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Preface

If your computer crashes, you can revive it by a reboot, an empirical solution that
usually turns out to be effective. The rationale behind this solution is that transient
faults, either in hardware or software, can be fixed by refreshing the machine
state. Such a “silver bullet,” however, could be futile in the future because the
faults, especially those existing in the hardware such as Integrated Circuit (IC)
chips, cannot be eliminated by refreshing. What we need is a more sophisticated
mechanism to steer the system back on the right track. The “magic cure” is
the on-chip fault-tolerant mechanism, which relies on a suite of built-in design-
for-reliability logic, including fault detection, fault diagnosis, and fault recovery,
working in a unified manner.

With the shrinking semiconductor feature sizes and continuous scaling of the
IC designs, silicon defects caused by manufacture defects, radiation particles, or
progressively aging are almost inevitable and pose critical influence on both the
yield and quality of IC products. Under this context, we have successfully applied
on-chip fault-tolerant computing mechanism onto a set of different chip designs
including generic circuits, general-purpose processors, network-on-chips, and deep
learning processors in the past decade, and gradually formulate a systematic built-in
fault-tolerant computing paradigm, which can be utilized to guide IC designs against
these typical silicon defects. In addition to the basic fault detection, fault diagnosis,
and fault recovery, the proposed built-in fault-tolerant computing paradigm also
provides additional benefits, such as facilitating graceful performance degradation,
mitigating the impact of verification blind spots, and improving the chip yield.

In this book, we mainly illustrate the built-in fault-tolerant computing paradigm
with practical demonstrations on genetic circuits, general-purpose processors,
network-on-chips, and deep learning processors. The entire book consists of six
chapters. Chapter 1 presents the background of fault-tolerant chip designs and
overview of the built-in fault-tolerant computing paradigm. Chapter 2 presents on-
line fault detection, on-chip path delay, and lifetime fault-tolerant pipeline design
for genetic circuits. Chapter 3 investigates the vulnerability of general-purpose
processors under silicon defects and presents a core salvaging approach, particularly
for multi-core processor architecture. Chapter 4 focuses on fault-tolerant network-
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on-chip designs from distinct angles including topology reconfiguration, routing
design, and architecture design. Chapter 5 focuses on built-in fault-tolerant deep
learning processors fabricated with both conventional CMOS-based technology
and emerging ReRAM-based technology. Chapter 6 concludes this book with a
brief summary of the proposed built-in fault-tolerant computing paradigm and
a discussion of future fault-tolerant computing directions on large-scale VLSI
designs.

The majority of the content involved in this book is collected from peer-reviewed
papers of Guihai Yan, Cheng Liu, Lei Zhang, Wen Li, Songwei Pei, Songjun Pan,
Bingzhang Fu, Ying Wang, and Hang Lu supervised by both Prof. Xiaowei Li and
Prof. Huawei Li who lead the Integrated Circuit Design Group in State Key Lab of
Computer Architecture, and has already been published in the journals of TVLSI,
TCAD, TC, JCST, and Journal of China Science. Prof. Xiaowei Li organized this
book in general, Prof. Guihai Yan mainly worked on Chaps. 2 and 3. Prof. Cheng
Liu worked on Chaps. 1, 4, 5, and 6. Dr. Jingya Wu also helped a lot to edit this book.
Prof. Huawei Li and Prof. Guojie Luo reviewed this book. Prof. Tim Cheng wrote
foreword for this book. All the efforts are indispenable for this book and greatly
appreciated.

The techniques presented in this book are partly selected from research founded
by the National Key Research and Development Program of China under grant
2020YFB1600201, and the National Natural Science Foundation of China (NSFC)
under grant No. (62174162, 62090024, 61902375, U20A20202, 61876173).

Beijing, China Xiaowei Li
May 2022



Foreword

Hardware systems must have sufficient robustness to cope with failures resulting
from various variability and reliability concerns. This requirement not only applies
to safety-critical advanced systems in avionics and automotive applications but
also becomes a necessity for consumer electronics where cost has been a serious
constraint. For integrated circuits, device geometry shrinkage, very low power
supply levels, and ultra-high operating speeds have significantly reduced noise
margins and increased variations in process, device, and design parameters. These
continuing trends in technology scaling have resulted in lower reliability and
higher design uncertainty for highly integrated chips. Not just technology, the
environment, energy, thermal resources, and even applications have also contributed
to greater variations and more diverse sources of errors. Thus, high variability
and low reliability have become the predominant challenges for chip design and
manufacturing.

While verification, test, and fault tolerance technologies have been foundational
disciplines for multiple decades for which the readers can find good textbooks for
their respective basic knowledge, principles, techniques, and solutions, these fields
all continue to evolve and advance, some of which have even reinvented themselves,
in order tackle the enormous variability and reliability challenges. As a result, new
and more effective and efficient solutions continue to emerge, replacing classical
approaches for designing and manufacturing robust and reliable hardware.

For fault tolerance, a suite of techniques, ranging from built-in redundancy and
online reconfiguration capability to tolerate errors, to built-in self-test/-diagnosis/-
repair to recover from errors, to post-fabrication tuning/adaptation capability (either
off-line or online) to bypass errors, to automatic compensation to alleviate the neg-
ative effect caused by variations, or to dynamic adaptation to mask environmental
noise and transient errors, have been developed; some of which have even been
advanced from the proof-of-concept and prototyping stages to actual deployment.

Researchers at the Institute of Computing Technology of Chinese Academy of
Sciences have been among the most productive and impactful research groups in
addressing the technical challenges and contributing new solutions in this area. Over
the past decade, they have developed and employed a number of built-in and/or
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online fault-tolerant solutions. Their solutions are either generic, broadly applicable
to digital designs and general-purpose processors, or specific to special-purpose
designs including network-on-chips and deep learning processors. This book gives
in-depth and coherent explanations of these very interesting results. Particularly,
the solutions are introduced in a unified “3S” framework supporting a built-in
fault-tolerant computing paradigm, where “3S” stands for self-test, self-diagnosis,
and self-repair (or self-recovery). The description of each technique also includes
clarification of the key differences from the conventional counterparts which I am
sure the readers will find informative and insightful. It is commendable that the
authors have done an outstanding job in producing this self-contained book covering
multiple aspects of built-in fault-tolerant design for resilient chips. Publishing this
book also serves very well for motivating research graduate students and researchers
to gain the latest results and insight into this subject of significant importance.

Hong Kong University Kwang-Ting (Tim) Cheng (郑光廷)
of Science and Technology
December 12, 2022
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Chapter 1
Introduction

Abstract Although the probability of a single transistor error can be low, the
error rate of a large-scale VLSI design that involves up to billions of transistors
because of the continuously increasing transistor density can be non-trivial. While
silicon faults can be caused by various factors such as process variation, progressive
aging, and manufacturing defects, it remains challenging despite the advancements
of semiconductor technology. Conventional automated test equipment (ATE) can
be utilized to identify the faulty designs from mass production, but it is typically
expensive and cannot salvage the failed designs. In this context, built-in fault-
tolerant computing paradigm that takes various silicon faults into consideration
by design can greatly alleviate the above problems with much less overhead and
are gaining increasing attentions of researchers from both industry and academia
recently. Usually, it integrates techniques such as fault detection, fault diagnosis, and
fault recovery in chip design such that it can work independently without additional
offline testing equipments. In this chapter, we will introduce the background of
various silicon faults first and then elaborate the general idea of built-in fault-tolerant
computing paradigm.

1.1 Typical On-Chip Faults

Although the advancement of semiconductor technology contributes greatly to the
smaller feature sizes and higher transistor density, it makes the large-scale VLSI
designs more vulnerable to various silicon defects induced by process variation,
manufacturing defects, progressive aging, and soft errors when exposed to high-
energy particles, and poses dramatic challenges to the circuit design reliability.
Before diving into the fault-tolerant design techniques, we will illustrate the major
silicon defects in this section.
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1.1.1 Process Variation

Process variation becomes one of the major sources of silicon defects recently and
exacerbates greatly when the transistor feature size scales down to nanometre era
and it gets more difficult to control all the complex VLSI manufacturing processes
precisely [52]. For instance, lithographic process becomes extremely challenging
when the wavelength of the utilized light is close to the transistor feature size. As a
result, the fabricated transistors that are supposed to be identical can vary on many
device parameters such as gate width, channel length, threshold voltage, and oxide
thickness. Accordingly, the transistors with process variation will lead to different
circuit latency, and can result in delay violation or lower the maximum operation
frequency especially on critical paths of a circuit. Other than delay violation,
process variation also has many other high-level negative influence on large-scale
VLSI designs such as yield, performance, and energy consumption [3, 12]. Worse
still, process variation is usually sensitive to the working environments such as
voltage and temperature variation. The combination of these different variation
further exacerbates the negative influence on VLSI designs and varies at runtime,
which makes the process variation aware or process variation tolerant design more
complex.

Despite the complexity, process variation can be divided from different angles.
From the perspective of variation distribution, it can be roughly split into systematic
variation and random variation [43, 58]. Systematic variation is mostly caused by
imprecise control of manufacturing and is the major driver of yield improvement
[42]. For instance, phase deviation in lithography process can induce similar device
parameter variation of chips fabricated in the same batch. It indicates that the process
variation of a batch of chips follows certain specific patterns. The management
of systematic variation is critical to achieve competitive yield for semiconductor
manufacturers. It can be addressed with either manufacturing improvement or
process variation aware design when the variation pattern is known. Random
variation refers to the process variation without particular patterns such as threshold
voltage variation [52, 69]. It can be caused by factors like inconsistent doping and
continuously lowering operation voltage, and is particular difficult to predict in
practice.

From the perspective of process variation analysis granularity, it can also be
divided into wafer-to-wafer (W2W), die-to-die (D2D), and within-die (WID) varia-
tions [25]. Basically, process variation consists of parameter fluctuations across dies
and wafers, whereas within-die variation refers to variations of design parameters
within a single die. As technology scales, WID has become a more significant threat
to future processor design. Particularly in multi-core processors, WID variation is
also considered as core-to-core (C2C) variation and attracts intensive architectural
design efforts [52, 55].

If the process variation is left unaddressed, it can offset the benefits of a new
generation of semiconductor process technology substantially [52]. For example,
dramatic yield drop is observed when the semiconductor technology scales from 350
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to 45 nm [2, 17, 19, 54]. Chip frequency loss will be as high as 30% with advanced
process technology [11]. A .20× increase in leakage power has also been reported
[10]. Many prior study also showed that process variation even becomes one of the
barriers that hinder the adoption of new semiconductor technologies such as carbon
nanotube FETs [72–74] and memristor based devices [45].

1.1.2 Manufacturing Defects

VLSI design is getting extremely complex at the nanometre technology era and
includes up to 10,000 fabrication process steps. Many of the fabrication steps
such as lithography, etching, deposition, chemical mechanical polishing, oxidation,
ion implantation, and diffusion are not fully digital and cannot be perfect, which
will inevitably result in electrically malfunctioning circuitry in certain area of the
fabricated chips. The malfunctioning circuitry can be considered as manufacturing
defects. It poses significant influence on the VLSI yield and determines the eco-
nomic profits of semiconductor manufactures directly [44]. Hence, defect density
even becomes one of the most critical metrics that exhibit the semiconductor
technology quality and maturity.

Manufacturing defects are usually sensitive to the transistor feature sizes because
the size of manufacturing defects remains similar under different semiconductor
technologies and will affect more transistors under smaller semiconductor feature
size given even the same design accordingly [41, 63]. Particularly, some of the small
defects may not even cause any design failure under 180 nm technology node but
can probably lead to multiple transistor faults under 14 nm technology node, which
are more likely to cause design failure.

When the design is small, the probability of manufacturing defects induced
design failure is much lower. In this context, we may pick out the failed chips
with offline test and discard them directly [66]. Basically, the overhead of test and
discarded chips can cover the fault-tolerant design induced chip area overhead. The
test based fault-tolerant approach is utilized in early VLSI designs. However, the
computing requirements grow much faster than the transistor density driven by
the semiconductor technology nodes and the scale of the VLSI designs increases
along with the transistor density. More and more larger VLSI designs appear in
the past decades. Take AMD processors as an example, AMD K8 in 2003 includes
105 million transistors and the chip area is 193mm2 under 130 nm technology. In
contrast, AMD Epyc 7773X (Milan-X) in 2022 has more than 26 billion transistors
and the chip area is 1352mm2 under hybrid 7 and 12 nm technology. The chip area
of AMD Epyc in 2022 is almost .7× larger than that of Intel K8 in 2003 even when
the semiconductor technology advances by more than 10 generations [1]. The cost
of a single large chip is expensive and discarding the entire chip whenever there
are manufacturing defects can no longer be afforded, which demands a new fault-
tolerant design paradigm to protect against manufacturing defects effectively.
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1.1.3 Chip Aging

According to International Technology Roadmap For Semiconductors (ITRS) pro-
jection, silicon aging tops the impending (above 22 nm) reliability challenges. The
industry and academic communities have performed significant work to understand
the failure mechanisms of semiconductor devices, such as electromigration (EM),
bias temperature instability (BTI) including negative and positive BTI (also known
as NBTI and PBTI, respectively), time dependent dielectric breakdown (TDDB),
hot carrier injection, and temperature cycling, etc. Both NBTI and TDDB draw the
most attention concerning several transistor aging mechanisms. Both of them can
gradually degrade performance over time. The researchers have evidence that circuit
path delay can increase by 10% during the five-year lifetime [68]. Even worse, with
technology scaling to the nano-scale, the transistors tend to become more vulnerable
and more prone to aging impacts [68].

The integrity of the wires is also degraded. The shrinking size leads to increased
current density. Increased current density causes aggravated EM effects, which also
contribute to the in-filed performance and reliability degradation. The effects of EM
produce increased resistance of the wires and thereby result in increased RC delay.
The increasing delay will eventually outgrow the timing margin and, even worse,
the wires will eventually breakdown, causing break faults, bridge faults, or stuck-at
faults in the chips.

Since the whole chip is exposed to these aging mechanisms, some parts of the
chip suffer faster aging than the others. The main reason can be attributed the
following two aspects.

First, the “weak” chips, which are more sensitive to aging, mainly results from
process variations [10]. As the feature size relentlessly shrinks generation-by-
generation, the impacts of process variations become increasingly evident. Because
of the wafer-to-wafer, die-to-die, and within-die variations, the proportion of the
circuits with serious mismatches to the golden reference in the design print should
be marked as weak silicon and removed from the production batch as yield loss.
For example, the typical threshold voltage .Vth of transistors may exhibit obvious
deviations from the standard settings because of width/length fluctuations caused
by an unstable lithographic process. Those transistors with the elevated .Vth have
smaller tolerances to withstand the aging induced .Vth increasing and are therefore
prone to be more sensitive to it than those with larger tolerances.

Second, the aging rate of silicon devices (including the metal wires) depends not
only on the intrinsic constitution of the devices themselves, but also on the stressing
duty cycles [12]. From amicroscopic perspective, the data patterns, which determine
the BTI aging degree, are intrinsically non-uniform across the all bits. Consequently,
some transistors are always positively or negatively-biased and therefore degrade
much faster than those that are evenly-biased. The heavily-biased BTI aging has a
slight chance to enjoy the recovery effect, which exacerbates the aging degree. From
a microarchitectural perspective, for another example, the usage of some cores in
a multi-core processor could be always higher than the others because an oracle



1.1 Typical On-Chip Faults 5

round-robin scheduling algorithm is not an option in modern operating system (OS)
design. The jobs assigned to different cores can show very distinct stressing degrees.
The computationally intensive jobs are usually more power-hungry and therefore
generate more heat which can speed up the aging, while those computationally non-
intensive jobs are the opposite.

1.1.4 Soft Errors

Soft errors in memory that will change the value of the stored data temporally have
been a well-known problem [60]. Typically, the error lasts until a new write, and
it will not damage the physical structure of the memory. In contrast, registers may
update in each cycle, so soft errors last for only a short time, which usually induces
a short signal pulse and has less influence on the design working at lower clock
frequency under older semiconductor technology. Hence, soft errors in memory
attract more attentions in early fault-tolerant VLSI designs [59]. Nevertheless, VLSI
designs fabricated with nanoscale semiconductor technologies become increasingly
vulnerable to soft errors because of the reduced node capacity, supply voltage, and
higher transistor density. The influence of soft errors in CMOS logic can no longer
be ignored and even exceed that in memory blocks in high-end processors working
at more than 2.2 GHz according to the study in [22].

Soft errors can be roughly classified as single event upset (SEU), single event
transient (SET), and multiple bit upset (MBU) [59]. When high-energy particles hit
on an memory cell, the stored value in the cell may flip and keep until the next
write. This is called SEU. Since memory arrays typically have very high density,
the rate of SEU is usually high. When the memory cell gets smaller along with
the advancements of semiconductor technology, high-energy particles may cause
multiple bit flips in neighboring memory cells. This is called MBU and gains
increasing attentions of researchers in the past decade. When high-energy particles
hit on combinational logic, a short pulse signal ranging from 0.35 to 1.3 ns will be
produced and propagate along with the circuit. When the circuit such as a high-
end processor operates at higher clock, the pulse signal can be captured by the
downstream registers and incur computing errors. This is known as SET.

Similar to manufacturing defects, soft errors also pose more significant influence
on the performance and functionality of the VLSI designs with growing transistor
density and circuit scale [20, 22]. Particularly, soft error rate of the entire design, as
known as system error rate, increases continuously despite the utilization of fault-
resilient semiconductor technologies like FinFET [18]. In order to compensate the
transistor variability induced errors, Intel proposed to explore hardware-based self-
monitoring and self-management mechanisms and estimated that at least 5–10%
of a processor’s 10 billion-plus transistors will be dedicated to ensure reliability
according to the report in [9].
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1.1.5 Intermittent Faults

Intermittent hardware faults occur frequently and irregularly for a period of time,
commonly due to manufacturing residuals, oxide degradation, process variations,
and in-progress wear-out. Although intermittent faults and soft errors may manifest
similar effects, there are several differences between them. First, from the spatial
aspect, an intermittent fault occurs repeatedly at the same location, while a soft error
rarely occurs in the same place. Second, from the temporal aspect, an intermittent
fault will occur at burst, while a soft error is usually a single event upset or a single
event transient. Third, if an affected structure has been replaced, intermittent faults
will be eliminated; soft errors, however, can not be reduced by repair. There are
also some differences between intermittent faults and hard faults. A hard fault exists
during the lifetime of a chip and continually generates errors if the failing device is
exercised, while an intermittent fault may be periodically activated and deactivated
due to process and environmental variations. Intermittent faults also may turn to
hard faults finally [61].

An intermittent fault has three key parameters: burst length (BL), active time
(AT), and inactive time (IAT) [30]. Burst length is the lifetime of an intermittent
fault; active time is the positive pulse width of one activation, while inactive time
is the time between two consecutive activations. The relationship among the three
parameters can be expressed as .BL = N × AT + (N − 1) × IAT where represents
the number of activations in an intermittent fault. These three parameters determine
the characteristics of an intermittent fault, and their values can be dissimilar for
different intermittent fault configurations. Figure 1.1 shows the temporal feature of
intermittent faults within a period of time. Intermittent faults have adverse impact
on program execution only during their active time. The time interval between two
consecutive bursts is called safe time which means no intermittent fault occurs
during that time, and the safe time could be varied because the occurrence of an
intermittent fault is uncertain.

In order to characterize the vulnerability of circuit designs to intermittent faults,
it is important to establish appropriate logic fault models for them. The established
logic fault models should represent physical intermittent abnormal phenomena.
Based on the root causes and behaviors, intermittent faults can be classified into
the following fault models [27, 30].

Fig. 1.1 Key parameters of intermittent faults
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• Intermittent stuck-at faults (including intermittent stuck-at-1 and stuck-at-0
faults): Intermittent stuck-at faults are caused by residues in storage cells
or solder joints during manufacturing. Unlike a soft error to upset a bit, an
intermittent stuck-at fault transforms the correct value on the faulty signal line
intermittently to be stuck at a constant value, either a logic value “1” or a
logic value “0”. Structures most vulnerable to intermittent stuck-at faults are
storage structures, such as memory and register file. In this work, we assume
an intermittent stuck-at fault only causes one-bit of corruption.

• Intermittent open and short faults: Intermittent open and short faults are usually
caused by electro-migration, stress migration, or intermittent contacts. Intermit-
tent open faults are breaks or imperfections in circuit interconnections such
as wires, contacts, transistors and so forth. Intermittent short faults are shorts
in wires or shorts in transistors. If an element being intermittently shorted to
power or ground, it is equivalent to an intermittent stuck-at fault. If two signal
wires are shorted together, an intermittent bridging fault occurs [66]. Figure 1.2
illustrates several examples of intermittent open and short faults. As shown in
the circuit that consists of a two-input NOR gate and an NOT gate, I1 is an
intermittent open fault in transistor N2 and I2 is an intermittent open fault in wire
C between the two gates. I3 is an intermittent short fault to wire D and I4 is an
intermittent bridging fault. Intermittent open and short faults may turn to hard
faults if existing for a long time. Elements most vulnerable to these faults are
signal buses and I/O connections.

• Intermittent timing faults: Intermittent timing faults are mainly caused by
inductive noises, aging, crosstalk, or process, voltage, temperature (PVT) vari-
ations. Intermittent timing faults will result in timing violations and affect data
propagation when they occur. They usually lead to write wrong data to storage
cells (i.e., flip-flops miss to latch the newly computed value due to path-delay)
and finally become reliability problems. Intermittent timing faults can be broadly
classified into intermittent path-delay faults and intermittent transition faults.

Fig. 1.2 Examples of different intermittent open and short faults
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Fig. 1.3 Physical causes, mechanisms, and fault models for intermittent faults

In this work, we mainly focus on intermittent path-delay faults. Besides, an
intermittent timing fault may affect multiple bits of the data captured by storage
structures or just a single bit in a structure. For example, a crosstalk induced delay
fault may either affect multiple data lines or only one data line. We only consider
the former situation that an intermittent timing fault affects multiple data lines.

Figure 1.3 summarizes the main physical causes, mechanisms, and fault models
for intermittent faults. Each kind of fault model has different causes, behaviors, and
its own representative analysis method. Although the causes of these fault models
may be different, they may have some physical causes in common. For example, an
open or short in metal lines can also lead to intermittent stuck-at faults as presented
in Fig. 1.2.

It is also necessary to know the probability distribution of intermittent faults after
establishing fault models. Srinivasan et al. [62] show intermittent open and short
faults obey log-normal distributions during the lifetime of microprocessors, which
means the failure rate is low at the beginning of a microprocessor’s lifetime and it
will grow as the microprocessor ages. Intermittent stuck-at faults and intermittent
timing faults mainly obey uniform distribution and are highly dependent on the
applications.

1.1.6 Emerging Technologies Induced Defects

As the feature size of the CMOS-based semiconductor technology is getting close
to the physical limit, many researchers from both industry and academia resort to
new semiconductor technologies such as 3D fabrication, resistive random-access
memory (ReRAM), and Carbon Nano Tube FET (CNFET) which enable more
effective implementations in terms of performance, power, and energy efficiency
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[15, 32, 33, 48, 73]. For instance, 3D VLSI that enables much higher transistor
density fabrication and shorter interconnection promises higher performance and
energy efficiency [48, 75]. ReRAM works by changing the resistance across a
dielectric solid-state material and covers a broad range of memory and storage types
of semiconductor devices. It is usually non-volatile but typically much faster than
existing non-volatile storage such as flash and hard disk. At the same time, the
structures are usually simple and can be adapted for energy-efficient computing
in memory [14, 32]. In addition, many of the ReRAM technologies can reuse
conventional CMOS-based manufacturing processes and are cost-effective in terms
of fabrication. CNFET that has much lower leakage current and enables high-speed
operations has been demonstrated to be an order of magnitude faster and energy-
efficient compared to the CMOS-based design at similar technology node [33, 73].

Despite the overwhelming advantages of these emerging technologies, they
generally suffer various manufacturing defects and process variation because of
both the imperfect control of the manufacturing and immature device designs, which
hinders the adoption of these technologies for mass production. In this context, built-
in fault-tolerant design methods at device level, circuit level, architectural level,
and even application level can greatly alleviate the shortcomings of these emerg-
ing technologies and promote the advancements of these emerging technologies
[47, 72, 73]. There have been many successful demonstrations in the past decade
[32]. Gage Hill et al. proposed a set of fault-tolerant design approaches ranging
from device design, EDA design, and architectural design to address the unique
process variations in CNFET and developed a CNFET-based RISC-V processor
[33]. Li et al. took advantage of the inherent fault tolerance of neural network
models and developed a unified design framework to detect and mitigate faults
in ReRAM-based deep learning accelerators [45]. Liu et al. proposed a Through
Silicon Via (TSV) reuse strategy for 3D network-on-chip architecture to reduce the
use of expensive and vulnerable TSVs without performance penalty [48, 70]. In
summary, built-in fault-tolerant computing paradigm can also be utilized to mitigate
the various faults caused by immature emerging semiconductor technologies and
lower the manufacturing requirements in terms of precision and overhead.

1.2 Conventional Fault-Tolerant Chip Design Wisdom

Fault-tolerant design originated in early chip designs when silicon faults were
common due to the immature semiconductor technologies. Although semiconductor
technology advances rapidly over the years and the probability of a single transistor
fault decreases, the probability of faults in a chip increases continuously because
of the growing chip scale and transistor density. A series of fault-tolerant design
methodologies including design for test, design for diagnosis, and design for
reliability have been explored systematically. Although they are not sufficient for
existing fault-tolerant chip designs, these conventional wisdom has been demon-
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strated to be successful in practice and can still be widely utilized nowadays. They
will be illustrated briefly in this subsection.

1.2.1 Design for Test

In both chip prototyping stage and early chip mass production stage, test is critical
to identify the failures in chips caused by manufacturing such that the reasons
to the failures can be found through yield learning and physical failure analysis
[66, 71], which helps to improve the manufacturing as well as chip design and
ensures high yield during mass production. However, it is rather challenging to test
a circuit comprehensively with limited time and overhead constraints especially for
large-scale circuits. Particularly, sequential logic with Flip-Flop usually cannot be
controlled or observed directly and results in low testability and fault coverage. To
this end, design for test becomes indispensable for general IC designs in practice
[39].

Scan chain that mainly revisits the structure of basic Flip-Flop to improve its
testability and controllability becomes a major approach for IC test [37]. Figure 1.4a

Fig. 1.4 An example of scan chain based design for test
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presents a basic sequential circuit without scan chain. port a and b represents the
primary input of the circuit, port y and z are the primary output of the circuit, and .F1,
.F2, and .F3 are the flip-flops while clock for the flip-flop is removed for simplicity.
When the flip-flop structures are modified as shown in Fig. 1.4b, scan cells denoted
as .C1, .C2, and .C3 can connect to the same scan chain which has an input port SI

and an output port SO.
In scan cells, the 2-to-1 MUX essentially decides the status of the circuit which

can either be normal functional state or test state. When the circuit is at functional
state, the functionality of the circuit in Fig. 1.4b and that in Fig. 1.4a is the same.
When the circuit is at test state, it includes three consecutive processing stages i.e.
scan-shift-in stage, capture stage, and scan-shift-out stage. In scan-shift-in stage, the
flip flops in the three scan cells are sequentially connected and the test vector will be
loaded to the flip flops sequentially with three-cycle shifting. The value of the signals
including l, m, and n connected with the flip flops are determined accordingly. In
capture stage, the value of signals including u, v, and w can be calculated with the
combinational logic immediately and captured by the flip flops. Finally, in scan-
shift-out stage, the three flip flops are connected sequentially again such that the
value of signals including u, v, and w can be read through the scan chain and
observed at output port SO. According to the small test example, we notice that
scan-chain based design makes the signals including l, m, and n controllable and
the signals including u, v, and w observable. Thereby, scan-chain improves the
controllability, observability, and testability of the circuit.

With the growing circuit scale, the number of scan cells in circuits increases
substantially over the years. In a typical multi-core processor fabricated with TSMC
(Taiwan Semiconductor Manufacturing Company), a single core includes 18,796
scan cells [80]. The number of scan channels in an automatic test equipment (ATE)
is usually limited. Suppose 8 scan chains are utilized to the connect these scan
cells, 2350 cells will be allocated to each scan chain and it takes 2350 cycles to
load a single test vector, which is time-consuming and includes considerable data
transmission. To address the problem, scan compaction becomes widely utilized and
needs to considered along with the test coverage [66]. Usually, we try to explore the
redundant data in multiple scan cells and reduce the scan cells in each scan chain
for shorter test time. The top 3 EDA vendors including Mentor Graphics, Cadence,
and Synopsys proposed their own test compaction methods. For instance, Mentor
Graphics proposed embedded deterministic test (EDT) and utilized XOR gate for
efficient test compaction [35]. As shown in Fig. 1.4c, every two scan chains output
via a single XOR such that the four scan chains can be compressed and handled by
two scan channels. When this approach is applied in the same example, 18,796 scan
cells can be connected with 160 scan chains and each scan chain has 118 scan cells.
With EDT, 20 scan chains can be compressed to a single scan channel. Given 8 scan
channels, it takes only 118 cycles to scan in a test vector and scan out the output
data, which greatly reduces the test overhead.
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1.2.2 Design for Diagnosis

Fault diagnosis mainly identifies the fault sites and fault behavior by analyzing
the failing response obtained in chip test. It is typically much more efficient
than physical failure analysis because it narrows down the scale of the fault
sites considerably and helps to accelerate the fault analysis process [29, 79]. In
addition, prior work demonstrated that many systematic chip failures can be found
through statistical analysis of a batch of chips without physical failure analysis
[7, 34, 49]. With the detected systematic failures, we may improve the corresponding
manufacturing processes to avoid the same failures, which accelerates the yield
learning significantly. With the increasing transistor density and design scale, many
failures are caused by multiple faults rather than single fault. As a result, the fault
diagnosis approaches based on single fault model can be futile in many cases.
According to the study in [38], 41% of the failed chips cannot be diagnosed
correctly. Hence, multiple-fault diagnosis becomes a critical problem for fast yield
improvement in mass production.

For more effective fault diagnosis, additional design efforts are required to
distinguish the behavior of the circuits among different fault configurations, which
is also known as design for diagnosis [57]. Diagnosiability can be improved by
revisiting the circuit structures or adding some auxiliary logic, which essentially
improves the observability or controllability of the circuits and is similar to design
for test from this perspective. However, design for test and design for diagnosis
are still different in terms of the design goals. Specifically, design for test aims to
distinguish the circuits with faults and without faults while design for diagnosis
seeks to differ the circuits with different faults.

Based on the target fault locations in circuits, fault diagnosis approaches can
be roughly divided into scan-chain fault diagnosis and combinational logic fault
diagnosis. For the scan chain fault diagnosis, it can be further split into two cate-
gories. One of them is based on fault simulation. Basically, it repeats the processes
including fault injection, fault simulation, and fault analysis until a similar fault
response is captured. The other one is to load determined diagnosis vector to an ATE
and determine the faults based on the response. For the combinational logic fault
diagnosis, cause-effect analysis and effect-cause analysis are the major solutions.
Cause-effect analysis approach is also known as dictionary-based analysis. The
basic idea is to build a fault model and record all the possible fault response in
a dictionary. Then, the dictionary will be utilized as a reference for fault diagnosis.
The major problem for this approach is that it is sensitive to the fault models used for
the dictionary building and the dictionary can be large and expensive. Effect-cause
analysis is more complex and consists of three components including structural
pruning, fault simulation, and evaluation strategy. With structural pruning, we can
find the circuit that will not be affected and reduce the circuit that needs further
diagnosis. Then, fault simulation is applied to the reduced circuit. Based on the
evaluation of simulated fault response, we can determine the fault sites [36].
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1.2.3 Design for Reliability

As the semiconductor technology steps into nanometer scale, the increasing transis-
tor density together with the continuously growing computing requirements trigger
the design of large-scale integrated circuits such as multi-core processors, GPUs,
and high-capacity memory, which consists of dozens of billions of transistors.
Unlike early small-scale and medium-scale IC designs of which reliability issues
can be mostly screened with testing and handled at device level through manufactur-
ing process improvement, large-scale IC designs are more likely affected by various
faults and it is usually not an economic choice to discard a large chip with small
or minor faults [16, 50, 78]. Reliability becomes vital to not only the functionality
of the design but also yield and cost [51]. In addition, many reliability issues are
closely related with the time-dependent aging and eventually cause failure of an
entire chip, which is prohibitively expensive to test before entering the market.
In this context, reliability becomes a critical metric especially for safety-critical
scenarios like avionics, automotive electronics, and medical electronics, and must
be considered by design, which is also known as design for reliability (DFR) in IC
industry.

DFR covers a variety of fault-tolerant techniques that allow a chip to perform its
intended function in presence of faults [51]. It includes both generic fault-tolerant
techniques such as computing redundancy that can be adapted to various circuits
and specific fault-tolerant techniques such as error correction code (ECC) that are
mainly utilized for memory blocks and data transfer logic.

For the generic fault-tolerant techniques, we take hardware redundancy as an
example and illustrate it in detail. Hardware redundancy techniques can further be
divided into two categories: passive redundancy and active redundancy. Passive
redundancy assumes that faults always happen or happen frequently, and fault
recovery is conducted without any external acknowledgement. Triple modular
redundancy (TMR) and N modular redundancy (NMR) are typical passive redun-
dancy practice. The same processing are duplicated multiple times and checked
with an additional voting mechanism [53, 65]. The duplicated processing is always
enabled no matter whether faults occur. They are widely utilized in mission critical
scenarios and can protect the chip against both soft errors and persistent faults. To
alleviate the considerable redundancy overhead, active redundancy has a lightweight
fault detection module or mechanism implemented and it conducts the fault recovery
only when faults are detected. It avoids expensive passive redundancy processing
and can be beneficial especially when the probability of the faults are relatively
lower. However, the fault detection may be slow and faults may already corrupt the
design when the faults are detected. Usually, the active redundancy approach may
need more complex fault recovery mechanism to address the problem.

For the specific fault-tolerant techniques, we will take the fault-tolerant encoding
as an example and illustrate it in this section. Unlike the hardware redundancy that
usually requires hardware duplication and can be utilized to resolve faults in any
specific component of the design, fault-tolerant encoding typically has redundant
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information embedded in the data and the corrupted data can be detected and
recovered with the redundant information [6, 23]. Basically, it ensures reliable
data transfer from one component to the other and cannot protect the components
that generates or modifies the data. There have been many different fault-tolerant
encoding methods such as parity codes, hamming codes, cyclic redundancy check,
and Reed-Solomon, which mainly differ in terms of encoding/decoding overhead
and fault-tolerant capability. For instance, parity code is friendly to hardware
implementation and consumes very little chip area, but it can only detect errors
and cannot correct them. In contrast, hamming code that needs more chip area to
implement can detect and correct errors simultaneously [26].

1.3 Built-In Fault-Tolerant Computing Paradigm

Reliability is one of the mainstay merits of virtually any computing system. Beyond
conventional fault tolerance computing [8], built-in on-chip fault tolerance faces
several unique challenges: (1) Resource limited. On-chip fault tolerance is engaged
during the duty time so that any dedicated automatic testing equipment (ATE) are
unavailable. Therefore, the only viable strategy is to build all required test supports
on the chip, which makes the on-chip fault tolerance mechanism operate in a
self-supporting manner. (2) Overhead-sensitive. Even though silicon has become
increasingly cheap thanks to the Moore’s law, it is still unwise to extravagantly use
the silicon for non-performance goals. For ordinary users, it is probably highly risky
for the chip makers tout for customers with the probability of a system crash rather
than the more appreciable performance.

Over the past decade, we have exploited the on-chip fault tolerance to build a
holistic solution ranging from on-chip fault detection to error recovery mechanisms
[24, 31, 46, 76–78, 81]. We applied them to generic circuits, processing cores,
Network-On-Chip (NoC), deep learning processors. The on-chip fault tolerance
framework usually consists of three key components: self-test, self-diagnosis, self-
repair, or ‘3S framework’ for short. Some prototypes have been built to demonstrate
how on-chip fault tolerance responds to the in-filed silicon degradation. More
interestingly, we find that the 3S framework is not only a powerful backbone guiding
various on-chip fault tolerance designs and implementations, but also has more
far-reaching implications such as maintaining graceful performance degradation,
mitigating the impact of verification blind spots, and improving the chip yield. We
believe that these design principles will be critical for the chip makers to maintain a
competitive edge in the future.

As a fault tolerance mechanism, on-chip fault tolerance has the ingredients
of generic fault tolerance mechanisms: fault detection, fault diagnosis, and fault
recovery. Fault detection is used to judge whether the system suffers from erroneous
executions, then fault diagnosis digs deeper to determine where and how such
errors happen, which is followed by a recovery routine to correct the error to the
expected outcomes. For the on-chip fault tolerance, the generic framework evolves
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with several new attributes which provide the essences of the self-supportive 3S
approach.

1.3.1 Self-test

The fault detection, which is virtually realized with dual-module redundancy
either in spatial or temporal dimensions, is not viable due to its notoriously high
overhead in terms of hardware or performance. For example, there are many fault
detection schemes based on thread-level redundancy (TLR), core-level redundancy
(CLR), and execution-level redundancy (ELR). Both TLR and CLR detect faults
at the expense of computing throughput, a typical spatial dimension overhead.
Furthermore, ELR virtually needs re-execution of the code and thereby dictates
a large temporal overhead, even though such strict redundancy schemes promise
perfect detection coverage.

To enable on-chip fault tolerance, we must resort to more thrift detection
approaches. To achieve this, what we can compromise is the perfect detection
coverage, given that the principal objective of on-chip fault tolerance is to isolate
the Sick Silicon, rather than protect every instruction from fault contamination at
all times. We design a highly cost-efficient self-test with respect to a probabilistic
principle, rather than a deterministic principle. The detection routine should not take
a significant number of processor cycles, and should be as transparent as possible
to the kernel and user threads. Symptom-based fault detection which is built upon
low-level circuit timing monitoring can fulfill this purpose [67, 77].

In symptom-based fault prediction, a symptom is defined as a signal stability
violation. Basically, the stability violation of a signal is defined as at least one
transition happens in the time interval during which the signal should be kept
stable. A setup time violation, ascribed to progressive silicon aging for example,
is a type of typical stability violation. As Fig. 1.5c shows, in a clock cycle, we
should reserve a timing span, that is a safeguard band, to meet the minimal setup
time requirement. For the degradation-free case, there should be no single transition
during the safeguard band; By contrast, if the transistors involved on the relevant
timing paths suffer sufficient aging, the transition-free condition can no longer hold.
By detecting the transitions in the safeguard band, the impending faults can be
detected. Of course, whether an aged circuit can result in a stability violation is
determined not only by the “sickness” of the silicon, but also by the data patterns
which can sensitize the corresponding timing paths. However, the timing paths of
Sick Silicon will show a much higher probability than healthy silicon to trigger the
stability violations. By detecting the distribution of the stability violation, we can
discriminate the sick parts from the healthy parts.

The key instruments to detect the stability violation is timing sensors, which
are commonly based on dynamic circuits satisfying sub-nanosecond to even tens
of picoseconds detection resolution. Figure 1.5 shows a sensor design. The basic
stability checker (Fig. 1.5a) can be derived from a sensing circuit for on-line delay
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Fig. 1.5 Timing sensor design. (a) stability checker; (b) output compressor; (c) clock timing

fault detection, in which the integrity of the signal (S) is verified by a pair of
exclusive nodes (S1 and S2), a stability violation will discharge the charged node
and thereby cause both nodes to be at the “0” state, which signifies a timing
violation. The outputs are compacted with a dynamic NOR for reducing the number
of output latches (Fig. 1.5b), where the M11 and M12 serve as a level restorer for
node X. Multiple timing sensors are embedded in the host chip during fabrication.
These sensors collectively form a monitoring system with fine-grained spatial
detection resolution. The problematic component, such as an arithmetic logic unit
(ALU), or a L1 cache bank, can be pinpointed. These faulty components can be
masked from the other healthy parts, simply like a patient undergoes a surgery.
These circuit-level adaptations can be automatically executed transparently on the
host operation systems.

1.3.2 Self-diagnosis

In on-chip fault tolerance, the diagnosis has two objectives: (1) pinpointing which
components have been suffered permanent faults, and (2) estimating the level of
performance degradation will be taxed due to the faults. Before delving into the
details, we would like to first clarify the key differences between the built-in on-
chip fault diagnosis and conventional chip diagnosis routines. The built-in on-chip
fault diagnosis routine, called self-diagnosis, is very different from conventional
diagnosis used in the yield learning phase, in terms of objective, techniques used,
target granularity, and fault models.
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• First, self-diagnosis is used to identify and locate the malfunctioning compo-
nents, while the diagnosis in the production phase is mainly to help locate the
defective physical or electrical contexts [4]. The designers refine the physical
designs to avoid these cases to ramp up the yield learning rate.

• Second, the self-diagnosis intrinsically relies on built-in logic to locate the
defective component, while the conventional diagnosis heavily relies on the
silicon scan test and is conducted off-line by using sophisticated logical diagnosis
tools.

• Third, the granularity of self-diagnosis uses relatively coarse-grained compo-
nents, such as core-level granularity, which have independent functionality and
are usually loosely coupled with other parts, while the conventional diagnosis
works at much finer-grained granularity at the logic gates or standard cells.
In other words, self-diagnosis is based on functional testing and conventional
diagnosis is based on structural testing.

• Accordingly, the fault models of self-diagnosis describe the malfunction of
components and therefore are more ad hoc, such as parity mismatch in the
ALU components, while that of conventional diagnosis targets more silicon-level
imperfections, such as bridge, open, abnormal leakage.

For on-chip fault tolerance, determining which parts of a chip get sick usually
is trivial with the fine-grained self detection facility. If the corresponding timing
sensors keep alerting stability violations, the faulty components can be switched off
to avoid erroneous computations. In this case, the diagnosis and associated repairs
are trivial. From Fig. 1.6, for example, there are four homogeneous ALUs in the
processor core, the diagnosis agent logs the number of alarms reported by the self-
test procedure. Each logging period can be as long as days or weeks to improve the
diagnosis confidence level. By analyzing the alarm distribution, the self-diagnosis
agent can discriminate the faulty ALU. In this example, the alarm density ascribed
to ALU2 is significantly higher than the others, so the diagnosis agent marks that

Fig. 1.6 An self-diagnosis logic example for a 4-ALU processor
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Fig. 1.7 Performance degradation vs. defect degrees of (a) instruction window, (b) L1 instruction
cache, (c) L1 data cache, (d) L2 cache, where the following SPEC CPU2006 benchmarks are
used: leslie3d, GemsFDTD, gobmk, perlbench, gamess, milc, lbm, xalancbmk, gcc, gromacs, and
bwaves

ALU2 should no longer be available anymore. The computation is thereby offloaded
to the remaining three health ALUs. Consequently, this core will continue to work
at the degraded performance level. The similar diagnosis logic can be also applied
in the core-level, especially for many-core processors.

It is more challenging to determine the performance impact given the faults
detected, because the performance degradation depends on both the applications and
the extent of the defects. For example, Fig. 1.7 shows the performance responses
of the cores under various types of degradation. The cores are salvaged from
instruction window defects, or L1 instruction/data cache defects, or L2 cache
defects, respectively [56]. For simplicity, we do not show the more complicated
compound defects. The degradation degree of “0” indicates defect-free, and 1/2
indicates half of the resource is unavailable, and so on. The results show that
the performance response not only depends on the degree of degradation, but
also exhibits to be highly application-specific. For example, the gobmk (a SPEC
CPU2006 benchmark) in Fig. 1.7a shows to be very resilient to the instruction
window degradation; however, by contrast, the leslie3d and GemsFDTD are very
sensitive to it. Such complexity is never unique for the instruction window only, but
also to other resources, as exemplified in the other three sub-figures. Hence, even
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though the defect and associated defect level are accessible to the OS, we still have
no ways to determine the level of performance impact such a degradation causes the
running applications.

Yan et al. [78] proposed the CoreRank approach to address this challenge.
The CoreRank quantifies the core-level performance degradation towards more
meta-program representations, called snippets, which are dynamic micro-operation
streams and are oblivious to all the software level interference. The snippet can be
readily characterized by built-in performance counters, without any instrumentation
into the running workloads. The performance of core .Ci on the snippet .Sm is denoted
as .P(Ci |Sm), which can be obtained by reading the corresponding performance
counters [21]. If .P(Cj |Sm) differs from .P(Ci |Sm), the relative degradation can
be easily extrapolated as the ratio of .P(Cj |Sm) to .P(Ci |Sm). Given any run-
ning program is composed of a sequence of various meta-programs (snippets),
the program-level performance degradation can be estimated by aggregating the
degradation on each individual snippet. Please refer to [78] for more details.

For on-chip fault tolerance, the diagnosis is triggered only when the test
procedure prompts the alarms. To minimize the overhead, one diagnosis agent can
be shared by multiple timing sensors in a round-robin manner [76] controlled by a
finite state machine. To minimize the penalty of power and performance in the fault-
free scenarios, the diagnosis procedure is not always on, but is periodically invoked
by abnormal states such as a machine crash.

1.3.3 Self-repair

Generally there are two types of core-salvaging approaches: (1) Fault isolation.
Decoupling the faulty components [4] can avoid execution contamination and
maintain a graceful degradation of performance. (2) Adaptive voltage-frequency
setting and timing recycling [64]. For example, if the critical path delay increases
due to aging, the functionality is maintained provided the working frequency is
slowed down to accommodate the extra delay. The self-repair can be implemented
at three abstract levels: circuit level, microarchitectural level, and architectural level.
But we should note that such a classifying scheme is never strict, but only provides
a roughly categorical image for easier understanding.

1.3.3.1 Rejuvenation at the Circuit Level

Figure 1.8 illustrates a circuit-level pipeline with a rejuvenation facility. Each stage
is monitored by a set of periodically-invoked aging sensors used to detect the
signal transitions in the safeguard band. The aging sensors are deployed to monitor
the critical paths. In the fault-free scenarios, no transitions could happen in the
safeguard band, but after suffering from aging, some transitions could be delayed
into the safeguard band, represented as a stability violation [77], a type of faulty
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Fig. 1.8 Circuit-level rejuvenation with timing adaptation

symptom. With the awareness of aging, we can accommodate the impending aging
failures by adapting localized timings. The adaptation to each stage is implemented
with a set of time-borrowing agents which are fed by not only the local stages aging
sensors but also the next stages agents, thereby enabling bidirectional adaptation,
namely backward timing adaptation (BTA) and forward timing adaptation (FTA).
The BTA uses the .(K + 1)st stages timing slack to accommodate the aging
emergencies in the Kth stage, while the FTA uses the .(K1)st stages slack to
accommodate the emergencies in the Kth stage. When an aging sensor detects an
alarm, the BTA, FTA, or BTA and FTA can be simultaneously enabled to tolerate
this aging delay.

1.3.3.2 Rejuvenation at the Microarchitectural Level

The microarchitectural rejuvenation largely relies on decoupling the faulty com-
ponents from the remaining healthy parts, or reconfiguring the microarchitectures
[56]. The components which can be readily modified to be reconfigurable include
the ALU arrays, cache banks, and register files. They share the common feature
of regularity with intrinsic spares. The repaired procedure is also similar: marking
the faulty component as unavailable so it will never be allocated to dynamic
instructions. With some more sophisticated circuit techniques, these components
can even be totally decoupled from the power grid, thereby preventing them from
leakage.

For example, as shown in Fig. 1.9, Core A and Core B suffer a pipeline defect
and an L1 I-cache defect, respectively. The defect-affected partitions, marked as
dark parts, are decoupled from the rest to make each core functionally correct, but
in a degraded manner.

In fact, such microarchitectural approaches are more common in on-chip mem-
ory subsystems. A cache or scratchpad memory, always occupies a significant
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Fig. 1.9 Microarchitectural rejuvenation

proportion of silicon real-estate. Using the last level cache for example as the
failure mechanism in the SRAM cells, it suffers from different fault models, such
as permanent read/write failures due to the SNR issue, retention fault or single-
event upset (SEU). Regarding the granularity of the cache failures, it includes
conventional bit failures and array or bank failures that occur in large-scale
cache structures like distributed NUCA architectures. Fine-grained cache failures
can be cured with conventional error correction or bit/row/column replacement.
However, in modern large scale chip multi-processors, bank-level failures due to
interconnection issue or isolation requirements are less discussed. For example,
when a NoC-node is isolated from a resilient chip multiprocessor, it also creates
inaccessible NUCA cache banks because of the connectivity issue, which should
be tolerated to enable a degradable cache system. We propose a bank remapping
method to cure the coarse-grained NUCA cache failure within the framework of
self-test, self-diagnosis, self-fault-isolation. It utilizes the routing logic in NoC to
transparently remapping the physical space associated to failed banks to healthy
cache banks, so that the system will not see the cache failure and maintain a
wholesome physical memory space on-chip.

Furthermore, to reduce the negative impacts imposed by the bank failures, our
work uses a utility-driven remapping policy to match the failed cache banks to
an under-utilized cache bank, so that the system receives the least performance
penalties caused by the bank failures. The remapping method relies on a dynamic
stack-distance analyzer to measure the space utility of different address spaces and
keeps on remapping the failed banks to their favored compatible healthy banks.
In this way, the bank sharing induced block conflict will be reduced and the
conflict-induced eviction cache miss rate will be minimized. The whole framework
guarantees that the bank failure will be tolerated with a very small performance cost.
When future systems are built with unstable devices or an unstable environment,
such an inexpensive fault tolerant mechanism is very useful.
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1.3.3.3 Rejuvenation at Architectural Level

The architectural rejuvenation is usually conducted at the core-level. There are
two major rejuvenation styles: topology-invariant and topology-reconfigurable
approaches, where the topology refers to the NoC topology connection of tens even
hundreds of cores.

Using core level DVFS to tolerate a cores degradation is a typical topology-
invariant approach. The cores initially have the same maximum frequency, Fmax,
but with the in-field aging degradation, the Fmax of the cores can differ from each
other. If a core ages with a prolonged critical path delay, we can scale down the cores
frequency to maintain safe timing, at the expense of more sophisticated per-core
DVFS. Meanwhile, the topology, that is the cores location related to other cores,
remains intact.

The topology-invariance can simplify the NoC implementation and traffic man-
agement. However, if a core suffers an irreparable failure, we must either map it
out of the healthy region, or find a substitute. In either case, the topology must be
changed and topology-reconfigurable approaches must be employed [24, 81]. One
typical solution is called N+M paradigm, i.e., there are N normal cores, which
are visible to the OS, and M spare cores, which only serve as substitutes for failed
cores and are invisible to OS. The similar solution is adopted in the “Cell” processor
(N = 7, M= 1), where an N-core processor is provided with M redundant cores and
we always provide customers with N operational cores. The spare cores are viewed
as overhead. However, as the number of on-chip cores increases, the overhead of
leaving a few redundant cores on-chip unused is acceptable because a single core is
inexpensive compared to the entire chip.

In fact, the industry has started to employ core-level redundancy in their products.
Even though the objective is mainly for yield or performance, a similar rationale
should be also applied to enhance the lifetime reliability. In such a case, rejuvenation
is about substituting the faulty cores with the spares. The topology determines the
ideal performance whereas the routing algorithm and the flow control mechanism
determine how much of this potential is realized. However, when the failure cores
are replaced by spare cores, the topology of the target design can be different. For
example, suppose we want to provide 9-core processors with a .3 × 3 2D-mesh
topology, as shown in Fig. 1.10a. Also, suppose three redundant cores (1 column) are
provided, as shown in Fig. 1.10b. If some cores (no more than three) are defective,
we could still get 9-core processors. However, from Fig. 1.10c, if the faulty cores
are replaced by the spare cores, not only are the topologies different from what we
expect, but also the topologies of different chips can be very distinct. Consequently,
there is a mismatch between the logical topology, 2D-mesh in this example, and
the physical topology, namely the topology with the disabled cores. Clearly, there
could be many ways to map the logical topology to the physical topology. So, the
challenge in the N + M paradigm is to determine which topology is optimal. The
problem has been proven to be NP-complete and can only be solved with a heuristic
algorithm [81].
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Fig. 1.10 Topology reconfiguration-based architectural level rejuvenation for a manycore. (a) The
topology demand; (b) the topology with spare cores; (c) the topology with faulty cores

1.3.4 General Benefits

The on-chip fault tolerance computing paradigm has great potential to critically
complement the state-of-the-art IC designs. However, we should note that the
specific techniques mentioned above should not be supposed to be comprehensive,
but the concept of the 3S-based on-chip fault-tolerant design framework can be
tailored for more purposes. We summarize three perspectives in the following
section.

1.3.4.1 Maintaining Graceful Degradation

Faults could happen during the lifetime of a system. If the faults are transient, the
system may be recovered by rebooting. However, if the faults are permanent, some
resources of the system, such as cores in multi-core processor or interconnections
of NoC will no longer be functionally correct. Without isolating the faults, the
whole system may even turn off completely. However, by detecting, diagnosing,
and isolating the faulty components, the system may still be able to work correctly
using the remaining good components, though at a lower performance degree, i.e.,
Graceful Degradation. No redundant components are assumed, which means the
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components of the system have already satisfied the capability of reconfiguration
for correct function. It is not surprising that these two design philosophies converge
since they share the same objective. There are two key questions required to
be answered for the on-chip fault tolerance computing paradigm based graceful
degradation: (1) what is the granularity? (2) how to implement it? The on-chip fault
tolerance computing paradigm sheds light on the answers.

The processor core and the NoC interconnection are two typical reconfigurable
components used in graceful degradation. In multi-core processors, when one core
is faulty, other cores can still function. In the NoC, when one interconnection node is
faulty, other nodes may substitute its routing function. With on-chip fault tolerance,
there are more redundant resources to keep the whole system working properly.
More fine-grained components can also be considered. For example, a redundant
arithmetic logic unit (ALU) can be added to a core, so when one ALU fails, the core
can still work correctly.

Using more fine-grained components for fault tolerance and performance degra-
dation can improve the lifetime of the system, but its disadvantage is the hardware
cost, not only including the hardware for isolating the faulty components, but also
including the hardware of detecting such fine-grained components. However, FPGA
is an exception, since it is programmable. Hence detecting the faulty Look-Up
Tables (LUTs), interconnection boxes, or other fine-grained components of FPGA
can be realized by specific circuits, and isolating the faulty resources can be achieved
using placement and routing constraints while designing FPGA circuits. Hence, it is
possible for FPGA to perform fine-grained analysis without any hardware overhead,
but with a performance penalty.

Furthermore, on-chip fault tolerance computing paradigm provides more pos-
sibilities and opportunities for effective graceful degradation. The implementation
of graceful degradation requires accurate diagnosis of the faulty components. For
example, in NoC, it is necessary to diagnose the switch, the router, the link, and
so on [40]. With the knowledge of locating the faulty components, the routing
for graceful degradation is an optimization process with the constraint that the
faulty interconnections should not be used. With more faulty components, more
constraints exist in the optimization problem, so its solution, i.e., the performance,
will become progressively worse, until it reaches a limit that no available routing
can be found, and then the whole system will fail. Moreover, on-chip fault
tolerance computing paradigm can make the graceful degradation more simplified
and effective. If an interconnection node has two routers, one of which is redundant,
then when the working router fails, the node can simply switch to the redundant one.
In this case, the routing delay remains similar, so the performance is maintained.

1.3.4.2 Helping Fix Some Verification Blind Spots

Modern designs have become more complicated, which poses serious challenges
for verification. The verification techniques cannot scale to the complexity of the
modern designs, so some bugs could escape from verification and remain in the
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silicon. If the bugs really exist, they are like permanent faults. If these faults are not
detected during testing, the products with bugs will enter the market. If the bugs are
encountered by customers, it will be a large financial loss to recall the chips. In this
situation, On-chip fault tolerance computing paradigm is an alternative method to fix
the problem. On-chip fault tolerance computing paradigm has at least two benefits
for verification: (1) locate the verification blind spots; and (2) fix the escaped bugs.

From the perspective of behavior, the escaped bugs are like permanent faults.
Both cause the system to work incorrectly. In on-chip fault tolerance computing
paradigm, the preliminary step for isolating faults is to detect and diagnose the
faults. The same function is suitable for finding the escaped bugs. Learning how
and why the bugs escaped from the adopted verification techniques is important
for improving the verification process and avoiding the similar bugs remaining in
silicon. A more fine-grained fault detection can provide more precise information
about the escaped bugs. For example, it is easy for the designers to learn the escaped
bugs by informing them just the ALU is faulty than informing them the whole
processor core is faulty.

Therefore, the detection circuit for escaped bugs should be designed properly.
For example, the detection circuits can be inserted in some critical points in the
control flow [28]. Within the on-chip fault tolerance computing paradigm, the faults
are isolated to allow the whole system to work correctly. Some bugs can also be
isolated. However, since the bugs may be repeated, isolating the bugs may not be
effective. For example, in the multi-core processor, if all the cores have the same
design, they will contain the same bugs as well, so it is meaningless to isolate faulty
cores.

Under this scenario, there are three ways to correct the bugs. First, heterogeneous
cores can be designed so that even if one type of core contains bugs, other types of
cores may still function correctly by isolating the faulty cores. But this method may
result in a large performance losses, since a portion of the cores are unavailable.
Second, during the design, combined with fine-grained bug detection circuits, some
configurable components can be inserted into the critical locations [5]. If bugs
are detected, specific configuration bits can be downloaded to the configurable
components to correct the circuit behavior. Furthermore, in the CPU+FPGA SoC, if
some bugs exist in the computing components, it is also possible to use the FPGA
as a fault-tolerant component to perform the correct function. Third, for some bugs,
it is also possible to use software-hardware cooperation to bypass the bugs [13]. For
example, if there is a bug in the subtraction computation hardware component, the
OS can compile a subtraction operation into an add operation. In this way, the same
function is performed by detouring the bugs. Therefore, using the above methods,
with properly inserted bug detection and recovery design, some escaped bugs from
the verification phase can still be fixed after the chips are manufactured and sold to
the customers, though with some performance degradation.
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1.3.4.3 Improving Gross Yield

Bugs may escape from verification, and defects may happen during manufacturing.
There are mainly two types of defects: the permanent defect and the transient defect.
The permanent defects such as stuck-at faults will permanently affect the behavior
of the chip. More specifically, they destroy the Boolean relation within the chip. In
certain situations, the chip or the corresponding component will definitely fail. The
transient defects, such as small delay defects, are types of timing faults. The chip
only fails under a certain condition. Different from bugs which may be repeated,
e.g., in multi-core processors, the cores with the same design have the same bugs,
the defects do not have such characteristics. Hence the on-chip fault tolerance
computing paradigm can also tolerate some defects. The chips with defects are
considered as faulty chips, but if the defects can be tolerated, then the chips can still
work correctly and be considered as good chips. Hence, the yield can be improved,
but the promised performance may be degraded.

1.4 Summary

In this section, we introduce the background of fault-tolerant computing for
VLSI designs including various fault types in VLSI chips and classical fault-
tolerant wisdom that has been intensively explored. At the same time, we notice
that conventional fault tolerant computing approaches become insufficient for the
continuously increasing VLSI designs fabricated with nanoscale semiconductor
technology and reliability design becomes a critical design metric that must be
fulfilled by not only mission-critical designs but also chips in consumer electronics
like desktop CPUs and GPUs. In this context, we present a built-in fault-tolerant
computing paradigm, which is an incorporative framework to build synergy among
many advanced fault tolerance oriented techniques. Basically, we place self-test,
self-diagnosis, and self-repair (self-recovery) into a unified framework, namely the
“3S” framework, and clarified the difference from their conventional counterparts
whenever possible. We use the manycore undergoing various degrees of aging
faults as the baseline to show the efficacy of on-chip fault tolerance, and discuss
three far-reaching implications in terms of graceful degradation, verification, and
yield. Although we have made some initial attempts to solidify this framework, the
potential has never been fully exploited. We believe on-chip fault tolerance can help
deliver more reliable SoC systems suffering in-field degradation in the future.
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Chapter 2
Fault-Tolerant Circuits

Abstract With the scaling of semiconductor process technology, the performance
of modern VLSI chips improves significantly. However, the aggressive technology
scaling poses serious challenges to lifetime reliability. Two of the paramount
challenges are soft errors and aging-driven lifetime reliability. Although many
studies have been done to tackle the two challenges, most take them separately
so far, thereby failing to reach better performance-cost trade-offs. To achieve an
optimum performance-cost trade-off, we propose a unified fault detection scheme—
stability violation-based fault detection (SVFD). Besides, since the performance
of modern VLSI chips improves significant, the on-chip path delay measurement
techniques have been gained many attentions for researchers in recent years, for
it can provide a cost-effective alternative way to perform delay defect detection
and silicon debug in modern VLSI chips. Furthermore, to help to reduce hardware
overheads and delay measurement time for on-chip path delay measurement, we
propose a novel on-chip path delay measurement architecture, OCDM, for path
delay testing and silicon debug. Since paramount challenges come from a variety
of aging mechanisms that can cause gradual performance degradation of circuits.
Prior work shows that such progressive degradation can be reliably detected by
dedicated aging sensors, which provides a good foundation for proposing a new
scheme to improve lifetime reliability. Based on our previous researches, we
further propose ReviveNet, a hardware-implemented aging-aware and self-adaptive
architecture. Aging awareness is realized by deploying dedicated aging sensors, and
self-adaptation is achieved by employing a group of synergistic agents. Each agent
implements a localized timing adaptation mechanism to tolerate aging-induced
delay on critical paths.

2.1 On-Line Fault Detection

In ultra-deep submicrometer technology, soft errors and device aging are two of the
paramount reliability concerns. Although many studies have been done to tackle
the two challenges, most take them separately so far, thereby failing to reach
better performance-cost trade-offs. To support a more efficient design trade-off, we
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propose a unified fault detection scheme—stability violation-based fault detection
(SVFD), by which the soft errors (both single event upset and single event transient),
aging delay, and delay faults can be uniformly dealt with. SVFD grounds on a new
fault model, stability violation, derived from analysis of signal behavior. SVFD has
been validated by conducting a set of intensive Hspice simulations targeting the
next-generation 32-nm CMOS technology. An application of SVFD to a floating-
point unit (FPU) is also evaluated. Experimental results show that SVFD has more
versatile fault detection capability for fault detection than several schemes recently
proposed at comparable overhead in terms of area, power, and performance.

2.1.1 Challenges for On-Line Fault Detection

The advancement of the semiconductor technology in the following decade will
bring a broad set of reliability challenges at a dramatic fast pace [33]. Two of the
paramount challenges are soft errors and aging-driven lifetime reliability. Many
researchers focused on soft error modeling and mitigation within a wide design
spectrum: device level, circuit level [38, 53, 72], microarchitecture level [84], and
software level [60]. In addition, the industry and academic communities have
done much work on understanding the semiconductor device reliability failure
mechanisms and models, such as Electromigration [2], negative bias temperature
instability (NBTI) [13, 87, 91], time dependent dielectric breakdown (TDDB), hot
carrier injection (HCI), temperature cycling [69] etc.

Aging failure prediction [8, 51] is a promising approach to cope with aging
effects. Unlike soft errors, device aging is a gradual process, which makes the
prediction of aging degree achievable. Before the devices totally breakdown and
thereby lose their functionalities, they always tend to exhibit performance degrada-
tion, e.g. increased threshold voltage instability, soaring leakage power, worse heat
characteristics etc. Most of these negative effects can result in the degradation of
switch performance of the transistors[15], and eventually excessive path delay. In
other words, most of the aging failures can be predicted by sensing the gradually
increased aging delay. Agarwal et al. designed an aging sensor for this purpose [8].

On the other hand, semiconductor devices are becoming increasingly prone to
soft errors (SEUs and SETs) as feature size decreases [75]. Abundant redundancy
design solutions have been proposed to combat the soaring soft error rate, such as
spatial redundancy by duplicating the flip-flops [55, 72], or temporal redundancy
by multiple-sampling [62]. Even if the overhead imposed by these redundancy can
be kept in check, these “redundancy” resources, however, help little in mitigating
aging effects, and in contrast even speed up the aging process due to the extra heat
generated by those redundancy resources. This dilemmamakes the goal of providing
a not only aging-resistant but also soft error-tolerant scheme hard to achieve, unless
a cumbersome combination of the previous aging-sensor and redundancy-based
approaches is conducted.
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Rather than attempting to exploit such a cumbersome combination, we propose a
unified mechanism to face the two challenges. Based on signal behavior analysis, we
find that the soft errors and aging delay can converge into the same signal behavior:
Stability Violation to the target circuits. Even the conventional delay faults, which
could result from such as transition hazard, crosstalk, can be represented as stability
violations. Hence, it is promising to propose a unified fault model and associated
detection mechanism, thereby creating the chance of reaching a more optimum
trade-off between detection capability, design complexity, and implementation
overhead. To our knowledge, this is the first work to handle the soft errors, aging
delay, and delay faults under a unified fault detection mechanism.

2.1.2 Stability Violation Based Fault Detection

The stability violation of a signal is defined as at least one transition happens in the
time interval during which the signal should be kept stable. Setup time violation,
which the progressive aging delay tends to contribute to, is a typical example of
stability violation. Apparently, only coping with setup time violation is far from
sufficient to handle soft errors and delay faults. In the rest of this Section, we will
present how to comprehensively describe the rationale behind stability violation,
and meanwhile how to generalize it to propose a unified fault model.

First, we specify the target fault types, and then move to the unified stability
violation model and associated SVFD mechanism.

2.1.2.1 Target Fault Types

Soft Error Single Event Upset (SEU) and Single Event Transient (SET) [52]. If
some high energy radioactive particles induce a storage cell to be flipped, this
unintentional bit-flip is called SEU. If the particles cause a node of combinational
logic to collect enough charge, a transient current pulse could be generated. This
pulse can transform into a voltage pulse and propagate along logic paths [75]. This
type of soft error is called SET. A soft error might not be captured by flip-flops due
to three masking effects [75]: Logic Masking, Electrical Masking, and Latching-
window Masking.
Aging Delay The aging effects, such as NBTI, can cause aging delay which can be
used for aging-failure prediction[8]. Usually, the aging delay increasing is a gradual
process over time, though the abrupt delay increasing is possible when the devices
suffer from breakdown induced by mechanical stresses. This type of “abrupt” aging
delay will not be covered in this chapter.

Delay Fault This type of faults refers to the conventional delay faults [25] which is
caused by device defect, signal crosstalk, etc. We handles the delay faults with size
less than the width of the Detection Slack.
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2.1.2.2 Modeling Faulty Signals

Mathematically, a signal S can be expressed as a function of time t , expressed as
.S = f (t). Given the time interval of .(ti , tt ) in which S gets into a stable state
before .tt , this interval can be divided into two periods: variable period denoted by
.T S

vp = (ti , ts), and stable period by .T S
sp = (ts, tt ), where .ts is the complete time

of the last transition of S within the specified interval. In addition, the initial value
and the terminal value of the signal are expressed as .FS

i = f (ti) and .FS
t = f (tt ),

respectively.
According to the above definition, we define a faulty signal, .Sf , that commits at

least one of the three violations:

• Initial Value Violation (IVV): The obtained value of .F
Sf

i at time .ti differs with
.f (ti).

• Terminal Value Violation (TVV): The obtained value of .F
Sf

t at time .tt differs
with .f (tt ).

• Stability Violation (SV): One or multiple transitions happen in the stable period.

The above violation behaviors, strictly speaking, can not precisely capture all
details of signal mismatch between a fault-free signal and its faulty counterpart;
However, the above violation definitions are actually robust enough to guide high
efficient on-line fault detection, as the following presents. In fact, given the target
fault types including soft errors, aging delay, and delay faults, only the stability
violation of a signal is needed to be verified. The following explains how to use this
model in a practical way.

First, the variable period .Tvp and stable period .Tsp for a specified signal need to
be established. Figure 2.1 models a general logic circuit. The input signal .Si comes
from the upstream flip-flop, and the output .So is captured by the downstream flip-
flop. Both flip-flops are synchronized by the same clock clk with cycle period of T .
Several timing parameters are summarized below:

• .tpd : the propagation delay of the combinational logic;
• .tcd : the contamination delay (a.k.a. short-path delay) of the combinational logic;
• .tcq : the flip-flop’s clock-to-q time.

Fig. 2.1 Generic logic circuit

The .Si gets updated only at every effective clock transition and is held for the
whole cycle period, which means almost no variable period exists. Thus the variable
period, and the stable period of .Si in the nth clock cycle .((n − 1)T , nT ) can be
expressed as:
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Fig. 2.2 Variable period vs.
stable period

.T Si
vp = ((n − 1)T , (n − 1)T + tcq), . (2.1)

T Si
sp = ((n − 1)T + tcq , nT ). (2.2)

The variable period of .So, unlike that of .Si , is much more prominent; the .So’s
variable period and stable period in the nth clock cycle can be expressed as:

.T So
vp = ((n − 1)T + tcq + tcd , (n − 1)T + tcq + tpd). (2.3)

T So
sp = ((n − 1)T + tcq + tpd , nT + tcq + tcd) (2.4)

Figure 2.2 illustrates the time periods of both .Si and .So in the nth cycle, where
.t1 = (n − 1)T + tcq + tcd , .t2 = (n − 1)T + tcq + tpd .

With the defined time periods, we can explain how the target faults commit the
above violations and, what’s more, how these IVV and TVV converge to SV.

1. Suppose that a delay fault occurs, the delayed .So will cause SV in Detection
Slack (.TDS) during which the .So should keep stable. Equivalently, the delay fault
will result in .So’s TVV since at the end of the cycle, .So can not reach the expected
value. This TVV then causes the IVV of the signal in the next stage of logic.
Hence, SV, TVV, and IVV are equivalent to each other for the delay fault.

2. Suppose that an aging delay occurs, the delayed .So will cause SV in Guard Band
(.TGB ). Unlike the delay fault, the progressive aging delay will not cause TVV
and IVV; therefore, an aging delay just represents as SV. Here the aging induced
SV actually is quite similar to setup time violation.

3. Suppose that an unmasked SEU strikes the upstream flip-flop. Clearly, the .Si’s
SV is committed because, after transient clock-to-q time, .Si is supposed to keep
stable during the whole cycle period. This SV could also potentially cause the
downstream flip-flop to capture faulty data, and thereby results in .So’s TVV, then
IVV of input signals in the next stage logic. So, the SEU will represents as SV,
and possible IVV and TVV.

4. Suppose that an unmasked SET happens in the combinational logic. If the
duration of the SET is less than .TDS + TGB , the behavior of the SET fault is
similar with the commonly referred delay faults: unexpected signal transitions
within the .So’s stable period. Therefore, the analysis result for the delay faults
also holds for SET faults. That is SV, TVV, and IVV are equivalently to each
other for the SET.

From the above analysis we conclude that, from the signal behavior perspective,
the target faults either induce equivalent SV, IVV, and TVV (for delay fault and
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SET), or only represent as SV (for aging delay), or SV and possible equivalent IVV
and TVV (for SEU). In other words, the target faults can be uniformly modeled as
SV. The implication is that we can employ a unified stability checker to handle the
detection for all of the target faults. This unification can potentially support a more
efficient implementation of the online fault detection scheme than the traditional
redundancy-based approaches such as [38, 72]. In addition, the capability for aging
failure prediction [8, 51] can be exploited in place with the same scheme; thereby
greatly facilitating the aging-aware designs.

2.1.3 Timing Constrains Exploration

The object of SVFD in essence is to distinguish those transitions violating the
signals’ stability specification from normal signal transitions, thereby achieving the
goal of fault detection. The detection of SV can be accomplished with some kind of
stability checkers.

2.1.3.1 Propagation of Stability Violation

The stability checkers are usually implemented with dynamic circuit style. So,
the first concern is how to schedule the precharge period. Neither the traditional
cycle-begin precharge (using the first half cycle period to precharge) nor cycle-end
precharge (using the second half cycle period to precharge) styles are applicable in
our detection mechanism. The checker should be on duty during the Guard Band
in aging delay detection and the Detection Slack in traditional delay fault detection
according to [8] instead of staying in precharge state. Given .So with prominent
variable period, the precharge can be scheduled in the variable period. However, the
same schedule strategy is unallowable for .Si because there is almost no any variable
period can be exploited for precharge. If we “brutally” borrow some time from .Si’s
stable period for precharging the checker, the fault coverage has to be sacrificed.

To address this problem, we find if the precharge stage is scheduled according
to some specific timing requirements, the fault coverage will not be compromised.
The discussion about timing manipulations can be started with describing a key
observation, called Propagation of Stability Violation.
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Suppose that an unmasked SEU occurs in an upstream flip-flop at time t in the
nth cycle, then the effects of the SV of .Si should be propagated to .So within the time
interval of .(t + tcd , t + tpd). If the effects of .Si’s SV can propagate into .So’s stable
period, that is

.(t + tcd , t + tpd) ⊂ (nT − TGB, nT + TDS), (2.5)

Then the SEU induced .Si’s SV can be represented as .So’s SV since the .So

should keep stable during the Guard Band and Detection Slack. Hence, the checker
deployed to detect .So’s SV can indirectly handle a part of .Si’s SV within a particular
time interval, referred to Propagation Detectable Period (PDP). From (2.5), we
have

.

{
t + tcd > nT − TGB,

t + tpd < nT + TDS.

Then, the PDP can be expressed as

.{t | nT − TGB − tcd < t < nT + TDS − tpd}. (2.6)

2.1.3.2 XOR Protection

Not all unmasked SEUs occurring in the upstream flip-flop can translate into the
.So’s SV; for example, if a .Si’s SV happened during the .((n − 1)T , t1) (Fig. 2.2),
then it could not be detected by .So’s checker because (2.5) dose not hold in such
case.

To cover this period, one way is to set another stability checker for .Si , at the
expense of almost doubled area and power overhead. In contrast, we propose a
simple but far more efficient way to cover this period, referred to XOR Protection,
as Fig. 2.3 shows. The effectiveness of this scheme is based on the observation: the
.S

(K−1)
o is consistent with the .SK

i within the period of .((n−1)T , (n−1)T +tcq+tcd);
therefore, one XOR (or NXOR) gate is capable of capturing any .SK

i stability
violation during this span of time. The overhead imposed by an XOR gate is much
less than that imposed by another stability checker or other traditional redundant

Fig. 2.3 XOR protection
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flip-flop based schemes [72]. How to efficiently handle the output of XOR will be
presented in next section.

2.1.3.3 SEU Detection “Blind Zone”

The above timing constrains are still not comprehensive without taking another time
interval called “blind zone” into account. Considering the propagation delay of a
SEU, we can claim that the SEU must be benign if

.t > nT − tcd . (2.7)

To protect .Si (from SEUs), besides the XOR protection period, the PDP, and
the benign period, there might be the fourth region that has not be covered so far.
Figure 2.4 shows that the whole Stable Period of .Si could be divided into four or
three zones, depending on different timing parameters. Specifically, Fig. 2.4a shows
if .nT +TDS − tpd < nT − tcd , then a SEU occurring in the interval of (.nT +TDS −
tpd , nT − tcd ) may fail to propagate into the detectable period, thereby resulting in
detection “Blind Zone”. Unlike the XOR protection period, this trouble can not be
eliminated unless another dedicated stability checker is set for .Si , at considerable
expense of implementation overhead. Fortunately, we propose a new approaches:
Contamination Delay Optimization, by which the “Blind Zone” can be eliminated
by some timing manipulations.

Contamination Delay Optimization Clearly, the “Blind Zone” can be naturally
eliminated if

.nT − tcd < nT + TDS − tpd (2.8)

is satisfied, as Fig. 2.4b illustrates. The SEU happening in .(nT − TGB − tcd , nT +
TDS − tpd) is either propagated into a Stability Violation detectable zone of

Fig. 2.4 Variety of timing period for .Si
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corresponding .So, or has nothing detrimental effect due to residing in benign period.
From (2.8), we derive the contamination delay should meet

.tcd > tpd − TDS (2.9)

In addition, given that the terminal time of XOR protection zone should meet

.nT − TGB − tcd < (n − 1)T + tcd + tcq;

otherwise another “blind zone” would emerge; thus, we have

.tcd >
1

2
(T − TGB − tcq). (2.10)

Lastly, considering .TDS < tcq + tcd should always holds, that is

.tcd > TDS − tcq . (2.11)

From (2.9), (2.10), and (2.11), we derive that .tcd should meet the requirement:

.tcd > max{tpd − TDS,
1

2
(T − TGB − tcq), TDS − tcq} (2.12)

Generally, (2.12) requires the contamination delay of the combinational logic
reaches up to about a half cycle period. The same requirement is needed to be
satisfied in some previous studies [55] to address “short path effects” [63]. Actually,
It is consistent with the goal of many timing optimization strategies [11, 73], and
therefore not a substantial limitation.

2.1.3.4 Available Precharge Period

Figure 2.4b sheds light on when the precharge can be scheduled: within .(nT −TGB−
tcd , nT − TGB) the precharge can be conducted without sacrificing fault coverage.
Additionally, to avoid the precharge intruding Detection Slack, the actual available
start point of the precharge stage should be

.max{nT − TGB − tcd , (n − 1)T + TDS}; (2.13)

therefore, the available precharge period is

.(max{nT − TGB − tcd , (n − 1)T + TDS}, nT − TGB). (2.14)
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From (2.14), the available precharge duration .τ can be calculated by

.τ =
{

tcd if tcd < T − TGB − TDS,

T − TDS − TGB otherwise.

To sustain normal operations, there is a minimum precharge duration .τ0, which
is determined by the intrinsic RC constant. Clearly, .τ > τ0 needs to be satisfied. It
is not difficult to meet this requirement. Experimental results show that for 65 nm
CMOS, 1GHz, .τ0 is merely 40 ps, while .τ is at the magnitude of hundreds of
picoseconds. More detail can be found in next Section.

To sum up, we can use only one stability checker, with the assistant XOR
protection, for soft errors, aging delay, and delay faults detection for .Si and .So.
All we have to do is to ensure (2.12) and (2.14).

As the end of this section, the following exemplifies an empirical analysis of the
above constrains.

Example Generally, .TDS is determined by the maximum width of SET pulses,
commonly conservatively being set to a half cycle period, that is .TDS = 0.5 × T .
.TGB originally is determined by the aging detection interval—the time interval
between two aging detection action (the aging sensor does not need to be always
on). .TGB is much larger than 5% of cycle period, as suggested by [8], but should
be less (or not much larger) than the reserved timing margin. Since commonly 10%
timing margin is reserved to combat PVT variations, the cycle period dose not need
to be increased to reserve extra time margin for .TGB . The propagation delay .tpd

hence is .T × (1 − 10%) = 0.9T . We omit the term of .tcq because comparing
with other timing parameters, .tcq is marginal. Then, based on (2.12) we need to
figure out the minimal .tcd since smaller .tcd implies that smaller compensation effort
and associated area overhead to pay. We suggest use the results: .tcd = 0.45T ,
.TDS = 0.45T , .TGB = 0.09T because this configuration is competent enough
in detecting SET faults, delay faults, and aging delays with modest compensation
effort.

2.1.4 On-Line Fault Detection Architecture

Figure 2.5a shows the top view of the whole fault detection scheme. Note that the
XOR (NXOR actually) output needs to be gated outside of the XOR protection
period where an XOR-flagged alarm can unintentionally discharge the detection unit
if leave un-gated. The detailed timing relations and associate clock configurations is
shown in Fig. 2.5b, where CLKS is used to control precharge-evaluation, and CLKG
is the gating clock for XOR output.
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Fig. 2.5 Top view of implementation. (a) Top view of SVFD scheme. (b) Timing of precharge
clock and XOR-protection gating clock

2.1.4.1 Circuit Design

Figure 2.6 shows the transistor level design of SVFD scheme. A detection unit
consists of two key components: a stability checker (Fig. 2.6b) and an output
compactor (Fig. 2.6c).

The basic stability checker can be derived from a sensing circuit for on-line
delay fault detection [25], in which the signal integrity is verified by a pair of
consistent charge/discharge nodes, a delay fault will trigger one of the nodes to
be discharged/chargeed and thereby causes states inconsistent between them. The
same fundamental detection principle is employed to design a sensor dedicated for
aging prediction, referred as Aging Resistant Stability Checker (ARSC) [8]. Based
on the same principle, we design a new stability checker. Compared with ARSC,
the checker has several new features which can improve the robustness and reduce
the overhead. The following explains how does the circuit work and then presents
the new features.
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Fig. 2.6 SVFD implementation. (a) Host circuit and XOR protection. (b) Stability checker. (c)
Cehcker outputs Compactor. (d) Output latch. (e) Latch. (f) Flip-flop

During precharge period, both nodes S1 and S2 in the stability checker are
charged up to HIGH. Then, the circuit starts evaluation, one of the two nodes is
pulled down, while the other one floats at HIGH because the gate signal of M3 is
always complemented with that of M4 (a weak keeper can help the floated node
stick to HIGH). Hence, the node S1 and S2 are always exclusive during fault-free
time, which will make the node S4 stick to HIGH because the high-impedance path
between S4 and GND always exists. When a Stability Violation is committed by .Si

(out of the XOR protection period) or .So, the violation will trigger the discharge of
the node that has charged up to HIGH. Eventually both nodes are discharged, and
thereby the node S4 is pull down to LOW. Then, the node X in output compactor
will be discharged, which flags a fault being detected. The compacted result X needs
to be latched twice: CLK-latched for indicating aging delay and CLKG-latched
for indicating soft error or delay fault (Fig. 2.6d). The reason will be explained in
Sect. 2.1.5.1.

There are two new features in the detection unit:

1. The NOR logic for combining the states of S1 and S2 is realized with a dynamic
logic (M6, M7, and M8), which can improve the robustness of the checker
and reduce the area overhead and switch power dissipation. Unlike the stability
checker in ARSC [8], where the checker output, a static NOR gate, is directly
driven by a floated HIGH node during fault-free time, our checker’s output is
generated by a dynamic NAND gate. This change is based on that both the
node S1 and S2 are pulled up to HIGH during precharge, and consequently both
M7 and M8 are turned off; thereby no short path existing when precharge. So
the foot transistor for the dynamic NAND is eliminated. Note that due to the
precharge RC delay of S1 and S2, the M6’s precharge clock should be delayed
by a precharge delay constant to avoid transient shot current in the NAND gate.

2. The outputs are compacted with a dynamic NOR for reducing the number of
output latches. Usually, it is not necessary to identify which signals commits the
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SV for most aging-aware and fault tolerant designs. So the distributed detection
results can be “compacted” to reduce the number of output latches. We use a
wide dynamic NOR to implement the compactor, in which the M11 and M12
serve as a level restorer for node X.

2.1.4.2 Low-Overhead Deployment

Given a target circuit, each output signal .So needs to be monitored by a stability
checker whose output is fed to a compactor, as Fig. 2.5a shows. In addition, each
XOR-protected signal gated by CLKG is also fed to a compactor. We present two
deploying techniques to reduce the overhead coming from the checkers, compactors,
and latches.

Compacting .So Using XOR-Trees With XOR-Trees, we can enable checker-
sharing mechanism among multiple output signals, as Fig. 2.7a shows, thereby

Fig. 2.7 Compacting the output signals and XOR-protection signals. (a) XOR tree. (b) AND tree
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reducing the number of checkers. The rationale behind the XOR-Trees based
compactor is the fact that for a XOR gate the non-simultaneous transitions of inputs
can result in output transitions. This can be explained with the following example:

Suppose there are two signals .Sa and .Sb, and signal .C = SaXORSb; clearly, one
or two non-simultaneous transitions of .Sa and .Sb can be exactly represented as or
two transitions of C. This fact implies that if .Sa or .Sb imposes stability violations,
then C must commit stability violations, too.

One side effect of XOR-Trees is that the compactor may hide some faults that
happen to induce simultaneous transitions on the primary inputs of a XOR-Tree. For
example, if .Sa happens to switch from HIGH to LOW, while at the same time .Sb

from LOW to HIGH, then C may keep staying at HIGH. Fortunately, the possibility
of such negative cancellation effect can be minimized by separating the .So from the
same logic cone to different XOR-Trees, since it is rare for multiple faults happen
in the same spot at the same time, especially for soft errors.

Figure 2.7a illustrates an application of a set of XOR-Trees which com-
pacts n output signals .SoK

1 , SoK
2 , . . . , SoK

n into m checker-monitored signals
.C1, C2, . . . , Cm. We have

.m = n

2 l
. (2.15)

The number of required XOR-gate used to implement an XOR-Tree can be easily
calculated by

.Nxor = n × (1 − (1/2) l). (2.16)

Compacting .Si Using AND-Trees The similar strategy can be used to compact
the XOR-protection results with AND-Trees. If one or more SEUs strike the set of
flip-flops, then corresponding inputs of the set of AND-Trees will be pulled down
to LOW, and then pull down the outputs of corresponding AND-Trees, denoted by
NXORx in Fig. 2.7b.

Unlike XOR-Trees for compacting output signals, AND-Trees won’t suffer form
the cancellation effect because one or more SEUs yield the same effect: pulling
down the corresponding AND-Tree’s output to LOW.

With the two deployment optimizations, we can derive the number of required
checkers .Nchecker , compactors .Ncompactor , and output latches .Nlatch. Suppose for a
circuit with n flip-flops, l-level XOR-Trees and m-level AND-Trees are employed,
then we have

.Nchecker = n

2 l
; (2.17)

.Ncompactor = n

BW
(
1

2m
+ 1

2 l
), (2.18)
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where BW (bandwidth) is the number of input signals of a compactor;

.Nlatch = 2Ncompactor . (2.19)

Timing Implication of XOR-Trees and AND-Trees The delay implication of the
AND-Tree and XOR-Tree should be considered. The CLKG has to be postponed
to accommodate the delay of the AND-Tree, denoted by .tand . The CLKS should
also be postponed by the delay of .min{tand, txor }, where .txor denotes the delay of
the XOR-Tree. The impact of the two delays is the increased detection latency. In
the worst-case, the detection unit needs extra .max{tand, txor } time to complete, but
this increase in latency will not substantially impair the effectiveness of the fault
detection as long as output latch time is also postponed accordingly. Specifically,
the first latch’s clock CLK (Note, not the main flip-flop clock) is delayed by
.max{tand, txor } and the second latch’s clock CLKG by .tand .

Of course, one should also keep the delay of the AND-Trees and XOR-Trees
from being the new critical paths in the target circuit. The empirical analysis of
delay can be achieved based on classical logic effort theory [32]. Empirically, given
a m-level AND-tree (each logic gate is two-input), the path logic effort is .(4/3)m;
the path electric effort is .5/4 because the load of the output signal is only a NOR
gate. Then the path effort is .(4/3)m × 5/4. The path parasitic delay is 2m. Hence,
the minimum delay .Dand_min can be given by

.Dand_min = m × ((4/3)m × 5/4)1/m + 2m (2.20)

Based on (2.20), we find the optimized AND-Tree delay is a quasi-linear
function of m. For a 3-level AND-Tree, the delay is about 2 Fo4, even for a up
to 10-level AND-Tree, the delay does not exceed 7 Fo4.

For an XOR-Tree with the same levels, the minimum delay .Dxor_min is about
.3Dand_min because the logic effort for an XOR gate is three times larger than that
of an XOR gate [32]. Therefore, the delay constraint on the XOR-Trees will be
much stringent than that on the AND-Trees. Given the 10.�18 Fo4 clock period of
today’s pipelined processors [86], for example, the maximum level of each XOR-
Tree should be no more than four levels.

A major drawback to adopting such AND-Trees and XOR-Trees is the degraded
detection resolution—when a checker flag an alarm, we can not precisely identity
the fault spot in the target circuit because the AND-Trees and XOR-Trees can
exponentially expend the “region-under-control” of a specified fault detection unit.
However, this issue is trivial since we only focus on efficient fault detection—which
serves as the primary step for most backward error recovery schemes.
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2.1.4.3 Clock Variation Consideration

The delayed clocks can be generated from locally delaying the system clock CLK,
as prior work [8] did, or obtained from a DLL. To ease the implementation worry,
the following cites some industry data to show that generating the clocks with
well-defined intentional skew should not be a substantial problem. DLLs have been
widely used to reduce the clock skew across clock domains [41, 58, 93]. The detailed
design of a DLL is beyond the scope of this book. Many industry practices have
shown that implementing clocks with only 10-picosecond skew is practical. For
example, even in conventional tree-based clock networks across 500mm.

2 processor
die with frequency up to 2.5GHz, the unintended clock skew can be efficiently
limited to less than 10 ps [23]. While previous study [8] shows that a reasonable
.TGB is usually around 100 ps for a 1GHz system. Therefore, generating the CLK,
CLKS, and CLKG with well-defined intentional skew should not be a substantial
problem. The sophisticated variation-resilient clocking scheme is beyond the scope
of this book.

Another practice, Razor II [19], can also back up the feasibility of clocks used
in SVFD. Razor II also relies on strict clocks. An auxiliary clock, called DC, is
employed. The deployment of CLKG in our SVFD scheme is not harder than that
of DC in Razor II scheme. Hence, we believe that implementing the supportive
clocks is practical.

2.1.5 Experiment Result Analysis

The experiments consist of two parts. The first is dedicated for evaluating a
basic fault detection unit in terms of detailed timing verification, area overhead,
power, and performance. The results are obtained by using the Hspice targeting
the next-generation 32 nm Predictive Technology Model [89] for High-performance
applications. The second shows an application to a fully pipelined FPU, with
emphasis on analysis of chip-level area and power overhead and comparisons with
other solutions.

2.1.5.1 Evaluating SVFD Unit

Figure 2.8 shows the detail timing of a SVFD unit in consecutive five cycles. The
topmost shows the system clock CLK, the precharge-evaluation clock CLKS, with
which the guard-band defined. The second shows the monitored signals .So. The third
illustrates the XOR-protection signal and corresponding gating clock. The fourth
shows the state transitions of the two most important internal node S1 and S2. The
fifth shows the signals A1—the output of the stability checker, and B1—the gated
output of XOR protection unit. Both are feeded to the same compactor. The bottom
most shows the detection result generated by the compactor.
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Fig. 2.8 Hspice simulated signal state transitions

During the first cycle (0–1 ns), .So presents some normal transitions. In the first
half of the second cycle (1–1.5 ns), an unexpected glitch, which is supposed to
simulate a benign SET fault, occurs; then in the guard band of the second cycle,
an aging delay is simulated. A delay fault is simulated in the third cycle. In the
fourth cycle, a SEU fault is simulated by pulling down the NXOR signal.

From the bottom figure, we can see that all the SV shown in the second and third
waveforms are successfully detected, represented by LOW state of node X.

We zoom in the figure to extract some useful timing information (the zoomed
figures are omitted due to space limitation): (1) the critical precharge time .τ0
is about 40 ps, while the available precharge time is about 400 ps—one order of
magnitude larger than .τ0. Hence, the precharge time will not be a limitation when
we manipulate the related timings. (2) The detection delay is just about 40 ps which
is merely 2 Fo4 delay in 32 nm technology. (3) The maximum undetectable glitch
width is about 18 ps, which is even less than most soft error induce glitch width in
32 nm technology, so the robustness of SET detection should not be in question.

Table 2.1 shows the tradeoff comparisons between SEFF [72], LOWCOST [55],
ARSC [8], CSWPFF [17], and SVFD. we use the number of transistors as the area
overhead metric, as many circuit-level studies adopted.

To conduct comparisons between variety schemes, a baseline latch and flip-flop
design needs to be determined. Figure 2.6e and f shows the adopted baseline design.
The similar latch design is used by Intel as a standard datapath latch [45]. The flip-
flops is used in PowerPC603 processor [28]. In addition, an XOR gate consumes
at least 12 transistors when computing the number of transistors (eight transistors
for the core XOR logic and another four for generating the inverter versions of
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Table 2.1 Comparing Tradeoffs with other schemes

Overhead SEFF[72] LOWCOST [55] ARSC [8] CWSPFF [17] SVFD

Transistor 14 36 24 46 36

Power 1.00 .>1.00 .>0.10b N/A 1.16

performance 0 N/A .<1% .<1% .<1%

Clock 1 2 2 2 3

Applicability Limiteda Limited General General General

N/A: Not applicable
a The scheme needs support from a specific scannable flip-flop
b ARSC uses a different metric of power overhead

input signals). For fairness, only the checker and its input generating logics are
considered; the subcomponents that can be shared among checkers (i.e. output
compactor, and output latches) are not taken into account though such amortization
will make the area overhead of SVFD more attractive.

Area As Table 2.1 indicates, SEFF is most economic scheme in term of area
overhead; however, this benefit has to be based on a dedicated scannable flip-flop
design in which each functional flip-flop has a replica, called shadow flip-flop, to
support scan test. This heavy reliance on the specific scannable flip-flop, though
greatly facilitate an area-efficient design, limits the applicability of SEFF, since not
all designs use the same design-for-test techniques and implementation. LOWCOST
can be regarded as a mutation of SEFF, but with a delay between the functional flip-
flops and its’ shadow counterpart. Thus, LOWCOST face the same issue of limited
applicability. Clearly, if the shadow flip-flops are treated as overhead transistors,
then the total transistors overhead must be much higher than that shown in Table 2.1.
Power We use a relative power penalty .Rp to evaluate the power:

.Rp = Power of a detection unit

Power of a flip-flop
. (2.21)

We compare the power of the detection unit against that of a standard flip-flop,
respectively, with the same input signal and frequency. The input signal changes
value every cycle. The Hspice results show that the stability checker is relatively
power-hungry—16% higher than the power of a flip-flop. This is mainly because the
checker is implemented with dynamic circuit style. The Compactor logic, however,
is much power-saving—a 8-input compactor only consumes 40% power of a flip-
flop; this because when fault-free, all input signals fed to a compactor won’t
discharge it. The power of output latches even drop to only 10% of a flip-flop
because there no state transition happens to the latch during fault-free state, thus
no dynamic power consumed.



2.1 On-Line Fault Detection 51

As for other solutions, SEFF’s power is doubled (.Rp = 1), as [72] shows, since
a redundancy flip-flop is enabled. Similar modification is conducted in LOWCOST,
and moreover an extra lath is employed; hence the power of LOWCOST must be
slightly larger than that of SEFF (.Rp > 1).

Note that our checker seems much more power-hungry than ARSC. That is
because the power overhead metric in [8] is different with ours. In ARSC, the
power overhead is calculated as the whole logic (include both the flip-flop and
combinational logic) power increase. Because the combinational logic’s power is
relatively constant, so the actual sensor power consumption compared with a flip-
flop should be much higher.
Performance The performance mainly depends on the flip-flops time overhead and
the critical path delay. In SVFD, there is no modification to the flip-flops and the
critical path is not changed as well. The only timing penalty results from several
extra gate capacitances drived by the .Si and .So. Our experiment result shows this
penalty is less than 1% for a special combinational logic: 8-inverter chain. In fact,
the other SEFF, LOWCOST, ARSC, and CWSPFF face the same situation, but no
one get hurt from it.
Clock We compare the number of clock (phase) used by these schemes. For
example, SEFF dose not need any extra clock; LOWCOST, ARSC, CWSPFF, need
one extra clock skewed with respect to the system clock. while SVFD needs two
extra clocks: CLKS and CLKG. This is a negative attribute of SVFD since the extra
clocks could potentially increase the complexity; as a tradeoff, however, the SVFD’s
detection capability is the most versatile over the other four schemes according to
the comparison in Table 2.2.
Applicability The SEFF and LOWCOST need the support from a particular type
of scannable flip-flop, but the other three schemes do not suffer from this limit.

2.1.5.2 Case Study: An Application of SVFD

We use a case study to demonstrate the main considerations when deploying SVFD,
with emphasizing on area and power implications.

The pipelined FPU adopted by OpenSPARC T1 [79] is used as our target circuit
which implements the SPARC V9 floating-point instructions and supports all IEEE
754 floating-point data types. The FPU comprises three independent pipelines:
Multiplier pipeline (MUL), Adder pipeline (ADD) and Divider pipeline (DIV).
More design details can be found in [79].

The FPU was synthesized using Synopsys Design Compiler with UMC 0.18um
technology, with performance as the synthesizing priority.
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Experimental Setup First, several timing parameters are determined. Specifi-
cally,

• The cycle period T is defined according to .tpd ; given 10% margin reserved, .T =
10/9 × tpd . The critical path delay (.tpd ) reported by PrimeTime is .1.7 ns, so
.T = 1.87 ns.

• The clock-to-q time .tcq depends heavily on a specific flip-flop design and
technology. Given 180 nm technology for the design in Fig. 2.6f, .tcq is about
110 ps; Thus, we get .tcq = 0.06T .

• Next, .tcd , .TDS, and .TGB needs to be determined. We prefer minimize .tcd since
larger .tcd implies more path compensation area needed to pay, while check
whether .TDS and .TGB meets the common requirement, for example, .TDS ≈ 0.5T
and .TGB > 0.05T [8, 55]. From (2.12), we figure out the minimal .tcd is
0.79 ns (.0.43T ), at which .TGB = 0.095T , .TDS = 0.48T . Then, we check
out that .TGB indeed meets the requirement: larger than .0.05T while less than
timing margin (.0.1T ). .TDS , however, is slightly smaller than .0.5T ; considering
such minor mismatch won’t impose any substantial problem for delay fault and
SET detection, we prefer to keep .TDS = 0.48 while paying the minimal path
compensation overhead.

Second, at register transfer level (RTL), we integrated parts of the SVFD
infrastructure—the XOR-Protection, XOR-Trees, AND-Trees—into the target FPU.
It is difficult to integrate corresponding stability checkers and compactors because
these logic are highly custom dynamic logic at transistor-level; however, since we
focus on overhead evaluation, so this difficulty can also be resolved in an “indirect”
way. The area overhead imposed by these dynamic logic is estimated based on the
data in Table 2.1. The short-path compensation is realized by imposing a timing
constraints when conducting RTL synthesis. After the compensation process, we
conduct the post-simulation to verify pipelines functionality and timing.

Third, we use PrimePower (a gate-level power simulation and analysis tool
provided by Synopsys for power evaluation. The modified FPU are exercised with
random input operands for 100,000 cycle, at the same time, dump the according
VCD (Value Change Dump) format data for power evaluation. The power of
checkers and compactors are still evaluated with Hspice. We wrote a C++ program
to convert the output of the XOR-Trees and AND-Trees (VCD format) into PWL
voltage sources which are recognizable for Hspice version checker and compactor
to conduct a transistor-level power evaluation. Then, the Hspice-reported power is
scaled to fit PrimePower-reported power based on .Rp, thereby obtaining the overall
power consumption.

Experimental Results The configurable parameters are (1) the level of XOR-Tree
(.Lxor ), (2) the level of AND-Tree (.Land ), and (3) the bandwidth of the compactor
(BW ). We first study the overhead at the tentative configuration: .Lxor = 3, .Land =
3, .BW = 8, and then seek to optimize it. Figure 2.9 shows the corresponding
experimental results.
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Fig. 2.9 Area and power with configuration: .Lxor = 3, .Land = 3, .BW = 8. (a) Area overhead
and associated overhead breakdown. (b) Power overhead and associated overhead breakdown

Figure 2.9a compares the SVFD’s area, denoted by SVFD, against that of the
original FPU, denoted by ORI. The total cell area overhead is about 40%. This
overhead comes from (1) compensating the short path to meet the .tcd requirement,
(2) the stability checkers and associated compactors and latches, (3) the AND-Trees
and XOR-Trees, and (4) the XOR-gates for XOR protection. Among these break-
downs of area overhead, “compensation” and “XOR Protection” are constant for a
given target circuit because the former is determined by the minimal contamination
delay and the later by the number of flip-flops; however, the other portions are
configuration-specific. The corresponding power implication is shown in Fig. 2.9b.
The overall power overhead is 43%. In addition, two significant implications, which
can guide to a more efficient configuration, can be drawn from these results:

1. The checker’s area and power are unproportionate: 4% area overhead contribut-
ing to 14% power penalty. Hence, reducing the number of checkers should be an
effective way to optimize the overall power penalty.
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Fig. 2.10 Implication of .Lxor and .Land on area and power, .BW = 8. (a) Implication of .Lxor and
.Land on area overhead. (b) Implication of .Lxor and .Land on power overhead

2. Increasing the BW of compactors has very marginal benefit to reducing the
overall area and power since the area and power of the compactors and associated
output latches together take only 4% and 3%, respectively.

One way to reduce the number of checkers is to adopt the XOR-Trees with higher
levels. The same strategy can be considered to optimize the overhead imposed by
AND-Trees. Figure 2.10 shows the overhead trends with different .Lxor and .Land

configurations.
The first perception gained from this figure is the power issue is much more

crucial than the area issue: the worst-case power penalty can reach up to 1.62.×
while the area is only 1.45.×. In addition, the headroom for area optimization is
limited comparing with that of power optimization. Hence, prioritizing the power
optimization should be much effective for reaching an optimum design tradeoff. In
SVFD scheme, power optimization actually does not conflict with area optimization.

Second, both the area and power trends are more sensitive to .Lxor than to .Land . In
particular, as Fig. 2.10b shows, the impact of .Land to the power is almost negligible.
Note that although increasing .Lxor and .Land seems facilitate more area- and power-
efficient deployment, we should keep the delay implication of the XOR-Tree and
AND-Tree in mind. For the pipelined FPU implemented with 180 nm technology,
the T is about 17 Fo4 (.≈1.9 ns/110 ps). We suggest configuring the XOR-Tree
with fours levels, and the AND-Tree with five levels. With this configuration, the
following will compare SVFD with several recently proposed solutions from cell
area and power aspects.

2.1.5.3 Comparison with Other Schemes

Figure 2.11 gives the comparison results. SCAN denotes the scannable version of
the original pipeline. In SCAN, all pipeline flip-flops are substituted by a scannable
flip-flops in [72]. DMR represents the traditional dual-module-redundancy (we



2.1 On-Line Fault Detection 55

Fig. 2.11 Comparison with other solutions in terms of cell area and power, .Lxor = 4, .Land = 5,
.BW = 8

simply double the original area and power to show DMR’s overhead implication.
In fact, for any meaningful DMR, other synchronous overhead such as output
comparison should be also imposed). SEFF is implemented by substituting the
scannable flip-flops for a self-checking flip-flops [72]. LOWCOST is substitute the
scannable flip-flops with another modified flip-flops in which the clock of shadow
flip-flop is skewed from that of the functional flip-flops; in addition, an output
latch is also inserted [55]. CWSPFF is also based on a slightly modified DFF
and additional Equivalence checker, another shared logic whose overhead can be
amortized by the other logics [17], but even we neglect the amortizable logics, we
believe that this solution is also not overhead-economic, given the results indicated
in Table 2.1. ARSC is dedicated for only aging delay detection [8].

Figure 2.11a shows different total cell area required to deploy these solutions. In
which, ARSC presets to be the most area-economic, this mainly because the ARSC
logic only need to be deployed in the timing critical portions in terms of aging delay
detection. The same reason, combined with the fact that the ARSC logic does not
need to be always-on, makes the chip-level power overhead of ARSC negligible [8],
as “ARSC” bar in Fig. 2.11b shows.

We bar SCAN in Fig. 2.11 is not because it can facilitate some fault detection or
recovery (actually it incapable for any fault detection), but it can be viewed as the
foundation of SEFF and LOWCOST.

Figure 2.11 shows that the overhead imposed by SVFD is very comparable with
that of other schemes: the area overhead is 39%, and the power penalty is 40%—
both are superior to that of SEFF scheme, while SEFF can only handle SEU faults.
Given that SVFD can cope with SEUs, SETs, delay faults, aging delays; therefore,
we conclude that the versatile SVFD is more promising.

Note that we omit the CWSPFF’s power implication in Fig. 2.11 is because re-
implementing this scheme in our target pipeline is very labor-intensive and time-
consuming. But considering the complexity of the CWSPFF logic and associated
deployment, the power overhead should not superior than that of SEFF. In addition,
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Table 2.2 Comparison of detection capability

SEFF [72] LOWCOST [55] ARSC [8] CWSPFF [17] SVFD

SEU Yes Yes No No Yes

SET No Yes No No Yes

Aging delay No No Yes No Yes

Delay fault No Yes No Yes Yes

compared with SVFD’s versatile capability, CWSPFF can only handle SET faults
as shown in Table 2.2.

2.1.6 Discussion

2.1.6.1 On SVFD Application

With the increasing impacts of soft errors and transistor aging under the relentless
CMOS scaling, we believe SVFD will be increasingly promising. In part is because
SVFD is far more area efficient than traditional DMR based schemes, in part for its
versatile capability for fault detection. But SVFD does not suppose to totally take
the place of existing approaches, especially ECC based schemes. The following will
discuss how to apply SVFD efficiently and why SVFD is a significant complement
to existing schemes.

Modern processor includes two types of structures: logic-dominated structures
such as execution units and memory-dominated structures such as register file,
caches [50]. Using SVFD for logic-dominated structures, as the FPU in our
experimental study, are cost-efficient. Since such type of structures usually are so
non-regular that engineers mostly have to resort to coarse-grained DMR, thereby
imposing more area and power overhead. Moreover, the SVFD can also indicate
the aging process, which is an essential benefit that the traditional DMR can hardly
achieve.

As for protecting the regular memory-dominated structures from in particular
soft errors, ECC has been proven to be a highly cost-effective approach. SVFD can
not beat ECC in terms power and area overhead, though SVFD can also detected soft
errors in memory-dominated structures since soft errors induced perturbations can
also results in stability violation in primary outputs. The prior research shows that,
with extensive architectural hits such as register lifetime prediction [59], selective
placement [56], ECC-based approach commonly dictates about 30% area overhead.
This overhead is comparable with that of SVFD. While one ECC’s benefit that
SVFD does not possess is error correction—the commonly used ECC is able to
correct single-bit fault and detect two-bit fault. Hence, we think ECC is still the
preferred option for memory-dominated structures in a microprocessor.

But SVFD scheme offers aging prediction that ECC-based doesn’t. The aging
process of SRAM cells exhibits by increased read-out and write-into delay. The read
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delay is more critical than write delay because the read path usually serves as the
critical path [83]. While for the SVFD sensors the degraded read operations behave
the same with the degrade critical delay in logics, and hence can also be handled
by a simplified SVFD sensors that are only for aging prediction—as Agarwal et al.
proposed previously [8].

Hence, we conclude that SVFD is a cost-efficient application for protection
logic-dominated structures; combined with ECC based approaches which can
already handle soft errors, SVFD can also provided additional capability for aging
prediction for memory-dominated structures.

2.1.6.2 Variation and Aging Considerations

Just as DMR cannot be free from false positive, SVFD face the same situation.
The systematic variation hurts little to SVFD unit as well as other fault detection
infrastructures because it statistically exhibits distinct spatial locality and correla-
tion. If the SVFD suffers from the systematic variation, so does the host circuits
in the same silicon spots. But random variation in some corner cases can invalid
the SVFD unit. As shown in Fig. 2.6, for example, if the leakage of M3 is overly
large due to random variation, and at the same time the keeper for S1 happens to be
too weak to compensate the escaped charge through M3, then a false alarm will be
flagged. In other words, if S1’s keeper does not happen to be that weak, the SVFD
unit is highly probable to work. The same situation comes to M4. Therefore, on one
hand, these keepers can help cancel out part of negative effects of random variation;
on the other hand, we can properly size the transistors on the discharge paths to
obtain more robustness against random process variation.

As the transistors in host circuits, the transistors in the SVFD unit also wear
out over time. While the other hardware-based fault detection schemes such as
LOWCOST and DMR suffer from the same situation. But the core logics, i.e.
stability checker (Fig. 2.6b) and compactor (Fig. 2.6c) are relatively resistant to
NBTI—one of the major aging mechanisms, because all of the PMOS transistors
in the two logics are timing non-critical, while all the timing critical transistors are
NMOS transistors which intrinsically are free from NBTI. Hence, we believe SVFD
units have good chance to stand longer than the host circuits due to the better NBTI
resilient characteristics.

2.1.6.3 Distinguish Detection Results

It is useful to distinguish the aging delay caused detection positive from the rest of
detection results, because the detected aging delay rate is used as the input for some
aging-aware designs.

SVFD implicitly apply a rule for distinguish the detected results. That is: If a
stability violation is detected in Guard Band, then this violation is viewed as aging
delay induced; the stability violation detected in other region is viewed as soft error
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or delay fault induced. Figure 2.6d is used to implement this rule. However, this
might degrade the confidence level of detected aging delay rate since if a stability
violation takes place within the Guard Band, SVFD can not determine whether this
violation is caused by a soft error or an aging delay.

Fortunately, this confidence degradation incurred by this implementation is
negligible. To quantitatively evaluate the miss rate, we define the miss as: a soft
error induced stability violation is misjudged as an aging-fault stability violation.

Suppose that the raw soft error rate (SER), .Rsof terror , is uniformly distributed
over time. The detectable SER is .αRsof terror , where the .α is a constant (.0 < α < 1)
related to the three masking effects [75]. The aging fault rate is denoted as .Raging .

The misjudgment rate .Rmiss can be expressed as

.Rmiss = 1 − Raging

Raging + αRsof terror × TGB

TDS+TGB

Practically, the Guard Band should not be larger than the timing margin to avoid
extra timing penalty. A typical timing margin is 10%. Assume that .α = 0.5, and
.Rsof terror = 0.1 × Raging (actually, after some detectable aging effects of devices
begin emerging, the assumptions of .α and raw SER are heavily conservative),
.TGB/TDS = 0.2 then .Rmiss is not large than 1%. Therefore, we can safely conclude
that the imperfect distinguishing capability will not impose any substantial problem.

2.2 On-Chip Path Delay Measurement

We present a novel on-chip path delay measurement architecture for efficiently
detecting and debugging of delay faults in the fabricated integrated circuits. Several
delay stages are employed in the proposed on-chip path delay measurement
(OCDM) circuit, whose delay ranges are increased by a factor of two gradually
from the last to the first delay stage. Thus, the proposed OCDM circuit can achieve
a large delay measurement range with a small quantity of delay stages. A calibration
circuit is incorporated into the proposed on-chip path delay measurement technique
to calibrate the delay range of the delay stage under process variations. In addition,
delay calibration for import lines is conducted to improve the precision of path delay
measurement. Experimental results are presented to validate the proposed path delay
measurement architecture.

2.2.1 Path Delay Measurement and Fault Tolerance

With the scaling of semiconductor process technology, the performance of modern
VLSI chips improves significantly. We have seen operating frequencies of integrated
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circuits reach multi-gigahertz, resulting in more rigorous timing requirements
[1, 95]. Timing related defects originated from manufacturing process-related
problems, such as resistive opens and shorts, metal mouse bites, via voids, etc., will
become more common [30]. Consequently, delay faults caused by these physical
defects, which prevent the circuit from meeting the timing requirements, are of
growing concern in nanometer technologies [46]. Moreover, it should be noted
that the manufacturing process is becoming more difficult to be controlled with
the increasing complexity of modern VLSI chips. Therefore, electrical parameters,
such as saturation current, gate capacitance, threshold voltage, etc., may vary from
one device to another. As a result, the delay of gates and timing-critical paths will
have large variations and can hardly be predicted during the design stage due to the
imprecision of verification models [7, 14]. Furthermore, the circuit timing would
also be impacted by the application environment conditions such as temperature,
supply voltage noise, etc. In order to improve the quality of shippable products,
there is an urgent need to conduct effective delay testing for ascertaining the correct
operation of chips at the rated frequency [46, 54].

2.2.1.1 Challenges for Path Delay Measurement

Traditionally, at-speed delay testing is implemented to check the satisfiability of
circuit timing by only considering whether the circuit under test (CUT) passes delay
testing under the applied test vector pairs or not. However, under the process and
environment variations, it requires to test the chip at different worst case timing
scenarios to ensure the circuit’s timing correctness [26, 47, 96]. For example, for
a circuit path with a very small slack, even though it passes a test under the at-
speed test clock frequency, it possibly fails another test that induces larger capacitive
coupling or power supply noise.

The small delay defect (SDD), which introduces only a small extra delay over
its normal value, may fail to be detected by at-speed delay testing due to the
observability limitation for a large timing slack. However, the detection for SDDs
is increasingly important to ensure the chip’s quality and reliability [9, 57]. The
first important reason is that a timing failure can be occurred in the circuit during
functional application caused by the increment of small delay on paths with small
timing slacks [48]. The second important reason is that the SDDs hidden in the
circuit may become one of the major reliability limiters [64, 81]. In addition to
the imperative requirement for SDD detection, it is well known that in order to
improve the yield and reduce the time-to-market of chips, design-related failures and
performance limiters need to be identified and rectified as early as possible during
first silicon debug [12]. However, it is very expensive to use external high-speed
automatic test equipment (ATE) for post-silicon debug of modern high-performance
chips. Moreover, the frequency of test clock generated by external ATE would be
affected by factors such as parasitic capacitance, resistance of probe and tester skew,
etc. [80]. In addition, for a complex SoC, the internal circuit modules are limited to
be accessed by the external ATE to conduct silicon debug.
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The on-chip path delay measurement techniques have been gained many atten-
tions for researchers in recent years, for it can provide a cost-effective alternative
way to perform delay defect detection and silicon debug in modern VLSI chips.
Rather than testing the chip with all possible worst-case test vectors and process
corners, it is better to measure the delays of paths and to check if the slacks are large
enough to tolerate all the possible delay variations. Therefore, high complexity for
finding the worst case test vectors considering different sources of variations can be
avoided and high test confidence can be obtained. Moreover, by on-chip measuring
the delays of selected paths in the actual silicon, precise path timing information
can then be obtained for circuit under actual operating conditions. As a result,
whether there are SDDs on a path can be analyzed based on the measured path
delay. Further, the amount of timing violations in the failing paths can be obtained
under certain environment conditions [20, 21]. Valuable information, which points
the performance limiter and source to circuit failure, can hence be obtained by the
on-chip path delay measurement technique with a much higher confidence.

2.2.1.2 Prior Path Delay Measurements

Several on-chip architectures have already been proposed for delay testing and
silicon debug in literatures. Ghosh et al. [29] presented a built-in delay-sensing
circuit to improve the delay fault coverage of the CUT. The delay of the path
under test is converted to a certain voltage height by using a saw-tooth waveform
generated from the reference clock signal. By comparing the converted voltage with
the reference voltage, delay fault of the target path can then be detected. The same
technique is also used in [68] for speed binning of the high performance chips
based on the delay measurement results for circuit’s critical paths. Hsiao et al. [82]
proposed a built-in parametric measurement circuit for time-interval measurement
based on the dual-slop technique. The capacitor is first charged by the input voltage
with a high slope, and then the capacitor is discharged with a known lower slope.
Therefore, the time-interval can be derived from the discharging time based on the
proportional relationship between the discharging time and input voltage. Wang et
al. [92] proposed a ring oscillator based scheme for path delay measurement. By
configuring the path under measurement (PUM) and the returning loop into a ring
oscillator, delay of the target path can be translated into oscillation period. Tayade
et al. [82] utilize a programmable capture generator to obtain a fast capture signal
to conduct faster-than-at-speed testing. Small delay defects can then be efficiently
detected by this approach. Moreover, delays of the selected paths in circuit can also
be measured by sweeping the capture clock frequency. Datta et al. [20] proposed
an on-chip timing characterization scheme based on the skewed inverter delay line.
First a pulse is generated by the triggered transitions of the start and end points
of the PUM using the test vector, and then the width of pulse is recorded into
the latching circuits by using pulse shaping technique. Datta et al. [22] proposed
a modified vernier delay line (VDL) technique for path delay measurement. By
using a balanced delay line, high-resolution capability for delay measurement can
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be provided. Based on the same principle of VDL technique, the delay scan chain
is proposed in [21] to reuse the existing scan chain for path delay measurement.
Tsai et al. [85] proposed a built-in delay measurement circuit consisting of coarse
and fine blocks, which is an extension of the modified VDL technique. However,
the above VDL based techniques require lots of delay stages to achieve a large
measurement range [66]. Moreover, the delays of the import lines, which connect
the chosen PUM into the path delay measurement unit, are not considered, thereby
posing a significant influence on the precision of path delay measurement.

2.2.2 Path Delay Measurement Circuits

In this section, we present the design of OCDM for path delay testing and silicon
debug. As mentioned above, the previous VDL based delay measurement techniques
need lots of stages to achieve a large delay measurement range under the pre-
determined delay measurement resolution. Consequently, the goal of the proposed
OCDM circuit is to reduce the number of delay stages in the VDL, thus to achieve
a significantly less hardware overhead as well as less delay measurement time.

2.2.2.1 Basic Structure and Operation

The basic structure of the proposed OCDM circuit is shown in Fig. 2.12, which can
convert the path delay of the PUM into a series of digital values that can be stored
in the flip-flops of the VDL chain. Each delay stage consisted in the VDL chain
is constructed by a positive edge triggered D-type flip-flop, four multiplexes, and
several buffers. In the proposed OCDM circuit, we assumed that the input x is fed
by the output of the PUM, while the input y is fed by the input of the PUM. So y

always switches earlier than x does during the delay measurement period. In order
to explain the operation of the OCDM circuit, let’s consider the case that both the
input and output signals of the PUM are rising transitions.
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Fig. 2.12 Proposed on-chip delay measurement circuit
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The upper delay unit (UDU) refers to the buffer chain that starts at the input of
the delay stage at which the transition signal is propagated from node y, and ends at
the input of the multiplexer whose output is connected to the data input of the flip-
flop in each delay stage of the OCDM circuit. The lower delay unit (LDU) is similar
to UDU, except that it starts at the input of the delay stage at which the transition
signal is propagated from node x, and ends at the input of another multiplexer whose
output is connected to the clock input of the flip-flop in each delay stage.

The delay range is defined as the delay difference between the two delay units in
each delay stage of the OCDM circuit. For example, in the last stage of the OCDM
circuit, the delay of UDU (named BUF_1), .Dbuf _1, is designed larger than that of
LDU (named BUF_2), .Dbuf _2. Thus, the delay range of the last stage, .Rlast , is the
delay difference between .Dbuf _1 and .Dbuf _2, i.e.,

.Rlast = Dbuf _1 − Dbuf _2. (2.22)

From the last stage to the first stage of the OCDM circuit, the delay range of
each stage is increased by a factor of two. The DC_Unit cell, as shown in Fig. 2.12,
is used for delay compensation, and will be explained in detail later. Two rising
input transitions from the PUM pass through the DC_Unit firstly, and then go into
the inputs of the first delay stage of the OCDM circuit, respectively.

Let us explain the function of each delay stage by considering the operation of
the first delay stage for the sake of clarity for illustration without loss of generality.
Suppose the input and output signals of the upper delay chain in the first delay stage
are y1 and y2, respectively, accordingly, x1 and x2 are assumed for the lower delay
chain. All flip-flops of the OCDM circuit are initialized to logic ZERO values by
asserting the reset signal. The delay measurement mode is activated by asserting the
mode signal. As x1 and y1 signals propagate through their respective delay units,
the time difference between the two signals will be reduced. As shown in Fig. 2.13a,
assuming that x1 signal lags the y1 signal by enough time (i.e., y1 switches much
earlier), and hence a logic-high value will be hold in the flip-flop. As a result, y2

Fig. 2.13 Relation between
time difference of two input
signals (x1, y1) and that of
two output signals (x2, y2) in
the first delay stage. (a) Logic
ONE in the flip-flop. (b)
Logic ZERO in the flip-flop
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will be the signal that passes through the UDU and the buffer BUF_B in the upper
delay chain from y1, while x2 will be the signal that passes through the LDU and
the buffer BUF_B in the lower delay chain from x1. The delay of BUF_B is large
enough to ensure that a stable logic high value can be stored in the flip-flop before
the two transition signals arrive at the inputs of the multiplexers whose outputs are
connected to the inputs of the next delay stage. Clearly, the time difference between
x2 and y2 is reduced by an amount which equals the delay range of this delay stage.

The buffer named BUF_A in each delay stage has a delay value that is larger
than the cumulative delay of the path that contains LDU and BUF_B of the same
delay stage. Likewise, if the time difference of y1 and x1 is smaller than the
delay range, the flip-flop will hold a logic ZERO value. Therefore, the signals
propagating through BUF_A are then selected by the multiplexers. As a result, the
time difference between y2 and x2 will be equal to that of y1 and x1, as shown in
Fig. 2.13b.

Consequently, the principle of the OCDM circuit is that if the time difference
between the two inputs of each delay stage is lager than the delay range of the same
stage, a logic ONE value will be stored in the flip-flop of the delay stage. The time
difference between the two output signals will be updated by simply subtracting the
delay range from that between the input signals of the delay stage. Otherwise, the
flip-flop of the delay stage will hold a logic ZERO value, and the time difference
between the output signals will keep the same as that between the input signals of
the delay stage.

Note that there exists a setup time in the store block of each delay stage as
shown in Fig. 2.13, which consists of a D flip-flop and two multiplexers. If the time
difference between the two inputs of the store block is smaller than the setup time
(about 33 ps in the experiment), an error logic value may be hold in the flip-flop.
Therefore, in order to provide better delay measurement precision, the DC_Unit cell
constructed by two buffer lines is proposed for delay compensation, which means
that the upper and lower delay units of DC_Unit are designed such that the delay
difference between them is approximately equal to the setup time. Meanwhile, if
half of the delay range in the last delay stage is also compensated in the delay
difference of the upper and lower delay units of DC_Unit cell, the OCDM circuit
can improve the delay measurement resolution by 50%. The values stored in the
delay line can be shifted out serially using the clock signal shiftclk in the shift mode
by de-asserting the mode signal. The delay of the PUM can then be obtained.

2.2.3 Delay Range Calibration

The delay range of each delay stage in the OCDM circuit would be varied due to
the prominent process variations. It is thus necessary to calibrate the delay ranges
to assure the precision of path delay measurement result before using the OCDM
circuit [7, 14, 20, 85]. Figure 2.14 shows the basic structure of the calibration circuit
[20, 85], which can be embedded into the OCDM circuit for delay range calibration.
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Fig. 2.14 Calibration circuit

Fig. 2.15 Simplified timing waveform for calibration circuit

The outputs of the calibration circuit, denoted as y and x, are directly connected to
the inputs with the same notations of the OCDM circuit, respectively.

Two inputs of the calibration circuit, denoted as .Pin and .Pout , are fed by the
input and output of the PUM, respectively. Clearly, when the CS signal is set to
1, the generated transitions at the .Pin and .Pout can be sent into the OCDM circuit
for delay measurement. When the CS signal is set to 0, the delay range calibration
process is conducted.

The simplified timing waveform for the delay range calibration is shown
in Fig. 2.15. The FF1 and FF2 are rising and falling edge triggered flip-flops
respectively. First, the flip-flops of FF1 and FF2 are initiated with logic ZERO by the
reset signal. Then, logic ONE will be loaded into the FF1 and FF2 by the rising and
falling edges of the clock signal respectively. Clearly, the time difference between
the generated rising transitions at y and x is equal to the width of the positive half
cycle of the clock signal. The time period of the clock signal can be programmed
deterministically with high resolution using the on-chip clock generator from [44].
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Assuming the number of delay stages in the OCDM circuit is m. The following
presents the calculation method for obtaining the delay range of each delay stage,
which is described by Eq. 2.23:

.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

a11x1 + a12x2 + . . . + a1mxm = b1

a21x1 + a22x2 + . . . + a2mxm = b2

. . .

am1x1 + am2x2 + . . . + ammxm = bm

(2.23)

Let

.A =

⎡
⎢⎢⎣

a11 a12 . . . a1m

a21 a22 . . . a2m

. . .

am1 am2 . . . amm

⎤
⎥⎥⎦ (2.24)

.X =

⎡
⎢⎢⎣

x1

x2

. . .

xm

⎤
⎥⎥⎦ (2.25)

.B =

⎡
⎢⎢⎣

b1

b2

. . .

bm

⎤
⎥⎥⎦ (2.26)

The we can get Eq. 2.27.

.AX = B (2.27)

where .xj ∈ (1 ≤ j ≤ m) in vector X represents the delay range of the j th delay
stage to be calculated, .bi ∈ (1 ≤ i ≤ m) in vector B represents the width of
the positive half cycle of signal clock for the ith calibration process, .aij in matrix
A represents the measured value (0 or 1) for the j th delay stage during the ith
calibration. Clearly, by selecting appropriate values for vector B in each calibration
process, it is easy to conclude the delay range for each stage by solving Eq. 2.27.

For example, assuming there are four delay stages in the OCDM circuit and we
know their nominal designed delay ranges. After we choose 70, 55, 40, and 25 for .bi

in four calibration processes respectively, the obtained values for matrix A is listed
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as follows:

.A =

⎡
⎢⎢⎣
1 1 1 0
1 0 1 1
1 0 0 0
0 1 0 1

⎤
⎥⎥⎦ (2.28)

Hence, after solving Eq. 2.27, the delay ranges are found to be 40, 20, 10, and 5
from the first to the last stage, respectively.

Note that the value of .bi in the vector B, which is the width of the positive
half cycle of the clock signal, may not be exactly equal to the expected value
because of the clock jitter, and hence may induce error delay ranges for the delay
stages. However, this can be compensated by multiple calibrations under each value
because the clock jitter is a zero-mean random variable [40].

For example, if for the second calibration process is set to 55, the values in the
second row of matrix A are then expected to be equal to (1, 0, 1, 1) respectively.
This can be represented by Eq. 2.29.

.55 = x1 + x3 + x4 (2.29)

However, if the width of the positive half cycle of the clock signal is varied from
the expected value and is 50 or 60 due to the clock jitter, then the second row of
matrix will get (1, 0, 1, 0) or (1, 1, 0, 0), respectively. Hence, the second row of
matrix is replaced to Eq. 2.30 or Eq. 2.31 as follows:

.55 = x1 + x3 (2.30)

.55 = x1 + x2 (2.31)

Therefore, error values would be calculated for the delay ranges of the delay
stages by using Eq. 2.30 or Eq. 2.31. However, since the clock jitter is a zero-
mean random variable [40], we can calibrate the delay ranges using the same
expected .bi value for multiple calibration times. Though neither Eq. 2.30 nor
Eq. 2.31 can be used to obtain the delay ranges correctly, the sum of the expressions
obtained by multiple calibrations would be qualified. For example, by summing up
Eqs. 2.29, 2.30, and 2.31, we can conclude Eq. 2.32.

.165 = 3x1 + x2 + 2x3 + x4 (2.32)

As mentioned above, the delay ranges are 40, 20, 10, and 5 from the first to the
last stage, respectively, and can verify the correction of Eq. 2.32. Hence, the delay
range of each delay stage can be calibrated by the process mentioned above. The
calibration errors caused by the clock tuning resolution and measurement resolution
are small and can be ignored. They can also be compensated by multiple calibrations
using multiple number of .bi values.
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Fig. 2.16 Path delay measurement architecture

2.2.4 Path Delay Measurement Architecture

The architecture of the proposed path delay measurement scheme using the OCDM
circuit is shown in Fig. 2.16. The paths selected for delay measurement can be
timing-critical paths whose delays exceed the specified timing threshold under static
timing analysis (STA) or statistical STA [27, 31]. Based on the selected timing-
critical paths, the method proposed in [49] provides an effective way to further find
an optimal path set for measurement, while the delays of all the selected timing-
critical paths can be obtained either by direct measurement or by calculation from
the measured delays. We mainly focus on the design of the path delay measurement
architecture. TwoM-to-1 multiplexers are included aiming to select a particular path
into the OCDM circuit for delay measurement.

2.2.4.1 Signal Transition Conversion (STC)

As mentioned in the previous section, the OCDM circuit works well only when the
input and output of the PUM are rising transitions. However, there are other three
additional cases possibly to activate the worst case delay of a circuit path, such as
a path in which the input is a rising transition and the output is a falling transition.
It is thus better to transfer the output signal into the signal with rising transition
for facilitating path delay measurement regardless of the transition direction of the
original signal.
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Fig. 2.17 Signal Transition Conversion (STC)

The STC block shown in Fig. 2.16 is used to handle this problem. Therefore,
rising transitions which are derived from the start and end points of PUM can be
fed into the inputs and of the OCDM circuit, respectively. Figure 2.17 shows the
basic structure of the STC block, which is previously designed for signal stability
violation detection in [8, 25, 94]. The simplified timing waveform for the STC
block is shown in Fig. 2.18a and b, respectively. When the pre-charge signal is low,
denoted as the pre-charge period, both the nodes and are charged up to logic high
values. Hence the OUT signal keeps a logic low value.

Clearly, as shown in Fig. 2.18a, if a rising transition is generated at the IN signal
when the pre-charge signal is high, both the node A and node B are discharged to
logic low values after the arrival of the rising transition of IN. Therefore, a rising
transition is generated at the OUT signal. Likewise, as shown in Fig. 2.18b, a rising
transition would also be generated at the OUT signal after the arrival of a falling
transition of the IN signal. Hence, by using the STC block, the input signal with
arbitrary transition direction can be converted into a rising transition signal for
facilitating path delay measurement.

2.2.4.2 Delay Measurement

The proposed on-chip delay measurement flow can be divided into eight steps as
follows:

1. Select the paths for delay measurement;
2. For each PUM, the input and output transition signals of the PUM can be fed into

the OCDM circuit for delay measurement by using the two M-to-1 multiplexes;



2.2 On-Chip Path Delay Measurement 69

Fig. 2.18 Simplified timing waveform for signal transition converter. (a) A rising transition at IN.
(b) A failing transition at IN

3. The first vector of the test vector pair for the PUM is applied to initialize the
internal logic of the circuit to a stable state;

4. All flip-flops of the OCDM circuit are initialized to logic ZERO values by
asserting the reset signal;

5. The delay measurement mode is activated by asserting the mode signal;
6. The second vector of the test vector pair is applied to the circuit, and hence a

transition signal can be launched at the input of the PUM, and propagated to
the output of the PUM; consequently, the delay difference of the two transition
signals is measured by the OCDM and recorded into the delay line;

7. After the completion of delay measurement, the OCDM circuit is configured into
shift mode by de-asserting the mode signal. Therefore, the values stored in the
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delay line can be shifted out serially using clock signal shiftclk. Consequently,
the path delay of the PUM can be calculated from the values read out.

All paths can be selected for delay measurement by repeating the above steps
2–7.

After the values stored in the delay line have been read out, the delay of the PUM
can then be obtained. Suppose the total number of delay stages in the OCDM circuit
is N , the delay measurement resolution of the OCMD circuit is .Mres , which is half
of the delay range in the last delay stage .Dlas , and the values stored in the flip-flop
from the first delay stage to the last delay stage of the OCDM circuit are .DN to .D1,
respectively. Then the path delay can be calculated as follows:

.Delay of Measurement =
∑i=N

i=1
Di × 2i−1 × Dlas.

The range of the path delay is then given as .
∑i=N

i=1 Di × 2i−1 × Dlas − Mres <

Path Delay .
∑i=N

i=1 ×Di × 2i−1 × Dlas + Mres .
The calculated path delay value of the PUM is then compared with the expected

delay value for timing validation and silicon debug. The maximum delay measure-
ment range of the OCDM circuit can also be obtained as follows.

.Maximum measurement range =
∑i=N

i=1
× 2i−1 × Dlas.

2.2.4.3 Delay Calibration for Import Lines

In order to obtain the delay of the PUM with high precision, the delay of import
lines .P2 and .P3 for feeding the start and end transitions of the PUM into the OCDM
circuit, as shown in Fig. 2.16, should be taken into account. The reason is that it is
difficult to mutually cancel the delays of the import lines .P2 and .P3 during physical
design. Even though a careful custom layout can be conducted to balance the import
lines .P2 and .P3 serving for one PUM, it can be hardly to satisfy this restriction for
the import lines for all the PUMs. Moreover, the delays of import lines .P2 and .P3
would also be affected by the process variations and hence would bring a precision
loss of the delay measurement. In order to address this problem, a 2-to-1 multiplexer
is added for the flip-flop which is the end point of the PUM.

Figure 2.19 redraws the architecture of the path delay measurement scheme
shown in Fig. 2.16, which includes a 2-to-1 multiplexer with data inputs, respec-
tively, connected to the data-input and data-output of the flip-flop at the end point of
the PUM to calibrate the delay difference of import lines.

When the MS signal is set to 1, the path delay measurement architecture is
configured into the delay measurement mode. Hence the input and output of PUM1
are selected into the OCDM for delay measurement. The delay measurement result
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Fig. 2.19 Delay calibration for import lines

of PUM1 without considering the delay difference of import lines and can be
represented as follows:

.Delay measurement result = D1 + D3 − D2

where the .D1, .D2, and .D3 represent the delays of PUM1, .P2, and .P3, respectively.
However, in order to obtain the delay of the PUM with high precision, the delay
value of .D3 − D2 should be obtained firstly. The delay of .P3 is typically larger than
that of .P2 for the insertion of a multiplexer. When the MS signal is set to 0, the
import line’s delay difference calibration mode is configured.

For the first case, if the PUM is started at one flip-flop and ended at another flip-
flop, then either rising or falling transition can be simultaneously generated at the
outputs of the start and the end flip-flops by shifting the test vector with specific
values into them. Hence the transitions generated at the outputs of the start and end
flip-flops will pass through and into the OCDM circuit, respectively. Therefore, the
delay difference of .P3 and .P2 can be obtained by the OCDM circuit under the import
line’s delay difference calibration mode. For the second case, if the PUM is started
and ended at the same flip-flop, then this scenario is even simpler. Either a rising or
a falling transition generated at the output of the flip-flop can simultaneously pass
through .P2 and .P3 into the OCDM circuit, respectively.

Consequently, by calibration the delay difference of the import lines for feeding
the start and end transitions of the PUM into the OCDM circuit first, a high precision
of path delay measurement can then be obtained.

2.2.5 Experiment Result Analysis

For validation, we implemented the proposed on-chip path delay measurement
scheme using SMIC 0.18μm CMOS technology. The experimental results consist
of the following five main parts: (1) simulated delay range for each delay stage of the
OCDM circuit; (2) simulated results for measuring the delays of circuit paths using
the proposed scheme; (3) validation of the effectiveness of the proposed scheme
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Table 2.3 Delay range of each delay stage

Delay stage 1 2 3 4 5 6

Delay range (ps) 409.7 205.1 102.84 51.59 25.91 13.23

under process variations; (4) the hardware and timing overheads of the proposed
scheme; and (5) comparisons with previous works.

2.2.5.1 Experiment I

In this experiment, six delay stages were designed in the OCDM circuit, making
the maximum path delay measurement range of the OCDM achieves about 800 ps,
while the delay range of the last stage is about 13 ps. The number of delay ranges
in the OCDM circuit can be easily extended to achieve a much larger delay
measurement range if required.

The experimental result of the nominal delay range for each delay stage is
reported in Table 2.3, which is obtained using HSPICE simulation. The delay range
of each delay stage is approximately increased by a factor of two from the last to
the first delay stage within a small margin of error. This ignorable error of delay
range may be caused by the unbalanced load of each delay stage and the precision
of HSPICE simulator. However, due to the fact that the delay measurement range
of the OCDM circuit can be expanded exponentially by increasing the number of
delay stages, thus we only need a small quantity of delay stages to achieve the
required delay measurement range. Therefore, this error induced in the path delay
measurement can be acceptable.

2.2.5.2 Experiment II

In the second experiment, two different lengths of paths are chosen from ISCAS85
C880 benchmark to verify the effectiveness of the proposed on-chip path delay
measurement scheme under the typical process corner.

The delay difference of the import lines can be obtained by the proposed
on-chip delay measurement technique under the import line’s delay difference
calibrationmode. In order to measure the delays of PUMs, path delay test vector
pairs should be generated for the corresponding paths firstly. A transition is then
launched at the input of the particular path which has been chosen for delay
measurement using the generated test vector pair. The test vector generation method
is beyond the scope of this book.

Figures 2.20 and 2.21 show the delay measurement results for the two paths
obtained using HSPICE simulation, respectively. As shown in Fig. 2.20a, the delay
of Path1 is 149.24 ps from HSPICE simulation. Figure 2.20b shows the simulated
delay difference of the import lines, which are used to feed the start and end
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Fig. 2.20 Simulated waveform for delay measurement of Path 1. (a) Delay from HSPICE
simulation. (b) Delay difference of the import lines. (c) Delay measurement result of PUM

transitions of Path1 into the OCDM circuit. Every delay stage holds the initial logic
ZERO value except for stage 2, stage 4, and stage 6 when the delay measurement
is completed. Thus, the measured delay difference of the import lines is the sum
of delay ranges in stage 2, stage 4, and stage 6, which can be calculated from
Table 2.3, i.e., 270 ps in this case. Figure 2.20c shows the delay measurement result
of Path1 for not considering the delay difference of import lines. Likewise, this delay
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Fig. 2.21 Simulated waveform for delay measurement of Path 2. (a) Delay from HSPICE
simulation. (b) Delay difference of the import lines. (c) Delay measurement result of PUM

measurement result can be obtained by summing the delay ranges of stage 1 and
stage 6. Hence, the actual delay of Path1 can be obtained by subtracting the delay
difference of import lines as obtained in Fig. 2.20b from the path delay measurement
result as obtained in Fig. 2.20c. As a result, the actual path delay of Path1 obtained
by the proposed on-chip path delay measurement technique is 153 ps.

It can be observed from Fig. 2.21a that the simulation delay of Path2 is 454.11 ps
using HSPICE simulation. Under the import line’s delay difference calibration
mode, the delay difference of the import lines which feed the start and end transition
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of Path2 into the OCDM circuit can be measured. The delay stage 3, stage 4, and
stage 6 hold final stable logic ONE values after the import line’s delay difference
calibration as shown in Fig. 2.21b. Hence the delay difference for the import lines
is 167 ps. Likewise, the delay measurement result of Path 2, in which the delay
difference of import lines is not taken into account, can be obtained by summing
the delay ranges of stage 1, stage 2, and stage 6 as shown in Fig. 2.21c. Hence,
the actual path delay measurement result for Path 2 can be obtained and is 460 ps.
Through the aforementioned results, we have shown that the proposed on-chip path
delay measurement scheme works well. It is worthy of note that the errors between
the delay measurements and simulation values for the two paths are only 3.76 and
5.89 ps, respectively, and can be ignored.

2.2.5.3 Experiment III

The circuit parameters are apparently prone to fluctuations caused by the significant
process variations in sub-micro technologies. Hence the delays of circuit paths,
import lines, and the delay ranges of the delay stages in OCDM circuit are thus
unavoidable to suffer from undesirable variations. In this experiment, HSPICE
Monte Carlo simulations are conducted to analyze the effectiveness of the proposed
on-chip path delay measurement method in the presence of process variations. It
is well known that the gate length variation poses a dominant impact on the gate
delay [6, 61]. In our analysis, the inter-die and intra-die gate length variations are
considered to have Gaussian distributions, .N(μL, δ1) and .N(μL, δ2), respectively
[81, 92]. The .δ1 and .δ2 represent the standard deviations of gate length for inter-
die and intra-die variations respectively, while .μL represents the transistor channel
length obtained from the typical technology library.

Figure 2.22a and b shows the waveform of delay measurement results for Path1
and Path2, which are obtained from 50 Monte Carlo iterations considering both
intra-die and inter-die variations. The variations considered in the Monte Carlo
simulations are .3δ1 = 0.05μL and .3δ2 = 0.05μL.

The panel indicated as Simulation in Fig. 2.22a shows the simulation delay
results of Path1 using HSPICE Monte Carlo method. Note that the delay of
Path1 without considering process variations is 149.24 ps as shown in Fig. 2.20.
The delays of the import lines for feeding the start and end transitions of Path1
into the OCDM circuit would also be impacted by process variations. The panel
indicated as Calibration in Fig. 2.22a shows the delay measurement results of the
delay difference between the corresponding import lines. The panel indicated as
Measurement in Fig. 2.22a shows the delay measurement results of Path1 without
considering the delay difference of import lines .P2 and .P3. The panel indicated as
Error in Fig. 2.22a shows the errors between the delay measurement and simulation
results for Path1 in the 50 Monte Carlo iterations, respectively. Likewise, the
corresponding experimental results for Path2 are shown in Fig. 2.22b. Clearly, as
shown in Fig. 2.22, the error of path delay measurement conducted by the proposed
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scheme is very small, which demonstrates the effectiveness of the proposed path
delay measurement scheme under process variations.

Figure 2.23a and b shows the Monte Carlo simulation results of delay mea-
surement for Path1 and Path2 considering .3δ1 = 0.1μL and .3δ2 = 0.1μL. It is
clearly shown from Fig. 2.23 that although much larger delay variations are occurred
as compared to the case in Fig. 2.22, the error of path delay measurement results
conducted by the proposed scheme is still very small, all within the range of 50 ps.

2.2.5.4 Area and Timing Overhead

In this experiment, the proposed path delay measurement architecture was incor-
porated into several IWLS 2005 full-scan based benchmark circuits to evaluate its
hardware and timing overheads. The area overheads reported in this chapter are
obtained by using a commercial synthesis tool targeting the SMIC 0.18μm CMOS
technology. The benchmark circuits’ profiles and the area overhead of the proposed
approach incorporated into the benchmark are presented in Table 2.4. The circuit’s
name of the benchmarks and the numbers of the flip-flops are given in column 1 and
column 2, respectively. The column under “Circuit Area (μm2)” reports the area
of the benchmark circuits without implementing the proposed delay measurement
architecture, while the sub-columns “Total”, “NoComb”, “Comb” represent the
corresponding total, sequential, and combinational part’s area, respectively. Due
to the different delay measurement requirements pursued by test experts, various
path sets with totally different sizes and path delays may be selected for delay
measurement. We only focus on the delay measurement architecture rather than
how to select the circuit paths targeting for delay measurement. Hence, we evaluate
the area overheads of the proposed delay measurement architecture considering
different numbers of path endpoints, even in the worst case where all the flip-flops
are acted as the endpoints of paths for delay measurements. The columns “20%M”,
“60%M”, and “100%M” represent three cases in which 20%, 60%, and 100% of
the flip-flops are the endpoints of paths under measurements. For each of these flip-
flops, a multiplexer is added to calibrate the delay difference of import lines. The
sub-columns “Area (μm2)” and “Area (%)” under the three cases report the area
overhead of the proposed delay measurement architecture and its percentage against
that of the original benchmark circuit.

As is clearly shown in the Table 2.4, even in the worst case, the hardware
overhead of the proposed delay measurement architecture can be acceptable. In
practice, this scenario may be much more optimistic. For instance, Table 2.5 reports
the hardware overhead of the proposed architecture for des perf benchmark circuit,
where all the critical paths that can be single-path sensitized are selected for delay
measurement. As shown in Table 2.5, the clock period of the des perf circuit is
synthesized to 2.6 ns by using a commercial synthesis tool, which guarantees a
slack of 10% the clock period for the longest path of the circuit under static timing
analysis. The number of the selected critical internal paths is 1164, which is obtained
by using a commercial timing analysis tool by specifying the path slack of which
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Fig. 2.23 Simulated waveform for delay measurement obtained from 50 Monte Carlo iteration
with .3δ1 = 0.1μL and .3δ2 = 0.1μL, (a) for Path1 (b) for Path2
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Table 2.5 Experiment
results of DES_Perf circuit

Benchmark Des_perf

# of FFs 8808

Clock period (ns) 2.6

# of circuit critical paths 1164

# of single path sensitization 779

# of critical endpoint 253

Area overhead (μm2) 16,892

Area overhead (%) 1.41%

is less than 20% of the clock period. For the selected critical internal paths, the
number of paths that can be detected under the single path sensitization criterion
is 779, which is obtained by using a commercial test generation tool and can then
be sensitized for delay measurement. Clearly, multiple critical paths may be ended
at the same endpoint. The number of endpoints for these paths suitable for delay
measurement is 253. Therefore, only 253 endpoints should be inserted with the
multiplexers to support the proposed delay measurement architecture. The area
overhead of the whole proposed delay measurement architecture is 116,892 .μm.

2,
and its percentage against that of the original benchmark circuit is only 1.41%.

Due to the application of the proposed delay measurement architecture, the
delay of circuit paths may be impacted. Hence, the timing overhead of the
delay measurement architecture to the critical path, which impacts the circuit
performance, should be evaluated. Table 2.6 evaluates the timing impact of the
proposed delay measurement architecture to the delay of the longest circuit internal
path in each benchmark circuit. The experimental circuit’s names and clock domains
are listed in the column 1 and column 2, respectively. The columns under “Longest
internal path delay (before)” and “Longest internal path delay (after)” represent
the delays of the longest internal path before and after the incorporation of the
delay measurement architecture for the considered clock domain. The column
under “Delay increase” represents the delay increase of the longest path caused by
incorporation of the proposed architecture. The column under “Timing overhead”
represents the percentage of delay increase against the delay of the longest internal
path before incorporation of the delay measurement architecture. As shown in
Table 2.6, the timing impact of the proposed delay measurement architecture to the
sample circuit is less than 0.7% of the longest internal delay and can be negligible.

2.2.5.5 Comparison A

To compare with previous works, the delay measurement circuits using the proposed
OCDM method and the method from [22] which employed a modified VDL with
equal delay range value in each stage are implemented respectively. Table 2.7
compares the experimental results of the two methods. Note that the proposed
OCDM circuit needs only 3.3% of the delay stages to achieve even larger maximum
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delay measurement range compared to the delay measurement circuit using the
method from [22], while the delay measurement resolution of the proposed OCDM
circuit is only 49% of that for the delay measurement circuit using the method from
[22]. As mentioned earlier, when the delay measurement is completed, the values
stored in the flip-flops of the OCDM circuit should be shifted out serially using slow
shift clock. If we assume the frequency of shift clock is 1GHz, then the time for
scanning out the measurement values is only 8 ns for the proposed OCDM circuit,
but is up to 245 ns for the delay measurement circuit using the method from [22]
according to Table 2.7.

The area overheads of the two delay measurement circuits are obtained
using a commercial synthesis tool. It can be seen that the combinational, non-
combinational, and the total area overheads of the proposed OCDM circuit are only
35.5%, 3.3%, and 22.3% of that for the delay measurement circuit using the method
from [22] respectively. It seems unfair to compare only the hardware overhead of
the OCDM circuit of the proposed delay measurement architecture with the delay
measurement circuit using the method from [22] without considering the hardware
overhead of the insertion of multiplexers at the endpoints of the PUMs. However, it
should be noted that the OCDM circuit provides the same path delay measurement
ability with that of the method from [22], while the purpose of the insertion for 2-
to-1 multiplexers to the end points of the PUMs is to calibrate the delay difference
of import lines. Thereby, a higher precision of delay measurement results for the
PUMs can be obtained by the proposed method as compared to the method from
[22].

2.2.5.6 Comparison B

By considering the delay difference of the import lines in the proposed scheme,
and considering the returning loop delay in the Path-RO scheme [92], both the
proposed scheme and the Path-RO scheme can provide a high precision for path
delay measurement. However, as compared to the Path-RO technique, the proposed
technique provides a more effective way to measure the delay of a path. This is
mainly due to the following reasons.

1. A multiplexer is required to be inserted into the critical PUM in the Path-RO
technique, which reduces the speed of high performance circuit. Clearly, in the
proposed path delay measurement architecture, no extra cell has to be inserted in
the PUM, while only a small overload from one input of the multiplexer is added
in the PUM. Hence, the proposed technique has a weak impact to the delay of a
critical path as compared to the Path-RO technique.

2. The Path-RO technique can only measure either the delays of paths that begin
at a clocked flip-flop or the delays of paths that end at this clocked flip-flop.
The reason is that the flip-flop which is the start point of the PUM has to be
modified to a calibration launch flip-flop (CLFF), while the flip-flop which is
the end point of the PUM has to be modified to a calibration capture flip-flop
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(CCFF) with a different circuit structure. However, the delay of each circuit path
chosen for delay measurement can be obtained by the proposed on-chip path
delay measurement technique.

3. In order to measure the delay of a path by using the Path-RO technique, one
and two extra multiplexers are required to be added in the flip-flops which are
stood at the input and output of the PUM, respectively. However, only one extra
multiplexer is required to be added for the flip-flop which is the endpoint of the
PUM in the proposed path delay measurement technique. Hence, the proposed
method suffers from a significant lower hardware overhead as compared to the
Path-RO technique.

4. By using the Path-RO technique, only the delay of a path on which the number of
inverting logics is odd can be measured due to the use of the oscillation technique.
Otherwise, one inverter is required to be added to the PUM, which will further
increase the design complexity to the path delay measurement architecture.
Moreover, the delay of the returning loop might not be calibrated to a clock
period because the first requirement of the calibration process is to assure that the
PUM is configured to be able to oscillate. Hence, the precision of the path delay
measurement would be influenced. Clearly, no such extra restrictions are posed
into the proposed on-chip path delay measurement technique when measuring
the delay of a chosen circuit path.

2.2.6 Discussion

We have presented a novel on-chip path delay measurement technique for timing
characterization and silicon debug. In the proposed OCDM circuit, the delay range
of each delay stage is set to increase by a factor of two gradually from the last to
the first delay stage. In addition, by conducting delay compensation, both improved
delay measurement resolution and measurement precision can be provided when
compared to the previous VDL based delay measurement schemes. The delay
difference of the import lines for feeding the start and end transitions of the
PUM into the OCDM circuit is also considered in the proposed technique, which
can further provide a high precision for path delay measurement. Experimental
results show that the proposed on-chip path delay measurement scheme works
well. A small quantity of delay stages in OCDM circuit can obtain a large
delay measurement range, and hence can provide a significant reduction in delay
measurement time. Moreover, the area overhead of the proposed method is also
significantly reduced as compared to previous works.
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2.3 Lifetime Fault-Tolerant Circuit Design

In the past decades, the device and reliability communities have devoted much
efforts to lifetime projection [10, 76], but less to design for lifetime reliability. This
situation would be changed because the lifetime reliability is seriously challenged
by the aggressive technology scaling [15, 34]. One of the major impending (above
22 nm) challenges comes from MOS transistor wearout [34]; NBTI (negative bias
temperature instability) and TDDB (time dependent dielectric breakdown) draw
the most attentions over a wide variety of transistor aging mechanisms [34]. Both
aging mechanisms can gradually degrade the performance of transistors over time
[8, 36] due to elevated threshold voltage [13, 91] or degraded integrity of gate oxide
[3, 43, 70].

To guarantee the chips’ lifetime reliability, a common practice is reserving
conservative timing margin—just like that for process variations [71]. However, the
effectiveness of such approaches is diminishing, given that up to 10–20% guard
band has to be reserved to safely accommodate the aging-induced performance
degradation—which can even offset the performance benefit from one-generation
of technology advancement.

Many researches have been conducted at different levels: device level [18, 87],
circuit level [90, 91], and (micro)architecture level [35, 74, 77]. Particularly, Blome
et al. proposed an online wearout detection approach through sensing the aging-
induced delay [36]. Agarwal et al., based on the same observation, proposed a
sensor design dedicated for aging failure prediction [8]. Yan et al. presented a more
versatile and cost efficient sensor design [94] which can also be used for aging
detection.

Although the prior sensor designs prepare a ground for aging-aware designs, few
researches are conducted so far to study how to effectively use them; this work
aims to serve this purpose. The lifetime of a chip is governed by the “weakest-link
principle”—usually only a minority of transistors suffer large aging degradation
reflected in excessive path delay. The aging sensors can capture this change;
however, previous solutions such as turning voltage and/or frequency [77], reducing
individual core utilization [4], and duplicating hardware resources [39, 78] do not
use such fine-grained detection capability sufficiently. Although those architecture-
and application-level approaches are somewhat effective to remedy the aged chips,
these coarse-grained solutions trading either performance or hardware resources for
lifetime may be far from efficient due to the blindness to the minority of fine-grained
“weakest links” which can be identified by the aging sensors.

Above analysis motivates us to propose a new approach to exploiting fine-
grained aging adaptability. Unlike those coarse-grained approaches, the fine-grained
approach can cope with the “weakest-links” more locally and efficiently, thereby
making it possible to improve lifetime reliability while without compromising with
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the architectural performance and coarse-grained hardware resources. In particular,
we make three contributions:

1. We propose ReviveNet, a hardware-implemented aging-aware and self-adaptive
architecture, to improve lifetime reliability. Aging-awareness is realized by
deploying dedicated aging sensors, and “self-adaptive” is achieved by employing
a group of synergistic adaptation agents.

2. To support ReviveNet, we present a localized timing adaptation mechanism,
with which the aged critical paths can be locally coped with. The fine-grained
adaptability results from timing imbalance between consecutive timing paths.
The lifetime can be extended significantly through exploiting such “path-
grained” adaptability.

3. We propose an evaluation model to quantitatively study the ReviveNet-enhanced
reliability.

The effectiveness of ReviveNet has been evaluated through incorporating it
into an industrial pipelined floating-point co-processor. Experimental results show
that ReviveNet can improve the MTTF by 48.7% without compromising with
architectural performance, only at about 9.5% area and small power overhead.

2.3.1 Aging Symptoms and Aging Sensors

The aging-induced delay is a suitable symptom candidate [8, 36, 51]. For example,
Blome et al. took the TDDB induced delay as the symptom for wearout detection
[36]. Agarwal et al., took the NBTI induced delay as the symptom for aging failure
prediction [8, 51]. We also take aging delay as the symptom in this work.

Aging-awareness can be realized by employing some dedicated aging sensors.
The fundamental working principle of sensors is on-line delay fault detection. The
only difference between the aging sensing and traditional delay fault detection is
that the former takes place in a safe timing interval called “Guard band” [8], while
the latter takes place in the interval after the effective clock edge called “Detection
slack” [94]. As Fig. 2.24 shows, initially, in fresh state, no signal transitions occur
in guard band, but after suffering form aging, some transitions could be delayed into
guard band. Since the signal should have been stabilized before entering the guard
band, we call the event of such a “faulty” transition in guard band as a Stability
Violation [94]. It is worthy to note that the detected aging delay, unlike conventional
delay faults, won’t cause any timing fault (a.k.a. Timing violation).

The detection for aging delay is actually to detect the stability violations in
guard band. We can use stability checker—the key component in aging sensor—
to fulfill this purpose. The basic stability checker can be derived from a sensing
circuit for on-line delay fault detection, in which the signal integrity is verified
by a pair of consistent charge/discharge nodes, the delay transitions will trigger
one of the charged nodes to be discharged and thereby causes state inconsistence
between them. More specifically, as shown in Fig. 2.25, during precharge period,
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Fig. 2.24 The timing of aging delay and delay fault

Fig. 2.25 Sensor setup

both nodes S1 and S2 in the stability checker are charged up to HIGH. The circuit
starts evaluation when entering the guard band; one of the two nodes is pulled
down, while the other one floats at HIGH because the gate signal of M3 is always
complemented with that of M4. Hence, the node S1 and S2 are always exclusive
during fault-free time, which will make the node S4 stick to HIGH because the high-
impedance path between S4 and GND always exists. When aging delay happens,
the stability violation will trigger the discharge of the node that has charged up to
HIGH. Eventually both nodes are discharged, and thereby the node S4 is pull down
to LOW—which flags aging delay being detected. Please refer to [94] for more
details.
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One sensor consists of multiple stability checkers, one wide dynamic OR gate,
and one output latch [94]. To reduced overhead, multiple stability checkers share
one output latch through a wide dynamic OR gate, as shown in Fig. 2.25.

The aging sensors are deployed to monitor critical paths. As an example,
Fig. 2.25 shows a setup for a stage of logic, where each sensor handles three
signals. If some aged transistors in the logic or upstream flip-flops result in stability
violations in the guard band—aging delay, the corresponding sensors can tell that
an aging failure is impending.

With the “awareness” of aging, the next essential problem is how to accommo-
date the impending aging failures indicated by these alarms. The ReviveNet aims to
address this problem.

2.3.2 Lifetime Fault-Tolerant Architecture

Figure 2.26 illustrates the ReviveNet architecture. Each stage is monitored by a set
of periodically-invoked aging sensors. The adaptation to each stage is implemented
with a set of adaptation agents which are fed by not only the local stage’s aging
sensors but also the next stage’s agents, thereby enabling bidirectional adaptation—
backward timing adaptation (BTA) and forward timing adaptation (FTA). BTA is
using the .(K + 1)st stage’s timing slack to accommodate the aging emergencies
in the Kth stage, while FTA is using the .(K − 1)st stage’s slack to accommodate
the emergencies in the Kth stage. With the bidirectional adaptation mechanism,
ReviveNet offers more adaptation freedom and performs more effectively.

Let’s explain the basic idea of ReviveNet with a simple example. Figure 2.27
shows a part of a pipeline, where each arrow denotes a timing path and the length
of it represents corresponding delay; in particular, the critical path in the middle
stage is denoted by a bold arrow. After experiencing some aging, suppose that the

Fig. 2.26 ReviveNet architecture
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Fig. 2.27 Example of adaptation

delay of the critical path is going to exceed the clock period—an impending aging
failure, an aging sensor monitoring this path detects the impending failure [8, 94]
and flags an aging alarm; then, three local adaptation options can be enabled to
tolerate this aging delay: (1) backward skew the clock of Kth flip-flop—BTA, (2)
forward skew the clock of .(K − 1)st flip-flop—FTA, or (3) both FTA and BTA. The
specific adaptations are governed by a finite state machine, referred to agent.

The above conceptual example can just convey a very basic idea of ReviveNet;
we can gain more insights into the ReviveNet’s operations and underling design
tradeoffs by answering the following questions:

(1) Why are BTA and FTA feasible?
Clearly, BTA or FTA can help tolerate the aging delay of the target critical

path only if there is timing imbalance between the corresponding paths, i.e. all
upstream paths of .(K − 1)st flip-flop, or all downstream paths of Kth flip-
flop are non-critical. We call such imbalance as path-grained (or, localized)
adaptability. We will use a case study (Sect. 2.3.3.2) to show that the potential of
such localized adaptability, which ReviveNet aims to exploit, is quite attractive.

(2) Where the sensors and agents should be deployed?
This problem is trivial if both the critical paths and aging impacts can be

well-predicted: every critical path that is prone to suffer aging impacts should be
monitored by a sensor. Unfortunately, though the critical paths can be somewhat
distinguished from non-critical paths with some sophisticated SSTA (statistical
static timing analysis) approaches, many researches have been evident that the
aging degree of individual transistor highly depends on the physical geometries,
defect density and the stress states during working mode. In other words, the
aging degree of individual transistor is highly unpredictable; hence it seems
hopeless to identify the aging-prone critical paths. We take an engineering
way to tackle this problem: conservatively put all critical paths under monitor.
Thought it is not an theoretically optimum option, the experimental results show
that such engineering way is still cost-efficient (Sect. 2.3.7).

Deploying agents is based on the sensors deployment and specific circuit
topology. The detail can be found in (Sect. 2.3.4.5).
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(3) What’s the adaptation logic of agents?
Usually, one sensor is able to monitor multiple critical paths to reduce the

implementation overhead. The side-effect is decreased “resolution”—when a
sensor flags an aging alarm, the agent actually cannot immediately recognize
that which path (or paths) causes this alarm; hence the agent needs to follow
a policy to efficiently identify the root of the alarm. Given that the aging is a
progressive process and thus does not need to be in realtime accommodated, we
propose a round-robin trial adaptation mechanism—the agent travels across a
set of prioritized adaptation states to track back the source of the alarm and then
tries the best to accommodate it (Sect. 2.3.4.1).

(4) How to implement the intentional clock skew?
The intentional skew is used to enable BTA and FTA. One way to obtain

the intentional skew is by inserting delay buffers [5]. However, the drawback
of such delay-buffer based design is poor controllability. For example, suppose
that during the early years of service life almost no adaptation is required, but
these buffers still suffer from aging, contribute to leakage power, and so on. We
propose a new implementing scheme to obtain the skewed clocks in a highly
controllable way, while minimizing the side effects to the adaptation-free period
(Sect. 2.3.5.1, 2.3.5.2).

(5) What if the infrastructure of ReviveNet, sensors and agents, fail to work
due to aging?

ReviveNet is relatively aging resistant because it does not need to be always-
on; most of lifetime it is power-off. Thus, the transistors’ aging rate in sensors
and agents, statistically, is much slower than that in host logics. We shall give
more detailed discussion in next section.

(6) How much extended lifetime can be achieved?
This question is hard to answer due to lack of accurate models that capture

the relationship between a variety of aging mechanisms and aging delay.
To quantitatively study the MTTF (Mean-Time-To-Failure) improvement, we
propose a ReviveNet-enhanced reliability model in which the relationship is
condensed to a hypothetical function .δ (Sect. 2.3.6). Then, we instantiate the
function based on the well-studied NBTI mechanism (Sect. 2.3.7) to show the
effect of ReviveNet, though the reliability model can also be applied to other
aging mechanisms that need more intensive studies in the future. Experimental
results show that up to 48.7% MTTF improvement can be achieved.

Figure 2.28 qualitatively shows the ReviveNet-enhanced lifetime. When
ReviveNet is too exhausted to make any effective adaptation—if any of the
agents fails to accommodate an impending aging failure, the chip is judged
reaching the end of lifetime. ReviveNet can also readily indicate the “incurable”
failure; then, one can proactively take actions, such as replacing the aged chips,
degrading the architectural performance, to minimize the impacts of failure.
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Fig. 2.28 Anticipated effect of ReviveNet

2.3.3 Self-adaptive Fault-Tolerant Pipeline

2.3.3.1 Timing Imbalance

We describe the timing imbalance that can be exploited to tolerate the aging delay
through characterizing pipeline flip-flops. A pipeline flip-flop can be categorized
according to the slack values of related upstream and downstream paths. Specifi-
cally, suppose a flip-flop FF serves as the end point of m paths with slack values
.e1, .e2, .. . ., .em, and the start point of n paths with slack values .s1, .s2, .. . ., .sn. Given
a threshold, T H , which distinguishes the (potential) critical paths (.slack ≤ T H )
from others (.slack > T H ), the flip-flop must fall into one of the four classes:

• Generous Flip-flop (GFF): .∀ei ∈ {.e1, .e2, .. . ., .em}, s.t. .ei > T H , and .∀sj ∈ {.s1,
.s2, .. . ., .sn}, s.t. .sj > T H (say, “Generous” with timing margin).

• Backward Adaptable Flip-flop (BAFF): .∃ei ∈ {.e1, .e2, .. . ., .em}, s.t. .ei ≤ T H , but
.∀sj ∈ {.s1, .s2, .. . ., .sn}, s.t. .sj > T H .

• Forward Adaptable Flip-flop (FAFF): .∀ei ∈ {.e1, .e2, .. . ., .em}, s.t. .ei > T H , but
.∃sj ∈ {.s1, .s2, .. . ., .sn}, s.t. .sj ≤ T H .

• Unadaptable Flip-flop (UAFF): .∃ei ∈ {.e1, .e2, .. . ., .em}, s.t. .ei ≤ T H , and .∃sj ∈
{.s1, .s2, .. . ., .sn}, s.t. .sj ≤ T H .

In the following cases can yield critical paths:

1. start with a FAFF and end with a BAFF, or
2. start with a FAFF and end with a UAFF, or
3. start with a UAFF and end with a BAFF, or
4. start with a UAFF and end with a UAFF.

A critical path in case (2) and (3) can gain extra .T H/2 slack (note that we let the
slack-providing paths still hold at least .T H/2 slack); that in case (1) can gain extra
.T H/2 + T H/2 slack; while that in case (4) cannot gain any extra slack.

Threshold T H is a key factor affecting the design tradeoffs. On one hand,
the larger T H , the higher percentage of UAFFs, thus more critical paths will be
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rendered unadaptable; on the other, the larger T H can facilitate more aggressive
time stealing on adaptable paths. In (Sect. 2.3.7), we will show that neither over-
large nor over-small T H can lead to an optimum design tradeoff.

2.3.3.2 Self-Adaptive Design Example

As a case study, the following investigates the intrinsic timing imbalance in a
industry design.

We took a pipelined FPU adopted by OpenSPARC T1 [79] processor as our
target circuit. This FPU is synthesized using Synopsys Design Compiler with UMC
0.18 .μm technology, and its’ path timing is analyzed with PrimeTime. We set the
performance as the synthesizing priority to smooth the distribution of path delay as
much as possible. The timing analysis results are shown in Fig. 2.29.

Figure 2.29 shows the breakdowns of flip-flops with different type of adaptability,
under six T H configurations: 0.05 (.Tmax), 0.1, 0.15, 0.2, 0.25, and 0.3, where .Tmax

represents the most critical path delay. When T H=0.05, all of the critical paths are
adaptable due to no UAFF appears. With T H increasing, some GFFs fall into the
groups of BAFFs or FAFFs, even UAFFs, but GFFs, BAFFs and FAFFs always
take considerable percentage—that is the “potential” (localized adaptability) which
ReviveNet can exploit.

2.3.4 Self-adaptive Agent

The agents are responsible for controlling the localized adaptations. Before delving
into the implementation details, let’s first suppose that such localized adaptations
can be realized by selecting a clock from multiple available clocks skewed from

Fig. 2.29 Distribution of flip-flops at different T H
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Fig. 2.30 Example of adaptive clock assignment (agent is responsible for generating the clock-
steering signals)

each other, as Fig. 2.30 shows. The adaptability of each flip-flop has been identified
beforehand with a static timing analysis tool. The GFFs’ and UAFFs’ clocks are kept
intact, and each FAFF’s, BAFF’s clock is individually controllable. Dealing with
UAFFs in this way is because no favorable time margins can be exploited without
hurting the timing of other critical paths, so we would rather keep them intact than
take tentative adaptations which cannot guarantee any reliability benefits. A FAFF is
clocked by either original clock (CLK) or forward skewed clock (FCLK) to enable
FTA; a BAFF is clocked by either CLK or backward skewed clock (BCLK) to enable
BTA.

In Fig. 2.30, suppose that a sensor is deployed to monitor all of UAFFs and
BAFFs, when the sensor flags an aging alarm, how does the corresponding agent
perform the clock steering? One way is to enable all of the BAFFs (the FAFFs
are enabled by the next stage’s agent and discussed later); however, such “brutal”
way may significantly sacrifice the timing margins of the innocent paths, thus not
complying with the principle of “localized adaptation”. The following presents a
trial-based approach to address this problem.

2.3.4.1 Round-Robin Trial Adaptation (RRTA)

When a sensor raises an aging alarm, it could be traced back to single or multiple
critical paths. Fortunately, given that circuit aging usually is a gradual process, the
response of an intended adaptation does not need to be in realtime. This allowable
adaptation latency can justify the proposed RRTA approach below.
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RRTA performs in an “identify-then-adapt” manner. Each trial represents an
adaptation state—the value of clock-steering signals of related flip-flops. Algo-
rithm 1 presents the procedure of RRTA.

Algorithm 1: Round-Robin trial adaptation (K)

Data: The Kth Agent receives an aging emergency;
1 for each adaptation state candidates do
2 conduct a trial adaptation;
3 if the emergency is eliminated then
4 break;

// Adaptation succeeded!
5 else
6 Recover this trial adaptation;
7 if all the adaptation states have been reached then break;

// Adaptation failed!
8 end
9 end

The following clarifies how to define the set of adaptation states (related to line
1 in Algorithm 1). Generally, each agent is fed by an aging alarm and a request
from another agent (as shown in Fig. 2.26). For agent .AK and a set of flip-flops FF ,
the aging alarms only trigger the backward adaptations to BAFFs, and the requests
triggers the forward adaptations to FAFFs. The adaptation states are described with
the following example.

Example For the Kth stage with downstream flip-flops .FFk={.f k
1 , . . . , .b

k
1, .b

k
2, .b

k
3,

.uk
1} and upstream flip-flops .FFk−1={.f

k−1
1 , .f k−1

2 , .f k−1
3 , .f k−1

4 , .bk−1
1 , . . . , .uk−1

1 ,
. . . }, where f , b, and u denote FAFF, BAFF, and UAFF, respectively. Agent .AK and
.AK−1 handles .FFk and .FFk−1, respectively. Clearly, only {.bk

1, .b
k
2, .b

k
3} and {.f k−1

1 ,
.f k−1
2 , .f k−1

3 , .f k−1
4 } can contribute to the Kth stage’s adaptations. Furthermore,

suppose that only .f k−1
1 , .f k−1

2 , .f k−1
3 , .f k−1

4 are related inputs to .bk
1, .bk

2, .bk
3. The

correspondence of related FAFFs and BAFFs is easy to identify with logic core
generation algorithms which has been well-studied and widely used on ATPG
(Automatic Test Patten Generation) [88].

The candidates of backward adaptation states (BAS) are denoted by BAS=.BAS0
.∪ .BAS1 .∪ .BAS2 .∪ .BAS3 where each term is a set of states corresponding to .bk

1,
.bk
2, and .bk

3, as follows:

.BAS0 = {000};
BAS1 = {001, 010, 100};
BAS2 = {011, 101, 110};
BAS3 = {111}.
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.BAS0 is an initial state representing no adaption conducted. .BAS1, .BAS2, and
.BAS3 represent 1-bit, 2-bit, and 3-bit backward adaptations conducting on .bk

1,
.bk
2, and .bk

3, respectively. The agent, for example, conducts a “001” adaptation,
means that BCLK for .bk

3 is enabled, while keeping the .bk
1, .bk

2 intact. Clearly, the
perturbation level to the circuit is elevated from .BAS1 to .BAS3 because more bits
adapted implies more perturbations introduced.

On the other hand, if .AK receives an aging alarm, there should be another option:
forward adapting the FAFFs in .FFk−1. To do so, .AK needs to cooperate with .AK−1.
The corresponding candidates of forward adaptation states (FAS), similarly to BAS,
can be defined as FAS=.FAS0 .∪ .FAS1 .∪ .FAS2 .∪ .FAS3 .∪ .FAS4, where

.FAS0 = {0000};
FAS1 = {0001, 0010, 0100, 1000};
FAS2 = {0011, 0101, 1001, 0110, 1010, 1100};
FAS3 = {0111, 1011, 1101, 1110};
FAS4 = {1111}.

Priority of Adaptation States These adaptation states have to be prioritized to
make the adaptations agree with “perturbation-least” principle. We have explained
that the priority of states in BAS is .BAS1 .> .BAS2 .> .BAS3. Clearly, for the same
reason, the FAS should meet: .FAS1 .> .FAS2 .> .FAS3 .> .FAS4. It is preferred to
enable one or multiple BAFFs in .FFk since this is the most direct and effective way
to accommodate an aging emergency. So .BAS1 to .BAS3 are given the top priority.
And the states in .FAS1 to .FAS4 are given lower priority since these states involve
FAFFs which just can indirectly contribute to the aging delay tolerance. Then the
overall priority over these states can be presented as: .BAS1 .> .BAS2 .> .BAS3 .>

.FAS1 .> .FAS2 .> .FAS3 .> .FAS4.
Adaptation Latency The worst case adaptation latency in number of trials for the
above example is 22 (sum of adaptation states). In fact, in the early period of aging,
the number of trials will be much smaller than the worst case since most aging
alarms would be easily accommodated with high priority states. The situation cannot
become much worse with the gradually exacerbated aging process because many
high-priority states have been used in the early stage, thereby gradually shrinking
the set of available states. In addition, the worst case will not exponentially increase
with the increasing number of flip-flops because in the same stage, there can be
multiple independent agents and each of them works under limited complexity.
Furthermore, in Sect. 2.3.4.4, we present two optimizing approaches to further
reduce the hardware overhead.
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Fig. 2.31 Adaptation agent

2.3.4.2 Agent Implementation

Figure 2.31 shows the top view of an agent architecture. The agent can send a
request .ReqK−1 to an agent in the .(K − 1)st stage to enable forward adaptation
for the Kth stage logics, and can also receive .ReqK+1 coming from an agent in the
.(K +1)st stage to enable forward adaptation for the .(K +1)st stage logics. A failure
signal (.f K ) is asserted if an aging alarm still appears after the agent has traveled the
all adaptation states.

Each agent consists of a RRTA unit and a False Alarm Filter; the RRTA is a
finite state machine (FSM), and the filter is a counter. Signal .AgeK , which is an
aging alarm signal coming from an aging sensor, is cycle-updated. The adaptation
process, however, should not be triggered at the same pace, otherwise it could incur
useless adaptations due to the presence of false alarms.

2.3.4.3 False Alarm Filter

The false alarms are caused by subtle dynamic variations [15] such as power noise,
temperature fluctuation. But aging can still be reliably detected even in the presence
of these dynamic variations. The main reason is that the locations of aged paths
generally won’t change over time. This is very different from the power noise which
mainly results from the time-varying current demand and exhibits much randomness
in both spatial and temporary dimensions. Hence, the aging alarms traced back
to the same spots are more “repetitive”, by contrast to the more random dynamic
variations. By exploiting the repetitiveness, we can filter the most, if not all, false
alarms.

Identifying the “repetitiveness” can be realized with a counter, which records
the number of alarms in a specified span of time. A confident aging alarm (.CK )
is asserted only when corresponding counter reaches a threshold (T h) that has
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Fig. 2.32 Example of filter counter change

been calibrated according to some alarm statistics. To eliminate the aggregate effect
of these false alarms, after each period of trial adaptation, the counter should be
cleared.

Figure 2.32 exemplifies the change of a filter counter over time. The normal
perturbations (false alarms) have little chance to trigger adaptations; two adaption
trials are conducted: the first fails, thus the counter still keeps growing after the
invalid adaptation, while the second succeeds and the counter does not increase any
more.

2.3.4.4 Complexity Analysis and Two Critical Optimizations

In Example 9, for agent .AK handling 7-bit clock-steering signals (3 bit for BAFFs
and 4 bit for FAFFs), there are up to 22 (.23 − 1 + 24 − 1) candidate states.
Furthermore, each agent owns a private filter, which could incur non-negligible
area overhead. Fortunately, with the following two optimizations the potential
complexity can be decreased significantly.

Many adaptation state candidates can be removed with little loss of adaptability.
The following shows how to use “logic cones” analysis to

1. remove those low-effective states for loose-couple logic cones, or
2. merge them for tight-couple logic cones.

Example Figure 2.33 exemplifies a stage of logic covered in two logic cones without
overlap—loose-couple, referred to case (a) and with some overlap—tight-couple,
referred to case (b). Suppose that flip-flop F1, F2, F3, and F4 are FAFFs and F5, F6
are BAFFs.

For case (a), the basic adaption states for F5 and F6 are {01, 10, 11}. Clearly, the
state “11” is effective only in the case: (at least) one aged path in each logic cone
causes aging alarm at the same time. Such “coincidence”, however, hardly happens;
thus, we can safely remove the “11” from the adaptation state candidates. Similarly,
the forward adaption states (for F1, F2, F3, F4) can be simplified from {0001, 0010,
.. . ., 1111} to {0001, 0010, 0100, 1000, 0011, 1100}.

For case (b), the overlap can reduce some efficiency of such optimization.
Removing state “11” for F5 and F6 may be problematic since an aging alarm could
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Fig. 2.33 Logic cones. (a) Loose-couple logic cones. (b) Tight-couple logic cones

Fig. 2.34 Two agents share one false alarm filter

be raised at F5 and F6 simultaneously if aging happens in the overlap zone. For the
same reason, the forward adaptation states should not be removed. However, since
these two logic cones is tightly coupled, using 1-bit state for F5 and F6 should be
reasonable. Then the backward adaptation states can be reduced from {01, 10, 11}
to {1}. Similarly, the forward adaptation states can be simplified to {001, 010, 100,
011, 110, 111} (for F1, .<F2, F3.>, F4).

Each agent owning a private false-alarm filter is cost-inefficient, since such
private filter is only necessary in such case: all the agents are active at the same
time—that is a quite small probability event. Enabling filter sharing can be readily
implemented by appending selection-indicating bits S to original filter. Figure 2.34
shows an example of two agents sharing one filter.
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The above have described the individual agent design and functionality; the
following will detail how to deploy the agents and corresponding sensors with
respect to the correspondence of BAFFs, FAFFs, and UAFFs.

2.3.4.5 Deploy Agents and Sensors

Suppose that the Kth stage with downstream flip-flops

.FFk = {f k
1 , . . . , bk

1, . . . , b
k
s , uk

1, . . . , u
k
t , gk

1, . . .},

and upstream flip-flops

.FFk−1 = {f k−1
1 , . . . , f k−1

r , bk−1
1 , . . . , uk−1

1 , . . . , gk−1
1 , . . .}.

Among these flip-flops, only .{bk
1, .. . ., .b

k
s } and .{f k−1

1 , .. . ., .f k−1
r } can contribute to the

adaptation in the Kth stage. We explain the policy of deployment with the following
example:

Figure 2.35 shows the Kth stage’s upstream and downstream flip-flops that can
contribute to adaptation, and each sensor is assumed to handle eight signals at the
most. Sensor .S1, .. . ., .Sn are assigned to .b1, .. . ., .bs , and .Sn+1, .. . ., .Sm to .u1, . . . , ut .
Furthermore, suppose that the upstream flip-flops can be divided into three loose-
couple groups: .f1, . . . , fp are relevant inputs to .b9, . . . , b16, .fp+1, . . . , fq to
.b17, . . . , bs , and .fq+1, . . . , fr to .b1, . . . , b8. Three polices can be used to guide
the deployment:

1. The agents are not required for the UAFFs, e.g. .u1, . . . , ut ; but sensors is
required, i.e. .Sn+1, .. . ., .Sm.

2. The agents assigned to FAFFs, unlike that assigned to BAFFs, are triggered by
the downstream agents, rather than by any sensors (so false alarm filters are not
necessary for the FAFFs’ agents).

3. The connecting relations between upstream agents and downstream agents is
determined by the target circuit topology which can be obtained by conduct-
ing logic cones analysis (the ultimate goal of using logic cones analysis for

Fig. 2.35 Deploying sensors and agents



100 2 Fault-Tolerant Circuits

ReviveNet is to extract all loose-couple logic cones, and merging all tight-
coupling logic cones).

The number of required sensors .Nsensor for the Kth stage is

.Nsensor = s

BWsensor

, (2.33)

where .BWsensor denotes the maximum number of nodes that each sensor can
handle.

The number of required agents .Nagent is

.Nagent = Ndn
agent + N

up
agent , (2.34)

where .Ndn
agent denotes the number of downstream agents and .N

up
agent denotes that of

upstream agents. Generally, each downstream agent is assigned a sensor and has the
same bandwidth with the associated sensor, so

.Ndn
agent = Nsensor . (2.35)

The number of upstream agents and its’ bandwidth, however, is circuit topology-
specific; thus the area of each upstream agents are not constant. For instance, the
upstream A1, A2, and A3 in Fig. 2.35 may handle different number of FAFFs
(different bandwidth).

Base on the above analysis, we present a typical organization of agents for a N-
stage pipeline in Fig. 2.36 (no filter sharing illustrated for simplicity), where .AgeK

is a set of aging alarm signals from the .Kth stage and .SK is a set of clock-steering
signals to enable localized adaptations.

Fig. 2.36 A group of synergistic agents for a n-stage pipeline
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2.3.5 Architecture Implementation

2.3.5.1 Clock Generation and Overhead Analysis

ReviveNet needs two extra clocks, FCLK and BCLK, with intentional skew from
CLK. These clocks can be generated by using a DLL (delay-locked loop). DLLs are
widely used to reduce the clock skew across clock domains [41, 58, 93]. The detailed
design of a DLL is beyond the scope of this book. A major concern is whether those
PVT (process, voltage, and temperature) variations can spoil the intentional skew.
Fortunately, many industry practices have shown that implementing clocks with
only picoseconds of skew is very practical. For example, even in conventional tree-
based clock networks across 500 .mm2 processor die with frequency up to 2.5GHz,
the unintended clock skew can be efficiently limited less than 10 ps [23]. Thus, it
can be extrapolated that for relatively spatial concentrated pipeline logics with less
die area, the unintentional skew can be further optimized. In fact, even “10 ps” is
generally one order of magnitude smaller than the intentional skew. Moreover, the
power consumption of a processor’s DLLs, commonly, is less than 2% [24], and
the hardware overhead is very limited. Hence, with the state-of-the-art clocking
techniques, we believe that generating the adaptation clocks won’t be a major
obstacle.

In our scheme, we point out that although ReviveNet needs two extra clocks,
our evaluation results show that on average the load of each of them is only about
20% of CLK’s. This is because only BAFFs and FAFFs need to be deployed with
extra clocks, while the proportion of the two types of flip-flops takes only about
19%. That means more than 80% clock distributions are kept intact. This implies
that (1) the clock power will not be tripled but far less than that (Sect. 2.3.7.2), and
(2) the routing complexity will not be significantly increased. So, the overall design
complexity should be in check.

2.3.5.2 ReviveNet-Supported Clock Gating

Since aging adaptations usually are conducted on minority aging-prominent logics,
so for the rest logics, It’s better to keep the associated standby clocks off.

ReviveNet can readily support a high-efficient clock gating to further reduce
the extra power consumed by the additional FCLK and BCLK. Figure 2.37 shows
ReviveNet’s clock network. The basic clock routing for CLK can be found in [24].
Usually, the pipeline will not suffer from aging in the early phase of lifetime, so
FCLK and BCLK do not need to be enabled during that period. Two “root” clock
gates, A and B, are employed to totally cut FLCK and BCLK off the DLL; thereby
no power is consumed on the extra clock networks. If some parts of the pipeline
need to be adapted, the corresponding root gate and branch gate can be switched on
on-demand, while the unrelated clock branches are still kept off.
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Fig. 2.37 ReviveNet-supported clock gating

2.3.5.3 Implication of Multi-Cycle Paths

Since a multi-cycle path usually consist more logic gates, the timing margin that a
single-cycle path is able to share is likely to be inadequate. For example, suppose
the cycle period is 1 ns, for a 5-cycle path with fresh path delay 4.7 ns. Then 10%
degradation yields 5.17 ns (.4.7 + 4.7 × 10%), which must violate the 5-cycle path
timing requirement. But a single-cycle path can only contribute 0.075 ns (1.×15%/2)
slack (suppose T H = 0.15). Hence, although this slack, if exploited, can partially
alleviate the aging delay, we had better not rely on single-cycle paths to salvage
multi-cycle paths.

For multi-cycle paths, especially for “many-cycle” paths, we think a more
effective way is to resort to some logic optimizations. For example, re-organize the
5-cycle paths into 6-cycle paths, to naturally gain more aging tolerability, though
this approach usually needs to interact with some microarchitecture implications
(which are supposed to beyond the scope of this book).

2.3.5.4 Impact of ReviveNet Wearout

Aging can indeed affect all logics on the chip, including aging sensors, adaptation
agents, and even clocks networks.

Among them, the adaptation agents are relatively timing-non-critical; the latency
of each adaptation, for example, increase from 1 cycle to 2 cycles should not be
critical for an effective adaptation. This implies that, to protect these agents from
the impact of aging, we can “over-design” the agents; that is to reserve conservative
timing margins for these agents. For the clock networks, aging may results skew
drift. Since skew-controlling actually is one of the primary objectives in many
traditional clock optimizations, and we suppose that is beyond the scope of this
book. The sensor degradation, however, can impair the effectiveness of the proposed
ReviveNet; after all, we cannot count on the adaptations triggered by unreliable
sensors.
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Fortunately, because the sensors’ area and power overhead are small (.<5%
and 1%, respectively), so we can also over-design those sensors by using such as
transistor-sizing techniques [65]. Usually, transistor-sizing impose about 9% area
overhead [65], the overall extra overhead, therefore, should be very small.

2.3.6 Model Based Reliability Analysis

2.3.6.1 Reliability Model

Commonly, the reliability of semiconductor is modeled with Weibull distribution
[67]. Given a circuit, the reliability at time t is given by

.R(t) = exp[−(
t

α
)β ] (2.36)

where .α is the characteristic time-to-failure and .β is the shape parameter [67]. The
MTTF is calculated by

.MT T F =
∫ ∞

0
R(t) dt. (2.37)

Suppose that there are n critical paths in the target circuits. The reliability of the
ith path at time t can be expressed as

.Ri(t) = P(Ti(t) < T ) (2.38)

where, .Ti(t) denotes the delay of the ith path at time t ; T is the clock cycle period.
Let’s further assume that these paths are independent to each other, as Bowman et
al. assumed in [16]. Then, .R(t) can be put in another way:

.R(t) =
n∏

i=1

Ri(t) =
n∏

i=1

P(Ti(t) < T ). (2.39)

Moreover, we treat each critical path as a “mini-component”, then .Ri(t) can be
expressed as

.Ri(t) = P(Ti(t) < T ) = exp[−(
t

αi

)βi ], (2.40)

then we have

.R(t) =
n∏

i=1

exp[−(
t

αi

)βi ] = exp[−
n∑

i=1

(
t

αi

)βi ]. (2.41)
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The corresponding MTTF can be calculated by

.MT T F =
∫ ∞

0
exp[−

n∑
i=1

(
t

αi

)βi ] dt. (2.42)

The above general analysis has not taken the effect of ReviveNet into account
yet, and the following will involve it. When considering ReviveNet, the group of
.R = {R1(t), .R2(t),.. . ., .Rn(t)} can be divided into three groups according to the
adaptability of each critical path:

• Group 1: the set of critical paths in case (2) and (3) (Sect. 2.3.3.1) which can only
be backward or forward adapted by .T H/2;

• Group 2: the set of critical paths in case 1) which can not only be backward, but
also forward adapted by .(T H/2 + T H/2) = T H ;

• Group 3: the set of critical paths in case 4) which are unadaptable.

Suppose that there are l paths in Group 1, m paths in Group 2, and the other
.(n − l − m) in Group 3. Without loss of generality, denote the first group as .Ru =
{R1(t), R2(t), . . . , Rl(t)}, the second group as .Rb = {Rl+1(t), . . . , Rl+m(t)}, and
the third group as .Rn = {Rl+m+1(t), . . . , Rn(t)}. Then we have the ReviveNet-
involved reliability term .R̃i(t), as follows:

.R̃i(t) =
⎧⎨
⎩

P(Ti(t) < T + T H/2) if i = 1, 2, . . . , l,
P (Ti(t) < T + T H) if i = l + 1, . . . , l + m,

P (Ti(t) < T ) if i = l + m + 1, . . . , n.

(2.43)

The enhanced MTTF can be obtained:

.MT T FR =
∫ ∞

0

n∏
i=1

R̃i(t) dt. (2.44)

We define a relative MTTF improvement, EX (short for “EXtension of life-
time”), denoted by

.EX = MT T FR

MT T F
(2.45)

to evaluate the effect of ReviveNet.
To calculateEX we have to figure out the relations: .αi = αi(T ), and .βi = βi(T ).

Figure 2.38 shows the qualitative relations; the following describes how to figure out
the two relations.

In Weibull distribution,

.β = 1.38

ln(t50/t16)
, and α = t50

ln(2)1/β
≈ t63 (2.46)
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Fig. 2.38 Weibull failure rate
in wearout period

where .tx means the lifetime at the failure rate .x% [67], as shown in Fig. 2.38.
Intuitively, given a critical path, if more margin is reserved for it, then the wearout
should be also postponed, as curve I and II show. ReviveNet can provide margin
for some critical paths, thereby postponing the onset of wearout. In the following,
relying on the assumption: the curve I and II are same in “shape”, can greatly
simplify the discussion, although the actual failure rate in the wearout region for
I and II may slightly differ from each other.

Figure 2.38 also reveals the effect of ReviveNet for a specific critical path can be
reflected by the parameter .α and .β. Let .t50 = t16 +Δ, and commonly, .Δ 
 t16 then

.β = 1.38

ln(1 + Δ/t16)
≈ 1.38

Δ/t16
(2.47)

For the both curves, because .ΔI = ΔII , so

.
βI

βII

= t16,I

t16,I I

,
αI

αII

= t63,I

t63,I I

(2.48)

Furthermore, let

.t16,I I = t16,I + g(δ) and t63,I I = t63,I + g(δ) (2.49)

where .g(δ) denotes the lifetime extension contributed by tolerating .δ aging delay; .δ
can be 0, .T H/2, or T H , determined by the specific adaptability of paths. Clearly,
function .g(δ) is highly dependent to specific aging mechanisms. Unfortunately,
no such function proposed so far that can accurately reflect the performance
degradation over time under a variety of aging mechanisms (some of them such as
dielectric breakdown even have not been well-understood by the community [37]).
In the following case study, we just use the relatively well-studied NBTI, one of the
major reliability challenge, as target aging mechanism to evaluate the ReviveNet.
We expect the physical community to contribute a much more versatile .g(δ) in the
near future.
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Fig. 2.39 NBTI degradation

Paul et al. proposed a NBTI circuit delay model that capture the relation ship
between the threshold voltage change and resultant delay degradation [13]: the
NBTI degradation is much fast at the early years, and then slowed down later, as
the trend shown in Fig. 2.39. Moreover, Fig. 2.39 also shows the relation between .δ

and g; we obtain .g(δ) by regressing the results in [91]. More details are presented
in Sect. 2.3.7.2.

2.3.6.2 Implication of T H

Equation (2.43) implies an essential tradeoff behind ReviveNet. Note that the critical
paths in Group 3 is free from ReviveNet; only the Group 1 and Group 2 can
contribute to the lifetime improvement. However, given a target circuits, the sizes
of the three groups are depends on the T H : on one hand, larger T H can result
higher percentage of UAFFs, and thereby more critical paths in Group 3, and thus
leads to fewer adaptable critical paths; on the other, the larger T H implies that more
aggressive tolerability to aging delay on those adaptable critical paths. Hence, given
a circuit, there should be an optimum T H that can maximize the EX.

2.3.7 Case Study and Discussion

2.3.7.1 Experiment Setups

We took a fully pipelined FPU [79] as our target circuit which implements the
SPARC V9 floating-point instructions and supports all IEEE 754 floating-point data
types. The FPU comprises three independent pipelines: Multiplier pipeline (MUL),
Adder pipeline (ADD) and Divider pipeline (DIV). We used the largest MUL, which
takes up to 50% area of the FPU, as the target pipeline. More design details can be
found in [79].
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The FPU was synthesized using Design Compiler with UMC 0.18 .μm technol-
ogy.We set the performance as the synthesizing priority to smooth the distribution of
path delay as much as possible. Then, the path delay was analyzed with PrimeTime.

First, we identify the adaptability of each pipeline flip-flop, based on the STA
results. Then, the deployment of sensors and agents can be determined as follows:
for each flip-flops i, find the upstream flip-flops that in the same logic cone; this can
be done by matching the start points of paths ended with the flip-flop i. The number
of required sensors and agents can be figured out by using Eqs. (2.33) and (2.34).
Then, we evaluate the MTTF improvement (EX) by using the proposed reliability
model. Finally, we present the overhead in terms of area, power, and performance.

2.3.7.2 Results and Discussions

Lifetime Improvement Analysis We conduct the lifetime evaluation based on the
65 nm technology (the STA results actually are based on a 180 nm technology due
to lack of 65 nm compiler libraries. To match the following analysis, we scale the
STA results to 65 nm based on scaling theory [42]). The NBTI degradation results
are from [91]. The lifetime is studied at different configurations: without ReviveNet,
and with ReviveNet, at T H = 5% (of the delay of the most critical path), 10%, 15%,
20%, 25%, 30%, respectively. The necessary .g(δ) at these T H is as follows:

.

g(0.05) = 876(hours); g(0.1) = 8760(hours);
g(0.15) = 21, 900(hours); g(0.2) = 43, 800(hours);
g(0.25) = 87, 600(hours); g(0.3) = 131, 400(hours).

(2.50)

For example, .g(0.05) = 876 (hours) means that the 5% tolerability to delay
degradation can translate to 876 hours lifetime extension. The above results
faithfully reflect that NBTI degradation which is much faster at the early years and
slowed down over time.

Next, the Weibull parameter .α and .β is calculated as follows: we use empirical
data: .t16 = 35,040 hours (4 years) and .t63 = 39,420 hours (4.5 year) (thus .Δ =
4380 hours). Then, from Eq. (2.46), we have the original .α and .β for a critical path
is .α = 39, 420 (hours), β = 11.04. Then, combined Eq. (2.50) with Eq. (2.49) and
then put it into Eq. (2.48), the new .α and .β at different T H can be obtained. When
calculating MTTF, we assume that the critical paths with the same adaptability have
the same .α and .β.

Finally, base on the STA results, the three path groups .Ru, .Rb, and .Rn at different
T H configurations can be determined, respectively.

With the above preparation, the original and improved MTTF can be calculated
with Eqs. (2.42) and (2.44); Fig. 2.40 shows the detailed results that offer a
significant insight: larger T H does not necessarily results higher improvement in
lifetime reliability. The underling reason is on one hand larger T H can facilitate
more aggressive timing stealing, thereby improving more reliability for adaptable
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Fig. 2.40 MTTF improvement at different T H and clock skew variations. (a) Skew variation: 1%.
(b) Skew variation: 3%. (c) Skew variation: 5%

paths; on the other, larger T H will definitely results more UAFFs and thereby more
unadaptable paths. In other words, the overall MTTF is determined not only the
reliability benefit of individual path, but also the population of paths governed by
ReviveNet. At the optimum configuration, T H = 20%, MTTF can be improved by
48.7%.
Impact of Clock Skew Variation The effectiveness of ReviveNet, as concerned
in Sect. 2.3.5.1, is also impacted by the variation in clock skew (measured by
skew/cycle_period). The impact actually results in corresponding variation in
“effective” T H . We find that the degradation can only be marginally impacted if
the adaptation clocks are kept beyond a large interval, say, T H > 0.2. Specifically,
Fig. 2.40a, b, and c shows the EX variation under different clock skew variations:
1%, 3%, and 5%, respectively. Two trends can be clearly identified: (1) the
degradation in effectiveness reduces with T H increasing, and (2) the larger clock
skew variation results in more variation in MTTF improvement. Hence, the worst-
case efficacy under overly “weak” adaptation intensity, i.e. T H < 0.1, can be
significantly reduced under 3% skew variation, and even totally diminished under
5% skew variation, as shown in Fig. 2.40b and c. However, the optimal design point
is around T H = 0.2 where the impact of clock skew is marginal.

In addition, it is practical to keep the clock skew below 3% by using the state-of-
the-art clocking techniques (for example, 10 ps skew variation for 2.5GHz Itanium
processor [23]). This can further justify the effectiveness of ReviveNet.
Overhead Analysis We evaluate ReviveNet’s overhead from three aspects: silicon
area, power, and performance. The overhead largely depends on the parameter
T H .

1. Area Overhead.

Sensor Configuration The number of sensors for each stage depends on specific
sensor design [8, 94]; we take the configuration of one sensor handles eight signals.
Agent Configuration Agents are configured as follows: 6-bit False Alarm Filter
which can filter as much as 64 false alarms during one adaptation period. We study
the area overhead with different degrees of Filter sharing: no sharing, two agents
sharing one filter, four agents sharing one filter, and eight agents sharing one filter.
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Fig. 2.41 Area overhead with different sharing configurations

The sensor and agents are insert into the original MUL netlist, and re-synthesized
using the same technology. Figure 2.41 shows the overall area overhead under
different configurations. Generally, the area overhead is small: only 9.5% at the
recommended T H = 0.2.

2. Power Overhead.

Power overhead mainly comes from ReviveNet logics (sensors and agents) and
extra clock networks. That is

.Poverhead = Plogic + Pclk = (Psensor + Pagent ) + Pclk.

The following results show that Plogic is negligible, and the major power overhead
results from Pclk .

(1) Logic Power. We use PrimePower to evaluate Plogic. Evaluation results show
that even in the worst case—each sensor raises an aging alarm in every cycle—
the power overhead caused by the sensors and agents is negligible. Figure 2.42
shows that a typical logic power overhead (T H = 0.2) is less than 5%.
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Fig. 2.42 Power overhead of
sensors and agents in working
mode

(2) Clock Power. The worst case overhead of clock power, Pclk , is more significant
than that of logics. In ReviveNet, the clock power can be calculated as

Pclkall = Ppipeff s + PDLL + Pbuf + Pwire + Pmux [24]

where Ppipeff s and PDLL is the power consumed by pipeline flip-flops and
DLL, and Pbuf , Pwire, and Pmux , are power consumed by clock buffers
(drivers), clock wires, and clock multiplexers, respectively. Ppipeff s and PDLL

stay unchanged because little modifications are made to them. The clock buffers
which take the most proportion, 56%, in the original pipelines, increase by 32%
to support FCLK and BCLK networks (the increase in buffers is proportion to
the increase in clock load). Pwire almost triples, but it takes only about 10%
in original pipelines. Compared with the other proportions, Pmux is ignorable.
Overall, the clock power increases by 38%.
The previous study [24] shows generally for a pipelined processor, the clock
power is about the 30�40% (denoted by η) of the total power, so this increase
contribute to the overall power overhead is calculate by

.[(1 − η) + η × (1 + 38%)] − 100%.

Since η is about 30�40%, the overall overhead should be between 11.4�15.2%.
Note that this overall power overhead is in the Worst Case—all the drivers of
FCLK and BCLK are turned on. However, little power overhead is imposed in
the early period of lifetime, because few of the extra logics and clock networks
need to be turned on due to little appreciable aging delay. Moreover, we believe
with ReviveNet-supported clock gating, the overall power overhead can be
significantly reduced even after the onset of wearout.
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3. Performance Overhead.
ReviveNet needs some sensors. From circuit design perspective, these sensors
can cause some capacitance load to the target pipelines. This concern, however,
will not be substantial because the performance penalty imposed by such
capacitance load is less than 1% [8, 94].

ReviveNet improves the lifetime reliability only by tolerating the aging delay,
which may not be comprehensively enough. In addition, ReviveNet does not
suppose to handle some “abrupt” wearout which in reality is possible due to some
mechanical stress induced failures. In addition, ReviveNet is not designed for coping
with all corner cases, but for average case; in other words, ReviveNet is statistically
effective, rather than deterministic.

2.3.8 Discussion

The proposed ReviveNet architecture, without compromising with the nominal
architectural performance, can efficiently hide the aging induced delay, thereby
improving the lifetime reliability. The weakest links of lifetime can be locally and
efficiently remedied by enabling a path-grained adaptation mechanism; ReviveNet
employs a group of collaborative cost-efficient agents to achieve this purpose. A new
reliability model is also proposed to quantitatively evaluate the effect of ReviveNet.
Evaluation results based on a case study show that the ReviveNet can improve the
MTTF by 48.7%, at the expense of about 9.5% area overhead, and about 4.9% power
increase during aging-free period.

2.4 Summary

In ultra-deep submicrometer technology, soft errors and device aging are two
of the paramount reliability concerns. To achieve an optimum performance-cost
trade-off, we propose a unified fault detection called SVDF, which grounds on
stability violation, derived from analysis of signal behavior. SVDF is an unified
fault detection scheme that handles the soft errors, aging delay, and delay faults.
Experimental results show that SVFD has more versatile fault detection capability
for fault detection than several schemes recently proposed at comparable overhead
in terms of area, power, and performance.

With the scaling of semiconductor process technology, the performance of
modern VLSI chips improves significantly. The on-chip path delay measurement is
one of the effective performance evaluation techniques that provides a cost-effective
alternative way to perform delay defect detection and silicon debug in modern
VLSI chips. To help to reduce hardware overheads and delay measurement time,
we propose a novel on-chip path delay measurement architecture, OCDM, for path
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delay testing and silicon debug. OCDM employs several delay stages, whose delay
ranges are increased by a factor of two gradually from the last to the first delay
stage. Thus, the proposed OCDM circuit can achieve a large delay measurement
range with a small quantity of delay stages.

The device and reliability communities have devoted much efforts to lifetime
projection, but less to design for lifetime reliability. To tackle this problem,
we propose a hardware-implemented aging-aware and self-adaptive architecture,
ReviveNet, to exploiting fine-grained lifetime reliability. We use a localized timing
adaptation mechanism to locally cope with the aged critical paths. Therefore,
the lifetime can be extended significantly through exploiting such “path-grained”
adaptability.
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Chapter 3
Fault-Tolerant General Purposed
Processors

Abstract With the continuous decrease of CMOS feature size and threshold volt-
age, microprocessors are expected to see increasing failure rates due to intermittent
faults, in company with soft errors and hard faults. With intermittent faults gradually
becoming a major source of failures, a simple and quantitative metric is needed to
guide reliable design for microprocessors. Having such a metric will help designers
analyze which part of a microprocessor is more vulnerable to intermittent faults,
and then select optimal protection techniques at an early design stage. To tackle this
problem, we propose a metric intermittent vulnerability factor (IVF) to represent
the probability that an intermittent fault in a structure will manifest itself in an
observable program output. We also propose several IVF computation algorithms
considering three intermittent fault models: intermittent stuck-at-1 and stuck-at-0
fault model, intermittent open and short fault model, and intermittent timing fault
model. To further improve system reliability, accurately quantify the degradation
of a given core is often of critical importance. We propose a novel core-level
degradation quantification scheme, CoreRank, to facilitate the management. We
first develop a new degradation metric, called “healthy condition”, to capture the
implication of performance degradation of a core with specific degraded compo-
nents. Then, we propose a performance sampling scheme by using micro-operation
streams, called snippet, to statistically quantify cores’ healthy condition. We find
that similar snippets exhibit stable performance distribution, which makes them
ideal micro-benchmarks to testify the core-level healthy conditions. We develop a
hardware-implemented version of CoreRank based on bloom filter and hash table.
Unlike the traditional “faulty” or “fault-free” judgement, CoreRank provides a key
facility to make better use of those imperfect cores that suffered from various
progressive aging mechanisms such as negative bias temperature instability (NBTI),
hot carrier injection (HCI).
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3.1 Challenges of Fault-Tolerant Processor Design

3.1.1 Processor Vulnerability Characterizing

With the continuous decrease of CMOS feature size and threshold voltage, micro-
processors are expected to see increasing failure rates due to intermittent faults,
in company with soft errors and hard faults [16, 36, 42]. Intermittent faults are
hardware errors which occur frequently and irregularly for a period of time,
commonly due to manufacturing residuals or process variation, combined with
voltage and temperature fluctuations [15, 77]. Soft errors, namely transient faults,
are caused by energetic particles such as alpha particles from packaging material
and neutrons from the atmosphere. Hard faults reflect irreversible physical changes,
mainly caused by manufacturing defects, such as contamination in silicon devices
or wear-out of materials. Conventionally, soft errors and hard faults have been
considered as the major factor of program failures, and the effects of these
faults have been extensively analyzed [29, 61]. Nevertheless, field collected data
and failure analysis show that intermittent faults also become a major source of
failures in new-generation microprocessors [17]. Without protection techniques,
the microprocessor failure rates due to these faults will greatly increase with the
exponential growth in the number of transistors.

To improve system reliability, prior work has proposed a variety of techniques to
deal with these faults from circuit level to architecture level. Optimal protection
techniques should meet a predefined reliability budget while with minimal per-
formance, area, and energy penalties. As the number of ways that different faults
manifest are likely to rise, leading to a consequential increase in the complexity and
overhead of the techniques to tolerate them. Traditional protection techniques, for
example, dual or triple modular redundancy results in at least 100% hardware and
energy overhead [64, 78]. Solutions such as full redundant multithreading (RMT)
and various partial redundancy schemes based on RMT also lead to about 30%
performance degradation [45, 49, 56, 63]. In a recent workshop, an industry panel
converged on a 10% area overhead target to handle all sources of chip errors as
a guide for microprocessor designers [40]. Therefore, designers should evaluate
the pros and cons of different protection techniques. Heavyweight protection
techniques (such as strict hardware duplication) can ensure system reliability but
incur unnecessary overheads, while lightweight protection (such as partial software
redundancy) techniques can reduce the protection overheads but may be hard to
satisfy the desired reliability goal.

Researchers have utilized several metrics to guide microprocessor reliability
design. Two most widely used metrics are mean time to failure (MTTF) and
failures in time (FIT). MTTF and FIT are used as metrics to describe component
reliability, but are incapable of explicitly characterizing the inherent masking effect
of hardware structures to a fault and the utilization of different structures. Recently,
researchers have proposed several architecture level metrics to characterize the
vulnerability of microprocessor structures to soft errors and hard faults. Mukherjee
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et al. [46] propose architecture vulnerability factor (AVF) to describe the probability
that a soft error in a structure leads to an external visible error. Sridharan et al.
[66, 67] propose two metrics program vulnerability factor (PVF) and hardware
vulnerability factor (HVF) to characterize the masking effect of soft errors at archi-
tecture level and microarchitecture level, respectively. Bower et al. [7] introduce
hard-fault architectural vulnerability factor (H-AVF) to help designers to compare
various hard-fault tolerance methods. Since intermittent faults are very different
from soft errors and hard faults, existing evaluation metrics can not accurately
reflect the vulnerability of microprocessor structures to intermittent faults. With
intermittent faults gradually becoming a major source of failures, a simple and
quantitative metric is needed to guide reliable design for microprocessors. Having
such a metric will help designers analyze which part of a microprocessor is more
vulnerable to intermittent faults, and then select optimal protection techniques at an
early design stage. However, characterizing the vulnerability to intermittent faults is
far from mature.

In the first part of this chapter, we propose a metric intermittent vulnerability
factor (IVF) to represent the probability that an intermittent fault in a structure
will manifest itself in an observable program output. We analyze IVFs for two
representative microprocessor structures: reorder buffer and register file.We then
propose several IVF computation algorithms considering three intermittent fault
models: intermittent stuck-at-1 and stuck-at-0 fault model, intermittent open and
short fault model, and intermittent timing fault model. We exploit a cycle-accurate
simulator Sim-Alpha to implement the proposed IVF computation algorithms and
use SPEC CPU2000 integer benchmark suite as the workload.

3.1.2 Sick Processor Management

The growing integration density of transistors has been escorted by progressive
semiconductor technologies for the past three decades. Unsurprisingly, the scale
and complexity of modern microprocessors have reached a unprecedented level,
and 1000-core processor will not be a buzz word but reality [6]. Unfortunately, we
still face grand challenges to drive such powerful processor with a sea of computing
cores to work efficiently.

One of the looming challenges is core management, which directly determines
the harvestable performance of the powerful hardware substrate. This challenge
in essence comes from the core-to-core heterogeneity, either intentional due to
architectural innovations such as “bigLITTLE” architectures [28], or unintentional
due to process variation [9, 58], aging [5, 12, 68, 79], and core salvaging [34, 62], i.e.
decoupling some faulty microarchitectural components for reliability reasons. Such
core-to-core heterogeneity results in functionally equivalent cores with different
performance levels. Intel and ARM demonstrated adaptive RISC core designs
to tolerate such dynamic variations, at the expense of performance degradation
[10, 74]. In the near future, we believe that the core-level unintentional heterogeneity
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Fig. 3.1 Performance degradation vs. defect degrees of inst. window (UL), L1 inst. cache (UR),
L1 data cache(LL), L2 cache(LR)

would be more significant, given the faulty components and aging effects would be
more prevalent and prominent in smaller technology nodes [5]. We call such aging-
induced performance degradation as “Sick Silicon” problem. Therefore, instead of
simply ruling out those cores salvaged from various defects, we should try to hide
the imperfections.

An obvious solution to this problem is always prioritizing the cores with
the least “degradation”. However, we find that it’s not that intuitively simple
to quantify the degradation. First, the performance degradation depends on both
applications and defect degrees, as Fig. 3.1 shows. The results show the performance
responses of cores under various types of degradations. The cores are salvaged
from instruction window defects, or L1 instruction/data cache defects, or L2 cache
defects, respectively [53]. For simplicity, we don’t show the more complicated
compound defects. The degradation degree of “0” indicates defect-free, and 1/2
indicate a half resource unavailable, and so on. The results show that performance
response not only depends on degradation degrees, but also exhibits to be highly
application-specific. For example, the gobmk in the Fig. 3.1 (UL) shows to be very
resilient to the instruction window degradation, but, by contrast, the leslie3d and
GemsFDTD are very sensitive to it. Such complexity is never unique for instruction
window only, but also to other resources, as exemplified in the other three sub-
figures. Hence, even though the defect and associate defect degree are accessible to
operating system (OS), we still have no ways to figure out how much performance
impact such degradation to the running applications. Second, the performance
degradation of different phases can also change significantly, even on the same core.
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Hence, the degradation measured in coarse-grained application may underestimate
the impact of core-to-core heterogeneity. For example, assume an application is
divided into two phases, Phase 1 and Phase 2. The execution time of the two phases
on Core A is 100 and 200ms, denoted by

.T (Core A, Phase 1) = 100ms, T (Core A, Phase 2) = 200ms.

Suppose that the execution time of the same application on Core B, which is
salvaged from a different defect component, is

.T (Core B, Phase 1) = 200ms, T (Core B, Phase 2) = 100ms.

Clearly, the performance of Core A and Core B have no difference for this
application because both cores take the same time, i.e. 300ms, to finish. An obvious
defect-hiding optimization is to schedule Phase 1 to Core A, and Phase 2 to Core B,
the execution time can be reduced to 200ms. However, this opportunity is invisible
if oblivious to the phase-specific degradation to heterogeneous cores.

In view of the above two observations, we claim that to maximally hide the
defect-induced performance degradation, the prerequisite is to know how much
degradation the phases of running application to specific cores. We use the term
“healthy condition” to capture the function that a core performance is both phase-
and defect-specific, denoted by .H(corei |phasej ). Unfortunately, it is challenging
to dynamically figure out .H(corei |phasej ) because of the stochastic characteristics
of application performance, which will be elaborated in Sect. 3.3.1. Simply put, how
can we know which core can deliver the best performance for the coming phase of
an in-flight application?

In the second part of this chapter, we propose a statistical core ranking mecha-
nism, called “CoreRank”, to dynamically quantify individual core’s healthy condi-
tion. CoreRank indicates the OS to avoid the unhealthy cores as much as possible,
and always prioritize the healthier ones. Since the healthy condition can be reflected
by the performance responses, and quantifying healthy condition is not very timing
critical, we can sample sufficient runtime performance statistics to infer each core’s
healthy condition. These statistics can be obtained by performance counters. Note
that the inference is not one-time procedure, but in a progressive way. CoreRank
never finishes its mission even all cores are testified, but periodically invoked to
keep tracking them over the lifetime to capture the in field degradations. CoreRank
establishes two principles: First, unlike distinguishing between faulty and fault-
free cores in the realm of design for reliability, healthy condition should be a
“conditional” probability, given a core’s healthy condition is highly workload
dependent. For example, a core with a faulty branch predictor shows to be healthier
when comes to branch-non-intensive applications than to branch-intensive ones.
The application-dependent characteristic implies that the healthy condition should
be conditionally defined. Second, CoreRank should not be tied with any specific
applications. Quantifying healthy condition towards different applications is less
useful because (1) the applications can be extremely diversified, and (2) the impact
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of inter-application interference on a highly parallel architecture is sporadic and
hard to quantify. CoreRank quantifies healthy condition towards more specific phase
representations, called “snippets”, which are dynamic micro-operation streams and
oblivious to all of the software level interferences. The snippet can be readily
characterized by build-in performance counters, without any instrumentation to
running workloads.

3.2 Processor Vulnerability Evaluation

3.2.1 Vulnerability Analysis Methods

Our work is related to several recent researches on characterizing the vulnerability
of microprocessor structures to soft errors and hard faults. Architecture vulnerability
factor (AVF) is a widely used metric to characterize the masking effect of soft errors
both from microarchitecture level and architecture level [3, 24, 46]. A structure’s
AVF is the probability that a soft error in it causes an external visible error. The
AVF can be calculated as the average-over-time percent of architecturally correct
execution (ACE) bits in a structure. The ACE bits are those if been changed will
affect the final output of a program, and on the contrary, un-ACE bits are those
if been changed will not propagate to program output. For example, the AVF of
a storage cell is the percentage of cycles the cell contains ACE bits; the AVF of
a function unit is the percentage of cycles the unit processes ACE bits or ACE
instructions. ACE bit analysis is carried out with a performance level simulator
during program execution. Equation (3.1) describes how to compute a structure’s
AVF through ACE bit analysis, where B is the total bits in a hardware structure, T
is the execution cycles of a program, and .Nt

ACE is the number of ACE bits in the
structure at a specific cycle t .

.AV F =
∑T

t=0 Nt
ACE

B × T
(3.1)

Another method to compute AVF is through statistical fault injection [73, 76].
Fault injection experiments are performed on a register transfer level (RTL) model
of microprocessors. After injecting a fault, the architecture state of the fault injected
simulator will be compared with a golden model to determine whether the injected
fault results in an external error. After a huge number of fault injections, the
percentage of faults leading to external errors is taken as AVF. Statistical fault
injection is able to simulate any execution path and allows for high accuracy
estimation. Most recently, Walcott et al. [75] use linear regression to identify the
correlation between AVF and several key performance metrics (such as instructions
per cycle and reorder buffer occupancy), and then use the predictive model to
compute AVF dynamically during program execution. Duan et al. [21] propose
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an alternative prediction method to compute AVF across different workloads
and microprocessor configurations using boosted regression trees and patient rule
induction method.

Prior works also demonstrate that AVF varies significantly and highly depends
on microarchitecture structures and architecture programs [48]. In order to charac-
terize the vulnerability of a program independent of microarchitecture structures,
Sridharan et al. [66] propose PVF to evaluate the masking effect of soft errors at
architecture level. They use A-bits (like ACE bits) and architecture resources (the
structures which can be seen from the perspective of programmers, such as register
file and arithmetic logic unit) to compute PVF. Equation (3.2) is utilized to compute
an architecture resource’s PVF where B represents the total bits in the architecture
resource, I represents the total number of instructions in the program and .Ni

A−bit

represents the number of A-bits in instruction i. PVF can be used to quantitatively
estimate the masking effect of a program to soft errors and to express the behavior of
AVFwhen executing a program. There are also several practical uses of PVF, such as
choosing proper algorithms and compiler optimizations to reduce the vulnerability
of a program to soft errors. Recently, Sridharan et al. [67] propose another metric
HVF to analyze the vulnerability to soft errors only from microarchitecture level.

.PV F =
∑I

i=0 Ni
A−bit

B × I
(3.2)

AVF, PVF, and HVF, all of them are focusing on the masking effect of soft
errors. Bower et al. [7] propose a metric named H-AVF for hard faults. H-AVF
allows designers to compare alternative hard-fault tolerance schemes. For a given
program, a structure’s H-AVF can be computed as Eq. (3.3) where .Ni represents
the total number of instructions in the program, .Nf represents the total number of
fault sites in the structure, and .insterror represents the number of instructions that
will be corrupted due to hard faults. The purpose of H-AVF is to evaluate whether
a particular sub-structure in microprocessors will benefit from hardening. It can
also be used to compare hard-fault tolerance designs thus to provide a quantitative
basis for comparison of alternative designs. Besides, Pellegrini et al. [51] propose
a resiliency analysis system called CrashTest. CrashTest is capable of orchestrating
and performing a comprehensive design resiliency analysis by examining how the
design reacts to faults during program execution. This method mainly considers the
impact of hard faults and soft errors on program execution.

.H − AV F = 1

Ni

× 1

Nf

×
∑

∀f ault

∑

∀inst

insterror (3.3)

Unlike soft errors and hard faults, intermittent faults have many uncertain causes
and their behaviors vary significantly. However, the vulnerability of microprocessor
structures to intermittent faults is rarely considered. We propose a metric IVF to
characterize the vulnerability of microprocessor structures to intermittent faults. We
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compute IVFs for different microprocessor structures considering three intermittent
fault models: intermittent stuck-at-1 and stuck-at-0 faults, intermittent open and
short faults, and intermittent timing faults.

3.2.2 Intermittent Fault Oriented Analysis

This section first describes our IVF evaluation algorithms for different intermittent
fault models, and then presents the equations for IVF computation. A structure’s
IVF is defined as the probability that an intermittent fault in the structure leads
to an external visible error. The higher IVF, the more a structure is vulnerable to
intermittent faults. In modern microprocessors, reorder buffer and register file are
two of the most important hardware structures.

Figure 3.2a shows a baseline pipeline used in this work. Reorder buffer is used
for out-of-order instruction execution, which allows instructions to be committed
in-order. It keeps the information of in-flight instructions and allows for precise
exceptions and easy rollback for control of target address mispredictions. The entry
in reorder buffer is allocated in a round-robin order. Figure 3.2b further shows
typical fields contained in an entry of reorder buffer [59]. These fields have different
functions. The busy flag, issued flag, finished flag, speculative flag, and valid flag are
control signals, while PC denotes the address of the current instruction, and rename
register shows the renamed register for the destination register of an instruction.
For register file, it is an array of processor registers and will be used to provide
operation data during program execution. Each register in it contains 64 bits. If any

Fig. 3.2 (a) Schematic diagram of a baseline microprocessor. The two gray units are the structures
under analyzing; (b) Reorder buffer entry [59]
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of these two structures is affected by an intermittent fault, the probability resulting in
a visible error is very high.We compute IVFs for these two representative structures
in this work.

Before IVF computation, the following two questions should be carefully
answered.

1. How to determine whether an intermittent fault affects program execution?
2. In order to describe intermittent faults, how to set these three key parameters:

burst length, active time, and inactive time appropriately?

For the first question, to evaluate the impact of an intermittent fault on program
execution, we need to determine whether the fault propagates to a storage cell and
changes ACE bits during its lifetime. For intermittent stuck-at faults, as they only
affect a single location, we should check whether the affected location contains an
ACE bit, and then analyze whether the ACE bit is upset during the fault’s active
time. Only the case when the affected location contains an ACE bit and the ACE bit
is changed will affect program execution. For intermittent open and short faults,
they may corrupt two adjacent bit lines. When such a fault occurs, we need to
determine whether the fault propagates to a storage cell and change ACE bits. While
for intermittent timing faults, they may cause timing violations and affect write
operations. Only when an intermittent timing fault has been captured by a storage
structure and changes ACE bits, it will affect program execution.

For the second question, the parameters of an intermittent fault should follow
the characteristics of an actual fault. As intermittent faults may be caused by
different factors, the duration of intermittent faults could vary across a wide range of
timescale. To set appropriate values for these key parameters, we analyze one kind
of intermittent timing faults caused by significant voltage variation. The situation
when supply voltage variation across a allowed voltage threshold is called a voltage
emergency [35]. Voltage emergencies will lead to timing violations by slowing logic
circuits. Figure 3.3 shows an example of intermittent timing faults caused by voltage
emergencies. As can be seen, intermittent timing faults caused by voltage variations
usually last on the order of several to tens of nanoseconds. Prior works also show the
similar duration of an intermittent fault [27, 65, 70]. According to the observation,

Fig. 3.3 Example of intermittent timing faults caused by voltage emergencies



126 3 Fault-Tolerant General Purposed Processors

we set the burst length of an intermittent fault in the range of 5 cycles to 30 cycles in
our experiments. Both active time and inactive time are set to 2 cycles. The number
of activations will be changed according to burst length, but the 50% duty cycle is
kept constant. For an instance, if burst length is 30-cycle, the number of activations
is 8. Besides, as the appearance time of intermittent faults cannot be predicted, their
start time are randomly generated during program execution.

Based on the above analysis, the first step for IVF computing is to determine
ACE bits in a structure during program execution; the second step is to check
whether ACE bits are changed when an intermittent fault occurs. As reorder buffer
is used to support out-of-order instruction execution, we analyze ACE bits in it by
monitoring instructions when these instructions go through all stages of the pipeline.
Meanwhile, register file is used to store and provide operation data for in-flight
instructions, we analyze ACE bits in it based on its related operations, such as read,
write, and evict. Following we present IVF computation algorithms for intermittent
stuck-at faults, intermittent open and short faults, and intermittent timing faults,
respectively.

3.2.2.1 Intermittent Stuck-at Faults

Intermittent stuck-at faults include intermittent stuck-at-1 faults and intermittent
stuck-at-0 faults. As the analysis methods for these two kinds of faults are similar,
for the sake of brevity, we take intermittent stuck-at-1 faults as an example in this
section.

1. Reorder Buffer: We illustrate the IVF computation algorithm for reorder buffer
at first. Unlike a soft error only existing for a single cycle, an intermittent fault
will last for a while and repeatedly appear during its lifetime. Figure 3.4 shows a
3-D perspective of a simplified reorder buffer. The X-axis represents the number
of entries in the structure, the Y-axis represents the number of bits in each
entry, and the Z-axis represents the time of program execution. For the example
structure, it has two entries and each entry contains two bits. The small black
parallelograms and white parallelograms are used to indicate ACE bits and un-
ACE bit, respectively. For this example, we assume an intermittent stuck-at-1
fault occurs. The burst length is set to 2 cycles, while both active time and inactive
time are 1 cycle.

The gray part of the cube shows the possible affected region by the fault. The
parallelograms in the X-Y plane are planar representation of ACE bits and un-
ACE bits for the gray part. For a specific bit, if it contains an ACE bit during the
fault’s active time and its value is changed by the fault, the projection of that bit
in X-Y plane is an ACE bit, otherwise, the projection will be an un-ACE bit. As
can be seen in Fig. 3.4, during the fault’s active time, .B1 and .B2 contain ACE
bits and will be affected by the fault. Though .B1 and .B3 contain ACE bits in
the fault’s inactive time, they will not be affected by the fault. To generate bit
projection, we further need to analyze whether the values in and will be changed.



3.2 Processor Vulnerability Evaluation 127

Fig. 3.4 ACE bits and un-ACE bits projection for IVF computing

For the intermittent stuck-at-1 fault, only if an ACE bit is supposed to be a logic
value “0”, it will actually be corrupted. Figure 3.4 shows the values of .B1 and .B2
during the active time. As the fault in-question is an intermittent stuck-at-1 fault,
only the projection of .B1 is an ACE bit and other three bits are un-ACE bits. In
this case, the probability that the fault leads to an external visible error is 25%,
which means the IVF is 25%. With the above ACE bit analysis and bit projection,
we can quickly determine whether an intermittent stuck-at fault affects program
execution and further compute IVF for reorder buffer.

2. Register File: Unlike reorder buffer, the ACE bits analysis for register file is a
little different. The ACE bits in register file are analyzed according to the related
operations on each physical register. During the execution of a program, if the
microprocessor decodes an in-flight instruction with a destination register, it will
allocate a free physical register for the instruction, creating a new register version
[44]. The lifetime of a register version is shown in Fig. 3.5. During the lifetime of

Fig. 3.5 Lifetime of a register version with related operations. .F1, .F2, and .F3 are three intermittent
stuck-at faults occurring at different time
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a register version, the possible operations include allocation (A), write (W ), read
(R), and deallocation (D). A register version can only be written once but can be
read several times during its lifetime. The lifetime of a register version is from
allocation to deallocation and can be divided into three intervals: from allocation
to write (A to W ), from write to the last read (W to .Rn), and from the last read
to deallocation (.Rn to D). Only the interval from write to the last read is critical
time and other two intervals belong to noncritical time. During the critical time,
all bits in the register are ACE bits.

If an intermittent stuck-at-1 fault occurs during the critical time, these ACE bits
with logic value “0” will be affected and lead to an external visible error (like fault
.F1). If the fault occurs during noncritical time, it will always be masked (like fault
.F3). A complicated situation is that a fault may start from a critical time region and
end at a noncritical time region (like fault .F2). For this kind of fault, if its residency
time in critical time region overlaps its active time, the fault can be handled like .F1;
if there is no overlap, the fault will be masked. Only when an intermittent stuck-at-1
fault occurs during critical time and changes ACE bits will affect program execution.
With the above analysis, the IVF for reorder buffer and register file considering
intermittent stuck-at faults can be expressed as Eq. (3.4) where B represents the
total number of bits in the structure under analysis, s represents a location in
the structure, D represents the burst length of an intermittent stuck-at fault, and
.UD

ACE(s) represents whether an ACE bit in location will be changed by the fault;
if it is, the value is assigned to one; otherwise, the value is assigned to zero. The
numerator adds the total number of ACE bits that will be affected during the lifetime
of an intermittent stuck-at fault.

.IV Fsa =
∑B

s=1 UD
ACE(s)

B
(3.4)

3.2.2.2 Intermittent Open and Short Faults

Intermittent open and short faults have different behaviors depending on where they
occur. They also can be taken as intermittent stuck-at faults or intermittent timing
faults for some cases. Intermittent bridging faults, one kind of intermittent short
fault, are different from intermittent stuck-at faults and intermittent timing faults.
Intermittent bridging faults describe the cases when two signal wires are shorted
together. They can be divided into four types: wired-AND, wired-OR, dominant-
AND, and dominant-OR. For intermittent wired bridging faults, the logic value
of the shorted nets is modeled as a logical AND or OR of the logic values on
the shorted wires, while for intermittent dominant bridging faults, one wire is
modeled to dominate the logic value on the shorted nets. The wired bridging faults
were originally developed for bipolar circuits, while dominant bridging faults were
for CMOS devices. Since CMOS technology is widely used for microprocessor
manufacturing, we only analyze the dominant bridging faults in this work. An
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Fig. 3.6 Intermittent dominant-AND and dominant-OR bridging faults (a) in reorder buffer and
(b) in register file

intermittent dominant bridging fault will corrupt two adjacent bit lines which
produce two-bit of corruption.

Figure 3.6a, b show intermittent dominant-AND and dominant-OR bridging
faults in the metal interconnect wires to reorder buffer and register file, respectively.
and are aggressor wires, while and are victim wires. The logic value of the victim
wire is dominated by the AND operation or OR operation of the logic value of the
aggressor wire and its own value. For intermittent dominant-AND and dominant-OR
faults, their controlling values are logic value “0” and logic value “1”, respectively.
These two kinds of faults also have similar analysis methods, for the sake of
brevity, we only take dominant-AND bridging faults as an example. The intermittent
open and short faults refer to intermittent dominant-AND bridging faults if not
specifically mentioned in the following analysis. When an intermittent dominant-
AND bridging fault occurs, the value of the victim wire will be changed only when
the victim wire has a logic value “1” and the aggressor wire has a logic value “0”.
The corrupted data of the victim wire then propagates during program execution. If
the corrupt data propagates to a storage cell, we further need to determine whether
the affected bit is an ACE bit or not. If it is an ACE bit, then the fault will result in
an external visible error; otherwise, the fault is said to be masked.

To compute IVFs of reorder buffer and register file for intermittent dominant
bridging faults, we also need to analyze the data fields in them. As can be seen
in Fig. 3.6a, if the control bit in a reorder buffer entry has been corrupted, the
instruction will be in a wrong state, and may lead to a fatal error. If the destination
register tag is affected, the instruction result will be written to a wrong register. The
bits in a register [shown in Fig. 3.6b], however, make no difference to the data if
been affected, there is no need to further differentiate them.We only check the value
containing in two adjacent lines and determine whether the fault changes ACE bits
in that register.
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With the above analysis, the IVF for reorder buffer and register file considering
intermittent dominant bridging faults can be expressed as Eq. (3.5) where NUM

represents the total number of intermittent dominant bridging faults, .P e
ACE repre-

sents whether a fault e propagates to reorder buffer or register file and finally affects
ACE bits. If true, .P e

ACE will set to one. Otherwise, .P e
ACE will set to zero and the

fault is said to be masked.

.IV Fbf =
∑NUM

e=1 P e
ACE

NUM
(3.5)

3.2.2.3 Intermittent Timing Faults

Unlike intermittent stuck-at faults which transform the correct value to a constant
value, intermittent timing faults will affect data propagation and leads to capture
wrong data to storage structure at entry level.

Before presenting the algorithm to compute IVF for intermittent timing faults, we
need to know when a fault will affect program execution. To determine the impact
of an intermittent timing fault, two steps are needed. First, analyze whether the fault
is captured by a storage cell; second, check whether ACE bits in the storage cell
have been affected. Only when an intermittent timing fault propagates to storage
cells and changes ACE bits, it will affect the final program output. Otherwise, the
fault will not manifest itself in external output and is said to be masked. In this work,
we assume an intermittent timing fault only cause timing violations during its active
time. If a write operation occurs during the active time of an intermittent timing
fault, we assume the fault propagates to the structure. If no write operations occur
or write operations only occur during inactive time, the fault is said to be masked
and will not affect program execution. We use an example to further explain for
this. Figure 3.7 illustrates whether an intermittent timing fault will lead to capture
a wrong data to a storage cell. As can be seen, write operation .W1 occurs during
the active time of .Fault1, the fault will propagate to a storage cell. While write

Fig. 3.7 Intermittent timing fault results in writing a wrong data to a storage cell
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operation .W2 occurs during the inactive time of .Fault2, the fault will not affect the
data propagation.

With the above analysis, the frequency of write operations has strong correlation
with the vulnerability of a structure to intermittent timing faults. During the lifetime
of an intermittent timing fault, a structure with high write frequency is more
vulnerable because the probability a fault propagating to the structure is very high.
On the contrary, a structure with low write frequency is less vulnerable. To compute
the IVF for different structures, we then need to determine whether a write operation
is taken during the active time of an intermittent timing fault. For reorder buffer, the
related write operations occur when the state of an instruction in it changes. For
register file, the related write operations take place when an instruction commits or
when a value is loaded from memory. The related write operations will be recorded
for IVF computation during program execution.

When a wrong data has been captured by a structure, we need to further analyze
whether ACE bits in that cell have been changed by the fault. If ACE bits are
upset, the fault will affect the external visible output. Otherwise, it is said to be
masked at architecture level. There are mainly two scenarios that an intermittent
timing fault will be masked during program execution: first, the data in a storage
structure is proved to be a dead value; second, the captured data only changes un-
ACE bits. If an intermittent timing fault is in either of the two scenarios, it will not
affect program execution. Which scenario occurs is determined by analyzing ACE
bits and un-ACE bits in different structures. For example, Fahs et al. [23] found
that about 14% instructions are dead instructions during executing SPEC CPU2000
benchmarks. Dead instructions are those instructions whose results will not be used
by any other instructions in the future. If the result of a dead instruction is changed
by an intermittent timing fault, even if an incorrect data has been written to register
file, the fault will not affect program execution. By analyzing ACE bits and un-
ACE bits in different structures during program execution, we can determine which
scenario occurs.

Only an intermittent timing fault propagates to a storage cell and changes ACE
bits, it will contribute to IVF computation. The IVF considering intermittent timing
faults can be expressed as Eq. (3.6) where NUM represents the total number of
intermittent timing faults during executing a program; .PNUM represents the number
of intermittent timing faults propagating to the structure; .Ndead represents the
number of faults only affecting dead values; .Nun−ACErepresents the number of
faults only changing un-ACE bits. With this equation, we can compute .IV Ftf for
different microprocessor structures.

.IV Ftf = PNUM − (Ndead + Nun−ACE)

NUM
(3.6)
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3.2.2.4 Statistical Significance

In this work, we use statistical sampling to study the characteristics of intermittent
faults. To make the evaluation having statistical significance, a large number of
faults should be analyzed during a simulation. After trying different number of
faults, we set the fault number as 1000 to make a tradeoff between accuracy
and analysis time. Besides, the burst length and the number of activations in an
intermittent fault have significant impact on IVF computation. During executing
different benchmarks, the two parameters will be changed to make our analysis
more comprehensive, and the final IVF of a structure is the average result across all
faults under analysis.

With the above introduced Eqs. (3.4)–(3.6), we can quickly compute IVFs for
reorder buffer and register file. Furthermore, our proposed IVF estimation method-
ology also can be extended to other structures, such as issue queue, load/store queue,
and L1/L2 caches. As the analysis of ACE bit in issue queue and load/store queue
is also based on tracking the ACE bits in instructions when these instructions go
through the pipeline, which is similar to the ACE analysis of reorder buffer. Besides,
the analysis of ACE bit in L1/L2 caches is based on dividing the lifetime of a data
block into critical time and noncritical time, which is similar to the ACE analysis
of register file. Therefore, our IVF estimation methodology is also suitable for these
structures. As all the above mentioned storage structures may occupy more than
60% area of modern microprocessors [69], our proposed evaluation methodology
provides a generic metric for reliability estimation.

3.2.3 Experiment Result Analysis

3.2.3.1 Experiment Setups

All of our experiments are conducted on the Sim-Alpha simulator [19]. Sim-Alpha
is a validated execution-driven simulator for Alpha 21264 microprocessor [37].
It can execute instructions down the mis-speculated path, in the same way as an
actual microprocessor would execute them. In this work, Sim-Alpha is heavily
modified to support IVF computing for reorder buffer and register file. We use all
the twelve SPEC CPU2000 integer benchmarks to evaluate our method. Since the
simulator cannot accurately simulate the floating-point pipeline, the floating-point
benchmarks are not included in our experiments. All the benchmarks are compiled
for the Alpha ISA. In order to reduce simulation time, we use Simpoint tool [60]
to pick the most representative simulation point for each benchmark and each
benchmark is fast-forwarded to its representative point before detailed performance
simulation takes place. Each benchmark is evaluated for 100 million instructions
using the full reference input set. The baseline configuration of the simulator is
further summarized in Table 3.1. As we focus on the integer pipeline, only the
integer pipeline resources are shown in the table. Besides, to analyze the impact
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Table 3.1 Simulated microprocessor configuration

Configuration parameter Value

Pipeline stages 7

Fetch/slot/issue/commit width 4/4/4/11 instruction/cycle

Branch-predictor type Hybrid, 4K global + 2-level 1K local + 4K choice

Integer register file size 80 entries

Integer issue queue size 20 entries

Reorder buffer size 80 entries

Unified load/store queue size 64 entries

Integer ALUs 4, 1-cycle latency

Integer multipliers/dividers –

L1 data cache 64KB, 2-way, 64 byte line-size, 1-cycle latency

L1 instruction cache 64KB, 2-way, 64 byte line-size, 3-cycle latency

L2 unified cache 2MB, direct mapped, 64 byte line-size, 7-cycle latency

I-TLB/D-TLB 128-entry, full-associative

of different microarchitecture design parameters on IVF computation, we further
change the number of fetch/slot/issue width, commit width, reorder buffer size, and
register file size in our experiments.

3.2.3.2 IVF Computation for Different Intermittent Fault Models

We first present IVF of reorder buffer and register file considering different
intermittent fault models, and then compute IVF by changing microarchitecture
parameters and program phases. Finally, we introduce several IVF guided protection
techniques to improve system reliability. In our experiments, we compute IVF with
different fault configurations by changing the key parameters of intermittent faults.
The burst length of each intermittent fault is assigned to 6 cycles, 10 cycles, and 22
cycles, respectively. Both active time and inactive time are assigned to 2 cycles. The
start time of each intermittent fault is randomly generated during program execution.

1. Intermittent Stuck-at Faults: For intermittent stuck-at faults, as the value of ACE
bits will affect IVF evaluation, we compute .IV Fsa1 in terms of intermittent
stuck-at-1 fault model and .IV Fsa0 in terms of intermittent stuck-at-0 fault model,
respectively.

Figures 3.8 and 3.9 show .IV Fsa1 and .IV Fsa0 for reorder buffer and register
file during executing different benchmarks. The average .IV Fsa1 for reorder
buffer and register file vary from 21 to 37% and from 21.4 to 31.5%, respectively.
The average .IV Fsa0, however, vary from 5.8 to 10.3% and from 1.1 to 1.6%,
respectively. As can be seen, the longer burst length, the more ACE bits been
affected, which leads to a higher .IV Fsa1 and .IV Fsa0. For a same burst length,
the average .IV Fsa1 is much higher than .IV Fsa0. This is because during
executing different benchmarks, the number of ACE bits containing logic value
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Fig. 3.8 Reorder buffer (left part) and register file (right part) AVFs considering soft errors and
.IV Fsa1 considering intermittent stuck-at-1 faults
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Fig. 3.9 Reorder buffer (left part) and register file (right part) .IV Fsa0 considering intermittent
stuck-at-0 faults

“0” is much more than these containing logic value “1”, especially in register file.
ACE bits with logic value “0’ are vulnerable to intermittent stuck-at-1 faults, but
not to intermittent stuck-at-0 faults. Meanwhile, both .IV Fsa1 and .IV Fsa0 of
reorder buffer are much higher than that of register file. The reason is that the
residency time of an instruction in reorder buffer is very long, from issue stage
till commit stage. Register file, however, will be written very frequently, making
its vulnerable time much shorter than that of reorder buffer.

We also present the AVFs of reorder buffer and register file considering soft
errors in Fig. 3.8. Compared to .IV Fsa1, their AVFs are much lower. As an
intermittent stuck-at-1 fault has longer duration than soft errors and most ACE
bits contain logic value “0” in the two structures, which makes the probability an
intermittent stuck-at-1 fault affecting final program execution is much higher.
Therefore, intermittent stuck-at-1 faults have much more serious impact on
program execution than soft errors if occur. The situation for intermittent stuck-
at-0 faults, however, is just on the contrary. The reason is that soft errors can flip
all the ACE bits while intermittent stuck-at-0 faults only affect these ACE bits
with logic value “1”.

2. Intermittent Open and Short Faults: Fig. 3.10 shows .IV Fbf for reorder buffer
and register file considering intermittent dominant-AND bridging faults. As can
be seen, for different burst length, the average .IV Fbf for reorder buffer and
register file vary from 14.8 to 23% and from 11.5 to 22.8%, respectively. These
two structures have relatively low vulnerability to intermittent dominant bridging
faults. When an intermittent dominant bridging fault occurs, only the case that
the aggressor wire holds a controlling value and the victim wire holds a non-
controlling value, the fault can propagate during program execution. With the
same burst length, reorder buffer has a little higher than that for register file. The
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Fig. 3.10 .IV Fbf for reorder buffer (left part) and register file (right part) considering intermittent
dominant-AND bridging faults
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Fig. 3.11 .IV Ftf for reorder buffer (left part) and register file (right part) considering intermittent
faults

explanation is as follows: for reorder buffer, the control bits are more sensitive to
intermittent dominant bridging faults; while for register file, however, it contains
many narrowvalues during program execution. A value is categorized as narrow
only if its leading bits are all zeros or ones. Kumar et al. [38] show about 50%
of the produced results could be categorized as narrow values. For the narrow
values in register file, they have higher masking rates to intermittent dominant
bridging faults, which results in a lower .IV Fbf .

3. Intermittent Timing Faults: We further present .IV Ftf results for reorder buffer
and register file considering intermittent timing faults. Figure 3.11 shows the
.IV Ftf for reorder buffer and register file during executing different benchmarks.
As can be seen, the average .IV Ftf for reorder buffer and register file are from
15.8% to 23.7% and from 19.7% to 30.6%, respectively. The longer burst length,
the more write operations will be affected, which leads to higher .IV Ftf results.
From Fig. 3.11, we can tell that the average .IV Ftf of register file is a little higher
than that of reorder buffer, this is because register file provides operands for each
instruction and has higher write frequency than reorder buffer. There is also a
notable exception during executing two benchmarks gap and gzip. As for these
two benchmarks, they have much higher cache miss rates than other benchmarks.
During the time a cache miss occurs, the write operation for reorder buffer and
register file will reduce dramatically, which leads to a much lower .IV Ftf at
that time. The widely used method to tolerate timing violations is to set a wider
timing margin [2]. Only the intermittent timing faults occurring at critical paths
and resulting in timing margin violation are what need to be considered.
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4. Comparisons: Figs. 3.8, 3.10, and 3.11 have shown IVFs of reorder buffer and
register file for three intermittent fault models. We then give a comparison of the
impact of these faults. From these figures, it is easy to tell that intermittent stuck-
at-1 faults have most serious impact on program execution during executing most
benchmarks. For all these fault models, when the burst length of an intermittent
fault increases, the probability to cause external errors is also increase, which
means a structure’s IVF will increase. Besides, for a same fault model, the IVFs
of reorder buffer and register file also vary significantly. Reorder buffer is more
sensitive than register file to intermittent stuck-at faults and intermittent open
and short faults, while less sensitive to intermittent timing faults. Utilizing the
proposed IVF evaluation methodology, designers can quantitatively analyze the
masking effect of intermittent faults and guide system reliability design during
the early design stage.

In this work, we focus on the impact of intermittent faults, while Pellegrini et
al.’s work CrashTest [51] analyzes the impact of hard faults and soft errors on
program execution. Their experimental results shows that about 80% of stuck-at
faults will cause errors, while only 40% of path-delay faults have adverse effects
on program execution. Soft errors have the least impact on the correct functionally
of the design and on average less than 10% of them cause an error. Comparing
their results with our experimental results, it is easy to knowthat hard faults have
most serious impact on program execution, followed by intermittent faults, and
finally soft errors. Pellegrini et al.’s work combined with our work provides a global
reliability picture for designers to understand the impact of different kinds of faults
on program execution.

3.2.3.3 IVF Computation for Different Microprocessor Configurations
and Program Phases

We have computed IVF for different intermittent fault models under a specified
microprocessor configuration. In this subsection, we further extend our proposed
methodology to address different microprocessor configurations. We choose four
microarchitecture design parameters (fetch/slot/issue width, commit width, reorder
buffer size, and register file size) which are believed to have impact on IVF compu-
tation. We change the size of these parameters to generate different microprocessor
configurations. Tables 3.2 and 3.3 show four different microprocessor configurations
for reorder buffer and register file, respectively. Of these configurations, rob_base
and reg_base are the baseline configurations. We compute reorder buffer’s and
register file’s IVF for each configuration shown in Tables 3.2 and 3.3. Burst length
is set to 10 cycles in the following experiments.

Figures 3.12, 3.13, 3.14, and 3.15 present our computed IVF results for different
intermittent fault models. Each figure represents the result for one configuration.
As can be seen, for configurations rob_c1 and reg_c1, reorder buffer’s and register
file’s IVFs are much higher than the results of the baseline configuration. That is
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Table 3.2 Different microprocessor configurations for computing IVF of reorder buffer

Fetch/slot/issue width Commit width Reorder buffer size Simulated workloads

rob_base 4 11 80 All twelve SPEC
CPU2000 integer
benchmarks

rob_c1 4 11 40

rob_c2 4 11 120

rob_c3 2 5 80

Table 3.3 Different microprocessor configurations for computing IVF of register file

Fetch/slot/issue width Commit width Reorder buffer size Simulated workloads

reg_base 4 11 80 All twelve SPEC
CPU2000 integer
benchmarks

reg_c1 4 11 60

reg_c2 4 11 120

reg_c3 2 5 80
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Fig. 3.12 Reorder buffer’s IVF on configuration rob_base (left) and register file’s IVF on
configuration reg_base (right)
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Fig. 3.13 Reorder buffer’s IVF on configuration rob_c1(left) and register file’s IVF on configura-
tion reg_c1(right)

because when reduce a structure’s size, its occupancy increases greatly and the
structure will be more vulnerable to intermittent faults. For configurations rob_c2
and reg_c2, on the contrary, the occupancy of a structure will reduce, which results
in IVF reduction. While for configurations rob_c3 and reg_c3, though we reduce
instruction fetch width and commit width, their IVFs also decrease significantly.
This is due to both the number of in-flight instructions and the number of ACE bits
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Fig. 3.14 Reorder buffer’s IVF on configuration rob_c2 (left) and register file’s IVF on configu-
ration reg_c2 (right)
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Fig. 3.15 Reorder buffer’s IVF on configuration rob_c3 (left) and register file’s IVF on configu-
ration reg_c3(right)

in the pipeline reduces sharply during program execution. The experimental results
reflect that a structure’s IVF varies across different microprocessor configurations
and has high correlation with its size and the number of in-flight instructions.
Besides, we can tell that intermittent stuck-at-1 faults have most serious impact
while intermittent stuck-at-0 faults have minimal impact on program execution
for most benchmarks. Our proposed IVF evaluation methodology can be easily
extended to evaluate IVF for different microprocessor configurations and can be
used to choose appropriate microarchitecture parameters during the early design
stage.

Furthermore, we compute .IV Fsa1 of reorder buffer and register file for different
program phases. All program phases are chose by Simpoint [60] and each contains
1 million instructions. Figures 3.16 and 3.17 show .IV Fsa1 of reorder buffer and
register file during executing several benchmarks. As can be seen, IVF varies
significantly across different program phases and is heavily depended on the
characteristics of a program. This phenomenon can be exploited to select proper
protection techniques during program execution. We can use heavier protection
(strict redundant multithreading) during highly vulnerable phases and lighter pro-
tection (partial or no redundant multithreading) during less vulnerable phases. With
the dynamic tuning of protection, designers can achieve system reliability while
minimize performance and/or energy overhead. The dynamic tuning of protection
scheme also has been exploited to protect microprocessors from soft errors [75].



3.2 Processor Vulnerability Evaluation 139

Fig. 3.16 .IV Fsa1 of reorder buffer for different program phases during executing twolf, vortex,
and eon

Fig. 3.17 .IV Fsa1 of register file for different program phases during executing mcf, crafty, and
parser

3.2.3.4 IVF Guided Reliable Design

Our experimental results show that IVFs of reorder buffer and register file varies
significantly, implying that these structures have different vulnerability to inter-
mittent faults. Designers can exploit IVF information to determine which parts in
microprocessors are most cost-effective to protect. For those structures with high
IVFs, some heavyweight protection techniques are needed. We further introduce
several possible techniques to improve system reliability.

For intermittent stuck-at faults or intermittent open and short faults, a feasible
protection scheme is to harden these high IVF structures with fault detection
techniques (such as ECC or parity code). As intermittent faults occur in burst at
the same location, if a fault in a storage cell has been detected for a predefined
times, we can deduce that an intermittent fault has happened. At that time, a flag
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bit in the entry will be set to busy, and the entry will be unused for a while to
avoid the influence of the intermittent fault. After then, the entry can be used again
when the intermittent fault disappears, for example, when the power delivery sub-
system returns to its steady-state voltage. The partial protection technique ParShield
proposed in [44] also can be used to protect register file from intermittent faults.
Meanwhile, for intermittent timing faults, a prior proposed technique Razor [22] can
be combined to these storage cells in critical paths of the most vulnerable structures,
for example, Razor can be used to protect architecture registers as they are more
vulnerable to intermittent timing faults. Besides, we can exploit architecture level
masking of intermittent timing faults to improve system reliability [47].

The above introduced techniques seek to tolerate intermittent faults at fine-
granularity. A coarse-granularity technique can be used to deal with intermittent
faults in nowadays multi-core or many-core microprocessors. With inherent redun-
dancy in these microprocessors, if a core sustains an intermittent fault, it should
be suspended for a period of time, or operating system should transfer threads
executing in the faulty core to other spare cores. Once the intermittent fault
disappears later, the affected core can be used again.

Besides, we also show that a structure’s IVF varies across different microproces-
sor configurations and program phases. This phenomenon can be exploited to select
microarchitecture design parameters and tune protection schemes online. With the
guide of IVF, designers can select appropriate protection techniques for these most
vulnerable structures or program phases, which satisfies system reliability design
goal while minimize implementation overheads. Nevertheless, combining our IVF
evaluation methodology with these protection techniques is beyond the scope of
this book, we plan to exploit protection techniques to detect and recover from
intermittent faults in our future work.

3.2.4 Discussion

Intermittent faults are emerging as a big challenge to reliable microprocessor
design. We propose a metric IVF to quantitatively characterize the vulnerability of
microprocessor structures to intermittent faults. The IVF evaluation methodology
contains the following aspects:

• analyze the physical causes of intermittent faults;
• classify intermittent faults into different fault models based on their behaviors;
• set key parameters for an intermittent fault and determine when the intermittent

fault results in a visible error;
• for a specific microprocessor structure, propose IVF computation algorithms for

different intermittent fault models;
• implement IVF computation algorithms in a high-level performance simulator,

with which to compute IVF for the specific structure.
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With the IVF evaluation methodology, we compute IVFs for reorder buffer and
register file in terms of intermittent stuck-at faults, intermittent open and short faults,
and intermittent timing faults. Experimental results show that intermittent stuck-
at-1 faults have most serious adverse impact on program execution among these
three types of intermittent faults. Besides, IVF varies noticeably across different
microprocessor structures and program phases. Our experimental results imply
partial protection of the most vulnerable structures and program phases to enhance
system reliability. With the guide of IVF evaluation methodology, we also discuss
several possible intermittent fault detection and recovery techniques which can be
used to improve system reliability.

3.3 Multi-Core Processor Salvaging

According to recent ITRS report, reliability issue due to progressive aging mech-
anism has notched one of the top five near-term (by 2020) challenges [33].
These aging mechanisms, such as TDDB (Time-Dependent Dielectric Breakdown),
NBTI (Negative Bias Temperature Instability), PBTI (Positive Bias Temperature
Instability), HCI (hot carrier injection), RTN (Random Telegraph Noise), can cause
processor degradations, and are blamed for “Sick Silicon”. The circuit-level impact
can be measured by aging sensors [71, 80].

There are two types of core salvaging approaches which inevitably result in core-
to-core heterogeneity:

• Decoupling the faulty components [53]. As shown in Fig. 3.18, for example,
the Core A and Core B suffered from pipeline defect and L1 I-cache defect,
respectively; the defect-affected partitions, marked as dark parts, are decoupled
from the rest to make each core functionally right, but in a degraded manner.

Fig. 3.18 Core-to-core heterogeneity due to core salvaging
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Table 3.4 Degradation
models

Degradation component Decoupled capacity

Front end Branch predictor 1/4 : 1/2 : 3/4

Inst. window 1/4 : 1/2 : 3/4

Back end Issue width 1/4 : 1/2 : 3/4

Memory L1 data cache 1/4 : 1/2 : 3/4

L1 inst. cache 1/4 : 1/2 : 3/4

L1 D-Cache 1/4 : 1/2 : 3/4

L2 cache 1/4 : 1/2 : 3/4

• Adaptive voltage-frequency setting [74] and timing recycling [1, 79]. For exam-
ple, the cores initially have the same max frequency, Fmax, but with the in-field
dynamic variations such as aging effects, the Fmax of the cores can differ from
each other, as the Fmax distribution indicated with the color bar.

The impact of Fmax is relatively simple because the performance is always
positively correlated with it; however, the impact from decoupling of faulty
components is much more subtle. Take the Core A and Core B for example, clearly,
we cannot conclude whether Core A outperforms Core B, or not. So, we will focus
on the defect-decoupling style of core salvaging.

The degradation models used in experiments are listed in Table 3.4. The
degradation terminology is borrowed from [52]. Basically, the degradation is
roughly divided into three categories: (1) front-end degradation, involving branch
predictor, instruction window; (2) back-end degradation, reflected by throttling the
issue width; (3) memory degradation, involving private L1, private L2 caches. For
each component, we assume three degradation degrees: Mild, Median, and Severe,
corresponding to 1/4, 1/2, 3/4 capacity disabled. The degradation models exclude
the extreme cases of 0 and 1, corresponding to defect-free and totally out-of-
operation components that cannot be salvaged, respectively.

Why Application-Level Quantification Is not Good? As exemplified in Fig. 3.1,
a core’s performance degradation is determined by not only the hardware defect
degrees, but also the target applications. An intuitive approach to quantify the
core-level performance is using benchmark applications. The performance of core
i running application j , denoted by .Perf (corei |appj ), can be measured by the
wall time of execution. However, directly using the per-application approach is less
effective for OS maximizing the chip-wide performance. Besides the drawback of
obliviousness to phase-specific performance variations as described in Sect. 3.1.2.
There are two additional major reasons, detailed as follows:

First, .Perf (corei |appj ) usually behaves as a random variable with wide and
sporadic distribution [13]. For example, Fig. 3.19a illustrates the performance
distribution of an application on two cores salvaged from different defects. The
distributions are obtained by sampling multiple runs. Even though the sporadic
distribution tends to become gaussian with a large enough number of runs, e.g. 1000
runs, given the central limit theorem (CLT), such brutal exercise is not applicable
for a system in service.
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Fig. 3.19 Performance distribution. (a) Distribution in reality. (b) Gaussian distribution

Second, the measured performance may not faithfully reflect the performance
of cores, but also other hardware and software subsystems such as memory
bandwidth, interconnect, thread synchronization, etc. The performance bottlenecks
in these subsystems can underestimate the difference between cores. Hence, it’s
unreliable using the applications to testify which core is “healthier”. For example,
it’s impossible to judge a core’s healthy condition if the core is stalled for a long
time in the evaluation window.

Many previous researches have study variation-aware optimization problems
[20, 32, 41, 72, 82]. However, most of them assume the variation is known and static,
process variation for example. Our primary goal is to provide a way to quantify the
performance impact of variation, especially in the filed dynamic variation. There-
fore, CoreRank serves as a fundamental facility for other optimization procedures.

3.3.1 Dynamic Sick Core Ranking

We take a new approach to characterizing the core-level performance. There are
two unique perspectives that diverge from conventional performance measurements.
(1) Rather than building dedicated benchmarks, we use the ordinary workloads as
the benchmarks which are readily accessible in the field. (2) Rather than using the
user visible system-level performance, we use microarchitectural-level operations
(uops) to testify the core’s performance. The rational is that the uop throughput of
a core can more faithfully reflect the core’s capacity, even though these uops may
come from different applications. The uops statistics can be obtained by build-in
performance counters.

We define a segment of uops as a “snippet” characterized by the frequency
of different types of uops. For example, the snippet .s = [f mul : 60, f add :
35, branch : 5] represents a 100-uop snippet comprised of 60 floating point (FP)
multiply operations, 35 FP add operations, and 5 branch operations. A snippet
servers as the basic micro-benchmark to testify a core’s healthy condition. Many
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Fig. 3.20 Temporal granularities of snippet, epoch, and workload

Fig. 3.21 Exemplifying the variation of six snippet classes (L) and the CDF of .103 snippet classes
(R)

snippets constitute an epoch which corresponding to a OS scheduling interval. A
workload is comprised of many epochs. The basic temporal granularity in CoreRank
is shown in Fig. 3.20. Note that a valid snippet should not undergo the two types of
stalls due to (1) uncore resources contentions, such as memory bandwidth, network
congestions, and (2) threading synchronization, such as barriers, locks. These stalls
can mislead the quantification of core healthy conditions because they are not caused
by core defects.

In the following, we first give an overview definition of healthy condition, and
then describe how to use snippets to quantify it, followed by the validation of
snippets.

3.3.1.1 Healthy Condition Definition

The healthy condition (H ) of core i (.ci) is defined as a such metric that measures
the degradation of core’s performance (P ) on snippet m (.sm), .P(ci |sm), compared
with a reference (degradation-free) core (.cref ), denoted by

.H(ci |sm) = P(ci |sm)

P (cref |sm)
. (3.7)
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Given healthy condition is reflected by the performance, we can directly use the
performance as the proxy to healthy condition, that is

.H(ci |sm) = P(ci |sm), (3.8)

where, .P(ci |sm) behaves like a random variable, but we find the randomness can be
regulated well under properly defined snippets.

3.3.1.2 Snippet Definition

Snippet is used to characterize the dynamic streams of micro-operations; hence it is
a microarchitecture-specific representation and aims to faithfully reflect the activity
of various microarchitectural components. Because a micro-operation is directly
associated with the opcode of corresponding instruction (for complex instructions
in CISC architectures, the micro-operation is referred to those decoded sub-
instructions from the complex instructions), the snippet therefore is characterized
by the combinations of various opcodes and associate frequencies. Mathematically,
a snippet can be represented as the following vector:

.s = [op(1) : f(1), op(2) : f(2), · · · , op(n) : f(n)], (3.9)

where .op(i) is the identification of the type .(i)’s active micro-operation, and .f(i) is
the associate frequency of occurrence.

The definition of snippet holds two merits: (1) the popularity of different snippets
exhibits prominently exponential distribution, which implies that we only need to
study a set of “basis” snippet to cover most operation streams in reality. (2) The
degradations of the same snippet to the same core approximate to each other is
context-insensitive, which implies we can use the combination of basis snippets to
calculate the performance impact of virtually any streams of uops. Before delving
into the detail validation, we first introduce three key attributes characterizing a valid
snippet.

• Volume: Snippet volume is defined as the total number of uops of the target
snippet, i.e. .

∑n
i=1 f(i). If two snippets, .s1 and .s2, are comprised of the same

types of active operations and each type with the same frequencies, then we call
the two snippets belong to the same class S, denoted by .S = {s1, s2}; otherwise
they belong to different classes.

• Capacity: The number of snippets of a class, i.e. .|S|, is defined as the class
capacity. If we view S as a random variable, then s is actually a sample of S.
Therefore, Eq. (3.8) can be represented as

.H(ci |sm) = P(ci |Sm), (3.10)

where .P(ci |Sm) is the expectation performance of core i on random variable .Sm.
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• Tolerance: In reality, we may relax the classification requirement by allowing
a tolerance .η in frequency variations. For example, .η = 10% means that
the frequency of the same active uops with .±5% variation can be viewed as
equivalent.

3.3.1.3 Snippet Characterization

In this section, we study the snippets performance distributions, population distri-
bution, and the impacts of snippet volume and tolerance.

Snippet Performance Distribution Is Narrowly Distributed Snippet classes can
serve as ideal reagents to testify the healthy condition of cores because they are
narrowly distributed, or called “stable” in performance, no matter which application
these snippets come from. As an example, we demonstrate the performance
distribution of six snippet classes in Fig. 3.21(L). The performance (measured by
instructions per cycle, IPC) with volume of 10 million uops and tolerance of 6%.
With such narrowly distribution, the mean value (.μ) of S on core i can serve as a
reasonable approximation to .P(ci |Sm).

In fact, this merit of performance stability is not a coincidence but holds
for majority of the snippet classes. The stability can be reflected by the ratio
of performance standard deviation and mean (.σ/μ). The smaller .σ/μ implies
higher performance stability. We demonstrate stability of snippet classes with
SPECCPU2006 and PARSEC benchmarks, which represent the multi-program and
multi-thread workload, respectively. The result in Fig. 3.21(R) shows that the .σ/μ

is no more than 5% for more than 90% snippet classes, when .η = 6%.
Note that we do not emphasize that the distribution of S has to be gaussian, even

though it always tends to be as long as the Capacity is large enough. This trend is
guaranteed by CLT (Central Limit Theorem).

Exponential Distribution of Snippet Population The reader may be wondering
how many snippet classes, empirically, do the running applications have? For
example, for Intel Nehalem microarchitecture, there are about 1125 types of uops,
and the possible number of S could be astronomical! Fortunately, we find two
exponential distributions can safely reduce the complexity, as shown in Fig. 3.22.

First, the “hot” uops usually are only small part of the whole number of uops. As
Fig. 3.22(L) shows, the most frequently used top 80 uop types can cover over 97%
of uop streams.

Second, the “hot” snippet classes also are small part of the whole space. As
Fig. 3.22(R) shows, the top 0.1 million snippets can be classified into about 50
and 200 classes for PARSEC and SPEC benchmarks, but more than 80% classes
contain a few snippets less than 10, compared to the top hot classes with thousands
of snippets. Hence, we can ignore those snippets classes with a small number of
snippets.
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Fig. 3.22 The uops frequency distribution (L) and snippet occurrence distribution (R)

Fig. 3.23 The impact of tolerance to stability

Impact of Tolerance to Performance Stability To reinforce stable performance,
the tolerance plays a critical role. Generally, the tighter tolerance threshold, the
higher performance stability, because tighter threshold leads to less frequency
variation in each active uop. Figure 3.23 shows the .σ/μ value at 90 percentile
across a rang of tolerance. We can see the stability degrades roughly linearly with
increasing tolerance threshold.
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Impact of Volume The volume size is a design tradeoff. If the volume is too large,
then a snippet will experience high possibility to be invalid, due to uncore resources
contentions or threading synchronization, but the overhead of snippet scheduling
will be amortized well. However the volume smaller than the snippet scheduling
interval is also unnecessary because the OS cannot exploit so fine-grained phase
variations. Given the minimal Linux scheduling time slice is 10ms [18], we set the
volume to 10 millions of uops because its execution time is comparable to a time
slice.

3.3.1.4 Different Snippets Susceptible to Different Defects

Clearly, different snippet classes may stress different core microarchitectural com-
ponents. Hence, the healthy condition of cores will be snippet-specific, rather than
conventional judgement “faulty” or “fault-free”. Figure 3.24 clearly confirms this
implication. As an example, we compare the performance of seven snippet classes
on a fresh core (no degradation) against a degraded core (with half private L2
cache decoupled). The S2, S3, S4, and S6 shows to be resilient to this degradation,
while S1 and S5 affected by this degradation. We call such phenomenon as snippet-
specific healthy condition.

Fig. 3.24 Snippet-specific healthy condition
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3.3.1.5 Dynamic Healthy Condition Quantification

So far, we can obtain the healthy condition of any cores on any target S by Eq.
(3.10). These information can be logically organized into a matrix, denoted by .H

.H =

⎡

⎢
⎢
⎢
⎣

H(c1|S1) H(c1|S2) . . . H(c1|Sm)

H(c2|S1) H(c2|S2) . . . H(c2|Sm)
...

...
. . .

...

H(cn|S1) H(cn|S1) . . . H(cn|Sm)

⎤

⎥
⎥
⎥
⎦

(3.11)

where the element .H(ci |Sj ) represents the healthy condition of .ci on .Sj .
With the snippet-specific healthy condition, we can virtually calculate the healthy

condition of a target core on any workloads. Suppose an epoch (E) of a workload
consists of .NSi

snippets of class .Si , .i = 1, 2, · · · ,m, that is

.E = [NS1 , NS2 , · · · , NSm ], (3.12)

then the healthy condition of .ci on E can be calculated by

.H(ci |E) = H(i, :) × ET

∑m
i=1 NSi

, (3.13)

where .H(i, :) is the ith row vector of .H; .ET is the transpose of vector E. By
characterizing the workload epoch by epoch, the OS is able to maximally hide the
degradation of defective cores by judicious epoch scheduling between them.

As a key intelligence of CoreRank, .H is not static but dynamically refined to
faithfully capture the cores’ degradation. .Si .(i = 1, . . . , m) is dynamically updated
by organizing the valid snippets in a FIFO (first in, first out) approach. We find that
empirically using the capacity of 200 snippets is a good choice to average out the
small randomness, given .H(ci |Sj ) behaves as a random variable (even though with
a narrow distribution).

3.3.1.6 Validation of Healthy Condition (H )

In fact, according to definition, the healthy condition (H ) can be interpreted as a
kind of performance model measuring CPI (cycle per instruction). To explicitly
demonstrate the effectiveness of CoreRank model, we compare the performance
obtained by CoreRank and the real performance on degraded cores. To make a
fair comparison, we assume the threads wont be suspended or stalled, because, as
explained in Sect. 3.3.1.3, those snippets undergo suspension/stalls are categorized
as invalid micro-benchmarks and therefore cannot be used to testify the cores
healthy conditions. The performance is translated to average IPC of a randomly
chopped phase with 1 billion instructions from SPEC CPU2006 benchmark suit.
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Fig. 3.25 Validation of CoreRank in performance prediction accuracy (U) on a salvaged core with
half L2 cache disabled, and corresponding workload coverage (L) by valid snippet classes

The error is defined as .
|IPCreal−IPCpred |

IPCreal
× 100%, where .IPCreal is measured

value and .IPCpred is obtained by CoreRank. As shown in Fig. 3.25 (U), the IPC
prediction errors for most of the benchmarks are no more than 5%. Although the
worst-case error reach up to unacceptable 60% for soplex, such large error is
not the limitation of CoreRank itself, but mainly because the valid snippet classes
cannot cover this workload due to insufficient snippets obtained in our experiment,
as indicated in Fig. 3.25 (L). The same reason also applies to other high-error
workloads such as bzip2, gobmk, and xal. However, this is not a substantial
limitation of CoreRank because in reality the coverage can very close to 100% with
sufficient snippet samples.

3.3.1.7 Impact of Dynamic Management

According to the definition of healthy condition H , a core’s H is inferred from the
statistics of sampled snippet performance. However, the actual performance, mea-
sured in million instructions per second (MIPS) for example, may change because of
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engaging dynamic management for controlling thermal [30], saving power [14], or
hiding aging effects[79]. An effective way to implement such dynamic management
is through dynamic frequency (and corresponding voltage) adaptations (there is a
large body of related references, just to name a few [14, 30, 79, 81]).

The actual core’s performance, under dynamic frequency scaling, may mislead
the H inference, since the low (high) performance may attribute to under-clock
(over-clock) the core, rather than bad (good) healthy conditions. This problem can
be solved by rectifying the performance statistics to a reference case. Specifically,
the original H definition (Eq. (3.7) ) is revised to

.H(ci |sm) = P((ci, fact )|sm)

P ((cref , fref )|sm)
= P(ci |sm)

P (cref |sm)
× η, (3.14)

where .η is the performance speedup attributing to frequency tuning from .fref

to .fact . It can be obtained by online [81] or offline regressions. The most naive
.η can be approximated by .fref /fact (more sophisticated .η can provide more
accurate inference; the detail is beyond the scope of this section). By incorporating
parameter .η, the framework of CoreRank can be applied to systems with dynamic
management.

3.3.1.8 Handling Failed Cores

Even though this section focuses on the core progressive degradation, i.e. the cores
still functionally work in the presence of salvageable defects in field [53]. Dealing
with failed cores, or “dead” cores, is relatively easy by simply disabling them, i.e.
all elements of the corresponding row vector of .H are set to “0”. The core salvaging
can be implemented by exploiting the natural microarchitectural redundancy. The
technical details of diagnosis [8, 31, 39] and salvaging [53, 54] are beyond the scope
of this chapter.

3.3.2 Core Ranking Implementation

CoreRank works like a high frequency sampling system. A software-implemented
version can cause performance overhead if the snippet volume is small. Suppose
snippets with one million uops volume are encoded with 256 bytes, then the
estimated sample frequency is about 2KHz at 1GHz core frequency and two uops
per cycle, which generates 512KB/s per core. For a processor with 100 active cores,
the peak bandwidth to move out these sample data can reach up to 50MB/s, even
without considering the performance counter reading overhead which will burden
the IO bandwidth. But a software-implementation is possible when taking larger
snippet volume on manycores with small core counts.
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Fig. 3.26 CoreRank implementation. (a) CoreRank mechanism. (b) Snippet classification

We propose a hardware-implemented version which provides the OS core healthy
information to make better resource management. The overview of CoreRank is
shown in Fig. 3.26. The only modification to current performance counter scheme
is to log the opcode information, and build a hash table with hundreds of buckets
storing the information of .H. To minimize the hardware overhead, we design a Time
Division Multiplexer (TDM) style CoreRank, as shown in Fig. 3.27, where each
CoreRank handles 16 cores. This TDM hardware optimization exploits the fact that
the process of quantifying healthy condition is timing non-critical.

The basic CoreRank mechanism can be divided into four steps, as shown in
Fig. 3.26a. First, we sample the uops streams with a set of performance counters
which log the uops types and associated frequency, and clock cycles. These data is
encapsulated as snippets. Then, these snippets are classified to build snippet classes
S. Because a qualified S should possess small deviations, so wemake a deviation test
in step three. The S passed the deviation test is qualified to update the healthy matrix
.H. Among the four steps, the classification is the most complicated in hardware
implementation. Traditionally, the classification is computationally difficult (NP-
hard). We develop a novel efficient classification approach, detailed as follows.

3.3.2.1 Classification

When a new snippet is collected, we first regularize it by filtering those “minority”
uops whose frequency percentages are smaller than a predefined threshold, 0.5%
of the volume for example. These minority uops have little impact on the overall
performance, but can greatly complicate the classification. By doing so, the
dimension of snippets can be significantly reduced.
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Fig. 3.27 Time division
multiplexer (TDM) style
CoreRank to reduce the
hardware overhead

The classification allows a tolerance in frequency variation, which can be easily
implemented by ignoring the least-significant bits in frequency of each type of uops.
The main decision-making process is shown in Fig. 3.26b. We use a bloom filter to
quickly decide whether this snippet belongs to an already existing snippet class S.
If yes, this snippet goes through a hash table to find the associate classes and update
it with the new sample. Otherwise, we cannot simply discard this snippet, but have
to carefully decide whether this snippet belongs to a new class that has not existed
so far. Our solution is to build a dummy class .S′ for this snippet, and then enable
a decay timer. A dummy class will be allowed to change into a qualified class as
long as its capacity can reach a threshold in one counting period of the decay timer;
otherwise, this snippet and associate dummy class .S′ can be safely discarded.

There are two key hardware components in the implementation: a Bloom filter
and a Hash table. Bloom filter is a time-efficient and hardware-implemented friendly
structure used to test whether an element (s) is a member of a set (S). The basic
principle can be explained with Fig. 3.28 which illustrates a bloom filter with m-bit
signature vector and n hash functions. If a snippet s has been proven not a minority,
then, the bloom filter needs to be updated: the n hash functions map the s into n-bit
of the signature vector and set the corresponding bit into 1. In filter mode, if the

Fig. 3.28 Bloom filter in
snippet classification
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n-bit signature of a new snippet s has been set in the signature vector, called a “hit”
in the bloom filter, this s belongs to a qualified S; otherwise called a “miss”.

3.3.2.2 Deciding Design Parameters

Bloom filter [4] has a good merit of no false negative, but may suffers from false
positive, i.e. erroneously claim that s belongs to a class S. The probability of false
positive is given as .Pfp = (1 − e−nk/m)n, k is the number of classes successfully
mapped into the m-bit signature vector. The optimal number of hash functions can
be calculated by

.n = �m

k
ln2�. (3.15)

We can see from Fig. 3.22b, empirically setting k to 400 should be enough, then
.Pfp and optimal n would be functions of m, as shown in Fig. 3.29. The result shows
that a bloom filter configured with at least 5000-bit signature vector and 9 hash
functions can keep the false positive rate below 0.5%, and therefore is a recommend
design point. In implementation, we use a 8192-bit (.213) signature vector and 10
hash functions.

The snippet classes are managed with a hash table, as Fig. 3.30 exemplifies. The
set of uops types and associated frequency of a S serve as the key. Each class
is associated with a bucket storing the corresponding IPC of each snippet in that

Fig. 3.29 Bloom filter design space
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Fig. 3.30 Hash table

class. The bucket is organized as a FIFO buffer to capture the most up-to-date core
degradation degree.

3.3.2.3 Choosing Appropriate Hash Functions

We have two types of hash functions, one for the 8192-bit bloom filter, and another
for a hash table. The bloom filter uses MD5 [57] as the hash function. MD5 is a
powerful hash function producing a 128-bit hash value. We divide the 128-bit hash
value into 10 13-bit sub-hash values (the right-most sub-hash is padded with two
“0” bits) to set corresponding bits in signature vector; each sub-hash value behaves
as a different hash function mapping to individual location in the 8192-bit signature
vector.

However, managing the snippet classes is more tricky. We find it requires very
low, even not zero, collision rate because a snippet class polluted by other snippets
out of that class is probably rejected by the deviation test. Hence, a perfect hash is
virtually necessary. However, we find it’s hard to design any even close-to-perfect
hash function resulting in negligible collision rate. We have testify three types of
hash functions, Segment Hash (i.e. split the original keys into segments, then map
each segment to an integer, and finally combine the integers to map to a bucket.),
Pearson Hash [50], and Modulo Hash [26], but none performs good enough. As
Fig. 3.31 shows, even we map the classes into a 1024-bucket hash table, the collision
rate is still as high as 10%.

Therefore, we use direct map approach to achieve the effect of perfect hash. The
detail is using the MD5 signature to directly tag each bucket. When encounter a
new class, we assign a free bucket to the new class and tag the bucket with its MD5
signature. The MD5 signatures have no collisions, so does the corresponding bucket
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Fig. 3.31 Collision rate of different hash functions

assignments. The overhead is the search complexity. However, the complexity is
affordable because we only need to manage several hundreds of buckets and it is no
more complex than indexing a cache with comparable number of cache blocks.

3.3.2.4 Handling Sparsity ofH

The healthy matrix .H is progressively built and updated. So, some elements of
.H may be unavailable until the qualified snippet classes are obtained from the
corresponding cores. We use a “default-first” policy to assign the default value to
those unavailable elements. According to this policy, the unavailable elements are
assigned positive infinite value (.+∞), which implies the healthy condition is so
well that the cores tend to be activated to work immediately. This policy is helpful
to quickly explore the cores and reduce the sparsity as soon as possible.

3.3.2.5 Hardware Overhead

The main hardware overhead comes from the bloom filters and MD5 hash function.
From Fig. 3.22b, we can figure out a 512-bucket hash table should be enough.
The detailed overhead includes hash functions, bloom filters, MD5 registers, and
some associative search logics. We implemented the CoreRank logic into RTL
with verilog, and synthesized it with Altera Quartus tool. The overhead is shown
in Table 3.5. The results show that a CoreRank imposes about 1.7M logic gates
and 21KB storage. This overhead is small compared to a processor with billion
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Fig. 3.32 Performance comparison between processors without (L) and with CoreRank (R)

Table 3.5 CoreRank
hardware overhead

Component Comb. logic gates (K) Storage (KB)

MD5 76 0.1

Bloom filter 1582 12.6

Pearson Hash 0.62 0.6

Bucket 0.38 7.3

Others 61.2 0.2

Total 1720 20.8

transistors. Furthermore, with TDM mechanism, the overhead can be further
amortized.

3.3.3 Experiment Result Analysis

3.3.3.1 Experimental Setup

We evaluate CoreRank scheme with Sniper [11], a multi-core simulator based on
the interval core model[25] and Graphite[43] simulation infrastructure. Sniper can
accurately simulate x86 architecture at a speed of serval MIPS. Sniper uses Intel
Pin tool (version 61147) to dynamically profile the stream of uops of each cores,
which provides us a easy way to collect snippets in the experiments. We use a 12x12
manycore as the baseline to evaluate the performance.

We run through SPECCPU2006 and PARSEC benchmark suits, which generates
over ten thousands of snippets under different core degradation models. We assume
each core, if has defect, only suffers from a single type of defects to make the
time-consuming experiment affordable. We configure the core according to Intel
Nehalem microarchitecture which has 1125 types of uops. Table 3.6 shows the basic
core configuration. In terms of snippet, otherwise specified, the snippet volume is
10M, the capacity of each snippet class is 200, with tolerance of 6%.
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Table 3.6 Core
configuration

Parameter Value

Frequency 1GHz

L1 I/D cache 32KB Cache line 64B, associativity 4

L2 cache 512KB Cache line 64B, associativity 8

Issue width 4

Branch predict entry 1024

Instruction window 96

3.3.3.2 Workloads

We build two types of workloads: SPEC CPU2006 for multi-program workloads,
and PARSEC to multi-thread workloads. The manycore is always fully loaded with
the synthesized workloads. For example, for multi-program workload, we randomly
chose 12x12 benchmarks from the SPEC benchmark suite to feed the manycore. For
multi-thread workloads, we use 4-thread and 8-thread configurations, respectively.
Note that a specific benchmark can be repetitively chosen from the benchmark
suites. To make diversity, each benchmark is fast-forward to different phases before
sampling the snippets.

Application Mapping Policy To demonstrate the application of CoreRank, we
have to fairly compare the performance between processors with and without
CoreRank. The performance is measured by summing up all of the active core IPC
within the same time window. When measuring the performance degradation, we
use the geometric mean of slowdown of all cores. For processor without CoreRank,
it’s reasonable to assume that applications are randomly mapped to the cores with
different degradations, since we have no way to distinguish which core is superior to
another. By contrast, for that with CoreRank, we assume a policy that maximizes the
overall performance. This can be achieved by using Eq. (3.13). With this equation,
we can figure out which core is the best for a given workload. For experiment,
we assume w can be predefined by a perfect profiling. But in reality, w should be
dynamically predicted. In addition, when comparing the performance, we neglect
the scheduling overhead because the execution time of a snippet is very comparable
to a Linux OS time slice in reality.

3.3.3.3 Result Analysis

Performance Comparison First, we study the performance degradation with
obliviousness to core healthy conditions. Figure 3.32(L) shows the normalized per-
formance degradation under gradually increased percentage of unhealthy cores. The
degradation model for each core is randomly chosen from the degradation models
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listed in Table 3.4, with “median” degradation degree. We run 500 workloads to
highlight the statistical trend, presented by violin plot.1

The Impact Of Unhealthy Cores The result confirms the unhealthy cores can dra-
matically degrade the system performance. Specifically, the multi-thread workloads
are more sensitive than multi-program workloads to core degradations, because of
more prominent “cask-effect” in multi-thread workloads. The more thread-level
parallelism, the more sensitive to core degradation. Also, we find the performance
degradation goes relatively slowly, especially when the population of degraded cores
exceeds 60%, this is because every multi-thread workload has high possibility to be
slowed down by at least one unhealthy core. Given the prevalent big-data processing
today dominated by multi-thread programming model (MapReduce for example)
and algorithms, the impact of unhealthy cores should not be underestimated.

The situation can be alleviated greatly with CoreRank, as Fig. 3.32(R) shows. We
assume an oracle scheduling policy, which directly uses CoreRank output to guide
application mapping. The result shows that even the population of unhealthy cores
is 50%, the performance declines no more than 10% even for the most susceptible
8-thread workloads, compared to the around 55% degradation when oblivious to the
cores’ healthy conditions shown in Fig. 3.32(L). This is not surprising because the
CoreRank can maximally hide the negative impact of unhealthy cores.

The Effectiveness of CoreRank CoreRank can successfully hide defects if the
number of salvaged cores are less than 50%. Comparing the Fig. 3.32(L) and
(R), we also conclude that it is impractical to expect CoreRank helping revive a
“terribly sick” processor, i.e. majority cores are salvaged. As Fig. 3.32(R) shows,
when the unhealthy core population goes beyond 50%, the performance degradation
climbs quickly. The performance benefit is very slim when the population of
unhealthy cores crosses over 70%. Nevertheless, below 50%, the processor, even
with unhealthy cores, can provide performance very close to a fresh one.
An Implication About Processor Retirement Since not all defective cores can be
hidden, a key problem is when the unhealthy processor should be retired. Based on
the above result, we arrive at an interesting conclusion: the time when the salvaged
cores take 50% of a target processor probably can be used to define the lifetime of
a manycore processors, because below this percentage the salvaged cores can be
hidden well.

Impact of Various Degradation Degree The above results have studied the impact
of median degradation degree. In this experiment we study how CoreRank responds
to different degradation degrees. Figure 3.33 shows the results of performance
under mild, median, and severe degradation, respectively. Unexpectedly, we find the
performance under mild and median shows very similar: the difference is merely
3�5% at each unhealthy populations. This is because most of the applications
actually cannot fully exercise even the median cores, so the mild and median make

1 Violin plot is a statistical illustration of a group of values; the density of each value is reflect by
the width on corresponding notch.
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Fig. 3.33 Performance degradation on processors with mild(L), median(M), and severe(R) degra-
dation models, without CoreRank, 4-thread for multi-thread workloads

Fig. 3.34 Performance degradation on processors with mild(L), median(M), and severe(R) degra-
dation models, with CoreRank, 4-thread for multi-thread workloads

a little difference in performance. But severe causes more appreciable performance
degradation.

An interesting difference emerges when we enable CoreRank. Figure 3.34
shows that even though all of the performance drops similarly to that discussed
in Fig. 3.32(R), the takeoff points of degradation are different from each other. The
severer degradation, the earlier appearance of the takeoff point. For example, for
mild, the performance won’t drop until around 50% unhealthy cores reached. While
for severe, 30�40% unhealthy core can cause performance degradation.

3.3.3.4 Comparing with Defect-Aware Scheme

To compare our scheme with a baseline that can be aware some defects by some
means, we carefully set up another baseline, called Defect-aware, and a new set of
experiments. We assume that a microprocessor has core-wise built-in fault-register
which indicates which components suffer from defect during runtime. The OS, by
reading these registers, is able to prioritize the degradation-free cores when mapping
jobs. In this comparison, the Defect-aware baseline follows the policy: picks the
defect-free cores first, then the cores with less degree of degradations, till all cores
are put to use. In this experiment, we assume the core utilization is 50%, i.e. only
half of the cores are active. The defective cores suffer random defects as listed in
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Fig. 3.35 Performance comparison between conventional defect-aware scheme (L) and CoreRank
(R)

Table 3.4. The results are shown in Fig. 3.35. We can see if the defective cores take
less than half of the core count, the Defect-aware scheme can always pop up the
defect-free cores, so there will no performance degradation compared to the oracle
case. However, with the increase of number of defective cores, the Defect-aware
scheme cannot hide the defective cores well, even though it still prioritizes the core
with mildest degradations. By contrast, CoreRank shows to be more resilient to the
escalating of defective cores by taking the workload-dependent characteristics.

Note that, without CoreRank, Defect-aware baseline still has no ways to figure
out which types of defects are more affectional to a given workload, i.e. Defect-
aware baseline cannot quantify how different degradations affect the resultant
performance, for various workloads. Take the degradation in issue width for
example, Defect-Aware baseline can be aware the core with issue width degradation,
so the job is better to be mapped to a defect-free core, or at least, to a core with less
degree of issue degradation, if possible. However, as we know, the core with issue
width defect shows to be resilient when running a workload with poor intrinsic
IPC. Therefore, assigning a thread with poor intrinsic IPC to such a core should
not be much problematic. Such case-sensitive phenomena also happen to other
microarchitectural components, such as cache, instruction window, and so on. By
doing so, we can save healthy cores for those threads more sensitive to certain types
of defects. In other words, it is not enough to only know whether a core suffers from
what types of defects.

CoreRank is designed to bride this gap. In CoreRank framework, it’s more
important to know how a defective core performs on a given workload, than to
know which defect the core suffers from. The former, i.e. the key idea of this article,
focuses on how to make best use of the imperfect cores, while the later focuses on
how to isolate the defects to ensure correctness (and has been intensively studied in
the reliability community).
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3.3.3.5 Comparing with Heterogeneity-Aware Scheme

CoreRank serves as a bottommechanism to gain variability awareness. Rangan et al.
proposed an approach to maximize throughput in the presence of variation-induced
heterogeneity in multi-core processors [55], where the heterogeneity refers to the
various core frequencies. The key contribution is a scheduling algorithm, called
Throughput-Driven Scheduling (TDS) targeting maximum chip throughput, which
is in line with our objective to demonstrate the effectiveness of CoreRank.

The difference from our approach is that TDS employes last-value predictor to
serve as the fundamental mechanism to support epoch-by-epoch thread scheduling.
TDS uses BIPS over a prediction period of 100K cycles as the proxy of core perfor-
mance level, and maps the applications, according to their computing intensities, to
the cores with accordant performance levels; a more computing bounded application
is assigned a core with higher performance level. In our scheme, similar to cores
with lower frequency due to process variation, the defective cores deliver lower
performance, which serves as the ground for comparison.

Figure 3.36 shows the comparison between TDS and CoreRank, on multi-
program workloads. Unsurprisingly, CoreRank outperforms TDS in hiding the
degradation. The key reason is that simply using the sampled BIPS to serves as
the performance level, as TDS adopted, is not alway reliable, because the BIPS
is not only determined by the core itself, but also the threads executed. So, even
the algorithm aims to maximize the throughput, but the sub-optimal scheduling is
unavoidable due to unreliable core-level performance prediction.

Fig. 3.36 Performance comparison between throughput-driven scheduling (TDS) (L) and Cor-
eRank (R)
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3.3.4 Discussion

Quantifying the performance response of cores with degradation is a fundamental
problem to make best use of the manycore processors suffered from “sick silicon”.
We find that the core performance depends on not only applications, but also specific
hardware components with degradation. We therefore develop a new metric, healthy
condition, to capture this implication. Then, we propose CoreRank to quantify
the core-level healthy condition. CoreRank samples the uops streams to build
micro-benchmarks, called snippets, to testify cores with different degradation. We
also propose a detailed implementation of CoreRank. Experimental results show
that with CoreRank, the performance degradation of a manycore can be reduced
significantly. We believe that CoreRank is instructive to other dynamic performance
optimizations for future large-scale manycore processors.

3.4 Summary

Intermittent faults are emerging as a big challenge to reliable microprocessor design.
We propose a metric IVF to quantitatively characterize the vulnerability of micro-
processor structures to intermittent faults. With the IVF evaluation methodology,
we compute IVFs for reorder buffer and register file in terms of intermittent
stuck-at faults, intermittent open and short faults, and intermittent timing faults.
Experimental results show that intermittent stuck-at-1 faults have most serious
adverse impact on program execution among these three types of intermittent
faults. Besides, IVF varies noticeably across different microprocessor structures
and program phases. Our experimental results imply partial protection of the most
vulnerable structures and program phases to enhance system reliability. With the
guide of IVF evaluation methodology, we also discuss several possible intermittent
fault detection and recovery techniques which can be used to improve system
reliability.

Quantifying the performance response of cores with degradation is a fundamental
problem to make best use of the manycore processors suffered from “sick silicon”.
We develop a new metric, healthy condition, to capture the impact of both appli-
cations and hardware component degradation of core performance. Additionally,
we propose CoreRank to quantify the core-level healthy condition. Experimental
results show that CoreRank helps to reduce the performance degradation of a
manycore. Therefore, it is concluded that CoreRank is instructive to other dynamic
performance optimizations for future large-scale manycore processors.
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Chapter 4
Fault-Tolerant Network-On-Chip

Abstract Manycore systems are emerging for tera-scale computation and typi-
cally utilize Network-on-Chip (NoC) as the communication fabrics between the
cores. Since a single routing node failure in NoC can destroy the connectivity
of the entire manycore system, NoC is of essential importance to the manycore
system. To improve the reliability of NoCs, we investigate fault-tolerant design
approaches from different angles including fault-tolerant NoC architecture, fault-
tolerant routing, and fault-tolerant circuits respectively. From the perspective of
fault-tolerant NoC architecture, we propose a topology reconfiguration technique
that re-defines a regular virtual topology on top of the original NoC with random
faulty nodes. By introducing two new metrics, namely Distance Factor (DF) and
Congestion Factor (CF), we can evaluate the performance of different virtual
topologies efficiently. Moreover, We also propose Row Rippling Column Stealing-
guided Simulated Annealing algorithm to determine the optimized virtual topology
without affecting high-level parallel applications on the manycore system. From
the perspective of fault-tolerant routing, we propose ZoneDefense routing that
helps to find the faulty blocks in advance and route around the faulty routers.
Unlike prior fault-tolerant routing algorithms that generally disable a set of routers
directly or indirectly affected by hardware faults because of deadlock routing rules,
ZoneDefense can reduce a large number of sacrificed fault-free routers significantly.
From the perspective of fault-tolerant circuit designs, we develop a novel salvaging
scheme named RevivePath, which allows faulty NoC data paths to be functional.
The basic idea is to have serial-to-parallel and parallel-to-serial circuits inserted
between NoC data path components such as crossbar, link, and on-chip buffers such
that hardware faults will not easily corrupt these data paths and routing algorithms.
Hence, the salvaging circuits ensure highly resilient NoC architecture and graceful
performance degradation given increasing hardware faults.
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4.1 Introduction to NoC Fault Tolerance

Network-on-Chip (NoC) is envisioned to be a scalable communication substrate for
building on-chip manycore systems [5, 11, 20, 23]. Many of the data transmitted in
NoC can be critical data such as cache coherence protocol, so a single hardware fault
which can either be persistent fault or transient fault can corrupt the data transmitted
in NoC and destroy the communication protocol of the entire manycore system,
which makes NoC particularly vulnerable to hardware faults. In addition, transistors
with continuously shrinking feature sizes and lower power supply become more
sensitive to working environments such as heavy particles and high temperature
and suffer wear-out and process variations [9, 17]. Thereby, reliability of NoC turns
out to be a key design metric and fault-tolerant design remains highly demanded
[11, 17, 59].

In order to improve NoC reliability, there have been a variety of works proposed
from different angles and they can be roughly divided into fault-tolerant NoC
architecture, fault-tolerant routing, and fault-tolerant circuits. As for fault-tolerant
NoC architecture, we mainly investigate how a faulty NoC can be virtualized as
a regular topology to present a consistent view to high-level applications. Unlike
prior fault-tolerant NoC architecture designs that mainly attempted to tolerate
faults with architectural designs, the proposed NoC topology reconfiguration mainly
seek to enhance the reusability of faulty NoCs from the perspective of high-level
applications. For fault-tolerant NoC routing, many of the prior works have a set of
routing rules to avoid routing deadlock [8, 30, 32, 93, 94, 97], but these rules can
disable many of the fault-free routers in NoC and induce considerable hardware
overhead of routers as well as the attached processing cores eventually. Different
from these solutions that either disable all nodes of the faulty network edges
or include all faults into one faulty block, we propose a ZoneDefense routing,
which not only includes faults into convex faulty blocks but also spreads the
faulty blocks’ position information in corresponding columns. By broadcasting the
positions of faulty blocks, routing packets can be aware of the faulty blocks and
route around the faulty routers in advance to avoid network congestion and achieve
higher performance. For the fault-tolerant circuits, many prior works mainly rely
on redundancy schemes, i.e., introducing spare components to replace faulty ones
[82, 91]. However, redundancy-based approaches usually incur expensive hardware
overhead by at least 100%. Instead of using the redundancy-based approaches, we
mainly explore the inherent redundancy in NoC data paths to tolerate the faults. The
basic idea is to split the data path in NoC which takes up more than 90% chip area
into multiple identical lanes and salvage the data path with a set of serial-to-parallel
and parallel-to-serial converters. With the proposed data path salvaging based on
time division multiplexer (TDM), NoC keeps functional as long as there are still
fault-free lanes available.
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4.1.1 Fault-Tolerant NoC Architecture

Using redundant components to tolerate fabrication faults in large array based
architectures such as memory blocks and array processors has been widely adopted
in practice and demonstrated to be successful in terms of yield improvement [90]. In
fact, spare elements, i.e., redundant columns, rows, words or small blocks are added
to repair faulty storage cells for almost all memories with relatively high capacity
[46]. NoC as a typical array architecture can also benefit from the typical redundant
architecture design approaches [90]. The objective of the redundancy architecture
design approaches is essentially to choose the minimum number of spare rows or
columns that can recover all the faulty elements of the array architecture. The 2D
redundancy fault-tolerant design optimization problem has been proved to be NP-
complete [56] and the processing time is also a crucial design factor accordingly.
Hence, a number of research works have been dedicated to the above problems
[6, 26, 45, 49, 62].

Typically, the fault-tolerance approaches for the array based architecture can
be divided into two categories, namely redundancy approach and degradation
approach. In redundancy approach, some of the processing elements in the array
based architecture are dedicated as spare parts to replace faulty ones in the array to
ensure a fully functional design. The chip will be discarded when it fails to recover
all the faults using the spare ones. The fault recovery is essentially architecture
reconfiguration and various reconfiguration algorithms have been proposed in
[13, 50, 55, 89]. In the degradation approach, all elements are treated equally
to derive a fault-free sub array, whose size is flexible. Two metrics including
harvest and degradation are commonly used to evaluate the efficiency of fault-
tolerant reconfiguration algorithms [36, 48, 61]. Note that harvest represents how
effective the fault-free elements are utilized to construct a functional sub array while
degradation measures the performance penalty of the remaining sub array over the
original processing array.

On top of the above metrics of fault-tolerant reconfiguration of the array
based architecture, NoC based manycore systems also need to maintain the same
physical topology as much as possible and present a consistent view to high-level
applications which cannot be aware of the underlying hardware reconfiguration. The
main reason is that high-level applications typically assume a determined manycore
architecture such as mesh and assign parallel processing tasks based on the topology
of the system for the sake of more efficient communication and higher performance
accordingly. For instance, tasks with massive data transmission will be put on
neighboring processing elements of the processing array to ensure minimum com-
munication overhead. In this case, when the fault-tolerant reconfiguration approach
changes the physical topology of the processing arrays, the same optimized high-
level application can suffer dramatic performance degradation due to the lack of the
information about the underlying topology of the array based architecture. Thereby,
topology similarity of the array based architecture is also critical and needs to be
considered in fault-tolerant NoC architecture reconfiguration.
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To further quantify the fault-tolerant reconfiguration quality for the array based
architectures, we utilize network embedding to formulate this problem. The idea of
constructing a virtual topology based on a physical topology for a certain purpose
has been widely applied in many research areas. A famous application is the overlay
networks [25], which create a structured virtual topology above the basic transport
protocol level to facilitate deterministic content search. Virtual neighbor nodes in
overlay networks are defined by identifiers derived from the stored contents. In this
subsection, we briefly review the network embedding research problems that are
closely related to our topology reconfiguration problem for an NoC based manycore
system.

The network embedding problem, which has been studied extensively, is widely
used for simulations between networks with different topologies. By embedding
a G(uest) network topology into a H (ost) topology, parallel programs could have
better portability. This is because one can automatically transform any parallel
algorithms developed for the multiprocessor system with topology G into an
algorithm for the system with topology H . Cong et al. [15] focused on embedding
of any arbitrary network into its optimum complete binary trees. Kim and Hur [51]
proposed a new approach to embed a given torus into another given torus. Liu and
Xu [60] studied the embedding of rings and 2D mesh into a RP(k) network.

An application of network embedding in parallel computing is the mapping
from virtual process topology to physical processor topology. The virtual process
topology is the abstract of communications among processes or tasks, in which each
vertex represents process, and an edge represents the communication between two
processes. To execute a parallel program, its process topology should be constructed
effectively based on the underlying processor topology. The virtual process topology
is also supported byMPI libraries [33, 68] discussed the mapping problem in switch-
based cluster systems with irregular topology. Bauch and Maehle [3] presented
techniques to reconfigure application topology in an octagonal 2D mesh machine
topology when faults occur.

The topology reconfiguration problem we studied, and the network embedding
problem belong to a more general problem of graph embedding, i.e., constructing
a guest graph based on a host graph. As the same class of problems, however, they
are applied at different levels and should be analyzed from different perspectives.

Topology reconfiguration lies in the hardware level. From the perspective of
manycore processor architecture, they reconfigure a virtual topology to isolate
various underlying physical topologies so that they can transparently provide OS
and programmers a unified interface to ease task dispatching scheduling and
application optimization. Network embedding, however, lies in the application level.
From the perspective of application programmers, they assume that the underlying
system topology is fixed, and then embed their application topology based on the
given physical topology to optimize the software performance. If chip architects
do not provide a unified (virtual) topology, application programmers should have
to handle various embedding problems from their application topology to different
chip physical topologies.
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It should be noted that, network embedding problems use dilation and
congestion to evaluate the performance of virtual topologies [51]. Dilation of
a virtual edge e in the guest topology is the length of the corresponding physical
path in the host topology. Congestion of an edge e in the host topology is the
number of virtual edges that include that edge. Dilation and congestion consider
the worst case scenario for the guest topology. However, we use different evaluation
metrics in the topology reconfiguration problem in NoC-based manycore systems,
i.e., DF and CF. When there are a wide range of applications running on the NoC-
based manycore systems, it is difficult to evaluate the effect of virtual topologies on
various applications at the chip architecture design stage. As a result, we evaluate
the performance of virtual topologies themselves. The primary evaluation metric
DF, i.e., the average hop count determines the zero-load latency of a virtual topology
while the auxiliary metric CF reflects the distribution of traffic load and thus could
affect network latency and throughput.

4.1.2 Fault-Tolerant NoC Routing

When there are faults on routers and links of NoC, many of the routing paths can
break and the connectivity of NoC is destroyed. To address this problem, many prior
works leverage fault-tolerant routing to circumvent the faulty routing paths which
can potentially make best use of the faulty NoC. However, the constrained routing in
NoC can cause deadlock problems and stall the entire network soon. While virtual
channels in routers can be utilized to constrain the routing paths of different packets
in NoC while reusing the same links in TDM, a number of virtual channel based
fault-tolerant routing algorithms such as [8, 41, 44, 94] have been explored. The
major challenge is that virtual channels are usually constructed with registers and
can consume substantial hardware overhead. In addition, fault-tolerant routing may
require additional virtual channels and the imbalanced workload in faulty NoC can
result in severe underutilization of the virtual channels, which further deteriorate the
hardware overhead. There are also some flow control techniques that can be used to
avoid deadlock, such as the bubble flow control [74] and the one proposed in [93].
Typically, they have specific constrains added to virtual channels, which limits the
NoC parameter setups and affects NoC performance.

Different from the virtual channel based fault-tolerant routing, stochastic routing
algorithms enhance NoC reliability by sending multiple replicated packets through
redundant routes, such as the probabilistic gossip flooding algorithm [27] and N-
Random walk algorithm [73], or by deflection, such as [69, 87]. Although stochastic
routing algorithms can be highly resilient, they also face some design challenges,
such as high energy and bandwidth consumption.

On top of the virtual channel based fault-tolerant routing algorithms, there are
also many fault-tolerant routing algorithms designed for lightweight NoCs without
virtual channels. They can be further categorized into two classes, turn model-based
and segment-based. For example, Glass and Ni [40] proposed a non-minima version
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of negative-first routing [39]. Wu proposed a fault-tolerant routing based on odd–
even turn model [92]. Zhang et al. [97] proposed a reconfigurable router to tolerate
one faulty block. Fick et al. [30, 31] proposed a distributed algorithm to reconfigure
the routing table. Fu et al. [34] proposed a multiple-round dimension-order routing.
Segment-based routing classifies networks into subnets, and subnets into segments
[64]. By placing a bidirectional turn restriction in each segment, the network can
be guaranteed deadlock free. Cooperating with the logic-based distributed routing
[32] or universal LBDR [76], segment-based routing provides a way to improve the
reliability of NoCs.

We should note that fault-tolerant routing algorithms are expected to be high
resilience, high performance, high scalability, and low cost. However, these objec-
tives are somewhat conflicting. Therefore, trade-offs among these metrics need to
be considered in fault-tolerant routing. For example, algorithms relying on off-
line analysis with global fault information, such as those segment-based routing
algorithms [34, 64, 76], can tolerate more faults. However, for NoCs which cannot
afford virtual channels, collecting and dumping global fault information is usually
too expensive. Routing table provides the flexibility to reconfigure the network in the
presence of faults. However, algorithms relying on a routing table, such as [29, 30],
are not suitable for large-scale NoCs, especially for those without virtual channels,
due to the cost problem [32].

Logic-based fault-tolerant routing algorithms, such as in [40, 92, 97], is low cost.
However, the main problem in [40] and [97] is that only one fault can be tolerated.
Zhang et al. [97] claimed that their algorithm can be extended to tolerate multiple
faults by including them into one convex faulty block. However, this usually leads
to a large number of disabled fault-free nodes. The main problem in [92] is the way
that is used to handle the faults locating on four network edges as well as the two
columns that are adjacent to the left and right network edges. For example, if a fault
appears at these places, nodes of the corresponding edge or column are all disabled,
which disables a number of fault-free routers and causes considerable hardware
overhead and performance penalty.

In this chapter, we mainly focus on the cost-effective NoCs without virtual
channels and select the logic-based fault-tolerant routing algorithms, such as [92]
and [97], as the baseline algorithms. The major difference between the proposed
ZoneDefense routing and previous work [92], [97] is the use of defense zones, which
can reduce the number of disabled fault-free routers significantly.

4.1.3 Fault-Tolerant NoC Circuits

With the continuous advancements of semiconductor technologies, transistor feature
sizes scales down substantially and the supply voltage is getting close to the
threshold voltage, which enhances the performance and energy efficiency signifi-
cantly. However, the probability of transistor failures including both transient errors
and permanent errors also grows and the manufacturing induced failures become
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inevitable for large-scale VLSI designs especially manycore designs and NoCs
[28, 73]. In order to address the problems, enormous efforts from both industry
and academia have been devoted [41, 69, 87].

Constantinides et al. [27] proposed a component-level diagnose and redundancy-
based reconfiguration strategy to improve the reliability of general VLSI designs.
The authors leverage an automatic cluster and decomposition algorithm to balance
the chip area overhead of the fault-tolerant design and the overall system resilience.
Specifically, larger granularity of fault-tolerant design requires smaller hardware
overhead because less interface signals are exposed to the fault detection and
reconfiguration modules for the redundancy-based protection, but the reliability
of the overall system can be lower because the large redundant components are
more likely to fail at the same time. Hence, the redundancy granularity is the
key to the optimized fault-tolerant design and intensively explored in this work.
Since it is a general fault-tolerant design approach and there is a lack of NoC
architectural information, there are still space left for further improvement for fault-
tolerant NoC designs. Koibuchi et al. [74]. presented a lightweight fault-tolerant
mechanism based on default backup paths (DBPs). This approach adds some DBPs
instead of complete hardware duplication, so it consumes much less chip area
compared to the standard redundancy approaches. However, DBP remains rather
expensive and the network will soon degrade to a unidirectional ring when more
DBPs are added under relatively higher error rate, which leads to dramatic network
bandwidth degradation. Fick et al. [93] combined ECC (error correcting code),
port-swapping, and a crossbar bypass to mitigate wear-out induced hard faults.
They mainly exploited inherent redundancy of NoCs such as error bypassing and
redundancy-based fault-tolerant design similar to DBP to improve NoC reliability
with less hardware overhead. However, this approach generally targets at router
ports and crossbars, and fails to address faults on buffers and links.

On top of the fault recovery approaches, fault detection that is utilized to
determine the location of hardware faults is also essential to a fault-tolerant NoC
design and it is particularly critical to handle runtime faults. Built-in Self-Test
(BIST) [92] or other on-chip fault detection techniques [29, 32, 58, 76] are general
fault-diagnosis approaches targeting at arbitrary VLSI designs and can be applied
for NoC fault diagnosis as well. In addition, some classical fault detection error
codes (DEC) can also be utilized to locate hardware faults on links and buffers. A
variety of different DEC such as Berger code, parity, Reed Solomon code and other
commonly-used CRC can also be adopted based on specific error rate and the target
reliability design goals.

In summary, there have been quite some works improving the reliability of VLSI
designs from the perspective of circuits, which generally shows promising results
and inspires fault-tolerant NoC design at circuit layer. Although redundancy-based
fault-tolerant circuit design approaches can be generic and potentially applied to
various designs including processors and NoCs, they typically require substantial
hardware overhead without being aware of features of the target hardware archi-
tecture. In contrast, the approaches that mainly explore the inherent fault tolerance
of NoCs are more attractive especially for resource-constrained scenarios. In this
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chapter, we will also introduce a novel fault-tolerant design approach for NoCs at
circuit layer and explore the inherent fault tolerance of NoC data paths such as links,
buffers, and crossbars for hardware-efficient protection of NoCs.

4.2 NoC Fault Tolerance with Topology Reconfiguration

As technology advances, industry has started to employ multiple cores on a single
silicon die in order to improve performance through parallel execution, which
has the benefits of power-efficiency and short time-to-market [38]. Significant
research has been undertaken on tera-scale computing that is able to integrate
tens to hundreds of homogeneous processing cores on a single chip to process
massive amounts of information in parallel[10], [1]. For example, an 80-core tera-
flop processor prototype was demonstrated at Intel Developer Forum 2006 [57].
Such processors containing a large number of cores are called manycore processors
(note the difference from multicore processors that contain a small number of
cores). In terms of communication infrastructure, NoC is generally regarded as
the most promising interconnect solution for Giga-scale Integrated Circuits (ICs)
such as manycore processors [20, 24], in which the topology determines the ideal
performance of the on-chip network whereas the routing algorithm and the flow
control mechanism determine how much of this potential is realized. As a result,
Operating System (OS) should understand the topology of NoC-based manycore
systems to dispatch and schedule tasks to multiple cores more effectively; while
programmers should also be aware of the topology to improve the performance of
parallel applications [66, 84].

There are many challenges for the architecture design of these NoC-based
manycore systems, in which fabrication yield is one of the most serious concerns
because an IC’s profitability depends heavily on it [52, 53]. With the ever-increasing
circuit density, obtaining high fabrication yield solely through improving the
manufacturing process is increasingly difficult and will become un-affordable in
the near future. For example, as stated in [83], it would have been lucky to get yield
in the range of 10–20% for the Cell processor if architectural help is not provided. A
more practical solution is therefore to provide defect tolerance capabilities on-chip
by incorporating redundant circuits. For example, Memory Built-In-Self-Repair
(MBISR) techniques have been widely utilized in the industry and proved to be
very effective to keep the high fabrication yield of memory circuits. Such techniques
should be extended to other types of VLSI circuits as well [54].

However, tolerating defects in the microprocessor is quite different from tolerat-
ing defects in memory because the processor’s internal structure is not as regular as
memory cells, and previous attempts in this domain mainly focused on introducing
microarchitecture-level redundancy (e.g., [78, 81]). This is appropriate for multicore
chips (e.g., a quad-core processor) in order to keep the overhead small. When the
number of on-chip cores increases to a point that single core becomes inexpensive
when compared to the entire chip (e.g., a 64-core processor), however, it is not
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necessary to tolerate defective cores at the microarchitecture level. Instead, it is more
appropriate to employ core-level redundancy in such case to reduce the complexity
associated with microarchitecture-level redundancy.

For NoC-based manycore systems with core-level redundancy, faulty cores
are replaced by spare ones placed on-chip. Therefore, it is possible that the
topology of the target design is modified and different fabricated chips may have
different underlying topologies. This is a big burden for programmers because an
optimized program for one topology may not work well for a different one and the
programmers are facing various topologies when optimizing their parallel programs.

To address the above problem, the concept of virtual topology is reintroduced
from prior network embedding problem. A virtual topology is isomorphic with
the topology of the target design but is a degraded version. From the viewpoint
of OS and programmers, they always see a unified virtual topology regardless of the
various underlying physical topologies. This eases the dispatching and scheduling
tasks for OS and facilitates the optimization of parallel programs. The above issue
was briefly discussed in [95]. When compared to [95], we re-define the problem by
introducing two new metrics, namely Distance Factor (DF) and Congestion Factor
(CF), to evaluate the performance of different virtual topologies. We also introduce
new algorithms to tackle the problem, and conduct extensive simulation experiments
to verify the effectiveness of the proposed solution.

4.2.1 NoC Topology Reconfiguration

4.2.1.1 Core-Level Redundancy in Homogeneous Manycore Processors

As the internal structure is not as regular as memory cells, previous research
work on defect tolerance in microprocessors mainly focused on introducing
microarchitecture-level redundancy. Redundancy improves yield while at the same
time may reduce the chip performance. Researchers thus evaluate the effectiveness
of various redundancy mechanisms using performance averaged yield (.YPAV)[81]
or Yield-Adjusted Throughput (YAT) [78]. Performance degradation is measured
by the relative Instructions Per Cycle (IPC), i.e., the ratio of the reduced IPC to the
maximum IPC of the perfect version.

For multicore and manycore processors, the chips themselves naturally have
regularity and redundancy as they contain a number of cores. As a result, core-
level redundancy could be employed besides microarchitecture-level redundancy.
Microarchitecture- and core-level redundancy are named intra- and inter-processor
redundancy respectively in [81]. In the former case, a core can be in any degraded
states, but the entire chip is considered bad once the available intra-processor
redundancy is exhausted in even one of its cores. In the latter case, a core becomes
useless if it contains any faults. However,as long as enough of the remaining cores
are functional, the chip is considered to be operational.



178 4 Fault-Tolerant Network-On-Chip

Fig. 4.1 Comparison between microarchitecture- and core-level redundancy. (a) comparison
redrawn from [81] with the permission of the author. (b) YAT comparison redrawn from [78]
with the permission of the author

Various types of microarchitecture-level redundancies are considered with core-
level redundancy by using poisson yield model in [81]. SPEC2000 and a speech
recognition benchmark are chosen to get the IPC reduction. The results are
reproduced and shown in Fig. 4.1a. The x-axis shows the feature size and the number
of cores per chip at each technology. As can be seen in the figure, although there are
significant benefits by using microarchitecture-level redundancy when compared
to baseline model, .YPAV drops from 98% at 250 nm to 91.3% at 50 nm. Core-
level redundancy covers the entire area of the chip and therefore .YPAV increases
uniformly from 85.4% to 98%. The yield benefits offered by microarchitecture-level
and core-level redundancy crossover at 100 nm.

The authors in [78] proposed a novel defect tolerant microarchitecture (namely
Rescue). Core-level redundancy (called “core sparing” in their work), is used to
compare with Rescue by using HotSpot model and negative binomial yield model.
IPC reduction is evaluated by simulating 23 benchmark programs from SPEC2000.
It also assumes a 20%(a), 30%(b), 40%(c), and 50%(d) growth of core complexity
starting from one core per chip at the 90 nm. The results are redrawn and shown
in Fig. 4.1b. Similarly, we can observe, as technology advances, YAT becomes
increasingly lower without redundancy. At the same time, microarchitecture-level
redundancy brings YAT improvement, but at a smaller scale when compared
to core-level redundancy in newer technology generation. Microarchitecture-level
redundancy shows greater improvement under larger core complexity growth,
because the chip has fewer cores and each defective core disables a larger portion of
the chip.
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From the above analysis, we can conclude that, for manycore chips, because the
number of on-chip cores is large and they are fabricated in latest technology, the
probability of an embedded core being defective is quite small. Each degraded chip
contains a majority of fully functional cores and a small number of defective ones.
Therefor, it is not necessary to tolerate defective cores at the microarchitecture-
level. Instead, it is more appropriate to employ core-level redundancy in such case
to reduce the complexity associated with microarchitecture-level redundancy.

In fact, industry has started to employ core-level redundancy in their products
recently. For example, while the Cell processor contains eight Synergistic Process-
ing Elements (SPEs), Sony’s PlayStation 3 video game console considers using only
seven of them to increase the manufacturing yield [83]. This approach is also applied
in Sun’s UltraSPARC T1 processor [71], [86] and Azul’s Vega2 chip [63].

There are two schemes to design homogeneous multicore or manycore chips with
core-level redundancy, namely As Many As Available (AMAA) and As Many As
Demand (AMAD). The AMAA scheme, adopted in the T1 processor, degrades a
chip by disabling faulty cores only. For example, a fabricated quad-core processor
can be a full version with 4 functional cores; or it can be degraded to a tri-core, dual-
core or single-core processor depending on the number of faulty cores. In AMAD
scheme, also denoted as “.N + M” mechanism, adopted in the Cell processor (.N =
7,M = 1), an -core processor is provided with redundant cores and we always
provide customers with operational cores. That is, it is possible that there are fault-
free cores left unused in AMAD.

It is preferred to employ the AMAA scheme in multicore to keep the overhead
small. However, as the number of on-chip cores increases, the overhead of leaving
a few redundant cores on-chip unused is acceptable because a single core is
inexpensive compared to the entire chip as discussed above. In addition, with many
cores implemented on-chip, we may get various types of degraded chips (with
different number of faulty cores) after fabrication and the yield of the demanded-
core processor cannot be promised in AMAA scheme. Finally, from a commercial
point of view, it may cause some confusion in marketing with many different
degraded versions. Therefore, for manycore processors, AMAD scheme is preferred
and we mainly focus on this scheme.

Manycore processors typically use NoC as the communication infrastructure, in
which the topology determines the ideal performance whereas the routing algorithm
and the flow control mechanism determine how much of this potential is realized.
However, in AMAD scheme, as the cores that are fabricated to be defective are not
known a priori, when they are replaced by spare cores, the topology of the target
design can be different. For example, suppose we want to provide 9-core processors
with 3 .× 3 2D mesh topology to customers, as shown in Fig. 4.2a. Also, suppose
3 redundant cores (1 column) are provided to improve the yield of these chips as
shown in Fig. 4.2b. If some cores (no more than 3) are defective, we could still get 9-
core processors. However, as shown in Fig. 4.2c, if faulty cores are replaced by spare
cores, not only the topologies that we get are different from what we expect, but also
the topologies of different chips can be distinct. These changed topologies become
irregular and would cause performance degradation for manycore processors.
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Fig. 4.2 Faulty cores change the topology of target design. (a) What we expect. (b) What we
implement. (c) What we get

4.2.1.2 Topology Impacts on NoC-Based Manycore Systems

In NoC-based homogeneous manycore systems, the performance of the on-chip
communication significantly affects the efficiency of parallel applications. As a
result, to minimize the communication overhead among threads or tasks, today’s
OS relies on explicit knowledge of the underlying topology [84]. For example in
Microsoft Windows Server 2003, a so-called Advanced Configuration and Power
Interface (ACPI) circuit is used to pass a description of the physical topology of the
system to OS [66]. The topology information is stored in Static Resource Affinity
Table (SRAT), and is used by Windows when dispatching and scheduling tasks. For
example, a representative scheme, namely Gang Scheduling [42], divides processors
into groups, in which processors of the same group have lower communication
overhead. Tasks that frequently communicate with each other will be assigned to
processors in the same group to minimize communication overhead.

In addition, from the parallel programmers’ perspective, to optimize the per-
formance of the application software, currently they need to know the underlying
manycore’s organization [72]. For example, topology information is provided
to programmers through API functions in Windows Server 2003. This is the
communication-exposed programming for NoC platforms [24]. Such tailored pro-
grams may be not portable to other processors due to different system architectures,
such as the number of on-chip cores and their topology.
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Fig. 4.3 Physical topology and virtual topology. (a) A chip with faulty cores. (b) The physical
topology. (c) A virtual topology

4.2.1.3 Physical Topology and Virtual Topology

As shown in Fig. 4.2, faulty cores change the target topology and different chips
may have distinct underlying topologies. It would be rather cumbersome for
OS and programmers to face various different topologies and optimize them
differently. To address this problem, we propose to provide a unified virtual topology
regardless of the underlying one. Before introducing the details, we first define
.Ref erence T opology as the topology of the target design that we expect. For
example, the 3 .× 3 2Dmesh topology in Fig. 4.2a is the expected reference topology.

For the illustrative “.9 + 3” manycore processor shown in Fig. 4.2b, suppose
the 7th, 10th and 11th cores are defective after fabrication as shown in Fig. 4.3a,
these cores are considered to be removed out of the chip. The remaining fault-
free cores and their interconnections construct a .Physical T opology as shown in
Fig. 4.3b. It should be emphasized that once a manycore processor is taped out, its
physical topology is determined and cannot be changed during its lifetime. This is
fundamentally different from board-level multiprocessor systems, which are much
easier to be repaired since the target topology can be maintained by simply replacing
the faulty processor with a good one.

Based on our AMAD scheme, a 9-core processor can still be provided but
with different topology when compared to the reference topology. That is, we can
construct a .V irtual T opology of the chip based on the given physical topology,
which is isomorphic with the reference topology. An example is shown in Fig. 4.3c,
in which we construct a virtual 3 .× 3 2D mesh topology.

With the above configuration, the 3rd, the 5th, the 6th and the 8th cores are four
virtual neighbors of the 2nd core. The 3rd core is considered to be below the 2nd
core virtually, although it locates at the 2nd core’s right-hand side physically. In
addition, while the 5th core is more than one hop away from the 2nd core, they are
considered to be adjacent in the above virtual topology.

By using virtual topology, OS and programmers always see a unified topology
that is isomorphic with the reference topology, no matter how the underlying cores
are connected physically. This greatly simplifies task dispatching and scheduling
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duties for OS and also facilitates the optimization of parallel programs. In addition,
a unified topology that isolates various physical topologies for different chips also
significantly eases marketing process.

A similar idea has been applied in Cray T3E network [79]. If some processors
fail during the operation of the system, one or more of them may not be physically
contiguous. To continue providing applications with a contiguous range of virtual
processor numbers, the routing table along with the logical “who am I” registers
allows the nodes to be logically renamed, i.e., mapping from physical to virtual
number. This kind of “hot swapping” is totally transparent to users. As mentioned
above, the failure of nodes and the change of topologies in systems such as Cray T3E
are temporary and can be easily recovered because a faulty processor is removed
from the system and replaced while OS and user jobs are kept running on the healthy
nodes. However, for manycore processors, defects are permanent and physical
topologies cannot be recovered. It should be also noted that, depending on the
architecture design of manycore processors, there are many ways to implement the
mapping from various physical topologies to their corresponding virtual topology.
For example, one possible solution is to add a firmware layer below OS to record
mapping information which is obtained after fabrication test. This is similar to
the CORE_AVAILABLE_REG used in UltraSPARC T1 processor [71, 86]. OS
and programmers always work on the reference topology while the firmware is
responsible for transformation.

4.2.2 NoC Topology Virtualization Formulation

On-chip faulty cores change the topology of the target design and cause performance
degradation for parallel applications. To tackle this problem, we use virtual topology
to provide a unified interface to OS and programmers, no matter how the underlying
cores are connected physically. At the same time, however, as there can be many
virtual topologies for a particular physical topology and they may affect applications
differently, we should choose the one that results in the best performance.

Since there are a wide range of applications with different characteristics running
on the NoC-based manycore systems and they may have different requirements on
the construction of virtual topologies, it is difficult to evaluate the impact of virtual
topologies on various applications at the chip architecture design stage. As a result,
we evaluate the performance of virtual topologies themselves and mainly consider
the average latency and throughput of different virtual topologies.

In order to do so, from the viewpoint of the NoC, two evaluation metrics
are introduced in this section to model the performance degradation of different
virtual topologies when compared to the reference topology, namely Distance
Factor (DF) and Congestion Factor (CF). For the sake of simplicity, we assume the
communication infrastructure to be fault-free in this research work. This assumption
can be justified since the routers and links use much less hardware resources when
compared to the cores and are thus less vulnerable to defects [36]. Also, it would not
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cause significant overhead to include fault-tolerant features such as Triple Modular
Redundancy (TMR) to protect them.

Distance Factor The zero-load latency .T0 of a topology can be expressed as [21]:
.T0 = H × tr + D/v + L/b.. It is composed of three terms. The router delay is
.H × tr for a network with an average hop count of H and a delay of .tr through a
single router. The time of flight is.D/v for a network with an average distance of D

and a propagation velocity of v . The last one is the serialization latency which is
the time for a packet of length L to cross a channel with bandwidth b.

For a particular physical topology, virtual topologies differ from each other only
in the average hop count H . When compared to reference topology, it is obvious
that the average hop count of an irregular virtual topology becomes larger and thus
the zero-load latency becomes longer. The distance factor is used to evaluate such
degradation, in which .DFnn′between two nodes n and .n′ is defined as the physical
hops between them .

(
DFnn′ = Hopsnn′

)
and the distance factor of node .n (DFn) is

defined as the average distance factor between node n and all its k virtual neighbors

.DFn = 1

k

k∑

n′=1

DFnn′ (4.1)

Finally, the distance factor of a virtual topology (DF) is defined as the average
.DFn of all nodes

.DF = 1

N

N∑

n=1

DFn (4.2)

(There are in total N nodes in the virtual topology.)
The reference topology has the minimum DF as usually virtual neighbors are

located next to each other physically. For example, DF is 1 in mesh and torus
topologies, which means that each pair of virtual neighbors is exactly one hop away
from each other. Larger value of DF means longer communication delay among
virtual neighbors.
Congestion Factor For a given physical topology, it is likely that there are several
virtual topologies with the same DF values, as shown in Fig. 4.4. We therefore use
congestion factor to further evaluate the performance of virtual topologies. A virtual
topology not only changes the average hop count among cores but also affects the
distribution of channel load. Traffic may become unbalanced among different links.
As the more balanced the channel load, the closer the throughput of the network
is to the ideal case [21], a virtual topology that could balance traffic more evenly
across all NoC links is preferred.

According to the previous discussion, traffic distribution in NoC-based manycore
systems has the property of spatial locality, i.e., communication is more likely to
happen between adjacent cores rather than distant ones. We thus only consider the
case where a node only communicate with its virtual neighbors. We define the
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Fig. 4.4 CF comparison between two virtual topologies with the same DF .(DF = 2) for a given
physical topology. (a) Virtual topology I. (b) Virtual topology II

congestion factor of a physical link l (denoted as .CFl) as follows: for any nodes
n and .n′ , if they are virtual neighbors, and l is on one of the routing paths between
them according to the NoC’s routing mechanism (e.g., XY-routing [24]), we add
.CFl by 1. For the two virtual topologies in Fig. 4.4, the .CFl values are shown above
each physical links. It is clear that traffic in topology I is much balanced than the
one in topology II. In topology II, some links are much congested (.CFl = 11) while
some others are barely used (.CFl = 0).

Based on the above observation, we define the congestion factor (CF) of a
virtual topology as the standard deviation of .CFl of all links to indicate the traffic
distribution

.CF =
√∑L

l=1

(
CFl − CFl

)2

L − 1
(4.3)

(There are in total L links in the physical topology.)
CF of the reference topology is 0, which means that traffic can be more balanced

across the network.1 Greater CF means less even flow distribution. Please note that
even though advanced routing algorithms can be introduced to balance channel load,
CF can be an auxiliary performance metric to evaluate the raw flow distribution
which reflects the quality of a virtual topology. With the above two metrics, the
quality of different virtual topologies can be evaluated and compared. DF and CF
might be conflicted with each other during optimization, hence we unify them
together. The Unified Metric (UM) is defined as

.UM = wDF × DF + wCF × CF (4.4)

1 Please note, congested links are usually revealed around the middle of network even for uniform
traffic pattern in practice, CF metric is mainly for comparison purpose and 0 is its ideal upper
bound.
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Fig. 4.5 System organization
for manycore platform with
“.N + M” scheme

in which .wDF and .wCF are the optimization weights designated by users (.wDF +
wCF = 1).

Reconfiguration from physical to virtual topology is very complex and it depends
heavily on the system organizations, such as the reference topology, the on-chip
redundancy distribution, etc. We mainly focus on mesh and torus topologies, which
are the most widely used ones in NoC-based manycore systems. We adopt a
representative scalable manycore architecture proposed by Intel as our platform
model, which integrates an array of tens to hundreds of streamlined processing
cores and accelerators connected by a scalable NoC infrastructure [57], as shown
in Fig. 4.5. We formulate the topology reconfiguration problem for 2D mesh/torus
topology investigated as follows:

Topology Reconfiguration Problem (TRP) For an .R × C homogeneous manycore
processor with S redundant cores, suppose D cores .(D ≤ S) are faulty, construct
.R × C coordinates as follows:

.

⎡

⎢⎢
⎣

(R − 1, 0) (R − 1, 1) · · · (R − 1, C − 1)
· · · · · · · · · · · ·

(1, 0) (1, 1) · · · (1, C − 1)
(0, 0) (0, 1) · · · (0, C − 1)

⎤

⎥⎥
⎦

Distribute these coordinates to .(R×C+S−D) fault-free cores to construct a virtual
topology .Tvirtual , in which nodes with coordinates .(i + 1, j), (i − 1, j), (i, j + 1)
and .(i, j − 1) are four virtual neighbors of node .(i, j) , and nodes without being
assigned coordinates are left unused, satisfying

.UM of Tvirtual is minimized.

Two example virtual topologies for a given physical topology are shown in
Fig. 4.6. The values of DF and CF for these two virtual topologies are also shown in
the figure. Clearly, new topology reconfiguration algorithm needs to be developed
to select the best candidate topology. Before introducing our proposed algorithms,
we firstly review prior related work in this area and then give some in-depth analysis
of the above TRP problem in the following two sections.
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Fig. 4.6 Topology reconfiguration

4.2.3 NoC Topology Virtualization Optimization

The objective of TRP in essence is to find a map from virtual locations to physical
cores with optimized performance. Considering the configuration shown in Fig. 4.3,
as depicted in Fig. 4.7, the example virtual topology can be achieved according to
the mapping table. For example, virtual location V is mapped to the 2nd physical
core. In other words, the 2nd fault-free core is placed in virtual location V in the
virtual topology. For the given physical topology in Fig. 4.7, there are 9! possible
virtual topologies with different DF and CF values, because a fault-free core can be
placed in any virtual locations.

The topology reconfiguration problem can be broken into two related subprob-
lems, to minimize DF and to minimize CF, which we call TRP-I and TRP-II,
respectively. In this section, we first recast these two problems from an optimization
problem to a decision problem, and then show both of them are essentially instances
of known NP-complete problems.
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Fig. 4.7 The essence of TRP is to find a map from virtual locations to physical cores

4.2.3.1 TRP-I: An Instance of Quadratic Assignment Problem

According to the above analysis, the decision form of TRP-I can be formulated as
follows:

TRP-I Virtual locations are numbered .{1, 2 . . . , n} , while physical cores are
numbered .{1, 2 . . . , m}, n ≤ m. .dkl is the distance (number of hops) between
physical nodes k and l . .dkl = ∞ if k or l is defective. Is there a one-to-one
function .f : {1, 2 . . . , n} → {1, 2, . . . , m} to construct a virtual topology T , such
that:.DF(T ) ≤ B (bound .B ∈ Z+).

To ease analysis, suppose the reference topology is torus. Each virtual location
i has four neighbors in torus. According to (4.1), the distance factor of i can
be expressed as .DFi = (1)/(4)

∑
j df (i)f (j) , in which j indicates four virtual

neighbors of i and .df (i)f (j) represents the physical distance of node i and its virtual
neighbors as mentioned above. The above formulation can be similarly applied for
mesh topology, except that the coefficients for different nodes can be 1/2, 1/3, or
1/4, as a virtual node in mesh may have 2, 3, or 4 neighbors based on its position.

From the above, according to (4.2) the distance factor of the virtual topology T

is

.DF(T ) = 1

4n

n∑

i=1

∑

j

df (i)f (j) (4.5)

We now show that TRP-I is essentially an instance of Quadratic Assignment
Problem (QAP), which is a well-known NP-complete problem [77]. QAP can be
formulated as follows [43].

[QAP] Non-negative integer cost: .cij , 1 ≤ i, j ≤ n

distance.dkl, 1 ≤ k, l ≤ m

Is there a one-to-one .f : {1, 2 . . . , n} → {1, 2 . . . , m}
such that:.

∑n
i=1

∑n
j=1 cij df (i)f (j) ≤ B
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A QAP instance can be expressed as:

.
{〈

cij , dkl, B
〉
, cij , dkl, B ∈ Z+; 1 ≤ i, j ≤ n; 1 ≤ k, l ≤ m

}

The famous “backboard wiring” problem [85] is a typical application of QAP, which
concerns how to place computer components to minimize the total amount of wiring
required to connect them.

Considering a QAP instance .
{〈

cij , dkl, B
〉}
, let i and j be virtual locations .(1 ≤

i, j ≤ n) in torus, and .dkl is the distance between physical nodes k and l as defined
in TRP-I. .Cij is defined as follows:

.

{
cij = 1/4n, if i and j are virtual neighbors
0, otherwise.

Then the objective of this QAP becomes

.
1

4n

n∑

i=1

∑

j

df (i)f (j) ≤ B (4.6)

in which j are four virtual neighbors of i. According to (4.5) and (4.6), it is clear
that the objective of the above QAP instance becomes to find a mapping function
or in other words a virtual topology .(T ) with distance factor not exceeding B. As a
result, TRP-I is an instance of the quadratic assignment problem.

4.2.3.2 TRP-II: An Instance of Vectorial Quadratic Assignment Problem

Similarly, the decision form of TRP-II can be formulated as follows:

TRP-II Virtual locations are numbered .{1, 2 . . . , n}, while physical cores are
numbered .{1, 2 . . . , m}, n ≤ m. Is there a one-to-one function .f : {1, 2, . . . , n} →
{1, 2 . . . , m} to construct a virtual topology T , such that: .CF(T ) ≤ B(bound
.B ∈ Z+).

In this subsection, we show that TRP-II is also an instance of quadratic
assignment problem, but with a different form. To prove this, we first define a
Vectorial Quadratic Assignment Problem (V-QAP) as follows:

V-QAP Non-negative integer cost: .cij , 1 ≤ i, j ≤ n; P -dimensional non-negative
vector .vkl, 1 ≤ k, l ≤ m, and bound .BV = (A1, A2 . . . , AP ). For two P -
dimensional vectors .V1 and .V2 is defined as .|V1| ≤ |V2| . Is there a one-to-one
function .f : {1, 2 . . . , n} → {1, 2, . . . , m} such that:.

∑n
i=1

∑n
j=1,j �=i cij vf (i)f (j) ≤

BV .
An instance of V-QAP can be expressed as .{< cij , P, vkl, BV >, cij ∈ Z+, .vkl

and .BV are P -dimensional non-negative vectors, .1 ≤ i, j ≤ n, 1 ≤ k, l ≤ m}. It
is easy to see that V-QAP is NP-complete because QAP is in fact one-dimensional
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Fig. 4.8 Path vector
examples

V-QAP. We now show that TRP-II is an instance of V-QAP. Suppose the reference
topology is 2D mesh or torus with L physical links, denoted as .l1, l2, l3 . . . , l1.

Definition 1 .Path V ector .prs is a L-dimensional vector .(l1, l2, l3 . . . , lL) . If
.lx(1 ≤ x ≤ L) is on one of the paths from physical node r to s according to
the NoC’s routing mechanism (e.g., XY-routing), .lx in .prs is 1, otherwise .lx is 0.
A simple example is shown in Fig. 4.8, in which XY-routing is used. For example,
.p14 = (1, 0, 1, 0) because packets from 1st core to 4th core pass through links .l1
and .l3.

Definition 2 .Congestion Increment V ector .vrs is defined as .vrs = prs − I ×
drs/L, .drs is the distance between physical node and as defined in TRP-I. I is the
L-dimensional unit vector.

We now construct a V-QAP instance:
.
{
< cij , L, vrs,

√
L − 1 × BV >, 1 ≤ i, j ≤ n, 1 ≤ r, s ≤ m

}
, in which i and j are

virtual locations, and .cij is defined as

.cij =
{
1, if i and j are virtual neighbors
0, otherwise.

According to the definition of V-QAP, we want to find a one-to-one function .f :
{1, 2 . . . , n} → {1, 2 . . . , m} such that .

∑n
i=1

∑n
j=1,j �=i cij vf (i)f (j) ≤ √

L − 1 ×
BV .

As .cij is 0 if i and j are not virtual neighbors, the objective then becomes
.
∑n

i=1
∑

j vf (i)f (j) ≤ √
L − 1 × BV , or in another form

.
1√

L − 1

∣
∣∣∣∣∣

n∑

i=1

∑

j

(
pf (i)f (j) − I × df (i)f (j)

L

)
∣
∣∣∣∣∣
≤ |BV | (4.7)

in which i and j are virtual neighbors.
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Based on the above definitions of path vector and the congestion factor of a link in
Sect. 4.2.2, it is not difficult to derive: .

∑n
i=1

∑
j pf (i)f (j) = (

CFl1 , CFl2 . . .CFlL

)

and .(1)/(L)
∑n

i=1
∑

j df (i)f (j) = CF. Then, we can conclude from (4.7) after
substitution:

.(1)/(
√

L − 1)
∣∣(CFl1 ,CFl2 . . .CFlL

) − I × CF
∣∣ ≤ |BV |, i.e., .CF ≤ |BV |.

It is clear that the above constructed instance of V-QAP is in fact to find a virtual
topology(T ) with congestion factor not exceeding .|BV |. As a result, we have proved
that TRP-II is an instance of V-QAP.

To sum up, we point out that TRP is an instance of the quadratic assignment
problem, one of the most complex combinatorial optimization problems. We
therefore do not hold much hope for finding an exact polynomial time algorithm
for its solution. Efficient and effective heuristics are therefore introduced to solve
this problem, as shown in the following section.

On top of the above analysis, an advanced Simulated Annealing (SA) algorithm
proposed for QAP is firstly adopted to tackle our TRP. This algorithm, however, is
quite time-consuming. We therefore present a fast deterministic greedy algorithm,
called Row Rippling and Column Stealing (RRCS). Finally, a gSA algorithm is
proposed, which outperforms both SA and RRCS algorithms in terms of computing
time and the quality of results. It should be noted that we mainly focus on the
reconfiguration algorithms for 2D mesh/torus topologies. Other topologies (e.g.,
butterfly or fat tree topology) may require different optimization algorithms.

4.2.3.3 An Adopted Simulated Annealing Algorithm

Since we have proved that topology reconfiguration problem is an instance of the
quadratic assignment problem, we can adopt previous heuristic approaches for QAP
to tackle our TRP. One such approach that has yielded promising results is simulated
annealing [7, 12, 16, 67]. We adopt one of the most efficient simulated annealing
implementations proposed in [67] for QAP to tackle TRP.

Various simulated annealing algorithms generally differ with respect to neigh-
borhood search, annealing schedule and termination criterion. The adopted SA
algorithm uses (4.4) as the cost function and random virtual topologies as initial
solutions. The neighborhood function employed is the widely used “2-exchange”.
For example, if the current solution is

.

[
(1, 0) Faulty unused
(0, 0) (0, 1) (1, 1)

]

one of its neighbors by exchanging (1,1) and ‘unused’ is

.

[
(1, 0) Faulty (1, 1)
(0, 0) (0, 1) Unused

]
.
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The neighboring solutions are searched thoroughly in a fixed order, not randomly.
For the above solution, .5×(5−1)/2 trials are needed to explore all its neighborhood
by the sequence (1,0) .↔ ‘unused’, .(1, 0) ↔ (0, 0), . . . ‘unused’ .↔ (0, 0), ‘unused’
.↔ (0, 1) . . .

The adopted SA algorithm uses the inhomogeneous annealing with oscillation
schedules, i.e., temperature is reduced by a very small amount after every trial
without any equilibrium test. In addition, temperature is decreased and increased
periodically, i.e., reannealing instead of the straightforward annealing, which is
the common practice of state-of-the-art simulated annealing algorithms. The SA
algorithm in [67] uses an advanced formula to calculate the initial and final
temperatures for each iteration, leaving two tuning control parameters, i.e., the
initial .(λ1) and the final .(λ2) temperature factors, which can be used to control
the cooling process effectively.

The algorithm terminates when the current iteration number exceeds Q , or in
other words after .Qn(n − 1)/2 trials, in which n is the number of fault-free cores.

4.2.3.4 Row Rippling Column Stealing Algorithm (RRCS)

Simulated annealing is a kind of common technique that can be adopted to all com-
binatorial optimization problems. However, it does not consider any characteristics
of the TRP problem, such as reference topology, system architecture, etc. Moreover,
SA is quite time-consuming because it has to explore many random solutions before
achieving a satisfactory result. As the configuration time has great impact on the
chip cost, SA is not acceptable for large scale manycore systems. As a result,we
proposed a fast deterministic greedy algorithm, called Row Rippling and Column
Stealing (RRCS) [95].

RRCS is based on the observation that the performance degradation of a virtual
topology is mainly caused by the physical irregularity of the virtual topology
compared to the reference topology. Therefore, RRCS algorithm tries to maintain
the physical regularity of the virtual topologies in row and in column unit.

To ease illustration, suppose in mesh or torus topology, there are one column of
spare cores. If a row contains only one faulty core, i.e., faulty cores are no more
than the spare ones in this row, Row Rippling is employed to reconfigure the row,
in which a faulty core is replaced by its neighbor and the virtual position of the
core used to replace the faulty one is transferred to the next neighboring core. This
process continues until the spare one is used to replace the last element in the row.
When a row contains more than one faulty cores, i.e., faulty cores are more than
the spare ones in this row, the rightmost faulty core is replaced using rippling.
The other faulty elements within the row, however, are replaced with the elements
immediately beneath them. In other words, we “steal” a fault-free core from another
row within the same column. This stolen core should be considered faulty when the
row containing it is reconfigured. An example of using RRCS in a “.16+4” processor
with 4 .× 4 mesh reference topology and one column redundancy is depicted in
Fig. 4.9. To configure the uppermost row, which contains 3 faulty cores, we steal the
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Fig. 4.9 An example of RRCS algorithm

12th and the 13th fault-free cores for the left two fault cores; while the rightmost one
is rippling to the 20th core. Only Row Rippling is used to configure the lowermost
row as it contains one faulty core. The achieved virtual topology is shown above the
physical topology.

In the above discussion, we provide a column of redundant cores as an example.
In practice, the number of redundant cores, i.e.,M , for an N -core processor
should be carefully determined by the designers in advance (e.g., using the analysis
framework in [70]), and may be different from the column size. This however does
not affect the working mechanism of the proposed RRCS algorithm as it only needs
to compare the number of faulty cores .Nf and spare cores on each row. We are able
to generate an effective virtual topology as long as the number of faulty cores is less
than M . In the worst case, i.e., all available cores in both the same row and the same
column are exhausted, we simply choose a nearest core to replace the faulty one.

4.2.3.5 RRCS-Guided Simulated Annealing Algorithm

RRCS is very fast when compared to SA algorithm, but it does not directly consider
DF or CF metrics during the optimization process. Moreover, RRCS may cause
serious chain column stealing operations for certain physical topologies and result
in undesirable virtual topologies.

For example, consider a physical topology with 6 .× 6 2D mesh reference
topology and 5 spare cores located on the righthand side and 5 faulty cores, as
shown in Fig. 4.10a. The virtual topology achieved by RRCS is shown in Fig. 4.10b,
in which the coordinates indicates the virtual locations for the corresponding cores.
Reconfiguration begins from row R3, causing two stealing operations, i.e., the two
CS1 from row R4. R4 then does not have enough available cores and has to steal
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Fig. 4.10 Comparison
between RRCS and SA. (a)
Physical topology. (b) Virtual
topology achieved by RRCS
.(DF = 1.660;CF = 1.428).
(c) Virtual topology achieved
by gSA
.(DF = 1.329;CF = 0.937)

another two cores, i.e., CS2 from row R5. The process continues until the last
row R0 is configured. Note that CS3 borrows relatively distant cores to configure
faulty cores in row R5. These chain column stealing operations will generate an
undesirable virtual topology.

At the same time, RRCS is very efficient, and it can arrange most part of the
virtual topology in a good shape. We find that by applying several 2-exchange
operations on top of the topologies achieved by RRCS, the quality of the results can
be greatly improved. As a result, we propose to combine the algorithms of RRCS
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Fig. 4.11 gSA improvement over RRCS for different network size. (a) DF improvement. (b) CF
improvement

and SA together. We use RRCS to quickly generate a good initial solution point,
and then apply the adopted SA algorithm on top of it to explore its 2-exchange
neighboring solutions. We call this strategy RRCS-guided Simulated Annealing
(gSA) technique.

We use gSA .(wDF = 0.9, wCF = 0.1) and RRCS working on 100 random
physical topologies in 6 .× 6 2D mesh with 5 spare and 5 randomly distributed faulty
cores and 8 .× 8 2D mesh with 8 spare and 8 random faulty cores respectively. The
DF and CF improvement of gSA over RRCS are reordered from small to large and
are shown in Fig. 4.11. For the DF metric in 6 .× 6 array, RRCS generates the same
results as gSA for the first 28 physical topologies, i.e., no improvement, while for
the other 72 cases, gSA has different levels of improvement. When the network size
increases to 8 .× 8, gSA achieves greater improvement than in 6 .× 6 for 80% cases.
CF metric is similar. We can conclude that RRCS is efficient since for around 20%–
35% cases, it generates results as good as gSA. However, for many circumstances
due to chain column stealing operations, RRCS has very poor performance, and
gSA can improve over RRCS greatly, especially for larger network size.

We then use SA algorithm with different parameters working on the above 100
physical topologies in 6 .× 6 and 8 .× 8 mesh. The initial and final temperature
factors .λ1 and .λ2 are tuned and set to be 0.5 and 0.05 respectively. We choose 50
and 100 random solutions, i.e., SA-50 and SA-100 with different iteration numbers,
i.e., .Q = 10 and .Q = 20 · wDF and .wCF are set to be 0.9 and 0.1 respectively. The
averaged results are shown in Table 4.1. It can be seen that, gSA outperforms SA in
all cases with very little computational time. With more random solutions and more
iteration numbers, SA improves a little but with great computing time overhead.
This is because the quality of random initial solutions used by SA are much worse
than RRCS, which is able to focus on a good solution point very fast.
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Table 4.1 Comparison
between gSA and SA from
the perspective of computing
time, DF, and CF

SA-50 (Q .= 10) SA-100 (Q .= 20) gSA

.6 × 6 2D mesh with 5 spare and 5 faulty cores

Time(s) 177.4 484.7 2.2

DF 1.538 1.483 1.319

CF 1.396 1.312 0.977

.8 × 8 2D mesh with 8 spare and 8 faulty cores

Time(s) 484.4 3477.8 8.9

DF 1.782 1.473 1.296

CF 1.615 1.288 0.908

4.2.4 Experiment Result Analysis

4.2.4.1 Experimental Setup

We have implemented a manycore NoC simulation platform composed of classic
pipelined virtual channel routers and cores which generate synthetic workload. The
router pipeline has four stages, i.e., routing computation, virtual-channel allocation,
switch allocation and switch traversal, in which each stage takes one clock cycle.
Since we want to evaluate the performance of virtual topologies, other parameters
should remain unchanged. In our experiments, each physical link has 8 virtual
channels, and each virtual channel has 8 flit buffers. Credit-based flow control is
used for buffer management. To reveal the performance of topologies themselves,
the simple dimension-order routing is used which has the minimum impact on traffic
distributions.

As execution-driven workload makes it difficult to isolate bottlenecks in the
network design [21] and we concern more about the network performance, we
use synthetic workload instead of execution-driven workload. Each core in our
manycore NoC simulation platform is actually a traffic generator. As virtual
topologies are constructed based on the spatial locality of communication, we
adopt the neighboring traffic pattern in our experiments, in which a core only
exchanges information with its neighbors. It is important to point out that the traffic
patterns are applied to virtual topologies, not to physical topologies. That is, 1-hop
communication between virtual neighbors may involve multiple physical hops.

Virtual topologies generated by reconfiguration algorithms are in XML format
to be read by the simulation platform. Each core will then be assigned a name
“.c−vtx−vty−phx−phx”, in which .(vtx, vty) and .(phx, phy) are its virtual and
physical coordinates. Each time a core sends a packet, it reads its virtual location,
looks up the mapping table stored in the simulator to find the physical locations of
its virtual neighbors and then encapsulates in the packets as the destination address.
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Fig. 4.12 Comparison
between SA-1, RRCS and
SA. (a) DF comparison. (b)
CF comparison

4.2.4.2 Experiment I

In this experiment, we show how predictive of DF and CF metrics to real
performance measurements. DF is the average hop count between virtual neighbors
and thus should reflect the average delay and throughput of the network. While CF
indicates traffic distribution across all the physical channels. We use SA-1 (1 random
initial solution), RRCS and gSA .(wDF = 0.9, wCF = 0.1) to work on 100 different
physical topologies in 8 .× 8 2D mesh with 8 spare cores and 8 randomly distributed
faulty cores on-chip. We use SA-1 to keep the computational time comparable
to gSA. We choose the physical topology on which gSA achieves the greatest
improvement over SA-1 and RRCS in this experiment. The obtained DF and CF
values are shown in Fig. 4.12.

Next, we import virtual topologies generated by these three algorithms into our
manycore NoC platform to get the simulation performance measurements, i.e.,
average delay, throughput and average occupied time of all channels as shown in
Fig. 4.13.

Average delay is the time required for a packet to traverse the network from
source to destination. It can be observed from Fig. 4.13a, the latency of virtual
topologies achieved by SA-1, RRCS and gSA are almost the same under light
traffic load. When the network saturates, it is clear that the delay of gSA is better
than RRCS, and RRCS is better than SA-1. Network throughput is the packets
delivering rate for a particular traffic pattern. Figure 4.13b shows the throughput
of saturation of the three algorithms. It is clear that the throughput of gSA is higher
than RRCS, while RRCS is higher than SA-1. Compared with Fig. 4.12a, we show
the effectiveness for DF as performance metrics.

Figure 4.13c shows the percentage of occupied time of all physical channels.
More occupied time implies that more traffic passing through that channel. We
reorder these values from small to large for easy comparison. It can be observed
that the curve for gSA has the smallest slope, which means the differences between
all channels are small, i.e., the traffic is more evenly distributed. RRCS is more steep
than gSA, and SA-1 is more steep than RRCS. Compared with Fig. 4.12b, we show
that the CF metric reflects real performance measurement.

From the above we can conclude that, gSA has better performance than RRCS
and SA-1, not only in terms of DF and CF metrics but also in real performance
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Fig. 4.13 Simulation measurements comparison between SA-1, RRCS and gSA. (a) Average
delay. (b) Throughput. (c) Traffic distribution
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measurements, i.e., latency, throughput and traffic distribution. In addition, the
effectiveness of DF and CF as evaluation metrics is proved with this experiment.

4.2.4.3 Experiment II

In this experiment, we evaluate the effectiveness of the proposed gSA algorithm
with the scale of network size. We use the 8 .× 8 2D mesh topology with 8
spare cores and 8 randomly distributed faulty cores. We choose another larger
configuration with 10 .× 10 2D mesh reference topology, 12 spare cores and 12
random faulty cores for proportional scaling. We work on 100 random physical
topologies in 8 .× 8 and 10 .× 10 respectively. The average improvement of gSA
over RRCS for DF metric is 6.828% in 8 8 while 9.737% in 10 .× 10 configurations.
Regarding the CF metric, the improvement is 18.935% in 8 .× 8 and 20.983% in 10
.× 10 respectively. That means when network becomes larger, gSA achieves much
better improvement over RRCS.

The average delay, throughput and traffic distribution are shown in Fig. 4.14. It
is clear that gSA improves over RRCS for both network sizes. For smaller network
size, i.e., 8 .× 8, the averaged delay, throughput and traffic distribution of virtual
topologies achieved by RRCS are much closer to that of gSA. For larger network
size, i.e., 10 .× 10, gSA achieves much better improvement in all measurements.
Thus we can conclude that, firstly, when network size scales, gSA achieves better
improvement; secondly, we further validate the effectiveness of DF and CF because
the level of improvement for these two metrics and real performance measurements
are similar.

4.2.4.4 Experiment III

In this experiment, we evaluate the impact of different number of faulty cores and
spare cores on gSA algorithm.

Firstly, we use 8 .× 8 2D mesh with one column spare cores. We vary the number
of faulty cores from 2 to 8 (i.e., D2, D4, D6 and D8). Faulty cores are randomly
distributed, leading to various physical topologies. Results are averaged and shown
in the first two figures in Fig. 4.15.

It is clear that when the number of defective cores increases, the performance of
virtual topologies achieved by gSA slightly becomes worse in terms of both DF and
CF. This is expected because the increase of faulty cores limits the solution space of
the proposed algorithm.

Next, we assume there are always 2 randomly distributed faulty cores in 8 .× 8 2D
mesh and we vary the number of spare cores from 2 to 10 (i.e., S2, S4, S6, S8 and
S10). As expected, the increase of spare cores also increases the solution space of
the gSA algorithm, and both DF and CF slightly becomes better. However, when the
number of spare cores is increased from 8 to 10, we find that DF almost remains the
same while CF becomes much worse as in Fig. 4.15. This is because there are many
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Fig. 4.14 Comparison between RRCS and gSA for different network size. (a) Average delay. (b)
Throughput. (c) Traffic distribution
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Fig. 4.15 The impact of different number of faulty cores and spare cores on gSA algorithm

cores and channels left unused on-chip, traffic distribution becomes much uneven.
Therefore, we can conclude employing more-than-necessary number of spare cores
does not facilitate to boost the NoC-based manycore systems’ performance much
after reconfiguration.

Effective defect tolerance techniques are essential to improve the yield of
homogeneous manycore processors. We propose to employ core-level redundancy
with AMAD scheme to address this issue. As defective cores change the topology
of the target design, programmers may face various different topologies when
optimizing their parallel programs. This is a big burden and may also cause
confusion in marketing. We propose to address the above problem by providing
a unified topology that is isomorphic with the target reference topology regardless
of the various possible underlying physical topologies. We borrow the concept of
virtual topology from network embedding problem and we propose two metrics
to evaluate the performance of different virtual topologies. An effective heuristic,
namely Row Rippling Column Stealing-guided Simulated Annealing algorithm
is then presented to solve the topology reconfiguration problem. The proposed
algorithm is evaluated on various topologies in a NoC-based manycore simulation
platform. Experimental results not only show the effectiveness of the proposed gSA
algorithm, but also show the effectiveness of the two evaluation metrics used in our
algorithms, i.e., DF and CF. In our future work, we plan to investigate the topology
reconfiguration problems for topologies other than mesh and torus (e.g., butterfly
topology).

4.2.5 Discussion

Effective defect tolerance techniques are essential to improve the yield of homo-
geneous manycore processors. We propose to employ core-level redundancy with
AMAD scheme to address this issue. As defective cores change the topology of the
target design, programmers may face various different topologies when optimizing
their parallel programs. This is a big burden and may also cause confusion in
marketing. We propose to address the above problem by providing a unified
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topology that is isomorphic with the target reference topology regardless of the
various possible underlying physical topologies. We borrow the concept of virtual
topology from network embedding problem and we propose two metrics to evaluate
the performance of different virtual topologies. An effective heuristic, namely Row
Rippling Column Stealing-guided Simulated Annealing algorithm is then presented
to solve the topology reconfiguration problem. The proposed algorithm is evaluated
on various topologies in a NoC-based manycore simulation platform. Experimental
results not only show the effectiveness of the proposed SA algorithm, but also show
the effectiveness of the two evaluation metrics used in our algorithms, i.e., DF and
CF.

In our future work, we plan to investigate the topology reconfiguration problems
for topologies other than mesh and torus (e.g., butterfly topology).

4.3 NoC Fault Tolerance with Routing

Fault-tolerant routing is usually used to provide reliable on-chip communication for
many-core processors. We focus on a special class of algorithms that do not use
virtual channels. One of the major challenges is to keep the network deadlock free
in the presence of faults, especially those locating on network edges. State-of-the-
art solutions address this problem by either disabling all nodes of the faulty network
edges or including all faults into one faulty block. Therefore, a large number of fault-
free nodes will be sacrificed. To address this problem, the proposed ZoneDefense
routing not only includes faults into convex faulty blocks but also spreads the faulty
blocks’ position information in corresponding columns. The nodes, which know the
position of faulty blocks, form the defense zones. Therefore, packets can find the
faulty blocks and route around them in advance. Exploiting the defense zones, the
proposed ZoneDefense routing could tolerate many more faults with significantly
reduced sacrificed fault-free nodes compared with the state-of-the-art algorithms.
Furthermore, the ZoneDefense routing does not degrade the network performance
in the absence of faults, and could get similar performance as its counterparts in the
presence of faults.

4.3.1 Challenges of Fault-Tolerant NoC Routing

MANY-CORE processors usually utilize NoC to provide on-chip communication
[21]. 2-Dmesh topology is widely adopted since its planar structure facilitates the IC
manufacturing. For example, TILE64 [4] and Godson-T [28] processors select an 8
.× 8 mesh, and Intel Tera-scale prototype processor adopts an 8 .× 10 mesh [88]. The
performance of NoC depends heavily on the efficiency of routing algorithm, which
is either deterministic or adaptive. Most many-core processors use deterministic
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routing, such as the X-Y routing, since it facilitates the design of efficient routers
[4, 28, 88]. Unfortunately, X-Y routing is not fault-tolerant.

Faults can appear in cores, routers, and other components. Failed cores can be
tolerated by redundancy [96], while failed routers are usually handled by fault-
tolerant routing. One of the major challenges of designing fault-tolerant routing
is to keep the network deadlock free. The wormhole switching technique and the
absence of virtual channels make this problem more challenging. In addition, many-
core processors usually use virtual networks to avoid protocol deadlock, where each
virtual network is usually assigned with a separate virtual channel. Thus, no virtual
channel could be used by the routing algorithm to avoid routing deadlock. From the
routing algorithms’ point of view, this kind of NoC is same with that does not have
virtual channels.

In NoCs without virtual channels, turn models are usually used to avoid deadlock
[14, 35, 39]. Chiu [14] has proved that a network is deadlock free if all rightmost
columns are removed from the network. However, without rightmost columns, it is
difficult to tolerate faults locating on the left network edge [40, 92, 97].

To address this problem, Glass and Ni [40], Wu [92], and Zhang et al. [97]
have proposed their solutions. These solutions either tolerate only one fault [40]
or disable a large number of fault-free nodes [92], [97]. One common feature of
them is that packets do not know the faults until they are blocked. In our opinion,
this is the major reason that causes the difficulties to keep the network deadlock free.
Because packets should make a turn to route around faults. However, these turns are
usually unexpected and make it difficult to avoid deadlock.

To address this problem, we propose to include faults into defense zones with
which packets could find faults in advance. Based on the defense zones, we propose
the ZoneDefense routing that can significantly improve the state-of-the art routing
algorithms [40, 92, 97]in the following three aspects: (1) the number of sacrificed
fault-free nodes, (2) the network reconfiguration time, and (3) the coverage of fault
distributions.

4.3.2 Preliminaries of Fault-Tolerant Routing

4.3.2.1 2-D Meshes

As shown in Fig. 4.16, a 2-D mesh has .m × n nodes, where m (resp., n) is the
radix of dimension x (resp., y). Each node d has an address .d : (dx, dy), where
.dx ∈ 0, 1, 2, . . . , m − 1 and .dy ∈ 0, 1, 2, . . . , n − 1. Two nodes .d : (dx, dy) and
.e : (ex, ey) are connected in dimension x (resp., y) if and only if .|dx − ex = 1|
and .|dy = ey | (resp., .|dy − ey = 1| and .dx = ex). If two nodes are connected in
dimension x (resp., y), they are connected by a bidirectional row (resp., column)
channel. Each bidirectional row (resp., column) channel consists of two opposite
physical channels: EW and WE (resp., NS and SN) channels. Particularly, EW
(resp., WE, NS, and SN) channel is used to forward packet from east to west (resp.,
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Fig. 4.16 Example of .4 × 3 mesh (.m = 4, .n = 3)

Fig. 4.17 Partially adaptive routing algorithms based on turn model. Forbidden turns are shown
as dashed lines. (a) West-first. (b) Negative-first. (c) North-last

west to east, north to south, and south to north). Each .m × n mesh has m columns
and n rows. Each row (resp., column) consists of m (resp., n) nodes that has the
same coordinate in dimension y (resp., x).

4.3.2.2 Turn Model

A packet moving toward direction A makes an AB turn if it turns to direction B,
where .A,B ∈ E,W,N, S and E (resp., W , N , and S) refers to direction east
(resp., west, north, and south). Note that most routing algorithms prohibit 180-
degree turns. Thus, there are eight possible turns, which can form two abstract
cycles, clockwise and counter-clockwise abstract cycles. The turn model avoids
deadlock by prohibiting one turn in each abstract cycle [39]. Since there are four
different turns in each abstract cycle, there are totally 16 different combinations
to prohibit two turns. Of these 16 combinations, 12 combinations are legal and
only three combinations are unique if rotation symmetry is considered. As shown in
Fig. 4.17, they are named as west-first, negative-first, and north-last, resp.

4.3.2.3 Odd-Even Turn Model

The main idea of the odd-even turn model is preventing the formation of rightmost
column segments of any circular waiting path [14]. As shown in Fig. 4.18, there are
two kinds of rightmost column, clockwise column and counterclockwise column.
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Fig. 4.18 Rightmost column
on the waiting path. (a)
Clockwise column. (b)
Counter-clockwise column

The clockwise rightmost column, as shown in Fig. 4.18a, consists of an ES turn, an
SW turn, and several NS channels. To break the clockwise rightmost column, Chiu
[14] proposed to prohibit ES turn in even columns and SW turn in odd columns. To
break the counter-clockwise rightmost column, EN and NW turns are forbidden in
even and odd columns, resp.

4.3.2.4 Fault Model

We adopt the convex block fault model [8], in which both node and link faults can
be used. For example, a node fault can be modeled by declaring all links incident on
it faulty, and a link fault can be used to model partial faults of routers. However, we
only consider node fault for simplicity. Furthermore, we assume that faulty blocks
do not share boundaries. If two faulty blocks share a boundary, a bigger faulty block
covering the two original ones will be formed. Note that some new fault models,
such as the MCC [8] and planar faulty blocks [47], were proposed to reduce the
number of fault-free nodes sacrificed by block fault models. Since they are designed
for 3-D (or higher dimensional) networks, we omit the detailed discussions.

Definition 3 A convex faulty block is a rectangular contiguous area that consists of
danger nodes in 2-D meshes.

Definition 4 A node is danger if it is faulty or unsafe.

Definition 5 All fault-free nodes are safe initially, and a safe node changes to semi-
safe if it has only one danger neighbor. Particularly, if the danger neighbor is in
x-dimension (resp., y-dimension), it changes to semi-safe-x (resp., semisafe-y).

Definition 6 A safe or semi-safe node changes to unsafe if: (1) it has two danger
neighbors, or (2) it has a danger neighbor in x-dimension (resp., y-dimension) and
a semi-safe-y (resp., semi-safe-x) neighbor.
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Fig. 4.19 Faulty blocks
without shared boundary
channels. Dark nodes
represent faults and gray
nodes indicate unsafe nodes

Definition 7 Faulty block’s boundary consists of the safe nodes, which are hori-
zontally, vertically, or diagonally adjacent to this block, and the links between these
nodes. Particularly, nodes horizontally or vertically adjacent to the faulty block are
called boundary nodes, and those diagonally adjacent are called corner nodes.

Definition 8 The boundary of a faulty block is called a fault ring if the nodes and
links form a cycle; otherwise, it is called a fault chain.

Example 1 As shown in Fig. 4.19, an .8×7 mesh has four faults: (1, 0), (3, 3), (5, 4),
and (0, 5). According to Definition 5, nodes (4, 3) and (4, 4) change to semi-safe-x,
and nodes (5, 3) and (3, 4) change to semi-safe-y, in the first iteration. According to
Definition 6, node (4, 3) changes to unsafe in the second iteration because it has a
danger neighbor (3, 3) in x-dimension and a semi-safe-y neighbor (5, 3). Meanwhile,
nodes (5, 3), (3, 4), and (4, 4) also change to unsafe according to Definition 6. Faulty
blocks are formed in two iterations.

It is worthy to note that allowing faulty blocks to share boundaries could further
reduce the number of sacrificed fault-free nodes. However, shared boundaries will
significantly increase the routing complexity. The discussion about the tradeoffs
between the number of sacrificed fault-free nodes and the routing complexity is left
as the future work.

4.3.3 Defense Zones

According to [14], a network is deadlock free if all rightmost columns are removed.
As shown in Fig. 4.18, ES, SW, EN, and NW turns are necessary to form rightmost
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columns. To distinguish them from others, they are called unexpected turns.
Unfortunately, unexpected turns may be introduced if a packet hits the boundary
of a faulty block. To avoid unexpected turns, we introduce the defense zones, so that
packets could find the faulty block and route around it in advance.

The formation of defense zones is triggered by the detection of faults using
such as build-in self-test techniques [58]. We utilize the dynamic fault model, but
assume that no new fault occurs during a routing process like [92]. However, in
practice, faults may occur at any time. To support dynamic faults, one can exploit
more reliable flow control techniques, such as APCS [37] and the one proposed
in [22]. These techniques are orthogonal with the proposed ZoneDefense routing,
so we omit the detailed descriptions. Besides, faulty nodes are assumed to be
nonmalicious, i.e., they do not send and receive packets.

Once a fault is detected, the formation of defense zones is logically divided into
two steps: (1) construct faulty blocks with fault chains, and identify reference nodes
in fault chains if necessary; (2) spread the position of faulty blocks in columns
wherein they reside if necessary.

A. Step 1: Forming Faulty Blocks and Identifying Reference Nodes
We have shown the way to form convex faulty blocks in Sect. 4.3.2.4. These faulty
blocks can be categorized into nine classes based on the types of network edges
they touch as shown in Fig. 4.20. To route around faulty blocks, we utilize fault
chains to encapsulate them. If a faulty block touches any one network edge, its
boundary naturally forms a chain. Otherwise, we intentionally break the boundary
at its northeast corner by forbidding the ES and NW turns as shown in Fig. 4.20e.

The fault chain is called a l-chain if the type of faulty block is FB-1, FB-4, or
FB-7; otherwise, it is called a f -chain. For a l-chain, at least one of its two end
points touches the left network edge. It is used to notify that there is no route
on the west side of the faulty blocks. For f -chains, two reference nodes, left
(L) and right (R) reference nodes, should be considered to make correct routing
decisions. Furthermore, reference nodes could be real or pseudo. As shown in
Fig. 4.20, left reference nodes are labeled L, and right reference nodes are labeled
R. Real reference nodes are shown as solid circles, and pseudo reference nodes
are shown as dashed circles. In fact, the proposed ZoneDefense routing only cares
about the height (or the coordinate in y-dimension) of reference nodes. As for the
real reference node, its height is propagated along the chain. As for pseudo reference
node, the number of rows of the mesh is propagated.

The reference nodes are used to separate packets into two classes: the destination
is lower, not lower than the reference node. This kind of information will be used
by the ZoneDefense routing to route around faulty blocks without introducing
forbidden turns. More specifically, left and right reference nodes are used to direct
westward and eastward packets, resp. The pseudo reference nodes are used to
indicate that all destinations are lower than the reference node as shown in Fig. 4.20b
and c. As shown in Fig. 4.20e, the left reference node of FB-5 faulty blocks is
also pseudo. Thus, all westward packets will be treated as if their destinations are
lower than the left reference node, and routed along the clockwise direction without
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Fig. 4.20 Types of faulty blocks. (a) FB-1. (b) FB-2. (c) FB-3. (d) FB-4. (e) FB-5. (f) FB-6. (g)
FB-7. (h) FB-8. (.i)FB-9

introducing the forbidden NW turn at the northeast corner. Since we only care about
the height of reference nodes, the real reference node could be any node in the same
raw. For example, the left and right reference nodes of FB-6 faulty blocks, as shown
in Fig. 4.20f, could also be the northwest corner.
B. Step 2: Forming Defense Zones
To avoid vertically hitting a faulty block’s boundary, nodes above and below
it should be notified with the position information of this block. To store that
information, two registers are required, ceiling and floor, as shown in Fig. 4.21.
In the rest of this section, we will discuss the two rules that are used to update the
ceiling and floor registers.

Ceiling Rule the ceiling register of all safe nodes is initialized to n, where n is the
number of rows of the .m×n mesh. This means that there are no faulty blocks above
that node. The value of ceiling.



208 4 Fault-Tolerant Network-On-Chip

Fig. 4.21 Celing and floor

1. Changes to .Cy , where .Cy is the y-coordinate of current node, if it is the south
boundary node of FB-5 and FB-6 faulty blocks;

2. Otherwise, changes to .Ny , where .Ny is the y-coordinate of the north neighbor, if
the north neighbor is the northwest corner of FB-8 faulty blocks or the northeast
corner of FB-5 faulty blocks;

3. Otherwise, changes to ceiling_n, where ceiling_n is the value of ceiling register
of the north neighbor, if the north neighbor is NOT danger.

Floor Rule the floor register of all safe nodes is initialized to 0. The value of floor:

1. Changes to .Cy , where .Cy is the y-coordinate of current node, if it is the north
boundary node of FB-5 and FB-6 faulty blocks;

2. Otherwise, changes to .Sy , where .Sy is the y-coordinate of the south neighbor, if
the south neighbor is the southwest corner of FB-2 and FB-5 faulty blocks or the
northeast corner of FB-5 faulty blocks;

3. Otherwise, changes to floor_s, where floor_s is the value of floor register of the
south neighbor, if the south neighbor is NOT danger.

Based on the above two rules, the position information of all kinds of faulty
blocks, which can introduce unexpected turns, are propagated to corresponding
nodes. Thus, packets could utilize the position information to avoid introducing
deadlock. For example, if a packet vertically hits the south boundary of FB-5 or
FB-6 faulty blocks, an NW turn will be introduced. According to the first ceiling
rule, south boundary nodes of FB-5 and FB-6 faulty blocks update their ceiling
registers using their own y-coordinates. The value of ceiling is further propagated to
south neighbors according to the third ceiling rule. By comparing the destination’s
y-coordinate with the ceiling, we can know that whether routing a packet to north
will introduce an NW turn. If the answer is yes, we can route packet to west instead
of north to avoid the unexpected NW turn. In the next section, we will discuss how
does the proposed ZoneDefense routing algorithm route packets based on defense
zones.
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4.3.4 ZoneDefense Routing Algorithms

ZoneDefense routing (see Algorithm 2) routes packets according to the type of node
currently the header flit resides in. If the header flit arrives at the destination, the
packet is consumed. Otherwise, the header flit is first routed by the Default-Routing.
After that, if the current node is on a fault chain, the output is redirected by two
routing subfunctions: LChain-Routing and FChain-Routing.

Algorithm 1: ZoneDefense-Routing
Data: C : current node; D : destination node.
Result: output

1 if C=D then
2 Consume the packet;
3 else
4 output=Default-Routing();
5 if Current node is shared by a l-chain and a f -chain then
6 if output = west then
7 output=LChain-Routing();
8 else
9 output=FChain-Routing();

10 end
11 else if Current node is on a l-chain then
12 output = LChain-Routing();
13 else if Current node is on a f -chain then
14 output=FChain-Routing();
15 end
16 end

According to the Default-Routing (see Algorithm 3), the packet is routed to west
if the destination is on the west to the current node. Otherwise, the Default-Routing
tries to route packets following the .Y − X routing rules. However, if the destination
is higher than ceiling or lower than floor, the packet should be first misrouted to
west to avoid vertically hitting the faulty block boundaries. Otherwise, an NW or
SW turn will be made.

If the current node is on a fault chain, the routing path assigned by Default-
Routing may be blocked by faults. Thus, the output port should be redirected. More
specifically, when the current node is the corner shared by a l-chain and a f -chain,
the LChain-Routing (see Algorithm 4) will be used if the Default-Routing selects
the west output. Otherwise, the FChain-Routing (see Algorithm 5) will be used. If
the current node is not shared by fault chains or shared by two f -chains, the routing
subfunction is selected based on the type of fault chain.

The LChain-Routing only cares about the packets that may cross the faulty block.
For example, if the current node is on the north (resp., south) block boundary, it cares
about the packets whose destination is lower (resp., higher) than the current node. In
such cases, packets should be routed around the faulty block through the east output
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Algorithm 2: Default-Routing
Data: C : Current node; D : destination node.
Result: output

1 if Cx > Dx then
2 output = west ;
3 else if Cx �= 0 and (Dy > ceiling or Dy < f loor) then
4 output = west ;
5 else if Cy < Dy then
6 output = north;
7 else if Cy > Dy then
8 output = south;
9 else

10 output = east ;
11 end

Algorithm 3: LChain-Routing
Data: C : current node; D : destination node; Def ault − Output :output selected by

Default-routing.
Result: output .

1 if C is on north boundary and Cy > Dy then
2 output = east ;
3 else if C is on south boundary and Cy < Dy then
4 output = east ;
5 else if C is on east boundary and Def ault − Output == west then
6 if Cy < Dy then
7 output = north;
8 else
9 output = south;

10 end
11 else if C is the northeast corner and Def ault − Output == west and Cy > Dy then
12 output = south;
13 else if C is the southeast corner and Def ault − Output == west and Cy < Dy then
14 output = north;
15 else
16 output = Def ault − Output ;
17 end

port. Otherwise, if the current node is on the east block boundary, it cares about
the packets that are routed to west by the Default-Routing. In such cases, packets
are redirected to north if the destination is higher than the current node, and south
if the destination is lower than the current node. Furthermore, to avoid 180-degree
turns, northeast (resp., southeast) corner should redirect packets, which are routed
to west by the Default-Routing, to south (resp., north) if their destinations are lower
(resp., higher) than the current node. The LChain-Routing and the Default-Routing
coincide for all other cases.

FChain-Routing is used to route packets around faulty blocks without introduc-
ing the forbidden ES and NW turns on the northeast corners of FB-5 faulty blocks.
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Algorithm 4: FChain-Routing
Data: C : current node; D : destination node; L : left reference node; R : right reference

node; Def ault − Output : output selected by Def ault − routing.
Result: output .

1 if C is on east boundary and Def ault − Output == west then
2 if Dy ≥ Ly then
3 output = north;
4 else
5 output = south;
6 end
7 else if C is on west boundary and Cx < Dx then
8 if Dy ≥ Ry then
9 if Dy > Ceiling then

10 output = north;
11 else
12 output = north;
13 end
14 else
15 if Dy < f loor then
16 output = west ;
17 else
18 output = south;
19 end
20 end
21 else if C is on north boundary and Cx < Dx and Cy > Dy ≥ Ry then
22 output = east ;
23 else if C is on south boundary and Cx < Dx and Cy < Dy < Ry then
24 output = east ;
25 else if C is the southwest corner and Def ault − Output == north and Cx < Dx and

Dy < Ry then
26 output = east ;
27 else
28 output = Def ault − Output ;
29 end

For example, if the current node is on the east block boundary, it cares about the
packets that are routed to west by the Default-Routing. In such cases, the packets
are redirected to south if their destinations are lower than the left reference node,
and north if the destinations are not lower.

If the current node is on the west block boundary, it cares about the eastward
packets, i.e., .Dx > Cx . In such cases, if the destination is not lower than the
right reference node, the packet is routed to north. Otherwise, it is routed to south.
However, if the destination is higher than ceiling or lower than floor, the packet
should be routed to west first. If the current node is on the north block boundary, it
cares about the packets whose destination is on the southeast to the current node. In
such cases, if the destination is not lower than the right reference node, the packet
is routed to east. Otherwise, it is routed to west according to the Default-Routing.
If the current node is on the south block boundary, it cares about the packets whose
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destination is on the northeast to the current node. In such cases, if the destination
is lower than the right reference node, the packet is routed to east. Otherwise, it is
routed to west according to the Default-Routing.

Furthermore, to avoid 180-degree turns, the southwest (resp., northwest) corner
should redirect the north (resp., south) output, selected by Default-Routing, to east
if the destination is on the east to current node and lower (resp., not lower) than the
right reference node. The first case only happens on the southwest corners of FB-2
and FB-5 faulty blocks, and second case happens on the northwest corner of FB-8
faulty blocks.The FChain-Routing and the Default-Routing coincide for all other
cases.

In the rest of this section, we use an example to show how does the proposed
routing algorithm route packets in the presence of faults. As shown in Fig. 4.22a,
there is an .11 × 11 mesh with 12 faulty nodes. To form faulty blocks, six fault-
free nodes change to unsafe. Fault chain nodes update their status according to
the information they get from neighbors. For example, node (8, 6) finds a danger
neighbor on the west to itself, so it changes to “east block boundary.” Meanwhile,
node (7, 7) changes to “north block boundary.” The status changes will be detected
by node (8, 7), which does not have danger neighbors. Thus, it will change to
“northeast corner” in the next iteration. Since this faulty block does not touch any
network edge, node (8, 7) declares itself as the right reference node. This declaration
will be noticed by nodes (8, 6) and (7, 7), which will update the value of their right
reference node. After several iterations, the value of right reference node will be
distributed to all nodes belonging to this fault chain. Meanwhile, these nodes also
set the value of the pseudo left reference node to 11, i.e., the number of rows.

Fig. 4.22 Illustrative example. Dark, gray, and white nodes represent faulty, unsafe, and safe
nodes, resp. Dashed bold lines represent l-chains, solid bold lines represent f -chains. The 2-tuple
<c, f > indicates the value of ceiling and floor registers. Nodes without labeled values have the
unchanged initialized value <11, 0>. (a) Network status. (b) Routing example
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Nodes above and below some kinds of faulty blocks should update their floor and
ceiling registers, resp. For example, node (6, 7) will set its floor register to 7 when it
finds that it is on the north boundary of an FB-5 faulty block. The position of faulty
blocks is distributed inside each column. We could find that node (6, 1) does not
update its floor register because we do not care about the position of faulty blocks
touching north or south network edges.

Figure 4.22b shows four routing examples using the ZoneDefense routing. When
we talk about the ceiling, floor, and two reference nodes, please refer to Fig. 4.22a
for their values.

The first packet, .S1(2, 3) → D1(2, 10), is routed to west by the Default-Routing
because the destination is higher than the ceiling. The packet is further routed north
to node (1, 4), where the LChain-Routing will be used. Since the current node is
on the south block boundary and the destination is higher than the current node,
the packet is routed east to corner (2, 4). Then, the packet is routed to north as
the Default-Routing returns “west” and the destination is higher than the current
node. At the northeast corner, the LChain-Routing agree with the Default-Routing
because the northeast corner only cares about the packet whose destination is lower
than itself. When the packet arrives at node (1, 6), it is routed to north because the
destination is on the northeast to the current node. When the packet arrives at node
(1, 8), the FChain-Routing will be used. The southwest corner of f -chain only cares
about the packet whose destination is lower than the right reference node. Thus, the
packet is routed to north according to the Default-Routing. At node (1, 9), which
is on the west block boundary, the packet is routed to north as the destination is
higher than the right reference node. Until reaching the northwest corner, the packet
is routed east to the destination. The routing paths of other packets are also shown
in Fig. 4.22b, but we omit the detailed description due to the limited space.

4.3.5 Proof of Fault-Tolerant Routing

Dally and Seitz [19] have proved that a network is deadlock free if the corresponding
channel dependence graph (CDG) is acyclic. Later, Chiu [14] has proved that an
CDG is acyclic if all rightmost columns are broken in clockwise and counter-
clockwise abstract cycles. Therefore, to prove the proposed ZoneDefense routing
deadlock free, we will prove the corresponding CDG acyclic by showing that:

1. If faults do not appear on the left network edge, no rightmost column can be
formed;

2. The rightmost columns introduced to tolerate faults on the left network edge do
not form cycles.

Lemma 1 ES turn only appears at the west boundary of FB-2 and FB-5 faulty
blocks, as well as the northeast corners of the FB-4, FB-7, and FB-8 faulty blocks.
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Proof Assuming that the current node is node-c and a packet is routed from its west
neighbor node-w. If node-c is at the west boundary of one FB-2 or FB-5 faulty block
and the destination, node-d, is on the east of node-c, then the packet should be routed
to south. Thus, an ES turn is introduced. Otherwise, if node-c is at the a northeast
corner of one FB-4 or FB-7 or FB-8 faulty block and node-d is on the southeast of
node-c, then the packet should be routed to south. Thus, an ES turn is introduced.

Now, we prove that ES turn cannot appear at other cases. We prove this by
contradiction. If node-c is not at any faulty block boundary, then node-d should
be on the southeast of node-c and node-w. Since packet is routed to east instead of
south at node-w, node-w should be at the north boundary of a faulty block. Thus,
node-c should be at the north boundary or northeast corner of that faulty block.
Contradiction arises.

Otherwise, if node-c is on a faulty block boundary but at neither west boundary
of FB-2 and FB-5 faulty blocks nor the northeast corner of the FB-4, FB-7, and FB-8
faulty blocks. To make an ES turn at node-c, the west and south neighbor of node-
c should be safe. Thus, node-c should at one of the following positions: west and
south boundary or northwest, southwest, and southeast corner of the faulty block.
However, in any above cases, the packet should be routed to south instead of east at
node-w. Contradiction arises.

Lemma 2 EN turn only appears at the west boundary of FB-8 faulty blocks, as
well as the southeast corners of the FB-1, FB-2, FB-4, and FB-5 faulty blocks; SW
turn only appears at the southeast corners of FB-1, FB-2, FB-4, and FB-5 faulty
blocks; NW turn only appears at the northeast corners of FB-4, FB-7, and FB-8
faulty blocks.

Proof The proofs for EN, SW, and NW turns are similar with that for ES turn and
are omitted.

Lemma 3 The ES turn at the west boundary of FB-2 and FB-5 faulty blocks does
not belong to any clockwise rightmost column.

Proof According to the second floor rule, the southwest corner of FB-2 and FB-
5 faulty blocks update their floor registers with their y-coordinates. Thus, the ES
turn at the west boundary of FB-2 and FB-5 faulty blocks cannot connect with SW
turns below the southwest corner. Furthermore, SW turn cannot appear at the west
boundary of faulty blocks according to Lemma 2. Therefore, the rightmost column
cannot be formed.

Lemma 4 The ES turn at the northeast corner of FB-7 faulty block does not belong
to any clockwise rightmost column.

Proof Since SW turn cannot appear below the northeast corner of FB-7 faulty
blocks, the clockwise rightmost column cannot be formed.

Lemma 5 The EN turn at the west boundary of FB-8 faulty block does not belong
to any counter-clockwise rightmost column.
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Proof According to the second ceiling rule, the northwest corner of the FB-8 faulty
blocks update its ceiling register with its y-coordinate. Thus, the EN turn at the west
boundary cannot connect with NW turns above the northwest corner. Furthermore,
NW turn cannot appear at the west boundary of faulty blocks according to Lemma
2. Therefore, the counter-clockwise rightmost column cannot be formed.

Lemma 6 The EN turn at the southeast corners of FB-1, FB-2, and FB-5 faulty
blocks does not belong to any counterclockwise rightmost column.

Proof Nodes above the southeast corners of FB-1 and FB-2 faulty blocks do not
introduce NW turns, so that the EN turn at the southeast corners of FB-1 and FB-2
faulty blocks does not belong to any counter-clockwise rightmost column. Since the
northeast corner of the FB-5 faulty block sets its ceiling register with its y-coordinate
according to the second ceiling rule, the EN turn at the southeast corner of the FB-5
faulty block cannot connect with other NW turns. Therefore, it does not belong to
any counter-clockwise rightmost column either.

Lemma 7 The SW turn at the southeast corners of FB-1 and FB-2 faulty blocks
does not belong to any clockwise rightmost column.

Proof The clockwise rightmost column cannot be formed because the routers above
the southeast corners of FB-1 and FB-2 faulty blocks cannot introduce ES turns.

Lemma 8 The SW turn at the southeast corner of FB-5 faulty blocks does not
belong to any clockwise rightmost column.

Proof We prove this by contradiction. If a clockwise rightmost column is formed,
there should be an ES turn above the southeast corner as well as it is connected with
the SW turn. Since the northeast corner of FB-5 faulty blocks forbids the ES turn,
this ES turn should be above the northeast corner. However, the northeast corner of
FB-5 faulty blocks will cut off the connection between ES and SW turns because
it sets floor register with its y-coordinate. Therefore, the SW turn at the southeast
corner of FB-5 faulty blocks does not introduce rightmost columns.

Lemma 9 The NW turn at the northeast corners of FB-7 and FB-8 faulty blocks
does not belong to any counterclockwise rightmost column.

Proof The counter-clockwise rightmost column cannot be formed because the
routers below the northeast corners of FB-7 and FB-8 faulty blocks cannot introduce
EN turns.

Lemma 10 Clockwise rightmost column can be formed if and only if the ES and
SW turns appear at the northeast and southeast corners of FB-4 faulty blocks, resp.

Proof According to Lemmas 1 and 2, the ES and SW turns can appear at the
northeast and southeast corners of the FB-4 faulty block, resp. Thus, the clockwise
rightmost column can be formed with them.

Assuming a clockwise rightmost column is formed. According to Lemmas 3 and
4, the ES turn should be at the northeast corner of an FB-4 faulty block. According
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to Lemmas 7 and 8, the SW turn should be at the southeast corner of an FB-4 faulty
block.

Lemma 11 Counter-clockwise rightmost column can be formed if and only if the
EN and NW turns appear at the southeast and northeast corners of FB-4 faulty
blocks, resp.

Proof According to Lemma 2, EN and NW turns can appear at the southeast and
northeast corners of an FB-4 faulty block. Thus, the counter-clockwise rightmost
column can be formed.

Assuming a counter-clockwise rightmost column is formed. According to Lem-
mas 5 and 6, the EN turn should be at the southeast corner of an FB-4 faulty block.
According to Lemma 9, the NW turn should be at the northeast of an FB-4 faulty
block.

Lemma 12 Rightmost columns on the boundary of FB-4 faulty blocks cannot form
cycles.

Proof According to Lemmas 10 and 11, the rightmost columns always stick to the
boundary of FB-4 faulty blocks. Furthermore, 180-degree turns are not allowed.
Thus, cycles cannot be formed because there are no corresponding leftmost columns
since FB-4 faulty blocks touch the left network edge.

Theorem 1 ZoneDefense routing is deadlock free.

Proof

1. If the network is fault free, the ZoneDefense routing only allows the WN, WS,
NE, and SE turns. Thus, the CDG is acyclic.

2. Otherwise, if the network has faults:

(a) If none of the faults locate on the left network edge, no rightmost columns
can be formed according to Lemmas 10 and 11. Thus, the CDG is still
acyclic.

(b) Otherwise, if some faults locate on the left network edge, the rightmost
columns, which are introduced to tolerate faults on the left network edge,
never form cycles according to Lemma 12. Thus, the CDG is still acyclic.

To sum up, wherever the faults locate, the ZoneDefense routing is deadlock free
according to Dally and Seitz’s theory [19] since the CDG is always acyclic. With a
nonminimal routing, packets may encounter livelock and move through the network
without ever reaching their destination. In the following, we prove that the proposed
ZoneDefense routing is livelock free.

Theorem 2 ZoneDefense routing is livelock free.

Proof In the absence of faults, ZoneDefense routing is minimal, and is thus livelock
free. In the presence of faults, the ZoneDefense is minimal if the source and
destination are not blocked by faults, and is thus livelock free. If they are blocked by
faults, packets may be misrouted west or along the fault chains. Misrouting packets
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to west will be ended, if any one of the three conditions holds: (1) the destination
is higher than current node and is lower than the ceiling, (2) the router is lower
than current node and is higher than floor, or (3) the router is on the left network
edge. Obviously, after misrouting west for finite hops, one of the three conditions
will definitely holds true and terminates the misrouting phase. Misrouting along the
fault chain will be ended, if the current router and the destination are on the same
side of the faulty block. Furthermore, each faulty block introduces at most two (one
for each kind) misrouting phases to a packet, and a packet encounters each faulty
block at most once. Therefore, the packet will definitely reaches its destination after
finite misrouting phases introduced by a finite number of faulty blocks. The network
is thus livelock free.

4.3.6 Experiment Result Analysis

This section will compare the ZoneDefense routing with previous work proposed in
the literatures [92, 97]. We select them as the baseline routing algorithms because
they do not use virtual channels. Literature [40] is not compared since it only
tolerates one fault. Literatures [34, 64, 76] are not compared because they require
off-line analysis. Literatures [30, 31] are not compared since they use routing tables
that cannot be compressed according to their routing algorithms.

4.3.6.1 Fault Model Comparison

The fault model is important since it determines the percentage of supported fault
distributions, the number of sacrificed fault-free nodes, and the reconfiguration time
(i.e., the time for a network to be stable after the detection of a fault). The proposed
ZoneDefense routing adopts the defense zones to include faults, literature [92]
utilizes multiple convex faulty blocks, and literature [97] utilizes only one convex
faulty block. As for [92], if faults appear at network edges or the columns adjacent to
left and right network edges, all nodes of corresponding network edges or columns
will be disabled.

These simulations are first carried out in an .8×8 mesh, and then in a .16×16 mesh
to show the scalability. The network is assumed to have at most 10% faulty nodes.
According to [65], faulty nodes tend to be clustered instead of uniformly distributed.
To generate clustered faults, we randomly select the first faulty node, and select
the sequencing faulty nodes with extra 10% possibility to neighbors of previously
selected faulty nodes. For the 8 .× 8 mesh with one and two faults, there are 64
and 2016 different fault distributions, resp. In such cases, all fault distributions are
simulated. If more than two faults are assumed, we randomly select 10,000 different
fault distributions to save simulation time. For the .16× 16 mesh, on the other hand,
we only exhaust the 256 different one-fault distributions. If more than one fault is
assumed, we also simulate 10,000 randomly selected fault distributions.
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Fig. 4.23 Coverage of fault distributions. (a) .8 × 8 mesh. (b) .16 × 16 mesh

1. Coverage of Fault Distributions:We first report the coverage of fault distributions
of simulated fault-tolerant routing algorithms. Specifically, if the formed faulty
blocks divide the network into several unconnected parts, we say that the
fault distribution is not supported by the ZoneDefense routing and the routing
algorithm proposed in [97]. According to [92], network cannot be partitioned
since faulty or unsafe nodes never locate on the new reconfigured network edges.
However, all fault-free nodes may be disabled in worst cases. In such cases, we
say that the fault distribution is not supported by the routing algorithm proposed
in [92].

The simulation results are shown in Fig. 4.23, where the x-axis represents the
number of faults inserted into the network, the y-axis indicates the percentage
of supported fault distributions. Particularly, “Wu [92]” represents the routing
algorithm proposed in [92], “Zhang et al. [97]” represents that proposed in [97],
and “Proposed” represents the proposed ZoneDefense routing.

In the .8 × 8 mesh [see Fig. 4.23a], all routing algorithms can tolerate all one-
fault distributions. If two or three faults are inserted, the ZoneDefense routing
and [92] also can tolerate all distributions. However, [97] only tolerates 93.75
and 96.72% distributions, resp. In three-faults case, [97] got better result than
that in two-faults case because (1) only 10,000 fault distributions are simulated
in threefaults case, and (2) clustered faults are assumed. Actually, if all three-
fault distributions are simulated, the results should be worse than that in two-
faults case. As the number of faults increases, the percentage of supported fault
distribution degrades for all routing algorithms. However, for the ZoneDefense
routing, the degradation is negligible. For example, even with six faults, 99.93%
fault distributions still can be tolerated. For [92], the degradation is moderate. For
example, 96.5% distributions still can be tolerated with six faults. On the other
hand, for [11, 97], the degradation is significant. For example, only 88.05% of
the six-faults distributions can be tolerated.

When the network size increases, the relative performance of these algorithms
do not change [see Fig. 4.23b]. However, the difference between [97] and other
two algorithms becomes much larger. For example, only about 65% of the 25-
faults distributions can be tolerated by Zhang et al. [97], but more than 97% and
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Fig. 4.24 Average number of sacrificed nodes. (a) .8 × 8 mesh. (b) .16 × 16 mesh

99% distributions can be tolerated by Wu [92] and the ZoneDefense routing,
resp.

According to the above analysis, ZoneDefense routing and [92] get much
better results than [97]. In the next simulation, we will find that although [92]
can support most of the fault distributions as the ZoneDefense routing, [92] will
sacrifice much more fault-free nodes.

2. Number of Sacrificed Nodes: To avoid deadlock, some fault-free nodes should
be sacrificed. They may be included into faulty blocks or explicitly disabled, and
are not allowed to send and receive packets. Thus, the associated core and caches
also cannot be utilized by applications. This section will compare the number of
nodes sacrificed by the ZoneDefense routing and previous work [92, 97].

The simulation setup is same with the simulation discussed in above section,
and the results are shown in Fig. 4.24. For one fault in an .8 × 8 meshes [see
Fig. 4.24a], the ZoneDefense routing and [97] do not sacrifice fault-free nodes.
However, [92] will sacrifice 7.4 fault-free nodes in average. Because if the fault
appears at network edges or the columns adjacent to left and right network
edges, all nodes of the edge or column will be disabled. When the number of
faults increases, the number of nodes sacrificed by Wu [92], Zhang et al. [97]
significantly increases. For example, when six faults are assumed, [92] and [97]
sacrifice 27.3 and 16.5 fault-free nodes in average, resp. On the other hand, the
ZoneDefense routing only sacrifices 3.7 nodes in average. The number of [97]
gets better results in three-faults case than in two-faults case due to the two same
reasons discussed in above section.

When the network size increases, the absolute number of nodes sacrificed
by all routing algorithms is increased as the average distance between faults
increases. The ZoneDefense routing also gets better results than its two counter-
parts. For example, if 25 faults are assumed, the ZoneDefense routing sacrifices
about 28 fault-free nodes. On the other hand, [92] and [97] sacrifice about 133
and 163 fault-free nodes, resp. The difference is huge. If fewer than five faults
are assumed, [97] gets better results than [92]. Otherwise, [97] sacrifices more
because a big-size faulty block is usually formed with the large number of faulty
nodes.
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Fig. 4.25 Average reconfiguration time. (a) .8 × 8 mesh. (b) .16 × 16 mesh

According to the above two simulations, we could find that the ZoneDefense
routing can support most fault distributions with a small number of sacrificed
nodes. Although [92] also can support most fault distributions, the number
of sacrificed fault-free nodes is huge. As for [97], large fractions of fault
distributions cannot be tolerated as well as a large number of nodes are sacrificed.

3. Reconfiguration Time: The reconfiguration time or the convergence time is the
time for the network to be stable after the faults are detected. In this simulation,
we assume a static reconfiguration algorithm, such as the one proposed in [75],
and omit the time for draining old packets by assuming that the network is empty
when faults are detected.

The simulation setup is same with above two simulations, and the results
are shown in Fig. 4.25. For .8 × 8 meshes [see Fig. 4.25a], these three routing
algorithms get similar results. The ZoneDefense routing takes a longer time to be
stable than [92] as it needs to spread faulty blocks’ information in corresponding
columns. The reason why [97] requires the longest time to be stable is that each
node should check whether there is faulty or unsafe node in its row and column.

In .16 × 16 meshes [see Fig. 4.25b], the reconfiguration time increases as
expected. Zhang et al. [97] also takes the longest time to be stable. The
ZoneDefense routing takes a longer time than [92] if the number of faults is
smaller than nine because ZoneDefense routing should spread faulty blocks’
information in corresponding columns. Otherwise, [92] takes a longer time
because the possibility of disabling a network edge or column increases.

4.3.6.2 Performance Analysis

In this simulation, we utilize a cycle-accurate NoC simulator, the BookSim [21],
to carry out the simulations. BookSim provides a flexible way to configure NoC
parameters, such as network topology and routing algorithm. By maintaining a
global clock, BookSim could keep the simulation cycle accurate. In the following
simulations, router pipeline depth is assumed as four and link traversal latency
is one. The round-robin policy is adopted to select requesting inputs in switch
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allocation stage. Although we assume a canonical router architecture instead of
the aggressive state-of-the-art ones, such as look ahead routing and speculation,
it is fair for evaluating fault-tolerant routing algorithms. For each routing algorithm,
we assume that there is one virtual channel per physical channel, and each virtual
channel contains an FIFO with eight entries to hide the round-trip latency of flow-
control credits.

In this simulation, we first assume the network topology is .8×8, and simulate the
cases with one, three, and five faults. For the one-fault case, we simulate all 64 fault
distributions and report the average results. For three-faults and five-faults cases, we
simulate 100 randomly selected different fault distributions to save simulation time.
To show the scalability of routing algorithms, we further do simulations in .16 × 16
meshes with one, eleven, and twenty one faults. For each case, we simulate 100
randomly selected different fault distributions to save simulation time.

Under uniform traffic pattern, a safe node can send packets to all other safe nodes
with the same possibility. The simulation results are shown in Fig. 4.26, where the
x-axis represents the injected traffic load, i.e., the number of flits injected to the
network per cycle, and the y-axis shows the average packet latency.

In .8 × 8 meshes [see Fig. 4.26a], these three routing algorithms get similar
performance. For example, all of them will be saturated if more than six flits
are injected per cycle for one-fault case. The main reason is that the average
packet latency is largely determined by the worst case performance, which often
happens when the faults locating in the center of the network. Furthermore, the
main difference between ZoneDefense routing and its two counterparts [92], [97] is
the way they treat the faults on network edges. Therefore, they will get similar worst
case performance. The packet latency in worst case is often much larger than that
in other cases, so that the average packet latency is similar for these three routing
algorithms.

Fig. 4.26 Average packet latency under uniform traffic pattern. (a) .8× 8 mesh. (b) .16× 16 mesh
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As the number of faults increases, the network performance degrades. For
example, the network will be saturated if more than five flits are injected per
cycle for three-faults case. For [92] and the ZoneDefense routing, more faults
usually translate into more faulty blocks or defense zones. Thus, the possibility
of congestion increases as the congestion often happens at the boundaries of
faulty blocks and defense zones. For [97], more faults often translate into a bigger
faulty block. Since the boundary of the faulty block gets longer, the possibility of
congestion increases. Furthermore, as shown in Fig. 4.24, the number of sacrificed
nodes increases as the number of faults increases. Thus, the number of left fault-free
nodes is reduced, so that the congestion problem aggregates as the injection rate per
node increases. If the number of faults increases further, the network performance
does not degrade notably. For example, as for the ZoneDefense routing and [92],
they get similar performance in three-faults and five-faults cases. Zhang et al. [97]
gets moderate performance degradation when the number of faults increases from
three to five. The main reason is also that the worst case fault distribution determines
the average network performance.

In .16×16 meshes [see Fig. 4.26b], the ZoneDefense routing and [97] get similar
network performance, which is much better than [92] in one-fault case. The reason
is that [92] sacrifices about ten fault-free nodes in average as shown in Fig. 4.24b,
so that the injection rate per node for [92] will be larger than other two algorithms.
Therefore, [92] get saturated earlier than others. As the number of faults increases,
[97] sacrifices more nodes than [92]. Therefore, [92] gets better performance than
[97] as its injection rate per node is relatively low. As for the ZoneDefense routing,
its performance is little lower than its two counterparts. The reason is that the
ZoneDefense routing sacrifices much fewer nodes than [92], [97] by forming many
small defense zones. As the number of defense zones increases, the possibility of
congestion increases.

According to above simulations, we could find that the ZoneDefense routing
could get similar network performance as its counterparts in .8×8 meshes regardless
of the number of faults. When the network size increases, such as in .16×16 meshes,
the ZoneDefense routing and [97] get better results than [92] at first. As the number
of faults increases, the network performance of ZoneDefense routing degrades a
little more than its counterparts. However, compared with [92, 97], the degradation
of network performance is moderate.

4.3.6.3 Overhead Analysis

In the following of this section, we will analyze the area and timing overhead of
the proposed ZoneDefense routing. The routers are assumed to have five input and
output ports. Five virtual channels per physical channel are utilized to realize five
virtual networks. Each virtual channel has eight buffers to temporally store flits
whose size is assumed as 64-bits. The round-robin arbiter proposed in the literature
[80] is used to implement virtual-channel and switch allocators. Note that we extend
[97] to tolerate one faulty block. To this end, [97] adopts the same chain rules
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Table 4.2 Area evaluation (two-input NAND gates)

Proposed design compared with Wu [92]

Wu [92] Zhang et al. [97] and Zhang et al. [97]

Router area 19,048 19,336 19,541(2.6%, 1.1%)

Tile area 173,165 175,788 177,651(0.3%, 0.1%)

as the ZoneDefense routing. The main differences between [97]-extended and the
ZoneDefense routing are that (1) the “default routing” of [97] is the .X − Y routing,
and (2) fault chains do not share boundaries in [97].

The router area, which is normalized to the number of two-input NAND gates,
is shown in the first row of Table 4.2. According to the simulation results, the area
overhead of the ZoneDefense routing compared with [92] and [97] (2.6 and 1.1%,
resp.) is very small. According to the results reported by Intel in the literature [88],
each router occupies about 11% of the tile area. Thus, the area overhead per tile (0.3
and 0.1%, resp.) is negligible as shown in the second row of Table 4.2.

The reconfiguration operations, such as forming defense zones in the ZoneDe-
fense routing and forming faulty blocks in [92] and [97], do not add delay to the
critical path of routers. Therefore, we only compare the routing delay of these
three routing algorithms. The virtual-channel allocation stage is the critical stage
of routers in our simulations. If the routing delay of [92], [97] (extended), and the
ZoneDefense routing are normalized to the delay of the critical stage, the results
are 0.83, 0.8, and 0.96, resp. Therefore, the ZoneDefense routing does not introduce
timing overhead since the critical stage does not change.

4.3.7 Discussion

Based on the defense zone fault model, we proposed the ZoneDefense routing
to reduce the large number of fault-free nodes sacrificed by state-of-the-art fault-
tolerant routing algorithms. The ZoneDefense routing was theoretically proved to
be deadlock and livelock free. With it, packets could find the faulty blocks in
advance and route around them without introducing unexpected turns. Since the
complexity of avoiding deadlock was reduced, the unexpected operations, such as
including all faults into one faulty block or disabling all nodes of faulty network
edges and columns, can be avoided. Extensive simulations showed that the number
of sacrificed fault-free nodes is significantly reduced as well as the coverage of fault
distributions and reconfiguration time is improved. Furthermore, the ZoneDefense
routing does not degrade the network performance in the absence of faults and could
get similar network performance as the previous work with negligible overhead.
Taking all factors into consideration, we believed that the ZoneDefense routing
is better than state-of-the-art fault-tolerant routing algorithms designed for NoCs
without virtual channels.
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4.4 NoC Fault Tolerance with Data Path Salvaging

In this section, we mainly investigate fault-tolerant NoC design at circuit layer and
attempt to explore the inherent fault tolerance of NoC for the sake of less hardware
overhead.

To help illustrate the proposed fault-tolerant design approach, we briefly intro-
duce the basic structures of NoC first. NoC is mainly utilized as an scalable
interconnection fabric to enable flexible communication among a large number
of processing elements (PEs) which can be either processors or building blocks
of an SoC. It typically consists of a set of homogeneous routers connected with
links to support packet switch between PEs. Links are essentially relatively longer
wires between neighboring routers and are supposed to be of similar length after
placing and routing to ensure optimized NoC timing. Similar to router in Internet,
router is the major component of NoC and is also responsible for data buffering and
forwarding across the NoC-based chip.

A typical 2-stage pipelined wormhole router architecture as presented in Fig. 4.27
is taken an example. It mainly consists of pipeline registers, routing computing,
buffers, virtual channel allocator (VA), switch allocator (SA), and crossbar. Pipeline
registers are located between NoC pipeline stages to smooth the neighboring
pipeline stages. Routing computing is essentially a small piece of control logic
utilized to determine the right forwarding of each packet based on the predefined
routing algorithm. Buffers are usually used as virtual channels of the router to store
the packet before it is forwarded to the next router. Virtual channel allocator is also a
piece of control logic, but it is utilized to determine where a packet should be stored
in next router. When multiple packets from different input ports compete for the
same output port, switch allocator will make the decision to balance between latency
and fairness. Finally, crossbar is essentially a set of MUXes and enable data transfer
from any input port to all the output ports. Although the control logic including
virtual channel allocator and switch allocator is critical to the functionality of NoC,

Fig. 4.27 Typical router architecture
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Fig. 4.28 NoC chip area breakup. It adopts .4 × 4 mesh topology, each input port includes only a
single buffer and the input buffer size is 8-flit. It is synthesized with Synopsys Design Compiler
using SMIC 45 nm technology and works at 200MHz. Particularly, we have different data width
setups ranging from 16bit to 128bit evaluated separately

it takes only a fraction of the entire chip area and includes much less transistors
accordingly according to our chip area breakup analysis in Fig. 4.28. In this case,
they can be protected with straightforward triple modular redundancy (TMR). In
contrast, the data path including link, pipeline registers, buffers, and crossbar takes
up the majority of the chip area, and the proportion of the data path chip area further
increases with the data width. In this case, straightforward TMR can incur at least
100% area overhead, which is prohibitively expensive.

Inspired by prior works that seek to protect NoC links with channel serialization
[30, 41, 44], we take the entire NoC data paths into considerations and explore the
inherent fault tolerance of the data paths. The basic idea is to split the data paths into
identical lanes and further leverage a set of serial-parallel converters to enable data
transmission with only part of fault-free lanes. Typically, we may have to disable
the entire data path even when a single bit of the data path is corrupted by hardware
faults. Suppose we split a data path into 4 lanes. Now, it remains functional unless all
the four lanes are corrupted at the same time, of which the probability is much lower.
We have this fine-grain data path salvaging approach applied to all the pipeline
stages of NoC and the proposed fault-tolerant design is called RevivePath. Although
it does not guarantee 100% fault-free to hardware faults, it is generally orthogonal
to high-level fault-tolerant approaches such as fault-tolerant routing and dynamic
topology reconfiguration [21, 34, 64, 93]. Hence, it can be potentially combined
with prior fault-tolerant design approaches to further enhance NoC reliability.
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4.4.1 Fault-Tolerant Router Architecture

According to the analysis in Sect. 4.4, RevivePath proposed in this work has the
router control path that is critical to the NoC functionality yet takes up only a
fraction of chip area protected with classical TMR, while it mainly explores the
inherent fault tolerance of router data path to achieve high reliability with less chip
area overhead. Since the implementation of the TMR based protection for control
path is trivial, we mainly focus on the fault-tolerant design of router data path in the
rest of this sub section.

The overview of RevivePath is presented in Fig. 4.29. Basically, it has the regular
data paths including links, buffers, and the crossbar divided into multiple identical
slices based on data width. Since the data path slices are generally identical and
independent, they can potentially be utilized to backup each other with additional
switching support. To that end, we have a pair of serial-parallel converter and
parallel-serial converter inserted at both ends of a pipeline stage to enable the
replacement between the data path slices. When there are fault slices in a piece
of router data path, we can leverage the converters to continue with the data
transmission across the pipeline stage with only the fault-free slices. From the
perspective of a pipeline stage, it essentially works in a degraded manner in presence
of hardware faults and avoids corruption of the NoC connectivity. This approach can
be applied to all the different router data path pipelines. Specifically, a 64-bit link
can be viewed as four 16-bit link slices, a 64-bit FIFO can be viewed as four 16-bit
FIFO slices, a 64-bit Mux which is the basic block of crossbar can also be divided
into four 16-bit Mux slices. Details of the data path salvaging implementation will
be illustrated in the following sub section.

Since hardware faults on a specific data path pipeline stage may vary substan-
tially, data path salvaging structure as shown in Fig. 4.30 must be reconfigurable
to suit all the possible fault configurations. Essentially, it merges the upstream
data from fault-free slices to obtain data with normal data width and stores it in
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Fig. 4.30 Data path salvaging structure

the pipeline register. Then, it splits the data in pipeline register to fit the fault-
free downstream data path slices. For different fault configurations on the data
path pipeline stages, a fault status scheduler is utilized to conduct the data stream
reorganization i.e. data stream splitting and merging. When the number of fault-
free upstream data slices differs from that of the downstream data path slices, a
status register is utilized for the flow control to bridge the throughput gap of the
neighboring pipeline stages. The status register will be set to be invalid before an
entire data is ready, and the downstream stream data path pipeline stage will be
stalled. In addition, when the data path pipeline stage is an on-chip buffer, buffer
can be utilized for the data reorganization and the pipeline registers are not required
in this case. Moreover, since the pipeline registers will induce additional latency,
we have a bypass data path added to avoid the additional latency when there are no
hardware faults in the neighboring pipeline stages. Note that the data path slices
shown in this figure is not limited to links and can be applied to all the NoC
data path pipeline stages including links, crossbar and on-chip buffers. As for the
locations of the hardware errors, existing fault diagnosis techniques such as BIST
[2, 30] and detection error codes (DEC) can be employed at either off-line or on-
line environments. When the fault locations of the NoC data path slices are obtained,
they will be stored in registers in the fault status scheduler and utilized to reconfigure
the corresponding data path.

4.4.2 Data Path Salvaging Implementation

As illustrated in Fig. 4.30, the data path salvaging structure mainly consists of fault
status schedulers and MUX-based data path reconfiguration networks, which are
utilized to bridge the pipeline stages with different fault configurations. For the
upstream pipeline stages, fault-free data path slices will be selected based on the
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fault status which can be set after fault detection. Suppose the upstream data path
is split into four slices. When there are i fault-free slices, it takes the data path
salvaging structure .4/i cycles to construct an entire data in the pipeline register in
general. However, when .i = 3, it makes the data reorganization controlling rather
complex and we only use two of them to simplify the hardware implementation.
In this case, each data path pipeline stage has only three possible accumulated
data path slice setups eventually i.e. one fault-free data path slice, two fault-free
data path slices, and four fault-free data path slices. To fit the three different data
transmission throughput, we have Mux 1 and Mux 2 utilized to extract one fault-free
data slice and two fault-free data slices respectively from the faulty upstream data
path pipeline stage. For a single fault-free data slice, there are four different possible
configurations, so Mux 1 has four inputs accordingly. For two fault-free data slices,
there are six possible configurations and Mux 2 has six inputs accordingly. When
all the four data slices are fault-free, the data obtained from upstream data path
pipeline stage will be passed directly to the next pipeline stage with a bypass
data path as shown in Fig. 4.30. Mux 3 has three inputs to select from the three
different types of fault configurations. Similar to the fault-free data slice selection
from upstream data path pipeline stage, three Muxes including Mux 4, Mux 5, and
Mux 6 are utilized in the downstream data path pipeline stage to distribute an entire
data through the downstream fault-free data path slices accordingly. To ensure there
is always an intact data stored in the pipeline register or storage register, we have
a fault status scheduler to ensure the data flows correctly from upstream pipeline
stage to downstream pipeline stage despite the fault configurations. When all the
four data path slices are corrupted by hardware errors, the corresponding pipeline
stage can be stalled by simply setting the status register to be invalid. Fortunately,
the probability of a single data path pipeline stage failure is low because of the
much smaller chip area and the small number of involved transistors. While the data
path pipeline stage fails only when all the four data path pipeline slices fail at the
same time, the reliability of the NoC data paths is improved significantly compared
to the original design. Essentially, the proposed data path salvaging structure takes
advantage of the inherent fault tolerance of the NoC data paths and can be potentially
applied to other similar computing-centric architectures for higher reliability under
severe hardware faults.

To further illustrate the proposed data path salvaging strategy, we take a specific
fault configuration as an example. Suppose slice a shown in Fig. 4.30 is faulty, fault
vector [0111] will be set in fault status scheduler 1 after fault detection. Since it is
difficult to schedule three fault-free data slices to construct an intact data, we only
use two of the fault-free data slices instead. In this case, the data path denoted as
32(cd) in Mux 2 is selected. It takes the data path salvaging structure two cycles to
construct a 64bit data. Then, it has the data stored in the storage register. Afterwards,
the ready flag is set valid and can be distributed to fault-free data path slices in the
next pipeline stage.

When there are hardware faults in the upstream data path slices, we have to
assemble an intact data with only the fault-free data path slices, which usually
takes multiple cycles. Particularly, it starts only when the storage register is invalid.
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Fig. 4.31 Temporal-spacial
distribution example of
intermittent style and pipeline
style under different fault
configurations. (a)
Intermittent style. (b)
Pipeline style

When the entire data is assembled and put in the storage register, the ready flag
register is set valid at the same time. Similarly, the downstream data path starts
only when there is an intact data in storage register and the ready flag is set to be
valid. The ready flag will be set to be invalid when the entire data is transmitted
across the downstream data path. Basically, upstream data path works until an intact
data is obtained. The downstream data path has to wait during this period. When
an intact data is ready, downstream data path starts to work until the entire data
is transmitted, while upstream data path is idle during this period. Both upstream
and downstream data paths function intermittently, so we denote this transmission
style as “Intermittent Transmission”. The temporal-spacial distribution example of
intermittent transmission style is shown in Fig. 4.31a. There are three faulty slices in
upstream data path and it takes the data path salvaging structure 4 cycles to assemble
an intact data. As there are two fault-free data path slices in the downstream
pipeline stage, it takes the data path salvaging structure two cycles to complete the
data transmission. Eventually, it takes the intermittent transmission style 18 cycles
to complete an entire packet transmission with 3 flits. Although the intermittent
transmission style is convenient to implement, it is not efficient because both the
upstream and downstream data paths have quite some idle time slots.

In order to address this problem, we propose a more compact pipelined trans-
mission style. Unlike the intermittent transmission style, it relaxes the operation
condition of both the upstream and downstream data paths. Specifically, it allows the
upstream data path to store data slices into the storage register as long as there are
available slots. Similarly, it allows the downstream data path to access the storage
register as long as there are sufficient data slices. Thereby, it squeezes the pipeline
bubbles and reduces the idle time of the pipeline stages. As shown in Fig. 4.31b, the
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pipeline transmission style consumes only 12 cycles to complete the transmission of
a packet, which outperforms the intermittent transmission style by 33.33% in theory.

Despite the performance advantage of the pipelined transmission, it may fail on
head flit transmission because routing computing in the router usually requires an
entire head flit. Otherwise, the following pipeline stages have to be stalled. In this
case, we may utilize the intermittent data transmission in this specific scenario. In
addition, we notice that the pipeline stages are actually dependent and the number
of fault-free data slices in different pipeline stages can affect the performance of
the router substantially. Suppose that the fault-free slice number from input links
of router A to the input buffer in router B (link, buffer, crossbar, link) are denoted
as .s1, .s2, .s3, .s4 respectively. When .s2 ≤ s1, NoC link provides more data slices
than the number of fault-free buffer slices per cycle and the link has to wait for the
release signal of the pipeline register between the link and the buffer. Moreover,
the capacity of the buffer also differs from that of a fault-free buffer and affects
the flow control accordingly. Even though data from the link can be stored in the
buffer faster when the fault-free links are fully utilized, it will not enhance the
NoC performance as the buffer gets full easily due to the reduced buffer capacity
and stalls the data transmission eventually. When .s4 ≤ s3, similar problem can be
observed. In this case, we modify .v1, .v2, .v3, .v4 to make sure .v1 ≤ v2, .v3 ≤ v4,
which avoids the hardware modification of the flow control to adapt to the different
fault configurations without performance penalty.

4.4.3 Experiment Result Analysis

4.4.3.1 Area Overhead

In order to obtain the chip area of the proposed fault-tolerant router design with
data path salvaging, we have the proposed router synthesized with Synopsys Design
Compiler at SMIC 60 nm technology. All the implementations of the routers work
at 200MHz. The data width of each flit is 64-bit, and the buffer in each input
port can accommodate 8 flits. To obtain optimized fault-tolerant designs, we have
the proposed data path salvaging mechanism combined with other classical fault-
tolerant mechanisms including redundancy and detection error code. Specifically,
we have pipeline registers protected with ECC and the control logic including
routing computing, switch allocator, and virtual channel allocator protected with
TMR. The major data paths such as link, buffer, and crossbar are protected with
the proposed data path salvaging mechanism. To evaluate the proposed data path
salvaging mechanism comprehensively, we have different parameters implemented
in this experiment. They are denoted as follows. Our-4 (data path salvaging router
with four slices), Our-2 (data path salvaging router with two slices), Our-M (data
path salvaging router with mixed number of slices), i.e., the buffer and link adopt
four slices, while the crossbar chooses two slices, and Our-D (data path salvaging
router discarding crossbar protection), i.e., the buffer and link are still divided
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into four slices while the crossbar is not protected. Routers with all the different
parameters are synthesized using the same setups.

Our experiment results reveal that the four fault-tolerant implementations with
different configurations induce 65.4%, 26.5%, 52.46%, and 45.9% chip area relative
to the baseline router respectively. If we remove the data path salvaging overhead
of the links, the corresponding area overhead are 45.9%, 20.0%, 33.1%, and 26.5%
respectively. In general, the proposed data path salvaging mechanism essentially
explores the inherent fault-tolerance in data paths and consumes much less chip
area compared to conventional redundancy based approaches which takes up at
least 100% chip area overhead. Nevertheless, more data path slicing can induce
substantial chip area overhead. Specifically, we notice that the chip area overhead
of an 4-slice implementation is .2.46× higher than that of a 2-slice implementation.
Hence, mixed slicing strategy can be beneficial considering that more fine-grained
slicing may not always induce significant reliability improvement due to the rapidly
increasing data path salvaging overhead. The reliability evaluation will be discussed
in detail in the rest of this subsection.

Figure 4.32 presents the chip area overhead of TMR (3-modular redundancy),
MRR (most reliable router) [18], LOR (least overhead router) [18], Vicis [30]
and the proposed designs. Vicis has fault detection overhead included which costs
additional 10% area, so we removed this part from the chip area overhead of
Vicis to ensure a fair comparison. As TMR, MRR, LOR, and Vicis do not have
the link protection included, we have the overhead of link protection removed
from this work. According to the comparison in Fig. 4.32, we notice that TMR
and MRR that employ the basic redundancy-based approaches generally induce
much higher overhead. In contrast, LOR, Vicis, and the proposed implementations
mainly explore the inherent redundancy within NoCs usually induce much less area
overhead ranging from 20% to 50%.

Fig. 4.32 Additional chip area overhead of fault-tolerant routers with different fault-tolerant
design parameters
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4.4.3.2 Reliability

To evaluate reliability of the fault-tolerant NoC designs, Constantinides et. al. [18]
defined a new metric called SPF (Silicon Protection Factor), which is the average
number of faults that a router can tolerate before malfunction normalized to the
fault-tolerant design induced chip area overhead. We obtain SPF of the different
designs with the following procedure. First, assume hardware faults are randomly
distributed across the whole chip and we have random faults proportional to the
chip area injected to different NoC components including buffer, control logic, and
crossbar. When a hardware fault falls on certain router component and the fault can
be tolerated, we can continue the fault injection until a hardware fault corrupts the
fault-tolerant router design under evaluation. Since the number of hardware faults
that corrupt the router can vary based on the fault locations, we repeat the above
procedure 100,000 times and the average number is regarded as the average number
of faults that a router can tolerate.

According to our experiments, the average number of faults that can be tolerated
by Our-4, Our-2, Our-M, and Our-D are 16.80, 6.18, 17.51, and 11.84 respectively.
Accordingly, SPF of Our-4, Our-2, Our-M, and Our-D is 11.52, 5.15, 13.17, and
9.36 respectively. The SPF comparison among the different fault-tolerant router
designs are presented in Fig. 4.33. It can be observed that SPF of the proposed
designs are generally much higher. Straightforward TMR shows the lowest SPF
despite the high hardware overhead. In contrast, MRR shows much higher SPF
with similar hardware overhead, which demonstrates TMR strategies are of vital
importance to the reliability of fault-tolerant routers. As the chip area is also closely
related with fabrication cost, the fabrication cost of MRR can be prohibitively
expensive, which hinders its use in practice. Unlike prior works, Our-M with mixed
protection scheme achieves the highest SPF and consumes moderate hardware
overhead. Our-2 has relatively low SPF, but it consumes the least chip area. As

Fig. 4.33 Silicon protection factor (SPF) comparison of the different fault-tolerant router design
approaches
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for Our-4, it achieves more hardware overhead but lower SPF compared to Our-M.
Basically, it indicates that more slices are not necessarily better for the proposed
data path salvaging strategy. Specifically, the crossbar in the mesh NoC is relatively
small and it can induce more chip area overhead when it is split into four slices.
While crossbar also fails if the data path salvaging induced Muxes fail, it indicates
that we are essentially protecting crossbar with a more fragile circuits. Hence, Our-
4 shows lower SPF than Our-M which splits the crossbar into only two slices. The
situation can be different when the data path salvaging approach is applied to a
high-dimension NoC with much larger crossbar area.

To gain insight into the proposed data path salvaging strategy, we also evaluate
the reliability of an entire NoC and take a .8 × 8 torus with symmetrical topology
as an example. Any router component failure or output link failure is considered as
a node failure. In addition, the fault-tolerant design induced circuit failure is also
considered to be node failure. Finally, we take the number of functional routers as
a reliability factor in this experiment. As shown in Fig. 4.34, the total number of
functional routing nodes degrades smoothly with the increasing hardware faults.
When the total number of hardware faults goes up to 1300, more than half of the
routers still functions. When the number of hardware faults is no more than 300,
95% of the nodes are available. 70% of the nodes survive when the number of
hardware faults goes up to 1000.

Figure 4.35 further illustrates NoC component fault status under different number
of hardware faults. When the number of hardware faults reaches 500, 95% of the
components remain functional. Even when the number of faults doubles, 90% of the
NoC components survive. However, we notice that 96% of the data path components
are functional but only 86% of the control logic blocks are functional when the
number of faults is around 1300. It indicates that the control blocks becomes
the NoC reliability bottleneck. Although we may apply fine-grained redundancy
protection to the control blocks, Mux and Demux that are used for the redundancy

Fig. 4.34 Percentage of the available routers in a .8 × 8 torus NoC
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Fig. 4.35 Percentage of available NoC components in a .8 × 8 torus NoC

selection can also be exposed to hardware faults. The chip area of these redundancy
logic can increases rapidly with the growing number of block I/O signals, which
limits the benefit of fine-grained TMR protection and even poses negative influence
on the reliability of the overall design eventually.

4.4.3.3 Performance

To evaluate the influence of the proposed data path salvaging approach on NoC
performance, we implemented a cycle-accurate simulator in SystemC with .4 × 4
2D mesh topology with wormhole routing. XY routing is employed and each input
port has an 8-flit buffer. Each node of the NoC generates packets with Poisson
process and destinations of the packets are selected randomly. Each node has 100K
packets injected to the network. The simulation has 20K-cycle warm-up before the
performance evaluation. We have different number of hardware faults injected to
links and buffers. NoC performance subjected to the different fault configurations
is shown in Fig. 4.36. It reveals that NoC performance degrades gracefully with
increasing hardware faults thanks to the proposed data path salvaging. As mentioned
in the fault-tolerant router design, data paths with a faulty slice and two faulty slices
are equivalent in terms of performance. In addition, faults in upstream pipeline
stages can affect the utilization of neighboring downstream pipeline stages. For
instance, buffer faults lead to disabling of the downstream links and crossbar. Hence,
it indicates that performance of six faulty buffers can be equivalent to that with
more faulty components including 6–12 buffer faults, 0–12 links faults, and 0–
12 crossbar faults. Similarly, performance of six faulty links is equivalent to that
of more combined hardware faults including 6–12 link faults and 0–12 crossbar



4.5 Summary 235

Fig. 4.36 Average network latency under various fault scenarios

faults. Basically, the NoC performance presented in the experiment also covers
configurations with a variety of different faulty components.

4.4.4 Discussion

We exploited NoC inherent redundancy by splitting large NoC components of
data path into slices, each of which is able to maintain the function of the
whole component in presence of partial failures using TDM. For tiny logic with
comparatively low fault probability, conventional redundancy or ECC is employed.
Evaluation result shows that the proposed design provides several configurations
with high reliability and low overhead. The area overhead varies from 26.5% to
65.4% and SPF scales from 5.15 to 13.17. When the network suffers medium
fault rate, 90% nodes in .8 × 8 torus keep fully functional. Even if the network is
exposed to higher fault rate, about 55% nodes survive, and more than 86% NoC
components work well, which promises a much larger number of available nodes
with conventional fault-tolerant routing. The simulation also indicates that the NoC
performance degrades gracefully when fault rate rises dramatically.
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4.5 Summary

Network-on-Chip (NoC) with excellent scalability and high bandwidth has been
considered to be the most promising communication architecture for complex
integration systems. A single node failure in NoC might destroy the network
connectivity and corrupt the entire system. Introducing redundancies is an efficient
method to construct a resilient communication path. However, redundancy solutions
usually incur expensive hardware overhead. This chapter, we proposed three opti-
mization methodologies from architecture design, routing, and circuits to improve
the reliability of NoCs.

We propose a unified topology that is isomorphic with the target reference
topology regardless of the various possible underlying physical topologies. We
borrow the concept of virtual topology from network embedding problem and we
propose two metrics to evaluate the performance of different virtual topologies.
An effective heuristic, namely Row Rippling Column Stealing-guided Simulated
Annealing algorithm is then presented to solve the topology reconfiguration prob-
lem. The proposed algorithm is evaluated on various topologies in a NoC-based
manycore simulation platform. Experimental results not only show the effectiveness
of the proposed SA algorithm, but also show the effectiveness of the two evaluation
metrics used in our algorithms, i.e., DF and CF.

From the perspective of routing, we proposed the ZoneDefense routing to reduce
the large number of fault-free nodes sacrificed by state-of-the-art fault-tolerant
routing algorithms. Extensive simulations showed that the number of sacrificed
fault-free nodes is significantly reduced as well as the coverage of fault distributions
and reconfiguration time is improved. Furthermore, the ZoneDefense routing does
not degrade the network performance in the absence of faults and could get the
similar network performance as the previous work with negligible overhead.

As for the circuit-level fault tolerance, we mainly exploited NoC inherent
redundancy by splitting large NoC components of data path into slices, each of
which is able to maintain the functionality of the whole component in presence of
partial failures using TDM. For small control blocks with lower fault probability,
conventional redundancy and ECC protection is applied. Our evaluation results
show that the proposed data path salvaging approach achieves high reliability
with much lower hardware overhead compared to conventional redundancy based
approaches under various fault configurations.
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Chapter 5
Fault-Tolerant Deep Learning Processors

Abstract Hardware faults on the regular 2-D computing array of a typical deep
learning accelerator (DLA) can lead to dramatic prediction accuracy loss. Prior
redundancy design approaches typically have each homogeneous redundant pro-
cessing element (PE) to mitigate faulty PEs for a limited region of the 2-D
computing array rather than the entire computing array to avoid the excessive
hardware overhead. However, they fail to recover the computing array when the
number of faulty PEs in any region exceeds the number of redundant PEs in
the same region. The mismatch problem deteriorates when the fault injection rate
rises and the faults are unevenly distributed. To address the problem, we propose
a hybrid computing architecture (HyCA) for fault-tolerant DLAs. It has a set of
dot-production processing units (DPPUs) to recompute all the operations that are
mapped to the faulty PEs despite the faulty PE locations. HyCA shows significantly
higher reliability, scalability, and performance with less chip area penalty when
compared to the conventional redundancy approaches. To further optimize the
reliability of DLA, we focus on improve the reliability of Resistive Random Access
Memory (ReRAM), which has become a promising Computing-in-Memory (CiM)
technology for DLA. For ReRAM-based DNN accelerator designs, the occurrence
of the permanent and soft faults in the ReRAM has become one of the major
concerns. To address these problems, we firstly analyze the reliability issues of
ReRAM-based DLAs. Then based on these analysis, we propose RRAMedy, a novel
framework to protect ReRAM chips from both permanent faults and soft faults. Our
experimental results show that RRAMedy has high probability of fault detection and
can recover the recognized accuracy with little performance degradation.

5.1 Introduction to Fault-Tolerant Deep Learning

The great success of deep learning motivates the deployment of deep learning in
numerous domains of applications. Many of the applications such as autonomous
driving and drones [18, 62], and intelligent medical monitoring and treatment [17]
are closely related to the safety of human beings and are mission-critical. When deep
learning models are applied in these applications, the reliability of the execution is
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of vital importance and must be considered comprehensively [4, 26]. Otherwise,
the unexpected inference predictions may lead to catastrophic consequences [25].
While the deep learning models are increasingly implemented on customized deep
learning accelerators (DLAs) for the sake of both higher performance and energy
efficiency [9], the reliability of the model execution dramatically depends on the
underlying accelerators [52, 68]. At the same time, DLAs fabricated with continu-
ously shrinking semiconductor technologies are more likely to suffer manufacture
defects and become more sensitive to the working conditions such as the large
temperature variation than before [14], which may cause hardware faults and incur
considerable prediction accuracy loss. Thereby, resilient DLAs are indispensable for
reliable inference and are highly demanded by the mission-critical AI applications
[45].

Deep neural networks (DNNs) have shown extremely promising performance
in solving complex machine learning problems and numerous DNN accelerator
architectures have been studied [10, 54] for both higher performance and energy
efficiency. Particularly, ReRAM that embraces the benefits of near-zero standby
power, non-volatility [66] and in-situ dot product computation capability, has
become a promising CiM technology for deep learning. Many ReRAM-based DNN
accelerators like PRIME [10], ISAAC [54] have been proposed and demonstrated
the great advantages on energy efficiency.

However, ReRAM cells typically suffer severe permanent faults and soft faults
due to the immature nano-scale fabrication technology and the intrinsic nature of
memristors, which will permanently or temporarily change the states of the ReRAM
cells and cause erroneous computing behaviors [61]. Specifically, the permanent
faults that have the memristors permanently stuck at high/low resistance mainly
arise from the manufacturing defects or limited endurance of ReRAM, while the
soft faults are usually caused by imperfect operations, state-drifts, and parameter
deviations, due to the imperfect fabrication or wear-out mechanism [57]. Unlike
the hard faults that cannot be reprogrammed, soft faults can be refreshed back to
normal values, but they are subtle to detect and can also lead to dramatic accuracy
degradation according to [61]. In summary, the occurrence of the permanent and
soft faults in the ReRAM has become one of the major concerns for ReRAM-based
DNN accelerator designs.

5.1.1 Deep Learning Processor Basis

5.1.1.1 Typical 2D-Array Based Deep Learning Accelerator

A typical DLA with 2D computing array is shown in Fig. 5.1. The computing array
is composed of multiple homogeneous connected PEs. Each PE includes a multiplier
and an accumulator. It only communicates with its four neighbors. Neural network
operations such as convolution can be mapped to the computing array and executed
in lock-step manner. To ensure a high-throughput neural network processing, the
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Fig. 5.1 A typical DLA with 2D computing array architecture

input features, weights and output features must be stored in the on-chip buffers to
avoid external memory access stalls. In this work, we adopt a widely used output
stationary dataflow for the neural network execution [8]. The accumulation of each
output feature stays stationary in a PE. The partial sum are stored in the same register
file for accumulation to minimize the accumulation cost. In summary, each PE is
responsible for the calculation of a single output feature and PEs in the same column
calculate different output features in the same output channel. With the compact
dataflow, the 2-D computing array can be fully utilized given limited on-chip buffer
bandwidth provision when the neural network models are deployed on it.

5.1.1.2 ReRAM-Based DNN Computing

Deep neural network (DNN) is a machine learning architecture which is composed
of a series of computational layers and can be represented as a parametric function
.F :

.F(x) = fL(WL, fL−1(WL−1 . . . (f0(W0, x)))) (5.1)

wherein .x represents the input and .fi refers to the functional layers, including
convolutional layers (CONV) and full connected layers (FC).

Nowadays, many specialized deep learning accelerators have been proposed
to use ReRAM for edge neural network implementation at the inference process
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Fig. 5.2 (a) The analog dot-product computing mechanism of ReRAM. (b) A simple mapping
scheme of input feature maps and kernels

[10, 55]. ReRAM cells can not only work as on-chip memory, but also perform in-
memory matrix-vector multiplication efficiently. As shown in Fig. 5.2a, memristors
are connected as a crossbar structure. When conducting a matrix multiplication
.V · G, the matrix G is programmed as a set of conductance values of the ReRAM
cells, while the input vector is represented as a sequence of the analog word-line
(WL) voltages .vi . When the voltages are applied to all the WLs simultaneously, the
outputs of .V · G are sensed as a current set I automatically, achieving in-memory
matrix multiplication effectively [40].

Ideally, the weight values are fixed after the training process. However, the
unavoidable faults in the memristors will result in weight value fluctuation and
further degrade the accuracy of DNN systems. Taking a CONV layer for an
example, in each convolutional step, a multi-dimensional kernel slides over the input
feature maps (IFMs) to extract characteristics and produce the corresponding output
feature maps (OFMs). Figure 5.2b illustrates a simple weight mapping scheme
for convolutional layers. The parameters in the same kernel are reflected as the
conductance of the ReRAM cells on a single bit-line. The IFMs are dot-multiplied
by the kernel windows and represented as a series of input voltages, preparing to
generate OFMs. It is worth pointing out that a specific convolutional kernel .W is
fixed on the corresponding ReRAM cells and used to compute all output neurons
in the corresponding OFM. As such, once a ReRAM cell becomes faulty, it will
influence all the values of the corresponding OFMs and further propagate layer by
layer, resulting in an erroneous output or even system failure [30, 68, 70].

SLC and MLC ReRAM Recently, many researches work on multi-level cell
(MLC)-based deep learning accelerators rather than traditional single-level cell
(SLC) devices. Unlike SLC memories, the MLC memories store a multi-bit value
in a single ReRAM cell. However, there are trade-offs in MLC ReRAM memories.
In an n-level ReRAMMLC cell, the resistance state has to be encoded into n levels.
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Fig. 5.3 An illustration of the training process of a full-connected neural network

The stored values can be changed, even if the states of ReRAM cells have slightly
drifted, which significantly increases the unreliability of ReRAM computation.
Hence, many deep neural accelerators propose to represent one weight by multiple
cells connected to the same WL. Each cell stores one or two bits rather than storing
a whole weight in a single cell [42].

5.1.1.3 Neural Network Training Basis

As shown in Fig. 5.3, a typical DNN training process consists of successive forward
and backward propagations to evaluate current model’s prediction accuracy and
adjust its weights. During the forward step, the DNN is given with a set of input
samples [.X, Y ] to compute the intermediate neurons [.a0, a1] with weight matrices
.W [W0,W1,W2]:

.ai+1 = Wi+1ai + bi+1 (5.2)

wherein, .Wi , .bi is the weights and bias of layer i respectively. Layers are connected
with neurons. The output of layer i is the input of the layer .i+1. Then, the prediction
error is calculated with the loss between final output [.y0, y1 . . . ym] and the ground-
truth label Y . To update the network parameters and minimize the prediction error,
the loss E is sent backward to all the prior layers and the weight matrix is updated
as follows:

.Wi = Wi − η · ∂E

∂Wi

(5.3)
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wherein, .η is the learning rate to control the weight update speed. E denotes the
global error.

During the iterative learning process, neural network itself will continue to
adjust weight values to reduce the difference between the output prediction and
the real label. Furthermore, this self-adjusting capacity of DNNs can also be
used to retain faulty deep learning system’s accuracy. Once there are unrepairable
faults occurred in DLAs, weight values will be updated to adjust to these faults
in the backward propagation process of each training iteration. However, using
the traditional backward propagation (BP) algorithm consumes massive multiply-
accumulate operations (MACs), which poses heavy computational pressure on
resource-constrained edge devices. Hence, in this work, we modify the BP algorithm
and propose a lightweight online model retraining mechanism to improve the
convergence speed of the network training procedure and enable the faulty model to
be retrained in-situ.

With the increasing adoption of deep learning in mission-critical applications,
such as autonomous driving and drones, the reliability of DLAs widely utilized for
the deep learning processing becomes critical and attracts a lot of attentions of the
researchers recently [36, 45, 69, 70]. To analyze the influence of hardware faults
on the deep neural network models, the authors in [72] conducted comprehensive
experiments and the experiment results show that hardware faults can lead to
considerable prediction accuracy drop. For the TIMIT speech recognition task, the
accuracy drops from 74.13 to 39.69.%. The accuracy loss is relevant to various
design factors including the quantization, data format, and network architecture.
It remains rather challenging to ensure resilient deep neural network execution on
DLAs.

To alleviate the influence of hardware faults on neural network predictions, many
prior works [21, 22, 29] took advantage of the intrinsic fault-tolerance of neural
network models by retraining the models for a specific fault configuration such
that hardware faults can be compensated by the retrained models. Xu et al. [71]
proposed an on-accelerator retraining framework to obtain models that can tolerate
the random hardware faults. Li et al. [32] and Wang et al. [64] proposed to employ
the model retraining for DLAs with overclocking which may incur timing errors. To
train resilient deep learning models, He et al. [22] revised the loss function to obtain
models that are less sensitive to the hardware faults. Unlike the above methods,
Zhang et al. [72, 73] proposed to bypass the faulty PEs in the computing array
with zeros or other constant values such that the faults are more easier to tolerate
via retraining. Although the retraining works for many fault configurations, there
is still no guarantee that the retrained models can maintain the prediction accuracy
for the target mission-critical applications because of the huge number of different
fault configurations. In addition, the retraining can be rather expensive especially
for large datasets and models, and is required for each specific fault configuration,
which further limits the adoption of the retraining approaches. Unlike the retraining-
based approaches, Hanif et al. [1] proposed a training-free mapping approach to
alleviate the influence of permanent PE faults in the DLA. It leverages the saliency
of the neural network parameters and opts to map the salient weights to the faulty
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PEs as much as possible such that the negative influence of the PE faults on the
neural network models is reduced. However, it works only when the fault error rate
is low and can be sensitive to the fault distribution.

To enable unmodified deep learning model execution without accuracy loss,
an intuitive approach is to develop reliable DLA architectures with the conven-
tional dual modular redundancy (DMR) and triple modular redundancy (TMR)
approaches to tolerate the hardware faults, but these approaches incur substantial
hardware resource consumption. In this case, the authors in [24, 58, 59] proposed
to add redundant PEs to the large regular homogeneous computing array and
each redundant PE can be shared by a group of PEs with distinct redundancy
sharing methods such as row redundancy (RR), column redundancy (CR), and
diagonal redundancy (DR). For the RR and CR, each row/column of the PEs share
the same set of redundant PEs. For the DR, both the row and column of PEs
corresponding to a diagonal location in the computing array share the same set of
redundant PEs. Since the redundant PEs are shared by a group of homogeneous
PEs, hardware resource consumption can be greatly reduced compared to DMR and
TMR. Nevertheless, the faulty PEs may not be evenly distributed or even clustered
across the computing array [56]. As a result, these approaches may fail to recover
the computing array when the number of faulty PEs in each shared region such
as a row or a column of PEs exceeds the number of shared redundant PEs in the
region. Thereby, the utilization of the redundant PEs can be affected by the fault
distribution dramatically. More redundant PEs must be designed to ensure reliable
execution. Otherwise, the performance can degrade dramatically when the faulty
PEs are discarded due to the insufficient redundant PEs. Thereby, more efficient
computing array architectures are required for the highly resilient DLA designs.

On top of the redundancy-based fault-tolerant DLA designs, there are also many
other different fault-tolerant architecture designs. The authors in [48, 75] proposed
a spatial and temporal checksum to protect full connection and convolution layers
in deep neural network models. Zhang et al. [74] proposed a parallel stochastic
computing(SC)-based neural network accelerator purely using bitstream computa-
tion by fully exploiting the superior fault tolerance of SC mainly for ternary neural
networks. Li et al. [35] proposed an error detecting scheme to locate incorrect
PEs of the DLA and gave an error masking method to achieve fault-tolerance.
Hamid Reza Mahdiani etc. [43] proposed to relax the fault-tolerance of the VLSI
implementation by employing TMR to only the computation of the most important
bits such that the hardware overhead is reduced and the critical path latency is
improved. Nevertheless, these approaches either require model retraining or can be
sensitive to the fault distribution.

To address the reliability challenges in memristors, many hardware solutions
have been proposed to tolerate permanent faults and soft faults. Error Correcting
Code (ECC) has been studied in [47] to alleviate the impact of process variations
of memristors. However, this technique incurs high penalty with additional power
and performance overhead. Besides, a squeeze-search method has been proposed
in [6] to identify the ReRAM defects with a March algorithm directly. Though this
approach is effective, its huge timing overhead prevents it from usage in on-line
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protection for edge devices. Besides, it brings in additional write operations, which
further leads to memory wear-outs. Furthermore, remapping technology has also
been explored. [67] proposes to remap the model weights with redundant memristor
columns. However, it still induces extra hardware waste.

Considering the huge costs of hardware-based methods, many software-based
solutions have been devised recently. [36] explores the network architecture search
(NAS) algorithm to find reliable neural network architectures. However, this method
only works for networks with skip connections. In [7], an offline training method has
been proposed with a model mapping strategy. The authors used the prior knowledge
of fault distributions to map the weight matrix to memristors and then conducted
an offline model retraining to make memristors more resilient to faults by treating
the faults as noises during training. However, this method takes no consideration
for the fault detection overhead. Moreover, the noise-tolerant models will still face
accuracy degradation for some stuck-at faults and severe soft faults, because the
training method can improve the robustness of the network model against faults but
not completely eliminate the impacts of faults.

5.1.2 Challenges of Fault-Tolerant Deep Learning

DLAs typically consist of a large regular computing array which can either be a
systolic array or a plain mesh array[8, 28], and a set of on-chip buffers used for
input features, output features, and weights. While the on-chip buffers implemented
with SRAMs can be usually protected effectively with ECC, we mainly focus on the
reliability design of the regular computing array in this work. As each processing
element (PE) in the computing array can be used for the calculation of multiple
features in different network layers, faults in a single PE may cause multiple
faulty computing results during the deep learning model execution. Thereby, they
may result in considerable accuracy degradation according to our experiments in
Sect. 5.2.4.

To mitigate the hardware faults in the 2-D computing array of DLAs, researchers
have proposed a number of fault-tolerant design approaches from distinct angles.
These approaches can be roughly divided into two categories. The first category
mainly exploits the inherent fault-tolerance of the neural network models by
retraining the neural network models specifically for the faulty computing array
without any modification or with minor modification to the computing array
[13, 32, 71, 72]. Although these approaches induce negligible hardware overhead
and can even be applied to many off-the-shelf accelerators, the model retraining
is required for each specific fault configuration, and the retraining, especially for
large data sets and deep learning models, can be rather expensive. For instance,
a critical neural network model applied in automotive systems must go through a
series of standard certification tests before the modification can be accepted [16].
The cost of the certification test is nontrivial and time-consuming. Moreover, the
prediction accuracy of the retrained models depends on both the model structures
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and the specific fault configurations. There is no guarantee that the model retraining
can always maintain the original model accuracy and fulfill the requirements of
mission-critical AI applications for all the different fault configurations by design.

To mitigate the hard faults and soft faults in ReRAM-based DNN accelerators, a
number of approaches from distinct angles have been proposed. These approaches
can be divided into the following categories. The first category is on-device
training, which seeks to train a dedicated neural model to tolerate specific faults
distributed on a memristor chip [37]. It is particularly critical to address the
unpredictable in-situ wear-outs and soft faults during the chip’s life cycle. However,
a straightforward on-device training that involves iterative back-propagation is
usually expensive for the edge devices with limited computation capability and
power budget. The second category is the traditional redundancy design with either
software or hardware, which typically has the hardware components or the critical
neurons/nodes replicated and has the computing results of the replicates voted to
achieve resilient computing of the models [11]. Nevertheless, it incurs considerable
performance and energy overhead, which can easily violate the energy constraints
of the typical edge devices. The third category is to conduct the on-line test and
repair routinely in case of faults [6]. A classical approach belonging to this category
is ‘write-verify’ and has been widely used for the memory blocks, but this scheme
induces a large number of additional write operations, which will deteriorate the
well-known wear-out problem of the memristors. As a result, when and how to
perform the ‘write-verify’ to the ReRAM-based DNN accelerators without incurring
wear-out remains a great challenge.

5.2 Fault-Tolerant Deep Learning Architecture

5.2.1 Deep Learning Sensitivity to Hardware Faults

The second category aims to recover the faulty computing array with redundant PEs.
While the conventional approaches such as DMR and TMR require substantial hard-
ware resources, researchers proposed a variety of relaxed redundancy approaches.
The basic idea is to have each redundant PE to recover any faulty PE in a limited
region of the computing array while the region can be a row, a column, or both row
and column [58, 59], which essentially limits the sharing of the redundant PEs and
reduces the hardware resource consumption significantly compared to the DMR and
TMR approaches. When the faulty PEs are evenly distributed across the computing
array, the faulty PEs can be probably mitigated. Nevertheless, the faults may not be
evenly distributed across the computing array and these approaches fail to recover
the computing array even when the number of redundant PEs exceeds the number
of the faulty PEs in the computing array. In this case, the DLAs will not be fully
functional or degrade dramatically if the faulty PEs are discarded. In summary,
there is still a lack of resilient computing array architectures for DLAs that allow
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unmodified deep learning model execution and can tolerate various fault distribution
at the same time.

To analyze the influence of hard errors on the above 2-D computing array, we
inject random stuck-at bit errors to the registers of the PEs in a .32 × 32 computing
array. We use bit error rate (BER) as the fault injection rate metric [45, 46, 51],
which refers to the total number of bit errors over the total bit number of the registers
in the computing array. To facilitate the error characteristic of the 2-D computing
array, we convert the BER to PE error rate (PER) instead. Both the input features
and weights are 8-bit fixed point, so the input registers and the weight registers are
set to be the same data width accordingly. The intermediate register in the PEs is set
to be 16-bit and the accumulator in the PEs is set to be 32-bit in case of computing
overflow. Thereby, there are 64 bit registers in total in each PE. While any persistent
bit error in a PE is considered as an PE error, PER can be calculated using BER
with Eq. (5.4). Basically, it means that the PE is correct only when none of the bit
registers are wrong. Otherwise, the PE will be faulty.

. PER = 1 − (1 − BER)64 (5.4)

We had random stuck-at bit errors injected to a DLA simulator implemented
according to the architecture described in Fig. 5.1 for the fault analysis. We took
Resnet18 pre-trained on ImageNet [12] as an example and had it implemented
on the accelerator with random faults. In this case, we generated 50 random fault
configurations and evaluated the prediction accuracy under different PER setups.
The experiment result is shown in Fig. 5.4. It reveals that the prediction accuracy
varies dramatically across the different fault configurations. When the PER is higher
than 1%, the prediction accuracy of the model mostly degrades to zero. Moreover,
we notice that the prediction accuracy may also drop considerably in some of the
fault configurations even under very low PER. It indicates that the model accuracy
depends on not only the PER but also the fault distribution. Thereby, protecting
the computing array is required for mission-critical applications despite the fault
injection rate.

In addition, we further evaluated the classical hardware redundancy strategies,
i.e. RR, CR, and DR for the regular 2-D computing array and measured the
fully functional probability of the computing array under different PER setups.
The evaluation result is shown in Fig. 5.5. It can be observed that these classical

Fig. 5.4 Prediction accuracy
of Resenet18 executed on a
typical DLA under different
PER setups. For each PER
setup, 50 random fault
configurations are evaluated
on ImageNet
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Fig. 5.5 The fully functional probability of the 2-D computing array under different PER setups

redundant design approaches can hardly mitigate all the faulty PEs even when the
PER is around 1% which indicates that there are only 10 faulty PEs on average. In
contrast, the number of redundant PEs is 32, which is much larger than the number
of faulty PEs. It demonstrates that the redundant PEs cannot be fully utilized by
these redundancy strategies because of the unevenly faulty PE distribution. The
situation further deteriorates with the increase of the PER, which can be rather risky
for the mission-critical AI applications.

5.2.2 Recomputing Based Hybrid Computing Architecture

In this section, we will present an overview of the proposed HyCA for fault-tolerant
DLAs first. Then, we will illustrate the dataflow for the fault mitigation, HyCA
microarchitecture, and fault detection with HyCA respectively.

HyCA Overall Architecture In order to tolerate various fault configurations with
a unified computing architecture, we propose a HyCA, which has a dot-production
processing unit (DPPU) seated along with the regular 2-D computing array, to
recompute all the operations mapped to the faulty PEs in arbitrary locations of the
computing array as shown in Fig. 5.6. While the 2-D computing array has each PE
to calculate the different output features sequentially given the output stationary
dataflow [8] and the DPPU has all the PEs to compute a single output features in
parallel, they have distinct read patterns of the input features and weights from the
corresponding on-chip buffers. More specifically, the 2-D computing array needs
to read an array of input features in the same row and channel in each cycle while
DPPU needs to read an array of input features aligned in channel dimension in
each cycle. Thereby, the on-chip buffers cannot fulfill the read operations of the
two computing units at the same time due to the limited read ports and distinct data
layout requirements. To make sure that the normal 2-D array processing will not be
affected by the DPPU recomputing, the on-chip buffer design remains unchanged.
In this case, DPPU cannot read the required weights and input features aligned
in channel dimension if it starts the recomputing at the same time with the 2-D
computing array.
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Fig. 5.6 Overview of a DLA with hybrid computing architecture. The components highlighted
with blue are added to the conventional DLA to tolerate faulty PEs in arbitrary locations of the 2-D
computing array

To address the problem, we have the input features and weights buffered in an
input register file (IRF) and a weight register file (WRF) respectively while they are
read for the 2-D computing array processing. Meanwhile, we have the recomputing
delayed until there are sufficient inputs and weights ready for the recomputing.
Accordingly, the delay must be larger than or equal to the number of weights
required by DPPU data consumption in a single cycle to ensure DPPU can be fully
utilized. As the DPPU may recompute operations on any PE in the 2-D computing
array, the delay also needs to be larger than or equal to Col when the last column
of the PEs obtain the weights passed from the first column of PEs. Suppose D

represents the delay, then .D ≥ Col. Note that Col refers to the column size of the
2-D computing array. In this work, we organize IRF and WRF in Ping-Pong manner
to ensure that the 2-D computing array can continue the normal dataflow without
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any stall during the DPPU recomputing. As the DPPU conducts the output feature
calculation in parallel, DPPU can always finish the recomputing of the operations
mapped to the faulty PEs before the Ping-Pong register files swap with each other
when the DPPU size does not exceed the number of the faulty PEs. Note that DPPU
size refers to the number of multipliers in DPPU. Since the peak computing power
of DPPU equals to that of the 2-D computing array when configured with the same
number of PEs, DPPU size is comparable to the 2-D computing array size and can
also be used to represent its computing power. This also explains why DPPU can
always finish the recomputing tasks before new weights and inputs are ready when
DPPU size is larger than the number of faulty PEs in the 2-D computing array.

In addition, we have a fault PE table (FPT) to record the coordinates of the faulty
PEs in the 2-D computing array which can be usually obtained with a power-on
self-test procedure. With the coordinates, an address generation unit (AGU) is used
to generate the read addresses and instruct the DPPU to read the right input features
and weights from the register files. Moreover, AGU also determines the addresses
to the output buffer for the overlapped writes of the recomputed output features.
Similar to the IRF and WRF, there is also a Ping-Pong register file called output
register file (ORF) for the DPPU outputs and it is utilized to pipeline the DPPU
recomputing and the write from DPPU to the output buffer.

While DPPU can be utilized to calculate any output features mapped to the 2-
D computing array, we can also use DPPU to check whether the calculation of an
output feature in the 2-D computing array is correct, which can be used to detect
the wear-out or aging induced persistent errors at runtime. If the computing results
obtained from the 2-D computing array and DPPU do not match, it indicates that the
corresponding PE in the 2-D computing array is faulty as DPPU with much smaller
sizes compared to the 2-D computing array can be easily protected with much less
overhead and is usually considered to be correct. By changing the fault PE table
and scanning the computing of all the PEs in the 2-D computing array sequentially,
we can detect the PE faults at runtime without affecting the 2-D computing array
processing. Basically, the redundant recomputing mechanism can be mostly reused
by the fault detection. And we only need a tiny fault detection module to conduct the
scanning of the 2-D computing array and the comparison to the DPPU processing.
Details of the fault detection module will be illustrated in the rest of this section.

HyCA Dataflow for Fault Mitigation To further illustrate the dataflow in HyCA
especially the redundant computing unit DPPU, we take HyCA with a .32 × 32 2-
D computing array and three faulty PEs as an example. DPPU in the HyCA has
32 PEs included. The example is shown in Fig. 5.7. Suppose c and k represent the
input channel depth and the convolution kernel size respectively. It takes a PE in
the 2-D computing array .k × k × c cycles to produce a convolution output. Without
loss of generality, assume that the example starts at Cycle .k × k × c − 1 when the
first column of PEs complete a set of output feature calculation. The 2-D computing
array occupies the output buffer until the last column of PEs complete the output
feature data. Afterwards, the 2-D computing array may start to compute the new
output features, but it usually takes .k × k × k × c cycles to complete with the output
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stationary dataflow. In this case, DPPU starts to use the output buffer and update the
recomputed results to the output buffer without write conflicts. The processing steps
are detailed as follows.

1. At cycle .k×k×c−1, the first column of PEs produce a column of output features
accordingly and pass the weights to the second column of PEs. At the same time,
the weights and input features used in the first column of PEs are stored in the
corresponding Pong register file.

2. At cycle .k × k × c, the first column of PEs write the calculated output features to
the output buffer and start the calculation of new output features. Since PE(1,0)
is faulty, the computing result written to the output buffer from this PE as marked
with red color was wrong. While the input features and weights that are used for
the output feature calculation on PE(1, 0) remain stored in the IRF and the WRF
respectively, they will be read to the DPPU for the recomputing at this cycle.

3. At cycle .k × k × c + 31, the Pong WRF and the Pong IRF are filled with the
newly incoming weights and inputs, and they will be kept for 32 cycles. Weights
and input features coming in next cycle will overwrite the data in the Ping WRF
and the Ping IRF respectively. Thereby, DPPU must finish the recomputing that
depends on the weights stored in the Ping WRF and IRF at this cycle. Otherwise,
the data in the Ping register files will be overwritten. Afterwards, the processing
repeats from the first processing step for another 32 cycles until the end of the
convolution calculation.

4. At cycle .k × k × c + 32, DPPU has the recomputed output features in the ORF
written to the output buffer with a byte mask such that only the recomputed
output feature is updated. Meanwhile, it starts to recompute the latest set of
output features that are mapped to the faulty PEs in the 2-D computing array. As
each output feature calculation is mapped to a single PE in the 2-D computing
array using the classical output stationary dataflow, it takes .c × k × k cycles
to complete an output feature calculation. As .c × k × k is usually larger than
32, and the output buffer will be occupied for only 32 cycles during each set of
output feature calculation, the recomputed output feature data can be updated to
the output feature buffer without conflicts.

5. At cycle .k × k × c + 34, because there are only three faulty PEs in the 2-D
computing array, it takes the DPPU three cycles to have the recomputed results
overwritten from the ORF to the output buffer.

6. From cycle .k × k × c + 35 to .k × k × c + c, both the 2-D computing array and
the DPPU conduct the partial convolution locally, so the output buffer port is idle
before the first column of PEs complete the new output feature calculation.

As shown in Fig. 5.7, the overall processing is conducted iteratively. Each
iteration includes a set of complete output feature calculation and it can be
divided into three phases, i.e. 2-D array write, DPPU write, and idle from the
perspective of the output buffer status. While each PE produces an output feature
data per iteration and a PE conducts one MAC per cycle, the processing time
of an iteration is .Titeration = c × k × k. For the 2-D computing array write, it
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takes .T2D_arrary_write = D cycles per iteration where D refers to the number of
cycles that DPPU delays after the 2-D computing array processing. For the DPPU
write, it needs .TDPPU_write = f ault_PE_num cycles as the DPPU updates the
recomputed output features sequentially. However, DPPU recomputing does not
have to start after the entire computing of the output features on the 2-D computing
array. Instead, it is pipelined with the 2-D computing array but onlyD cycles slower.
Thus, the weights and the input features consumed by the 2-D computing array
must be fully accommodated by the Ping-Pong register files during the D cycles.
Accordingly, the depth of weight and input feature Ping-Pong register files is set to
be .2 × D × Row. To minimize the register file overhead, we set .D = Col.

As the average throughput of a PE in the 2-D computing array is the same with
that in the DPPU, each multiplier in the DPPU can be used to repair a faulty PE in the
2-D computing array. Thereby, the DPPU size essentially represents the capability
of the fault tolerance of the proposed HyCA without performance penalty. When
the number of faulty PEs is larger than the DPPU size, we seek to preserve the
computing power as much as possible without altering the target neural network
models. To that end, we discard the faulty PEs that cannot be repaired due to
the lack of the computing redundancy in the DPPU. As it is usually inefficient to
compile and deploy the neural network models to a computing array with irregular
row sizes which can cause both the irregular on-chip buffer accesses and external
memory accesses, we choose to discard the columns with unrepaired faulty PEs and
the columns that are disconnected from the input/weight/output buffers. Moreover,
HyCA can repair any faulty PEs in the 2-D computing array, so it offers more
flexibility to prioritize the faulty PEs for repairing such that the surviving computing
array can be maximized especially when there are insufficient redundant PEs. In
this work, the maximum remaining computing array can be obtained simply by
assigning higher repairing priority to the faulty PEs on the left, which ensures that
the surviving computing array is connected to the on-chip buffers.

5.2.3 HyCA Micro-Architecture

In this section, we will illustrate the major components of HyCA added to the
baseline DLA and they include the DPPU, register files, and the FPT. FPT keeps
the coordinates of the faulty PEs that will be repaired by the DPPU. As the
maximum number of faulty PEs that can be tolerated without performance penalty
is determined by the DPPU size, FPT is configured with .DPU_size entries
accordingly. AGU is a piece of control logic that generates the access addresses of
the weight register file, input register file, and output register file based on the FPT
for the recomputing of the DPPU. The structures of FPT and AGU are simple and we
will not dwell on it. In contrast, the DPPU and the register files are relatively more
complex, and they dominate the hardware overhead. Thus, they will be detailed in
the rest of this section.
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Dot-Production Processing Unit (DPPU)
DPPU is utilized for the dot-production and it consists of a set of multipliers as well
as an adder tree that is used to aggregate all the multiplication results in a pipelined
manner. It is mainly used to recompute the output features that are mapped to the
faulty PEs in the 2-D computing array. An intuitive implementation is to construct a
single unified dot-production unit which has both the input features and weights read
from the corresponding register files in a single cycle and processed in parallel. As
DPPU starts Col cycles later after the 2-D computing array, each faulty PE in the 2-
D computing array has Col weights and input features multiplied and accumulated.
Accordingly, Col weights and input features can be extracted for the recomputing
on DPPU for each faulty PE in the 2-D computing array. In order to make best use of
the PEs in the DPPU, the Col weights and input features must be fully distributed
to the DPPU. If the entire DPPU is organized into a unified dot-production unit,
the size of the DPPU is rather limited, which hinders the scalability of the DPPU.
For instance, when Col is set to be 32 and DPPU size is set to be 24 or 48, the
computing mapped to a single faulty PE cannot be perfectly mapped to the DPPU,
which will lead to the under-utilization of the DPPU. To address this problem, we
propose to divide the PEs in the DPPU into multiple smaller groups and each group
can conduct the dot-production independently. As the number of PEs in each group
gets smaller, they are more likely to be fully utilized by the computing mapped to
a faulty PE. As shown in Fig. 5.8, each group includes 8 PEs and it completes the
computing of a faulty PE in 4 cycles when Col is set to be 32. In this case, the DPPU
size can be scaled conveniently. At the same time, the different groups can conduct
operations mapped to different faulty PEs in the 2-D computing array in parallel.

Fig. 5.8 Structures of the unified DPPU and the grouped DPPU. For both the unified DPPU and
the grouped DPPU, they are protected with redundant PEs. Each redundant PE is used to protect
a set of homogeneous PEs and these PEs are connected with ring topology to reduce the signal
fan-out
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While the DPPU is used to recompute all the faulty operations in the 2-D
computing array, it must be resilient enough to ensure the functionality. Otherwise,
a single fault in the DPPU may corrupt the whole accelerator. To improve the
resilience of the DPPU, we add redundant PEs to the DPPU as shown in Fig. 5.8.
Basically, the multipliers used in the DPPU are divided into groups and each group
is equipped with a redundant multiplier. Instead of having the redundant multiplier
shared by all the multipliers in the group, we have the redundant multiplier and the
multipliers in the group connected in a directed ring topology and each multiplier
can be configured to replace its downstream neighboring multiplier. When any of the
multiplier fails, it can be replaced by its upstreammultiplier immediately. Compared
to the shared redundancy design, this approach can avoid high fan-out connections
to the redundant multipliers. Similarly, we also have the adders in the adder tree
protected with the same redundancy design approach.

Register Files
The IRF and the WRF are used to back up the data read from input buffer and
weight buffer, and then supply the data to the DPPU for the recomputing. As the
2-D computing array and the DPPU have different dataflows for the neural network
computing, the weight register file is written in column-wise manner but read in
row-wise manner as shown in Fig. 5.9. When the DPPU is split into multiple groups,
these groups will be responsible for different faulty convolution operations and
they need to read different rows of WRF and IRF at the same time. Although a
straightforward multi-port register file can fulfill the concurrent register file read, it
will induce substantial hardware overhead according to [3, 5].

Fig. 5.9 Organization of the weight register file (WRF) and input register file (IRF). It shows how
the register files are connected with a grouped DPPU with different number of computing groups
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While we observe that each computing group in DPPU has only a small number
of PEs and they cannot consume a single row of inputs and weights in a single cycle.
As a result, the straightforward multi-port register file actually has the bandwidth
wasted. With this observation, we also have the register files split into groups in row
direction such that each group of the register file can be read independently by the
corresponding computing group in the DPPU. In this case, each register file has only
a single read port, but each computing group can only read a segment of the data in
the register files as indicated by the blue color. While an output feature recomputing
on DPPU needs an entire row of data in the register files, we have each row of
the registers organized as a circular shift register. With the shift register, different
segments of the data in a row can be obtained by the corresponding computing
group in DPPU in a few cycles. At the same time, the amount of data fed to each
computing group can be fully utilized. Moreover, we notice the read port data width
of the register files is not necessarily equal to the DPPU size. When the DPPU size
is larger than the register file data width, more read ports can be added to some
of the register file groups rather than the entire register file. When the DPPU size
is smaller than the register file data width, some of the register file groups do not
even need a read port as shown in Fig. 5.9. Thereby, the DPPU size can be scaled
conveniently and it will not be limited by the register file sizes.

5.2.3.1 Fault Detection with HyCA

On top of the fault mitigation, DPPU can also be utilized to conduct fault detection
at runtime. The basic idea is to have the DPPU to recompute the operations on a
PE in the 2-D computing array. Then, we have the computing results compared
to check if the PE in the 2-D computing array is faulty. By scanning all the PEs
in the 2-D computing array sequentially, we can determine if the 2-D computing
array is faulty. While the DPPU always starts the recomputing Col cycles later, the
computing result of a PE to be checked is already updated or written to the output
buffer when the DPPU completes the recomputing. To address the problem, we
have the computing results to be checked buffered in a checking list buffer (CLB)
as shown in Fig. 5.10. As the fault detection scanning is conducted sequentially, a
simple on-chip buffer can fulfill the requirements. When the DPPU completes the
recomputing, the fault detection module can have the results compared with that
stored in the CLB.

As hard faults in a PE can usually lead to computing errors of most of the
computation, we do not have to compare the final output feature computing results
for the fault detection. Instead, we can compare the partial computing results of
a PE for the fault detection such that the fault detection can be faster and more
efficient. Since the DPPU conducts the processing in parallel, we have the partial
computing result (PR) produced by a single DPPU group in a single cycle compared
in this work. Different from the DPPU, PEs in the 2-D computing array have
the computing results accumulated continuously before the entire output feature
processing is completed. Suppose only one DPPU group is reserved for the runtime
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Fig. 5.10 Structure of the fault-detection module

fault detection and the DPPU group includes S PEs. To enable the comparison
for the fault detection, we have both the base accumulated results (BAR) and the
accumulated results (AR) calculated S cycles later stored in the CLB. In the next
cycle, another pair of the BAR and the AR from different PEs will be stored
accordingly. As the weights and input features are stored in their register files for
only Col cycles, we only have Col ARs and BARs stored in the CLB. While the
CLB is also organized in Ping-Pong manner, the total size of the CLB is .4×W ×Col

Bytes where W denotes the width of the accumulator in PEs.
According to the recomputing dataflow, the reserved DPPU group performs the

recomputing Col cycles later. Unlike the fault-tolerance oriented recomputing, the
fault-detection oriented recomputing only conducts the dot-production of S weights
and input features rather than Col weights and input features. The results of the
DPPU will be compared with the corresponding results stored in the CLB for the
fault detection. Basically, AR will be compared to the addition of PR and BAR.
When a faulty PE is detected, the faulty information i.e. the fault PE row index and
column index will be updated to the FPT. One comparison can be done per cycle, so
it takes the fault detection module Col cycles to complete the comparison with the
stored results in CLB. Accordingly, it takes the fault detection module .Row×Col+
Col cycles to complete the fault detection of the whole 2-D computing array. When
a DPPU group has more PEs included, it needs to check a partial result with more
computation. As a result, the fault detection time is independent with the number of
PEs in the DPPU group. While the fault detection time is already much smaller than
the processing time of a normal neural network layer, it is fast enough to detect the
computing errors. To avoid the frequent fault detection, the fault detection module
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can be activated periodically in a larger time range depending on the requirements
of the applications. In addition, the fault detection module can reuse the majority of
the fault recovery design, it induces only some simple controlling logic and a small
CLB, and consumes negligible chip area.

5.2.4 Experiment Result Analysis

5.2.4.1 Experiment Setup

Accelerator Configurations The proposed deep learning accelerator with HyCA
is implemented in Verilog and synthesized with Design Compiler under TSMC
40 nm technology. The computing array size and DPPU size are set to be .32×32 and
32 respectively. The input feature buffer size is 128KB, output feature buffer size
is 128KB and the weight buffer size is 512KB. The computing of DPPU is delayed
by .D = 32 cycles after the 2-D computing array, so both the weight register file
size and the input register file size are set to be .2 × 32 × D = 2048 i.e. 2KB.
The output register file in DPPU is 64-byte. The fault PE table size is .32 × 10bits.
Each entry of the table includes 5-bit row index and 5-bit column index of a faulty
PE. Both the data width of weights and input feature data is 8-bit. To ensure the
resilience of the DPPU, we have every four multipliers in the DPPU grouped and
equipped with a redundant multiplier, and every three adders in the DPPU grouped
and protected with a redundant adder. For the 2-D computing array, we have three
classical redundancy approaches including RR, CR, and DR implemented and each
redundancy implementation is equipped with 32 redundant PEs.
Fault Models To evaluate the reliability of the redundancy designs compre-
hensively, we have two different fault distribution models including the random
distribution model and the clustered distribution model implemented. For the
random distribution model, the faults are randomly distributed across the entire
computing array. For the clustered distribution model which is usually used to
characterize the manufacture defects, the faults are more likely to be close to each
other and the model proposed in [44] is applied in this work. Meanwhile, we notice
that the influence of hardware faults is related with the fault distribution, so we
generate 10,000 configurations randomly for each fault injection rate and average
the evaluation in the experiments.

As hard errors are mainly caused by the manufacturing defects, aging, and
wear-out, which can be affected by many complex factors such as application
requirements, working status, and the fabrication, there is still a lack of references
investigating the practical PER setup and prior fault-tolerant designs typically have
distinct error rate setups [1, 33, 38, 73]. In this case, we evaluate the hard error rate
in a large range and seek to demonstrate when we can ensure reliable computing.
Then, we expect the users to choose the target hard error rate for their specific fault-
tolerant designs. In addition, since we mainly focus on the reliability of the regular
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2-D computing array in a deep learning accelerator, we use PER as the fault injection
metric similar to the works in [73] and [50]. Meanwhile, we notice that BER that
refers to the number of bit errors over the total number of memory bits is directly
related with definition of the hard error on chips, and it has been widely utilized as a
metric for fault analysis in many prior works [45, 46, 51]. Thus, we convert the BER
to PER with Eq. (5.4) mentioned in Sect. 5.2.1 assuming that any bit error in a PE
will cause the PE failure. While BER typically ranges from 1 × 10−7 to 1 × 10−3,
PER ranges from 0 to 6% according to the conversion.

Neural Network Benchmark To evaluate the performance of a typical DLA with
the proposed fault-tolerant HyCA, we have a set of representative neural network
models including Alexnet, VGG, Resnet, and YOLO used as the benchmark.
Alexnet, VGG and Resnet are classical models used for image classification, while
YOLO is mostly used for object detection. All the models are pre-trained on
ImageNet. We measured the performance of the benchmark on the DLAs with
different redundancy design approaches using Scale-sim[53]. Since Scale-sim is
relatively slow, it is difficult to obtain the performance of all the random fault
configurations directly. In this experiment, we determined the final valid computing
array setups of all the fault configurations and performed the simulation on only
the unique computing array setups. As many fault configurations lead to the same
computing array setups eventually, this approach greatly reduces the simulation
time. Finally, we averaged the resulting performance based on the generated fault
configurations.

5.2.4.2 Chip Area Overhead Comparison

Figure 5.11 illustrates the chip area of the DLAs with different redundancy
approaches including RR, CR, DR, and HyCA. Particularly, we have three HyCA-
based designs with different DPPU sizes compared. The DPPU size of HyCA24,
HyCA32, and HyCA40 is 24, 32 and 40 respectively. According to the compar-
ison Fig. 5.11, the HyCA-based designs exhibit much less redundancy overhead

Fig. 5.11 Chip area under different redundancy approaches
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compared to the classical redundancy designs. The redundancy overhead of the
HyCA-based designs mainly consist of the redundant PEs and the register files,
while the redundancy overhead of the RR-based, CR-based, and DR-based designs
are mainly attributed to the MUX and the redundancy PEs. As the 2-D computing
array size is .32 × 32, the number of redundant PEs in RR-based, CR-based, and
DR-based designs is the same and the chip area caused by the redundant PEs is
also equal. While HyCA has different PE structures, i.e. independent multipliers
and adders rather than MACs, and additional redundant PEs, the chip area of the
redundant PEs is larger given the same DPPU sizes. In contrast to the chip area
of the redundant PEs in HyCA, the added small Ping-Pong register files in HyCA
consumes much less chip area. Different from HyCA, RR, CR and DR include a
large number of MUX to enable the replacement of faulty PEs with the redundant
PEs. These MUX take up substantial chip area and dominate the redundancy
overhead.

5.2.4.3 Reliability Comparison

To evaluate the reliability of the DLAs, we propose two metrics that can be
applied for different applications. One of them is the fully functional probability
and it shows the probability that the DLA can be fully functional without any
performance penalty. It is preferred by the mission-critical applications that do not
allow any performance degradation nor model modification because any system
modification may require expensive and lengthy safety evaluation and certification.
The experiment is shown in Fig. 5.12. It shows that HyCA outperforms the three
classical redundancy approaches and the advantage gets enlarged under the clustered
fault distribution. The main reason is that each redundant PE in RR, CR and DR can
only be utilized to replace a single faulty PE in a row, a column, and a row-column
pair respectively. When multiple faults occur in the same protected region, these

Fig. 5.12 Fully functional probability of DLAs with different redundancy approaches. (a) Ran-
dom fault distribution model. (b) Clustered fault distribution model
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redundancy approaches fail to recover the faulty 2-D computing array and the design
will not be fully functional. Unlike these classical redundancy approaches, HyCA
allows arbitrary faulty distribution and can perfectly repair the computing array as
long as the number of faulty PEs in the 2-D computing array does not exceed the
DPPU size. Thereby, the fully function probability of HyCA is not sensitive to the
fault distribution models. As DPPU size is set to be 32 and the 2-D computing
array size is .32 × 32 in this example, the fully functional probability drops to 0
immediately when the number of fault PEs exceeds 32 at 3.13% PER. As the PEs
in the DPPU can also be faulty, the fully functional probability of HyCA starts to
drop when the number of faulty PE is close to 32 and the PER is slightly lower than
3.13%.

The other metric is the normalized remaining computing power and it refers to
the percentage of the remaining computing array size over the original 2-D comput-
ing array size. This metric is particularly important for the non-critical applications
that do not require fully functional accelerators and allow the accelerators to be
degraded, because the remaining computing array size determines the theoretical
computing power and affects the performance of the deployed neural network
models directly. In this work, we apply the acceleration degradation strategy
mentioned in the end of Sect. 5.2.2 and discard the faulty PEs in the granularity
of a column when the redundant PEs are insufficient to mitigate all the faulty PEs.
Although more aggressive degradation approaches are possible to achieve larger
computing power, this approach is applied for more efficient model compilation,
hardware implementation and memory accesses.

Figure 5.13 reveals the computing power comparison of the different redundancy
approaches. It can be observed that HyCA shows significantly higher computing
power under all the different PER setups and the advantage also enlarges with the
increase of the PER. This is mainly brought by the fault recovery flexibility of the
HyCA that allows the DPPU to select the most critical faulty PEs to repair when the
redundant faulty PEs are insufficient. Note that the most critical faulty PEs refer to

Fig. 5.13 Normalized computing power of DLAs with different redundancy approaches. (a)
Random fault distribution model. (b) Clustered fault distribution model
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the ones that can maximize the remaining 2-D computing array. By optimizing the
faulty PE mitigation order, the remaining computing array can be larger. In contrast,
each redundant PE can only repair a limited subset of the faulty PEs for the RR, CR
and DR. There is little space left to optimize the faulty PE mitigation order. Thereby,
the remaining computing power of RR, CR, and DR is much lower. As we choose
to discard the faulty PEs that are failed to be repaired in the granularity of a column,
RR cannot effectively shift the faulty PEs to a different column and has to discard
the column whenever there are more than one faulty PEs. As a result, RR shows the
lowest computing power even when the number of redundant PEs is the same with
the other redundancy approaches.

5.2.4.4 Performance Comparison

In order to evaluate the performance of the DLAs protected with the different
redundancy approaches, we have the neural network benchmark deployed on the
DLAs with Scale-Sim. The performance is normalized to that of the DLA protected
with RR and the experiment result is shown in Fig. 5.14. It can be found that HyCA
achieves much higher performance than the other redundancy approaches especially
under relatively higher PER, which is roughly consistent with the experiment in
Fig. 5.13 though the neural networks also affect the performance. Particularly, the
performance speedup goes up to 9X when the PER is around 6% under the random
fault distribution. The underlying reason for the higher performance speedup at
higher PER is that higher PER indicates more faulty PEs in the 2-D computing
array and leaves larger optimization space for the HyCA.

Another observation is that the performance gap between HyCA and the other
redundancy approaches is much smaller than the computing power gap. For
instance, the computing power of HyCA is around 25X higher than RR when PER is
6% under the random fault injection while the performance speedup is only 9X. This

Fig. 5.14 Normalized performance of DLAs with different redundancy approaches. (a) Random
fault distribution model. (b) Clustered fault distribution model
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Fig. 5.15 Neural network
runtime of the DLAs with
different computing array
sizes. Note that the row size
of the computing arrays is
fixed to be 32

is mainly attributed to the fact that the neural network runtime varies dramatically
under different computing array sizes as shown in Fig. 5.15. When the remaining
computing array size is large at lower PER, the runtime decreases much slower with
the increase of the computing array size. In addition, some of the neural networks
like VGG include some full connection layers that fail to make best use of the
computing array. In fact, only a single column of PEs is used for the full connection
operations given the output stationary dataflow and the larger remaining computing
array in HyCA is underutilized, which also undermines the performance speedup.

5.2.4.5 Redundancy Design Scalability Analysis

As different applications may have distinct requirements of reliability and may also
work under different fault environments, a scalable redundancy design can greatly
alleviate the reliability design problems. In this subsection, we will investigate
and compare the scalability of the different redundancy approaches under different
computing array sizes. As the fully functional probability and the computing power
is roughly positively related, we only use the fully function probability as the metric
for the scalability evaluation to save the space. The number of redundant PEs in RR
and CR is consistent with the corresponding computing array row size and column
size respectively. Although the number of redundant PEs in DR is also equal to the
diagonal size of the computing array, it cannot be directly applied to a non-square
computing array. In this experiment, we divide the non-square computing array into
multiple square computing arrays and apply the diagonal redundancy approach to
each sub computing array independently. The number of redundant PEs in HyCA is
set to be Col to ensure a fair comparison where Col refers to the column size of the
computing arrays.

The experiment result is shown in Fig. 5.16. It can be observed that the
fully functional probability of RR, CR and DR under different PER setups vary
dramatically when the computing array size changes. CR and DR have the same
amount of redundant PEs on the different 2-D computing array sizes. Basically,
the redundancy intensity, i.e. the average redundancy per PE in the 2-D computing
array, vary dramatically across the different computing arrays. Thus, the fully
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Fig. 5.16 Fully functional probability of the DLAs with different computing array sizes when they
are protected with RR, CR, DR and HyCA respectively. Figure (a)–(d) are evaluated under the
random fault distribution while Figure (e)–(h) are evaluated under the clustered fault distribution

functional probability curves are different accordingly. The number of redundant
PEs for RR scales with the three specific computing arrays, but the fully functional
probability curves are closer to each other but remains different due to the fault
distribution variations. In general, the classical redundancy approaches do not scale
well and the sensitivity to the fault distribution further aggravates the scalability
problem. In contrast, the proposed HyCA exhibits much better scalability and shows
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Fig. 5.17 Fully functional probability of the DLAs configured with different DPPU sizes. The
DPPUs with both the unified structure and the grouped structure are evaluated and compared. (a)
Random fault distribution model. (b) Clustered fault distribution model

consistent fault-tolerance capability under different computing array sizes and fault
distribution models.

We also evaluated the scalability of the two different DPPU implementations, i.e.
the Unified DPPU and the Grouped DPPU under different DPPU sizes. We scale
the DPPU sizes from 16 to 48 and fix the computing array size to be .32 × 32. The
experiment result is shown in Fig. 5.17. It can be observed that the Grouped DPPU
scales strictly with the DPPU sizes. The Unified DPPU scales when the DPPU size
is set to be 16 and 32, but it does not scale when the DPPU size is set to be 24,
40, and 48. The main reason is that the Unified DPPU needs to read from input
and weight register files in which the data are aligned with the column size of the
computing array. More specifically, the input features and weights are aligned to
32, i.e. the column size. When the DPPU size is larger than 32 and it cannot be
perfectly split by 32, the Unified DPPU cannot be fully utilized due to the lack
of the sufficient input data. When the DPPU size is smaller than 32 and 32 data
cannot be divided perfectly for the Unified DPPU processing, the Unified DPPU
also suffers underutilization and leads to unsatisfactory scalability in this occasion.
Different from the Unified DPPU, the Grouped DPPU can be utilized with smaller
granularity and is able to make full use of the aligned data from both the input and
weight register files. As the hardware overhead of DPPU is mainly caused by the
redundant PEs according to the experiment in Sect. 5.2.4.2, the hardware overhead
of both DPPU implementations scales with the DPPU size accordingly.

5.2.4.6 Fault Detection Analysis

With the proposed fault detection approach, PE faults can be detected at runtime.
Since the proposed fault detection module essentially scans all the PEs in the 2-D
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Table 5.1 The proportion of
the neural network layers of
which the execution time can
fully cover the fault detection
of the entire 2-D computing
array

Array size 16.×16 32.×32 64.×64 128.×128

Alexnet 8/8 8/8 8/8 4/8

VGG 16/16 16/16 16/16 16/16

YOLO 22/22 22/22 22/22 15/22

Resnet 21/21 21/21 21/21 5/21

computing array sequentially, we mainly evaluate the fault detection scanning time
under different computing array sizes, and compare the fault detection time to the
corresponding neural network processing time. Basically, we want to determine if a
runtime persistent fault can be detected before a neural network layer is computed.
And we take the percentage of the neural network layers that can be detected
during the layer processing as a metric to evaluate the fault detection capability. The
experiment result is shown in Table 5.1. It can be observed that all the faults in the
2-D computing array can be detected during the execution of each neural network
layer when the 2-D computing array size is smaller than or equal to .64 × 64. When
the 2-D computing array size reaches .128× 128, the processing time of some small
neural network layers can finish the processing before the fault detection module
scan the entire 2-D computing array. In this case, we may have to add more DPPU
groups for the fault detection.

The fault detection module mainly includes a check list buffer (CLB) and some
control logic. The CLB is .Col × W × 4 bytes and dominates the chip area, but it is
only .Row/(2 × W) (i.e. 1/4 when .Row = 32 and .W = 4) of the input register file.
Thus, the CLB overhead is much smaller than the input register file let alone the
redundant PEs. Thereby, the chip area of the fault detection module is negligible.

5.2.5 Discussion

The reliability of DLAs is of vital importance to the mission-critical AI applications.
Prior redundancy design approaches for the regular computing array such as RR
and CR greatly reduce the hardware overhead compared to the classical TMR
approaches, but they are rather sensitive to the fault distribution and fail to work
especially when the faults are unevenly distributed. To address this problem, we
propose a HyCA and have a DPPU to recompute all the operations mapped to the
faulty PEs in the 2-D computing array. When the number of faulty PEs in the 2-
D computing array is less than the DPPU size, HyCA can fully recover the 2-D
computing array despite the fault distribution. Even when the fault error rate further
increases, DPPU can still be used to repair the most critical PEs first to ensure a
large available computing array and minimize the performance penalty. According
to our experiments, HyCA outperforms prior redundancy approaches in terms of
both the fully functional probability and the computing power under different fault
distribution models. In addition, HyCA can also be reused for the fault detection at



272 5 Fault-Tolerant Deep Learning Processors

runtime and the experiment result shows that the entire 2-D computing array can be
scanned and detected before a neural network layer completes its execution in most
cases.

5.3 Online Fault Protection for ReRAM-Based Deep
Learning

5.3.1 RRamedy Framework Overview

5.3.1.1 Design Goals

In this section, we analyze the fault models of ReRAM-based edge neural accel-
erators and elaborate a unified fault detection and network remedy framework for
memristor-based deep learning accelerators on the edge.

5.3.1.2 Target Fault Models

ReRAM’s distinctive characteristics come with reliability concerns. The working
mechanism of ReRAM relies on the generation and rupture of the oxygen ions (.O2−)
and oxygen vacancies (.VO ). The stochastic nature of .VO makes ReRAM susceptible
to many reliability problems [61], including:

Permanent Faults Permanent faults (Hard Faults) of ReRAM cells force the
resistance states fixed at high resistance (stuck-at-0 fault) or low resistance (stuck-at-
1 fault), which are usually caused by fabrication defects [6] and limited endurance.
Soft Faults ReRAM soft faults are mainly resulted from: (a) the unavoidable
degradation mechanisms and wear-out mechanisms, (b) manufacturing defects,
especially the imperfect “electroforming” process [40, 49]. These soft faults can
be observed as retention failures, read disturbance or write disturbance [20, 57].
Even though the ReRAM-based chips have passed the manufacturing test, cells
will still suffer from faults/variations during their lifetime, and these effects can
be accumulated to result in a data disturbance [39].

In a nutshell, ReRAM-based edge neural accelerators face both inevitable
permanent faults and soft faults in practice. Permanent faults appear over memory
lifetime and cannot be tuned. Soft faults have no permanent corruption on the stored
data, but they still have the ability to damage the system. Hence, it is necessary to
detect the faults and rescue the system performance from them.



5.3 Online Fault Protection for ReRAM-Based Deep Learning 273

5.3.1.3 Design Requirements

To improve reliability of DLA, we find that fault decetion methods were not
available because they ware time-consuming to test all storage units. Furthermore,
the unit by unit fault detection method also increased the wear of storage units.
Fortunately, the DLA fault could be tested by the results generated by DLA.
Therefore, the noval results analysis method helps to skip the unit by unit fault
detection. To leverage the noval DLA storage unit fault detection method, it needs
to comply with the design requirements for protecting deep learning accelerators
from permanent and soft faults during their lifetime:

• Low impact on the performance of DLAs: the proposed solution should have low
to no performance overhead on the DLAs, i.e., the fault detection process can be
performed in spare time with no impact on the running time of DLAs.

• Model fidelity: the accuracy of edge deep learning system cannot be heavily
affected. Once faults occurred, the system must detect and diagnose the faults
and restore system accuracy instantly.

• Fast deployment on the hardware platform: the solution should not introduce
modifications on the original architectures and workflows of DLAs.

• High generality and reliability: the solution can be practised in different DLAs.
The fault detection method should have high fault detection probability. Further-
more, the model retrieving method should alleviate the accuracy degradation and
restore the original system prediction accuracy.

Next, we describe our proposed framework in detail and show that RRAMedy
can apply to any CiM-based edge deep learning accelerators without any con-
straints on applications or network structures. Meanwhile, our approach did no
modifications on the original workflows of DLAs and the neural network structures.
Furthermore, in Sect. 5.3.5, we show that our proposed adversarial example testing
method has superior accuracy on fault detection. Meanwhile, with the model retrain-
ing method, the accuracy impact of memristor faults is compensated effectively.

We present the overview of RRAMedy firstly. As illustrated in Fig. 5.18, we
model the edge deep learning scenario with two parties, a cloud server and an
edge device with ReRAM-based memory. The edge device routinely detects its
fault occurrence with the proposed Adversarial Example Testing (AET) method.
Once a device detects unrepairable faults, it will require updating the current model
parameters with a device-specific fault-tolerant model. Here, the updated fault-
tolerant model can be trained on either cloud or local edge, according to the
edge computational power and the network condition. For devices with limited
computational resources, they can ask cloud services for help. The cloud servers
will leverage a fault-aware retraining step to generate fault-tolerant models to
maintain the edge system accuracy through the model resilience. Alternatively, for
“powerful” edge devices, they can iteratively adjust neural network parameters to
the faults during the online model retraining procedure.

The RRAMedy framework consists of three primary components, including
(1) a fault detector, (2) an in-cloud network retrainer and (3) an online network
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Fig. 5.18 The global flow of the RRAMedy framework

retrainer. The fault detector consists of a “Pause-and-Test” (P&T) mechanism and
a “Fault Diagnosis” (FD) component. The P&T mechanism is periodically invoked
to detect system accuracy degradation caused by ReRAM state variations, while
the FD component is used for fault diagnosis and generates the corresponding fault
distribution. After fault diagnosis, the framework will choose either the in-cloud
network retrainer or the online network retrainer to finetune the network model for
tolerating the irreparable defects. Leveraging the excellent self-recovering capability
of neural networks, the faulty network can be retrained with the existence of
unrepairable hard defects. Figure 5.18 demonstrates the general flow of RRAMedy
framework that includes four primary phases with five online steps and four offline
steps.

Model Deployment Firstly, the cloud server trains a network on the cloud (step
1 ) and transmits it to the edge device. Then, the edge device deploys the model on
the deep learning accelerator for execution and also makes a backup on the storage
system (step 1 ).
Fault Detection and Diagnosis As having addressed, fault detection and diagnosis
always bring high overhead. To reduce the overhead, a routinely invoked fault
detection mechanism is established on the edge device. As seen in Fig. 5.18, the
server generates and selects a set of adversarial examples for fault detection. These
generated adversarial examples are transmitted, stored in the storage system of
devices (step 2 ) and periodically fed into the ReRAM accelerator for the fault
detection routine (step 2 ). The detection results will be further analyzed to instruct
the execution of the FD component for accurate fault location (step 3 ). Specifically,
if the ReRAM accelerator fails to generate correct predictions on the adversarial
test set, the P&T component will raise an alarm flag to trigger FD. If there is no
permanent fault located, it means the ReRAM accelerator encounters soft faults.
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Fig. 5.19 The overview of pause-and-test mechanism (grey components can be adjusted by the
cloud servers)

The device will refresh the corrupted cells with model back-up (step 5 ). Otherwise,
a permanent fault is found by the FD component, RRAMedy will ask for fault-
tolerant training to overcome accuracy losses.
Model Retraining RRAMedy provides two model retraining techniques to recover
the recognition accuracy of faulty DNNs, including edge-cloud collaborative fault-
masking retraining and in-situ model remedy on the edge. For the edge-cloud
collaborative model retraining, the cloud server waits for the edge devices to report
their fault distribution. As the fault maps are received, the server will retrain the
neural network with the proposed fault-masking method and adaptively adjust the
neural network to tolerate the device-specific faults (step 3 ). Additionally, we
also unleash deep learning retraining services with edge computational power and
use the inherent fault tolerance of neural network training algorithms to adapt
the network parameters to the faults. Certainly, edge DLA has more strict energy
and timing constraints than the cloud. Hence, the online model retraining method
leverages the intermediate activations transmitted from the golden models as addi-
tional knowledge to assist edge training procedure for faster accuracy recovering
(step 4 ).
Model Redeployment For the cloud-assistant retraining process, the server only
transmits the quantized weight update values to the edge device to reduce the
communication overhead (step 4 ). The edge device will then update the cloud-
retrained network on its storage system (step 5 ) and use the updated backup to
refresh the ReRAM states to mitigate the fault-induced accuracy degradation. The
backup is also used to refresh the soft fault-induced struck cells once detected.

5.3.2 Adversarial Example Testing on the Edge

It is well-known that the fault detection and location process is time-consuming,
which makes it unacceptable to perform periodically, especially for the edge
ReRAM expensive to program due to write overhead. Based on this, we pursue to
find a more realistic method to capture the fault-induced system behavior failures.
Only when the deep learning system is detected with behavior deviations, the FD
function will be triggered, which significantly minimizes the system overhead.
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Fig. 5.20 A demonstration of adversarial example generation

The Pause-and-Test mechanism is proposed to periodically analyze the fault
existence at the system behavior level. Figure 5.19 illustrates the high-level view of
the P&T mechanism. It can be described as a function: .M → {0, 1}, that decides
whether the neural model .M is heavily affected by the faults or resistance varia-
tions in the ReRAM memory. Unlike traditional systems, which require bit-level
comparison to detect system faults, the deep learning system should analyze the
output confidence score directly, because the bit-by-bit comparison is unnecessary.
Hence, we consider a simple strategy to distinguish the faulty models from normal
models: we feed the test benchmark into the edge neural systems and compare
the confidence score of the actual model’s prediction with the original prediction
confidence. The deviations of the original and actual prediction confidence score
should be negligible. Once the prediction scores are determined to be heavily
different based on the predefined checking rules, the model parameters are likely to
be corrupted and the ReRAMmemory is most likely suffering from faults or defects.
Then, the RRAMedy framework will further diagnose the faults or variations with
the FD process.

However, neural networks are thought possessing the intrinsic resilience to errors
and noises of certain distribution in both inputs and neural weights. Randomly
picked input test samples may not activate the faults in ReRAM cells at all, and
make the faults escape from software testing, which will increase the risk of fatal
failure caused by the latent faults in critical tasks. Thus, we have to propose a more
sensitive test method that will activate and detect the faults and elusive cell state
variations with high coverage and probability.

Recently, an adversarial example generating method has been proposed in the
deep learning security domain, which is called FGSM (Fast Gradient Sign Method)
[19]. It can be described as:

.x′ = x + ε · sign(∇xJ (F (x), y)) (5.5)

where the adversarial example .x′ is generated by adding perturbations to the
original sample x, as shown in Fig. 5.20. The perturbations .sign(∇xJ (F (x), y))

are calculated as the sign of the gradient of the model’s loss function .J (·, ·), pushing
the original input move towards the direction of the gradient.

Though the adversarial examples are used to mislead DNNs originally, we find
that they also have great performance on fault detection. Essentially, the adversarial
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Fig. 5.21 The variations of confidence scores (a) when feeding the normal input into the normal
network and faulty network and (b) when feeding the adversarial input into the normal network
and faulty network

examples are elaborately generated according to the loss gradient, which is on the
contrary of the weights update direction. Thus, the weight variations will have a
severer impact on the prediction of adversarial examples.

To demonstrate the sensitivity of adversarial examples on parameter variations,
we conducted an experiment by feeding a normal input and an adversarial input into
a normal network and a faulty network respectively. The faulty model is generated
by injecting faults on the original model parameters, degrading its classification
accuracy from 98.6 to 96.8%. As illustrated in Fig. 5.21a, When we feed a normal
sample into the two networks, there is only a 4% difference in the top-ranked output
confidence scores. But both the normal network and the faulty network predict the
normal sample as the same label ‘0’. However, as shown in Fig. 5.21b, when the
network parameters are injected with faults, the output prediction of the adversarial
sample totally changes from label ‘0’ to label ‘8’. This is because that the adversarial
examples are generated elaborately according to the loss gradient. Small disturbance
on network parameters will result in large deviations on the confidence score. Hence,
it is easier to detect subtle faults on edge devices by using adversarial examples.

Fault Diagnosis Here, we adopt the March C.
− test algorithm for further fault

diagnosis. Specifically, March C.
− applies a series of read/write operations to a given
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memristor array by a specific address order and can achieve complete fault coverage
by analyzing the fault dictionary [63]. March C.

− is denoted as follows:

.
March C− − {� (w0); ⇑ (r0,w1); ⇓ (r1,w0);

⇓ (r0,w1) ⇓ (r1,w0); ⇑ (r0); } (5.6)

The symbol ‘.⇑’ , ‘.⇓’ and ‘.�’ denote the order of address sequence. The
increasing address direction is represented by the ‘.⇑’ symbol, and the decreasing
address direction is denoted by the ‘.⇓’ symbol. The symbol ‘.�’ is used when
the address direction is irrelevant. Besides, ‘w0’, ‘w1’, ‘r0’ and ‘r1’ represent
the write 0, write 1, read 0 and read 1 operation, respectively. It has been proved
that the six March elements in the March C.

− algorithm can detect all the modeled
faults [41]. Obviously, it requires five read operations and five write operations for
each memristor which brings huge time overhead. Considering the limited write
endurance of ReRAM, our proposed RRAMedy framework only activates the FD
component when the P&T mechanism detects the memristor faults, instead of using
the March algorithm directly for fault detection.

5.3.3 Fault-Masking Retraining on the Cloud

Once there are unrepairable faults detected on the resource-limited edge devices,
cloud servers need to take measures to rescue the system performance from
memory faults. Conventional edge-based model retraining solutions have an obvious
weakness: the retraining process consumes high hardware resources, making it
unpractical to be deployed on the edge device. There are also off-device methods
that are carried through model training, but it only focuses on making the network
robust to faults, rather than eliminating the impacts of faults [7]. Based on this
observation, we explore a cloud-edge collaborative model retraining method. For
the Cloud-Edge Collaborative Method, the edge device only needs to generate
the corresponding fault distribution as a fault-mask in the “Fault Detection and
Diagnosis” phase (Fig. 5.18, step 3 ) and transmit it to the cloud server. Then, the
cloud server will leverage the received fault-mask and apply the proposed fault-
masking retraining method to adaptively adjust the neural network to tolerate the
device-specific faults.

Unlike previous work that enhances the robustness of network model by using
specialized regularization in training, in this work, the goal of the offline model
retraining process is to construct a fault-tolerate network .F ′(x), which can recover
the classification accuracy from faulty edge devices. The output of .F ′(x) is
supposed to be close to the original neural network output .F(x) , that is:

.∀x : min�(F(x), F ′(x)) (5.7)
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Fig. 5.22 Fault-masking retraining

It has been proven that DNN has the inherent self-recovery capability to relearn
the ground truth from the corrupted weights [60]. By applying the Back Propagation
(BP) algorithm to update weights, the training model parameters can self-adapt the
faults iteration by iteration. The weight updating process can be derived as Eq. (5.3).
However, with the BP algorithm, the weight .Wi is only tuned to achieve high
accuracy without consideration to be adjusted to adapt permanent faults. Hence,
to reduce the performance degradation caused by the occurrence of unrepairable
permanent faults, we propose to mask the faulty weights which suffer from “stuck-
at” faults during the model retraining phase. Specifically, the update of weight .Wi

can be described as:

.Wi ← Mask(Wi − η
∂E

∂Wi

) (5.8)

The Mask function is used to fix the faulty bits to their “stuck-at” values during
the training phase, according to the received fault-mask. For example, as shown in
Fig. 5.22, there is a 16-bit-width weight mapped on a row of memristors. However,
a stuck-at-1 fault and a stuck-at-0 fault occur on these memristors simultaneously.
To ensure the retraining phase can tolerate specific weight deviations, we mask the
erroneous bits based on the bit-memristor mapping. When the bit value is mapped
on a cell with stuck-at-1 (0) fault, we will fix the value to 1 (0) during the training
phase. Therefore, by using the Mask-based retraining method on the cloud server,
the network itself can compensate for the performance degradation from the error
associated with ReRAM faults.

Due to communication resource and time constraints, the cloud servers only
transmit the gradients to the edge devices, which are also quantized to further reduce
the communication overhead, as it is shown that the gradients can be precisely
represented by sparse and lower-bit code [65]. Then the edge device will use these
gradients to update its local model back-ups and refresh the ReRAM states to reduce
the fault-induced accuracy degradation. To rescue from soft faults, the edge device
will employ the back-up neural model to refresh the ReRAM arrays. Here, we
propose to employ iterative write on the device to make sure the cells are correctly
programmed even when the cells are having parametric fluctuations [27].
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5.3.4 In-Situ Model Remedy on the Edge

In fact, the current situation of implementing DNN retraining phase on the cloud
still brings some problems:

1. Bandwidth competition: if there are numerous edge devices connected to the
same network, there exists bandwidth competition between them. Especially
when more than one device suffers faults simultaneously, they will request for
model update and then exchange information with the cloud, increasing the traffic
load of the network.

2. Latency: uploading fault maps to the cloud and offloading updated models
from the cloud leaves associated communicational latency which can not be
guaranteed to meet the requirements in some time-critical scenarios.

3. Computational pressure on cloud servers: fault-tolerant models are device-
specific. Thus, the cloud server will perform the customized DNN training
algorithm for every faulty chip, which undoubtedly poses serious challenges to
the computational power and the storage resource of cloud servers.

4. Security concern: data transfer between cloud servers and edge devices increases
the risk of attack. Even though the cloud server is trusted, edge users still lose
absolute control over the transmitted model and data, which gives opportunities
for adversaries to perform white-box attacks, black-box attacks and model
tampering attacks [34].

5. Reliability concern: it is a great challenge to guarantee all the devices can connect
to the cloud servers. Sometimes, the network connection may be lost. Some
devices work in the environment without a network connection. Thus, an online
fault-tolerant mechanism should be devised to ensure edge or end devices work
normally in anywhere and anytime.

To address these concerns, it is desirable to consider implementing retraining-
based model-level fault-tolerance on the edge. However, as we all know that,
training DNNs is computationally expensive for edge devices. As described in
Sect. 5.1.1.3, traditional training method uses the BP algorithm which transmits loss
gradients from the output layer to the input layer sequentially for weight updates,
occupying a significant amount of computational time. Meanwhile, the loss only
comes from the final decision without any information extracted from the golden
neural network. When DNNs are deep, the final loss is not enough to guide all the
weight parameters to coverage quickly. Hence, using the classical training method
for online fault-tolerant model retraining will take numerous iterations for weight
updates, which not only bring a significant time overhead but also challenge the
write endurance of memristors.

Inspired by these observations, we propose a novel online network retrain-
ing algorithm, Intermediate Knowledge Transfer Retraining (IKTR), which
introduces the golden model’s intermediate represents as additional knowledge
to assist the faulty neural networks for accuracy recovering. Herein, the golden
model means the ideal model trained on the cloud servers without suffering from
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any hardware faults. The key idea of IKTR is built upon the popular approach,
knowledge distillation (KD) [23], which transfers the knowledge from the larger
teacher model to a smaller, simplified student model for model compression. At
each training iteration, the teacher guides the student network’s learning, which
achieves significant improvement on network training efficiency. Therefore, we
apply this method to the edge fault-tolerant retraining mechanism by treating the
golden network as the teacher and the local network as the student. As the golden
model preserves rich information on feature extraction, it can greatly help the
student network to change its weight values to recover its classification accuracy.

However, the conventional KD method only uses the final output probabilities
to optimize the student model, which makes the student model hard to mimic the
internal learning behavior of the teacher model. Even though the student is fully
optimized with the soft-labels of the teacher network, it may still have very different
internal representations, which may affect its generalization capability [2].

Additionally, it is known that the intermediate representations of DNNs are
enriched by the extracted features, which can be better leveraged to assist the student
model for behavior imitation [31]. Hence, IKTR leverages the internal information
extracted from the golden neural network as additional knowledge to guide the local
network fault-tolerant retraining procedure.

To this end, as shown in Fig. 5.23, IKTR firstly splits the whole neural network
into a set of sub-network blocks. In contrast to conventional knowledge transfer,
the goal of IKTR is to retrieve the faulty network’s accuracy rather than model
compression. Hence, the network architecture of the teacher model and the student
model is the same. The knowledge will be distilled in the same block from the
golden model (G) to the local faulty model (F ) directly. Specifically, we assume
that we have a n-layer neural network with corresponding weights, .W = [W0,W1, ··
·,Wn−1]. The network is split into K blocks, [.B1, B2, . . . , BK ]. Within each block,
there is a set of layers, [.l1, l2, . . . , lm]. The function of layer .lm can be represented
as .fm(am−1;Wm). Here, .am−1 represents the output activation of layer .lm−1. The
objective of each block in faulty models is to imitate the normal sub-behavior of the

Fig. 5.23 An overview of our in-situ faulty model retraining mechanism based on intermediate
knowledge transfer from the golden model to the faulty model
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golden models. Thus, we formulate the objective function of each block as follows:

.

min
WF

�(ok
F , ok

G), k ∈ {1, 2, · · ·,K}

s.t. ok = fm(am−1;Wm)

(5.9)

where .ok
F and .ok

G denote the output activations of the k-th block in the faulty network
and the golden network, respectively. .lm represents the last layer of the k-th block.
Unlike the classical BP algorithm, the loss in IKTR is calculated by comparing
the faulty model’s intermediate representations (.ok

F ) with the corresponding golden
activations (.ok

G). Here, we adopt the Mean-Squared Loss (MSE) as the distillation
loss:

.Ek = 1

s · r
(ok

G − ok
F )2 (5.10)

.s = c · w · h (5.11)

wherein, s represents the size of feature maps. r is the scale ratio. c, w and h are
the channel counts, width and height of the .ok , respectively. By using the MSE loss
function for blockwise knowledge distillation, the sub-network training block of
the student network can learn the intermediate feature extraction capacity from the
corresponding teacher network block.

Meanwhile, as shown in Fig. 5.23, within each block, the loss is still optimized
through the conventional BP algorithm. Hence, the loss .Ek is backward from the top
layer to the bottom layer within the k-th block. It is worth noting that the optimal
solution of the k-th block is independent of the other blocks. In other words, the loss
.Ek of block k is only used within the block k and not transmitted to neither block
.k − 1 nor block .k + 1. Compared to be trained alone, each sub-network block can
learn knowledge directly from the golden model’s intermediate activations, which
achieves fast network training convergence.

The details of the IKTR algorithm are described in Algorithm 1. The output of
the block .k − 1 is the input of the block k. Considering that errors occurred in the
prior block will affect the input of the latter block, the training process is performed
from the bottom block to the top block, with the order of (1,2,3,. . .K). Only when
the front block is fully optimized, the next block will be trained. During the forward
propagation of the blockwise training, the intermediate output activations of layerm,
.am

i , are generated. The output activations of the last layer in each student network’s
block are used for calculating the difference with the golden model and updating
the parameters within the corresponding local training block. Unlike the original
BP algorithm, the loss used for weight update of each block is not calculated from
the final output as Eq. (5.3), but generated with the blockwise distillation loss. This
makes the knowledge directly transfer from the golden model to the faulty model,
encouraging the faulty network to simulate the intermediate representations of a
golden network. Moreover, within the same block, the training gradient is still
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calculated with the “up-bottom” manner (M-1, M-2 . . . , 0). Finally, all the training
blocks are trained and the parameters are updated to adapt to the unrepairable faults.

Algorithm 1: Knowledge transfer retraining algorithm
Data: faulty weight values W0, previous stored golden feature maps oG, loss function L,

training block set B
Result: updated fault-tolerant weights Wi

1 for Bk in Block set {B1, B2, . . . , BK} do
2 for iteration i = 1, 2, . . . , I do
3 Forward propagation:
4 Initialize the input of block Bk : a00 = ok−1;
5 for layer m = 1, 2, . . . , M in block Bk , (M is the number of layers in the block Bk)

do
6 Compute the intermediate activation of layer m: am

i ← fi(a
m−1
i ; Wm

i );
7 if ln is the last layer of block Bk then
8 ok

Fi
= an

i ;

9 end
10 end

11 Backward propagation: Compute the difference between ok
G and ok

Fi
:

Ek
i = L(ok

Fi
, ok

G) (L is calculated according to Eq.(5.10));

12 for layer m = M − 1,M − 2, . . . 0 (M is the size of layers in block Bk) do
13 Generate gradient Em

i for layer m;
14 end

15 Parameter update: for layer m = 0, 1, 2, . . . , M − 1 do
16 Wm

i ← Update(Wm
i−1, E

m
i );

17 end
18 end
19 end

In addition, as IKTR isolates the backpropagation of each block, the compu-
tational dependencies are broken. Hence, we improve the IKTR algorithm with
a block-wise parallelized training method, IKTR-P, where blocks are updated in
parallel. As shown in Fig. 5.24, IKTR updates the latter block only when the front
block is fully optimized, which is still a sequential training method. However,
for each iteration in IKTR-P, all sub-network training blocks calculate the block
losses with the stored golden model’s activations and compute the gradients within
each block independently and simultaneously. Hence, the backpropagation time of
IKTR-P is related to the most computational-complex blocks rather than the whole
complexity of the DNN. The evaluations in Sect. 5.3.5 show that the proposed
IKTR-P significantly speeds up the online fault-tolerant training process.
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Fig. 5.24 Illustrations of the different backward propagation approaches including the BP algo-
rithm, the IKTR algorithm, and the IKTR-P algorithm. The rectangles in the same color belong
to the same training blocks. The arrow indicates the direction of the loss passing. t represents
the relative timestamp in each training iteration. T represents the timestamp in the whole training
phase

5.3.5 Experiment Result Analysis

5.3.5.1 Experiment Setup

Datasets and Workload We investigated the effectiveness of RRAMedy on two
standard datasets, MNIST and Cifar-10, with three different network architectures,
as described in Table 5.2. The MNIST dataset is used for hand-written digit
recognition with 70,000 gray-scale images, wherein 60,000 images are used for
training and 10,000 images are testing data. The Cifar-10 dataset consists of 60,000
true-color images of size 3.×32.×32. The dataset is divided into 50,000 training
images and 10,000 test ones.

Table 5.2 Benchmarks

Network Dataset Classes Architecture Accuracy

MLP MNIST 10 3 FC 0.9616

LeNet MNIST 10 2 CONV + 2 FC 0.9858

ConvNet-quick Cifar-10 10 3 CONV + 2FC 0.745
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Fault Injection Mechanism To precisely model the impacts of unreliable ReRAM
cells on the accuracy of neural networks, we modified the Caffe and TensorFlow
framework for fault injection simulation to inject the real-world ReRAM-based
faults into ReRAM cells and propagate the errors from the device level to the
applications. The faults are injected randomly in the proper network parameters
by modifying the 16-bit fixed-point weights in the simulator. For soft faults, we
simulated the memristor resistance variations as follows [7]:

.wi = wi + θi; θ ∼ (0, σ 2) (5.12)

wherein, the σ was set to 0.01 (low), 0.03 (medium) and 0.05 (high) respectively
to mimic the resistance drifts in ReRAM cells. As for hard faults, we simulated
the fault occurrences with both stuck-at-1 (ST1) faults and stuck-at-0 (ST0) faults
on SLC ReRAM cells and MLC ReRAM cells respectively. For SLC-ReRAM
implementation, when a ReRAM cell suffers from a stuck-at fault, its stored bit-
value will be changed to the stuck-at value. As for MLC implementation, we
illustrate the fault injection mechanism with 4-level ReRAM MLC cells. When a
4-level MLC ReRAM cell suffers from faults, two adjacent bit-values stored in the
same cell will be impacted. For example, when a 4-level MLC ReRAM cell suffers
a stuck-at-1 fault, its stored value will be fixed at ‘11’, whatever the value it stored
before. Based on this fault injection mechanism, we simulated the occurrence of soft
faults and hard faults on ReRAM-based deep learning accelerators.

5.3.5.2 Effectiveness of Adversarial Example Testing

We propose to detect the fault occurrence in deep learning systems with two
detection criteria from [30], including:

SDC-1: When the top-ranked prediction of the executed DNN is different from
the fault-free prediction, we consider that there exist faults in the edge neural
accelerator.

SDC-3%: The top-ranked confidence score is compared with the ideal execution.
If the variations are more than +/.− 3%, we consider that the ReRAM accelerator is
faulty.

To further evaluate the effectiveness of our Adversarial Example-based detection,
we did experiments on all the three above-mentioned networks. We tested 100
faulty-models for each network and simulated on both SLC and MLC ReRAM.

Here, we define the Detection Accuracy (DA) as a measure of how well
the fault-affected neural network can be differentiated from the original model.
Specifically, it is defined as the accuracy of the detector when identifying the faulty
networks, and can be formulated as:

.DA = The Number of Identified Faulty Models

Total Number of Tested Faulty Models
(5.13)
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Table 5.3 The .ε used in
AET method

Network MLP LeNet ConvNet

.ε 0.022 0.095 2.1

Furthermore, we try to choose the best adversarial example for fault occurrence
detection. We tested different disturbance .ε (Eq. (5.5)) to generate adversarial
examples. The .ε used for the AET method in this work is shown in Table 5.3.

SLC ReRAM Evaluation
For the SLC mode of ReRAM-based deep learning accelerator, a 16-bit fixed-point
weight needs to be stored in 16 memristors. Considering each cell may suffer from
memory faults, we injected both permanent faults and soft faults by randomly
modifying bit values within a weight. For permanent faults, five-thousandths of
the weight bits are injected with stuck-at faults in LeNet and multilayer perceptron
(MLP) network. While for the ConvNet network, it is more sensitive to faults. Even
if only one-thousandth of weights are faulty, the classification accuracy drops about
10% sharply. Since we need to detect faults before they become uncontrolled, we
only injected 0.2� faults on ConvNet weight values. As for soft faults, we injected
1% faults into the MLP and LeNet network, and 0.4� faults into the ConvNet
network. Furthermore, we also tested the DAs of the proposed detection method
when both permanent faults and soft faults occur simultaneously.

Figure 5.25 illustrates the DAs of two detection methods on three neural
networks. “Origin” is the strategy that uses the normal input for fault detection,
while “AET” uses the proposed AET method. For example, the “Origin” method
only achieves 64% detection accuracy on the MLP network for permanent faults,
87% for soft faults, and 90% for the existence of both hard and soft faults with
the SDC-3% criterion (Fig. 5.25a). But by using the AET method, the detection
accuracy achieves more than 98% in all the three faulty conditions. Furthermore,
since SDC-1 is a less strict criterion than SDC-3%, smaller weight deviations can
be detected by using SDC-3%. Hence, we focus on SDC-3% in the rest of the section
to pursue higher detection accuracy.

Figure 5.25b, c shows the DAs on convolutional neural networks, LeNet and
ConvNet. Obviously, the AET method outperforms the “Origin” test method by
more than 22%. Besides, it is worth noting that when the ReRAM-based deep learn-
ing accelerators suffer from both permanent faults and soft faults simultaneously,
the AET method achieves more than 99% detection accuracy.

MLC ReRAM Evaluation
For the MLC mode of ReRAM-based deep learning accelerator, we consider a .22-
level MLC as [54] has used in this section. Each 16-bit weight is distributed to eight
ReRAM MLCs. For permanent fault occurrence simulation, the injected faulty rate
is as the same as the SLC mode.

For permanent fault detection, as shown in Fig. 5.26, the “Origin” method
can hardly differentiate the faulty models from original models, but the AET
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Fig. 5.25 Detection accuracy
on SLC ReRAM on (a) MLP
(b) LeNet (c) ConvNet
network with the
consideration of only
permanent faults; only soft
faults and both permanent
faults and soft faults
occurrence



288 5 Fault-Tolerant Deep Learning Processors

Fig. 5.26 Permanent fault detection accuracy with the implementation on MLC ReRAM of (a)
MLP, (b) LeNet, (c) ConvNet network

method achieves more than 97% detection accuracy with the elaborately generated
adversarial example.

For soft faults detection, as shown in Fig. 5.27, with larger resistance variations,
the DA increases for both three networks. This is because that larger resistance
variations will cause severer performance reduction and will lead its output con-
fidence change obviously. When considering that both permanent faults and soft
faults occur simultaneously, Fig. 5.28 shows that by using AET method, more than
96% faulty models can be detected on all three networks. Hence, the proposed AET
dramatically achieves high detection accuracy on all the three tested fault occurrence
situations.

Performance Evaluation To compare the performance of our proposed AET-
based on-line fault detection and diagnosis method (using AET for fault detection
and using March C- for fault diagnosis) with pure March C- algorithm, we executed
our benchmarks on a CNN accelerator similar to ISAAC [54], running at 1.2 GHz.
The 16-bit fixed-point weight is split into eight 2-bit memristors and the crossbar is
composed of 128 * 128 ReRAM cells [15].

The experimental results are described in Fig. 5.29. We observed that when the
chip failure rate is 1%, the proposed AET-based method achieves a speedup from
11.5.× to 91.39.× in comparison with pure March C- algorithm. Since the fully-
connected layer has less computational operations but more occupied parameter
storage space, for benchmarks with more fully-connected layers, the AET-based
method has a higher speed-up ratio. In addition, as the failure rate increases, more
fault diagnosis process is executed and the speedup provided by our AET-based
fault detection becomes smaller. However, even the chip failure rate is as high as
10%, our method still achieves more than 5.65.× speedup. Besides, as the write
endurance of ReRAM is limited, the proposed AET-based fault detection method
saves the memristors from unnecessary memory wear-outs.



5.3 Online Fault Protection for ReRAM-Based Deep Learning 289

Fig. 5.27 Soft fault detection accuracy with the implementation on MLC ReRAM of (a) MLP, (b)
LeNet, (c) ConvNet network (The X-axis represents the resistance variations .θ)

5.3.5.3 Effectiveness of Offline Retraining

We evaluated the proposed fault-masking training method by simulation-based
fault injection. We injected both stuck-at-0 faults and stuck-at-1 faults on each
benchmark. The tested fault rate varies from 0.005 to 0.015 on MLP and LeNet,
while 0.001 to 0.003 for ConvNet. Figure 5.30 presents the retrieved accuracy for
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Fig. 5.28 Fault detection accuracy, considering both permanent faults and soft faults on MLC
ReRAM with (a) MLP, (b) LeNet, (c) ConvNet network (The X-axis represents the resistance
variations .θ )

all the three networks with the SLC ReRAM implementation and the MLC ReRAM
implementation respectively. As shown in Fig. 5.30, the ConvNet is significantly
affected by parameter variations. Even though it suffers only one-tenth of injected
faults of the other two benchmarks, the accuracy is still dropped by about 8%.
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Fig. 5.29 The performance speedups of our proposed on-line fault detection and diagnosis method

Fig. 5.30 Retrieved accuracy of fault-masking training with SLC ReRAM implementation ((a)
MLP (c) LeNet (e) ConvNet network) and MLC ReRAM implementation ((b) MLP (d) LeNet (f)
ConvNet network)
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Fig. 5.31 The training block partition scheme used in this work

The reason is that the Cifar dataset is more complex than MNIST dataset. Besides,
ConvNet only has a small series of layers which makes it has limited fault-tolerance
capability. Furthermore, we can conclude from the results that, accuracy can retrieve
from heavy system degradation by leveraging the proposed fault-masking retraining
method. After retraining, the system performance degradation is less than 2% on all
the three benchmarks.

5.3.5.4 Effectiveness of Online Retraining

We evaluated the proposed IKTR-based online retraining method on the aforemen-
tioned datasets. The training block partition scheme used in this work is shown in
Fig. 5.31. We split the LeNet network, MLP network and ConvNet network into
two to three blocks respectively. Meanwhile, we injected 1, 3, and 1% hard faults on
LeNet, MLP and ConvNet-quick network parameters respectively to simulate both
SLC-based faulty DLAs and MLC-based faulty DLAs.

(a) Performance Comparisons
The comparisons of the recovered model accuracies and performance speedups
between traditional backward propagation (BP) algorithm, knowledge distillation
(KD), IKTR and IKTR-P are depicted in Table 5.4. Several observations can be
seen as follows. Firstly, as depicted in Table 5.4, all the KD, IKTR and IKTR-P
methods can restore the accuracy of faulty neural networks from up to 43% accuracy
degradation and achieve more than 1.25.× training speedups over traditional BP
algorithm. This is because that all these three methods leverage knowledge from the
well-trained golden teacher model to make the faulty model mimic the behavior of
the golden model. Secondly, the proposed IKTR-based algorithm still outperforms
the traditional KD algorithm. This is because that the KD algorithm only provides
the soft labels (output probabilities) to optimize the student model, it is hard for
the student faulty model to learn the intermediate behavior of the golden model,
especially when the network becomes deeper. Considering that the internal layers
of a neural network has extracted rich information. The IKTR-based method splits
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Table 5.4 Results of comparing the proposed IKTR and IKTR-P methods with traditional
backpropagation algorithm (BP) and knowledge distillation algorithm (KD) on three benchmarks
(LeNet, MLP, and ConvNet)

Benchmark (accuracy) ReRAM cell Strategy Accuracy Speedup

LeNet (0.9881) SLC Faulty model 0.8027 –

Baseline-BP 0.9772 1x

Baseline-KD 0.9853 1.25x

IKTR(2 blocks) 0.9856 2.5x

IKTR-P(2 blocks) 0.9856 2.83x

IKTR(3 blocks) 0.9863 2.5x

IKTR-P(3 blocks) 0.9856 3.13x

MLC Faulty model 0.7457 –

Baseline-BP 0.9835 1x

Baseline-KD 0.9845 2x

IKTR(2 blocks) 0.9851 2x

IKTR-P(2 blocks) 0.9853 2.27x

IKTR(3 blocks) 0.9854 2x

IKTR-P(3 blocks) 0.9854 3.34x

MLP (0.9833) SLC Faulty model 0.8029 –

Baseline-BP 0.9623 1x

Baseline-KD 0.9762 3x

IKTR(2 blocks) 0.9771 6x

IKTR-P(2 blocks) 0.9770 7.38x

MLC Faulty model 0.7909 –

Baseline-BP 0.9621 1x

Baseline-KD 0.9743 2.5x

IKTR(2 blocks) 0.9761 5x

IKTR-P(2 blocks) 0.9758 6.15x

ConvNet (0.7698) SLC Faulty model 0.4379 –

Baseline-BP 0.7248 1x

Baseline-KD 0.7424 1.25x

IKTR(2 blocks) 0.766 1.5x

IKTR-P(2 blocks) 0.764 1.83x

MLC Faulty model 0.3156 –

Baseline-BP 0.7137 1x

Baseline-KD 0.7464 1.5x

IKTR(2 blocks) 0.7511 1.5x

IKTR-P(2 blocks) 0.7525 2.3x
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the network into small blocks, making each training block locally learn the internal
representations from the golden teacher model. Furthermore, the IKTR and IKTR-
P methods enable a direct fine-tuning, which avoids a sequential backpropagation
through network and consumes few epochs for block-wise network training, further
improving the training convergence speed. Thirdly, the proposed IKTR-P method
breaks the sequential retraining process and enables parallel block-wise training.
Each block trains independently and simultaneously, further accelerating the online
retraining procedure.
(b) Analysis of the Impact of the Number of Training Blocks
To investigate the performance speedups with different block numbers of IKTR-
based online remedy methods, we validated the proposed IKTR method with both
two sub-blocks partitioning and three sub-blocks partitioning on the LeNet network.
As we can see from Table 5.4, when we split the LeNet network into three blocks,
it achieves higher retrieved accuracy than two sub-blocks partitioned IKTR-based
training. The improvement can be explained by the fact that the IKTR method
divides the highly complex optimization problem into several simpler subproblems.
When the number of sub-blocks increases, each training block becomes smaller
and easier to be trained. Meanwhile, with more training blocks partitioned, more
internal knowledge is transferred to the faulty student neural network, which helps
it to mimic the behavior of the golden model. However, the size of the partitioned
sub-network training block cannot be too small, which may lead to over-fitting
and decrease the retrieved accuracy. Furthermore, more training blocks achieve
additional speedup through parallel training (IKTR-P). It can be seen from Table 5.4,
for the Lenet network, three-block partitioned IKTR-P training outperforms the two-
block partitioned IKTR-P training with 1.2.× speedup on average. The reason is that,
blocks are trained separately in parallel in IKTR-P. Hence, the runtime for IKTR-P
depends on the block with the longest computation time. When we split the most
complex block into several smaller blocks, IKTR-P takes less computational time in
each training iteration.
(c) Analysis of the Impact of the Size Of Training Dataset
To further reduce the storage overhead of implementing the IKTR and IKTR-
P algorithms on the edge device, we have made an analysis of using IKTR-P
method for online model retraining with different sizes of training datasets. We
conducted the experiments on SLC ReRAM and reached the same conclusion
on MLC ReRAM. As shown in Fig. 5.32, we randomly chose 500 (small), 5000
(medium) and 50,000 (large) training samples from the original training set for
faulty ConvNet retraining. It’s obvious that the memory consumptions are related
to the size of training set. Using the small training dataset for model learning
only costs 1% storage compared with using the large training dataset. However,
fewer samples for training leads to limited accuracy improvement capacity. Using
small training set for faulty model retraining causes about 4% accuracy loss on
average, which is insufficient to meet the high accuracy requirement of deep-
learning applications. In addition, we found that leveraging medium training set
for IKTR-based model retraining had quite small accuracy drop of up to 4� from
using the large training set, but enables 90% storage saving as well as more than 17%
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Fig. 5.32 Trade-offs between the recovered model accuracy, storage and timing costs. (a) Case 1:
IKTR-P retraining method. (b) Case 2: IKTR retraining method

training time reduction. Therefore, to achieve low storage costs with high retrieved
model accuracy, it is recommended to use the medium training set for IKTR-based
model faulty model retraining.

(d) Impact of the Fault Occurrence Positions
To evaluate the performance impact on the IKTR-based model retraining algorithm
with different bit positions of the faults occurring in the neural network weights,
we have repeated the evaluations with our proposed IKTR-P method. For each
benchmark, we randomly injected a fixed number of stuck-at faults and varied
the proportion of faults that occurred in MSBs (Most significant bits) and LSBs
(Least significant bits) of weight values. In addition, we tested ten faulty models for
each fault occurrence scenario and simulated on both SLC and MLC ReRAMs. The
experimental results are plotted in the Fig. 5.33. Several conclusions can be drawn
as follows. First, even the fault rates are the same, the accuracies of faulty neural
networks will be different according to the fault occurrence positions. As shown
in Fig. 5.33, we varied the proportion of faults that occurred in MSBs vs. LSBs
from 0.33 to 4 on all the three tested benchmarks. It is observed that when the fault
rate of the MSBs is four times more than the fault rate of the LSBs, the average
accuracy of faulty MLP networks significantly drops from 98 to 81% (Fig. 5.33a).
Since the ConvNet is more sensitive to fault-induced weight variations, it is observed
in Fig. 5.33f that, when 80% of the total injected faults occur in high-order positions,
the average accuracy drops even more than 50%. In contrast, when 67% of the
injected faults occurr in LSBs of the weight values in ConvNet, the accuracy
degradation is only 0.6% on average. This phenomenon can be explained by that
faults in MSBs cause larger deviations in magnitude of weight values, increasing
the possibility of a decrease in the accuracy of the neural network. Second, note that
for all the tested benchmarks, the online remedy method IKTR-P can recover the
deep learning system accuracy from up to 57% fault-induced accuracy degradation
with less than 2% accuracy loss through fault-tolerant model retraining.
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Fig. 5.33 Impact of fault positions on model accuracy. The red dots presented the recovered model
accuracy with IKTR-P method. The black dots presented the faulty model accuracy. Boxes show
median and 2nd and 3rd quartile of the faulty model accuracy. (a) Case 1: MLP network on SLC
ReRAM. (b) Case 2: LeNet network on SLC ReRAM. (c) Case 3: ConvNet network on SLC
ReRAM. (d) Case 4: MLP network onMLCReRAM. (e) Case 5: LeNet network onMLCReRAM.
(f) Case 6: ConvNet network on MLC ReRAM
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5.3.6 Discussion

We comprehensively analyze the reliability issues of ReRAM-based edge neural
accelerators and present RRAMedy, a novel framework to protect ReRAM chips
from both permanent faults and soft faults. For fault detection, we introduce a
lightweight Adversarial Example Testing method to detect the subtle fault-induced
variations. For retrieving the system performance, according to the computing
capacity and application scenarios of edge devices, we put forward an edge-cloud
collaborative model retraining method and an in-situ model retraining algorithm.
The experimental results show that the RRAMedy has high fault detection probabil-
ity and can recover the recognition accuracy with little performance degradation.

5.4 Summary

The reliability of the execution is of vital importance and must be considered
comprehensively in deep learning of numerous domains of application. The state-
of-the-art redundancy design approaches reduce the hardware overhead, but the
practical effects are highly sensitive to the fault distribution and fail to work
under circumstances of unevenly distributed faults. To address this problem, we
propose a HyCA, which can fully recover the 2-D computing array despite the fault
distribution. According to our experiments, HyCA outperforms prior redundancy
approaches in terms of both the fully functional probability and the computing
power under different fault distribution models. In addition, HyCA can also be
reused for the fault detection at runtime and the experiment result shows that the
entire 2-D computing array can be scanned and detected before a neural network
layer completes its execution in most cases.

Since ReRAM has become a promising CiM technology for deep learning, the
occurrence of the permanent and soft faults in the ReRAM has become one of
the major concerns for ReRAM-based DNN accelerator designs. We analyze the
reliability issues of ReRAM-based DLAs. And based on these analysis, we propose
RRAMedy, a novel framework to protect ReRAM chips from both permanent faults
and soft faults. Our experimental results show that RRAMedy has high probability
of fault detection and can recover the recognized accuracy with little performance
degradation.
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Chapter 6
Conclusion

In this book, we briefly introduce the fault-tolerant computing basis including
typical faults and conventional fault-tolerant computing techniques in VLSI design,
and illustrate the major fault-tolerant computing challenges encountered in both
existing nanoscale semiconductor technologies and emerging semiconductor tech-
nologies first. Then, we present an overview of the proposed built-in fault-tolerant
computing paradigm, which has a set of fault-tolerant schemes including self-test,
self-diagnosis, and self-repair incorporated into a unified framework. According to
the initial demonstrations in typical large-scale VLSI designs such as multi-core
processors and network-on-chips, built-in fault-tolerant computing shows promising
benefits in terms of high reliability, graceful degradation, improved verification, and
higher yield.

With the guide of the proposed built-in fault-tolerant computing paradigm, we
detail our experience in using the paradigm on different computing architectures
including generic circuits, general purposed processors, network-on-chips, and
deep learning processors in the past decade, which also demonstrates how specific
architectural information and application information can be utilized for efficient
fault-tolerant computing. For instance, in multi-core processors, we can identify
the faults with the modular granularity of processors such as cache blocks, ALUs,
and register files, and degrade the processor gracefully instead of discarding the
entire processor in presence of faults. With the degraded cores, we can further take
advantage of different application requirements and further alleviate the application
performance degradation with fault-aware task scheduling. With the whole set of
embedded fault detection, fault diagnosis, fault recovery, and fault-aware scheduling
approaches, we can greatly improve the performance of the multi-core processor in
presence of faults. In network-on-chips and deep learning processors, built-in fault-
tolerant computing combined with architectural and application information also
enhances the reliability and alleviates the performance penalty significantly when
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a variety of hardware faults occur in the designs. The potential of built-in fault-
tolerant computing paradigm has not been fully explored and we believe it is also
promising to address more complex reliability problems in future large-scale VLSI
designs.
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