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Preface

In the past, the analysis of engineering structures has always been
a challenge to engineers who used classical methods to quantify
the response of a structure to the applied forces. These methods
are suitable for the analysis of relatively simple structures that
can be solved by hand calculations. When the structure gets more
complicated, it is simplified to a model that can be solved by classical
methods. The results obtained for the modified structure are
approximations and their accuracy depends on what modifications
were made to the original structure. The analysts’ experience and
judgment play an importantrole in the way the structure is simplified
in order to get the best possible results. The absence of reasonably
accurate methods for the analysis of large structures, which cannot
be easily modified, limited the scope for engineers to invent complex
structural forms.

In 1914, George Maney derived the slope-deflection equations
for continuous beams. When these equations are applied at the
various joints of the structure, a set of simultaneous equations
with unknown displacements are obtained. The resulting set of
simultaneous equations is solved for the unknown displacements
and the results are further used to calculate the bending moments in
members of the structure. For a relatively small structure where the
number of unknown displacements is small, the set of equations can
be solved by hand calculations. But for any structure of moderate size,
the number of simultaneous equations is such that it is not practical
to solve them by hand calculations. Hardy Cross in 1932 overcame
this problem by devising a procedure for analysing continuous
beams and rigidly jointed frames by what is called the moment
distribution method. This is an iterative procedure where the joints
of the structure are clamped and released alternately in cycles of
calculations. The number of cycles in this iterative process depends
on the desired degree of accuracy, i.e., the iteration is stopped when
the difference in the calculated results between two successive
cycles is within a set of prescribed small numbers. In essence, Hardy
Cross was indirectly relaxing the slope-deflection equations one at
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a time rather than considering the full set of equations that would
have resulted from the application of the slope-deflection equations
to all the joints of the structure. It is a powerful method that was
very popular in the past, but with the advent of electronic computers
in the 1950s, engineers started developing systematic procedures
for the analysis of structures.

When a given structure is subjected to loads its behaviour can be
represented by a set of simultaneous equations, which are solved to
give the response of the structure. For structures where the number
of equations is large, hand calculations are not suitable, and a
computer is used to obtain the required solution to the simultaneous
equations.

The detailed work with simultaneous equations can be made in
a general and compact form by using matrix notation leading to the
development of the matrix methods of structural analysis.

There are two matrix methods that can be used: the flexibility
method which was employed in the past but not commonly used
at present and the stiffness method which is widely used and is
followed in this book. It is worth mentioning that the stiffness
method is regarded as the forerunner to and forms the basis of the
finite element method of structural analysis.

The first chapter gives an introduction to matrix algebra, which
explains the various operations of matrices. This is intended to
help the reader gain an understanding of the basic principles and
applications of matrix operations. Chapter 2 starts with setting
out the general procedure of matrix formulation by considering
the simple case of a bar to highlight the steps followed in the
analysis. Some general notations and the treatment of other forms
of structural members, by analogy with the bar problem, are also
explained in this chapter.

Chapters 3 to 10 present the treatment of the linear static analysis
of the various types of commonly used structures. Nonlinear analysis
and dynamics of structures are dealt with in Chapters 11 and 12,
respectively. A bibliography given at the end of the book provides a
list of publications that readers can refer to, especially for the proofs
of some of the statements made in the text.

Fathi Al-Shawi
Autumn 2022



List of Symbols

Symbols are defined appropriately where they occur in the text and
the list below shows the general definition of the main symbols used.
Symbols defining quantities relative to the local axis of the member
will have a bar. For example, u is the displacement in the direction
of the global x-axis while u is the displacement in the local X -axis
of the member.

A Area, Amplitude

a Acceleration

a, B Constants

b Width of cross section
E Modulus of elasticity
Eg Strain energy

Ep Potential energy

e Change in length

€ Strain

1) Displacement vector
F Force vector

f Subscript for the actions on the member due to the

external forces

Angle of rotation of the member
Modulus of rigidity

Load factor

Height of cross section

Second moment of area

Subscripts for the two ends of member (element)
Polar second moment of area
Structure stiffness matrix

Member (element) stiffness matrix
Length

Eigenvalue

Moment about the y-axis

Mass

Moment about the z-axis

—
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xii | List of Symbols

Uniformly distributed load

Axial force

Critical (buckling) force

Reaction, radius of curvature

Density

Shear force in the y direction

Subscript for loads on joints of structure
Stress

Moment about the x-axis

Time

Translational displacementsin the x, y,and z directions
Velocity in the x direction

Acceleration in the x direction

Work

Shear force in the z direction
Concentrated load

Velocity in the z direction

Acceleration in the z direction

Natural circular frequency of vibration
XY, Z Forces in the x, y, and z directions

X,y Z Global cartesian coordinates

®,6,¥ Rotational displacements about the x, y, and z axes
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Chapter 1

Introduction to Matrix Algebra

Throughout this book it will be seen that in the analysis of structural
problems, sets of simultaneous equations will result. These sets are
written in matrix form so that the computations are systematic and
more manageable. In this chapter, the important aspects of matrix
manipulations are presented for the benefit of the reader who has
limited knowledge of matrix algebra. Although, there are computer
programmes that deal with the various matrix operations, it is
considered useful to learn the steps followed in these computations.

1.1 Matrix Operations

Consider the set of simultaneous equations
4%, - 5%, +9x3; =8
3X1 - 6X2 - 4’X3 =-5
—8X1 + 7X2 + 2X3 =4
These equations can be written in matrix form as:
4 -5 9 (x 8
3 -6 —4|x,|=|-5| or Ax=b
-8 7 2| x5 4

Analysis of Structures by Matrix Methods
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Introduction to Matrix Algebra

4 -5 9 8 8
where the matrices, A=| 3 -6 —-4|, x=|-5|,and b=|-5
-8 7 2 4 4

Matrix A may be written in a general form as:

d;1 A2 - - Ay
A1 Ay don
A =
_aml amZ amn_

This is called an mxn matrix where m is the number of rows
and n is the number of columns with coefficients a; where i is the
number of the row and j is the number of the column at which a;
occurs. A square matrix is when m = n, i.e. an nxn matrix.

A coefficient on the main diagonal of a matrix is defined by the a;;.

A diagonal matrix is when there are coefficients only on the main
diagonal and all other coefficients are zero, for example

a, 0 0 0

Ayq

The unit matrix, [, is a diagonal matrix with coefficients on the
main diagonal equal to 1, i.e. a;; = 1, for example

1
0
I=
0
0

o

0
0
1

S O =
o O O

0

[EnN

The zero (or null) matrix denoted by O is where all coefficients
are equal to zero, for example

00O0O
0 00O
0=
00O0O
0 00O



Matrix Operations

Symmetric matrix is a matrix where a;; = aj;, for example

2 5 0 -1

5 4 -7 3

0 -7 9 0
-1 3 0 6

An upper triangular matrix where there are coefficients along
and above the main diagonal and the rest of the coefficients are zero,
usually given the symbol U, for example

4 -1 0 8

0 5 7 =3
U=

0 0 6 2

0 0 0 9

A lower triangular matrix where there are coefficients along and
below the main diagonal and the rest of the coefficients are zero,
usually given the symbol L, for example

7 0 0 O
Lo 2 3 0 0
-9 0 5 0
8 1 -4 6
Row vector is a matrix with only onerow,a=[a; a, . . ap]
_ b, -
b,
Column vector is a matrix with only one column, b=
_bm |

A zero vector O is where all coefficients are equal to zero, for
example

o
Il
o O ©o © o

3



4| Introduction to Matrix Algebra

The transpose of matrix is where the coefficient in the p™ row
will become the coefficients in the pt" column.

If matrix B is the transpose of matrix A written as B = AT, then
b; = aj;.

Example 1.1
Find the transpose of the following matrices
3 5 -2 3 4 -1
(i) A=| 4 -6 1|, AT=|5 -6 7
-1 7 -4 -2 1 -4
5
(i) A=|-2|, A"=[5 -2 8]
| 8
—4
(i) A=[-4 7 6], AT=|7
6
5 6
. 5 7 -4 T
(iv) A= , A =7 3
6 -3 2
-4 2

Matrix addition

The sum of two matrices A and B is matrix C, thatis C = A + B, then
the coefficients in matrix C are obtained by adding the coefficients
in matrix B to the corresponding coefficients in matrix A. Thus ¢; =
ajj + by;.

Example 1.2

. 5 2 6 -3
Given: A= , B=
-4 3 2 1
5 2| [6 -3] [5+6 2+(-3)] [11 -1
C=A+B= + = =
-4 3 2 1 —4+2 3+1 -2 4
Matrix subtraction

Given matrices A and B then the difference between them C is C =
A - B where the coefficients in matrix C are obtained by subtracting
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the coefficients in matrix B from the corresponding coefficients in
matrix A. Thus Cij = ai]- - bl]

Example 3

. 7 4
Given: A= s
8 -6

5 -9
B =
2 3
7 4 5 -9 - —(- 2 13
CoA_B- ~ :754(9):
8 6| |2 3 8-2 -6-3 6 -9
Matrix multiplication
Given the mxn matrix A = [a;] and the nxr matrix B = [b;] the product
C = AB = [c;;] where, ¢;; is given by:
q=n

Cij = ) Aiqbg =ajbyj +apby by +.ay by

=1

e}

For the matrix product to be defined, the number of rows in
matrix B must be equal to the number of columns in matrix A. So, if A
is mxn matrix and B is nxr matrix then the resulting product C = AB
is mxr matrix with m rows and r columns.

Note that in general AB # BA except in special cases, for example
when B = A%, i.e. AA1 = A1 A = (the unit matrix).

Example 4
3 5 =2 8 -2
Given: A=|4 -6 1| and B=|-3 -7
-1 7 -4 2 6

Calculate the product AB.
Let the product C = AB = [¢;]

€11=8%x3+(-3)x5+2x%x(-2)=5
C1=8%X4+(-3)x(-6)+2x1=52
c31=8%(-1)+(-3)x7+2x(-4)=-37
Cc12=(-2)x3+(-7)x5+6x(-2)=-53
Cpp=(-2)xX4+(-7)x(-6)+6x1=40
3 =(-2)x(-D)+(-7)x7+6x(-4)=-71

5



6 | Introduction to Matrix Algebra

3 5 =28 -2 5 =53
Therefore, 4 -6 1|-3 =-7|=|52 40
-1 7 -4 2 6 -37 -71

Example 5
2 -4 3 6 -2 3 -3 -1 4
Given:tA=|6 1 -2, B|-2 5 -4, C=|2 6 8
-5 7 4 3 4 8 7 3 -5

Calculate the product ABC.

First calculate the product BC by premultiplying C by B

6 -2 3|3 -1 4

BC=|-2 5 4|2 6 8

|13 4 8] 7 3 -5

[ (-3)x6+2x(-2)+7x3 (-1)x6+6x(-2)+3x3

= (-3)%X(-2)+2x5+7%(-4) (-1)x(-2)+6x5+3x(-4)

| (-3)x3+2x(-4)+7x8 (—1)x3+6x(—4)+3x8
4x6+8x(—2)+(-5)%3
4Xx(-2)+8x5+(-5)x(—4)
4x3+8x(—4)+(-5)x8)

-1 -9 -7
=|-12 20 52
39 -3 -60

Now calculate A(BC) by premultiplying BC by A
2 -4 3(-1 -9 -7 163 -107 -402
A(BC)=| 6 1 -2||-12 20 52 |=[-96 -28 130
-5 7 439 -3 -60 77 173 159
(1) %2+ (-12)x(—4)+39%x3 (-9)x2+20x(—4)+(—3)x3
=|(-1)x6+(-12)x1+39%x(-2) (-9)x6+20x1+(-3)x(-2)
(D)X (-5)+(-12)x7+39%x4 (-9)x(-5)+20x7+(-3)x4
(=7)x2+52x(-4)+(—60)x3
(=7)x6+52x1+(-60)%x(-2)
(=7)%x(=5)+52x7+(—60)x 4
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163 -107 -402
=|-96 -28 130
77 173 159

Alternatively, the product AB can be found first and this is post-
multiplied by C to get the product ABC.
Product of a row vector times a column vector:

Example 6
2
Find the product of [4 7 —6] and |-5]|.
8
2
[4 7 -6]|-5|=[2x4+(-5)x7+8x(-6)]=[-75]
8

Product of a column vector by a row vector:

Example 7

2
Find the product of | -5| and [4 7 —6].

8
2 4x2 7x2 -6Xx2 8 14 -12
—5([4 7 -6]=|4%x(-5) 7x(-5) -6x(-5)|=[-20 -35 30
8 4x8 7%x8 -6%x8 32 56 48

Multiplication by a scalar:
When a matrix is multiplied by a scalar all the coefficients of the
matrix are multiplied by that scalar.

Example 8

3 5 -2 8x3  8x5 8x(-2)] [24 40 -16
8/ 4 -6 1|=| 8x4 8x(-6) 8x1 |=|32 -48 8
-1 7 -4| |8x(-1) 8x7 8x(-4)| |-8 56 -32

The transpose of the product of two matrices A and B is given by
(AB)T = BTAT,

7



8| Introduction to Matrix Algebra

Example 9

a3 2 47 18] e [-7 18] _[7 -9
_1—42—3_—916'()_—916_1816
AT:F —2}!{3 1},BT:[_1 4T:[—1 2}

1 -4 2 -4 2 -3 4 -3

-1 273 1] [-7 -9
BTAT = = . Thus (AB)" = BTAT.
4 -3|-2 -4| |18 16

Determinant of a matrix
Let A be a 2x2 matrix and is given by
a a
A= { 11 12}
A1 A
then the determinant D of matrix A is obtained from the difference of
the cross multiplication of the coefficients:

a a
D=detA=det{ = 12}:
dy; Ay

a1 Ao
=aj1dp —a1pdy

dz; Ay

=5x4-3x6=2
4

. 5 3 5 3
Thusif A= thenD=
6 4 6

Now consider the 3x3 matrix
a;; 12 A3
A=lay; ay ay
dz; 43z as
d;; A2 A3 | A1 Az Qg3
thenD=det|a,; a,, a,3|=[ay; ay ay
d3; Az dzz | |d3p d3y ds3
The entries in any row or column of D can be taken as the

multipliers by the corresponding minors as shown in the example
below where the multipliers are taken as the first column of matrix
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A, i.e. ajy, ap1, and azq. Their minors, which are the second order
determinants obtained by deleting the row and column passing
through that multiplier, and are given by:

- ) . dyz Az
Multiplier a;; with the minor

a3 433

- . . a2 A3
Multiplier a,; with the minor

dz; a3

- . . 12 A3
Multiplier az; with the minor

dy2 A3

The general signs of the terms in the expansion of the determinant

+ - +
D alternate between + and -as: |- + —| thus
+ - +
a a a
11 Q12 3413
Azz A3 Az A3 a2 a3
dz1 Az Ax|=+Hagy —ay +az
dzy dszz dzy ds3 Az Ay

d3; d3; dsg

D =+ay;(az,a33 —ay333,) —ay1 (21833 —a13a3;) +a34 (a45853 —a1325;)
=+1a,12,333 —a178;333p —dp1a7333 T3ApA1333; +33737d53 —a37393dp

Alternatively, if the coefficients in first row are taken as
multipliers and noting that the signs are + - +, then:

;1 A2 A3
d2 A 41 A3
a,; Ay, ayl=+a —-a +a
21 Az A3 11 12 13
43y 33 431 dz3 dz1 Az

1 A
d3p A3y dg3
D=+ay;(a5,a33 —ay383,) —a15(851333 —ap3831 ) +ay3(a5133; —apa3)
=+ay13p3333 —a113p333; —a13p1333 Ta133331 TA133133; —A1335733;
which is the same as the previous expansion.
Example 10
2 -4 7

Calculate the determinant of matrix A=} 5 1 -3
-6 2 8

9



10 | Introduction to Matrix Algebra

Taking the entries in the first column as multipliers

2 -4 7
1 -3 |4 7 -4 7
D=|5 1 -3[=+2 -5 +(-6)
2 8 2 8 1 -3
-6 2 8
=4+2[1x8—(-3)x2]-5[(-4)x8—-7x2]-6[(—4)x(-3)—-7 x1]
=+228
Alternatively taking the entries in the first row as multipliers
2 -4 7
1 -3 5 -3 5 1
D=|5 1 -3|=+2 —(—4) +7
2 8 -6 8 -6 2
-6 2 8
=+2[1x8—(-3)x2]+4[5x8—(-3)x(-6)]+7[5x2-1x(-6)]
=+228

which is the same as the previous result.
A square matrix whose determinant is not equal to zero is called

non-singular matrix and when its determinant is equal to zero it is
singular, for example

5 -5 0
A=|-5 11 -6
0 -6 6
Taking the entries in the first column as multipliers
5 50
11 -6 -5 0 |-5 0
D=-5 11 —6|=+5 -(-5) +0
-6 6 -6 6 11 -6
0 -6 6

=5[11x6—(-6)%(—6)]+5[(-5)x6—-0x(-6)]
+0[(-5)x(-6)-0x11)]=0
Therefore matrix A is singular.
When all the coefficients in any row are zeros, then the
determinant of the matrix is equal to zero, for example

2 -4 7

A={0 0 O

-6 3 8



Solution of Simultaneous Equations

Taking the entries in the first column as multipliers
D=2[0x8-0x%x3]-0[(-4)x8-7x3]+(-6)[(-4)x0-7x0]=0

When all the coefficients in any column are zeros, then the
determinant of the matrix is equal to zero, for example

3 50
A={6 -2 0
-7 4 0

Taking the entries in the first column as multipliers
D=3[(-2)x0-0x4]-6[5x0-0x4]+(-7)[5x0-0x(-2)]=0

1.2 Solution of Simultaneous Equations

In the analysis of structures by stiffness matrix methods a set
of simultaneous linear equations with the displacements as the
unknowns will result. An important step in the computations is
the determination of these unknowns which will in turn lead to the
calculation of external reactions at the supports of the structure
and the forces developed in its members. Some of the methods that
are commonly used in solving a set of simultaneous equations are
presented in the subsequent sections.

If the set of equations is ill-conditioned the solution is sensitive
to small changes in the coefficients of the matrix or in rounding
off the numbers in the computations process. Also, such sets may
converge slowly or may not converge to the correct solution when
the iterative methods are used. One of the tests for ill conditioned
set of equations is that the determinant of the matrix of coefficients
is small compared with the absolute value of the largest coefficient.
On the other hand a set of equations is well-conditioned if the
coefficients on the main diagonal are large in absolute value in
comparison with the off diagonal coefficients.

In general, the stiffness matrix method of structural analysis
leads to well-conditioned sets of equations. These sets result in
correct solutions when the direct methods are used and converge to
the correct solution if the iterative methods are used.

11
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1.2.1 Direct Methods

The most popular direct methods for the solution of simultaneous
equations resulting from the application of matrix methods in
structural analysis are the Gauss elimination and the Cholesky
decomposition. An innovative method called the frontal solution is
also used where the final solution is obtained without writing the
full set of simultaneous equations. This method is outside the scope
of this book and the reader is referred to specialised literature.

(i) Gauss elimination method
Consider the set of linear algebraic simultaneous equations
a11Xq +ayX, +ay3X3 =by
a1X1 3%, +ay3X3 =D,
a31Xq +a3,X, +a33X3 =Dy
which can be written in matrix form as
d;;p A2 A3 || Xy b,
ay1 Ay A || Xy [=| by
d3; 43y azz || X3 b,

The above matrix can be reduced to an upper triangular matrix
as

€11 Ci2 C3 || X1 r
0 ¢ Cp|%|=|n
0 0 c33 %5 I3

The unknowns x4, X,, and x5 are obtained by back-substitution in
reverse order as follows:

From the third row of the above set of equations:

3
Xg=—"—
C33
Substitute this value of x3 in second row to get
I, —Cy3X
X, = 22373
C22
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Substitute the values of x; and x3 in the first row to get
_ 0 7 CpX%p —C13X3
X =

C11

Example 11
Find the unknowns x;, X,, and x3 given by the matrix
4 1 -2|x 7

-3 5 1 |x,|=|-12| which can be written in the form
5 -2 —4| x4 9

4'X1 + Xy = 2X3 =7 (11)
-3xq + 5%, + X3 =-12 (1.2)
5X1 - 2X2 - 4X3 =9 (13)

Use x;in equation (1.1) as a pivot and eliminate x; from equations
(1.2) and (1.3).
Multiply (1.1) by —(-3/4) and add to (1.2) to get

0 +5.75x, - 0.50x; = -6.75 (1.29)
Multiply (1.1) by -(5/4) and add to (1.3) to get
0 -3.25x, - 1.50x3 = 0.25 (1.3)
The new set is
4%+ Xy - 2X3=7 (1.1)
0 + 5.75x, - 0.50x3 = -6.75 (1.29)
0 -3.25x, - 1.50x3 = 0.25 (1.3)

Now use x, in (1.2") as a pivot and eliminate x, from (1.3") by
multiplying (1.2") by -(-3.25/5.75) and adding to (1.3") to get

0+0-1.78x3=-3.56 (1.3

The new set is
4%+ Xy - 2X3=7 (1.1)
0+ 5.75x, - 0.50x3 = -6.75 (1.29)

0+0-1.78x; =-3.56 (1.3")
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The values of x4, X,, and x3 are found by back substitution as
follows:

From (1.3”), x3 =-3.56/(-1.78) = +2.00

Substitute this value of x5 in (1.2) to get

0 + 5.75x, - (0.50)(2.00) = -6.75

= ~6.75+(0.50)(2.00) _
5.75

Substitute the values of x, and x5 in (1.1) to get
4x, - 1.00 - (2)(2.00) =7

= 7.00+1.00+(2)(2.00) _ , oo
4.00

(ii) Cholesky’s method

Let Ax =b where A is an nxn square matrix which can be decomposed
into the product of two matrices L and U, i.e. A = LU, where L is a
lower triangular matrix and U is an upper triangular matrix. For
example if A is a 3x3 matrix then

L, 0 0 Ujp Uy Ugg
L=\, L, 0 and U=| 0 u,, U,

Ly Ly I 0 0 ug

If matrix A is symmetric, i.e. A= AT, then U = LT leading to A = LLT,
hence LL™x = b.

Let y = LTx, then Ly = b and the vector y is obtained by forward
substitution in L. Then from the relation y = L™x the required solution
vector x is found by backward substitution in L.

17 g A3 Ly 0 0Ly By Iy

A=lay Ay ay|=|hy L 0|0 Ly Iy

d3; a3 Aaz3 iy Ly Lg][0 0 Iy
Performing the multiplication of the two matrices at the right-
hand side and equating the product to the corresponding coefficients
of the matrix at the left-hand side results in relationships that will

lead to the determination of the coefficients of matrix L as shown
below.
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Ll =ayy, Ly =4ay

a
_ _ay
1Ly =2y, 121—_1
11
a
_ _ g3
Ll =243, Ly =—
11
2,2 _ _ 2
L+l =2y, Ly=+a, -1
Ay — 141
_ _ A3 —Ixyl3
Ll +hl5; =ay3, LIy = -
22

2 .2 .2 _ _ 2 2
i+l + 33 =233, Ly=4ag;—15 —15

The above relationships can be written in general form as:

1=2,3, s ,n
j=2,3,.ceenl
1 s=k-1
=7 2~ D Ik j=k+1, K42, n.k>2
kk s=1

Note that all the coefficients on the leading diagonal of matrix
L, i.e. I11, I, ... I, have taken the positive value. This is one of the
properties of positive definite matrices and the condition for the
symmetric matrix A to be positive definite is that the quadratic form
xTAx is greater than zero for any non-zero vector x. It will be shown
in Chapter 2 that the structure stiffness matrix is symmetric and
positive definite.

Example 12

Solve the following set of simultaneous equations by Cholesky’s

method.

9X1 - 3X2 + 6X3 =27
—3X2 + 5X2 - 4X3 =-3

6x1 - 4%, + 6x3=16

15
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In matrix form
9 -3 6|x 27
-3 5 —4|x,|=|-3
6 -4 6| x5 16

A=LLT
hi =+ =V9=3
121=?£=_?3=—1
11
a;3 6
31=1 =§=

L :\/322 ~l5 :\/5_(—1)2 =2
a3 —lpilyy _ —4—-(=1)X2 _
L, 2

-1

ly =

b3 = \/333 ~I5 - 15, =\/6_22 -(-1° =1
We have, Ly =b
Ly 0 0y, by
Ly L, 0 |y;|=|b,
Ly Ly lLs|lys by

By forward substitution, the first row gives,

27
= —= 9
Y1 3
From the second row and with the substitution of y; =9
-3+(1)(9)
=y

From the third row and with the substitution of y; =9 and y, = 3
_16—-(2)(9)+1x3 _

1
3 1
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And from, y = LTx

Ly Ly L% Y1
0 Ly Ly|x2|=|Y2
0 0 hLg|x3] |ys3

3 -1 2x
0 2 -1|x,(=|3
0 0 1]x3] |
By backward substitution, the third row gives,
1
X =—=1
1
The second row and with the substitution of x3 = 1, we get
3+(1)(1
=200,

From the first row and with the substitution of x, =2 and x3 = 1
we get

- 2@ _,

(iii) Cramer’s rule:

This method is suitable when the number of simultaneous equations
is small. As will be seen later it involves the computation of
determinants and for a large number of simultaneous equations the
method is not efficient because of the large amount of computer time
required for the calculation of large determinants. The introduction
of Cramer’s rule here is mainly to illustrate its use in the derivation
of a condition for the existence of solutions in a certain class of cases
known as eigenvalue problems as can be seen in Section 1.4.

Consider the following two simultaneous equations and find
their solution, i.e. the unknown variables x; and x,.

a11Xq +apXz = by (1.4)
dp1Xq1 taxXy = b2 (15)
From equation (1.5)
b, —
X, = -2 a21%4

a2

17
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Substitute in equation (1.4)
b, —ayxg
a1X; +ayg, (— =b;
az

_ bjay,—apb, Dy

X, =
ajjay; —a153;; D
b, a a a
1 A2 11 12
where D, = and D=
b, ay dz1 Ay

Back substitution in equation (1.5) gives
_ 1 b, — byay, —aypb,
X;= 2 Ay
az2 41187z —a12d7;
_auby—-bay Dy

X, =
- D
dqqdyy —dqpdyg

a
where D, =
a,; b
21 D2

The above is called Cramer’s rule and the condition for the
existence of a unique solution is that D # 0.

Example 13

Find the unknowns x; and x, given by the following two simultaneous
equations

2X1—3X2=12
5% +4x,=7
2 -3
p=[1 12 =‘ ‘=(2)(4)—(—3)(5)=23
a,; axyl |5 4
b, ap| [12 -3
D, = = =(12)(4)—-(-3)(7)=69
o ‘7 4‘()()()()
b 2 12
D=1 1ot - @m)-12)(5)=-46
a,; byl |5 7

D69

X, =—=—=
1" p 23
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27 p 23

1.2.2 Iterative Methods

These methods are particularly useful when dealing with sparsely
populated matrices, i.e. matrices containing a relatively small
number of non-zero coefficients. Since only non-zero coefficients
are involved, this will greatly reduce storage requirements but
convergence to the final solution might be slow in some cases.

The procedure is to start the iteration process with assumed
values of the variables and find new (corrected) values. The iteration
is continued until a convergence criterion is reached and this is
defined by the desired degree of accuracy, i.e. UV —x{") < e where
x™1 and x{") are the values of the unknown variable x; obtained
from two successive iteration cycles rt and (r + 1) and € is a small
prescribed number.

(i) Jacobi method

Example 14

Calculate the unknowns x;, X,, and x3 in the set of simultaneous
equations below

4X1 - 2X2 + X3 = 30 (16)
-2xq + 5%, - x3=-29 (1.7)
X1 Xy + 3x3 =20 (1.8)

From equation (1.6), find x; in the (r + 1) cycle from the values
of X, and x5 obtained from the r" cycle as

1
X = Z(Zx(zr) —x{7 +30)

Similarly find x, and x5 from equations (1.7) and (1.8) respectively
as

1
xgﬁl) = g(Zx(lr) + xgr] -29)

19
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xg”) ( xm + X(Zr) +20)

where r is the cycle number in the iteration process
First cycle:r =0
Start the iteration with assumed initial values such as

x(lo]:O, xgo):O, and xgo):O
m_ 10 X _
x{ —Z(ZXZ +30)= [2(0)—0+30]_7.500
m_1(5.0 0 _1 _
x§ —E(le +Xy —29)_5[2(0)+0—29]——5.800
x(V :%(_xgm +x +20)=§[—0+0+20] = 6.667

Second cycle: r = 1, with x; = 7.500, x, = -5.800, and x3 = 6.667

x(? = %(ngl) %) +30) = 4[ (~5.800)~6.667 +30]=2.933
1 1
x? = E(ZX(ll) +x§) -29)= <[2(7.500)+6.667-29]=-1467

1 1
x? =§( x4 x1 +20)=5[—7.500+(—5.800)+20]= 2.233

and so on. After twenty-six cycles the values of the unknown
variables converged to x; = 5.000, x, =-3.000, and x5 = 4.000 correct
to three decimal places.

(The exact solution is: x4 = 5, x, = -3, and x3 = 4.)

(ii) Gauss—Seidel method

In this method the new values of the variables are used as soon as
they are calculated (within the same cycle of iteration). Generally,
this will lead to faster convergence compared with the Jacobi
method in which all the variables are calculated first and then they
are used in the next cycle as explained in the preceding section. In
order to compare this method with Jacobi method, the same set of
simultaneous equations is used.

The new value of x; is calculated from the old values of x, and x3

) = %(ng) 7 +30)
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The new value of x, is calculated from new value of x;, as obtained
above, but the old value of x3.

X+ = é(zx(f“] +x$7 -29)
The new value of x; is calculated from new values of x; and x,.
1
Xgﬁ—l) — E(_X(lr+1) + X(2r+1) + 20)

First cycle:r=0
Start the iteration with assumed initial values such as

=0, xP=0, and xP=0
1 1
1 _ 0) _ ,(0) _ = _ —
1l _Z(sz x{ +30)_4[2(0) 0+30]=7.500
xD) = %(2{11) +x —29) = %[2(7.500)+0—29] =-2.800

x() = %(—x&” +x +20) = %[—7.500+(—2.800)+20] =3.233

Second cycle:r=1

xM =7500, xV=-2800, and x{’=3.233

1 1
@ _ L (500 _ 0 1 30) = 172(—2.800) _
x¢ —4(2x2 x§ +30)_4[2( 2.800)-3.233+30=5.292
12 =§(2x§2) ) —29):%[2(5.292)+3.233—29] =-3.037

x@ = %(—xﬁ” +x) +20) = %[—5.292+(—3.037)+20] =3.890

and so on. After seven cycles the values of the unknown variables
converged to x; = 5.000, x, = -3.000, and x5 = 4.000 correct to three
decimal places.

It is seen in this example that in the Gauss-Seidel method the
number of cycles to reach convergence to the final solution correct
to three decimal places is reduced from twenty six to seven cycles
as compared with the Jacobi method. The number of cycles to
convergence can be reduced even further by using the so called
successive over-relaxation technique which involves calculating a
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new modified (weighted) value for the variables from the following

relationship:

[xgrﬂ)]new =ox"™ +(1-w)x{”, where o is called the over-

relaxation factor.

So, the procedure is to calculate x

1
EH ]]new

(r+1)
i

and use the modified value in

as shown in the previous

example then modify it to [x

place of x{"*1

In order to get the fastest convergence we use ®Wqptimum Whose
value is in the range 1 to 2. In practice we often deal with the same
problem many times and in that case it may be worth exploring the
optimum value of ® since this will have a repeated use. A simple
and straight forward way of finding ®,ptimum iS by experimenting
with different values and finding the one that gives the fastest
convergence.

1.3 Matrix Inverse

Consider a set of linear simultaneous equations in matrix form as Ax
=b then the required solution vector x = A~'b where A1 is called the
inverse of matrix A, i.e. AA! = I where I is the unit matrix. Although
this is not the best method for determining, x particularly for large
sets of equations, it is sometimes used to achieve economy when
dealing with the same matrix but with many values of the right-hand
vector b.

A non-singular matrix is a matrix that has an inverse while a
matrix that does not have an inverse is called a singular matrix.

Let A1 = C and premultiply both sides by A, i.e. AA™! = AC hence
AC=1

So to find A! the coefficients of matrix C have to be computed as
shown below.

d11 342 A3
Given matrix A=|a,; a,, a,3;| and it is required to find its
d3; 43 A3

Ci1 G2 3
inverse which is given by matrix C=|c,; c,, ¢,3 | thatisAC=1

C31 C32 C33
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A1 12 313 (€1 €2 Cy3 100
Ay Ay A3 || C Cp C3[=|0 0

d3; A3z A33 | €31 C3p C33 001

_

The expanded form of the above is

d11 41y A3 |y 1
a,; a,, ays |[cy [=]|0]| whichis solved to yield the vector
d3; d3y a3z ||[C3 0
C11
€21
| C31
d11 A1y A3 (| Cp2 0 €12
ay; Ay, a3 | Cy |=|1] to give the vector | c,,
|31 a3, A3z [ C3;2| [0 C3p
a;; A A3 (| Cg3 0 C13
ay; ay, a3 || Cy3 |=|0| leading to the vector | c,4
1337 A3 A3z || C33] |1 C33

So, in order to find the matrix C, the original set of equations
is solved n times for n right-hand sides and each time the result
represents one column of the matrix C. This is not an efficient
method and a more practical approach to find the inverse of a matrix
is explained below.

Gauss—-Jordan method

This is one of the methods that can be used to compute the inverse of
a given matrix and is basically an extended form of Gauss elimination
method. The original matrix is first reduced to an upper triangular
matrix which in turn is reduced to a unit matrix, I, i.e. with each of
the coefficients on the main diagonal equal to 1 as explained below.
Given a matrix A and it is required to find its inverse AL
Consider the augmented matrix [A:I] and premultiply by A-! then

AA:I] = [ATTA: A1) = [:IA7Y]
The process followed in this method is to perform operations

similar to the Gauss elimination method on A and I simultaneously
to transform matrix A to a unit matrix I and the unit matrix I to A1,

23
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Example 15

Use the Gauss-Jordan method to compute the inverse of matrix

5 -2 4
A=|-2 8 -3
4 -3
5 -2 4 1 0 0]|Rowl
-2 8 -3| : |0 1 0|[Row2
4 -3 6 0 0 1[|Row3
5 -2 4
0 72 -14| : | 04 —(~2/5)x Row1+Row?2
0 -14 28| : |-08 0 1||—(4/5)xRowl+Row3
5 -2 4 0
0 72 -14| : | 04 1 0
0 0 2528| : |-0722 0194 1||-(-1.4/7.2)xRow2+Row3

Now make the coefficients of the main diagonal equal to 1 by
multiplying rows 1, 2 and 3 by 1/5, 1/7.2 and 1/2.528 respectively
to get:

1 -04 0.8 : 0.2 0 0
0 1 -0.194| : | 0.056 0.139 0
0 0 1 : [-0.286 0.077 0.396
The left upper triangular matrix is reduced to a unit matrix as
follows
M1 -0.4 0] : [0429 -0.062 —-0317]| —(0.8)xRow3+Rowl
0 1 o0f: 0 0.154 0.077 ||-(—0.194)x Row3+Row?2
10 0 1] : |-0286 0.077 0.396
M1 0 0 0429 0  —0.286]|-(~0.4)x Row2+Row1
010 0 0.154 0.077
[0 01 —-0.286 0.077 0.396
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The above augmented matrix is equivalent to [I: C], i.e. [I: A™1],
therefore
0.429 0 —-0.286
A=l 0 0154 0.077
—-0.286 0.077 0.396

Notice that the original matrix is symmetric and its inverse is
also symmetric.

Check the result
0.429 0 -0.286|| 5 -2 4 1.001 0 0
AlA= 0 0.154 0.077 ||-2 8 -3|=| O 1.001 0
-0.286 0.077 0396 |4 -3 6 0 0 1.001

The matrix on the right should be a unit matrix and the small
differences are due to rounding off the computations to three
decimal places.

The inverse of a diagonal matrix is a diagonal matrix with
coefficients equal to the reciprocals of the corresponding coefficients
in the original matrix.

a, 0 0 1/a; 0 0
A=[ 0 a, O [,thenA™=| 0 1/a, 0
0 0 as 0 0 1/as;
Example 16

Find the inverse of the diagonal matrix, A.

2 00
A=10[0 5 0
00 4
1/2 0 0 0.050 0 0
Al=1/100 0 1/5 o0 |=| 0 0020 0
0 0 1/4 0 0 0025

2 00 20 0 O 0.050 0 0
or, =10{0 5 0f=/0 50 0 A'=| 0 0.020 0
0 0 4 0 0 40 0 0 0.025

25
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1.4 Eigenvalues and Eigenvectors

In the application of matrix methods for the solution of stability and
vibration of structures, as will be seen in Chapters 11 and 12, an
eigenvalue problem arises. In such cases the right-hand-side vector,
b, of the set of simultaneous equations is zero and a trivial solution
for the unknown vector x is zero. A non-trivial solution can be
obtained by the so called eigenvalue procedure which is explained
below.

1.4.1 The Algebraic Method

Consider the following set of equations

Aj1Xq + AgoXy + Agsxg = Axy
Az1Xq + AgpXy + AgaXz = AXy

A31X1 + A32X2 + A33X3 = 7\.X3

Which can be written as Ax = Ax or (A - Al)x = 0, where

a;; Ay, A X,/ 11 0 0
A=la,; a,, a,|,Xx=[x,[,|0 1 0] andAisa constant called
as; as, Aas X3/ [0 0 1

the eigenvalue of matrix A, thus
(@11 - A) X +agpxp +ay3x3 =0
(az1X1 + (Az2 = M)Xz + az3x3=0
azXq +asX; +(azz —A)x3 =0

A set of equations with the right-hand-side vector b, equal to
zero is called a homogeneous system of simultaneous equations. The
solution for the unknown vector, x, is given by Cramer’s rule as

D D D
X, =—, Xx,=—%, and x3=-—>
D D D
by CEP) ais a;;—A by dq3
where, D; =|b, a,,—A a, |,D,=| a,; b, a, |,and

by ds; azg;—A dsz; by az;—A
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ay-A  a;p b
Dy=| a3 ayp—A by
a3 azp; by
A determinant with zero coefficients in any column is equal to
zero and since

b, ] [0
b=|b, |=|0| thenD; =0,D;=0,and D3 =0.
by | |0
D D D
X1=_1=9=0, X2=—2=9=0' and X3=—3=9= .
D D D D D D

The above solution vector x = 0 is called the trivial solution of the
set of simultaneous equations.

A non-trivial solution exists, i.e. the vector x does not equal to
zero if the determinant D of the matrix (A - Al) is zero.

Inthis case,x; =D;/D=0/0whichisnotdefined, i.e.indeterminate
and can have any value. Similarly, x, = D,/D = 0/0 and x3 = D,/D =
0/0. The condition of D = 0 will give the required values of A.

Example 17

Find the eigenvalues and eigenvectors of the following matrix given
by the following two homogeneous equations:

3X1 -Xy= 7\.X1
—6X1 - 4X2 = }\.Xz

which can be written as:

(3 - 7\.)X1 —-Xy= 0 (19)
-6X1 + (4-A)x,=0 (1.10)
X1
or, (A—ADx=0,wherex = .
X2

The trivial solution of the above equations is x; = 0 and x, = 0, but
a non-trivial solution exists if the determinant of matrix (A - Al) is
equal to zero.

27



28

Introduction to Matrix Algebra

I G 1 2

34 -1
D=det(A-M)="_"

_x‘ =(3-M)(4-M)-(-1)(-6)

D=A2-7L+6

The eigenvalues are given by D = 0, i.e. the roots of A> - 74 + 6
= 0 which is called the characteristic equation of matrix A and is a
polynomial of degree 2 since A in this case is a 2x2 matrix, hence
there are two roots.

(For an nxn matrix, the characteristic equation is a polynomial of
degree n with n roots, i.e. n eigenvalues)

The solution of the above quadratic equation is given by:

2
o JENET =M6) e

2

Therefore, the eigenvalues of matrix A are: A; =1 and A, =6

For each eigenvalue there is a corresponding eigenvector, x, i.e.
values of the unknowns, in this case, x; and x, as shown here.

Substitute A; = 1 in equations (1.9) and (1.10)

(B3-1)x1-x%x,=0 (1.9a)
-6x;+(4-1)x,=0 (1.10a)
or
2x1-X%,=0

-6x1+3%x,=0

The second equation gives x; = 2x4
Putting an arbitrary value of x; = 1 will give x, = 2 and the

eigenvector is
X 1
X = 1 =
Lz} [2}

The values of the unknowns are not absolute but rather relative to
each other and for this reason the vector of unknowns is sometimes
normalised by making the largest coefficient in absolute value equal
to unity. Thus dividing the above vector by 2 to give:
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X 1 0.500
x=| t=|_|=a where o is any scalar multiplier.
X, 2 1.000

Substitute A, = 6 in equations (1.9) and (1.10)

(3 - 6)X1 -Xp = 0 (19b)

6, + (4-6)%,= 0 (1.10b)
—3X1 -Xp = 0
-6%1 + 2%, =0

The second equation gives x; = -3x1.
Putting an arbitrary value of x; = 1 will give x, = -3 and the

eigenvector is

<L)

The values of the unknowns are not absolute but rather relative to

each other and for this reason the vector of unknowns is sometimes
normalised by making the largest coefficient in absolute value equal
to unity. Thus dividing the above vector by 3 to give the normalised
eigenvector

X =

X =

the

B 0333] 81 e il
X= wnere p 1S any scalar multiplier.
~1.000 Y P

To summarise:
Eigenvalue A, = 1 and the corresponding normalised eigenvector,
'0.500}

11.000

Eigenvalue A, = 6 and the corresponding normalised eigenvector,
[ 0333

| —1.000 |

Note that the trace of a matrix, which is defined as the sum of
coefficients of the main diagonal, is equal to the sum of the

eigenvalues of the matrix.

Trace 3 + 4 = 7 and the sum of eigenvalues=A; + A, =1+6=7

and this will provide a check on the previous computations.
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In the above example, we had two equations and the determinant
resulted in a quadratic characteristic equation, i.e. a polynomial of
the second degree whose two roots were calculated algebraically.

In the analysis of structures by matrix methods we often deal with
large sets of equations and the degree of the resulting polynomials
will be high. The algebraic method of finding the roots of these
polynomials is not practical and other more efficient methods are
used such as the one explained in the next section.

1.4.2 The Direct Evaluation of Determinant

In the preceding section, a polynomial was obtained as the
characteristic equation. The eigenvalues are the roots of the
polynomial which were found algebraically. The degree of the
resulting polynomial is equal to the number of equations and for
large sets of equations the algebraic method of solution to calculate
the roots is not practical. One of the alternative methods is the direct
evaluation of the determinant for different values of A and finding
the eigenvalues by either tabular or graphical methods as shown in
the following example.

Example 18

Use the direct evaluation of determinant method to calculate the
eigenvalues and eigenvectors of the matrix:

5 -2 4
A=|-2 9 -3
4 -3 8

5-Ar -2 4
A-Al=] -2 9-A -3
4 -3 8-A

5-1 -2 4
det(A-Al)=D=| -2 9-L -3
4 -3 8-1

The determinant D is calculated for different values of A and
the eigenvalues of matrix A are those which give D = 0. This occurs
between points where D changes sign and the values of A are
calculated by interpolation as shown below.
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A D A D A D
1 80 6 -5 11 110
2 11 7 26 12 91
3 -26 8 59 13 44
4 -37 9 88 14 -37
5 -28 10 107 15 -158
By linear interpolation: D = 0 when
A =24+4—7—=2.297
11+26
5
A, =6+ =6.161
5+26
44
Ay =13+ =13.543
44437

Sum of eigenvalues = A; + A, + Az = 2.297 + 6.161 + 13.543 =
22.001, and as a check, this should be equal to the trace of the
matrix which is defined as the sum of the coefficients on the leading

diagonal of the matrix.

Trace=5+9+8+=22,which agrees with the sum of eigenvalues.
Alternatively, the eigenvalues can be found by plotting D against
A and the points where the curve intersects with the A axis give the

required eigenvalues as shown below.
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The eigenvectors of a matrix represent solutions of the unknown
variables for the different eigenvalues of the matrix.

5-A» =2 4 |x, 0
—2 9-A -3 [x,|=|0
4 -3 8-Axs| |0

Let x4 = 1 and delete the first row.
The second and third rows become

(9-A)x; - 3x3=2
3%, + (8 - M)x3 = -4
Substitute the first eigenvalue, i.e. A = A; = 2.297 to get
6.703x, - 3x3 = 2
-3%, +5.703x3 = -4

The solution of the above simultaneous equations is:
X, =-0.020 and x3 = -0.712. So the full solution vector is:

X4 1.000
X=X, |=|-0.020|.
X3 -0.712
X, 1.000
Similarly, for A = A, = 6.161, we get x=|x, |=| 2.202
X3 1.417
0.454
Divide by 2.202 to get the normalised eigenvector x=|1.000
0.644
Xy 1.000
Similarly, for A = A3 = 13.543, we get | x, |=|-1.427 | and the
X3 1.494
0.669
normalised eigenvector is x=| -0.955|.

1.000
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To summarise:

[1.000 |

Aq = 2.297, the corresponding eigenvector is x =| -0.020 |,
| —0.712 |
0.454 [ 0.669 |

A, =6.161, x=|1.000 |, and for A; = 13.543, x=| -0.955|.
0.644 | 1.000 |

There are other more efficient methods for the determination
of matrix eigenvalues particularly when dealing with large sets of
simultaneous equations. These methods are beyond the scope of
this book and the reader can refer to specialised literature on the
subject.

Example 19

-8 -3 2 4
Given matrix A= and matrix B= , find the
1 7 3 5

eigenvalues A and the corresponding eigenvectors of the following
relationship:

(A-AB)=0

In order to reduce the above equation to a standard eigenvalue
problem premultiply by the inverse of matrix B, i.e.

(B'A-AB-'B) =0
(BTA-AI) =0 or (C - AlI) =0, where C = B"1A

g |2 41" [-25 20
13 5| |15 -1/
L, [-25 20]2 4] [1 0
(check B"'B= = =1)
15 -13 5| |0 1
. -25 20][-8 -3] [220 215
B 115 -1|1 7] |-13.0 -115

22.0 215 10 22.0-A 21.5
(C-AD)= ) =
-13.0 -115 01 -13.0 -115-A
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22.0-A 21.5
Det
-13.0 -115-A

A% -10.51+26.5=0

}: (22.0-4)(-11.5-2)-21.5(-13.0)=0

_ 10.5%4/(-10.5) —(4)(26.5)

A, = 5 =4.22and 6.28.
Calculation of eigenvectors
(C-ADx=0
220-% 215 %] [0
-13.0 -115-A|x,| |0
Ay =422

22.0-4.22 21.5 x| [0
-13.0 -11.5-4.22|x,| |0
17.78x; + 21.50x, = 0
-13.00x, - 15.72%, = 0

Let, x; = +1.00 and from the second of the above two equations,

we get
1300
15.72
) . . X1 +1.00
The first eigenvector is: = .
X, -0.83

o ) X +1.00
Similarly, for A, = 6.28, the second eigenvector is: = .
X, -0.73

Alternatively, particularly when matrix inversion is to be avoided
-8 -3 2 4| |-8-20 -3-4A
(A-2B)= - =
1 7 35 1-3r  7-51
[—8 —2h -3-4A
Det

=-2\* +21A-53=
1-3 7—5%} A°+21A-53=0

A?-10.521A + 26.5 = 0 which is the same characteristic equation
obtained previously and its roots are

Ay =4.22 and A, = 6.28.
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The eigenvectors are given by
{—8 -2 -3- 47\}{&} ~ m
1-3L 7-5)1 || x, 0
For A, = 4.22
[—8—2 x4.22 -3- 4x4.22}[x1} ~ m
1-3x4.22 7-5x4.22 | x, 0
{—16.44 —19.88}{){1}_{0}
-11.66 -14.10| x, 0
Let, x; = +1.00 and from the second of the above two equations,
we get

11.66
, == =-0.83.
14.10
) . X +1.00
The first eigenvector is: = .
X, -0.83

. ) Cxy +1.00
Similarly, for A, = 6.28, the second eigenvector is: = .
X, -0.73

Problems
3 1 -2 2 -5 -1
P1.1. Given, A=|{4 6 —-4|andB=(4 1 4 |,
5 -3 4 2 3 -5
find A+ Band A -B.
Answer:
5 -4 -3 1 6 -1
A+B=|8 7 0|, A-B=|{0 5 -8
7 0 -1 3 -6 9
3
P1.2. Given,A=[5 -7 4]and B=| 6 |, find AB.
-2
Answer:

AB =[-35]
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-4
P1.3. Given, A=| 2 |andB=[6 4 -3],find AB.
5
Answer:
24 -16 12 ]
AB=| 12 8 -6
30 20 -15]
2 1 4] 5
P1.4. Given, A=|{4 -5 2 | and B=| 6 |, find AB.
3 6 -1] -3
Answer:
28
AB=|-16
54

5 -2 -3 6| .
P1.5. A= and B= , find 3AB.
-4 6 -5 2
Answer:
-15 78
3AB =
{—54 —36}

] 2 -1 -4 3 -3 5 ]
P1.6. Given, A= , B= ,and C= , find
5 3 2 -5 4 -2

ABC.

Answer:
74 72
ABC=
{42 —70}
4 1 -2 2 5 0
P1.7. Given, A={0 -3 4 |,B=|3 6 -7]|,and
5 2 6 -4 1 5
3 5 4

C=l2 1 2| find ABC.
-6 3 4
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Answer:
207 68 56
ABC=|-349 -16 36
-34 51 118

3 6 2 4
P1.8. Given, A=[5 2} and B={ 3 5}. Show that (AB)T = BTAT.

Answer:

-12 16
(AB)! = =BTAT
42 10

P1.9. Find the determinant of the following matrices:

6 5] [5 4] . [4 6
M), |G 3 7 G|

7 -2 4
v |°* 2 5 3
vyl g ) :

-6 4 1

Answer:
(1) 9, (ii) -47, (iii) 32, (iv) 0, (v) 143

P1.10. Use Gauss elimination to calculate the unknowns x;, X,, and
x3 that satisfy the following three simultaneous equations:
4x1 -X,-5x3=3
-2%1 + 5%, + 3%3=-9
-3x1 +4x, +8x3=4

Answer:
X1 =4,X,=-2,%x3=3

P1.11. Use Cholesky’s method to calculate the unknowns x;, X,,
and x5 in the following simultaneous equations:
6X1 - X5 + 3x3 = -8
-X1+8x, - 2x3=11
3X1 - 2%, +5x3=7

Answer:
X1=-3,X,=2,%x3=4

P1.12. Use Jacobi iteration to calculate the unknowns x4, X,, and x3
in the following equations:
5%1 = Xy + 2X3 = 20

37
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X1+ 7Xp — 4x3 = -42
2xq — 4x, + 6x3 = 38

Answer:
X1=2,X=-4,X3=3

P1.12. Repeat P.1.10 to find the unknowns by using Gauss-Seidel
iteration and compare the required number of iterations
with that obtained by the Jacobi iteration method to achieve
the same accuracy.

P1.13. Use Gauss-Jordan method to compute the inverse of the

matrix
(7 -2 3
-2 8
3 4 5

Answer:
[0.857 0.786 -1.143
0.786 0.929 -1.214
|-1.143 -1.214 1.857

P1.14. Calculate the eigenvalues and normalised eigenvectors of
the matrix

5

Answer:

1 1
=2l asa] =0 o]
X, -0.50 X, 0.25

P1.15. Calculate the eigenvalues and normalised eigenvectors of

the matrix

4 -1 2

-1

2
Answer:

x, | [ 1.000 x; | [ 1.000
A, =1.525,|x, [=| 0.676 |, A, =5.876,|x, |=|-0.691,
x5 | |-0.901 x; | | 0592
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X4 0.143

A3 =9.600, x, [=| 1.000

X3 0.911
8 1 -3 4 -2 0
P1.16. Givenmatrix A=| 1 4 0 |andmatrixB=|-2 6 3],
-3 0 7 0 3 5

find the eigenvalues A and the corresponding normalised
eigenvectors of the following relationship:

(A-AB)=0
Answer:
[x, ] [+0.253] x, | [+0.875
A, =0.530,|x, [=|-1.000 |, A, =0.985,| x, |=|—0.187 |,
| X3 | [—0.191] X3 | |+1.000
'x, | [+1.000]
Ay =5.423,| x, |=|+0.928
| x5 | [—0.900]
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Chapter 2

General Principles

2.1 Bar Element Subjected to an Axial Force

In order to illustrate the general principles of matrix methods for
the analysis of structures, the simplest type of element will be
considered in this chapter and treated in detail first. This will make it
easy for the reader to follow and grasp the basic principles involved
in the derivation of a stiffness matrix and the process of computing
the resulting displacements and forces developed in the members of
the structure. The element of this type is subjected to an axial force,
causing either uniform tensile or compressive stress across the whole
cross section. Consequently, the element will deform by increasing
or decreasing in length depending on whether it is in tension or
compression. The complete analysis of an isolated individual bar
by classical methods is quite straight forward and quick. But its
treatment here by matrix methods is to show the process and general
principles followed in the derivation of relationships between the
various variables involved. These principles can be applied for the
treatment of more complicated structures as will be seen later.

2.1.1 Derivation of Stiffness Matrix

The equation relating the change in length of a bar subjected to an
axial force can be derived from elementary mechanics of materials
as follows:

Analysis of Structures by Matrix Methods

Fathi Al-Shawi
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Axial force = stress X cross-sectional area
X=0A
Stress = strain X modulus of elasticity

c=¢E

Strain = change in length
initial length

e=—
L

EA
Therefore, X=—u

L
where X is the applied axial force,
u is the change in length,
L is the initial length of the bar,
A is the cross-sectional area, and

(2.1)

E is the modulus of elasticity of the material of the bar.
The stiffness matrix of a bar is the relationship between the

forces and displacements at the ends of the bar.

The derivation of the stiffness matrix is based on the local
coordinates system X,y,z with the Xx-axis running along the axis of
the bar. The displacements and forces are relative to the local X -axis

thus they are written with a bar.

Consider a bar subjected to axial forces X; and )_(j acting at the
nodes i and j respectively. The corresponding axial displacements at
the ends of the bar are u; and u; as shown in Fig. 2.1 and we want to
derive a relationship between these displacements and forces acting

at the nodes.

Figure 2.1 Bar element.
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The derivation is carried out in two stages using a single prime
for the first stage and double primes for the second. In the first stage
assume that node i undergoes a displacement of u; along the X -axis
and node j is fixed as shown in Fig. 2.2, then

X=X andu=T;
7,7
i j
X, m— Ol > X] —_— %X
| U |
Figure 2.2

Substituting these values in equation (2.1) to get:

- EA_

X = Tui (single prime is used for this case)

From equilibrium of forces in the x -direction

X;+X;=0 giving X;=-X|

- EA_
X =——u,
L
For the second stage, assume that node j undergoes a
displacement of u; along the X -axis and node i is fixed as shown in

Fig. 2.3, then

X=)_(; andu=ﬁj

N

—p N

|
l
_1
|

Figure 2.3
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Substituting these values in equation (2.1) to get:

)_(] = &ﬁ- (double prime is used for this case)
L )

From equilibrium of forces in the X -direction

)_(l +)_(;/ =0 giving )_(l :—)_(].

<7 EA _
Xi =—U.
L )
The final result is obtained by combining the above two cases,
thus

%, =X +X]
- EA_ EA_
Xi =Tui —Tu]- (22)
X, =X +X,
= EA_ EA_
X]- :—Tui +Tuj (23)

EA EA

X T T u
Al L L i (2.4)
X|7|_Ea EA|
L L
The above relationship can be written as:
F=kd (2.5)
EA _EA
wherek = ELA L is the stiffness matrix of a bar element
L L

_ |6
subjected to axial forces at its ends and 6 = [_l is the displacement
j
vector which is composed of the displacements at nodes i and j.
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Since there is only one degree of freedom, namely the
t_ranslational_displacement u in the X -direction, it follows that,
9, =u; and §; =u;, thus

j

The right-hand side of (2.4) is the load vector which is composed
of the forces at nodes i and j and these correspond to the relevant

displacements, i.e.
11X

The above relationships can alternatively be derived by a finite
element approach using the so-called interpolation polynomial
which defines the displacement along the element as explained in
Appendix 1.

sl gl

2.1.2 The Overall Structure Matrix

The overall stiffness matrix is assembled relative to global coordinate
system. So, the first step is to find the stiffness matrices of the bar
elements relative to the global coordinate system. Since the local
x -axis coincides with the global x-axis then the stiffness matrices
and displacements derived relative to local coordinates will have
tlle same valEes relative to global coordinates. Thus u; =u;, ﬁj =,
X; =X, and X; =X, and the relations in (2.4) become

EA_EA
L L || W X;
= 2.6
EA EA H M (20
L L
EA
e u, X,
where k= L L , &=| '|, andF=|_'
_EAEA Y Xi
L L

Thus (2.6) in terms of global coordinates is written as:
kd=F (2.7)

45
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The stiffness matrix is written in the following general form

k= Bi H wherek; = %, k; = —%, k; = —%, and k;; = %
it
Note that the element stiffness matrix is symmetric since k;; = k;;.
One of the steps in the analysis of a structure by matrix methods
is the assembly of the overall structure stiffness matrix which is
built up from the stiffness matrices of its constituent (individual)

elements. Thus, for the overall structure the general relationship is
K6=F (2.8)

where K is overall stiffness matrix of the structure, 6 is the vector
of displacements at the nodes, and F is the load vector of external
forces acting at the nodes of the structure with all these quantities
written relative to global coordinates.

When the local x -axis of any member of the structure does not
coincide with the global x-axis transformation from local coordinates
to global coordinates is required as will be explained in subsequent
chapters.

Example 1

Calculate the displacements and the forces developed at nodes 1, 2,
and 3 of the stepped aluminium bar shown in Fig. 2.4 which is free at
node 1 and fixed at node 3 for the following data:

Element1,L;=0.42 m, A; = 150 x 10"°m?,

Element 2,L,=0.56 m, A, = 240 x 10"°m?,

The modulus of elasticity E = 70 x 10 kN/m?.

node node node

1 2 3
3 KN e — Ry
element@ element @

Figure 2.4

This example will be treated in detail showing the calculations
step by step to highlight the general procedure followed in a typical
computer program.
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Element stiffness matrices

These are obtained from (2.6) as shown below.

Element 1

EA 70x10°x150x107°
L 0.42

From (2.6a)

=25000 kN/m

. [25000 -25000] |ki Kij
25000 25000

- 1,1
kii kii
(superscript 1 indicates element 1)

ie, ki =25000,kf =-25000,kj; =-25000, k; = 25000

Element 2

EA _70x10°x240x10°°
L 0.56

=30000 kN/m

, [30000 -30000] |ki Kj
30000 30000

- 2 2
ki kj
(superscript 2 indicates element 2)

ie, k% =30000, k2 =-30000, k2 =-30000, k2 =30000

» Kii K = » Kji K
Assembly of the overall structure stiffness matrix

The overall structure stiffness matrix K in (2.8), is assembled by
starting with a square matrix of order n where n is the total number
of degrees of freedom. Since there is only one degree of freedom at
each of the three nodes, namely the displacement u in the x direction,
it follows that the overall structure stiffness matrix is a 3x3 matrix
whose coefficients are denoted by Kj; where the subscripts i and j
refer to the number of row and number of column, respectively. Thus
up U ug
K= Kip Ky Kyzjuy

Ko1 Koo Kpsju,

K3y K3 Kjzjug
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In order to find the coefficients of the above matrix, it is useful
to relate the element address to the structure address as explained
below.

Element 1 has its i node at nodel of the structure and its j node
at node 2 of the structure. This leads to the following relationship
between element address and structure address.

Element 1 address i j
The corresponding structure address 1 2

From the above correspondence between nodes 1 and 2 of the
structure and the element nodes, i and j, it follows that element 1
will contribute to the coefficients of the overall structure stiffness
matrix K as shown below:

subscript of coefficient in K 11 12 21 22

subscript of contributing coefficient from k? ii ij ji ji

So the contribution of element 1 to the overall structure matrix is
K1, =kj; =25000,Kj, =kj; =—25000,Kj; =kj; =-25000,

K3, =kj =25000

Element 2 has its i node at node 2 of the structure and its j node

at node 3 of the structure. This leads to the following relationship
between element address and structure address.

Element 2 address i j

The corresponding structure address 2 3
From the above correspondence between nodes 2 and 3 of the
structure and the element nodes i and j, it follows that element 2 will

contribute to the coefficients of the overall structure stiffness matrix
K as shown below:

subscript of coefficient in K 22 23 32 33

subscript of contributing coefficient from k? ii ij ji i

So the contribution of element 2 to the overall structure matrix is
2 2 2 2 2 2

K5, =kj; =30000,K5; = ki]- =-30000,K35, = k]-i =-30000,
2 2

K5 = k]-j =30000
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Note that the superscriptin kindicates the number of the element
and superscript in K indicates the number of the contributing
element to the overall stiffness matrix.

Steps in the construction of the overall structure stiffness

matrix K

(1) Write the value of zero for all coefficients and call it the zero
matrix K°. Parts of this matrix will be filled and the rest will

remain to have zeros as can be seen later.

u; u; ug
Ug

K°® = u;
00| 0|y

Strictly speaking, the above table should be written in the
usual matrix notation but the use of tabular form, here and
in other parts of the book, makes the presentation clearer

particularly when one matrix is superimposed on another.

(2) Enter the contribution of element 1 and call it K!

u; u, us
ki (=25000) |k} (=-25000) O | W
K'= il (=-25000) | K} (=25000) | O | Uz
0 0 0 | us

(The superscript in Kindicates the number of the contributing
element, in this case it is element 1.)

(3) Enter the contribution of element 2 and call it K?

Uy Uz Uz

0 0 0 uy
K2= | 0 | K% (=30000) |Kkj (=-30000)| u,

0 |k} (=-30000)| k (=30000) | 3

(The superscript in Kindicates the number of the contributing
element, in this case it is member 2.)
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(4) The final overall structure matrix K is obtained by adding the
contributions of all elements of the structure, i.e. K = K° + K!
+ K? simply by superimposing them one on top of the other to
get

Uy Uy U3

K. (=25000) | kj (=—25000) 0 U,

1 2
k]-j +k§

K= |kj (=-25000) ki (=-30000)| u,

(=25000+30000)

0 ki (=-30000) | ki (=30000) | u,

25000 -25000 0
K=|-25000 55000 -30000 (2.9)
0 —30000 30000
To summarise the procedure of assembly of the overall structure
matrix K is to start with all the coefficients equal to zero and then
dumping k;;, ky;, kj;, and kj; of the element stiffness sub-matrices in the
appropriate location in the K matrix.
0,
The displacement vector, =| 9§, | consists of the displacements
53
at the three nodes.
Since there is only one degree of freedom at each node which
is the translation u in the global x-direction it follows that, 8; = uy,
8, = uy, and J; = uz, therefore

8=|u, (2.10)

Load vector

The external load vector F=|FE, | consists of the external forces
K
(loads) acting at the nodes and since there is only one degree of
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freedom at each node these forces will be acting in the direction of
that degree of freedom. Thus F; = Xy, F, =X,, and F3 = X3, therefore

X

F=|X,

X3
The forces X;, X,, and X3 are the external forces applied to the
structure at the nodes 1, 2, and 3, respectively, and are written
relative to the global coordinates. Therefore, at node 1, X; = +3 kN
and at node 2, X, = 0. At node 3 where the bar (structure) is fixed
the displacement is known (i.e.,, uz = 0) but the force, which is the
reaction of the support on the structure, is unknown. If we denote

the reaction by Rys then the force at node 3, X3, will take the value of
Rys. Hence the load vector F is:

+3
F=| 0 (2.11)

Setting up the full set of equations
Substituting (2.9), (2.10), and (2.11) in (2.8) to get

25000 -25000 0 [u, | [ 3
~25000 55000 —30000 ||lu, [=| 0 (2.12)
0 —30000 30000 [|us| |Rys

The structure matrix in (2.9) and (2.12) is singular, i.e. its
determinant is equal to zero. Therefore it has no inverse and
consequently no unique solution can be obtained and the structure
will move as a rigid body. In order to obtain a solution, some
constraints must be imposed on the structure and these are called
the boundary conditions as shown in the following section.

The relationship in (2.12) can be written as a set of simultaneous
equations

25000u, - 25000u;, + Ous = 3 (2.12a)
~25000u; + 55000u, - 30000u; = 0 (2.12b)
~0u, - 30000u, + 30000u; = Rys (2.12¢)
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Applying the boundary conditions

The next step is to introduce the boundary conditions (constraints)
which in this case is the fixed end, i.e. node 3, thus u; = 0 resulting
in the so-called reduced matrix. This can be enforced by deleting
the corresponding row (number 3) and the corresponding column
(number 3) to give

25000u, - 25000u, = 3
~25000u; + 55000u, = 0

—25000 55000

is not zero, therefore it is non-singular and there exists a unique
solution of the above simultaneous equations.

. ) ) 25000 -25000
Notice that the determinant of the matrix

Solution of the reduced set of equations

The above two simultaneous equations are solved by any of the
methods explained in Chapter 1 to give the displacements as u; =
0.00022 m and u, = 0.00010 m. With the boundary condition at the
fixed end, i.e. us = 0, the full displacement vector is:

8,7 [u,] [0.00022
§=|8, |=| u, |=|0.00010
9, U 0

Calculation of reactions at the constrained nodes

These are usually calculated from the appropriate equations of the
original (unreduced) matrix by using the values of the displacements
obtained from the previous step.

The reactions at the nodes where there are constraints are
calculated relative to global coordinates. In this example there is
only one reaction Ry; at the support (node 3) and is obtained from
(2.12¢)

-30000u, + 30000u; = Rys
Rys = -30000 x 0.00010 + 30000 x 0 = -3.00 kN

The negative sign means that it is actually in the opposite
direction to that shown, i.e. in the negative x-direction.
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Calculation of actions (forces) developed in the elements

The internal forces (also called actions) induced in each of the
individual elements are calculated relative to the local coordinates
from the relation F=k& whose expanded form is given in (2.4).

Element 1

Fl=Kk'§!
1 X3 o 25000 —25000 5o ) _[uy]_[0.00022
x| —-25000 25000 |’ | |u 0.00010
2 j 2

)_(i | 25000 -25000|0.00022| |+3.00
XL | [-25000 25000 ]|0.00010] |-3.00
(The subscript indicates the node number and the superscript
represents the number of the element.)
element element
node i nodej
3.00 kN =——tp p———— <= 3.00 KN

structure structure
node 1 node 2

Figure 2.5

Notice that the force at node 1 (or i for the element) is positive
and that at node 2 (or j for the element) is negative and this means
that the element is in compression as shown in Fig. 2.5.

Element 2

ﬁZZEZSZ
o _ X5 2 _[ 30000 —30000] «; _ u _[uy|_[0.00010
X2 —-30000 30000 |’ W |us 0

X3 [ 30000 -300001[0.00010] [+3.00
X2 | [-30000 30000 o | |-3.00/

i.e. the element is in compression as shown in Fig. 2.6.
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element element
node i node j

3.00 KN i I < 3.00 kN

structure structure
node 2 node 3

Figure 2.6

This is a very simple example that can be solved quite easily
(and quickly) by elementary methods. However, it illustrates the
procedure followed in the analysis of structures by matrix methods.

2.1.3 Bar Elements with Variable Cross Section

Sometimes the bar has a continuously variable cross section and
one of the methods to deal with such a case is to derive the stiffness
matrix from first principles for the specific type of cross section
variation. Alternatively, the bar is divided into elements each of
which is assumed to have a constant average cross section resulting
in a stepped bar as shown in the example below. The solution is of
course approximate and the accuracy can be improved by increasing
the number of elements.

Example 2

A steel bar with its ends fixed at nodes 1 and 4 has uniform thickness
0.006 m and its width is given by the equation b = 0.12 + 2x? as
shown in Fig. 2.7. Calculate the displacements and forces induced in
the bar at nodes 1, 2, 3, and 4. The modulus of elasticity of steel E =
210 x 10°kN/m?.

The bar is divided into three elements and the width of each
element is assumed to be equal to the width at the middle of the
element as shown in Fig. 2.7. The resulting analysis model is a
stepped bar and is treated in the same way as in Example 1.

Element 1: A; =b;t = 0.14 x 0.006 = 840 x 107° m?
Element 2: A, = b,t = 0.30 X 0.006 = 1800 X 107% m?
Element 3: A; = bst = 0.62 x 0.006 = 3720 X 107% m?
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Element stiffness matrices

These are obtained from (2.6) as shown below.

Element 1

EA 210x10°x840x10°°
L 0.2

Ko 103[ 882 —882}

=882x10° kN/m

-882 882

Element 2

EA _210x10°x1800x10°°
L 0.2

k2 =103[

=1890x10% kN/m

1890 -1890
-1890 1890

Element 3

EA _210x10°x3720x10°°

=3906x10% kN/m
L 0.2

3 10{ 3906 —3906}

-3906 3906

Following the same procedure of example 1 the following matrix
is obtained by inspection.

u; U; U3 Uy
k! Kkt
! ) 0 0 uy
(=882) (=-882)
kjli k! + k2 K2
]] 11 l] 0 uz
K= 10 (=-882) | (=882 +1890) (=-1890)
0 K2 K24k K
uz
(=-1890) (= 1890 + 3906) | (=-3906)
0 K3 K3
0 N )] u,
(= -3906) (=3906)
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882 -882 0 0
,|-882 2772 -1890 0
K=10 (2.13)
0 -1890 5796 —3906
0 0 -3906 3906

The displacement vector for the structure is

) Uy

5|02 || 12 (2.14)
83 Uz
3, Uy

Load vector

The force vector, F, is composed of the external forces acting at the
nodes, i.e. at node 1, X; = Ryq; at node 2, X, = -90 kN; at node 3, X3 =
+170 kN; and X4 = Ry, at node 4. Hence the force vector F is given by:

Fl Xl RXI
F| |X,| | -90
F=| ?|= = (2.15)
E X, +170
F4— X4 RX4-
Setting up the full set of equations
Substitute (2.13), (2.14), and (2.15) in (2.8) to get:
882 -882 0 0 Ju] [Ry
;| —882 2772 -1890 0 u, -90
10 = (2.16)
0 -1890 5796 —3906 || u; +170
0 0 -3906 3906 ||u,| | Ry,

The boundary conditions are the fixed ends of the bar, i.e.u; =0

and uy = 0, hence delete rows and columns 1 and 4 respectively to

2772 % 103u, - 1890 x 103u; = -90
~1890 x 103u, - 5796 X 103u3 = +170

The solution of the above set of simultaneous equations is:
u, =-0.0000160 m and uz = +0.0000241 m
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The full displacement vector is:
uy 0
u, | | —0.0000160
u; | |+0.0000241
u, 0

The reaction Ry; at the left support can be found from the first
row of (2.16)

882 x 10%u; -882 x 103u, = Ry;

Ry; =882 x 103 x 0 -882 x 103 x (-0.0000160) = +14.11 kN

The reaction Ry, at the right support can be found from the
fourth row of (2.16)

-3906 x 1OSU3 + 3906 x 1031.14 = Rx4

Rys = -3906 x 103X 0.0000241 + 3906 x 103 x 0 = -94.14 kN

The exact values are: u, =-0.0000163 m, u3 = +0.0000248 m,

Ry; = +14.66 kN and Ryy = -94.66 kN. The largest difference
between the values obtained from dividing the member into only
three elements and the exact values is -3.75%. Higher accuracy
can be achieved if the member is divided into a larger number of
elements.

Calculation of actions (forces) developed in the elements

The final step is to calculate the internal forces induced in the
elements relative to local coordinates using (2.4).

Element 1
X _0?| 882 -882 0 _[+1411
Xi| ~ [-882 882 ][-0.0000160 |-14.11
element element
node i node j
14.11 kN e p— <= 14.11 kN
structure structure
node 1 node 2

Notice that the force at node 1 (or i for the element) is positive
and that at node 2 (or j for the element) is negative and this means
that the element is in compression.
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Element 2

X2 _,?[ 1890 ~1890]7-0.0000160]_[-75.79
X2|  [-1890 1890 J|+0.0000241| |+75.79

(i.e. the element is in tension)

element element
node i node j
75.79 KN < _ —p- 75.79 KN
structure structure
node 2 node 3

Element 3

X3 _qg¢] 3906 —3906][+0.0000241]_[+94.14
X3|  [-3906 3906 0 | -94.14

(i.e. the element is in compression)

element element
node i node j
YRR — _ <—— 94.14kN
structure structure
node 3 node 4

2.1.4 Some Important Properties of the Stiffness Matrix

It can be seen in the above examples that the structure stiffness
matrix is symmetric since Kj; = K. This important property is a
consequence of Maxwell reciprocal theorem which states that the
displacement at node j produced by a unit load applied at node i is
equal to the displacement at node i produced by a unit load applied
at node j. The displacement may be translational or rotational and
the load may be a force or a moment.

Another useful property of the structure stiffness matrix is that it
is positive definite, i.e. the quadratic form 87K3 is always positive as
explained below.
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Consider a set of forces Fy, Fy, ... ... F, acting on a structure and
the resulting displacements are 84, 8, ... ... d,, then the work done U
is given by

5.1
1 1 1 1 1
U==F38, +=F3J,......+=F 3§, —E[Fl E, F]l . |==F'8
_8n -

But F=K3 then U = %(KS)TS

Since (K8)T = 8TKT and KT = K because K is symmetric, therefore
u=_157ks
2

The work done U is always positive, hence 8'K$ is positive for
any non-zero displacement vector & thus K is positive definite.

2.2 Coordinate Systems

The standard right-handed xyz cartesian coordinates system is
formed by the right hand where the thumb represents the x-axis, the
index finger the y-axis and the middle finger the z-axis.

The three systems shown in Fig. 2.8 are all right-handed xyz
coordinate systems and they are the same except that they are
viewed from different points. The orientation of the coordinate
system shown in Fig. 2.8(i) is the one used in this book where the xy
plane is the horizontal plane and the z-axis is perpendicular to it.

z (middle finger) X y
y (index finger)
y
x (thumb) M X
) (i) z (iif)

Figure 2.8 Right-handed xyz coordinate systems.
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Definitions and sign convention

u, v, and w: Translational displacements in the %, y, and z directions.
@, 6, and W: Rotational displacements about the positive %, y, and z
axes.

X, Y, and Z: Forces in the x, y, and z directions.

T, M, and N: Moments about the x, y, and z axes.

Translational displacements and forces are positive when
they are in the positive direction of the relevant axis. Rotational
displacements and moments are positive when they are clockwise
about the positive direction of the relevant axis as shown in Fig. 2.9.

0

M
N S x
I IV
(0] T

Figure 2.9 Sign convention.

2.3 Extension of Bar Stiffness Matrix to Other
Types of Structural Elements

Due to the systematic nature of the subject of matrix methods in the
analysis of structures, the detailed steps followed in this chapter
can be applied to more complex problems. The principles are the
same but some modifications might be necessary where appropriate
as will be seen in the chapters that follow. Therefore, a thorough
understanding of the contents of this chapter is essential since this
will make the reader familiar with the procedures which will help
in making good progress through the book and leave more time for
understanding any additional development that may occur as the
material gets more involved.
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In general, for any individual element with two ends the element
stiffness matrix, k, is made of 4 sub-matrices, kj;, kj, kj;, and k;;. For
a bar element it was seen that k;;, for example, is a 1x1 sub-matrix
(i.e. just one number). This is a consequence of the fact that the
displacement at each node is defined by only one degree of freedom,
namely, the translation u along the x-axis. The load is defined by
only one force acting in the x-direction at each node. For skeletal
structures the stiffness matrix of any element is analogous to that
of an individual bar except that the number of degrees of freedom
is generally more than one. For example in a pin-connected plane
frame lying in the xz plane there are two degrees of freedom at
each joint (node), namely, the translations, u and w, in the x and z
directions respectively. As a consequence, k;;, for example, is a 2x2
sub-matrix and the displacement at each node is a 2x1 vector made
of the translation u along the x-axis and the translation w along the
z-axis. The load at each node is a 2x1 vector made of a force in the x
direction and a force in the z direction. It follows that for an element
with n degrees of freedom at each end sub-matrices such as k; will
be of size nxn. Similarly the displacement and load vectors at each
end will be vectors of size nx1. The above statement is illustrated in
the cases considered below.

The general relationship for an element with two ends i and j is:

kS =F ki Ky 8 ) IR 2.17
_Orkjikjj 8i_Fj (17)

ki;, Ki;, K;;, and k;; are the four sub-matrices of the stiffness matrix,
k.

6; and 8]- are the two sub-matrices of the displacement vector, 8.

F; and F are the two sub-matrices of the load vector, F.

(1) Bar element (Fig. 2.10)

Figure 2.10



(2)

(3)

u.
: each of the two sub-vectors is 2 coefficients; §; ={ ! }
1

: each of the two sub-vectors is 2 coefficients; F, = Zi}

Extension of Bar Stiffness Matrix to Other Types of Structural Elements

each of the four sub-matrices is 1x1, for example k; = [EA/L]
each of the two sub-vectors is 1 coefficient, for example §; =
[w]

each of the two sub-vectors is 1 coefficient, for example F; =
[Xi]

Element in a pin-connected plane frame (Fig. 2.11)

|

Figure 2.11

* *
each of the four sub-matrices is 2x2; k; = [* *}

(The asterisk means one number.)

Element in a beam (Fig. 2.12)

* 3k
each of the four sub-matrices is 2x2; k;; = {* *}

W
: each of the two sub-vectors is 2 coefficients; §, = { 61}
i
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7.
F: each of the two sub-vectors is 2 coefficients; F, = {Ml }
i

1 j

6

Figure 2.12

(4) Element in arigidly connected frame (Fig. 2.13)

Figure 2.13
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k% ok

k: each of the four sub-matrices is 3x3, k;; =|* * *
* * *
U

d: each of the two sub-vectors is 3 coefficients; 6; =| w;
0

i
X
F: each of the two sub-vectors is 3 coefficients, F, =| Z;

M.

1

i

(5) Elementin an arch (Fig. 2.14)

Z

Figure 2.14

* k%

k: each of the four sub-matrices is 3x3; k;; =|* * *
* * *
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;
d: each of the two sub-vectors is 3 coefficients; §; =| w,
0;
X
F: each of the two sub-vectors is 3 coefficients; F, =| Z,
M

(6) Element in a grillage (Fig. 2.15)

|

Displacements w; and wj in the

z-direction not shown

— X
i @
Figure 2.15
* * *
k: each of the four sub-matrices is 3x3; k;; =|* * *
* * *
W.
d: each of the two sub-vectors is 3 coefficients; §; =| @
6;
Z

F: each of the two sub-vectors is 3 coefficients; F, =| T,
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(7) Elementin a beam curved in plan (Fig. 2.16)

—_—
e

Displacements w; and w; in the
z-direction not shown

ﬁ X
1 (Di
Figure 2.16

* * *

k: each of the four sub-matrices is 3x3; k;; =|* * *

* * *
Wi
d: each of the two sub-vectors is 3 coefficients; §; =| @,

F: each of the two sub-vectors is 3 coefficients; F, =

= AN o

(8) Element in a pin-connected space frame (Fig. 2.17)
* * *

k: each of the four sub-matrices is 3x3; k;; =|* * *

* * *

U;

& each of the two sub-vectors is 3 coefficients; §; =| v;

Wi
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Figure 2.17
X;
F: each of the two sub-vectors is 3 coefficients; F, =| Y;
Z

i

(9) Element in a rigidly connected space frame (Fig. 2.18)

k: each of the four sub-matrices is 6x6; k; =

= £

&: each of the two sub-vectors is 6 coefficients; §,; =

€26 =




Banded Matrix

Figure 2.18
X;
Y;
. _ Z;
F: each of the two sub-vectors is 6 coefficients; F, = T
i
M;
_Ni i

2.4 Banded Matrix

In most applications of matrix methods of structural analysis
the matrix is not fully populated but rather banded with zero
coefficients outside the band. In order to reduce the computer
storage requirements only those coefficients within the band are
stored and subsequently used in the computations. So, the smaller
the band width the more efficient it is and this depends on the way
the nodes of the structure are numbered.
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Table 2.1 Summary of the relation between the number of degrees of
freedom per node and the size of sub-matrices in the standard
form (2.17) for various types of structures

Degrees of freedom Size of

per node any sub- Size of
matrix any sub-
Kii, ki, K;i, vector
Type of structure uvwooe Vv Kkj; 3, 8, F;, F;
Bar v 1x1 1x1
Pin-connected plane
2x2 2x1
frame v v % %
Continuous beam N v 2x2 2x1
Rigidly connected
3x3 3x1
plane frame v v v % %
Arch N v v 3%3 3x1
Grillage v vV 3x3 3x1
Beam curved in plan VAR, 3x3 3x1
Pin-connected space NENEN 353 351
frame
Rigidly connected NENENEN NN, 656 61

space frame

Since the stiffness matrix is symmetrical, only the semi-band
width is considered which is defined by the coefficient on the
main diagonal and the non-zero coefficients to its right side. To
illustrate this consider the frame shown in Fig. 2.19a, where nodes
are numbered in the short direction. The semi-band width is 3 and
since the number of degrees of freedom per node is 3, consisting
of u, w, and 6, i.e. each asterisk is a 3x3 sub-matrix, so the number
of coefficients in the semi-band width is 3x3=9. The total number
of rows is 3x14=42 giving the number of coefficients to be stored
as 9x42=378 compared with the total number of coefficients in the
stiffness matrix which is, 42x42=1746. Thus there is significant



Banded Matrix

saving in computer storage in this small problem but for large
matrices the saving can be very large.

If the nodes are numbered in the long direction as shown in
Fig. 2.19Db, then the semi-band width will be 7 and the total number
of coefficients to be stored is 7x3x42=882. Thus for this case and in
general, numbering in the short direction requires less storage than
numbering in the long direction.

83 64- 85 86 67 88 89 610 811 612 613 814

* * * 8
* * * S,
* * * * S5
* * * * S
* * * * 5,
* * * * S
* * * * 8
* * * * 810
* * * * 811
* * * * 81;
* * * 813
* * * 14
13 14
11 12
9 10
7 8
5 6
3 4
1 2
III777 W W

Figure 2.19a
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8 8 8 8 8 8 8 089 011 O3 813 Op

* * * 82
* * * * 83
* * * * 84
* * * * 85
* * * * 86
* * * 87
* * * 89
* * * * 810
* * * * 811
* * * * 812
* * * * 613
* * * 614

7 14

6 13

5 12

4 11

3 10

2 9

1 8

77777 Ve d

Figure 2.19b

deg

(Each asterisk is an rxr sub-matrix where r is the number of
rees of freedom per node.)

Problems

Calculate the displacements at the nodes and forces developed in the
elements of the structures shown in Problems P2.1 to P2.4.



Problems

P2.1. Element 1, L;=0.56 m, A; = 720 x 107°m?, element 2, L, =
0.35m, A, = 240 x 10-® m?. The material is aluminium with
a modulus of elasticity E = 70 x 10°kN/m?.

| ® ® l

|‘ 0.56 m ‘l‘ 0.35m ‘l

I T 1
Figure P2.1
Answer:

u; =0,u,; =-0.0005 m, uz =0, Ry; =45.00 kN, Ry3 = 24.00 kN
Xi| [+45.00 ,

Element1: | _ |= kN (compression)
X% —45.00
X3 | [-24.00 ,

Element2: | _* |= kN (tension)
X§ +24.00

P2.2. Element1,L;=0.45m, A;=5000x 10-°m?, element 2, L, =
0.36 m, A, = 8000 x 107° m2. The material is timber with a
modulus of elasticity E = 9 x 106 kN/m?.

30 kN
® @

| 0.45m | o036m |

Figure P2.2

Answer:
u; = 0.00065 m, u, = 0.00035 m, uz = 0, Ry3 =-70.00 kN

X | [+30.00
Element 1: |7 30.00 kN (compression)
X5 —oU.

73



74

General Principles

X | [+70.00 ,
Element 2: | _° |= kN (compression)
X2 | [-70.00

P2.3. Element 1, L; = 0.18 m, A; = 300 x 107° m?, element 2,
L, = 0.42 m, A, = 800 x 107 m?, element 3, L; = 0.25 m,
Az =500 x 10" m?2. The material is steel with a modulus of
elasticity E = 210 x 106 kN/m?.

1 935KkN 2 3 1740kN 4
38.5 kN —»W
® @) ®

|‘ 0.18m ‘|‘ 0.42m ‘| 0.25m ‘|

| | | |
Figure P2.3
Answer:
u; = 0.00034 m, u, = 0.00023 m, uz = -0.00010 m, uy = 0,
Ry4 = 42.00 kN
X1 [+38.50
Element 1: |7 kN (compression)
X5 | | —38.50
[X2] [+132.00
Element 2: | _° |= kN (compression)
X§ | —-132.00
'X3] [-42.00
Element3: | _° |= kN (tension)
Xi | +42.00

P2.4. A block of concrete of thickness 0.120 m and its other
dimensions are as shown in Fig. P2.4 is fixed at nodes 1 and
4. Calculate the displacements and the forces developed at
the nodes of the block. The modulus of elasticity of concrete
E=20x10°kN/m?.

1

2
T
T
1
1

0.60 m o_4gIm @)

., 030m] 0.50m _| 0.75m |
I - 1

Figure P2.4
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Answer:
u; =0,u; =-0.00003 m, uz =-0.00005m,u, =0
RXl = 14400 kN, Rx4 = 4000 kN

X1 | [+144.00

Element 1: | _ |= kN (compression)
X% | —144.00
X2 [+48.00

Element2: | _© |= kN (compression)
X§ | —48.00
(%3] [-40.00

Element3: | _’ |= kN (tension)
X3 | |+40.00
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Chapter 3

Pin-Connected Plane Frames

Structures are usually three dimensional but the type of connections
between the members and the framing can be so arranged that the
main support structure can be analysed as a plane frame. This is a
simplifying assumption that gives results not too far from the actual
behaviour of the overall structure particularly when the secondary
members are pin-connected to the main supporting structure.
Secondary members can be in the form of purlins supporting roof
decking which are in turn supported by the main frame. There are
many types of main frames used in practice and one of these is the
truss which is treated in this chapter.

Roof trusses are used when a single member will not be an
efficient structural design option in certain situations such as large
span column free spaces as shown in Fig. 3.1. Also, one of the options
of bridge design is the use of trusses when these are considered as a
suitable choice for a particular span and applied loads as shown in
Fig. 3.2. The members in such frames are usually assumed to be pin-
connected to each other although in practice they might not have
physical pins at their ends. This assumption means that the joints
of the frame are not capable of transferring moments. Of course,
the actual construction of such frames must be consistent with this
assumption in that the connections are detailed in such a way that
they can transfer forces but are not capable of resisting moments.

Analysis of Structures by Matrix Methods

Fathi Al-Shawi

Copyright © 2023 Jenny Stanford Publishing Pte. Ltd.
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The applied loads on the frame are usually applied at the joints
and as a consequence, the members of a pin-connected frame will
develop axial forces only.

Roof deck

/ Purlins
@ i LJ [ J

Foundation

Figure3.1 Large span pin-connected frame (side rails and cladding not shown).

Top chord bracing

Hinge Bridge main truss

support

Longitudinal beam Roller support

Cross beam

Figure 3.2 Pin-connected truss as the main structure of a bridge (only main
truss pins are shown and deck not shown for clarity).

3.1 Derivation of Stiffness Matrix

From Chapter 2, of bars subjected to axial forces where each end has
one degree of freedom, we had a relationship between the stiffness,
displacements, and forces at the ends of a bar as:
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BA BA]

L LW X
BA EA {ﬁina} G
L L

The joints in a pin-connected plane frame have two degrees of
freedom defined by displacements in the x- and z-directions and in
order to make relation (3.1) applicable to such cases we introduce
displacements, w; and w; in the z -direction as shown in Fig. 3.3.

Z

I

V_Vi Wj
X et Gu— o -0 —>X —>X

Figure 3.3 Bar in local coordinates system, X and Z.

The matrix in (3.1) is extended to incorporate the displacements
in the z -direction to give

EA EA

L 0 L 0 u; X;

0 0 0 of|w| |%

EA EA o || X (3:2)
-—— 0 — o]’ j

L L w| |z,
0 0 0 o0

Notice that the expansion of the above matrix gives the forces Z,
and ZJ. in the z -direction at the ends of the member equal to zero
which means that the state of the applied forces is not changed and
the bar is still subjected to only axial forces.
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Equation (3.2) can be written in the general form
k8=F (3.3)

where the stiffness matrix relative to local coordinates is:

EA — _EA
L L
— o 0o 0 o
k=| o A (3.4)
== 0 = o0
L L
0 0 0 o0
u.

_ |s. W,
the displacement vector, 6:{@ —=| _'| and the action vector,
9;

NI <

||
I
NI <

3.2 Transformation from Local to Global
Coordinates

Quantities in (3.2) are relative to the local x - and z -axes where X
represents the direction of the longitudinal axis of the member and
when this does not coincide with the global x-axis these quantities
have to be transformed to become relative to the global x- and z-axes.
Such transformation is necessary because the overall structure
stiffness matrix is written relative to global coordinates.

Suppose that a member lies initially along the global x-axis and
then it is moved to take the final position shown in Fig. 3.4. The new
position of the member is achieved by a rotation about the y -axis by
a clockwise (i.e. positive) angle of 0y - Notice that the y - and y-axes
are still coincident but the local X -axis is now making an angle 0y
with the global x-axis.
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Figure 3.4

The displacements and forces relative to local coordinates are
transformed to be relative to the global coordinates as follows:

Figure 3.5
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3.2.1 Transformation of Displacements

With reference to Fig. 3.5, the displacement u; along the X -axis is
equal to the algebraic sum of the components of the displacements
u;and w;and is given by:

U; = U;C0sQy; — W;singy

Similarly, the displacement w; along the z-axis is equal to the

algebraic sum of the components of the displacements u; and w; and
is given by:

W; = U;SinQg + w;cos@y

and in matrix form

U cosQy —sin(ps7 u
w, | sin@y  cosy || w;

u. u; cos@; —sinQy
_'"|=p-| ' | wherep.=| .
w | Y| w, Y |'sing;  cosoy

Sometimes it is more convenient to write the above transfor-

mation matrix in a general form as
|:7\’xx sz:|
‘}y 7"2}( 7\’22

where the A’s are called the direction cosines in vector analysis and
are defined as follows:

kfx is the cosine of the angle made by the local x -axis with the
global x-axis = cos@y.

Ay, is the cosine of the angle made by the local X -axis with the
global z-axis = (:os((py + 90) = —singy.

Az is the cosine of the angle made by the local z -axis with the
global x-axis = cos(90 - (py) =singy.

A,, is the cosine of the angle made by the local z -axis with the
global z-axis = cos@y.

Similarly for node j



Transformation from Local to Global Coordinates

u.

u 1
For nodesiandj, | W, :lpy 01 w; |, where Oz{g g}
u; 0 py|Y
v_vj w;
The full transformation matrix is
u cos@;  —sinQy 0 0 u;
w; sing;  cosQy 0 0 [|w;
Y; 0 0  cos@y —singg || Y;
w; 0 0 sing; cosgy || W;
or
3=r8 (3.5)
where r is the transformation matrix which is given by:
cos@y —sinQy 0 0
- sing;  cos@y 0 | 0 (3.6)
0 0 cos@y  —singy
0 0 sin@;  cosQy

3.2.2 Transformation of Forces

With reference to Fig. 3.6, the force )_(i is equal to the algebraic sum
of the components of the forces X; and Z; along the X -axis and is
given by:

)_(i = Xjcos@y —Z;singy

Similarly, the force Z is equal to the algebraic sum of the
components of the forces X, and Z; along the z -axis and is given by:

Z =X;sin@y +Z;cos@y

and in matrix form

)_(i cos@;  —sinQg |[X,
Zi - sing;  cos@y || Z;

83



84 | Pin-Connected Plane Frames

-— =] N

Figure 3.6

X; 0 py X

Similarly for node j

NI <

For nodes i and j,

|
N



Transformation from Local to Global Coordinates

The full transformation matrix is

X;| [cosg; —sing; o 0o X
Z; sin@;  cosQy 0 0 Z,
)_(j o 0 cosp; -singy | X;
Z]. 0 0  sing; cos@y || Z;
or
F=rF (3.7)

Notice that matrix r for the transformation of forces from
local coordinates to global coordinates is the same as that for the
transformation of displacements as given by (3.6) because both of
them are vectors having the same respective directions relative to
the relevant coordinate axes.

The transformation matrix, r given by (3.6) can be written in a
more convenient form by expressing sing; and cos@y in terms of
the coordinates at the ends of the member as shown in Fig. 3.7.

85
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] z; -z ;-2 Z;
singy = =— =——
L L L

Notice that for positive rotation ¢y, z; < z; and hence z; is
negative.

L:\/(xj —xi)2 +(zj —zi)2 :\/xizj +zizj

Thus the transformation matrix r becomes:

X /L zy/L 0 0
-z; /L x; /L 0 0
0 0 x; /L zy /L
0 0 -z /L % /L

3.3 Stiffness Matrix Relative to Global
Coordinates

The overall structure matrix is written relative to global coordinates,
therefore the stiffness matrices of the members of the structure
have to be transformed and written relative to global coordinates as
explained below.
We have from (3.3), k& =
Substitute §=r§ and F
equation to get

(relative to local coordinates).
rF from (3.5) and (3.7) in the above

F
k(r8)=rF

Premultiply both sides by r!

r k(r8)=r"'rF and since r-Ir = I (the unit matrix)
r'kr§ =F

One of the properties of the transformation matrix is that its

inverse is equal to its transpose, i.e. r’1=rT
(r"kr)8 =F, which can be written as

K6=F (3.9)

where k is the stiffness matrix of the member relative to global
coordinates and is given by:
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k=r"kr with k and r as given by (3.4) and (3.8) respectively.
Thus

_ _[ EA EA
X /L —z;/L 0 0 A 0 = 0
Ko zy /L xy/L 0 0 0 0 0 0
0 0 xy/L —z;/L\|_EA , EA
0 0 z; /L Xjj /L L
- “Lo o o of
[x; /L z;/L 0 0 |
-z /L x; /L 0 0
0 0 X /L zy /L
| 0 0 —zy/L x;/L]
| EAX)  EBAxz;  EAY  EAxgz;
13 13 T
EAx,z; EAz] EAx,z; EAz;
3 3 T3 T3
k=| L L L L (3.10)
B EAxij _ EAxijzi]- EAxij EAxijzij
Iy L3 L 13
2 2
i EAx;z; B EAzj EAx;z; EAzj
. i iy I
Equation (3.9) can be written as:
ki k)18 L
EAx;  EAxz; EAX] EAxz;
3 3 ] E
Woo| L L L ¢

1) 1)

3 I I 3

EAx;z;; EAZ’ EAx;z; EAZ’
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EAX] EAx;z; EAx; EAxz;

T3 T3 3 3
k,=| © Y ooloand k=] b v
_ EAx;z; B EAZ; EAxyz;  EAz;

2 2 I 2

Note: Use the global stiffness matrixkin (3.10) to calculate the displacements

§ and hence the external reactions. Then use the local stiffness matrix k in

(3.4) and S as calculated from (3.5) to find the actions on the member as

explained in the example below.

Example 1

Calculate the displacements in the x- and z-directions at nodes 1, 2,
3, and 4 of the pin-connected plane frame shown in Fig. 3.8. Hence
find the reactions at the supports 1 and 4 and the internal forces
developed in the members of the frame. The modulus of elasticity of
all the members is E = 210 x 10°kN/m? and the cross-sectional area

of the members is as follows:
A;=350%x10°m?3 A,=320x10°m?,
A3=440x10°m? A,=350x% 10°m?,
As =680 x 10°m?,

pin support roller support

(Node 1 is taken as the origin of the global coordinates system.)

Figure 3.8
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Calculation of stiffness matrices of the members of the
structure

Member 1

Member address in the member stiffness matrix k: i j

Structure address in the overall structure matrix K: 1 2

The above correspondence means that member 1 contributes to
only nodes 1 and 2 of the overall structure.

E=210x10°kN/m? A =350 x 10"°m?

x=0,%=3m,x;=%-%x=3-0=3m

2;=0,2=0,2;=2-2=0-0=0

L=x}+z2 =32 +0? =3m

Substitute the above values in (3.10) to get the stiffness matrix of
member 1 relative to global coordinates as:

51
8, =9, 8;=9,
—_—
u; wip W W
Uy Wi ou \£ (3.11)
2450 0 -2450 0]u,
Wl 00 0 0w
~2450 0 2450 0]u,
0 0 0 Ofw,

(245 0 —24.50 O]
ki =10 , kj=10° ,
0 0 0 0
[—245 0 2450 0]
kl=10° , ki=10°
J o ol Y 0 0]
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Member 2
X
jg3
in2
Member address: i j
Structure address: 2 3

(i.e. member 2 contributes to only nodes 2 and 3 of the structure.)
E=210x10°kN/m? A =320 x 10°m?
X=3m,x=3m,x;=%X-%=3-3=0
2;=0,2=2m,7;=2-2=2-0=2m

L=x}+z2 =0? +22 =2m
Substitute in (3.10) to get

u, WwW; u; ws (3.12)
0 0 0 0 u,
12 = 10° 0 3360 0 -33.60|w,
0 0 0 0 u,
0 -33.60 0 33.60 |w,

, .40 0 , s[0 0
k% =10 , k2=10 ,
0 33.60 0 -33.60

0 0 0 0
k2 =10° , k2=10° :
1 0 -33.60] 0 33.60
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Member 3
3
j
1
i
Member address: i j
Structure address: 1 3

X

A

(i.e. member 3 contributes to only nodes 1 and 3 of the structure.)
E=210x10°kN/m? A =440 x 10°m?

x=0,x=3mx;=%-%x=3-0=3m
2;=0,2=2m,7;=2-2=2-0=2m
L=xt+22 =32 +2% =3.606m
Substitute in (3.10) to get
53
$, =9, 8]- =0,
—_— —_——
U; Wi U Wi
Uy Wi Us W3 (3.13)
17.740 11.83 -17.74 -11.83|u,
13 2103 11.83 789 -11.83 -7.89 |w;
B -17.74 -11.83 17.74 11.83 |u,
-11.83 -7.89 11.83 7.89 |w,
3 3| 17.74 11.83 3 5| —17.74 -11.83
k3 =10 L K= )
" 11.83 7.89 ) -11.83 -7.89
3 ;| —17.74 -11.83 3 3| 17.74 11.83
k;; =10 ,» kjj=10 .
) -11.83 -7.89 11.83 7.89
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Member 4
2 4 _
» X
i j
Member address: i j
Structure address: 2 4

(i.e. member 4 contributes to only nodes 2 and 4 of the structure.)
E=210x10°kN/m? A =350 x 10" m?
X=3mx=7mXx;=%X-%=7-3=4m
2;=0,2=0,2;=2-2=0-0=0

Lz\/xizj"'zizj =\/42+02 =4m

Substitute in (3.10) to get

u; W, u; W
u, w, u, w, (3.14)
1838 0 -18.38 O0]u,
13 Z10° 0 0 0 0w,
-1838 0 1838 O0|u,
0 0 0 0w,
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Member 5
3
i
4
j
\ X
Member address: i j
Structure address: 3 4

(i.e. member 5 contributes to only nodes 3 and 4 of the structure.)
E=210x10°kN/m? A = 680 x 10°m?
X=3m,x=7mXx;=%X-X=7-3=4m
z;=2m,7;=0,2i=2-2=0-2=-2m

L= xt+22 =4 +(-2) =4472m

Substitute in (3.10) to get

§3
§, =9, 6]- =9,
—_— —_—
U; Wj Uy wj
Uy W u, W, (3.15)

2554 -12.77 -25.54 12.77 |us
5| —12.77  6.39 12.77 -6.39 |w,

k=
~25.54 1277 2554 -1277 |u,
1277  -639 -1277 639 |w,
s .5l 2554 -1277| o .[-2554 1277
ki =10 , kj=10 :
~12.77 639 12.77 -6.39

2554 12.77 25.54 —12.77
k;:103[ } > = 03{ }

12.77 -639| U -12.77  6.39
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Assembly of the overall stiffness matrix relative to global
coordinates

The general relationship for the overall structure is K6 = F which can
be written as
81 8Z 83 54

uy  w; U W, u3 Wz u, W,

U Xy

L \CF Ki» Ki3 Kisg 81 Fy
W1 Zq
) X,

K21 K22 K33 K4 8, F,
W» Z,
us B X3

K3 K3, K33 K34 83 F3
W3 Z3
Uy Xy

K41 Ky, Ky3 Kysg 84 Fy
Wy Zy

Since there are two degrees of freedom (u and w) at each node,
the coefficients in the overall structure stiffness matrix, K, are 2x2
sub-matrices rather than single numbers. Any coefficient in K is
derived from the summation of the contributions of the members in
the structure to that coefficient, i.e.

g=m

_ g

K; = ZKU
g=1

where Kﬁ. is a 2x2 sub-matrix representing the contribution of
the g member to the ij*" coefficient in K, and m is the number of
members in the structure (=5 in this example).

Each of the members of the frame will contribute to the overall
structure stiffness matrix, K, according to the relationship between
the member address and the structure address.

Contribution of member 1 to the overall stiffness matrix, K, will
be denoted by K! and found as follows:

Member address i j

Structure address 1 2

From the above correspondence between nodes 1 and 2 of the
structure and the member nodes, i and j, it follows that member 1
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will contribute to the coefficients of the overall structure stiffness
matrix, K, as shown in the table below:

subscript of coefficient in K 11 12 21 22
subscript of contributing coefficient from k! ii ij ji ji
From (3.11)
245 0 -2450 0
1 _1,1_103 1 _1.1_4103
Ki; =k; =10 { 0 0}, Klz—kij—lo { 0 0},
-245 0 2450 0
K;lzk}izlo{ 0 0}, and K§2=k]-1j=103{ 0}.
Contribution of member 2
Member address i j
Structure address 2 3
subscript of coefficient in K 22 23 32 33
subscript of contributing coefficient from k? ii ij ji ji
From (3.12)
0 0 0 0
K3, =ki=10° , K3, =ki=10° ,
2o 0 3360 2 Y 0 -33.60

0 0 0 0
2 _ 1,2 _ 3 2 _1,2 _ 3
K%, =k% =10 {0 _33.60}, and K3;=k}=10 {0 33.60}.

Contribution of member 3

Member address i j
Structure address 1 3
subscript of coefficient in K 11 13 31 33
subscript of contributing coefficient from k3 ii ij ji ji
From (3.13)
17.74 11.83 -17.74 -11.83
K3, =k} =10° , K=k =10° ,
11.83 7.89 ) -11.83 -7.89
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-17.74 -11.83

K3y =l =10° {—11 83 -7.89

3 3 3|17.74 11.83
, and K33 =kj;=10

11.83 7.89 |

Contribution of member 4

Member address i j
Structure address 2 4
subscript of coefficient in K 22 24 42 44
subscript of contributing coefficient from k* ii ij ji jj
From (3.14)
1838 0 -1838 0
4 4 3 4 4 3
Ky, =k;; =10 { 0} Kzs =k; =10 { 0}'
-18.38 0 1838 0
4 4 3 4 4 3
Ky =k;; =10 { 0 0}, and K,, =k; =10 [ 0 0}.
Contribution of member 5
Member address i j
Structure address 3 4
subscript of coefficient in K 33 34 43 44
subscript of contributing coefficient from k> ii ij ji ji
From (3.15)
2554 -12.77 -25.54 12.77
K3 =kj =107 . K3, =kj =10’ ,
-12.77 6.39 ) 12.77 -6.39
-25.54 12.77 2554 -12.77
K3, =k =10° , and K3, =k>=10° .
) 12.77 -6.39 V -12.77 6.39

Note that in general, not all the members contribute to a
particular value of K;;.

Ky, =K +K23 +K3 +Kf +K, =kl +0+k3 +0+0

10} {24.50 0} L10° {17.74 11.83}

0 11.83 7.89

;| 42.24 11.83
11.83 7.89

(i.e. only members 1 and 3 contribute to K;4)

Ky, =Ki, +K5, +K3, + K, +K7, =k +0+0+0+0
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(i.e. only member 1 contributes to K;;)
Ki3 =Kl3 +Ki3 +Kj; +Kf3 +Ki3 =0+0+k] +0+0

_10° -17.74 -11.83
B -11.83 -7.89

(i.e. only member 3 contributes to K;3)

1 2 3 4 5 _ _ 00
K, =Kj, +Ki, +Ki, +K{, +K7, =0+0+0+0+0= 0 0

(i.e. no member contributes to K14)

K,y =Ky +K5, +K3, +K3; +K3; =kj; +0+0+0+0

107 ~2450 0
B 0 0

1 2 3 4 5 .1 2 4
Kzz_K22+K22+K22+K22+K22_k”+k“+0+kii+0

312450 0 3|0 0 3/18.38 0 3| 42.88 0
=10 +10 +10 =10
0 0 0 33.60 0 0 0 33.60

0 0
K23=K§3+K§3+K§3+K§3+K§3=O+k12].+0+0+0=103{ }

0 -33.60
-18.38 0
K24=K§4+K§4+K§4+K;‘4+K§4=0+0+o+k;§+0=103{ 0 0}

Ky =Kj; +K5, +K3; +K3; +K3; =0+0+k} +0+0

_10° -17.74 -11.83
- -11.83 -7.89

K32=K§2+K§2+K§2+K§2+K§2=o+k.2.+0+0+0=1030 0
4 0 -33.60

Ki3 =Kj3 +K33 +K3; + K3 +K33 =04k + k5 +0+k]

3| 0 0 3117.74 11.83 3| 2554 -12.77
=10 +10 +10
0 33.60 11.83 7.89 -12.77 6.39
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_10° 4328 -0.94
B -0.94 47.88

Ksy =K}y +K3, +K3, +K3, +K3, =0+0+0+0+k]

_10° ~25.54 12.77
B 12.77 —-6.39

K,, =K. +K2, +K3, +K% +K3 —0+0+0+0+0—{O 0}
41 — 41 41 41 41 41 — - 0 0

K, =KL +K2, +K, +K* +K5, =0+0+0+k! +0=10° 038 O
42 T 242 42 42 42 42 — ji - 0 O

1 2 3 4 5 5
Ky3 =Ki3 +Ki3 +Ki3 +Ky3 +Ky3 =0+0+0+0+kj;

10 —2554 12.77
- 12.77 -6.39

Kyq =Ky + Ky +K3, +K3, +K3, =0+0+0+k} +k;
511838 0 3| 25.54 -12.77 ;| 4392 -12.77
=10 +10 =10
0 0 -12.77 6.39 -12.77 6.39

Or by inspection (based on the correspondence of the member
and structure addresses) as:

1 3 1 3
kj +Kj; kj ki 0
kj kj + ki +ki ki kil
K= (3.17)

3 2 2 3 5 5
K3 K2 K4k +kS | xS

4 5 4 5

Y kji ki kj +kj;

Load vector

The load vector, which is written in terms of global coordinates, will
be composed of the forces acting at the nodes and is given by:
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Since there are two degrees of freedom at each node which are
defined by the displacements u and w in the x- and z-directions
respectively, the corresponding forces will be X and Z. Thus:

X, Ry, ) .
F = = , where R,; and R,; are the reactions in the x-
1Z1] Rz |
and z-directions respectively at the hinged support 1.
(X, ] [ 0] X;| [20 X, 0
F2 = = , F3 = = B and F, = = )
| Z, | [ —45] Zs 0 Z, Ry,
where R, is the reaction in the z-direction at the roller support 4.
Ryy
Rz1
0
—45
F= (3.18)
20
0
0
| Rzs
Substitute the values of K in (3.17) and F in (3.18) to get:
42.24 (1183 |-24.50]0 -17.74|-11.83 | 0 0 uw | |Rx
11.83 |7.89 0 0 -11.83]-7.89 |0 0 wq Rz1
-24.50 |0 4288 |0 0 0 -18.38| 0 u; 0
0 0 0 33.60 JO -33.60 |0 0 wy |_|-45] (3.19)
-17.74 |-11.83 | 0 0 43.28 |-0.94 |-25.54|12.77 U3z 20
-11.83 |-7.89 0 -33.60§-0.94 |47.88 }12.77 |-6.39 w3 0
0 0 -18.38 0 -25.54112.77 43.92 [-12.77] Ju, 0
0 0 0 0 12.77 |-6.39 |-12.77|6.39 wy Rz4
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Boundary conditions

The next step is to apply the boundary conditions as follows:

At node 1 where there is a pinned support allowing no
displacement, then u; = 0; and in order to enforce this boundary
condition, delete row 1 and column 1 of the above matrix.

Similarly, w; = 0; and in order to enforce this boundary condition,
delete row 2 and column 2 of the above matrix.

At node 4 where there is a roller support allowing displacement
in the x-direction only but not in the z-direction, then, w, = 0; and in
order to enforce this boundary condition, delete row 8 and column 8
of the above matrix.

In some cases the matrix needs to be compacted after deletion of
some of the rows and columns. However, matrix compaction is not
necessary in this particular example.

The resulting ‘reduced’ matrix is:

[ 42.88 0 0 0 -1838J[u, | [ 0 ]

0 33.60 0 -3360 0 |[w,| |-45

10°| 0 0 4328 -0.94 -2554| u; |=| 20
0 -33.60 -094 47.88 1277 | wj

|-1838 0  -2554 1277 4392 |u,| | 0 |

Calculation of displacements

The above set is written in the form of simultaneous equations as:

42880u, + Ow, + Ouz + Owz - 18380u,=0

Ouy + 33600w; + Ouz - 336000w3 + Ouy = -45

Ouy + Ow, + 43280u3 - 940w; - 25540u, = 20

Ou, - 33600w, - 9480u; + 47880w3 + 12770u, =0

-18380u, + 0w, - 25540u3+ 12770w3 + 43920u,=0

The solution of the above set of simultaneous equations is:

u,;=0.002039 m, w,=-0.008540 m, u3=0.003113 m,

w,=-0.007200 m, and uy = 0.004757 m.

We also have, from the boundary conditions, u; = 0, wy = 0, and
wy=0.

So the full column vector of displacements for the whole structure
is:
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Uy 0

w, 0
o, u, 0.002039

5|82 |_| w2 |_|-0.008540 (3.20)
8| |ug | | 0.003113
8,| |wy| |-0.007200

u, | | 0.004757

w, 0

And the deformed shape of the frame is shown in Fig. 3.9.

initial shape

deflected shape

Figure 3.9 Deformed structure.

Calculation of the reactions at the supports

The reactions can be found from the full matrix in (3.19) as follows:
The reaction at support 1 in the x-direction is calculated from the
first row
42240uy + 11830w, - 24500u; - 17740u3 - 11830w3 = Ruy;
Ry1 = 42240 x 0 + 11830 x 0 - 24500 x 0.002039 - 17740 X
0.003113-11830 % (-0.007200) = - 20.00 kN
The reaction at support 1 in the z-direction is calculated from the
second row
11830u, + 7890w, — 11830u3 - 7890wz = R4
R,1 = 11830 x 0 + 7890 x 0 - 11830 x 0.003113 - 7890 X
(-0.007200) = 19.98 kN

101
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The reaction at support 4 in the z-direction is calculated from the
eighth row

12770uz3- 6390wz - 12770uy + 6390w, =R,4

R, = 12770 x 0.003113 - 6390 x (-0.007200) - 12770 X

0.004757 + 6390 x 0 = 25.01 kN

Calculation of actions (forces) developed in the members

These are usually calculated relative to the local coordinates of
the member from (3.3) as F=k§, where k is given by (3.4), the
displacement vector & is obtained from (3.5) as d=rd, r is the
transformation matrix which is given in (3.8) and 9 is the vector
of displacements at the ends of the member relative to global
coordinates obtained from (3.20).

Member 1
6 -6
EA _210x10 x350x10 _ 24500 kN/m
L 3
Substitute in (3.4) to get
24500 0 -24500 O
= 0 0 0 0
| -24500 0 24500 0
0 0 0 0
Xi]-=3m,Zi]-=0,L=3m,
Substitute in (3.8) to get
1 000
; |01 00 ) .
r= =1 (the unit matrix)
0010
0 0 01

The above result could have been found by inspection since the
local x -axis of member 1 coincides with and pointing in the positive
direction (i.e. node j is to the right of node i) of the global x-axis.

uy 0

5| {Bl} Wil O
51|18, w || 0.002039

w, | |-0.008540
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0
51=r181=161= 1 0

0.002039

—0.008540
X 24500 0 -24500 0 0 -49.96
7 _F g o 0 0 0 0 |l o
XL o ~|-24500 0 24500 0] 0.002039 | |+49.96
z 0 0 0 0 || -0.008540 0

The negative force at node i indicates tension.

1 2
49.96 KN < —p 49.96 kKN
i j
Member 2
EA 210x10°x320x10°°
EA_ 21010 %3200 " _ 33600 kN/m
L 2
33600 0 —-33600 0
— 0 0 0 0
Kk =
-33600 0 33600 0
0 0 0 0
Xi]':O,Zijzzm,L:Zm,
01 0 O
, |[-1 0 0 0
r =
0 0 0 1
0 0 -1 0

u, | [ 0.002039
52 & {82} w; |_|~0.008540
82| |85 us [ | 0.003113

W -0.007200
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0 1 0 0] 0.002039 7 [-0.008540
52 257 -1 0 0 00008540 |-0.002039
0 0 0 1| 0003113 | [-0.007200
0 0 -1 0][-0.007200| |-0.003113
X3 33600 0 -33600 0][-0.008540] [—45.02
Z _w_ps.| 0 0 0 0])-0002039| | 0
Xz o ~1-33600 0 33600 0] -0.007200| |+45.02
7z 0 0 0 0|/ -0.003113 0

45.02 kN
il3
ifl2
45.02 kN
Member 3
6 -6
&: 210x10° x440x10 ~ 25624 kN/m
L 3.606
25624 0 -25624 0
—3 0 0 0 0
= ,xi]-=3m, zi]-=2m,L=3.606m
-25624 0 25624 0
0 0 0 0
0.832 0.555 0 0
. —0.555 0.832 0 0
) 0 0.832 0555

0 0 —-0.555 0.832
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= 813 _ Oy || wy _ 0
8% | 185 us || 0.003113

Wy -0.007200

0.832 0.555 0 0 0 0
5359|0555 0832 0 0 0 _ 0

0 0 0832 0555 0003113 | |-0.001406

0 0 -0.555 0.832]|-0.007200 |-0.007718
X3 25624 0 -25624 0 0 ] [+36.03
Z _EB_ps. 0 0 0 o 0 | o
X3 —25624 0 25624 0] —0.001406| |-36.03
z 0 0 0 0]/ -0.007718 | 0

The positive force at node i indicates compression.

36.03 kN

36.03 kN

Member 4

EA _210x10°x350x107°
L 4

=18375kN/m
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18375 0 -18375 0
= | 0 0 0 0
~|-18375 0 18375 0

0 0 0 0

Since the member local axis lies along the global x-axis, r*= 1.

u, ] [ 0.002039
4
84:[& }:{az} w, |_|-0.008540

5| 84 u4 0.004757
Wy
0.002039
- -0.008540
5 =rtet =18 = 8% =
0.004757
0
X3 18375 0 -18375 O 0.002039 | [-49.94
Zy| =4 —4x¢ | O 0 0  0[-0008540| | 0
X4 “|-18375 0 18375 0| 0.004757 | |+49.94
7t 0 0 0 0 0 0
The member is in tension.
2 4
49.94 KN < — 49.94 kN
i j
Member 5
EA 210x10° 10°°
EA _ 0x10°>x680x10 ~31932kN/m
L 4.472
31932 0 -31932 0
— 0 0 0 0
K° = ,
-31932 0 31932 0
0 0 0 0



Problems

xi]-=4-m, zi]-=—2 m,L=4.472m

0895 -0447 0 0
. |0447 0895 0 0
T 0 0895 —0.447

0 0 0447 0895

u; | [ 0.003113
5
85:[&]{63} w |_|-0.007200

8| 84w 0.004757
W, 0
0895 —0.447 0 0 [ 0.0031137 [ 0.006005 ]
55 _ 555 _| 0447 0895 0 0 | -0.007200| |-0.005053
=T = =
0 0  0.895 —0.447]|| 0.004757 | | 0.004258
0 0 0447 0895 0 0.002126 |
X3 31932 0 -31932 0] 0.006005 | [+55.79]
| _w_jsg_| 0 0 0 0]-0005053| | 0
X " |-31932 0 31932 0/ 0.004258 | |-55.79
75 0 0 0 0} 0002126 0
4
The member is in compression.
55.79 kN
\ 3
i
4
j
55.79 kN

Problems

P3.1. Calculate the displacements at the nodes, the reactions at
the supports, and the forces developed in the members of
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108 | Pin-Connected Plane Frames

the pin-connected plane frame shown in Fig. P3.1. A; = 500
x10°m?, A, =800 x 10 m? and both members are made of
steel with modulus of elasticity, E = 210 X 10 kN/m?.

45 kN
2 ©) 31
- 35 KN
2m @
1
| 3m
I i

Figure P3.1

Answer:
u;=0,w;=0,u;=0,w,=0,u3=0.002929 m, w3 =-0.007532 m,
Ryx; = 67.50 kN, Rz; =45.00 kN, Ry, =-102.50 kN, Rz, = 0.

X; | [-102.50
7, 0
Member1: |7 kN (Tension),
X3 +102.50
iz L0
7
X | [+81.13
VA 0
Member2: | _ |= kN (Compression).
X§ -81.13
z) Lo

P3.2. Calculate the displacements at the nodes, the reactions at
the supports, and the forces developed in the members of
the pin-connected plane frame shown in Fig. P3.2. A; = A5 =
900% 10°m? A,=300x10°m? A;=A,=600x 10°m? and
all members are made of steel with modulus of elasticity, E =
210 x 10°kN/m?.
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60 kN

40 kN »>Q

Not a joint

Figure P3.2

Answer:
u;=0,w;=0,u;=0,w,=0,u3=0.006986 m, w3=0.001292 m,
uy=0.006169 m, w,=-0.002517 m,
Ry1=-12.86 kN, R7; =-60.00 kN, Ry, =-27.14 kN, Ry, =120.00 kN.

Xi| [-40.70
A 0
Member1l: | _ |= kN (Tension),

X!| | +40.70
Z; | 0

X3 | [+12.86

VA 0

Member2: | _~ |= kN (Compression),
Xi -12.86
z| Lo
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X3 | [+48.92
VA 0
Member 3: |7 kN (Compression),
X3 -48.92
zZ| Lo
X{| [-23.19
z} 0
Member4: | _ |= kN (Tension),
Xi +23.19
Zy | 0
X5 | [+79.30
Z, 0
Member5: — |7 kN (Compression).
X3 —79.30
| Lo

P3.3. Calculate the displacements at the nodes, the reactions at
the supports, and the forces developed in the members of
the pin-connected plane frame shown in Fig. P3.3. A; = 7000
x10°m? A,=A;=A;=3000%x10°m? A,=A;=4000x 10
m? and all members are made of timber with modulus of
elasticity, E = 8 x 10°kN/m?.

1m

Figure P3.3
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Answer:
u;=0,w;=0,u;=0,w,=0,u3=-0.000804 m, w3 =0.003647 m,
uy=0.000937 m, wy =-0.003959 m, us =-0.001507 m,
ws5=-0.010067 m,
Ryx; = 30.00 kN, Ry; =0, Ry, =-30.00 kN, Rz, = 10.00 kN.

Xi| [+30.00
A 0
Member1: | _ |= kN (Compression),
x| [-30.00
7| Lo
X3 | [-18.03]
72 0
Member2: | _° |= kN (Tension),
X2 | |+18.03
2| Lo |
X3 | [-15.00]
7 0
Member3: | _° |[= kN (Tension),
Xi +15.00
g L0
X3 | [+10.00
Zy 0
Member4: | _° |= kN (Compression),
X+ | |-10.00
z| Lo
X3 | [+15.00
73 0
Member5: —|= kN (Compression),
X2 | [-15.00
) L0
X5 | [-18.03
78 0
Member6: | _ |= kN (Tension).
Xg +18.03
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P3.4. Calculate the displacements at the nodes, the reactions at
the supports, and the forces developed in the members
of the pin-connected plane frame shown in Fig. P3.4. All
members have the same cross-sectional area, A= 120 x 10
m? and are made of aluminium with modulus of elasticity,
E =70 x 10°kN/m?2.

2 ® 4

- 10 kN

60° 60° 60° 60°
1 O 5
@ 3‘ ©® A
20 kN
L 2m P 2m N
I I
Figure P3.4

Answer:
u;=-0.005130 m, w; =0, u, =-0.003274,w, =-0.005621 m,
u3=-0.003160 m, w3=-0.010105 m, uy=-0.007213 m,
w,=-0.005965 m, us =0, ws =0,
Rygq =0, Rz; = 14.33 kN, Ry5 = 10.00 kN, Ry5=5.67 kN.

Xi | [+16.55
A 0
Member1l: | _~ |= kN (Compression),

X% -16.55

| Lo
Xt | [-827
72 0

Member 2: _12 = kN (Tension),

X3 +8.27

2| Lo



_3 =
X5
73
Member 3: _23
X3
73
Z3 |
T4
X,
74
Member 4: _24 =
Xy
4
Z,
35
X
=5
Zy
Member5: —
X3
=5
Z3
36
X3
76
Member 6: _‘Z
X5
76
Zs
37
X4
77
Member 7: _‘;
X5

-16.55
0 .
= kN (Tensmn),
+16.55

0

[+16.55
0
-16.55
0

kN (Compression),

-6.55
0 .
= kN (Tens1on),
+6.55

0

-13.27
0 .
= kN (Tensmn),
+13.27

0

+6.55
0

= kN (Compression).

—6.55

Problems
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Chapter 4

Bending of Beams

Beams are straight members subjected to loads acting between the
supports and usually in the direction of gravity, i.e. along the z-axis.
The boundary conditions may include fixed, hinged, roller, elastically
restrained, or free types of support. The beam may be prismatic, i.e.
with a constant cross section otherwise it is non-prismatic. In this
book only prismatic beams are treated in detail. When a case of
non-prismatic beam is encountered then the beam may be divided
into elements, each of which is assumed to have constant cross
section leading to an approximate solution and the accuracy can be
improved if the number of elements is increased.

The beam under load will deform undergoing deflections and
rotations due to the curvature of the deflection curve and the actions
developed in the beam are bending moments and shear forces.

4.1 Derivation of Beam Stiffness Matrix

The stiffness matrix of a beam is the relationship between the
actions (forces and moments) and displacements (translational and
rotational) at the ends of the beam.

The derivation of the stiffness matrix is based on the local
coordinates system X,y,z with the X -axis running along the axis
of the beam. The displacements and forces are relative to the local
X -axis thus they are written with a bar.
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Bending of Beams

Consider a beam subjected to forces and moments Z, and M, at
node i and Z]. and l\_/[i at node j as shown in Fig. 4.1. The beam will
deform from its initial straight horizontal position into the shape
shown with the translational and rotational displacements w;
and 6, at_node iand w; and 5j at node j. The moment M and the
rotation 6 are both about the local y -axis.

Z,Z  shape after deformation

wj
w;i
initial shape
—_ o ° > X, X
node i node j
X
L

Figure 4.1 A beam element.

Castigliano’s theorem is used to find a relationship between the
actions (forces and moments) applied at the ends of the beam and
the corresponding displacements (translational and rotational).

The derivation is divided into two parts: the first part assumes
that the beam is fixed at nod j and the second part assumes that the
beam is fixed at node i and then these two parts are superimposed
linearly to get the final result. For the first part where the beam is
fixed at node j, assume that the beam undergoes a translational
displacement, w; and a rotational displacement, éi at node i. The
forces and moments (actions) Z, 1\7[;, Z].', and l\_/I'j at the endsiand j
of the beam are as shown in Fig. 4.2 and these will be found in terms
of w,; and 9,.



Derivation of Beam Stiffness Matrix

m1t1al shape

L

—_—— NI —

beam element

Figure 4.2

Cut a section at a distance X from node i and consider the
equilibrium of the left potion of the beam. At the right end of the
left portion of the beam the clockwise bending moment M" and the
shear force V' in the positive z-direction, shown in Fig. 4.2, are both
positive.

From equilibrium of the left part of the beam and by taking
moments about the cut section, we get

M, +ZX+M =0
M =-M, -ZX (4.1)
The strain energy in bending is:
tM2dx
- X
B = | 4.2
s oKl (42)

where E is the modulus of elasticity and I is the second moment of
area of the cross section about its centroidal y -axis. Strictly, it should
be written as I; but because bending is about the y -axis only and
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118 | Bending of Beams

for simplicity it is written as I. This notation is used in subsequent
chapters except in Chapter 10 where there is bending about the Yy -
and z -axes and the appropriate subscripts will be used.

Castigliano’s theorem states that the deflection at a point in the
structure is equal to the partial derivative of the strain energy in
with respect to the force acting at that point. Thus:

_ _OEg _JEg oM
E)Z oM dZ,
JE;  (Mdx
From equation (4.2), —- = Jﬂ
oM EI
M _
From equation (4.1), aT =-X

i

Lo L. — = _

M. -ZX)(~
Equation (4.3) becomes, w; = J%(_i)dﬁ = j%di
0 0

o 1(=12 -
Wo=—| M —+7Z — 4.4
1 EI( 12 13J ( )

Similarly, Castigliano’s theorem states that the rotation at a point
in the structure is equal to the partial derivative of the strain energy
with respect to the moment acting at that point. Thus:
L

' oM, oM oM,
oM
From equation (4.1), —=-1
oM

i

(4.5)

L. L - =
3 M, -Z.x)(-1
Equation (4.5) becomes, 6; = f%(—ndi = f%dg
0

2
0, = 1 ML+Z — L (4.6)
El 2

Solving equatlons (4.4) and (4.6) simultaneously for the
unknowns Z and M to get:

12EI _  6El-
S W6, (47)

Z. = 2

1




Derivation of Beam Stiffness Matrix

M; = —6—51@ + 2, (4.8)
L L
Equations (4.7) and (4.8) represent Eii of the stiffness matrix.
The force and moment at end j are calculated from consideration
of equilibrium of the whole beam.
Summation of the forces in the z-direction is zero

Z + Z; =0, Z,- = —Z and substitute equation (4.7) we get

= 12E1 _  6El-
Zj=———w;+—6; (4.9)
L L

Summation of the moments about node j is zero

M, + Z;L+M} =0, M;=-M, - Z.L and substitute equations (4.7)
and (4.8) to get

e (4.10)

Equations (4.9) and (4.10) represent l_<]-i of the stiffness matrix.
For the second part of the derivation, assume that the beam
is fixed at node i and has a translational displacement, v_v]- and a
rotational displacement 0, at node j. The forces and moments

(actions) Z M Z , and M at the ends i and j of the beam are
shown in Flg 4, 3 and these Wlll be found in terms of w; and 6

The bending moment M ata d1star1ce X fromend i 1s now found
in terms of the moment M and force Z atnodej as follows

From the equ1l1br1um of the whole beam, Z = —Z and the
summation of the moments about node i is zero, Mi = —Mj + Z]- L.
From the equilibrium of the left part of the beam
M =M -7

Substitute for Z' and M in term of z] and l\_/l] , respectively to
get

M =M, -Z (L-X) (4.11)
(The above equation could have been derived directly by
considering the equilibrium of the right part of the beam, but that

might cause some confusion to the reader with the signs of the forces
and moments.)
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Lowy
M “dx
E, = J
2EI
0
~ _OEs _ 9Es oM’
' oz, oM oz
v L=
JE X
From equation (4.12), —>-= .[ ME(IiX
M -
From equation (4.11), E;T =—(L-%)

initial shape

Z
i |
L |
|
Figure 4.3
Equation (4.13) becomes
L L

(4.12)

(4.13)

J EIl
0 0

W, =j—%(L—i)d§=I_[Mi 4 0L-0IL-X)

(4.14)



Derivation of Beam Stiffness Matrix

~  OEg JE; oM’
0, _ % _ OB oM (4.15)
oM; dM JM;
From equation (4.11), al =+1
oM;
L . L 5" -
Equation (4.15) becomes éj = JM—(+1)d§ = jwdg
EI
0

El
= 1 1
0= M L- Z — 4.16
! EI[ 1 2 ] (+16)
Solving (4.14) and (4.16) simultaneously to get
=+ 12EI _ 6El-
Z]- = L3 Wj +L—29J (417)
—. 6El_ 4El-
Mj Z?Wjﬁ'Tej (418)

Equations (4.17) and (4.18) represent 1_<]-j of the stiffness matrix.
From equ111br1um of the whole beam

Z +Z =0, Z ——_]", substitute (4.17) to get
= 12EI _  6El-
Zi =— L3 W]- —?6 (419)

Summation of the moments about node i is zero
M; —ZL+M; =0, M; =-M; +ZL, substitute (4.17) and (4.18)
to get

M, = 6—51wj 2El =0 (4.20)
L L
Equations (4.19) and (4.20) represent 1_<i]- of the stiffness matrix.
The final end forces and moments are obtained by adding the
approprlate equatlons obtained from cases one and two as follows:

Z Z + Z and from (4.7) and (4.19) we get

12EI _  6El- 12EI 6El -

I R
1\_/[i = 1\_/1'i +1\_/['i' ,and from (4.8) and 4.20) we get
— 6El _ 4El- 6EI_ 2El-

Mi = —L—ZW1 +T91 +L—2Wj L 9 (422)

NI
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122 | Bending of Beams

7. =17 +Z;' ,and from (4.9) and (4.17) we get
12E1_  6EI- 12EI_  6El-
j == L3 w; L—ZGI +?Wj +L_26J (423)
M; =M, +M;, and from (4.10) and (4.18) we get
6El _ 2EI- 6EI_ 4El-
——W;+—0; +—

j L_Z i L i T+ L2 W]-+Tej (424)

=i

Writing equations (4.21) to (4.24) in matrix form leads to:

[ 12EI 6El  12El  6EI|
I B e N
% 6El  4El  6El  2EI | i
M. 2 T T2 T 61.
Mil_| o L L Lo® (4.25)
Z]- _12EI @ 12EI @ wj
M v r 12 ;
_6EI 2EI 6EI 4E]
12 L 1 L
or
F=k$ (4.26)
Z ,
M . - |6, .
where F= 7 is the action vector, §=| _ | is the displacement
j W
1\7[. —
) 6]
vector, and

[ 12EI _6El  12EI 6EI |

I T
_ 6EI 4El 6EIl 2EIl
_ 2 2
k= L L L L (is the stiffness matrix). (4.27)
12E1  6EI 12EI 6EIl
P 2

6El  2EI  6EI  4EI
2 L 12 L




Derivation of Beam Stiffness Matrix

The above relationships can alternatively be derived by a finite
element approach using the so-called interpolation polynomial
which defines the displacement along the element as explained in
Appendix 2.

The overall stiffness matrix is assembled relative to global
coordinates. So, the first step is to find the stiffness matrices of the
members relative to the global coordinates. For a beam element
where its X -axis coincides with the global x-axis the displacements
and stiffness matrices derived relative to local coordinates will
have the same values relative to global coordinates, i.e. they do not
need to be transformed. This follows from the fact that in this case
the transformation matrix r will be equal to the unit matrix [ and
by noting that k= r"kr=1"kI=k. Thus, the stiffness matrix of the
beam relative to local coordinates is used as the stiffness matrix
relative to global coordinates, thus:

[ 12EI 6El  12E1  6EIl]
EoE ¢ P
_GEL 4Bl 6Bl 25l

2 2
k=| =L L L L (4.28)

12El  6EI  12EI  6EI
2 B 12
_GEL 2B 6B 4Bl

? L 2 L |

The stiffness matrix derived above is for an individual member
and structures are normally composed of more than one member
that are connected together to form the structure. The required
overall structure stiffness matrix is assembled by adding the
contributions of the individual members’ stiffness matrices to any
joint that is common to these members.

Example 1

Calculate and draw the shear force and bending moment diagrams
and the deflected shape for the continuous beam shown in Fig. 4.4.

The beam is made of concrete with modulus of elasticity E = 35 x
10°kN/m? and has the following properties:

Member 1: L =7 m, 1 =490 x 10~®m*

Member 2: L=6m, = 660 x 10°m*
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135 kN
24 kN/m 1
A\g B C D
N1 ©) 24 @ 3
| 7 m . 2m ‘I‘ 4m |
| I 1

Figure 4.4

Stiffness matrices of the members

Member 1
Member address: i j
Structure address: 1 2

L=7m,1=490x 10°m* E =35 x 10°kN/m?2,
Substitute the above values in (4.28) to get

3!

3, =9, 8, =9,
—_—— —_——
w; 0; W 5
Wy 1 W, 0,

600 —2100 —600 -2100]w,
. _|-2100 9800 2100 4900 |6,
| -600 2100 600 2100 |w,

-2100 4900 2100 9800 |6,

1 600 -2100 1 |—600 -2100
where kj; = , ,

-2100 9800 1712100 4900

W -600 2100 o 600 2100
712100 4900|’ 712100 9800 |



Derivation of Beam Stiffness Matrix

Member 2
Member address: i j
Structure address: 2 3

L=6m,[=660x%10°m* E =35x 10°kN/m?.
Substitute the above values in (4.28)

52
—_ L
W; 0, W; ei
w, 0, Wy 03

1283 3850 -1283 -3850|w,
, |—3850 15400 3850 7700 |6,
T|-1283 3850 1283 3850 Wy
—-3850 7700 3850 154006,

, | 1283 -3850| , |-1283 -3850
where kj; = ) )

-3850 15400| U | 3850 7700

, |—1283 3850 , |1283 3850
= ,a o .
' 1-3850 7700 J13850 15400

The general relationship for the whole structure is
Ké=F (4.29)

where K is the structure overall stiffness matrix relative to global
coordinates, & is the vector of displacements at the nodes of the
structure, and F is the load vector.

Assembly of the overall stiffness matrix relative to global
coordinates

There are three nodes in the structure therefore the overall stiffness
matrix K will consist of 3x3 submatrices. And since each node has
two degrees of freedom, w and 6, then each submatrix will be 2x2
as shown below.

Each of the members of the frame will contribute to the structure
stiffness matrix K according to the relationship between the member
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address and the structure address. In the following, the translation
w and rotation 0 at the nodes will be treated as one displacement 8.
This will make the assembly process more manageable and easily
handled. Thus, the overall stiffness matrix of the structure is

8, 5, 35
K kj 0 8
k= | Kk kjj + ki kf 5
0 K} k? 8
Wy 01 A 0, w3 0;
600 | -2100 § -600 | -2100 0 0 \ 21
-2100] 9800 § 2100 | 4900 0 0 6,

-600 | 2100 § 1883 | -1750 § -1283 | -3850 fw;, (4.30)

-2100] 4900 j -1750 | 25200 § 3850 7700 J6,

0 0 -1283 | 3850 1283 | 3850 fws

0 0 -3850 | 7700 3850 | 15400 J65

4.2 Load Vector

In the previous chapter we had pin-connected frames where the
forces on the structure were considered as point loads acting on
the joints. For continuous beams most of the loads are acting on
the members rather than directly on the joints and they have to be
transferred to the joints as equivalent forces (as well as moments).
For this purpose the members are first assumed fixed at their ends
and the forces and moments acting at these ends are calculated as



Load Vector

explained in Appendix 5. The forces and moments acting on any
joint are obtained by adding up the contributions from the members
meeting at that joint.

Consider beam AB with fixed ends at nodesiandjand is subjected
to an arbitrary load as shown in Fig. 4.5.

loads B
(M;)s (Mi)e T (M;)¢ (Mj)s
A B
ointi W mi
jointi ‘) (11 ]1) (‘ ]
(Z))s (Z)s (Z)s (Z))s
Figure 4.5

The forces (Zi ) and (Zj)f and moments (l\_/[i)f and (l\_/[j)f are
called actions on the beam due to the applied forces on the span of
the beam and are calculated assuming that the beam is fixed at its
ends i and j. The forces (Z;)s and (Z;); and moments (M;); and (M;),
are called loads on joints i and j of the structure and from the beam-
joint section equilibrium they have the same magnitude of forces and
moments as those acting on the beam but in the opposite direction.

Note that all forces and moments acting on the beam are drawn
in the positive directions as shown in Fig. 4.5 and if any of them
turns out to be negative then its actual direction is opposite to that
assumed.

The subscript (f) is for the vector of actions (forces and moments)
on the ends of the member due to the forces acting on the span
of the member. These actions are calculated relative to the local
coordinates of the member. The subscript (s) is for the load vector
on the joints of the structure. For equilibrium at the section between
the member end and the joint the quantities in the load vector on
the joint have opposite signs to those in the vector of actions on the
member. The load vector on the joints of the structure is calculated
relative to global coordinates, but because the beam local X -axis
coincides with the global x-axis transformation is not required.

When two beams meet at a continuous rigid joint then the force
and moment applied on that joint are given by the algebraic sum of
forces and moments at the meeting ends of the two beams.
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The total force and moment acting on any joint of the structure
are calculated from the combined effect of the applied load on the
beams and the reactions exerted by their support.

The load vector for the overall structure is obtained from the
magnitudes and directions of the forces and moments acting at all
joints of the structure.

To build up the load vector for the whole structure a similar
procedure as that in building up the structure stiffness matrix is
followed.

The total load vector F acting on the joints of the structure is
composed of forces and moments Fg due to the forces acting on
the span of the members in addition to the forces and moments F;
exerted by the restraints, for example the reactions of the supports
on the structure at the nodes, hence

F = FS + FC
Member 1

98kNm 98 kNm 2N/ oo iNm 98 kNm

jointl.‘} (11 21 ) ( ‘. joint 2

84 kN 84 kN 84 kN 84 kN

Figure 4.6

With reference to Fig. 4.5 for the notation and n = -24 kN/m

_ —24)\x7
(Zhy, :—%:—%:+84kN
_ L —24)x7
(Zzl)f =_n7=_—( 2) =+84 kN
_ 2 —24)x 7%
(M7) =+£=+—( ) =_98KkNm
12 12

_ 2 —24)x 7%
(M) = ol (29x7 +98 kNm
12 12
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Hence the action vector for member 1 is:

(Z{) | [+84

_ Mm! -98

F = Mode | _ (4.31)
(Z,) | |*8%
(M3) | L¥98

From equilibrium of the beam-joint section at node 1

(Z1)s +(Z1 ) =0, (Z1)s = —(211 )f =-84 kN
(Mp)s +(M;); =0, (Mp)s = —(1\_/11 )f =+98kNm
From equilibrium of the beam-joint section at node 2
(Z3)s +(Z3) =0, (Z3)s = —(221 )f =-84kN
(M% )s + (M%)f =0, (Mé )s = —(1\7[% )f =-98 kNm

or, simply, F} = —F'

(Z1)s | [-84
M! +98
F = ( 11)5 = (4.32)
(Z3)s -84
(M) ] L8
Member 2
135 kN
120 kNm 120 kNm 1 60kNm 60 kNm
joint 2 } ( ) ( Hl joint3
.‘ 2 3
100 kN 100 kN 35 kN 35 kN
a=2m | b=4m
N )
L=6m

Figure 4.7
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With reference to Fig. 4.5 for the notation and W =-135 kN

(Z2), =—V:—;’(L2+ab—a2)=—(_1?;$(6z +2x4-2")=+100kN
(Z2), :—%(L2+ab—b2):—(_13;$(62 +2x4-47)=+35kN
(M2); =+szb2 =+(_135)6>2<2><42 =-120kNm
(M2), = —szzb 12X evm

62
The action vector for member 2 is:

(Z3) | [+100
2 _ (M3) | [-120

= 4.33
L@y | | 38 o
(3); | L 60
From equilibrium, the joint load vector is given by:
S =-F
(Z3)s | [-100
M3 +120
FZ = (Ma)s | _ (4.34)
(Z3)s -35
(i) ] L0

Now calculate the resultant forces and moments acting on the
joints of the structure.

Joint 1: This joint is acted upon by a downward force of 84 kN and

a clockwise moment of 98 kNm due to the load on member 1. In

addition, the support at joint 1 exerts a force R;; and a moment Ry;.
The resultant force is given by the algebraic sum of the forces.

Rl = —84 + RZl

The resultant moment is given by the algebraic sum of the
moments.



Load Vector
Ml = +98 + RMl

Rm1 ]omt 1 )(M1)s =98 kNm

T (Z1)s = 84 kN

Rz1

Joint 2: This joint is acted upon by a downward force of 84 kN and
an anticlockwise moment of 98 kNm due to the load on member 1
and a downward force of 100 kN and a clockwise moment of 120
kNm due to the load on member 2. In addition, the support at joint
2 exerts a force Ry, .

]01nt 2
(M3)s = 98 kNm ( (M2%)s = 120 kNm

(Z3)s = 84 kN T (Z3)s = 100 kN

RZZ

The resultant force, Z, = -84 -100 + Ry, = -184 + Z,.
The resultant moment, M, = -98 +120 = + 22 kNm.

Joint 3: This joint is acted upon by a downward force of 35 kN and
an anticlockwise moment of 60 kNm due to the load on member 2. In
addition, the support at joint 3 exerts an upward force Ry;.

The resultant force, Z; = =35 + Rya.

The moment, M3 = -60 kNm.

joint 3

(M2%)s = 60 kNm .

(Z3)s = 35kN T

R23
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Therefore, the total load vector for the whole structure is

Z, | [ -84+Ry |
F, M, +98+ Ry
clp || B || 184+ Ry, (4.35)
FZ M, +22
5412 | | -35+Ry
[Ms] [ -60

The above result can also be found by direct vector addition of
the load vectors due to the loads acting on the members and the
reactions of the supports on the structure as follows:

(Z1)s | [-84]
(My)s | |+98
1 -84
Due to load on member 1 from (4.32), F; = (Z2)s |-
(M2) -98
2Js
0 0
o | LOJ
0 0
0 0
. | @ | |-100
Due to load on member 2 from (4.34), K =| .. |=
(M35)s +120
(Z3)s —35
—60
[(M3); ] L0
[(Z)e | [Ry ]
(Mi)e Ry
(Z;)c Rz,
Due to support reactions, F. = =
(Ma)e| | O
(Z3)c Rz
[((M3)e] [ O




=F +F +F. =

[—84 ] 0
+98 0
-84| |-100
+
-98| |+120
0 -35
| 0| [ -60 ] |

Load Vector

[ -84+Ry,
+98+ Ry
-184+Ry,

+22
-35+Ry;3
—60

(4.36)

which is the same as (4.35) and this simple method of vector addition
will be used in the chapters that will follow.

Substitute K from (4.30) and F from (4.36) in the general relation

(4.29) to get:

.

600 |-2100f -600 |-2100] © 0 wy [ | -84+R;,

-2100| 9800 § 2100 | 4900 | © 0 o, | |+98+R,,

-600 | 2100 | 1883 | -1750-1283 |-3850] f w, | |-184+R,,
-2100| 4900 J-1750| 25200 3850 | 7700 | | 6, +22
0 0 [-1283| 3850 | 1283 | 3850 | fws | | -35+Rs;
0 o [-3850| 7700 | 3850 [15400} | o -60

BN

(4.26)

The next step is to introduce the boundary conditions as follows:
At node 1 where we have a fixed end, both the vertical deflection
and rotation are equal to zero, i.e. w; = 0 hence delete row 1 and
column 1, and 6, = 0 hence delete row 2 and column 2.
At node 2 where there is a non-yielding support, the vertical
deflection is equal to zero, i.e. w, = 0 hence delete row 3 and column

3.

At node 3 where there is a non-yielding support, the vertical
deflection is equal to zero, i.e. w3 = 0 hence delete row 5 and column

5.
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The shaded rows and columns are those which are deleted and

the resulting ‘reduced’ matrix is:

25200 7700 |[0,] [+22
7700 154006, | |-60

The above can be written in the form of two simultaneous

equations as:

252000, + 770003 = +22
77000, + 1540005 = -60

The solution of the above equations is:
0, =+0.00244 rad

0, =-0.00511 rad

Calculation of reactions at the supports

The reactions at the supports are calculated from (4.26) as follows

From the first row

600w, - 21006, - 600w, -21000, = -84 + Ry
600x0-2100x0-600x0-2100x0.00244 = -84 + Ry
Rz = 78.88 kN

From the second row

-2100w; + 98000, + 2100w, + 49000, = +98 + Ryy
-2100x0+9800x 0+ 2100 x 0 + 4900 x 0.00244 = +98 + Ry;
Ry1=-86.04 KNm

From the third row

-600w, + 21000, + 1883w, -17500,-128305;-38500; = -184 +
Ry, -600x 0 +2100x 0+ 1883 x 0 -1750x%0.00244 - 1283 x0
-3850 x (-0.00511) =-184 + Ry,

Rz, =199.40 kN

From the fifth row

-1283w, + 38500, + 1283w3 +385003 = -35 + Ry3

-1283 x 0 + 3850 x 0.00244 + 1283 x 0 + 3850 x (-0.00511)
=-35+Ry;

Rzz3 =24.72 kN

Calculation of resultant actions at the ends of the members

The vector of resultant actions on the member at its ends F. is
calculated relative to the local X -axis and is given by: F. =F; +F



Load Vector

where

F, is the vector of actions at the ends of the member due to the
resulting displacements and is given by equation (4.26) as ﬁd =k
with k from (4.27).

E is the vector of actions at the ends of the member due to
the applied forces acting on the span of the member assuming the
member is fixed at its ends (these are commonly called fixed end
moments and forces), thus

F =k&+F

Member 1

600 -2100 -600 -2100

7l -2100 9800 2100 4900
-600 2100 600 2100
-2100 4900 2100 9800

0=r10

where r is transformation matrix and since the memb_er local X -axis
lies along the global x-axis r = [ the unit matrix, thus §=39.

Wy 0
5iogt 2| :Fl}: %] O
5].1 S, | |w, 0
0, | |0.00244
600 —-2100 -600 —-2100 0 -5.12
ﬁl_1;151_—2100 9800 2100 4900 0 | [+11.96
d= | =600 2100 600 2100 0 | | +5.12
—-2100 4900 2100 9800 || 0.00244| |+23.91
We had from (4.31)
+84
—_. |-98
F =
+84

+98
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(Z), —5127 [+84] [ +78.88
M! — - -, |+1196| |-98 -86.04
(M), =F'=F +F = + =
b, +5.12 | | +84 +89.12
(ML), +2391| |[+98| |+121.91
86.04 kNm 24 kN/m M 121.91 kNm
78.88 kN v 89.12 kN

Jj

Shear force V and bending moment M diagrams

Consider a section at a distance X from node 1 and apply the
equations of equilibrium on the left part of the member.
Summation of the forces in the z-direction:

+78.88-24%X+V =0, V=-78.88+24%

Summation of the moments about point O:

—-86.04 +78.88% — 24§(§) +M=0, M=86.04—78.88% +12x*

Calculation of deflection along the beam

The deflection along the beam can be found by solving the standard
differential equation for the deflection of beams which is derived in
Appendix 2 as given by equation (A2.4) as explained below.

d*w

=

El M, with EI=35x10° x490x107® =17150 kNm?

2_
EI(;TVZV —_86.04+78.88% — 12%°
X
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Integrate with respect to X to get

1Y _ _86.04% +39.44%% — 4% +C,
X

Atx=0, W0, henceC, =0
dx

Integrate again to get
EIw = —43.02%* +13.15%° - x* +C,
Atx=0, w=0, henceC,=0

-43.02x% +13.15%° - x*
17150

Therefore W=

Member 2

1283 -3850 -1283 -3850
72 —3850 15400 3850 7700
-1283 3850 1283 3850
—3850 7700 3850 15400

W, 0 0
52 &7 _[32]_| 62 |_| 0:00244 | =2, | 0.00244
82| [8] |ws 0 ' 0
0, | |-0.00511 -0.00511
1283 -3850 -1283 -3850 0 +10.28
5 s ~3850 15400 3850 7700 || 0.00244 | | -1.77
- ~|-1283 3850 1283 3850 0 ~|-10.28
-3850 7700 3850 15400 ||-0.00511| [-59.91
We had from (4.33)
+100
_ |=120
F =
+35

+60



Load Vector

(Z3), +10287 [+100] [+110.28
M2 — —y = -1.77 | |-120| |-121.77
(M:); =F=F +F = + =

Z2). ~1028|" | 435 || +24.72
(), ~59.91| | +60 +0.09

Notice that (1\7@ ), should be zero but the small value of 0.09 is
due to rounding off in the computations.

135 kN
121.77 kNm 0.09

( 12—OTM) (} 1 1)

110.28 kN \ 24.72 kN

Shear force V and bending moment M diagrams

Consider a section at a distance X from node 2 and apply the
equations of equilibrium on the left part of the member
Summation of the forces in the z-direction is zero

Forx<2m:+110.28+V =0, V=-110.28 kN

For2m<xX<6m:+110.28-135+V =0, V=+24.72kN
Summation of the moments about point O is zero

Forx<2m:-121.77+110.28Xx+M=0, M=+121.77-110.28%
For2ms<xX<6m:-121.77+110.28X-135(x-2)+M=0

M=+121.77-110.28% +135(X - 2)

Calculation of deflection along the beam

M=+121.77-110.28% +135[x — 2]

(The quantity inside the Macaulay’s square brackets is ignored if
negative, i.e. when x<2m.)
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Beams with Elastic Supports

2_
EI% =-121.77+110.28% —135[X - 2]
X

Integrate twice with respect to X to get
EIW = -60.89% +18.38%° - 22.5[x - 2 +C,X+C,

At x=0,w =0, and ignoring the term with the square brackets
gives C, =0.

At X=6m, w=0

2 3 3

0=-60.89(6)" +18.38(6)" —22.5[6—2] +C,(6),

hence C; =-56.34 kNm®.
~60.89%° +18.38%° —22.5[x - 2 —56.34%

El

with EI = 35 X 106X 660 x 107°= 23100 kNm?.

Alternatively, the beams can be divided into ‘small’ elements and
the shear force, bending moment and deflection are determined at
the ends of each element and full diagrams are obtained. This will
result in more degrees of freedom requiring longer computer time
and more storage. But for hand calculations, the method followed in
the above example may be more suitable particularly when dealing
with relatively small problems and there is no access to specialised
software.

Therefore, w =

4.3 Beams with Elastic Supports

Sometimes the supports of the beam are not rigid but have certain
elasticity in the translational or rotational sense. For example, when
a beam is supported by a helical spring it will be subjected to a force
that is proportional to the amount of deformation of the spring.
Another example is when a bolted connection of a steel beam to a
steel column is neither completely pinned nor completely fixed but
somewhere in between. In such a case it can be assumed that the
beam is elastically restrained by a spiral spring whose rotational
stiffness is derived from the details of the connection. The treatment
of beams with elastic supports is the same as for beams with rigid
supports except that the elasticity of the supports is taken into
account as shown in the following sections.
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4.3.1 Helical Spring

The relationship between the force developed in a helical spring due
to an extension w (in the positive z-direction) is Z; = +k, w as shown
in Fig. 4.10. Where ki is the stiffness of the spring and the value of
the extension w is the displacement at one end of the spring relative
to its other end. The force acting on the joint will be in the opposite
direction, i.e. -k, w. Notice that when w is negative, the spring will
be in compression and the force exerted on the joint will be in the
positive z-direction.

Zhs

1

—_— ’Node

w L::/ Deformed shape
-

' d

Initial shape

Fixed support

Figure 4.10

The presence of the helical spring will be taken into account
when calculating the force acting on the joint as follows. Let the force
acting on the joint due to the applied loads on the beam is Zyq,p,
then the total force acting on the joint will be Z = Zycam - Zns = Zpeam
- Zpsw and this is placed on the right-hand side of the simultaneous
equations since it is part of the load vector. The quantity -k,,w is
transferred to the left-hand side of the equation and combined with
the term containing the relevant w which means that Z;; will be
added to the appropriate coefficient in the standard stiffness matrix.

4.3.2 Spiral Spring

The moment developed in the spiral spring due to a positive rotation,
0 is Mg = +k 0 as shown in Fig. 4.11 where 0 is the rotation at one
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end of the spring relative to the other end. The moment acting on
the joint will be of the same magnitude but in the opposite direction,
i.e. k0.

Figure 4.11

The presence of the spiral spring will be taken into account when
calculating the moment acting on the joint. Let the moment acting on
the joint due to the applied loads on the beam is My, then the total
moment acting on the joint will be M = Mygam — Mg = Mpeam — Kss0 and
this is on the right-hand side of the simultaneous equations since it
is part of the load vector. The quantity - k0 is transferred to the left-
hand side of the equation and combined with the term containing
the relevant 8 which means that kg, will be added to the appropriate
coefficient.

72kN  72KkN 160 kN
i 4 ' ¢
1 2
@ ®

2m | 2m | 2m 35m | 35m

’7*7 T I I I I

Figure 4.12

Example 2

Draw the shear force and bending moment diagrams for the
continuous beam shown in Fig. 4.12. The beam has a roller support
at node 2 which is expected to settle by 0.009 m and is hinged to the
support at node 3 to provide stability in the x-direction. A helical
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spring with stiffness kps = 13000 kN/m provides support in the
z-direction to the beam at node 1 and the central spindle of a spiral
spring with stiffness k= 7000 kNm/radian is fixed to the beam at
node 3 to provide rotational resistance. The beam has a uniform
cross section with I = 150 x 10" m* and its modulus of elasticity E =
210 x 10°kN/m?.

Member 1

L=6m,1=150x10°m* E =210 x 106kN/m?.
From (4.18)

1750 -5250 -1750 -5250

. |-5250 21000 5250 10500

" |-1750 5250 1750 5250

~5250 10500 5250 21000

Member 2
L=7m,1=150x10°m* E =210 x 10°kN/m?.
From (4.18)
1102 -3857 -1102 -3857
, |—3857 18000 3857 9000
B -1102 3857 1102 3857
—-3857 9000 3857 18000

The overall structure stiffness matrix is

1750 -5250 § -1750 | -5250 0 0
-5250 | 21000 5250 10500 0 0
K= -1750 5250 2852 1393 -1102 | -3857 (4.27)

-5250 | 10500 1393 39000 3857 9000

0 0 -1102 3857 1102 3857

0 0 -3857 9000 3857 18000
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Calculation of the load vector

The total load vector for the overall structure will be composed of
the applied forces on the beams and the forces and moments exerted
by the supports.

Contribution of loads on member 1

72kN 72KkN
96 kNm 96 kNm 1 1 96 kNm 96 KNm

joint 2 .‘} (11 21) ( ‘.joint3

72 kN 72 kN 72 kN 72 kN

2m | . 2m | 2m
1 1
6m

For symmetrical loads applied at the third points of the beam
(Z{); =-W=—(~72)=+72kN

(Z;); =-W=—(~72)=+72kN

2WL  2x(-72)x6

M) =+——=+ =-96kNm
(M3 ) 9 5

_ 2x(=72)x6
(Mg)fz—z‘gmz— ( 3 ) =+96 kNm

Action vector on member 1

Zi) | [+72
ﬁl _ (Mi)f — —96
L@y | |72
(Mp) | LT96

(4.28)

Load vector on joints 1 and 2

=
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(Z1)s | [-72
L MDs | [+96
o (Z%)s |72
(M) ] L%

And since joint 3 is not affected by the loads on member 1 then

(Z1)s | [-72]
M | |+96
1 -72
Rl =| (B2)s |2 o6 (4.29)
Mz)s | |~
0 0
L 0 | B 0 -
Contribution of loads on member 2
160 kN
140 kNm 140 kNm 1 140 kNm 140 kNm
joint 3 .‘} (1 1 ) ( ‘. joint 4
2 3
80 kN 80 kN 80 kN 80 kN

| 35m | 35m |
| | |

For a beam with a point load at mid-span

- w  (-160)
72),=——=——"=1480kN
() == 5
_ -160
(zg)fz—gz—( ):+80kN

— WL -160)x7

(M) =+~ _, 1607 8) =-140kNm

_ ~160)x7
(M3), = —%: —%: +140kNm
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Action vector on member 2

(Z3) | [ +80

_ M? -140

F2 = (_ZZ)f =| .50 (4.30)
(Z3) +

iy, ) [+140

Load vector on joints 2 and 3

F =-F;
(Z3)s | [ -80
B2 = (M3) _|+140
2= =
(Zé)s —80
o] 140

And since joint 1 is not affected by the loads on member 2 then

011 o1
0 0
o (Zﬁz)s _| -80 (431)
(M3)q +140
(Zg)s —80
(L

Load vector due to the reactions at the supports is

_[Z1 ) ] _—khswl_ _—13000w1_
(My )¢ 0 0
(Z2)c R22 Rz
Fe= = = (4.32)
¢ (M) 0 0
(Z?, )C Rz3 RZ3
|(M3)e | | kB3 | | —70008; |
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The total load vector on the structure is given by the sum of
values due to the applied loads from (4.29) and (4.31) and those
exerted by the reactions from (4.32), thus

Zy

M,

R,
F=|F, |= n;
2

.

3

_M3

=721 [ 0
+96 0
=F; +F2+F. = 72, 780
-96| |+140
0 -80
| | 0 | |-140
[-72-13000w, |
+96
P -152+R,,
+44
—-80+R;
| ~140-70000, |

[~13000w, |

(4.33)

Substitute K from (4.27) and F from (4.33) in (4.19) to get:

1750 -5250
—-5250 21000
-1750 5250
—-5250 10500
0 0
0 0

-1750 -5250 0 0
5250 10500 0 0
2852 1393 -1102 -3857
1393 39000 3857 9000
-1102 3857 1102 3857
—-3857 9000 3857 18000

[-72-13000w, |
+96
-152+Ry,
+44
-80+Ry;
| 14070008, |

(4.34)

In rows 1 and 6 transfer the terms -13000w; and -70006;
respectively from the right-hand side to the left-hand side.

The next step is to introduce the boundary conditions as follows:

Atnode 2 there is a downward settlement of the support of 0.009
m, hence delete row 3 which correspond to w, and substitute the
value of w, =-0.009 m in the rest of the rows.

At node 3 where there is a non-yielding support the translational
displacement in the z-direction is zero, i.e. w3 = 0, hence delete row

5 and column 5.
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The resulting set of simultaneous equations simplify to

14750w, - 52500, -52500, = -87.75

-5250w; + 210000, + 105000, = +142.25

-5250w, + 1050004 + 390000, + 900065 = +55.54

+90000, + 2500003 =-174.71

The solution of the above equations is:

wq =-0.00363 m, 6; = 0.00530 rad, 6, = 0.00122 rad,

03 =-0.00743 rad.

And together with w, = -0.00900 m and w; = 0, the full
displacement vector will then be:

w, ] [-0.00363]
0, | |+0.00530
w, | |-0.00900
0, || +0.00122
Wy 0

|8, | |-0.00743

Calculation of reactions at the supports

From the third row of (4.34)

-1750w, + 52500, + 2852w, + 139360, -1102w3 -385765 =-152
+R7,-1750 % (-0.00363) + 5250 x 0.00530 + 2852 x (-0.00900)
+ 1393 x0.00122 - 1102 x 0 - 3857 x (-0.00743) = -152 + Ry,
Rz, =+190.83 kN

From the fifth row of (4.34)

-1102w, + 38576, + 1102w3 + 385765 = -80 + Ry3

-1102 x (-0.00900) + 3857 x 0.00122 + 1102 x 0 + 3857 X
(-0.00743) =-80 + Ry3, Ry3 =+ 65.96 kKN

Force developed in the helical spring,

Zys = kpswy = 13000 % (-0.00363) = -47.19 kN, i.e. compression

Moment developed in the spiral spring,
Mg = k03 = 7000 % (-0.00743) = -52.01 kNm, i.e. anticlockwise
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Calculation of actions on the members

The vector of resultant actions at the ends of the memberis calculated
in a similar way as in the previous example and is given by:

F=F+§
Member 1

1750 -5250 -1750 -5250
Kl -5250 21000 5250 10500
-1750 5250 1750 5250
—5250 10500 5250 21000

w, ] [-0.00363

5 gl 8 | [8,] |6 | |+0.00530
|8t 18, |wg | |-0.00900
0, | |[+0.00122

1750 -5250 -1750 -5250]-0.00363 —24.83

ﬁdl:ElSl: —5250 21000 5250 10500 | +0.00530 _ +95.92
-1750 5250 1750 5250 |[-0.00900 +24.83

—5250 10500 5250 21000 || +0.00122 +53.08

+72
From (4.28), F! = 96
B Y
+96
(Z), —24831 [+72] [ +47.17
M? — - —. |+95.92| |-96 -0.08
(_1)r =F'=F +F = + =
) +2483| |+72| | +96.83
(ML), +53.08| |+96| |+149.08

A useful check may be made by noting that the force at node 1
of the beam is +47.17 kN while that on the helical spring was found
to be -47.19 kN. The bending moment on the beam at the simple
support at node 1 which should be zero has the small value of 0.08
kNm due to rounding off.
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Member 2
1102 -3857 -1102 -3857
o -3857 18000 3857 9000
“|-1102 3857 1102 3857
-3857 9000 3857 18000
w, | [-0.00900
525t &7 _[8,]_| 8, |_[+0.00122
512 O; | |wy 0
0, | |-0.00743
1102 -3857 -1102 -3857|[-0.00900] [+14.03
22 s ~3857 18000 3857 9000 | +0.00122| |-10.20
- “|-1102 3857 1102 3857 0 “|-14.03
-3857 9000 3857 18000 || —0.00743| |-88.05
+80
—, | -140
From (4.30), F" =
+80
+140
(Z3), +14.03] [+80 7 [ +94.03
M2 — . —, |-10.20| |-140| |-150.20
(M:); =F' =F +F = + =
(%), ~14.03|"| +80 || +65.97
(M2) -88.05| |+140| | +51.95
r

Note that the moment at node 3 of the beam is +51.95 kNm while
that on the spiral spring was found to be -52.01 kNm.
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Bending of Beams

Problems

P4.1. The continuous beam shown in Fig. P4.1 is simply supported
onrollers at nodes 1 and 2 and fixed at node 3. Calculate and
draw the shear force and bending moment diagrams and
the deflected shape of the beam.

The beam is made of concrete with modulus of elasticity E =
25 x 106 kN/m? and has the following properties:

Member 1: L=6m, [ =300 x 10®m*

Member 2: L=4m,1=200x 10°m*

40 kN

1 30 kN/m
T
11 ©) 2 ©) 3V
3m

| 3m 4m

Figure P4.1

Answer:
w;=0,0,=0.00629 rad, w, =0, 6, =-0.00057 rad, w3 =0,05=0

(Z1), | [+12.86 (Z5), | [+61.07

M! 0 M2 —-42.86
Member 1: (_l)r = , Member 2: [_Z)r =

(ZD)), +27.14 (Z3), +58.93

(M%)r +42.86 [Mg)r +38.57

P4.2. Draw the shear force and bending moment diagrams for
the continuous beam shown in Fig. P4.2. The beam is fixed
at node 1 and has roller supports at nodes 2 and 3. It is
expected that when the loads are applied the support at
node 3 will settle by 0.006 m. The beam has a uniform cross
section with a value of I = 80 x 10® m* and its modulus of
elasticity, E = 210 x 10°kN/m?.



Problems

y
\
-

Figure P4.2

Answer:
wy; =0,0,=0 w, =0,0, =000112 rad, w3 = -0.00600 m,
03 =-0.00539 rad.

(Z{) | [+59.76 (Z5), | [+34.09

M} -100.77 M? ~72.68
Member 1: (_1)r = , Member 2: (_Z)r =

(221)1" +30.24 (Zgz)r +15.92

(M3), | L7268 i, ) L0

P4.3. Calculate and draw the shear force and bending moment
diagrams for the continuous beam shown in Fig. P4.3. The
beam is hinged at support 1 and is resting on rollers at
nodes 2 and 3. At node 4 the beam is supported by a helical
spring with a stiffness k;,; = 7000 kN/m. The beam is made
of concrete with modulus of elasticity E = 30 x 10° kN/m?
and has the following properties:

Member 1: L=6 m, 1 =400 x 10°m*
Member 2: L=10m, =900 x 10®m*
Member 3: L=8m, =700 x 10°m*

60 kN 40 kN 40 kN
1 15 kN/m 1 1
1 @ 2 @ 3 ® *
3m | 3m 10 m 2m| 4m |2m
I | | " 7777

Figure P4.3
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Answer:
wy =0, 61 = 0.00344 rad, w, = 0, 6, = 0.00437 rad, w3 = 0,
03 =-0.00295 rad, 6, =-0.00363 m, 6, =-0.00356 rad.
Force developed in the spring = -25.41 kN (compression)

(Z1): | [+14.38 (Z5), | [ +72.69

M? 0 M2 -93.72
Member 1: (_11)r = , Member 2: (_ZZ)r =

(Zy), +45.62 (Z3), +77.31

(Z5) | [ +54.60
(M3), | |-116.78
(Z3), | | +25.40

M3, 0

Member 3:

P4.4. Calculate and draw the shear force and bending moment
diagrams for the continuous beam shown in Fig. P4.4. The
beam is hinged to the support at node 1 and supported by
rollers atnodes 2 and 3. The central spindle of a spiral spring
with kg, = 11000 kNm/rad is fixed to the beam at node 1 to
provide rotational resistance at that node. The material of
the beam is steel of modulus of elasticity E = 210 x 10°kN/
m? and has a uniform cross section with a value of I = 190 x

10" m*.
140 kN
1 20 kN/m
2 3
@ 1 @
4 m | 3m 9m
| I

Figure P4.4
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Answer:
wy =0, 61 = 0.00272 rad, w, = 0, 6, = 0.00095 rad, w3 = 0,
03 =-0.00809 rad.
Moment developed in the spring = 29.92 kNm (clockwise)

(Z{) | [+37.16 ]
Mm! -29.95
Member 1: (_1)r = ,
(Zzl)r +102.84
L r_| -
(Z3) | [+111.10]
M? -189.86
Member 2: (_Z)r = )
(Zsz)r +68.91
(3, L 0
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Chapter 5

Rigidly Connected Plane Frames

The members of these frames are connected in such a way that their
joints have sufficient stiffness to resist moments. This implies that
the angle between two rigidly connected members is not changed,
i.e. members meeting at a joint do not rotate relative to each other.
However, the joint as a whole will rotate when loads are applied to
the structure. There are mainly two methods for achieving rigidity
of the joints in steel frames: either by welding the members together
therefore establishing continuity across the joint or more commonly
by designing a bolted ‘moment resisting’ connection. The assumption
made in the analysis of frames as to whether they are regarded pin-
connected (as explained in Chapter 3) or rigidly connected depends
upon the way they will be constructed. Reinforced concrete frames
are designed as rigid frames when continuity is achieved by proper
detailing of steel reinforcement at the joints between beams and
columns.

Rigidly connected frames are often used for single storey
industrial or leisure buildings of medium spans when a column free
space is required as shown in Fig. 5.1. Another application of this
type of frames is in design of multistorey buildings shown in Fig. 5.2
when resistance to wind loading is assumed to be dependent partly
or wholly on the rigidity of the joints rather than by using cross
bracing of some type.

Analysis of Structures by Matrix Methods
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Rigidly Connected Plane Frames

Figure 5.1 Single storey portal frame.

777777 777777  J77777
Figure 5.2 Multistorey frame.

5.1 Derivation of Stiffness Matrix

The members of rigidly connected frames are subjected to the
combined effect of shear forces and bending moments as well as
axial forces. The treatment of members subjected to shear forces
and bending moments is explained in Chapter 4 and the additional
effect of axial forces is covered in Chapter 2.

In Chapter 4 (Section 4.1) the stiffness matrix for the bending
about the y -axis of a beam lying in the Xz plane was derived and is
given by (4.25) as:

12El  6EI 12EI  6EI]
g
4 6El  4El  6El  2EI | Vi
Ml |2 L 2 L |6
N L - (5.1)
Z 12El  6El  12E  6EI || W,
M N L’ 2 12 ;
_GEL  2EL GEL  4EI
12 L 12 L
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In Chapter 2 (Section 2.1.1) the stiffness matrix for a bar element
lying along the X -axis was derived and is given by (2.4) as:

B EA EA
X. - 7 lu
Xi|_| L LU (5.2
%|7|_Ea Ea |G
L L
Combining (5.1) and (5.2) we get
EA 0 _EA 0
L L
_ 0 12EI 6EI 12EI 6EI —
X, T TR I
Z, 6El  4EI 6E1  2EI | | Vi
mll| o —= — 0 — T1|s
M| _ L L L L% 53
X |~ “lu ’
SZEA 0o A 0 0 )
Z] L L Wj
v 12EI  6EI 12EI 6EI —
e T
o _SEL 2B 6Bl 4Bl
L L’ L 12 L
or
F=ks (5.4)
where the stiffness matrix relative to local coordinates is:
L L
0 12EI 6EI 12EI 6EI
coe e e
k= b ’ EA ’ (55)
-— 0 0 E— 0 0
L L
12EI  6EI 12EI 6EI
R
6EI 2EI 6EI 4E]
0 - — 0 — —
L 12 L 12 L |
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£l

=

and the action vector

ol o
| |
1]
£l @l

the displacement vector $ =[ .

=

T
S
L

1
NI <
1

|
1
1
|
> =

=1l 2=l

NI

=l

5.2 Transformation from Local to Global
Coordinates

The stiffness matrix in (5.5) is written in terms of local coordinates
and when the member local X -axis does not coincide with the global
x-axis, this matrix needs to be transformed from local to global
coordinates as explained below.

5.2.1 Transformation of Displacements

In Chapter 3, the displacements at node i, u; and w; along the
local X- and z-axes respectively were transformed to u; and w;
along the global x- and z-axes respectively resulted in the following
relationships

U; = U;C08Qy — W;Singy

W; =u;sin@y + w,;cos@y
The member has taken up its final position by a rotation about
the y-axis only and this means that the y- and y-axes are still

coincident and the rotational displacement relative to the local
coordinates is not changed as shown in Fig. 5.3, thus



In matrix form

£l

3

i|=

el

oSy
sin@y
0

Similarly, at node j

For nodes I and j,

£l

__El £l @l _§|

T
S

Transformation from Local to Global Coordinates

Figure 5.3

—sing; 0

cosQy
0 1

=

£ o

P

withO =

oS O O

o O O

o O O

163



164 | Rigidly Connected Plane Frames

The full transformation is

0 0

=l

i | [cosg; —sing; 0 01y
w; sin(py cosQy 0 0 0 0 w;
0; 0 0 1 0 0o o6
u; | o 0 0 cosg; -—sing; O Y
w; 0 0 0 sing; cosoy 0|V
16;] L 0 0o 0 0 0 1 9]

or 8 =1d where r is the transformation matrix which is given by

[cosg; —sing; 0 0 0 0
sing;  cospy; 0 0 0 0

0 0 1 0 0 0

e 0 0 0 cospy —sing; O
0 0 0 sing; cosg; O

| 0 0 0 0 0 1]

5.2.2 Transformation of Actions

From Chapter 3, we had at node i
X; = X;cos@; —Z;sing;
Z = X;sin@g +Z;cos@y

The location of the local y -axis is not changed since it is still
coincident with the global y-axis, it follows that the moment is not

changed as shown in Fig 5.4. Thus
l\_/[i =M

In matrix form

)_(i cos@y  —singy 0 |['X. i
Z, |=|-sing; cospy 0| Z; |=py| Z;
M 0 0o 1M M;
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Figure 5.4

Similarly, for node j

NI <
>

N

<=
|
1
o
F o
1
> =

NI
N

=
=
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The full transformation is

)_(1 _cosq)y —sing; 0 0 0 01 X;

A sing;  cosg; 0 0 0 0| Z

M| | o 0 1 0 0 ofM

X1 | o 0 0 cosp; —sing; 0 X;

Z]. 0 0 0 singy cospy; O Z;

M| [ 0 0 0 0 0 1M
or F=rF.

Notice that matrix r for the transformation of actions from
local coordinates to global coordinates is the same as that for the
transformation of displacements because both of them are vectors
having the same respective directions relative to the relevant
coordinate axes.

The transformation matrix r can be written in a more convenient
form by expressing sing; and cos@y in terms of the coordinates at
the ends of the member as shown in Fig. 3.7 of Chapter 3 as

] ;-7 Z: X —X; X
singp; =— =——, COSQ- = =—
by L L Py L L

2 2 2.2
L=\/(X]——Xi) +(zj—zi) =\/Xij+Zi]-

[x; /L z;/L 0 0 0 0]
~z; /L x;/L 0 0 0 0
0 0o 1 0 0 0

r= (5.6)
0 0 0 x3/L z/L 0
0 0 0 -z;/L x;/L 0
0 0 0 0 0 1]

Notice that the transformation matrix from local coordinates
to global coordinates, 1, is similar to that for axial straining with
the additional transformation of rotations and moments about the
y -axis.



Transformation from Local to Global Coordinates

The equation relative to local coordinates is F= ES and with the
substitutionof F=rF and §=r8 we get rF=krd, premultiply
both sides by r™! we get r 'rF= r'krd, and since rlr = | (the unit
matrix), F = r krs.

Also note that one of the properties of the transformation matrix
is that its inverse is equal to its transpose, i.e.r-1 =T, thus F=r"kr§,
and this can be written as F = k§, where k= r'kr and k and r as
given in (5.5) and (5.6) respectively.

The stiffness matrix k and the column vectors of displacements &
and actions F are all relative to global coordinates.

The stiffness matrix relative to global coordinates is given by

[x/L —zy/ 0 0 0 0
z; /L0 0 0 0
Ko T 0 0 1 0 0 0
=T r=
0 0 0 xyL -zy/L 0
0 0 0 zyL xy/L 0
| 0 0 0 0 0 1)
F A -
— 0 0 _EA 0 0
L L
0 12EI 6El 12EI 6El
3 12 T3 Tz
L L L L
6El  4El 6EI 2El
0 -— — 0 — =
L L L L
L L
0 12EI  6EI 0 12EI 6EI
BRI 2
0 6El  2EI 0 6EI 4EIl
— = - =
L L L L L |

167



168

Rigidly Connected Plane Frames

x;/L zy/L 0 0 0 o0
—zy/L x;/L 0 0 0 0
0 0 1 0 0 0
0 0 0 xy/L zyL 0
0 0 0 —zy/L x/L 0
L0 0 0 0 0 1]
i 2 2
EAxij N 12EIZij EAxijZi]- ~ 12Elxijzij 6EIZi]-
1} I I I I
EAx;z; 12Elxz; EAz; 12EIx; 6Elx;
R ERRE T
6Elz _ 6Elx; 4EI
K= L’ r? L
EAx] 12Elz] EAxgz; 12Elx;z;  6Elz,
— — — + —
I I I K I
2 2
B EAxyz;;  12Elxz; B EAZ;; B 12EIx; 6EIx;
I I 2 K 3
6Elz _ 6Elx; 2EI
L ? 3 L
2 2 ]
~ EAXj i 12Elz; ~ EAXx;z; N 12EIx;z;  6Elz
I K 13 I 2
EAx;z; 12Elx,z; EAz] 12EIx 6EIx;
IENTET: BRI P
? ? L
2 2
EAX;; N 12Elz; EAX;z; B 12EIx;z;; i 6Elz;;
L K I I I
EAx;z; 12Elxz; EAz] 12EIx] 6EIx;
B R B
6Elz, 6ElXx; 4E1
I 2 L]

(5.7)



EAx] 12Elzj  EAxyz; 12EIxgz; 6Elz
R R B
. EAxz; 12Elxz; EAziZj+12EIxiZ]- 6Elx;
N T 3 I %
6Elz; 6EIx;; 4EI
r? r? L
[ EAx; 12Elz EAx;z; 12EIx;z;  6Elz
- - - +
I I I K I
o | _EAxgzy 12BIxgz EAz; 12EIx; 6Elx;
i T B B
6Elz; 6EIx; 2EI
? ? L
| EAx} 12EIZZ  EBAxyz, 12EIxz,  6Elz |
B I TR
. EAx;z; 12Elxz; EAz; 12EIx] 6EIx;;
1 5 T3 5 3
L L L L L
6Elz 6EIx;; 2EI
? r? L
2 2 7
EAxij N 12Elzi]- EAXi]-zij ~ 12Elxijzij _6Elzij
I I I I I
o _|EAxyzy 12EIxgz, EAzizj+12EIxiZj 6Elx;
i 3 I’ I3 5 I3
B 6Elz; 6EIx; 4E1
I I L
Example 1

The rigidly jointed plane frame shown in Fig. 5.5 is fixed at base
A and pin-connected to base D. The properties of the members of

Transformation from Local to Global Coordinates
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the frame are as follows: member AB, I; = 0.003 m*, A; = 0.14 m?,
member BC, I, = 0.005 m* A, = 0.18 m?, and member CD, I3 = 0.008
m*, A; = 0.23 m? The modulus of elasticity of all members, E = 25 x
10 kN/m?. Analyse the frame for the loading shown and draw the
axial force, shear force and bending moment diagrams.

Z

60 kN 35kN
2 L;)_( l 3y

@ C

B

®

9 kN/m

VLRV IRLEY

¥

4.0 m 5.0m
[_>x

Global coordinates

Figure 5.5

Calculation of stiffness matrices of the members

Member 1
Member address in k: i j
Structure address in K: 1 2
E=25x10°kN/m? A =0.14m?1=0.003 m*
x; =0, X;=6m, X;=X-%=6-0=6m
z; =0, z;=8m, zj=2-2,=8-0=8m

L=xt+z2 =J6? +87 =10m



Transformation from Local to Global Coordinates

From (5.7)
61
8,=3, 8,=,
u, w; 0, u; w; 9,
U W1 0 u; W, 0,

[ 126576 167568 3600 —126576 -167568 3600 |u,
167568 224324 -2700 -167568 —224324 -2700 |w,
3600 —2700 30000 —3600 2700 15000 |6,

k' =
-126576 -167568 -3600 126576 167568 -3600 |u,
-167568 -224324 2700 167568 224324 2700 |w,
3600 2700 15000 —3600 2700 30000 |6,
Member 2
Member address in k: i j
Structure address in K: 2 3
E=25x10°kN/m? A =0.18 m? 1= 0.005 m*
X;=6m, x;=15m, Xj=X-%=15-6=9m
Z; =8 m, zj=8m, 7j=2-72,=8-8=0
L=\x}+22 =y9? +0? =9m
82
8i=82 61:83
u; w; 6; u; w; Oj
Uz W2 6, U3 W3 65
[ 500000 0 0 —-500000 0 0y,
0 2058 -9259 0 -2058 -9259 |w,
K2 = 0 -9259 55556 0 9259 27778 |6,
~|-500000 0 0 500000 0 0 us
0 -2058 9259 0 2058 9259 |w;,
L 0 -9259 27778 0 9259 55556 |03

Notice that the member local X -axis coincides with the global x-axis
with the transformation matrix r = I (the unit matrix) then k? =k?
which means that transformation is not necessary in such a case.
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Member 3

Member address in k:
Structure address in K:
E=25x10°kN/m? A =0.23 m?%1=0.008 m*

L
3 4

x;=15m, Xj=15m, Xj=X-%=15-15=0m
z;=8m, zj=0, 2j=2-2=0-8=-8m
L= x}+2 =0? +(-8) =8m
83
8,9, 8,8,
u; w; 6; Y wj 0,
Us W3 65 Uy Wy 9,
4668 0 -18750 -4688 0 -18750 |
0 718750 0 0 -718750 0
&= -18750 0 100000 18750 0 50000
—-4668 0 18750 4688 0 18750
0 -718750 0 0 718750 0
| —18750 0 50000 18750 0 100000 |

Assembly of the overall structure stiffness matrix

Since the frame has four nodes, the overall structure stiffness matrix
is made of 4x4 sub-matrices each of which is a 3x3 matrix.

By inspection

0

3
K

3
ji kij
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Transformation from Local to Global Coordinates

(8'9)

i
m
n
;]
Em
tn
;]
m
n
]
m

'n

00000T 0 0S48T § 00005 0 05481~ 0 0 0 0 0 0
0 0S48TL 0 0 0S48TL- 0 0 0 0 0 0 0
05481 0 8897 § 06481 0 8891~ 0 0 0 0 0 0
0000S 0 0S48T J 95SSST | 6SC6 0SL8T- | 8LLLZ | 6ST6- 0 0 0 0
0 0G48TL- 0 6526 | 8080ZL 0 6526 8502~ 0 0 0 0
05481~ 0 8897%— J 06481~ 0 889105 0 0 00000S- 0 0 0
0 0 0 8LLLT 6526 0 96968 | 6599~ 009€- J 000ST | 00LZ- 009¢
0 0 0 6526~ | 8S0¢- 0 6GS9- | 78E9CC | 89SL9T | 00LT |VZEVZCT—|89SLIT-
0 0 0 0 0 00000S- 009€- | 89SL9T | 945979 | 009€- |89SL91-| 9LG9C1~
0 0 0 0 0 0 000ST 004¢ 009€- J 0000€ | 00LZ- 009¢
0 0 0 0 0 0 0042~ | ¥2E¥TZ- | 89GL9T- || 00LC— | PCEVTT | 89SLOT
0 0 0 0 0 0 009€ | 89SL9T- | 9L59CT- 009€ | 89SL9T | 9.L59CT
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Load vector

This is calculated relative to global coordinates from loads acting on
the members and the directly applied loads on the joints. In addition,
the joints are subjected to loads resulting from the reactions of the
supports on the structure.

All forces and moments on the members and joints will be
shown in the positive directions and if the calculations give negative
answers to any of these then their actual directions will be opposite
to those shown.

The structure load vector due to the external loads acting
directly on the members

Member 1

10 10
Xij=6m,zij:8m,L:10m,a:2.4x?=4m,b:3.6x?:6m,

sinol = i =0.8, cosa = i =0.6, a+P= 90°,
10 10

%
(Z))s /'
(MZ)S k_ n—> (Xz)s
MDAz,
50kN N
2 Z
_ z \(Zz)f
Z\
(M) a
(Xl)f
(ZDs (Zl)f _ L 10 m
f'}(Mos
| _>(X1)s

Figure 5.6



Transformation from Local to Global Coordinates

The load of 50 kN is resolved into two components, X and W,
along and at right angles to the axis of the member respectively and
are given by

X =-50cosP =-50x 0.8 =-40 kN

W =-50sinf = -50 X 0.6 = -30 kN

Actions on member 1

— Xb —40)x6
(X1 =_T=_(1—())=+24'00 kN
x1) __Xa_ [0 ookn
S VT
_ Wh(1 +ab-a?)  (-30)x6x (107 +4x6-47)
(Z1)e =~ 3 =- - = +19.44kN
L 10
_ Wa(l? +ab-b?)  (-30)x4x(10?+4x6-6?)
(Z)=- ; =- . = +10.56 kN
L 10
_ 2 (-30)x4x6°
(Mi)f=+W;b =+( )122 X _4320kNm

_wa’b_ (-30)x4°x6

vly — —
(M) == 7~ 28.80kNm

A ]
(X | T424.00
(Z{) | |+19.44
_ M} —43.20
Fflz (_1)f — (59)

(Xé)f +16.00
(zzl]f +10.56

— +28.80
_(M% )f_ - -

(The above actions are relative to the local coordinates of the
member and will be use later in the calculation of the resultant end
actions on member 1.)

Loads on joints 1 and 2

For the calculation of loads on the joints relative to global axes it
is more convenient to resolve the actions in (5.9) into components
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along the global axes and from equilibrium the loads on the joints
will be equal to these but acting in the opposite direction and hence
with a reversed sign, thus

For joint 1:

(X1 = —(()‘(} )f CoS0L— (211 )f sina) = —(24.00%0.6-19.44x0.8) = +1.15kN
(Z})s = —((Xi)f sino+(Z1 ) cosoc) =—(24.00%0.8+19.44x0.6) = ~30.86 kN
(M})s =—(M}) =—(~43.20)=+43.20kNm

Similarly, for joint 2

(X1)s = —(()‘(5 )f cosor—(Z} )f sina) =—(16.00x0.6—10.56x0.8)=—1.15kN
(Z1)s = —(()‘Q ) sino+(Z3). cosoc) = —(16.00x0.8+10.56x0.6)=~19.14 kN
(M})s =—(M;} )f =-28.80kNm
The above equations are written in matrix form as:
(XD | 41457

(Z1)s | |-30.86
M) | | +43.20

Fy = = (5.10)
(X%)s -1.15
| |
_(M%)s_ - A

Alternatively, and to make the computations more systematic,
the load vector on the joints of the structure, Fs, which is relative
to global coordinates can be calculated from the actions at the ends
of the member which are relative to the local coordinates of the
member by using the transformation matrix as follows:

Consider the equilibrium of a section cut at the junction of the
member and the joint Fg + F; = 0 or Fg = -F; where F; is the action
vector on end of the member relative to global coordinates. The
action vector relative to local coordinates is F;, therefore, F; =rF; or
F =r'F =r"F (since r!=r")and hence F; =—1"F;.



Transformation from Local to Global Coordinates

We have from (5.6) and with x;; =6 m, ;=8 m,L=10m

(06 08 0 0 0 0

-08 06 0 0 0 0
e 0 0 10 O 0 0
0 0 0 06 08 0
0 0 0 -08 06 O
0 0 0 0 0 1.0]

0 1[+24.007 [ +1.15 ]
0 ||+19.44| |-30.86
1.0 0 0 0 ||-43.20| |+43.20
0 ||+16.00| | -1.15
0 ||+10.56| |-19.14
0 0 0 1.0)+2880| |-2880]

which is the same as the load vector obtained in (5.10).

Member 2
Z
T 60 kN ~
(M3)s (M) l (M3); M3)s
.)—P 3 )—> (. —_ X
(X3)s (X3 * XDr XP)s
(Zz)s (Z3) (Z3)f z (Z3)s
a=4m | b=5m [
I
L=9m X
Figure 5.7

Actions on member 2 (W =—-60 kN)
()_(g )y =0
U_(g )y =0

(Z3) = —V:—b( 12 +ab—az)=—(_6§¥(9z +4><5—42)=+34.98 kN

177
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(-60)x 4

(Z2), =—%(L2 +ab—b?)=- - (97 +4x5-57)=+25.02kN

=-74.07 kNm

Wab®  (-60)x4 x5
2 T 92
_ 2 —60)x 4% x5
(Mg)fz—wi b__ (-60) = 459.26 kNm
o 9

X2 | T 0 ]
(Z3) | |+34.98
—, | (M2 ~74.07
F = (_j)f = (5.11)

(X3)f 0

= +59.26
[(M5) | b -

U\_/[g)f =+

(The above actions are relative to the local coordinates of the
member and will be used later in the calculation of the resultant end
actions on member 2.)

Loads on the joints 2 and 3
2y __(x2) =
(X3)s = (Xz)f 0
() =—(2 )f - -34.98kN
(M3)s =—(M3) =—(~74.07)=+74.07 kNm
(X3)s =_()_(§)f =0
(235 =—(23), =—25.02kN
(M2); =—(l\7I§)f —_59.26 kNm
(XE)S 0
(Z3)s | |-34.98
M3 74.07
2= 22)5 =" (5.12)
(X3)S 0
@), | |-25:02
-59.26
_(Mg)s_ - -




Transformation from Local to Global Coordinates

The above vector could have been obtained by matrix operation

as follow:
Xij = 9 m,

Member 3

z;;=0,L =9 m and from (5.6)

100000
01000 0
— 001000 (the unit matrix)
000100
000O0T10
00000 1]
F=—(r*)"F
1 00000 o ] o ]
010 0 0 0|+3498| |-34.98
|00 1 0 0 0f-7407| |+74.07
oo 0100 o || o
0 000 1 0+2502] |-25.02
0 0 0 0 0 1][+59.26] |-59.26
(X5 =—b W (M3)s
*(Zg)s
*O_(%)f
_ M
@ — T —
3f—
]
—9 kN/m
] L=8m
L.
!
_—
—.
(Zz)f —_— 4 P
T(Mz)f
— Z
XD
f(Zi)s <
K5 =i W,
l M3)s
%

Figure 5.8
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Actions on member 3 (n = +9 kN/m)

()_(g)f =0
U_(i)f =0
(Zg)fz—%=—¥=—36kN
(Zﬁ}:—%:—?:—%m
2 2
(M3); :+%:+%:+48 kNm
2 2
(Mi)fz—%z—gjzg — _48kNm
o
X3 | [ o]
(Z5) | |-36
s | (M3) |_| +48 (5.13)
f - o3 - '
(X4 ) 0
(Z3) ‘ﬁ
_3 _
_(M4)f_ - -

(The above actions are relative to the local coordinates of the
member and will be use later in the calculation of the resultant end
actions on member 3.)

Loads on joints 3 and 4
(X3 =—(Z3 )f ——(~36)=+36kN
(z)s=~(X3), =0
(M3 = —(Mg)f =—48kNm
(x3) = —(Zi)f = —(-36)=+36 kN
(z3s=-(%3), =0

(M3)s =—(M; ) =—(-48)=+48KkNm
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(X3)s [+36 ]
(Zg)s 0
F = (M3); | _| 48 (5.14)
(X3)s | |*36
s | | °
_(Mi)s_ 48]

The above vector could have been obtained by matrix operation
as follow:
X;=0,2;=-8m,L=8m and from (5.6)

0-100 0 0
1 000 0 0
s_[000 10 00
00 00 -10
0 0 01 0
0 0 0 0 1)

B =—(r")'F

010 0 0o0]o0 +36
-1 00 0 0 0f-36 0
|0 01 0 0 0f+48| |48
ST 10 00 0 1 0f 0] [+36
0 00 -1 0 0/-36 0
|0 0 0 0 0 1)-48] |+48)

The total load vector on the joints due to the external loads acting
directly on the members is:

(F)s
_|®)
(F.)s
(F,)s

F, =F +FZ+F
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From (5.10), (5.12), and (5.14)

(Z,)s | |-30.86
(M; )g +43.20
(X3)s -1.15
(Fs] | Z)s | |-19.14
_ (Fz)s (Mz)s -28.80
B || (Xa)s 0
(s | (Zs)s
(M, )
(X4)s
(Z4)s
L(My)s |

o O © © O

(X | [ +1.15]

[0 ] [o
0 0

0 0

0 0
-34.98 0
+74.07 0
" 0 +36
-25.02 0
-59.26 —48
0 +36

0 0
1L 0 | [+48

[ +1.15 |
-30.86
+43.20
-1.15
—-54.12
+45.27
+36.00
-25.02
-107.26
+36.00

0

| +48.00 |
(5.15a)

The structure load vector due to the external loads applied

directly at the nodes

A load of +15 kN applied at node 2 in the x-direction and a load of

-35 at node 3 in the z-direction,
(Fi )n
E
Fy = (F; =
(F;)n
(F4)n

thus

(X)) |

(Z1)n
My )y
(X2)n
(Z2)n
(M, )y
(XS )N
(Z3)n
(M3 )N
X4y
(Zadn

L (M) |

+15

S O O

o O O O

(5.15b)



Transformation from Local to Global Coordinates

The structure load vector due to the reactions at the supports

(X1)e ][R
(Zl )C RZl
(Ml )C RMl

(X)e | | ©
(F e (Z2)c 0
B |_| (M) || o 516)
¢ (Fs)c (X3)c 0
0

0

(Fade] | (Zs)e

(My);
(X4— )C RX4
(Z4 )C RZ4
(M) |0

Total load vector on the joints of the structure is obtained from
the algebraic addition of (5.15a), (5.15b), and (5.16) as:

(X, ] [ 4115 T [ 0 ] [Ry | [ +1.15+Ry, |
Z, | | -30.86 0 | |Ry | |-30.86+Ry,
M, | | +43.20 0 | |Ryy| [+43.20+Ry,
X, -1.15 | |[+15] | © +13.85
Fl |z, | | -5412 0 ~54.12
PR+, +F, = By (Mo |_|+4527 | | 0 | | 0| | +4527
E| |Xs| | +36.00 0 0 +36.00
F,| [Z3] | 2502 | |-35| | O -60.02
M; | |-107.26] | 0 0 -107.26
X, | | +36.00 0 | |Ryq| |+36.00+Ry,
Zy 0 0 Ry4 Rz,
M, | [ +4800] | 0 | | 0 | | +4800
(5.17)

From (5.8) and (5.17) we get (in a tabular form)

183
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(81°9)

F— I
00'8%+ ) 000001 0 05,81 0000S 0 0S.81- 0 0 0 0 0 0
Iy m 0 0SL8TL 0 0 0S.8TL- 0 0 0 0 0 0 0
YX4+00"9¢+ m 0S.81 0 889% | 05.81 0 8891~ 0 0 0 0 0 0
F— P
9Z°L0T~ ) 0000S 0 0S/8TJ9SSSST| 6526 | 0S481- |8LLLT)| 6576~ 0 0 0 0
20°09- Em 0 |osz81s-] © 6526 | 8080ZL 0 6526 | 850z 0 0 0 0
00'9¢+ tn 0S.81- 0 889%-§ 06281~ 0 889705 0 0 00000S-§ © 0 0
F— —
LT Sh+ 2] 0 0 0 8.LLZ | 6SZ6 0 95568 | 6559- | 009e- Jooost| 00Lz- | 009¢
AR ZS m 0 0 0 6526~ | 850Z- 0 6559~ | 28927 | 89591 § 0042 | ¥zEbzz-|89SL91~
S8'ET+ n 0 0 0 0 0 00000S-§009¢-| 895291 | 925929 J009¢-]89529T-]9.5921~
F— P
NY+0Z e+ o 0 0 0 0 0 0 000ST| 002 | 009¢c- Joooog| 00Lz- | 009¢€
2q+98°0€- tm 0 0 0 0 0 0 00LZ- |¥Zebzz-|895L91-J00LZ-| YZEVZZ | 89SL9T
XY+STT+ n 0 0 0 0 0 0 009¢ |895491-]9.592T-f 009¢€ | 895491 | 9.59ZT
A —
¢® m m m@ m\S MS N@ M in ﬁ® Tm n
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Apply the boundary conditions

For the fixed support at A: u; = 0, w; = 0, and 6; = 0. Hence delete
rows 1, 2, and 3, and columns 1, 2, and 3.

For the pinned support at D: u, = 0 and w, = 0. Hence delete rows
10 and 11 and columns 10 and 11.

The resulting set of equations are:

[ 626576 167568 -3600 —500000 0 0 0
167568 226382 —6559 0 -2058  -9259 0
-3600 -6559 85556 0 9259 27778 0
~500000 0 0 504688 0 -18750 -18750
0 -2058 9259 0 720808 9259 0
0 -9259 27778 -18750 9259 155556 50000
| 0 0 0 -18750 0 50000 100000 |
[, | [ +13.85 |
w, -54.12
0, +45.27
u; | = | +36.00
Wi -60.02
0, -107.26
16, | | +48.00 |

The solution of the above set is:

u,=+0.026181 m, w,=-0.019634 m, 6, = +0.000328 rad,

uz = +0.026198 m, w3 = -0.000136 m, 65 = -0.000577 rad,
6,=+0.005681 rad.

61
5 uy 0 u, +0.026181
5= 52 , where 8, =|w, |=| 0|, §,=| w, |=|-0.019634
3 o, | |0 0, | |+0.000328
3,
u; | [+0.026199 u, 0
8, =| w, |=|-0.000136 |, 8, =| w, |= 0

6, | |-0.000577 6, | |+0.005681
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Initial shape

m———te———

Deflected shape

Deformed frame

Calculation of reactions at the supports
From the first row of (5.18)

126576u; + 167568w; + 36000, - 126576u, - 167568w, +
36000, =+1.15 + Ry

126576 x 0 + 167568 x 0 + 3600 x 0 - 126576 x 0.026181 -
167568 x (-0.019634) + 3600 x 0.000328 = +1.15 X Ry,
Ryg;=-23.83 kN

From the second row

167568u; + 224324w; - 27000, - 167568u, - 224324w, -
27000, = -30.86 + R;1167568 x 0 + 224324 x 0 - 2700 x 0 -
167568 x 0.026181 - 224324 x (-0.019634) - 2700 x 0.000328
=-30.86+Ry;;, Ry =+47.25kN

From the third row

3600u; - 2700w, + 3000004 - 3600u, + 2700w, + 150000, =
+4320 + RMI
3600x0-2700x0+30000x0-3600x0.026181 + 2700 x
(-0.019634) + 15000 x 0.000328 = +43.20 + Ry,
Ryy=-185.54 KNm

Similarly, Ryy = -63.12 kN and Ry, = +97.75 kN are obtained

from rows ten and eleven, respectively.

60 kN 35kN

NS S

50kN
9kN/m
23.83 kN g 63.12 kKN <=
\185.54 kNm
97.75kN
47.25kN

Figure 5.9 External reactions on the frame.



Transformation from Local to Global Coordinates | 187

Calculation of actions on the members

Sign convention

When calculating the internal actions (axial force, shear force, and
bending moment) along the member it is usual to start at the left
end and working towards the right end of the member. A section is
cut at a distance X from the left end (node i) and the sign of the
internal actions are based on their directions at the right (not the
left) end of the cut portion of the member. The positive axial force at
the right end means that the member is in tension and the positive
shear force is tending to move the section in the positive z direction.
The positive bending moment at the right end of the member causes
tension in the top face and compression in the bottom face of the
member as shown in Fig. 5.10.

Z

- Bending moment

Tension face M(+Ve)
(due to M) Ax1al force
—
P(+ve)
Compressmn face
(due to M) Shear force
V(+ve)
I X I

Figure 5.10 Internal actions developed in the member at section O.

The actions on the member are calculated relative to local
coordinates and the resultant action, F. = F, + Ff .

Where the action due to displacements, F, = k&, and E is the
action due to the applied loads.
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Member 1
The stiffness matrix relative to local coordinates k is given in (5.5),
thus
[ 350000 0 0 -350000 O 0 |
0 900 4500 0 -900 -4500
Kl 0 —4500 30000 0 4500 15000
| -350000 0 0 350000 0 0
0 -900 4500 0 900 4500
| 0 —4500 15000 0 4500 30000 |
X;=6m,z;=8m,L=10m
The transformation matrix r is given by (5.6), thus
06 08 0 0 0 O]
-08 06 0 0 0 o0
1 0 0 1.0 O 0 0
r =
0 0 0 06 08 0
0 0 0 -08 06 O
| 0 0 0 0 0 1.0]
_u1 oo 0 -
A 0
Sjl d, u, +0.026181
w, —-0.019634
| 6, | |10.000328 |
(06 08 0 0o o of o |[ o0 ]
-08 06 0 0 0 0 0 0
s gl 0 0 10 0 0 0 o || o
" |0 0 0 06 08 0 [+0.026181| |+0.000001
0 0 0 -0.8 06 0 | —-0.019634 —0.032725
L0 0 0 0 0 1.0]+0.000328] |+0.000328]
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[ 350000 0 0  -350000 O 0
0 900 —4500 0 -900 -4500
ﬁdl:};lglz 0 —-4500 30000 0 4500 15000
-350000 0 0 350000 0 0
0 —900 4500 0 900 4500
0 —-4500 15000 0 4500 30000 |
S
0
0
+0.000001
-0.032725
| +0.000328 |
[ -0.35 | [+24.00 |
+27.98 +19.44
- |-14234 - | -43.20
Fy = and from (5.9), F =
+0.35 +16.00
-27.98 +10.56
| -137.42] | +28.80
E!'=F +F
[ 035 ] [+24.00] [ +23.65 ] (XDe | T 42365
+27.98 | |+19.44 | | +47.42 (Z)), +47.42
g1 _|14234| |-4320| |\-18554] M), _|-185.54
r +0.35 +16.00| | +16.35 |’ X1, +16.35
-2798 | |+10.56| | —17.42 ), ~17.42
~137.42| |+28.80| |-108.62 _ -108.62
- - - - [(M3) | - -
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Internal actions (axial force, shear force,
and bending moment)

16.35kN

/ sinf = 0.6, cosf =0.8
\108.62 KNm
50kN 2

P
17.42 kN o /
50cosp =40 kN ~ -\
i /‘0\ 7
6m
18554kNm  \GA
2365kN  A7A2KN 4 / 47.42 kN

Figure 5.11
For part AB:

Z)_(=O, +23.65+P=0, P=-23.65KkN, i.e.compression
Y 7Z=0, +47.42+V=0, V=—47.42kN
21\710=0, ~185.54+47.42X+M =0, M=+185.54-47.42X

For part BC:

Y X=0, +23.65-40+P=0, P=+1635kN, ie.tension
ZZ:O, +47.42-30+V=0, V=—-17.42kN
21\710 =0, —185.54+47.42%—30(X—4)+M=0,

M = +185.54 — 47.42X +30(X — 4)
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Transformation from Local to Global Coordinates
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Member 2
u, | [+0.026181]
w, | |-0.019634
62{61 {52]: 6, |_|+0.000328|
82| 8] |us| [+0.026199
ws | [-0.000136
6; | |—0.000577 |
[+0.026181 |
-0.019634
5 = 1267 152 = +0.000328
+0.026199
-0.000136
| -0.000577 |
From (5.5)
[ 500000 0 0 -500000 O 0
0 2058 —9259 0 -2058 -9259
2 0 -9259 55556 0 9259 27778
-500000 0 0 500000 0 0
0 -2058 9259 0 2058 9259
0 -9259 27778 0 9259 55556
[ 500000 0 0  —500000 0
0 2058 9259 0 -2058
Y y=2 0 —-9259 55556 0 9259
Ff=k*8 =
-500000 0 0 500000 0
0 -2058 9259 0 2058
| 0 -9259 27778 0 9259
[+0.026181 |
-0.019634
+0.000328
+0.026199
—0.000136
| -0.000577 |

Rigidly Connected Plane Frames

-9259
27778

9259
55556
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Transformation from Local to Global Coordinates
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[ —9.00 ] 0
-37.81 +34.98
7o +182.73 | Lnd from (511)F2 ~74.07
+9.00 0
+37.81 +25.02
| +157.59 | | +59.26 |
[ —9.00 | [ 0o ] [ —9.00 ]
-37.81 | |+34.98 -2.83
— =y =, |+182.73| |-74.07| |+108.66
F>=F +F = =
+9.00 0 +9.00
+37.81 | |+25.02 +62.83
| +157.59| | +59.26| |+216.85]
Member 3
[u; ] [+0.026199]
wy | |—0.000136
63:{8?1:[83}: 0; |_|-0.000577
613 S, u, 0
Wy 0
| 6, | [+0.005681

From (5.6) with x;;=0, z;;=-8 m,and L=8m

S © ©O O »r O

|
Juiy

S © © © O

S © O »r O O

o B O O O O

0 0]
0 0
0 0
-1 0
0 0
0 1]




0 -1 0 0 0 0][+0.026199] [+0.000136|
1 0 0 0 0 0[-0.000136| |[+0.026199
S 0 0 10 0 0][-0.000577| |-0.000577
0 0 00 -10 0 0
0 0 01 0 0 0 0
0 0 00 1]|+0.005681 | |+0.005681 |
From (5.5)
[ 718750 0 0 -718750 0 0
0 4688 —18750 0 -4688 —18750
o 0 -18750 100000 0 18750 50000
-718750 0 0 718750 0 0
0 -4688 18750 0 4688 18750
| o -18750 50000 0 18750 100000 |
[ 718750 0 0 -718750 0 0 ]
0 4688 —18750 0 -4688 —18750
B o5 0 -18750 100000 0 18750 50000
—718750 0 0 718750 0 0
0 -4688 18750 0 4688 18750
0 -18750 50000 0 18750 100000 |
+0.000136 |
+0.026199
—0.000577
0
0
| +0.005681 |
[ +97.75 ] [0 ]
+27.12 -36
—, |-264.88 —, | +48
F = and from (5.13) F =
-97.75 0
-27.12 -36
| +48.02 | |48

Transformation from Local to Global Coordinates

195
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(49775 [ 0 | [ +97.75
+27.12 | |-36 -8.88
3w —264.88 N +48|_|-216.88
rod T 9775 0 ~97.75
2712 | |-36| | -63.12

| +48.02 | |-48] | +0.02

97.75 kN
21688kNm & N 6.8 kN 9775 kN
[ 3 o
—> _
— > Z
|
|
—> y
L=8m —> X
. |
[ ]9 kN/m
-
|
|
]
— e 63.12kN
~f— . R
0.02KNm W 97.75 kN
1 (a) Axial force diagram,P
97.75 kN
+8.88 kN +216.88 KNm
-63.12 kN -0.08 kNm
(b) Shear force diagram,V (c) Bending moment diagram, M

Figure 5.14
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5.3 Members with a Pin at One End

Sometimes a hinge is inserted at the end of a member in a rigidly
connected frame to achieve certain structural behaviour. Such a
member has a special stiffness matrix whose derivation is explained
below.

(a) Beam member with a pin at node j

shape after deformation

_ Z
Wi
initial shape
node i node j
® @ X

Figure 5.15 Beam element.

For a beam member we have the following relationships:

12EI _ 6El- 12EI_ 6EI:

L= Wiy O W6, (519)
_ 6El _ 4EI- 6ElI_ 2EI-
Mi = —L—ZWi +Tei +?Wj +Tej (520)
— 12EI _ 6El- 12EI _ 6EIl=-

L L L L
— 6El _ 2EI- 6EI_ 4EI-
M= M e (22
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At node j where there is a pin the moment is zero, i.e. M;=0.
Therefore (5.22) becomes:

6El _ 2EI- 6ElI_ 4EIl-

OZ—FWI"F L 91+L—2W]+T6J
— 3 1- 3
0.=+—w,——0. ——w
Pooant 27t 2L )

Substitute the above value of éj into (5.19) to (5.21) and simplify
to get:

3EI_  3ElI: 3EI_
w

TR T

Z, =+
— EI _ EI- 3EI_
M, = 3 +3—6,-+3L—2w].

2L

3EI_ 3EI; 3EI_

AT mrETE

Writing the above equations in matrix form leads to:

_ 3 2 3 _
4 ]éEI 31]51 31]51 i
M, |= - — = 0;
= I L | _
Z W
j 3El 3El  3EI j
I AT
[ 3EI 3El  3El ]
= = 3 0 _
7 L I L W,
1
i | |_3E sEL 3L fg
7 |= 12 L 12 @ (5.23)
HlsE sEL o sEL
0 L3 LZ L3 GJ
|0 0 0 0
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The inclusion of éj in the above matrix is to maintain consistency
of using a 4x4 matrix and also to indicate that it is not equal to zero
since the pin at node j will rotate.

The full stiffness matrix with the added axial force effect is:

S, -
= 0 o -EA o
L L
x| | o 3 _3E , _3E U
7 I 12 5 W,
1
- El  3EI EI a
Mi| 1o —3—2 3T 0 3—2 0| 6
X | EA - EA ) Y
71 |-—— 0 0 — 0 0w
Z]- L L w;
| 0| 3EI  3EI 3EI 0
L
|0 0 0 0 0 0]
EA o _EA 4
L L
3E1  3El 3EI
0 = 7 -3 0
L L L
| o J3EL ZEL 0 3EL
ie, k= I L I (5.24)
_EA o EA 4 )
L L
3El  3EI 3EI
e b o
0 0 0 0 0 0]

To transform the above matrix into global coordinates

k=r"kr andris given in (5.6), thus
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EAx 3Elz] EAx;z; 3Elxgz;  3Elz
ERRNT T B
EAxz; 3EIxz; EAz, 3EIx; 3Elx;
- + —
I I iy I I
3Elz, 3Elx, 3EI
k= 3 B L
2 2
B EAxi]- i 3Elzi]- B EAXijZi]- N 3Elxijzij ~ 3EIZij
I I I I I}
EAx;z; 3Elxz; EAz] 3EIx] 3EIx;
— + — —
I i 13 i I
i 0 0 0
EAxizj 3Elzizj EAxyzy;  3Elx;z; ]
T3 T s /3 T 5
L L L L
2 2
B EAXi]-Zi]- . 3Elxijzij EAZi]- B 3Elxi]- 0
13 i 13 iy
3Elz, 3Elx,
- 0
L L
EAx 3Elz] EAxz; 3EIxz;
3 T 5 3 5
L L L L
2 2
EAx;z; 3Elx;z; EAz; 3EIx;
- + 0
13 i 13 I
0 0 0]
] %
w, Z;
) 5 o E M;
6]- u; an F] X]-
w]- Zj
L9 L 0]

(b) Beam member with a pin at node i

(5.25)

At node i where there is a pin the moment is zero, i.e. l\_/[i =0 and
following the same procedure as in (a) above leads to the following

relationship



EA
— 0
L
]| o 2
yA L
0 0 0
X _EA 0
7 L
i, 0 3EI
z T

The above matrix can be

Members with a Pin at One End

0o A 0
L
0 0 _3_E3:I _3_}52':1 Ei
L L™ || w,
0 0 0 0 éi -
~ 26
o A o |y (5.26)
L _
381 3EI | Vi
0o 0o = Z=|-
I 2 |9
o o SEI 3E
1 L |

transformed, if required, from local to

global coordinates in the usual way and the resulting matrix is:

2 2
EAX;; . 3Elz; EAx;z; _ 3EIx;z;
? r L r
2 2
EAx;z; B 3EIx;z; EAz; N 3EIx;j
3 5 3 5
L L L L
0 0 0
k=| EAx} 3EIZ EAx;z; 3Elxz;
T3 s T3 T s
L L L L
2 2
B EAX;z; N 3EIx;z; _ EAz; B 3EIx;j
I r I I
3Elz, _ 3Elx;
L L3 L3 (5.27)
2 2 ]
~ EAxj B 3Elz;; ~ EAx;z; . 3Elx;z;  3Elz
I K I r ?
2 2
B EAx;z;; . 3EIx;z;; B EAz; B 3EIx;j B 3EIx;
2 r L r 1
0 0 0
2 2
EAx;j N 3Elz; EAx;z; B 3ElIx;z; _3EIZ”
I r L r 2
EAx;z; 3Elxz; EAz; 3EIx; 3Elx;
T ERRT 13
_ 3Elz 3EIx; 3EI
? ? L
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ul Xi
Wl Zi
5|0 5; [E] |0
_8]-_ u, and F= F]-_Xj
w; Z]-
19 ] M ]

For a member with pins at both ends then the stiffness matrix
is the same as that for an axially loaded member as explained in
Chapter 3, i.e. a 4x4 matrix but with the addition of zero rows and
zero columns to get a 6x6 matrix thus making it consistent with
the stiffness matrices of the rest of the members of the structure.
The nodal forces acting on the joints due to the loads applied to the
member are calculated in the normal manner except that the fixed
end moments are zero.

Example 2

The frame shown in Fig. 5.16 is pinned at support A and fixed to
the supports at points B and D. Members AC and CD are rigidly
connected together at joint C while member BC is pin-connected to
joint C. Analyse the frame for the loading shown for the following
data:

E = 210 x 10%° kN/m? [; = 66 x 107 m* A; = 0.003 m?

[,=75%x10"°m* A,=0.004 m? I3=16 x 107* m* A;=0.001 m?.

For member 1, which has a pin at node 1, the standard matrix
can be used because the pin occurs at the support. The boundary
conditions take account of the pin, i.e. u; = 0 and wy; = 0 but the
rotation 6, is unknown and is determined in the usual way from the
set of the resulting simultaneous equations (see example 1 above).
Alternatively, it can be treated as a member with a pin at node i as is
shown in the following analysis.

For member 2, which has a pin at node 3 (node j), it is necessary
to use the modified matrix because the pin occurs at an internal
node.

Member 3 is treated as a standard member since both its ends
are continuous.



Members with a Pin at One End

Z

125 kN
. 1 T_.f( 24 kN/m

Figure 5.16

Member 1: (i,j) = (1,3) with a pin at node 1

E=210x10°kN/m? I;= 66 x 10°m* and A; = 0.003 m?.
Xi=0' X]'=O, Xi]'=X]'—Xi=0—O=0

Zi=0' Z]-=6m,Zi]-=Z]-—Zi=6—0=6m

L= x}+zt =0? +6* =6m

For a member with a pin at node i the stiffness matrix is given by
(5.27), thus

[ 193 0 0 -193 0 1155 |

0 105000 0 0  —105000 O

Ko 0 0 0 0 0 0
-193 0 0 193 0 -1155

0 -105000 0 0 105000 0
1155 0 0 -1155 0 6930 |
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Member 2: (i,j) = (2,3) with a pin at node 3

E=210x10°kN/m? 1,=75x 10 m* and A, = 0.004 m?.
The local X-axis of this member lies along the global x-axis,
therefore k =k as given by (5.24) for a member with a pin at node j,

thus
168000 0 0
0 378  —1890
2o 0 -1890 9450
-168000 0 0
0 -378 1890
0 0 0
Member 3: (i,j) = (3,4)

-168000
0
0
168000
0
0

0
-378
1890

0

378

0

S O © © © ©o

E=210x10°kN/m? I5=16 x 10° m* and A; = 0.001 m?.
The standard stiffness matrix is given by (5.7), thus

[ 52500
0
0
-52500
0
0

k3

0 0
630 1260
-1260 3360

0 0
-630 1260
-1260 1680

-52500 O 0
0 -630 -1260
0 1260 1680
52500 0 0
0 630 1260
0 1260 3360 |

By inspection the overall structure matrix is given by

51 82 83 84
1
Kyp =k 0 Ki3 =kj 0
2
0 KZZ = klzl K23 = kij 0
K =
1 2 1,,2 1.3 3
Ks =k | K3z =Kkj Kss =k + K +k5; | Ky =Kk
3 3
0 0 Kys =K;; Ky =k;
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Applying the boundary conditions of u; =0, w; =0, u; =0, w, =0,
0,=0,uy=0,w,=0,0,=0 and noting that all the coefficients in row 3
and column 3 are equal to zero, therefore, delete the corresponding
rows and columns from the above matrix to get

220693 0 -1155
K= 0 106008 -1260 (5.28a)
-1155 -1260 10290

Load vector

Member 1

Contribution of loads acting on member 1 to the loads on joints 1
and 3:

Mb)s — (X})s
f(Z%)s
$
M3)r 4
3| <—(Z3)¢ _T_
a=3m
X
I - 34 KN . —
z b=3m
— i 4—(2%% Y X
(M%)f =0 v

fo‘q)f
1(2%)5

1
MDs 7@\ e (XD

Figure 5.17
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Actions on member 1 (W =-84kN,L=6m,a=3m, and
b=3m)

()_(hfzo
(X§)f:0
-1, __Wa 2\ (-84)x3 2\ _
(Zl)f_—ﬁ(%a—a )——W(3x6x3—3 )=+26.25kN
Wb, 2 12\ _ (-84)x3 2 _qa2\_
Zh), = (3L -b )_—7(3% -3 )_+57.75kN

(l\_/Ii )¢ =0, because there is a pin at end i of this member.

Wab( +b)=_(—84)><3><3

M} 6+3)=+94.50 KNm
(M) = g 6*3)
()_(} | T 0
Z) | |+26.25
_ M! 0
1| (| 529)
(X3) 0
— +94.50
(M3) | - -

Loads on joints 1 and 3
(x! )S_( 11) = +26.25kN
s =-(X1), =
()5 =—(83), =
(x5 = 31) =+57.75kN
(235 =-(X}) =0

(M})s =—(M;} )f =-9450kNm
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(XDs | [426.25]
(211 )s 0
|00 || 0 (530)
(Xé ) +57.75
@ || °
_(1\—/[% s | | —94.50 |

Member 2

Contribution of loads acting on member 2 to the loads on joints 2
and 3:

Actions on member 2 (W =-125kN,L=5m,a=2m, and

b=3m)
(X3) =0
[)_(g)fzo
Z2y _ Wb 2 2\ (-125)x3 2 a2\ _
(Zz)f——E(SL —b )_—W@xs ~3%)=+99 kN
=2 Wa 2\ (-125)x2 2\
(23)f_—2?(3La—a )_—W(3x5x2—2 )—+26kN
- Wab (-125)x2x3
(M) =+ 5 (L+b)=+2—"" = (5+3)=~120 kNm

(1\7[§ )¢ =0, because there is a pin at end j of this member.
X | T 0 ]
(Z3) | | +99.00
—, | (M3 ~120.00
F = (_ZZ)f = (5.31)
(X3)r 0
(232 ) +26.00

_(l\_/[§ )f 1 -
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Loads on joints 2 and 3

Member 3

(%),

2 o0 ]
(ZZZ)S -99.00
(MZ)S _, |+120.00

o |77 T 0
(x3),

(ZZ) —-26.00

3 S i 0 ]
(M),

(5.32)

Contribution of loads acting on member 3 to the loads on joints 3

and 4:

Actions on member

(Zg )=
(72 )=
(Mg =+

(Mi)f ==

3 (n=-24 kN/m)
[)_(g)f =0

U_(i )y =0

(-24)x4
——=-+—7""——=+48.00kN

nL  (-24)x4

——=———"—=+48.00kN

2
nl?  (-24)x4?

—=4+-—-—"———=-32.00kNm

12 12
2 (-24)x4?

n
12 12
()_(g k| T 0
(Z3) | |+48.00
-5 | (M) | |-32.00
X3 0
— +32.00
_(Mi )f_ - -

=+32.00kNm

(5.33)
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Loads on joints 3 and 4

—(Xg)s_ o ]
(Z3)s —48.00

E = El;f;s =—F= +3f)'00 (5.34)
i I I
|(M3)s | [—3200]

From (5.30), (5.32), and (5.34)

- (%),

()ﬁ)s [+26.25] (Z%) o0 ]

(Z1)s 0 51 | -99.00
a_|(MDs|_| 0 . (M), _| +120.00
|| (), o |’

) 0 , -26.00

22| Zoas0 (23) 0

[(M3)s | & (MZ)S L |

[\V3s
_(Xg)s_ F 0

(Z3)s | |-48.00
| (M3)s || +32.00

= N
(X4)s 0
) | | 4800
| -32.00

(M3)s |



[(X3)s |
(Zy)s
M, )
(X,)s
(Z,)s
(M,)s
(Xs)s
(Z3)s
(My)s
(Xy)s
(Zy)s

L(M,)s |

Since there are no externally applied direct actions at the nodes

then:

=F +F +F =

[+26.25 ]

(=T

+
vl
~
w1

|
O
o o o o N o o o

ul
o

+120.00

-99.00

+57.75
-74.00
-62.50
0
—48.00
-32.00 |

FN=0

Members with a Pin at One End

0
0
0
0
-99.00
+120.00
0

-26.00
0

0
0
0

S O ©O © © O

-48.00
+32.00

—48.00

| -32.00

(5.35)

(5.36)
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The load vector due to the reactions at the supports

i [Xl )C ] RXl
(Zl )C RZl
M) 0
(XZ )C RX2

(B | | (Z2de | | Rz

| Be || (M) || Ry (5.37)

CIE) | | (Xs)e 0

(F )] | (Z3)e 0
M;)c 0
(X4)c Rys
(Z4)c Ry4
|(My)c | [Rua |

Note that the reaction moment at the pinned support A,
(My).=0.
Total load vector, E, is given by:
F= FS + FN + FC

From (5.35) to (5.37)

[+26.257] [0] [Ry; | [ Ry +26.25 ]
0 0 Ry Rzt
0 0 0 0
0 0 Rxz Rxz
—99.00 | |0| |Ry R,, —99.00
g | F12000| 0| | Ry |_|Ry, +120.00 (5.38)
+57.75 | |0 0 +57.75
~74.00 | |0 0 ~74.00
—62.50 | |0 0 -62.50
0 0 Ryxa R4
—48.00 | (0] [Ry R,, —48.00
| =32.00 | |0] [Rys| | Rys—32.00 |

From (5.28) and (5.38)
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The boundary conditions are: u; =0, w;=0,u;=0,w,=0,6,=0,
uy=0,w,=0,and 6, =0, so delete rows and columns 1, 2, 4, 5, 6,
10, 11, and 12. Also delete the third row and third column because
the rotation at node 1 is not included since the stiffness matrix for
member 1 is derived as a member with a pin at one end.

The resulting reduced set is:

220693 0 —1155 || ug +57.75
0 106008 -1260| wy [=|-74.00
-1155 -1260 10290 || 6, —62.50

The solution of the above setis: uz=+0.000230 m, w3 =-0.000771
m, and 63 = -0.006143 rad (which is the rotation of the rigid joint at
node 3).

Reactions at the supports of the frame are calculated from (5.39)
and using the above values of us, ws, and 0.

Actions on member 1

E =210 X 10°kN/m? I; = 66 x 10°°m* A; = 0.003 m? L = 6 m,
X;;= 0, and z;= 6 m.
From (5.26) for a member with a pin at node i

[ EA
— 0 0 —E 0 0
L L
0 0 0 0 0 0
l::
EA o, BA
L L
3EI 3EI 3EI
0 500 T 7
3EI 3EI 3EI
0 _— - -
I 12 L

For the calculation of actions on members with a pin at one end
itis more convenient to delete the row and column corresponding to
the rotation of the pin since the moment at the pinned end is zero.
Hence delete the third row and third column which correspond to
the pin at node i of this member.



Members with a Pin at One End

[ 105000 0 -105000 O 0
0 193 0 -193 -1155
k' =|-105000 0 105000 0 0
0 -193 0 193 1155
| 0 -1155 0 1155 6930 |
From (5.6)
5% o9 0 0 0
L L
I R
L L
0 0 1 0 0 0
r=
0 o0 o S Ao
L L
0 0 0 -2 X
L L
|0 0 0 0 o0 1]
[0 1 0 0 O]
-1 0 0 00
'={0 0 0 1 0
0 -1 00
0 0 0 0 1

Notice that the third row and third column have been deleted
since they correspond to 6; which is not included for a member with

a pin at one end.

Uy
Wy
W3
0;

0
0
=|+0.000230
-0.000771

| -0.006143
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01 0 00 0 0
-1 0 0 00 0 0
s 1q1
& =r8'={0 0 0 1 0/+0.000230]|=|-0.000771
0 0 -1 0 0}-0.000771| |-0.000230
0 0 0 0 1/-0.006143| |-0.006143
105000 0 -105000 O 0 0
0 193 0 -193 -1155 0
- —=1
Fj =k'§ =[-105000 0 105000 0 0 |-0.000771
0 -193 0 193 1155 || —0.000230
0 -1155 0 1155 6930 || -0.006143
S
+80.96
+26.25
+7.14
E} =| -80.96 | and from (5.29), ! = 0
0
-7.14
+57.75
—42.84
| +94.50 |
+80.96 0 +80.96
+7.14 | |+26.25]| |+33.39
E!'=F +F =|-8096|+| 0 |=|-80.96
-7.14 | |+57.75| |+50.61
-42.84| |+94.50| |+51.66
Z
80.96 kN
51.66 kNm ¢ \

3]j <= 50.61KkN _T_

A - 84 kN
Zq—T
b=3m
1li
<——3339KkN l > x

80.96 kN
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The actions on members 2 and 3 are calculated in a similar
manner. Once the actions at the ends of the members are calculated,
the axial force, shear force, and bending moment diagrams can be
determined and these are shown in Fig. 5.20.

; +40.74 kKN
+38.64 kN (Tension) +25.71 kN
]
-12.08 kN /
(Compression) -55.26 kN
-99.29 kN
+50.61kN
-80.96 kN (Compression) -33.39kN
(a) Axial force diagram, P (b) Shear force diagram, V
+121.46 kNm
+51.66 KNm
+22.65 KNm
-11.95kNm
-77.12 KNm
-100.17 kNm
(c) Bending moment diagram, M (d) Deflection diagram
Figure 5.20
Problems

P5.1. The rigidly jointed plane frame shown in Fig. P5.1 is fixed
at its bases A and D. The properties of the members of the
frame are as follows: member AB, I; = 0.0028 m*, A; = 0.19
m?, member BC, I, = 0.0021 m* A, = 0.16 m?, and member
CD, I3 = 0.0024 m* A; = 0.17 m? The modulus of elasticity
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of all members, E = 30 x 10° kN/m?. Analyse the frame for
the loading shown and draw the axial force, shear force, and
bending moment diagrams.

90 kN
Z
2 T—n_( 3
L1 B C
— ® "
—
25kN/m 2
—
— 6m
Ho ®
—
—|
ZQJ S Z
—
1L.0A D4 | X
J77777 /77777 T
4m | 4 m
I
Figure P5.1

Answer:
u; =0, wy =0,6; =0, u, = +0.01260 m, w, = -0.00003 m,
0, =+0.00213 rad,
uz = +0.01252 m, w3 = -0.00007 m, 65 = +0.00034 rad, uy = 0,
Wy = 0, 64 = 0,
Rg; =-103.99 kN, Rz; = +30.48 kN, Ryy; =-191.76 kKNm
Rx4 =-46.01 kN, Rz4 =+59.52 kN, RM4— =-142.11 kNm
S
X | [ 43048
(Zi): | |+103.99

_ M1 ~-191.76
Member 1: Frlz (_1)r = ,
(x%)r -30.48

_(M%)r_ | +17.84 |




Member 2:

Member 3:

r

|3,

| M3),

(X2), |
(Z3),
(X3),
(Z3),
| (M3), |
(%3, |
(Z3),
(X3
(Z3),

|(M3), |

Problems

[ +46.01 |
+30.48
-17.84
—-46.01
+59.52
| +133.97 |

[ +59.52 ]
+46.01
-133.97
—-59.52
-46.01
| -142.11 |

P5.2. Therigidly jointed plane frame shown in Fig. P5.2 is fixed at
base A and pinned at base D. The properties of the members
of the frame are as follows: member AB, I; = 0.0002 m*,
A;=0.009 m? member BC,1,=0.0001 m* A, =0.005 m? and

Z

I—vi 15 kN/m

AN,
o X<
® ®

— L.

Figure P5.2
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member CD, I3 = 0.00009 m*, A; = 0.004 m?. The modulus
of elasticity of all members, E = 210 x 10° kN/m?. Analyse
the frame for the loading shown and draw the axial force,
shear force, and bending moment diagrams. In this problem
use the standard stiffness matrix for member 3 and not
the stiffness matrix for a member with a pin at node j. The
treatment of the hinged base at node 4 is similar to that
followed in example 1.
Answer:

u; =0, w; =0,06; =0, u; =-0.01530 m, w, = -0.00020 m,

0, =+0.00072 rad,

uz = -0.01535 m, w3 = -0.00904 m, 65 = -0.00035 rad, uy = 0,

wy=0,0,=-0.00314 rad.

Ry1 = +50.45 kN, Rz; = +53.44 kN, Ry;; = +126.53 kNm

Ry, =-10.45 kN, Rzy = +21.56 kKN, Ry4 = 0

(XD | [ 45344

(Zi) | | -5045
Member 1: 1 <| (M1 |_| +126:53
"TIRY, || 5344
@b, | | t1045
@ | L +66.61 |
(%) [+10.45]
(Z) | | +53.44
Member 2: F? = (Mi)r _ —66.61 ’

r X2), -10.45
(1\7[2) | —13.09 |
LV 3 Jr

S ]
Xs)e | [423.90
(Z3) | | -1.62
_ M3 +13.09
Member 3: F> = (_3)r =
(xi)r -23.90

r

— 0
M3, | - -




Problems

P5.3. The frame shown in Fig. P5.3 is fixed to the supports at A
and D. Members BC and CD are rigidly connected together
at joint C while members AB and BC are pinned at joint B.
Analyse the frame for the loading show and draw the axial
force, shear force, and bending moment diagrams. The
modulus of elasticity of frame is E = 210 X 10 kN/m? and all
the members have the same cross-sectional area A = 0.008
m? and second moment of area I = 0.0003 m*.

160 kN

L

©) @) }e— 80KkN ——

X
B I 2m z
Z

1]1A D|4 |
777777 777777 —_— X

Figure P5.3

Answer:
u; =0, wy =0,0; =0, u, = -0.00840 m, w, = -0.00016 m,
u3 =-0.00849 m,
w3 =-0.00022 m, 653 =-0.00360 rad, u, =0, w,=0,0,=0.
Ryq = +24.80 kN, Rz; = +68.95 kN, Ry = +99.21 KNm,
Ry4 = #55.20 kN, Rz4 = +91.05 kN, Ryj4 = +127.10 KNm.

i )
1) | T16895
Z{): | |—24.80
_ M! 4+99.21
Member 1: Frlz (_1)r = ,
(X%)r -68.95

r

iy, L0
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X2 | T+24.80]
(Z3), | |+68.95
_ M2 0
Member 2: Frzz (_zz)r = )
(X3), -24.80

_ +66.31
(M3, | b -
(X3 | [ 49105
(Z3) | | +24.80
_ M3 -66.31
Member 3: F’ = (_s)r =

xX3), -91.05
7). +15257.2100

— + .
), | - -

P5.4. The frame shown in Fig. P5.4 is pinned to the support at A
is fixed to the supports at C and D. Members AB and BC are
rigidly connected together at joint B while member BD is
pinned to joint B. Analyse the frame for the loading shown

I > 70 kKN
X 20 kN/m [ l
1 CZ % 4&
®

- A B D
— 16 kN e &
2.5m Z
cy3 |
E— 777777 X
| 6m 4 m | 4 m |
[ I [

Figure P5.4
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and draw the axial force, shear force, and bending moment
diagrams for the following data: E = 210 x 10% kN/m?,
[;,=80%x10"°m* A;=0.005m?1,=70x 10°m* A,=0.004
m?, I3=90 X 107 m*, and A; = 0.006 m?. The treatment of
the hinged support at node 1 is similar to that followed in
example 1.
Answer:

u; =0,wy=0,0; =+0.00796 rad, u, =-0.00003 m, w, = -0.00053 m,

0, (for the rigid part of joint 2) = -0.00493 rad.

u3=0,w3=0,063=0,u,=0,w,=0,6,=0

Ry1 = +4.92 kN, Ry; = +52.02 kN, Ry; =0,

Ry3 = -25.35 kN, Ry3 = +89.79 kN, Ry3 = -38.88 kNm,

Ry4 = +4.43 kN, Rz4 = +48.18 kN, Ry = +105.47 KNm.

X | 7 +4.92

(Z1) | |+52.02
|t 0
Member 1: F!= (_1)r _ ’
X, | | 492
). | |+6798
r
(1\7[1) _+47.86_
L 2Jr |
e _
()_(Z)r +89.79
(Z3) | | +9.35
Member 2: F2= (M3), |_|-47.86

x| |-8979
(Z2), | | 2535
r

= -38.88
_[M§ )r_ - -
G | T —443 ]
Z): | | +21.82
(M3) 0

Member 3: 2 =| (M12) |
(X3, +4.43

) +48.18
r

M +105.47
_(Mi )r_ - -
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Chapter 6

Arches

These are some of the most efficient forms of structures particularly
for long spans. The horizontal components of the reactions at the
supporting foundations produce bending moments that act in the
opposite direction to the simple span moments. A theoretical case
arises when the arch is in the shape of a parabola and the applied
load is uniformly distributed along the whole span then the arch will
be in pure compression with no bending moment at all sections. This
makes the arch ideal when using a brittle material such as brickwork
that is strong in compression but weak in tension. When the arch lies
in the xz plane its treatment is similar to that of rigidly connected
plane frame. In this chapter, only circular arches will be considered
since the treatment of parabolic and elliptic arches leads to very
involved expressions due to the additional parameters which define
their geometry.

In the analysis of circular arches, the stiffness matrix for an
element is derived relative to its local coordinates first and the
overall structure stiffness matrix is then assembled relative to global
coordinates in the usual way. Obviously the various elements of the
arch have different orientations thus the stiffness matrices relative
to local coordinates have to be transformed into global coordinates.

Analysis of Structures by Matrix Methods

Fathi Al-Shawi
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6.1 Derivation of Stiffness Matrix

Consider an element of the arch subtending an angle B with the
centre and its local axis, X -axis, is defined by the line joining the end
points, i and j, of the element with the z-axis being at right angles to
it as shown in Fig. 6.1.

Z

!

Figure 6.1 A circular arch element.

The derivation of the stiffness matrix is in two parts; in the first
part, end i is given displacements u;, w;, and 0; while end j is fixed.
Application of Castigliano’s theorem will give the actions )_(; , Z ,and
M; and from the equilibrium of the whole element the actions at end

j )_(}, Z;, and l\_/I'j can be found. In the secozld part, end i is fixed and
end j is given displacements ﬁ]., w;, and 6; resulting in the actions
)_(;-', Z] , and l\_/[] and the actions at end i )_('i', Z , and 1\7[l are found
from equilibrium of the whole element. The final actions at ends i
and j are determined from the algebraic sum of the two sets.

Consider first the case where end i is given displacements u; , w;,
and 6, while end j is fixed.

In Fig. 6.2, the internal actions, P', V', and M' at the cut section
which is making an angle & are drawn in their respective positive
directions since they are acting at the right end of the left part of the
member.



Derivation of Stiffness Matrix

Figure 6.2

Summation of the forces in the X -direction is zero:

X, +P cos(%—gj—v'sin(%—gjzo (6.1)
Summation of the forces in the z-direction is zero:
7 P sin| P— cosl B
Z, +P sin 5 & |[+V cos 5 E|=0 (6.2)
Summation of the moments about the cut section, c, is zero:
M, - X; (bc)+Z (ab)+M =0 (6.3)

where (from Fig. 6.1)

(ab) = (ac)cos(% - %j, (bc) = (ac)sin(% - %j, and (ac) = 2Rsin(%j
Solving (6.1) and (6.2) simultaneously to get

'~ X cos| B_e|_7Zsin[ B
P= Xicos(2 &) Zism(2 &j (6.4)

' Xsin P |- Zcos| B -
V—Xism(2 ij Zicos(2 &j (6.5)
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From (6.3) and with the substitution of the values of (ab) and
(bc) we get:

M'=—M}+2>‘<}Rsin(§)sm(ﬁ éj ZZRsin(i’j (B é) (6.6)

Neglect the effect of shear force on deformations and apply
Castigliano’s theorem as follows:

M?2ds _[ P%ds

The strain energy, U J-
2EI 2EA

where the length of a small arc, ds = Rd§ and integrating from 0 to
B to get

R B
U =— [M?d& + P%d 6.7
2EI a A-[ & (6.7)

_izaU U oM au 9P 68)
X, oM oX, oP oX,

[

LU _ou oM au o
' 9Z, oM 9Z 9P 97

=

(6.9)

0, = a[_J, =8—U.al\_/[. +a—U. a_P. (6.10)
oM. oM oM; P oM,

From (6.7) we get

B - B
—= BJ‘M'dE) and Bl = iJP'dﬁ
El . oP EA .
From equation (6.4) we get:
8_3 = —cos(E—ﬁj, B_E = —sin(E—QJ, and 8__P =0
dX; 2 dZ,; 2 oM,

From equation (6.6) we get:

3o 23}, 2 - S B3 na 25 -

Substituting (6.4), (6.6), and the relevant derivatives, as
appropriate, from above into (6.8) will give



Derivation of Stiffness Matrix

z[{ M+2XR51n[§] (B §] ZZRsm@]cos(B &ﬂmsm(ij
sin(g—E]dé+;ﬂ—x;cos(g—&J—Z{sin(z_g)]{_cos(g_éﬂdg

Introducing the parameter o = I/AR? and integrating from & = 0
to & =P to get

m‘;u

=1

i :%{0-5[BCOSB+(01—3)5111[3“3(0“2)]”_(; +[cosB +0.5BsinB—1]
RZ, +[Bcos(B /2)-2sin(B/ 2)}1\7[;} (6.11)

Similarly (6.9) is simplified to give

w, = l::—?{[cosﬁ +0.5Bsinf — 1]R)_(; - O.S[BCOSB + ((x+ 1)sinB-B(o+ 2)]

RZ +[Bsin(B / 2)]1\71;} (6.12)
And (6.10) is simplified to
8, = 5{[Bcos(ﬁ /2)~2sin(B /2)|RX, + Bsin(B /2)RZ, +BH, } (6.13)

Solve equatlons (6. 11) (6.12), and (6.13) simultaneously for the
unknowns X Z and M to get:

-
X, =¥(c1ui +C,R0, (6.14)
— El _ —
Z, :§(C3Wi —C4R9i) (6.15)

— El _ _ —

M, = E(czRui —C,RW, +c5Rzei) (6.16)

Equations (6.14), (6.15), and (6.16) represent Eii of the stiffness
matrix.

From the overall equilibrium of the arch element the following
equations are obtained:

Summation of the forces in the X -direction:

)_('i +)_('j =0, )_('j =_)_(; , hence
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El

X =¥(—clﬁi —CZRéi) (6.17)

Summation of the forces in the z-direction:
Z +Z]T =0, ZJT = —Z; , hence

—.  EI B _
Z= §(_C3Wi +C,R8;) (6.18)
Summation of the moments about end j:

1\7[; +ZL + I\_/I;- =0 [The span of the arch element, L = 2Rsin(/2)]
M, =—M, - 2RZsin(B / 2)

Substitute for Z; and l\_/['i from (6.12) and (6.13) respectively we
get

El

_ o -
M = E(—czRui ~C,RW, —C,R*G; ) (6.19)

Equations (6.17), (6.18), and (6.19) represent K]-i of the stiffness
matrix.
The above process is repeated with end i fixed and end j is given

displacements u;, w;, and ;.

B Vo
—_—— \
G=9 —
\‘ :
vl "
c ‘\,'/VP
) o
) V"
Xl _>a
M; 7 endiis fixed: 0, =w; = 8; = 0

Figure 6.3
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The equations for the axial force and moment at section c in this
case are similar to (6.4) and (6.6) but the single primes are replaced
by double primes as shown in Fig. 6.3, thus

P’ =-X; cos(%— j— Zi”sin(% - ) (6.20)
M =-M; + zi;'Rsin(Ejsm(B é) ZZ'Rsin(ijcos(B é] (6.21)

Since we want to find expressions for the displacements u;, w;,

and 6 the above two equations are written in terms of X Z; ,and

M]- whose derivatives will give the respective dlsplacements. To

achieve this, the equilibrium of the whole arch is considered.
Summation of the forces in the X -direction is zero:

X; +X; =0, X/ =-X
Summation of the forces in the z-direction is zero:
Z +Z, =0, Z =-1I
Summation of the moments about node i is zero:
M; +M; —ZL=0, where L=2Rsin(B/2)
M; =-M; +2ZRsin(B / 2)

Substitute the above values of X
(6.18) respectively to get

l", and M in (6.17) and

P’ =)_('i' cos(%—§)+z; sin(%—ﬁ] (6.22)

M M —2X Rsin (é) (B aj 27 R{sm(ﬁj sin(é)cos(ﬁ—éﬂ
2 2 2 2 2

(6.23)

U= BM"2d§+l-TP"Zd§ (6.24)
2EI ) 2EA '

_JU"_oU oM aU P
oX; oM oX; aP ax

=l

V_v]_:a_l_J”:aL"aM au’ ap" (6.26)
9z, oM 37, P IZ
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5.-0U _oUu oM ou oF (6.27)
' oM, oM’ M| S M, '

Equations (6.25), (6.26), and (6.27) are simplified and integrated
from & = 0 to & = B to give:

u; = i—i{O.SR[BcosB + (oc - 3)sin[3 +B(o+ 2)])_(']-’ + R[l —cosP— 0.5Bsin[3]

7 +[Beos( /2)~2sin(B/ )]} (6:25)

W= I;—i{R[l —cosfB— O.SBSiHB])_('j' - O.SR[BCOSB + (oc + 1)sinB —Blo+ Z)J

z; ~[psin(B / 2)]M; } (6.29)

= %{R[ﬁcos(ﬁ /2)-2sin(B/2) |X; ~[RBsin(B /2)]Z; + l31\7l}'}

(6.30)
Solve equatlons (6. 28) (6.29), and (6.30) simultaneously for the
unknowns X ,and M to get:
X = F(clﬁj +c2Rej) (6.31)
Z = El —(csw; +C,RE;) (6.32)
« EI
M, = (CZRu +C,RW, +C;R?6, ) (6.33)

Equations (6.31), (6.32), and (6.33) represent Ejj of the stiffness
matrix.

From the overall equilibrium of the arch
X, +X =0, X, =X

X =—(~C, T, — C,R®; | (6.34)

Z; =—(-C,w, - C,R8)) (6.35)



Derivation of Stiffness Matrix

Taking moments about end i of the arch
M; +M; —ZL=0, M;=-M +2RZsin(B/2)
Substitute for Z] and 1\7I] from (6.27) and (6.28) respectively to
get
EI( C,RU; +C,RW, CRe) (6.36)

Equations (6.34), (6.35), and (6.36) represent Kij of the stiffness
matrix.

Finally, adding quantities with single prime to the corresponding
quantities with double primes to get the resultant values of the end
forces in terms of the end displacements as shown below.

From (6.14) and (6.34): X, =X; +X;

From (6.15) and (6.35): Z; = Z Z
From (6.16) and (6.36): M, =M, + M,
From (6.17) and (6.31): X, =>‘<, )‘(J
From (6.18) and (6.32): Z; = Z Z;

From (6.19) and (6.33): M 1\7[ +M

The above six equations are written in matrix form to give the
general stiffness matrix of a circular arch element relative to local
coordinates as:

X; ¢, 0 CR ¢, 0 -CGRW
A 0 ¢ -CR 0 -C -CR||W
M| EI| R —C,R CR® —CR CR —CR%|[ 6
X, |"R}|C, 0 -CGR ¢ 0 GCR (Y
Z 0 ¢ CGR 0 C CR ||w,
M, -C;R —C,R CR* CR CR CR® | g,
(6.37)
where Cy, Cy, . . ... , C¢ are functions of o and B given by
a a3 Ay a5
= ’ CZ = ’ 3 = y 4 = ’
a,o+1 a,o+1 o+l o+l
a6OLZ +a,0+ag a60c2 —ag0+ag, I
5= ———, (g=——————, and o= —
(o+1)(a,00+1) (a+1)(a,00+1) AR
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The above expressions are derived from detailed calculations for
the derivation of the stiffness matrix and the values of a; to a;( are
functions of  which have been calculated for different values of B
and are given in Table 6.1.

Table 6.1
B aq az az | A4 | as e a7 dg ) 19
15°]587139] 1528373348 671 87.6| 583797 | 2331211 |34.4] 1163570 11.5
30°| 18475 | 9456 | 419 |84.8J21.9] 18059 | 71752 |17.1] 35611 |5.75
45°| 2463 | 1838 | 125 |25.6/9.78| 2340 9224 |11.3|] 4528 |3.84
60°] 595 569 |52.9]11.0]5.52| 543 2119 |8.41] 1021 |2.90
75°] 199 227 | 27.2|5.83]3.55| 173 667 ]6.65] 312 2.33
90°| 823 106 | 15.9]3.50|2.48] 67.3 256 |5.46] 114 1.96

The stiffness matrix in (6.37) is relative to the local coordinates
and for the assembly of the overall stiffness matrix it is required to
be written relative to global coordinates. The transformation of the
arch element is similar to that of the rigidly connected plane frames
discussed in the previous chapter.

6.2 Transformation of Coordinates

Consider an element of the arch whose local X -axis lies initially
along the global x-axis and then it is rotated about the y -axis by an

angle ¢, as shown in Fig. 6.4.

ir 4i

Z

Figure 6.4




Calculation of Actions Developed in the Elements

Since the element lies in the xz plane, its transformation matrix,
1, is the same as that for a straight member in a rigidly connected
frame which was derived in chapter five as given by equation (5.6)
but with the length L being the straight distance between nodes i
and j, thus:

[ x; /L oz /L 0 0 0 O]
—z; /L x;/L 0 0 0 0
0 0 1 0 0 0

r= (6.38)
0 0 0 x;/L z/L 0
0 0 0 -z;/L x;/L 0
0 0 0 0 0 1

where X:=X,—X., Z.=Z,—Z

_ [z, .2
G =X Xy, 2y =2y—Z, and L= Xij +Z;

and the stiffness matrix relative to global coordinates is k = rTkr.

6.3 Calculation of Actions Developed in the
Elements

For an arch element lying in the xz plane, the actions that are of
interest are the axial force P, shear force V, and the bending moment
m rather than the actions relative to the local coordinates as was
explained in the previous chapters. A convenient way is to find X,
Z, and M relative to local coordinates and then transformed them
into P, V, and m as shown in Fig. 6.5.

With reference to Fig. 6.5 and by resolving the actions that are
relative to local coordinates into their components we get

P, =X, cos(B/2) +Zsin(B/2)
V, =X, sin(B/2) + Z,cos(B/2)
The moment, m; =M; (since both moments are about the same

y-axis)
Similarly

P, =X, cos(B/2) - Zsin(B/2)
V, =X, sin(B/2) + Zcos(B/2)

m; =M;
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Figure 6.5
In matrix form
[P ] [cos(B/2) sin(B/2) 0 0 0 0 ’E
Vi —sin(B/2) cos(B/2) 0 0 0 0 gi
m | 0 0 1 0 0 0 M,
P 0 0 0 cos(B/2) —sin(p/2) 0 X;
\Z 0 0 0 sin(B/2)  cos(B/2) 0 Z}.
m | [ 0 0 0 0 0 U,
where
[ cos(B/2) sin(B/2) 0 0 0 0]
—sin(B/2) cos(B/2) 0 0 0 0
. 0 0 1 0 0 0 (6.39)
L 0 0 cos(B/2) -sin(B/2) 0|
0 0 0 sin(B/2) cos(B/2) O
| 0 0 0 0 0 1]




Calculation of Actions Developed in the Elements

P ] —)—(i 1
A Z
m, _ 1\_/[i
f= P and F= )—(j
v, Z
LM ] 1\7[]'

But, F= k6 and &= rd, therefore

f = rzkrd (6.40)

Example

Analyse the circular arch whose geometry and the forces acting on it
as shown in Fig. 6.6 using the following data:

E=210x10°kN/m? 1=0.00048 m* A=0.0125m? andR =16 m.
I 0.00048

5= > =0.00015
AR 0.0125x16

o=

60 kN

/\\ _-
(\‘ 60‘45/3(2 -
22. ~ .

Figure 6.6

Coordinates of nodes (Taking point O as the origin)
Node 1:
x1 =R-Rcos(22.5°) =16 - 16 cos(22.5°) =1.22 m
Z, = Rsin(22.5°) =16 sin(22.5°) = 6.12 m
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Node 2:
X, = R-Rcos(82.5°) =16 - 16 cos(82.5°) =13.91 m
Z, = Rsin(82.5°) = 16 sin(82.5°) = 15.86 m

Node 3:
x3 = R+ Rcos(52.5°) =16 + 16 cos(52.5°) = 25.74 m
Z3 = Rsin(52.5°) = 16 sin(52.5°) = 12.69 m

Node 4:

x4 = R+ Rcos(22.5°) =16 + 16 cos(22.5°) =30.78 m
z4 = Rsin(22.5°) = 16 sin(22.5°) = 6.12 m

Element 1 (B =60°), from Table 6.1

a; =595,a,=569,a3=52.9,a,=11.0,a5=5.5,
ag=543,a;,=2119,a3=8.41,a9=1021,a;7=2.90

A 595 _s4g, c, = - 52.9 _
a,on+1 569x0.00015+1 a,o0+1  569x0.00015+1

G

co_ @ _ 110 ... _a _ 552 .
37 a+1 0.00015+1 "t T a+1 0.00015+1

_aga’+a,o+ag  543x0.00015% +2119x0.00015+8.41

> (a+1)(a,a+1)  (0.00015+1)(569%0.00015+1) 8.04
_ 350’ —ag0+ay, _ 543x0.00015 ~1021x0.00015+2.90 _ 253
°" (a+1)(a,a+1) (0.00015+1)(569x0.00015+1)
From (6.37)
[ 548 0 48.7x16
0 11.0 -5.52x16
el 210x10° x0.00048| 48.7x16 -552x16 8.04x16°
163 —548 0 —48.7x16
0 -11.0 5.52x16
|-48.7x16 -5.52x16 -2.53x16
-548 0 —48.7x16 |
0 -11.0  -5.52x16
—48.7x16 5.52x16 -2.53x16°
548 0 48.7x16
0 11.0 5.52x16
48.7x16 552x16 8.04x16° |




Calculation of Actions Developed in the Elements

[ 13486 0 19176 -13486 0 -19176]|
0 271 2174 0 271 -2174
o 19176 -2174 50652 -19176 2174 -15939
-13486 0  -19176 13486 0 19176
0 —271 2174 0 271 2174
-19176 -2174 -15939 19176 2174 50652
i (6.41)
X=%;=122m, x=x,=1391m,
X=X -%=13.91-122=12.69m
2;=21=6.12m, z=2,=1586m,
z;=2;-2;=1586-6.12=9.74m
L=x} +22 =\12.69* +9.74% =16.00m
ﬁzﬂzw%, Zi 974 6609
L 16.00 L 16.00
From (6.38)
[0.793 0.609 0 0 0 O]
-0.609 0793 0 0 0 0
g 0 0 1 0 0 0 (642)
0 0 0 0793 0.609 0
0 0 0 -0.609 0.793 0
0 0 0 0 0 1]
kl — (I'1 )T 1_(11,1
[ 8581 6382 16531 —8581 -6382 -13883]
6382 5172 9954 —6382 -5172 -13402
W 16531 9954 50652 -16531 -9954 -15939
-8581 -6382 -16531 8581 6382 13883
-6382 5172 -9954 6382 5172 13402
|-13883 -13402 -15939 13883 13402 50652 |

(6.43)
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Element 2 (B = 45°), from Table 6.1
a; = 2463,a, =1838,a3 =125, a4 = 25.6, a5 =9.78,
ag =2340,a;,=9224,ag=11.3,a9 =4528,a;5 = 3.84
a, 2463
a,o+1 1838x0.00015+1
a; 125 B
a,o+1 1838x0.00015+1

C, = =1931,

C,=

a, 25.6 a 9.78
= :25_6, C4 = = =
a+1 0.00015+1 oa+1 0.00015+1

C; =

a0’ +a,00+ag  2340x0.00015% +9224x0.00015+11.3
(+1)(ay0+1) (0.00015+1)(1838x0.00015 +1)

5:

ago’ —ago+a;, _ 2340x0.00015 - 4528x0.00015+3.84
(0+1)(a,0+1)  (0.00015+1)(1838x0.00015+1)

6~

0 630 3851 0 -630 -3851

— 38588 —3851 62622 —-38588 3851 -15624

—47521 0 —-38588 47521 0 38588
0 -630 3851 0 630 3851

X =%X;=13.91m, x;=x3=25.74m,
X=X -X;=2574-13.91=11.83 m
2;=2,=15.86m, z=23=12.69m,

Zij = Z]' —Zi= 12.69 - 1586 =-3.17m

L=x2+2 =\11.832 +(-317) =12.25m

X Zi  —
D ﬂ =0.966, — = ﬂ =-0.259
L 1225 L 1225

[ 47521 0 38588 47521 0  -38588]

| —38588 -3851 -15624 38588 3851 62622 |

=9.94

=2.48

(6.44)
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(0966 -0259 0 0 0 0

0259 0966 0 0 0 0

5 0 0 1 0 0 0
r’ = (6.45)

0 0 0 0966 -0.259 0

0 0 0 0259 0966 0

0 0 0 0 0 1]

kZ — (1'2 )T 1_(21,2

[ 44387 -11732 36279 -44387 11732 -38273]
~11732 3776 -13714 11732 -3776 6274
36279 -13714 62622 -36279 13714 -15624
~44387 11732 -36279 44387 -11732 38273
11732 -3776 13714 -11732 3776 —6274
|—38273 6274 -15624 38273 —6274 62622 |
(6.46)

.
[\S}
Il

Element 3 ( = 30°), from Table 6.1
a; = 18475, a, = 9456, a3 = 419, a, = 84.8, a5 = 21.9,

ag=18059,a; = 71752, ag = 17.1,a9 = 35611, a9 = 5.75

coo_ A _ 18475
' aa+1 9456x0.00015+1

419

Cp=—3 = =173

a,a+1  9456x0.00015+1

=7639,

84.8 21.9
Ci=—2t = =848, C,=—2
a+1 000015+1

o+l 0.00015+1

_ago’+a,00+ag  18059x0.00015% +71752x0.00015+17.1

= = =11.52
(0+1)(a,00+1) (0.00015+1)(9456 % 0.00015+1)

5

_aga’—agoi+ag,  18059x0.00015% ~35611x0.00015+5.75
(o+1)(ay0+1) (0.00015+1)(9456 x0.00015+1)

. =0.169
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[ 187991 0 68119 -187991 0 -68119]
0 2087 -8623 0 -2087 -8623
_ 68119 —-8623 72576 —68119 8623 -1065

K=
-187991 0 —-68119 187991 0 68119
0 -2087 8623 0 2087 8623
| -68119 -8623 -1065 68119 8623 72576 |
(6.47)
Xi=X3= 25.74 m, X] =Xy = 30.78 m,
Xij = X]' - Xi = 3078 - 2574’ = 504 m
zi=23=12.69m, z=274=6.12m,
Zii = Z]' - Zi = 612 - 1269 = —657 m
L=[x}+2% =5.04? +(-6.57)* =828 m
X;  5.04 Zi —6.57
_‘J:i:o_eog, J=6—5=—0.794
L 828 L 828
[0.609 -0.794 0 0 0 0]
0.794 0609 0 0 0 0
5 0 0 1 0 0 0
= (6.48)
0 0 0 0.609 —-0.794 0
0 0 0 0794 0.609 0
| 0 0 0 0 0 1]
K =) k3
[ 71038 —-89893 34638 -71038 89893 —48331]|
-89893 119290 -59338 89893 -119290 48835
3o 34638 -59338 72576 -34638 59338 -1065

—-71038 89893 34638 71038 89893 48331
89893 -119290 59338 -89893 119290 —48835
|—48331 48835  -1065 48331 48835 72576 |

(6.49)




Calculation of Actions Developed in the Elements

Assembly of the overall structure stiffness matrix, K:

1
Ky = kili Kip = kij 0 0]
1 1 2 2
Ky =k; Ky, =k +kj Ky =Kj 0
K=
2 2 1,3 3
0 Kj, = kji Kys = kjj +Kkj Ksy = kij

0 0] Kys = kjgi Ky = ki31'

where k!, k? and k3 are given in (6.43), (6.46), and (6.49),
respectively.

Load vector

At node 1 the reactions on the structure are: the force in the
x-direction Ry, the force in the z-direction R;;, and the moment Ry;.
At node 2 the external force of -60 kN in the z-direction and at
node 3 the external force of 80 kN in the x-direction.
At node 4 the reactions on the structure are: the force in the
x-direction Ry, the force in the z-direction Rz4, and the moment Ry;,.

Xy Rx1

Zy Rz

M, v

X, 0

E] |z, | |-60
e B[ M2|_| O
B | | X3 | |+80
I 0
M, 0

Xy Rys

Zy Rz4
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The reduced matrix is obtained by applying the boundary
conditions as follows:

Atnode 1
u; =0, w; =0, and 64 = 0, therefore delete rows and columns 1, 2,

and 3.

At node 4
U, =0,w, =0, and 6, = 0, hence delete rows and columns 10, 11,

and 12.
Thus the reduced matrix is

(52968 —-5350 50162 —44387 11732 —38273| u, 0
-5350 8948 -312 11732 3776 6274 ||w,| |-60
50162 -312 113274 -36279 13714 -15624| 6, 0
44387 11732 -36279 115425 -101625 72911 | ug 80
11732 -3776 13714 -101625 123066 —65612 | w,
| -38273 6274 -15624 72911 -65612 135198 6,

The solution of the above simultaneous equations is:

u; =0.018931 m, w, =-0.023316 m, 6, = -0.002081 rad
u3 =0.027037 m, w3 = 0.021005 m, 65 = 0.001814 rad
So the full displacement vector is:

u, 0

wy 0

0, 0
u, ||+0.018931
9, w, || —0.023316
5= 8, | | 6, || —0.002081
o3 u; || +0.027037
o, w3 || +0.021005
0; || +0.001814

u, 0

Wy 0
10, |1 0 |
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Arches

Figure 6.7 Deflected shape of the arch.

Calculation of the reactions at the supports

These are usually calculated relative to the global coordinates and
may be found from the full overall stiffness matrix (6.50) as shown
below.

For node 1:
From row 1
8581u; + 6382w, + 165316, - 8581u, - 6382w, - 1388360, = Ry

8581 x 0 + 6382 X 0 + 16531 x 0 - 8581 x 0.018931 - 6382 x
(-0.023316) -13883 x (-0.002081) = Ry;,

Ry;= +15.25 kN

From row 2
6382u4 + 5172wy + 99540, - 6382u,- 5172w, - 134026, =Ry,

6382 x 0 + 5172 x 0 + 9954 x 0 - 6382 x 0.018931 - 5172 x
(-0.023316) -13402 x (-0.002081) = Ry,

Ry;= +27.66 kN

From row 3

16531u, + 9954w, + 506526, - 16531u, - 9954w, - 159396, =
Rwm1

16531 x 0 +9954 x 0 + 50652 x 0 -16531x0.018931-9954 x
(-0.023316) -15939 x (-0.002081) = Ry,

Ry1= -47.69 kNm

Similarly for node 4:
From row 10, Ry, =-95.29 kKN
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From row 11, Rz, = +32.39 kN
From row 12, Ry, = -282.88 KNm

60 kN
80 kN
15.25KkN e <— 95.29 kKN
47.69 KNm \1 1}282.88 kNm
27.66 kKN 32.39 kN
Figure 6.8
Calculation of actions on the elements
Element 1
From (39) with § = 60°
[0.866 0500 0 0 0 0]
-0.500 0.866 0 0 0 0
G| 0 0 1 0 0 0
B0 0 0 0866 —0.500 0
0 0 0 0500 0866 0
0 0 0 0 0 1]

k! and r! are given in (6.41) and (6.42) respectively.

uy 0

A 0

st |8, |u, | |+0.018931

w, | |-0.023316
0, | |-0.002081|
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From (6.40)
[P, ] [ +31.39 |
\'A -3.51
1
£l f _ fy I e PR T B s B —47.68
S I N ~18.74
v, —25.43
| m, | | —155.08 |
2 ’18.74 kN
@ 25 43 kN )155.08 kNm
1
T35 kN
47.68 kNm
31.39kN
Figure 6.9
Element 2

From (39) with § = 45°

0924 0383 0 0 0 0
0383 0924 0 O 0 o0

2 | 0 0 1 0 0 o0
BT o 0 0 0924 -0.383 0
0 0 0 0383 0924 0

0 0 0 0 0 1

k% and r? are given in (6.44) and (6.45) respectively.
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u, | [+0.018931]
w, | |-0.023316
62{8?]{62}: 6, |_|-0.002081

82| 185) | us || +0.027037
wy | |+0.021005
0, | |+0.001814]

From (6.40)
[P, ] [ +10.89 |
v, ~34.04
2
e |5 |_[B]_|m | 22, 252 _| +155.10
2| 1] [ B | P -31.78
A +16.35
|m, | | +178.27 |
10.89 kN 1635 kN

/ 2
15510 kNmK 34.04 kN 3/‘\
31.78 kN

178.27 kNm
Figure 6.10
Element 3
From (39) with § = 30°
[ 0966 0259 0 0 0 1
-0.259 0.966 0 0 0
0 0 1 0 0

=k
Il

0 0 0 0966 -0.259
0 0 0 0.259 0.966
0 0 0 0 0

O O O O O
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k® and r® are given in (6.47) and (6.48) respectively.

u; | [+0.027037]
wy | [+0.021005

5 - & _[83]_| s |_|+0.001814
& 3, u, 0

Wy 0
_64 4 L 0 i
From (6.40)
[P, ] [ +95.26 |
vy +32.30
£21 [¢f m _ -178.23
3_ |1 |3 3 |_.31,3,.33 _ *
f _[f?]{f} b, |~ 662
j 4 4
v, ~75.62
|m, | | —282.88 |
95.26 kN
\ 32.30 kN
178.23 kNm & /:
75.62 kN

)¢
282.88 kNm \-v 66.32 kN
Figure 6.11
Notice the discontinuity in the values of P,, V,, P53, and V3 which is

due to the presence of the 60 kN in the negative z-direction at node
2 and the 80 kN in the positive x-direction at node 3.



Problems

Problems

P6.1. Analyse the circular arch whose geometry and the forces
acting on it as shown in Fig. P6.1 using the following data:
A=0.0036 m?1=0.00004 m* E =210 x 10°kN/m?.

60 kN

-
-
-
-
-
-
-
-
-

Answer:

Figure P6.1

u;=0,w;=0,0; =0,u,=0.009889 m, w, = 1.027113 m,
0, =-0.002584 rad, u; = 0, w3 = 0,03 = 0
Ry; = -52.51 kN, Ry; = -5.60 kN, Ry = -46.61 kNm
Ry = -7.49 kN, Ry3 = +5.60 kN, Ry3 = -19.12 kNm

Py
\A
M,
Element 1:
P,
v,
M

2

[-48.27]
+21.43
-46.61
+52.52

+5.57

|-16.97 |

, Element 2:

[ +7.49 |
-5.59
+16.97
~7.34
-5.78

|-19.12]

P6.2. Analyse the circular arch whose geometry and the forces
acting on it as shown in Fig. P6.2 using the following data:
A=0.08m?%1=0.0012 m* E =25 x 10kN/m?.

253
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kN

Answer:

Figure P6.2

u;=0,w;=0,06;=0,u,; =-0.003555m, w, =-0.018162 m,
0, =-0.001149 rad, u3 =0, w3 =0,05 =0.002123 rad
Ry = 213.71 kN, Rz; = 128.00 kN, Ry;; = 177.19 KNm
Ry3 =-213.71 kN, Rz3 =122.000 kN, Ry3 =0

Element 1:

P6.3. Analyse the circular arch whose geometry and the forces
acting on it as shown in Fig. P6.3 using the following data:

[+217.62]

| -213.10

-121.21
+177.18
-213.61
-128.14

, Element 2:

[+213.62]
-122.15
+213.10
—-237.43
—-64.64
0

A=0.40m?1=0.025m* E =30 x 10°kN/m?.
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100 kN

\ 4
\ !
S \ / .
N .
S /-‘\ IIL\ ’,R 20m
~ o o P =
30° X350)'30°,
\\ \ II ,/

\

\\\\ I,/,

N

Figure P6.3

Answer:
u;=0,w;=0,0; =-0.002195 rad,
u, =-0.008941 m, w, = 0.009568 m, 6, = 0.000311 rad,
u3 =-0.008941, w3 =-0.010202, 65 = 0.000103 rad,
us=0,w,=0,0,=-0.001913 rad
Ry1 =94.64 kN, R;; =39.78 kKN, Ry; =0
Rys = -24.64 kN, Rz, = 60.22 KN, R4 =0

P, | [+89.17 ] [P, | [ +37.98]
v, | | -50.87 v, | | +27.34
M, 0 M, | |-269.76
Element 1: = , Element 2: = ,
P, | |-102.66 P, -7.56
v, -0.51 V, | | —46.18
M, | |+269.76] |M; | |-339.24]
[P, | [ +45.82 ]
V, | | —46.19
M, | |+339.24
Element 3: =
P, | | -62.77
v, | | +17.10
M, [ 0|
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P6.4. Analyse the circular arch whose geometry and the forces
acting on it as shown in Fig. P6.4 using the following data:
A=0.004 m?1=0.00006 m* E =210 x 10°kN/m?.

20 kN

§x1 © 2 T

10kN/m 5m

o IERERRRNNNE

Figure P6.4

Answer:
u;=0,w;=0,6,=0.008167 rad,
u, =0.000038 m, w, =-0.018513 m, 6, =-0.003507 rad,
u3=0.015093 m, w3 =-0.000041 m, 653 =-0.000471 rad,
u=0,wy=0,0,=0
Rg; =-5.32 kN, Rz; =13.17 kN, Ry; =0
Ry4 = -44.68 kN, Rz, = 6.83 kN, Ry4 = -68.85 kNm
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X, | [-532] P, | [-533]
Z, | |+13.17 Vv, —6.82
M, 0 M, | |+19.03
Element1: | " |= , Element 2: = ,
X, | | +5.32 P, —6.84
A +6.83 Vi | | +5.30
M, | [-19.03] | M; | [+29.56]
(X, ] [ +6.83]
A -5.32
M, | |-29.56
Element3: | _° |=
X, | | -6.83
Z, | |-44.68
M, | [-68.85]
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Chapter 7

Grillage Analysis

A typical example of this type of frame is a bridge deck carrying
gravity loads resulting from road or rail traffic. The bridge deck
transfers the loads to beams running in two directions which are
usually at right angles to each other as shown in Fig. 7.1. There are
three degrees of freedom at each node, which are the translation w
in the z-direction and the rotations ® and 0 about the x- and y-axes
respectively as shown in Fig. 7.2. The beams are connected rigidly
at their intersections, thus they develop bending moment (and
the associated shear force) as well as torsion as shown in Fig. 7.3.
In order to derive the stiffness matrix for a grillage member, the
bending and torsion are combined together to give the full stiffness
matrix. The stiffness matrix for the bending of beams was derived
in Chapter 4 and the stiffness matrix for the torsion of bars will be
derived in the next section.

= V// ::: ILY.

Figure 7.1 Grillage structure.

e
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Sl
IR

Figure 7.3 Actions at the ends of a typical member.

7.1 Derivation of Stiffness Matrix

j with the corresponding twists @®; and ®; about the X -axis as
shown in Fig. 7.4.

Consider first a bar subjected to torques 'T‘i and 'T‘] at its ends i and

f\y 1y ¥ f‘y X
VTEs 7Ty
1 & I

I L I
| |

Figure 7.4 Bar subjected to torsion.

Assume that end j is fixed as shown in Fig. 7.5, i.e. ®j=0:

— G =
TiZT‘Di (@)
Iy '% i A x
T T
| L |

Figure 7.5



Derivation of Stiffness Matrix

From equilibrium, T, +T; =0, T, =-T,

Thus, =, (b)

— G]=
=T ©

From equilibrium, 'T"l + _]-” =0, 'T'l = —"T"j'
So, T = —%EJ (d)

B
I
D

al X
v P ry
T, ® T
I L I
| |
Figure 7.6

The total twisting moment at each end is the sum of the above
two cases, thus from (a) and (d) we get

T=T+T =+ 25, - I,
L L
and from (b) and (c)
o _ G- Gj=
T]: ]+ j :—T(I)l‘l‘r ]
In matrix form
_ GJ GJ
T, T Ll
L] 1.9 U o
L L

The above relationships can alternatively be derived by a finite
element approach using the so-called interpolation polynomial
which defines the displacement along the element as explained in

Appendix 3.
From Chapter 4 about bending of beams we had the relation
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(4.17) as:

2NN

Combining the above relation with (7.1) we get:

NI

NI Z

Sl

ie. F= ES, where

ol
Il

[ 12EI

[ 12EI

7

_12EI

EEE]

P!

El o 8l =

2l

P
L

(7.2)

(7.3)



Transformation from Local to Global Coordinates

w, Z
&, T
5: §i = ?i , ﬁ = El = l\;i ,
8]' wj F] _j
B, Ti
16 | M
E is the modulus of elasticity,
E
G is the modulus of rigidity = ———,
2(1+p)

u is Poisson’s ratio = 0.15 for concrete and 0.30 for steel,

I is the second moment of area of the cross section about its
neutral axis,

] is the torsion constant. For a circular cross section, ] = nd*/32
where d is the diameter and for a rectangular cross section, ] = chb3
with b as the short side, h is the long side and c is a constant given in

Roark’s Formulas for Stress and Strain and simplified to the following
equation

5 4
h —-0.630 h +0.053
b b

c= 3 (7.4)
h
3 .
b
For open sections consisting of rectangular parts, for example an
‘T’ section,
i=n
J=) chb?, where n is the number of parts that make the

i=1
section.

7.2 Transformation from Local to Global
Coordinates

The above relationships are relative to the local coordinates and
they need to be transformed to the global coordinates system if the
member X -axis does not lie along the global x-axis. Since the grillage
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is in the xy plane the orientation of any member is defined by the
rotation about the z -axis as shown in Fig. 7.7.

Figure 7.7

Consider the member shown in Fig. 7.8 which has taken its
final location by a rotation about the z-axis by an angle ¢, in the
clockwise direction.

/‘<|

y
A
I -
I
1 node j
0.

£

@;
Figure 7.8

Since the member has taken up its final position by rotating the
z -axis only and this means that the local z-axis is coincident with
the global z-axis then the translational displacement relative to the
local coordinates is not changed thus:

W; =w;
The rotational displacements are vectors, so they are resolved

into components along the relevant axes in the same way as the
translational displacements vectors as shown in Fig. 7.8.



Transformation from Local to Global Coordinates

The rotational displacement ®; is equal to the algebraic sum of
the components of the rotational displacements ®; and 6; along the
X -axis and is given by:

D, = ®,cosp, +8;sing,

Similarly, the rotational displacement ; is equal to the algebraic
sum of the components of the rotational displacements ®; and 6;
along the y -axis and is given by:

0, = —®;sing, +6,cosp,

The above transformations are written in matrix form as

wil 1 0 0 |[w,
®; |=|0 cosp, sing, || D,
6, | |0 —sing, cosg_ |9
or Si=P25,~
where
1 0 0

p.=|0 cosp_, sing_ | is the transformation matrix, r; for
z z z
0 -sing, cosg,

node i.

Similarly the transformation matrix for node j, r; =p, .
The transformation matrix for nodes i and j is

, O p, O 00
r= = , where 0= , hence
0 I 0 p, 00

1 0 0 0 0 0

0 cos¢,  sing, 0 0 0

0 —sing,  cosQ, 0 0 0
oo 0 0 1 0 0

0 0 0 0 cos@,  sing,

0 0 0 0 —sinQ, cosQ,
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The transformation matrix r can be written in a more convenient
form by expressing sing_ and cosg, in terms of the coordinates at
the ends of the member as shown in Fig. 7.9

Yi~¥i Yy X=X X

where  sing, == cos@_ = R and

L=\/(X]‘ _Xi)z +(y]' _Yi)z =\/Xizj +Yi2j

y
4 J
L
1 (pi yj
Yi
0 > X
X
Xj
Figure 7.9
Substitute in (7.4) to get:
1 o 0 0 0 0 |
0 x;/L y;/L O 0 0
0 -y;/L x;/L 0 0 0
0 0 0 1 0 0
0 0 0 0 x;/L yy;/L
0 0 0 0 -y; /L Xjj /L

The stiffness matrix relative to global coordinates is k=rTkr
with k from (7.3) and r from (7.5), thus
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Transformation from Local to Global Coordinates

(9°2)

¢l . el | N el ¢l el | el el

.m\ﬁu mx_m:\ _i__x_u f.:x_m:u __xmmo _NSG _N_x_mm f:x_u _i__x_m_N :xEo
a_a d A1 a paa e _ ¢l |
{1 ad [ i ad a

"x139 "A199 1421 “x189 "A1g9 1421

da ala a | oa A, afla a | oa

el gl el gl el f ¢l + el ¢l +m|q _sl
gy "A%mg _N_x_u _N_bm_m Ao A" "Axpae _N_x_u ._N_bm:\ " K19
L €l el el €l £l

"x199 “Sfrao | 13TT "X199 "A139 1421




268 | Grillage Analysis

Example

Analyse the grillage shown in Fig. 7.10 given that the properties of
all members are: E = 210 x 106 kN/m?, u = 0.30, I = 0.00059 m*,
] =0.00092 m*.

30 kN 10 kN

.

12 kN/m

Figure 7.10

E  210x10°

G= = =80 kN/m?
2(1+pn)  2(1+0.30)

Stiffness matrices from (7.6)

Member 1

Xi=O,Xj=4m,Xi]'=X]'—Xi=4—0=4m

yi=0,y;=0m,y;=y;j-y;=0-0=0

L=|xt+y? =42 +0? =4m



Transformation from Local to Global Coordinates

81
Si:61 8]’:82
W; o, 0. w; CDj OJ-
W1 @, 6, W, @, 0,
[ 23231 0 —46462 -23231 0 —46462|w,
0 18400 0 0 -18400 0 D,
1l = -46462 0 123900 46462 0 61950 |6,
| -23231 0 46462 23231 0 46462 |w,
0 -18400 0 0 18400 0 D,
| —46462 0 61950 46462 0 123900 |9,
Member 2
X=4mx=4mx;=%X-%x=4-4=0
¥yi=0,yj=-6m,y;=y;-y;=-6-0=-6m
L=\/xi2]- +in]- =\/O2 +(—6)2 =6m
82
8;62 61283
w; D, 0. u; w; 9;
W2 2, 6, Uz W3 6;
[ 6883 -20650 0 -6883 -20650 0 w,
—-20650 82600 0 20650 41300 0 D,
12 = 0 0 12267 0 0 -12267 |6,
| —6883 20650 0 6883 20650 0 Wy
-20650 41300 0 20650 82600 0 (ON
| 0 0 -12267 0 0 12267 |6,

269



270 | Grillage Analysis

Member 3

X=4m,x=0,%x;=%-

yi=-6m,y;=

=-9m,y;=

Vi=

x=0-4=-4m
~9-(-6)=-3m

L=\x2+y% =\(-4) +(-3) =5m

83
8i283 61264
wi ; o w9 9,
W3 P, 6w, o, 0,
(11894 -17842 23789 -11894 -17842 23789 w,
17842 45104 -40512 17842 8421 —30854 |,
13 = 23789 —40512 68736 -23789 -30854 26419 |6,
|-11894 17842 -23789 11894 17842 -23789 Wy
—-17842 8421 30854 17842 45104 -40512 |0,
| 23789 -30854 26419 -23789 -40512 68736 | 0,
5, 5, 5 5,
1 1
Ki1 =k Ki; =k 0 0 8
1 1,2 2
Ke K1 =Kk; Ko =kj+kii | Kz =kj 0 8,
2 2,13 3
0 K3, =kj; K33 =kj; +kj Ks, =kj |83
3 3
0 Y 13 =K Kas =kj |8,

The overall stiffness matrix of the structure is:
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Load vector

Member 1
Actions on member 1, W = -30 kN

W=30kN
(Mb); = 15 kNm (M}); = 15 kNm 7
( i j ) —
X
t b
(Z}H¢ = 15kN (Z3)¢f = 15kN
2m | 2m
I
L=4m
-30
(ZH); = W_ —( )—+15kN
2 2
-30
(Z3) = W —( )_+15kN
2 2
_ WL (-30)x4
Mb)=+—=+ =-15kN
My ) 3 3
_ WL _ (-30)x4
M) =——= =+15kN
(M3 ) 3 3
(Z%)f [+15
(T11)f 0
_ M! -15
Fl = (_1)f _ (7.8)
(Zy) +15
(T (1’5
= +
My | B




Transformation from Local to Global Coordinates | 273

The load vector on joints 1 and 2 is given by
Fsl — ()" E1
where r! is the transformation matrix which is given by (7.5) and

since this member coincides with the positive global x-axis, then r! =
[ (the unit matrix), thus

(2} | [—15]
(Tll )s 0
Bl = (M})s —Fl- +15 (7.9)
(Z)s -15
(T3)s 0
_(M% )s i o]

Member 2
Actions on member 2, W=-108 kN

W=108 kN
(M2); = 48 kNm (1\/13)f = 96 kNm
(2 ) .
12
(Z%)f = 28 kN (Z2 )f = 80 kN
a=4m I b=2m
|
L=6m

- Wb (-108)x2
(Z3) =—L—3(L2+ab—a2)=—6—3(62+4><2—42)=+28kN
5 Wa (-108)x 4
(B == (I rab-b?) == (6 +4x2-2%) = +80KN

Wab?  (-108)x4x2?
=+

p =—48 kNm

(Mg )=
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_ 2 -108)x 4% x2
(M%)f=—W;b=—( )62 =+96kNm

The action vector for member 2 is:

(zzz ) [+28]]
(Tzz ) 0
g2 | (Ma) | _| 48 (7.10)
(Z5) | |*80
G
iy, | 1

The load vector on joints 2 and 3 is given by
B =-(r")'F
where r? is the transformation matrix which is given by (7.5). Thus
for member 2 where x;; = 0, y;; = -6 m and L = 6 m, it is given by

10 0 00 O
00 -100 0
, |01 0 00 0
r =
00 0 10 O
00 0 00 -1
00 0 01 0]
(Z2)s 10 00 0 o]+28] [-28
2
(T3 )s 0 0 10 0 Of 0 +48
M2 0 -1 00 0 0}-48 0
FZ = (Ma)s | __ = (7.11)
(Z2)s 0 0 01 0 0f+80] |-80
LR s
- +
o] el Lo
Member 3

Actions on member 3,n=-12 kN/m



Transformation from Local to Global Coordinates

(M)¢=25kNm  12kN/m (M) =25kNm ;
i !
(Z3); = 30kN (Z3)f = 30kN

|-7L=5m4>|

_ -12)x5
(Z3) =—“7L=—%=+30 kN

— -12)x5
(Zi)f=—“7l‘=——( 2) =+30kN

nl?  (-12)x5?

M3) =4+—=+ =-25KkNm

(M3); 2 12

_ 2 —12)x 5

M), = _nb _& =+25kNm
12 12

It follows that the action vector on the member assumed fixed at
its ends is given by:

(ZS)f [+30]
(T‘33)f 0
F = U\Z[g)f |72 (7.12)
(Z3) | |+30
(M) | | ©
[C

The load vector on joints 2 and 3 is given by
L
where 13 is the transformation matrix which is given by (7.5).

Thus for this member, where x;; = -4 m, y;; = -3 mand L = 5 m, it is
given by
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-08 -06 O
06 -08 0

o O O
oS O O

0 0 0 -08 -0.6
0 0 0 06 -08]

@)k | [0 o o 0 0 J[+30] [-30]
(T5)s 0 08 06 0 0 0| 0] |+15

o MDs|_ |0 -06 08 0 0 0 |-25| |20
) o 0 o0 10 0 0 [+30] |30
(19), 0 0 0 0 -08 06| 0] |-15
oy | L0 0 0 0 -0 -osl+zs] [+20]
(7.13)

The load vector, F, due to the forces acting on the members is

(F s
| (B
| B)s

(Fy)s

F, =F +F2+F

From (7.9), (7.11), and (7.13)

[z ] [-15] o] o] [-15]
() | | 0 o || o
(M; ) +15 0 +15
Z,)s | |-15| |-28| | © 43
)] | (1) 0| [+48]| | 0 +48
B)s| || (15| | o || o |-15
fs= B ||z |7 o |7|=80|"|=30|7|-110 (7.14)
(F)s | | (Ty)s 0| |-96| |+15| | -81
M) | | 0 0 | [=20] | -20
(Z4)s 0 0 | [=30] | =30
(T,)s 0 0| [-15] | -15
(M| [ o] | o] |+20] | +20]



Transformation from Local to Global Coordinates

The load vector, Fy, due to external forces directly applied at
the nodes

Aload of -10 kN applied at node 2 in the z-direction, thus

[z ] [0
(T | | O
M)y | | ©
(Z)y | |-10
Fw | | (Ty
By || (My)y
BIGSRRIAN
En] | (T
(My)y
(Zy)n
(T, )y
| (M,)y |

(7.14b)

S ©O ©O ©O ©O © o o

The load vector, F¢, due to the reactions at the supports

At node 1 the reactions on the structure are: the force in the
z-direction Ry;, the moment about the x-axis Ry, and the moment
about the y-axis Ry. Similarly, at node 4 the reactions are Ry, Rry,
and Ryy.

[(Z) | [Ra ]
(Ty)c Ry
(Mi)e | |Rwm
(Z;)c 0
(Fi)e | | (T)e 0
(B | _| (M) | | O (7.15)
CUE) | | (Zs)e 0
(B )] | (T3)c 0
(M;)c 0
(Z4)c Rz4
(Ty)c Ry
[ (My)c]| [Rua
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The total load vector on the joints of the structure is obtained
from the algebraic addition of (7.14a), (7.14b), and (7.15) as:

F=Fs+Fy+Fc=
[z, ] [-15] [ 0 ] [Ry | [-15+Ry, ]
T, 0 0 R Ry
M; +15 0 Ryt +15+ Ry,
Z, —43 -10 0 -53
F T, +48 0 0 +48
E, M, -15 0 0 -15
= = + + = (7.16)
EF Zs -110 0 0 -110
F| [T -81 0 0 -81
M, =20 0 0 =20
Z, -30 0 R, | | -30+Ry,
T, -15 0 Ryy | | —15+Rq,
(Mg | [ +20] | O | [Rys| [+20+Ryy, |

Substitute (7.7) and (7.16) in the general relationship K& = F to
get (see equation 7.17 on next page).

The boundary conditions are wy, @4, 64, w,, @4 and 0,4, thus
delete rows and columns 1, 2, 3, 10, 11, and 12 to get:

(30114 -20650 46462 —6883 —20650 0 [w,| [-53]
—20650 101000 0 20650 41300 0 |[@®,| | +48
46462 0 136167 0 0 -12267|[6, | | -15
—6883 20650 0 18777 2808 23789 || w, | |-110
20650 41300 0 2808 127704 —40512|[®, | | -81
|0 0  -12267 23789 -40512 81003 || 65 | | -20 |

The solution of the above set is:
wy=-0.013445 m, ®, = 0.002555 rad, 6, = 0.005028 rad,
w3 =-0.021157 m, ®;=-0.001230 rad, 65 = 0.006113 rad,
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Transformation from Local to Global Coordinates

(VAVA)]

[E— —
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The full displacement vector is

2 0
D, 0
6, 0

w, | |-0.013445
®, | |+0.002555
0, | |+0.005028
wy | |-0.021157
@, | |-0.001230
0, | |+0.006113

Wy 0
D, 0
0, 0

Calculation of reactions at the supports from (7.17)

The first row
-23231w, -464632 =-15+ Ry
-23231x%(-0.013445) - 46462 % 0.005028 = -15 + Ry,
Rz; =+93.73 kN

The second row
-18400 % 0.002555 = Ry, Ry =-47.01 KNm
And the third row
46462w, + 619500, = +15 + Ry
46462 x (-0.013445) + 61950 x 0.005028 = +15 + Ry,
Ryp =-328.20 KNm
Similarly, from rows 10, 11, and 12, Ry = +114.27 kN,
Rrs=+193.52 kNm, and Ry, = -323.85 kNm, respectively.

Calculation of actions on the members

The resultant actions on any member of the frame is given by
E =F +F (7.18)
where

F, =Kk& is the actions on the member due to displacements at
the ends of the member.



Transformation from Local to Global Coordinates

F is the column vector of actions on the member due to the
applied loads assuming that the member is fixed at its ends.

k is the stiffness matrix of the member relative to local
coordinates given by (7.3).

d =10 is the column vector of the displacements at the ends of
the member relative to local coordinates.

r is the transformation matrix of the member given by (7.5).

§ is the column vector of the displacements relative to global
coordinates at the ends of the member. Thus equation (7.18)
becomes

F, =kd+FE (7.19)
Member 1
From (7.3)
[ 23231 0 —46462 -23231 0 —46462]
0 18400 0 0 -18400 0
= —46462 0 123900 46462 0 61950
~|-23231 0 46462 23231 0 46462
0 —18400 0 0 18400 0
| —46462 0 61950 46462 0 123900 |

Xi]-=4-m,yi]-=0,L=4-m

where r! is the transformation matrix which is given by (7.5) and
since this member coincides with the positive global x-axis, then
r! = I (the unit matrix), thus

100000 w, 0
010000 @, 0
L [00 1000 81:[63]{51}: 0, 0
000100/ 8 | [8] [wa| |-0.013445
000010 @, | |+0.002555
0 000 0 1] |6, | [+0.005028]
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10 0 0 0O 0
010000 0
-1 001000 0
d =r'd = =
00 01 0 0|—-0.013445
0 0 00 1 0}+0.002555
10 0 0 0 0 1)+0.005028 |
- —=1
Ff =k'8
[ 23231 0 —46462 -23231 0
0 18400 0 0 -18400
i —46462 0 123900 46462 0
47123231 0 46462 23231 0
0 -18400 0 0 18400
| -46462 0 61950 46462 0
[ +78.71 ] [+15]
-47.01 0
-, |-313.19 ., |-15
Fy = and from (7.12) F =
-78.71 +15
+47.01 0
| -1.71 | | +15 |
'(21) ] _ - _
_1 r +78.71 +15
(T}, ~47.01 0
M? — - —. |-313.19]| |-15
{Jr=¢=ﬁ+$= =
Zh, -78.71 +15
(T.): +417.7011 (1)5
— -1. +
(M), | - o

~0.013445
+0.002555
| +0.005028 |

—46462]
0
61950
46462
0
123900 |

0
0
0
~0.013445
+0.002555
| +0.005028 |

[ +93.71 |
-47.01
-328.19
-63.71
+47.01

| +13.29 |




Transformation from Local to Global Coordinates

30 kN
328.19 kNm 13.29 kNm
1 2
47.01 KNM < - 4.7.01 KNmM
1 2Zm | 2m |
! Y
93.71 kN 63.71 kN
+328.19 KNm
+47.01 kNm
+140.77 KNm
-63.71 kN +13.29 KNm
93.71kN

Shear force diagram,V  Torque diagram,f Bending moment diagram, M

Member 2
Xi]-=0,yij=—6m,L:6m

[ 6883 0 -20650 —6883 0 —20650 |
0 12267 0 0  -12267 0
—, | -20650 0 82600 20650 0 41300
-6883 0 20650 6883 0 20650
0 ~12267 0 0 12267 0
| —20650 0 41300 20650 0 82600 |

10 0 00 0] [w, | [-0.013445]
00 -100 0 @, | |+0.002555
2 [001 000 0 822181:{82} 6, |_|+0.005028
00 0 10 0 87| 8] |ws| |-0.021157
00 0 00 -1 @, | |[-0.001230
00 0 01 0] |6, | [+0.006113
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10 0 0 0 07-0.013445]
0 0 -1 0 0 0 |+0.002555
52 _ 22 01 0 0 0 O0/[+0.005028
=T =
00 0 10 01-0021157
00 0 0 0 -1{-0.001230
00 0 01 0]+0.006113]
- —n=2
Ff =k*8
[ 6883 0 —-20650 -6883 0
0 12267 0 0 -12267
= _|-20650 0 82600 20650 0
47| —6883 0 20650 6883 0
0 -12267 0 0 12267
_—20650 0 41300 20650 0
[ +25.72 ] +28
+13.31 0
-, | +0.99 —, |-48
Fi = and from (7.10), F =
-25.72 +80
-13.31 0
| -155.33 | +96 |
B ] o
(Z2); +25727 [+28
(T)), +1331 0
M2 Y +0.99 -48
{ﬂr=é=ﬁ+¥= +
(Z5), —25.72 | | +80
(L) ]Elig 26
— — . +
| (M3), | - 4B

[—0.013445]
—0.005028
0.002555
—0.021157
-0.006113

| -0.001230 |

—20650]

41300
20650

82600 |

[—0.013445]]
-0.005028
0.002555
-0.021157
-0.006113

| -0.001230 |

[+53.72]
+13.31
-47.01
+54.28
-13.31

| -59.33
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108 kN

47.01 KNm 59.33 kNm

2 3
13.31 kNm o=p> e — 13.31 kNm
1 4m | 2m t

53.72 kN 54.28 kN

+54.28 kN

+47.01 kNm

N

-59.33 kNm
-53.72 kN -13.31 kNm

-167.87 KNm
Shear force diagram, V Torque diagram, T Bending moment diagram, M
Member 3
Xi]-=—4m,yi]-=—3m,L=5m
[ 11894 0 -29736 -11894 0 -29736 |
0 14720 0 0 —14720 0

-29736 0 99120 29736 0 49560

-11894 0 29736 11894 0 29736
0 -14720 0 0 14720 0

| —29736 0 49560 29736 0 99120 |

(1.0 0 0 0 0
0 -08 -0.6 0 0
B 0 06 -08 0 0
0 0 0 1.0 0 0
0 0 0 0 -08 -06
(0 0 0 0 06 -08
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wy | [-0.021157]
®, | |-0.001230
5 & _[83]_] 6 |_|+0.006113
6].3 3y |wy 0
o, 0
_64 L 0 i
(10 0 0 0 o0 0 [-0.021157] [-0.021157]
0 -08 —06 0 0 0 ||-0.001230| [-0.002684
$_95_| 0 06 —08 0 0 0 |+0006113| |-0.005628
7 lo 0o 0 10 0 0 0 B 0
0 0 0 0 -08 —06 0 0
0 0 0 0 06 -08] o || o |
11894 0 -29736 -11894 0 -297361[—0.021157]
0 14720 0 0 -14720 0 -0.002684
f3—K353— -29736 0 99120 29736 0 49560 (| —0.005628
4= T|-11894 0 29736 11894 0 29736 0
0 —-14720 0 0 14720 0 0
-29736 0 49560 29736 0 99120 0
[ —84.30 | [+30]
-39.51 0
—, | +71.28 —, | -25
Fy = and from (7.12), F’ =
+84.30 +30
+39.51 0
| +350.20 | | +25 |
B ] o ]
(Z3): 84307 [+30] [ -54.30
(T5), 3951 | | 0 | | -39.51
(M3), | T7128 |, | 25| | +4628
@, | 7Y | +8430 | |+30| |+114.30
) 235965210 (2)5 +3395.5210
— + . + +375.
%), SRR L LT,
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N ‘weadelp yuswiow urpuag

WINY 02'SLE+

1L ‘weagderp anbuioy,

WINY 8297~

A ‘weaderp 90105 1eays

WNY 1S'6E+

NI 0EVTT

WNY TG6F

WINX 02°SLE

- | =

4 X—G
TTTTTTTT

w/NY 21 W

N 0EVIT+

N

NY 0E€'PS+

N3 0€'%S

~(

E\Zx Z1

w == WNY 1S°6E

WINY 82°9%
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Calculation of internal actions for member 3
Considering the left part of the member, the summation of the
forces in the z-direction is zero:

-5430-12x+V =0, V=54.30+12XkN
Summation of the moments about the X -axis is zero:
—39.51+T=0, T=+39.51 kNm

Summation of the moments about the y -axis about point O is
Zero:

=2
+46.28-54.30% — 22X

+M=0

M =-46.28+54.30X + 6X> kNm

Problems

P7.1. The frame shown in Fig. P7.1 is fixed at supports 1 and 3 and
carries a point load of 50 kN at node 2. Analyse the frame
and draw the shear force, bending moment and twisting
moment diagrams for the following data:

E =32 x 10°kN/m?, G = 14 x 10°kN/m? and all members
have the same cross section with I = 0.003 m* and
] =0.002 m*.

R {  4m /

X 130 kN

Figure P7.1



Problems

Answer:
wy =-0.01897 m, @, = -0.00428 rad, 6, = +1.00678 rad
w3=0,0;=0,03=0
Rz; = +97.23 kN, Ryq = +29.92 KNm, Ry =-357.26 KNm
Ry3 =+32.77 kKN, Ry3 = +166.71 KNm, Ry3 = -31.66 KNm

M1y ] _ M52y ] _
(Z: | [ 49723 (Z): | 13277
(TH) | | +29.92 () | | -31.66
M1 -357.26 M2 +29.92
Member1: (_1)r = , Member2: (_2)r =
b, —97.23 ), | | +3277
(T2, _i.zz ;) +13616.6761
— -31. — +166.
(M), | - - (M3), | b -

P7.2. The frame shown in Fig. P7.2 is fixed at support 1 and is
pinned at support 3, so that the external moment exerted
on the frame about the global x-axis at that support is zero,
and. Analyse the frame and draw the shear force, bending
moment, and twisting moment diagrams for the following
data:

E=210x 10°kN/m? G =80 x 10°kN/m?,1; = 0.000190 m*,
J1=0.000230 m* I, =0.000120 m* J, = 0.000170 m*.

/ 3m / 7
/ /

50 kN/m

Figure P7.2
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Answer:
w;=0,0,=0,0,=0
wy =-0.01715 m, ®, =-0.00092 rad, 6, = +0.00740 rad
wsz =0, P3 =-0.00806rad, 65=0
Rz = +182.34 kN, Ry = +5.64 KNm, Ry; =-296.88 KNm
Ry3 = +57.66 kN, Ry3 = 0 KNm, Ry3 = -25.15 kNm

714 | _ 2~ | _
(Z): | [+182.34 (Z) | 143234
(T}, +5.64 (T3 | |-25.15
M! -296.88 M2 +5.64
Member 1: (_1)r = , Member 2: (_2)r =

(ZD)), -32.34 (Z3), +57.66
()| | (5| |71
(M}), | LT (M3, | - -

P7.3. The frame shown in Fig. P7.3 is fixed at the supports 3 and
4. Analyse the frame and draw the shear force, bending
moment, and twisting moment diagrams for the following
data:

I;=1,=13=0.00022 m* J;=],=]3=0.00014 m*, 1,= 0.00030
m*, J,=0.00017 m*,
E=210x% 10°kN/m? and G = 80 X 10 kN/m?.

Figure P7.3

Answer:
w; =-0.01615 m, ®; = +0.00081 rad, 6; =-0.00447 rad
w; =-0.01118 m, ®, = +0.00102 rad, 6, = -0.00342 rad



Problems

w3=0,03=0,03=0

wy=0,0,=0,0,=0

Rz3=+17.97 kN, Ry3 =-38.01 kNm, Ry;3 = +103.58 kNm
Ryz4 = +22.03 kN, Ry = -1.82 kNm, Ry4 = +96.42 kNm

@11%W [22.03] (?f)r [1.69]
(T | | +1.82 (T3 | |-2.36
M! +13.75 M? +6.16
Member 1: (_l)r = , Member 2: (_1)r = ,
(Zi)r +22.03 (ZZZ)r +1.69
@ | |5 ()| |20
— +96. — +2.
M), | - - |(M3), ] -
@) | [-11.69] (@ | [ 6287
(T | | +2.29 (M9 | | 498
M3 -2.36 M# -11.12
Member 3: (_2]r = , Member 4: (_1]r =
(Zg)r +11.69 (Z§)r +6.28
()| | 22 (5 | | 8
— +60. — +55.
3, | b - (M3), | - -

P7.4. The frame shown in Fig. P7.4 is fixed at supports 3 and 4
with a rigid joint at node 2 and is pinned to the support at
node 1 so that it cannot develop moment about the global

VA
Z
X

40 kN/m

6m

Figure P7.4
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y-axis. Analyse the frame and draw the shear force, bending
moment, and twisting moment diagrams for the following
data:
E=27x10°kN/m? G =12 x 10°kN/m?,1=0.0015 m* and
]=0.0012 m*.
Answer:

w;=0,®;=0,6, =+0.01086 rad

wy =-0.01634 m, ®, =-0.00195 rad, 6, = -0.00467 rad

w3=0,93=0,0;=0,w,=0,9,=0,0,=0

Rz1 =+114.96 kN, Ry; = +4.68 kNm, Ry;; =0

Rz3 = +94.41 kN, Ry3 = +208.58 kNm, Ry3 = +16.82 kNm

Rz4 =+110.63 kN, R4 =-228.78 kNm, Ry4 = +13.45 kNm

M1 ] _ (524 ] _ _
(Z): | [4114.96 (Z) | [ 9441
(T, +4.68 (T}, | | +16.82
M} 0 M2 +169.07
Member1: (_l)r = ,Member?2: (_2)r = ,
(221)1' +125.05 (Zg)r +94.41
(L., _34(;6287 T _210658528
— +30. — +208.
My, | b - M3, | b -

(Z2), | [-30637

(T3): | | —13.45

M3 +164.39

Member 3: (_Z)r =

(Z};)r +110.63
r

(i, | 722878




Chapter 8

Beams Curved in Plan

This type of beams occurs in curved bridges and buildings where the
plan is of a curved shape as shown in Fig. 8.1. In most common case
the shape of the curve is circular and this chapter deals specifically
with that type of curved beams. The behaviour of these beams is
characterised by torsion that develops due to their curvature in plan.
So, a beam curved in plan subjected to gravity loads will develop
torsion in addition to the bending moment, and the shear force that
occur in straight beams.

vy
.

Figure 8.1 Beam curved in plan.
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Beams Curved in Plan

8.1 Derivation of Stiffness Matrix

Consider an element of a beam curved in plan whose local x-axis
is defined by the line joining its two ends and is coincident with
the global x-axis as shown by the line (ae) in Fig. 8.2. At node i the
element is subjected to a shear force Z in the z-direction and
moments 'T‘- and 1\7[ about the local X-and y-axes respectively. The
corresponding dlsplacements are translation w; in the z-direction
and rotations ®; and 6; about the X- and y-axes respectively.
Similar actions and displacements occur at the other end of the
element but with the subscript j.

@© :indicates a force in the
upward positive z-direction.

Figure 8.2 A circular beam curved in plan element.

First consider end i and assume that it is displaced by a
translational displacement w,; and rotational displacements 0,
and 6, about the X - and y -axes respectively, while end j is fixed,
le.w;=0, (TD =0,and 6 =0. For this case, the forces and moments
developed at the ends of the element are calculated in terms of w;,
@, ,and 6; and they are superscripted by a single prime. The second
part of the derivation assumes that end j is given dlsplacements W,
dDJ, and 9 while end i is fixed, i.e. w; =0, d> =0,and 9 =0. This will
lead to forces and moments developed at the ends of the element in
terms of w;, ®j, and éj, these are superscripted by double primes.
The final forces and moments are obtained by adding the quantities
from the two steps.



Derivation of Stiffness Matrix

With reference to the circular beam element of radius R shown in
Fig. 8.2, consider section ¢ which makes an angle & with the line oa,
thus

bc =R - ReosE = R(1 - cos&) and ab = Rsing

Consider the equilibrium of part ac shown in Fig. 8.3.

\

———— e — <

. =0.=0

end j is fixed: w; = 5), ;

Figure 8.3

Summation of the moments about the tangential t-axis:

T cos[%—&)Jr M; sin(%—&j—z(bc)+T’ =0

T =-T cos(%—&j—l\_/lgsin(%—§j+zi’R(1—cos§) (8.1)
Summation of the moments about the normal n-axis:

-T, sin(%—&)ﬂﬁ} cos(%—§j+z(ab)+M’ =0

295



296 | Beams Curved in Plan

M =T sin(%—&)—l\_/l; cos(%—&)—stinﬁ (8.2)

where T” and M’ are the internal moments about the tangential and

normal axes respectively at point c.
Neglecting the effect of shearing forces on the deformation the

strain energy is given by:

,2 ’2
U= JM—dS + JT—(jS where ds=Rdg

2El 2G]
R B p
U= J' M2 dE + _[T'Zd 8.3
e M de o [T (63)
Applying Castigliano’s theorem leads to the following equations:
w, = 8[_1, =a—U,al,+ aU, 8; (8.4)
0Z, oM’ 9z, JT 9Z
- aI_J, _ BU, al\_/[, N E)U, 83 (8.5)
oT, oM’ 9T, JT’ JT,
B = dU”  oU" oM” 09U’ JT (8.6)

" oM, oM’ oM, OT’ oM,

From (8.3) we get

p B
U R U R
P2 2 [mde and Zo=2(rd
oM EI-([ s oand op G]'! :

From (8.1)
oT =R(1-co =—COS(E—§)anda—T,=—Sin(E—§j
7z, i 2 oM, 2
From (8.2)

oM’ =-Rsiné, —sm(E—ﬁj nd 81\_/[, =—COS(E—§j

Iz, T, 2 oM, 2
Substitution of (8.1), (8.2), and the relevant derivatives, as

appropriate, from above into (8.4) will give
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B
W, = %j(i’ sin(B/2—&)— M cos(B/2—E)-ZR sing)(—Rsina)dg +
0

Gﬁj(—i’ cos(B/2—E&)— M sin(B/2 &)+ ZR(1 - cosE))R(1 - cosE)dE
(;ntroducing the parameter o = EI/G] and integrating from & = 0
to & =B to get
W, =(R? /EI]{[O.SB(&)L +1)~20sinB+0.5(c— 1)sinBcosP |RZ +
[0.25(0. — 1)sin(3B/2) + 0.5B(or+1) cos (B/2) - 0.25(7ct +1)sin(B/2)|T; +
[0.25(0c — 1)cos(3B/2) +0.5B(cx + 1)sin(B/2) — 0.25(c. - 1)cos(B/2)]1\71;}
(8.7)
Similarly (8.5) is simplified to give
@, = (R/ED{[0.25(c. — 1)sin(3B/2) + 0.5B(ct + 1) cos(B/2) -
0.25(70+1)sin(B/2)]RZ; +[0.5B(c +1)+0.5(ct — 1)sin B]i’} (8.8)
And (8.6) is simplified to
6, = (RﬂEI){[O.ZS(oc —1)cos(3B/2)+0.5B(c. + 1)sin(B/2) —
0.25(c — 1)cos(B/2)IRZ +[0.58(ct +1)— 0.5(ct - 1)sinB]1\71;} (8.9)

Solve equations (8.7), (8.8), and (8.9) simultaneously for the

unknowns Z, "T"i',and l\_/[; to get:

— Bl _ e —

Z =F(C1wi +C,R®; —C;R6;) (8.10)
~ _EI _ 25 25
T, :F(CZRWi +C,R*D, — R, ) (8.11)
_ Bl = =
M, = E(—(:3Rwi —CsR?®, +C4R7, ) (8.12)

Equations (8.10), (8.11), and (8.12) represent Eii of the stiffness
matrix.

From the overall equilibrium of the element the following
equations are obtained:
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ZZ:O: Z +Zj’ =0, Zj’ :—Z and from (8.10) we get
7=
R3

ZT =0: 'T"i' +'T"]-’ =0, "T‘] = —T‘i' and from (8.11) we get

(~C,W, - C,R®, +C4RE; ) (8.13)

_, EI _ _ _
T = F(—cszi ~C,R*®; +CsR?D)) (8.14)

ZM =0: 1\_/[; +Z;L+l\_/[; =0, 1\_/[; = —l\_/[; —Z;L,where Lis thelength
of the straight line joining ends i and j of the element and is equal to
2Rsin(B/2).

Substitute l\_/[; and Z as given in (8.12) and (8.13) respectively
in the above equation leads to:

—, EIl _ _ _
M, =§(—C3Rwi ~CsR*®, +C,R%0,) (8.15)

Equations (8.13), (8.14), and (8.15) represent Eji of the stiffness
matrix.

And C4, Cy, ... ... ..., C; are functions of a and f.

The above process is repeated with end i fixed and end j is given
displacements

wi, ®;, and ej.
The equations for the torque and moment at section c in this case

are similar to (8.1) and (8.2) but the single primes are replaced by
double primes as shown in Fig. 8.4, thus

T =-T cos(% - ﬁj -M; sin(% - &) +Z R(1-cosE)  (8.16)

M’ =T sin[% - &j -M; cos(% - &) —Z Rsing (8.17)

Since we want to find expressions for the displacements W]-, 5j,
and 6j the above two equations are written in terms of Zj", 'T"], and
l\_/[] whose derivatives will give the respective displacements. To
achieve this, the equilibrium of the whole beam is considered.

Summation of the forces in the z-direction is zero:

Z +Z, =0, Z, =-Z,
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/V

Figure 8.4

Summation of moments about the X-axis is zero:

T +T =0, T, =-T,

Summation of moments about node I is zero:
M ~Z/L+ M =0, M =2RZ] sin(E) i o,
2 J
Substitute the above values of Zi", "T"i”, and l\_/[1 in (8.16) and (8.17)
respectively and simplify to get
T =T cos(E - &j +M; sin(E - E_,) - Z”R(l —cos(B- E_,)) (8.18)
J 2 J 2 J '

M” = —"T"] sin(% - éj + l\_/[] cos(% - ﬁj - Z].”R sin(B-¢&) (8.19)

R p B
u” = .[ //2 J‘T”zd 8.20
e M4 o T (820)
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aU” B aU” aM// aUl/ aT/l

Wi= — = =T + = (821)
0Z; oM Z; oT Z;

D, = al_l,, = aU,, al\_/[,, + aU,,a;,, (8.22)
aT, oM aT, oT oT,

8 - ou _ oU” oM +8U JoT (8.23)

" oM, oM” oM, IT” oM

Equations (8.21), (8.22), and (8.23) are respectively simplified
and integrated from & = 0 to & = f3 to give:

w, = (Rz /EI){[O.ZS(a ~1)sin2B - 20.sin+0.5B 30+ 1) |RZ;

+[0.25(0. — 1)sin (3p/2) + 0.5B(ct + 1)cos (B/2) - 0.25(7o. + 1)sin (B/2)IT,

+0.25(1 — o) cos(3B/2) +0.25(ct — 1) cos(B/2) — 0.5B(ct + 1)sin([5/2)]1v1]f'}
(8.24)

D, = (R/EI){[O.zs(a —1)sin(3B/2)+0.5B(c. + 1)cos(B/2)

~0.25(70t+1)sin(B/2)]RZ; +[0.5(c—1)sinpB +0.5B (o + 1)]1"]."} (8.25)

0; = (R/EI){[0.25(1 - o) cos(3B/2)+0.25(c. — 1)cos(B/2)

—~0.5B (0t +1)sin(B/2)IRZ; +[0.5(1—ct)sinB+0.5p(ct + 1)]M;'} (8.26)
Solve equations (8.24), (8.25), and (8.26) simultaneously for the

"o =

—. El, _ _ _
Z =§(c1wj+c2Rq>j+c3Rej) (8.27)
T =L rw R?®. +C.R%0 2

]. _§(c2 W, +C,RD; +C5RD) ) (8.28)
M =EL(c.rw R?®. +C.R?0 2

]. —F(C3 W, +CsR?®; +C; ej) (8.29)

Equations (8.27), (8.28), and (8.29) represent l_<]-j of the stiffness
matrix.

From the overall equilibrium of the element the following
equations are obtained:

EZ =0: Z +sz =0, Z = —Zj’ and from (8.27) we get
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N ~ —
i =F(_C1Wi ~C,R®; - C;R6)) (8:30)

ZT =0: 'T"i" +T, =0, 'T"i” = —"T‘] and from (8.28) we get

Ny

% —cstéj) (8.31)

where L = 2Rsin(/2).
Substitute z] and l\_/ll as given in (8.27) and (8.29) respectively
in the above equation leads to:

—. EI _ _ _
M :F(C3ij +CsR*®, +C,R?G)) (8.32)

Equations (8.30), (8.31), and (8.32) represent Eij of the stiffness
matrix.

Finally

from (8.10) and (8.30): Z =Z
from (8.11) and (8.31): T, =T;
from (8.12) and (8.32): M, =M +M,
from (8.13) and (8.27):
from (8.14) and (8.28): T, =
from (8.15) and (8.29): M, =M, + M,

The above six equations are written in matrix form to give the
general stiffness matrix of a beam curved in plan element relative to
local coordinates as:

(7, ] ¢, GR  —GR ¢ -CGR -GRI[w,]
T, C,R CR* -CR* -C,R -C,R* —C,R*| @,
M| g|-CR -C.R* CR* CQR CR® C,R? |6
Z "R ¢, -GR CR ¢, GCR CR |W
T CR -C,R® C.R? C,R C,R® CR® |9
M| | -GR -CR® R  CR CGR® CR® | 9]

(8.33)
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¢, CR -CGR -C, -CR —CR|
c,R CR* -CR* -C,R -C,R* -CR?
-_EI|-GR -C:R* C,R* C,R CR* C,R? (8:34)
R} -C; -CR GCR C (R C;R

-C,R -C,R* C:R* C,R C,R* (R
| -C;R —CR* C,R®  C;R CR*  CR® |

Expressions for calculating the values of C4, C,, ... ... ... , C; are as
given below.

a0 +a, a0 —ag ago+a; agol+aq

_oc[a3oc+1)' 2_()L(a30c+1)' 3_(x(a3oc+1)' 4_a(a3oc+1)'

1

Cajo—ag; . a0l +agitag a0 tagotag,
> o(aza+1) ¢ ofaga+1)(aco+1) 7 ofaga+1)(aco+1)

where o = EI/GJ and the values of ay, ay, ... ... ..., a;7 for various values
of B are shown in Table 8.1.

8.2 Transformation from Local to Global
Coordinates

Since the resulting stiffness matrices for the elements are derived
relative to local coordinates, transformation is necessary to make
them relative to the global coordinates system. The direction of the
secant, AB, is assumed to represent the local X-axis. For the element
shown in Fig. 8.5, the secant has rotated about the z-axis by an angle
o,

The stiffness matrix relative to global coordinates is given by:

k=r"kr , where the transformation matrix, r is the same as that
for a grillage member which was derived in Chapter 7 in (7.5) as

1 0 0 0 0 0 |
0 xyL yyL O 0 0
0 -y./L x;/L 0 0 0
r= ) ) (8.35)
0 0 0 1 0 0
0 0 0 0 xy/L vy
0 o0 0 0 -y/L xy/L
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G'g aInsy
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_ _ _[2, .2
where X=X =X, Vi =Y~ Vi and L= Xi + Vi -

8.3 Calculation of Actions Developed in the

Elements

The actions on an element in a curved beam are calculated relative to
the tangent and normal to the curve at the ends of the element. So the
twisting moment, t, is the resultant moment about the tangent to the
curve and the bending moment, m, is the resultant moment about
the normal to the curve. Expressions for t and m are derived from
the moments T and M about the local X - and y-axes respectively
as shown in Fig. 8.6. The shear force, V, acting on the element in the

7 -direction is the same as the force, Z.

y
m; ~ B/Z
~
~

T; B/2
/
/
/ M.
tl Ml
Figure 8.6
It follows that:
V=7,

t; =T, cos(B/2)+ M, sin(B/2)
m; =T, sin(B/2)+ M, cos(B/2)
V= Z]-
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t; =T, cos(B/Z)— l\_/[i sin(B/Z)

j
= 'T"]- sin(B/Z) + l\_/Ij cos(B/Z)

8

In matrix form

il o 0 0 0 o %
4 0 cosB/2 sinB/2 0 0 0 T
M| 10 -—sinf/2 cosB/2 0 0 0 l\i[i
Vil lo o 0 1 0 0 Z,
t; 0 0 0 0 cosB/2 -—sinf/2 'T‘]
m;| |0 0 0 0 sinB/2 cosP/2 | 1\7[]_
or f:rﬁﬁ, where
(1 0 0 0 0 0 ]
0 cosB/2 sinB/2 0 0 0
0 —sinf/2 cosf/2 0 0 0
Iy = B/ B/ (8.36)
0 0 0 1 0 0
0 0 0 0 cosP/2 —sinf/2
10 0 0 0 sinB/2  cosB/2 |
and F=k3& =Kk(rd), thus
v
t
m, _
v, |~ = k) (8.37)
Y
m;

Example

The beam shown in Fig. 8.7 is circular in plan and has a radius R =
4 m and a rectangular cross section with width, b = 0.3 m and depth,
h = 0.6 m. The beam is made of concrete with modulus of elasticity,
E = 25 x 10° kN/m? and Poisson’s ratio, p = 0.15. Calculate the
displacement, shear force, twisting moment, and bending moment
at the nodes 1 to 4.
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VL <L
@ : Indicates a force in the downward
(negative) z-direction

Figure 8.7

1—£— 0.3x0.6°
12 12
oo E _ 25%10°
2(1+p)  2(1+0.15)

5 4
h -0.630 h +0.053
b b

=0.0054 m*

=10.9x10° kN/m?

From Chapter 7, equation 7.4, c= s
+)
3 _
b

5 4
(06) —0.630[0'6) +0.053
0.3

c= 0.3 . =0.229

5
|06
0.3

J=cb*h=0.229%0.3%* x0.6 =0.0037 m*

uo B 25x10° x0.0054

== =3.35
G] 10.9%x10°x0.0037

Coordinates of nodes

Node 1:
X1 = O, Y1 = 0
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Node 2:

X, =4 -4cos45=1.172m, y,=4sin45=2.828m
Node 3:

X3=4+4cos75=5.035m, y3=4sin75=3.864m
Node 4:

X4=4+4cos45=6.828m, y,=4sin45=2.828m

Stiffness matrices

Element 1

o=3.35
From Table 8.1, for 8 = 45%:
a; =24.252,a,=1.273,a;=0.010,a, =2.471,a; =1.176,a, =9.284,
a, =0.487,a, =0.265,a, =1.087,a,, = 0.944,a,, =0.451,a,, =0.201,
a,; =4.918,a,, =0.187,a,; =0.054,a,, =0.173,a,, = 2.231

_a;ota,  24.252x3.35+1.273
' ofazo+1)  3.35(0.010x3.35+1)

=23.83

_ ao-a; _ 2471x335-1176 _,
> ofa;o+1) 3.35(0.010x3.35+1)

_ ag+a; _ 9.284x335+0487 .
3 ofazo+1) 3.35(0.010x3.35+1)

_ ago+a,  0.265x3.35+1.087
afa;o+1) 3.35(0.010%3.35+1)

4

C - 21003 _ 0944x335-0451 _
> afaoi+1)  3.35(0.010x3.35+1)

a0’ +aotag,

o(azo+1)(az0+1)

_ 0.201x3.35°+4.918x3.35+0.187
3.35(0.010%3.35+1)(0.054x3.35+1)

6
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2
_ A7 +a1;00+aq,

T o(azo+1)(aso00+1)

0.173x3.35% +2.231x3.35+0.187

~3.35(0.010x3.35+1)(0.054x335+1)

From (8.34)
K1=25x101§00054

[ 23.83 205x4 —9.12x4
2.05x4 0.57x4* —0.78x4"
—9.12x4 —0.78x4* 4.63x4°
-2383 -2.05x4 9.12x4
—2.05x4 —0.57x4* 0.78x4"
|-9.12x4 -0.78x4* 235x4?
(50266 17297 -76950
17297 19238 -26325

[ _| 76950 26325 156263
-50266 —17297 76950
-17297 -19238 26325

| 76950 -26325 79313

X; =%x1 =0, X;=%, =1.172m, x,

-23.83
-2.05x4
9.12x4
23.83
2.05x4
9.12x4

-50266

-17297
76950
50266
17297
76950

-17297

-19238
26325
17297
19238
26325

j = X

—2.05% 4
—0.57 x 4?

0.78 x 4°
2.05x 4

0.57 x 4°
0.78 x 4%

—9.12x4 |
—0.78 x 4*

2.35x 4%
9.12x4

0.78 x 4%
4.63x 4*

~76950 |
26325
79313
76950
26325
156263 |

(8.38)

~x,=1.172-0=1.172m

Vi=y1=0, y;=y,=2.828m, y;=y;-y; =2.828-0=2.828m

L=xt+y} =\1172" +2.828" =3.061m

From (8.35)

S O ©O O O B

0 0
0.383 0.924
-0.924 0.383

0 0

0 0

0 0

0 0 0
0 0 0
0 0 0
1 0 0

0 0383 0924

0 -0.924 0.383]

(8.39)



Calculation of Actions Developed in the Elements

kl — (rl )T 1_(11,1

50266 77709 —13481 -50266 64465
77709 154799 -29856 -77709 64868

Kl = -13481 -29856 20701 13481 -8530
-50266 -77709 13481 50266 —64465
64465 64868 8530 -64465 117557

| —45440 -61180 -4793 45440 -67071

Similarly for element 2 with 8 = 60°

20588 12403 —41175 -20588 -12403
12403 17888 24975 -12403 -17888

72 —-41175 -24975 109013 41175 24975
—-20588 -12403 41175 20588 12403
-12403 -17888 24975 12403 17888

| —41175 -24975 55688 41175 24975

X; =X, =1.172m, X;=X3="5.035m, X;; =X

j

309

—45440 |
-61180
-4793
45440
-67071
57943

(8.40)

41175 |
—24975
55688
41175
24975
109013 |

(8.41)

-%;=5.035-1.172=3.863m

Yi=y,=2.828,y;=y;=3.864m,y;=y;-y; =3.864-2.828=1.036 m

L=\xf +y} = \3.863% +1.036% = 4.000 m

1 0 0 o0 0 0 |
0 0966 0259 0 0 0
2 |0 -0.259 0966 0 0 0
"Tlo o 0 1 0 0
0 0 0 0 0966 0259
0 0 0 0 -0.259 0.966 |

[ 20588
22645
-36557
-20588
-1314

kZ — (I'Z )T 1_(21,2

22645 -36557 -20588
36499 44422 -22645
—44422 90401 36557
—22645 36557 20588
-12951 6567 1314
50751 42983

| —42983 -43383

-1314
-12951
6567
1314
11505
-1175

(8.42)

—42983 ]
—43383
50751
42983
-1175
115395 |

(8.43)
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And for element 3 with 8 = 30°

[ 173285 26747
26747 23625
-179381 -27675
-173285 -26747
26747 —23625
|-179381 -27675

-179381 -173285 -26747
—27675 26747 23625
247050 179381 27675
179381 173285 26747
27675 26747 23625
124538 179381 27675

-179381 |
-27675
124538
179381
27675
247050 |

(8.44)

X;=X3=5.035m, x;=X,=6.828m, x;=X; —x;=6.828-5.035=1.793 m

y,=y3=3.864,y,=y,=2.828m,y; =y, ~y,=2.828-3.864=-1.036m

L=xt+y} =\1793" +(-1.036) =2.071m

1 0
0 0.866
o 0 0.500

0 0

0 0

0 0
[ 173285 —66584
-66584 55570
-168700 82963
—-173285 66584
-112902 13459
| -141937 36506

0
—-0.500
0.866
0
0
0

0 0 0 ]
0 0 0
0 0 0
1 0 0
0 0.866 —0.500
0 0.500 0.866 |

k3 — (r3 )T K3r3

-168700 -173285 -112902
82963 66584 13459
215105 168700 91856
168700 173285 112902
91856 112902 103524
87453 141937 110605

(8.45)

-141937]
36506
87453
141937
110605
167152 |

(8.46)



Calculation of Actions Developed in the Elements

Ky = kili Ky, = kilj 0 0
Ky =kj | Ky =k +ki | Koy =ki 0
0 K3, = ]21 K33 = kaj +k?i K, = ki3j
0 0 Ky3 = k}?’i Ky = k13j

Substitute k!, k? and k® from (8.40), (8.43), and (8.46)
respectively to get the overall structure matrix.

Load vector

At node 1 the reactions on the structure are: the force in the
z-direction Rz;, the moment about the x-axis Ry, and the moment
about the y-axis Ry.

At node 2 the external force of -190 kN in the z-direction and at
node 3 the external force of -80 kN in the z-direction.

At node 4 the reactions on the structure are: the force in the
z-direction Ry4, the moment about the x-axis Rry, and the moment
about the y-axis Ryy.

Zy Rz

Ty Ry

M, Ry

Z, | |-190

F] | T, 0

F| [My| | 0
F= F| [Z; | | -80

F,| | T, 0

M, 0

Z, Rz4

T, Ryy
(M| [ Rua |
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Calculation of Actions Developed in the Elements

For the boundary conditions that node 1 is fixed, i.e. w; = 0,
@, =0, and 6, = 0, therefore delete rows 1, 2, and 3 and columns 1,
2,and 3.

The boundary conditions that node 4 is fixed, i.e. wy = 0, 4, = 0,
and 6, = 0, therefore delete rows 10, 11, and 12 and columns 10, 11,
and 12. The resulting reduced matrix is as shown below.

[ 70854 —41820 8883 -20588 -1314 —42983 | _wz
—41820 154056 -111493 -22645 -12951 43383 || D,
8883 111493 148344 36557 6567 50751 || 6,
—-20588 -22645 36557 193873 -65270 -125717 || w,
-1314 -12951 6567 -65270 67075 81788 | D,
| —42983 —43383 50751 -125717 81788 330500 || 6;

[-190]

The solution of the above set of simultaneous equations is:
w, =—0.00716 m, ®, =—-0.00367 rad, 6, =—0.00065 rad,

w4 =-0.00340 m, ®; =-0.00131rad, and 6; =-0.00228 rad.
The full displacement vector is

0

0

0
-0.00716
-0.00367
—-0.00065
—-0.00340
-0.00131
-0.00228
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Calculation of reactions at the supports

These are calculated relative to global coordinates from (8.47) as
follows:

From row 1
50266w, +77709®, -134816, —-50266w, +644650, —454400, =R,

R,, =—50266(—0.00716)+64465(—0.00367) — 45440(~0.00065)
=+152.85kN

From row 2

77709w, +154799®, — 298560, —77709w,, + 648680, — 611806, = R,

R;y=-77709(-0.00716)+64868(—0.00367)-61180(—0.00065)
=+358.10kNm
From row 3
—-13481w, —29856®, +207016, +13481w, —8530P, - 47936, =R,
Ry =13481(-0.00716)—-8530(-0.00367)—4793(—0.00065)
=—-62.10 kNm
Similarly, rows 10, 11, and 12 respectively give:
R;, =+117.31kN,R;, =+156.80 kNm, and Ry, =+235.37 kNm.

Calculation of actions on the elements

These are calculated from (8.37) as shown below:

Element 1
(v ] o i
i w, 0
t!
1 (Dl 0
m; - &1 [8 ) 0
L |=f'= r[31k1r161, whered' =| | |=| 1|=| ' |= ,
v, 8| [8,] |w,| |-0.00716
t! D, -0.00367
j
! 10, | |-0.00065 |
L™
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from (8.36) with § = 459,

1 0 0 0 0 0
0 0924 0383 0 O 0
, |0 —0383 0924 0 0 0
BZlo o 0 1 0 0
0 0 0 0 0924 -0.383
0o 0 0 0 0383 0924 |

and k! andr' from (8.38) and (8.39) respectively, thus

Vil o 0 0 0 0
ti| |o 0924 0383 0 0 0
fa_ my| |0 -0.383 0924 0 0 0
villo o 0 1 0 0
allo o 0 0 0924 -0.383
m| L0 0 0 0 0383 0924 |

[ 50266 17297 -76950 -50266 -17297 -76950 |
17297 19238 -26325 -17297 -19238 -26325
-76950 -26325 156263 76950 26325 79313
—50266 —17297 76950 50266 17297 76950
-17297 -19238 26325 17297 19238 26325
| -76950 -26325 79313 76950 26325 156263

1 0 0 o0 0 0 0 [+153.11]]
0 0383 0924 0 0 0 0 -62.06
0 —0924 0383 0 0 0 0 | -358.40
0 0 0 1 0 0 ||-0.00716| |-153.11
0 0 0 0 0383 0924|-0.00367| | -30.37
0o 0 0 0 -0924 0383 -0.00065| |-135.27]
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30.37 kNm

4

@153.11kN

135.27 kNm

1 | 35840 kNm
@153.11 kN
62.06 kNm
Element 2
2] o

w, | [-0.00716]
i ®, | |-0.00367

m; _ 82| [s 0 -0.00065
o |=f2 =r§k2r282,where 52 :LJ:{ 2}: -
j

v/ 8;| |ws| |-0.00340
% @, | [-0.00131
2 | 6; | |-0.00228 |

from (8.36) with B = 60°,

1 0 0 0 0 0
0 0866 0500 0 0 0
, |0 -0500 0866 0 0 0
BZo o 0 1 0 0
0 0 0 0 0866 —0.500
0 o 0 0 0500 0.866




Calculation of Actions Developed in the Elements | 317

and k? and r? from (8.41) and (8.42) respectively, thus

Vil o 0O 0 0 0
t5| |o 0866 0500 0 0 0
@ m;| |0 -0500 0866 0 0 0
vzl o o 0o 1 0 0
gllo o 0 0 0866 —0.500
mz| L0 0 0 0 0500 0.866 |

[ 20588 12403 —41175 -20588 -12403 —41175]|
12403 17888 —-24975 -12403 -17888 -24975
—-41175 -24975 109013 41175 24975 55688
-20588 -12403 41175 20588 12403 41175 |
-12403 -17888 24975 12403 17888 24975

| —41175 -24975 55688 41175 24975 109013

1 0 0 0 0 0 |[-0.00716] [ —36.90 |
0 0966 0.259 0 0 0 | -0.00367 +30.42
0 -0.259 0.966 0 0 0 ||-0.00065| |+135.26
0 0 0 1 0 0 | -0.00340| | +36.90
0 0 0 0 0966 0.259]| -0.00131 +27.82
0 0 0 0 -0.259 0.966 | -0.00228] | +34.38 |
36.90 kN
3/ T 782 kim
36.90 kN
34.38 KkNm
3042kNm

135.26 kNm
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Element 3
V2 . )
; ws | [-0.00340
i @, | [-0.00131
3
m; - & I8 ) -0.00228
; =f3=rﬁ3k3r383,where83= 3 ={ 3}: 3=
Vj 6]- 84 Wy 0
3 D, 0
)
0 0
E e Lo
from (8.36) with = 30°,
(1 0 0 0 0 0 |
0 0966 0259 0 0O 0
. |0 -0259 0966 0 0 0
IR =
P o o 0 1 0 0
0 0 0 0 0966 -0.259
00 0 0 0259 0.966

and k® and r® from (8.44) and (8.45) respectively, thus

Vil
5| o
3o mg _ 0
v2l|o
t 0
md | L0

173285 26747
26747 23625
-179381 -27675
-173285 -26747
—26747 —23625
|-179381 -27675

0 0 0 0 0

0966 0.259 0 0 0
-0.259 0.966 0 0 0

0 0 1 0 0

0 0 0 0966 -0.259

0 0 0 0.259 0.966 |
179381 -173285 -26747 —-179381]|
-27675 26747 23625 27675
247050 179381 27675 124538
179381 173285 26747 179381
27675 26747 23625 27675
124538 179381 27675 247050 |




Problems

1 0 0 0 0 0 1[-0.00340] [-116.90]
0 0866 -0.500 0 O 0 -0.00131 -27.81
0 0500 0866 0 0 0 -0.00228 | | -34.39
0 0 0 1 0 0 0 1 +116.90
0 0 0 0 0.866 —0.500 0 —55.61
0 0 0 0 0500 0866 | 0 | [+276.95]
27.81 kNm \611690kN
3
(® 116.90 kN
4
34.39 kNm / \
276.95 kNm 55.61 kNm
Problems

Analyse problems P8.1 to P8.4 below for the circular beams which
are curved in plan for the data and loading shown.
P8.1. An aluminium beam with E = 70 x 10°kN/m?, G = 26 x 10°
kN/m?,1=0.000012 m* and ] = 0.000019 m*.

3kN

R=15m

Figure P8.1

Answer:
w;=0,0,=0,0, =0,
w, =-0.01677 m, ®, =-0.00338rad, 6, =+0.01087 rad,
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320 | Beams Curved in Plan

R,y =+3.00kN, Rp; = +4.50 kKNm, Ry, =—4.50 kNm

vV, | [+3.00]
t, | |-4.50
my | | -4.50
v, | [-3.00
t, 0

|m, | | 0 |

P8.2. Atimber beam with E =8 x 106kN/m?, G = 0.5 x 106 kN/m?,
1=0.000020 m*, and ] =0.000015 m*.

@ 18 kN @

Figure P8.2

Answer:
w;=0,0,=0,06, =0,
w, =-0.00749 m, ¢, =-0.03185rad, 6, =0,
w5 =0,0;=0,6,=0,
R;; =+9.00kN,R;; =+2.41kNm, Ry; =—5.07 kNm,
Rz3 =+9.00kN, R{3 =+2.41 kNm, R};; =+5.07 kNm

1 _ _ 2 _ _
Vi | [+49.00 Vi | [-9.00
ti | [-045 t 0
m} | |-5.60 m3 | |+3.93

Element 1: , Element 2:

vl| |-9.00 vZ | |+9.00
t% - t§ -0.45

1 -3.93 2 +5.60
m, | - - m3 | - -
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P8.3. A concrete beam with E =30 x 10°kN/m?, G = 13 x 10°kN/m?,
[=0.00099 m*, and ] =0.00038 m*,

@ 130 kN

@ 2m

Figure P8.3

Answer:
w;=0,0,=0,0,=0,
w, =-0.00915m, ®, =-0.00468 rad, 6, =+0.00640 rad,
w4 =-0.00680 m, ®; =-0.00528 rad, 6; =+0.00201 rad,
w,=0,®,=0,6,=0,
R;; =+122.50kN,R;; =+11.55kNm, R; =-217.56 kNm,
R,, =+67.50kN, R}, =+145.93kNm, R}, =—4.96 kNm

1 _ _
Vil T+12250
t1 | | +11.55
m}| |-217.56
Element 1: = ,
vl | |-122.50
tl -11.55
2
1 ~27.45
|mz] = N




322 | Beams Curved in Plan

2] i}
Vi | [-7.50
t5 | |+11.55
m; +27.45
Element 2: =
V32 +7.50
2 +4.96
3
, | |+10.94
M3 | ~ .
37 - _
Vil [ 6750
t5 —4.96
m3 | | -10.94
Element 3: =
Vf +67.50
t3 +4.96
4
5| |+145.93
LMa ]~ }

P8.4. A steel beam with E=210 x 10°kN/m?, G =80 x 10°kN/m?,
1=0.00022 m* and ] = 0.00014 m*.

VL L Sl
Figure P8.4
Answer:

w, =0,®, =0,6, =0,
w, =—0.02264 m, ®, =—0.00706 rad, 6, = +0.00102 rad,
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w, =—0.01267 m, ®, =-0.00433 rad, 8, =—0.00293 rad,
w,=0,0,=0,0,=0,

Ry, =+28.93KkN, Ry, =+116.75kNm, Ry, =—34.55kNm,
R,, =+21.07 kN, R, =+87.84kNm, Ry, =+29.76 kNm

1 _ _
Vil [ +2893
t1 | | +34.55
m}| |-116.75

Element 1: = ,
A -28.93

! -11.52
2

1 -36.96
etV B
. ]
Vil [-6.07
t5 | |+11.52
m? | |+36.96

Element 2: = ,

V2 +6.07
2 +10.21

3

2 +8.65
| M3 | - N
—_— ]
Vil [-21.07
3
t3 -10.21
m} —-8.65

Element 3: =
V3| |+21.07

3 -29.76
4

5| |+87.84
| My | = -
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Chapter 9

Pin-Connected Space Frames

These are three-dimensional structures that consist of pin-
connected members in which no moments are transferred through
the pin joints. The analysis of such frames is similar to pin-connected
plane frames as explained in Chapter 3 where the members develop
axial forces only.

9.1 Derivation of the Stiffness Matrix

It was shown in Chapter 2 that the stiffness matrix relative to local
coordinates for a member subjected to axial forces is given by (2.4)
as:

__[EA EA

Xi _ T _T ﬁi

[’21}_ _EA EA {GJ}
L L

The above equation is for a bar lying along the x-axis and in order
to write it in a general form, the displacements and forces in the y-
and z-axes are introduced as shown in the relationship below.

Analysis of Structures by Matrix Methods
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Pin-Connected Space Frames

X(| TEA/L 0 0 -EA/L 0 O] W]
Y; 0 00 0 00|
Z; 0 00 0 0 0w
= — (9.1)
Xi| |-EA/L 0 0 EA/L 0 0| Y
Y, 0 00 0 00|V
z| L o oo o o0 ofw,
or F=ko

9.2 Transformation of Coordinates

Assume that the member local X-axis lies initially along the global
x-axis and its direction is OA as shown in Fig. 9.1a. The final position
of the member is OA” which is achieved by two rotations. The first
is a rotation about the y-axis by an angle ¢; to get to the position
along the lme OA" where the X-axis has moved to X and the Zz
-axis to z . The second stage 1s a rotatlon about the Z -axis by an
angle ¢, to the position of OA" where X -axis has moved to X and
y -axis to y So, the flnal directions of the local coordinates Xyz are
now defined by X y Z .

With reference to Fig. 9.1b the angles of rotation can be defined
by the coordinates of the ends of the member as:

] z; — zZ; -z, z;
sinQ_ = =— =——.
y L S S

Notice that for positive rotation 0, %<7z and hence z; is
negative.
X=X Xy, Vi=Vi ¥y

i S
cosQ_ = =—, sing. =———=—, cosQ. =—
y S S z L L z L

.2 27 _ |2 2 _ .2 2, .2
where s= \/xi]- +z,L= \/S +Yi = \/Xi]- Ty t+zy-
One way of deriving the transformation matrix is to consider the

effect of rotating the y - and z-axes separately and then combining
the two effects as shown below.
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s = projection of the length of
the member 'L'on
the xz plane

(X1, ¥1,21)

(5, ¥5, %)

(b)

Figure 9.1
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9.2.1 Rotation about the y-axis by an Angle 05

z Z
A
J RIS
!
VA —
' w
Y2 _
; w|®Py
II S~
’ S~o
<
~
\ u ~~~\
> - > > X
(%7 ’
7
!
— !
u ’
X
Figure 9.2

Although the Yy -axis is rotated axially it remains pointing in the
same direction as the y-axis which means that displacements and
forces relative to the rotated y -axis are the same as those relative to
the y-axis, thus

vV=v

The displacement along the X -axis is equal to the algebraic sum
of the components of the displacements along the x- and z-axes
respectively, hence

U= ucos@_ —wsing_.

The displacement along the z-axis is equal to the algebraic sum
of the components of the displacements along the x- and z-axes
respectively, thus

W= usin(py +wcos@y

and in matrix form



Transformation of Coordinates

i _cos% 0 -sing,
visl 0 1 0 |v| ord=p3
w _sm(py 0 cosQ;
. i}
where §=|V [,6=| v | and
w | w |
_cosq)y 0 -singg
P, = 0 1 0 (9.2)
sin(py 0 cosQy
9.2.2 Rotation about the z-axis by an Angle o_
y
A
y
/’A\
’a’ A —
- \\ X
% N
N \
\ \\ l_l \
7 S AN
\
Pz AN
0 m — > X
Figure 9.3

Although the z-axis is rotated axially it remains pointing in the
same direction as the z-axis which means that displacements and
forces relative to the rotated z -axis are the same as those relative to
the z-axis, thus
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The displacement along the X -axis is equal to the algebraic sum
of the components of the displacements along the x- and y-axes
respectively, hence

U= ucos@,_ +vsing. .
The displacement along the y -axis is equal to the algebraic sum

of the components of the displacements along the x- and y-axes
respectively, hence

Vv =-—using, +vcos@.

and in matrix form

u] | cosp. sing. Oy
V |=|-sing, cosg. 0] v or S=p;8
w | 0 0 1|w
I u
where &=V | &=|v , and
W

cos¢, sing_ 0
p, =|-sing_ cosp_ O (9.3)
0 0 1

The combined effect of rotations about the y- and z-axes
respectively is achieved by pre-multiplying (9.2) by (9.3) to give

8=p;p§8 or 3=pd

cosp_  sing_ 0| COSQ; 0 —sing,
where p= PPy = —sing_ cosp_ 0 0 1 0
0 0 1 sin(p§ 0 cosQ;

COS(_COSP. sing_ —coscpisin(py
p= —sin(picosq>y cos@p. sin(pisin(% . (9.4)

sin(p§ 0 cosQ
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The above treatment may be considered to apply to one end of
the member, and if the transformation is carried out for the two ends
of the member, then

0 00
p O
r= and O=(0 0 O
0 p
0 00
i COSP_CoSP_ sing_ —coscpisin(p§ 0 0 0 )
—sin(picosq>y cos@. sinq)isin(py 0 0 0
o sincp}7 0 cosQy 0 0 0
0 0 0 COS(COSQP sing_ —costpisin(py
0 0 0 —sin(picos% cos®p_ sin(pisin(p§
0 0 0 sin(py 0 cosQ;

Substitute the values of sing_, cos¢_, sin@., and cos@. as
y y z VA
derived previously to get:

x; /L yy/L oz /L 0 0 0 |
-yiX;/Ls s/L  -yyz;/Ls 0 0 0
~Zi /S 0 X /s 0 0 0
r=
0 0 0 x;; /L vy /L z; /L
0 0 0 -yiX;/Ls  s/L -yyzy /Ls
i 0 0 0 ~Z; /S 0 X; /s

(9.5)

The above transformation matrix has been derived for the
displacements and it applies equally well for the forces since both
are vectors in the respective directions.

A special case arises when the local X -axis of the member is
coincident with the global y-axis where x;; = 0 and z; = 0. And since
s=, /xlzl +zi2]- then x;;/s = 0/0 and z;;/s = 0/0 which are indeterminate
quantities. To overcome this situation we revert back to the original
transformation matrix in (9.4) and substitute the rotation about the
y -axis, 0, = 0 and the rotation about the z-axis, ¢. =90 degrees
to get:
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p=|-1
0

It should be noted that rotation of the X -axis was not considered
in the above transformation since only axial forces will develop in
the members of a pin-connected frame and these are not changed if
the member is rotated about its own axis.

The stiffness matrix k in (9.1) is transformed into global
coordinates by applying the following equation:

k =r"kr which leads to:

EA
el
Example 1:

—X

x2

J

XijY

Xz

XY

ij

ij

ij2ij

Xii¥ij
i
YijZij
—Xy¥j
_Yizj

~YijZy

XiZ;j
YijZij
X2
~YiZi;

2
—Z

2
Z;

ij

_Xizj XYy
XY _Yizj
“YiZy Y2y
Xizj Xii¥ij
Xii¥ij Yizj
XijZij YijZij

(9.6)

Determine the displacements at the nodes and the forces developed
in the members of the ball-connected space frame shown in
Fig. 9.4. Given that the cross-sectional area, A, of all the members is
700 x 10°m? and the modulus of elasticity, E = 210 x 10°kN/m?. The
forces acting on the structure are as follows:

Atnode 4: X, =+30 kN and at node 5: Zs = -80 kN.

The coordinates of the joints of the frame are given in the table below.

Node number X (m) y (m) z (m)
1 0 0 0
2 6 0 0
3 3 4 0
4 4 2 6
5 9 5 8
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The member and structure addresses are shown below.

Member number Node i Node j

1 1 4

BN W N
3 WIS HEES, B NN

2
3
4
5
6

80 kN (in the
z-direction)

30 kN (in the
x-direction)

2

Figure 9.4

Calculation of the stiffness matrices of the members

E=210x 10°kN/m? A = 700 x 10~° m? for all the members.
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Member 1

Node i of the member is node 1 in the structure and node j of the
member is node 4 in the structure.

=0,x=4m,x;=%-%x=4-0=4m
yi=0,yj=2m,y;=y;-y;=2-0=2m
2;=0,2=6m,7;=72-2=6-0=6m

s=\/x§j +72 =\4? +6? =7.211m

L=xt+y}+22 =\42 +2° +6 =7.483m

From (9.6)
81
3,=8, 8;=3,
u; Vi W uj Vl Wl
W Wi Uy Ve o Wy

[5.61 281 842 -561 -281 -842 |Wi=U
281 140 421 -2.81 -140 -421|Vi=V;
842 421 1263 -842 —-4.21 -12.63|Wi=W;

k! =10° -
-5.61 -281 -842 561 281 8.42 |Uj=Uy
-2.81 -140 -421 281 140 421 |Vj=v,
|—8.42 —4.21 -12.63 842 421 1263 Iw;=w,
Member 2

Node i of the member is node 2 in the structure and node j of the
member is node 4 in the structure.

X=6mx=4mx;=X-x=4-6=-2m
yi=0,yj=2m,y;=y;-y;=2-0=2m
2;=0,zj=6m,z;=2-2=6-0=6m

s=\x +22 = (-2 +6 =6.325m

L:\/xﬁ. +y5+z; =\/(—2)2 +2%+6% =6.633m
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82
8,=5, 8,=3,
u, v, w; u; V; w;
u, \Z) w, u, Vy Wy

(202 -2.02 -6.04 -2.02 202 604 |U=U,
—2.02 202 6.04 202 -202 -6.04|Vi=V2
-6.04 6.04 1813 6.04 -6.04 -18.13|Wi=W,

k?=10° -
-2.02 2.02 6.04 2.02 -2.02 —6.04 |Yj=Uy
2.02 -=-2.02 -6.04 -2.02 2.02 6.04 V=V,
L 6.04 -6.04 -18.13 -6.04 6.04 18.13 Jwj=w,
Member 3

Node i of the member is node 3 in the structure and node j of the
member is node 4 in the structure.

Xi=3m,Xj=4m,Xi]-=X]-—Xi=4—3=lm

yi=4m,y;=2m,y;=yj-yi=2-4=-2m

zi=0,zj=6m,z =zj—zi=6—0=6m

ij

s=\/xi2j +72 =12 +6> =6.083m

L:\/Xizj +yizi ”121 2\/12 +(-2)*+6% =6.403m

63
8,=9, 51=54
u; V; w; u; v, w;
us V3 W3 U vy Wy

[ 056 -1.12 336 -056 112 -336|4i=U3
-1.12 224 -672 112 -224 672 |Vi=V3
336 -6.72 2016 -336 6.72 -20.16|Wi=W3
-0.56 1.12 -336 056 -1.12 336 |Y=Us
112 -224 672 -112 224 -6.72 |V;=V,

|-336 672 -20.16 336 -672 20.16 |w,=w,

k3 =10°

335
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Member 4
Node i of the member is node 2 in the structure and node j of the

member is node 5 in the structure.
X=6mx=9mx;=%-%=9-6=3m
yi=0,y;=5m,y;=y;-y;=5-0=5m
2;=0,2=8m,z;=2-72=8-0=8m

s=\/x§j +72 =3 +87 =8544m

L=xt+y}+22 =\3" +52 +8? =9.900m

5t

8,=9, 61:65
u; \4 W uj Vl Wl
Uz Vo W2 U Vs Ws

(136 227 364 -136 -227 -3.64|u,
227 379 606 -227 -3.79 —6.06|v,
3.64 6.06 970 -3.64 —6.06 -9.70|w,

k*=10°
-1.36 -227 -3.64 136 227 3.64 |ug
-2.27 =379 -6.06 227 379 6.06 |v;
|-3.64 —-6.06 -9.70 3.64 6.06 9.70 |w;
Member 5

Node i of the member is node 3 in the structure and node j of the
member is node 5 in the structure.
x=3m,x=9m,x;=%X-%=9-3=6m
yi=4m,yj=5my;=yj-y;=5-4=1m
2;=0,z=8m,z;=%-2=8-0=8m

s:\/xiz]- +72 =\J6% +8? =10.000m

L=x}+y?+22 =V6? +1% +82 =10.050m
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55

u; \A w; u v wj
U3 Vs W3 Ug Vs Ws

521 087 695 -521 -0.87 -6.95]u,
087 015 116 -0.87 -0.15 -1.16|v,

695 116 927 -695 -1.16 -9.27 |w,

k®=10°
-5.21 -087 -695 521 087 695 |ug
-0.87 -0.15 -1.16 087 0.15 1.16 |vg
|-6.95 -1.16 -9.27 695 116 9.27 |ws
Member 6

Node i of the member is node 4 in the structure and node j of the
member is node 5 in the structure.
X=4m,x=9mx;=%x-%=9-4=5m
Yizzm'szsm'Yij=y1'_Yi=5_2=3m
zi=6m,z;=8m,7;=2-2=8-6=2m

s=\/x§j +72 =52 +2% =5385m

L=\/x12j+yi2j+zi2j =\/52+32+22 =6.164m

86
8,=3, 8;=85
u; \A w; u; v, w;
Ug Ve Wy Us Vs Ws

[15.69 941 628 -15.69 -9.41 -6.28]u,
941 565 377 -941 -565 -3.77|v,
6.28 377 251 -628 -3.77 -2.51|w,
-15.69 -9.41 -6.28 1569 941 6.28 |ug
941 -565 -3.77 941 565 3.77 |vs
| -6.28 -377 -251 6.28 3.77 251 |wg

k® =103
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57 Sm Wy (N Wy
A= A= A=
Sk SA mv~+mx+w_xnmmx 9 S 14 0
% Sn vSy €Sy Sy
L/ Tm iy — Wy — Wy
A= = Y=
vy N 9 Mx+mx+_w_v~+_ﬁ_xﬂiuv~ € 4 w_xH;M
ry n Sty ey Ty
7 Em 1y _ iy _
X e M_ M_ S+ P1= 5y 0 0
mN n M vm
7 im gy _ iy
5% [ MvN_ NMN_ 0 w_vf. _N_x = 2y 0
Nvm N5 M Vm
'z R iy =
X TA 0 T 0 0 _H_M — ﬁﬁvm
._”vm ._”5 ‘Vﬁvﬂ
mm mw i mmM wmvm mmM NmM meu
unm ww m.vM *%M mwvm NHQM QM
mm mw mmM wmvm mmM NmM HmM
N...._ Nw mNM ﬁNM MNM NNM ﬁNM
Hm Hw i mHM EM MHM NHM :Mu
4=Q)

XLIJeW SSaUYLIS 94N3IN.3S [|BIDNA0 3Y3 JO Ajquiassy
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The boundary conditions are: u; =0,v; =0, w;=0,u;=0,v, =0,
wy =0,u3=0,v3=0,and wj = 0, so delete rows and columns 1 to 9,
respectively. The resulting set of simultaneous equations will then
be:

[23.88 9.08 12.01 -15.69 -9.41 -6.28| u, | [+30]
9.08 1131 730 -941 -565 -3.77| v, 0
103 1201 730 5343 -628 -377 -251|w,|_
-15.69 -9.41 -6.28 2227 12.56 16.86 | us
941 -565 -3.77 1256 9.58 10.99| v

-6.28 -3.77 -2.51 1686 1099 21.48| wg -80

The solution to the above equations is:
u, =0.01237 m, v, = 0.00802 m, w, =-0.00147 m,
U5 =0.01919 m, vs = 0.01725 m, ws = -0.02276 m,

Calculation of reactions

The set of equations (9.6) will give the external reactions on the
structure by substituting the values of the above displacements.

From row 1 of (9.6)
10°(5.61u, +2.81v, +8.42w, —5.61u, —2.81v, —8.42w, =Ry,

10°(5.61x0+2.81x0+8.42x0—-5.61x0.01237 - 2.81x 0.00802
-8.42x(-0.00147)=Ry;, Ry; =-79.55kN

From row 2

10°(2.81u, +1.40v, +4.21w, —2.81u, —1.40v, —4.21w, =Ry,
10°(2.81x0+1.40x0+4.21x0—2.81x0.01237 - 1.40 x 0.00802
—4.21x(-0.00147)=Ry;, Ry; =—39.80kN

From row 3

10°(8.42u, +4.21v, +12.63w, —8.42u, —4.21v, —12.63w, =R,
10°(8.42%0+4.21x0+12.63x0—8.42x0.01237 — 4.21x0.00802

~12.63x(-0.00147)=Ry;, Ry =-119.35kN
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Similarly rows 4 to 9 respectively give the values of the reactions
atnodes 2 and 3 as:
Ry, =—0.08 kN, Ry, =46.65kN, R;, =99.31kN, Ry; =50.19kN,
Ry; =—6.87 kN, and R;; =99.57 kN.

Calculation of the forces in the members

The forces in the members are Calgulated relative to ltlcal coordinates
from the relation F=k§ with k from (9.2) and §=18 with the
transformation matrix r as given in (9.5).

Member 1

From (9.1)
Xj=4m,y;=2m,z;=6m,s=7.211m,L=7.483 m

EA 210x10°x700x107°

=19.65x10° kN/m

L 7.483

(1965 0 0 -1965 0 O]

0 00 0 00

_ 0 0 0 0 00
k' =10°

-1965 0 0 1965 0 0

0 0 0 0 00

0 0 0 0 0 0]

From (9.5)

[ 0.53 027 0.80 0 0 0
-0.15 096 -022 0 0 0
.|-083 0 055 0 0 0
0 0 0 0.53 0.27 0.80
0 0 -0.15 096 -0.22
0 0 -083 0 055

uy 0
2 0

51:611:61:""1: 0
8| 84 |, | |+001237

v, | [+0.00802
w, | |-0.00147]
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[0.53 0.27 0.80 0 0 ol o 1[ o ]
-0.15 096 -022 0 0 0 0 0
s _ g [083 0 055 0 0 0 0 0
=r = =
0 0 0 053 027 080 ||+0.01237| |+0.00755
0 0 0 -0.15 096 -0.22| +0.00802| |+0.00617
| 0 0 0 -083 0 055-0.00147] |-0.01108|
[1965 0 0 -1965 0 0] 0 | [-14836]
0 00 0 00 0 0
R sl 0 00 0 00 0 0
F'=k'd =10 =
-1965 0 0 1965 0 0} +0.00755| |+148.36
0 00 0 0 0| +0.00617 0
| 0 00 0 0 0 -0.01108] | 0 |
S ]
Xi] [-14836
Yy 0
zl
Fl=| ™ |2 0 . . . .
=|_.|= (i.e., the member is in tension)
XL | |+148.36
¥ 0
izt
148.36 kN

/

[u=y

/

148.36 kN
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Member 3
Xij =1 m, yIJ =-2 m, Zij =6 m,s= 6.083 m, L=6.403m
EA 210x10°x700x107°

=22.96 x10% kN/m

L 6.403
[2296 0 0 —2296 0 O]
0 00 0 00
— 4 0 00 0 00
k*=10
-2296 0 0 2296 0 0
0 00 0 0
| 0 00 0 0
(016 -031 094 0 0 0 |
005 095 031 0 0 0
; [-099 0 016 0 0 0

0 0 0.16 -0.31 0.94
0 0 0.05 095 031
0 0 -0.99 0.16 |

&1 18, |u, | |+0.01237

v, | [+0.00802
w, | |-0.00147 |

[0.16 —-0.31 094 0 0 o o 0
005 095 031 0 0 0 0 0
SR -099 0 016 0 0 0 0 _ 0
0 0 0 016 -031 0.94|+0.01237| |-0.00189
0 0 0 005 095 0.31/+0.00802| |+0.00778
| 0 0 0 -099 0 0.16]-0.00147] |[-0.01248 |
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2296 0 0 -2296 0 0
0 00 0 00 0
—n —n— 0 0 0 0 00 0
F =35 =10° =
-2296 0 0 2296 0 0| —-0.00189 —43.39
0 00 0 0] +0.00778
0 00 0 0]|-0.01248] |
1 )
X3 | [+43.39
73
Y 0
73
=3 3 0 . - .
FF=|_" |= (i.e., the member is in compression)
Xi -43.39
HEE
z b0
43.39 kN
4\
30
43.39 kN
Member 6

X;j=5m,y;=3m,z;=2m,s=5385m,L=6164m

EA _210x10°x700x10°°
L 6.164

=23.85x10° kN/m




2385 0 0 -2385 0 0
0 00 0 00
_ 0 00 0 00
k®=10°
-2385 0 0 2385 0 0
0 00 0 00
0 00 0 0 0]
[ 0.81 049 0.32 0 0 0
-0.45 0.87 -0.18 0 0 0
s |-037 0 093 0 0 0

0
0
0

6
8 = o7 | _|%
5| |3
[0.81 049 032
-045 0.87 -0.18
5 - 1656 = -037 0 093
- ) 0 0
0 0
i 0 0
[ 23.85
0
. 0
F6 =k65° =103

Transformation of Coordinates

0 0.81 0.49
0 -0.45 0.87
0 -0.37

[+0.01237]]
+0.00802
-0.00147
+0.01919
+0.01725
| —0.02276 |

1+0.01237]]
+0.00802
-0.00147

0 0 0

0 0 0

0 0 0
081 049 032
-0.45 0.87 -0.18| +0.01725

+0.01919|

-037 0 093 || -0.02276 |

[+0.01348]]
+0.00168
-0.00594

0 -2385 0
0
0
23.85
+0.01047

[+0.01348]
+0.00168
—0.00594
+0.01671
+0.01047

S O ©O O O
S O © © o

|| -0.02827 |

|-0.02827 |

[—77.04

0
0
0
0| +0.01671|
0
0

345
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el )
Xl [=77.04
Yy 0
= |Zs o | o
FP=|_" |= (i.e., the member is in tension)
Xg +77.04
|| o
76| L O

77.04 kN
/

77.04 kN

The forces in members 2, 4, and 5 are calculated in a similar manner
to be as follows:

S )
X2 | [+58.55
Y; 0
= _| % 0 |
Fe=|_" |= (Compression),
X2 -58.55
4
HEE
z b0
SR ]
X2| T+57.62
Y, 0
w_| B 0 |
Ff=|_"|= (Compression),
X4 -57.62
5
wl| oo
z| Lo



Problems

. i
X3 | [+72.71
5
Y 0
— |7z 0 ,
FP=|_|= (Compression).
Xg -72.71
5 0
Ys
L0

Problems
Analyse the pin-connected space frames for the loading and data
shown in problems P9.1 to P9.3.
P9.1. E = 210x10°kN/m?, A; = 0.0024 m?, A, = 0.0036 m? A =
0.0028 m?, X, = +100 kN, and Z, = -140 kN.

140 kN (in the
z-direction)

100kN (in the
x-direction)

Figure P9.1
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Answer:
u; =0,v; =0,w; =0,u,=0,v,=0,w,=0,u3=0,v3=0,w; =0,
u, =0.00434m,v, =-0.00152m, w, =-0.00026 m
Ry; =—35.88kN,Ry; =-17.94kN, R,; =-89.69kN,
Ry, =-25.36 kN, Ry, =76.08 kN, R,, =152.17 kN,

Ry; =—38.76 kN, Ry; =—58.14kN, R,; =77.53kN.

_1_ _ B
Xi| [-98.25
Y 0
VA 0
Fl= _1 = (Tension),
XL | [+98.25
oo
IR
Fe ]
X2 | [+172.01
Y; 0
= _| L2 0 .
Fe=|_" |= (Compression),
X2 | |[-172.01
2 0
Y, .
=2
[Z4] - B
S )
X3 | [+104.37
Y; 0
= _| & 0 .
FF=|_ |= (Compression).
X3 | [-104.37
73 0
Y, 0
Za] ~ -




Problems

P9.2. For all members: E = 70 x 10® kN/m? and A = 0.0019 m?,
X, = +20 kN, Z, = -60 kN, and Ys = 40 kN.

5 40 kN (in the
(0.3,1.0,0. 2) y direction)
1
(0,0,00 O
@ 60 KN (in the
z-direction)
z 4
(1.5,1.2,-0.4)
20 kN (in the
x-direction)
Figure P9.2
Answer:

u;,=0,v;=0,w; =0,u,=0,v,=0,w,=0,u;=0,v;=0,w; =0,
u, =0.00147 m, v, =-0.00046 m, w, =-0.00217 m,

ug =0.00402m, vy =-0.00206 m, w; =0.00192 m,

Ry; =-50.97kN, Ry, =-1.33kN, R,; =28.12kN,

Ry, =33.30kN, Ry, =32.00kN, R;, =34.99KkN,

Rys =—2.33KkN, Ry; =9.33KkN, Ry =—-3.11KkN.
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o1 ]
Xi| [+55.17
v 0
= | Z 0 .
Fr=|_|= (Compression),
X! —55.17
5
w0
R
_2_ _ _
X5 | [+20.61
Y 0
= _| % 0 .
F* = = (Compression),
X2 | |-2061
7| 0
EARR
3] - - (w4 - -
Xi| [-87.04 X2| [-21.58
Y; 0 Y, 0
|2 0 1z 0
F= _1 = (Tension), F* = _2 =
X3 | |+87.04 Xt | [+21.58
wl| o W o
Z b0 z| b0
fesT )
X3 | [+1011
5
Y3 0
— |z 0 ,
F° = = (Compression),
X5 -10.11
w0
izt

(Tension),



Problems

(Compression).

P9.3. For all members: E =210 x 10°kN/m?, A = 0.0012 m2.
X, = +70 kN, Y5 = +30 kN, and Zs = -50 kN.

70 kN (in the
x-direction)

(0.5,2,4) 4

50 kN (in the
z-direction)

30 kN (in the

/ y-direction)

Node 6 coordinates:
(1.5,2.5,3.5)

Figure P9.3
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Answer:
u; =0,v; =0,w,; =0,u,=0,v, =0,w, =0,u;=0,v; =0,w; =0,

u, =+0.00498 m, v, =—0.00193 m, w, =-0.00035m,
ug =+0.00222 m, v =-0.00037 m, wg =—0.00091m,
u, =+0.00478 m, v, =—0.00147 m, w, =+0.00059 m,
Ry, =—18.43kN, Ry, =—21.76 kN, R,; =—21.25 kN,
Ry, =—3.28kN, Ry, =+23.86 kN, R,, =—38.75kN,
Rys =—48.30kN, Ry; =-32.10kN, R,; =+110.00 kN.

(g1 i _ 32 _ _ (3 _ _
Xi] [+3453 X111 [-67.60 X5 | [+4339
Yy 0 4 0 Y; 0
71 72 =73
T T R - U I I O W
Xt | |-3453| X2 | |+67.60| X3 | |-4339|
1 0 52 0 3 0
Y, . Y . Y; .
1 72 3
_Z4_ B - _ZG_ - - _Z6_ - N
[x4] - . (%51 ¢ . X1 ¢ .
2| [-61.74 2| [+16.91 3| [+81.40
5
Y, 0 Y; 0 Y3 0
4 =5 6
Ft= Z, _ 0 = Z, _ 0 F6 = Zy _ 0
Xt | +61.74 ’ Xs| |-1691 ’ X¢ | |-81.40 ’
|| O w0 vl o
_ 0 =5 0 =6 0
_Z:_ - - _Zs_ - N _Zs_ - N
77 _ _ 81 _ _ w9l _ _
Xi| [+15.19 X5 | [-55.39 Xa| [+74.44
Y, 0 Yg 0 Y, 0
7 =8 79
F = ZZ _ 0 Fé = Zs _ 0 Fo= Zy _ 0
XZ| |-15.19 ’ X8| |+5539 ’ XJ| |-7444
Y. 0 Y2 0 Y, 0
=7 0 =8 0 =9 0
_ZS_ - - _ZG_ B - _ZG_ B -




Chapter 10

Rigidly Connected Space Frames

These are three-dimensional frames composed of members that
are rigidly connected at their joints. In contrast with pin-connected
space frames where the members develop axial forces only, rigidly
connected space frames develop shear forces and bending moments
as well.

10.1 Derivation of Stiffness Matrix

The stiffness matrix is derived from the combination of stiffness
matrices for bending about the y - and z -axes, torsion about the X
-axis and axial force along the X -axis as follows:

(i) For axial force along the X-axis the stiffness matrix was
derived in Chapter 2 as:

_[EA  EA
X. ETE
_l — L L _1 (10.1)
X|7|_Ea Ea |5,

L L

(ii) The stiffness matrix for torsion about the X -axis was derived
in Chapter 7 as:
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g

Lq_)i
Gl |0

L

(10.2)

(iii) The stiffness matrix for bending about the y -axis was derived

in Chapter 4 as:

12El,  6El, 12Bl;  6EL
I 1? 3 1

- =
Z _6El; 4l 6EI; 2Bl || Wi
M. 2 2 0.
zl _ I L I L 8 (103)
L 12El; 6El,  12El;  6EL, (W,
M,- 3 12 3 12 Gj

_6El;  2El 6El;  4El

L I L 12 L |

(iv) The stiffness matrix for bending about the z -axis is derived in

Appendix 2 as:

[ 12EI,  6ElL,
2 12
Y 6EL.  4EL
lji _ 12 L
Y| | 12BI,  6EL,
N, ? 12
6EL,  2EL
L 12 L

12El;  6EL; |
e 12

6EL,  2EL | Vi
- 7

L Los (10.4)
12EL;  6EL || V;

3 2 —

L |y

6EL.  4EL,

1? L]

Notice the change in sign of some of the coefficients in comparison
with the matrix for bending about the Yy -axis.

The resulting stiffness matrix for the general case is obtained
by combining cases (i), (ii), (iii), and (iv) as given by (10.1), (10.2),

(10.3), and (10.4) to get:
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(so1m)

( ) 1 0 0 0 dl 0 1 0 0 0 dl 0
N A Ty 259 Iz 259
f f 0 1 0 d 0 0 0 1 0 d 0 0
W ] fay 4139 “1az a9
L [ 0 0 1 0 0 0 0 0 1 0 0 0
! o ) 6
1 1

; | _£ _e
b M 0 0 0 0 0 0 0 0
Z = flaz1 Szt

1 1 1 1
( ( Z € Z €
: ! - 0 0 0 A 0 - 0 0 0 - 0
4 4 199 “az1 4199 “1az1
f f 0 0 0 0 0 L 0 0 0 0 0 1
X 1 v va
'N A 1 0 0 0 d 0 1 0 0 0 dl 0
= = “14z “199 “1ay “199
! ! 0 1 0 d 0 0 0 1 0 d 0 0
- . 1 _
= 9 A1z “1a9 fay 139
'L ‘D 0 0 1 0 0 0 0 0 1 0 0 0
= = O b]

1 1 1 1
_N ‘M 0 T 0 = 0 0 0 S 0 —= 0 0
= “1499 ‘Azt 4199 ‘Azt
1 1 1 1

1 1 Z € 14 €
%X ‘a 0 0 0 S 0 0 0 0 — 0
= - “199 “19z1T “199 “14z1
, . 1 1
'x n 0 0 0 0 0 — 0 0 0 0 0 —
2 vi vi

' ‘9 ‘p ‘m ‘A ‘n iy ) ) 'm ‘A n
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or simply,

k& =F. (10.6)

10.2 Transformation to Global Coordinates

The quantities in (10.6) are relative to local coordinates and in the
assembly of the stiffness matrix for the overall structure they need
to be transformed and written relative to the global coordinates.

In Chapter 9 the members of the space frame develop axial
forces only since the frame is pin-connected and only rotations of
the y - and z-axes are considered in the transformation as shown in
Fig. 10.1a.

s = projection of 'L’ /

on the xz plane

------------------ A

0 " > X I > X
.- i' """ . (X,y,—Z)
SN L
- N ~; (b)
(%,0,-2)

Figure 10.1



Transformation to Global Coordinates

In this chapter where the members develop moments (as well
as axial forces) due to the rigidity of the joints, the rotation about
the X -axis is also considered since this rotation will change the
orientation of the principal axes of the cross section which affects
the bending stiffness of the member relative to the global axes.
Therefore, transformation from local to global coordinates due to
rotations of the y - and z- as well as the X -axes is carried out. The
transformation is done in three separate stages which are combined
to give the final transformation matrix. In the first stage a rotation
05 about the y -axis is made to calculate the transformation matrix
p. and in the second stage a rotation ¢_ about the z-axis is made
to calculate the transformation matrix p, . These two transformation
matrices have been derived in Chapter 9 for the pin-connected space
frame as given in (9.2) and (9.3), respectively, as follows:

For rotation of the y -axis

_cosq)§ 0 —sin(p{
p= 0 1 0 (10.7)
sin(py 0 cosQ

and for rotation of the z-axis

[ cosg_  sing_ 0
p, =|-sing, cose. 0 (10.8)
0 0 1

Sometimes the member is rotated about its longitudinal axis
(i.e., its X -axis) to achieve more efficient use of its cross-sectional
geometric properties or make the details of the connections between
members of the structure more practical. In such a case a third
separate transformation is required for a rotation of the X -axis.
Consider a member that is originally lying along the x-axis and is
rotated about its own axis by an angle ¢_ in the clockwise direction
as shown in Fig. 10.1c and Fig. 10.2.

Although the X -axis is rotated axially it remains pointing in the
same direction which means that displacements and forces relative
to (along) the rotated X -axis are the same as those relative to the
X-axis, thus
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Figure 10.2

The displacement along the y -axis is equal to the algebraic sum
of the components of the displacements along the y- and z-axes,

respectively, thus
V=vcosQ_+wsing_.

The displacement along the z-axis is equal to the algebraic sum
of the components of the displacements along the y- and z-axes,

respectively, hence
w= —vsing_ +wcoso_.

In matrix form

u 1 0 0 u
v |=|0 cosp- sing_ || v
W] |0 -sing_ cosq- LW
u u
v =p.| V|,
w w
1 0 0

p.=|0 cosp_ sing_ (10.9)

0 —sin(pi cosQ_

where

The complete transformation matrix p is obtained by multiplying
the three transformation matrices (10.7), (10.8), and (10.9) in the
order of rotations of the local axes, thus



Transformation to Global Coordinates

P=PPpy
1 0 0 cosp_ sing_ 0| cosp; 0 —sing;
p=|0 cos@_  sin@_ || —sin@, cos@, 0 0 1 0
0 —sin(pi cosQ_ 0 0 1 Sirl(py 0 cosQ,
€OSP;CoSP. sing_ —cos(p;sin(py

p=| sin@ sing_ —sing_cosp_cosQ_  cosP.cosp.  sing_cosq sing_ +sing_cosp_

sin(pisin(pgcosq)y + cosq>;sin(py —CcosQ_sin@_ COSP COSQP — sin(pisin(p;sin(py

(10.10)

S <l el
Il
i
<

The above transformation is for the translational displacements
u, v, and w and since the rotational displacements @, 6, and
¥ are vectors about the same axes, then the same transformation
matrix, p, will apply, thus

o [0
0 |=p| 6
% v

For transformation of the displacement vector at node i: §; = 9,
where

_L_li_ _ui_

vi Vi

> o 00 0] g o
Rl_O , 0=[0 0 O,Siza,andﬁi: q)l,
P 00 0 o i

0; 6,

_@i_ _\Pi_
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;] [y, |
Vi \A
thus iVi = {p O} Wi
; O p|| %
6; 0;
¥, | L% ]

Similarly, for the transformation of the displacement vector at

node j: §; =19,
_ﬁi_ _u]_
V]- V]
wil_[p O] W
D _{0 P} o
5 6
| L% ]

_ r O
and for both nodes, d =10, wherer =L; r} which results in the
final transformation matrix as: j

p 0 0O

0 p O . :
r= (i.e., a 12x12 matrix)

0 o0

0O 0 O p

The above transformation matrix is for the displacements and it
is the same for the actions since both displacements and actions are
vectors relative to the same axes, thus

X X T T
Y|=p|Y|and |M|=p|M
Z / N N
or F=rF.
The stiffness matrix relative to global coordinates is given by:
k=rTkr (10.11)

with k and r from (10.5) and (10.10), respectively.



Transformation to Global Coordinates

The transformation matrix in (10.10) can be simplified by
referring to Fig. 10.1 and making the following substitutions

sin@_ =——, cosQ_ =
y S y

z; X

, sin(p2

Yij

=—,CosQ,

S
=—,wherex. =X. — X,
L 1 1

]

_ _ /2 2, 2,.2
Vij =Y~ Vir Zij =2 —Z;, S = [ Xj; +zl,andL— Xij + Vi + 2.

Xij Yi Zj
L L L
Zy ¥ S YijZi Xjj
p=|-——sing_- cos@_ Icosq); e cos¢_ +— S smq),
s
Vi I sin —ﬁcos ~Ssin X—cos +y i sin
| Ls P57 C0%%s T S s S PR £
(10.12)
Example 1:

Analyse the rigidly connected space frame shown in Fig. 10.3 given
that all the members have the same cross section with the following
properties:
A=17800x10"°m?, I; =1117.77x10°m*, 1, =45.05x10 °m*,
]=2.16%x10"°m* E =210 x 10°kN/m?, and u = 0.3.

E  210x10°
2(1 +U0)  2(1+0.3)

The coordinates of the joints of the frame are given in the table
below.

=80.77 x10°kN / m®.

Node number x (m) y (m) z (m)
1 0 0 0
2 0 0 6
3 0 4 6
4 5 4 6

The member and structure addresses are shown below.
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Member number Node i Node j
1 1 2
2 2 3
3 3 4
y

NI

4 ®5 = 0,97 = 0,¢p5 = +90°

|
@5 = 0,5 = +90%, gz = 0 20kN (in the | 3m

/ z-direction) /3 — v C;)
7 ] I/ @ 7L 40 kN

10 kN/m (in the
x-direction)

@5 =—90% @, =0,¢0; =0

NI
|

Local coordinates
Figure 10.3
Calculation of member stiffness matrices

Member1,L=6m

From (10.5)

(in the

y-direction)

Z

X
Global coordinates

Il
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Transformation to Global Coordinates

(¢T01)

L0€9 0 0 0 LLST- 0 PSTE 0 0 0 LLST 0

0 | 88%9sT | 0 | zzieg 0 0 0 vhe8L | o | zzrec- 0 0

0 0 62 0 0 0 0 0 62- 0 0 0

0 zziee | 0 | THOSET 0 0 0 zziee | 0 | TvOSI- 0 0
LLST- 0 0 0 925 0 LLST- 0 0 0 925- 0

0 0 0 0 0 000£29 0 0 0 0 0 | ooogzo-
¥SIE 0 0 0 LLST- 0 LOE9 0 0 0 LLST 0

0 Y¥Z8L 0 ¢C16¢ 0 0 0 8819G1T 0 16€E- 0 0

0 0 62- 0 0 0 0 0 67 0 0 0

0 ¢C16E- 0 TY0ET- 0 0 0 ¢C16E- 0 Tv0€ET 0 0
LLST 0 0 0 925- 0 LLST 0 0 0 925 0

0 0 0 0 0 000€29- 0 0 0 0 0 000€29
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Xi:O;Xj:O,Xij:XJ'_X]:O_O:O
vi=0,y;=0,y;=y;-yi=0-0=0

Zi:O,ZJ':6m,Zij:Zj—Zi:6—0:6m

s=\x; +z2 =\0? +6 =6m

L:\/xizj+yizj+zizj =02 +0%+6% =6m
9 =0, sin(pi =0, cosQ_ =1

From (10.12)

0 0 6
6 6 6 0 0
p! 00200 by 06 1 0%0=] 0 1
6 6%x6 6 6% 10
%xO—gxl —%xo %x1+%x0
0 0 1 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
-1| 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0
o 0 0 0Of-1]0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0Of-1]0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 of-1|0 0

oS O -

(10.14)
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(sT01)

62 | 0 0 0 0 0 62-| 0 0 0 0 0
0 |8svost| o 0 0 | zztee- | o | wvzsz | o 0 0 2216
0 0 | zoe9 0 |81 0 0 0 | ¥ste 0 |usi-| o
0 0 0 | 000gz9 | o0 0 0 0 0 |ooogzo-| o 0
0 0 | L8t 0 9z 0 0 0 | L8t 0 925~ 0
0 | zztee-| o 0 0 | twoer | o |zziee-| o 0 o | woer- |
62-| 0 0 0 0 0 62 | 0 0 0 0 0 -l
0o | vvz8L | o 0 0 | zztes- | o [ssvost| o 0 0 2TT6¢8
0 0 | ¥s1e 0 |81 0 0 0 | zog9 0 |zusi-| o
0 0 0 |o000gz9-| o0 0 0 0 0 | 000gz9 | o 0
0 0o |zst-| o |[o9zs- 0 0 0 |ust-| o 925 0
0 | zztes | o 0 0o | tvost- | o | zztee | o 0 0 THOET

i L=

(TT°01) Woxy
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(91°01)

19%6 0 0 0 8¥GE- 0 0ELY 0 0 0 87S¢E 0
0 CELYETL 0 72088 0 0 0 99€LTIT | 0 | %2088~ 0 0
0 0 44 0 0 0 0 0 47 0 0 0
0 72088 0 [ANVi%% 0 0 0 72088 0 | Z10%¥- 0 0
8¥SE- 0 0 0 VLLT 0 81SE- 0 0 0 VLLT- 0
0 0 0 0 0 005¥€6 0 0 0 0 0 00S¥€6-
=
0ELY 0 0 0 81S¢E- 0 196 0 0 0 87S¢€ 0 =
0 99€LTT 0 72088 0 0 0 CELYEC | O | ¥2088- 0 0
0 0 47 0 0 0 0 0 44 0 0 0
0 72088~ 0 | C10¥b- 0 0 0 ¥2088- | O AN 474 0 0
8¥S¢€ 0 0 0 VLLT- 0 87SE 0 0 0 VLLT 0
0 0 0 0 0 00S¥€6- 0 0 0 0 0 005¥€6
(501) wouyg

¥ =1 quain
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The transformation matrix for this member represents a
special case that arises when the local X -axis of the member is

coincident with the global y-axis, where X;=0 and z;; = 0. And since,
s=,/xizj+zizj then x;/s = 0/0 and z;/s = 0/0 are indeterminate
quantities. To overcome this situation, we revert to the original
transformation matrix (10.10) which is in terms of trigonometric
functions and substitute ?; =0, o, =+90°, and ¢_=0. The
resulting transformation matrix will then be:
c0s90cos0 sin90 —c0s90sin0
p2 =| sin0sin0—sin90cos0cos0 cos90cos0 sin90cos0sin0+ sinOcosO

sin90sin0cos0 + cos0sin0 —cos90sin0 cos0cos0 —sin90sin0sin0

0 1 0]

pt=l-1 0 0

0 0 1]
o|l1[ofo]ololo|o]olo]ofo
-1101(0 0 010] 0 0]0 0(0]O0
ojlo[1fQo]ololo|o]o|lo]ofo
0(O0]O0 0 1|0fO0 0]0 0(O0]O0
ololof-1]o|lofo|o]olo]ofo

2. 0 010 0 O|l1f0]01]O 0 010 (10.17)

olololo|o|lofo|[1]ofQo]ofo
0(O0]O 0 O|lOfg-1]101|0O0 0(O0]O
olololo|o|lofJo|o|1Qo]ofo
0(O0]O0 0 010] 0 O|J]OfgO]1]|0O0
ololofo]|ofo]o|o|lof-1]|0]o0O
0]01|O 0]1]01]O0 0 0O|J]OfO 01

From (10.11)
K? = (r2)Tk2r?
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(8101)

1976 0 0 0 0 8¥5€ | 0ELY 0 0 0 0 8¥5€-

0 a4 0 0 0 0 0 - 0 0 0 0

0 0 CELVET | ¥2088- 0 0 0 0 99€LTT | #2088 0 0

0 0 ¥2088- | C¢10%¥ 0 0 0 0 ¥2088- | Z10¥¥- 0 0

0 0 0 0 00S7€6 0 0 0 0 0 00S¥€6- 0
8¥S€ 0 0 0 0 VLLT § 8VSE 0 0 0 0 VLLT-
0€LY 0 0 0 0 8¥SE | 1976 0 0 0 0 8¥5€E-

0 e 0 0 0 0 0 4’4 0 0 0 0

0 0 | 99€L1T | ¥2088- 0 0 0 0 CELYET | ¥2088 0 0

0 0 2088 | ¢10¥¥- 0 0 0 0 2088 c10v¥y 0 0

0 0 0 0 00S¥€6- 0 0 0 0 0 00S¥€6 0
8¥se€-| 0 0 0 0 VLLT- § 8YSE-| O 0 0 0 VLLT

A
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Transformation to Global Coordinates

(61°0T1)

8954 0 0 0 1L22- 0 ¥8LE 0 0 0 1222 0
0 S8LL8T | O 9€€99 0 0 0 £68€6 0 | 9€€95- 0 0
0 0 S€ 0 0 0 0 0 Se- 0 0 0
0 9€€99 0 Yeqee 0 0 0 9€€99 0 | ¥eSCe- 0 0
TL22- 0 0 0 806 0 1L22- 0 0 0 806~ 0
0 0 0 0 0 009L¥L 0 0 0 0 0 009L¥L-F i
¥8LE 0 0 0 1LZC- 0 89GL 0 0 0 1L2¢C 0 -
0 €68¢6 0 9€€99 0 0 0 G8LL8T | 0 | 9€€9SG— 0 0
0 0 ge- 0 0 0 0 0 S€ 0 0 0
0 9€€9S- | 0 | ¥ESCZ- 0 0 0 9€€9S- | O 4144 0 0
1222 0 0 0 806- 0 TL2¢ 0 0 0 806 0
0 0 0 0 0 009LvL- 0 0 0 0 0 009L7¥L
(5'01) wourg

w g =17 9qua
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x=0,%=5m,x;=%-%=5-0=5m
yi=4m,y;=4my;=yj-yi=4-4=0

Zi:6m,Zj:6m,Zij:Zj—Zi:6—6=0

s=\/xi2j+ziz]— =\/52+O2 =5m

L=\/xizj+yi2j+zizj =\/52+02+02 =5m
0 =+90°, sin(pi =1, cosQ_ =0

From (10.12)

5 0 0
5 5 5 10
p = 92050 30 “9X0 043kl 0 1
5 5x5 5 5x5 5 0 10
0—X5><1—9><0 —Exl E><0+u><1
5x5 5 5 5x5
1 oflolo|o|o|lo|ofo]o]o
0|l 0180 0 0(0] O 0[O0 0|0
o]l-1]ofojo|ojo[o]o]|o]|o0]o0
O[O0 |Ofg1|10])]0QRO 0 0[O0 010
olo|ofolo|1fo[o]o]o]|o0]o0
5o 0 O|OfO|-110Qg0]| O 00 010 (10.20)
olo|ofo|lo|of1]o]ofo|o]o
OO0 |0]0O0 0[O0fO 0 10| 0|0
olo|o|lo|lo|ofo]|-1]ofo]|o0]o0
00 01]0 0[0]O0 0 0og1 0 0
olofoflo|lo|o]|oO ofolo |1
00 0|0 0]O0|O Ogo]-1]0

From (10.11)
K = () i3
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(tzo1)

S8L.L8T 0 0 0 9€€9S5- 0 €68¢£6 0 0 0 9€€9S 0

0 89SL 0 | TLZC 0 0 0 Y8LE 0 | TLcCe- 0 0

0 0 s€ 0 0 0 0 0 Se- 0 0 0

0 1L2¢C 0 806 0 0 0 1L2¢C 0 806~ 0 0
9€€9S5- 0 0 0 ¥€SCT 0 9€€9S- 0 0 0 veSee- 0

0 0 0 0 0 009.L%L 0 0 0 0 0 009L¥L-
€68¢6 0 0 0 9€€9S5- 0 G8LL81 0 0 0 9€€9S 0

0 ¥8LE 0 | TLCC 0 0 0 8944 0 | TLcCC- 0 0

0 0 Se€- 0 0 0 0 0 s€ 0 0 0

0 1L22-| 0 | 806- 0 0 0 TL22-1 0 806 0 0
9€€9S 0 0 0 resee- 0 9€€99S 0 0 0 43144 0

0 0 0 0 0 009L¥L- 0 0 0 0 0 009.4%L

el
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The overall structure stiffness matrix is assembled by inspection

as:
81 82 83 84
1
Ky = kili Ky, = ku 0 0 8,
K, =kj | Ky =kjj+ki; K,; =k 0 5,
K =
2 2 1.3 3
Y K3, =kj; Kaz =kjj+kj | Kay =kj |3,
3 3
0 0 K3 =Kk;j; Ky =kj |8,
where
_ul_ _uz_ _u3_ _u4_
Vi \p) V3 Vy
w w w w
&, =| '],8,=| *| 8= *|andd,=| *
e |72 o, 7 | @ o,
0, 0, 03 0,
L] |5 | ke |\ |

At the fixed supports 1 and 4, §; = 0 and 3, = 0, respectively, hence
rows and columns 1 and 4 are deleted to give the reduced structure
stiffness matrix as:

1,2 2
K7, =kj +Kij K,3 =k 3

K, = kfl K3 = kz +k3 85
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Transformation to Global Coordinates

(zz'o1)

9vTLel 0 0 0 9€€9S 8¥S€ | 0ELY 0 0 0 0 8vse-

0 194 0 1L22- 0 0 0 Y- 0 0 0 0

0 0 LILYET | $2088- 0 0 0 0 99€LTT | 2088 0 0
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Calculation of load vector

Actions on Member 1: n =—10 kN/mand L=6m

- nL (-10)x6

) =——=—>"1""=430kN
(Z0) === >

_ L -10)x6
(Zzl)f=—n7=——( 2) — +30kN

nl?  (-10)x6

(M), =+—=+~—2" —_30kNm

12 12
nl?  (-10)x6?

(M) =——=—~—2"—=430kNm

12 12

(XD |
Y1)
(Z1)
(M| | o
M) | =30
(N7 )
(X2
(Y, )
(Z,)
(T | |30
M) | | o
LN |

+30

(10.23)



Transformation to Global Coordinates

Loads on joints 1 and 2

(M;)S = (M) =-30kN
Xi)s | 20
+

(%)

) 0
(Z1)s
(T s
M) | | +30

1

F = (Ni)s - ° (10.24)

(Xz)s | |30
(%3)s g
(Z2)s
T,) 0
( 21 S -30
(M3 )s 0
(N2)s

Xl
<
<

(M) = 30 kNm (M1)s = 30 kNm
X

NI

(Z3)f = 30kN (x1)s = 30 kN
(b) (d)

(Continued)
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10 kN/m

Ll

>l
<
<

(M})¢ = 30 kNm (M})s = 30 kNm
z X
(ZDr = 30kN D5 = 30 kN

@) (]

Figure 10.4 (a) and (b) actions on member 1 (relative to local coordinates),
(c) and (d) loads on joints 1 and 2 (relative to global coordinates).

Alternatively, and to make the computations more systematic,
the load vector on the joints of the structure, Fs, which is relative
to global coordinates can be calculated from the actions at the ends
of the member which are relative to the local coordinates of the
member by using the transformation matrix as follows:

Consider the equilibrium of a section cut at the junction of the
member and the joint Fs + F; = 0 or Fg = —-F;, where F; is the action
vector on end of the member relative to global coordinates. The
action vector relative to local coordinates is F;, therefore, F; =rF; or
F =r'F =r"F (sincer!=r")and hence F;=-1"F.

FS1 =—(r")" El and with r! from (10.14) and El from (10.23) we get



Transformation to Global Coordinates

o o o o
I o =] IR o | o
+ + + I
Ml
o o o =
o ™ I = e mn| o
+ | + +
o o = = = ol|lo
o o = = = -| o
o o = = = o -
o o = in = o|lo
o o o = = o| o
o o o = - ol o
o o o = = o| o
o o - = = ol o
o o o = = o| o
in o o = = ol o
o o o o = ol|lo
o - = = = ol|lo
|
1l
—
=y
[
~
—
—
L

F,

1
S
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which is the same result obtained in (10.24).

Actions on Member 2: P=-20kN andL=4m

- P (-20)
Z2)=——=— =+10kN
(Z3) > 2 +

— P -20
(Z3); :_E:_( > ):+10kN

_ -20)x 4
(M3); = P +Q= ~10kNm
8 8
_ PL  (-20)x4
M3)=——=——2""=410kNm
(M3)¢ 8 8
5| .
(%)
Z3) 0
(_22 f +10
(T2 ) 0
M) | |-10
T2 _ (Ng)f _ 0
= _ 0 |=
(X3
(%) 0
= +
(Z3)
) 0
(_32 f +10
(M3); 0
L(N3); |

Loads on joints 2 and 3

(10.25)

FS2 =—(r*)" EZ and with r? from (10.17) and EZ from (10.25) we get
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Transformation to Global Coordinates

-10
-10

0
E—
0
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aAne|ad) € pue g swuiof uo speoj (p) pue (2) ‘(s91eulp400d [BD0] 03 dALE|DJ) 7 JqUBW UO suonde (q) pue (e)

(p)
wNY 0T = S(EL)

X

NY 0T = 5(§2)

‘(s@1eu1p4002 |eqo|3 01

S'0T 24n8y4
) (e)
wWNY 0T = S(ZL) WNY 0T = J(ZID)
X £
— S(¢
N 0T = 5(%2) % N OT = *(22)
£
Z
Z A
wg

@ £ oz !

WNY 0T = ()
£

[

N ot =7(§2)

IN



Transformation to Global Coordinates
Actions on Member 3: P=—40kN,a=3mandb=2m

_ Pb(L* +ab-a’)  (-40)x2(5*+3x2-3%)
(@) =———7 =- = — +14.08 kN

Pa(L’ +ab-b”)  (-40)x3(5* +3x2-2?)

(Za)=———7 =- = — +25.92kN
_ 2 —40)x 3 x 2
(M3); =+Pa? =+( ) > =-19.20kNm
L 5
_ Pa’b  (—40)x3%x2
(M) ===~ == 5 =+28.80KkNm
(X3 | - .
(%) .
—3
(%3 h | |11408
(T3
M3): | |-19.20
N3
F = %Jf = 8 (10.27)
(X3 )
(%) 0
@) +25.92
4 Jf
_ 0
3
(T‘; k| |12880
(Made| | o |
LN |

Loads on joints 3 and 4

FS3 =—(r ]TIEf3 and with r3 from (10.20) and E3 from (10.27) we get
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J— E———
08'8¢- 0 0 1 0 0 0 0 0 0 0 0 0 0
0 08'8¢+ 1- 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0
0 [ARTAS 0 0 0 0 T 0 0 0 0 0 0 0
(4 YAL 0 0 0 0 1- 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 T 0 0 0 0 0 0
— B
0Z'61+ 0 0 0 0 0 0 0 0 T 0 0 0 0
0 0Z'61- 0 0 0 0 0 0 1- 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 T 0 0 0
0 801+ 0 0 0 0 0 0 0 0 0 0 1 0
8011+ 0 0 0 0 0 0 0 0 0 0 I- 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 T
I I




383

Transformation to Global Coordinates

‘(s93eulp4000 |eqO|S
03 aAne|ad) ¢ pue ¢ sjulof uo speoj (p) pue (2) ‘(sa1euUlpJO0d |EJ0| O} DALR|DJ) € JOQWAW UO suonde (q) pue (e) 9°0T 24nSi4

(p) ()
X X
NX 26'SZ = S(J1) NY 80%T = S(£A)
h WN 0887 = S(EN) h WNY 0Z'6T = S(EN)
VA VA
(a) (e)
Z

N3 z6'sz = (¥z)

)
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B

X3 |

(Y5
(Z3)s
(T5)s
(M3)s
(N3)s
(X3)s
(Y2)s
(Z3)s
(T3)s
(M3)s

| (N3)s |

+19.20

+25.92
0
0
0
|-28.80 |

(10.28)

The load vector on the joints of the structure due to the applied
loads on the members is given by

Fy=F +F2+F

where F}, FZ, and F} are given in (10.24), (10.26), and (10.28),

respectively, thus
[+30.00]

0

0

0
+30.00

+30.00

-30.00

o

O O O O O O O o o o o o

o O O O © ©o o

o

-10.00
-10.00

+
[N

[
[=]

+
=

+
[N
O
[\S)

o

| —28.80 |

[+30.00]
0
0
0
+30.00

+30.00
-10.00

-10.00
-30.00

+14.08
-10.00
+10.00
+19.20

+25.92

| -28.80 |

(10.29)



Transformation to Global Coordinates | 385

The load vector due to loads directly applied at the nodes is zero
since there are no direct loads at the joints, thus

(10.30)

2"1'1
Il
O O ©O © O O © © O O ©O O O O O o o o o o o o o o

The load vector due to the reactions at the supports 1 and 4 is:
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~ ™ X
N o< X
SN N

~ X =
2 3
= R

z
Juy

(10.31)

O O O O O O © O o ©o o

where Ry;, Ryq, and Ry, are the reaction forces at support 1 and Ry,
Rum1, and Ry are the reaction moments at support 1. Similar reaction
forces and moments exist at support 4 and are given the subscript 4.
The total load vector for the whole structure is
F =Fs+ Fy + F¢, and from (10.29), (10.30), and (10.31) we get



X, | [+30.00]
Y, 0
Z, 0
T 0
M, | |+30.00
N, 0
X, | +30.00
Y, 0
Z, | |-10.00
T, | |-10.00
M, | |-30.00
R ECE T
X, 0
Y, | |+14.08
Zy | |-10.00
T, | |+10.00
M, 0
N; | |+19.20
X, 0
Y, | |+25.92
Z, 0
T, 0
M, 0
IN, | [-28.80]

7 ®m
2 = 2

+
o O O O O O O o o o o o

N <
ENEENERS

O O ©O ©O O O O © O O O O O O O o o o o o o o o o
—
~

77
=
=

4
=

Transformation to Global Coordinates

[+30.00+Ry, |
Ry
Ry
Ry
+30.00+Ry,;
Ry
+30.00
0
-10.00
-10.00
-30.00
0
0
+14.08
—-10.00
+10.00
0
+19.20
Ryy
+25.92+Ry,
Rz
Rry
Ry

| -28.80+Ry, |

(10.32)

At the fixed support 1: u; =0,v; =0, w; =0,d; =0,06; =0, and
¥, =0.So, deleterows 1, 2, 3, 4, 5, and 6.
At the fixed support 4:u,=0,v,=0,w,=0,d,=0,06, =0, and
¥, = 0. So, delete rows 19, 20, 21, 22, 23, and 24. Thus the resulting

load vector becomes:

[+30.00]
0
-10.00
-10.00
-30.00
0
0
+14.08
-10.00
+10.00

| +19.20 |

(10.33)
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Transformation to Global Coordinates

The solution of the above equations is:

u, =+ 0.005873 m, v, =+ 0.001807 m, w, = - 0.000026 m,
@, =-0.004243 rad, 6, = + 0.001275 rad, ¥, = + 0.002378 rad,
uz =+ 0.000004 m, v3 = + 0.001801 m, w3 =-0.017199 m,
®; =-0.004275 rad, 63 = - 0.005124 rad, W3 = - 0.000368 rad.

Forces Developed in the Members

The resultant forces (and moments) developed in the members
are given by F. =F, +F, where the forces developed due to the
displacements, ﬁd =k (§=r5) and 1_3f is the force vector due to

the applied loads on the member.

Member 1:
_ o, - 0 -
2 0
wy 0
LON 0
0, 0

81_ 611 _ \Ill _ 0
st |y, || +0.005873

v, | |+0.001807
w, | |-0.000026
@, | |-0.004243
0, | |+0.001275
¥, | |+0.002378]
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and with r! from (10.14)

|
ofof1j0j0|j0go0jo0joOj0fo0O]oO 0
0l1|]0|0|JO|JOfgO|OJOJO]O]O 0
-1{o0f0jo0jOo|jOgoO]JO]JOJO]|O]O 0
0l]0|O0O|JO|JO|1g0]OJOJO]O]O 0
oOojojofoj1jo0go0fjo0fojofoy|o 0
_1 0l]0|]0|-1]0|JO0OfgO|OJOJO]O]O 0
:r181: ——
ofofojojojogojoj1jo0fojo 0.005873
0l]0|j]O0O|JO|JO|JOgO|21|]OJO]O]O 0.001807
ofofojojojog-1yj0j010f§fo0jo -0.000026
0jojojojojogojojojojo|1 -0.004243
010|J0f0]JO0O]O 010(0]1]0 0.001275
0j]o0jO0O|JO]JO]JOgO|0O)O]-1]0]|O 0.002378
——
R
v
! 0
w
! 0
(I)l O
0, 0
=1 —
5o Oi | | Wi 0
Sl u, —0.000026
]
v, | |+0.001807
W, | |-0.005873
D, +0.002378
éz +0.001275
_ +0.004243
Y2 | - -

and with k! from (10.13)
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Transformation to Global Coordinates
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X | _ ool
S +16.
(Y1)

211 | 4574
(_11)0' +26.72
(Toda | | —0.07

(M1 | |-130.01
- [(Fﬁ)d} (N, | | +1053
Fd_

(§a] | (X3 | | -1601
T N i
(Zy) o
Tzl 1| +007
(_Zl)d -30.28
(M2)a | | 42391
| (N3)4 |

XD | _ .
(Y1)

1) 0
(_11f +30.00
(Tl )f 0

(M1 | |=30.00

_[@En ] @ 0
and from (10.23), Ff1=[( )f]= (N

(| | X 0
%) 3300
= +30.
(Z,)
| |0
(_Zl)f +30.00
(M) 0

(N3 |



Transformation to Global Coordinates

(T3); = 0.07 kNm

X1)r = 1601 kN (M), = 028 kNm
2)r — .

{ (Y}, =5.74kN
7 <

-

(N, = 23.91\1<Nm (Z3): = 328 kN

—t2 —
—
—
—
—

10 kKN/m [—
=" 6m
=
e
=
—
=
L i1

X
(TH), = 0.07 kNm y
&), = 1601 kN (M}), = 160.01 kNm
1)r — .
4 (YH), = 5.74kN
7 <
\ (Z}), = 56.72kN

+3.28

P=-16.01kN S = _574kN V= —56.72 kN

(compression) _
axial force in shear force in shear force in

the X direction the y direction the Z direction
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—0.28 kNm +23.91 kNm

! \

T = 4+0.07 kNm M = +160.01 kNm N = —10.53 kNm
(), (416017 [ 0 7 [+16.01]
S +16. +16.
;)
21) +5.74 0 +5.74
(_11 r +26.72 | |+30.00| | +56.72
(T ) ~0.07 0 ~0.07
(M1); ~130.01| [-30.00| [-160.01
- |ED| (D, _E L o| F1053 ] | 0 | | +1053
r = o1y || o1y | T d T T =
ED | | XD, -16.01 0 -16.01
- -26.72 | |+30.00 +3.28
(ZZ )r
o +0.07 0 +0.07
(_21 r -30.28 | [+30.00 -0.28
(M), 42391 | o | | 42391 |
| (N3, |

Note that the sign in the above diagrams is for the forces and
moments acting at a section at distance X from node i which is node
1 for member 1.
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Member 2:

u, | [+0.005873]
v, | |+0.001807
w, | |-0.000026
@, | |-0.004243
0, | |+0.001275
82:[85}: ¥, | |+0.002378

62| | uy | |+0.000004
vy | |+0.001801
wy | [-0.017199
@, | |-0.004275
0, | |-0.005124
W, | [-0.000368

And r? from (10.17)

[+0.001807 ]
-0.005873
—0.000026
+0.001275
+0.004243
+0.002378
+0.001801
—0.000004
-0.017199
—0.005124
+0.004275
| -0.000368 |
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and k? from (10.16)

+5.70 |
-3.28
+6.02
+0.28
-13.92
-0.07
-5.70
+3.28
—-6.02
-0.28
-10.16
| -13.06 |

2=k =

From (10.25)

+10

-10

+10

+10




Transformation to Global Coordinates

(N3), = 13.06 kNm

>

72 — -
(Z%), = 3.98kN (T2), = 028 kNm

(X%), = 5.70kN

_ (Y$), = 3.28KkN
(M%), = 0.16 kNm

<l

(X3), = 5.70 kN

_ (Y3), = 328 kN
(M3), = 23.92 kNm

+3.98 kN

P=—-570kN
(compression)

= +3.28 kN V=-16.02 kN

2l

—0.16 kNm

M = +23.92 kNm
~13.06 kNm

N = +007.kNm
v —8.12 kNm
T =—0.28 kNm
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(X2, |
(7).
(Z3),
(T3),
(M3),

F) | | (X3,
(),
(Z3),
(T3),
(M3),

| (N3), |

Member 3:

T2 N2
- =[(E L]z (N |2, 2

+5.70 |
-3.28
+6.02 | |+10.00
+0.28
-13.92| [-10.00
-0.07
570 |
+3.28
-6.02 | |+10.00
-0.28
-10.16 | |+10.00
-13.06] |
[+0.000004 |
+0.001801
-0.017199
-0.004275
-0.005124
-0.000368

0

[ +5.70 |
-3.28
+16.02
+0.28
-23.92
-0.07
-5.70
+3.28
+3.98
-0.28
-0.16

o O © © O

| -13.06
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and r3 from (10.20)

[+0.000004 |
-0.017199
-0.001801
-0.004275
-0.000368
+0.005124

0

oS © © © O

and k® from (10.19)

[ +3.29 |
-3.99
-19.82
-0.15
+32.26
-0.27
-3.29
+3.99
+19.82
+0.15
+66.85
| -19.66 |

=k =
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From (10.27)

(X3, |
(%),
(Z3),
(T5),
(M3),

| (N3),

(X3
(Y2),
(Z3),
(T3),
(M3),

L(N3), ]

[ +3.29 ]

+14.08

-19.20

+25.92

+28.80

-3.99
-19.82
-0.15
+32.26
-0.27
-3.29
+3.99
+19.82
+0.15
+66.85
—19.66 |

+25.92

+28.80

+3.29 |
-3.99
-5.74
-0.15
+13.06
-0.27
-3.29
+3.99
+45.74
+0.15
+95.65
—19.66 |
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y
A
y_ — y
(M3), = 13.06 kNm /—> x|/ (M3), = 95.65 kNm
@, =399 kn | (B)r =015 kNm 3m . 2m ., (V) =399kN g (T), = 0.15 kNm
o I T 1 )
(Z3); =574 kN x o3 = (Z]): = 4574 kN X
/ (X3), =329 kN
40 kN
5 (N, = 0.27 kNm 7 (N}, =19.66 kNm
+45.74 kN
V=+574kN
—
S = +3.99 kN
P =—-329 kN
(compression)
+95.65 kNm
+4.16 kNm N = +0.27 kNm
| | | —
T = +0.15 kN _
* m M = —13.06 kNm
—19.66 kNm

Problems

Analyse the rigidly connected space frames shown in Problems
P10.1 and P10.2 for the given data.

P10.1 All members of the frame have the same rectangular cross
section as shown in Fig. P10.1(b) with the dimensions
b =0.30 m and h = 0.54 m. The material of the frame has a
modulus of elasticity, E = 29 x 10° kN/m? and modulus of
rigidity, G = 12.6 x 106 kN/m?.
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550 kN (in the
z-direction)

VA —
3 A y
b g
h .(-»i
[

3m

350 kN (in the

(b) Dimensions and local axes

- x-direction)
2m
X
4
77777 T
(a) Frame and loading
Figure P10.1
Node X y z Member | Nodei | Nodej
1 0 0 0 1 1 2
2 4 0 0 2 2 3
3 4 3 2 3 2 4
4 4 0 -5

@5 =0 for all members

Answer:

A=0.162m? I; =3937x10°m*, I, =1215x10°m*,

J=3076x 106 m?,

u; =-0.000111 m, v, = +0.000166 m, w, = -0.000259 m,

@, =+0.000090 rad, 6, = -0.000439 rad, ¥, = -0.000069 rad.
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), [+130.00] o) | 6.84 ]
51 . 52 —0.
(le)r 201 (‘fg)f +4.03
(fll)r +299.36 (%Zz)r —-4.25
(Tik | | 087 (T2 | | —434
(MD), | |-311.17 (M3), | | +4.82
B o (m _| 341 Fo (lﬁg)r _| +9.09 ‘
(X%)r -130.00 (xg)r +6.84
(?Zl)r +2.01 (?BZ)r —4.03
=1 +250.65 =2 +4.25
(%i)r +0.87 (%i)r +4.34
(Tz)r +213.75 (T3)r +10.52
M) | | _a62 (M3): | | 45.44
|(N2), | |(N3), |
— [+243.31]
_ ,
(Yi)r +1.32
(%é)f +134.03
() | | 4053
(M3), | |-205.10
5 (N2, |_| +3.94
TR, || 24331
), ~1.32
_ +215.97
(%‘;)r ~0.53
(T‘;)r +234.97
(Made || 4268 |
(N3, |

P10.2 All members have the same cross section with the
properties:
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A=0.0155m? 1; =760.40x10°m*, I, =33.88x10 °m*,
J=1.78x 106 m?,
E=210x 10°kN/m? and G = 81 x 10°kN/m?.

30 kN (in the
z-direction)
_ @5 = +90°% ;= 0,
y 5 @5 =+90°
@5 =0,¢; =+90°, member 3
< = +90° =
# member 2 l
90 kN 4 z J
(in the 5m
§ ‘ x-direction) @
1 2
40 kN (in the
y-direction)
4
2 m | WJ—
1
z
@7 = 0,¢,=0, y
(pi =0
X
Global coordinates
member 1
Figure P10.2
Node X y z Member | Nodei | Nodej
1 0 0 0 1 1 2
2 4 0 0 2 2 3
3 4 6 0 3 3 4
4 4 6 -5

Member 1: ¢; =0, ¢; =0, ¢z =0
Member 2: ¢ =0, ¢, =+90°, @3 =+90°
Member 3: ¢, =+90°, @, =0, ¢ =+90°
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Answer:
u, = +0.000020 m, v, = +0.005627 m, w, = -0.003587 m,
@, =+0.001679 rad, 6, = +0.001064 rad, ¥, = -0.003275 rad,
u3 =+0.020854 m, v3 = +0.005583 m, w3 = -0.000048 m,
@5 =-0.001613 rad, 65 = +0.006234 rad, W5 = -0.003429 rad.

X | o 640" X2 | -
= -16. S +23.
Y1) (%),
o ~16.24 o ~1.32
_11 r +88.68 _22 " |-16.40
(Ty): ~0.06 (Ty): 012
M), | |-174.84 (M3), | |+3831
1 (ND), _| 2666 | = _ (N2), _| —0.06
TOlEY, | | H1e40 |7 | (k%) | |-2376]
()| | e 0
= +1. =2 -3.
(Z) (Z3)
Tzl "] | +0.06 ;2 "l | 012
(_Zl)r +0.12 (_32)r +0.10
(Mz) | | —3831 Mz} | | _7.87
ICHN IR TN
X3 | .
@), | |
o +3.60
3Jr _
= 23.76
Bl ] 4010
M3), | | +7.87
5 (N3), _| +012
3=l
&), | | -3132
(Y3 _233'6706
= +25.
(Z3)
T‘; ' -0.10
(_‘;)r +110.91
(Mo | | 417.87
[N,
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Chapter 11

Stability of Struts and Frames

One of the considerations in the design of framed structures is
to ensure that the structure is stable under the applied design
loads. It is also important to consider the effect of change in the
geometry of the structure as the loads are applied which results in
a modification of the stiffness of the structure. This is particularly
so when the deformation of the structure (or part of it) is large. For
example, consider the simple case of a column that is subjected to
an axial compressive force applied at an eccentricity at its top end.
The resulting bending moment is the product of the force times its
eccentricity relative to the centroidal axis of the column. This bending
moment is assumed constant along the whole length of the column
if it remains straight (or nearly so). But because the column deflects,
its axis is no longer vertical and the eccentricity will increase by the
amount of lateral deflection at the section considered. This is called
second order effect which can be significant when the deflection is
large. Obviously, when the deflection is small the second order effect
is neglected. Another situation where bending moments develop
even when the strut (or column) is axially loaded and that is due to
imperfections (out of straightness) in the manufacture of the column
which result in an unavoidable eccentricity.

The second order analysis is nonlinear due to the change in
geometry of the structure as the applied loads are increased and

Analysis of Structures by Matrix Methods

Fathi Al-Shawi
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for a member that is subjected to a compressive force its stiffness is
reduced as can be seen in the next section.

In this chapter, two aspects of stability are presented; the
first consideration is to determine the magnitude of the axial
compressive force required to produce buckling assuming an
ideal strut that is perfectly straight before applying the load. The
second consideration is to investigate the nonlinear behaviour of
a strut under progressively increasing load up to the stage when
deformations become excessively large and the strut approaches
instability.

11.1 Derivation of Strut Buckling Matrix

Consider the strut shown in Fig. 11.1 which is acted upon by shear
forces Z and Z and bending moments M and M at its ends. In
addition, the strut is subjected to axial compresswe forces, P, at
nodes i and j.

Summation of moments about node j

M, +M, +ZL-P( )=0
7 oMM P(®, - (11.1)
L L

Considerasectionatadistance X fromnodeiand the equilibrium
of the left part of the beam, and take moments about point O. The
bending moment M is given by:

M+M,; +Zx-P(w-w;)=0

Substitute for Zi from (11.1) to get

M, P(w,-w,)

- X+P(W-w,) (11.2)

M, +
L L

M=-M, +

The governing differential equation for the deflection of beams
as derived in appendix 2 is:

d*w

dx?

El = —M. Substitute for M from (11.2) to get
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20 _ | M +M. P(w -w _
B1S Y g, | S (%) X-P(W-w,)
dx L L
— —_ ARV = — —
Pw o PPy MM P -]
+piw = _ - _ X (11.3)
dx? P PL
p
here 2
W P El

The general solution to (11.3) is:

B B MM -P(w - )] (M, +P
w =C;sinBx +C,cospx — 5L X+ 5

w;)

(11.4)

Now apply the boundary conditions to find the constants C; and
C, as follows:

_ o M,
Atx=0, w=w,, givesC, :—?‘
_ o l\_/[icosBL + l\_/[j
Atx=L, w=w,;, leadstoC;=—s——
PsinfBL
Substitute C; and C, in (11.4) to get
_ (MjcosPL+M)) M, __ [Mi +M;-P(w, _"_"i)]_ (M, +Pw,)
W=——=——"-sinfXx - —=-cosPx— — X+ —
PsinfL P PL P
5= dw
dx

_ M.cosBL+M. M.
6=—wcosB§—LsinB§+ _
PsinfBL P

PsinfL PL




Derivation of Strut Buckling Matrix | 411

AtX=L, 0=0;
_ M.cosBL+ M, M. I:l\_/l +M. —P(w, —w, ]
Gj=—wcosBL—LSinBL+ S _( ] l)
PsinBL P PL

(11.6)

Solving the simultaneous equations (11.5) and (11.6) for l\_/[i and
M; we get:

— EI _ - .
M, = 2c0spL+ PLsinpL_2 [wiBZ (1 - cosBL) + eiB(BLcosBL - smBL)
+w B? (cospL—1) +§jB(sinBL—BL)] (11.7)
M = El [‘ B*(1-cospL)+6i(sinBL—BL)
i~ 2cosBL+PLsinpL—2 L o e

+V—VjB2 (COSBL_l) +6]'B(BLCOSBL—SinBL):| (11.8)

In order that the analysis of stability is simplified, the process of
calculations is linearized as explained below.
Equation (11.7) is written in an approximate form by using the
infinite series for sinBL and cospL, i.e.
3 5 7
(BL)” (BL)" _(BL)

sinBL=BL- 31 + T T

(BL)ZJBL);‘ @L)'s........__.__....

2! 4! 6!
Neglecting powers higher than six in the above two series and

substituting in (11.7) and simplifying to get:
2 2 2 )
_ 2 24 3 30 2 24 6 120
M, =
ﬁP1+mW]
12 180

The next step is to express the above equation in the form of a
polynomial by using Taylor-Maclaurin infinite series as:

cospL=1-

(11.7a)
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M, =a, +a,B+a,p% +a,p* +a,B* +..., where the constants a, a;,
ay,.... are found from (11.7a) as

a, =(M,) a, = a—l\_/[‘ a 1 821\_/[i a _1 a31\7[i
0 iJatf=0’ “1 aB atB:O' 2 21 aBZ atB:O; 3 31 aBS atB:O....

As an approximation, consider only the first three terms of the
above series. It is found that the first term gives the standard beam
elastic stiffness matrix coefficients, the second term vanishes, and
the third term represents the effect of the axial force, P. The above
equation is simplified and with the substitution of BZEI =P, equation
(11.7) becomes

_ Bl _ - -y < 1_ 2 - 1_ 1 -
M; =—|-6w, +4L0; + 6w, +2L0j |- P| ——w,; + —LO; + —w. ——L0;
: LZ( i j ‘) (10 715 10 ) 30 ])

Similarly, equation (11.8) can be written as:

v = B 6 4218 + 6. + 418 )Pl - LW - L8+ LW+ 18
M]. __(_6Wi +2L0;i +6wj +4L9]-)—P(—Ew- ——Loi+—w, +EL91)

12 ' 30 10 '’
(11.10)
Substitute (11.9) and (11.10) in (11.1) to get
= El/ __ - _ -\ =(6_ 1- 6_ 1-
Z :L_3(12wi —6L6; - 12w, —6L6j)—P(5—Lwi TR —1—09,-)
(11.11)

Also, the summation of the forces in the z direction is zero, i.e.
Z;+Z;=0, hence, Z;=-7; and from (11.11) we get

7 =Bl 10w +6L0; +12 +6L8: ) - P| -2 + i+ 2w + o
zj =L—3(—12wi +6L6; +12wj +6Lej)— P[—Ewi +E9i +EW1 +Eej)
(11.12)

Equations (11.9) to (11.12) are written in matrix form as:



[T 12E1  6EI  12EI
T T:
6EL  4El  6EI
I L ?
12E1  6El  12EI
B B
6EL  2EI  6EI
1? L 1?

ot ]
2EI
6EI

4El

Derivation of Strut Buckling Matrix

6 1 6 1]
5L 10 5L 10| 4 ._
1 2L 1 R
10 15 10 30| % | | M
6 1 6 1 [|w]| |Z
sLo100 5L 10 (g | |
1 L 1 2
10 30 10 15 ]
(11.13)

The above equation is of the general form kd=F and can be

written as:
(kg —kg)o=F (11.14)
where
12EI 6EI 12EI 6EI ]
R T AT
_6EL 4L GEL 2Bl
_ 2 2
kp=| L Lo L L (11.15)
12EI  6EI 12EI 6EI
R T I T
_6EL 2EL  GEL  4EI
12 L 12 L |
is the elastic stiffness matrix and
6 1 6 1]
5L 10 5L 10
12 1 L
= = 10 15 10 30| =—
k. =P =Pk 11.16
G 6 1 6 1 P ( )
5L 10 5L 10
1t 1 2
L 10 30 10 15 |

is called the geometric stiffness matrix.
It can be seen that the effect of the compressive force is a
reduction of the elastic stiffness matrix. When the force P is tensile

413
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the solution of the differential equation will be in terms of sinh L and
coshpL instead of sinf3L. and cosBL. However, with the approximation
used in the above derivation it is found that the sign of P is reversed
resulting in an increase in the elastic stiffness matrix.

The above relationships can alternatively be derived by a finite
element approach using the so-called interpolation polynomial
which defines the displacement along the element as explained in
Appendix 4.

For a member whose local axis does not lie along the global
x-axis, equation (11.14) is written relative to global coordinates as

(kg -ke)d=F (11.17a)

where & and F are the displacement and load vectors relative
to global coordinates with kg =r"kgr, k; =r'ker, and r is the
transformation matrix.

11.2 Stability of Struts

For the overall structure equation (11.17) is be written as:
(Kg-Kg)0=F (11.17b)

Foraperfectly straight strut subjected to onlya direct compressive
force the strut will remain straight as long as the force is less than a
critical value defined by the point where the strut buckles. Bending
of the strut will occur as a consequence of buckling and since there
are no lateral forces acting on the span of the strut then the load
vector, F =0 and (11.17b) becomes

(Kg - Ke)d=0 (11.18)

The above relation represents a set of simultaneous equations
whose trivial solution is & = 0. The condition for a nontrivial solution
of the displacement vector 9 is that the determinant of the matrix
(Kg - Kg) is zero and this will lead to the values of the axial force that
will cause buckling. Usually the smallest value is of most interest
while higher values may apply when intermediate restraints at
certain locations along the length of the strut are used.

This basically is an eigenvalue problem and the procedure for its
solution is explained in Chapter 1.
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Example 1:

Calculate the critical buckling load and draw the buckled shape of
the strut shown in Fig. 11.2 which is pinned at point A and fixed at
point B. The length (S) of the strutis 3.6 m, its second moment of area
in the plane of buckling I = 32 x 10°® m* and its modulus of elasticity
E = 27 x 10° kN/m? Assume that the strut is prevented against
buckling out of plane.

P »é @ @H@Mhp
A1 2 3 4

L=12m | L=12m | L=12m
I I
S$=3.6m
Figure 11.2

The strut is divided into three equal elements each of length
L=12m.

For a member whose local axis is coincident with the global
x-axis, the transformation matrix is the unit matrix and the stiffness
matrix relative to the global coordinates is equal to the stiffness
matrix relative to the local coordinates of the member. Thus, k =k
and the elastic and geometric matrices for each element are given by
(11.15) and (11.16), respectively.

6000 -3600 -6000 -3600
-3600 2880 3600 1440
-6000 3600 6000 3600
-3600 1440 3600 2880

kg =ki =kj =

1.00 -0.10 -1.00 -0.10
-0.10 0.16 0.10 -0.04
-1.00 0.10 1.00 0.10
-0.10 -0.04 0.10 0.16

ki =kZ =k2 =P

415
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From (11.18) we have k = kg -k, hence

6000-P -3600+0.1P -6000+P -3600+0.1P

K Z k2 =13 = -3600+0.1P 2880-0.16P 3600-0.1P 1440+0.04P
-6000+P 3600-0.1P 6000-P 3600-0.1P

-3600+0.1P 1440+0.04P 3600-0.1P 2880-0.16P

For the overall structure

61 82 83 84‘
1 1
Kj; kj; 0 0] 8,
1 1 2 2
K= kj; kj; +kj K;; 0 8,
2 2 3 3
0 kj; ki +kj K;; 83
3 3
0 0 k;i k; 84
Wy 61 Wy 62 W3 63 Wy 64
6000 | -3600 | -6000 | -3600
0 0 0 0
-P +0.1P +P +0.1P
-3600 | 2880 3600 1440
0 0 0 0
+0.1P | -0.16P § -0.1P +0.04P
-6000 | 3600 J 12000- 0 -6000 | -3600 0 0
+P -0.1P 2P +P +0.1P
-3600 | 1440 5760- § 3600 1440
0 0 0
) +0.1P | +0.04P 0.32P § -0.1P | +0.04P
- 0 0 -6000 3600 § 12000 0 -6000 | -3600
+P -0.1P -2P +P +0.1P
0 0 -3600 1440 0 5760 3600 1440
+0.1P +0.04P -0.32P § -0.1P | +0.04P
-6000 | 3600 6000 3600
0 0 0 0
+P -0.1P -P -0.1P
-3600 | 1440 3600 2880
0 0 0 0
+0.1P | +0.04P § -0.1P | -0.16P

W1

01

63

Wy

04
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Equation (11.18) is represented by the above matrix with the
right-hand side load vector F = 0. Apply the boundary conditions of
wy =0 (at the pinned end) and w, = 0 and 6, = 0 (at the fixed end) by
deleting rows and columns 1, 7, and 8 to get:
2880-0.16P 3600-0.10P 1440+0.04P 0 0 6,
3600—-0.10P 12000-2.00P 0 —-6000+1.00P —-3600+0.10P || w,
1440+ 0.04P 0 5760-0.32P 3600-0.10P  1440+0.04P || 6, |=
0 -6000+1.00P 3600-0.10P 12000-2.00P 0 ws
0 -3600+0.10P 1440+0.04P 0 5760—-0.32P || 0,
(11.19)
The trivial solution to the above set of simultaneous equations
is =0. A non-trivial solution is obtained if the determinant of the
above matrix is zero, i.e.
2880-0.16P 3600-0.10P 1440+0.04P 0 0
3600—-0.10P 12000-2.00P 0 —-6000+1.00P —-3600+0.10P,
1440+ 0.04P 0 5760—-0.32P 3600-0.10P 1440+0.04P |=0
0 -6000+1.00P 3600-0.10P 12000-2.00P 0
0 —-3600+0.10P 1440+0.04P 0 5760-0.32P
Table 11.1
P (kN) Det(K)/10%6
200 113.4
400 85.6
600 61.6
800 41.1
1000 23.7
1200 9.3
1400 -2.5
1600 -11.7

417
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120

Det(K) /1016
(=) -] ;
(=] (=] (=]

»
(=]

20

0 '] '] '] '] '] '] L ']
I 200 400 600 800 1000 1200 IMO 1800
-20

P (kN)

Figure 11.3 Determinant against applied axial force.

From Table 11.1 or from Fig. 11.3 the determinant changes sign
and it is equal to zero when the value of P lies between 1200 kN and
1400 kN. By linear interpolation the critical value of P is
9.3

————— |x200=1357.6 kN
9.3+2.5

The exact value of the lowest critical load for a pinned-fixed
strut is

P, =1200+(

_ mEl  m*x36x10°x24x107°
(0.75)* (0.7 x3.6)°

P =1342.8kN

The lowest critical load of 1357.6 kN is only 1.1% higher than the
exact value. The number of elements in this example is three and the
accuracy can be increased even further by increasing the number of
elements.

We are often mostly interested in the lowest critical load so the
above calculations will give the desired result.

Buckling Mode

For the buckling mode (shape) for the lowest critical load, substitute
P=1357.6kNin (11.19) to get:



(2880 3600 1440
3600 12000 0

1440 0 5760

0 —6000 3600

| 0 -3600 1440

[0.16 010 -0.04
0.10  2.00 0
-0.04 0 0.32
-1.00 0.10

i -0.10 —0.04

Stability of Struts

0 0
—6000 -3600
3600 1440 |-1357.6
12000 0
0 5760 |
0 o 1l[e,] [o0]
-1.0 -0.10 (| w,| |0
0.10 —0.04[( 6, |=|0
200 0 wy| |0
0 032]][65] [0]

Assume an arbitrary value for 0, = +1, delete row 1 and substitute
this value of 6, in the remaining four equations and rearrange the set
of simultaneous equations to get:

9284.8w, +00, —4642.4w; —3464.20; = -3464.2

Ow, +5325.60,, +3464.2w, +1494.30, = —1494.3

~4642.4w, +3464.20, +9284.8w, + 00, =0

—3464.2w, +1494.30, + 0w, +5325.60; =0
The solution to the above set of simultaneous equations is:
w, =-0.8732 m, 6, = +0.2399 rad, w3 =-0.5261 m, 63 = -0.6354 rad
And together with w; =0,0; =+1,w, =0, and 6, = 0 the complete
displacement vector is:

0
+1.0000
-0.8732
+0.2399
-0.5261
—-0.6354

0

0

and the buckled shape is shown in Fig. 11.4.
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T

Figure 11.4 Buckled shape of strut for the lowest critical load.

P e—

11.3 Nonlinear Analysis of Struts

In the previous chapters the analysis of structures was based on the
assumption that the relationship between loads and displacements
was linear. When the effect of axial forces developed in the members
of a structure is taken into account then the stiffness of the member
is modified because it is a function of the axial force as can be seen
in (11.14). This will lead to nonlinear behaviour since the stiffness
matrix is modified as the axial force is increased.

Example 2:

Consider the previous example with a point load of 30 kN in the z
direction applied at node 2 as shown in Fig. 11.5. An axial load in
the x direction is applied at node 1 which increases from P = 0 to P
= 1200 kN in steps of 200 kN. Determine the relation between the
deflection w, at node 2 and the load P.

30kN

Figure 11.5
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The load vector in this case is derived from the applied lateral
loads on the strut as:

M, ][0
Z, | |-30
F=|M, |=
Z3
_M3_ L 0 i

The general relation (11.17b) becomes as:

[2880-0.16P 3600-0.10P 1440+0.04P 0 0

3600-0.10P 12000-2.00P 0 -6000+1.00P -3600+0.10P

1440+0.04P 0 5760-0.32P 3600-0.10P  1440+0.04P
0 -6000+1.00P 3600-0.10P 12000-2.00P 0

L 0 -3600+0.10P 1440+0.04P 0 5760-0.32P

[0, 0

w, -30

6, |=| 0

w3 0

| 6; 0

The displacement vector for a particular value of P is obtained
from the solution of the above relation, for example let P =200 kN and
simplify to get the following set of linear simultaneous equations:

28486, +3580w, + 14486, + 0w, +00; =0
35800, +11600w, + 08, — 5800w, —35800, =30
14480, +0w, +56960, +3580w, +14480, =0
06, —5800w, +35806,, +11600w + 00, =0
00, —3580w,, + 14486, + 0w +56960, =0

The solution of the above set of simultaneous equations is:
0, =+0.0196 rad, w, =-0.0174 m, 6, = +0.0044 rad,

w3 = -0.0100 m, 85 = -0.0120 rad.

Similarly, the displacement vector is calculated for other values of
P and the results are shown in Table 11.2 and a plot of the deflection
atnode 2 is shown in Fig. 11.6.
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Table 11.2
Downward deflection
P (kN) atnode 2, -w, (m)
0 0.0148
200 0.0174
400 0.0210
600 0.0265
800 0.0360
1000 0.0563
1200 0.1291
1300 0.3666
1350 4.6183

1400 |

1200

1000

800

600

400

Axial force, P(kN)

200

0 A A A A A A A A
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 o0.16
Vertical downward deflection at node 2, —w, (m)

Figure 11.6 Axial compresssion against displacement.

For this case, the load is increased in steps and the displacements
are calculated for each new value of the axial load, P. It should be
noted that the rate of increase of displacements becomes larger as
the load is increased due to the progressive decrease of the stiffness
matrix. Instability is reached when the value of P is equal to the
critical load of the strut. At this stage the stiffness matrix becomes
singular and its determinant is equal to zero.
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It will be seen later in the chapter that this is not the case when
dealing with frames. The reason being that when increasing the
loading on the structure from F, (in the n* load level) to F,,; the
resulting displacements §,,1 are not consistent with the axial forces
developed in the members and the right-hand side of the equations
which is a function of these axial forces. Therefore, an iterative
approach is used for each load increment until convergence is
reached and once that is achieved, the load is increased to a new
level, i.e. F,,,, and so on as will be explained later.

11.4 Stability of Frames

If axial strains are considered as in the case of general analysis of
frames, then the axial stiffness of the member (EA/L) is incorporated
leading to the following relationship:

EA 0 0o -FA 0
L L
12El  6EI 12El  6EI
Foe e 2
o _SEl 4El . 6El  ZEI
LZ L LZ L
L L
0 1261 6El 12EI  GEI
B2 FT
o _SEl 2El . 6El  4El (11.20)
L 12 L 12 L |
0 o 0 0 0 0 1l
6 1 6 THrgT rx]
5. 10 5L 10 ||| - ik
W, 7.
1 2L 1 L= Zi
0 -— = 0o — =gl |m
5 10 15 10 309 |_|M
00 0 0 0 0 [|5]|X;
0 _i i 0 i i V_VJ Zj
5L 10 5L 10 ||l 5| [,
ENNN PO T
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or kd=F.

For members that do not lie along the global x-axis then matrix
transformation will be used to convert the member stiffness matrix
from local to global coordinates and the resulting overall structure
relationship is:

(Ke-Ke)d=F
where K is the structure elastic stiffness matrix and Kg is the
structure geometric stiffness matrix.

The above relationship is for the general second order analysis
and for buckling (instability) analysis where the members are

subjected to axial forces only then F = 0 and the resulting relationship
is:

(Ke-Kg)d=0.

The above relationship represents a set of homogeneous
equations leading to the trivial solution vector of & = 0.

For a non-trivial solution, the determinant of the matrix (K - Kg)
must be equal to zero which is essentially an eigenvalue problem.

Example 3:

A rigidly connected frame is subjected to two loads each
of magnitude Q and acting along the axis of the columns as
shown in Fig. 11.7. All members of the frame have the same

Q Q

777777 777777 -

Figure 11.7
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cross section with [ =0.0001 m* A=0.005m? and E=210 x 10°kN/
m2. Determine the lowest value of Q which will cause the frame to
buckle. Assume that buckling out of the plane is prevented.

From (11.20)

EA 0 o _EA 0
L L
o 12Bl  GEI 12EI  6EI
B2 EETET
o _GEl 4EL 6El  2El
Ko 12 L 17 L
_EA o EA 0 0
L L
0 12B1 GEl 12B1  GEI
IR B 12
6El  2EI 6El  4EI
0 = = - =
i ? L 12 L
0 0 0 0 0 0 7l
o & L ,_6 _1
5. 10 5L 10
o L 2L , 1 _L
5 10 15 10 30
0 0 0 0 0 0
6 1, 6 1
5L 10 5L, 10
1 L
o L L, L 2
. 10 30 10 15 ]|
Member 1:

The axial compressive force acting on member 1 is Q, thus P=Q

[T 175000 0 0 -175000 0 0

0 1167 —3500 0 -1167 -3500

o 0 —3500 14000 0 3500 7000
-175000 0 0 175000 0 0

0 -1167 3500 0 1167 3500

L o -3500 7000 0 3500 14000 |
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o0 0o o0 0 0 0]
0 02 -01 0 -02 -0.1
0 -01 08 0 01 -0.2
Qo 0 0 0 0o o
0 -02 01 0 02 01
0 01 -02 0 01 08|
[ 175000 0 0
0 1167-0.2Q -3500+0.1Q
Q= 0 -3500+0.1Q 14000-0.8Q
—-175000 0 0
0 -1167+0.2Q 3500-0.1Q
L 0 -3500+0.1Q 7000+0.2Q

Stability of Struts and Frames

~175000 0
0 ~1167+0.2Q
0 3500-0.1Q
175000 0
0 1167-0.2Q
0 3500-0.1Q

Xi=O,Xj=0,Xij=Xj—Xi=0—0=0,

Zi=0,ZJ'=6m,Zij=ZJ'—

z=6-0=6m,

L=x}+z2 =0? +62 =6m.

0
-3500+0.1Q
7000+0.2Q
0
3500-0.1Q
14000-0.8Q

From Chapter 5, (5.6), the transformation matrix for rigidly
connected plane frames is

[x;/L z;/L 0 0 0 0
-z; /L x;/L 0 0 0 0
0 0 1 0 0 0
0 0 0 x;/L z/L 0f
0 0 0 -z;/L x;/L 0
| 0 0 0 0 0 1]
[0 10 0 00
-1 00 0 00
a_[0 01 000
0 00 0 10
0 00 -100
(0 00 0 01
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k! = (r1 )T kil
[ 1167-02Q 0 3500-0.1Q -1167+0.2Q 0 3500-0.1Q]
0 175000 0 0 -175000 0
1l = 3500-0.1Q 0 14000-0.8Q -3500+0.1Q 0 7000+0.2Q
" -1167+0.2Q 0 -3500+0.1Q 1167-0.2Q 0 -3500+0.1Q
0 —-175000 0 0 175000 0
| 3500-0.1Q 0 7000+0.2Q -3500+0.1Q 0 14000-0.8Q |
Member 2:
Since the local X -axis of member 2 coincides with the global x-axis
then the transformation matrix r is equal to the unit matrix resulting
in k% =k°. Also, it is not subjected to an axial force, therefore, P=0,
thus
[ 175000 0 0 —175000 0 0
0 1167 —3500 0 -1167 -3500
K2 0 -3500 14000 0 3500 7000
| -175000 0 0 175000 0 0
0 -1167 3500 0 1167 3500
I 0 -3500 7000 0 3500 14000 |
Member 3:
(175000 0 0 —-175000 0 0 ]
0 1167-0.2Q -3500+0.1Q 0 -1167+0.2Q -3500+0.1Q
= 0 —-3500+0.1Q 14000-0.8Q 0 3500-0.1Q 7000+0.2Q
“|-175000 0 0 175000 0 0
0 -1167+0.2Q 3500-0.1Q 0 1167-0.2Q 3500-0.1Q
. 0 -3500+0.1Q 7000+0.2Q 0 3500-0.1Q 14000-0.8Q |
=6m,x;=6m,X;=X-%X=6-6=0,
z;=6m,z=0,7;=2-2=0-6=-6m

L= [x}+2} =0? +(-6) =6m
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k3=
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| Xy /L oz /L0 0 0
-z /L x;/L 0 0 0
0 0 1 0 0
r= )
0 0 0 x;/L z;/L 0
0 0 0 -z;/L x;/L 0
0 0 0 0 0 1
(0 -1 0 0 0 O]
1 0 00 0 O
, /10 010 0 0
r =
0 0 00 -10
0O 0 01 0 O
0 0 00 0 1}
K3 =)

[ 1167-0.2Q 0  -3500+0.1Q -1167+0.2Q 0 -3500+0.1Q]
0 175000 0 0 ~175000 0
-3500+0.1Q 0 14000-0.8Q 3500-0.1Q 0 7000+ 0.2Q
-1167+0.2Q 0 3500-0.1Q 1167-0.2Q 0  3500-0.1Q
0 -175000 0 0 175000 0
| -3500+0.1Q 0 7000+0.2Q 3500-0.1Q 0  14000-0.8Q |

Structure Stiffness Matrix
ki ki 0 0 5,
ki kjj + ki ki 0 5
2 2 3 3
0 kji kj]. +kj ki]. S
3 1
0 0 k;; k;; 3,
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The boundary conditions are for the fixed supports 1 and 4 so, 9,
=0 and §, = 0, therefore, delete rows 1 and 4 and columns 1 and 4.

%, 33
1,2 2
ki +kij; ki 5,
K=
2 2 1.3
kj; kj +kj; 3
—176167—0.2Q 0 -3500+0.1Q —175000 0
0 176167 -3500 0 -1167
-3500+0.1Q -3500 28000-0.8Q 0 3500
—175000 0 0 176167 -0.2Q 0
0 -1167 3500 0 176167
0 -3500 7000 -3500+0.1Q 3500

0
-3500
7000
~3500+0.1Q
3500
28000-0.8Q |

(11.21)

The values of the determinant of matrix K for different values of
Q are as shown in Table 11.3.

Table 11.3

Q (kN) Det(K)/10%6
1000 46.7
2000 30.6
3000 16.3
4000 3.8
5000 -7.1
6000 -16.5

By linear interpolation between Q = 4000 kN and Q = 5000 kN
in Table 11.3 or from Fig. 11.8 the value of Det(K) = 0 occurs at Q =
Qc, where Q¢ =4000 + [3.8/(3.8 + 7.1)]1000 = 4349 kN, which is the
smallest load that will cause instability of the frame.
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The exact value of the lowest critical load given by Timoshenko is
Qc = 0.75(w2EI/L?) = 0.75(m? x 210 x 10°x 0.0001/62) = 4318 kN,
and the difference between the calculated and the exact values is

only +0.72%.
50
40
30 f

20 f

Det (K)/1026

10 ¢

0

10t Q (kN)

20¢%

Figure 11.8 Valued of the determinant against load.

1000 2000 3000 4000 00 6000

7000

In order to determine the buckled shape (buckling mode) of
the frame for the lowest critical load, the value of Q; = 4349 kN is
substituted in the K matrix as given by equation (11.21) and applying

a zero load vector for the right-hand side to get:

[ 175297 0 -3065 -175000 0 0

0 176167 -3500 0 -1167 -3500
-3065 3500 24521 0 3500 7000
-175000 0 0 175297 0 —-3065
0 -1167 3500 0 176167 3500

. 0 -3500 7000 -3065 3500 24521 |

U
Wy
0,
Uz

W3

| 65

S ©O ©O © © ©

Assume an arbitrary value for u, = +1, delete row 1 and substitute
this value of u, in the remaining five equations, rearrange, and solve

the resulting set of simultaneous equations to get:

wy =+0.003872 m, 6, = +0.098096 rad, u; = +1.000021 m,

w3 =-0.003872 m, 63 = +0.098100 rad.
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With the boundary conditions u; = 0, w; =0, 6; =0, uy =0,
wy = 0, 6, = 0 together with u, = +1, the complete displacement
vector is:

+1.000000
+0.003872
+0.098096
+1.000021
—-0.003872
+0.098100

and the normalised displacement

vector is obtained by dividing by the largest coefficient 1.000021

to get

Uy

0

0

0
+0.999979
+0.003872
+0.098094
+1.000000
-0.003872
+0.098098

and the buckled shape is shown in

Fig. 11.9, which is a sway type of buckling.
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Figure 11.9 Buckled shape of portal frame.

11.5 Nonlinear Analysis of Frames

It was discussed earlier that changes to the geometry of a beam
column lead to a nonlinear behaviour and magnified actions on the
structure the so called second order effects. This principle applies
to frames where some or all the members carry compressive forces
resulting from the application of loads to the frame.

Consider the frame in the previous example but with applied
loading as shown in Fig. 11.10.

W=1500y kN

2 3
- @
e
—
n=30y kN/m 6
m (O ® m
—
e
e f 4
777777 77777 —
3m | 3m
I

Figure 11.10 Portal frame and loading.
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Calculation of End Moments

The fixed end moment for a beam carrying a uniformly distributed
load, n per unit length, and subjected to an axial force, P as shown in
Fig. 11.11 are given by:

n/ unit length

(M;)s
(tHHHHHft)«p

(Zi)s (Z))s
L. L N
[ [
Figure 11.11
_ 3(tano—0) [nI?  — 3(tano— o) [nl?
(M) =+ =5 —— o () =—| = [
o“tano 12 o “tano 12

(zi)f =_n7L, (zj)f =-

T°El

where ao=—./p, p= Pﬂ' and the Euler load, P; =
E

When there is no axial load, i.e. P = 0, « will be equal to zero.

o 3(tana—ar) _
The limit of | —————| as o approaches 0, is equal to 1.0
hence o“tano
— nl? — nl?
M. =+, . =
( 1)f 12 ( ])f 12

The fixed end moment for a beam carrying a concentrated
load, W at mid-span, and subjected to an axial force, P as shown in
Fig. 11.12 are given by:

2(1-cosa) |[WL - 2(1-cosa) |WL
— | M= — |5
osino osino 8

(M; ) =+|: 3

(zi)f =—¥' (zj)f =—w
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_ w —
(Mj)¢ 1 (Mj)¢
P (1 . . 1 ) -7
1 )
(Z)s s
l L/2 I L/2 |
I I I
Figure 11.12
o 2(1—cosoc) .
The limit of | —— | as o approaches 0, is equal to 1.0
hence asino
— WL — WL
(M; ) =tg (M) =~73

The moments and forces acting on the joints are in the opposite
direction to the above moments.

Calculation of Axial Forces

The axial force in any member of the frame is found in the same way
as in Chapter 2 as shown below.

Z, 7
a
_ i ) -
X i (il Q== ) —> X —> XX
U; | u; |

Figure 11.13 Bar element subjected to axial forces.
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__[EA EA
x1 17 ~71 G
S| L Lz (11.13)
X;| |_EA EA |y

L L

For a member that does not lie along the global x-axis,
transformation is used as was followed in Chapter 3.

Start the incremental load process with y = 0 and this means
that all the displacements and the axial forces are equal to zero.
Then increase y from 0 to 1.0 and use the current values of the axial
forces (i.e. zero) to determine new values for the displacements and
calculate the new values of the axial forces from (11.22) as

P =X :%(ﬁi =) (11.22a)

Notice that if f’l is positive the member is in compression.

Use these values of axial forces to calculate new values for the
displacements which will in turn be used to calculate new values
for the axial forces from the above equation. This iteration is carried
out until the difference between the values of displacements from
two successive iterations is within prescribed limits. At this cycle of
iteration there will be consistency between the axial forces and the
displacements used in their calculation for that value of . This will
end the iteration for y=1.0.

Now increase the load by setting ¥ = 2.0 and use the current
axial forces, i.e. the last values from previous iteration and start
the iteration until consistency is reached between axial forces and
displacements and this will end the iteration for this load increment.

At the end of iteration for each value of vy,,; test if for this
load factor the structure has become unstable by calculating the
determinant of the structure matrix K. If the determinant of the
matrix is positive then the structure is stable and the process of
increasing the load is continued. If the determinant is negative (i.e.
singularity has been passed) then the value of yis reduced to a value
between v,,1 and v, and the iteration process is continued.

Denote the axial forces in members 1, 2, and 3 by P!, P?, and P3,
respectively and these are obtained from (11.22a). Then the stiffness
matrices for the three members are:
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n’El 1® x210x10° x0.0001

=5757 kN
2 6°

Pr=P:=P =P, =

Pl
o =§1/p1 =g /P— =0.0207\P', o, =0.0207vP?, and o3 =0.0207v/P>.
E

Calculation of the load vector

Only joints 2 and 3 are considered since the reduced stiffness matrix
includes displacements at these joints only.
Contribution of loads on member 1 to joint 2

3(t - ?
(xiy, ="k, (Z%) _o, (M;) . (arzloc1 o) | ynL
2 s s ojtana, 12

Contribution of loads on member 2 to joint 2

W _2(1—cosa ]_'yWL
X2), =0, (22), =+, (M2) =- 2
(X2); (Z2); 2 ( 2) o,sina, | 8

Contribution of loads on member 2 to joint 3

_2(1 —cos0.,) | YWL
o,sina, | 8

(X2), =0, (22), =+%, (M3) =+

There are no loads on member 3 and hence no contribution from
this member to joint 3.
The resultant load vector for the whole frame is

_ynlL
2
o - W
X, L
Z .| 3(tano, —0,) ynl? | 2(1-cosa,) |YWL
F{Fﬂ: Mool oftana, |12 | ogsina, | 8
B X 0
Zg W
;. i
N 2(1-cosa,) |YWL
oL,sinol, 8

(11.24)
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where n =-30 kN/m and W = -1500 kN.

For the first load factor increment, let y = 1.

Start by setting the axial forces in the members equal to zero, i.e.
P1=0,P%=0,and P? =0, thus, o, = 0, 0, = 0, and ¢i3 = 0. The load
vector is calculated from (11.24) as:

[ +90 |
-750
+1035 _ _ _
F= 0 , the stiffness matrix K from (11.23) and with P1 =0,
-750
| —1125]]
P? =0, and P3 = 0, the relationship K8 =F becomes
[ 176167 0 —-3500 -175000 0 0 Ju,] [ +90 ]
0 176167 -3500 0 -1167 -3500 || w, -750
-3500 -3500 28000 0 3500 7000 || 6, B +1035
—-175000 0 0 176167 0 —3500 || us B 0
0 -1167 3500 0 176167 3500 || w, -750
0 -3500 7000  —3500 3500 28000 | 6 | |-1125]

The resulting displacement vector is

u, | [+0.050338]
w, | |-0.004139
0, | [+0.055248
uz | |+0.049055
ws | |-0.004432
0; | |-0.047822]

These displacements are used to calculate the axial forces in the
members from (11.13) as:

EA  EA

)__(i:]_. Lﬁi
X;| |_EA EA |y

L L
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EA _ _
Member 1: R = 175000 kN/m, u; = wy = 0, and u; = w;
=-0.004139 m.

)_(1 B 175000 -175000 0 | +724.3
X, | [~175000 175000 ||-0.004139] |-724.3]
i.e. member 1 is in compression with a force of P1 = +724.3 kN.

EA _ _
Member 2: T =175000 kN/m, u; =u, = +0.050338 m, and u; =
u3 = +0.049055 m.

{)‘(2}_[175000 —175000}?0.050338}_{+224.5}
Xs ‘

~175000 175000 || +0.049055 | |-224.5

i.e. member 2 is in compression with a force of P? = +224.5 kN.

Member 3: % =175000 kN/m, u; =-w3 =-(-004432) m, and u;
=Wy = 0.

X; | [ 175000 -1750001[+0.004432] [+775.6
X, | |-175000 175000 0 |-775.6]

i.e. member 3 is in compression with a force of P3 = +775.6 kN.

The above calculations complete the first cycle of iteration and
it is seen that the values of the axial forces at the end of this cycle
are different from those assumed at the beginning of the cycle. This
means that the displacements are not consistent with the forces and
the newly found axial forces are used in the second cycle of iteration.

Calculate new K from (11.23) with the substitution of P1 = +724.3
kN, P2 = +224.5 kN, and P3 = +775.6 kN to get:

176022 0 —-3428 —-175000 0 0 |

0 176122 -3478 0 -1122 -3478

| 3428 3478 27241 0 3478 7045
k= -175000 0 0 176011 0 -3422
0 -1122 3478 0 176122 3478

0 -3478 7045  -3422 3478 27200 |
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o, =0.0207+/P! =0.02074724.3 = 0.5571

o, =0.0207y/P? =0.02074224.5 = 0.3102
The load vector from (11.24) is

+90
=750
+1042.2
F=
0
-750
| —1134.1
Kd = F becomes
[ 176022 0 —-3428 -175000 0 0 fu,] [ +90 ]
0 176122 -3478 0 1122 3478 | w, ~750
3428  —3478 27241 0 3478 7045 || 8, | |+1042.2
-175000 0 0 176011 0 3422||us || 0
0 -1122 3478 0 176122 3478 | wy -750
|0 —3478 7045  -3422 3478 27200 6; | |-1134.1]

The resulting displacement vector is

u, | [+0.060770]
w, | |-0.004102
0, | |+0.058721
u; | |+0.059460
ws | |-0.004469
0; | |-0.049376 |

From the above displacements a new set of axial forces in the
members is calculated as: P! = +717.9 kN, P2 = +229.3 kN, and

P3 = +782.1 kN and these values are substituted in (11.23) to give a
new stiffness matrix
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176023 0 —3428 —175000
0 176121 -3477 0
| 3428 3477 27242 0
k= —~175000 0 0 176011
0 -1121 3477 0
0 3477 7046 3422

0

-1121

3477
0

176121

3477

0
~3477
7046
-3422
3477
27191 |

o, =0.02074/717.9 =0.5546, o, =0.0207+/229.3 =0.3135 and
hence the load vector from (11.24) is

+90
-750
+1042.4
F=
0
-750
| —1134.3 |
[ 176023 0 -3428 -175000 0
0 176121 -3477 0 -1121
-3428 -3477 27242 0 3477
—175000 0 0 176011 0
0 —-1121 3477 0 176121
0 —-3477 7046 —3422 3477
The solution of the above set is
[u, ] [+0.060784 |
w, —0.004103
6, | |+0.058738
u; | |+0.059475
Wy —0.004469
| 6; | |—0.049405 |

0
-3477
7046
—3422
3477

27191

u, +90
w, -750
0, | |+1042.4
u; | 0

W3 -750
03 | |-1134.3]

Since the difference between the displacements from two
successive cycles (two and three in this case) is very small, the
iteration for this load factor increment is stopped. Now increase
the load factor y to 2.0 and use the current values of P!, P2, and P3.
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The iteration is carried out as explained above to give the successive
displacement vectors and the axial forces in the members as follows:

The current values of P = +717.9 kN, P2 = +229.3 kN, P3 = +782.1
kN, o4 = 0.5546 and o, = 0.3135, and with y = 2.0 the load vector

from (11.24) is

176023 0

0 176121
—-3428 3477
—-175000 0

0 -1121

0 —3477

[ +180 ]
-1500
p_| 20848
0
-1500
| —2268.6 |
—3428 -175000 0
—3477 0 -1121
27242 0 3477
0 176011 0
3477 0 176121
7046 —3422 3477
(v, ] [+0.121629]
w, | |-0.008205
0, +0.117483
u, | [+0.119010
wy | |-0.008938
| 65 | |—0.098805 |

0
—-3477
7046
—3422
3477
27191

u, +180
w, -1500
0, +2084.8
Uz N 0
W —1500
03 —2268.6

From the above displacements calculate P! = +1435.9 kN, P2 =
+458.3 kN, P3 = +1564.2 kN, o; = 0.5546 and o, = 0.3135 and these

will lead to

[ 175880 0
0 176075
-3356  —3454

-175000 0
0 -1075
0 —3454

-3356 —-175000 0

—3454 0 -1075

26485 0 3454
0 175854 0

3454 0

7092 3344 3454

176075 3454
26382 |

0
—3454
7092
-3344

u, | [ +180 ]
w, -1500

6, | |+2099.7
u; - 0

W -1500

0, | |-2287.6]
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u, | [+0.153762]
w, | [—0.008090
0, | |+0.126020
u; | [+0.151089
ws | | -0.009053
6; | |-0.101310

Leading to P! = +1415.8 kN, P2 = +467.8 kN, P3 = +1584.3 kN, o
=0.7789 and o, = 0.4477 and these will lead to

u, | [+0.153860]
w, | |-0.008091
0, | |+0.126084
u; | |+0.151189
ws | | -0.009052
0; | |—0.101456 |

From the above displacements we get P! = +1415.8 kN, P? =
+467.8 kN, and P3 = +1584.1 kN.

Cycle: 1 2 3
2.0 mm m e e e -

)
n

y=1.0 u3=0.0595 0.119 | 0.1511 0.1512

Figure 11.14 Cycles of iteration for convergence within one load increment
from y=1to y=2 (not to scale).

The difference between the last two cycles of iteration is small
hence it can be assumed that convergence to the correct result is
reached as shown in Fig. 11.14 and the iteration is stopped and a
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new load factor increment is applied, i.e. with y = 3 and so on. The
variation of uz with the load factor yis shown in Fig. 11.15.

Horizontal deflection
atnode 3, u; (m)

0
0.0595
0.1512
0.3110
0.6606
1.9930

G| W IN|R O] <

Linear Non-linear

e

Load factor, y
w

0.0 0.5 1.0 1.5 2.0 2.5
Horizontal displacement at node 3, u; (m)

Figure 11.15 Load factor against displacement of frame.

Problems

P11.1 Find the smallest critical load that will cause the strut
shown in Fig. P11.1 using the following data:

E =9 x 10°kN/m? I; = 0.000019 m*, I, = 0.000042 m*, and
I3=0.000098 m*.
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'O

P e— — D
L=07m| L=11m , L=14m
I [
S=32m
Figure P11.1
Answer:

w, | [+1.000]
0, +0.642
. o w, +0.582
P=149.54kN and the buckling mode is given by: =
0, +0.509
Wy +0.162
| 05 | [+0.224 ]

P11.2 Find the smallest critical load that will cause the strut
shown in Fig. P11.2 given that E = 210 x 10° kN/m? and
1=0.000006 m*.

—p QL O, O

Figure P11.2
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Answer:
w, +1.000
. o 0, —-0.398
P=627.56 kN and the bucklingmode is given by: =
Wy +1.000
64 +0.398

P11.3 Repeat Problem P11.2 and plot w3 against P for the loading
shown in Fig. 11.3.

15 kN
O, @ 1 3 s
1 2 3 4
L=3m l L=3m | L=3m
[ I
S=9m |
Figure P11.3
Answer:

P (kN) w3 (m)

0 -0.032

100 -0.037

200 -0.045

300 -0.057

400 -0.080

500 -0.136

600 -0.599

P11.4 Calculate the value of the load Q that will cause instability of
the frame shown in Fig. 11.4 for the following data:
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E = 29 x 106 kN/m?, A; = 0.03 m? I, = 0.00012 m*
A,=0.09m? I,=0.00088 m*,
A;=0.02m? and I3=0.00006 m*

Q

Y ©)

Figure P11.4

Answer:

Q =2498.47 kN and the buckling mode is given by:

u, | [+1.000000]
w, | |+0.001284
8, | |+0.002381
uz | |+0.999412
ws | |-0.001284
0; | [+0.029046

P11.5 Repeat Problem P11.4 and plot y against u, for the loading
shown in Fig. 11.5.
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75y kN/m

— J77777

G)fa— 107N 1

Answer:

Figure P11.5

u;, (m)

-0.014763

-0.038294

-0.081615

-0.186428

(5 IO N OCIN [ XU I Y

-0.678656
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Chapter 12

Vibration of Beams and Frames

The preceding chapters dealt with the behaviour of structures
when subjected to static loads. However, there are instances when
the forces acting on the structure are dynamic which means that
they are time varying. Examples of dynamic loading on structures
include earthquakes, wind, human induced excitation, and dynamic
disturbances from machinery. In such circumstances the response
of the structure, i.e. its displacements and the developed internal
actions in the members of the structure (shear forces, bending
moments, etc.) will also be time varying. In order to assess the effect
of dynamic loading on a structure, the free undamped vibration
characteristics of the structure have to be determined first and this
forms the main part of this chapter.

To illustrate the basic principles the case of free undamped
vibration of a simple system with a single degree of freedom
is considered first. The same principles are then applied in the
treatment of vibration of structures with multi-degrees of freedom.

12.1 Systems with a Single Degree of Freedom

12.1.1 Free Undamped Vibration

Consider the single degree of freedom of spring/mass system shown
in Fig. 12.1 which shows a horizontal spring of stiffness k with its

Analysis of Structures by Matrix Methods

Fathi Al-Shawi

Copyright © 2023 Jenny Stanford Publishing Pte. Ltd.
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left end connected to a fixed support and has a mass m attached to
its right end and can move on a smooth horizontal plane. The initial
condition, i.e. at time t = 0 the system is disturbed by giving the
mass a displacement u, and velocity u,. In the absence of damping
or an external force, i.e. natural vibration, the mass will oscillate
freely indefinitely about the centre of vibration with a maximum
displacement called the amplitude.

position of static equilibrium of mass, amplitude
m (centre of vibration) \ 'l
u position after time, t

spring with stiffness k

\ [r— : LR : pr—
et m| fiet= i smooth surface
fixed suppor fs<—E— :
TP X

Figure 12.1 Mass with a horizontal spring.

This is a single degree of freedom system since there is only one
translational displacement, u, along the x-axis.

At any instant in time t after the commencement of motion the
displacement of the mass from the centre of vibration, defined by
the position of static equilibrium, is u.

The inertia force = mass x acceleration, f; = mi which acts in the
opposite direction of the acceleration and 1 is the second derivative
of displacement with respect to time, thus

2
f = md—lz1
dt

The tension developed in the spring is f; = ku where k is the
stiffness of the spring.

For dynamic equilibrium, the summation of the forces is zero, i.e.

—f-f,=0
2
—mj—‘;—ku:o (12.1)
t
2
d—‘;mzu:o (12.2)

dt
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where 0):\/E and is called the circular frequency of natural
vibration.

The general solution of the above differential equation for the
displacement is:

u = Asinwt + Bcosmt (12.3a)
where A and B are constants determined from the initial conditions.
The velocity is the first derivative of the displacement with
respect to time, i.e.
. du .
u= I = WAcosmt —wBsinwt (12.3b)
Attime t = 0, the initial displacement u = u, and the initial velocity
u=u,
From equation (12.3a), u, = Asin0 + Bcos0, thus B=u,
u
From equation (12.3b), u, = ®Acos0— ®Bsin0,so A = —°
0

Substitute A and B in equation (12.3a) to get

u, .
u=—sinwt +u,cosmt
®
The above equation can be written as
u = Rsin(wt +n) (12.4)

where

-2
/ u

R= ui +—‘; is the maximum displacement called the amplitude
)

andn=tan1( - o J
u, /o

0

Equation (12.4) represents what is called simple harmonic
motion since sine or cosine waves are called harmonic functions.

As an example let m = 2 kg, k = 450 N/m, u, = 0.04 m, and
u, =0.75m/s.

-2 2
o= 5= 20 _i5radss, R= 2+ 22 = 0.042 + 27 _0.064m
m 2 o’ 15?
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n=tan! ‘u° =tan ' _004 =39°=0.68rad
0, /o 0.75/15

o

Substituting the above values in (12.4) to get
u = 0.064sin(15t + 0.68) (12.4a)

Figure 12.2 shows a plot of the above equation.
The period of vibration is defined as the time taken for one
complete cycle
_2rn_2m

=—=042s
o 15

The frequency of vibration is the number of cycles per second

1 o 15
T 2m 2 2.4 cycles/s
If the spring is in the vertical direction the vibration of the mass
will essentially be the same as that for the horizontal spring except
that the centre of vibration will be the position of static equilibrium

defined by an extension of Ay, of the spring, where Ay, = mg/k.

12.1.2 Free Damped Vibration

Consider the single degree of freedom consisting of mass m, spring
of stiffness k, and viscous damper with a damping coefficient c as
shown in Fig. 12.3.

position of static equilibrium . )
position after time, t

N

Z //é
w"h

—
a°

LLL

|

damper

Figure 12.3 Mass with a horizontal spring and damper.
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For dynamic equilibrium, the summation of the forces is zero, i.e.
—fi-fy-fs=0
where fy is the force of resistance of the damper which is proportional
to the velocity u of the piston inside the damper cylinder. Thus,
fy=cu where c is the damping coefficient. The equation of
equilibrium becomes

2
u . . .
—m—-—cu— ku=0 which can be written as

dt
d%u du
—+200—+ 0 u=0 12.5
e e it (12.5)
c .. . /k
where {=—(is the damping factor), ®=,|—
c m

C
and c. = 2m (called the critical damping coefficient).

There are three possible cases of vibration depending on the
value of the damping factor as follows:

Case one: when { < 1 the vibration is under-damped and the
solution of differential equation (12.5) is

u=e """ (Asinwyt + Bcoswyt) (12.6a)

where 0, =m\1-C%.

Notice that for the case of no damping, i.e. { = 0 the above
equation is reduced to (12.3a).

Case two: when = 1, the vibration is critically damped and the
motion will die out in the shortest time with the solution of (12.5) as

u=e (A +Bt). (12.6b)
Case three: when { > 1, the vibration is over-damped and the
solution is

u=e " (Ae®" +Be ") (12.60)

where o, = 0\/(*—1.

As an example, consider a system consisting of a mass of 4 kg and a
spring of stiffness 3600 N/m with an initial displacement u, = 0.05 m
and initial velocity u, =0. Plot the equations of motion for the
following cases of damping
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() c=0, (ii) c = 48 Ns/m, (iii) c =240 Ns/m, (iv) c =360 Ns/m.

u=0.05cos30t )]

u = e %%(0.01sin29.39t + 0.05c0529.39t) (i)
u =e3%(0.05 + 0.50t) (iii)

u = e *%(0.05854e*3354 ~ 0.00854e33-54t) (iv)

It can be seen from Fig. 12.4 that when there is no damping
(Eq. (i)) the vibration continues indefinitely with constant amplitude
while for 0.20 damping factor (under-damped) the vibration decays
with decreasing amplitude until it dies out after about 0.8 seconds as
shown by Eq. (ii). For the case of critical damping the vibration dies
out without oscillations and in the shortest time which is about 0.3
seconds as indicated by Eq. (iii). When over-damping is applied as
shown by Eq. (iv) the time taken for the vibration to die out is longer
than that of the critically damped case and is about 0.5 seconds.

12.1.3 Forced Vibration Due to Harmonic Force
Excitation

In practice it is often required to investigate the behaviour of a
system when subjected to an external action that acts for a certain
length of time or indefinitely and hence the name forced vibration.
Let us consider first the case of a single degree of freedom system
subjected to a harmonic exciting force p, sinQt as shown in
Fig. 12.5. This will be used later as the bases for the treatment of
multi-degrees of freedom systems.

position of static equilibrium . )
position after time, t

4

'l

P = posin{lt

Ze //é/

LLL,

—
&n

!

Figure 12.5 Forced vibration.
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From dynamic equilibrium, -f; -f; -f; + p, sinQt = 0 and the
differential equation is

2
— d__Cd_u_ ku+p,sinQt=0, or
dt* dt
d’u du P

— +2E0— + m*u = ~2sinQt.
dt m
The solution of the above differential equation is
u=uc+u,
where u, is the complementary function = e *(Asinwgt + Bcoswgt)

Po [(1 —p? )sith —2EBcosQt]

mo’[(1- B )2 +(28B)°]

and u, is the particular integral =

therefore

>

u=e """ (Asinm,t +Bcosmyt) + 2 sin(Qt—¢),

\/[(1 B) +(22B)"]

where the frequency ration P=

~——
[\S]

sl:o

he equivalent static

displacement A, :p?": poz , and the phase angle ¢ is given by

me

2EB
-’

The constants A and B are determined from the initial conditions.

The first part of the solution which is given by the complementary
function uc will die out after a relatively short time being an
exponential decay function. The second part represents the steady
state response of the system due to the exciting force and has an
amplitude, i.e. maximum displacement given by

tang =

™ ey e

The dynamic amplification factor D is defined as the ratio of the
maximum displacement u,,,, to the equivalent static displacement
A,, thus
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Uy 1
D= A = — -
° \/[(1—3 J +(2eB)'

A plot of the above equation is shown in Fig. 12.6.

12.1.4 Forced Vibration Due to Base Motion Excitation

Consider the system of mass and spring shown in Fig. 12.7 excited
by the motion of the support A. Let the displacement of the support
after time t is ug. The mass m moves by a distance uy relative to B
which is the new position of the support after time t. Therefore, the
absolute displacement of the mass m relative to the original position
A is u = ug + up. Assume that the support motion is harmonic, i.e. ug
= Usinot, where U and ¢ are the amplitude and circular frequency of
the support motion, respectively.

position (B) of support after time, t position after time, t

Ii’| k uR|/

P Al

Ze ///é
|
on

e
&n

Lt

%

/ B

initial position (A) of support

Figure 12.7 Base motion.

The inertia force acting on the mass is, f; = ma where a is the
absolute acceleration of m which is based on the total displacement,
i.e.

d*u  d?*(ug +u d*u, d%u . d%u
—= (U 5 R)_ 2 +—=~ = —Uo’sinot + —=X
dt dt dt dt dt

The spring force is based on the extension of the spring relative
to the new position of the support at B, thus f; = kuy and also the
damping force f; =cug.
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For dynamic equilibrium, the summation of the forces is zero, i.e.
-f; -f4 -f; =0

d d
—m| ~Us?sinct + —=R |- ¢ =R _jy, =0
de? dt

2
dug

dt?

+ Zéwdﬂ +o’uy =Uc’sinct, where ” = LY
dt m

It can be seen that the above differential equation is similar to
that of forced vibration, therefore, the rest of the analysis will follow
in a similar manner. This procedure can be adopted for the analysis of
multi-degrees of freedom such as the case of multi-storey buildings
subjected to base motion excitation resulting from earthquakes. In
this case the base motion is random and the treatment becomes
more complex which is outside the scope of this book, but the above
presentation gives the reader an introduction and a flavour of the
subject matter.

12.2 Systems with Multi-degrees of Freedom

In the following sections of this chapter, damping is not considered
and for damped systems the reader can refer to specialised textbooks
on the subject of vibration of structures.

In using matrix methods for the vibration of structures where
there are many degrees of freedom an alternative form of the
governing equation may make the analysis more practical as shown
below.

Equation 12.4, the displacement is given by

2

d“u
u= Rsin((ot + n), hence the second derivative d_z is
t

ii=-0’Rsin(ot +¢)=-0"u
and this is substituted in equation 12.1 to give: -®*’mu + ku = 0, or
(k-?m)u =0 (12.5)

The above equation is for a system with a single degree of
freedom and for a structure with multi-degrees of freedom it will
take the following form:



Mass Matrix

(K- @?M)5=0 (12.6)

where K is the overall structure stiffness matrix as calculated in the
previous chapters, M is the mass matrix of the structure, and & is the
column vector of the displacements at the nodes of the structure.

The first term in (12.6) represents the stiffness force, Fqifess =
K9, the second term is the inertia force, Fi,epia = ®*M3 and o is the
natural circular frequency of vibration of the structure. Equation
(12.6) is a form of eigenvalue problem and its solution gives as many
values for w? as the number of degrees of freedom of the structure.
For each eigenvalue there is an associated eigenvector 6 called mode
shape, which represents the relative amplitude of displacements at
the various points in the structure.

The trivial solution of equation (12.6) is & = 0, but the structure
is vibrating which means that the displacement vector 3 is not zero.
The condition for & to have a non-zero value is that the determinant
of the quantity inside the brackets of equation (12.6) must be equal
to zero and this will lead to the required eigenvalues, i.e.

IK - @?M] = 0. (12.7)

The above equation gives the values of the circular frequency
of vibration, ®, and equation (12.6) is used to determine the mode
shapes of vibration as explained in the examples that follow.

When dealing with large matrices there are other techniques
for determining the eigenvalues which are more efficient than the
determinant method and these techniques are available in most
relevant software packages.

12.3 Mass Matrix

The mass of a structure is continuously distributed throughout
its members and this will lead to an infinite number of degrees
of freedom. Therefore, the structure is divided into a number of
elements (or members) with a finite number of degrees of freedom
which will lead to a finite number of the values of ®?. The next step
is to translate the distributed mass of each element into ‘equivalent’
masses that are assumed to be concentrated at the end nodes of that
element. To do this, one of the two possible approaches can be used,
namely, the lumped mass and the consistent mass methods.
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In the lumped mass matrix method, the element is assumed
to have no rotational inertia and for elements with uniform cross
section the mass is divided equally between the two end nodes as
shown below with L = length of element (or member), A = cross-
sectional area, and p = material density.

AL

o

o
>
—

- - @ N‘
) @ N‘

This is the simplest form of mass matrix that leads to a diagonal
matrix which requires less storage space and, more importantly, less
computer time compared with a more populated matrix.

The consistent mass matrix is derived from the same interpolation
polynomial for the displacement as used in the derivation of the
stiffness matrix hence the name consistent. This method leads to a
more populated matrix than the lumped mass matrix, consequently,
it requires more storage and computer time, but it is generally
accepted that it gives better accuracy. In this chapter the lumped
mass matrix is used for its simplicity, but the general procedure of
analysis is the same in both methods.

12.4 Matrix Condensation

When dealing with large sets of simultaneous equations, economy
can be achieved in obtaining a solution if the number of degrees of
freedom is reduced. For example, consider the problem of bending
of beams and using the lumped mass method where the rotational
displacements are not included in the mass matrix, M, but they
are present in the stiffness matrix, K. In this case the rotational
displacements are regarded as unwanted and can be eliminated
from the stiffness matrix by the so-called Guyan static condensation
method as explained below.

The structure displacement vector  in equation (12.6) is divided
into two groups; the translational displacements vector §,, and
the second group of degrees of freedom is the vector of rotational
displacements Jq to give
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The next step is to write the matrices in equation (12.6) in a
partitioned matrix form in terms of submatrices as

|:wa KWG :||:6w:| 0)2 |:Mww Mwe :||:8w :| _ |:0i|
Kew Kee 69 Mew MOO 89 0

For the simple case of lumped masses, the mass matrix is
a diagonal matrix whose coefficients are associated with the
translational displacements, d,, only, therefore, My,g = Mg,, = Mgg = 0,

thus
wa Kwe 8w 0)2 Mww 0 8w _ 0
Kow Koo || 86 0 08| [o]

The second equation in the above matrix is Kg,,0,, + Kgg 09 = 0,
pre-multiply by Kgé to give

8 =—KgoKg, S, and this is substituted in the first equation to
give

KowBu + Koo (“Kap Koy, )~ ©°M,, 8, =0, which can be
written as

w

(K. - @M, =0

where the condensed stiffness matrix K. = K
the condensed mass matrix M, = M.

It should be noted that in the case of lumped mass matrix the
results obtained for the eigenvalues and eigenvectors from the
condensed matrices are exactly the same as those obtained from the
full uncondensed matrices.

-1
ww KWGKGG Kew and

12.5 Free Vibration of Pin-Connected Plane
Frames

The lumped mass at each end of the element has components of
acceleration in both the x and z directions and hence the use of the
associated displacements in these directions and the mass matrix
relative to local coordinates is

465



466 | Vibration of Beams and Frames

>l

=
=
<l
=|

pAL/2 0 0 0 | 1000

_ 0 pAL/2 0 0 (W 0100
m= _'=pAL/?2

0 0 pAL/2 0 |U 0010

0 0 0 pAL/2|w 0001

Since the unit matrix is unchanged when it is transformed from
local to global coordinates it follows that the mass matrix relative to
global coordinates, m =m , hence

(12.18)

pAL

)

o o o r

_ o © © =
s

Example 1:

Calculate the natural frequencies and the corresponding modes of
vibration of the pin-connected plane frame shown in Fig. 12.8 for
the following data:

E = 70 x 10° N/m?, p = 2500 kg/m3, A; = 0.0024 m?, and
A, =0.0018 m?,

7 @ BB

pin supports 12m

Figure 12.8
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For Member 1

1 000 48 0
ml = 2500x0.0024x16/0 1 0 Of | 0 48 0
2 0 010 0 4.8
0 001 0 0 0 48
For Member 2
1 000 45 0 0 0
m? = 2500%x0.0018x2.0/0 1 0 0| | 0O 45 0 O
2 0010 0 0 45 0
0 001 0 0 0 45

The structure mass matrix will be

U  w; U W, Uz Wy
(48 0 0 0

00 |uy

0 48 0 ©0 0 0 |w,

M= 0 0 93 0 0 0 |u
0 0 0 93 0 0 |w,

0 0 0 0 45 0 |ug

| 0 0 0 0 0 4.5|w;

Apply the boundary conditions of u; = 0, w; = 0, uz = 0, and
w3 =0 to get
U wp

vo|93 0w (12.19)
10 93|w,

The stiffness matrix for a pin-connected frame member relative
to global coordinates is given in Chapter 3 (3.10) as
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2 2
EAx;  EAx;z; B EAX;; B EAx;z;
r? ? ? r?
EAx;z;  EAz] EAx,z EAz]
3 3 3 3
- L 2 L L 2 L
EAX;; EAx;z; EAx;  EAx;z
L ? L ?
EAx;z EAZIZJ EAx;z;; EAZIZ]
I} 2 I 1

Member 1, (i,j:1,2)

X;=X-%=16-0=1.6m,z;=72-2=0-0=0

L= \/x +Z —\/162+02—16m

105 0 —-105 0
Woggf| © 0 0 0
~105 0 105 0
0O 0 0 0

Member 2, (i,j:2,3)

X;=%-%=0-16=-1.6m,z;=72-7=12-0=12m

L= x2+22 =\(-1.6)" +(1.2) =2.0m

+40.32 -30.24 -40.32 +30.24
-30.24 +22.68 +30.24 -22.68
-40.32 +30.24 +40.32 -30.24
+30.24 -22.68 -30.24 +22.68

k?=10°

The overall structure stiffness matrix
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U wy U W3 Uz W3
105 0 -105 0 0 0 |u,
0 0 0 0 0 |w,

0
K =10° 0 +145.32 -30.24 -40.32 +30.24 |u,
- 0 0 -30.24 +22.68 +30.24 -22.68|w,
0 -40.32 +30.24 +40.32 -30.24|u;
0

+30.24 -22.68 -30.24 +22.68 |w;

Apply the boundary conditions of u; = 0, w; = 0, uz = 0, and
ws =0 to get

Uy W
K106 | 14532 -30.24]u, (12.20)
- -30.24 +22.68 |w,

Substitute M and K from (12.19) and (12.20) respectively in
equation (12.6) to get

{ 6[+145.32 —30.24} 5 {9.3 0 muz } H
10 - = (12.21)

-30.24 +22.68 0 93]||w, 0

The trivial solution of the above set of simultaneous equations is
u, = 0 and w, = 0, i.e. the displacement vector o = 0, i.e. no vibration.
The condition that & has a non-zero value is that the determinant
of the quantity inside the brackets must be equal to zero and this
will lead to the required eigenvalues. When dealing with large
matrices there are other more efficient eigenvalue techniques that
can be implemented on the computer and the reader is referred
to specialist literature about the subject for details. However, the
determinant method is used in this case because of its simplicity for
hand calculations and the fact that the matrix is small, thus

+145.32x10° —9.30 -30.24x10°

=0, where A=’
-30.24x10° +22.68x10°-9.3)\

86.491% - 1562.40 x 10°) + 2381.40 x 102=0

The above relationship is called the characteristic equation
whose roots are the eigenvalues of the matrix, thus

A1 =1.68x10%and A, = 16.38 x 10°.
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The circular frequency of vibration, o = \/X

o, =+/A; =V1.68x10° =1296.15rad/s and
®, =v16.38x10° =4047.22rad/s

The frequency of vibration, f = 22
T

0] . .
L= 1296.15 =206.29 cycles/s and f, = 4047.22

f, = =644.13 cycles/s

2n 21
Calculation of eigenvectors (mode shapes)

During vibration the displacement at each point along the member
is described by the harmonic function u = Rsin(wt + 1) as given
by equation (12.4) where R is the amplitude, i.e. the maximum
value of the displacement. The mode shape represents the relative
amplitudes at the various points and is given by the eigenvector of
the matrix for a particular value of w. Since the magnitude of the
amplitude at any point is arbitrary the eigenvector is normalised by
making the magnitude of the largest value equal to 1.0.

The shape of the truss for any mode of vibration is given by the
eigenvector for that mode and is obtained from (12.21) as follows:

Let u, = +1.000 m arbitrarily to get

Lo6| 14532 3024 .93 o0 J[+1.000]_fo0
_u) =
| -30.24 22,68 0 93] w, 0

For mode 1, ® = ®; = 1296.15 rad/s

AP

(129.70x10°  -30.24x10° FLOOO}_[O}
| -30.24x10°  7.06x10° 0

The second row of the above two equations give w, = +4.283 m.
The mode shape is given by the eigenvector

u, +1.000 o ) L
= which is normalised by dividing by the
w, +4.283

magnitude of the largest coefficient 4.283 to give mode 1 as

u, +0.233
\ljl = =
w, +1.000
Similarly, for mode 2 where, ® = ®, = 4047.22 rad/s the second
normalised mode is calculated as
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u, +1.000
\Ijz = = .
w, —-0.233
The mode shapes for the pin-connected frame are shown in
Fig. 12.9.

Mode shape

Mode 1 Mode 2

Figure 12.9 Mode shapes for the pin-connected frame.

12.6 Vibration of Beams

In the example below, the lumped mass matrix is used to determine
the frequencies and modes of free undamped vibration of a fixed
ended beam. These will be used later to investigate the behaviour of
the beam under the action of an external force.

12.6.1 Free Vibration of Beams

Example 2:

Calculate the natural frequencies and the corresponding modes of
vibration of the fixed ended beam shown in Fig. 12.10 using the
following data: p = 2400 kg/m3, A = 0.15 m?, 1 = 0.0048 m*, and E =
36 x 10°N/m>.

§1@'@ @1@5é

2

w @

24m | 24m | 24m L 24m

Figure 12.10 Fixed ended beam.
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Calculation of the stiffness matrix

The stiffness matrix of a beam element whose local axis is coincident
with the global x-axis was derived in Chapter 4 as given by (4.28) as:

K=10°

[ 12E1  6El  12EI  6EI]|
L3 12 L3 12
6El  4EI 6EI 2EI
N T
_12EI  6EI  12EI  6EI
I ik L ik
6EI 2EI 6EI 4EI
L2 L]
150 -180 -150 -180
K Z 12 213 107 -180 288 180 144
-150 180 150 180
-180 144 180 288
The stiffness matrix for the overall structure:
Wy 0, w, 0, w3 03 A 0, Ws 05
150 |-180|-150]-180] 0 0 0 0 0 0
-180| 288 | 180|144 | O 0 0 0 0 0
-150] 180 | 300 | 0O |-150}-180] O 0 0 0
-180| 144 0 576 | 180 | 144 0 0 0 0
0 0 |-1504180|300| O |-150|-180| O 0
0 0 |-180] 144 0 576 | 180 | 144 0 0
0 0 0 0 |-150] 180 | 300 0 |-150]-180
0 0 0 0 |-180] 144 0 576 | 180 | 144
0 0 0 0 0 0 |-150] 180 | 150 | 180
0 0 0 0 0 0 |-180] 144 | 180 | 288

The boundary conditions of the fixed ends are w; = 6; = 0 and
ws =05 =0, hence delete rows and columns 1, 2, 9, and 10 to get the
reduced stiffness matrix as:
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w, 0, w3 0; W,y 0,
300 0 -150 -180 0 0 w,
0 576 180 144 0 0 0,
K = 106 -150 180 300 0 -150 -180 | w;
-180 144 0 576 180 144 |65
0 0 -150 180 300 0 Wy
0 0 -180 144 0 576 |6,

Condensation of the stiffness matrix K

The above matrix is condensed as explained earlier by first
rearranging the coefficients in order to separate the w’s from the 6’s

as shown below.

W, W; W, 0, 05 0,
300 -150 0 0 -180 0 w,
-150 | 300 | -150 | 180 0 -180 fws
0 -150 300 0 180 0 Wy
K=10°
0 180 0 576 144 o fe,
-180 0 180 144 576 144 03
0 -180 0 0 144 576 |o,
300 -150 0 0 -180 0
k,,, =10°|-150 300 -150|,k,,=10°/180 0 -180|,
0 -150 300 0 180 0
[0 180 0O 576 144 0
kg, =10°|-180 0  180|, kgy =10°|144 576 144
| 0 -180 0 0 144 576
235714 -150 64.286 |w,
K, =K, —K,oKeoKo, =10°| —150 187.5 -150 |w,
64.286 150 235.714|w,

(12.22)
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Calculation of the mass matrix

In the lumped mass method, it is assumed that the mass of the
element is concentrated at the nodes and the rotational inertia of
these masses is neglected. Also, if axial straining of the element is

ignored then the mass matrix is

pAL pAL
2 2
® @
1 )
I - .
RN S
L B I
w; 6, w; 6
1 0 0 0w 432 0 O
mzﬁ 0 0 0 05 hence, m' =m?=m° = 0 00
210 0 1 0|w; 0 0 432
0 0 0 0 9]- 0 0
The mass matrix of the overall structure is:
Wy 0, W 0, W3 03 Wy 0, ws 6
432 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 864 | 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 864 | 0 0 0 0 0
M= 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0]84] 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 ]432]| 0
0 0 0 0 0 0 0 0 0

o ©O © o

Wy
6,
Wy
6,
W3
63
Wy
6,
Wg

05

Apply the boundary conditions of w; = 0 and 6, = 0, hence delete
rows and columns 1 and 2 to get the reduced mass matrix as:
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The boundary conditions of the fixed ends are w; = 6; = 0 and
ws = 05 = 0, hence delete rows and columns 1, 2,9, and 10 to get the
reduced mass matrix as:

Wy e2 W3 e3 Wy 94

ge4 o] o |o 0 |w,
o o] o |o o |o,
0o |o]ses]|o 0 |ws
Mo ol o Jol o |o 0,
o o] o |o]ses|o0|w
o |o o]l o |o]e,

Condensation of the mass matrix M

The coefficients of the above matrix are rearranged so as to
separate the w’s from the 6’s as shown below.

w, W3 W, 0, 0; 0,
864 0 0 0 0 0 fw,
0 864 0 0 0 0 fw;
M < 0 0 864 0 0 0 Jw,
0 0 0 0 0 0 o,
0 0 o | o | o Je
0 0 0 0 0 0 6.,

The resulting condensed mass matrix is given by
864 0 0 |w,
M.=M,,=| 0 864 0 |w, (12.23)
0 0 864|w,

Substitute (12.22) and (12.23) in (12.6) to get
(Kc - (DZMC)SW =0

235714 -150 64.286 864 0 0 [[w,
10°| -150 1875 -150 |-w®| 0 864 0 ||| w5 |=0
64286 —150 235.714 0 0 864|||w,

(12.24)
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For non-trivial solution the determinant of the above matrix is

Zero

235.714x10° — 864\ -150x10° 64.286x10°
-150x10° 187.5x10° —864A -150x10° =0
64.286x10° -150x10° 235.714x10° — 8640

~644.973 x 105(A% - 762.648 x 103A? + 127.022 x 10° - 2990.150 x
1012) = 0

M =2.811x10% A, =19.841 x 104, A3 =53.613 x 10*

The circular frequency of vibration, ® = \/X ,

®, =v2.811x10* =167.660 rad/s,
®, =/19.841x10* =445.432rad/s,
®; =v53.613x10* =732.209 rad/s.

The exact values of the circular frequency of vibration from
appendix 7 are:

9
0, =22.382 |~ :22.382\/36X10 x0.0048 _ 168.259rad/s
PAL 2400%0.15x 9.6
9
0, =61.701 | :61.701\/36X10 x0.0048 _ 463842 rad/s
PAL 2400%0.15% 9.6

w; =120.912 E—I4 =120.912

pAL
The error between the calculated and the exact values

=908.966 rad/s

\/36><109 %0.0048
2400x0.15%9.6*

Mode 1 2 3
Percentage error -0.36% -3.97% -19.45%

It can be seen in the above table that excellent accuracy is
obtained for the first mode, but the error increases rapidly for higher
modes of vibration.

Calculation of eigenvectors (mode shapes)

The shape of the beam for any mode of vibration is given by the
eigenvector for that mode from (12.24) and since the mode shapes
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are of relative magnitude assign one of the unknowns, say w,, a
value of +1.000, arbitrarily, then calculate the remaining unknows,
w3 and wy.

For the first mode of vibration substitute ®; = 167.660 rad/s in
(12.24) to get

211.427w, - 150w; + 64.286w, = 0 (12.25)
~150w, + 163.213w3 - 150w, = 0 (12.26)
64.286wW; - 150w + 211.427w, = 0 (12.27)

Delete (12.25) and substitute w, =1.000 min (12.26) and (12.27)
to get
+163.213w; - 150w, = +150

-150w; + 211.427w, = -64.286

The solution to the above simultaneous equations is
w3 = 1.838 m and w, = 1.000 m and the full displacement vector
is

w, +1.000
8, =| w3 |=| +1.838 |, divide by the largest coefficient to get the
W, +1.000
normalised vector for the first mode as
w, +0.544
Y, = wy [=|+1.000 (12.28)
W, +0.544

Similarly, for o, = 445.432 rad/s, the normalised vector for the
mode 2 is

w, | [+1.000]
v,=lwy|=| O (12.29)
w, | |-1.000]

and for w3z = 732.209 rad/s, the normalised vector for mode 3 is

w, | [+0.919]
v, =| wy |=[-1.000 (12.30)
w, | |+0.919]
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Equations (12.28), (12.29), and (12.30) are combined together
to form the modal matrix, y, whose columns are the normalised
mode shapes of vibration, thus

Vi Wi, Vi3] [+0.544 +1.000 +0.919

v=[vi W W3]=|War Wi W |=|+1.000 0 -1.000
Va1 W3 Wi +0.544 -1.000 +0.919

(12.31)

The three modes of natural vibration of the fixed-fixed beam are
shown in Fig. 12.11.

//\/\//\v/\

Mode 1 Mode 2 Mode 3

Figure 12.11 Mode shapes for the fixed ended beam.

12.6.2 Vibration of Beams Due to Harmonic Force
Excitation

In practice, beams are subjected to some form of dynamic loading
during their life in service and their behaviour in such circumstances
must be investigated.

[t will be assumed that there is no damping present in the system
making the analysis less involved but in practice there is always
some form of damping that is taken into account.

When an exciting force p(t) is acting on the system the equation
of dynamic equilibrium will be

—Mw —Kw +p(t)=0 (12.31)
2

where the acceleration, w = F

In order to save on space, we will use the results obtained
from the previous example on free vibration of beams but with the
addition of an exciting force.

Assume that a harmonic exciting force p = p,sin€t is applied in
the z-direction at node 2 so the column vector of force excitation is
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p,sinQt |
p(t)= 0 , then the equation of motion is
0 .
864 0 0 |[w, 235714 -150 64286 |[w,]| [p,sinQt
0 864 0 | W,|+10°] -150 1875 -150 [w,|=| O
0 0 864w, 64.286 —-150 235.714 | w, 0
(12.32)

Each of the above three simultaneous differential equations
contains the three variables w,, w3, and wy, i.e. they are coupled and
in order to find their solutions they require to be decoupled. The
decoupling is particularly useful when dealing with a large number
of simultaneous differential equations as explained below.

Transform the differential equations (12.32) to modal
coordinates by introducing a new variable & such that w = Wy, thus

W» &, .
w=|w; |, E=|& [, w=yE,
Wy &,

and the modal matrix, y = [y ¥, ¥3]-
Substitute in (12.31) and pre-multiply by y to get,

v MYE +y KyE =y p(t)
where yTp(t) is called the modal force vector.
The vibration modes { are orthogonal with respect to
the mass and stiffness matrices, i.e. wiTM\pj =(m,); =0 and
Ji \lfiTM\Vi =(my,); and
v Ky, =(k,,); . Consequently, yTM¥ = M,, and y"Ky = K,, where
M,, and K, are called modal mass matrix and modal stiffness matrix
respectively and they are both diagonal matrices with the values of
(mp,);; and (k,,); on their diagonals respectively.

It is more convenient to transform the modal mass matrix, M,
into a unit matrix by modifying the modal vectors using scaling
factors which will not alter the relative values of the mode shapes.

11

Let the modified modal matrix, ¢ = yu wherep=|u,

V = [y1 Y, y3] such that Us

(12.33)

\IfiTK\l’j:(km)ijzo for i#j and for i =

and
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My
¢:[¢1 b, q)s]:[‘l’l Vs ‘|’3] Wy :[lfh vV WLy, M3‘l’3]-
M3
We have, y"™vy = M, and to modify M, and make it equal to the
unit matrix, I, we should have $™M¢ = I from which the values of u,,
W,, and U3 can be calculated and hence the modified modal matrix
from the relation ¢ = yu with y as given by (12.31)

Modified
+0.544u; +1.000p, +0.544u, (864 0 0

M, =¢"Mo=| +1000y, 0, -1.000u, | 0 864 0
+0.919u; -1.000u; +0.919u, || 0 0 864

+0.544y, +1.000u, +0.919u,] [1 0 0
+1.000y,  Op,  —1.000u;|=|0 1 O
+0.544u, —1.000w, +0.919u,| |0 0 1

The above relation is simplified to

1375.377u% 0 0 10 0
0 1728u3 0 =0 10
0 0  2323401u:| (0 0 1

The quantities off the diagonal should be zeros and their small
values that resulted from the multiplication operation are due to
rounding of the numbers and they are ignored and shown equal to
zero, hence

1, =41/1375.377 =0.026964, |, =/1/1728 =0.024056, and
1y =+/1/2323.401 = 0.020746.

The modified modal matrix is
+0.544x0.026964 +1.000x0.024056 +0.919x%0.020746

¢=|+1.000x0.026964 0 —-1.000x0.020746
+0.544x0.026964 -1.000x0.024056 +0.919x0.020746

0.014668 0.024056 0.019066
=|0.026964 0 —-0.020746
0.014668 -0.024056 0.019066
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The stiffness matrix K. was found from previous calculations,
and dropping the subscript c for simplicity, as
235.714 -150 64.286
K=10°| -150 1875 -150
64.286 -150 235.714

Modified
0.014668 0.026964  0.014668 235714 -150 64.286
K, =¢"Ko=|0.024056 0 ~0.024056 |10°| -150 1875 —150
0.019066 —-0.020746 0.019066 64.286 -150 235.714
0.014668 0.024056 0.019066 2.811 0 0
0.026964 0 -0.020746 |=10*| 0 19.841 0
0.014668 —0.024056 0.019066 0 0 53.613

The small off-diagonal coefficients in K, and M, are not exactly
zero, as they should be, due to rounding of the numbers and hence
they are ignored.

Notice that the values of the coefficients in the diagonal of the
above stiffness matrix are equal to those values of ®w? calculated
previously from the free vibration of the beam from the general
relationship (K - ®*M)8 = 0 which gives K, - ®*M,,, = 0 and with
M,, =1leads to

28110 0 0 i 0 0
o’=K,=10" 0 19841 0 |=/0 o O
0 0 53613] |0 0 o

This also serves as a check on the values of ® obtained previously.
Replace y by ¢ in (12.33) to get,

0 MoE+0"KoE=0"p(t) (12.33a)
Mmé +K &= q)Tp(t) premultiply by M;ll
E+ MK, E=M 0 p(t) (12.34)

where M_' =1, M_'K_=K_ =0’ and the right-hand side of the
equation is simplified as
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0.014668 0.026964 0.014668 || p,sinQt

M, o p(t)=1|0.024056 0 -0.024056 0
0.019066 —0.020746 0.019066 0
14.668p,sinQt
=107%| 24.056p,sinQt
19.066p,sin€t

Substitute in (12.34) and write in matrix form to get

&| |of 0 0 g 14.668p,sinQt

E, |+ 0 o2 0 | & |=107|24.056p sinQt| (12.35)

E, 0 0 |8 19.066p,sinQt
£, +0°E, =14.668x10 > p_sinQt (12.35a)
E, +w2E; =24.056x 10 °p_sinQt (12.35b)
£, +02E, =19.066 X 10 p_sinQt (12.35¢)

The general solutions of the above set of differential equation
are,

14.668x10p,

0 -Q*

24.056x10%p,
Qz

=C,;sinm,t+C,cosm t+ sinQt (12.36a
2= 4 1 2 1

&; =C;sinm,t +C,cos0,t + sinQt (12.36b)

w5 -
19.066x10%p,
o

€, =Cssinwst +Cocos,t + sinQt  (12.36¢)

The constants C; to C4 are found from the initial conditions as
follows: .

We have w = ¢&, pre-multiply by ¢1 to get & = ¢~ 'wand E=¢ 'w.
The calculations for determining the inverse of ¢ can be avoided by
using the previous relation ¢"M¢ = M, and M,, = I, hence 6™¢ =],
post-multiply both sides by ¢! to get $ "M = ¢-T hence & = $"Mw, thus

&y = 0"™Mw, and &, = ¢"Mw, with
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0.014668 0.026964 0.014668 |[864 0 0
o' =0"M=0.024056 0 -0.024056| 0 864 0
0.019066 -0.020746 0.019066 | 0 0 864

12.673 23.297 12.673
=|20.784 0 —20.784
16.473 -17.925 16.473

Wy, 0
At time t = 0, the displacement, w,=| w3, |=|0| and the
w 0
V'VZ'O 0 4,0
velocity, w, =| w3, [=|0
Wy, | [0
Ero 12,673 23297 12.673 ][0] [0
& =&, [=0"Mw, =| 20.784 0 ~20.784((0|=[0| and
Ero 16.473 -17.925 16.473 ||[0] |0
S0 12.673 23297 12673 |[0] [0
& =|Es0 |=0"™™MW, =(20784 0  -20.784|[0|=|0
g, 16.473 -17.925 16.473 ||0] |0

The above result could have been written by inspection, but it is
shown here for generality of the principles, particularly when the
initial conditions differ from w, = 0 and w, =0. Consider (12.36a)
&,0 = 0 therefore, C, =0

: 14.668x107°Q
€,, =0givesC; =— — Po
oy (0] —Q7)
Substitute C; and C,in (12.36a) to get,

 14.668x10°p,
of -Q*

&2

Q . .
——sinm, +sinQt
®y
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Similarly

24.056 x10%p,
GS=— 57

Q . .
2 ——sinm,t +sinQt
w; —Q ,

19.066x107°%p, [ Q .
Es= W[—m—gsmmﬁ + sttj
W; O G2 O3 & 0118 + 01283 + 0138,
w=lwg [=05=|0y O O | &3 |=| 02 +$an85 + 384
Wy By G B33 | &4 0318 + 03283 + 338,

W, [0.014668 0.024056  0.019066
w; [=]0.026964 0 —-0.020746
w, | [0.014668 -0.024056 0.019066

[14.668x1073 Q
—p"(——sinmlt +sinQt)

(D% —QZ ®q
24.056x1073
z—zp‘)(—gsinmzt + Sith)
, -Q ®,
19.066x107p,

Q
TR (——sinw;t +sin€t)
w3 —Q (O

The values of @ were found earlier as: ®; = 167.660 rad/s,
®, = 445.432 rad/s, and w; = 732.209 rad/s and assume that p, =
90000 N and Q=140 rad/s we get

w, = 107%[-0.012 sin(732.209t) - 0.092 sin(445.432t) - 1.900
sin(167.660t) + 2.630 sin(140t)]

w; = 1073[0.013 sin(732.209t) - 3.493 sin(167.660t) + 4.114
sin(140t)]

w, = 103[-0.012 sin(732.209t) + 0.092 sin(445.432t) - 1.900
sin(167.660t) + 2.048 sin(140t)]

A plot of w, and wj against time is shown in Fig. 12.12.
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Figure 12.12 Vertical deflection against time, (a) at node 2 and (b) at node 3.

The inertia forces that act on the beam at the nodes is calculated
from the product of the mass at the node times the acceleration w
which is obtained from the second derivative of the displacement w
at that node.

12.7 Vibration of Rigidly Connected Plane
Frames

Buildings are constructed of frames that consist of beams and
columns where the beams support the floor slabs and are connected
to the supporting columns. Shear frames are defined as frames that
resist horizontal forces by the shear stiffness of their columns and
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the rigid connections between their beams and columns as opposed
to frames with some type of cross bracing. In the vibration analysis
of such frames, the horizontal floors together with their supporting
beams are assumed to have infinite rigidity such that there is no
rotation of the joints. The frame of the building is idealised as a
vertical member with concentrated masses at the joints where the
floor beams are connected to the columns. Each of the concentrated
masses consists of the mass of the floor at that level plus the mass of
half of the column length below and half above that level. The axial
deformation of the columns is ignored and the joints are assumed
to be fully restrained against rotation but they can displace in the
x-direction. This idealisation is commonly used in the analysis of
the response of building frames to earthquake excitation due to
time varying base motion. The resulting model will have a reduced
number of degrees of freedom leading to a significant computer time
saving.

Considerafixed ended vertical elementwithlateral displacements
at the fixed ends as shown in Fig. 12.13.

initial shape of column

deformed shape

i
Xi — 77777

Figure 12.13 Vertical element (moments are not shown for clarity).

The stiffness matrix for a rigidly connected plane frame member
derived in Chapter 5 as given by (5.7) can be modified for the
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column shown in Fig. 12.13 where x;; = 0 and z;; = L. Applying the end
conditions of 8; = 0 and 6; = 0 and ignoring axial displacement, i.e.
v; = 0 and v; = 0 will result in the following equations:

12EI 12EI
Xi =+ 3 i ——3u] (1221)
L L
6EI 6EI
M=+ - (12.22)
12EI 12EI
X =y + 12y (12.23)
L L
EIl EI
M, = -1-6—211i —6—2uj (12.24)
L L

The moments at the ends of the member are not of interest in this
case therefore, they are not considered. The resulting matrix, which
represents the lateral stiffness of the column, is given by (12.21) and
(12.23) as:

+12EI 12EI

3 2w | X

= , where

12E1  12E1 ||y | |X;
- +

I I
+12EI 12EI

3 {3 u X.

k= L L , 8= |, andF=|_'

12E1  12EI u X
T F T

Example 3:

Calculate the frequencies and mode shapes of natural vibration of
the shear frame shown in Fig. 12.14 using the following data: The
masses of floors including the contribution of columns are: m,
= 9000 kg, mz = 8000 kg, and m4 = 6000 kg. The properties of the
columns are: I; =95 x 109 m* I, = 61 x 107° m* I3 = 46 x 10°° m*,
L;=50m,L,=4.5m,L;=4.0m, p = 7850 kg/m?3,and E = 210 x 10°
N/m?.
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(b) Analysis model

-1915x10°
1915%x10°

[ 3830x10°
| -3830x10°

[ 3374%10°

| -3374x10°

[ 3622x10°

4.0m
4.5m
5.0m
| 6.0 m |
I I
(a) Shear frame
Figure 12.14 Modelling of a shear frames.
12E,1,  12E],
. 3 3 1915x10°
e _12EL, 12K -1915x10°
L L
. 1915x10° -1915x10° ]
k' =k, +kgp =2
-1915x10°  1915x10° |
, [ 1687x10° -1687x10% |
k? =k¢p +kpp =2
|-1687x10°  1687x10° |
; [1811x10° -1811x10% |
kK =kgg +kpy =2
|-1811x10° 1811x10° |

| -3622x10°

— ™BD

~3830%10°% |
3830x10° |

~3374x10°% |
3374x10°

~3622x10% |
3622x10° |
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DL Uz uz Uy
1 1
kii kl] 0 0 u;
1 1,12 2
k].i k]-]- +k;; ki]- 0 u,
K =
2 2,13 3
0 ks k5 +kj; K;; u3
3 3
0 0 ki kjj Us

Apply the boundary condition of u; = 0, i.e. delete row 1 and
column 1 to get:
U, U3 Uy
7204 3374 0 J|u,
K=10%|-3374 6996 —3622 u; and
0 -3622 3622 |u,

m; 0 O 9000 0 0
M= 0 m, 0 (=] 0 8000 O
0 0 my 0 0 6000

Substitute in (12.8) to get

7204 -3374 0 9000 0 0 fu,] [0
10°|-3374 6996 -3622|-w®| 0 8000 O ||[us|=|0
0  -3622 3622 0 0 6000]||lu,| [O
(12.25)

Let A = w? and equate the determinant of the above matrix to
zero to get

10°(7204-91)  -3374x10° 0
-3374x10°  10°(6996-81) —3622x10° |[=0
0 -3622x10°  10°(3622-61)
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432 x 10%(-A3 + 22.79 x 10%A2 - 127.97 x 10*A + 108.35 x 10%) = 0

The roots of the above equation are: A; = 102.56, A, = 730.82, and
A3 = 1445.62.

o=+vL; =, =4102.56 =10.13rad/s,
®, = /A, =/730.82 =27.03 rad/s, and
03 = /Ay =+/1445.62 =38.02rad/s

The normalised vibration modes are calculated from (12.25) for
the different values of ® in a similar way to the previous example as

u, | [+0.446]
Mode 1, ; =10.13 rad/s, | u; |=| +0.830 |=w,
|u, | | +1.000 |
[u, | [+1.000]
Mode 2, w, =27.03 rad/s, | u; |=|+0.184 |=,
lu, | |—0.873]
[u, | [+0.585]
Mode 3, w3 =38.02 rad/s, | u; |=|-1.000 | =y,
lu, | |+0.717

The three vibration modes of the frame are shown in Fig. 12.15.

Mode 1 Mode 2 Mode 3
Figure 12.15 Vibration modes for shear frame.
If the axial compressive force in the columns is considered, the

elastic stiffness matrix will decrease leading to lower values of ®. On
the other hand, if the axial force is tensile, the elastic stiffness matrix
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will increase and the resulting natural frequencies of vibration will
be higher.

Buildings located within a seismic zone are subjected to forces
resulting from the ground motion in an earthquake. The vibration
analysis follows the same principles as those for a single degree of
freedom due to base motion as discussed in Section 12.2.2 with the
inertia forces assumed to act at floor levels. A further complication
arises from the fact that the ground motion in an earthquake is
random and not as simple as, for example, a sine function that can
be integrated analytically. This means that for the determination
of earthquake forces acting on a building frame the differential
equations governing the motion are integrated numerically step by
step in small time increments to obtain the system response and
hence the forces. The process is not suitable for hand calculations
particularly for frames with large number of degrees of freedom
for which specialised computer software or standard approximate
procedures are usually used in practical design situations.

Problems

P12.1 Use the lumped mass method to calculate the natural
frequencies and the corresponding modes of vibration
of the pin-connected plane frame shown in Fig. P12.1 for
the data shown below. The roller at support 4 can move
in the x-direction but is restrained from movement in the
z-direction during vibration. The properties of the members
of the frame are: A; = A, = A;=0.003 m? E =70 x 10° N/m?,
and p = 2600 kg/m3.

pin support roller support

I 3m I

Figure P12.1
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Answer:
[u, | [+0.495]
Mode 1, ®;=1398.28rad/s, |w, |=|-1.000
| uz | [+0.822]
[u, | [+0.770]
Mode 2, ®,=2694.15rad/s, |w, |=|+1.000
| Uz | [+0.565]
[u, | [+1.000]
Mode 3, ®;=3923.87rad/s, |w, |=|-0.254
| uz | [—0.685]

P12.2 Calculate the natural frequencies and the corresponding
modes of vibration of the beam shown in Fig. P12.2 which
is fixed at node 1 and simply supported at node 4 using the
lumped mass method. Determine the response of the beam
if it starts from rest, i.e. w = 0 and w =0 and acted upon by
a force p(t) = p, cosQt at node 3 in the z-direction. Use the
following data: A = 0.008 m?,1=0.000162 m*, p = 7850 kg/
m3,E =210 x 10°N/m?, p, = 60000 N and Q = 500 rad/s.

§ ® ©) ®

® ®
2 3 4

L 1.8 m L 1.8 m L 1.8 m ‘|
I I l I

Figure P12.2 Fixed-pin beam.

Answer:
W, W3 0, 03 0,
140.0 -70.0 0 -63.0 0 w,
-70.0 140.0 63.0 0 -63.0 fws
K =10° 0 63.0 151.2 37.8 0 0,
-63.0 0 37.8 151.2 37.8 6;
0 -63.0 0 37.8 75.6 §0,
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w; W3
107.692 —61.923}w2

K, =10°
-61.923 59.231

W3

w
Mode 1: @, =387.418rad/s, v, { 1}=[+1 0000

+0.6825
W

w,; | |+1.0000
Mode 2: ®,=1151.773rad/s, y; = =
w, | [-0.6825

_[+0.0530 +0.0777 M- 10
“140.0777 -0.0530]" ™ |0 1|

K —106 01501 0
m 0 1.3266

w, = 1073 [2.473 cos(387.418t) + 0.230 cos(1151.773t) -2.703
cos(500t)]
w; = 1073 [3.626 cos(387.418t) - 0.157 cos(1151.773t) -3.469
cos(500t)].

P12.3 Calculate the frequencies and mode shapes of natural
vibration of the shear frame shown in Fig. P12.3 using the
lumped mass method and the following data: The masses of
floors including the contribution of the columns are: m, =
12000 kg, m3 = 14000 kg, and m, = 8000 kg. The properties
of the columns are: I; =0.0017 m* 1,=0.0015 m* 13=0.0012
m* L;=6m,Ly,=5m,L;=4m, and E =24 x 10° N/m?.
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Answer:

Mode 1:

Mode 2:

Mode 3:

A B C
/77777 777777 777777
~ 7.0 m | 5.0 m R
Figure P12.3

u, +0.610

®; =36.88rad/s, |u; |=|+0.923
u, +1.000
[u, ] [+1.000]

®, =117.95rad/s, |u; |=|-0.146
lu, | |—0.679]
[u, ] [+0.317]

03 =178.50rad/s, |u; |=|-0.798
|uy | [+1.000 ]
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Bar Stiffness Matrix

In Chapter 1, the stiffness matrix was derived using directrelationship
between the force acting on a bar of uniform cross section and the
resulting displacement. A more general procedure may be employed
based on assuming a polynomial to represent the variation of
displacement along the bar. The degree of the polynomial is chosen
so as to satisfy a certain state which in this case is a constant strain
along the bar, i.e. du / dx = constant and this condition is satisfied by
the polynomial

u=ay+a;X. (A1.1)
The above equation defines the displacement u at a distance X
from node i as shown in Fig. A1.1. The constants a;y and a, are found
from the boundary conditions at the ends of the bar, i.e. in terms of
the displacements at nodes i and j as follows:
Atx=0, u=u;, hencea,=uy;.
Atx=L, u=u

i thus ﬁj =u; +a,L, whichgives

2\ - U -
L
u. —u,
Therefore (A1.1) becomes, u =u; +[ ) ] : Ji, which can be
written as
a=(1—%)ﬁi +%ﬁj. (A1.2)

The above equation is called interpolation polynomial and the
quantities (1-x /L) and x /L are called shape functions.

The gain in strain energy in a bar subjected to an axial force X is
given by:
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X: -
Eg = I—dx, where X = 6A = E€A and the strain,
2EA
du
E=——
dx

L —\2 _ _ —
Cou

Eg = leA d—E dx, andwith d—E = —i+—], from (A1.2) we get
0 2 dx L L

EA
ES—ZL(u —-2u;u. +u)
7,7
A
ﬁll | U |
i j
Xl—>‘—. Q=) —> Xj —— XX

(b)

Figure A1.1 (a) Bar element and (b) variation of u with x.

The work done by the actions at the ends of the element

Ey = —()_(iﬁi +)_(jﬁj) (the minus sign because it is a loss in
potential energy).

The total potential energy, Er = Eg + Ey,

E; = Ei(u —2u;u; + U ) ()_(iﬁi+)_(jﬁj).

For the total potential energy to be minimum, its partial derivative
with respect to the displacements is zero, i.e.

0Er N =
From — =0, weget %(ZU —2u. ) —X; =0, therefore
ay; 2L ]



Bar Stiffness Matrix

(A1.3)

oE EA, _ __\ =
From —L =0, we get —(—Zui + 2u-)— X. =0, therefore
ou, 2L ] ]

%(-ai ) =X,. (A1.4)
Equations (A1.3) and (A1.4) are written in matrix form as
EA _EA\
]ﬁA Ek BJ: E} (AL5)

L L
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Appendix 2

Beam Stiffness Matrix

A2.1 Bending about the y-axis

In Chapter 4, the stiffness matrix for a beam element was derived
using Castigilano’s theorem to find a relationship between the
actions at the ends of the beam and the resulting displacement. A
more general procedure may be employed based on assuming a
polynomial (interpolation function) to represent the variation of
displacement along the beam.

We have from the theory of bending of beams

V — l\_/[ _ 2— 4 —
_dY_,V= d andM:—ELd—W, hence El,d_w=n
dx Y dx2 Y 4zt

- dx
where n is the load intensity, V is the shear force, and M is the
bending moment.

For any part of the beam where there is no load, n = 0, hence

d*w
dx*
A suitable choice for the interpolation polynomial which satisfies

the above condition (i.e., its fourth derivative is equal to zero) may
take the following form

W=a,+a,;x+a,X* +ax . (A2.1)

The positive rotation 6 about the y -axis is equal to the negative
slope of the deflection curve in the xz as shown in Fig. A2.1.
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Shape after
deformation

Wi
initial shape
1 P o > X, X
node i node j
i I
L
i
Figure A2.1 Beam element in the xz plane.
— dw _ _
6=——V_v:—a1 —2a,X —3a,%". (A2.2)
dx
AtX=0, w=w,, and 6=6;.
From (A2.1) we get, w,=a, (A2.3)
From (A2.2) we get, ©i = —-a (A2.4)
AtX=L,w=w, and 6=6;.
From (A2.1) we get, w; =a, +a1L+a2L2 +a3L3. (A2.5)
From (A2.2) we get, 6 =—a, —2a,L—3a,[’. (A2.6)

Solving the simultaneous equations (A2.3) to (A2.6) for the
unknowns ay, a1, a5, and az and substituting them in equation (A2.1)

and rearranging to get



Beam Stiffness Matrix

_ 32 2 | [ -o2x X (3 2P| (X X
w= 1—LT+? Wi+ —X+T—LT 0i + LT—LT W]-+ T—LT e]

o 1 %% 2%° _ 2%t %) [3%r 2%8
The quantities, —?+L—3 ) _X+T_? ) L_Z_L_3 ,and

X %
— —— | are called shape functions.
L 12

The gain in strain energy in bending is given by:

M2 B 2
E, =J d%, but M=—g1, IW
EI; Y dx?

El- _ _ 2 _— - 2
E, :L—;’[6(v_vi -w,)? —6L(v‘vi —wj)(ei +ej)+2L2 (ei +6;0; + 6 )}

The work done by the forces and moments at the end nodes of
the element

Ey =—(ZW, +M,0; + Z].v_v]. + 1\_/[].6]-) (the minus sign because it is a
loss in potential energy).

Total potential energy, E; =Eg +Eyy

El.T _ _ /= = 2 - - 2
E; = L_Sy[e.(wi — W) —6L(w; —wj)(ei +ej)+2L2 (ei +0:0; +6j ﬂ
—(Zv‘vi +M,0i +Zw, +1\_/Ijéj) :

For minimum total potential energy we must have,
oE JE oE oE
—L=0, —=F L =0, and—=0

—=0’ _—

aWi ' 20i aw]‘ aej

OB, EL,
ﬁz?(lzwi —6L6; —12W; — 618;) -7 =0
1
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_EL,
Z, = L—B,y(12wi —6L6; — 12, — 616 | (A2.8)
oE; Elg _ = — ARy
S =~ (6L, + 417, + 6Lw; + 2178y ) - M, =
209 L

_ ORI _ .

M, = L—3y(—6Lv‘vi +4126; + 6L, +21°6)) (A2.9)
0E. EL = AN
—L=—Y(-12W, +6L6; +12W; +6L8; |- Z =0

3 1 ) ) ]
ow; L
_ B,
Z,= L—3y(—12wi +6L; + 12, + 6L | (A2.10)
oE; Ely a ARy,
P15 (6L, + 2128 + 6L, + 4128 )~ M, =0
d9; L
)
_OBL,
M, :L_3y(—6Lwi +2176; +6LW, +4L26,-) (A2.11)

Equations (A2.8) to (A2.11) are written in matrix form as:

12El;  6El;  12Bl;  GEl

B 2 12 2 |
. w;

Zi| | 6El, 4El,  6El,  2El ||Wi
M. 2 2 0
- |- L L L LA™ azaz
4| |_12Bl; GBI,  12Bl;  GEL, || W,
M, 3 12 3 12 8,

_GEL,  2EI;  6EL,  4El

L 17 L 12 L |

The above relationship is the same as that derived by Castigliano’s
method as shown in Chapter 4.

A2.2 Bending about the z-axis

For bending about the z-axis, the same procedure is followed with
the assumed interpolation function for the deflection polynomial as:

V=a,+a,X+a,X* +asx° (A2.13)



Beam Stiffness Matrix

The positive rotation ¥ about the Z-axis shown in Fig. A2.2 is

equal to the positive slope of the deflection curve in the Xy plane,
thus

_dv o
\P:+é:a1 +2a,X +3a,%°. (A2.14)

node i node j

Figure A2.2 Beam element in the Xy plane.

And the resulting stiffness matrix is:

[ 12EI,  6El,  12EL,  6EL, |
B 2z P 12
Y v,
Y 6El,  4El,  6El,  2EI, || Vi
N. 2 2 .
Y, 12E,  6EL, 12EL,  6EL || V,
N 3 2 3 2 —
N, L L L |,
6EL.  2EL 6EL,  4EL
L I L 1 L

Notice the change in sign of some of the coefficients in the above
matrix in comparison with the matrix for bending about the y-axis.

503



Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com


https://taylorandfrancis.com

Appendix 3

Bar Torsion Matrix

In Chapter 7, the stiffness matrix for a uniform bar subjected to
torques acting at its ends was derived using the direct relationship
between the torques and the resulting angles of twist. This appendix
employs an alternative approach based on assuming a polynomial to
represent the variation of angle of twist along the bar. It is assumed
that the rate of change of angle twist is constant along the bar, i.e.
o® /X = constant. To satisfy this condition the linear interpolation
polynomial given by (A3.1) is used to define the angle of twist @ at
a distance X from node i as shown in Fig. A3.1.

-ﬁ—ﬁ———ﬁ—ﬁ— — %X
— i j 'l

Ti P Ny T']
i
| L
(a)
& @ R
(b)

Figure A3.1 (a) Bar element and (b) variation of angle of twist @ with x.

®=a,+a,X. (A3.1)

The constants a, and a; are found from the boundary conditions
at the ends of the bar, i.e. in terms of the angles of twist at nodes i and
j as follows:
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AtX=0, ®=®;, hence a0=51.

Atx=L, (I_>:<_1>j,thu56. =®d; +a,L, which gives, a, = Dj — D .
' L
Y - (I)] q)l
Therefore (A3.1) becomes @ =®d; + 3 X, which can be
written as
O=|1- |0+ D). (A3.2)
L L

The above equation is called interpolation polynomial and the
quantities (1-x /L) and x /L are called shape functions.
The gain in strain energy in a bar subjected to torque T is given

by:

L = _

E = J' dx, whereT = G]—
2GJ
0
t1 (q@) i 3
Eq =J'—G] 9 ) 4 andwith 8o @ P o (A4.2) we

get ! 2 dx dx L L

E, = G (CI>1 —2; c1>]+c1>])
2L

The work done by the actions at the ends of the element

Eyw= —(’T‘i5i + 'T‘]Ej) (the minus sign because it is a loss in
potential energy).

The total potential energy, E; = Eg + Eyy

GJ == ==
Br=or (cpl —20;®; + D, ) (T®i+T.@).
For the total potential energy to be minimum, its partial derivative
with respect to the angles of twist is zero, i.e.

JoE —
From —-=0, we get ﬂ(Z(I)i —ZdD,) T 0, therefore
oD 2L

i

—(61 —5]-):Ti. (A3.3)



Bar Torsion Matrix

oE — o\ =
From —-=0, we getﬂ(—Zd)i + 2<I>j)— T] =0, therefore
00; 2L
Gl = =\ =
r(—<1>i +®y) =T, (A3.4)
Equations (A3.3) and (A3.4) are written in matrix form as

9 g

Lo L@ | T (A3.5)
_9 G o] [T

L L
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Appendix 4

Strut Stiffness Matrix

A4.1 Stability of Struts

Consider the strut shown in Fig. A4.1a which is pinned at its ends
A and C and subjected to an axial compressive force P . The strut is
initially straight but when P is applied such that the strut buckles,
bending will develop, and the strut will take the shape of a curve.
The length of the neutral axis which is equal to the initial length of
the straight strut is unchanged. Therefore, the pin at end A will have
to move by an amount A and take the position B to accommodate the
buckled curved shape.

The magnitude of A which is also the distance moved by P
will be required in the formulation of the energy equation and is
determined as follows:

Consider the infinitesimal length ds of the buckled curve shown
in Fig. A4.1b. As dx gets smaller and smaller the length of the
straight line (ac) which connects the ends of the curve will approach
the curved length ds, thus

(ds)? = (dx)? + (dw)?

1

_2Tz

d§=d§[1+(d—"_") }
dx

Using the Taylor-Maclaurin infinite series expansion of the
quantity inside the square brackets we get

_\2 _\4 _\6
ds =dx 1+1 d_v_v _l d—v_v -{-i d—v_v ............
2\ dx 8\ dx 16\ dx
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x ds
C——
. / e
w \
dx
(b)
w
— B C
P :A < P >
8
| X

(@)

Figure A4.1 Pin ended strut subjected to an axial force P .

The deflection w is small and so the slope dw /dx of the

deflection curve is small such that its high powers are neglected and
only the first two terms of the above series are considered.

—\2
ds=dx+ | W ax
2\ d

X

The total length of the curve, S, can be found by integration as:

L L _\2 L L —\2
S=£d§=ﬂdi+%(‘i—¥) di}:idmjl(d—‘fj dx

E dx
A
t1(dwY?
S:(L—A)+I— W ax
A2 dx

Since the strain along the centroidal (neutral) axis is zero the
length of the curved strut is the same as the original straight length,
i.e. S=L, hence

L —\2
L:(L—A)+J%(i—‘:) dx
A

>l



Strut Stiffness Matrix

t1(d t1faw ¥ . pifdw
a= Y4V ox S EEIEraE
2 2\ dx 2\ dx
A 0
But w and dw /dx are zero in the range of x=0 to X=A,
therefore

L —\2
1(dw

A=[H Y] gz, A41
-([Z(di) X (A4.1)

A4.2 Stability of Beam-Columns

Now consider the general case of a strut where there are lateral forces
and moments acting at the ends in addition to the axial compressive
force P, the socalled beam-column as shown in Fig. A4.2.

_ ) W
w; 1 w
Z; s
! initial shape
— ® ° — X x
node i node j

Figure A4.2 Beam-column element.

Assume that the beam-column endsiand j are subjected to forces
Z, and Zj and moments M; and M]-, respectively. In addition, an axial
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compressive force of magnitude P has developed in the member.
The presence of P will cause an increase in the displacements w
and @ reflecting a reduction in the bending stiffness of the member.
For small values of the axial force this reduction is small and can
be neglected. But as the load increases the reduction in bending
stiffness becomes significant and has to be taken into account.
Furthermore, at a critical value of the axial compressive force, the
bending stiffness is reduced to zero causing the strut to become
unstable. So, the behaviour of the member is essentially nonlinear
since the bending stiffness is progressively reduced as the axial force
increases.
The gain in strain energy due to bending is
L —y 2—
Eg = j%di, but M= —EIy dTVZV, hence
0 v dx

L 2
El; Z
= [| 2% g%
2 o\ dx

The work done by the actions at the ends of the element is

E, =—(PA+Zw, +M;6; + Zw, +M;6;), with A from (A4.1)

(the minus sign because it is a loss in potential energy).
The total potential energy, Er = Eg + Ey,

(A4.2)

The deflection equation is derived in Appendix 3 and given by
the interpolation polynomial (A3.7) as
_ (3% x| 2 X (3 . (XX s
Substituting dw /dx and d*w /dx?, as found from the above

equation, into (A4.2) and integrating to get an expression for the
total potential energy, Er.



Strut Stiffness Matrix

For the total potential energy, Et, to be minimum requires that

oE oE oE oE
TTZO, TTZO, TTZO, and TTZO
aw; 00; aW]— 09;
The above four conditions lead to the following relationships
_ E; _ _ _ -\ (6 _ 1- 6 _ 1 -
i=—y(12wi—6L9i—12w.—6L9,-)—P 2, -8 —— W, ——8
3 J 5L 10 5L 7 1
I 1 _ N\ = _ _
M = (-6Lw, +41°; + 6L, +21°6; |- P —iwi+§ei+iv‘v.—£ej]
ik 10 15 10 ' 30
— El _ _ _ —\ = _ 1 - _ 1 -
= —2-(~12@, +6L6; + 12, +618; ) - P e iteela L
S ! 5L 10 5L ' 10
_ EL _ N = _ _
M-:—y(—6L\7vi+2L26i+6L\7V-+4L20]-)—P —iwi—ieﬁiﬁwéej
S J 10 30 10 ' 15

The above four relationships are written in matrix form as

(12 6 12 6] [6 1 6 1
R TN T T 5L 10 5L 10([_7 =
604 6 2| |1 1 LM ®
gl oL 2 L 10 15 10 30|06 |_|M
Mlllzoe 126 ) 6 1 6 1 )W |Z
| AR FE R & 5. 10 5L 10 8 | | M

6 2 6 4 1 L 1 2

2 v 7 v L1 30 10 15]

(A4.3)

A4.3 Stability of Frames

In the analysis of rigid frames when axial strains are considered, an
additional relationship is included to take into account that effect as
given by the following matrix which is given by Eq. (2.4) in Chapter 2

EA EA

Lo Fi}:[ﬂ (A4.4)
EA EA []7|X,

L L
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The matrices given by (A4.3) and (A4.4) are combined to give the
general stiffness matrix for the nonlinear (second order) analysis of
rigid frames as

EA 0 o _EA 0
L L
12EL 6EL 12El.  6EI
0 y _ y 0 _ y _
K 1 1K ?
6EI 4E1_ 6EI 2EL_
0 _ y 0 y y
LZ L L2 L
EA EA
- 0 0 = 0 0
L L
12El.  6EL 12El.  6EL
0 _ y y 0 y y
I 12 I 12
6El.  2EL 6EL 4E1_ (A4.5)
0 _ y y 0 y y
L 12 L 12 L |
0 0 0 0 0 0 ]
i _i _i _i _ﬁi_ _)_(i_
5L 10 5L 10| — _
Wi Z;
1 2L 1 Ll
- —_ 0 - R e —_
P 10 15 10 30| % |_|M
0 0 0 0 0 0 u; Xi
o o L 4 & 1wz
5L 10 5L 10 || 5. v
i 4
1 L -0 LY
o L L, L1 2
10 30 10 15 |

For members whose local X -axis does not lie along the global
x-axis then matrix transformation will be used to convert the
stiffness matrix from local to global coordinates.



Appendix 5

Fixed End Moments and Forces

Consider a beam member (or element) which is fixed at its ends and
subjected to an arbitrary loading as shown in Fig. A5.1.

NI

loading

iy :

\ 2

M), (M 1 Mpe (Mps
ing) (ﬁm NNV

(Z)s A (Z ) (Z))s
Figure A5.1

The forces and moments acting on the beam at its ends will be
called actions on the beam with the subscript ‘f’ and are shown
in the positive direction. From equilibrium at the joints the forces
and moments acting on the joints are in the opposite direction to
those acting at the ends of the beam and will be called loads on
the joint with the subscript ‘s’ Four standard cases of loading are
explained below. Other common forms of loading may be dealt with
by superposition of the appropriate standard cases.
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A5.1 Case 1: One Lateral Concentrated Load at
Any Point along the Span of the Beam

(i) Both Ends of the Beam Are Fixed

fixed end w fixed end
| Z
a | b
! L
w
My, (M) 1 Me ),
A B
it i m i
joint i ‘) (11 ]1) (‘ ]
(Zi)s (Z)s (Z)s (Zy)s
a | b
! L
Figure A5.2
Actions on the beam:
2
Z) =- (LZ +ab-a?), (M,) = Wab
2
(Z); = ( 12 +ab—b?), (M) = Wa b

In matrix form, the action vector 1_3f on the beam is:



Fixed End Moments and Forces

[ Wb/, )
—L_3(L +ab-a )
(?i)f +Wab2
ﬁ _ (l\i[i)f _ LZ
| G —%(Lzﬂib—bz)
(M) A
Wa’b
_ 5

From equilibrium at the joints F, =—F, where F, is the load
vector on the joints and is obtained simply by reversing the sign of
the action vector. Thus:

_+W—b(L2 +ab—az)

L3
(zi)s Wab2
_ (Mi)s LZ
551 @), 7| wa
O+ (12 +ab-b?)
(Mj]s L
Wa?b
+ 2
L

For the special case of a beam with a concentrated load at mid-
span, substitutea=b = L/2 to get

@) =, (M) =+ (z . (1\71].)f z_%

(i) One End of the Beam Is Fixed and the Other Is Pinned

Actions vector on the beam is

B —W—E(3L2—b2)
(Z);
[0 || +7 )
L@ |
(Mj)f —E(SLa—az)
0
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fixed end WT pinned end
i g O j
a | b
I
L

w
M)s (M) 1 0 0
A B
joint i W | |
joint i ‘) (11 ]_ ) (‘ ]
(Z)s (Z)¢ Z)¢ (Zy)s
a | b
! L
Figure A5.3

Load vector on the joint: F, =—F

+W—E(3L2—b2)
(Z); 2L
U\_/Ii)s
(Z)s
(M,), +E(3La—a2)

Wab

(L b)

F, =

0

Special case when the load is at mid-span, substitutea=b =1/2
to get

B =1 () =+2 @) =20, (F)) =0
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A5.2 Case 2: Uniformly Distributed Lateral Load
Covering Part of the Span of the Beam

(i) Both Ends of the Beam Are Fixed

n (per unit length)

M)s (M) SEEEEER M) (M)
jointil‘) (11 jtl) (‘li

(Z)s (Zos (A" (Zs

Figure A5.4

Action vector on the beam:

—%[Lz(—az +b?+c? +2bc)+2L(@° -c*)-at +c4]

(Z)

- |ony | +o ] (Laf (L 32) - (41 -30)

f— (zj)f B nr., 5 \
= ———| I*(a* +b* = c* +2ab) - 2L(a’ - c*)+a* - ¢
(M) Ls[ J

o 2[(L PP (L+3c)—a3(4L— 3a)]

Load vector on the joint:
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+%|:L2(—a2 +b?+c? +2bc)+2L(a3 —c3)—a4 +c4]

(zi)s
| L[ (L-a) (L+3a) - (4L-3¢) |
F, = (zl)s -F = 12L
(l\_/ljj)ss +%|:L2(az +b2 —C2 +23b)—2L(a3 —C3)+a4 —C4:|

n
s [(L— PP (L+3c)—a3(4L— 3a)]

For the special case of a uniformly distributed load covering the

whole length of the beam substitutea=0,c=0,and b = L to get
_ nL - nl?
(Z) =- ( i) —+ (Z )i = 5 (M;); Ty

Any combination of concentrated load(s) and uniformly
distributed load(s) can be dealt with by superposition of the
standard cases discussed in the previous examples.

(ii)) One End of the Beam Is Fixed and the Other Is Pinned

fixed end pinned end

\ n (per unit length) /

'ointi|(Mi)S (Mi)f. - : O Hj
J ‘) (11 ]1) (‘

(Zi)s A s (Zy)s

Figure A5.5
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Action vector on the beam:

—;’Tz(m 2¢)(61% —b? — 2¢% — 2bc)

(Z)
o M| (212 ~b? —2c? — 2bc) (b? + 2bc)
T = (zj ) " 8L
(M,); —?[LZ(Sa +2b—4c)+bc(4b+6¢)+ (b +4c3)]

0

Load vector on the joint:

+:Tb3(b +2¢)(61% —b? —2¢% — 2bc)

(?i ]s
— M), ~ (212 —b? —2¢% — 2bc)(b? + 2bc)
Fs = 7 = 8L2

(Zj )s

(M), +;1T2[L2(8a +2b—4¢)+bc(4b +6¢) + (b% +4c*)]

0

Special case when the uniformly distributed load covers the
whole span substitute a=0,c=0,and b =L to get

2
TS ) =B, -5 ), o

A5.3 Case 3: One Longitudinal Concentrated
Load at Any Point Along the Span of the
Beam

Hj

jointi H - - = . —
CONNCOTN & (X
La | b |
I | I

Figure A5.6
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_ Xb — X
(X)r=-"T" and (X)) = —Ta
_ _Xb
()_(i )f _ L
(X | | _Xa

L

_ From _equilibrium at the joints, ie. (X;),=-(X;); and
(X]‘)s = _(Xj )

_ LXb
(Xi )s — L
(Xj )s +&
For the special case of the load at mid-span,i.e.a=b=L/2

S X - X
(Xi)f:_z and (Xj]f:_E

A5.4 Case 4: Uniformly Distributed Longitudinal
Load Covering Part of the Span of the

Beam
n (per unit length)
joint il e — = 8 — < ]
GO VX (Xs
a | b |
I I I |
Figure A5.7

nb nb
&y ]_| T[] T
(Xj)f (Xj)s

nb nb
——(b+2 +—(b+2
o P+ 2a) o (P T 2a)

For the special case when the distributed load covers the whole
span,i.e.a=0,c=0,andb =L then



Fixed End Moments and Forces | 523

B nL _ N nL

Xd| | 2 Xds| | 2

— = and | — =

X | | nL (X)) |, nL
2 2

When the beam is subjected to more than one type of loading
then superposition of the actions due to the various loads can be
made.

A5.5 Transformation of Member End Actions to
Joint Loads

For a member lying along the global x-axis the load vector on the
joints, which is written relative to global coordinates, is obtained
from the action vector on the member simply by reversing its sign
as explained earlier. But for inclined members, for example in
rigidly connected frames, the load vector on the joint is obtained
by transformation of the action vector as explained below. Consider
the inclined member shown in Fig. A6.8 with the actions (X;);,
(Zi )¢, and (l\_/[i)f at its end i and ()_(j)f, (Zj )¢, and (l\_/lj)f atendj as
calculated relative to local coordinates for a given loading from the
cases derived above.

(Zi)s
— Xi)s _
" _ oo (M;)¢
(Mj)s Xis -7 s
i Py _
(Mj)¢
f @),
(Z)s j)\ e
f B — (X)),
(z])f (Mj)s
Figure A5.8

The loads on the joints are equal in magnitude and opposite in
direction to the actions on the member and are written relative to
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global coordinates. Therefore, the actions on the member, which
are relative to the local coordinates, are first written relative to the
global coordinates as (X;)¢, (Z;)r, (M;)f, (X)¢, (Z;), and (M;); and
then their sign is reversed to get the loads on the joints as shown
below.

X;)s =—(X; —(+()_(i)f cosp, +(Z )f sing_ )
X

) =
(Z;)s = _(Zi )f =—(- i)f sing_ + (Z )f cosQ. )

(
(X)) = —(Xj )f = —(+()_(j )f cos@, +(2j) sing. )
() ==(2,), = ~(=(%;) siney +(2) cose)

(M), =—(m;) =—(M;)
The above equations may be written in matrix form as

(x,),] [cosey ~singg 00 O O &)]

(Z,)s +sin(py —cos¢ 0 0 0 0 (zi)f

M| | o 0 -1 0 0 0 [ (M)

X)s || o 0 0 —cosg; -singy 0 || (X)
(Z;)s 0 0 0 +sing; —cosp; 0 (zj)f

(M) | o o 0 o0 o -1 (M
or F, =rF

where r; is a transformation matrix to transform the local actions on
the member to global loads on the joints. Notice that r = -rT, where
r is the coordinates transformation matrix derived in Chapter 5.
This relationship could have been derived directly from 1_3f =rF, i.e.
F=r"'F and since r'* = r" and F, = -F, therefore, F; = -rT F =1.F.
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