; j <= 2 ; j++)
{

if (i == j)
continue ;

System.out.println (i + " " + j) ;
}

}
}

}

The output of the above program would be...

1 2
2 1

Note that when the value of i equals that of j, the continue statement
takes the control to the for loop (inner) bypassing the rest of the
statements pending execution in the for loop (inner).

The way while working in nested loops we can break the control out of
the desired loop by naming a loop, likewise, we can use continue with
named loops. This is shown below.

first : while (i++ <= 100)
{

while (j++ <= 200)
{

if (j == 150)
continue first ;

else
System.out.println (i + " " + j) ;

}
}

When continue first goes to work, the control is transferred to while (
i++ <= 100).

break and continue can also be used with do-while just as they would
be in a while or a for loop. A break takes you out of the do-while

94 Let Us Java

bypassing the conditional test. A continue sends you straight to the test
at the end of the loop.

Common Usage
In principle, what can be achieved using one loop can always be
achieved using the other two loops. However, in practice people use the
three loops for following purposes:

(a) Repeat logic unknown number of times - while loop
(b) Repeat logic finite number of times - for loop
(c) Repeat logic at least once - do - while loop

If you also follow the same practice then while reading a program you
can recognize the purpose of the loop just by looking at the type of the
loop used.

[A] What will be the output of the following programs:

(a) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int i = 1 ;
while (i <= 10) ;
{

System.out.println (i) ;
i++ ;

}
}

}

(b) package sampleproject ;
public class SampleProject
{

Chapter 5: Loop Control Instruction 95

System.out.println (x + " " + y + " " + z) ;
}

}
(c) package sampleproject ;

public class SampleProject
{

public static void main (String[] args)
{

int x = 4, y = 3, z ;
z = x-- - y ;
System.out.println (x + " " + y + " " + z) ;

}
}

(d) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int x = 4, y = 0, z ;
while (x >= 0)
{

if (x == y)
break ;

else
System.out.println (x + " " + y) ;

x-- ;
y++ ;

}
}

}

(e) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int i ;
for (i = 1 ; i <= 5 ; System.out.println (i)) ;

i++ ;
}

}

96 Let Us Java

[B] Answer the following:

(a) An expression contains relational operators, assignment operators,
and arithmetic operators. In the absence of parentheses, they will
be evaluated in which of the following order:

1. assignment, relational, arithmetic
2. arithmetic, relational, assignment
3. relational, arithmetic, assignment
4. assignment, arithmetic, relational

(b) The break statement is used to exit from

1. an if statement
2. a for loop
3. a program
4. the main() function

(c) In what sequence the initialization, testing and execution of body is
done in a do-while loop:

1. Initialization, execution of body, testing
2. Execution of body, initialization, testing
3. Initialization, testing, execution of body
4. None of the above

(d) Which of the following statement is used to skip the rest of the
instructions in a loop and go for the next iteration of the loop?

1. exit 2. break 3. continue 4. goto

(e) Which of the following statement is true about a for loop used in a
Java program?

(1) for loop works faster than a while loop.
(2) All things that can be done using a for loop can also be

done using a while loop.
(3) for (; ;) implements an infinite loop.
(4) for loop can be used if we want statements in a loop to

get executed at least once.

[C] Attempt the following:

(a) Write a program to find the factorial value of any number entered
through the keyboard.

Chapter 5: Loop Control Instruction 97

(b) Two numbers are entered through the keyboard. Write a program
to find the value of one number raised to the power of another.

(c) Write a program to print out all Armstrong numbers between 1 and
500. If sum of cubes of each digit of the number is equal to the
number itself, then the number is called an Armstrong number. For
example, 153 = (1 1 1) + (5 5 5) + (3 3 3)* * * * * *

(d) Write a program to print all prime numbers from 1 to 300. (Hint:
Use nested loops, break and continue).

(e) Write a program to generate all combinations of 1, 2 and 3 using for
loops.

(f) According to a study, the approximate level of intelligence of a
person can be calculated using the following formula:

i = 2 + (y + 0.5 x)

Write a program that will produce a table of values of i, y and x,
where y varies from 1 to 6, and, for each value of y, x varies from
5.5 to 12.5 in steps of 0.5.

(g) Write a program to print the multiplication table of the number
entered by the user. The table should get displayed in the following
form:

29 * 1 = 29
29 * 2 = 58

(h) When interest compounds q times per year at an annual rate of
r % for n years, the principle p compounds to an amount a as per
the following formula:

a = p (1 + r / q) nq

Write a program to read 10 sets of p, r, n & q and calculate the
corresponding as.

(i) Write a program to add first seven terms of the following series
using a for loop:

1 + 2 3
1! 2! 3!

(j) The natural logarithm can be approximated by the following series.

98 Let Us Java

2 1
+ —

2
3 1
+ —

2
x - 1 1 x — 1

x
x — 1

x
x — 1

x
-----+ -

x 2

4

I

If x is input through the keyboard, write a program to calculate the
sum of first seven terms of this series.

KanNotes

R Repetition control instruction is used to repeat a set of statements
in a program

• It is also called a loop control instruction

• It is implemented using 1) while loop 2) for loop 3) do-while loop

• What can be done using one loop can always be done using the other
two

Usual usage :

while - to repeat something an unknown number of times
for - to repeat something a fixed number of times
do - while - to repeat something at least once

Equivalent forms of 3 loops :

i = 1 ;
while (i <= 10)
{

statement1 ;
statement2 ;
i++ ;

}

■for(i = 1 ; i <= ID ; i++)
{

statement!;
statement/;

i = 1 ;
do
{

statement1 ;
statement2 ;
i++ ;

} while (i <= 10) ;

• To create infinite loops use :

while (i <= 10) while (true)

{ {
Statement statement

} }

do
{

statement
} while (true) ;

Chapter 5: Loop Control Instruction 99

• Multiple initializations, conditions and incrementations in a for loop
are acceptable. Ex. :

for (i = 1 , j = 2 ; i <= 10 && j <= 24 ; i++, j += 3)
{

statement1 ; statement2 ;
}

break - terminates the execution of the loop

continue - abandons rest of the instructions in the loop and goes for
the next iteration of the loop

Usually break and continue are used in this form :

while (condition1)
{

if (condition2)
break ;

statement1 ;
statement2 ;

}

while (condition1)
{

if (condition2)
continue ;

statement1 ;
statement2 ;

}

• i++ increments vale by 1

i-- decrements value of i by 1
There are no ** // and %% operators

• The expressions i = i + 1, i++ and ++i are all same

• j = ++i ; first increments i, then assigns the incremented value to j

• j = i++ ; first assigns current value of i to j, then increments i

• while (++i < 10) first increments i, then checks condition

• while (i++ < 10) first checks condition, then increments i

• i = i + 5 is same as i += 5

• Compound assignment operators : += -= *= /= %=

Often one is faced with multiple choices. Learn how to deal with
such situations using a switch...

101

102 Let Us Java

• Decisions using switch
The Tips and Traps

s switch Versus if-else Ladder
• Exercises
• KanNotes

Chapter 6: Case Control Instruction 103

In real life, we are often faced with situations where we are required to
make a choice between a number of alternatives rather than only one
or two. For example, which school to join, or which hotel to visit, or

which movie to see, etc. Serious Java programming is same; the choice
we are asked to make is more complicated than merely selecting
between two alternatives. Java provides a case control instruction that
allows us to handle such cases effectively; rather than using a series of if
statements. Case control instruction is, in fact, the topic of this chapter.

Decisions using switch
The control instruction that allows us to make a decision from the
number of choices is called a switch, or more correctly a switch-case-
default, since these three keywords go together to make up this control
instruction. They most often appear as follows:

switch (expression)
{

case constant 1 :
do this ;
break ;

case constant 2 :
do this ;
break ;

case constant 3 :
do this ;
break ;

default :
do this ;
break ;

}

The expression following the keyword switch is any Java expression that
will yield an integer or a character value. The keyword case is followed
by an integer or a character constant. Each constant in each case must
be different from all the others. The "do thislines in the above form of
switch represent any valid Java statement.

What happens when we run a program containing a switch? First, the
expression following the keyword switch is evaluated. The value it gives
is then matched, one-by-one, against the constant values that follow the
case statements. When a match is found, the program executes the
statements following that case until a break is encountered. On

104 Let Us Java

encountering break the control goes outside the switch. If no match is
found with any of the case statements, then the statements following
the default are executed. Let us now look at a program that uses this
control instruction.

// Demo of usage of switch
package switchdemoproject ;

public class SwitchDemoProject
{

public static void main (String[] args)
{

int i = 2 ;

switch (i)
{

case 1 :
System.out.println ("I am in case 1") ;
break ;

case 2 :
System.out.println ("I am in case 2") ;
break ;

case 3 :
System.out.println ("I am in case 3") ;
break ;

default :
System.out.println ("I am in default") ;
break ;

}
}

}

The output of this program would be:

I am in case 2

The output is as expected. Note that usage of break is mandatory in
each case including the default case.

Chapter 6: Case Control Instruction 105

The Tips and Traps
Let us now note down a few useful tips about the usage of switch and a
few pitfalls that should be avoided.

(a) Cases in a switch can be written in any order.

(b) Even if there are multiple statements to be executed in each case,
there is no need to enclose them within a pair of braces.

(c) Every statement in a switch must belong to some case or the other.
If a statement doesn't belong to any case, the compiler would report
an error.

(d) If we have no default case and no other case is satisfied, then the
program simply falls through the entire switch and continues with
the next instruction (if any,) that follows the closing brace of switch.

(e) switch cannot have a case looks like:

case i <= 20 :

All that we can have after the case is a byte, short, int, char or
string constant or an expression that evaluates to one of these
constants. Even a float, double, long or boolean is not allowed.

(f) From JDK 7 onwards strings can also be checked using switch.

(g) The advantage of switch over if is that it leads to a more structured
program and the level of indentation is manageable, more so, if
there are multiple statements within each case of a switch.

(h) We can check the value of any expression in a switch. Thus, the
following switch statements are legal:

switch (i + j * k)
switch (23 + 45 % 4 * k)

(i) Expressions can also be used in cases provided they are constant
expressions. Thus case 3 + 7 is correct, however, case a + b is
incorrect.

(j) The break statement when used in a switch takes the control
outside the switch. However, use of continue will not take the
control to the beginning of switch as one is likely to believe. This is
because switch is not a looping statement, unlike while, for or do-
while.

106 Let Us Java

(k) In principle, a switch may occur within another, but in practice, it is
rarely done. Such statements would be called nested switch
statements.

(l) The switch statement is very useful while writing menu driven
programs. This aspect of switch is discussed in the exercise of this
chapter.

(m) At times we may want to execute a common set of statements for
multiple cases. How this can be done is shown in the following
example:

package switchformsproject ;
import java.io.IOException ;

public class SwitchFormsProject
{

public static void main (String[] args) throws Exception
{

char ch ;

System.out.println("Enter an alphabet a, or b ") ;
ch = (char) System.in.read() ;

switch (ch)
{

case 'a' :
case 'A' :

System.out.println ("a as in ashar") ;
break ;

case 'b' :
case 'B' :

System.out.println ("b as in brain") ;
break ;

default :
System.out.println ("wish you knew alphabets") ;
break ;

}
}

}

Here, we are making use of the fact that once an empty case is
satisfied; the control simply falls through to the next case till it

Chapter 6: Case Control Instruction 107

doesn't encounter a break statement. That is why if an alphabet a is
entered, the case 'a' is satisfied and since there are no statements
to be executed in this case, the control automatically reaches the
next case, i.e., case 'A' and executes all the statements in this case.

Also note that any non-empty case has to have a break statement
at the end of it.

Also observe the way we have read the character from the
keyboard. Instead of using the usual Scanner object, we are using
the System.in.read() and converting its return value into a char.

switch Versus if-else Ladder
There are some things that you simply cannot do with a switch. These
are:
(a) A float, double, boolean, or long expression cannot be tested using

a switch.

(b) Cases can never have variable expressions (for example it is wrong
to say case a + 3 :).

(c) Multiple cases cannot use same expressions. Thus a switch
containing case 3 : and case 1 + 2 : is illegal:

(a), (b) and (c) above may lead you to believe that these are obvious
disadvantages with a switch, especially since there weren't any such
limitations with if-else. Then why use a switch at all? For speed—switch
works faster than an equivalent if-else ladder. How? Well, this is
because the compiler generates a jump table for a switch during
compilation. As a result, during execution it simply refers the jump table
to decide which case should be executed, rather than actually checking
which case is satisfied.

Note that a lookup in the jump table is faster than evaluation of a
condition, especially if the condition is complex.

108 Let Us Java

(c) case a + b :
(d) case 1.5f :
(e) case true :
(f) case 8 % 5 + c / d :
(g) case (temp <= 20) :
(h) case a || b :

[B] State whether the following statements are True or False:

(a) Floats or doubles cannot be checked in a switch.

(b) If there are multiple statements in a case then they should be
enclosed within { }.

(c) A case cannot be followed by a variable expression.

(d) Nested switch statements are not allowed.

(e) If break in a switch gets executed the program execution gets
terminated.

(f) A switch statement works slower than an equivalent if-else
statement.

[C] Write a menu driven program which has following options:

1. Factorial of a number
2. Prime or not
3. Odd or even
4. Exit
Once a menu item is selected the appropriate action should be
taken and once this action is finished, the menu should reappear.
Unless the user selects the 'Exit' option the program should
continue to work.

(Hint: Make use of an infinite while and a switch statement).

• One more form of decision making can be done using switch - case -
default

This should be used when we are to find out whether a variable or an
expression has one of the several possible values

Chapter 6: Case Control Instruction 109

switch should not be used for checking ranges
no problem

or for solving a yes /

• General form :

switch (expression) // expression can be constant / variable
{

case constant expression :

break ;
case constant expression :

break ;
default :

}

• if a case fails, control jumps to the next case

• if a case is satisfied, then all statements below it up to } of switch
are executed

Even though there are multiple statements in a case there is no need
to enclose them within { }

• Usually a break is used at the end of statements in each case

• break takes the control out of the switch

• continue DOES NOT take the control to the beginning of the switch

• Order in which cases are written does not matter

• Default case is optional

• cases in a switch must always be unique

• switch can be used with byte, short, int, char or string

switch cannot be used with float, double, long, boolean

• switch works faster than a series of ifs

110 Let Us Java

• switch is popularly used in menu driven programs to check which
choice from the menu has been made by the user

Learn how to improve functionality of a Java program using
Functions...

111

112 Let Us Java

• What is a Function?
Why use Functions?

• Passing Values between Functions
• Exercises
• KanNotes

Chapter 7: Functions 113

A computer program (except for the simplest one) finds cannot
handle all the tasks by itself. Instead, it requests other program-like

entities, called 'functions' to get its tasks done. So far our programs had
only one function main(). In this chapter we will study how to create
multiple function, how to use them and how to carry out
communication between them.

What is a Function?
A function is a self-contained block of statements that perform a
coherent task of some kind. Every Java program has one or more
functions in it. Let us now look at a simple program containing two
functions.

// Function call and function definition
package functiondemoproject ;

public class FunctionDemoProject
{

public static void main (String[] args)
{

message() ; /* function call */
System.out.println ("Cry, and you stop the monotony!") ;

}
static void message() /* function definition */
{

System.out.println ("Smile, and the world smiles with you...") ;
}

}

On execution, the program produces the output given below.

Smile, and the world smiles with you...
Cry, and you stop the monotony!

Here, we have defined two functions—main() and message(). In fact
we have used the word message at two places in the program. Let us
understand the meaning of each.

The first usage of message is...

static void message()
{

114 Let Us Java

System.out.println ("Smile, and the world smiles with you...") ;
}

This is the function definition. In this definition right now we are merely
printing a string.

The second usage is...
message() ;

Here the function message() is being called from main(). What do we
mean when we say that main() 'calls' the function message()? We
mean that the control passes to the function message(). The activity of
main() is temporarily suspended; it falls asleep while the message()
function wakes up and goes to work. When the message() function runs
out of statements to execute, the control returns to main(), which
comes to life again and begins executing its code at the exact point
where it left off. Thus, main() becomes the 'calling' function, whereas
message() becomes the 'called' function.

If you have grasped the concept of 'calling' a function you are prepared
for a call to more than one function. Consider the following program:

// Calling and defining multiple functions
package multiplefunctionproject ;

public class MultipleFunctionProject
{

public static void main (String[] args)
{

System.out.println ("I am in main") ;
italy() ;
brazil() ;
argentina() ;

}
static void italy()
{

System.out.println ("I am in italy") ;
}
static void brazil()
{

System.out.println ("I am in brazil") ;
}
static void argentina()

Chapter 7: Functions 115

{
System.out.println ("I am in argentina") ;

}
}

The output of the above program when executed would be as under:

I am in main
I am in italy
I am in brazil
I am in argentina

A number of conclusions can be drawn from this program:
- A Java program can contain one or more classes. Each class can

contain one or more functions.

- One of the classes in a Java program has to be marked as the 'Main
class'. When we create Java project in NetBeans in the 'New Java
Application' window there is a check box titled 'Create Main Class'.
This check box is by default checked. So the skeleton code for Main
class is created for us by NetBeans. This class has the same name as
the name of the project. This class is also marked as the class from
which execution of the program would begin.

If we uncheck the check box during project creation, we can later
mark any class in our program as Main class. To do this, we have to
right click on the project name and select 'Properties from the
menu that pops up. On doing this the 'Project Properties' window
appears. Select 'Run' from this window and in the 'Main Project' text
box mention the class name in the syntax packagename.classname.
For example, for the current project this name would be
multiplefunctionproject.MultipleFunctionProject.

- Execution always begins with main() function present in the class
that has been marked as Main class.

- If the class marked as Main class contains only one function, it must
be main().

- If the class marked as Main class contains more than one function,
then one (and only one) of these functions must be main(). This is
because program execution always begins with main().

116 Let Us Java

- There is no limit on the number of functions that might be present in
a Java class.

- Each function in a program is called in the sequence specified by the
function calls in main().

- After each function has done its thing, control returns to main().
When main() runs out of statements and function calls, the program
ends.

As we have noted earlier, the program execution always begins with
main() present in the class marked as Main class. Except for this fact, all
Java functions enjoy a state of perfect equality. No precedence, no
priorities, nobody is nobody's boss. One function can call another
function it has already called but has in the meantime left temporarily in
order to call a third function which will sometime later call the function
that has called it, if you understand what I mean. No? Well, let me
illustrate with an example.

// Multiple function calls
package functioncallsproject ;

public class FunctionCallsProject
{

public static void main (String[] args)
{

System.out.println ("I am in main") ;
italy() ;
System.out.println ("I am finally back in main") ;

}
static void italy()
{

System.out.println ("I am in italy") ;
brazil() ;
System.out.println ("I am back in italy") ;

}
static void brazil()
{

System.out.println ("I am in brazil") ;
argentina() ;

}
static void argentina()
{

Chapter 7: Functions 117

System.out.println ("I am in argentina") ;
}

}

And the output would look like...

I am in main
I am in italy
I am in brazil
I am in argentina
I am back in italy
I am finally back in main

Here, main() calls other functions, which in turn call still other
functions. Trace carefully the way control passes from one function to
another. Since execution always begins with main(), every function in a
program must be called directly or indirectly by main(). In other words,
the main() function drives other functions.

Let us now summarize what we have learnt so far.

(a) A function gets called when the function name is followed by a
semicolon (;).

(b) A function is defined when function name is followed by a pair of
braces in which one or more statements may be present.

(c) Any function can be called from any other function. Even main()
can be called from other functions.

(d) A function can be called any number of times.

(e) The order in which the functions are defined in a program and the
order in which they get called need not necessarily be same.

(f) A function can call itself. Such a process is called 'recursion'. We
would discuss this aspect of Java functions later in this chapter.

(g) A function can be called from another function, but a function
cannot be defined in another function.

(h) There are basically two types of functions:
Library functions Ex. readLine(), println(), etc.
User-defined functions Ex. argentina(), brazil(), etc.

118 Let Us Java

Library functions are commonly required functions grouped
together in different classes and stored in as Java API Library. The
procedure of calling both types of functions is exactly same.

Why use Functions?
Why write separate functions at all? Why not squeeze the entire logic
into one function, main()? It is a very bad style of programming.
Instead, break a program into small units and write functions for each of
these isolated subdivisions. Don't hesitate to write functions that are
called only once. What is important is that these functions perform
some logically isolated task.

Passing Values between Functions
The functions that we have used so far haven't been very flexible. We
called them and they did what they were designed to do. It would be
nice to have communication between the 'calling' and the 'called'
functions.

Consider the following program. In this program, in main() we receive
the values of a, b and c through the keyboard and then output the sum
of a, b and c. However, the calculation of sum is done in a different
function called calSum(). Since sum is to be calculated in calSum() and
values of a, b and c are received in main(), we must pass on these
values to calSum(), and once calSum() calculates the sum, we must
return it from calSum() back to main().

// Communication between functions
package functioncommunicationproject ;
import java.util.* ;

public class FunctionCommunicationProject
{

public static void main (String[] args)
{

int a, b, c, sum ;
Scanner scn ;
scn = new Scanner (System.in) ;
System.out.println ("Enter any three numbers") ;
a = scn.nextInt() ;
b = scn.nextInt() ;
c = scn.nextInt() ;

Chapter 7: Functions 119

sum = calSum (a, b, c) ;
System.out.println ("Sum = " + sum) ;

}
static int calSum (int x, int y, int z)
{

int d ;
d = x + y + z ;
return (d) ;

}
}

And here is the output...

Enter any three numbers
10
20
30
Sum = 60

There are a number of things to note about this program:
(a) To pass the values of a, b and c to the function calSum(), while

making a call to the function calSum() we have mentioned a, b and
c in the parentheses:

sum = calSum (a, b, c) ;

In the calSum() function these values get collected in three
variables x, y and z:

int calSum (int x, int y, int z)

(b) The variables a, b and c are called 'actual arguments', whereas the
variables x, y and z are called 'formal arguments'. Actual arguments
are often called just arguments, whereas formal arguments often
called parameters. The type, order and number of the actual and
formal arguments must always be same.

Instead of using different variable names x, y and z, we could have
used the same variable names a, b and c. But the compiler would
still treat them as different variables since they are in different
functions.

(c) Since the function calSum() is going to return an int we have
replaced the usual void with int while defining calSum().

120 Let Us Java

(d) In the earlier programs, the moment closing brace (}) of the called
function was encountered, the control returned to the calling
function. No separate return statement was necessary to send back
the control.

This approach is fine if the called function is not going to return any
meaningful value to the calling function. In the above program,
however, we want to return the sum of x, y and z. Therefore, it is
necessary to use the return statement.

(e) The return statement serves two purposes:

(1) On executing the return statement, it immediately transfers
the control back to the calling function.

(2) It returns the value present in the parentheses after return, to
the calling function. In the above program, the value of sum of
three numbers is being returned.

(f) There is no restriction on the number of return statements that
may be present in a function. Also, the return statement need not
always be present at the end of the called function.

(g) Whenever the control returns from a function, the sum being
returned is collected in the calling function by equating the called
function to some variable. For example,

sum = calSum (a, b, c) ;

(h) All the following are valid return statements:

return (a) ;
return (23) ;
return (a + b + c) ;
return ;

The last statement can be used when we wish to return the control
to the calling function without returning a value. Note that, in this
case, the parentheses after return are dropped. In the other return
statements too, the parentheses can be dropped.

(i) A function can return only one value at a time. Thus, the following
statements are invalid:

return (a, b) ;
return (x, 12) ;

Chapter 7: Functions 121

(j) If the value of a formal argument is changed in the called function,
the corresponding change does not take place in the calling
function. For example,

// Effect of changing formal arguments
package formalargchangeproject ;

public class FormalArgChangeProject
{

public static void main (String[] args)
{

int a = 30 ;
fun (a) ;
System.out.println (a) ;

}
static void fun (int b)
{

b = 60 ;
System.out.println (b) ;

}
}

The output of the above program would be:

60
30

Thus, even though the value of b is changed in fun(), the value of a
in main() remains unchanged. This means that when values are
passed to a called function, the values present in actual arguments
are not physically moved to the formal arguments; just a photocopy
of values in actual argument is made into formal arguments.

(k) Actual arguments can be constants / variables / expressions,
whereas formal arguments must always be variables. Thus the
following calls would work without any problem:

sum = calSum (a, 25, c) ;
sum = calSum (10 + 2, 25 % 3, a) ;

(l) Nested calls are legal, so also are calls within an expression. Thus
the following calls would work fine:

sum = calSum (a, calSum (25, 10, 4), b) ;

122 Let Us Java

sum = calSum (a, 25, c) * calSum (a, 25, c) + 23 ;

[A] What will be the output of the following programs:

(a) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int a = 10, b = 20 ;
modify() ;
System.out.println (a + " " + b) ;

}
static void modify (int a, int b)
{

a++ ; b++ ;
}

}

(b) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int i = 45, c ;
c = check (i) ;

System.out.println (c) ;
}
static int check (int ch)
{

if (ch >= 45)
return (100) ;

else
I in\ .

Chapter 7: Functions 123

{
public static void main (String[] args)
{

float area ;
int radius = 1 ;
area = areaOfCircle (radius) ;
System.out.println (area) ;

}
static float areaOfCircle (int r)
{

float a ;
a = 3.14f * r * r ;
return (a) ;

}
}

[B] Point out the errors, if any, in the following programs:

(a) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

int i = 3, j = 4, k, l ;
k = addMult (i, j) ;
l = addMult (i, j) ;
System.out.println (k + " " + l) ;

}
static int addMult (int ii, int jj)
{

int kk, ll ;
kk = ii + jj ;
ll = ii jj ;*
return (kk, ll) ;

}
}

(b) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

124 Let Us Java

message() ;
message() ;

}
public void message() ;
{

System.out.println ("Praise worthy effort!") ;
}

}

(c) package sampleproject ;
public class SampleProject
{

public static void main (String[] args)
{

LetUsJava()
{

System.out.println ("Java is a Cimple !") ;
System.out.println ("Others are no match !") ;

}
}

}

(d) package sampleproject ;
public class Main
{

public static void main (String[] args)
{

float area ;
int radius = 1 ;
area = AreaOfCircle (radius) ;
System.out.println (area) ;

}
public float AreaOfCircle (int r)
{

float a ;
a = 3.14f * r * r ;
return (a) ;

}
}

[C] State whether the following statements are True or False:

Chapter 7: Functions 125

(a) The variables commonly used in Java functions are available to all
the functions in a program.

(b) To return the control back to the calling function we must use the
keyword return.

(c) The same variable names can be used in different functions without
any conflict.

(d) Every called function must contain a return statement.

(e) A function may contain more than one return statement.

(f) Each return statement in a function may return a different value.

(g) A function can still be useful even if you don't pass any arguments
to it and the function doesn't return any value back.

(h) A function may be called more than once from any other function.

(i) It is necessary for a function to return some value.

(j) Function definitions cannot be nested; however, function calls can
be nested.

[D] Pick up the correct alternative for each of the following questions:

(a) Which of the following return statement is INVALID?
(1) return (x) ;
(2) return (20) ;
(3) return (x + y + z) ;
(4) return (x, y, z) ;

(b) Which of the following statement is CORRECT?
(1) Every called function may not contain a return statement
(2) A function may contain more than one return statement
(3) Each return statement in a function may return a different value
(4) (1), (2) and (3)

(c) Which of the following statement is CORRECT about a function?
(1) A function may be called more than once from another function
(2) It is necessary for a function to return some value
(3) Function calls can be nested
(4) (1), (2) and (3)

126 Let Us Java

(d) Which of the following statements are CORRECT about the code
snippet given below:

void fun (int a, int b, int c)
{
}

fun (10, 20, 30, 40, 50) ;

(1) Values 40 and 50 will be ignored
(2) Error: Mismatch in number of actual and formal arguments
(3) Error: fun cannot be used as a function name
(4) The program will compile successfully

(e) Which of the following is the CORRECT form of main()?

(1) public static void main (String[] args)
{
}

(2) public static void main (String args)
{
}

(3) public static void main (int argc, char argv[])*
{
}

(4) public static void main (int argc, String argv[])
{
}

[E] Answer the following:

(a) Write a function to calculate the factorial value of any integer
entered through the keyboard.

(b) Write a function power (a, b), to calculate the value of a raised to
b.

(c) Any year is entered through the keyboard. Write a function to
determine whether the year is a leap year or not.

Chapter 7: Functions 127

(d) Write a function which receives a float and an int from main(),
finds the product of these two and returns the product which is
printed through main().

(e) If the lengths of the sides of a triangle are denoted by a, b, and c,
then area of triangle is given by

area = y/S(S-a)(JS-b)(S-c)

where, S = (a + b + c) / 2

(f) If a function fun() is to receive an int, a float & a double and it is to
return a decimal then how will you define this function?

• Functions are a group of instructions achieving some intended goal

• Why create functions :

1) Better complexity management - Easy to Design, Easy to Debug
2) Provide reuse mechanism - Avoids rewriting same code repeatedly

• Types of functions :

1) Library - printlnQ, printf(), pow(), parselntQ
2) User-defined - main()

• Rules for building both are same

• Two things should be done while creating a. function :

1) Function definition
2) Function call

• General form of a function definition :

return-type function-name (type arg1, type arg2, type arg3)
{

statement1 ; statement2 ;
return (variable/constant/expression) ; // can return only 1 value

}

• A function can be called any number of times

128 Let Us Java

• Functions can be defined in any order

• Execution of any Java program always begins with main() present in
primary class

• More the function calls, slower the execution

• Communication between functions is done using arguments and return
values

• While calling function any number of arguments can be passed,
whereas only 0/1 value can be returned. If no value is returned the
return type of the function must be void

• Actual & Formal arguments must match in Number, Order and Type

• Actual arguments can be constants / variables / expressions

• Formal arguments can only be variables

• Nested calls are legal

Ex. : a = Math.sin (Math.cos (b)) ;

• Call within an expression is legal

Ex. : a = Math.sin (b) + Math.cos (c) ;

• return (s) ; - Return control & value

• return ; - Returns only control. Return type of function must be void

• If values are passed to a function, the function must collect them
while defining it

• If value is returned from a function, we can choose to ignore it

Functions are more mature in Java. You can appreciate this
maturity in this chapter...

129

130 Let Us Java

J0 Contents

Function Overloading
Functions with Variable Number of Arguments
Recursion
Exercises
KanNotes

Chapter 8: Advanced Features of Functions 131

Functions in Java offers some advanced features which come in quite
handy while doing programming. These include functions
overloading, defining functions that receive variable number of

arguments and recursive functions. This chapter is devoted to discussing
these advanced features. Let us being with function overloading.

Function Overloading
With the facility of function overloading we can have multiple functions
in a class with the same name. For example, if we wish to write
functions that return the absolute value of a numeric argument we can
consider writing a separate function for each numeric data type—one
that returns absolute value of an int, another which returns absolute
value of a long and yet another which returns absolute value of a
double.

Since all these functions basically do the same thing, it seems
unnecessary to have three different function names. Java overcomes
this situation by allowing the programmer to create three different
functions with the same name. These functions are called overloaded
functions. The following program illustrates how to implement them:

// Overloading functions to do different but similar jobs
package functionoverloadingproject ;

public class FunctionOverloadingProject
{

public static void main (String[] args)
{

int i = -25, j ;
long l = -100000, m ;
double d = -12.34, e ;

j = abs (i) ;
m = abs (l) ;
e = abs (d) ;
System.out.println ("j = " + j + " m = " + m + " e = "+ e) ;

}
static int abs (int ii)
{

return (ii > 0 ? ii : ii * -1) ;
}
static long abs (long ll)

132 Let Us Java

{
return (ll > 0 ? ll : ll * -1) ;

}
static double abs (double dd)
{

return (dd > 0 ? dd : dd * -1) ;
}

}

The output of the program would be:

j = 25 m = 100000 e = 12.34

How does the Java compiler know which of the abs()s should be called
when a call is made? It decides that from the type of the argument being
passed during the function call. For example, if an int is being passed the
integer version of abs() gets called, if a double is being passed then the
double version of abs() gets called and so on. That's quite logical, you
would agree.

Overloaded functions must at least differ in the type, number or order
of parameters they accept. Just having different return types is not
enough to differentiate them.

It's a bad programming idea to create overloaded functions that
perform different types of actions; functions with the same name should
have the same general purpose. For example, if we write an abs()
function that returns the square root of a number, it would be both silly
and confusing. We must use overloaded functions judiciously. Their
purpose is to provide a common name for several similar but slightly
divergent functions. Overusing overloaded functions can make a
program unreadable.

Functions with Variable Number of Arguments
The functions that we have used so far used to receive a fixed number of
arguments. These include the following functions:

System.out.println ("a = " + a) ;
y = Math.pow (2.0, 5.0) ;
s = calSum (a, b, c) ;

Java also permits functions to receive variable number of arguments.
For example,

Chapter 8: Advanced Features of Functions 133

System.out.printf ("%d %d", a, b) ;
System.out.printf ("%d %d %f %f", a, b, c, d) ;

Here, in the first call to printf() we are passing 3 arguments, whereas, in
the second call we are passing 5 arguments.

Even we can define functions that can receive variable number of
arguments. The following program illustrates this:

package varargsproject ;
public class VarArgsProject
{

public static void main (String args[])
{

double d1 = 10.0 ; double d2 = 20.0 ;
double d3 = 30.0 ; double d4 = 40.0 ;

System.out.printf ("Avg = %f\n", average (d1, d2)) ;
System.out.printf ("Avg = %f\n", average (d1, d2, d3)) ;
System.out.printf ("Avg = %f\n", average (d1, d2, d3, d4)) ;

}

static double average (double... numbers)
{

double total = 0.0 ;
for (double d : numbers)

total = total + d ;

double avg ;
avg = total / numbers.length ;
return avg ;

}
}

Here we are passing different number of arguments to average()
function in each call. To make average() capable to receive such
variable number of arguments, a special syntax is used while defining its
parameters.

static double average (double... numbers)
{

..
}

134 Let Us Java

Here double is followed by ellipsis (...), meaning that, this function is
going to receive different number of doubles in each call. numbers is
treated as an array. So, while finding the average value, we need to
iterate through the array elements. To do this, a special for loop syntax
has been evolved.

Each time through this for loop, d takes the next value from the
numbers array. The number of values present in the array can be
obtained using the length property of the array. This aspect of array
would be discussed in detail in Chapter 12.

Sometime we might be required to define a function that receives fixed
arguments as well as variable arguments. While defining such function
we have to ensure that the fixed arguments precede the variable
arguments while making the call to such functions.

Recursion
In Java, it is possible for the functions to call themselves. A function is
called 'recursive' if a statement within the body of a function calls the
same function. Sometimes called 'circular definition', recursion is thus
the process of defining something in terms of itself.

Let us now see a simple example of recursion. Suppose we want to
calculate the factorial value of an integer. As we know, the factorial of a
number is the product of all the integers between 1 and that number.
For example, 4 factorial is 4 * 3 * 2 * 1. This can also be expressed as 4!
= 4 * 3!, where '!' stands for factorial. Thus factorial of a number can be
expressed in the form of itself. Hence, this logic can be programmed
using recursion as shown below.

// Calculating factorial using recursive function
package recursivefactorialproject ;
import java.util.* ;

public class Main
{

public static void main (String[] args)
{

int a, fact ;
Scanner scn ;
scn = new Scanner (System.in) ;

Chapter 8: Advanced Features of Functions 135

System.out.println ("Enter any number ") ;
a = scn.nextInt() ;

fact = rec (a) ;
System.out.println ("Factorial value = " + fact) ;

}

static int rec (int x)
{

int f ;

if (x == 1)
return (1) ;

else
f = x * rec (x - 1) ;

return (f) ;
}

}

And here is the output for sample run of the program...

Enter any number 3
Factorial value = 6

Let us understand this recursive factorial function thoroughly. When
value of a is 3, main() would call rec() with 3 as its actual argument,
and rec() will send back the computed value. But before sending the
computed value, rec() calls rec() and waits for a value to be returned. It
is possible for the rec() that has just been called to call yet another
rec(), the argument x being decreased in value by 1 for each of these
recursive calls. These recursive invocations end finally when the last
invocation gets an argument value of 1, which the preceding invocation
of rec() now uses to calculate its own f value and so on up the ladder.
So we might say what happens is,

rec (3) returns (3 times rec (2),
which returns (2 times rec (1),

which returns (1))

Foxed? Well, that is recursion for you in its simplest garbs. I hope you
agree that it's difficult to visualize how the control flows from one

136 Let Us Java

function call to another. Possibly Figure 8.1 would make things a bit
clearer.

Assume that the number entered through readLine() is 3. Using Figure
8.1 let us visualize what exactly happens when the recursive function
rec() gets called. The first time when rec() is called from main(), x
collects 3. From here, since x is not equal to 1, the if block is skipped and
rec() is called again with the argument (x - 1), i.e. 2. This is a recursive
call. Since x is still not equal to 1, rec() is called yet another time, with
argument (2 - 1). This time as x is 1, control goes back to previous rec()
with the value 1, and f is evaluated as 2.

Similarly, each rec() evaluates its f from the returned value, and finally 6
is returned to main(). The sequence would be grasped better by
following the arrows shown in Figure 8.1. Let it be clear that while
executing the program, there do not exist so many copies of the
function rec(). These have been shown in Figure 8.1 just to help you
keep track of how the control flows during successive recursive calls.

Recursion may seem strange and complicated at first glance, but it is
often the most direct way to code an algorithm, and once you are
familiar with recursion, the clearest way of doing so.

Chapter 8: Advanced Features of Functions 137

[A] Pick up the correct alternative for each of the following questions:

(a) Which of the following return statement is CORRECT?
(1) A Java function always receives a fixed number of arguments.
(2) A Java function always receives a variable number of arguments.
(3) A Java function can receive fixed as well as variable no. of args.
(4) A Java function can never receive variable number of arguments.

(b) Which of the following is CORRECT about the statement given
below?

System.out.printf ("%d %d %f %f", a, b, c, d) ;

(1) 4 arguments are being passed to printf()
(2) 1 fixed and 4 variable arguments are being passed to printf()
(3) printf() is a C library functions and cannot be used in Java
(4) 5 fixed aguments are being passed to printf()

(c) If function fun() given below is called recursively 5 times:

int fun (int a, float b)
{
}

(1) 5 sets of a and b are created
(2) 1 set of a and b are created
(3) 4 sets of a and b are created
(4) Infinite sets of a and b are created

(d) How many return statements can be represent in a recursive
function?
(1) 0
(2) 1
(3) 0 if the function is static, 1 otherwise

138 Let Us Java

(1) static double average (double ... numbers)
{
}

(2) static double average (double numbers)
{
}

(3) static double average (double [] numbers)
{
}

(4) static double average (double numbers[])
{
}

[B] Answer the following:

(a) Define an overloaded max() function which returns maximum out
of two integers / floats / doubles.

(b) Define a function min() that can find out and return minimum out
of variable number of integers passed to it.

(c) A 5-digit positive integer is entered through the keyboard, write a
recursive function to calculate sum of digits of the 5-digit number.

(d) A positive integer is entered through the keyboard, write a program
to obtain the prime factors of the number using a recursive
function.

(e) Write a recursive function to obtain the first 25 numbers of a
Fibonacci sequence. In a Fibonacci sequence the sum of two
successive terms gives the third term. Following are the first few
terms of the Fibonacci sequence:
1 1 2 3 5 8 13 21 34 55 89...

(f) A positive integer is entered through the keyboard, write a function
to find the binary equivalent of this number using recursion.

(g) Write a recursive function to obtain the running sum of first 25
natural numbers.

(h) Write the function fun() which finds the minimum number from
the variable arguments list passed to it.

Chapter 8: Advanced Features of Functions 139

package sampleproject ;
public class Main
{

public static void main (String[] args)
{

int a = 5, b = 4, res ;
res = fun (a, b) ;
System.out.println (res) ;
res = fun (1, 5, a, b, 7, 99, 100) ;
System.out.println (res) ;

}
// Add code here

}

• Function names in a class can be same. Such functions are known as
Overloaded Functions

If function names are same then their arguments must differ in
Number, Order or Type

Usually overloaded functions carry out similar jobs. Ex. Getting
absolute value of different data types

• Functions can receive variable number of arguments.

• If a function receives fixed as well as variable number of arguments,
then fixed arguments must be at the beginning and variable number of
arguments at the end of argument-list

• Variable number of arguments are received in an array. This array can
be processed using a special for loop :

static void fun (int, a, float b, double... numbers)
{

for (double d : numbers)
System.out.println (d) ;

}

140 Let Us Java

a A function that calls itself is called a. recursive function

• Any function, including main() can become a. recursive function

• Recursive call always leads to an infinite loop. So a. provision must be
made to get outside this infinite loop

• The provision is done by making the recursive call either in the if
block or in the else block

• If recursive call is made in the if block, else block should contain the
end condition logic

• If recursive call is made in the else block, if block should contain the
end condition logic

• Fresh set of variables are born during each function call - normal call
and recursive call

• Variables die when control returns from a. function

• Recursive function may or may not have a. return statement

• Recursion is an alternative for loop in logics which are expressible in
the form of themselves

• Recursive calls are slower than an equivalent while / for / do-while
loop

• If stuck in a. infinite loop while using recursion stack overflow would
occur and the program execution would come to an end

Paradigm shift! This chapter would change your thinking about
how to organize a program...

141

142 Let Us Java

• The Beginning...
• Structured Programming
• Object-Oriented Programming
• Characteristics of OOP

Objects
Classes
Inheritance
Polymorphism
Containership
Reusability

• Exercises
• KanNotes

Chapter 9: Introduction to OOP 143

Data types, control instructions and functions are the basic building
blocks of any Java program. With all these topics under our belt it is
time to move on to something more complex, namely, Object Oriented

Programming.

Java is an Object-Oriented Programming (OOP) language. Many
programmers tend to use object-oriented features of Java mechanically.
Though this might make the program work, the real advantages of
object-oriented programming do not accrue unless you understand the
concept of object-oriented programming and what features it offers.
Hence, in this chapter we would not write a single program. Instead we
would concentrate on understanding what is OOP and why do we need
it.

This chapter addresses these issues and provides an overview of the
features to be discussed in the rest of the book. What we say here will
necessarily be general and brief. Don't worry if you don't catch
everything in this chapter on the first pass; OOP is a bit complex and
understanding it takes time. We will be going over these features again
in subsequent chapters. There's lot of ground to cover here, so let's get
started.

The purpose of a programming language is to express the solution to a
problem with the help of an algorithm (step-by-step procedure). The
success of the solution depends on how the solution models
(represents) the problem. Different approaches have evolved over the
years to model solutions to problems. The primary amongst them are
Structured programming model (also called Procedural programming
model) and Object-oriented programming model. These models are
often called programming paradigms, i.e. principle of program
organization. To understand these models we need to begin by taking a
peek at the history of programming models.

The Beginning...
The earliest computers were programmed in binary. Mechanical
switches were used to load programs. With the advent of mass storage
devices and larger and cheaper computer memories, the first high-level
computer programming languages came into existence. With their
arrival, instead of thinking in terms of bits and bytes, programmers
could write a series of English-like instructions that a compiler could
translate into the binary language of computers.

144 Let Us Java

These languages were simple in design and easy to use because
programs at that time were primarily concerned with relatively simple
tasks like calculations. As a result, programs were pretty short, limited to
about a few hundred lines of instructions.

As the computers' capacity and capability increased, so also did the
ability to develop more complex computer programs. However, the
earlier programming languages were found wanting in performing the
complex programming tasks. These languages suffered from following
limitations:

(a) There were no facilities to reuse existing program code. Wherever
the same piece code was required, it was simply duplicated.

(b) The control of execution within a program was transferred via the
dangerous goto statement. As a result, there was too much jumping
around in the program, often without any clear indication of how,
where and why the control is flowing.

(c) All variables in the program were global. Tracking down spurious
changes in global data in long convoluted programs was a very
tedious job.

(d) Writing, understanding and maintaining long programs became a
programmer's nightmare.

In short, we can call this methodology of developing programs as
Unstructured programming.

Structured Programming
To overcome the limitations mentioned above, a quest began to develop
new languages with new features that would help to create more
sophisticated applications. The breakthrough occurred in late 1960's and
early 1970's with the introduction of structured programming. The long
programs that the programmer found difficult to comprehend could
now be broken down into smaller units of few hundred statements.
Functions/subroutines/procedures were introduced in these languages
to make the programs more comprehensible to their human creators. A
program was now divided into functions, with each function having a
clearly defined purpose.

How structured programming overcame the limitations experienced in
unstructured programming is given below.

Chapter 9: Introduction to OOP 145

(a) Reuse of existing program code - Wherever the same piece code is
required at multiple places in a program, the function containing
that code was used. As a result, there was no need to repeat the
same code at multiple places.

(b) Excessive use of goto statement - This was minimized by
introducing powerful control instructions that could transfer the
control within the program in an easy-to-understand manner.

(c) Unexpected changes in global variables - With introduction of
functions, need for global variables were minimized.

(d) Complexity of programs - Complexity became more manageable as
structured programming permitted better organization of the
program.

A structured program is built by breaking down a solution into smaller
pieces that then become functions within that program. Each function
can have its local variables and logic. The execution begins with one
function and then all other functions are called directly or indirectly
from this function. This is shown in Figure 9.1.

Figure 9.1

146 Let Us Java

In structured programming, there is less need of global variables, which
are now replaced by local variables that have a smaller and more
controllable scope. Information is passed between functions using
parameters and functions can have local variables that cannot be
accessed outside the function's scope.

By isolating processes within functions, a structured program minimizes
the chance that one function will affect another. This also makes it
easier to locate problems, if any. Structured programming helps in
writing cleaner code and in maintaining control over each function. All
this makes the development and maintenance of code easier as well as
efficient.

A new concept came into existence with structured programming—
Abstraction. Abstraction permits the programmer to look at something
without being concerned with is internal details. In a structured
program, it is enough to know which task is performed by function. It
does not matter to the programmer how that task is performed so long
as the function does it reliably. This is called functional abstraction and is
the corner-stone of structured programming.

Structured programming dominated the software world for almost two
decades—from 1970 to 1990. With the constant improvement in the
hardware and increasing demands from the users for feature-rich
programs, the complexity of programs increased multi-fold and that's
the time structured programming approach started showing signs of
strain. This occurred because of the following weaknesses in the
structured programming model:
(a) The primary components of structured programming—functions

and data structures—didn't model the real world problems in a
natural way.

(b) Mechanisms to reuse existing code were limited.

(c) Maintaining, debugging and upgrading large programs were a
difficult task.

The solution to these limitations is discussed in the next section.

Object-Oriented Programming
The real-world problems and their solutions are not organized into
values and procedures separate from one another. Instead, they are
perceived as objects containing values and procedures that either access
or manipulate these values. The world is full of objects and the OOP

Chapter 9: Introduction to OOP 147

methodology helps us expresses computer programs in ways that model
how people perceive the world.

The fundamental change in OOP is that a program is designed around
the data being operated upon, rather than around the operations
themselves. This is to be expected once we appreciate that the prime
purpose of the program is to access or manipulate data. The basic idea
behind object-oriented language is to combine into a single unit, both,
the data and the functions that operate on the data. Such a unit is called
an object.

An object's functions, called member functions or methods, typically
provide the only way to access its data. If you want to access a data item
in an object, you call a member function in the object. It will read the
item and return the value to you. You can't access the data directly.

If you want to modify the data in an object, you call the member
functions in the object. No other functions can access the data. This
simplifies writing, debugging, and maintaining the program.

A Java program typically consists of a number of objects which
communicate with each other by calling one another's member
functions. The organization of a Java program is shown in Figure 9.2.

Figure 9.2

148 Let Us Java

When you approach a programming problem in an object-oriented
manner, you no longer ask how the problem will be divided into
functions, but rather how it will be divided into objects. Thinking in
terms of objects, rather than functions, has a surprisingly helpful effect
on how easily programs can be designed. This results from the close
match between objects in the programming world and objects in the
real world.

The match between programming objects and real world objects is the
happy result of combining data and functions. The resulting objects offer
a revolution in program design. No such close match between
programming constructs and the concepts being modeled exists in a
procedural language.

There is more to OOP than just binding the data and functions together.
Given below are some of the new concepts introduced in OOP.
(a) Data hiding
(b) Encapsulation
(c) Inheritance
(d) Containership
(e) Polymorphism
(f) Generics
(g) Exception handling
Don't get daunted by this list of new features. Some of these are
explained in brief in the next section. A detailed explanation of each of
these concepts is given in chapters to follow.

Characteristics of OOP
Object-oriented programming uses a vocabulary that is unfamiliar to the
procedural programmer. Let us now briefly examine this vocabulary with
regards to the major elements of object-oriented languages.

Objects

In structured programming a problem is approached by dividing it into
functions. Unlike this, in object-oriented programming the problem is
divided into objects. Thinking in terms of objects rather than functions
makes the designing of program easier. Following are few candidates
that can be treated as objects in respective situations:
- Employees in a Payroll processing system
- GUI elements like windows, menus, icons, etc.

Chapter 9: Introduction to OOP 149

- Elements in computer games like cannons, guns, animals, etc.
- Customers, sales persons in a sales tracking system

Classes

Most languages offer primitive data types like int, long and float. Their
data representation and response to arithmetic, assignment and
relational operators are defined as part of the language. However, not
all the information about real world objects can be represented using
these limited built-in data types. The programmer often needs to create
his own data types by defining a class for it.

For example, there can be a user-defined data type to represent dates.
Programmers have to define the behavior of dates by designing a Date
class. This class expresses the format of a date and the operations that
can be performed on it. The way we can declare many variables of the
primitive type int, we can define many objects of the Date class. A class
serves as a blueprint or a plan or a template. It specifies what data and
what functions will be included in objects of that type. Defining a class
doesn't create any objects, just as the mere existence of a type int
doesn't create any variables.

Inheritance

OOP permits you to create your own data types (classes) just like the
types built into the language. However, unlike the built-in data types,
the user-defined classes can use other classes as building blocks. Using a
concept called inheritance; new classes can be built on top of the old
ones. The new class referred to as a derived class, can inherit the data
and functions of the original, or the base class. The new class can add its
own data elements and functions in addition to those it inherits from its
base class.

For example, we can build a set of classes that describe a library of
publications. There are two primary types of publications— periodicals
and books. We can create a general Publication class by defining data
items for the publisher name, the number of pages and the accession
number. Publications can be retrieved, stored and read. These would be
the functions of Publication class.

Next we can define two classes named Periodical and Book. Both these
classes can be derived from the base class Publication. This is natural

150 Let Us Java

because a periodical as well as a book would have properties like
publisher name, number of pages and the accession number.

In addition to this, a periodical also has a volume and issue number and
contains articles written by different authors. Data items for these
should be included in the definition of the periodical class. The
Periodical class will also need a function, subscribe.

Data items for the Book class will include the names of its author a cover
type (hard or soft) and its ISBN (International Standard Book Number).
This class would also have a function called subscribe. As you can see,
the Book class and the Periodical class share the characteristics of
Publication class while having their own unique attributes. This entire
scenario is depicted in Figure 9.3.

Figure 9.3

Chapter 9: Introduction to OOP 151

Polymorphism

Extending the same example of the Publication, Periodical and Book, let
us now understand another important concept. Our base class,
Publication, defines methods for storing and retrieving data. A periodical
may be stored in a binder, while a book is usually placed on a shelf.
Furthermore, the way to find a specific periodical is different from
finding a book. Periodicals are located through a guide to periodical
literature, while books are found using a card catalog system. Based on
this we can design a 'find through periodical literature' function for a
periodical and a 'find through card catalog' function for a book.

OOP provides an elegant facility called polymorphism to handle such
situations. In our example, the retrieval method for a periodical is
different from the retrieval method for a book, even though the end
result is same. Polymorphism permits us to define a function for
retrieving a publication that can work for both periodicals and books.
When a periodical is retrieved, the retrieve function that is specific to a
periodical is used, but when a book is retrieved, the retrieve function
associated with a book is used. The end result is that a single function
name can be used for the same operation performed on related derived
classes even if the implementation of that function varies from class to
class. This concept of polymorphism (one thing with several distinct
forms) can be extended even to operators, as we would see in later
chapters.

Containership

In a typical super-market, each item on sale can be represented using a
class. These items in turn belong to different categories like cosmetics,
food, cold-drink, clothes, books, electronics, etc. Such relationships can
be represented using containership. For example objects like cold­
cream, face-wash, shampoo are contained inside a category object
called cosmetics. You will be able to observe this containership
relationship in many real-world problems.

Reusability

Object-oriented programs are built from reusable software components.
Once a class is completed and tested, it can be distributed to other
programmers for use in their own programs. This is called reusability. If
those programmers want to add new features or change the existing

152 Let Us Java

ones, new classes can be derived from existing ones. The tried and
tested capabilities of base classes do not need to be redeveloped.
Programmers can devote time to writing new code instead of wasting
time in rewriting existing code. This way software becomes easier to
test, since programming errors can be isolated within the new code of
derived classes.

For example, you might have written (or purchased from someone else)
a class that creates a menu system. You are happy with the working of
this class and you don't want to change it, but you want to add the
capability of displaying help for each menu item. To do this, you simply
create a new class that inherits all the capabilities of the existing one but
adds help feature. This ease with which existing software can be reused
is a major benefit of OOP.

[A] State whether the following statements are True or False:

(a) Object-oriented programming permits reusability of the existing
code.

(b) Languages earlier than procedural programming languages made
use of only global variables.

(c) It is easier to write, understand and maintain programs if they use
Object-Oriented programming model as compared to Structured
programming model.

(d) As compared to procedures, data is not given enough importance in
Procedural programming.

(e) Structured programming model does not represent the real world
problem as well as the Object-oriented programming model.

(f) A class permits us to build user-defined data types.

/_\ ----- *■ ---- 1--------- ---- : —1_ I-------:-------------- I—4- — *. -----

Chapter 9: Introduction to OOP 153

(i) Encapsulation facilitates a single function name to be used for the
same operation performed on related derived classes.

(j) In polymorphism even though the function names are same, their
implementation may vary from class to class.

(k) Multiple objects can be created from the same class.

(l) Object-oriented Programming paradigm stresses on dividing the
logic into smaller parts and writing procedures for each part.

(m) Classes and objects are cornerstones of structured programming
paradigm.

(n) Object-oriented programming paradigm gives equal importance to
data and the procedures that work on the data.

(o) Java is a structured programming language.

[B] Fill in the blanks:
(e) The two major components of an object are___ and.

(f) The ability of a function to act in different ways on different data
types is called.

(g) The process of building new classes from existing ones is called

(h) If a class A inherits its properties from class B, then A and B are
known as class and class, respectively.

(i) Pascal and C are languages, whereas, Java is language.

(j) The phenomenon of nesting one object within another is known as

(k) are nothing but user-defined types.

[C] Pick up the correct alternative for each of the following questions:

(a) Calling multiple functions from main() is a feature of
(1) Structured programming
(2) Object-oriented programming
(3) Functional programming
(4) Dynamic programming

(b) Dividing a given job into multiple smaller jobs is a feature used by

154 Let Us Java

(1) Structured programming
(2) Object-oriented programming
(3) Functional programming
(4) Event-driven programming

(c) Which relationship should be established between a Vehicle class
and a Car class?
(1) Encapsulation
(2) Polymorphism
(3) Containership
(4) Inheritance

(d) Which relationship should exists between Car, maruti and bmw?
(1) All should be classes
(2) All should be objects
(3) Car should be a class and maruti and bmw should be objects
(4) Car should be an object and maruti and bmw should be classes

(e) From OOP perspective, Customers and SalesPersons in a Sales
Tracking System should be represented as
(1) classes
(2) objects
(3) interfaces
(4) methods

(f) From OOP perspective, Employees in a Payroll Processing Systems
should be represented as
(1) classes
(2) objects
(3) interfaces
(4) methods

(g) Classes in an OOP system are
(1) Primitives
(2) User-defined types
(3) interfaces
(4) methods

(h) An object contains
(3) only data
(4) only member functions
(3) data and member functions

Chapter 9: Introduction to OOP 155

(4) only abstract functions

[D] Answer the following:
(a) What is the basic difference between structured programming

model and object-oriented programming model?

(b) Give at least 5 examples of classes and objects.

(c) What do you mean by encapsulation?

(d) What do you mean by inheritance?

(e) What do you mean by polymorphism?

(f) In structured programming data is given a step-motherly treatment
and the whole emphasis is on doing things. What does this mean in
programmer's language?

(g) What do you mean by abstraction?

(h) Is it necessary to create good abstractions?

(i) Why did people change over from structured programming to
object-oriented programming?

(j) What is the difference between classes and objects in layman's
terms?

(k) What is the difference between classes and objects in
programmer's terms?

► Kan Notes

Programming paradigm means way of organizing a program.

Two major programming paradigms are :

1) Structure programming paradigm - adopted by C, Pascal
2) Object Oriented Programming (OOP) paradigm - adopted by C++,

Java, C#, VB.NET

s Structured programming :

1) Emphasis on breaking the given task into smaller sub-tasks
2) For each sub-task functions are written
3) These functions are called directly or indirectly from main()

VB.NET

156 Let Us Java

4) No importance given to data, it is just passed from one function
to another as required

d Disadvantage of Structured programming - It is difficult to write
programs involving complex tasks

Object Oriented Programming (OOP) :

1) Emphasis is on identifying objects in a given problem and then
writing programs to facilitate interaction between objects

2) Objects contain data and functions that can access/manipulate the
data

3) Equal importance to data as data and functions go together

Example of classes and objects :

Class - Human being
Class - Birds

Objects - Amitabh, Sachin, Rahul
Objects - Sparrow, Crow, Parrot

• Class has Properties (data) and Methods (functions) :

Ex. Vehicle has properties like wheels, engine, fuel

• Objects have specific values for properties :

Car - 4 wheels, 4-stroke engine, Diesel
Motorbike - 2 wheels, 2-stroke engine, Petrol

• Objects are always nameless and are created using new operator on
heap

Classes and objects are to OOP, what functions were to
Structured programming. A good foundation about classes and
objects would make you a sound Java programmer...

157

158 Let Us Java

• Classes and Constructors
• Object Destruction
• Terminology
• A Complex Class
• The this Reference
• Static Data and Functions
• Static Block
• Passing Objects to a Function
• Exercises
• KanNotes

Chapter 10: Classes and Objects 159

Having familiarized ourselves with the basic principles of object-
oriented programming, it is time we start implementing these
principles through Java programs. Let us begin with classes and objects.

In all programs that we created so far, we had just defined functions
inside a class. Java permits us to combine data and functions together in
a class. The functions defined within a class have a special relationship
with the data elements present within the class. Placing data and
functions (that work upon the data) together into a single entity is the
central idea in object-oriented programming.

To begin with, let us look at a program that demonstrates the syntax
and general features of classes in Java. In all programs that we did so far
we had only one class. This class used to be created by the NetBeans
wizard with the name same as the Project name. For the first time we
are now going to see a program that uses two classes. While creating
this project in NetBeans we would give the project name as
ClassesAndObjectsProject. As a result, the wizard would create a
package called classesandobjectsproject containing a class called
ClassesAndObjectsProject. Additionally, we would create the Rectangle
class in the same package. Here's the listing of the program.

// Demonstration of classes and objects
package classesandobjectsproject ;
import java.util.* ;

class Rectangle
{

private int len, brd ;

public void getData()
{

Scanner scn ;
scn = new Scanner (System.in) ;
System.out.println ("Enter length and breadth ") ;
len = scn.nextInt() ;
brd = scn.nextInt() ;

}

public void setData (int l, int b)
{

len = l ;

160 Let Us Java

brd = b ;
}

public void displayData()
{

System.out.println ("length = "+ len) ;
System.out.println ("breadth = "+ brd) ;

}

public void areaPeri()
{

int a, p ;
a = len * brd ;
p = 2 * (len + brd) ;
System.out.println ("area = "+ a) ;
System.out.println ("perimeter = "+ p) ;

}
}

public class ClassesAndObjectsProject
{

public static void main (String[] args)
{

Rectangle r1, r2, r3 ; // define three references

r1 = new Rectangle() ;
r2 = new Rectangle() ;
r3 = new Rectangle() ;

r1.setData (10, 20) ; // set data in elements of the object
r1.displayData() ; // display the data set by setData()
r1.areaPeri() ; // calculate and print area and perimeter

r2.setData (5, 8) ;
r2.displayData() ;
r2.areaPeri() ;

r3.getData() ; // receive data from keyboard
r3.displayData() ;
r3.areaPeri() ;

}

Chapter 10: Classes and Objects 161

}

Look at the definition of Rectangle class in our program. The keyword
class is followed by the name of the class, i.e., Rectangle. The body of a
class is delimited by braces. The Rectangle class contains two data items
len and br and four functions setData(), getData(), displayData() and
areaPeri(). As their names suggest, the first function sets the data items
(len and brd) to values passed to it, the second function receives the
values of data items, the third displays these values, whereas the fourth
calculates and prints the area and perimeter.

The data items defined in a class are often called data members,
whereas the functions defined in it are called member functions or
methods. The member functions provide controlled access to the data
members of class. This controlled access is managed through two
keywords— private and public.

Note that we have defined the data members as private. As a result,
they cannot be accessed directly from outside the Rectangle class. Thus
the data remains safe from accidental manipulation.

Only the member functions of Rectangle class can access the private
data members. To permit access to these member functions from
outside the Rectangle class, they have been defined as public. Thus,
when we wish to access or manipulate the data members from outside
the class we call the public member functions, which in turn access the
private data members. This is what we mean by controlled access.

Usually the data members in a class are private and the member
functions are public. This ensures that data remains safe from
inadvertent manipulation. However, there is no rule that data must be
private and functions public. In fact, in some situations you may be
required to use private functions and public data.

Don't confuse data hiding with the security techniques used to protect
computer data. Security techniques prevent illegal users from accessing
data. Data hiding, on the other hand, is used to protect well-intentioned
users from honest mistakes.

Let us now understand the meaning of the term object and how they
are created. An object is an instance of a class, and the process of
creating an object is called instantiation. In our program we have
created three objects through the statements:

162 Let Us Java

r1 = new Rectangle() ;
r2 = new Rectangle() ;
r3 = new Rectangle() ;

All the three objects are created in memory and each one of them
would have data members len and br in them. None of these objects
have names. The addresses at which these objects are created in
memory are stored in variables r1, r2 and r3. These variables are known
as references to objects. Figure 10.1 illustrates this.

Once the objects are created, we can use them to call member functions
of the class. For example, we can call the member function setData()
from main() using the object whose address is stored in the reference
r1, through the statement:

r1.setData (10, 20) ;

The 10 and 20 that are being passed to setData() would be collected in l
and b and would then be assigned to len and br of object whose address
is present is reference r1.

Similarly, when we make the call to

r2.setData (5, 8) ;

5 and 8 get set up in len and br of object whose address is present in r2.

The dot operator (.) used to call setData() through r1 and r2 is called
'class member access operator'. Calls to other functions like
displayData(), areaPeri() are similar.

Chapter 10: Classes and Objects 163

Note that the objects are created at a place in memory called heap,
whereas, references to objects are created at a place in memory called
stack.

Classes and Constructors
In the last section we had our first tryst with classes in Java. Just to
reiterate, a class contains data and functions that operate upon this
data. Both data and functions can be private or public, which essentially
decides the access to the data and functions within the class. Let us now
move one step further. Observe the following program carefully.

// Different types of constructors
package constructorsproject ;
import java.util.* ;

class Number
{

private int i ;

public void setData (int j)
{

i = j ;
}

public void getData()
{

Scanner scn ;
scn = new Scanner (System.in) ;
System.out.println ("Enter any integer") ;
i = scn.nextInt() ;

}

public Number() // zero argument constructor
{
}

public Number (int j) // one argument constructor
{

i = j ;
}

164 Let Us Java

public void displayData()
{

System.out.println ("value of i = "+ i) ;
}

}

public class ConstructorsProject
{

public static void main (String[] args)
{

Number n1, n2, n3 ;

n1 = new Number() ;
n1.displayData() ;
n1.setData (200) ; // first method to set data in object
n1.displayData() ;

n2 = new Number() ;
n2.displayData() ;
n2.getData() ; // second method to set data in object
n2.displayData() ;

n3 = new Number (100) ; // third method to set data in object
n3.displayData() ;

}
}

This program shows three ways in which we can give values to data
items in an object. One is through the member function setData() to
whom we pass the value to be set up. Another way is by receiving values
through keyboard as shown in function getData(). That brings us to the
third method, which uses an entity called 'constructor' (or in short,
Ctor). The constructor is a special member function that allows us to set
up values while creating an object, without the need to make a separate
call to a member function like setData(). Thus, constructor is a member
function that is called automatically whenever an object is created.

There are some unusual aspects to constructor functions. First, it is no
accident that they have exactly the same name as the class of which
they are members. In fact it's a rule that the class and the constructor
function within it must have same names. This is how the compiler
knows that the member function is a constructor.

Chapter 10: Classes and Objects 165

Secondly, no return type is used for constructors. Why not? Since the
constructor is called automatically when an object is created, returning a
value would not make sense.

In our program the statements

n1 = new Number() ; // calls zero-argument constructor
n2 = new Number() ; // calls zero-argument constructor
n3 = new Number (100) ; // calls one-argument constructor

create three objects of the type Number and call the appropriate
constructor function. Note the use of the new operator while creating
objects. This operator allocates memory for the object and then calls
that object's constructor function.

If you notice carefully, you would find that there are two constructors
with the same name Number(). Hence we call these constructors as
overloaded constructors. Which of the two constructors gets called
when an object is created, depends on how many arguments are used in
the creation of the object.

Since we haven't done anything in the zero-argument constructor, the
value of i is set to 0 for objects referred by n1 and n2. This can be
verified from the output of the program. The value of i for n1 and n2 can
later be reset, as done here through calls to setData() and getData().

If data can be set in an object through the constructor function as well
as through the setData() function, why should we define both in a
class? This is because the constructor function can be called only during
creation of an object, whereas the setData() function can be called
multiple times once an object is created. So initial data can be set in an
object through the constructor and it can be changed later (if required)
through the setData() function.

What would happen if we declare an object of a particular class type and
the class doesn't have a constructor? Nothing. Because when no
constructor is present in a class, the compiler inserts a zero-argument
constructor in it. Note that if we declare a one-argument constructor, it
is necessary on our part to define the zero-argument constructor as
well.

166 Let Us Java

Object Destruction
When the object is created using the operator new, memory is allocated
for it. Should we not free this memory when we are done with using this
object? This is not necessary, as this is done for us by the JVM. It has a
program called Garbage Collector, which it runs periodically. When it
runs, it checks for objects that are no longer being used by an
application. It then reclaims (frees) the memory used to store all such
objects. So, as far as memory management for objects is concerned, we
do not have to worry much about it, and can safely rely on garbage
collector to do it for us. This is unlike traditional OO languages like C++
where programmers have to manage the memory explicitly.

However, in many Java programs, memory is not the only resource that
is used. Other resources like files, network connections, database
connections, are also used. When we no longer need the objects that
use these resources the objects should release these resources in a
disciplined manner. It this is not done resource leaks will happen. This is
a waste of resources. At times, if the pool of resources gets exhausted
then the program may even stop running. Java provides a mechanism
called finalize() function to give up the resources when the object is no
longer needed. This function is defined inside the class and is called by
the garbage collector just before reclaiming the object.

Thus the finalize() function is opposite of a constructor. The constructor
is called when an object is created. Similarly, when an object is
destroyed by the garbage collector the finalize() function is called. Note
that we have no control over when the finalize() function is called by
the Garbage Collector.

The following program shows finalize() at work:

/* Object destruction using finalize() */
package objectdestructionproject ;

class Example
{

private int data ;

public Example() // contstuctor (same name as class)
{

System.out.println ("Inside the constructor") ;
}

Chapter 10: Classes and Objects 167

protected void finalize() throws Throwable
{

super.finalize() ;
}

}

public class ObjectDestructionProject
{

public static void main (String[] args)
{

Example e = new Example() ;
}

}

When the object referred by e gets created, the constructor gets called.
When control goes outside main() this object is no longer used. When
the garbage collector finds this, it calls the finalize() function. finalize()
function does not receive any parameter, nor does it return any value.
The finalize() method cannot be called explicitly. Also, we should not
declare it as public.

In the finalize() method we have simply called the base class finalize()
method. Note that all classes in Java including the Example class are
derived from a base class called Object. We would learn more about this
derivation process in Chapter 13.

In this program we have done precious little inside the finalize()
function. In a program in which the object uses files, network and
database connections the finalize() method should perform operations
like closing open files, terminating network connections, terminating
database connections and other cleanup work.

Terminology
Consider the following code snippet:

Sample s1, s2 ;
s1 = new Sample (1.0f, 2.0f) ;
s2 = new Sample() ;
s2.Function (s1) ;

168 Let Us Java

From the code it is obvious that we are creating two objects of the
Sample class and calling its zero-argument and two-argument
constructors. Can you guess what are we passing to Function()? Simple,
object s1. Well, actually speaking no. This is because, s1 is not an object,
but a reference to an object. The object as such doesn't have a name
and we always access it using its address stored in the reference s1. But
it is quite common to call the reference s1 as object s1. Though this is
slightly incorrect, it gives a lot of convenience and hence we too would
be using this terminology in the rest of the chapter and the chapters to
follow.

A Complex Class
As we know, a complex number consists of a real part and an imaginary
part. The following program puts the concept of constructor to a
practical stint by developing a class to implement complex numbers:

// Implementation of complex numbers
package complexnumbersproject ;
import java.util.* ;

class Complex
{

private float real, imag ;

public Complex()
{
}

public Complex (float r, float i)
{

real = r ;
imag = i ;

}

public void getData()
{

float r, i ;
Scanner scn ;
scn = new Scanner (System.in) ;
System.out.println ("Enter real and imaginary part") ;
r = scn.nextFloat() ;

Chapter 10: Classes and Objects 169

i = scn.nextFloat() ;
real = r ;
imag = i ;

}

public void setData (float r, float i)
{

real = r ;
imag = i ;

}

public void displayData()
{

System.out.println ("real = "+ real) ;
System.out.println ("imaginary = "+ imag) ;

}

public Complex addComplex (Complex y)
{

Complex t ;
t = new Complex() ;
t.real = real + y.real ;
t.imag = imag + y.imag ;
return t ;

}

public Complex mulComplex (Complex y)
{

Complex t ;
t = new Complex() ;
t.real = real * y.real - imag * y.imag ;
t.imag = real * y.imag + y.real * imag ;
return t ;

}
}

public class ComplexNumbersProject
{

public static void main (String[] args)
{

Complex c1, c2, c3 ;

170 Let Us Java

c1 = new Complex() ;
c1.setData (2.0f, 2.0f) ;
c2 = new Complex() ;
c3 = new Complex() ;
c3 = c1.addComplex (c2) ;
System.out.println ("Complex c3:") ;
c3.displayData() ;

Complex c4, c5, c6 ;

c4 = new Complex() ;
c4.getData() ;
c5 = new Complex (2.5f, 3.0f) ;
c6 = new Complex() ;
c6 = c4.mulComplex (c5) ;
System.out.println ("Complex c6:") ;
c6.displayData() ;

Complex c7 ;
c7 = new Complex() ;
c7 = c1.addComplex (c2.mulComplex (c3)) ;
System.out.println ("Complex c7:") ;
c7.displayData() ;

}
}

In this program we have once again used overloaded constructors and
functions getData() and setData() to set up values of data items in
different objects. To add two complex numbers we have called the
member function addComplex() through the statement,

c3 = c1.addComplex (c2) ;

Here, the complex numbers c1 and c2 are being added and the result is
being stored in c3. Out of c1 and c2, c2 is being passed explicitly,
whereas c1 becomes accessible to addComplex() through a mechanism
of this reference. This mechanism would be discussed in the next
section. The syntax for arguments that are objects is the same as that
for arguments that are simple data types like ints or floats. The complex
object's reference returned by addComplex() is collected in c3.

Chapter 10: Classes and Objects 171

The call to mulComplex() function works similarly:

c6 = c4.mulComplex (c5) ;

There is another interesting call in this program:

c7 = c1.addComplex (c2.mulComplex (c3)) ;

Here, result of multiplication of c2 and c3 gets added to c1 and the
result of addition gets stored in c7. What you must be wondering is,
where does the result of multiplication of c2 and c3 gets stored when it
is returned by mulComplex()? Well, this result gets collected in a
temporary object, and then this temporary object is passed to
addComplex().

We could as well have implemented the addition and multiplication
functions in the manner shown below.

void addComplex (Complex x, Complex y)
{

Complex t ;
real = x.real + y.real ;
imag = x.imag + y.imag ;

}

void mulComplex (Complex x, Complex y)
{

real = x.real * y.real - x.imag * y.imag ;
imag = x.real * y.imag + y.real * x.imag ;

}

If we implement the functions in this fashion, the way they are called
would also change. The calls would now look like this:

c3.addComplex (c1, c2) ;
c6.mulComplex (c4, c5) ;

Here, in the first call c1 and c2 are being passed explicitly, whereas, c3
would be available to addComplex() through the this reference
mechanism. Similarly, in the second call, c4 and c5 are being passed
explicitly, whereas, c6 would be available through the this reference
mechanism. Can we use both the forms of addComplex() and
mulComplex() in the same class? Of course, you can. They would then

172 Let Us Java

be treated as overloaded functions. In such a case, you would have the
flexibility of calling them in any of the two ways discussed above.

The this Reference
Whenever we call a member function of a class using an object, in
addition to the parameters that are explicitly being passed to the
function, address of the object is also passed to it implicitly. This address
is implicitly collected by the member function in a reference with a
special name—this. Thus, through the this reference every member
function has access to address of the object through which it is called.
The this reference ceases to exist when the control returns from the
member function. The this reference can be treated like any other
reference to an object. It can be used to access the data in the object it
points to. The following program shows the working of the this
reference:

// Working of this reference
package thisreferenceproject ;

class Example
{

private int i ;

public void setData (int ii)
{

i = ii ; // one way to set data
this.i = ii ; // another way to set data

}

public void showData()
{

System.out.println (i) ; // one way to display data
System.out.println (this.i) ; // another way to display data

}
}

public class ThisReferenceProject
{

public static void main (String[] args)
{

Example e1 ;

Chapter 10: Classes and Objects 173

e1 = new Example() ;
e1.setData (10) ;
e1.showData() ;

}
}

Here is the output of the program...

10
10

Since the this reference contains the address of the object, using it we
can reach the data member of the Example object through statements
like:

this.i = ii ; // another way to set data
System.out.println (this.i) ; // another way to display data

But if we can set the value in i and display it without using this
reference, then why bother about it? There is one situation where we
cannot get by without using this reference. Suppose that we had
defined the setData() function as shown below.

public void setData (int i)
{

this.i = i ;
}

Note that here we have collected the value passed to setData() in the
variable i and not in ii. This local i would now conflict with the private
int i of the Example class. So we cannot expect the private int i to get
set if we use the statement,

i = i ;

In this case the only way to refer the private int i of the Example object
is to use the this reference through a statement,

this.i = i ;

Static Data and Functions
A class can contain instance data members and static data members.
Multiple objects have their own instance data members, whereas, all of

174 Let Us Java

them would share the static data members. Static data members are
useful when we wish to share some data between all objects. For
example, if we wish to keep track of number of objects that have been
created so far from a class, we can track it using a static data member,
as shown below.

// Working of this reference
package sample ;

public class Sample
{

public static void main (String[] args)
{

Ex e1 = new Ex (10) ;
Ex.showCount() ;
Ex e2 = new Ex (20) ;
Ex.showCount() ;
Ex e3 = new Ex (30) ;
Ex.showCount() ;

}
}
class Ex
{

private int i ;
private static int count = 0 ;

public Ex (int val)
{

i = val ;
count += 1 ;

}
public static void showCount()
{

System.out.println (count) ;
}

}

In class Ex we have an instance data member i and a static data member
count. Each of the three Ex objects would have their own i, which would
be set up with values 10, 20, 30 respectively. All the three objects would
share a common count variable which would be incremented each time

Chapter 10: Classes and Objects 175

a new object is created. So the latest value of count can tell us how
many Ex objects have been created so far. This value is printed through
a static function showCount(). Note the syntax of calling a static
function—classname.staticfunctionname(). Also note that a static
function can access only static data.

Static Block
A static block is similar to static data members in the sense that it
belongs to a class and not to a particular object. The static block is
executed when the class is first loaded. It is typically used to initialize all
the static data of the class at one place. In this block we can also use
control instructions to validate the static data before initializing it. We
cannot access non-static variables or methods in this block. Take a look
at the following program:

// Usage of static block
package staticblockproject ;
import java.util.Calendar ;

public class StaticBlockProject
{

public static void main (String[] args)
{

Sample.showDate() ;
}

}

class Sample
{

private static int y ;
private static int m ;
private static int d ;

// static block
static
{

Calendar cal = Calendar.getInstance() ;
y = cal.get (Calendar.YEAR) ;
m = cal.get (Calendar.MONTH) ;
d = cal.get (Calendar.DAY_OF_MONTH) ;

}

176 Let Us Java

public static void showDate()
{

System.out.println ("Year: " + y) ;
System.out.println ("Month: " + m) ;
System.out.println ("Day: " + d) ;

}
}

In the static block we have called the static method getInstance() of the
Calendar class. This method creates a Calendar object and fills it up with
current day, month and year data. We have then extracted this data by
calling the get() method of Calendar class.

Passing Objects to a Function
The way we can pass primitives to a function, we can also pass objects
to a function. Since objects are nameless, while passing an object, we
actually pass only its reference. The called function can collect this
passed reference in another reference. Since only the address of the
object has been passed, this reference in the function also points to the
same object. So using it, if we change the values in the object, then we
are actually changing the original object. The following program
illustrates this fact.

package passingobjectsproject
public class PassingObjectsProject
{

public static void main (String[] args)
{

Ex e = new Ex() ;
e.setData (1, 2.5f) ;
e.displayData() ;
fun (e) ;
e.displayData() ;

}

static void fun (Ex p)
{

p.setData (3, 8.5f) ;
}

}

Chapter 10: Classes and Objects 177

class Ex
{

private int i ;
private float f ;

public void setData (int x, float y)
{

i = x ;
f = y ;

}

public void displayData()
{

System.out.println (i + " " + f) ;
}

}

The second call to displayData() prints the values 3 and 8.5, proving
that through fun() when we manipulate the object, the original object
gets modified.

[A] What will be the output of the following programs?
(a) package sampleproject ;

class MyDate
{

private int dd, mm, yy ;
public MyDate()
{

System.out.println ("Reached here") ;
System.out.println (this) ;

}
}
public class SampleProject

178 Let Us Java

}
}

(b) package sampleproject ;
class StudentRecord
{

private int m1, m2, m3 ;
private float percentage ;
public StudentRecord()
{

m1 = m2 = m3 = 0 ;
percentage = 0.0f ;

}
public void calculatePercentage (int x, int y, int z)
{

m1 = x ; m2 = y ; m3 = z ;
percentage = (m1 + m2 + m3) / 3.0f ;

}
public void displayPercentage()
{

System.out.println ("Percentage = " + percentage) ;
}

}
public class SampleProject
{

public static void main (String[] args)
{

StudentRecord s1 ;
s1 = new StudentRecord() ;
s1.displayPercentage() ;
s1.calculatePercentage (35, 35, 35) ;
s1.displayPercentage() ;

}
}

(c) package SampleProject ;
class Sample
{

public static int d,m,y ;

static
{

Chapter 10: Classes and Objects 179

d = m = y = 10 ;
}
public Sample()
{

y++ ; m++ ; d++ ;
}
public static void Show()
{

System.out.println ("y : " + y) ;
System.out.println ("m: " + m) ;
System.out.println ("d: " + d) ;

}
}
class SampleProject
{

static void main (string[] args)
{

Sample s = new Sample() ;
s.Show() ;

}
}

[B] Answer the following:
(a) What are the two major components of an object?

(b) Where do objects get created in memory?

(c) Once objects are created in memory, are they accessed using their
names or their references?

(d) Do member functions occupy space in objects?

(e) Can we create an object s of class Sample through a statement,

sample s ;

(f) How does a member function come to know on which object it has
to work upon?

(g) What is the type of this reference?

(h) When does a this reference get created?

(i) Is it true that all objects in Java are created dynamically? If true
why?

180 Let Us Java

(j) Is it true that in a class data members are always private, whereas
member functions are always public?

(k) Is it true that a class declaration creates space in memory for the
members defined in it?

(l) Is it necessary that a constructor in a class should always be public?

(m) Is size of an object equal to sum of sizes of data members and
member functions within the class?

(n) Define a class Cartesian which stores the Cartesian co-ordinates of
a point. Define another class Polar which stores Polar co-ordinates
of a point. Make a provision to convert co-ordinates from Cartesian
to Polar and vice-versa.

// Polar to Cartesian conversion
x = radius * cos (angle)
y = radius * sin (angle)

// Cartesian to Polar conversion
angle = a tan (x / y)
radius = sqrt (x * x + y * y)

(o) Can we access non-static or instance member functions from the
static block?

(p) If a method is called using two different objects, then would this
reference contain same addresses during each call?

[C] Attempt the following:
(a) When the following code snippet is executed would contents of s1

and s2 be same or different?

// Sample is a user-defined class
Sample s1, s2 ;
s1 = new Sample() ;
s2 = new Sample() ;

(b) When the following code snippet is executed where would the
object and the reference be created in memory?

Sample c ;
c = new Sample() ;

Chapter 10: Classes and Objects 181

(c) Is it true that objects are always nameless and depending upon
their size they either get created in the stack or on the heap?

(d) What is Garbage Collector? How is it important when working with
classes and objects in Java?

(e) How many times can a constructor be called during lifetime of the
object?

(f) Is it possible for you to prevent an object from being created by
using zero-argument constructor? If yes, how?

(g) Constructor cannot return any value. If constructor fails, how do
you let the caller know?

(h) Is it possible to call constructor for a class explicitly?

(i) What is a static constructor? When is it called?

(j) Is it possible to invoke Garbage Collector explicitly? If yes, how can
it be done?

(k) Is it recommended that you provide finalize() a method in all your
classes?

(l) Can static procedures access instance data? If not, why not?

c Classes are user-defined data types

• Classes indicate how the objects created from them would look like

• Objects have specific data. Each object is a specific instance of a
class

• Data values in objects are often called instance data or state of the
object

• In a class data members are usually private, whereas member
functions are usually public

• public members of a class are accessible from outside the class

182 Let Us Java

• private members of a class are NOT accessible from outside class

• Within a class any member can access any other member

• By default class members are public

• Usually data in a class is kept private and the data is accessed /
manipulated through public member functions of the class

• In principle every object has instance data and member functions

• In practice each object has instance data, whereas member functions
are shared amongst objects

• Sharing is justified as from one object to another member functions
are going to remain same

• Objects are nameless

• Objects are referred using references created on stack

• Objects are created on heap using new operator, which returns
address (reference) of the object on its creation

• Usage of "this” reference is optional

• this is a constant reference - final

• this reference cannot be modified during execution of the method

• this reference dies once control returns from the method

• Two ways to initialize an object :

Method 1 :
Using member function like getData() / setData()
Benefit 1 - Data is protected from manipulation
Benefit 2 - Better validation as it is done at one place
Benefit 3 - Validation done by class designer

Method 2 :
Using special member function - Constructor
Benefit 1 - Program is better organized

Chapter 10: Classes and Objects 183

Benefit 2 - Guaranteed initialization through constructor (Ctor)

w When an object is created, space is allocated in memory and Ctor is
called

• Name of Ctor must be same as name of class

• Ctor is a. function

• Ctor doesn't return any value

• Ctor gets called automatically when an object is created

• Ctor is called only once during entire lifetime of an object

• Ctor can be overloaded

If we don't define a Ctor, compiler inserts a 0-arg Ctor

• A class may have Ctor as well as setData.0

Ctor - To initialize object
setData.() - To modify object

• finalizeQ method is called when an object is about to be destroyed

• finalize() method is called by Java. Runtime just before garbage
collection

• finalizeQ method is Not called when an object goes out of scope

• finalizeQ method is used to free non-Java. resource like file handle of
font

• A class can contain instance data, and static data.

• A class can contain instance functions and static functions

• Instance functions can access instance data, and static data.

• Static functions can access only static data.

• Access from outside the class :

Instance function : Object.function()

184 Let Us Java

Static function : Class.function()
Object.function() - works, but is misleading

a An instance function can be called only after creating an object

• A static function can be called anytime

• this reference is never passed to a static function

• Static block gets executed exactly once when the class is loaded

• A static block can contain control instructions for validating data

• A static block is used to initialize all static data at one place

• Functions are called only by value. There is no call by reference. So
when we pass an object to a function, we are actually passing its
reference, by value

Data abounds in nature and its problems. So when you have a
lot of it to deal with, Array is a good answer...

185

186 Let Us Java

• What are Arrays
A Simple Program using Array

• More on Arrays
Array Initialization
Array Access
Bounds Checking
Passing Array Elements to a Function
Passing Array Reference to a Function
Returning an Array

• Common Array Operations
• Array of Objects
• Multi-Dimensional Arrays

Passing and Returning 2-D Array
• Jagged Array
• Resizing of Arrays
• Exercises
• KanNotes

Chapter 11: Arrays 187

The Java language provides a capability that enables the user to
design a set of similar data types, called array. This chapter describes
how arrays can be created and manipulated in Java. We would also

discuss how and why arrays are implemented as objects.

What are Arrays
Suppose we wish to arrange the percentage marks obtained by 50
students in ascending order. To do this we must first be able to hold 50
students marks in memory. In such a case, we have two options to store
these marks in memory:
(a) Construct 50 variables, each containing one student's marks.
(b) Construct one variable capable of storing all 50 values.
Obviously, the second alternative is better, as it would be much easier to
handle one variable than handling 50 variables. Such a variable capable
of storing multiple values is called an array.

An array is a collection of similar elements—all ints, or all floats, or all
chars, etc. Usually, the array of characters is called a 'string', whereas an
array of ints or floats is called simply an array. Remember that we
cannot have an array of 10 numbers, of which 5 are ints and 5 are floats.

A Simple Program using Array
Let us try to write a program to find average marks obtained by a class
of 30 students in a test. Here is the program...

// First array program
package firstarrayprogramproject ;
import java.util.* ;

public class FirstArrayProgramProject
{

public static void main (String[] args)
{

int i, avg, sum = 0 ;
int[] marks ;
Scanner scn ;
marks = new int[30] ;

scn = new Scanner (System.in) ;

// store data in the array

188 Let Us Java

for (i = 0 ; i <= 29 ; i++)
{

System.out.println ("Enter marks ") ;
marks[i] = scn.nextInt() ;

}

// read data from the array
for (i = 0 ; i <= 29 ; i++)

sum = sum + marks[i] ;

avg = sum / 30 ;
System.out.println ("Average marks = "+ avg) ;

}
}

There is a lot of new material in this program, so let us understand it
part-by-part.

Array Declaration

Like other variables, an array needs to be declared. In our program, we
have done this with the statement:

int[] marks ;

This statement tells the compiler that marks is a reference to an array of
integers.

Once the reference to the array is declared we have to allocate space for
the array in memory. This is done using the statement,

marks = new int[30] ;

This statement allocates space for 30 integers in memory and returns
the base address (starting address) of this memory chunk. This returned
address gets stored in the reference marks. The array that gets created
in heap it doesn't have any name. It is always referred to using marks,
the reference to the array, which is stored in the stack.

Accessing Elements of an Array

Once an array is created, its individual elements can be accessed using
the element's position in the array. All the array elements are counted,
starting with 0. Thus, marks[2] is not the second element of the array,
but the third. In our program, we are using the variable i to refer to

Chapter 11: Arrays 189

various elements of the array. This variable can take different values and
hence can refer to different elements in the array in turn. This ability to
use variables to represent position of array elements makes arrays very
useful.

Entering Data into an Array

Here is the section of code that places data into an array:

for (i = 0 ; i <= 29 ; i++)
{

System.out.println ("Enter marks ") ;
marks[i] = scn.nextInt() ;

}

First time through the loop, i has a value 0, so the first value read
through nextInt() function will be stored in marks[0]. This process will
be repeated 30 times till the last values gets stored at marks[29].

Reading Data from an Array

The balance program reads the data back out of the array and uses it to
calculate the average. The for loop is much the same, but now the body
of the loop causes each student's marks to be added to a running total
stored in a variable sum. When all the marks have been added up, the
result is divided by 30, the number of students, to get the average.

More on Arrays
Array is a very popular data type with Java programmers. This is because
of the convenience with which arrays lend themselves to programming.
The features which make arrays so convenient to program would be
discussed below, along with the possible pitfalls in using them.

Array Initialization
In the program in the previous section we have used and array that did
not have any values in it to begin with. We managed to store values in it
during program execution. Let us now see how to initialize an array
while declaring it. Following are a few examples that demonstrate this:

int[] ages = new int[] { 32, 24, 31, 25, 26 } ;
float[] press = { 12.3f, 34.2f, -23.4f, -11.3f } ;
int[] num = { 2, 4, 1, 5, 6, 3 } ;

190 Let Us Java

If the array is initialized where it is declared, there is no need to use the
new operator for creating an array as shown in the second and the third
examples above. Also, when we initialize the arrays in this manner, we
are not allowed to mention the size of the array in [].

Note that both the following definitions are acceptable.
int[] num = { 2, 4, 1, 5, 6, 3 } ;
int num[] = { 2, 4, 1, 5, 6, 3 } ;

Array Access
In Java we can access array elements using any of the following three
methods:

int[] marks = { 55, 65, 75, 56, 78, 78, 90 } ;
int i ;

// method 1
for (i = 0 ; i <= 6 ; i++)

System.out.print (marks[i] + " ") ;

// method 2
for (i = 0 ; i <= marks.length - 1 ; i++)

System.out.print (marks[i] + " ") ;

// method 3
for (int j : marks)

System.out.print (j + " ") ;

The first method is as usual. In the second method we have obtained the
number of elements in the array using its length property. In the third
method, we don't have to worry about the number of elements in the
array, as j takes different values present in marks[] array during each
iteration through the loop.

Bounds Checking
In Java while accessing array elements if we exceed the bounds of the
array an error would be reported during execution of the program. For
example, if the following code snippet is executed an error would be
reported as num[6] does not exist.

int [] num = { 2, 4, 12, 5, 45, 5 } ;
num[6] = 72 ;

Chapter 11: Arrays 191

Passing Array Elements to a Function
Like normal variables, we can also pass array elements to a function by
calling the function. This is illustrated below.

// Demonstration of passing array elements
package passingarrayelementsproject ;
public class PassingArrayElementsProject
{

public static void main (String[] args)
{

int [] marks = { 55, 65, 75, 56, 78, 78, 90 } ;
int i ;

for (i = 0 ; i <= 6 ; i++)
modify (marks[i]) ;

for (i = 0 ; i <= 6 ; i++)
System.out.println (marks[i]) ;

}
static void modify (int m)
{

m = m * 2 ;
}

}

And here's the output...

55 65 75 56 78 78 90

Here, we are passing an individual array element at a time to the
function modify(). Since at a time only one element is being passed, this
element is collected in an integer variable m. Even though we are
doubling each element received in m in the modify(), on return when
we print all array elements we find that they have not been doubled at
all. This is because we passed each array element by value.

Passing Array Reference to a Function
If we want that the modifications we make in the modify() function
should be reflected back in main(), then we need to pass the reference
to the array, instead of passing each individual element. This is shown in
the following program:

192 Let Us Java

// Passing array reference
package passarrayreferenceproject ;

public class PassArrayReferenceProject
{

public static void main (String[] args)
{

int[] marks = { 55, 65, 75, 56, 78, 78, 90 } ;
int i ;

modify (marks) ;

for (i = 0 ; i <= marks.length - 1 ; i++)
System.out.print (marks[i] + " ") ;

}

static void modify (int[] m)
{

int i ;
for (i = 0 ; i <= m.length - 1 ; i++)

m[i] = m[i] * 2 ;
}

}

The output of the program would be as under:

110 130 150 112 156 156 180

The array reference passed to modify() is collected in another array
reference m. m is a reference to the same array, as it contains the same
address that is present in marks. Using this reference when we modify
the array elements we are changing the array that we defined in main().
So once control returns to main(), using marks when we print this array
we find that the array elements stand doubled.

Returning an Array
The way we can pass an array to a function, can we return an array from
a function? Certainly. Even here what we would be returning would only
be a reference to the array. The following program shows how this can
be done:

package returningarrayproject ;

Chapter 11: Arrays 193

public class ReturningArrayProject
{

public static void main (String[] args)
{

int[] p ;
p = func() ;
for (int i = 0 ; i <= p.length - 1 ; i++)

System.out.println (p[i] + " ") ;
}

static int[] func()
{

int [] arr = { 10, 20, 30, 40, 50 } ;
return arr ;

}
}

Here the reference to the array arr is returned from func() and
collected in reference p in main(). Using this reference when we iterate
through the array in the for loop we are able to access all the elements
of arr.

Common Array Operations
There are certain operations that are very commonly carried out on
arrays. For example, rearranging array elements in ascending or
descending order, or searching an element in an array, etc. To carry out
these operations the Java Library provides a class called Arrays. The
following program shows how to perform these operations using the
Arrays class:

// Performing different array operations
package morearrayoperationsproject ;
import java.util.* ;

public class MoreArrayOperationsProject
{

public static void main (String[] args)
{

int [] arr = { 23, 45, 11, 54, 89, 32 } ;
int i ;

194 Let Us Java

System.out.println ("Original array") ;
for (i = 0 ; i < arr.length ; i++)

System.out.print (arr[i] + " ") ;

Arrays.sort (arr) ;
System.out.println ("\nSorted array") ;
for (i = 0 ; i < arr.length ; i++)

System.out.print (arr[i] + " ") ;

int index = Arrays.binarySearch (arr, 54) ;
System.out.println ("\nElement 54 found at "+ index) ;

int[] newarr = new int[6] ;
newarr = Arrays.copyOf (arr, arr.length) ;
System.out.println ("New array contents") ;
for (i = 0 ; i < newarr.length ; i++)

System.out.print (newarr[i] + " ") ;

Arrays.fill (arr, 0) ;
System.out.println ("\nCleared array") ;
for (i = 0; i < arr.length; i++)

System.out.print (arr[i] + " ") ;
System.out.println();

}
}

Given below is the output of the program...

Original array
23 45 11 54 89 32
Sorted array
11 23 32 45 54 89
Element 54 found at 4
New array contents
11 23 32 45 54 89
Cleared array
0 0 0 0 0 0

The sort() function arranges the elements of the array in ascending
order, whereas, the binarySearch() function searches for an element in
the sorted array and reports its position in the array. The copyOf()

Chapter 11: Arrays 195

function copies the contents of one array into another, whereas fill()
function sets each array elements value to 0. You can watch these
effects in the output of the program. All these functions are static
functions, hence the syntax used to call them is
classname.functioname(). You can try your hand at other functions
present in the Arrays class to get a hang of them.

You can also rely on context-sensitive help to get to know methods of
the Arrays class. That is, as you type the word array and a NetBeans
pops up a list of methods available in this class. This list acts as a quick
reference.

Array of Objects
So far we have constructed an array of pre-defined types like integers or
floats. It is also possible to create an array of user-defined types as well.
For example, we can create an array of 3 Sample objects as shown
below.

// Creating and handling array of objects
package arrayofobjectsproject ;

class Sample
{

private int i ;
private float a ;

public Sample (int ii, float aa)
{

i = ii ;
a = aa ;

}

public void display()
{

System.out.println ("i = " + i + " a = "+ a) ;
}

}

public class ArrayOfObjectsProject
{

public static void main (String[] args)
{

196 Let Us Java

Sample[] arr = new Sample[3] ;
arr[0] = new Sample (10, 3.14f) ;
arr[1] = new Sample (20, 6.28f) ;
arr[2] = new Sample (30, 3.55f) ;
for (Sample s : arr)

s.display() ;
}

}

The output of the program would be as follows:

i = 10 a = 3.14
i = 20 a = 6.28
i = 30 a = 3.55

As objects get created in a heap, strictly speaking the array is not an
array of objects, but an array of references to objects. This is shown in
Figure 11.1.

Once the array is created we can iterate through it using the for loop,
calling display() function for each object in turn. This is justified by the
output of the program.

There is a more compact way in which we could have initialized the
array of objects. This is shown below.

Sample[] arr = {
new Sample (10, 3.14f),
new Sample (20, 6.28f),
new Sample (30, 3.55f)

} ;

Chapter 11: Arrays 197

Multi-Dimensional Arrays
So far, we have explored arrays with only one dimension. It is also
possible for arrays to have two or more dimensions. The two­
dimensional array is also called a matrix. Here is a simple program that
stores numbers in a matrix and then reports the biggest number and its
position in the matrix.

package twodarrayproject ;

public class Main
{

public static void main (String[] args)
{

int[][] a = { { 7, 2, 6, 1 }, { 3, 5, 4, 8 }, { 6, 2, 9, 50 } } ;
int i, j, big ;
int r, c ;

big = a[0][0] ;
r = 0 ;
c = 0 ;

for (i = 0; i < a.length ; i++)
{

for (j = 0 ; j < a[i].length ; j++)
{

if (a[i][j] > big)
{

big = a[i][j] ;
r = i ;
c = j ;

}
}

}

System.out.println ("Biggest number = "+ big) ;
System.out.println ("Row = " + r + " Col = "+ c) ;

}
}

There are two parts to the program—in the first part, we define and
initialize a 2-D array of 3 rows and 4 columns of integers, whereas, in the

198 Let Us Java

second part through a set of for loops, we find out the value of the
biggest number in the 2-D array.

In a[i][j] the first subscript of the variable a, is row number. The
second subscript tells which of the four columns we are talking about.
Remember the counting of rows and columns begin with zero. Thus, 7 is
stored in a[0][0], 8 is stored in a[1][3] and so on.

Instead of initializing the 2-D array in-place we can also receive its values
from the keyboard as shown below.

int [][] a = new int[3][4] ;
Scanner scr = new Scanner (System.in) ;
for (int i = 0; i < a.length ; i++)
{

for (int j = 0 ; j < a[i].length ; j++)
a[i][j] = scn.nextInt() ;

}

On similar lines we can construct a 3-D array as a collection of several 2­
D arrays.

Passing and Returning 2-D Array
We can pass a 2-D array to a function by passing its reference. Similarly,
we can return a 2-D array from a function by returning its reference.
This is illustrated in the following program:

package passingandreturning2darraysproject ;
public class PassingAndReturning2dArraysProject
{

public static void main (String[] args)
{

int[][] a = { { 1, 2, 3 }, { 4, 5, 6 } } ;
int sum ;

sum = getSum (a) ;
System.out.println ("Sum = "+ sum) ;

int[][] d ;
d = getArray() ;
int i, j, prod = 0 ;
for (i = 0 ; i < d.length ; i++)
{

Chapter 11: Arrays 199

for (j = 0 ; j < d[i].length ; j++)
prod = prod + d[i][j] ;

}
System.out.println ("Product = "+ prod) ;

}

public static int getSum (int[][] b)
{

int i, j ;
int s = 0 ;
for (i = 0 ; i < b.length ; i++)
{

for (j = 0 ; j < b[i].length; j++)
s = s + b[i][j] ;

}
return (s) ;

}

public static int[][] getArray()
{

int[][] c = { { 1, 2, 3 }, { 4, 5, 6 }, { 7, 8, 9 } } ;
return c ;

}
}

And here is the output...

Sum = 21
Product = 45

Here in main() we have defined a 2-D array and then passed it to the
function getSum(). The getSum() function collects the reference to the
2-D array passed to it in b. Using this reference it then accesses all the
array elements and adds them up. This sum is then returned to main()
which promptly prints it.

Next, main() calls the function getArray(). This function defines
another 2-D array c, and returns its reference to main(). When control
returns from getArray() even though the reference c dies, since the
reference d points to the 2-D array, the array doesn't get collected by
the Garbage Collector. Once in main() it iterates through the 2-D array,

200 Let Us Java

this time calculating the product of all its elements. This product is then
printed out.

From this program it is evident that whenever we have to pass or return
an array all that we have to do is pass or return a reference to the array.

Jagged Arrays
It is not necessary that each row of a 2-D array would always have same
number of columns. For example, the arrangement of seats in an
auditorium is like a 2-D array, but number of seats in each row may not
be equal. If we are to represent these seats in a 2-D array in Java we
have to use jagged arrays. A jagged array permits unequal number of
elements in each row of a 2-D array.

Let us now construct a 2-D jagged array containing 3 rows. The number
of elements in these three rows is 4, 3 and 2, respectively. So the
arrangement of this jagged array would be as shown in Figure 11.2.

Here is a program that implements this jagged array.

// Implementation of a 2-D Jagged array
package twodjaggedarrayproject ;

public class Main
{

public static void main (String[] args)
{

int[][] a = new int[3][] ;

Chapter 11: Arrays 201

a[0] = new int[4] ;
a[1] = new int[3] ;
a[2] = new int[2] ;

a[0][0] = 7 ; a[0][1] = 2 ; a[0][2] = 6 ; a[0][3] = 1 ;
a[1][0] = 9 ; a[1][1] = 3 ; a[1][2] = 4 ;
a[2][0] = 1 ; a[2][1] = 8 ;

for (int i = 0 ; i < a.length ; i++)
{

for (int j = 0 ; j < a[i].length ; j++)
System.out.print (a[i][j] + ", ") ;

System.out.println() ;
}

}
}

In this program a is a reference that refers to an array of references.
Each reference in this array refers to a 1-D array of integers. Note how
we have iterated through the jagged array. In the outer for loop we have
used a.length to obtain number of 1-D integer arrays present in the
jagged array, whereas in the inner for loop we have used a[i].length to
obtain the number of integers in each 1-D array. I would leave it for you
to figure out the output of this program.

There are two more ways in which we could have defined and initialized
the jagged array. These are shown below.

// one more way to define the jagged array
int[][] a = { new int[4], new int[3], new int[2] } ;
a[0][0] = 7 ; a[0][1] = 2 ; a[0][2] = 6 ; a[0][3] = 1 ;
a[1][0] = 9 ; a[1][1] = 3 ; a[1][2] = 4 ;
a[2][0] = 1 ; a[2][1] = 8 ;

// yet another way to define the jagged array
int[] a1 = new int[] { 7, 2, 6, 1 } ;
int[] a2 = new int[] { 9, 3, 4 } ;
int[] a3 = new int[] { 1, 8 } ;
int[][] a = { a1, a2, a3 } ;

The way we can pass a normal 2-D array to a function, we can also pass
or return a jagged 2-D array to/from a function

202 Let Us Java

Resizing of Arrays
As we know, arrays are created on the heap dynamically during
execution of the program. As a result, we can do two things with an
array:
(a) We can decide the number of elements in the array at run-time and

do not have to make any commitment about it while writing the
program.

(b) Once the array is created we can increase or decrease its size during
execution.

Let us now see how this can be done programmatically.

// Flexible arrays and resizing of arrays
package resizingarrayproject ;
import java.util.* ;

public class ResizingArrayProject
{

public static void main (String[] args)
{

int[] arr, newarr ;
int i, num, newnum ;
Scanner scn ;

scn = new Scanner (System.in) ;
System.out.println ("Enter number of students") ;
num = scn.nextInt() ;
arr = new int[num] ;

System.out.println ("Enter marks for "+ num + " students") ;
for (i = 0 ; i < arr.length ; i++)

arr[i] = scn.nextInt() ;

System.out.println ("Enter additional number of students") ;
newnum = scn.nextInt() ;
newarr = new int[num + newnum] ;

// copy existing students marks to the new array
for (i = 0 ; i < arr.length ; i++)

newarr[i] = arr[i] ;

Chapter 11: Arrays 203

System.out.println ("Enter marks for "+ newnum +
" new students") ;

for (i = arr.length ; i < newarr.length ; i++)
newarr[i] = scn.nextInt() ;

System.out.println ("The new array now contains") ;
for (i = 0 ; i < newarr.length ; i++)

System.out.print (newarr[i] + " ") ;
}

}

Shown below is some sample interaction with the program.
Enter number of students
5
Enter marks for 5 students
55
43
65
78
66
Enter additional number of students
3
Enter marks for 3 new students
70
80
90
The new array now contains
55 43 65 78 66 70 80 90

Look at the way arr and newarr are defined in one statement:

int[] arr, newarr ;

The int[] applies to arr as well as newarr. Both are treated as references
to an integer array.

Both these arrays are flexible in the sense that their size is decided by
the user of this program during execution. The arrays are created based
on the values of num and newnum supplied by the user during
execution.

204 Let Us Java

To increase the size of the array we have created a new array (newarr),
copied elements of existing array (arr) into it and then filled additional
values into it after the copied elements.

Once this is done, if we so desire, we can delete the old array by settings
its reference to null. If we do so, the array would be reclaimed by the
Garbage Collector.

The way this program lets you increase the size of an existing array
during execution; if the need arises we can also shrink the size of an
existing array during execution.

[A] Answer the following:

(a) Which of the following array declarations is correct?

int a (25) ;
int size = 10, b[size] ;
int[] c = { 0, 1, 2 } ;

(b) What will happen if you assign a value to an element of an array
whose subscript exceeds the size of the array?

(c) When you pass an array as an argument to a function, what actually
gets passed?

(d) How will you initialize a three-dimensional array threed[3][2][3]?
How will you refer the first and last element in this array?

(e) What will be output of the following code snippet?

int[][] a = new int[2][] ;
a[0] = new int[] { 6, 1, 4, 3 } ;
a[1] = new int[] { 9, 2, 7 } ;
System.out.println (a[1].Length) ;

(f) What will be the output of the following code snippet?

int[][][] a = new int[3][2][3] ;

Chapter 11: Arrays 205

(h) How will you obtain the number of elements present in the array
given below?

int[] a = { 25, 30, 45, 15, 60 } ;

(i) How will you define and initialize an array of 5 integers? How will
you increase its size to 10 elements?

(j) Which of the following statements are correct about the Java code
snippet given below?

int[][] a = new int[2][] ;
a[0] = new int[] { 6, 1, 4, 3 } ;
a[1] = new int[] { 9, 2, 7 } ;

1. a is a reference to a 2-D jagged array.
2. a[0] refers to 0th 1-D array and a[1] refers to the 1st 1-D array.
3. a refers to a[0] and a[1].
4. a refers to a[1] and a[2].

(k) How many different ways are there to iterate through elements in a
1-D array? What are their pros and cons?

(l) What is the advantage of using 2-D jagged array over 2-D
rectangular array?

(m) Is it true that Rectangular arrays do not have an access to the
methods of Arrays Class.

[B] Attempt the following:

(a) Twenty-five numbers are entered from the keyboard into an array.
The number to be searched is entered through the keyboard by the
user. Write a program to find if the number to be searched is
present in the array and if it is present, display the number of times
it appears in the array.

(b) Twenty five numbers are entered from the keyboard into an array.
Write a program to find out how many of them are positive, how
many are negative, how many are even and how many odd.

(c) Write a program that interchanges the odd and even elements of
an array.

(d) Write a program to copy the contents of one array into another in
the reverse order.

206 Let Us Java

(e) Write a program to obtain transpose of a 4 x 4 matrix. The
transpose of a matrix is obtained by exchanging the elements of
each row with the elements of the corresponding column.

(f) The X and Y coordinates of 10 different points are entered through
the keyboard. Write a program to find the distance of last point
from the first point (sum of distances between consecutive points).

(g) Create a jagged array of integers. This array should consist of two 2­
D arrays. First 2-D array should contain 3 rows having length of 4, 3
and 2, respectively. Second 2-D array should contain 2 rows with
length 3 and 4, respectively. Initialize array with suitable elements
and display them without using for loops.

• Array is a variable capable of holding > 1 value at a time

• Two basic properties of an array :

1) Similarity - All array elements are similar to one another
2) Adjacency - All array elements are stored in adjacent memory

locations

• 3 ways to declare an array if array elements are not known
beforehand :

int per[] = new int[10] ;
int per[] ; per = new int[10] ;
int [] per ; per = new int[10] ;

• If all array elements are known before-hand array can be defined as

int a[] = { 7, 6, 11, -2, 26 } ; // Cannot mention the size in this case

• Array elements are always counted from 0 onwards. So arr[9] is
10th element

• Array elements can be calculated as in arr[5] = 3 + 7 % 2 ;

• Arithmetic on array elements is allowed as in arr[6] = arr[1] + arr[
3] / 16 ;

Chapter 11: Arrays 207

• Java performs bounds checking on an array and warns if we exceed
the bounds

• Three ways to process an array element by element :

int a[] = { 7, 9, 16, -2, 8 } ; int i ;
for (i = 0 ; i <= 4 ; i++)

System.out.println (a[i]) ;

for (i = 0 ; i < a.length ; i++) // length is property of an array
System.out.println (a[i]) ;

for (int item : a) // special for loop for processing an array
System.out.println (item) ;

• Array is implemented as an object, hence it is nameless. It is created
on the heap and its reference is set in the stack. The reference
contains the base address of the array object.

• It is possible to increase or decrease the array size during execution

• It is possible to free the array during execution for the garbage
collector to collect it

• Passing an array to a function and returning an array from a function
is similar as in both cases we are passing a reference or returning a
reference

public static void int [] display (int [] p) // p - array reference
{

int a[] = { 1, 4, 6, 2, 8 } ;
return a ; // returns an array reference

}

• 2D array is a collection of several 1D arrays

int a[][] = { { 2, 3, 11, 4 }, { 4, 7, 8, 9 }, { 33, 2, 1, 1 } } ;

Cannot mention dimensions as array is being initialized in place
{ } for each 1D array are compulsory
, after each 1D array is compulsory
a is a reference, it would be created on stack

208 Let Us Java

a would refer to an array of references (on heap). Each reference in
this array would refer to a 1D array of integers

a a.length will give 3 as there are 3 1D arrays in the 2D array

• a[2].length will give 4 as there are 4 elements in the 2nd 1D array

• Passing and returning a 2D array is similar to passing and returning a
1D array

Strictly Speaking, we can create Java programs without Strings
and Enums. But, once you see the elegance that they add to
your working, you would never give them up...

209

210 Let Us Java

• What are Strings?
• More about Strings
• Splitting Strings
• StringBuilder Class
• Array of Strings
• Sorting Strings
• Enumerations
• Use of Enumerated Data Type
• Exercises
• KanNotes

Chapter 12: Strings and Enums 211

In the last chapter, you learnt how to define arrays of various sizes and
dimensions, how to initialize them, how to pass them to a function,
etc. With this knowledge under your belt, you should be ready to handle

strings, which are, simply put, a special kind of array. And strings and the
ways to manipulate them are going to be the topics of discussion in this
chapter.

What are Strings?
The way a group of integers can be stored in an integer array, similarly a
group of characters can be stored in a character array. Character arrays
can be used to manipulate text, such as words and sentences. The
nature of operations that can be carried out on a collection of characters
are slightly different than the operations that can be carried out on a
collection of numbers. For example, characters in an array can be
converted to upper case or lower case. There is no such parallel
operation on a numeric array. So common is the usage of character
arrays, that to deal with them, Java library provides a special class called
String. Java makes a further relaxation while creating objects of this
class—even though it is a reference type, we don't have to use the new
operator to create it. We can create it like an int or a float. This is shown
below.

String s1 = "Lionel" ;
String s2 = "Messi" ;

Here s1 and s2 are references to two String objects. We can display
these strings simply by saying:

System.out.println (s1) ;
System.out.println (s2) ;

The String class has an overloaded + operator using which we can
append one string at the end of another. This is shown below.

String s1 = "Lionel" ;
String s2 = "Messi" ;
s1 = s1 + s2 ;
System.out.println (s1) ;

This would produce the output LionelMessi. This code snippet makes it
appear as if the string s2 simply got attached at the end of s1, thereby
changing s1. However, internally something different happened. This is

212 Let Us Java

because strings in Java are immutable. So when we attempted to do the
append operation, a new string object containing "LinoelMessi" got
created and s1 was made to refer to this new string object instead of the
old string object "Lionel".

Look at the following code:

String s1 = "Hoopster" ;
String s2 = "Hoopster";
if (s1 == s2)

System.out.println ("Equal") ;
else

System.out.println ("Unequal") ;

Here, when we create the second string, a new string object is not
created. Instead s2 is made to refer to the same string "Hoopster" to
which s1 is referring. Thus s1 and s2 both are referring to the same
string. Therefore the condition in if is satisfied. As against this, in the
following code s3 and s4 are referring to two different string objects, so
the condition in if fails.

String s3 = new String ("Hoopster") ;
String s4 = new String ("Shuttler") ;
if (s3 == s4)

System.out.println ("Equal") ;
else

System.out.println ("Unequal") ;

In this case to check whether the contents of the two String objects are
same we should use the following code:

if (s3.equals (s4))
System.out.println ("Equal") ;

else
System.out.println ("Unequal") ;

More about Strings
Let us now try different operations on strings. For this we would take
help of several methods defined in the String class. It is not possible to
discuss every of these methods. Instead, I would show how to use the
more commonly needed methods with the help of a program. Here is
the program...

Chapter 12: Strings and Enums 213

// Different string operations
package usingstringsproject ;

public class Main
{

public static void main (String[] args)
{

String s1 = "kicit" ;
String s2 = "Nagpur" ;
System.out.println ("Char at 3rd pos: " + s1.charAt (2)) ;

String s3 ;
s3 = s1.concat (s2) ;
System.out.println (s3) ;

System.out.println ("Length of s3: " + s3.length()) ;

s3 = s3.replace ("p", "P") ;
System.out.println (s3) ;

s3 = String.copyValueOf (s2.toCharArray()) ;
System.out.println (s3) ;

int c ;
c = s2.compareTo (s3) ;
if (c < 0)

System.out.println ("s2 is less than s3") ;
else if (c == 0)

System.out.println ("s2 is equal to s3") ;
else

System.out.println ("s2 is greater than s3") ;

if (s1 == s3)
System.out.println ("s1 is equal to s3") ;

else
System.out.println ("s1 is not equal to s3") ;

s3 = s1.toUpperCase() ;
System.out.println (s3) ;

s3 = s2.concat ("Mumbai") ;

214 Let Us Java

System.out.println (s3) ;

s3 = s2.replace (s2.charAt (0), ' ') ;
System.out.println (s3) ;

int fin, lin ;
fin = s1.indexOf ("i") ;
System.out.println ("First index of i in s1: " + fin) ;
lin = s1.lastIndexOf ("i") ;
System.out.println ("Last index of i in s1: " + lin) ;

String s ;
s = s1.substring (fin, lin + 1) ;
System.out.println ("Substring: " + s) ;

int i = 10 ;
float f = 9.8f ;
s3 = String.format ("Value of i = %d Value of f = %f" , i, f) ;
System.out.println (s3) ;

}
}

The output of the program is shown below:

Char at 3rd pos: c
kicitNagpur
Length of s3: 11
kicitNagPur
Nagpur
s2 is equal to s3
s1 is not equal to s3
KICIT
NagpurMumbai
agpur
First index of i in s1: 1
Last index of i in s1: 3
Substring: ici
Value of i = 10 Value of f : 9.8

Let us now understand the operations that we have performed on
strings in this program. To begin with, we have created two String
variables si and s2 and initialized them to "kicit" and "Nagpur"

Chapter 12: Strings and Enums 215

respectively. To access individual characters of a String, we have to use
the method charAt(). Thus sl.charAt (2) fetches the character 'c' in the
string s1. Unlike an array, we cannot access the 3rd character using s1[2].

The concat() method concatenates two strings, stores it in a new string
object and returns its reference, which gets stored in s3. Thus the object
referred to by s3 would contain "kicitNagpur". The length() method of a
Strig class returns the number of characters in a string. The length of s3
in our program is 11. The replace() method replaces all the instances of
a character (mentioned as the first parameter) with the character given
as the second parameter. Here we have replaced 'p' with a 'P' in string
referred to by s3. The copyValueOf() method is a static method that
returns a String that represents the character sequence in the character
array passed to it.

The compareTo() method compares two strings alphabetically. This
means a string with a starting alphabet 'a' will always be lesser than a
string with starting alphabet as 'b'. This method returns a negative
integer if the String object that has called the compareTo() method
contains a string which is lesser than the string contained in the object
whose reference is passed as the method's parameter. It returns a
positive number if the string objects are interchanged. It returns zero
when both strings are equal.

In the same way the == operator compares two strings and returns a
bool—true if the strings are equal and false if they are not. To carry out
string comparison in a case insensitive manner there is another method
called compareToIgnoreCase().

The toUpperCase() method creates a new object, stores in it the
converted upper case string and returns the address of this object. This
address is collected in s3. Note that s1 is not affected here. Hence we
can draw a conclusion that the object which we use to call the methods
to manipulate the string, does not affect the object.

The indexOf() method returns the index of first occurrence of a given
character in the string. Similarly, lastIndexOf() method returns the
index of last occurrence of a given character in the string. In our
program the first index of 'i' happens to be 1 whereas the last index is 3.

The substring() method returns a new string which starts at an index
passed as the first parameter and ends at an index passed as the second
parameter to the method.

216 Let Us Java

The format() method is a static method which builds a new string
object using strings and numbers. Here we have collected the address of
the newly created string object in s3.

If we want, we can combine calls to String class functions as shown
below.

String s1 = "Hello" ;
s1 = s1.toUpperCase().substring (2, 5) ;
System.out.println (s1) ;

Here firstly, Hello is converted to HELLO using toUpperCase() and from
this string LLO is extracted using substring().

Function isEmpty() is very commonly used when validating user input in
many Java applications. This function allows us to check in one shot if
the string is empty, i.e. its length is 0. In absence of this function we
would have been required to write an equivalent if as shown below:

if (s == "")

Function contains() returns true if input string is present anywhere in
the current string object. It enables us to search substrings within a large
string efficiently.

Splitting Strings
While processing strings in Java applications, it is required to split a
string in parts based on certain separator, thereby getting an array of
strings. The following program illustrates how this splitting of strings can
be done:

// Split string operations
package splitandjoinproject ;
import java.io.* ;

public class SplitAndJoinProject
{

public static void main (String[] args) throws Exception
{

File f =new File (".") ;
String d = f.getCanonicalPath() ;
String[] parts = d.split ("\\\\") ;
System.out.println ("Complete path: " + d) ;

Chapter 12: Strings and Enums 217

System.out.println ("Dir name: " + parts [parts.length - 1]) ;
}

}

And here is the output for this program...

Complete path: D:\Books\J_LUJ\Programs\SplitAndJoinProject
Dir name: SplitAndJoinProject

In this program, firstly we have obtained the complete path of the
current directory (represented by .) by calling the method
getCanonicalPath() of the File class.

Then we have used the split() method to separate different elements of
this path based on separator '\'. The last part of the array of string thus
obtained gives us the directory from which program is being executed.

StringBuilder Class
As we noted in the previous section, when a string is manipulated it is
not changed in-place. Instead, a new object containing the manipulated
string is created and the reference which was pointing to the earlier
string is now made to point to this new manipulated string.

Instead of this, if we want that the same string should get manipulated
in-place, then Java library provides a StringBuilder class for this. When
we create a string using this class we can modify it by appending,
removing, replacing, or inserting characters. For carrying out these
operations it has methods like append(), delete(), replace() and
insert().

Based on what operations that we wish to perform on the string created
using StringBuilder, we can set the maximum number of characters that
the object can store. This can be done by using the EnsureCapacity()
method.

Array of Strings
Very often we are required to deal with a set of strings rather than only
one string. In such cases we should create an array of strings. The
following program shows how to declare and process such an array. In
this program we have stored names of persons in a string array called
masterList. The program asks you to type your name. When you do so, it

218 Let Us Java

checks your name against the names in masterList to see if you are
worthy of entry to the palace. Here's the program...

// Using array of strings
package arrayofstringsproject ;
import java.util.* ;

public class ArrayOfStringsProject
{

public static void main (String[] args)
{

String[] masterList = new String [] {
"Akshay", "Parag",
"Raman", "Srinivas",
"Gopal", "Rajesh"

} ;
int i, a ;
boolean flag ;
String yourName ;

Scanner scn = new Scanner (System.in) ;
System.out.println ("Enter your name ") ;
yourName = scn.nextLine() ;

flag = false ;
for (i = 0 ; i <= 5 ; i++)
{

a = masterList[i].compareTo (yourName) ;
if (a == 0)
{

System.out.println ("You can enter the palace") ;
flag = true ;
break ;

}
}

if (flag == false)
System.out.println ("Sorry, you are a trespasser") ;

}
}

And here is the output for two sample runs of this program...

Chapter 12: Strings and Enums 219

Enter your name Dinesh
Sorry, you are a trespasser
Enter your name Raman
You can enter the palace

Notice how the array of strings masterList has been created. Actually
speaking, it is an array of String references. That is, it contains base
addresses of respective names. For example, address of String object
representing "Akshay" is stored in masterList[0], base address of String
object representing "Parag" is stored in masterList[1] and so on. This is
depicted in Figure 12.1.

182 195 201

210 216 189

masterList[]

182 189 195 201 210 216

65514 65518 65522 65524 65528 65532

Figure 12.1

While comparing the strings using compareTo(), true is returned if the
strings match, otherwise false is returned. The variable flag is used to
keep a record of whether the control reached inside the if or not. To
begin with, we set flag to false. Later through the loop, if the names
match, flag is set to true. When the control reaches beyond the for loop,
if flag is still set to false, it means none of the names in the masterList
matched with the one supplied from the keyboard.

Sorting Strings
Let us now create a program that stores names of persons in an array of
strings, sorts these names in alphabetical order using the Bubble Sort
logic and finally prints the sorted list of names. Here is the program...

// Sorting array of Strings

220 Let Us Java

package sortingstringsproject ;

public class SortingStringsProject
{

public static void main (String[] args)
{

String[] names = new String[] {
"Akshay", "Parag",
"Raman", "Srinivas",
"Gopal", "Rajesh"

} ;
int i, j, result ;
String temp ;

for (i = 0 ; i <= names.length - 1 ; i++)
{

for (j = i + 1 ; j <= names.length - 1 ; j++)
{

result = names[i].compareTo (names[j]) ;
if (result > 0)
{

temp = names[i] ;
names[i] = names[j] ;
names[j] = temp ;

}
}

}

for (String n : names)
System.out.println (n) ;

}
}

To sort the strings we have used the Selection Sort logic. To compare the
alphabetical order of strings, we have used the function compareTo()
which returns a value greater than 0 if the two strings being compared
are not in alphabetical order. In such a case we swap the positions of the
two strings in the array. Once the sorting of all strings is over, we have
printed the sorted list using a for loop.

Chapter 12: Strings and Enums 221

Enumerations
The enumerated data type gives you an opportunity to invent your own
data type and define what values the variable of this data type can take.
This can help in making the program listings more readable, which can
be an advantage when a program gets complicated or when more than
one programmer would be working on it. Using enumerated data type
can also help you reduce programming errors.

As an example, one could invent a data type called MaritalStatus which
can have four possible values—Single, Married, Divorced or Widowed.
Here's how MaritalStatus data type can be implemented.

enum MaritalStatus
{

single, married, divorced, widowed
}
MaritalStatus person1, person2 ;

This declaration has two parts:
(a) The first part declares the data type and specifies its possible

values. These values are called 'enumerators'.

(b) The second part defines variables of this data type.

Now we can give values to these variables:

person1 = MaritalStatus.married ;
person2 = MaritalStatus.divorced ;

Internally, the compiler treats the enumerators as integers. Each value
on the list of permissible values corresponds to an integer, starting with
0. Thus, in our example, single is stored as 0, married is stored as 1,
divorced as 2 and widowed as 3.

Lastly, the enumerators used in an enum should not contain white space
in Its name. Thus "elgible bachelor" would be an unacceptable
enumerator for the MaritalStatus.

Use of Enumerated Data Type
Enumerated variables are usually used to clarify the operation of a
program. For example, if we need to use employee departments in a
payroll program, it makes the listing easier to read if we use values like

222 Let Us Java

assembly, manufacturing, accounts rather than the integer values 0, 1,
2, etc. The following program illustrates the point I am trying to make:

// Using Enumerations
package usingenumproject ;

enum Department
{

assembly, manufacturing, accounts, stores
}

class Employee
{

private String name ;
private int age ;
private float salary ;
private Department dept ;

public Employee (String n, int a, float s, Department d)
{

name = n ;
age = a ;
salary = s ;
dept = d ;

}

public void displayData()
{

System.out.println (name + " "+ age + " " + salary+ " " + dept);
if (dept == Department.accounts)

System.out.println (name + " is an accountant\n") ;
else

System.out.println (name + " is not an accountant\n") ;
}

}

public class UsingEnumProject
{

public static void main (String[] args)
{

Employee e = new Employee ("Sandeep Shah", 28, 15575.50f,
Department.manufacturing) ;

Chapter 12: Strings and Enums 223

e.displayData() ;
}

}

And here is the output of the program...

Sandeep Shah 28 15575.5 manufacturing
Sandeep Shah is not an accountant

Let us now dissect the program. We first defined the data type enum
Department and specified the four possible values, namely, assembly,
manufacturing, accounts and stores. Then we declared a class Employee
to manage employee data. It contains name, age, salary and dept. Of
these, the last one is special—it is a variable of the type Department.
The constructor of the Employee class is invoked from main(). In this
call to the constructor, the value of the department in which the
employee is working is passed as Department.manufacturing. This is
much more informative to anyone reading the program than simply
passing a value 1 to represent the manufacturing department. In the
constructor, the enum value passed to it is assigned to private variable
of the class through the statement,

dept = d ;

In the next part of the program, the values assigned to Employee e are
printed by calling the function displayData(). Note that even though an
integer value is assigned to Dept, while printing it, it prints
manufacturing and not 1. Thus enum data type comes in very handy
whenever we wish to use named constants in a Java program. Here are
a few more enum declarations that would make programming quite
convenient.

enum Days { Mon, Tue, Wed, Thu, Fri, Sat, Sun }
enum Color { Red, Green, Blue }
enum Months { January, February, March, April, May, June, July,

August, September, October, November, December }

You must have noticed that in the previous program when we tried to
print the department, it was printed as manufacturing though the
underlying value was an integer. At times, we may want to access and
print the integer value instead of the string. The following program
shows how this can be done. This time however we are going to use an
enum CarTypes instead of Department. Here is the program...

224 Let Us Java

// Printing enumerators as String Value pairs
package enumstringvaluepairsproject ;

enum CarTypes
{

suv, hatchBack, sedan, convertible
}

public class EnumStringValuePairsProject
{

public static void main (String[] args)
{

CarTypes car1 = CarTypes.sedan ;

System.out.println ("Value of car1 is " + car1) ;
System.out.println ("Value of car1 is " + car1.ordinal()) ;

System.out.println ("Car names and their values:") ;
for (CarTypes c : CarTypes.values())

System.out.println (c + " = " + c.ordinal()) ;
}

}

Given below is the output of the program:

Value of car1 is Sedan
Value of car1 is 2
Car names and their values:
suv = 0
hatchBack = 1
sedan = 2
convertible = 3

Here, to begin with we have declared an enum called CarTypes
containing enumerators to represent different types of cars. Then we
have created an enum variable car1 and assigned the value
CarTypes.sedan to it. Then we have printed the string "sedan" and the
underlying value, i.e., 4 through two println() calls. Note that to get the
integer value we have called the ordinal() method. This method returns
the position of the enumeration constant in its enum declaration.

Chapter 12: Strings and Enums 225

[A] Answer the following:

(a) What will be the output of the Java code snippet given below?

String s1 = "Kicit" ;
System.out.println (s1.indexOf ('c')) ;
System.out.println (s1.length()) ;

(b) What will be the output of the Java code snippet given below?

String s1 = "Nagpur" ;
String s2 ;
s2 = s1.concat ("Mumbai") ;
System.out.println (s2) ;

(c) What will be the output of the Java code snippet given below?

String s1 = "Five Star" ;
String s2 = "FIVE STAR" ;
int c ;
c = s1.compareTo (s2) ;
System.out.println (c) ;

(d) What will be the output of the Java code snippet given below?

String s1 = "ALL MEN ARE CREATED EQUAL" ;
String s2 ;
s2 = s1.substring (12, 3) ;
System.out.println (s2) ;

(e) With reference to the following statements how will you copy the
contents of s1 into s2?

String s1 = "String" ;
String s2 ;

(f) How will you find out the index of the second 's' in the string "She
sells sea shells on the sea-shore"?

226 Let Us Java

{
MaritalStatus ms = MARRIED ;
System.out.println (ms) ;

}
}

[B] Pick up the correct alternative for each of the following questions:

(a) Which of the following is the CORRECT way to create a String object?
(1) String s = "Hello" ;
(2) String s[] = "Hello" ;
(3) char s[] = new char [20] ; s = "Hello" ;
(4) string s = "Hello" ;

(b) Where is str created in the following code snippet:

String str = "Good Morning" ;

(1) Stack
(2) Heap
(3) Virtual Memeory
(4) Disk file

(c) What does str contain in the following code snippet:

String str = "Bye Bye" ;

(1) Address of nameless String object
(2) Bye Bye
(3) B
(4) Addressof B

(d) What is the name of the String object in the following code snippet:

String s = "Snakes and Pythons" ; String t = s ;

(1) s
(2) t
(3) Snakes and Pythons
(4) Object is nameless

(e) In the following code snippet, what does t contain?

String s = "Horses for courses" ; String t ;
t = s ;

(1) "Horses for courses"

Chapter 12: Strings and Enums 227

(2) Address of nameless String object
(3) s
(4) H

(f) Which of the following is true about an enum value?
(1) It is always public
(2) It is always static
(3) It is always final
(4) A, B and C

[C] Attempt the following:

(a) Write a program that uses an array of strings str[]. Receive two
strings str1 and str2 and check if str1 is embedded in any of the
strings in str[]. If str1 is found, then replace it with str2.

String str[] = {
"We will teach you how to...",
"Move a mountain",
"Erase the past",
"Make a million",
"...all through Java!"

} ;
For example if str1 contains "mountain" and str2 contains "car",
then the second string in str should get changed to "Move a car".

(b) Write a program to reverse the strings stored in the following array:

String s[] = {
"To err is human...",
"But to really mess things up...",
"One needs to know Java!!"

} ;

(c) Write a program to delete all vowels from a sentence.

(d) Write a program that will read a line and delete from it all
occurrences of the word 'the'.

(e) Write a program that takes a set of names of individuals and
abbreviates the first, middle and other names except the last name
by their first letter.

(f) Write a program to count the number of occurrences of any two
vowels in succession in a line of text. For example, in the sentence

228 Let Us Java

"Please read this application and give me gratuity"

such occurrences are ea, ea, ui.

(g) Create a class called Window containing data members height,
width, cursortype and windowcolor. Of these, the last two should
be enumerations. Create two objects of type Window and set and
print values of these objects. Make sure that the enum values are
printed as strings.

Strings are used to manage an array of characters

• Strings in Java are immutable

• The String class has an overloaded + to concatenate strings

• Different operations can be performed on string using functions of
the String class

- charAt() - obtain character at specified position
- concat() - concatenate two strings
- length() - obtain length of a string
- replace() - a substring in a string with another
- compareTo - compare two strings
- toUpperCase() - convert string to uppercase
- indexOf() - obtain first index of a substring in a string
- lastIndexOf() - obtain last index of a substring in a string
- substring() - extract substring from a string

• To manipulate a string in-place use StringBuilder class

• Use methods like append(), delete(), replace() and insert() to
manipulate a string represented using StringBuilder class.

• To maintain several strings it is possible to create an array of
strings

• Enumerations are user-defined types that are used to make programs
more readable

Inheritance is all about genes... they better be good! So true in
life, quite so in programming...

229

230 Let Us Java

• Uses of Inheritance
• Constructors in Inheritance
• The final Keyword
• Incremental Development
• Other Code Reuse Mechanisms
• Exercises
• KanNotes

Chapter 13: Inheritance 231

Now that we have familiarized ourselves with classes—the building
blocks of object oriented programming—let us deal with another
important Java concept called Inheritance. Inheritance is probably the

most powerful feature of object-oriented programming after classes
themselves. Inheritance is the process of creating new classes, called
derived classes, from existing classes. These existing classes are often
called base classes. The derived class inherits all the capabilities of the
base class but can add new features and refinements of its own. By
adding these refinements the base class remains unchanged.

Most important advantage of Inheritance is that it permits code
reusability. Once a base class is written and debugged, it need not be
touched again but at the same time it can be adapted to work in
different situations. Reusing existing code saves time and effort and
increases a program's reliability. Inheritance can also help in the original
conceptualization of a programming problem, and in the overall design
of the program.

The code reusability is of great help in the case of distributing class
libraries. A programmer can use a class created by another person or
company, and, without modifying it, derive other classes from it that are
suited to particular programming situations. Let us now understand the
concept of inheritance using a program.

Suppose we have designed a class called Index that serves as a counter.
Suppose that the Index class can only increment the counter and not
decrement it. To achieve this, we can insert a decrement function
directly into the source code of the Index class. However, there are
several reasons why we might not want to do this. Firstly, the Index
class works well and has been thoroughly tested and debugged. This is
an exaggeration in this case, but it would be true in a larger and more
complex class. Now, if we start modifying the source code of the Index
class, the testing process will have to be carried out again.

Sometimes, there might be another reason for not modifying the Index
class—we might not have access to its source code, especially if it had
been distributed as part of a class library.

To avoid these problems, we can use inheritance to create a new class
based on Index, without modifying Index itself. Here's how this can be
achieved.

// Demonstrating implementation and usage of Inheritance
package inheritanceusageproject ;

232 Let Us Java

// base class
class Index
{

protected int count ;

public Index()
{

count = 0 ;
}
public void display()
{

System.out.println ("count = " + count) ;
}
public void increment()
{

count += 1 ;
}

}

// derived class
class Index1 extends Index
{

public void decrement()
{

count -= 1 ;
}

}

public class InheritanceUsageProject
{

public static void main (String[] args)
{

Index1 i ;
i = new Index1() ;
i.increment() ;
i.display() ;
i.decrement() ;
i.display() ;

}
}

Chapter 13: Inheritance 233

The first line of the Index1 class,

class Index1 extends Index

specifies that the class Index1 has been derived from the base class
Index. By doing this, Index1 inherits all the features of the base class
Index. Indexl doesn't need a constructor or the increment() function,
since they are already present in the base class. Figure 13.1 shows the
relationship between the base class and the derived class. Note that the
arrow in Figure 13.1 means "derived from". The direction of the arrow
says that the derived class can refer to the functions and data in the
base class, while the base class has no access to the derived class data or
functions.

Figure 13.1

class Index

Data Members
Count

Member Functions
lndex()
Index (int c)
display!)
increment!)

derived from

class Indexl

Member Function
decrement!)

Base Class

Derived Class

Since we have not declared any constructor in Index1, the compiler
would insert an empty zero-argument constructor in it. When we create
an object i, the constructor in the base class gets called followed by the
empty zero-argument constructor in the derived class. When we call the
function increment() it is searched in the derived class. Since the
derived class doesn't contain such a function, increment) from base
class is used to increment count.

Note that count has been marked as protected. Had it been private it
would not have been available outside the Index class. By marking it as
protected, it is now available in the Index class as well as in the
inheritance chain, i.e. in functions of Index1 class.

234 Let Us Java

We don't want to make count as public, as that would allow it to be
accessed from outside the class, and thereby eliminate the advantages
of data hiding. Figure 13.2 clearly indicates who can access what, in a
base class-derived class relationship.

You would agree that, through the derived class Index1 (and thereby
through inheritance) we have increased (extended) the functionality of
the Index class, without modifying it.

Note that inheritance doesn't work in reverse. That is, the base class and
its objects have no knowledge about any classes derived from the base
class. This means, in our program, had we built an object j from the class
Index, then the decrement() function would have remained inaccessible
to this object.

Uses of Inheritance
Now that we have a basic idea about inheritance let us see in which
scenarios is inheritance used in Java. The four common usages of
inheritance are as follows:
(a) Use existing functionality
(b) Override existing functionality

Chapter 13: Inheritance 235

(c) Provide new functionality
(d) Combination of existing and new functionality

Let us now look at a few examples of these usage patterns. We would
begin with a scenario which demonstrates usage of all the four features
mentioned above. Here is the program...

// Program demonstrating various Inheritance usage scenarios
package inheritancefeaturesusageproject ;

class Ex
{

public void fun()
{

System.out.println ("Inside Ex - fun()") ;
}
public void save()
{

System.out.println ("Inside Ex - save()") ;
}
public void enc()
{

System.out.println ("Inside Ex - enc()") ;
}
public void open()
{

System.out.println ("Inside Ex - open()") ;
}

}
class NewEx extends Ex
{

public void save()
{

System.out.println ("Inside NewEx - save()") ;
}
public void enc()
{

System.out.println ("Inside NewEx - enc()") ;
}
public void autoUpdate()
{

System.out.println ("Inside NewEx - autoUpdate()") ;

236 Let Us Java

}
public void open()
{

System.out.println ("Inside NewEx - open()") ;
super.open() ;

}
}
public class InheritanceFeaturesUsageProject
{

public static void main (String[] args)
{

NewEx e = new NewEx() ;
e.fun() ;
e.save() ;
e.enc() ;
e.autoUpdate() ;
e.open() ;

}
}

Given below is the output of the program...

Inside Ex - fun()
Inside NewEx - save()
Inside NewEx - enc()
Inside NewEx - autoUpdate()
Inside NewEx - open()
Inside Ex - open()

Here we have defined two classes—Ex as base class and NewEx as
derived class. The Ex class contains member functions fun(), save(),
enc() and open(), whereas NewEx class contains member functions
save(), enc(), open() and autoUpdate(). In main() we have created an
object of NewEx class and then called different member functions. Now
look at the output of the program to appreciate the different
inheritance usage scenarios.

When we called the function fun() it was first searched in the NewEx
class. Since it was not found in NewEx, it was then searched in the base
class. In the base class it was found. As a result, the base class function
got called and the message "Inside Ex - Fun()" got printed. This

Chapter 13: Inheritance 237

demonstrates that we have used one of the features of the base class,
namely fun(), as it is, through a derived class object.

When we called save(), again the function was searched in derived class
NewEx. Since the function was found in NewEx, this version of save()
(and not the one in Ex class) got called. This demonstrates that through
inheritance we are able to override existing functionality. Same is the
case with the function enc().

When we called the function autoUpdate() the function was searched
and found in NewEx. Since there was no autoUpdate() function in base
class this is the case where a totally new functionality is provided
through inheritance.

Lastly, when we called open() the function was searched and found in
NewEx. This version of open() got called and this function in turn called
the base class version of open() through the statement super.open().
The resulting output was:

Inside NewEx - open()
Inside Ex - open()

This indicates the usage of inheritance to combine new functionality
with old.

Note the following important points about Inheritance relationships:

(a) We can even derive a class from a class which itself has been
derived from another class. Thus, multiple levels of inheritance can
exist.

(b) A class cannot have multiple base classes. That is, a derived class
cannot be derived from more than one class.

Constructors in Inheritance
As we know, the base class member functions can be called from
derived class member function using the syntax:

super.functionName() ;

Here super is a keyword and functionName() is the name of the
function in the base class. Unless explicitly called, the base class function
doesn't get called from the body of the derived class function.
Constructors in inheritance chain are given a different treatment.

238 Let Us Java

Regarding constructors in inheritance chain we have to keep two things
in mind:

(a) When a derived class object is created, the constructor of the base
class followed by constructor of derived class gets called.

(b) While constructing a derived class object, if we do not call the base
class constructor then, by default, the zero-argument constructor of
base class gets called.

Let us illustrate these facts with the help of a program. Here is the
program...

// Demonstrates calls to constructors in Inheritance chain
package constructorsininheritanceproject ;

class a
{

public a()
{

System.out.println ("a's 0-arg Ctor") ;
}
public a (int xx)
{

System.out.println ("a's 1-arg Ctor") ;
}

}
class b extends a
{

public b()
{

System.out.println ("b's 0-arg Ctor") ;
}
public b (int x)
{

super (x) ;
System.out.println ("b's 1-arg Ctor") ;

}
}
public class ConstructorsIninheritanceProject
{

public static void main (String[] args)

Chapter 13: Inheritance 239

{
b y = new b() ;
b z = new b (10) ;

}
}

Given below is the output of the program...

a's 0-arg Ctor
b's 0-arg Ctor
a's 1-arg Ctor
b's 1-arg Ctor

From the output we can see that when we construct the objects y and z,
firstly the constructor of base class gets called, followed by constructor
of the derived class. While constructing the object y the zero-argument
constructor of base class got called automatically. However, while
constructing z the one-argument constructor had to be called explicitly
through the syntax:

super (x) ;

Had we not used super (x), then the zero-argument constructor of base
class would have been called.

You must be wondering why it is necessary that the construction should
proceed from base towards derived. This can be best understood with
the help of the following program:

// Order of construction of object in Inheritance chain
package orderofconstructionproject ;

class base1
{

protected int i ;

public base1()
{

i = 4 ;
}

}
class der extends base1
{

240 Let Us Java

private int j ;

public der()
{

j = i * 4 ;
}

}
public class OrderOfConstructionProject
{

public static void main (String[] args)
{

der d = new der() ;
}

}

Here i is marked as a protected member, hence it is available to
functions in the derived class der. For a moment, assume that the order
of construction is not from base towards derived. In that case, firstly the
constructor of der would get called. And since i is available in
constructor and the base class constructor has not been called so far, it
has not been set with a value so far. As a result, j would not be set
properly. Thus, the value in the object d would not be set correctly.
Unlike, this if the order of construction is from base towards derived
then object d would be set initialized properly.

The final Keyword
By default, we can inherit a new class from any existing class. At times,
we may want that inheritance should not be permitted on a class. This
can be achieved by using a final keyword as shown in the following
program:

// Demonstrates prevention of Inheritance
package preventinheritanceproject ;

final class base1
{
}
class derived extends base1
{

public void fun()
{

Chapter 13: Inheritance 241

System.out.println ("Too much noise, too little substance") ;
}

}
public class PreventInheritanceProject
{

public static void main (String[] args)
{

derived d = new derived() ;
d.fun() ;

}
}

This program doesn't even cross the compilation hurdle. On compilation
it reports an error—cannot derive from final
'preventinheritanceproject.base1'. This so happens, because we have
marked the base class as non-inheritable by using the keyword final.

Though method overriding is one of the most important features of
Java, at times you may want to prevent it from occurring. We can
prevent a method from being overridden by declaring it as final in the
base class. The following code snippet illustrates this:

// Demonstrates prevention of overriding
class base1
{

final public void fun()
{

System.out.println ("In the final method") ;
}

}
class derived extends base1
{

public void fun()
{

System.out.println ("Illegal") ;
}

}

Incremental Development
One of the advantages of inheritance is that it supports incremental
development. It allows you to introduce new code without causing bugs
in existing code. By inheriting from an existing, functional class and

242 Let Us Java

adding data members and member functions (and redefining existing
member functions) you leave the existing code—that someone else may
still be using—untouched and unbugged. If a bug happens, you know it's
in your new code, which is much shorter and easier to read, than if you
had modified the body of existing code.

It's rather amazing how cleanly the classes are separated. You don't
even need the source code for the member functions to reuse the code.
Just the byte-code containing the compiled member functions would do.

It's important to realize that program development is an incremental
process. Nobody ever conceived the program in its entirety at the start
of the project. The program should try to create and manipulate objects
of various types to express a model in the terms given to you by the
problem definition. Rather than constructing the program all at once it
should grow out as an organic, evolutionary creature. Of course, at some
point after things stabilize you need to take a fresh look at your class
hierarchy with an aim to collapse it into a sensible structure. Inheritance
fits this bill to perfection.

Other Code Reuse Mechanisms
Java facilitates code reuse at 2 levels—Source code level and Byte code
level. In source code level reuse mechanism, the code cannot be reused
to build new code, unless the source code is available. Source code level
reuse is done in Java using Generic functions and Generic classes.
Generics let us write generalized functions / classes and the compiler
creates specific functions / classes from it. For creating specialized
functions / classes source code has to be available. Chapter 18 discusses
this reuse mechanism in detail.

Byte code level reuse is implemented in Java using Containership and
Inheritance. Containership should be used when the two classes have a
"has a" relationship between them. For example, a problem may have
two classes Address and Employee. An Employee object may contain an
Address object, apart from other data like name, age, salary etc.

Inheritance should be used when the two classes have a "like a"
relationship. For example, if a problem has two classes Window and
Button, then the Button class can be inherited from Window class since
Button is like a Window.

Containership and Inheritance can be implemented even if source code
is not available.

Chapter 13: Inheritance 243

[A] State whether the following statements are True or False:

(a) We can derive a class from a base class even if the base class's
source code is not available.

(b) The way a derived class member function can access base class
protected and public members, the base class member functions
can access protected and public member functions of derived class.

(c) private members of base class cannot be accessed by derived class
member functions or objects of derived class.

(d) The size of a derived class object is equal to the sum of sizes of data
members in base class and the derived class.

(e) Creating a derived class from a base class requires fundamental
changes to the base class.

(f) If a base class contains a member function func(), and a derived
class does not contain a function with this name, an object of the
derived class cannot access func().

(g) If no constructors are specified for a derived class, objects of the
derived class will use the constructors in the base class.

(h) If a base class and a derived class each include a member function
with the same name, the member function of the derived class will
be called by an object of the derived class.

(i) A class D can be derived from a class C, which is derived from a class
B, which is derived from a class A.

(j) It is illegal to make objects of one class members of another class.

[B] Answer the following:

244 Let Us Java

- Function toUpper() to convert lower case letters to upper
case.

(b) Suppose there is a base class B and a derived class D derived from
B. B has two public member functions b1() and b2(), whereas D
has two member functions d1() and d2(). Write these classes for
the following different situations:

- b1() should be accessible in main(), b2() should not be.
- Neither b1(), nor b2() should be accessible in main().
- Both b1() and b2() should be accessible in main().

(c) If a class D that is derived from class B, then which of the following
can an object of class D located in main() access?

- public members of D
- protected members of D
- private members of D
- public members of B
- protected members of B
- private members of B

(d) In an inheritance chain which out of static, protected, private and
public members of base class are accessible to the derived class
members?

(e) Which of the following can be facilitated by the Inheritance
mechanism?

1. Use the existing functionality of base class.
2. Override the existing functionality of base class.
3. Implement new functionality in the derived class.
4. Implement polymorphic behavior.
5. Implement containership.

(f) How can you prevent inheritance from a class in Java?

(g) If the base class has two versions of the overloaded function, and
derived class contains one version of it, then using the derived class
object can we call the other version of the base class?

(h) What will be the size of the derived class object if the base class
contains two private integers, one static integer and the derived
class contains two static integers and one private integer?

Chapter 13: Inheritance 245

j Java facilitates code reuse at 2 levels : a) Source code level b) Byte
code level

• Source code level reuse is done using Generic functions and Generic
classes

• Generics let us write generalized functions / classes and the compiler
creates specific functions / classes from it

• For creating specialized functions / classes source code has to be
available

• Byte code level reuse is done using Containership and Inheritance

• Containership should be used when the two classes have a "has a”
relationship

• Inheritance should be used when the two classes have a "like a”
relationship

• Containership and Inheritance can be implemented even if source code
is not available

• Inheritance terminology : base - derived, parent - child, subclass,
superclass

• Protected members are available in the inheritance chain

• Derived class object contains all base class data

• Derived class object may not be able to access all base class data

• Inheritance facilitates :

Inheritance of existing feature : To implement this just establish
inheritance relationship
Suppressing an existing feature : Hide base class implementation by
defining same function in derived class

246 Let Us Java

Extending an existing feature : call base class function from derived
class by using super.Baseclassfunction() ;

c Construction of an object always proceeds from base towards
derived

• Base class constructor can be called using superQ

• If a class is marked as final, then a new class cannot be derived from
it

• If a function is marked as final, then the function cannot be
overridden in the derived class

More the caps one can wear, more versatile one becomes.
Polymorphism is same...

247

248 Let Us Java

• What is Polymorphism?
• Abstract Classes and Functions
• Abstract Functions - Practical Example
• Interfaces
• Practical Uses of Interfaces

Interfaces-Focused View
Interfaces-Different Implementation
Interfaces-Unrelated Inheritance

• Exercises
• KanNotes

Chapter 14: Polymorphism 249

After classes and inheritance, polymorphism is the third essential
feature of an object-oriented programming language. Programmers
who switch to Java after having learnt C seem to do so in two steps. In

the first step they start using classes, objects, constructors, function
overloading, etc. While doing this, they are using Java as a "object­
based" programming language. This means that, at this stage, they start
appreciating the benefits of grouping data together with the functions
that act upon it, the value of constructors and perhaps some simple
inheritance.

Many programmers carry a wrong impression that since they have
started using classes, objects, function overloading and inheritance they
have graduated to the object-oriented world. Though, on the face of it,
everything may appear nice, neat and clean, don't get fooled. If you stop
here, you're missing out on the greatest part of the language, which is
the jump to true object-oriented programming. You can do this only
when you have learnt polymorphism.

What is Polymorphism?
Overloading of functions is one kind of polymorphism—one thing
existing in several distinct forms. We have already dealt with this type of
polymorphism. The other type of polymorphism simplifies the syntax of
performing the same operation with a hierarchy of classes. Thus, you
can use polymorphism to keep the interface to the classes clean,
because you do not have to define unique function names for similar
operations on each derived class.

When polymorphism is used, a program that appears to be calling a
function of one class may in reality be calling a function of a different
class. But why on earth would we want this? Suppose we have three
different classes called Line, Circle and Rectangle. Each class contains a
draw() function to draw the relevant shape on the screen. If we are to
draw a picture containing numerous lines, circles and triangles we can
create an array of references which would hold addresses of all the
objects in the picture. The array definition may look like,

Shape[] arr ;
arr = new Shape[50] ;

When it is time to draw the picture we can simply run the loop,

for (i = 0 ; i < 50 ; i++)

250 Let Us Java

arr[i].draw() ;

When arr[i] contains address of the Line object it would call the Line
class's draw() function. Similarly, when it contains the address of the
Circle object it would call the Circle class's draw() function. This is
amazing for two reasons:

(a) Functions from different classes are executed through the same
function call.

(b) The array arr[] has been defined to contain Shape references and
not Line or Circle references.

This concept is called polymorphism. The functions have the same
appearance, the draw() function, but different actual functions are
used. Which draw() function would get used depends on the contents
of arr[i]. However, for this polymorphic approach to work, several
conditions must be met. These are

(a) The classes Line, Circle and Rectangle all must be derived from the
same base class, Shape.

(b) The Shape base class must contain a draw() function.

All this would be too much to digest at one shot. So let us break it into
pieces and try to understand it part by part through simple programs.
Here is the first one...

// Illustrates use of upcasted reference
package polymorphismproject ;

class One
{

public void display()
{

System.out.println ("In base class") ;
}

}
class OneOfOne extends One
{

public void display()
{

System.out.println ("In OneOfOne class") ;
}

Chapter 14: Polymorphism 251

}
class TwoOfOne extends One
{

public void display()
{

System.out.println ("In TwoOfOne class") ;
}

}
public class PolymorphismProject
{

public static void main (String[] args)
{

One ptr ;
OneOfOne o1 = new OneOfOne() ;
TwoOfOne o2 = new TwoOfOne() ;
ptr = o1 ;
ptr.display() ;
ptr = o2 ;
ptr.display() ;

}
}

Here OneOfOne and TwoOfOne are classes derived from the base class
One. Each of these three classes has a member function display().

Inside main() having created the objects o1, o2 (from the two derived
classes) and a reference ptr to base class, we have assigned the address
of a derived class object to the base class reference through the
statement,

ptr = o1 ;

Should this not give us an error, since we are assigning an address of one
type to a reference of another? No, since in this case the compiler
relaxes the type checking. The rule is that references to objects of a
derived class are type-compatible with references to objects of the base
class. Assigning the address of a derived class object to a base class
reference is called upcasting.

When we execute the statement,

ptr.display() ;

252 Let Us Java

which function gets called—display() of OneOfOne or display() of One?
Well, the function in the derived class gets called. On execution of the
program we get the following output:

In OneOfOne class
In TwoOfOne class

As can be seen from the output, instead of the base class, the member
functions of the derived classes got executed. Thus the same function
call,

ptr.display() ;

executes different functions, depending on the contents of ptr. The rule
here is that the compiler selects the function to be called based on the
contents of the reference ptr, and not on the type of the reference.

Deciding which function to call in known as binding. As ptr may contain
address of an object of the OneOfOne class or of the TwoOfOne class,
the compiler is unable to bind the call to a specific version of display().
Hence the decision is deferred until the program is executed. At
runtime, when it is known what object is pointed to by ptr, the
appropriate version of display() gets called. This is called Late Binding
or Dynamic Binding. Late binding requires some overhead but provides
increased power and flexibility.

Thus this program is able to provide the feature mentioned at the
beginning of this discussion—accessing functions of different classes
using the same function call.

Abstract Classes and Functions
We can add another refinement to the function declared in the base
class of the last program. Since the function display() in the base class
never gets executed we can easily do away with the body of this
function and mark it using the keyword abstract, as shown below.

abstract class One
{

public abstract void display() ;
}

The abstract function never has any statements in it. An abstract
function must be contained in an abstract class. That is why we have

Chapter 14: Polymorphism 253

marked One as abstract class as shown above. We can never create an
object from an abstract class. So the following statement would report
an error:

One o = new One ;

But when would a situation arise where we want to prevent creation of
an object? Well, let us go back to our previous example. Suppose there
is base class called Shape containing a draw() function. From this Shape
class three classes Line, Circle and Rectangle are derived. In this case we
would never want to make an object of the Shape class; we would only
make objects of the derived classes as they would help us draw specific
shapes. In this case we would define Shape as an abstract class and
draw() as an abstract function in this class. We would then provide an
implementation of draw() function in each of the derived classes. These
draw() functions would let us draw specific line, circle or rectangle
shapes.

Whenever an abstract function is placed in the base class, you must
override it in all the derived classes from which you wish to create
objects. If you don't implement the function in the derived class, then
the derived class is treated as an abstract class.

Let us now reiterate a few facts that we have learnt in this section. A
clear understanding of them is utmost necessary.

To help you fix your understanding of abstract classes and functions let
us write one more program. Figure 14.1 shows the hierarchy of classes
that we propose to implement in this program.

class FourWheeler

override void speed()
override void maintenance()
override void value()

class vehicle

abstract void speed()
abstract void maintenancef)
aAbstract void value()

override void speedf)
override void maintenance()
override void value()

class Airborne

override void speed()
override void maintenance()
override void value()

Figure 14.1

254 Let Us Java

Given below is the code for the program that implements this class
hierarchy.

// Program that illustrates working of abstract class & abstract functions
package abstractclassexampleproject ;

abstract class Vehicle
{

public abstract void speed() ;
public abstract void maintenance() ;
public abstract void value() ;

}
class FourWheeler extends Vehicle
{

public void speed()
{

System.out.println ("In speed of FourWheeler") ;
}
public void maintenance()
{

System.out.println ("In maintenance of FourWheeler") ;
}
public void value()
{

System.out.println ("In value of FourWheeler") ;
}

}
class TwoWheeler extends Vehicle
{

public void speed()
{

System.out.println ("In speed of TwoWheeler") ;
}
public void maintenance()
{

System.out.println ("In maintenance of TwoWheeler") ;
}
public void value()
{

System.out.println ("In value of TwoWheeler") ;
}

}

Chapter 14: Polymorphism 255

class Airborne extends Vehicle
{

public void speed()
{

System.out.println ("In speed of Airborne") ;
}
public void maintenance()
{

System.out.println ("In maintenance of Airborne") ;
}
public void value()
{

System.out.println ("In value of Airborne") ;
}

}
public class AbstractClassExampleProject
{

public static void main (String[] args)
{

Vehicle maruti, bajaj, jumbo ;

maruti = new FourWheeler() ;
bajaj = new TwoWheeler() ;
jumbo = new Airborne() ;

maruti.speed() ;
maruti.maintenance() ;
maruti.value() ;

bajaj.speed() ;
bajaj.maintenance() ;
bajaj.value() ;

jumbo.speed() ;
jumbo.maintenance() ;
jumbo.value() ;

}
}

Here is the output of the program...

In speed of FourWheeler

256 Let Us Java

In maintenance of FourWheeler
In value of FourWheeler
In speed of TwoWheeler
In maintenance of TwoWheeler
In value of TwoWheeler
In speed of Airborne
In maintenance of Airborne
In value of Airborne

I would leave it to you to analyze the output of this program.

Abstract Functions - Practical Example
I hope that by now you have understood the mechanism of abstract
functions. Let us now see where we can use them effectively. Suppose
we wish to write an application which has to print a document to the
printer. The application should be able to print to any printer. All that it
has to know is the name of the printer. To do the printing, application
should merely call the pr'int() function. Note that every printer uses its
own way to print. We can implement this scenario by creating classes as
shown in Figure 14.2.

Given below is the implementation of the classes shown in Figure 14.2.

// Application that does printing using abstract class
package printingappproject ;

Chapter 14: Polymorphism 257

abstract class Printer
{

protected String name ;

public Printer (String n)
{

name = n ;
}
public abstract void print (String docName) ;

}
class LaserPrinter extends Printer
{

public LaserPrinter (String n)
{

super (n) ;
}
public void print (String docName)
{

System.out.println (">> LaserPrinter.print") ;
}

}
class InkjetPrinter extends Printer
{

public InkjetPrinter (String n)
{

super (n) ;
}
public void print (String docName)
{

System.out.println (">> InkjetPrinter.print") ;
}

}
public class PrintingAppProject
{

public static void main (String[] args)
{

Printer p = new LaserPrinter ("LaserJet 1100") ;
p.print ("hello1.pdf") ;
p = new InkjetPrinter ("IBM 2140") ;
p.print("hello2.doc") ;

258 Let Us Java

}
}

Here is the output of the program...

>> LaserPrinter.print
>> InkjetPrinter.print

In this program we have first defined an abstract class called Printer.
This class has a string that can store the name of the printer through the
constructor. It also has an abstract function called print(). This print()
function has been implemented in the two derived classes LaserPrinter
and InkjetPrinter. Though in these implementations we have just
displayed messages, in real-life it would contain the logic to actually do
the printing on laser and inkjet printer, respectively. Based on whose
address is present in the reference p, the print() of the appropriate
derived class would get called through the dynamic binding mechanism
that we learnt earlier.

Given below is the summary of all that we learnt about abstract classes
and functions.
(a) Object cannot be created from an abstract class.
(b) An abstract class can contain abstract as well as non-abstract

functions.
(c) Abstract class may contain instance and static variables. These

variables may be inherited.
(d) Abstract methods do not have a body.
(e) Abstract classes can participate in inheritance.
(f) If a class contains abstract methods, the class has to be abstract.
(g) Abstract functions cannot be private.

Interfaces
An interface contains only the signatures of methods (i.e., function
declarations). The implementation of these methods is done in the class
that implements the interface. For example, we can declare an interface
called Mouse, and then implement this interface in a class GeniusMouse
as shown below.

// Illustrates declaration and implementation of interface
package interfaceexampleproject ;

interface Mouse

Chapter 14: Polymorphism 259

{
void lBtnDown (int x, int y) ;
void rBtnDown (int x, int y) ;

}
class GeniusMouse implements Mouse
{

@Override public void lBtnDown (int x, int y)
{

System.out.println ("Left Button: " + x + " " + y) ;
}
@Override public void rBtnDown (int x, int y)
{

System.out.println ("Right Button: " + x + " " + y) ;
}

}
public class InterfaceExampleProject
{

public static void main (String[] args)
{

GeniusMouse m = new GeniusMouse() ;
m.lBtnDown (10,20) ;
m.rBtnDown (30,40) ;

}
}

Here is the output of the program...

Left Button: 10 20
Right Button: 30 40

To declare an interface Java provides a keyword called interface. The
syntax for defining the class that implements an interface is similar to
the one used for inheritance, except the use of keyword implements
instead of extends.

In main() we have simply created an instance of GeniusMouse and
called the implementations of interface methods lBtnDown() and
rBtnDown(). The output of the program is simple to follow.

Note the use of an annotation @Override in the GeniusMouse class.
Though not compulsory, we should use it every time we implement an
interface method or override a base class method. This practice offers
two benefits. By using @Override we can take advantage of the

260 Let Us Java

compiler checking to make sure we actually are overriding a method
when we think we are. This way, if we make a common mistake of
misspelling a method name or not correctly matching the parameters,
we will be warned that your method does not actually override as we
think it does. Secondly, it makes our code easier to understand.

It might occur to you is that the effect that we obtained in this program
could have been achieved using an abstract class, instead of an
interface. We could have defined an abstract class like this

abstract class Mouse
{

public abstract void lBtnDown (int x, int y) ;
public abstract void rBtnDown (int x, int y) ;

}

These abstract methods could have then been implemented in
GeniusMouse. That leads to an important question—how is an abstract
class different than an interface? Well, here are the differences..

(a) Abstract class functions may have a body, whereas interface
functions never have a body.

(b) Abstract class may contain static, const or instance variables,
whereas an interface cannot contain any variables.

(c) Abstract class can be inherited from only one base class, whereas
an interface can be inherited from multiple interfaces.

One similarity that abstract classes and interfaces share is, we cannot
create objects from either of them.

Now that we have created our first program that uses an interface, it is
time for some small tips about interfaces. These are given below.
(a) Interfaces are not derived from Object class.
(b) Interfaces are not derived from any base interface.
(c) A class can implement multiple interfaces.
(d) Interfaces can be inherited.
(e) Multiple interface inheritance is allowed.
(f) Class cannot implement an interface partially.

Practical Uses of Interfaces
In my opinion, more than the syntax and the mechanism, it is more
important to know the situations in which we should use interfaces. We

Chapter 14: Polymorphism 261

would discuss three scenarios where interfaces are commonly used.
These are as follows:
(a) Interfaces permit us have a focused view of a large implementation.
(b) Interfaces permit us to provide different implementation of same

tasks.
(c) Interfaces let us inherit in a class desired qualities from unrelated

sources.
Let us now understand each of these situations in detail, with the help
of suitable programs.

Interfaces-Focused View
Often in professional software you would find a class that contains so many
functions that a quick glance would possibly not give us an idea about their
purpose. Instead, if we find that the class implements a particular interface
then we would quickly get an idea about what the class is intending to do.
For example, if we come to know that a class implements three interfaces—
IEncrypt, ICompress and IAuthenticate, then we can guess that the class
has something to do with encryption, compression and authentication.
Following program defines and implements these interfaces:

// Illustrates how interfaces permit us to have a focused view of an
// implementation
package interfacesfocusedviewproject ;

interface IEncrypt
{

void encrypt() ;
void decrypt() ;

}
interface ICompress
{

void compress() ;
void decompress() ;

}
interface IAuthenticate
{

void login() ;
void logout() ;

}
class FocusedView implements IEncrypt, ICompress, IAuthenticate
{

262 Let Us Java

@Override public void encrypt()
{

System.out.println (">> encrypt") ;
}
@Override public void decrypt()
{

System.out.println (">> decrypt") ;
}
@Override public void compress()
{

System.out.println (">> compress") ;
}
@Override public void decompress()
{

System.out.println (">> decompress") ;
}
@Override public void login()
{

System.out.println (">> login") ;
}
@Override public void logout()
{

System.out.println (">> logout") ;
}

}
public class InterfacesFocusedViewProject
{

public static void main (String[] args)
{

FocusedView o = new FocusedView() ;

IEncrypt ie = o ;
ie.encrypt() ;
ie.decrypt() ;

ICompress ic = o ;
ic.compress() ;
ic.decompress() ;

IAuthenticate ia = o ;
ia.login() ;

Chapter 14: Polymorphism 263

ia.logout() ;
}

}

Given below is the output of the program...

>> encrypt
>> decrypt
>> compress
> > decompress
> > login
> > logout

Few things that you can notice about the program are
(a) The class FocusedView implements three interfaces— lEncrypt,

ICompress and IAuthenticate. The order in which the interfaces are
mentioned in the list while defining the class does not matter.

(b) In main() we have created a FocusedView object, assigned its
address to an interface reference (say ICompress) and then called
the methods (Compress() and Decompress()) that belongs to that
interface (ICompress).

(c) If we call the method Compress() using authentication interface
reference ia, it would result into a compilation error. This means
using an interface reference only methods belonging to that
interface alone can be called.

(d) While typing the program when we type "ia.", the help shows only
those methods that belong to IAuthenticate interface. This makes
the development of the FocusedView class easy, as we get to
concentrate only on that part of the class which we are developing
right now.

(e) Though the FocusedView class implements only interfaces, we may
as well derive FocusedView from another class. In that case, while
defining the class the base class name should precede the
interfaces as shown below.

class FocusedView extends BaseClass implements IEncrypt,
ICompress, IAuthenticate

{
// code

}

264 Let Us Java

Interfaces-Different Implementations
There are different ways in which we can maintain data in memory. For
example, we can store it in an array or a linked list. Each of these data
structures would organize the same data in different manner. Hence the
actual implementation of operations like counting number of elements,
adding a new element, removing an existing element, etc. would be
different for these two data structures. However, it would be nice if the
way to use these operations remains same. Thus, no matter whether we
are using an array or a linked list, we should be able to get the current
number of elements in any of them by calling the method count().
Likewise, it should be possible to add a new element to each of them by
calling the method add(). This is possible using an interface as shown in the
following program:

// Same interface, different implemenations
package differentimplementationsproject ;

interface IListMethods
{

int count() ;
void add (Object o) ;
void remove (Object o) ;

}
class MyArray implements IListMethods
{

@Override public int count()
{

System.out.println (">> MyArray.count") ;
return 0 ;

}
@Override public void add (Object o)
{

System.out.println (">> MyArray.add") ;
}
@Override public void remove (Object o)
{

System.out.println (">> MyArray.remove") ;
}

}
class MyLL implements IListMethods
{

@Override public int count()

Chapter 14: Polymorphism 265

{
System.out.println (">> MyLL.count") ;
return 0 ;

}
@Override public void add (Object o)
{

System.out.println (">> MyLL.add") ;
}
@Override public void remove (Object o)
{

System.out.println (">> MyLL.remove") ;
}

}
public class DifferentImplementationsProject
{

public static void main (String[] args)
{

IListMethods i ;

i = new MyArray() ;
i.add (1) ;
i.remove (1) ;
i.count() ;

i = new MyLL() ;
i.add (1) ;
i.remove (1) ;
i.count() ;

}
}

The program produces the following output:

>> MyArray.add
>> MyArray.remove
>> MyArray.count
>> MyLL.add
>> MyLL.remove
>> MyLL.count

Here we have defined an interface IListMethods containing methods
count(), add() and remove(). All these methods have been

266 Let Us Java

implemented in the classes MyArray and MyLL. In main() we have
created objects of MyArray and MyLL, stored their references in the
interface reference i and then called the three methods in turn. In each
method we have just printed a message. In true implementation the
methods would contain the logic for counting, addition or deletion.

Same interface, but different implementation is a very common theme
followed in good object-oriented software development. Java permits us
to use this feature through interfaces.

Interfaces-Unrelated Inheritance
We know that we cannot inherit a class from multiple base classes.
However, it is possible to create a class which inherits from one base class
and implements one or more interfaces. But when would such a need
arise? The need arises when we wish to inherit desired qualities from
unrelated sources. For example, a person may want to inherit looks of
"John Abraham" and character of "Dr. Abdul Kalam". Looks of a person may
include hairstyle, whereas character may include patriotism. These are
unrelated qualities. Also, we cannot create a Person class and then inherit it
from Actor class and Character class, as multiple inheritance is not
permitted in Java. Moreover, you can appreciate that looks can be
inherited, whereas character has to be implemented. So to represent this
scenario we can create an Actor class and an ICharacter interface. Then we
can create another class Person which is derived from Actor class and
implements ICharacter interface. This is shown in the following program:

// Demonstrates inheritance from unrelated sources
package unrelatedinheritanceproject ;

interface ICharacter
{

void patriotism() ;
}
class Actor
{

protected String hairstyle = "Spikes" ;

public void style()
{

System.out.println (">> Actor.Style: " + hairstyle) ;
}

}

Chapter 14: Polymorphism 267

class Person extends Actor implements ICharacter
{

public void doActing()
{

System.out.println (">> Person.doActing") ;
}
public void style()
{

super.style() ;
System.out.println (">> Person.style") ;

}
public void patriotism()
{

System.out.println (">> Character.patriotism") ;
}

}
public class UnrelatedInheritanceProject
{

public static void main (String[] args)
{

Actor m ;
Person p ;

p = new Person() ;
m = p ;
m.style() ;

ICharacter i ;
i = p ;
i.patriotism() ;

}
}

Here, we have created a base class called Actor and an Interface called
ICharacter. The base class has a method called style() and the interface has
a method called patriotism(). Then we have created a class called Person.
This class inherits from Actor class and implements ICharacter interface. In
main() we have created an object of Person class and stored its address in
Actor reference m as well as ICharacter reference i. Then using m and i we
have called the style() and patriotism() methods. The output of the
program is given below.

268 Let Us Java

>> Actor.Style: Spikes
>> Person.style
>> Character.patriotism

[A] State whether the following statements are True or False:

(a) Java permits calling of derived class functions using a base class
reference.

(b) Abstract functions can never have a body, whereas Abstract
constructors can have a body.

(c) We can never build an object from an abstract class.

(d) While building an object it doesn't matter whether the base class
constructor is called first or the derived class constructor is called
first.

(e) Which of the following statements are correct about Interfaces
used in Java?

1. All interfaces are derived from an Object class.

2. Interfaces can be inherited.

3. All interfaces are derived from an Object interface.

4. Interfaces can contain only method declarations.

5. Interfaces can contain static data and methods.

6. One class can implement only one interface.

7. In a program if one class implements an interface then no other
class in the same program can implement this interface.

8. From two base interfaces a new interface cannot be inherited.

9 Interfaces cannot be inherited

Chapter 14: Polymorphism 269

12. A class that implements an interface can explicitly implement
members of that interface.

13. The functions declared in an interface have a body.

14. Interfaces members are automatically public.

15. To implement an interface member, the corresponding member
in the class must be public as well as static.

16. An explicitly implemented member can be accessed through an
instance of the interface.

17. Interfaces can be overloaded.

18. A class can implement multiple interfaces.

19. An interface can implement multiple classes.

20. The static attribute can be used with a method that implements
an interface declaration.

[B] Answer the following questions:

(a) How are interfaces different from classes?

(b) Does Java support partial implementation of interfaces?

(c) Which different type of polymorphism does Java support?

[C] Pick up the correct alternative for each of the following questions:

(a) If a function fun() is overloaded multiple times in a class, then calls
to this function are bound at
(1) compile time
(2) preprocessing time
(3) execution time
(4) linking time

(b) "Function binding" means
(1) deciding which function to call
(2) deciding which function to define
(3) deciding which function to compile
(4) deciding which function to assemble

270 Let Us Java

(c) A class Trial and a class Example implement an interface called
IAuthenticate. Which of the following concept is being put to work
here?
(1) Containership
(2) Polymorphism
(3) Operator overloading
(4) Static binding

(d) If a class contains an abstract function, the class must be
(1) singleton
(2) abstract
(3) static
(4) friend

(e) From which class is any abstract class derived?
(1) Base
(2) Object
(3) Abstract
(4) Appropriate preprocessor for those devices

(f) What will happen on execution of this code snippet?

abstract class One
{

public abstract void display() ;
}
One o = new One() ;

(1) An object of class One will get created
(2) Error, since class One doesn't contain a constructor
(3) Error, since an object cannot be created from an abstract class
(4) (2) and (3)

u Upcasted reference - when a base class reference contains address of
derived class object

• Binding means deciding which function to call

• If binding is done at the time of compilation it is called Early Binding

Chapter 14: Polymorphism 271

If binding is done at the time of execution it is called Late Binding

Java - Always uses Late Binding (Dynamic Dispatch)

C++ - Does Early Binding when possible and Late Binding when Early
Binding is not possible

Early Binding is also known as Static Binding or Compile time Binding

Late Binding is also known as Dynamic Binding or Runtime Binding

For Late Binding the function being called must be present in base
class as well as derived class

To prevent an object from getting created from a class declare it as
abstract class

t To prevent a base class method getting called through derived class
object mark the method as abstract in the base class

• An abstract class can contain :

Abstract & non-abstract functions
Abstract methods do not have a body
Instance & static variables
Variables may be inherited

• Abstract classes can participate in inheritance

• if a class contains abstract methods, class has to be abstract

Interface is an entity through which we interact with a system,
person, organization, etc.

• Examples of Hardware Interfaces - RS232, USB, PCI, I2C, SATA

• Examples of Software Interfaces - Text, GUI

• Example of Programming Interface - Functions / Methods

• An interface is a collection of functions declarations

272 Let Us Java

• Implementation (definition) of functions declared in an interface
is done in classes that implement the interface

• Different classes may implement the same interface

• A class can implement any number of interfaces

• Interface indicates what a class must do

• Definition of interface functions indicate how to do it

• Difference between Interface and Abstract class :

Functions :
- Abstract class functions may have a body
- Interface functions never have a body
Instance variables :
- Abstract class may contain variables. These variables may be

inherited
- Interface may contain variables. These variables are by default

static and final

• Interfaces are useful in 3 situations :

- When similar operation are to be performed on different
collections

- When a focused view is needed in a large implementation
- When a class has to inherit desired qualities from unrelated

sources

Exceptions can't be eliminated completely. They are bound to
occur in a Java program. You better know how to deal with
them in an OO manner...

273

274 Let Us Java

• Exception Handling in Java
• Catching Multiple Exceptions
• The finally Block
• User-defined Exceptions
• A More Practical Example

Define the Exception Class
Throw an Exception
The try Block
The Exception Handler (catch Block)
How the Whole Thing Works?

• A Few Tips...
• Exercises
• KanNotes

Chapter 15: Exception Handling 275

Programming is a difficult art. No matter how much confidence you
have in your programming ability, several things may wrong during
its development. This includes typing errors, compilation errors, linking

errors runtime errors. The first three types of errors are comparatively
easy to tackle. But when errors occur during execution, your program
has to deal with the situation in an elegant fashion. This chapter
discusses how to deal with such types of errors.

The errors that occur at runtime—i.e., during execution of the
program—are called Exceptions. The reasons why exceptions occur are
numerous. Some of the more common ones are as follows:

(a) Falling short of memory
(b) Inability to open a file
(c) Exceeding the bounds of an array
(d) Attempting to initialize an object to an impossible value
(e) Division by zero
(f) Stack overflow
(g) Arithmetic over flow or under flow
(h) Attempt to use an unassigned reference
(i) Unable to connect to Server

When such exceptions occur, the programmer has to decide a strategy
according to which he would handle the exceptions. The strategies could
be, displaying error messages on the screen, or displaying a dialog box in
case of a GUI environment, or requesting the user to supply better data
or simply terminating the program execution. Which of these strategies
would be adopted depends on whether the exceptional condition can be
anticipated or not. Figure 15.1 shows some examples of these
exceptional conditions.

276 Let Us Java

Exception Handling in Java
Java provides a systematic, object-oriented approach to handling
runtime errors. The exception mechanism of Java uses three keywords—
throw, catch, and try. Let us understand their purpose.

Suppose during the course of execution of a member function of a class
an error occurs, then Java runtime informs the application that an error
has occurred. This process of informing is called throwing an exception.
This involves two steps:

(a) Creating an object called exception object and storing information
about the exceptional condition in it.

(b) Throwing the exception object using the keyword throw.

Java runtime creates the exception object from ready-made exception
classes provided in the Java Library. Each exception class represents a
different exception situation. For example there is an exception class
that represents a divide by zero situation, another which represents
inability to open file, etc. All these classes are derived from a base class
called Exception, which in turn is derived from an Object class.

If we anticipate an exception situation other than the ones represented
through these exception classes, then we can define our own exception
class, create an object from this class and then throw that object to
report the error situation. To begin with, we would concentrate on

Chapter 15: Exception Handling 277

exceptions reported by Java runtime and later move to user-defined
exceptions. The essence of organization of exception classes is captured
in Figure 15.2.

The code in the application that anticipates an exception to occur during
its execution is enclosed in a try block. When the exception occurs and
an exception object is thrown the control is transferred to another
section of code in the application called exception handler or a catch
block. Thus runtime errors generated in the try block are caught in the
catch block. Code that doesn't expect an exception to occur need not be
present within the try block.

The following code snippet shows the organization of try and catch
blocks. It is not a working program, but it clearly shows how and where
the various elements of the exception mechanism are placed.

package exceptionexampleproject ;

public class ExceptionExampleProject
{

public static void main (String[] args)
{

// normal code
// try block - code where an exception condition is anticipated
try

278 Let Us Java

{
fun() ;

}
catch (Exception e) // exception handler or catch block
{

// do something about the error
}

}
public static void fun()
{

// if some error occurs during execution of this function then:
// (a) Java runtime would create an exception object
// (b) Java runtime would throw the exception object
// on throwing the exception object control would reach
// the catch block

}
}

Here fun() is a function in which an exception may occur during
execution. Hence the call to fun() has been placed in the try block. If an
exception indeed occurs during execution of fun() then the Java
runtime creates an exception object and throws it. This thrown
exception object is caught in Exception reference e in the catch block
that immediately follows the try block.

There are three things that our code can do on receiving a thrown
object. These are as follows:
(a) Do nothing and let the default exception handler handle the

exceptional condition

(b) Rectify the situation that led to the exceptional condition and
continue the execution

(c) Perform a graceful exit

These three possibilities are depicted in Figure 15.3.

Chapter 15: Exception Handling 279

Figure 15.3

Let us now see programs for all these cases to get a real grasp of these
situations. Here is the first one..

// Case 1 - Do nothing when an exception occurs
package case1project ;
import java.io.* ;

public class Case1Project
{

public static void main (String[] args) throws
NumberFormatException

{
int num ;
try
{

BufferedReader br = new BufferedReader (
new InputStreamReader (System.in)) ;

System.out.print ("Enter a number: ") ;
num = Integer.parseInt (br.readLine()) ;
System.out.println (num) ;

280 Let Us Java

}
catch (IOException e)
{

System.out.println ("Error in input") ;
}

}
}

Given below is the sample run of this program...

Enter a number: 12a
Exception in thread "main" java.lang.NumberFormatException: For input

string: "12a"
at java.lang.NumberFormatException.forInputString(NumberFormat

Exception.java:48)
at java.lang.Integer.parseInt(Integer.java:456)
at java.lang.Integer.parseInt(Integer.java:497)
at case1project.Main.main(Case1Project.java:15)

Java Result: 1

In our code there are two possible places where things may wrong:

(a) While reading using readLine()
(b) While converting string into integer using parseInt()

How do we know this? Well, these functions have advertised these
exceptions through their prototypes, which read like this

public String readLine() throws IOException
public static int parseInt (String s) throws NumberFormatException

As you can see, these prototypes indicate that if something goes wrong
with readLine(), then it would throw IOException and if something goes
wrong with parseInt(), then it would throws NumberFormatException.
This is known as advertising an exception.

For these advertised exceptions, we may adopt any of the following
three approaches:

(a) Catch both the exceptions ourselves.
(b) Catch one and throw the other further, so that the default

exception handler can deal with it.
(c) Throw both the exceptions further, so that the default exception

handler can deal with them.

Chapter 15: Exception Handling 281

In our program we have followed approach (b)—we have caught
IOException and thrown further the NumberFormatException.

From the output of the program you can see that when we enter the
number as "12a" and attempt to convert it into a string through a call to
Integer.parseInt(), an exception occurs. Since we have thrown this
exception further, the Java runtime prints a stack trace and then
terminates the execution of the program. You should read the stack
trace from bottom to top. If you do that, you can follow that the error
occurred in the file "Case1Project" while executing line number 15. This
line is present in main() and contains a call to Integer.parseInt(). And
during execution of this function an exception occurred, as the input
"12a" could not be converted into a number. Finally, it also reports the
name of the exception—NumberFormatException.

Let us now look at the second case, where we would attempt to rectify
the exception situation by prompting the user to provide correct input
and then continue the execution of the program from the point where
the exception occurred. Here is the program...

// Case 2 - Rectify and continue when an exception occurs
package case2project ;
import java.io.* ;

public class Case2Project
{

public static void main (String[] args)
{

int num ;
while (true)
{

try
{

BufferedReader br = new BufferedReader (
new InputStreamReader (System.in)) ;

System.out.println ("Enter a number: ") ;
num = Integer.parseInt (br.readLine()) ;
break ;

}
catch (IOException e)
{

282 Let Us Java

System.out.println ("Error in input") ;
}
catch (NumberFormatException e)
{

System.out.println ("Incorrect Input") ;
}

}

System.out.println ("You entered: " + num) ;
}

}

Shown below is a sample interaction with this program.

Enter a number:
12a
Incorrect Input
Enter a number:
12
You entered: 12

As you can see, when we provide the input as "12a" an exception
occurs. But rather than terminating the execution, this time the program
prompts the user to enter another number. When we supply "12", it
gets converted into a number and then displayed Thus, we are now able
to rectify the exceptional situation and continue with the execution of
the program.

You can note three things about the catch block:
(a) catch block must immediately follow the try block.
(b) When an exception occurs, control goes to catch block.
(c) After catch block is executed, control goes to the next line after

catch block unless there is a return or throw in the catch block.
Let us now turn our attention to case 3. It may not always be possible to
recover from the exceptional situation. In such cases rather than
printing the ugly and intimidating stack trace to the user, our program
should report an error and gracefully terminate the execution. The
program given below shows how this can be achieved.

// Case 3 - Exit gracefully when an exception occurs
package case3project ;
import java.io.* ;

Chapter 15: Exception Handling 283

public class Case3Project
{

public static void main (String[] args)
{

int num ;
try
{

BufferedReader br = new BufferedReader (
new InputStreamReader (System.in)) ;

System.out.println ("Enter a number: ") ;
num = Integer.parseInt (br.readLine()) ;
System.out.println ("You entered: " + num) ;

}
catch (IOException e)
{

System.out.println ("Error in input") ;
}
catch (NumberFormatException e)
{

System.out.println ("Incorrect Input") ;
}

}
}

From the interaction with the program shown below, you can see that
when we supply the input as "12a" the program reports that the input is
incorrect and then terminates the execution.

Enter a number:
12a
Incorrect Input

Catching Multiple Exceptions
If one thing can go wrong then multiple things may also go wrong. So
true in real life, this is also true in programming. That is, while executing
a piece of code there is a possibility of multiple exceptions. These can be
tackled by providing multiple catch blocks for one try block. A program
that illustrates how this can be done is given below.

284 Let Us Java

// Multiple exceptions
package multipleexceptionsproject ;
import java.io.* ;

public class MultipleExceptionsProject
{

public static void main (String[] args)
{

int i, j ;
try
{

BufferedReader br = new BufferedReader (
new InputStreamReader (System.in)) ;

System.out.println ("Enter i: ") ;
i = Integer.parseInt (br.readLine()) ;

System.out.println ("Enter j: ") ;
j = Integer.parseInt (br.readLine()) ;

System.out.println ("You entered: " + i + " "+ j) ;
System.out.println ("Result: "+ i / j) ;

}
catch (IOException e)
{

System.out.println ("Error in input") ;
}
catch (NumberFormatException ne)
{

System.out.println ("Incorrect Input") ;
}
catch (ArithmeticException ae)
{

System.out.println ("Arithmetic Exception, div by 0") ;
}
catch (Exception e)
{

System.out.println ("Unknown Error: " + e) ;
}

}
}

Chapter 15: Exception Handling 285

Here we have accounted for three possibilities while executing the code
in the try block. These are as follows:

(a) The input is incorrect, i.e., a value like "12a" is entered
(b) The denominator is equal to 0
(c) Some unknown error

To deal with each of these situations we have provided separate catch
blocks. Based on which exception occurs, the Java runtime creates an
appropriate exception object and throws it. That is why in each catch
block the thrown object is collected in a different exception object. For
example, if the input is incorrect then the exception object that is
thrown is collected in an object of the type NumberFormatException.
Unlike this, if the denominator is 0 then the exception object that is
thrown is collected in an object of the type ArithmeticException.

There are two important things that you should note here:

(a) At a time only one catch block goes to work.
(b) Order of catch blocks is important. Their order should be derived to

base as regards the exception object.

Let us elaborate the second point mentioned above. Since the
NumberFormatException and ArithmeticException classes are derived
from the Exception class, their catch blocks should occur before the one
that catches an Exception object.

The finally Block
At times, we want that no matter whether an exception occurs or not,
some statements must get executed. The finally block is the solution for
these situations. The program given below illustrates its usage.

// Usage of finally block
package finallyblockproject ;
import java.io. ;*

public class FinallyBlockProject
{

public static void main (String[] args)
{

FileWriter fw = null ;

286 Let Us Java

try
{

fw = new FileWriter ("a.txt") ;
fw.write ("Hello World\n") ;

}
catch (IOException ie)
{

System.out.println ("Encountered IO Error") ;
}
finally
{

try
{

if (fw != null)
fw.close() ;

}
catch (IOException e)
{

System.out.println ("Error in input") ;
}

}
}

}

Though we intend to deal with File Input/Output in great detail in a later
chapter, in this program we can have our first tryst with it. To write data
into a disk file, we must first create a FileWriter object by passing to its
constructor the name of the file into which we propose to write. The
actual writing is done by calling the write() function of the FileWriter
class. If an exception occurs during construction of the FileWriter object
or during writing, then the catch block would appropriately report it.

Now comes the crucial part—no matter whether writing is done
successfully or not, before exiting the file that has been opened by the
constructor, must be closed. The finally block serves this purpose.
Statements in the finally block always get executed no matter whether
an exception occurs or not. This is true even if a return statement is
encountered beforehand. As you must have guessed, finally is a
keyword, and is used following the catch block(s). In our finally block we
have first checked whether the FileWriter object has been created
successfully. If so, we have called the close() method to close the file
associated with the FileWriter object.

Chapter 15: Exception Handling 287

User-defined Exceptions
In all the programs in this chapter we have been using exception objects
created from Java exception classes. It is time we explore the possibility
of user-defined exception classes. Such classes are required when an
exception condition that occurs cannot be represented using the
standard exception classes. For example, a banking application may
throw an exception when the amount being withdrawn makes the
balance in an account go below the minimum prescribed limit. Another
example could be when the amount of transaction in a credit card
application is more than the credit limit of a credit card. In such cases
we need to define our own exception class, and when an exception
occurs, we need to create an object of this exception class and throw it.
The following program illustrates this in a simple banking application:

// Usage of user-defined exception
package userdefinedexceptionproject ;

class Customer
{

private String name ;
private int accno ;
private int balance ;

public Customer (String n, int a, int b)
{

name = n ; accno = a ; balance = b ;
}
public void withdraw (int amt) throws BankException
{

if (balance - amt <= 500)
{

throw new BankException (accno, balance) ;
}

balance -= amt ;
}

}
class BankException extends Exception
{

private int acc ;
private int bal ;

288 Let Us Java

public BankException (int a , int b)
{

this.acc = a ;
this.bal = b ;

}
public void inform()
{

System.out.println ("Acc. No.: "+ acc) ;
System.out.println ("Balance: "+ bal) ;

}
}
public class UserDefinedExceptionProject
{

public static void main (String[] args)
{

try
{

Customer c = new Customer ("Rahul", 2453, 900) ;
c.withdraw (450) ;

}
catch (BankException ex)
{

System.out.println ("Transaction failed") ;
ex.inform() ;

}
}

}

Given below is the output of the program...

Transaction failed
Acc. No.: 2453
Balance: 900

In this program apart from the normal class that contains main(), we
have defined two new classes—Customer and BankException. From
main() we have constructed an object of Customer class to contain
name, account number and balance amount. Then we have called the
withdraw() method from the try block to withdraw an amount of Rs.
450 from the customer's account. Since the amount being withdrawn
makes the balance go below Rs. 500, an exception occurs. To represent

Chapter 15: Exception Handling 289

this exceptional condition, an object of BankException (derived from
Exception class) class is created. The account number and current
balance values are stored in this BankException object. This object is
then thrown using the keyword throw. This takes the control
straightway to the catch block that matches the try block, from where
withdraw() method was called. In the catch block we have called the
method inform() which promptly displays the error message
"Transaction failed" along with account number and the current
balance.

A More Practical Example
Admittedly, the examples that we have used so far to understand
exception handling were a bit amateurish. Let's now try to use exception
handling in a more practical situation. We would try to implement a
stack data structure. We would use exception handling to report errors
in two situations:

(a) When the program attempts to store more objects in the stack than
what it can accommodate.

(b) When the program tries to remove an object from the empty stack.

Here is the program that uses exceptions to handle these two errors.

// Use of exceptions to report errors while maintaining a stack
package stackswithexceptionsproject ;
class Stack
{

private int capacity ;
private int size ;
private Object[] data ;

public Stack (int cap)
{

data = new Object[cap] ;
capacity = cap ;
size = 0 ;

}
public void push (Object o) throws StackException
{

if (size == capacity)
throw new StackException ("Stack full") ;

290 Let Us Java

data[size] = o ;
size++ ;

}
public Object pop() throws StackException
{

if (size <= 0)
throw new StackException ("Stack empty") ;

size-- ;
return data[size] ;

}
public int getSize()
{

return size ;
}

}
class StackException extends Exception
{

private String errormsg ;

public StackException (String msg)
{

this.errormsg = msg ;
}
public void inform()
{

System.out.println (errormsg) ;
}

}
public class StacksWithExceptionsProject
{

public static void main (String[] args)
{

Stack s = new Stack (3) ;
try
{

s.push ("Vinod") ;
s.push ("Sanjay") ;
s.push (25) ;
s.push (3.14f) ;

Chapter 15: Exception Handling 291

}
catch (StackException ex)
{

System.out.println ("Problem in stack") ;
ex.inform() ;

}

try
{

while (s.getSize() > 0)
System.out.println (s.pop()) ;

}
catch (StackException ex)
{

System.out.println ("Problem in stack") ;
ex.inform() ;

}
}

}

Given below is the output that the program produces on execution:

Problem in stack
Stack full
25
Sanjay
Vinod

We have purposefully kept the capacity of the stack small so that it's
easier to trigger an exception while adding objects to the stack. We
would leave it for you to go through the program and figure out how it
produces this output, as an exercise. Also, you can try to implement the
Queue data structure on similar lines as stack.

From the above two programs—Banking and Stack—we can now
generalize how to deal with user-defined exceptions. There are four
parts involved in the exception handling mechanism. These are as
under:

Define the Exception Class
We have defined such exception classes in our programs—
BankException and StackException. Both classes were inherited from

292 Let Us Java

Exception class and had a constructor using which an exception object
can be created. Additionally these classes had a method called inform()
to report the error message.

Throw an Exception
When an exception situation occurs an exception object is created and
thrown. In our first program an exception could occur in one situation —
when the balance goes below 500, whereas, in the second program
there were two exceptional situations—when the stack becomes full
and we try to store another object in it, or when we try to remove an
object from an empty stack. In the first program, we create and throw a
BankException object, whereas in the second we create and throw a
StackException object. On throwing an exception the control is
transferred to the exception handler, i.e., the catch block.

The try Block
The statements that might cause the exceptions have been enclosed in a
pair of braces and preceded by the try keyword. This code is the
programs' normal code. We would have written it even if we weren't
using exceptions. Note that all the code in the program need not be in a
try block. Just the code that anticipates occurrence of exceptional
condition during execution should be in try block..

The Exception Handler (catch Block)
The code that handles an exception is enclosed in braces, preceded by
the catch keyword, with the exception object that it proposes to catch
mentioned in parentheses.

How the Whole Thing Works?
Let's summarize the events that take place when an exception occurs:

(a) Code is executing normally outside a try block.
(b) Control enters the try block.
(c) A statement in the try block causes an error in a member function

called from it.
(d) The member function creates and throws an exception object.
(e) Control transfers to the exception handler (catch block) following

the try block.

You can appreciate how clean is this code. Just about any statement in
the try block can cause an exception, but we don't need to worry which

Chapter 15: Exception Handling 293

one. The try-throw-catch arrangement handles it all for us,
automatically.

A Few Tips...
To round off all that we have learnt about exception handling, here are a
few finer points about it that you must note:

(a) Don't catch and ignore. For example, it is a wrong practice to write
a catch block like this:

catch (Exception e)
{
}

Programmers are tempted to write this when runtime errors occur
in their program and they wish to avoid displaying of an ugly and
elaborate stack trace of the exception.

(b) Don't use exception handling for cosmetic purpose. It should serve
the purpose of rectifying the exceptional situation or perform a
graceful exit.

(c) Always try to distinguish between types of exceptions by writing
multiple catch blocks wherever relevant.

(d) It is not necessary that the statement that causes an exception be
located directly in the try block. It may as well be present in a
function that is being called from the try block.

(e) A try block can be present inside another try block.

(f) If inner try block doesn't have a corresponding catch block, then
the outer try block's catch handlers are inspected for a match when
an exception occurs.

(g) If we are writing a class library for somebody else to use, we should
anticipate what could cause problems to the program using it. At all
such places we should throw exceptions.

(h) If we are writing a program that uses a class library, we should
provide try and catch blocks for any exceptions that the library may
throw.

(i) Exceptions impose an overhead in terms of program size and (when
an exception occurs) in time. So we should not try to overuse it.
Make it optimally elaborate—not too much, not too little.

294 Let Us Java

[A] State whether the following statements are True or False:

(a) The exception handling mechanism is supposed to handle compile
time errors.

(b) It is necessary to declare the exception class within the class in
which an exception is going to be thrown.

(c) Every thrown exception must be caught.

(d) For one try block there can be multiple catch blocks.

(e) When an exception is thrown an exception class's constructor gets
called.

(f) try blocks cannot be nested.

(g) Proper destruction of an object is guaranteed by exception handling
mechanism.

(h) All exceptions occur at runtime.

(i) Exceptions offer an object-oriented way of handling runtime errors.

(j) If an exception occurs, then the program terminates abruptly
without getting any chance to recover from the exception.

(k) No matter whether an exception occurs or not, the statements in
the finally clause (if present) will get executed.

(l) A program can contain multiple finally clauses.

(m) finally clause is used to perform cleanup operations like closing the
network/database connections.

(n) While throwing a user-defined exception multiple values can be set

Chapter 15: Exception Handling 295

(p) An exception must be caught in the same function in which it is
thrown.

(q) All values set up in the exception object are available in the catch
block.

(r) If our program does not catch an exception then the Java Runtime
catches it.

(s) It is possible to create user-defined exceptions.

(t) All types of exceptions can be caught using the Exception class.

(u) For every try block there must be a corresponding finally block.

[B] Answer the following:

(a) If we do not catch the exception thrown at runtime then who will
catch it?

(b) Explain in short most compelling reasons for using exception
handling over conventional error handling approaches.

(c) Is it necessary that all classes that can be used to represent
exceptions be derived from base class Exception?

(d) What is the use of a finally block in Java exception handling
sequence?

(e) How does nested exception handling work in Java?

While creating and executing a Java program things may go wrong at
3 different stages :

During Compilation : Reported by - Compiler, Action - Rectify
program
During Linking : Reported by - Linker, Action - Proper import
statements

296 Let Us Java

During Execution (runtime) : Reported by - Java Runtime, Action -
Tackle it on the fly

Examples of Runtime errors :

Memory Related - Stack / Heap overflow, Exceeding the bounds of an
array
Arithmetic Related - Divide by zero, Arithmetic over flow or under
flow
Others - Attempt to use an unassigned reference, File not found

• 2 Types of Exceptional conditions :

(a) Checked Exceptions - Compiler checks whether they have been
handled

Ex. File not found, Insufficient memory
(b) Unchecked exceptions - Up to us whether to handle them or not

• 2 Types of Unchecked Exceptions :

(a) Due to Internal Condition - k/a Runtime Exceptions
Ex. : Passing null instead of filename

(b) Due to External Condition - k/a Errors
Ex. : Disk failure while reading

• How to determine - Checked or Unchecked

- Follow trail by clicking on exception
- It is a Checked Exception, i-f \|ou reach "Exception” class
- It is an Unchecked Exception, if ipu reach "RuntirneException” or

"Error” class

• When a method called from client code is executing an Exceptional
Condition may occur. This condition can be tackled in 2 Ways :

(a) Pack exception information in an object and throw it
(b) Let Java Runtime pack exception information in an object and

throw it

• Two things that can be done when the exception object is thrown :

(a) Throw it further
(b) Catch the object in client code

Chapter 15: Exception Handling 297

• if we throw the exception object further - Default exception handler
Catches the object, Prints Stack Trace & terminates

• if we catch the exception object in client code we can either perform a
Graceful exit or Rectify the exceptional situation & continue

• 2 ways to create Exceptional Condition objects

From Java APi exception classes
From User-defined exception classes

• Advantage of tackling exceptions in OO manner :

- More info can be packed into Exception objects
- Propagation of exception objects to caller is managed by Java

Runtime

• How Java facilitates OO exception handling :

- By providing keywords - try, catch, finally, throw, throws
- By providing readymade exception classes - For Checked as well

as Unchecked Exceptions
- Advertise - Let methods advertise possibility of an exception
- Force - Make users handle advertised exception

• How to use try - catch
try block - Enclose in it the code that you anticipate would cause an
exception
catch block - Catch the thrown exception in it. it must immediately
follow the try block

• When exception is thrown control goes to catch block. Once catch
block is executed, control goes to the next line after catch block(s),
unless there is a return or throw in the catch block

• When a method advertises that it will throw an exception, you have to
either catch or rethrow it.

• try block :

- Can be nested inside another try block
- if inner try doesn't have a catch, outer try's catch handlers are

inspected for a match

298 Let Us Java

c catch block :

- Multiple catch blocks for one try block are OK
- At a time only one catch block goes to work
- Order of catch blocks is important - Derived to Base

• finally block :

- finally clause is optional
- Code in finally always runs, no matter what! Even if a return or

break occurs first
- it is placed after catch blocks (if they exist)
- try block must have catch block and/or finally block

Exception handling tips :

- Don’t catch 4 ignore an exception
- Don't catch everything using "Exception”, distinguish between

types of exceptions
- Make it optimally elaborate - Not too much, not too little

No point in creating a program that tells secrets to itself. Input /
Output with the outside world is the way of life for a program...

299

300 Let Us Java

• Expectations from an I/O System
• File, Directory and Drive Operations
• The Java Streams Solution
• Stream Classes
• Byte and Character Operations
• Reading Strings from a File
• Record I/O
• User-defined Streams
• File Encryption/Decryption
• Exercises
• KanNotes

Chapter 16: Effective input/output 301

Almost all programs have to perform Input/Output (I/O) in some
form or the other. There is not much use of writing a program that
spends all its time telling a secret to itself. And since all languages have

been dealing with input/output since the very first program came into
existence, it is quite natural to expect that a modern object-oriented
language like Java provides a mature input/output system. This chapter
proposes to explore the ways provided by Java to effectively carry out
I/O needs of a program.

Expectations from an I/O System
Since mankind has been creating software and writing programs for
more than five decades now, a programmer has begun to expect some
solid support from a language's I/O system to cater to his/her program's
I/O needs. These expectations are as follows:
(a) Communication with different sources and destinations: A Java

program should be able to carry out reading operations from input
devices like keyboard, port, disk, etc., and perform writing
operations to disk, printer, port, etc.

(b) Capability to I/O varied entities: A Java program should be able to
I/O byte, char, numbers of all kinds, strings, records and objects.

(c) Multiple means of communication: A Java program should be able
to carry out I/O in different modes like sequential and random.

(d) Communication with file system: A Java program should be able to
interact with file system entities like files and directories and be
able to access and manipulate paths, times, dates, access
permissions, etc.

Let us now see how Java meets these expectations.

File, Directory and Drive Operations
We are often required to programmatically perform operations on files,
directories and drives. For example, we may wish to create, copy,
delete, move, or open a file. Similarly, we may wish to create, move, and
navigate through directories and subdirectories. To carry out such
operations Java library provides a ready-made class called File. Based on
the requirement, we can appropriately use the methods of this class to
carry out the relevant file/directory operations.

Let us now create programs that use the File class. We would begin with
one that receives name of a file as input and then checks whether such a

302 Let Us Java

file exists or not. If it does, then it reports the relevant information
about this file. Here is the program...

// Obtain information about a file
package fileinfoproject ;

import java.io.* ;
import java.util.Date ;

public class FileInfoProject
{

public static void main (String[] args) throws Exception
{

String str ;
try
{

BufferedReader br = new BufferedReader (new
InputStreamReader (System.in)) ;

System.out.print ("Enter filename: ") ;
str = br.readLine() ;

File f ;
f = new File (str) ;
if (f.exists())
{

String dname = f.getParent() ;
System.out.println ("Directory name: " + dname) ;
String fname = f.getName() ;
System.out.println ("File name: " + fname) ;
String abspath = f.getAbsolutePath() ;
System.out.println ("Full Name: " + abspath) ;

long size = f.length() ;
System.out.println ("Size: " + size) ;
String ext ;
int dot = str.lastIndexOf (".") ;
ext = str.substring (dot) ;
System.out.println ("Extension = " + ext) ;
System.out.println ("Last Modified = " +

new Date (f.lastModified())) ;
}

}

Chapter 16: Effective Input/Output 303

catch (IOException e)
{

System.out.println ("Error in input") ;
}

}
}

And now a sample interaction with this program...

Enter filename: c:\a.txt
Directory name: c:\
File name: a.txt
Full Name: c:\a.txt
Size: 2748
Extension = .txt
Last Modified = Tue Feb 09 16:29:24 IST 2010

The program is pretty straight-forward. To begin with, it receives the
name of the file— "C:\a.txt" (you may give any other file's path as input).
Next, it creates a File object for this file and then extracts all the details
of this file using different methods of the File class. To be able to use the
File class and the Date class it is necessary to add the suitable import
statements at the beginning of the program.

In addition to the methods used here, there are several other methods
in the File class. You may explore them on your own.

Let us now create a program that gives a listing of all files in a directory.
Here is the program...

// Recursive listing of files in directories
package directorylisterproject ;
import java.io.* ;

public class DirectoryListerProject
{

public static void main (String[] args)
{

File d ;
d = new File (".") ;
ListFiles (d, "") ;

}
static void ListFiles (File d, String indent)

304 Let Us Java

{
String str ;
System.out.println (indent + d.getName() + "/") ;
for (File fi : d.listFiles())
{

str = indent + " " + fi.getName() ;
System.out.println (str) ;

}

// implement accept function of FileFilter interface
FileFilter dirFilter = new FileFilter()
{

public boolean accept (File file)
{

return file.isDirectory() ;
}

}

for (File di : d.listFiles (dirFilter))
ListFiles (di, indent + " ") ;

}
}

On executing the program on my machine it produced the following
output:

./
build
build.xml
manifest.mf
nbproject
src
build/
classes
classes/
.netbeans_automatic_build
.netbeans_update_resources
directorylisterproject
directorylisterproject/
DirectoryListerProject$1.class
DirectoryListerProject.class

nbproject/

Chapter 16: Effective Input/Output 305

build-impl.xml
genfiles.properties
private
project.properties
project.xml
private/
private.properties

src/
directorylisterproject
directorylisterproject/

DirectoryListerProject.java

In the output every directory has been purposefully marked with a / to
help identify an entry as a directory. Each nested directory is indented to
the right to show the hierarchy clearly.

At the heart of the program is the function ListFiles(). This function is
first called from main() with two arguments—"." and "". The first
argument indicates from where to start the listing and second indicates
the starting indentation level. "." means current directory. Thus, for our
program DirectoryListerProject is the starting directory. In the
ListFiles() function we have first obtained and printed all files in this
directory. In course of this, if we came across any directory then we
have called ListFiles() recursively to list files in this directory.

Let us now look at another interesting program. This one obtains and
reports information about all the drives present in a machine. To obtain
the list of drives, it uses the listRoots() method of the File class. Then
through a for loop it iterates through this list, gathering details of each
drive using the methods of the File class. Rest of the program is pretty
straight-forward. Here is the program...

// Obtain information about all drives
package driveinfoproject ;
import java.io.* ;

public class DriveInfoProject
{

public static void main (String[] args)
{

for (File d : File.listRoots())
{

System.out.println ("Drive = " + d) ;

306 Let Us Java

System.out.println ("Total Space = "+ d.getTotalSpace()) ;
System.out.println ("Free Space = "+ d.getFreeSpace()) ;
System.out.println (" ") ;

}
}

}

The machine on which I executed this program had 6 drives. Out of
these 3 were hard disk drives whereas the other 3 were DVD reader,
DVD read/write drive and a virtual drive. The output that I got on this
machine is given below.

Drive = C:\
Total Space = 179583315968
Free Space = 18052345856

Drive = D:\
Total Space = 59624124416
Free Space = 20760801280

Drive = E:\
Total Space = 10737414144
Free Space = 6717689856

Drive = F:\
Total Space = 0
Free Space = 0

Drive = G:\
Total Space = 0
Free Space = 0

Drive = H:\
Total Space = 0
Free Space = 0

The Java Streams Solution
To meet the expectations of a mature I/O system Java designers decided
that all I/O should be performed using I/O Streams. A stream is a
sequence of bytes that travel from source to destination over a
communication path. A program can read data from a stream or write
data to a stream. The streams are linked to physical devices by Java I/O
system. Most of the communication details are hidden from us by the
I/O system and we are required to concentrate only on what we wish to

Chapter 16: Effective Input/Output 307

read from where, and what we wish to write where. Figure 16.1 should
help you understand this concept better.

Streams are implemented using classes in java.io package. This
abstraction of I/O operations using streams offers one important
benefit—no matter from where we are reading or where we are writing,
stream behaves similarly. For example, whether we are reading from a
keyboard or a disk we call the same readLine() method. The
implementation of the readLine() method is different for different
devices. Thus because of stream-based I/O the programmer doesn't
have to worry about the specific details of the operating system and
underlying devices while performing I/O as shown in Figure 16.2. The
differences in the devices and the OS are hidden away from us into
different stream classes in the java.io package.

The two fundamental operations that can be performed on a stream are
Reading and Writing. Reading involves transfer of data from a stream
into a data structure, such as an array of bytes. Writing consists of
transfer of data from a data source into a stream.

308 Let Us Java

Every stream may not support reading and writing. Most stream classes
contain methods called canRead() and canWrite() using which we can
determine which operations that stream supports.

Stream Classes
There are two fundamental types of streams-Byte streams and
Character streams. Byte streams perform I/O 1 byte at a time, whereas
Character streams perform I/O one char (2 bytes) at a time. For
example, an integer 235 when written to a byte stream would involve
transfer of 4 bytes, since an integer is 4 bytes long. The same integer
when written to character stream would need transfer of 6 bytes—2
bytes per character.

There are several classes available in the Java library to perform stream­
based input/output of bytes/characters. Figure 16.3 and Figure 16.4
show the hierarchy of these classes.

Figure 16.3

The classes InputStream and OutputStream are abstract classes. From
these classes FileInputStream and FileOutputStream are derived. As
their names suggest, these classes read/write streams of bytes from/to
file. The FilterInputStream class uses some input stream as source of
data and filters it based on some criterion. The BufferedInputStream
class provides the buffering ability. Buffering is used to improve
read/write performance of a stream. The DataInputStream class
provides ability to read Java primitives.

Chapter 16: Effective Input/Output 309

Figure 16 .4 shows the hierarchy of classes used for performing character
based input/output.

Figure 16.4

The classes Reader and Writer are abstract classes. The classes
InputStreamReader and OutputStreamWriter are used to read/write
character from/to stream. The FileReader and FileWriter classes are
used to read/write from/to file. The PrintWriter class is used to carry
out formatted writing in text representation.

Byte and Character Operations
Let us now create programs that use the different stream classes. We
would begin with a program that writes an integer in multiple ways into
a file. Here is the program...

package byteandcharacterstreams ;
import java.io.* ;

public class ByteAndCharacterStreams
{

public static void main (String[] args)
{

int i = 123456 ;
try
{

310 Let Us Java

rawWrite (i) ;
charWrite (i) ;
unicodeWrite (i) ;

}
catch (IOException e)
{

System.out.println ("IO error") ;
}

}
static void rawWrite (int i) throws IOException
{

DataOutputStream ds = new DataOutputStream (
new FileOutputStream ("Stream.txt")) ;

ds.writeInt (i) ;
ds.close() ;
System.out.println ("Wrote 123456 as an integer") ;
System.out.print ("Length of file = ") ;
System.out.println (new File ("Stream.txt").length()) ;

}
static void charWrite (int i) throws IOException
{

FileWriter fw = new FileWriter (new File ("Char.txt")) ;
fw.write (((Integer) i).toString()) ;
fw.close() ;
System.out.println ("Wrote 123456 as a string") ;
System.out.print ("Length of file = ") ;
System.out.println (new File ("Char.txt").length()) ;

}
static void unicodeWrite (int i) throws IOException
{

OutputStreamWriter ow = new OutputStreamWriter (
new FileOutputStream ("CharU.txt"), "UTF-16") ;

ow.write (((Integer) i).toString()) ;
ow.close() ;
System.out.println ("Wrote 123456 as a Unicode string") ;
System.out.print ("Length of file = ") ;
System.out.println (new File ("CharU.txt").length()) ;

}
}

On executing this program, it produces the output shown below.

Chapter 16: Effective Input/Output 311

Wrote 123456 as an integer
Length of file = 4

Wrote 123456 as a string
Length of file = 6

Wrote 123456 as a Unicode string
Length of file = 14

The program writes the same integer into 3 files in different ways. For
example, it is written as an int in the first file, as a string in the second
and as a Unicode string in the third. These writing operations are done
through three methods defined in the program—rawWrite(),
charWrite() and unicodeWrite().

Note that after writing the same integer value (123456), the sizes of the
three files "Raw.txt", "Char.txt" and "CharU.txt" are reported as 4, 6 and
14 bytes, respectively. This indicates that during raw write, each byte
value of the 4-byte integer is written. Unlike this, during character
writing, the integer was first converted into a string "123456" and then
written to the file character-by-character. In Unicode writing, each
character of the string was written as a 2-byte character.

Before writing to a file, the file is opened using either the
FileOutputStream or File object. While writing the integer as an int, a
DataOutputStream object is used, whereas, while writing it as a string
or a Unicode string, a FileWriter and OutputStreamWriter, respectively
are used. Objects of these writers are created before using them to call
the writeInt() and write() methods. Instead of the statement,

DataOutputStream ds = new DataOutputStream (
new FileOutputStream ("Stream.txt")) ;

we can split it into two parts

fos = new FileOutputStream ("Stream.txt") ;
DataOutputStream ds = new DataOutputStream (fos) ;

The close() function is called at the end of writing operations to close
the current stream and release any resources associated with the
current stream.

Rest of the program is simple to understand. You can modify this
program to write float values to a file.

312 Let Us Java

Reading Strings from a File
Let us now create a program which can read a file's contents and display
them on screen. For this we would read the file contents a line at a time,
means as a string of characters. Here is the program...

package displayfilecontents ;
import java.io.* ;

public class DisplayFileContents
{

public static void main (String[] args) throws IOException
{

File f ;
f = new File ("D:\\DisplayFileContents\\src\\

displayfilecontents\\DisplayFileContents.java") ;

if (f.exists() && f.canRead())
{

BufferedReader br = null ;
try
{

br = new BufferedReader (new FileReader (f)) ;
String line ;
while ((line = br.readLine()) != null)

System.out.println (line) ;
}
catch (FileNotFoundException ex)
{

System.out.println ("Can't open " + f.getName()) ;
}
finally
{

if (br != null)
br.close() ;

}
}

}
}

When we run this program it displays the contents of the file
"DisplayFileContents.java". In the program, to begin with, we have

Chapter 16: Effective Input/Output 313

created a File object, and then using it, we have checked whether the
file exists, and whether we have a permission to read the file. If so, we
have proceeded to read the file a line at a time using the
BufferedReader object that has a FileReader object reference stored in
it. Every line read is displayed on the screen using println().

Record I/O
Suppose we wish to write records of employees into a file and then read
them back from the file and display them on the screen. Each record
contains id, name and salary of an employee. Here is the program...

// receives employee records, writes them to file,
// reads them back and displays them on screen
package recordio ;
import java.io.* ;

public class RecordIO
{

public static void main (String[] args) throws IOException
{

// prepare for writing records
FileOutputStream fos ;
fos = new FileOutputStream ("emp.dat") ;
OutputStreamWriter osw ;
osw = new OutputStreamWriter (fos) ;

// prepare for console input
InputStreamReader isr1 ;
isr1 = new InputStreamReader (System.in) ;
BufferedReader br1 = new BufferedReader (isr1) ;

// receive employee data, write it to file
String choice = "y", temp1, temp2, temp3 ;
while (choice.equals ("y"))
{

System.out.println ("Enter employee id: ") ;
temp1 = br1.readLine() ;

System.out.println ("Enter employee salary: ") ;
temp2 = br1.readLine() ;

314 Let Us Java

System.out.println ("Enter employee name: ") ;
temp3 = br1.readLine() ;

osw.write (temp1 + "@" + temp2 + "@" + temp3 + "\n") ;
System.out.println ("Want another (y/n): ") ;

choice = br1.readLine() ;
}
osw.close() ;

// prepare for reading records
FileInputStream fis ;
fis = new FileInputStream ("emp.dat") ;
InputStreamReader isr2 ;
isr2 = new InputStreamReader (fis) ;
BufferedReader br2 ;
br2 = new BufferedReader (isr2) ;

String rec, str[] ;

// read employee data, display it on screen
System.out.println ("\nEmployees Info: ") ;
while (true)
{

try
{

rec = br2.readLine() ;
str = rec.split("@", 3) ;
System.out.println ("Id: " + str[0]) ;
System.out.println ("Salary: " + str[1]) ;
System.out.println ("Name: " + str[2]) ;

}
catch (Exception e)
{

if (fis != null)
fis.close() ;

}
}

}
}

Chapter 16: Effective Input/Output 315

To begin with we have created objects of FileOutputStream, and
OutputStreamWriter classes. Of these, the FileOutputStream object is
used to write employee data to a file. To carry out this writing we have
used the function write(). Once a set of records are written, we have
closed the stream.

In the next part of the program, we have done the reverse—we have
read the data from the same file "emp.dat" and displayed it on the
screen. While reading, each record is read as a string. Hence to split it
into id, salary and name we have used the split() function. Here is the
sample interaction with the program...

Enter employee id: 101
Enter employee salary: 12000
Enter employee name: Dinesh
Want another (y/n): y
Enter employee id: 201
Enter employee salary: 13500
Enter employee name: Shailesh
Want another (y/n): y
Enter employee id: 301
Enter employee salary: 13300
Enter employee name: Seema
Want another (y/n): n

Employees Info:
101
12000.0
Dinesh
201
13500.0
Shailesh
301
13300.0
Seema

User-defined Streams
Apart from using the standard streams Java permits us to define our
own streams and their behavior. For example, we can define a filter
stream called UppercaseFilterStream which would convert all
characters passed through it into uppercase characters. Such a stream

316 Let Us Java

class should be derived from FilterStream class. The following program
illustrates how this can be done:

// Converts all chars read from a file into uppercase using a filter stream
package filterstreamproject ;
import java.io.* ;

class UppercaseFilterReader extends FilterReader
{

public UppercaseFilterReader (Reader s)
{

super (s) ;
}
public int read (char[] cbuf, int off, int count) throws IOException
{

int nb = in.read (cbuf, off, count) ;

for (int i = off ; i < off + nb ; i++)
cbuf[i] = transform (cbuf[i]) ;

return nb ;
}
private char transform (char ch)
{

if (Character.isLowerCase (ch))
return Character.toUpperCase ((char) ch) ;

return ch ;
}

}
public class FilterStreamProject
{

public static void main (String[] args) throws
FileNotFoundException, IOException

{
File f = new File ("C:\\a.txt") ;
if (f.exists())
{

UppercaseFilterReader ufr ;
BufferedReader br ;

ufr = new UppercaseFilterReader (

Chapter 16: Effective Input/Output 317

new FileReader ("C:\\a.txt")) ;
br = new BufferedReader (ufr) ;

String line ;
while ((line = br.readLine()) != null)

System.out.println (line) ;

br.close() ;
ufr.close() ;

}
}

}

On executing this program it opens the file "a.txt" from C:\ and converts
the text in it into uppercase. The uppercase characters are then
displayed on the screen. In my case the "a.txt" file contained some
interesting text. Once converted to uppercase it looked like this...

I CDNUOLT BLVEIEE TAHT I CLUOD AULACLTY UESDNATNRD WAHT I
WAS RDANIEG. THE PHAONMNEAL PWEOR OF THE HMUAN MNID,
AOCCDRNIG TO A RSCHEEARCH AT CMABRIGDE UINERVTISY, IT DSENO'T
MTAETR IN WAHT OERDR THE LTTERES IN A WROD ARE, THE OLNY
IPROAMTNT TIHNG is TAHT THE FRSIT AND LSAT LTTEER BE IN THE
RGHIT PCLAE.. THE RSET CAN BE A TAOTL MSES AND YOU CAN SITLL
RAED IT WHOTUIT A PBOERLM. TIHS IS BCUSEAE THE HUAMN MNID
DEOS NOT RAED ERVEY LTETER BY ISTLEF, BUT THE WROD AS A WLOHE.
AZANMIG HUH? YAEH AND I AWLYAS TGHUHOT SLPELING WAS
IPMORANTT!

The UppercaseFilterReader class is derived from the abstract class
FilterReader. We have added three methods to the
UppercaseFilterReader class. These are constructor, read() and
transform(). In the constructor, we simply pass the FileReader object
passed to it, to the base class constructor. The read() function reads the
specified number of bytes from a given offset position in the stream and
stores them in a buffer. It then calls the transform() function to
transform each character in the buffer into corresponding uppercase
character.

In main() we have first created a FileReader object. This object has then
been passed to the constructor of UppercaseFilterStream, which passed
it to the constructor of its base class—FilterReader. This class's

318 Let Us Java

constructor stores the object reference in a private variable. Next we
have created a BufferedReader object and stored in it the
UppercaseFilterStream object's reference. In both cases containership is
being used as shown in Figure 16.5.

BufferedReader

UppercaseFilterReader

FileReader

Figure 16 .5

Once the construction of objects is over, we have called the readLine()
method of BufferedReader class. This method in turn calls the read()
method of the UppercaseFilterStream class. Here firstly the characters
are read from the input stream by calling the read() method of
FileReader class. These characters are collected in the buffer cbuf. This
buffer's contents are then converted to uppercase by calling the
transform() function for each character in the buffer. Thus we are able
to change the behavior of a stream by implementing the desired
behavior through a filter stream class.

File Encryption/Decryption
Security has gained paramount importance in the digital world. Often
we wish to secure our data from others. There are various techniques
through which this can be done. One of the most common techniques is
to encrypt the data in such a fashion that even if the encrypted data falls
into other people's hands they are unable to obtain the original data
from it. At the same time we should be able to get back the original data
by decrypting the encrypted data. Many Encryption/Decryption schemes
are popularly used today to secure the data from misuse. Our intention
here is not to discuss these schemes. Instead, we wish to evolve a very
simple encryption/decryption scheme. In this scheme during encryption
we would replace every lowercase alphabet in the source stream with
another predetermined lowercase character. During decryption we
would do the reverse. This type of encryption/decryption scheme is
often called a Substitution Cipher. Given below is the program which
implements the Substitution Cipher.

Chapter 16: Effective Input/Output 319

// Substitution Cipher implementation
package substitutioncipherproject ;
import java.io.* ;

interface ITransform
{

public char transform (char ch) ;
}
class Encrypt implements ITransform
{

String str = "xyfagchbimpourvnqsdewtkjzl" ;

public char transform (char ch)
{

if (Character.isLowerCase ((char) ch))
ch = str.charAt (ch - (char) 'a') ;

return ch ;
}

}
class Decrypt implements ITransform
{

String str = "xyfagchbimpourvnqsdewtkjzl" ;

public char transform (char ch)
{

if (Character.isLowerCase ((char) ch))
ch = (char) (str.indexOf ((char) ch) + 'a') ;

return ch ;
}

}
class TransformWriter extends FilterWriter
{

private ITransform trans ;

public TransformWriter (Writer s, ITransform t)
{

super (s) ;
this.trans = t ;

}

320 Let Us Java

public void write (char[] buf, int off, int len)
{

for (int i = off ; i < off + len ; i++)
buf [i] = trans.transform (buf[i]) ;

try
{

out.write (buf, off, len) ;
}
catch (IOException ex)
{

System.out.println ("IO error") ;
}

}
}
public class SubstitutionCipherProject
{

public static void main (String[] args) throws IOException
{

doEncDec ("C:\\a.txt", "enc.txt", true) ;
doEncDec ("enc.txt", "dec.txt", false) ;

}
static void doEncDec (String source, String target,

boolean IsEncrypt) throws IOException
{

ITransform trans ;

if (IsEncrypt)
trans = new Encrypt() ;

else
trans = new Decrypt() ;

FileReader sstream ;
BufferedReader sr ;

sstream = new FileReader (new File (source)) ;
sr = new BufferedReader (sstream) ;

FileWriter tstream ;
TransformWriter tw ;
BufferedWriter sw ;

Chapter 16: Effective Input/Output 321

tstream = new FileWriter (new File (target)) ;
tw = new TransformWriter (tstream, trans) ;
sw = new BufferedWriter (tw) ;

String line ;
while ((line = sr.readLine()) != null)

sw.write (line + "\r\n") ;

sw.close() ;
sr.close() ;

}
}

We have three classes in this program—Encrypt, Decrypt and
TrasformWriter. Of these, the Encrypt and Decrypt classes implement
an interface called ITransform. This interface contains a function
transform() which is implemented to do encryption in the Encrypt class
and decryption in the Decrypt class.

Let us see how it does the encryption. It maintains an arbitrary string of
lowercase characters. Once it receives a character to be encrypted it
obtains an index value by doing the operation ch - 'a', where ch is the
character to be encrypted. It then uses this index value to pick a
character from the arbitrary string. Thus this character is used as a
substitute for the character to be encrypted. Decryption works in exactly
the reverse way. The character to be decrypted is searched in the same
arbitrary string (as the one used for encryption). Once this character is
found, 'a' is added to its index value to obtain the original character.
That forms the crux of our substitution cipher.

The TransformWriter class uses the substitution cipher by calling the
transform() function of either the Encrypt class or the Decrypt class
depending on whether encryption or decryption is being carried out.

A helper function doEncDec() is called from main() twice—first time to
carry out the encryption and second time to carry out the decryption.
The files used in these calls are shown in Figure 16.6.

322 Let Us Java

Decrypt
enc.txt ----- —------ ► dec.txt

Figure 16 .6

Rest of the program is similar to the uppercase filter stream program
that we discussed in the last section. So I would not repeat the
explanation here.

From this program and the one that we discussed in the last section we
can make the following important observations:
(a) Stream is a very important abstraction for data modelling in a

variety of applications. Being able to manipulate stream data
effectively is immensely important in Java programming. The
streams implementation in Java enables us to do that quite
effectively. For example, the data that we are manipulating in our
stream may come from a file stored on disk, a network socket or
simply a buffer in memory.

(b) We too can create our customized stream classes. When we do so,
we need to implement the abstract methods inherited from the
base class.

[A] State whether the following statements are True or False:

(a) System.out refers to standard output stream (console).

(b) System.in refers to standard input stream (keyboard).

(c) System.err refers to standard error stream (console).

(d) Standard output/input/error streams are already open and ready to
supply/accept input/output data.

Chapter 16: Effective Input/Output 323

(g) All stream classes of Java library are defined in the java.io package.

(h) InputStreamReader and OutputStreamWriter classes are used to
perform character-oriented I/O.

(i) FileInputStream and FileOutputStream classes are used to perform
byte-oriented I/O.

(j) If we wish to write characters to a file in Unicode, then we should
use the enum Encoding.Unicode while creating the
OutputStreamWriter object.

(k) It is possible to create user-defined filter streams by inheriting our
stream class from FilterReader / FilterWriter class.

(l) The streams implementation in Java is such that the stream doesn't
have to know source or destination of the data.

[B] Answer the following:

(a) What are the common expectations from a mature input/output
system?

(b) Can we inherit new classes from File class available in the Java
library?

(c) How would you check whether a given file exists or not?

(d) Is it possible to check the number of drives, the type of each drive
and the drive format type through a Java program? If yes, how?

(e) What is a stream?

(f) What are the two fundamental types of I/O streams?

(g) Consider the following code snippet:

File f = new File (" d:\\Test.java") ;
BufferedReader b = new BufferedReader (new FileReader (f)) ;
String s ;
// add statement here

Which statement will you add to read the file line-by-line and print
each line?

324 Let Us Java

[C] Pick up the correct alternative for each of the following questions:
(a) A number 485000 when written to a file using byte stream will

occupy
(1) 4 bytes
(2) 8 bytes
(3) 12 bytes
(4) 2 bytes

(b) A number 485000 when written to a file using character stream will
occupy
(1) 4 bytes
(2) 8 bytes
(3) 6 bytes
(4) 2 bytes

(c) Given a File object fobj, how will you determine whether it
represents a file or a directory?
(1) System.out.println (fobj) ;
(2) if (fobj.isDirectory())
(3) if (fobj.isFolder())
(4) if (fobj.FileOrDirectory())

(d) Which import statement should be used to avail classes that use
character stream?
(1) import java.bytestream.*
(2) import java.io.*
(3) import java.inputoutput.*
(4) import io.*

(e) Which import statement should be used to avail classes that use
character stream?
(1) import java.bytestream.*
(2) import java.io.*
(3) import java.inputoutput.*
(4) import io.*

► KanNotes

• Expectations from an IO System :

- I should be able to communicate with sources & destinations

Chapter 16: Effective Input/Output 325

- I should be able to I/O varied entities
- I should be able to communicate in multiple ways
- I should be able to deal with underlying file system

• Java solution - Perform all IO using Streams

• Stream is a sequence of bytes that travel from source to destination
over a communication path

• Streams are implemented by classes in java.io package

• Linking of Streams to physical devices is done by Java IO system

• Java program performs IO by reading / writing from / to a stream

• Benefits of using Streams

- Streams hide details of communication from programmer
- Methods are same, implementation changes as per device

• Types of streams : 1) Byte Streams 2) Character streams

• Byte stream perform i/o one byte at a time. They are used to i/o
binary data

• Character streams perform i/o one char (2 bytes') at a time. Used to
i/o textual data

• To write 485000 to a file as sequence of bytes use byte stream

• To write "485000” as a sequence of Unicode characters io a-file use
character stream

• Byte Stream classes

- FileInputStream, FileOutputStream - R/W streams of bytes from
file

- FilterInputStream, FilteroutputStream - Filters data being read
or written

- BufferedInputStream - Provides buffering ability
- DataInputStream - Provides ability to read Java primitives

• Character stream classes

326 Let Us Java

- InputStreamReader, OutputStreamWriter - R/W char from/to
stream

- FileReader, FileWriter - R/W characters from/to file
- PrintWriter - Formatted writing in text representation

s System class contains 3 predefined public static variables - in, out,
err which are accessible from any part of the program

- out refers to standard output stream (screen)
- in refers to standard input stream (keyboard)
- err refers to standard error stream (screen)

• These streams are already open and are ready to receive/send
input/output data

• In Sv|stem.oui.println ("Hello”) ;

- System - class
- out - PrintStream object reference
- out - public static member of System class
- printlnQ, printQ - Members of Printstream class

• How to decide which classes to use when :

What is your data format - text or binary
Binary - InputStream, OutputStream
Text - Reader, Writer
Do you want random access capability?
Use RandomAccessFile class
Dealing with objects or non-objects?
ObjectInputStream, ObjectOutputStream
What are your sources and sinks for data?
Sockets, files, strings - All can be used by Byte and Character
Streams
Do you need to use filtering?

Ability to do multiple things simultaneously is a great asset in
life. So also in programming...

327

328 Let Us Java

• Multitasking and Multithreading
• Multithreading in Java
• Launching Threads
• Launching Multiple Threads
• Another Way to Launch Threads
• A Practical Multithreading Example
• Synchronization
• The Synchronized Block
• Inter-thread Communication
• Thread Priorities
• Exercises
• KanNotes

Chapter 17: Multithreading 329

Multithreading is the ability to perform several jobs simultaneously.
Knowingly or unknowingly we make use of multithreading

frequently in everyday life. For example, while driving a car we carry out
several activities in parallel—we listen to music, we follow the traffic
rules, and we talk to the co-passengers. All this, without losing the main
focus, i.e. driving. There can be several such examples where we carry
out several activities at the same time. Since programmers are people
and programming is the art of solving people's problems, it is only
natural that in programming in general, and in Java in particular, too,
there is an effort to do several activities simultaneously.

Multitasking and Multithreading
Most modern OSs can execute several tasks in memory at a time. This
ability to execute several tasks simultaneously is known as Multitasking.
For example, while using Windows we can simultaneously print a
document on the printer, receive e-mails, download files and compile
programs. All these operations are carried out through different
programs that are being executed in memory at the same time.

This ability of Windows to execute several tasks can be taken a step
further, whereby we execute different parts of a program
simultaneously. This can be experienced while working with many
popular Windows software. Here are a few examples...

(a) While copying files one part of the 'Cop/ program displays the
copying progress through a green-colored progress bar, whereas,
another part of the program carries out the actual copying.

(b) While working with MS-Word one part of the program lets us type
the document, whereas two other parts perform the spelling check
and grammar check.

(c) In anti-viral software one part of the program scans the disk files for
viruses, whereas other part lets us interact with the user interface
of the software.

This ability to execute different parts of the same program
simultaneously is known as Multithreading.

If a multithreaded program is executing on a machine with a single
microprocessor, though it may appear that several tasks are being
performed by the processor simultaneously, in actuality it is not so.
What happens is that the processor divides the execution time equally
amongst all the running threads. Thus each thread gets the processor

330 Let Us Java

attention in a round robin manner. Once the time-slice allocated for a
thread expires, the operation that it is currently being performed is put
on hold and the processor now directs its attention to the next thread.
Thus, at any given moment, if we take the snapshot of memory, only
one thread is being executed by the processor. The switching of
attention from one thread to another happens so fast that we get the
effect as if the processor is executing several threads simultaneously.

In modern machines with multiple processors, the threads would
actually be executed simultaneously, as each processor can execute a
separate thread.

Multithreading has several advantages to offer. These are listed below.
(a) Responsiveness: Take MS-Word example again. Had the spell

checker and the grammar checker not run as different threads, we
would have been required to write documents and submit it to the
checkers from time to time. This would have resulted in low
responsiveness. Since the checkers run in different threads, our
document gets checked as we type, thereby increasing the
responsiveness of the application.

(b) Organization: Threading simplifies program organization. In the
'File Cop/ example if both the operations—displaying the progress
bar and the actual copying—run in the same thread, then after
copying a few thousand bytes we would be required to advance the
progress bar. If we run the copying code and the progress bar code
in separate threads, we can avoid cluttering the copying code with
progress bar code and vice versa.

(c) Performance: Many a times it happens that a program needs to
wait for user input or has to give some output. The I/O devices are
generally slower than the processor. So the application waits for the
I/O operation to finish. Instead, if we use another thread for the I/O
operation, the processor time can be allotted to other important
tasks that can work independent of the I/O operation, thereby
improving the performance.

Multithreading in Java
To help you appreciate the challenges of multithreading you can try a
simple experiment. Make two phone calls to your friends and try to
carry out conversation with both of them concurrently. This would
involve major challenges—talking to one friend, putting him on hold,
remembering where you left off, picking up the other receiver, talking to

Chapter 17: Multithreading 331

the other friend, putting him on hold, picking up the first receiver,
carrying on the conversation from the point where you left off, and
above all making the conversation sensible for everybody involved.

Java offers features that let you run multiple threads in a program. To
create multiple threads the programmer has to specify which parts of
the program he intends to execute concurrently. Although on the face of
it this might appear simple, rest assured that often multithreaded
programs are tricky and demand a substantial effort on your part to
master all the issues involved in multithreading.

Any simple Java program has a single thread of execution. This running
thread has a name called main, a priority and a group to which it
belongs. If we wish we can change the name of the thread. This has
been demonstrated in the program given below.

package mainthread ;
public class MainThread
{

public static void main (String args[])
{

Thread t = Thread.currentThread() ;
System.out.println ("Current thread: " + t) ;
t.setName ("mythread") ;
System.out.println ("After name change: " + t) ;
String s = t.getName() ;
System.out.println ("Thread name: " + s) ;

}
}

And here is the output of the program...

Current thread: main, 5, main
After name change: mythread, 5, main
Thread name: mythread

The object representing the running thread is obtained by calling the
static method currentThread() of the Thread class. If we print this
object using println() we get the name of the thread, its priority and its
thread group. Note from the output that 5 is the default priority. 1
represents the lowest priority and 10 the highest, thus 5 is the average
priority.

332 Let Us Java

Once we have obtained the Thread object, we can set or get the name
of the current thread using the methods setName() and getName()
respectively.

It is possible to make multiple threads to belong to one group. If this is
done, then it is possible to manipulate all those threads together, rather
than individually. For example, we can start or suspend all
the threads within a group with a single method call.

Launching Threads
There are two mechanisms to launch new threads in a Java program.
These are:
(a) By extending the Thread class
(b) By implementing the Runnable interface
We wish to learn both these ways to launch a thread and assess the
utility of each. Let us begin with a program that uses the first way.

package sample ;
public class Sample
{

public static void main (String args[])
{

Ex t = new Ex() ;
t.start() ;
for (int i = 0 ; i < 5 ; i ++)

System.out.println ("Main thread") ;
}

}
class Ex extends Thread
{

public void run()
{

for (int i = 0 ; i < 5 ; i++)
System.out.println ("New thread") ;

}
}

Here we have derived the Ex class from the Thread class and defined a
run() method inside it. The method simply prints a message "New
Thread" 5 times. In main() we have created an object of Ex class, called

Chapter 17: Multithreading 333

the start() method and then printed the message "Main Thread" 5
times.

The start() method is defined in Thread class and by inheritance is
available to Ex objects. Once we call the start() method, the thread gets
scheduled. This means we are informing the thread scheduler that the
new thread is ready to run. When the thread scheduler deems fit, it
would start executing this new thread by calling its run() method.

The output of the program is shown below.

Main thread
Main thread
Main thread
Main thread
Main thread
New thread
New thread
New thread
New thread
New thread

Ideally the messages "Main thread" and "new Thread" should have been
inter-mingled. But this did not happen because once the time slot got
allotted to the main thread, in that time slot it printed all the messages,
before the time slot could be snatched away and allotted to the new
thread. Had each loop been executed 1000 times, then during each
time-slot allocated to the two threads, each would not have been able
to print all 1000 messages. This would have resulted in inter-mingling of
messages.

Another way to get the inter-mingled messages is to put each thread to
sleep for 1000 milliseconds when they get the time slot. This would
ensure that in the first time-slot that they get, they don't finish the
entire printing. This change is shown below.

package sample ;
public class Sample
{

public static void main (String args[])
{

Ex t = new Ex() ;
t.start() ;

334 Let Us Java

try
{

for (int i = 0 ; i < 5 ; i ++)
{

System.out.println ("Main thread") ;
Thread.sleep (1000) ;

}
catch (Exception e)
{
}

}
}

}
class Ex extends Thread
{

public void run()
{

try
{

for (int i = 0 ; i < 5 ; i++)
{

System.out.println ("New thread") ;
Thread.sleep (1000) ;

}
}
catch (Exception e)
{
}

}
}

The static sleep() method of the Thread class postpones the execution
of next instruction by 1000 milliseconds. As a result, now the output is
inter-mingled as shown below.

Main thread
Main thread
Main thread
New thread
New thread
Main thread
Main thread

Chapter 17: Multithreading 335

New thread
New thread
New thread

Notice that the call to sleep() method has to be present in the try block,
as it is likely to throw an exception. Though, not the best of the ways, for
the sake of simplicity we have used an empty catch block to catch the
exception that sleep() may throw.

Launching Multiple Threads
Do not be under the impression that we can create only one thread
from the class derived from the Thread class. It is possible to create
multiple threads from the same class. This is illustrated in the following
program.

package sample ;
public class Sample
{

public static void main (String args[])
{

Ex t1 = new Ex() ;
t1.start() ;
t1.setname ("First") ;
Ex t2 = new Ex() ;
t2.start() ;
t2.setname ("Second") ;
Ex t3 = new Ex() ;
t3.start() ;
t3.setname ("Third") ;
try
{

for (int i = 0 ; i < 10 ; i ++)
{

System.out.println ("Main thread") ;
Thread.sleep (500) ;

}
}
catch (Exception e)
{
}

}

336 Let Us Java

}

class Ex extends Thread
{

public void run()
{

Thread t ;

t = Thread.currentThread() ;
String s = t.getName() ;

for (int i = 0 ; i < 10 ; i++)
System.out.println (s) ;

}
}

Given below is the output of the program.
First
First
First
First
First
Third
Third
Third
Third
Third
Third
Main thread
Second
Second
Second
Second
Main thread
Main thread
Main thread

Here, while launching the three threads we have given a name to each,
which is displayed in a loop, when those threads get a time slot. In which
situation we would want to launch multiple threads from the same

Chapter 17: Multithreading 337

class? Imagine if the thread is to display an animation from a GIF file.
Then by launching different threads we can display different animations
in different parts of the screen simultaneously.

When we launch several threads from the main thread there is a
possibility that the main thread ends whereas the launched threads
continue to execute. If we wish that main thread should be the last
thread to finish execution, then we can employ the join() method of the
Thread class to ensure this, as shown below.

package sample ;
public class Sample
{

public static void main (String args[])
{

Ex t1 = new Ex() ;
t1.start() ;
t1.setname ("First") ;
Ex t2 = new Ex() ;
t2.start() ;
t2.setname ("Second") ;
Ex t3 = new Ex() ;
t3.start() ;
t3.setname ("Third") ;
try
{

for (int i = 0 ; i < 10 ; i ++)
{

System.out.println ("Main thread") ;
Thread.sleep (500) ;

}
}
catch (Exception e)
{
}

System.out.println (t1.isAlive()) ;
System.out.println (t2.isAlive()) ;
System.out.println (t3.isAlive()) ;
t1.join() ;
t2.join() ;
t3.join() ;

338 Let Us Java

System.out.println (t1.isAlive()) ;
System.out.println (t2.isAlive()) ;
System.out.println (t3.isAlive()) ;

}
}

On execution, out of the calls to isAlive() some threads may return false
if those threads have finished execution. By calling join() the main
thread would wait for the alive threads to finish their execution, before
it terminates. Naturally, the second set of calls to isAlive() would return
false for each call.

Another Way to Launch Threads
So far we have been extending the Thread class and implementing the
run() method in it to launch new threads. This method has one
important limitation. Once our class is derived from Thread class we
cannot inherit it from any other class, as Java doesn't support multiple
inheritance. If we wish to keep our class open for derivation from some
other class and still be able to launch new threads, we should do so by
implementing a Runnable interface in it. This method of launching new
threads is given below.

package sample ;
public class Sample
{

public static void main (String args[])
{

Ex t = new Ex ("One") ;
t.x.start() ;
for (int i = 0 ; i < 10 ; i ++)

System.out.println ("Main thread") ;
}

}
class Ex implements Runnable
{

public Thread x ;

Ex (String n)
{

x = new Thread (this, n) ;
}

Chapter 17: Multithreading 339

public void run()
{

int i ;
for (i = 0 ; i < 10 ; i++)

System.out.println (x.getName()) ;
}

}

Note that here we have not derived Ex from Thread class. Instead, we
are implementing the Runnable interface in it. The Runnable interface
has only one method in it—run().

While creating an object of the Ex class, in the constructor we have
created an object of the Thread class and stored its address in a public
reference called x. Then, from main() we have used this x to call the
start() method of the Thread class. By doing this, we are informing JVM
to schedule this thread. As a result, the run() method gets called. In the
run() method we have simply printed the name of the thread.

Here is one more program that uses Runnable interface to launch
threads. The difference is that this one launches multiple threads for
each instance of the Ex class.

package sample ;
public class Sample
{

public static void main (String args[])
{

Ex t1 = new Ex ("First") ;
t1.x.start() ;

Ex t2 = new Ex ("Second") ;
t2.x.start() ;

Ex t3 = new Ex ("Third") ;
t3.x.start() ;

for (int i = 0 ; i < 10 ; i ++)
System.out.println ("Main thread") ;

}
}
class Ex implements Runnable

340 Let Us Java

{
Thread x ;

Ex (String n)
{

x = new Thread (this, n) ;
}

public void run()
{

String s = x.getName() ;
int i ;
for (i = 0 ; i < 10 ; i++)

System.out.println (s) ;
}

}

A Practical Multithreading Example
Suppose we wish to copy the contents of one folder into another.
Naturally, if the source folder contains multiple files, each file has to be
opened and its contents copied into a file in the target folder. If this
operation is done in a loop in a single thread, then unless copying of the
first file is over, the copying of second file cannot begin. Instead, a
better approach would be to do the copying in multiple threads. Given
below are two programs that follow the single thread and the
multithread approach. To simplify things, instead of copying files, we
simply open each source file, read it to the end and report the number
of lines present in each file.

// Approach 1 : Read files in a single thread
package singlethread ;
import java.io.* ;

public class SingleThread
{

static public void main (String args[]) throws Exception
{

System.out.println ("Starting Time: " +
System.currentTimeMillis());

for (int i = 0 ; i < args.length ; i++)
{

Chapter 17: Multithreading 341

FileReader fr = new FileReader (args[i]) ;
BufferedReader br = new BufferedReader (fr) ;
LineNumberReader l = new LineNumberReader (br) ;

while (l.readLine() != null)
Thread.sleep (10) ;

System.out.println ("Lines in " + args[i] + ":" +
l.getLineNumber()) ;

}
System.out.println ("Ending Time: " +

System.currentTimeMillis()) ;
}

}

The program reads three files a.txt, b.txt and c.txt that are provided to
it as command-line arguments. To add these files to your project in
NetBeans, right click on the project folder and select New | Empty File
from the menu that pops up. Give the name of the file (say, a.txt) and
type a few lines in it. Similarly add b.txt and c.txt to your project. Once
this is done, add these filenames as command-line arguments through
Right-click project name | Properties | Run | Arguments.

In the program, we print the current time in milliseconds before we start
reading the files and after the reading is finished. This is done using the
function System.currentTimeMillis(). The actual reading of a file is done
by using the LineNumberReader class. This class has a method
getLineNumber() which reports the number of lines present in the file
that it has read.

When I executed this program I got the following output:

Starting Time: 1484131339431
Lines in a.txt:13
Lines in b.txt:25
Lines in c.txt:37
Ending Time: 1484131340184

Your output may vary as depending on the contents of the three files
their reading times may vary. A quick calculation would show the
difference in times to be 753 milliseconds.

342 Let Us Java

Now let us look at the program that follows the multithreaded approach
to achieve the same goal. Here it is...

// Approach 2 : Read files in multiple threads
package multithread ;
import java.io.* ;
public class Multithread
{

static public void main (String args[]) throws Exception
{

System.out.println ("Starting time: " +
System.currentTimeMillis()) ;

linecounter t[] = new linecounter [args.length] ;
for (int i = 0 ; i < args.length ; i++)
{

t[i] = new linecounter (args[i]) ;
t[i].start() ;

}
for (int i = 0 ; i < args.length ; i++)

t[i].join() ;
System.out.println ("Ending Time: " +

System.currentTimeMillis()) ;
}

}
class linecounter extends Thread
{

String fname ;
linecounter (String str)
{

fname = str ;
}
public void run()
{

try
{

FileReader fr = new FileReader (fname) ;
BufferedReader br = new BufferedReader (fr) ;
LineNumberReader l = new LineNumberReader (br) ;
while (l.readLine() != null)

Thread.sleep (10) ;
System.out.println ("Lines :" + fname + " : " +

l.getLineNumber()) ;

Chapter 17: Multithreading 343

}
catch (Exception e)
{
}

}
}

This time on execution the following times are reported:

Starting Time: 1484196850259
Lines: a.txt : 13
Lines: b.txt : 25
Lines: c.txt : 37
Ending Time: 1484196850646

This time the time difference is 387 milliseconds. Clearly the
multithreaded approach is a better option than the single-threaded
approach in such situations.

Synchronization
Software development is a team effort. Unless team members
cooperate with one another and synchronize their work with the rest of
the team, the team can't go far. Similarly, if in a program there are
several threads running, unless their activities are synchronized with one
another the disaster is not far away. For example, if a program
instantiates two threads and if both the threads use the same resource
and both of them change it simultaneously the situation would become
unreliable and erratic.

Let me illustrate the need for synchronization of threads using a simple
example. Consider the following method.

void display (String msg)
{

System.out.print ("[") ;
System.out.print (msg) ;
Thread.sleep (1000) ;
System.out.println ("]") ;

}

Suppose three different threads decide to call this method to display a
message. It is expected that this method would display the message

344 Let Us Java

passed to it within a pair of []. However, in reality it produces the
following output if the strings passed to it from three threads are KICIT,
Nagpur and India respectively.

[India[Nagpur[KICIT]
]
]

To rectify this, we need to synchronize the activities of each thread. How
this can be achieved is shown in the following program.

package sample ;
public class Sample
{

static public void main (String args[]) throws Exception
{

Output c = new Output() ;
Ex t1 = new Ex (c, "KICIT") ;
t1.start() ;
Ex t2 = new Ex (c,"Nagpur") ;
t2.start() ;
Ex t3 = new Ex (c,"India") ;
t3.start() ;
t1.join() ;
t2.join() ;
t3.join() ;

}
}
class Ex extends Thread
{

private Output o ;
private String message ;

public Ex (Output c, String msg)
{

o = c ;
message = msg ;

}
public void run()
{

o.display (message) ;
}

Chapter 17: Multithreading 345

}
class Output
{

synchronized void display (String msg)
{

System.out.print ("[" + msg) ;
try
{

Thread.sleep (1000) ;
}
catch (InterruptedException e)
{
}
System.out.println ("]") ;

}
}

On execution, this program produces the desired output shown below.

[KICIT]
[NAGPUR]
[INDIA]

In this program we have defined two classes—Ex and Output. In main()
we have created one object of Output class and three objects of Ex
class. The Ex class is derived from the Thread class. When objects of Ex
class are created, along with object of Output class, a message to be
printed is passed to its constructor. It stores this message in a private
string message. This message is passed to the display() method of
Output class, when display() is called from run().

I want you to note a standard technique here. Since we do not explicitly
call the run() method, any objects that run() needs should be passed to
the constructor of the class to which run() belongs, so that run() can
access them. In our case, we needed the Output object to call display()
from the run() method. That is why we passed it to the constructor
while creating the Ex objects.

Note that the display() function in the Output class has been marked as
synchronized. This ensures that once one thread makes a call to
display(), unless the execution of display() in this thread is finished, the
call by other threads to display() would be put on hold. This results in
producing the systematic output that we desire.

346 Let Us Java

The Synchronized Block
At times it may so happen that a class has been developed with a view
to use it in single thread situation. But later on a need arises to use it in
a multithreaded situation. If we do not have an access to its source
code, we cannot mark the methods in it as synchronized. In such
situations, the solution is to use a syncronized block.

In the context of our program in the previous section, suppose we do
not have an access to source code of Output class. So we cannot mark
display() as synchronized method. In this case we need to simply make
the call to display() in a synchornized block as shown below, to get the
desired output.

public void run()
{

synchronized (o)
{

o.display (message) ;
}

}

Inter-thread Communication
The programs in the Synchronization section unconditionally blocked
other threads from asynchronous access to certain methods. To improve
the overall performance of the program there should be a mechanism to
notify a waiting thread that it can start running. This means that one
thread should be able to communicate with the other. To achieve this
Java provides three methods—wait(), notify() and notifyAll(). Given
below is the purpose of each of these methods.

Method Purpose

wait()
notify()
notifyAII()

Tell calling thread to go to sleep till notified
Wakes up thread that called wait() on same object
Wakes up all threads that called wait() on same object

Figure 17.1

Chapter 17: Multithreading 347

One of the places where usage of this method makes sense is in
implementing a classical Computer Science algorithm called Producer -
Consumer algorithm. This algorithm is described in the Exercise at the
end of this chapter.

Thread Priorities
If we wish, we can assign priorities to each running thread. This helps
the scheduler to determine the order in which these threads are
executed. Threads with higher priority are more important to a program
and are allocated processor time before lower-priority threads. A Java
thread can have three standard Priorities—MIN_PRIORITY,
MAX_PRIORITY, NORM_PRIORITY. These represent numbers 1, 10 and 5.
Java provides following functions to set a new priority for a thread and
to obtain a thread's current priority.

final void setPriority (int level)
final int getPriority()

[A] State whether the following statements are True or False:

(a) Multithreading always improves the speed of execution of the
program.

(b) A running task may have several threads running in it.

(c) Multitasking is same as multithreading.

(d) If we create a class that inherits from the Thread class, we can still
inherit our class from some other class.

(e) Default thread priority is 10.

(f) A higher priority thread can preempt a lower priority thread.

(g) It is possible to change the name of the running thread

348 Let Us Java

(i) To launch a thread we must explicitly call the run() method defined
in a class that extends the Thread class.

(j) To synchronize a method defined in a class, we must have an access
to the source code of the class.

[B] Pick up the correct alternative for each of the following questions:

(a) What will happen if a Java program that launches 5 threads is
executed on a machine which has a single processor?
(1) 5 threads will get launched
(2) 1 thread will get launched
(3) 0 thread will get launched
(4) Error will occur since a single processor cannot handle 5 threads

(b) Which of the following are the CORRECT way to create a thread?
(1) Create a class and inherit it from Thread class
(2) Implement the Runnable interface
(3) Create a class and inherit it from CWinThread
(4) A and B

(c) Consider the following code snippet:

class Ex extends Thread
{
}
Ex t = new Ex() ;
t.start() ;

Which of the following should be done to create a multithreaded
program?
(1) Define a run() method in the Ex class
(2) Define a run() method in the Ex class and call it using t.run()
(3) Implement the Runnable interface in class Ex
(4) Derive class Ex from the Runnable class

(d) Which of the following statement is CORRECT about the code
snippet given below:

class Ex extends Thread
{

public void run()
{
}

Chapter 17: Multithreading 349

}

(1) run() method gets called when the thread gets a time slot
(2) We need to call run() explicitly
(3) start() will call run()
(4) run() will be called by a method present in a class that

implements the runnable interface

(e) If in a Java program one thread lets you type a document and
another thread performs spellcheck on the same document then the
two threads
(1) should be synchronized
(2) need not be synchronized
(3) should be executed one after the other
(4) should be launched through 2 separate programs

(f) We wish to synchronize the working of methods present in a legacy
Java program whose source code is not available. How will you
achieve this?
(1) Hunt for the source code
(2) Use synchronized block
(3) Mark the methods from where legacy methods are called as

synchronized
(4) Reimplement the legacy code and then mark methods in it as

synchronized

(g) Suppose we wish to copy contents of one directory into another and
display the progress in copying through a green-colored progress
bar. Which of the following will be the CORRECT way to implement
this requirement?
(1) Create one program to copy and another program to display

progress bar. Run two programs simultaneously
(2) Create two threads in one program—do copying in one thread

and display progress bar in another thread
(3) Create a single threaded program which performs both the tasks
(4) Create two programs, call one from the other

[C] Answer the following:

(a) Which are the two methods available for launching threads in a
Java program?

(b) What are the pros and cons of using two different methods of
launching threads in a Java program?

350 Let Us Java

(c) Which methods should be used to improve the performance of a
multithreaded Java program that uses synchronization?

(d) If Ex class implements the Runnable interface, then can we launch
multiple threads for objects of Ex class? If yes, how?

(e) Write a multithreaded program that copies contents of one folder
into another. The source and target folder paths should be input
through keyboard.

(f) Producer - Consumer algorithm is a popularly used algorithm in
Computer Science. It is a technique for generating requests (by
producer) and processing the generated requests (by consumer).
Write a program to implement this algorithm to meet following
specifications:

- The Producer produces numbers in sequence 0,1, 2,...
- Consumer consumes the produced numbers by printing them
- Both Producer and Consumer work as independent threads
- Consumer must wait while Producer is producing
- Once Producer has produced it would send a signal to Consumer
- Producer must wait while Consumer is consuming
- Once Consumer has consumed it should send a signal to

Producer

• Multitasking - Ability to execute multiple tasks at a time

Task = Process

• Multithreading - Ability to execute multiple parts of a. program at a.
time
Part = Thread = separate path of execution

• Examples of Multitasking :
- Several Windows applications running in memory
- Multiple instances of Paint or Notepad in memory

• Examples of Multitasking :
- Scroll Web page as graphic continues to load
- Printing one Word document while opening another

Chapter 17: Multithreading 351

- Replying an email while downloading another

a Advantages of Multithreading

- Improves application's responsiveness
- Simplifies program organization
- Do other things while waiting for slow I/O operations
- Exploitation of Multiple Processors

• Thread is a Java API class. It contains following useful methods :

- currentThread() - returns current thread’s object
- setName() - sets up name for a thread
- getName() - returns name of the specified thread
- sleep() - Postpone execution of next instruction by specified

milliseconds

• Two methods to launch a thread :

- By extending the Thread class
- By implementing Runnable interface

• Extending Thread class

- Easy to use
- Thread related functions can be overridden
- Disadvantage : Cannot use in Multiple Inheritance situations

• Implementing Runnable Interface

Can be used in Multiple Inheritance situations
Disadvantage : Cannot override Thread class functions

• If multiple files are to be read then the reading time can be reduced by
carrying out the reading in multiple concurrent threads

• When >= 2 threads access same shared resource if we wish to ensure
that the resource is used by only 1 thread at a time, then it can be
achieved using Synchronized methods

• If a method is declared as Synchronized then when it is called by
multiple threads, when the first thread is executing it others are
made to wait

352 Let Us Java

• For older classes Synchronized blocks can be used to achieve the
same results

• Often threads unconditionally block other threads from
asynchronous access to certain methods - hampers performance

• To improve Performance - use waitQ, notifyQ, notifyAll() methods

• waitQ - Tells calling thread to go to sleep till notified

• notify() - Wakes up thread that called waitQ on same object

• notifyAllQ - Wakes up all threads that called wait() on same obj.

• Producer - Consumer algorithm is a. technique for Generating
requests and Processing the pending requests

• Producer produces requests, Consumer consumes generated
requests

• Both work as independent threads

• Working :
- Consumer must wait while Producer is producing
- Once Producer has produced it would send signal to Consumer
- Producer must wait while Consumer is consuming
- Once Consumer has consumed it would send signal to Producer

• Thread priorities are used to schedule thread execution

• Higher priority threads get more CPU time and may preempt lower
priority threads

• Standard Priorities :

- MIN_PRIORITY, MAX_PRIORITY, NORM_PRIORITY
- These are constants with values 1, 10, 5

• Functions to set and get priorities :

- final void setPriority (int level)
- final int getPriority()

Generalizations are good. Especially so, when the Compiler
handles the specializations...

353

354 Let Us Java

• Generic Functions
• Multiple Argument Types
• Generic Classes
• Bounded Generics
• Exercises
• KanNotes

Chapter 18: Generics 355

Generics are a mechanism that make it possible to use one function
or class to handle many different data types. By using generics, we
can design a single function/class that operates on data of many types,

instead of having to create a separate function/class for each type. In
this chapter we would first look at using generics with functions and
then move on to using generics with classes.

Generic Functions
Suppose you wish to print contents of an integer array. To achieve this
we can write a function as shown below:

void printIntArr (int [] arr)
{

for (int i : arr)
System.out.println (i) ;

}

Here the function printIntArr() is defined to receive an int array and
then print all its elements through a for loop. What if we wish to print
a float array—we would be required to write a completely new
function printFloatArr(). Similarly, to print a char array we would be
required to write printCharArr()—a separate version of the same
function.

You would agree that this is a suitable case for overloaded functions,
as all these functions have different names but essentially carry out
the same activity—printing elements of an array passed to them. This
way, at least the names of all these functions can be same. These
overloaded functions are given below:

// printArr for ints
void printArr (int [] arr)
{

for (int i : arr)
System.out.println (i) ;

}

// printArr for floats
void printArr (float [] arr)
{

for (float i : arr)
System.out.println (i) ;

356 Let Us Java

}

// printArr for chars
void printArr (char [] arr)
{

for (char i : arr)
System.out.println (i) ;

}

// etc...

Have we gained anything by writing these overloaded functions? Not
much, because we still have to write a separate definition for each type.
This results into three disadvantages:

(a) Rewriting the same function body over and over for different types
is time consuming.

(b) The program consumes more disk space.

(c) If we decide to modify one such function, we need to remember to
make the modification in other overloaded functions.

Won't it be nice if we could write such a function just once, and make it
work for many different data types. This is exactly what function
generics do for us.

The following program shows how to write the printArr() function as a
generic function, so that it will work with any standard type. We have
invoked this function from main() for different data types.

package genericfunction ;
public class GenericFunction
{

public static <T> void printArray (T[] arr)
{

for (T i : arr)
System.out.printf ("%s ", i) ;

System.out.println() ;
}
public static void main (String args[])
{

Integer[] intarr = { 10, -2, 37, 42, 15 } ;
Float[] floatarr = { 3.14f, 6.28f, -1.5f, -3.44f, 7.234f } ;

Chapter 18: Generics 357

Character[] chararr = { 'Q', 'U', 'E', 'S', 'T' } ;

printArray (intarr) ;
printArray (floatarr) ;
printArray (chararr) ;

}
}

Here's the output of the program:

10 -2 37 42 15
3.14 6.28 -1.5 -3.44 7.234
Q U E S T

As you can see, the printArr() function now works with different data
types that we use as arguments.

Isn't this code reuse? Yes, but of a different type. Inheritance provides a
way to reuse object code. Generics provide a way to reuse the source
code. Generics can significantly reduce source code size and increase
code flexibility.

Let us now understand what grants the generic function the flexibility to
work with different data types. Here is the definition of the printArr()
function...

public static <T> void printArray(T[] arr)
{

for (T i : arr)
System.out.printf ("%s ", i) ;

System.out.println() ;
}

In this generic function a data type has been represented by a name (T
in our case) that can stand for any type. There's nothing special about
the name T. We can use any other name like type, mytype, etc.
Throughout the definition of the function, wherever a specific data
type would ordinarily be written, we substitute it with type T.

Notice that while calling printArr() function, we have passed to it an
array of Integers, Floats and Characters and not an array of ints, floats
and chars. This is because a generic function can work only with
reference types and not with primitives like int, float, double, char, etc.

358 Let Us Java

To help you fix your ideas about generics, here is another program that
uses a generic function. This one obtains the minimum of two quantities
using a generic minimum() function.

package minusinggenerics ;
public class MinUsingGenerics
{

public static <T extends Comparable <T> > T minimum (T a, T b)
{

if (a.compareTo (b) < 0)
return a ;

else
return b ;

}
public static void main (String[] args)
{

Float a = 3.14f, b = -6.28f, c ;
c = minimum (a, b) ;
System.out.println (c) ;

Character ch = 'A', dh = 'Z', eh ;
eh = minimum (ch, dh) ;
System.out.println (eh) ;

Double d = 1.1, e = 1.11, f ;
f = minimum (d, e) ;
System.out.println (f) ;

}
}

Given below is the output that the program produces on execution.

-6.28
A
1.1

Note how we have defined the generic minimum() function.

public static < T extends Comparable <T> > T minimum (T a, T b)
{

}

Chapter 18: Generics 359

The above definition means that this function would work with all those
types which implement the Comparable interface. In our case the
classes Integer, Float and Character classes implement this interface, so
we can use the minimum() function with these types.

Note that this function cannot compare two Integer or two Float objects
using relational operators like >, <, etc. Hence to actually carry out the
comparison we have used the compareTo() function of Integer / Float /
Character class.

We can extend the same comparison logic and write a program that
sorts Integers, Floats, Characters using a generic sorting function. Here
it is...

package genericsorting ;
public class GenericSorting
{

public static void main (String[] args)
{

Float num[] = { 5.4f, 3.23f, 2.15f, 1.09f, 34.66f } ;
Integer arr[] = { -12, 23, 14, 0, 245, 78 , 66, -9 } ;
int i ;

sort (num, 5) ;
for (i = 0 ; i <= 4 ; i++)

System.out.print (num[i] + " ") ;
System.out.println() ;
sort (arr, 8) ;
for (i = 0 ; i <= 7 ; i++)

System.out.print (arr[i] + " ") ;
}
public static <T extends Comparable <T> > void sort (T[] n, int size)
{

int i, j ;
T t ;

for (i = 0 ; i <= size - 2 ; i++)
{

for (j = i + 1 ; j <= size - 1 ; j++)
{

if (n[i].compareTo (n[j]) > 0)
{

360 Let Us Java

t = n[i] ;
n[i] = n[j] ;
n[j] = t ;

}
}

}
}

}

The output of the program is given below:

1.09 2.15 3.23 5.4 34.66
-12 -9 0 14 23 66 78 245

I do not intend to explain the actual working of the sorting logic. This
topic has been dealt with thoroughly in all the standard books on Data
Structures. What you need to concentrate here is, how to write generic
functions that can work for variety of data types.

Multiple Argument Types
In all the programs that we have seen so far in this chapter, the generic
functions worked only with one type. But we can as well write a generic
function that takes different types of arguments during a call. The
following code shows such a generic function.

package mulitpletypesgenericfunction ;
public class MulitpleTypesGenericFunction
{

public static void main (String[] args)
{

Integer i = 10 ;
Float j = 3.14f ;
Character ch = 'A' ;
printTypes (i, j, ch) ;

}
public static <T, S, Z> void printTypes (T a, S b, Z c)
{

System.out.println ("a = " + a) ;
System.out.println ("b = " + b) ;
System.out.println ("c = " + c) ;

}
}

Chapter 18: Generics 361

The printTypes() function can receive three different types of
arguments represented by T, S and Z. It simply prints all the arguments
that it receives. Would the function work, if we pass to it arguments of
same types? Yes, it will. So the following call would be perfectly valid.

Integer i = 10, m = 20, n = 30 ;
printTypes (i, m, n) ;

Generic Classes
The concept of generics can be extended even to classes. Generic
classes are often used for data storage. In fact Java provides a library of
container classes that implement data structures like stack, queue,
linked lists, binary tree, hash map, etc. These implementations are based
on generic classes.

Let us try implementing a Stack class as a generic class. This class should
be able to maintain a stack of Integers, Floats, Characters etc. Here is a
program with this generic stack class in action.

package genericstack ;
public class GenericStack
{

public static void main (String[] args)
{

Stack <Integer> s1 ;
s1 = new Stack <Integer> (10) ;

if (! s1.isFull())
s1.push (10) ;

if (! s1.isFull())
s1.push (20) ;

if (! s1.isFull())
s1.push (30) ;

int data1 ;
if (! s1.isEmpty())
{

data1 = s1.pop() ;
System.out.println (data1) ;

}
if (! s1.isEmpty())

362 Let Us Java

{
data1 = s1.pop() ;
System.out.println (data1) ;

}

Stack <Float> s2 ;
s2 = new Stack <Float> (10) ;

if (! s2.isFull())
s2.push (10.5f) ;

if (! s2.isFull())
s2.push (20.5f) ;

if (! s2.isFull())
s2.push (18.5f) ;

float data2 ;

if (! s2.isEmpty())
{

data2 = s2.pop() ;
System.out.println (data2) ;

}
if (! s2.isEmpty())
{

data2 = s2.pop() ;
System.out.println (data2) ;

}

Stack <Complex> s3 ;
s3 = new Stack <Complex> (10) ;

Complex c1 = new Complex (1.1f, 2.2f) ;
Complex c2 = new Complex (3.3f, 4.4f) ;
Complex c3 = new Complex (5.5f, 6.6f) ;

if (! s3.isFull())
s3.push (c1) ;

if (! s3.isFull())
s3.push (c2) ;

if (! s3.isFull())
s3.push (c3) ;

Chapter 18: Generics 363

Complex c ;

if (! s3.isEmpty())
{

c = s3.pop() ;
c.printData() ;

}
if (! s3.isEmpty())
{

c = s3.pop() ;
c.printData() ;

}
}

}

class Stack <T>
{

private T arr[] ;
private int top ;
private int size ;

Stack (int sz)
{

size = sz ;
top = -1 ;
arr = (T[]) new Object[sz] ;

}
boolean isFull()
{

if (top == size)
return true ;

else
return false ;

}
void push (T data)
{

top++ ;
arr [top] = data ;

}
boolean isEmpty()

364 Let Us Java

{
if (top == -1)

return true ;
else

return false ;
}
T pop()
{

T val ;
val = arr [top] ;
top-- ;
return val ;

}
}

class Complex
{

float r, i ;

public Complex (float rr, float ii)
{

r = rr ;
i = ii ;

}
public void printData()
{

System.out.println ("Real = " + r + " Imag = " + i) ;
}

}

We have created three stacks here—s1, s2 and s3 and pushed three
objects on each one. Then we have popped the values from the three
stacks and displayed them on the screen. s1 and s2 maintain a stack of
objects of ready-made classes Integer and Float. We have also declared
a class called Complex and then pushed/ popped Complex objects
to/from stack s3. Here's the output of the program...

30
20
18.5
20.5

Chapter 18: Generics 365

Real = 5.5 Imag = 6.6
Real = 3.3 Imag = 4.4

You can observe that the order in which the elements are popped from
the stack is exactly reverse of the order in which they were pushed on
the stack.

The way to build a generic class is similar to the one used for building a
generic function. The <T> signals that the class is going to be a generic
class. This is precisely how we have defined the Stack class. Its skeleton
is shown below.

class Stack <T>
{

// code that uses the type T
}

It the Stack class, the type T is used at every place in the class where
there is a reference to the type of the array arr. There are four such
places—the definition of arr, the constructor, the argument type of the
push() function, and the return type of the pop() function. Do take a
look at these four functions in our program.

To create objects of this generic class we have used the statements like,

Stack <Integer> s1 ;
s1 = new Stack <Integer> (10) ;

While creating the object s1 we are passing 10 to the constructor of
generic stack class. The value 10 indicates the size of the array that is
going to hold the values pushed into the stack. In the constructor we
have created this array through the statement

arr = (T[]) new Object[sz] ;

Here, firstly an array of Objects is created and the address of this array is
typecasted into an address of array of type T.

In the constructor, to indicate emptiness of stack we have initiated top
to a value -1. This variable is going to act as an index into the array in
which the values pushed into the stack are going to be stored. We have
also preserved the value of array size in the variable size. Later, in
functions isEmpty() and isFull() we have used these values to check
whether stack is empty or full.

366 Let Us Java

Note that it is also possible to inherit a new class from a generic class.

Bounded Generics
Let us now define and use a generic class called Statistics. This class
obtains average of Integers or Floats. This should be fairly simple.
However, the twist here is, we should not be allowed to find average of
types for whom average doesn't make any sense, strings for example.
This means that the Statistics class should not work for strings. Such
classes are known as Bounded Generics. It is very simple to accomplish
this. While defining the Statistics class we should define it through the
statement

class Statistics <T extends Number>

This ensures that Statistics class can work only with those types that are
derived from Number. Incidentally, Integer and Float both are derived
from Number class, so Statistics can work with objects of these classes.
Here is the full-fledged program.

package statsdemo ;
public class StatsDemo
{

public static void main (String[] args)
{

Integer iarr[] = { 1, 2, 3, 4, 5 } ;
Statistics <Integer> iobj ;
double avg1 ;

iobj = new Statistics <Integer> (iarr) ;
avg1 = iobj.getAverage() ;
System.out.println ("avg1 = " + avg1) ;

Float farr[] = { 1.1f, 2.1f, 1.0f } ;
Statistics <Float> fobj ;
double avg2 ;

fobj = new Statistics <Float> (farr) ;
avg2 = fobj.getAverage() ;
System.out.println ("avg2 = " + avg2) ;

}
}

Chapter 18: Generics 367

class Statistics <T extends Number>
{

private T arr[] ;

Statistics (T[] obj)
{

arr = obj ;
}
public double getAverage()
{

double sum = 0.0 ;

for (int i = 0 ; i < arr.length ; i++)
sum = sum + arr[i].doubleValue() ;

return (sum / arr.length) ;
}

}

The program is pretty straight-forward and I think you can understand it
easily. The doubleValue() method returns the value of the specified
number as a double.

[A] State True or False:

(a) Java supports generic classes but not generic functions.

(b) We can inherit a new class from a generic class.

(c) Using generic functions saves memory.

(d) Generic functions cannot work for primitives like int, float, char,
etc.

(e) A generic function can receive multiple argument types.

368 Let Us Java

(i) Generic classes describe the functionality without being bound to
any type.

[B] Answer the following:

(a) Write a program that will implement a linked list through a generic
class.

(b) Write a program that has a generic class that can sort dates and
strings apart from integers and floats.

[C] Pick up the correct alternative for each of the following questions:

(a) If printArray() is a generic function capabale of printing any numeric
array then which of the following is the CORRECT way to call it?

(1) int[] arr = { 10, 20, 30, 40, 50 } ;
printArray (arr) ;

(2) float[] arr = { 1.1, 1.2, 1.3, 1.4, 1.5 } ;
printArray (arr) ;

(3) Integer[] arr = { 10, 20, 30, 40, 50 } ;
printArray (arr) ;

(4) char[] arr = { 'A', 'B', 'C', 'D', 'E' } ;
printArray (arr) ;

(b) A generic function can work with
(1) byte
(2) char
(3) float
(4) Float

(c) Which of the following statement is CORRECT about the fun()
function given below:

public static < T > void fun (T[] arr)
{

for (T i : arr)
System.out.println (i) ;

}

(1) It is a generic function.
(2) It is receiving an array of any reference type
(3) It is printing all elements of the array that it is receiving
(4) (1), (2) and (3)

Chapter 18: Generics 369

(d) Which of the following statement is CORRECT about the code
snippet given below:

public static < T > T minimum (T a, T b)
{

if (a.compareTo (b) < 0)
return a ;

else
return b ;

}

(1) It returns the smaller of the 2 arguments that it receives
(2) It works only with those types that are derived from Number

class
(3) It works only with those types which implement a Comparable

interface
(4) It can work with any type of primitive

• Generics promote source-code level reuse, whereas Inheritance
promotes byte-code level reuse

• It is possible to create generic functions as well as generic classes

• Once the generic function / class is ready we can use them with any
reference type

• Primitives are often called value types, whereas classes are called
reference types

• Syntax of defining and calling a. generic function :

// call to generic function
Integer[] intarr = { 10, -2, 37, 42, 15 } ;
printArray (intarr) ;

// generic function definition
public static <T> void printArray (T[] arr)

370 Let Us Java

{
..

}

• Generic function that can work with types that implements a
Comparable interface
public static <T extends Comparable <T> > T min (T a, T b)
{

}

• Generic function that can receive multiple types
public static <T, S, Z> void printTypes (T a, S b, Z c)
{

System.out.println ("a = " + a + " b = " + b + " c = " + c) ;
}

• Syntax for using and defining a generic class :

// using generic class
stack <Integer> s1 ;
s1 = new stack <Integer> (10);
s1.push (10) ;

// defining generic class
class stack <T>
{

..
}

• Bounded generic class restricts its usage only by those reference
types which are derived from the specified type

• For example, the following class would work only for those types
that are derived from the Java API Number class :

class Statistics <T extends Number>
{

..
}

There are many standard ways of storing and accessing data.
Let Java Collections handle that, so that you can concentrate on
building something bigger using them...

371

372 Let Us Java

• Why a New Approach?
• Array of Names and Numbers
• Maintaining a Stack
• Maintaining a Linked List
• Maintaining a Tree
• Maintaining a HashMap
• Using the Algorithms
• Exercises
• KanNotes

Chapter 19: Java Collections 373

As Java became a popular choice amongst programmers to
implement solutions, a need was felt to have a standard way to
handle the data in the program. So a set of classes were made available

to handle the data. These included classes like Vector, Stack, Dictionary,
etc. However, these classes lacked a unified approach in the sense, the
usage of each class was not consistent with the usage of other. When
Generics were introduced in Java a completely new set of classes and
interfaces were created in Java API for handling data. These classes
came to be known as Java Collections Framework. Let us now get to the
root of it.

Why a New Approach?
Suppose in a program we wish to store, retrieve and manipulate
numbers and strings. An easy and intuitive way to handle this situation
would be to create arrays of numbers and strings. However, this
approach has following limitations:

(a) We may not want fixed-size arrays. We may want arrays to grow in
size dynamically as we keep adding new elements to it. This
requirement cannot be met by normal arrays, at least not without
an effort of allocating space for bigger-sized array, copying existing
elements into this space, etc.

(b) There may be a need to maintain data in different ways like
Dictionary (where order is important), Key-Value maps, like cell
number (key) and name (value).

(c) There may be a need to access data in different ways—Last In First
Out (as in a stack), First In First Out (as in a queue), or sorted order.

To handle all these dynamics a completely new Java library based on
Generics, called Java Collections Framework was introduced. This
collections framework contains Collection classes, Interfaces and
Algorithms (set of static functions in the Collections class). Some of the
highlighting features of this collection framework are:

(a) Since the collections framework is based on generics it lets you
handle virtually any type of data.

(b) The collections framework provides a set of very efficient classes to
carry out most data management functionality. Do not confuse this
with database management, which involves management of data

374 Let Us Java

on disk. As against this, collections framework primarily manages
data in memory.

(c) It contains readymade classes for most Data Structures like stack,
queue, linked list, binary tree, hashmap, etc.

(d) There is a lot of consistency in usage of the collection classes. For
example, the same add() function is available for adding new data
to different collections. So no matter how a queue or a linked list
organizes the data internally, the call that the programmer has to
make for adding a new element to them remains same.

(e) Rather than doing the entire implementation from scratch, it is
easily possible to extend the collections framework using the usual
inheritance rules, to suit our specific needs.

Given in Figure 19.1 is a very short list of classes and interfaces available
in the collections framework. This list is by no means exhaustive or
complete, but is given here just to give you an idea of how the
collections framework is organized.

The classes and interfaces of the collections framework are defined in
java.util package.

In summary, we can say that collections framework provides
prepackaged data structures plus the algorithms to manipulate them.

Entity Examples

Collection classes ArrayList, LinkedList, LinkedHashSet, TreeSet,
HashMap, PriorityQueue, etc.

Interfaces Collection, List, Set, SortedSet, NavigableSet,
Queue, DeQueue, etc.

Algorithms fill(), max(), min(), reversef), shufflef), sort(),
binarySearchf), etc.

Figure 19.1

Chapter 19: Java Collections 375

Array of Names and Numbers
Let us now see how to use the collections framework. We would begin
with managing a set of names and a set of numbers. This can be done
using the ArrayList collection class. Given below is a program that shows
how this can be done.

package arraylistdemo ;
import java.util.* ;
public class ArrayListDemo
{

public static void main (String[] args)
{

ArrayList <String> alnames ;

alnames = new ArrayList <> () ;
alnames.add ("Shashank") ;
alnames.add ("Prasanna") ;
alnames.add ("Nimesh") ;
alnames.add ("Karun") ;
alnames.add ("Rajgopal") ;

System.out.println ("contents of al: " + alnames) ;
alnames.add (2, "Aditya") ;
alnames.remove (3) ;
alnames.remove ("Karun") ;
System.out.println ("contents of al: " + alnames) ;

if (alnames.contains ("Aditya"))
System.out.println ("Aditya is present in the array list") ;

ArrayList <Integer> alnums ;
alnums = new ArrayList <> () ;
alnums.add (10) ;
alnums.add (20) ;
alnums.add (30) ;
alnums.add (40) ;

int sum = 0 ;
for (int i = 0 ; i < alnums.size() ; i++)

sum = sum + alnums.get (i) ;

376 Let Us Java

System.out.println ("sum = " + sum) ;

Integer arr[] = new Integer [alnums.size()] ;
arr = alnums.toArray (arr) ;

sum = 0 ;
for (int n : arr)

sum += n ;

System.out.println ("sum = " + sum) ;
}

}

Here is the output of the progam...

contents of alnames: [Shashank, Prasanna, Nimesh, Karun, Rajgopal]
contents of alnames: [Shashank, Prasanna, Aditya, Rajgopal]
Aditya is present in the array list
sum = 100
sum = 100

The program begins by creating an ArrayList object for storing strings
and then adding a few names to it using add() function. If we wish, we
can also pass the initial size of the array list by passing the size to the
constructor while creating the ArrayList object. After creating the
object, we have added a new name at a specific position (using the
overloaded add() function) and removed name from a specific position
(using the remove() function). Thus addition, insertion and deletion
operations are straight-forward.

There is a very simple way to print the entire ArrayList contents using
println(). Note that the ArrayList maintains the list in a dynamic fashion.
Nowhere have we specified its size. It keeps growing as we keep adding
new elements. The contains() function helps us figure out whether a
specific element is present in the array list or not.

What is important for you to notice is that the usage of ArrayList class
doesn't change at all when it comes to maintaining an array of numbers
instead of names.

We have obtained the sum of all integers by retrieving each integer
using the get() function. Note that get() returns an Integer, not an int.
The size() function yields the current size of the array list.

Chapter 19: Java Collections 377

The array maintained by array list can be converted into the normal Java
array using the toArray() function. This array can then be iterated over
using the special for loop as shown in the program.

Maintaining a Stack
A Stack is a data structure in which addition of new element or deletion
of an existing element always takes place at the same end. This end is
often known as top of stack. This situation can be compared to a stack
of plates in a cafeteria where every new plate added to the stack is
added at the top. Similarly, every plate taken off the stack is also from
the top of the stack. Thus stack is a last-in-first-out (LIFO) list. When an
item is added to a stack, the operation is called push, and when an item
is removed from the stack the operation is called pop.

Given below is a program that maintains a stack of city names using the
collection class called Stack. Note that before calling the pop() function
we need to ascertain whether the stack has any element left in it. This is
done by calling the isEmpty() function.

package stackdemo ;
import java.util.* ;
public class StackDemo
{

public static void main (String args[])
{

Stack < String > s ;
s = new Stack <> () ;
s.push ("Delhi") ;
s.push ("Nagpur") ;
s.push ("Indore") ;
s.push ("Raipur") ;
s.push ("Mysore") ;
s.push ("Mumbai") ;

String str ;

if (! s.isEmpty())
{

str = s.pop() ;
System.out.println (str) ;

}

378 Let Us Java

if (! s.isEmpty())
{

str = s.pop() ;
System.out.println (str) ;

}
}

}

Maintaining a Linked List
Linked list is a very common data structure often used to store similar
data in memory. While the elements of an array occupy contiguous
memory locations, those of a linked list are not constrained to be stored
in adjacent locations. The individual elements are stored "somewhere"
in memory, rather like a family dispersed, but still bound together. The
order of the elements is maintained by explicit links between them. For
instance, the marks obtained by different students can be stored in a
linked list as shown in Figure 19.2.

Observe that the linked list is a collection of elements called nodes, each
of which stores two items of information—an element of the list and a
link. A link is a reference or an address that indicates explicitly the
location of the node containing the successor of the list element. In
Figure 19.2, the arrows represent the links. The data part of each node
consists of the marks obtained by a student, and the link part is a
pointer to the next node. The NULL in the last node indicates that this is
the last node in the list.

Instead of marks, we can maintain a linked list of names. If we want, we
can maintain both in each node. The program given below uses the
collection class LinkedList to maintain a linked list of names of students.
Most of the operations in the program are self-explanatory. Go through
the program carefully, a step at a time.

Chapter 19: Java Collections 379

package linkedlistdemo ;
import java.util.* ;
public class LinkedListDemo
{

public static void main (String[] args)
{

LinkedList <String> ll ;
ll = new LinkedList <> () ;
ll.add ("Subhash") ;
ll.add ("Rahul") ;
ll.add ("Joe") ;
ll.add ("Vineeta") ;
for (String s : ll)

System.out.println (s) ;

ll.set (2, "Neha") ;
System.out.println (ll) ;

String name = ll.get (2) ;
System.out.println ("String at position 2 = " + name) ;
ll.add (3, "Sanjay") ;
System.out.println (ll) ;
ll.remove (1) ;
System.out.println (ll) ;

}
}

Here is the output of the program...

Subhash
Rahul
Joe
Vineeta
[Subhash, Rahul, Neha, Vineeta]
String at position 2 = Neha
[Subhash, Rahul, Neha, Sanjay, Vineeta]
[Subhash, Neha, Sanjay, Vineeta]

Maintaining a Tree
The data structures such as linked lists, stacks and queues are linear
data structures. As against this, trees are non-linear data structures. In a

380 Let Us Java

linked list each node has a link which points to another node. In a tree
structure, however, each node may point to several other nodes (which
may then point to several other nodes, etc.). Thus a tree is a very flexible
and powerful data structure that can be used for a wide variety of
applications. For example, suppose we wish to use a data structure to
represent a person and all of his or her descendants. Assume that the
person's name is Rahul and that he has 3 children, Sanjay, Sameer and
Nisha. Also suppose that Sameer has 3 children, Abha, Ram and Madhu
and Nisha has one child Neha. We can represent Rahul and his
descendants with the tree structure shown in Figure 19.3.

Notice that each tree node contains a name for data and one or more
pointers to the other tree nodes.

Although the nodes in a general tree may contain any number of
pointers to the other tree nodes, a large number of data structures have
at the most two pointers to the other tree nodes. This type of a tree is
called a Binary Tree.

Many algorithms that use binary trees proceed in two phases. The first
phase builds a binary tree, and the second traverses the tree. Suppose
we wish that while traversing the binary tree we should be able to
access the elements in it in ascending order. To ensure this we need to
arrange the elements properly during insertion. A simple logic to do so
would be to compare the element to be inserted with the element in the
root node and then take the left branch if the element is smaller than
the element in the node, and a right branch if it is greater or equal to
the element in the node. Thus if the input list is

3, 9, 1, 4, 7, 11

Chapter 19: Java Collections 381

then using this insertion method the binary tree shown in Figure 19.4
would be produced.

Figure 19.4

Such a binary tree has the property that all the elements in the left sub­
tree of any node n are less than the contents of n. And all the elements
in the right sub-tree of n are greater than or equal to the contents of n.
A binary tree that has these properties is called a Binary Search Tree.

If a binary search tree is traversed in in-order, i.e., in the order left child,
root, and right child and the contents of each node are printed as each
node is visited, the numbers are printed in ascending order. This is
demonstrated in the program given below.

package treesetdemo ;
import java.util.* ;
public class TreeSetDemo
{

public static void main (String args[])
{

TreeSet <Integer> ts ;
ts = new TreeSet <> () ;
ts.add (3) ;
ts.add (9) ;

382 Let Us Java

ts.add (1) ;
ts.add (4) ;
ts.add (7) ;
ts.add (11) ;

System.out.println (ts) ;
System.out.println (ts.subSet (4, 11)) ;
ts.clear() ;
System.out.println (ts) ;

}
}

On execution the program produces the following output:

[1, 3, 4, 7, 9, 11]
[4, 7, 9, 11]
[]

From the output you can see that the subSet() function gives all those
nodes that lie between the nodes passed to it. Also, to delete all the
nodes in the tree at one shot, the clear() function can be used.

Maintaining a HashMap
The HashMap class lets us maintain a set of key - value pairs. For
example, we can maintain key - value pairs of cell numbers and names,
or key - value pairs of day names in English and Hindi. Against each key
multiple values may also be maintained. For example, against cell
number we can store the name, address and photograph. The key -
value pairs may not be stored in the same order as the order of
insertion. We can get the order in which they are being maintained by
printing out the hash map. This is shown in the following program.

package hashmapdemo ;
import java.util.* ;

public class HashMapDemo
{

public static void main (String args[])
{

HashMap < String, String> hm ;
hm = new HashMap < > () ;

Chapter 19: Java Collections 383

hm.put ("Sun", "Ravi") ;
hm.put ("Mon", "Som") ;
hm.put ("Tue", "Mangal") ;
hm.put ("Wed", "Budh") ;
hm.put ("Thu", "Guru") ;
hm.put ("Fri", "Shukra") ;
hm.put ("Sat", "Shani") ;

System.out.println (hm) ;

String str ;
str = hm.get ("Wed") ;
System.out.println ("Wed in hindi is " + str) ;

}
}

The output of the program is shown below. Note that the get() function
can be used to obtain the value stored against the key passed to it.

{Thu=Guru, Tue=Mangal, Wed=Budh, Sat=Shani, Fri=Shukra, Sun=Ravi,
Mon=Som}
Wed in hindi is Budh

Using the Algorithms
There are many operations that we wish to perform on collections.
These include searching, sorting, finding minimum value, finding
maximum value, etc. In terminology of collections framework these are
called algorithms and are available for use in the form of static methods
of the Collections class. A smaller version of the same is also available in
the Arrays class. The program given below shows how to use these
algorithms from the Arrays class.

package arraysdemo ;
import java.util.* ;
public class ArraysDemo
{

public static void main (String[] args)
{

int arr[] = new int[5] ;
Random r = new Random() ;

for (int i = 0 ; i < arr.length ; i++)

384 Let Us Java

{
arr[i] = r.nextInt (25) ;
System.out.println (arr[i]) ;

}
Arrays.sort (arr) ;
System.out.println ("After sorting: ") ;
for (int i = 0 ; i < arr.length ; i++)

System.out.println (arr[i]) ;

Arrays.fill (arr, 2, 4, -3) ;
System.out.println ("After filling: ") ;
for (int i = 0 ; i < arr.length ; i++)

System.out.println (arr[i]) ;

int pos ;
pos = Arrays.binarySearch (arr, -3) ;
System.out.println ("pos = " + pos) ;

}
}

Here is the output of the program.

15
13
13
2
18
After sorting:
2
13
13
15
18
After filling:
2
13
-3
-3
18
pos = 2

Chapter 19: Java Collections 385

The program generates random numbers using nextInt() function of
Random class and then populates the array arr with these randomly
generated integers. Next, it calls the sort() function to sort these
numbers.

The call to fill() function fills the array with -3 starting from 2nd position
up to and excluding the 4th position. Then the program uses the
binarySearch() function to search the position of first occurrence of -3
in the array.

I hope now you have got a fair idea of how to use the Java collections
framework. You can explore the other collection classes, interfaces and
algorithms of the framework on your own.

[A] State True or False:

(a) Java collections framework provides common algorithms through
static functions of Collections class.

(b) The Java collection framework is based on Generics.

(c) Key - value pairs can be maintained using ArrayList class.

(d) In a hashmap order of insertion and order of access are same.

(e) ArrayList class can grow and shrink an array dynamically.

(f) Elements of a linked list are stored in adjacent memory locations.

(g) Stack is a FIFO list.

(h) All binary trees are maintained by TreeSet class as binary search
trees.

(i) It is possible to maintain elements of ArrayList in sorted order.

rr.1 A-------4.1._ r_ll_.

386 Let Us Java

(c) Write a program that maintains a hash map of 10 cell numbers as
keys and the name of the person and his email address as values.

[B] Pick up the correct alternative for each of the following questions:

(a) Which of the following is the CORRECT import statement for using
classes in Java collection framework?
(1) import java.io.*
(2) import java.util.*
(3) import java.*
(4) import java.collections.*

(b) Java collections maintain data in the form of
(1) int
(2) float
(3) double
(4) Any reference type

(c) Consider the following code snippet:

ArrayList < int > num = new ArrayList < > () ;
num.add (10) ;
num.add (20) ;

What change should be made to make the above code to work?
(1) Replace ArrayList with Vector
(2) Replace ArrayList with LinkedList
(3) Replace int with Integer
(4) The code will work perfectly

(d) Consider the following code snippet:

ArrayList < Integer > num = new ArrayList < Integer > () ;
num.add (10) ;
num.add (20) ;
num.add (30) ;
num.add (40) ;
Integer arr [] = new Integer[num.size()] ;
// add statement here
for (int n: arr)

System.out.println (n) ;

Chapter 19: Java Collections 387

Which statement will you add for the code to work?

(1) arr = num.toArray (arr) ;
(2) arr = num ;
(3) arr = num.convert (arr) ;
(4) arr = convert (arr) ;

(e) Which of the following is NOT an interface in the Java Collection
framework?
(1) TreeSet
(2) Set
(3) SortedSet
(4) NavigableSet

• To store, retrieve and manipulate multiple numbers / strings arrays
can be used

• Arrays suffer from 2 limitations :

- They have no mechanism to maintain data in different ways like
Key -Value maps, Dictionary, etc.

- Arrays have no means to access data in FIFO, LIFO, Sorted order,
etc.

• Instead of arrays we should use ready-made library called Java.
Collection Framework

• Advantages of using Java. Collection f/w

- Very efficient, time tested, written by experts
- Readymade classes for most data structures, so we can

concentrate on program rather than building data structures
- It is possible to extend the collection classes to suit our needs

• Collection framework contains :

- Collection classes - ArrayList, LinkedList, TreeSet,
PriorityQueue, HashMap, etc.

388 Let Us Java

- Interfaces - Collection, List, Set, SortedSet, NavigableSet,
Queue, DeQueue, etc

- Algorithms - fill(), max(), min(), reverse(), shuffle(),
binarySearch(), sort(), etc.

• Algorithms are static methods of Arrays class

• All collection classes are implemented as Generics, hence can work
only with reference types

• Vector class and ArrayList class both can maintain arrays that grow
dynamically

• Vector is synchronized class, so slow. ArrayList is not synchronized,
so fast

• For a. Vector class :
- capacity indicates how many elements can be stored in the vector
- size indicates number of elements present in it
- grow size indicates by how much would the capacity increase,

when we store an element once the capacity is full

• Vector / ArrayList should be used if we are to store and process their
elements sequentially

• LinkList should be used if frequent insertions / deletions of elements
is required

• Rule for inserting elements in a. Binary Search Tree (BST)- Greater
to Right, Smaller to Left of Root

• The sequence of visiting nodes in BST in Inorder traversal - Left,
Root, Right

• When elements are accessed using Inorder Traversal, they get
accessed in ascending order

• The order in which we insert entries into a. HashMap and the order in
which they are stored may be different

Text is gone! Graphics is the way forward. Learn how to build
Graphical User Interfaces in Java...

389

390 Let Us Java

• A Simple Swing Application
• Event Handling
• One More GUI Application
• Adapter Classes
• What Next?
• Exercises
• KanNotes

Chapter 20: User Interfaces 391

In today's GUI-centric world it is expected that Java programs would let
a program interact with the user using GUI elements like text boxes,
list boxes, combo boxes, push button, radio buttons, check boxes, scroll

bars, etc. To facilitate this interaction Java provides three libraries—
Active Window toolkit (AWT), Swing and JavaFX. Of these, AWT is the
older library. Moreover, the world has now moved over to either Swing
or JavaFX library. In fact Swing internally uses AWT. In that sense Swing
is built on top of AWT. In this chapter we would see how to build simple
GUI based applications using Swing library.

A Simple Swing Application
In this application the goal is to create and display a window shown in
Figure 20.1. As you can see, this window has two labels, two text fields
and a button. On entering the temperature in the text field for
Centigrade degrees and clicking the Convert button, the program should
do the conversion of temperature into Fahrenheit degrees and display
this temperature in the second text field.

Figure 20.1

Given below are the steps that we should carry out to create this
application using NetBeans.

Step I - Create a Java Application, give Project Name as GUIApp. Choose a
suitable location on your disk for creating the files of this application.
Uncheck the "Create Main Class" check box.

392 Let Us Java

Step II - To create the window for the application, add new JFrame form to
the application. For this right click on the GUIApp project in the project
window and then select "New" followed by "JFrame Form". On doing so, it
will ask you to supply the name of the class to represent the window. Type
ConvertTemp as the class name and click on the "Finish" button.

Step III - At the end of step II a window would appear in NetBeans. Now
we need to insert Container (Panel) and Controls (Labels, Text fields,
Button) in this window. Drag and drop them from the Swing Containers
and Controls window that appears besides the frame window.

Step IV - Change the values of "text" property of the two label controls and
one button control. For the two labels give the values as "Temp in
Degree Centigrade" and "Temp in Degree Fahrenheit". For the button
give the value as "Convert". Note that the property values can be
changed through the "Properties" window by typing the new values.

Step V - Change names of the two text fields and the button to txtTempC,
txtTempF and btnConvert respectively. This can be done by right
clicking the control and selecting "Change variable name..." menu item.

Step VI - Add Button handler - Select the "Convert" button, Go to Events
Window (another tab in the "Properties" window) and double click the
event actionPerformed. Give the name of the handler as
btnConvertActionPerformed().

Step VII - Add the following code in the handler created in Step VI
above.

private void btnConvertActionPerformed (java.awt.event.ActionEvent
evt)
{

String str ;
float f, c ;

str = txtTempC.getText() ;
c = Float.parseFloat (str) ;
f = c * 9 / 5 + 32 ;
str = Float.toString (f) ;
txtTempF.setText (str) ;

}

Step VIII - Compile and execute the program using F6. On execution the
window with the container and controls we had inserted would appear.

Chapter 20: User Interfaces 393

On providing the temperature in Centigrade and clicking the Convert
button the temperature in Fahrenheit would get displayed.

So much about creating our first GUI application using Swing library. Let
us now understand what we did in this application. Given below is the
source code that the wizard has created for us as we were creating the
application.

package converttemp ;
public class ConvertTemp extends javax.swing.JFrame
{

private javax.swing.JPanel jPanel1 ;
private javax.swing.JLabel jLabel1 ;
private javax.swing.JLabel jLabel2 ;
private javax.swing.JTextField txtTempC ;
private javax.swing.JTextField txtTempF ;
private javax.swing.JButton btnConvert ;

public ConvertTemp()
{

initComponents() ;
}

public static void main (String args[])
{

/* code to create and display the form */
}

}

When we added a JFrame form to our application and gave a name
ConvertTemp to it, a class of this name, inherited from the Swing class
JFrame, got inserted in our application. You can observe this inheritance
from the code given above and also note that main() is now present in
this class.

For every container and control that we can drag and drop in the
window there is a Swing class available. For example, for a panel there is
a class called JPanel, for a button JButton and for a text field JTextField.
These classes are defined in the package javax.swing. So when we
dragged and dropped them into the window and gave names to them,
private variables by these names got created in the ConvertTemp class.

394 Let Us Java

But somewhere the objects of JPanel, JButton, JTextField, etc. also need
to be created. Well, that is what is done in the initComponents()
function that has been called from the ConvertTemp's constructor. In
fact if you take a look at this function you would see apart from creation
of these objects, properties of these objects being setup. These include
position, size, color, etc. You can also observe statements to add all
these controls to the window. You are best advised not to edit the code
in initComponents() directly.

The wizard would add the code to create and display the window in
main(). When the window is created, an object of ConvertTemp would
be created. This would result into call to its constructor and in turn to
initComponents().

One question that must be troubling you—what is the difference
between a container and a control? A control is something that the user
interacts with, like a push button, a check box or a combo box. As the
name suggests, a container is something that would hold these visual
controls.

Now that we have understood the code to create the window, container
and controls, let us now turn our attention to a phenomenon called
event handling.

Event Handling
In simplest words an event is a thing that takes place. Programmatically
it means change in the state of an object. Events occur all the time when
we are interacting with a GUI application. For example, when we enter a
character from keyboard, or move the mouse, or click the left mouse
button, events occur. These events are generated as a consequence of
interaction with the graphical components in the GUI. Such events are
known as Foreground events.

Apart from these, events also occur without any user interaction. For
example, expiry of a timer, completion of some ongoing task,
occurrence of an interrupt, etc. Such events are known as Background
Events.

When an event occurs, the program is supposed to react to that event.
That reaction is known as event handling. Programmatically, a function
known as event handler gets executed when an event occurs. To ensure
that all events are handled in a standard manner, Java uses a

Chapter 20: User Interfaces 395

mechanism called Event Delegation Model to handle the events. This
model involves two key players:

(a) Source - The source is an object on which the event occurs. For
example objects of JButton, JTextField, JComboBox are all sources.
These sources provide information of the occurred event to their
respective handlers.

(b) Listener - The listener listens to (i.e. it waits for) an event to occur.
When an event occurs, the listener processes the event.
Programmatically, listener is an interface containing prototypes of
functions. For example, the MouseListener interface contains
prototypes of functions like mouseClicked(), mousePressed(),
mouseReleased(), etc.

The events themselves are represented using readymade classes like
MouseEvent, KeyEvent, ActionEvent, etc. When an event occurs, event
objects are created and passed to the listener functions (defined in a
class that implements the listener interface) to tackle the event.

Different applications would react to occurrence of same event
differently. For example, on clicking a mouse one application may print a
page on the printer, whereas, another application may draw a circle in
the window. Hence, in both applications, different functions would have
to be written for the same mouse event. These functions are nothing
but the implementations of the functions declared in the MouseListener
interface.

Let us understand this inter-play of multiple classes, objects and
interfaces with reference to our temperature converter application. We
did two specific things in this application. These are as follows:

(a) We dragged and dropped the button in our window and gave it a
name btnConvert.

(b) For the Convert button, for the actionPerformed event, we added
an event handler function. We called this function
btnConvertActionPerformed().

As a result of step (a) above, a private variable btnConvert of the type
JButton got declared in the ConvertTemp class. An object of JButton
class got created in initComponents() and its address got stored in
btnConvert.

396 Let Us Java

When we performed step (b) above, a call to the function
addActionListener() got added in initComponents(). This call is made
using btnConvert. This call ties the ActionListener interface with the
Convert button. ActionListener interface has the following method
declaration in it:

void actionPerformed (ActionEvent e) ;

In initComponents() this method is implemented in a class (often called
anonymous class). Object of this class is passed to the
addActionListener() method.

When we click the Convert button, an actionPerformed event occurs.
Information about this event is packed in an ActionEvent object. This
object is then passed to the actionPerformed() method of the
anonymous class. From this method our event handler—the function
btnConvertActionPerformed() gets called. In this method we do the
temperature conversion and display the result in the text field.

It is said that for event handling Java uses Event Delegation model. This
means that the responsibility of event handling is delegated (assigned)
to listeners. As a result, the logic that displays the controls and
generates the events remains completely separated from the logic that
reacts to these events.

In this model, the listener needs to be registered with the source object
(button in our example), so that the listener can receive the event
notification. This way the event notifications are sent only to those
listeners who wish to receive them.

One More GUI Application
Now that we are familiar with creation of a GUI application and its
working, let us now create one more application to help you fix your
ideas. The window and the controls for this application are shown in
Figure 20.2.

Chapter 20: User Interfaces 397

Name Rahul

Age 25

Salary 1000000

Address 44A Hill Road Gokulpeth Nagpur

Grade | Grade II T i

Sex (•) Male O Female

Hobbies [7| Sports (7| Reading l~ I Travelling

| Show j

Figure 20.2

As you can see in Figure 20.2, there are several labels, 4 text fields (for
Name, Age, Salary and Address), 1 list box (for Grade of employee), 2
radio buttons (for Sex of employee), 3 check boxes (for Hobbies of
employee) and 1 button (Show button) in the window. The user would
interact with different controls and either type or select the data values
for an employee. Once the Show button is clicked the typed or selected
values should be displayed in a message box as shown in Figure 20.3.

Figure 20.3

398 Let Us Java

To create this application, you should follow exactly the same steps that
were discussed while creating the first GUI application in the previous
section.

Regarding GUI in this application, one additional thing that you need to
do is manage the mutual exclusivity of the radio buttons for Male /
Female. To do this, first insert two radio buttons and then insert a
Button Group control. Change ButtonGroup property of both radio
buttons to have a value same as name of the Button Group control.
Once this is done, you can choose only one out of the two radio buttons
at a time.

Also, for Combo Box by default model property would have some
default values. Edit this property to add values Grade I, Grade II, Grade
III and Grade IV to it.

Once again add an event handler for the button for actionPerformed
event. Once created, add the following code in the event handler to
display the typed / selected values in a message box.

private void btnShowActionPerformed (java.awt.event.ActionEvent evt)
{

String str,str1,str2 ;
String strName ;
String strAge ;
String strGrade ;
String strSalary ;
String strAddress ;
String strSex = "" ;
String strReading = "" ;
String strTravelling = "" ;
String strSports = "" ;

strName = txtName.getText () ;
strAge = txtAge.getText() ;
strSalary = txtSalary.getText() ;
strAddress = txtAddress.getText() ;
strGrade = cbGrade.getName() ;

if (rbMale.isSelected())
strSex = rbMale.getText() ;

if (rbFemale.isSelected())

Chapter 20: User Interfaces 399

strSex = rbFemale.getText() ;

if (ckbxSports.isSelected())
strSports = ckbxSports.getText() ;

if (ckbxReading.isSelected())
strReading = ckbxReading.getText() ;

if (ckbxTravelling.isSelected())
strTravelling = ckbxTravelling.getText() ;

str1 = strName + "\n" + strAge + "\n" + strSalary + "\n" +
strAddress + "\n" + strGrade + "\n" ;

str2 = strSex + "\n" + strSports + "\n" + strReading + "\n"+
strTravelling + "\n" ;

str = str1+str2 ;
JOptionPane.showMessageDialog (null, str,"Employee Info",

JOptionPane.INFORMATION_MESSAGE) ;
}

In this event handler we have extracted the values from the text fields
using calls to the getText() function. Which of the radio buttons and
check boxes have been selected is checked using the isSelected()
function. The actual selections are again obtained using the getText()
function. The grade selected from Combobox is collected using the
function getName().

All the strings extracted from these functions are concatenated, with
"\n"s added to separate values into multiple lines. Lastly, the final string
str is displayed using the static method ShowMessage() of the
JOptionPane class. The information icon is displayed using the enum
value INFORMATION_MESSAGE.

Adapter Classes
Suppose we wish to interact with mouse in our GUI application. For this
we need to add the MouseListener interface. If we do this then all the
methods in the MouseListener interface need to be implemented in our
class. Problem is that MouseListener has five methods in it. These are as
follows:

public void mouseClicked (MouseEvent e) ;

400 Let Us Java

public void mousePressed (MouseEvent e) ;
public void mouseReleased (MouseEvent e) ;
public void mouseEntered (MouseEvent e) ;
public void mouseExited (MouseEvent e) ;

Suppose we wish to react only to the MouseClicked event; we still have
to implement all the methods of the interface. So only the
mouseClicked() function would have some meaningful code, whereas
the rest of them would have empty body. Two such functions are shown
below.

public void mousePressed (MouseEvent e)
{
}

public void mouseReleased (MouseEvent e)
{
}

Providing such empty-bodied function becomes tedious when the
interface has a large number of functions. To avoid this unnecessary
work Java provides Adapter Classes, one per interface. Thus, for
MouseListener interface there would be an equivalent adapter class
known as MouseAdapter. This class would contain five empty-bodied
functions. Now all that we need to do is, inherit our class from this
adapter class and override only the mouseClicked() function. Smart
work, you would agree!

What Next?
There are many controls and interfaces in Java swing API. The intention
of this chapter was to introduce you to some of them and discuss the
basic philosophy behind creating modern GUI and handling events. The
Swing library is very exhaustive and covering all classes in it would need
a separate book. Nevertheless, through this chapter you got introduced
to the Swing API and its working. Rest you are free to explore on your
own.

Chapter 20: User Interfaces 401

[A] State True or False:

(a) There is no difference between a container and a control.

(b) A control has to be in a container for it to become visible and
usable.

(c) For every control that can be inserted in a window there is a
readymade class available in Swing API.

(d) All Swing classes are defined in javax.gui package.

(e) We can modify Adapter classes by adding new methods to them.

(f) For every event related interface available in Swing library there is
one equivalent adapter class.

(g) Methods in adapter classes are empty-bodied.

(h) We can avoid using Adapter classes by implementing all the
methods of an interface in our class.

(i) The Even Delegation model ensures that the code that creates
controls and events remains separate from the code that reacts to
events.

[B] Answer the following:

(a) Write a program that creates a window and displays a message
"Hello" in it at a position where you click with left mouse button in
it.

(b) Modify the above program to display "Hello" for a left click and
"Bye" for the right click.

(c) Write a program that draws a line, rectangle and ellipse of suitable

402 Let Us Java

• Three ways to provide input to a Java program :

- Console IO - Input from keyboard, Output to screen
- Command Line Arguments
- GUI elements like Text Fields, Buttons, Combo Boxes, Menu, etc.

• GUI Libraries : AWT - Older way, Swing - Newer way

For every window and control there are Swing classes available

• Event is a thing that takes place

• Java uses Event Delegation model - Responsibility of event handling
is delegated (assigned) to Listeners

• Programmatic elements involved in GUI - Sources, Events, Listeners,
Adapters

• Sources are classes for controls. All classes are subclasses of
java.awt.Component

• To represent an event that a control may generate, many event
classes exist

- Ex. : Button, Menu - ActionEvent
- Ex. : Frame - WindowEvent

• Event Listeners are Interfaces. Different listeners exist for different
controls
- Ex. : Button, TextField - ActionListener
- Ex. : Mouse - MouseListener, MouseMotionListener

• Adapters - Abstract classes. There is 1 abstract class per listener

• Adapters contain empty body of all interface methods

• Idea behind Adapters - Inherit and override only desired functions

World is full of data. You are in a commanding position if you
know how to deal with it in a professional manner...

403

404 Let Us Java

• Data Organization
• Common Database Operations
• Database Operations through Java
• JDBC Architecture
• JDBC Driver Types
• MySQL Database Installation
• Common JDBC API Components
• Putting it to Work
• Exercises
• KanNotes

Chapter 21: JDBC 405

Data is the King! In today's digital world enormous amount of data is
being generated and exchanged. All this data finally gets stored in a
database. As a Java programmer one must know how to handle this data

programmatically. To help us do this Java provides an API called JDBC. It
stands for Java Database Connectivity. This API lets us write Java
programs that can interact with a wide range of databases. How this can
be done is discussed in this chapter.

Data Organization
Modern way of organizing data is storing it in a Relational Database
Management System or RDBMS. Different vendors provide this RDBMS
software. These include Oracle, Microsoft, IBM, etc. There are several
open source implementations available as well, the most popular
amongst which is MySQL. All these RDBMSs are accessible through the
JDBC API.

Each of these RDBMS organizes the data in the form of different tables.
One database may contain multiple tables. Each table contains data
organized in the form of records (rows). Each record may contain
multiple fields (columns).

For example, a company may have a database containing Employees
table containing records about employees working in an organization.
Each record may contain fields like Name, Age, Salary, etc.

Likewise a University database may consist of tables for students,
professors, courses, examinations, payments, etc. It is also possible to
establish relationships between tables. For example, if a student pays
fees, then the record of fees paid can be linked to his record in the
student table. This would be a one-to-one relationship. If the same
student pays fees multiple times then it would become a one-to-many
relationship.

Common Database Operations
There is a set of typical operations that one needs to carry out on
database of any kind. These are as follows:

(a) Create Table - Create a table by specifying its name and the fields
that it would contain along with the type of each field.

(b) Modify Table - Modify the specifications of different fields, or add /
delete certain fields.

406 Let Us Java

(c) Drop Table - Delete the table from the database including all the
records present in it.

To carry out these operations a simple language has been created. It is
called SQL, standing for Structured Query Language. This language
provides simple English like statements to perform database operations.
SQL is supported by almost every RDBMS and it allows you to work with
a database independently of the underlying RDBMS.

Given below are some sample SQL statements for carrying out database
operations. The comments before each SQL statement would help you
understand the operation being performed by the SQL statement.

// Create a table called Persons containing two fields EmpID of the type
// int and Name of the type variable length string of 255 characters
CREATE TABLE Persons (EmpID int, Name varchar (255))

// Modify Persons table by adding a field DateOfBirth of the type date
ALTER TABLE Persons ADD DateOfBirth date

// Modify the Persons table by deleting the column DateOfBirth
ALTER TABLE Persons DROP COLUMN DateOfBirth

// Delete the Customers table
DROP TABLE Customers

SQL also provides statements that let you work with the records of each
table. Common operations on a table include Create new record(s),
Read existing record(s), Update existing record(s), Delete existing
record(s). In short these are known as CRUD operations. The SQL
statements that carry out these operations are often known as SQL
queries. Given below are some sample SQL statements for carrying out
CRUD operations.

// Insert a new record in Persons table, with values 101 and Sunil in the
// EmpID and Name respectively
INSERT INTO Persons (EmpID, Name) VALUES (1001, 'Sunil')

// Read all records from Employees table
SELECT * FROM Employees

// Modify record whose Employee ID is 1001 by changing its Name field
// to hold a value Satish

Chapter 21: JDBC 407

UPDATE Persons SET Name = 'Satish' WHERE EmpID = 1001

// Delete that record from the Persons table whose Employee ID is 1244
DELETE FROM Persons WHERE EmpID = 1244

Database Operations through Java
The operations mentioned in the previous section were performed using
SQL. Let us now see how these operations can be carried out through
Java. Creation, Modification and Deletion of a table are infrequent
operations. By this what I mean is Customers or Students table is not
going to get created, altered or deleted every other day. In fact once you
have set up all the fields in a table to your satisfaction, you would rarely
change it. More common operations would be the CRUD operations.

Hence usually the operation of creation of tables is done manually using
the tools that come with each RDBMS. For example, in this chapter we
propose to use MySQL RDBMS and perform these operations using the
MySQL WorkBench that comes with MySQL.

The CRUD operations can be performed using the JDBC objects called
Connection, Statement and ResultSet. The purpose of each of these
objects is mentioned below.

(a) Connection - To establish connection with database
(b) Statement - To execute SQL statements
(c) Resultset - To process results of a SQL query

Before we can use these objects in our Java program we need to
understand the JDBC architecture and install a RDBMS. Our choice of
database would be MySQL, primarily because it is free of cost and quite
popular amongst open source community. The JDBC architecture and
MySQL installation are discussed in the following sections.

JDBC Architecture
To help programmers communicate with the database, vendors provide
vendor-specific JDBC driver software. For example, Oracle provides a
JDBC driver to help programmers communicate with databases
maintained by it. Likewise, Microsoft provides a JDBC driver to help
programmers communicate with databases maintained by MS SQL.

Java programmers must have a standard and uniform way to
communicate with any third-party JDBC driver. To facilitate this, an

408 Let Us Java

interface called Driver is declared in the java.sql package. The third-
party database vendors implement this interface in their driver.

To manage different JDBC drivers there is a component called Driver
Manager. For example, through a Java program when we attempt to
connect to a database, the Driver Manager would load the suitable JDBC
driver. Thus, JDBC Manager ensures correct driver usage to access each
database.

Once the driver is loaded we have to use the different classes present in
JDBC API to interact with the database.

The various layers of JDBC Architectures are shown in Figure 21.1.

Figure 21.1

JDBC Driver Types
Java implementations are available for a wide variety of Operating
Systems and hardware. These platforms themselves have evolved over
the years. There are different JDBC driver implementations for these
different platforms. All these drivers are classified into 4 categories—

Chapter 21: JDBC 409

Type 1 driver, Type 2 driver, Type 3 driver and Type 4 driver. Most
legacy applications would use Type 1, 2, or 3 driver, whereas to connect
with modern databases Type 4 driver is used. For programs in this book
Type 4 driver would have to be installed.

MySQL Database Installation
We wish to install MySQL on a Windows machine. To do this we need to
first download the MySQL Installer. This is available for download at
https://dev.mysql.com/downloads/windows. Once downloaded,
execute this MySQL Installer. When presented with options to install
components, choose MySQL database and JDBC driver. At the time of
writing this book the JDBC driver was available in mysql-connector-java-
5.1.40-bin.jar.

Once the MySQL database and driver stand installed, download MySQL
Workbench for your version of Windows from URL given below and
install it.

https://dev.mysql.com/downloads/workbench/

The Workbench provides an integrated tool for carrying out the
following operations:

(a) Database Design
(b) Trying SQL queries
(c) Database Administration
(d) Database Migration

In a later part of the chapter we would see how to use the MySQL
Workbench to create a database and its tables(s). We would also see
how to use the JDBC driver to work with the database programmatically.

Common JDBC API Components
The JDBC API provides different classes and interfaces. In a previous
section we had seen the purpose three classes—Connection, Statement
and ResultSet. Apart from them, JDBC API also provides several other
classes and interfaces. The important amongst them are as follows:

(a) DriverManager: This class provides services for loading and
managing JDBC drivers.

(b) Driver: This is an interface. Each JDBC driver implements this
interface. It handles the communications with the database server.

https://dev.mysql.com/downloads/windows
https://dev.mysql.com/downloads/workbench/

410 Let Us Java

In a Java program we rarely interact with Driver directly. Instead,
we use DriverManager objects, which in turn manages the Driver
objects.

(c) SQLException: This class handles any errors that occur in a database
application.

Putting it to Work
We have now understood the data organization, SQL statements for
database operations, JDBC architecture and JDBC API components. We
have also seen how to install MySQL and MySQL Workbench. So it is
now time to write a Java program that accomplishes the following:

(a) Create a Schema called "study". Insert a table in it called "Accounts"
and add three fields to it—ID, Name and Balance.

(b) Add 4 records to the table using MySQL Workbench containing
following data:

ID Name Balance
1011 Neha 4000.50
1023 Sunil 5000.00
1021 Rohit 6000.75
1044 Rahul 5600.55

(c) Create a record with field values 1001, Joe, 5000.00.

(d) Retrieve and print all existing records.

(e) Update record - Change Sunil to Sanjay.

(f) Delete record whose ID is 1044.

Out of these, steps (a) and (b) are to be performed using MySQL
workbench, whereas the rest are to be performed through the Java
program.

So let us now create a schema, add table to it and then add 4 records to
it. Carry out the following steps to achieve this:

(a) Start MySQL workbench by double-clicking its icon. Create a new
schema (database) by selecting from the menu File | New Model.
By default a schema by the name mydb would get created. It would
be shown under the "Physical Schemas" tab.

Chapter 21: JDBC 411

(b) Double click on mydb schema. A dialog would popup. Through this
dialog change the Name of this schema to "study".

(c) From the "study" tab double click the "Add Table" icon. Given the
table name as "Accounts".

(d) Click on the Columns tab at the bottom of the page and create
three columns with following properties.

Column Name Datatype Primary Key
ID INT Yes
Name VARCHAR(255) No
Balance FLOAT No

(e) Click on "Inserts" tab at the bottom of the screen. The columns ID,
Name and Balance would be shown. Add 4 records with values
mentioned in the problem statement above.

Now finally we have reached a stage where we can write a Java program
to carry out steps (c), (d), (e) and (f) given in the problem statement.
Here is the program...

package myjdbccrud ;
import java.sql.* ;

public class MyJdbcCRUD
{

static final String jdbcDriver = "com.mysql.jdbc.Driver" ;
static final String dbURL = "jdbc:mysql://localhost/study" ;

public static void main (String[] args) throws Exception
{

Connection conn = null ;
Statement stmt = null ;
ResultSet rs = null ;

try
{

Class.forName (jdbcDriver) ;
conn = DriverManager.getConnection (dbURL,

"root", "admin") ;

stmt = conn.createStatement() ;

412 Let Us Java

String sql ;
sql = "INSERT INTO Accounts VALUES (1001, 'Joe',

5000.0)" ;
stmt.executeUpdate (sql) ;

sql = "UPDATE Accounts SET NAME = 'Sanjay'
WHERE ID = 1023" ;

stmt.executeUpdate (sql) ;

sql = "DELETE FROM Accounts WHERE ID = 1044" ;
stmt.executeUpdate (sql) ;

sql = "SELECT * FROM Accounts" ;
rs = stmt.executeQuery (sql) ;

int id ;
String name ;
float balance ;

while (rs.next())
{

id = rs.getInt ("ID") ;
name = rs.getString ("Name") ;
balance = rs.getFloat ("Balance") ;

System.out.println (id + " " + name + " " + balance) ;
}

rs.close() ;
stmt.close() ;

}
finally
{

if (conn != null)
conn.close() ;

}
}

}

Let us now to try to understand the program. The project name given
was MyJdbcCrud, hence the classes in this program would belong to the

Chapter 21: JDBC 413

package myjdbccrud, as indicated in the package statement at the
beginning of the program.

The import statement ensures that the classes declared in java.sql
package for database access are available to the program.

Now we need to open a communication channel with the database. For
this we need to load and register the JDBC driver. This registration
needs to be done only once in the program. We have done this
registration through the call

Class.forName (jdbcDriver) ;

where jdbcDriver is a string that has been initialized to
"com.mysql.jdbc.Driver". This call dynamically loads the driver's class file
into memory, which automatically registers it. Naturally if we use a
different RDBMS than MySQL then the driver name and hence the string
would change as given below.

ORACLE RDBMS - oracle.jdbc.driver.OracleDriver
DB2 RDBMS - COM.ibm.db2.jdbc.net.DB2Driver

Now we need to open a connection with the database. This is done
using the statement

conn = DriverManager.getConnection (dbURL, "root", "admin") ;

The getConnection() method needs three parameters—the database
URL which indicates the name and location of the database, login name
and password to access the database. We have initialized the dbURL to
"jdbc:mysql://localhost/study".

Here localhost refers to the local machine and study refers to the
database name. If the database is present on a different machine, then
localhost should be replaced by IP address or name of the machine
where the database is hosted.

Once again for Oracle and DB2 the dbURL string would be different. For
these databases the following strings should be used:

Oracle RDBMS - jdbc:oracle:thin:@hostname:port
Number:databaseName
DB2 RDBMS - jdbc:db2:hostname:port Number/databaseName

414 Let Us Java

While creating the database we have given the login name as "root" and
password as "admin". Hence same have been used in the call to
getConnection(). This call creates a Connection object and returns it,
which we promptly collect in conn.

Once the connection with the database is established, we have
performed the CRUD operations. For this we have to create a Statement
object by calling createStatement() on the connection object. Next, we
have to create the query string and pass it to executeUpdate() method
of Statement object to execute the query. This sequence of operations
is shown below.

stmt = conn.createStatement() ;
String sql ;
sql = "INSERT INTO Accounts VALUES (1001, 'Joe', 5000.0)";
stmt.executeUpdate (sql) ;

Create, update and delete operations are similar in the sense that to
perform all of them the executeUpdate() method has to be called. The
Read operation is a bit different. For it we need to call the
executeQuery() method on the Statement object. When we do this, the
query is fired on the database and all the records that qualify the query
are returned in the form of a ResultSet object. For example, when we
fire the query "SELECT * from Accounts" aII the records in the Accounts
table would qualify this query and hence would be returned together in
a ResultSet object.

We can iterate through all the records in the ResultSet object through a
while loop. Each time through the loop we can extract the individual
field values in the record by calling the ResultSet methods as shown
below.

id = getInt ("ID") ;
name = rs.getString ("Name") ;
balance = rs.getFloat ("Balance") ;

We have extracted the values and displayed them on the screen. Once
all the records have been iterated, rs.next() returns a false, whereupon
the loop is terminated.

That brings us to the final stage of the program where we need to do
the cleanup operations. We do this by calling the close() methods on
Statement, ResultSet and Connection objects.

Chapter 21: JDBC 415

One small thing needs to be done before you can execute the program.
We need to add the JDBC library. Carry out the following steps to do
this:

(a) Right click on "Libraries" node of the "MyJDBCCrud" project in the
project window.

(b) From the menu that pops up select "Add JAR/Folder".

(c) Navigate to the suitable directory where you have downloaded the
"mysql-connector-java-5.1.40-bin" file.

(d) Click Open followed by OK.

Once the library has been added we can now use F6 to build and
execute the program.

[A] State True or False:

(a) A database can contain multiple tables.

(b) MySQL is an open source RDBMS.

(c) Modern databases use T3 type of JDBC driver.

(d) Advantage of JDBC is that the same driver can be used to connect
multiple RDBMSs.

(e) A call to class.forName() loads and registers the JDBC driver.

(f) Records from a table can be deleted using call to executeQuery()
method of Statement object.

(g) To read a set of records from a table we must use the
executeUpdate() method of the Statement object.

(h) Driver class's method should be called from your program to obtain

416 Let Us Java

(j) A set of records is returned while reading a database table into a
RecordSet object.

[B] Answer the following:

(a) Write a program which lets you carry out the CRUD operations
through a GUI shown in Figure 21.2. Use the same database and
table discussed in the section "Putting it to Work".

Note that all the records added to the table should get displayed in
the list box. Before carrying out Delete or Update operations the
record should be searched using the ID. A new record should be
added or the existing record should be modified on clicking the
Commit button.

ID | Name | Balance-

1 Rahul 4000
2 Janaki 2300
3 Siva 4324
4 Mrunal 2334
5 Vineeta 3456
6 Roja 6000
7 manjiri 7000

[C] Pick up the correct alternative for each of the following questions:

(a) What do CRUD operations stand for?
(1) CREATE, READ, UPDATE, DELETE
(2) CREATE, REMOVE, UPDATE, DROP
(3) CLEANUP, REMOVE, UPGRADE, DROP
(4) CLEANUP, RECTIFY, UPGRADE, DELETE

Chapter 21: JDBC 417

(b) Consider the following code snippet:

Connection conn ;
conn = DriverManager.getConnection (dbURL, "root", "admin") ;

Which of the following is the CORRECT way to create a Statement
object?

(1) Statement stmt = conn.createStatement() ;
(2) Statement stmt = createStatementObject() ;
(3) Statement stmt = new StatementObject() ;
(4) Statement stmt = conn.createStatementObject() ;

(c) Which statement should be added to following code snippet to
insert a new record in Accounts table:

Statement stmt ;
Stmt = conn.createStatement() ;
String sql = "INSERT INTO Accounts VALUES (1001, "Joe", 5000.0)" ;
// add statement here

(1) stmt.executeQuery (sql) ;
(2) stmt.executeStatement (sql) ;
(3) stmt.executeUpdate (sql) ;
(4) stmt.executeInsert (sql) ;

(d) Which of the following is the CORRECT way to make available
Statement, Connection and ResultSet objects?
(1) import Statement, Connection, ResultSet
(2) import Statement, Connection, ResultSet from SQL
(3) import java.sql.*
(4) Import sql.*

Terminology :

- Field - Individual item of information
- Record - Collection of fields
- Table - Collection of records
- Database - Collection of tables

• Different vendors provide RDBMS. Ex. : Oracle, MS SQL, MySQL

418 Let Us Java

• All DB use SQL to carry out operations on a database or tables

• SQL statements are often called Queries and are English like
statements

• All RDBMS are accessible through Java. API - JDBC. To these API
functions SQL queries have to be passed

• Common database operations - Create / Modify / Drop Table

• Examples of database operations :

- CREATE TABLE Persons (ID int, Name varchar (255))
- ALTER TABLE Persons ADD DateOfBirth date

- ALTER TABLE Persons DROP COLUMN DateOfBirth

- DROP TABLE Customers

• These database operations are usually done using Tools that come
with each DB. Ex. : MySQL WorkBench that comes with MySQL

• Common operations on Table - CRUD (Create, Read, Update, Delete)

• Examples of operations on a. table :

- INSERT INTO Persons (ID, Nome) VALUES (1001, 'Sunil’)
- SELECT FROM Employees*

- UPDATE Persons SET Name = 'Satish’ WHERE EmpID = 1001
- DELETE FROM Persons WHERE EmpID = 1244

• Software Installations required - MySQL Installer and Workbench

• These operations are done programmatically using JDBC objects

• Common JDBC objects used are :

- Connection object - establishes connection with database

- Statement object - executes SQL statements
- Resultset object - processes results of a. query

• Add library "mysql-connector-java.-5.1.40-bin" before using JDBC
objects

Ability to do multiple things simultaneously is a great asset in
life. So also in programming...

419

420 Let Us Java

• Networking Concepts
• Networking Model
• Protocols
• Packets
• IP Addresses
• Sockets
• Port Numbers
• Getting Started...
• What's The Time Now
• Communicating with Whois Server
• Give Me the Home Page
• Two-Way Communication
• Multiuser Chat Application
• File Transfer Using UDP
• Exercises
• KanNotes

Chapter 22: Network & Internet Programming 421

All successful people are usually well connected. It has become an
important ingredient for the 'success' formula. Computing has taken

this connectedness to the next logical step. 'Every device and person
would ultimately get connected to every other device and person'—that
is where Network Programming is heading for. Hence learning network
programming has become more relevant today than ever before.

Often we need our application to write some data into a file stored on a
remote machine connected through the network, or exchange messages
across the machines connected to the network. Using the Java
networking API it has become as simple to carry out such jobs.

Networking Concepts
It is important to understand several concepts and terms before we can
actually start writing networking programs. Let us begin with a typical
computer network. Figure 22.1 shows a typical computer network.

We can make the following observations from Figure 22.1.
(a) PCs, Laptops, Mobile phones are client machines (also known as

nodes/hosts). They are connected to Hub/Switch through network
cables or wirelessly.

(b) Database Server, File Server, Print Server, Web Server, Application
Server are also connected to Hub/Switch.

(c) Clients and Servers form the Local Area Network (LAN). All clients
can get services from the servers.

(d) Gateway machine is connected to Hub/Switch and also to Router.
The router would be connected to other routers of other LANs or to
Internet. The routers route the data from one machine to another
along the least congested path.

(e) Gateway machine is so called because clients and servers in the LAN
can communicate with devices in other LANs or Internet through it.

(f) A Hub sends the incoming data packet to every node connected to
it. As against this, a Switch sends the incoming data packet only to
specified node.

(g) Access Point lets wireless devices to connect to LAN.

(h) Since all devices in Figure 22.1 are connected to a centralized
Hub/Switch the arrangement is known as Star topology. There are

422 Let Us Java

other topologies like Bus, Ring, Tree, Mesh—each with its set of pros
and cons.

Figure 22.1

(i) All devices are connected to the network using a network adapter.
Most desktops and older laptops contain a Network Interface Card
(NIC) that acts as wired network adapter.

(j) Modern laptops, tablets and cell phones contain wireless network
adapters.

(k) Wireless networking capability can be added to a PC or old laptop by
attaching a wireless network adapter in its USB port.
r---- ---Xi. 4.U-4.

Chapter 22: Network & Internet Programming 423

(m) Network adapters serve the purpose of transmitting and receiving
data on both, a wired and a wireless network.

Networking Model
In early days of networking PCs from same manufacturer could
communicate with one another. As networking became popular, a need
was felt to help vendors create interoperable network devices and
software. Typical issues involved in networking include how to create
packets, how to detect and correct errors, how to route packets from
one host to another, how to support multiple OS, how to deal with
heterogeneous network cabling, etc.

Towards this end in late 70's IOS defined a standard called Open
Systems Interconnection (OSI) reference model. OSI uses a 7-layered
network model, with each layer responsible for different aspects
(mentioned above) of network communication.

For Internet, the computing industry has combined some of the layers of
OSI model into a single layer. As a result, a 4-layer model called TCP/IP
model has emerged. This model is shown in Figure 22.2.

♦ Logical connection in each layer

* Physical movement of data

Figure 22.2

The purpose of each layer in brief is as follows:
(a) Application Layer - This layer provides services for user applications

for sending/receiving emails, web browsing, file transfer, audio
and/or video streaming, etc.

(b) Transport Layer (TCP layer) - This layer ensures that there is a
reliable channel for the application layer. This means that it ensures

424 Let Us Java

that whatever is sent from one end of the connection arrives at the
other end, without errors or omissions, and in the same order as
sent.

The transport layer may have to split the data into packets to give to
the IP layer. The TCP layer has to include sequence information in
the packets to allow it to re-assemble them in the correct order at
the far end, and to detect if a packet has gone missing. It also needs
to be able to resend a packet when this happens.

(c) Internet Layer (IP layer) - This layer's function is to transfer a packet
of data provided by the transport layer from source address to
destination address on the Internet.

(d) Network Interface Layer - This layer carries out actual transmission
of bits with implementations for a wide range of networks -
Ethernet, WiFi, optic fiber, etc.

Each layer receives services from layer below it and provides services to
the layer above it. A layer doesn't need to know anything about how the
layer below it works. It merely uses the service provided to it. This
allows any layer to be swapped out for an alternative, and the layers
above and below don't care as long as the service provided by each
underlying layer is the same.

For example, one implementation of network interface layer may send
data over Ethernet, and another implementation handles sending the
data over a phone line. The Internet layer doesn't need to know
anything about the network interface layer. The standard service
interface provided by the network interface layer, regardless of whether
Ethernet or a phone line is carrying the data, allows the Internet layer to
work in exactly the same way regardless. Thus, the layered model makes
the complexity of network communication more manageable.

Note that each layer feels that it is directly communicating with same
layer in another machine. As the data passes down a layer, a header and
trailer specific to that layer gets added to it. Similarly, when the data
reaches the other end and travels up the layers the headers and trailers
are stripped.

Protocols
Protocols are a set of rules that the network, computers and
applications agree upon to carry out communication between devices.

Chapter 22: Network & Internet Programming 425

The commonly used protocols in each layer of TCP/IP model are shown
in Figure 22.3.

Internet Layer

Transport Layer

N/W Interface Layer

Application Layer HTTP SMTP POP3 FTP SSH Telnet

TCP UDP

IPv4 IPv6 ICMP ARP RIP

Ethernet AppITalk Token Ring

Figure 22.3

There are many more protocols available in each layer than the ones
shown in Figure 22.3. All these protocols are implemented as a protocol
stack by the OS (Operating System) and its components.

The Ethernet protocol indicates how bits will be transmitted through
different physical media (network cables like CAT5, Fiber Optic, etc.) at
different speeds.

The IP protocol provides for transmitting blocks of data from source
machine to destination machine. Hosts are identified by a unique
address known as an IP address.

IP is a best effort protocol. It doesn't guarantee the correctness of the
delivered data. The packets may be lost, may get duplicated or may be
delivered out-of-order. These aspects of packet delivery are addressed
by transport layer protocols like TCP and UDP.

The protocols used in the Application layer are chosen based on what
the application intends to do. For example, for browsing Internet, the
HTTP protocol is used, for email SMTP and POP3 protocols are used.

Most of our programs in this chapter will use the protocols in
Application layer.

Packets
Traditional telecommunications links transmit data as a series of bytes,
characters, or bits alone. Unlike this, in a computer network data is
transmitted in the form of Packets. That's the reason why Internet is
often referred to as packet switched network. Once the data is

426 Let Us Java

formatted into a packet, the network can transmit longer messages
more efficiently and reliably.

A packet consists of three elements—header, payload and trailer. As the
names suggest, header and trailer are used to mark the beginning of the
packet and end of the packet, whereas payload contains the actual data
that is to be transmitted. Technical word for a packet is 'datagram'.

IP Addresses
To be able to identify the devices in a network and carry out
communication between them using Internet Protocol (IP), each of them
has to be assigned a unique address. This address is called IP address.
There are two IP addressing schemes IPv4 and IPv6. An IPv4 address is 4
byte long, whereas an IPv6 address is 16 bytes long. The IPv4 addresses
are commonly written using 4 numbers (one number per byte) in a
dotted-decimal notation. In this notation, each byte in IP address is
separated using dot. One example of this notation is IP address
192.168.100.10.

To avoid miscommunication between machines in a network, their IP
addresses must be unique. This uniqueness can be achieved in case of
small networks, especially when these networks are not connected to
the outside world. However, to guarantee uniqueness of IP addresses in
big networks spanning cities and continents, the IP addresses are
created and managed by a central authority called Internet Assigned
Numbers Authority (IANA). IANA allocates super-blocks of addresses to
Regional Internet Registrars. These in turn allocate smaller blocks to
Internet Service Providers and enterprises, who in turn further allocate
the addresses to individual organizations who in turn assign them to
individual devices.

Sockets
Another term that is commonly used in network communication is
Socket. Socket is a software construct that identifies an end-point in a
communication channel. A socket is used by applications as an interface
to the underlying network and protocols. Applications that
communicate with one another in a network carry out the
communication using sockets. Java networking API provides classes for
creating sockets and sending / receiving packets through them.

Chapter 22: Network & Internet Programming 427

Port Numbers
It is common to send emails through your email application at the same
time as you download a file from a web site. Here, the email application
is communicating with an email server program residing on another
machine, whereas the web browser is communicating with a web server
program running on yet another machine. The IP address of the machine
on which the email application and the web browser is running is same.
In such a case, the data sent by the web server should not go to the
email application; similarly the data sent by the email server should not
go to the web browser. To avoid such situations the email application
and the web browser use sockets with different port numbers on the
same machine (IP address) for carrying out communication. These ports
are logical ports and not physical ports. They should not be confused
with HDMI or USB ports.

Email program and Web Browser are standard applications. Hence they
use standard port numbers. After all, you should not be required to
make a phone call to the place where the Web Server is present and ask
which port number it is using so that you can send a request to it for
downloading a file. IANA is responsible for assigning standard port
numbers. Port numbers used by applications that use some common
protocols are as follows:
HTTP - 80
SMTP - 25
POP3 - 110
FTP - 20, 21
Time - 37
Telnet - 23
Whois - 43
There is another important reason why the idea of port numbers was
created. The network link speed is usually so high that one application
would not be able to use the entire capacity of the connection by itself.
For example, when you visit a website and a page is downloaded in your
browser, unless you click a link and make a request for another page,
the network link is idle. Hence, to meaningfully utilize the capacity of the
network link, it becomes important to be able to share the same link for
multiple applications. This means multiple applications running on the
machine will use the same IP address of the machine, but different port
numbers.

428 Let Us Java

Figure 22.4 captures the essence of what we have discussed in the
above paragraphs.

Figure 22.4

Getting Started...
Having had a reasonable introduction to network communication, let us
now write a program that obtains IP address and name of different
hosts. Here is the program...

package addresses ;
import java.net.InetAddress ;

public class Addresses
{

public static void main (String[] args)
{

try
{

InetAddress ia = InetAddress.getLocalHost() ;
System.out.println ("Name and address: " + ia) ;
System.out.println ("Address: " + ia.getHostAddress()) ;
System.out.println ("Name: " + ia.getHostName ()) ;

Chapter 22: Network & Internet Programming 429

ia = InetAddress.getByName ("8.8.8.8") ;
System.out.println ("Name: " + ia.getHostName ()) ;
System.out.println ("Address: " + ia.getHostAddress ()) ;
System.out.println ("Reachable: " + ia.isReachable(3000));

ia = InetAddress.getByName ("www.google.com") ;
System.out.println ("Name: " + ia.getHostName ()) ;
System.out.println ("Address: " + ia.getHostAddress ()) ;
System.out.println ("Reachable: " + ia.isReachable(3000));

InetAddress[] ias = InetAddress.getAllByName (
"www.microsoft.com") ;

for (int i = 0 ; i < ias.length ; i++)
System.out.println (ias[i]) ;

}
catch (UnknownHostException ex)
{

ex.printStackTrace () ;
}

}
}

Here is the output of the program...

My name and address is KanetkarDell/192.168.100.23
My address is 192.168.100.23
My name is KanetkarDell
Name: google-public-dns-a.google.com
Address: 8.8.8.8
Reachable: false
Name: www.google.com
Address: 216.58.199.164
Reachable: false
www.microsoft.com/23.57.232.223

Let us now try to understand the program.

The InetAddress class is used to encapsulate both the numerical IP
address and the domain name for that address. It can handle both IPv4
and IPv6 addresses.

http://www.google.com
http://www.microsoft.com
a.google.com
http://www.google.com
http://www.microsoft.com/23.57.232.223

430 Let Us Java

The InetAddress class does not have public constructors. So to create an
InetAddress object we have to use one of the factory methods. Factory
method is a static method in a class that creates an object and returns
its address. This is often a better alternative than providing overloaded
constructors, as having unique factory method names makes the usage
easier. Three commonly used InetAddress factory methods are
getLocalHost(), getByName() and getAllByName().

The getLocalHost() method returns the InetAddress object that
represents the local host. The getByName() method returns an
InetAddress for a host name passed to it. On the Internet to achieve
scalability, often a single name is used to represent several machines.
The getAllByName() factory method returns an array of InetAddresses
that represent all of the addresses that a particular name resolves to.

As the name suggests, the isReachable() method tests whether the
address is reachable. At times the firewall and server configuration may
block the request resulting in an unreachable status. 3000 represents
the timeout value, in milliseconds. It indicates the maximum amount of
time the try should take. If the operation times out before getting an
answer, the host is deemed unreachable.

What's The Time Now?
There are several time servers on Internet that maintain an accurate
measure of current time. We can write a client program to connect to
one of these servers and obtain the current date and time.

package javatimeclient ;
import java.net.* ;
import java.io.* ;
import java.util.* ;

public class JavaTimeClient
{

public static void main (String[] args) throws Exception
{

Socket s ;
String hostname = "time.nist.gov" ;
int port = 37 ;
long secSince1970, msSince1970, secSince1900 ;
long diffBetEpochs = 2208988800L ;
Date time ;

time.nist.gov

Chapter 22: Network & Internet Programming 431

InputStream is = null ;
s = new Socket (hostname, port) ;
is = s.getInputStream() ;

int i, ch ;
secSince1900 = 0 ;
for (i = 0 ; i < 4 ; i++)
{

ch = is.read() ;
secSince1900 = (secSince1900 << 8) | ch ;

}
secSince1970 = secSince1900 - diffBetEpochs ;
msSince1970 = secSince1970 * 1000 ;
time = new Date (msSince1970) ;
System.out.println ("It is " + time + " at " + hostname) ;
s.close() ;

}
}

Given below is the output of the program.

It is Thu Nov 15 11:44:14 IST 2018 at time.nist.gov

java.net package provdies two classes for creating TCP sockets-
ServerSocket and Socket. The ServerSocket class is for servers, whereas
the Socket class is for clients. The ServerSocket class is designed to be a
'listener,' which waits for clients to connect before doing anything. The
Socket class is designed to connect to server sockets and initiate
protocol exchanges.

In this program we have used the time server "time.nist.gov" which is
listening for an incoming client request at port number 37. When we
create the Socket object by calling its constructor, it establishes a
connection between our client program and the time server.

Next we gained an access to the input stream associated with the client
socket by calling the getInputStream() method. The time reported by
time server (as seconds since 1/1/1900) is then read a byte at a time and
a long int is constructed out of it.

The time protocol sets the epoch at 1/1/1900, whereas Java Date class
does it at 1/1/1970. Hence we have subtracted Subtract 70 years' worth
of seconds, i.e. 2208988800, from seconds since 1900. Then using the

time.nist.gov
java.net
time.nist.gov

432 Let Us Java

Date class we converted the milliseconds since 1970 into date time
format and printed it.

Communicating with Whois Server
Whois is a TCP-based request/response protocol using which we can
obtain information about the owner of a domain name, its IP address
and contact information for a particular site. Given below is a program
that obtains this information for the site 'www.kicit.com'.

package javawhoisclient ;
import java.io.* ;
import java.net.Socket ;

public class JavaWhoIsClient
{

public static void main (String[] args) throws Exception
{

Socket s = new Socket ("whois.internic.net", 43) ;
InputStream is = s.getInputStream() ;
OutputStream os = s.getOutputStream() ;

String str = "google.com" + "\n" ;
byte buf[] = str.getBytes() ;
os.write (buf) ;

int c ;
while ((c = is.read()) != -1)

System.out.print((char) c) ;

s.close() ;
}

}

On execution of this program it displays the following information:
Domain Name: KICIT.COM
Registry Domain ID: 120408941_DOMAIN_COM-VRSN
Registrar WHOIS Server: Whois.bigrock.com
Registrar URL: http://www.bigrock.com
Updated Date: 2018-04-18T02:22:47Z
Creation Date: 2004-05-18T07:23:07Z
Registry Expiry Date: 2019-05-18T07:23:07Z

whois.internic.net
google.com
KICIT.COM
Whois.bigrock.com
http://www.bigrock.com

Chapter 22: Network & Internet Programming 433

Registrar: BigRock Solutions Limited
Registrar IANA ID: 1495
Registrar Abuse Contact Email: abuse-
contact@publicdomainregistry.com
Registrar Abuse Contact Phone: +1.2013775952
Domain Status: clientTransferProhibited
https://icann.org/epp#clientTransferProhibited
Name Server: DNS1.BIGROCK.IN
Name Server: DNS2.BIGROCK.IN

In this program we have first constructed a Socket object using the
hostname "whois.internic.net" and the port number 43, since InterNIC
server is listening for client requests at this port. Next, both input and
output streams associated with the socket are obtained. Then, a string is
constructed that contains the name of the web site (kicit.com) we wish
to obtain information about. This string is converted into a byte array
which is then sent to the InterNIC server through the socket. The
response sent by the InterNIC server is then read byte by byte and
displayed on the screen. Finally, the socket is closed, which also closes
the I/O streams.

Give Me the Home Page
Whenever we type a request in the browser to visit a site our request
goes to the web server where the site is hosted. On receiving the
request the web server software responds to that request by sending
the home page of that site in the form of HTML. This request is a GET
request made using a protocol called HTTP (Hyper Text Transfer
Protocol). If we want, we too can make a HTTP GET request from our
program. Instead of displaying the HTML response in a web browser we
would simply display it on the screen. The following program shows how
this can be achieved.

package javhttpclient ;
import java.net.* ;
import java.io.* ;
import java.util.* ;

public class JavHTTPClient
{

public static void main (String[] args) throws Exception

mailto:abuse-contact@publicdomainregistry.com
https://icann.org/epp%2523clientTransferProhibited
whois.internic.net
kicit.com

434 Let Us Java

{
URL url = new URL ("http://www.kicit.com") ;
URLConnection urlConnection = url.openConnection() ;
InputStream is = urlConnection.getInputStream() ;

int c ;
while ((c = is.read()) != -1)

System.out.print ((char) c) ;
is.close() ;

}
}

Given below is the truncated output of the program.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en"
lang="en" dir="ltr">

<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>

<meta http-equiv="Content-Type" content="text/html; charset=utf-8"
/>

Rather than using the raw Socket class to create socket and then send a
GET request, we have used the more specialized class
HttpURLConnection. Using this class we can conveniently connect to a
site on the HTTP web server, make a request, and access the response
headers and the response message.

Two-Way Communication
So far we have written only client programs which communicated with
already existing server programs. The sockets that we created in all
these client programs were stream sockets. Through these sockets the
client could establish a connection with the server and then carry out
communication. While the connection is in place, data flows between
the processes in continuous streams. Hence such sockets are known as
stream sockets. These sockets are said to provide a connection-oriented
service. The protocol used for transmission is Transmission Control
Protocol (TCP).

http://www.kicit.com
http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd
http://www.w3.org/1999/xhtml

Chapter 22: Network & Internet Programming 435

There is one more type of socket. It is known as datagram socket. It is
used to transmit individual packets of information. The protocol used is
User Datagram Protocol (UDP). Datagram sockets offer a connectionless
service. Hence the packets sent using these sockets may arrive in any
sequence or may even be lost or duplicated.

UDP is appropriate for network applications that do not require the
error checking and reliability in packet transmission. Stream sockets and
the TCP protocol is more commonly used for majority of Java
networking applications.

Let us now try to create a single user chat application. This application
would have two programs—a server and a client. Once created, they
would be able to carry out two-way communication between them.

Let us begin with the server first. Here is the program for it.

// Single User Chat Server Program
package javasingleuserchatserver ;
import java.io.* ;
import java.net.* ;
import java.util.* ;

public class JavaSingleUserChatServer
{

public static void main (String[] args) throws Exception
{

ServerSocket serSock = new ServerSocket (6001) ;
System.out.println ("Waiting for connection..") ;
Socket comSock = serSock.accept() ;
System.out.println ("Connected to client") ;

DataInputStream dis ;
dis = new DataInputStream (comSock.getInputStream()) ;
DataOutputStream dos ;
dos = new DataOutputStream (comSock.getOutputStream()) ;

String msgRecd, msgToSend ;

Scanner scanner = new Scanner (System.in) ;
while (true)
{

msgRecd = dis.readUTF() ;

436 Let Us Java

System.out.println ("Recd. from client: " + msgRecd) ;
if (msgRecd.equalsIgnoreCase ("quit"))
{

dis.close() ;
dos.close() ;
comSock.close() ;
serSock.close() ;
break ;

}

System.out.println ("Enter text: ") ;
msgToSend = scanner.nextLine() ;
dos.writeUTF (msgToSend) ;

}
}

}

In all the client programs in this chapter we used to create one socket
and then use it to connect to a specific server at a specific port. Once
connected, through the same socket we used to communicate with the
server. In the server program there is a major change. In this program
we have to create two sockets—a listening socket and a communication
socket. Using the listening socket the server would wait for a connection
request from the client. Once this request is received, the
communication is carried out with the client using the communication
socket.

The listening socket is created using ServerSocket class. The constructor
of this class uses server's IP address and the port number passed to it to
create a socket. We have chosen the port number as 6001. There is
nothing special about this number. You are free to choose any other
suitable number.

Using the listening socket accept() function is called. This function is a
blocking function. This means that the control would not return from
this function unless a connection request comes from the client. As
soon as the client connection request arrives, the accept() function
accepts the connection request, creates a new socket object for
communication and returns it into comSock. Once this communication
socket is created, communication is carried out with the client using the
input and output streams associated with the socket.

Chapter 22: Network & Internet Programming 437

The idea behind using a different socket for communication is to let the
server wait for other clients' connection request in a multithreaded
server. This concept is demonstrated in the next section.

References to communication socket's input/output streams are
obtained by calling methods getOutputStream() and getInputStream().
Using these references DataOutputStream and DataInputStream
objects are created. These objects are then used to send or receive
individual messages by calling writeUTF() and readUTF() methods.

When server receives a message "quit" message the socket and the
associated streams are closed.

Now that the server program is ready, let us take a look at the client
program. This is shown below.

// Single User Chat Client Program
package javasingleuserchatclient ;
import java.io.* ;
import java.net.* ;
import java.util.* ;

public class JavaSingleuserChatClient
{

public static void main (String[] args) throws Exception
{

System.out.println ("Connecting to server...") ;
InetAddress localAddress = InetAddress.getLocalHost() ;
Socket cliSocket = new Socket (localAddress, 6001) ;

DataInputStream dis ;
dis = new DataInputStream (comSock.getInputStream()) ;
DataOutputStream dos ;
dos = new DataOutputStream (comSock.getOutputStream()) ;

System.out.println ("Connected to server") ;
Scanner scanner = new Scanner (System.in) ;
String msgToSend, msgRecd ;

while (true)
{

System.out.print ("Enter text: ") ;
msgToSend = scanner.nextLine() ;

438 Let Us Java

dos.writeUTF (msgToSend) ;
if (msgToSend.equalsIgnoreCase ("quit"))
{

dis.close() ;
dos.close() ;
cliSocket.close() ;
break ;

}
msgRecd = dis.readUTF() ;
System.out.println ("Server response: " + msgRecd) ;

}
}

}

For sake of convenience we plan to run server and client on the same
machine. Hence while creating the client socket we are using the local
machine's IP address as the IP address of the server. The client program
makes a connection request to server at port number 6001.

Once the connection is established, it just sends a message to the
server. When the server responds to this message, the client collects it
and displays it on the screen.

Multiuser Chat Application
In this application many users can connect to a server. Once connected,
any client should be able to communicate with any other connected
client. To ensure that communication between one pair of clients does
not get mixed up with communication of another pair three things are
done. These are

(a) Server maintains a list of its active clients in a vector. When a new
client connects to the server, this vector would be updated.

(b) Communication between any pair of clients happens in a separate
thread.

(c) All messages sent by a client are prepended with the client id for
whom it is meant. So if client 2 wishes to communicate with client 7
then he should send messages in the following format:

client 7 # Hello, how are you doing?
client 7 # Can we meet sometime next week?

Here is the server program...

Chapter 22: Network & Internet Programming 439

package javamultiuserchatserver ;
import java.io.* ;
import java.net.* ;
import java.util.* ;

public class JavaMultiUserChatServer
{

static Vector<ClientThread> v = new Vector< >() ;
static int i = 0 ;

public static void main (String[] args) throws Exception
{

ServerSocket serSock = new ServerSocket (1234) ;
Socket comSock ;

System.out.println ("Waiting for connection...") ;

while (true)
{

comSock = serSock.accept() ;
System.out.println ("New client req recd: " + comSock) ;
DataInputStream dis ;
dis = new DataInputStream (comSock.getInputStream()) ;
DataOutputStream dos ;
dos = new DataOutputStream (

comSock.getOutputStream()) ;
System.out.println ("Starting new clien thread...") ;
ClientThread t ;
t = new ClientThread (comSock, "Client" + i, dis, dos) ;
v.add (t) ;
t.start() ;
i++ ;

}
}

}

class ClientThread extends Thread
{

Scanner scn = new Scanner (System.in) ;
private String name ;
final DataInputStream dis ;

440 Let Us Java

final DataOutputStream dos ;
Socket s ;
boolean isloggedin ;

public ClientThread (Socket s, String name, DataInputStream dis,
DataOutputStream dos)

{
this.dis = dis ;
this.dos = dos ;
this.name = name ;
this.s = s ;
this.isloggedin=true ;

}

public void run()
{

String msgRecd ;
while (true)
{

try
{

msgRecd = dis.readUTF() ;
System.out.println (msgRecd) ;
if (msgRecd.equals ("quit"))
{

isloggedin=false ;
dis.close() ;
dos.close() ;
s.close() ;
break ;

}

// find out intended recipient
StringTokenizer tok ;
tok = new StringTokenizer (msgRecd, "#") ;
String msgToSend = tok.nextToken() ;
String recipient = tok.nextToken() ;

for (ClientThread ch : JavaMultiUserChatServer.v)
{

if (ch.name.equals (recipient) &&

Chapter 22: Network & Internet Programming 441

ch.isloggedin == true)
{

ch.dos.writeUTF(name + " : " + msgToSend);
break ;

}
}

}
catch (IOException e)
{

e.printStackTrace() ;
}

}
try
{

dis.close() ;
dos.close() ;

}
catch (IOException e)
{

e.printStackTrace() ;
}

}
}

Note that when a new client request comes a new thread is launched for
by calling the start() method of Thread class. The actual communication
between two clients happens in the run() method. Since we don't call
the run() method explicitly, all variables that it needs are passed and
preserved in private variables through the constructor of ClientThread
class.

Let us now turn our attention to the client program. I would first present
the code.
package javamultiuserchatclient ;
import java.io.* ;
import java.net.* ;
import java.util.Scanner ;

public class JavaMultiUserChatClient
{

public static void main (String[] args) throws Exception
{

442 Let Us Java

InetAddress ip = InetAddress.getLocalHost() ;
Socket s = new Socket (ip, 1234) ;
DataInputStream dis ;
dis = new DataInputStream (s.getInputStream()) ;
DataOutputStream dos ;
dos = new DataOutputStream (s.getOutputStream()) ;

Thread sendth = new SendThread (dos) ;
Thread recvth = new RecvThread (dis) ;
sendth.start() ;
recvth.start() ;

}
}

class SendThread extends Thread
{

private DataOutputStream dos ;

SendThread (DataOutputStream d)
{

dos = d ;
}
public void run()
{

Scanner scn = new Scanner (System.in) ;

while (true)
{

String msgToSend = scn.nextLine() ;
try
{

dos.writeUTF (msgToSend) ;
}
catch (IOException e)
{

e.printStackTrace() ;
}

}
}

}

Chapter 22: Network & Internet Programming 443

class RecvThread extends Thread
{

private DataInputStream dis ;
RecvThread (DataInputStream d)
{

dis = d ;
}
public void run()
{

Scanner scn = new Scanner (System.in) ;

while (true)
{

try
{

String msgRecd = dis.readUTF() ;
System.out.println (msgRecd) ;

}
catch (IOException e)
{

e.printStackTrace() ;
}

}
}

}

When the client program is executed it creates a socket to connect to
port 1234 of server. Please remember to replace ip with actual server
address if you are running server on a different machine. When client
(say client 8) connects to server it has to send a message in the format

client 4# Remember me?

This means that client 8 is sending a message to client 4.

To ensure that sending and receiving of messages happens independent
of one another, each activity is carried out in a separate thread.

File Transfer Using UDP
We have seen how to communicate between client and server using
stream-based sockets. Let us now try to send a file from client to server
using datagram sockets.

444 Let Us Java

The server program creates a datagram socket and calls the receive()
function to receive a filename from the client. Once the filename is
received in a datagram packet the file by this name is created on the
server. Next the chunks received from client are written to this file. The
process ends when the string "END" is received from the client. Here is
the server program...

// UDP Server Program
package javaudpserver ;
import java.io.* ;
import java.net.* ;

public class JavaUDPServer
{

public static void main (String[] args) throws Exception
{

DatagramSocket serSocket = new DatagramSocket (5000) ;
byte[] data = new byte[1024] ;
DatagramPacket pkt ;
pkt = new DatagramPacket (data, data.length) ;
serSocket.receive (pkt) ;
String str = new String (pkt.getData(), 0, pkt.getLength()) ;
System.out.println ("Filename received: " + str) ;

File f = new File (str) ;
FileWriter fw = new FileWriter (f) ;
BufferedWriter bufferedWriter = new BufferedWriter (fw) ;
while (true)
{

pkt = new DatagramPacket (data, data.length) ;
serSocket.receive (pkt) ;
str = new String (pkt.getData() , 0, pkt.getLength())) ;
if (str.trim().equals ("END"))

break ;
bufferedWriter.write (str) ;
bufferedWriter.flush() ;

}

System.out.println ("File " + str + "created on server") ;
bufferedWriter.close() ;
serSocket.close() ;

}

Chapter 22: Network & Internet Programming 445

}

Let us now look at the client program.

// UDP Client Program
package javasingleuserudpclient ;
import java.io.* ;
import java.net.* ;
import java.util.* ;

public class JavaSingleUserUDPClient
{

public static void main (String[] args) throws Exception
{

InetAddress ip ;
ip = InetAddress.getLocalHost() ;
DatagramSocket socket ;
socket = new DatagramSocket() ;

System.out.println ("Enter filename") ;
Scanner sc = new Scanner (System.in) ;
String fname = sc.nextLine() ;

byte[] data = fname.getBytes() ;
DatagramPacket pkt ;
pkt = new DatagramPacket (data, data.length, ip, 5000) ;
socket.send (pkt) ;

File f ;
f = new File (fname) ;
FileInputStream fis = new FileInputStream (f) ;

byte[] chunk = new byte[1024] ;
int chunkLen ;
while ((chunkLen = fis.read (chunk)) != -1)
{

if (chunkLen != 0)
pkt = new DatagramPacket (chunk, chunk.length,

ip, 5000) ;
else
{

chunk = "END".getBytes() ;

446 Let Us Java

pkt = new DatagramPacket (chunk, chunk.length,
ip, 5000) ;

}
socket.send (pkt) ;

}
fis.close() ;
socket.close() ;

}
}

The client program first receives the filename as input and sends it to
the server. It then sends chunks of this file to the server until its end is
reached. On reaching the end of file, it sends a string "END" to server as
a signal to stop the communication.

[A] State whether the following statements are True or False:

(a) Internet uses the 7 layer OSI model for network programming.

(b) To avoid conflict it is necessary that multiple applications running
on same machine must carry out communication at different port
numbers.

(c) accept() is a non-blocking function.

(d) HTTP protocol is used for accessing web pages from a site.

(e) Time servers always return the local standard time.

(f) Every working site on the Internet has a corresponding entry in the
whois database.

(g) IP protocol is responsible for reliable delivery of packets, detecting
errors in transmission and flow control.

[B] Attempt the following:

(a) Modify the single user chat program discussed in this chapter such

Chapter 22: Network & Internet Programming 447

[C] Match the following:

Connection oriented Access point
Connectionless Logical network adapter
Dotted decimal notation Star
Email Protocol TCP
Network layer protocol UDP
Topology SMTP
Wireless devices Port 80
Loopback IP
UDP Stream sockets
HTTP Port 37
Time Datagram sockets
TCP IPv4 addresses
Communication end point IP address + Port number

[D] Attempt the following:

(c) Modify the single user chat program discussed in this chapter such
that the server simply echoes back the message that it receives
from the client.

(d) Modify the multi user chat program to carry out chat in a swing
based GUI application for server as well as client.

• Usually nodes in LAN are connected to a centralized Hub/Switch in a
star topology

All devices are connected to the network using a network adapter

• Gateway machine is connected to Hub/Switch and also to Router

• A Hub sends the incoming data packet to every node connected to it

• A Switch sends the incoming data packet only to specified node

• Access Point lets wireless devices to connect to LAN

• Wireless devices are connected to an Access Point

448 Let Us Java

• Network adapters transmit and receive data on wired and a wireless
network

• Network communication is done using a 4-layered TCP/IP model

• 4 layers - Application, Transport, Internet, Network Interface

• Different protocols are used in different layers

• IP4 addresses are written in a dotted decimal notation

• Socket forms a communication end point

• Different application communicate using different port numbers to
avoid conflict during communication

• Java provides several classes for network programming in
package

java.net

• TCP - Connection-oriented service, UDP - Connectionless service

• Stream sockets are used for TCP-based communication

• Datagram sockets are used for UDP-based communication

java.net

Features that are useful, but a bit separated from mainstream
Java...

449

450 Let Us Java

• CLASSPATH Variable
• Strictfp Modifier
• Packages

Creating and Using a Package
• Split Packages
• Different Packages, Same Type
• Nested Packages
• Package FAQs
• Packages and Access Mechanism
• Bitwise Operators
• KanNotes

Chapter 23: Miscellany 451

The topics discussed in this chapter were either too large or far too
removed from the mainstream Java programming for inclusion in the
earlier chapters. These topics provide certain useful programming

features, and could prove to be of immense help in certain programming
strategies. These include CLASSPATH variable, strictfp modifier,
packages and bitwise operators. Let us understand them one by one.

CLASSPATH Variable
Our Java program may use types stored in other .class files. CLASSPATH
is a mechanism that helps Java runtime environment locate the other
.class files. It is an environment variable and it contains a list of
directories that contain third-party and user-defined types.

CLASSPATH variable is different than the PATH environment variable.
PATH is used by Operating System to locate executable files, whereas
CLASSPATH is used to locate the .class files. The default value of
CLASSPATH is '.'. This means by default the search for .class files is
carried out only in current directory or its sub-directories.

In Windows the CLASSPATH variable can be set permanently through
Control Panel or at command prompt. Given below is an example of
setting it at command prompt.

set CLASSPATH=%CLASSPATH%;.;C:\ProgramFiles\Java\mylib

Here %CLASSPATH% gives the existing value of CLASSPATH variable. We
have two directories in the list, '.' and 'C:\ProgramFiles\Java\mylib'
separated by a semicolon (;). The .class files would be first searched in
current directory. If not, found they would be searched in mylib
directory.

If we wish to set the CLASSPATH value temporarily, we can do so as
shown in the following example:

java -classpath .;c:\ProgramFiles\Java\mylib sample.jar

If executed under Linux remember to replace \ and ; with / and :
respectively.

strictfp Modifier
Floating-point calculations are platform-dependent. So, the same
floating-point operation may give different results when the same class
file is executed on different platforms. This happens because floating

452 Let Us Java

point precision may vary from one platform to another. It can be
mitigated using the strictfp keyword.

As the names suggests, the strictfp modifier stands for strict floating­
point operations. It ensures that we get the same result on every
platform while performing float operations. strictfp can be applied to a
class, a method or an interface, but not to abstract method, variable or
on constructor.

Packages
A reasonably big Java software would contain many classes,
interfaces, enumerations and annotations. Java helps you organize
them properly by storing related classes, interfaces, enumerations
and annotations in a logical container called Package. This
organization is helpful in three ways:

(a) Packages makes it easy to locate and use types (i.e., classes,
interfaces, enumerations and annotations).

(b) Two different packages may contain types with same names. So, if a
library package contains a type called class Student and we also
define a type called class Student, so long as they belong to two
different packages, we can use both. Thus, packages help avoid
naming conflict.

(c) Through packages we can control which type within it can be
accessed from outside the package.

To enforce a good design practice Java follows certain rules about
packages and directory structure. These are as follows:

(a) A new folder is created for every new package. Moreover, package
name and folder name are always same.

(b) A .java file can contain only one public type. Its name is same as the
name of the .java file.

Creating and Using a Package
Let us now see how to create our own package and use it. Here are
the specifications of the package.
Package name: sample
Filename: Sample.java

Chapter 23: Miscellany 453

Class name: Sample containing a method show()
And now the actual program..

// Package Declaration - Sample.java
package sample ;
public class Sample
{

public void show()
{

System.out.println ("Bye") ;
}

}

We wish to call show() from main() present in a class Client present
in file Client.java. Here is the program to do this...

// Package Usage - Client.java
package client ;
import sample.Sample ;
public class Client
{

public static void main (String args[])
{

Sample a = new Sample() ;
a.show() ;

}
}

Given below are the steps to be followed to create these packages in
NetBeans.

(a) Create a new project by name Client. This will create a file called
Client.java containing a package client, which contains a public
class, Client.

(b) Add a new package called sample. For this right-click Source
Packages. A menu will pop up. From this menu select New | Java
Package - sample. This action will create a package sample.

(c) Once the sample package is created, right-click sample package. A
menu would pop up. From this menu select New | Java class -

454 Let Us Java

Sample. This action will create a public class Sample in a file
Sample.java in the package sample.

(d) Define show() method in the Sample class.

Let us now examine the directory structure. The source code would
get created in the following files:

~\Client\src\client\Client.java
~\Client\src\sample\Sample.java

On compilation the bytecode gets stored in following files:

~\Client\build\classes\client\Client.class
~\Client\build\classes\sample\Sample.class

As you can appreciate the directory structure reflects the package
structure. As a result, it becomes easy to locate a type.

Note that if we do not import the Sample class from sample package
using an import statement, we can still use the Sample class. This can
be done by using a fully qualified name as shown below:

sample.Sample a = new sample.Sample() ;

Split Packages
It is possible to split a package across multiple files. This means a
package can contain multiple public types stored in different files.
This suits software development teams as different developers can
develop different types and store them in different files. All these
types can belong to the same package. Following program
demonstrates split packages.

// File: Sample1.java
package sample ;
public class Sample1
{

public void show()
{

System.out.println ("Bye") ;
}

}

Chapter 23: Miscellany 455

// File: Sample2.java
package sample ;
public class Sample2
{

public void display()
{

System.out.println ("Hi") ;
}

}

Let us now look at code that uses these split packages.

// File: Client.java
package client ;
import sample.Sample1 ;
import sample.Sample2 ;
class Client
{

public static void main (String args[])
{

Sample1 s1 = new Sample1() ;
s1.show() ;
Sample2 s2 = new Sample2() ;
s2.display() ;

}
}

Given below are the steps to be followed to create these packages in
NetBeans.

(a) Create a new project by name Client. This will create a file called
Client.java containing a package client, which contains a public
class, Client.

(b) Add a new package called sample. For this right-click Source
Packages. A menu will pop up. From this menu select New | Java
Package - sample. This action will create a package sample.

(e) Once the sample package is created, right-click sample package. A
menu would pop up. From this menu select New | Java class -
Sample1. This action will create a public class Sample1 in a file
Sample1.java in the package sample.

456 Let Us Java

(c) Define show() method in the Sample1 class.

(d) Again right-click sample package. A menu would pop up. From this
menu select New | Java class - Sample2. This action will create a
public class Sample2 in a file Sample2.java in the package sample.

(e) Define display() method in the Sample2 class.

The source code would get created in the following files:

~\Client\src\client\Client.java
~\Client\src\sample\Sample1.java
~\Client\src\sample\Sample2.java

On compilation the bytecode gets stored in following files:

~\Client\build\classes\client\Client.class
~\Client\build\classes\sample\Sample1.class
~\Client\build\classes\sample\Sample2.class

Different Packages, Same Type
It is possible that different packages contain types that have same
names. For example, two packages sample1 and sample2 may contain
two different classes by the same name Sample. This is shown in the
following code.

// File: Sample.java, Package: sample1
package sample1 ;
public class Sample
{

public void show()
{

System.out.println ("Bye") ;
}

}

// File: Sample.java, Package: sample2
package sample2 ;
public class Sample
{

public void display()

Chapter 23: Miscellany 457

{
System.out.println ("Bye") ;

}
}

Let us now look at client code that uses these Sample class from two
different packages.

// File: Client.java, Package: client
package client ;
import sample1.Sample ;
import sample2.Sample ;
class Client
{

public static void main (String args[])
{

sample1.Sample s1 = new sample1.Sample() ;
s1. show() ;
sample2.Sample s2 = new sample2.Sample() ;
s2.display() ;

}
}

The source code would get created in the following files:

~\Client\src\client\Client.java
~\Client\src\sample1\Sample.java
~\Client\src\sample2\Sample.java

On compilation the bytecode gets stored in following files:

~\Client\build\classes\client\Client.class
~\Client\build\classes\sample1\Sample.class
~\Client\build\classes\sample1\Sample.class

Note that while creating objects of Sample class from two different
packages, we should use the fully qualified name to help understand
which Sample class are we planning to use for object creation, as
shown below:

sample1.Sample s1 = new sample1.Sample() ;
sample2.Sample s2 = new sample2.Sample() ;

458 Let Us Java

Nested Packages
It is also possible to create nested packages. This is especially helpful
while creating big libraries containing numerous types. For example, the
classes in Java library are organized in many nested packages like
java.io, java.awt, java.lang, etc. Note that all packages in Java API
begin with java or javax. Let us now create nested packages for user-
defined classes.

// File: Sample.java, Package: sample
package sample ;
public class Sample
{

public void show()
{

System.out.println ("Bye") ;
}

}

// File: Trial.java, Package: sample.trial
package sample.trial ;
public class Trial
{

public void display()
{

System.out.println ("Hi") ;
}

}

Let us now look at client code that uses the Sample class present in
sample package and the Trial class present in the nested package
sample.trial.

package client ;
import sample.Sample ;
import sample.trial.Trial ;
class Client
{

public static void main (String args[])
{

Sample s = new Sample() ;
s.show() ;

Chapter 23: Miscellany 459

Trial e = new Trial() ;
e.display() ;

}
}

The source code would get created in the following files:

~\Client\src\client\Client.java
~\Client\src\sample\Sample.java
~\Client\src\sample\trial\Trial.java

On compilation the bytecode gets stored in following files:

~\Client\build\classes\client\Client.class
~\Client\build\classes\sample\Sample.class
~\Client\build\classes\sample\trial\Trial.class

Package FAQs
Often there are questions in programmer's mind about packages and
import statements. I have compiled below these FAQs.

(a) What if package name is absent in a .java file?

All types in the file belong to a package called default package. This
practice should however be discouraged.

(b) Should package name be in small case?

It is a good idea and is used by many Java development
environments including NetBeans. This helps avoids name conflict
with class/interface names.

(c) How do I ensure uniqueness in package names?

Use reversed Internet domain names like com.ykanetkar.sample,
com.ykanetkar.trial, etc. Since domain names are unique, their
reversed forms are also unique.

(d) Which packages are imported by default?

default package, java.lang

(e) Which packages would get imported through the statement:

import graphics.A* ;

460 Let Us Java

None. It does not import all packages that begin with letter A. It
would result into compilation error.

(f) Can the following set of statements be replaced by import
java.awt.?*

import java.awt.shape.*
import java.awt.color.*

No. * can be used to signify all types in a package, and not all
packages nested in a package.

(g) What do the following import statements mean?

import example.ex1.* ;
import example.ex2.ex3.* ;

First statement means import all public types from directory
C:\~\example\ex1. Second statement means import all public types
from directory C:\.... \example\ex2\ex3.

Packages and Access Mechanism
We are already familiar with access specifiers private, protected and
public. If we do not use any of them then the data member or
member function is treated to have a default access specifier. For
example, num and fun() in the following code are considered to have
default access specifier.

package p1 ;
class Myclass
{

int num = 40 ;
void fun()
{
}

}

There are following possibilities when we attempt to access num and
fun():
(a) They are accessed from same class
(b) They are accessed from same package's class
(c) They are accessed from different package's class

Chapter 23: Miscellany 461

(d) They are accessed from same package's sub-class
(e) They are accessed from different package's sub-class

Keep the following guidelines in mind while deciding whether they
would accessible or not.
(a) private members are accessible within the class.
(b) default members are accessible within the package.
(c) protected members are accessible within package and in sub­

classes.
(d) public members are accessible anywhere.
(e) Within a package behavior of default, protected and public are

same.
(f) Default members are not accessible across package boundary.
(g) Protected members can be accessed outside the package only

through child class object.
These guidelines have been captured in Figure 23.1.

Package pkgl Package pkg2

Access Specifier
(in class A) class A class B class D

extends A class C class E
extends A

public Yes Yes Yes Yes Yes

protected Yes Yes Yes No Yes

default Yes Yes Yes No No

private Yes No No No No

Figure 23.1

Bitwise Operators
Bitwise operators permit us to work with individual bits of a byte. There
are many bitwise operators available in Java. These include:
~ - complement operator
<< - left shift
>> - right shift
>>> - unsigned right shift
& - and

462 Let Us Java

| - or
a - xor

The usage of these bitwise operators is shown in the following code
snippet:

int ch, dh, eh, fh, a, b, c ;
ch = 32 ;
dh = ~ch // toggles 0s to1s and 1s to 0s
eh = ch << 3 // << shifts bits in ch 3 positions to left
fh = ch >> 2 // >> shifts bits in ch 2 positions to right
a = 45 & 32 // and bits of 45 and 32
b = 45 | 32 // or bits of 45 and 32
c = 45 A 32 // xor bits of 45 and 32

Note that except ~ all other bitwise operators are binary operators.
Remember the following tips while using bitwise operators:
(a) Any bit value ANDed with 0 is 0.
(b) Any bit value ORed with 1 is 1.
(c) 1 XORed with 1 is 0.
(d) << - As bits are shifted from left, zeros are pushed from right.
(e) >> - As bits are shifted from right, left-most bit is copied from left.
(f) >>> - As bits are shifted from right, zeros are pushed from left.

Purpose of each bitwise operator is given below:
~ - Convert 0 to 1 and 1 to 0
<< - Shift out desired number of bits from left
>>, >>> - Shift out desired number of bits from right
& - Check whether a bit is on / off. Put off a particular bit
| - Put on a particular bit
A - Toggle a bit

There are a few more bitwise operators known as bitwise compound
assignment operators. These include operators like <<=, >>=, &=, |= and
A=. They offer a shortcut as shown in the following statements:
a <<= 5 // is same as a = a << 5
b &= 2 // is same as b = b & 2

Chapter 23: Miscellany 463

• CLASSPATH is an environment variable that contains a list of
directories separated by ; (: in Linux)

• JRE searches directories in CLASSPATH to locate .class files that
contain third-party and user-defined types.

• When the same class file containing floating-point operations is
executed on different platforms it may give different results.

• When strictfp is applied to a. class, a. method or an interface it
ensures that we get same result of floating-point operations on
different platforms

Packages are logical containers that may contain related classes,
interfaces, enumerations and annotations

• A package may be split across files

• Two different packages may contain types with same names

• Through packages we can control which type within it can be
accessed from within and outside the package

• A new folder is created for every new package with the same name as
name of the package

• A .java file can contain only one public type. Its name is same as the
name of the .java file

• Bitwise Operations :

Set a bit to a value 0/1 -> Write operation
Check whether bit is 1 (on) or 0 (off) -> Read operation

• Bitwise operators available in Java are ~, <<, >>, >>>, &, |, A, <<=,
>>=, &=, |=, a=.

You should never take a test when you are not prepared. You
should never give up an opportunity to get tested when you are
fully prepared and confident. This chapter would help you check
your strengths and weaknesses, once you are prepared and
confident...

465

466 Let Us Java

Periodic Test I
(Based on Chapters 1 to 6)

Time: 90 Minutes Maximum Marks: 40

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) Java interpreter convers Java source code into.

(2) type of values cannot be checked using switch-case.

(3) In the expression condition1 & condition2, condition2 would get
executed only if condition1 is.

(4) The size of an int data type is bytes.

(5) Exponentiation operation can be performed using function.

[B] State True or False: [5 Marks, 1 Mark each]

(1) $salary is a correct variable name in Java.

(2) A java program compiled for one JVM has to be recompiled to make
it work on a different JVM.

(3) If we are to run a Java program on a machine, it is enough if JRE is
installed on it.

(4) Once a variable is declared as final its value cannot be changed.

(5) Consecutive cases with no statements between them enable the
cases to execute a common set of statements.

[C] What would be the output of the following code snippets:
[5 Marks, 1/2 Mark each]

(1) What would be the output of the following code snippet?

int a = 25543 ;
System.out.format ("%10d\n", a) ;
System.out.format ("%+10d\n", a) ;
System.out.format ("%,10d\n", a) ;
System.out.format ("%,+10d\n", a) ;

(2) Why is a function in a class marked public? Why is a class in a
package marked public?

Periodic Tests 467

(3) What is JVM? What is a package?

(4) Write Java statements to sum odd integers between 1 and 99, using
a for statement.

(5) What would be the output of the following code snippet?

int i = 1, j = 2, k = 3 ;
System.out.println (j == 5) ;
System.out.println (i <= k) ;
System.out.println (! (i <= j)) ;
System.out.println (!i) ;

(6) How would you ensure that a float result (2.5) gets stored in
variable a in the following code snippet?

float a ;
int b = 5, c = 2 ;
a = b / c ;

(7) What would be the output of the following code snippet if value of
choice is 1?

switch (choice)
{

case 1 :
case 2 :

System.out.println ("Right choice") ;
}

(8) Would the following program run? If yes, what would be the output
and if no, what would be the error? Assume that the value of choice
is 3?

switch (choice)
{

case 1 - 5 :
System.out.println ("Right choice") ;

default :
System.out.println ("Wrong choice") ;

}

(9) Point out the error, if any, in the following code snippet:

int i = 5, j = 10 ;
boolean flag ;

468 Let Us Java

flag = (i == 20 && j != 10) ? true : false ;
System.out.println (flag) ;

(10) Point out the error, if any, in the following code snippet:

boolean ret = 1, flag = 0 ;
System.out.println (ret) ;
System.out.println (flag) ;

[D] Match the following: [5 Marks, 1/2 Mark each]

(a) size of byte
(b) continue
(c) break
(d) cond1 | cond2
(e) size of short
(f) constant
(g) cond1 || cond2
(h) size of boolean
(i) size of int
(j) variable

(1) literal
(2) abandon loop
(3) short-circuiting expression
(4) 1 bit
(5) identifier
(6) 1 byte
(7) next iteration
(8) 4 bytes
(9) no short-circuiting expression
(10) 2 bytes

[E] Attempt the following: [20 Marks, 10 Marks each]

(1) According to a survey a popular social networking site has hit one
billion users in Jan 2019. If its user base grows at a rate of 8% per
month, write a program to show how many months will it take for
the site to grow its user base to 1.5 billion users? Print user base
figures at the beginning and end of each month.

(2) Write a program that receives a 4-digit number as input and prints
an equivalent encrypted number. The encryption should be done as
follows:

Replace each digit with (digit + 7) mod 10
Interchange first digit with third digit
Interchange second digit with fourth digit

Also write the decryption logic to obtain the original number from
the encrypted number.

Periodic Tests 469

Periodic Test II
(Based on Chapters 7 to 8)

Time: 90 Minutes Maximum Marks: 40

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) package should be imported to be able to use
trigonometric functions.

(2) While defining a function that receives variable number of
arguments _ symbol is used to collect the values passed to the
function in an array.

(3) During a function call the actual and formal arguments must match
in, , and.

(4) A function should be marked with ____ keyword to indicate that it
is not going to return any value.

(5) A function that calls itself is known as a function.

[B] State True or False: [5 Marks, 1 Mark each]

(1) A fresh set of local variables gets created every time a function is
called normally or recursively.

(2) A function can return only one value at a time.

(3) A function cannot be defined inside another function.

(4) Any function can be made a recursive function.

(5) It is possible to define a function that receives different number of
arguments in different function calls.

[C] Answer the following: [10 Marks, 2 Marks each]

(1) Is this a correct statement? If not, why not?

return (a, b, c) ;

(2) What would happen on execution of the following statement?
What value would it return to the calling function?

return (a, b, c) ;

470 Let Us Java

(3) Write a code snippet that demonstrates that actual arguments
passed to a function can be a constant, variable or expression,
whereas the formal arguments must always be variables.

(4) Write a code snippet that calls a function cal() and passes to it an
angle in degrees. The function cal() should return sum of sin and
cos of the angle passed to it.

(5) A recursive call should always be subjected to an if. Why? Explain
with an example.

[D] Attempt the following: [20 Marks, 10 Marks each]

(1) Define a function that receives 4, 5 or 6 integers and returns sum of
the integers that it receives.

(2) Write a recursive function which prints the prime factors of the
number that it receives when called from main().

Periodic Tests 471

Periodic Test III
(Based on Chapters 9 to 12)

Time: 90 Minutes Maximum Marks: 40

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) In Java an array is implemented as an.

(2) An array is created in ____ memory and a reference to it is created
in memory.

(3) method of a class gets called when garbage collector is
about to collect an object.

(4) is used by methods of a class to identify an object it is
working on.

(5) Static functions in a class can access only data.

[B] State True or False: [5 Marks, 1 Mark each]

(1) A string object cannot be mutated.

(2) Two strings represented by objects s1 and s2 can be compared
using the statement if (s1 == s2).

(3) In a 2D array all rows must have same number of elements.

(4) Objects are passed to a function by reference.

(5) A class permits us to build user-defined data types.

[C] Answer the following: [10 Marks, 2 Marks each]

(1) Write a code snippet to print the name and ordinal value for each
element of the following enum.

enum maritalstatus { single, married, divorced } ;

(2) Illustrate with a code snippet the difference between a String and
StringBuilder class.

(3) What is the purpose of static block? When does it get invoked?

(4) Which of the following statements are true about an object?

472 Let Us Java

- Each object's variables can have different values.
- An object can contain many methods using which we can access

or manipulate its state.
- Objects can be created either on heap or on stack.
- An object behaves like a blueprint or template.

(5) What is the limitation of an array of pointers to strings? How can it
be overcome?

[D] Attempt the following: [20 Marks, 10 Marks each]

(1) Create an array of strings containing names of 10 cities. Write a
program that sorts the cities in reverse alphabetical order and
prints this reversed list.

(2) Declare a class Circle containing private variables radius, area and
circumference. Provide a constructor to set up a value in radius.
Create an array of 10 Circle objects, each with different radii. Define
a method calc() in the Circle class that calculates and prints area
and circumference for a given Circle object. Call this method for
each object in the array.

Periodic Tests 473

Periodic Test IV
(Based on Chapters 13 to 15)

Time: 90 Minutes Maximum Marks: 40

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) The class at the top of exception class hierarchy is.

(2) In Java all function calls are resolved using the _________
mechanism.

(3) In an Inheritance chain Base class is also known ______ as and
Derived class is also known as.

(4) In overloaded functions their arguments must differ in ______ ,
_______ , or.

(5) keyword should be used to prevent derivation of a new
class from an existing class.

[B] State True or False: [5 Marks, 1 Mark each]

(1) Protected members are inaccessible in the inheritance chain.

(2) Protected members are accessible to classes in the same package.

(3) Inheritance makes use of "Has A" relationship.

(4) Inheritance, Containership and Generics are all code reuse
mechanisms.

(5) Function overloading is an example of Polymorphism.

[C] Answer the following: [10 Marks, 2 Marks each]

(1) Which exception is likely to occur in the following code snippet?

int a, b, c ;
// receive b and c from keyboard
a = b / c ;

(2) What is the difference between checked and unchecked
exceptions?

(3) What do you mean by exception propagation?

474 Let Us Java

(4) If no exceptions are thrown in a try block, where does control
proceed to when the try block completes execution?

(5) What happens if several catch blocks match the type of the thrown
object?

[D] Attempt the following: [20 Marks, 10 Marks each]

(1) Create a Document class. From it inherit a Magazine class and a
Book class. Objects of each class should contain a print() method.
Create 5 objects each of Magazine and Book class. Store these
objects in an array of references of Document class. Call print()
method using the array elements ensuring that appropriate class's
print() function gets called.

(2) Create the following class hierarchy:

Vehicle - base class
Car, Truck - derived classes derived form Vehicle

Declare an interface Storable containing methods serialize() and
deserialize(). Implement this interface in the derived classes. Call
these functions from main().

Periodic Tests 475

Periodic Test V
(Based on Chapters 16 to 21)

Time: 90 Minutes Maximum Marks: 40

[A] Fill in the blanks: [5 Marks, 1 Mark each]

(1) The Java collection class that can be used for maintaining key-value
pairs is.

(2) Common algorithms like searching, sorting, etc. can be applied on
collection using functions present in class.

(3) A thread can be created in a Java program by extending the
class or implementing the interface.

(4) If two methods running in two different threads wish to access the
same resource, then to ensure at a time only one thread accesses
the resource the methods should be marked as.

(5) All Swing classes are defined in package.

[B] State True or False: [5 Marks, 1 Mark each]

(1) Generic functions cannot work for primitives like int, float, char, etc.

(2) A generic function can receive multiple argument types.

(3) Bounded generics can work only with the objects of specified class.

(4) Protected members are inaccessible in the inheritance chain.

(5) In Swing API there is one adapter class for each listener.

[C] Answer the following: [10 Marks, 2 Marks each]

(1) What are Sources, Events, Listeners, Adapters in context of GUI
applications?

(2) Suppose you have connected to a database containing a table called
Employees. Each record in this table contains EmployeeID, Name,
Age and Salary. Write a code snippet that would read and print all
records present in this table.

(3) What does each function call in the following code snippet achieve?

static final String jdbcDriver = "com.mysql.jdbc.Driver" ;

476 Let Us Java

static final String dbURL = "jdbc:mysql://localhost/study" ;
Connection conn = null ;
Statement stmt = null ;
String sql = sql = "INSERT INTO Accounts VALUES (1001, 'Joe')" ;

Class.forName (jdbcDriver) ;
conn = DriverManager.getConnection (dbURL, "root", "admin") ;
stmt = conn.createStatement() ;
stmt.executeUpdate (sql) ;

(4) What are CRUD operations?

(5) What are bounded generics? When are they used?

[D] Attempt the following: [20 Marks, 10 Marks each]

(1) Write a program that maintains a hash map of 10 Employee Ids as
keys and name of the person, his email address and his date of birth
as values.

(2) Producer - Consumer algorithm is a popularly used algorithm in
Computer Science. It is a technique for generating requests (by
producer) and processing the generated requests (by consumer).
Write a program to implement this algorithm to meet following
specifications:

- The Producer produces factorial value of numbers in sequence 0,
1, 2,...

- Consumer consumes the produced factorial values by printing
them

- Both Producer and Consumer work as independent threads
- Consumer must wait while Producer is producing
- Once Producer has produced it would send a signal to Consumer
- Producer must wait while Consumer is consuming
- Once Consumer has consumed it should send a signal to

Producer

Search it, the easy way...

477

478 Let Us Java

!, 69
!=, 61
%=, 85
&&, 64
&, 68
*=, 85
--, 85
++, 85
+=, 85
-=, 85
/=, 85
<, 61
<=, 61
==,61
>, 61
>=, 61
? :, 71
|, 68
||, 64
2-D array, 198, 200
2-D jagged arrays, 200

A

ActionListener interface, 396
Algorithms, 373, 374, 383
ArrayList class, 375, 376
Arrays class, 383, 384
AWT library, 391
abs(), 45
abstract classes, 252
abstract functions, 252, 256
actionPerformed event, 392, 395
actual arguments, 119, 121
append(), 217
args, 24, 26

command-line, 40
arithmetic instruction, 43

type conversion, 45, 48
array, 187, 188
array

2-D arrays, 198, 200
accessing elements, 188
bounds checking, 190
declaration, 188
initialization, 189
jagged array, 200, 201
multi-dimensional, 197
of objects, 195, 196
of strings, 217
passing 2-D array, 198
passing array reference, 192
passing to function, 191, 192
reading data from, 189
resizing of arrays, 202
returning an array, 193, 198
two dimensional, 198, 200

associativity of operators, 49

B

Binary Search Tree, 381
Binary Tree, 380
BufferredInputStream, 308, 326
BufferredOutputStream, 308
BufferredReader, 309
BufferredWriter, 309
binarySearch(), 384, 385
bitwise operators, 461
boolean data type, 37
bounds checking, 190
break, 90
byte, 35
bytecode, 7, 8, 10

C

C++, 9
CLASSPATH, 451

Index 479
CRUD operations, 406, 407
Collection Classes, 373, 374
Complex class, 168
Containership, 151
Control Instructions, 53
called function, 114
calling function, 114, 118
canRead(), 308, 312
canWrite(), 308
case, 103, 104
catch block, 277, 278, 282
char data type, 37
character constant, 21
chat application, 434, 438
class, 163, 164

ArrayList, 375, 376
Collections, 383
Complex, 168
constructors, 163, 165
HashMap, 382
LinkedList, 378, 379
MouseAdapter, 400
Stack, 377
StringBuilder, 217
SQLException, 410
TreeSet, 381
terminology, 167

close(), 310, 311, 312
command line arguments, 40
comment, 25
compareTo(), 213, 215, 218
compareToIgnoreCase(), 215
compilation, 28
compiler, 4, 8, 10, 11, 28
compound assignment operators, 85
concat(), 213, 215
contains(), 216
conditional operators, 71
console, 313
console I/O, 50
console I/O functions, 50, 51

readLine() function, 50
constant variables, 49

constants, 21
constructors, 163, 165
constructors,

in inheritance, 237
continue, 92
control instructions, 53

decision, 61
case, 103
loops, 81

copyOf(),
copyValueOf(), 213, 215
cos(), 45
createStatement(), 411, 414

D

DELETE, 412
DataInputSrteam, 326
DataOutputSrteam, 311
Data organization, 405
Date class, 302, 303
Driver interface, 408
DriverManager class, 409, 410
data type, 19, 35

boolean, 37
byte, 35
char, 37
enum, 221, 222
integer, 35
long, 35
user-defined, 32
real, 36
short, 35

decision control instructions, 61
default, 103
delete(), 217
directory operations, 301
do, 90
double, 36
do-while, 90
drive operations, 301

480 Let Us Java

E

Event, 394
ActionEvent, 396, 396
MouseEvent, 395, 399, 400
actionPerformed, 392, 395, 396

Event handling, 394
else, 61
else if clause, 66
enum, 221
enumerations, 221

use of, 222
exceptions

user-defined, 287
exception handling, 276
execution, 28

executeUpdate(), 412
executeQuery(), 412, 414

exists(), 312, 316
explicit conversion, 47
exponential form, 37

F

Float, 39
File, 301, 303, 305
FileInputStream, 308, 314
File Operations, 301
FileOutputStream, 311, 313, 315
FilterOutputStream, 326
FileReader, 309, 312
FileWriter, 309, 310, 311
false, 37
file decryption, 318, 321
file encryption, 318, 321
file transfer, 446
fill(), 195
final, 50, 240
finalize method, 166, 167
finally block, 285, 286, 312
float, 36

for, 86
loop, 86, 87, 88
multiple initializations, 89
nesting, 88
partial, 88

formal arguments, 119, 121
format(), 51
format specifiers, 52
function overloading, 131
functions, 113
functions

called function, 114
calling function, 114, 118
passing values between, 118
function overloading, 131
readLine() function, 50
println() function, 51

G

garbage collector, 166, 167
generic classes, 361
generic functions, 353
generics, 353

bounded, 366
getAbsolutePath(), 302
getCanonicalPath(), 216, 217
getConnection() , 413, 414
getFloat(), 412, 414
getInt(), 412, 414
getName(), 302, 304, 314
getParent(), 302
getString(), 412, 414
getText(), 392, 398, 399

H

HTTP, 433
HashMap, 382
HashMap class, 382
hierarchy, 48

Index 481

I

I/O System
Expectations, 301

IDE, 11
INSERT, 412
Input/Output, 301
InputStreamReader, 302. 309
Integer, 35, 39
Integrated Development

Environment, 11
Interfaces,

ActionListener, 396
MouseListener, 400

practical uses of, 260
Interfaces - different

implementations, 264
Interfaces - focused view, 261
Interfaces - unrelated inheritance,

266
identifier, 21
if-else statement, 61

nested if-elses, 65
incremental development, 241
indexOf(), 214, 215
inheritance, 231

constructors, 237
uses, 234

insert(), 217
instruction types, 41
instructions, 41
instructions

arithmetic instruction, 41, 43
control instruction, 41, 53
exception handling, 41
type declaration instruction, 41

int, 35
integer, 35
integer constant, 35
interface,

practical uses, 260
inter-thread communication, 346
isDirectory(), 304

isEmpty(), 216
isSelected(), 398, 399

J

J2SE, 14
JButton, 393, 394
JDBC, 405, 407

Architecture, 407
adding library, 413
driver, 408
driver manager, 408
driver type, 408

JLabel, 393
JPanel, 393, 394
JTextField, 393, 394
James Gosling, 5
Java, 5, 6

bytcode, 7, 8, 10
data types, 19, 35
instructions, 41
keywords, 23
library, 14
streams, 306

JavaFX library, 391
JDK, 10, 11
JIT compiler, 10
JRE, 10, 11
JVM, 7, 8, 9
jagged array, 200, 201
java.sql package, 408
joining and splitting strings, 216

K

keywords, 23

L

482 Let Us Java

Linked List, 378
LinkedList class, 378, 379
Linux, 7, 8
Listener interfaces, 399
lastIndexOf(), 214, 215
literal, 21, 37
log(), 45
log10(), 45
logical operators, 64, 68
long, 35
loops, 81
loops

do-while loop, 90
for, 86
tips, 83
while, 81

networking concepts, 421
networking model, 423
new, 159, 160, 162

M

Math, 45
MouseAdapter, 400
MouseListener interface, 400
Multitasking, 329
Multithreading, 329
MySQL, 405

Workbench, 407
installation, 409

main(), 24, 25, 26
mouseClicked(), 400
mouseEntered(), 400
mouseExited(), 400
mousePressed(), 400
mouseReleased(), 400
multiple exceptions, 283
multiuser chat application, 438

O

OOP, 143
objects, 163
object, 163, 165

Connection, 407, 409, 411
ResultSet, 407, 409, 411
Statement, 409, 410, 411

object destruction, 166
object-oriented programming, 146

classes, 149
containership, 151
inheritance, 149
objects, 148
polymorphism, 151
reusability, 151

operators,
associativity, 49
bitwise, 461
compound assignment operators,

85, 100
conditional operators, 71
hierarchy, 70
logical operators, 64
relational operators, 62
OutputStreamWriter, 309, 310

overloading functions, 131

N

NetBeans, 11, 28
nested if-elses, 64, 65
nesting of loops, 88

P

PrintWriter, 309
package, 24, 25, 449

java.sql, 408
packets, 426
parseInt(), 39, 40, 51
parseFloat(), 39, 40
passing

Index 483
2-D array, 198
array elements, 191
array reference, 192
parameters, 118
values, 118

port numbers, 427
protocols, 426
polymorphism, 249
pow(), 45
primitives, 19
println(), 24, 27, 51
protected, 232, 233
public, 234,
private, 234

R

RDBMS, 405, 406
Reader, 309
Record I/O, 313
readLine() function, 50
real, 36
Recursion, 134
reference type, 19
relational operators, 61
replace(), 217
resizing of arrays, 202
return, 118
returning 1-D array, 193, 198
reusability, 151
rules,

for constructing constants, 21
for constructing variables, 22

S

SELECT, 412, 414
SQLException class, 410
Solaris, 4
Stack, 373, 374
Stack class, 377, 379

strictfp, 451
StringBuilder class, 217
Swing library, 391, 393
schema, 410, 411
security, 8
short, 35
sin(), 45
sockets, 426
sort(), 385
split(), 217
splitting strings, 216
sqrt(), 45
standard exception, 287
static data, 174
static functions, 174
streams, 306

stream classes, 308
user-defined streams, 315

string Functions
charAt(), 213, 214, 215
compareTo(), 213, 215
concat(), 213, 214
contains(), 216
copyValueOf(), 213, 214
format(), 216
indexOf(), 214, 215
isEmpty(), 216
lastIndexOf(), 214, 215
length(), 215
replace(), 215
substring(), 214, 215
toUpperCase(), 215, 216

strings,
array of, 217
reading, 312
sorting, 220
splitting, 216

structured programming, 143, 144
super, 236, 237, 238
switch, 103, 105, 107

T

484 Let Us Java

TCP, 434
Tree, 379

Binary, 380
TreeSet class, 381
table,

Alter, 406
Create, 406
Drop, 406

tan(), 45
this reference, 172
thread

launching, 332
launching multiple threads, 335
priorities, 347
synchronization, 343

three dimensional array, 197
throw, 287, 292
time server, 430
try, 292
toString(), 310
toUpperCase(), 213
traditional programming model, 6
true, 37
two dimensional array, 198
typecasting, 47, 48
type conversion, 47
type declaration instruction, 42

void, 24, 26, 27

W

Windows, 6, 7, 8, 11
Writer, 309, 310, 311
while, 81, 83
whois server, 432
write(), 310, 311, 315
writeInt(), 310, 311

U

UDP, 444
UPDATE, 406, 407, 410, 412
user-defined exceptions, 287
user-defined streams, 315

V

value type, 19
variable names,

rules for constructing, 22
variables, 20, 22, 23

	Let Us JAVA

	6th Edition

	About The Author

	Acknowledgments

	Contents

	The Evolution

	The Birth of Java

	What is Java?

	Traditional Programming Model

	How is Java Different?

	How Java addresses Security?

	Java or C++?

	The Java Environment

	Tools of the Trade

	Online Java Compilers

	17

	Java Data Types

	Java Keywords

	The First Java Program

	Compilation and Execution

	One More Program

	33

	Data Types Revisited

	Receiving Input

	Receiving Input - One More Way

	Command-line Arguments

	Java Instructions

	Type Declaration Instruction

	Arithmetic Instruction

	Console Output in Java

	Control Instructions in Java

	59

	Decisions! Decisions!

	The if-else Statement

	More Complex Decision Making

	A Word of Caution

	The Conditional Operators

	79

	Loops

	The while Loop

	The for Loop

	The do-while Loop

	The break Statement

	The continue Statement

	Common Usage

	101

	Decisions using switch

	switch Versus if-else Ladder

	111

	What is a Function?

	Passing Values between Functions

	129

	J0

	Function Overloading

	Functions with Variable Number of Arguments

	Recursion

	141

	The Beginning...

	Structured Programming

	Object-Oriented Programming

	Characteristics of OOP

	157

	Classes and Constructors

	Object Destruction

	Terminology

	A Complex Class

	The this Reference

	Static Data and Functions

	Static Block

	Passing Objects to a Function

	185

	What are Arrays

	More on Arrays

	Common Array Operations

	Array of Objects

	Multi-Dimensional Arrays

	Jagged Arrays

	Resizing of Arrays

	209

	What are Strings?

	More about Strings

	Splitting Strings

	StringBuilder Class

	Array of Strings

	Sorting Strings

	Enumerations

	Use of Enumerated Data Type

	229

	Uses of Inheritance

	Constructors in Inheritance

	The final Keyword

	Incremental Development

	Other Code Reuse Mechanisms

	247

	What is Polymorphism?

	Abstract Classes and Functions

	Interfaces

	Practical Uses of Interfaces

	273

	Exception Handling in Java

	Catching Multiple Exceptions

	The finally Block

	User-defined Exceptions

	A More Practical Example

	A Few Tips...

	299

	Expectations from an I/O System

	File, Directory and Drive Operations

	The Java Streams Solution

	Stream Classes

	Byte and Character Operations

	Reading Strings from a File

	Record I/O

	User-defined Streams

	File Encryption/Decryption

	327

	Multitasking and Multithreading

	Multithreading in Java

	Launching Threads

	Launching Multiple Threads

	Another Way to Launch Threads

	A Practical Multithreading Example

	Synchronization

	The Synchronized Block

	Inter-thread Communication

	Thread Priorities

	353

	Generic Functions

	Multiple Argument Types

	Generic Classes

	Bounded Generics

	371

	Why a New Approach?

	Array of Names and Numbers

	Maintaining a Stack

	Maintaining a Linked List

	Maintaining a Tree

	Maintaining a HashMap

	Using the Algorithms

	389

	A Simple Swing Application

	Event Handling

	One More GUI Application

	Adapter Classes

	What Next?

	403

	Data Organization

	Common Database Operations

	Database Operations through Java

	JDBC Architecture

	JDBC Driver Types

	MySQL Database Installation

	Common JDBC API Components

	Putting it to Work

	419

	Networking Concepts

	Networking Model

	Protocols

	Packets

	IP Addresses

	Sockets

	Port Numbers

	Getting Started...

	What's The Time Now?

	Communicating with Whois Server

	Give Me the Home Page

	Two-Way Communication

	Multiuser Chat Application

	File Transfer Using UDP

	CLASSPATH Variable

	strictfp Modifier

	Packages

	Split Packages

	Different Packages, Same Type

	Nested Packages

	Package FAQs

	Packages and Access Mechanism

	Bitwise Operators

	477

