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In the past, the analysis of engineering structures has always been 
a challenge to engineers who used classical methods to quantify 
the response of a structure to the applied forces. These methods 
are suitable for the analysis of relatively simple structures that 
can be solved by hand calculations. When the structure gets more 
complicated, it is simplified to a model that can be solved by classical 
methods. The results obtained for the modified structure are 
approximations and their accuracy depends on what modifications 
were made to the original structure. The analysts’ experience and 
judgment play an important role in the way the structure is simplified 
in order to get the best possible results. The absence of reasonably 
accurate methods for the analysis of large structures, which cannot 
be easily modified, limited the scope for engineers to invent complex 
structural forms.
 In 1914, George Maney derived the slope-deflection equations 
for continuous beams. When these equations are applied at the 
various joints of the structure, a set of simultaneous equations 
with unknown displacements are obtained. The resulting set of 
simultaneous equations is solved for the unknown displacements 
and the results are further used to calculate the bending moments in 
members of the structure. For a relatively small structure where the 
number of unknown displacements is small, the set of equations can 
be solved by hand calculations. But for any structure of moderate size, 
the number of simultaneous equations is such that it is not practical 
to solve them by hand calculations. Hardy Cross in 1932 overcame 
this problem by devising a procedure for analysing continuous 
beams and rigidly jointed frames by what is called the moment 
distribution method. This is an iterative procedure where the joints 
of the structure are clamped and released alternately in cycles of 
calculations. The number of cycles in this iterative process depends 
on the desired degree of accuracy, i.e., the iteration is stopped when 
the difference in the calculated results between two successive 
cycles is within a set of prescribed small numbers. In essence, Hardy 
Cross was indirectly relaxing the slope-deflection equations one at 
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x Preface

a time rather than considering the full set of equations that would 
have resulted from the application of the slope-deflection equations 
to all the joints of the structure. It is a powerful method that was 
very popular in the past, but with the advent of electronic computers 
in the 1950s, engineers started developing systematic procedures 
for the analysis of structures.
 When a given structure is subjected to loads its behaviour can be 
represented by a set of simultaneous equations, which are solved to 
give the response of the structure. For structures where the number 
of equations is large, hand calculations are not suitable, and a 
computer is used to obtain the required solution to the simultaneous 
equations.
 The detailed work with simultaneous equations can be made in 
a general and compact form by using matrix notation leading to the 
development of the matrix methods of structural analysis.
 There are two matrix methods that can be used: the flexibility 
method which was employed in the past but not commonly used 
at present and the stiffness method which is widely used and is 
followed in this book. It is worth mentioning that the stiffness 
method is regarded as the forerunner to and forms the basis of the 
finite element method of structural analysis.
 The first chapter gives an introduction to matrix algebra, which 
explains the various operations of matrices. This is intended to 
help the reader gain an understanding of the basic principles and 
applications of matrix operations. Chapter 2 starts with setting 
out the general procedure of matrix formulation by considering 
the simple case of a bar to highlight the steps followed in the 
analysis. Some general notations and the treatment of other forms 
of structural members, by analogy with the bar problem, are also 
explained in this chapter.
 Chapters 3 to 10 present the treatment of the linear static analysis 
of the various types of commonly used structures. Nonlinear analysis 
and dynamics of structures are dealt with in Chapters 11 and 12, 
respectively. A bibliography given at the end of the book provides a 
list of publications that readers can refer to, especially for the proofs 
of some of the statements made in the text.

Fathi Al-Shawi
Autumn 2022



Symbols are defined appropriately where they occur in the text and 
the list below shows the general definition of the main symbols used. 
Symbols defining quantities relative to the local axis of the member 
will have a bar. For example, u is the displacement in the direction 
of the global x-axis while u  is the displacement in the local x -axis 
of the member.

 A Area, Amplitude
 a Acceleration
 α, β Constants
 b Width of cross section
 E Modulus of elasticity
 ES Strain energy
 EP Potential energy
 e Change in length
 ε Strain
 δ Displacement vector
 F Force vector
 f Subscript for the actions on the member due to the 

external forces
 φ Angle of rotation of the member
 G Modulus of rigidity
 g Load factor
 h Height of cross section
 I Second moment of area
 i, j Subscripts for the two ends of member (element)
 J Polar second moment of area
 K Structure stiffness matrix
 k Member (element) stiffness matrix
 L Length
 λ Eigenvalue
 M Moment about the y-axis
 m Mass
 N Moment about the z-axis

List of Symbols



xii List of Symbols

 n Uniformly distributed load
 P Axial force
 Pc Critical (buckling) force
 R Reaction, radius of curvature
 ρ Density
 S Shear force in the y direction
 s Subscript for loads on joints of structure
 σ Stress
 T Moment about the x-axis
 t Time
 u, v, w Translational displacements in the x, y, and z directions
 u  Velocity in the x direction
 u  Acceleration in the x direction
 U Work
 V Shear force in the z direction
 W Concentrated load
 w  Velocity in the z direction
 w  Acceleration in the z direction
 ω Natural circular frequency of vibration
 X, Y, Z Forces in the x, y, and z directions
 x, y, z Global cartesian coordinates
 Φ, θ, Ψ Rotational displacements about the x, y, and z axes



Throughout this book it will be seen that in the analysis of structural 
problems, sets of simultaneous equations will result. These sets are 
written in matrix form so that the computations are systematic and 
more manageable. In this chapter, the important aspects of matrix 
manipulations are presented for the benefit of the reader who has 
limited knowledge of matrix algebra. Although, there are computer 
programmes that deal with the various matrix operations, it is 
considered useful to learn the steps followed in these computations.

1.1 Matrix Operations

Consider the set of simultaneous equations
 4x1 – 5x2 + 9x3 = 8

 3x1 – 6x2 – 4x3 = –5

 –8x1 + 7x2 + 2x3 = 4

 These equations can be written in matrix form as:

 
4 5 9

3 6 4

8 7 2

5

4

1

2

3

-
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

x

x

8

 or Ax = b

Chapter 1

Introduction to Matrix Algebra

Analysis of Structures by Matrix Methods
Fathi Al-Shawi
Copyright © 2023 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4968-19-5 (Hardcover), 978-1-003-29130-5 (eBook)
www.jennystanford.com

http://www.jennystanford.com
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 where the matrices, A =
-
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4 5 9

3 6 4

8 7 2

, x = -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

8

5

4

, and b = -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

8

5

4

 Matrix A may be written in a general form as:

 A

a a a

a a a

a a a

n

n

m m m

=

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙

11 12 1

21 22 2

1 2

. .

. .

. . . . .

. . . . .

. .
n

˙̇
˙
˙

 This is called an m¥n matrix where m is the number of rows 
and n is the number of columns with coefficients aij where i is the 
number of the row and j is the number of the column at which aij 
occurs. A square matrix is when m = n, i.e. an n¥n matrix.
 A coefficient on the main diagonal of a matrix is defined by the aii.
 A diagonal matrix is when there are coefficients only on the main 
diagonal and all other coefficients are zero, for example

 

a

a

a

a

11

22

33

44

0 0 0

0 0 0

0 0 0

0 0 0

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 The unit matrix, I, is a diagonal matrix with coefficients on the 
main diagonal equal to 1, i.e. aii = 1, for example

 I =

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

 The zero (or null) matrix denoted by O is where all coefficients 
are equal to zero, for example

 O =

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0
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 Symmetric matrix is a matrix where aij = aji, for example

 

2 5 0 1

5 4 7 3

0 7 9 0

1 3 0 6

-
-

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 An upper triangular matrix where there are coefficients along 
and above the main diagonal and the rest of the coefficients are zero, 
usually given the symbol U, for example

 U =

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-
-

4 1 0 8

0 5 7 3

0 0 6 2

0 0 0 9

 A lower triangular matrix where there are coefficients along and 
below the main diagonal and the rest of the coefficients are zero, 
usually given the symbol L, for example

 L =

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

-
-

7 0 0 0

2 3 0 0

9 0 5 0

8 1 4 6

 Row vector is a matrix with only one row, a = [a1 a2 .  .  an]

 Column vector is a matrix with only one column, b

b

b

b

=

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

1

2

.

.

m

 A zero vector O is where all coefficients are equal to zero, for 
example

 O =

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

0

0

0

0

0



4 Introduction to Matrix Algebra

 The transpose of matrix is where the coefficient in the pth row 
will become the coefficients in the pth column.
 If matrix B is the transpose of matrix A written as B = AT, then  
bij = aji.

Example 1.1

Find the transpose of the following matrices

 (i) A A
T=

-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3 5 2

4 6 1

1 7 4

3 4 1

5 6 7

2 1 4

,

 (ii) A A
T= -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -[ ]
5

2

8

5 2 8,

 (iii) A A
T= -[ ] =

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4 7 6

4

7

6

,

 (iv) A A
T=

-
-

È

Î
Í

˘

˚
˙ = -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5 7 4

6 3 2

5 6

7 3

4 2

,

Matrix addition

The sum of two matrices A and B is matrix C, that is C = A + B, then 
the coefficients in matrix C are obtained by adding the coefficients 
in matrix B to the corresponding coefficients in matrix A. Thus cij = 
aij + bij.

Example 1.2

Given: A B=
-

È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙

5 2

4 3

6 3

2 1
,

 C A B= + =
-

È

Î
Í

˘

˚
˙ +

-È

Î
Í

˘

˚
˙ =

+ + -
- + +

È

Î
Í

˘

˚
˙ =

-
-

5 2

4 3

6 3

2 1

5 6 2 3

4 2 3 1

11 1( )

22 4

È

Î
Í

˘

˚
˙

Matrix subtraction

Given matrices A and B then the difference between them C is C = 
A – B where the coefficients in matrix C are obtained by subtracting 
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the coefficients in matrix B from the corresponding coefficients in 
matrix A. Thus cij = aij – bij.

Example 3

Given: A B=
-

È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙

7 4

8 6

5 9

2 3
,

 C A B= - =
-

È

Î
Í

˘

˚
˙ -

-È

Î
Í

˘

˚
˙ =

- - -( )
- - -

È

Î
Í

˘

˚
˙ =

-
7 4

8 6

5 9

2 3

7 5 4 9

8 2 6 3

2 13

6 99

È

Î
Í

˘

˚
˙

Matrix multiplication

Given the m¥n matrix A = [aij] and the n¥r matrix B = [bij] the product 
C = AB = [cij] where, cij is given by:

 c a b a b a b a b a b
ij

q

q n

iq qj i j i j i j in nj
= = + + +ºººº

=

=

Â
1

1 1 2 2 3 3
.

 For the matrix product to be defined, the number of rows in 
matrix B must be equal to the number of columns in matrix A. So, if A 
is m¥n matrix and B is n¥r matrix then the resulting product C = AB 
is m¥r matrix with m rows and r columns.
 Note that in general AB π BA except in special cases, for example 
when B = A–1, i.e. AA–1 = A–1 A = I (the unit matrix).

Example 4

Given: A and B=
-

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-

- -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3 5 2

4 6 1

1 7 4

8 2

3 7

2 6

 Calculate the product AB.
 Let the product C = AB = [cij]
 c11 = 8 ¥ 3 + (–3) ¥ 5 + 2 ¥ (–2) = 5

 c21 = 8 ¥ 4 + (–3) ¥ (–6) + 2 ¥ 1 = 52

 c31 = 8 ¥ (–1) + (–3) ¥ 7 + 2 ¥ (–4) = –37

 c12 = (–2) ¥ 3 + (–7) ¥ 5 + 6 ¥ (–2) = –53

 c22 = (–2) ¥ 4 + (–7) ¥ (–6) + 6 ¥ 1 = 40

 c32 = (–2) ¥ (–1) + (–7) ¥ 7 + 6 ¥ (–4) = –71

Matrix Operations
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Therefore, 
3 5 2

4 6 1

1 7 4

8 2

3 7

2 6

5 53

52 40

37 71

-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-

- -

È

ÎÎ

Í
Í
Í

˘

˚

˙
˙
˙

Example 5

Given: A B C=
-

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
- -2 4 3

6 1 2

5 7 4

6 2 3

2 5 4

3 4 8

3 1 4

2, , 66 8

7 3 5-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Calculate the product ABC.
 First calculate the product BC by premultiplying C by B

BC =
-

- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

6 2 3

2 5 4

3 4 8

3 1 4

2 6 8

7 3 5

 

=
- ¥ + ¥ - + ¥ - ¥ + ¥ - + ¥

- ¥ - + ¥ + ¥ - -
( ) ( ) ( ) ( )

( ) ( ) ( ) (

3 6 2 2 7 3 1 6 6 2 3 3

3 2 2 5 7 4 1)) ( ) ( )

( ) ( ) ( ) ( )

¥ - + ¥ + ¥ -
- ¥ + ¥ - + ¥ - ¥ + ¥ - + ¥

È

Î

Í
Í
Í

2 6 5 3 4

3 3 2 4 7 8 1 3 6 4 3 8

4 ¥¥ + ¥ - + - ¥
¥ - + ¥ + - ¥ -
¥ + ¥ - + - ¥

˘

˚

˙
6 8 2 5 3

4 2 8 5 5 4

4 3 8 4 5 8

( ) ( )

( ) ( ) ( )

( ) ( ) )

˙̇
˙

 =
- - -

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 9 7

12 20 52

39 3 60

 Now calculate A(BC) by premultiplying BC by A

A BC( ) =
-

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- - -
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 4 3

6 1 2

5 7 4

1 9 7

12 20 52

39 3 60

==
- -

- -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

163 107 402

96 28 130

77 173 159

=
- ¥ + - ¥ - + ¥ - ¥ + ¥ - + - ¥
- ¥ + - ¥

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

1 2 12 4 39 3 9 2 20 4 3 3

1 6 12 1 ++ ¥ - - ¥ + ¥ + - ¥ -
- ¥ - + - ¥ + ¥ - ¥

39 2 9 6 20 1 3 2

1 5 12 7 39 4 9

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) (-- + ¥ + - ¥

È

Î

Í
Í
Í

- ¥ + ¥ - + - ¥
- ¥ + ¥ + -

5 20 7 3 4

7 2 52 4 60 3

7 6 52 1 6

) ( )

( ) ( ) ( )

( ) ( 00 2

7 5 52 7 60 4

) ( )

( ) ( ) ( )

¥ -
- ¥ - + ¥ + - ¥

˘

˚

˙
˙
˙
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 =
- -

- -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

163 107 402

96 28 130

77 173 159

 Alternatively, the product AB can be found first and this is post-
multiplied by C to get the product ABC.
 Product of a row vector times a column vector:

Example 6

Find the product of 4 7 6

2

5

8

-[ ] -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

and .

 4 7 6

2

5

8

2 4 5 7 8 6 75-[ ] -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= ¥ + -( ) ¥ + ¥ -ÈÎ ˘̊ = -[ ]( )

 Product of a column vector by a row vector:

Example 7

Find the product of 
2

5

8

4 7 6-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-[ ]and .

2

5

8

4 7 6

4 2 7 2 6 2

4 5 7 5 6 5

4 8 7 8 6

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-[ ] =
¥ ¥ - ¥

¥ - ¥ - - ¥ -
¥ ¥ -
( ) ( ) ( )

¥¥

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-

- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙8

8 14 12

20 35 30

32 56 48

 Multiplication by a scalar:
 When a matrix is multiplied by a scalar all the coefficients of the 
matrix are multiplied by that scalar.

Example 8

 8
3 5 2

4 6 1

1 7 4

8 3 8 5 8 2

8 4 8 6 8 1

8 1 8 7

-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
¥ ¥ ¥ -
¥ ¥ - ¥

¥ - ¥

( )

( )

( ) 88 4

24 40 16

32 48 8

8 56 32¥ -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-

-
- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙( )

 The transpose of the product of two matrices A and B is given by 
(AB)T = BTAT.

Matrix Operations
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Example 9

 A and B=
-
-

È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

3 2

1 4

1 4

2 3
.

 AB =
-
-

È

Î
Í

˘

˚
˙

-
-

È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

3 2

1 4

1 4

2 3

7 18

9 16
, ( )AB

T

T

=
-
-

È

Î
Í

˘

˚
˙ =

- -È

Î
Í

˘

˚
˙

7 18

9 16

7 9

18 16

 A
T

T

=
-
-

È

Î
Í

˘

˚
˙ =

- -
È

Î
Í

˘

˚
˙

3 2

1 4

3 1

2 4
, B

T

T

=
-

-
È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

1 4

2 3

1 2

4 3

 B A
T T =

-
-

È

Î
Í

˘

˚
˙ - -

È

Î
Í

˘

˚
˙ =

- -È

Î
Í

˘

˚
˙

1 2

4 3

3 1

2 4

7 9

18 16
. Thus (AB)T = BTAT.

Determinant of a matrix

Let A be a 2¥2 matrix and is given by

 A
a a

a a
=

È

Î
Í

˘

˚
˙

11 12

21 22

then the determinant D of matrix A is obtained from the difference of 
the cross multiplication of the coefficients:

 D detA det
a a

a a

a a

a a
a a a a= =

È

Î
Í

˘

˚
˙ = = -11 12

21 22

11 12

21 22

11 22 12 21

 Thus if A then D=
È

Î
Í

˘

˚
˙ = = ¥ - ¥ =

5 3

6 4

5 3

6 4
5 4 3 6 2

 Now consider the 3¥3 matrix

 A

a a a

a

a

a

a

a

a

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 12 13

21

31

22

32

23

33

 then D det

a a a

a

a

a

a

a

a

a a a

a=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
11 12 13

21

31

22

32

23

33

11 12 13

211

31

22

32

23

33
a

a

a

a

a

 The entries in any row or column of D can be taken as the 
multipliers by the corresponding minors as shown in the example 
below where the multipliers are taken as the first column of matrix 
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A, i.e. a11, a21, and a31. Their minors, which are the second order 
determinants obtained by deleting the row and column passing 
through that multiplier, and are given by:

 Multiplier a11 with the minor 
a a

a a

22 23

32 33

 Multiplier a21 with the minor 
a a

a a

12 13

32 33

 Multiplier a31 with the minor 
a a

a a

12 13

22 23

 The general signs of the terms in the expansion of the determinant 

D alternate between + and – as: 
+ - +
- + -
+ - +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 thus

 
a a a

a

a

a

a

a

a

a
a a

a a
a

a a

a a

11 12 13

21

31

22

32

23

33

11

22 23

32 33

21

12 13

32

= + -
333

31

12 13

22 23

+ a
a a

a a

D a a a a a a a a a a a a a a a= + - - - + -
11 22 33 23 32 21 12 33 13 32 31 12 23 13 22

( ) ( ) ( ))

= + - - + + -a a a a a a a a a a a a a a a a a
11 22 33 11 23 32 21 12 33 21 13 32 31 12 23 31 13

aa
22

 Alternatively, if the coefficients in first row are taken as 
multipliers and noting that the signs are + – +, then:

 
a a a

a

a

a

a

a

a

a
a a

a a
a

a a

a a

11 12 13

21

31

22

32

23

33

11

22 23

32 33

12

21 23

31

= + -
333

13

21 22

31 32

+ a
a a

a a

 D a a a a a a a a a a a a a a a= + - - - + -
11 22 33 23 32 12 21 33 23 31 13 21 32 22 31

( ) ( ) ( ))

= + - - + + -a a a a a a a a a a a a a a a a a
11 22 33 11 23 32 12 21 33 12 23 31 13 21 32 13 22

aa
31

which is the same as the previous expansion.

Example 10

Calculate the determinant of matrix A =
-

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 4 7

5 1 3

6 2 8

.

Matrix Operations
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 Taking the entries in the first column as multipliers

 D =
-

-
- = +

-
-

-
+ -

-
-

2 4 7

5

6

1

2

3

8

2
1 3

2 8
5

4 7

2 8
6

4 7

1 3
( )

 = + ¥ - - ¥ - - ¥ - ¥ - - ¥ - - ¥
= +

2 1 8 3 2 5 4 8 7 2 6 4 3 7 1

228

[ ( ) ] [( ) ] [( ) ( ) ]

 Alternatively taking the entries in the first row as multipliers

 D =
-

-
- = +

-
- -

-
-

+
-

2 4 7

5

6

1

2

3

8

2
1 3

2 8
4

5 3

6 8
7

5 1

6 2
( )

 = + ¥ - - ¥ + ¥ - - ¥ - + ¥ - ¥ -
= +

2 1 8 3 2 4 5 8 3 6 7 5 2 1 6

228

[ ( ) ] [ ( ) ( )] [ ( )]

which is the same as the previous result.
 A square matrix whose determinant is not equal to zero is called 
non-singular matrix and when its determinant is equal to zero it is 
singular, for example

 A =
-

- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5 5 0

5 11 6

0 6 6

 Taking the entries in the first column as multipliers

 D =
-

-
-

- = +
-

-
- -( ) -

-
+

-
-

5 5 0

5

0

11

6

6

6

5
11 6

6 6
5

5 0

6 6
0

5 0

11 6

 = ¥ - - ¥ - + - ¥ - ¥ -
+ - ¥ - - ¥ =

5 11 6 6 6 5 5 6 0 6

0 5 6 0 11 0

[ ( ) ( )] [( ) ( )]

[( ) ( ) )]

 Therefore matrix A is singular.
 When all the coefficients in any row are zeros, then the 
determinant of the matrix is equal to zero, for example

 A =
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 4 7

0 0 0

6 3 8
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 Taking the entries in the first column as multipliers
D = 2[0 ¥ 8 – 0 ¥ 3] – 0[(–4) ¥ 8 – 7 ¥ 3] + (–6)[(–4) ¥ 0 – 7 ¥ 0] = 0

 When all the coefficients in any column are zeros, then the 
determinant of the matrix is equal to zero, for example

 A = -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3 5 0

6 2 0

7 4 0

 Taking the entries in the first column as multipliers
D = 3[(–2) ¥ 0 – 0 ¥ 4] – 6[5 ¥ 0 – 0 ¥ 4] + (–7)[5 ¥ 0 – 0 ¥ (–2)] = 0

1.2 Solution of Simultaneous Equations

In the analysis of structures by stiffness matrix methods a set 
of simultaneous linear equations with the displacements as the 
unknowns will result. An important step in the computations is 
the determination of these unknowns which will in turn lead to the 
calculation of external reactions at the supports of the structure 
and the forces developed in its members. Some of the methods that 
are commonly used in solving a set of simultaneous equations are 
presented in the subsequent sections.
 If the set of equations is ill-conditioned the solution is sensitive 
to small changes in the coefficients of the matrix or in rounding 
off the numbers in the computations process. Also, such sets may 
converge slowly or may not converge to the correct solution when 
the iterative methods are used. One of the tests for ill conditioned 
set of equations is that the determinant of the matrix of coefficients 
is small compared with the absolute value of the largest coefficient. 
On the other hand a set of equations is well-conditioned if the 
coefficients on the main diagonal are large in absolute value in 
comparison with the off diagonal coefficients.
 In general, the stiffness matrix method of structural analysis 
leads to well-conditioned sets of equations. These sets result in 
correct solutions when the direct methods are used and converge to 
the correct solution if the iterative methods are used.

Solution of Simultaneous Equations
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1.2.1 Direct Methods

The most popular direct methods for the solution of simultaneous 
equations resulting from the application of matrix methods in 
structural analysis are the Gauss elimination and the Cholesky 
decomposition. An innovative method called the frontal solution is 
also used where the final solution is obtained without writing the 
full set of simultaneous equations. This method is outside the scope 
of this book and the reader is referred to specialised literature.

(i) Gauss elimination method

Consider the set of linear algebraic simultaneous equations
 a x a x a x b

11 1 12 2 13 3 1
+ + =

 a x a x a x b
21 1 22 2 23 3 2

+ + =

 a x a x a x b
31 1 32 2 33 3 3

+ + =

which can be written in matrix form as

 
a a a

a a a

a a a

x

x

x

b

b

11 12 13

21 22 23

31 32 33

1

2

3

1

2

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
bb

3

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 The above matrix can be reduced to an upper triangular matrix 
as

 
c c c

c c

c

x

x

x

r

r

r

11 12 13

22 23

33

1

2

3

1

2

3

0

0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
ÍÍ

˘

˚

˙
˙
˙

 The unknowns x1, x2, and x3 are obtained by back-substitution in 
reverse order as follows:
 From the third row of the above set of equations:

 x
r

c
3

3

33

=

 Substitute this value of x3 in second row to get

 x
r c x

c
2

2 23 3

22

=
-
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 Substitute the values of x2 and x3 in the first row to get

 x
r c x c x

c
1

1 12 2 13 3

11

=
- -

Example 11

Find the unknowns x1, x2, and x3 given by the matrix

4 1 2

3 5 1

5 2 4

7

12

9

1

2

3

-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

x

x

 which can be written in the form

 4x1 + x2 – 2x3 = 7 (1.1)

 –3x1 + 5x2 + x3 = –12 (1.2)

 5x1 – 2x2 – 4x3 = 9 (1.3)

 Use x1 in equation (1.1) as a pivot and eliminate x1 from equations 
(1.2) and (1.3).
 Multiply (1.1) by –(–3/4) and add to (1.2) to get
 0 + 5.75x2 – 0.50x3 = –6.75 (1.2¢)

 Multiply (1.1) by –(5/4) and add to (1.3) to get
 0 – 3.25x2 – 1.50x3 = 0.25 (1.3¢)

 The new set is
 4x1 + x2 – 2x3 = 7 (1.1)

 0 + 5.75x2 – 0.50x3 = –6.75 (1.2¢)

 0 – 3.25x2 – 1.50x3 = 0.25 (1.3¢)

 Now use x2 in (1.2¢) as a pivot and eliminate x2 from (1.3¢) by 
multiplying (1.2’) by –(–3.25/5.75) and adding to (1.3¢) to get
 0 + 0 – 1.78x3 = –3.56 (1.3¢¢)

The new set is
 4x1 + x2 – 2x3 = 7 (1.1)

 0 + 5.75x2 – 0.50x3 = –6.75 (1.2¢)

 0 + 0 – 1.78x3 = –3.56 (1.3¢¢)

Solution of Simultaneous Equations
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 The values of x1, x2, and x3 are found by back substitution as 
follows:
 From (1.3¢¢), x3 = –3.56/(–1.78) = +2.00
 Substitute this value of x3 in (1.2¢) to get
 0 + 5.75x2 – (0.50)(2.00) = –6.75

 x
2

6 75 0 50 2 00

5 75
1 00=

- +
= -

. ( . )( . )

.
.

Substitute the values of x2 and x3 in (1.1) to get
 4x1 – 1.00 – (2)(2.00) = 7

 x
1

7 00 1 00 2 2 00

4 00
3 00=

+ +
= +

. . ( )( . )

.
.

(ii) Cholesky’s method

Let Ax = b where A is an n¥n square matrix which can be decomposed 
into the product of two matrices L and U, i.e. A = LU, where L is a 
lower triangular matrix and U is an upper triangular matrix. For 
example if A is a 3¥3 matrix then

 L =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

l
l l
l l l

11

21 22

31 32 33

0 0

0  and  U

u u u

u u

u

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 12 13

22 23

33

0

0 0

 If matrix A is symmetric, i.e. A = AT, then U = LT leading to A = LLT, 
hence LLTx = b.
 Let y = LTx, then Ly = b and the vector y is obtained by forward 
substitution in L. Then from the relation y = LTx the required solution 
vector x is found by backward substitution in LT.

 A

a a a

a a a

a a a

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
11 12 13

21 22 23

31 32 33

11

21 22

31 32

0 0

0

l
l l
l l ll

l l l
l l

l
33

11 21 31

22 32

33

0

0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 Performing the multiplication of the two matrices at the right-
hand side and equating the product to the corresponding coefficients 
of the matrix at the left-hand side results in relationships that will 
lead to the determination of the coefficients of matrix L as shown 
below.
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 l l l
11 11 11 11 11

= =a a,

 l l
l11 21 12 21

12

11

= =a
a

, l

 l l l
l11 31 13 31

13

11

= =a
a

,

 l l l l
21

2

22

2

22 22 22 21

2+ = = -a a,

 l l l l l
l l

l21 31 22 32 23 32

23 21 31

22

+ = =
-

a
a

,

 l l l l l l
31

2

32

2

33

2

33 33 33 31

2

32

2+ + = = - -a a,

 The above relationships can be written in general form as:

 l
11 11

= a

 l l
jj jj

s

s j

js
a j n= - = ºººº

=

= -

Â
1

1

2
2 3, , ,

 l
lj

j
a

j n
1

1

11

2 3= = ºººº, , ,

 l
l

l l
jk

kk

jk

s

s k

js ks
a j k k n k= -

Ê

Ë
Á

ˆ

¯
˜ = + + ºººº ≥

=

= -

Â1
1 2 2

1

1

, , , .

 Note that all the coefficients on the leading diagonal of matrix 
L, i.e. l11, l22,…... lnn have taken the positive value. This is one of the 
properties of positive definite matrices and the condition for the 
symmetric matrix A to be positive definite is that the quadratic form 
xTAx is greater than zero for any non-zero vector x. It will be shown 
in Chapter 2 that the structure stiffness matrix is symmetric and 
positive definite.

Example 12

Solve the following set of simultaneous equations by Cholesky’s 
method.
 9x1 – 3x2 + 6x3 = 27
 –3x2 + 5x2 – 4x3 = –3
 6x1 – 4x2 + 6x3 = 16

Solution of Simultaneous Equations
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 In matrix form

 
9 3 6

3 5 4

6 4 6

27

3

16

1

2

3

-
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

x

x

 A = LLT

 l
11 11

9 3= = =a

 l
l21

12

11

3

3
1= =

-
= -

a

 l
l31

13

11

6

3
2= = =

a

 l l
22 22 21

2 2
5 1 2= - = - - =a ( )

 l
l l

l32

23 21 31

22

4 1 2

2
1=

-
=

- - - ¥
= -

a ( )

 l l l
33 33 31

2

32

2 2 2
6 2 1 1= - - = - - - =a ( )

 We have, Ly = b

 
l
l l
l l l

11

21 22

31 32 33

1

2

3

1

2

3

0 0

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í

y

y

y

b

b

bÍÍ

˘

˚

˙
˙
˙

 
3 0 0

1 2 0

2 1 1

27

3

16

1

2

3

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

y

y

y

 By forward substitution, the first row gives,

 y
1

27

3
9= =

 From the second row and with the substitution of y1 = 9

 y
2

3 1 9

2
3=

- +
=

( )( )

 From the third row and with the substitution of y1 = 9 and y2 = 3

 y
3

16 2 9 1 3

1
1=

- + ¥
=

( )( )
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 And from, y = LTx

 
l l l

l l
l

11 21 31

22 32

33

1

2

3

1

2

3

0

0 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í

x

x

x

y

y

yÍÍ

˘

˚

˙
˙
˙

 
3 1 2

0 2 1

0 0 1

9

3

1

1

2

3

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

x

x

x

 By backward substitution, the third row gives,

 x
3

1

1
1= =

 The second row and with the substitution of x3 = 1, we get

 x
2

3 1 1

2
2=

+
=

( )( )

 From the first row and with the substitution of x2 = 2 and x3 = 1 
we get

 x
1

9 1 2 2 1

3
3=

+ -
=

( )( ) ( )( )

(iii) Cramer’s rule:

This method is suitable when the number of simultaneous equations 
is small. As will be seen later it involves the computation of 
determinants and for a large number of simultaneous equations the 
method is not efficient because of the large amount of computer time 
required for the calculation of large determinants. The introduction 
of Cramer’s rule here is mainly to illustrate its use in the derivation 
of a condition for the existence of solutions in a certain class of cases 
known as eigenvalue problems as can be seen in Section 1.4.
 Consider the following two simultaneous equations and find 
their solution, i.e. the unknown variables x1 and x2.
 a11x1 + a12x2 = b1 (1.4)
 a21x1 + a22x2 = b2 (1.5)

From equation (1.5)

 x
b a x

a
2

2 21 1

22

=
-

Solution of Simultaneous Equations
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Substitute in equation (1.4)

 a x a
b a x

a
b

11 1 12

2 21 1

22

1
+

-Ê
ËÁ

ˆ
¯̃

=

 x
b a a b

a a a a

D

D
1

1 22 12 2

11 22 12 21

1=
-
-

=

where D
b a

b a
1

1 12

2 22

=  and D
a a

a a
= 11 12

21 22

 Back substitution in equation (1.5) gives

 x
a

b a
b a a b

a a a a
2

22

2 21

1 22 12 2

11 22 12 21

1
= -

-
-

Ê
ËÁ

ˆ
¯̃

 x
a b b a

a a a a

D

D
2

11 2 1 21

11 22 12 21

2=
-
-

=

where D
a b

a b
2

11 1

21 2

=

 The above is called Cramer’s rule and the condition for the 
existence of a unique solution is that D π 0.

Example 13

Find the unknowns x1 and x2 given by the following two simultaneous 
equations
 2x1 – 3x2 = 12

 5x1 + 4x2 = 7

 D
a a

a a
= =

-
= - - =11 12

21 22

2 3

5 4
2 4 3 5 23( )( ) ( )( )

 D
b a

b a
1

1 12

2 22

12 3

7 4
12 4 3 7 69= =

-
= - -( ) =( )( ) ( )

 D
a b

a b
2

11 1

21 2

2 12

5 7
2 7 12 5 46= = = - = -( )( ) ( )( )

 x
D

D
1

1 69

23
3= = =



19

 
x

D

D
2

2 46

23
2= =

-
= -

1.2.2 Iterative Methods

These methods are particularly useful when dealing with sparsely 
populated matrices, i.e. matrices containing a relatively small 
number of non-zero coefficients. Since only non-zero coefficients 
are involved, this will greatly reduce storage requirements but 
convergence to the final solution might be slow in some cases.
 The procedure is to start the iteration process with assumed 
values of the variables and find new (corrected) values. The iteration 
is continued until a convergence criterion is reached and this is 
defined by the desired degree of accuracy, i.e. x x

i

r

i

r( ) ( )+ - < Œ1  where 
x

i

r( )+1  and x
i

r( )  are the values of the unknown variable xi obtained 
from two successive iteration cycles rth and (r + 1)th and Œ is a small 
prescribed number.

(i) Jacobi method

Example 14

Calculate the unknowns x1, x2, and x3 in the set of simultaneous 
equations below
 4x1 – 2x2 + x3 = 30 (1.6)

 –2x1 + 5x2 – x3 = –29 (1.7)

 x1 –x2 + 3x3 = 20 (1.8)

 From equation (1.6), find x1 in the (r + 1)th cycle from the values 
of x2 and x3 obtained from the rth cycle as

 x x x
r r r

1

1

2 3

1

4
2 30

( ) ( ) ( )
( )

+ = - +

 Similarly find x2 and x3 from equations (1.7) and (1.8) respectively 
as

 x x x
r r r

2

1

1 3

1

5
2 29

( ) ( ) ( )
( )

+ = + -

Solution of Simultaneous Equations
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 x x x
r r r

3

1

1 2

1

3
20

( ) ( ) ( )
( )

+ = - + +

where r is the cycle number in the iteration process
 First cycle: r = 0
 Start the iteration with assumed initial values such as

 x x
1

0

2

0
0 0

( ) ( )
, ,= =  and  x

3

0
0

( ) =

 x x x
1

1

2

0

3

01

4
2 30

1

4
2 0 0 30 7 500

( ) ( ) ( )
.= - +( ) = ( ) - +ÈÎ ˘̊ =

 x x x
2

1

1

0

3

01

5
2 29

1

5
2 0 0 29 5 800

( )
.= + -( ) = ( ) + -ÈÎ ˘̊ = -( ) ( )

 x x x
3

1

1

0

2

01

3
20

1

3
0 0 20 6 667

( ) ( ) ( )
.= - + +( ) = - + +[ ] =

 Second cycle: r = 1, with x1 = 7.500, x2 = –5.800, and x3 = 6.667

 x x x
1

2

2

1

3

11

4
2 30

1

4
2 5 800 6 667 30 2 933

( ) ( ) ( )
. . .= - +( ) = -( ) - +ÈÎ ˘̊ =

 x x x
2

2

1

1

3

11

5
2 29

1

5
2 7 500 6 667 29 1 467

( ) ( ) ( )
. . .= + -( ) = ( ) + -ÈÎ ˘̊ = -

 x x x
3

2

1

1

2

11

3
20

1

3
7 500 5 800 20 2 233

( ) ( ) ( )
. ( . ) .= - + +( ) = - + - +[ ] =

and so on. After twenty-six cycles the values of the unknown 
variables converged to x1 = 5.000, x2 = –3.000, and x3 = 4.000 correct 
to three decimal places.
 (The exact solution is: x1 = 5, x2 = –3, and x3 = 4.)

(ii) Gauss–Seidel method

In this method the new values of the variables are used as soon as 
they are calculated (within the same cycle of iteration). Generally, 
this will lead to faster convergence compared with the Jacobi 
method in which all the variables are calculated first and then they 
are used in the next cycle as explained in the preceding section. In 
order to compare this method with Jacobi method, the same set of 
simultaneous equations is used.
 The new value of x1 is calculated from the old values of x2 and x3

 x x x
r r r

1

1

2 3

1

4
2 30

( ) ( ) ( )
( )

+ = - +
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 The new value of x2 is calculated from new value of x1, as obtained 
above, but the old value of x3.

 x x x
r r r

2

1

1

1

3

1

5
2 29

( ) ( ) ( )
( )

+ += + -

 The new value of x3 is calculated from new values of x1 and x2.

 x x x
r r r

3

1

1

1

2

11

3
20

( ) ( ) ( )
( )

+ + += - + +

 First cycle: r = 0
 Start the iteration with assumed initial values such as

 x x
1

0

2

0
0 0

( ) ( )
, ,= =  and  x

3

0
0

( ) =

 x x x
1

1

2

0

3

01

4
2 30

1

4
2 0 0 30 7 500

( ) ( ) ( )
.= - +( ) = ( ) - +ÈÎ ˘̊ =

 x x x
2

1

1

1

3

01

5
2 29

1

5
2 7 500 0 29 2 800

( )
. .= + -( ) = ( ) + -ÈÎ ˘̊ = -( ) ( )

 x x x
3

1

1

1

2

11

3
20

1

3
7 500 2 800 20 3 233

( ) ( ) ( )
. ( . ) .= - + +( ) = - + - +[ ] =

 Second cycle: r = 1

 x x
1

1

2

1
7 500 2 800

( ) ( )
. , . ,= = -  and  x

3

1
3 233

( )
.=

 x x x
1

2

2

1

3

11

4
2 30

1

4
2 2 800 3 233 30 5 292

( ) ( ) ( )
. . .= - +( ) = -( ) - +ÈÎ ˘̊ =

 x x x
2

2

1

2

3

11

5
2 29

1

5
2 5 292 3 233 29 3 037

( )
. . .= + -( ) = ( ) + -ÈÎ ˘̊ = -( ) ( )

 x x x
3

2

1

2

2

21

3
20

1

3
5 292 3 037 20 3 890

( ) ( ) ( )
. ( . ) .= - + +( ) = - + - +[ ] =

and so on. After seven cycles the values of the unknown variables 
converged to x1 = 5.000, x2 = –3.000, and x3 = 4.000 correct to three 
decimal places.
 It is seen in this example that in the Gauss–Seidel method the 
number of cycles to reach convergence to the final solution correct 
to three decimal places is reduced from twenty six to seven cycles 
as compared with the Jacobi method. The number of cycles to 
convergence can be reduced even further by using the so called 
successive over-relaxation technique which involves calculating a 

Solution of Simultaneous Equations
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new modified (weighted) value for the variables from the following 
relationship:
 [ ] ( )

( ) ( )
x x x

i

r

new i

r

i

r+( ) += + -1 1
1w w , where w is called the over-

relaxation factor.
 So, the procedure is to calculate x

i

r( )+1  as shown in the previous 
example then modify it to [ ]

( )
x

i

r

new

+1  and use the modified value in 
place of x

i

r( )+1 .
 In order to get the fastest convergence we use woptimum whose 
value is in the range 1 to 2. In practice we often deal with the same 
problem many times and in that case it may be worth exploring the 
optimum value of w since this will have a repeated use. A simple 
and straight forward way of finding woptimum is by experimenting 
with different values and finding the one that gives the fastest 
convergence.

1.3 Matrix Inverse

Consider a set of linear simultaneous equations in matrix form as Ax 
= b then the required solution vector x = A–1b where A–1 is called the 
inverse of matrix A, i.e. AA–1 = I where I is the unit matrix. Although 
this is not the best method for determining, x particularly for large 
sets of equations, it is sometimes used to achieve economy when 
dealing with the same matrix but with many values of the right-hand 
vector b.
 A non-singular matrix is a matrix that has an inverse while a 
matrix that does not have an inverse is called a singular matrix.
 Let A–1 = C and premultiply both sides by A, i.e. AA–1 = AC hence 
AC = I.
 So to find A–1 the coefficients of matrix C have to be computed as 
shown below.

 Given matrix A

a a a

a a a

a a a

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 12 13

21 22 23

31 32 33

 and it is required to find its 

inverse which is given by matrix C

c c c

c c c

c c c

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11 12 13

21 22 23

31 32 33

 that is AC = I
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a a a

a a a

a a a

c c c

c c c

c

11 12 13

21 22 23

31 32 33

11 12 13

21 22 23

31

È

Î

Í
Í
Í

˘

˚

˙
˙
˙ cc c

32 33

1 0 0

0 1 0

0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 The expanded form of the above is

 
a a a

a a a

a a a

c

c

c

11 12 13

21 22 23

31 32 33

11

21

31

1È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= 00

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 which is solved to yield the vector

 
c

c

c

11

21

31

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 
a a a

a a a

a a a

c

c

c

11 12 13

21 22 23

31 32 33

12

22

32

0È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= 11

0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 to give the vector 
c

c

c

12

22

32

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 
a a a

a a a

a a a

c

c

c

11 12 13

21 22 23

31 32 33

13

23

33

0È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= 00

1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 leading to the vector 
c

c

c

13

23

33

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 So, in order to find the matrix C, the original set of equations 
is solved n times for n right-hand sides and each time the result 
represents one column of the matrix C. This is not an efficient 
method and a more practical approach to find the inverse of a matrix 
is explained below.

Gauss–Jordan method

This is one of the methods that can be used to compute the inverse of 
a given matrix and is basically an extended form of Gauss elimination 
method. The original matrix is first reduced to an upper triangular 
matrix which in turn is reduced to a unit matrix, I, i.e. with each of 
the coefficients on the main diagonal equal to 1 as explained below.
 Given a matrix A and it is required to find its inverse A–1.
 Consider the augmented matrix [A:I] and premultiply by A–1 then
 A–1[A:I] = [A–1A:A–1] = [I:A–1]

 The process followed in this method is to perform operations 
similar to the Gauss elimination method on A and I simultaneously 
to transform matrix A to a unit matrix I and the unit matrix I to A–1.

Matrix Inverse
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Example 15

Use the Gauss–Jordan method to compute the inverse of matrix

 A =
-

- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5 2 4

2 8 3

4 3 6

 
5 2 4

2 8 3

4 3 6

1 0 0

0 1 0

0 0 1

-
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

:

:

:

Row11

2

3

Row

Row

 
5 2 4

0 7 2 1 4

0 1 4 2 8

1 0 0

0 4 1 0

0 8 0 1

-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙ -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È
. .

. .

:

:

:

.

.ÎÎ

Í
Í
Í

˘

˚

˙
˙
˙
- - ¥ +
- ¥ +
( / )

( / )

2 5 1 2

4 5 1 3

Row Row

Row Row

5 2 4

0 7 2 1 4

0 0 2 528

1 0 0

0 4 1 0

0 722 0 194 1

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙ -

È

Î

Í
Í
Í

˘
. .

.

:

:

:

.

. . ˚̊

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙- - ¥ +( . / . )1 4 7 2 2 3Row Row

 Now make the coefficients of the main diagonal equal to 1 by 
multiplying rows 1, 2 and 3 by 1/5, 1/7.2 and 1/2.528 respectively 
to get:

 
1 0 4 0 8

0 1 0 194

0 0 1

0 2 0 0

0 056 0 139 0

0 286 0 07

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙ -

. .

.

:

:

:

.

. .

. . 77 0 396.

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 The left upper triangular matrix is reduced to a unit matrix as 
follows

1 0 4 0

0 1 0

0 0 1

0 429 0 062 0 317

0 0 154 0 077

0 28

-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- -

-

. :

:

:

. . .

. .

. 66 0 077 0 396

0 8 3 1

0 194

. .

( . )

( . )

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- ¥ +
- - ¥

Row Row

RRow Row3 2+

 
1 0 0

0 1 0

0 0 1

0 429 0 0 286

0 0 154 0 077

0 286 0 077 0

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-

-

:

:

:

. .

. .

. . .3396

0 4 2 1È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- - ¥ +( . ) Row Row
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 The above augmented matrix is equivalent to [I: C], i.e. [I: A–1], 
therefore

 A
- =

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

0 429 0 0 286

0 0 154 0 077

0 286 0 077 0 396

. .

. .

. . .

 Notice that the original matrix is symmetric and its inverse is 
also symmetric.
 Check the result

A A
- =

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

-
1

0 429 0 0 286

0 0 154 0 077

0 286 0 077 0 396

5 2 4. .

. .

. . .

-- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 8 3

4 3 6

1 001 0 0

0 1 001 0

0 0 1 001

.

.

.

 The matrix on the right should be a unit matrix and the small 
differences are due to rounding off the computations to three 
decimal places.
 The inverse of a diagonal matrix is a diagonal matrix with 
coefficients equal to the reciprocals of the corresponding coefficients 
in the original matrix.

 A

a

a

a

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

11

22

33

0 0

0 0

0 0

, then A

a

a

a

- =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

11

22

33

1 0 0

0 1 0

0 0 1

/

/

/

Example 16

Find the inverse of the diagonal matrix, A.

 A =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

10

2 0 0

0 5 0

0 0 4

 A
- =

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

1
1 10

1 2 0 0

0 1 5 0

0 0 1 4

0 050 0 0

0 0 020 0

0 0 0 025

( / )

/

/

/

.

.

.ÎÎ

Í
Í
Í

˘

˚

˙
˙
˙

or,  =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

10

2 0 0

0 5 0

0 0 4

20 0 0

0 50 0

0 0 40

,  A
- =

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

0 050 0 0

0 0 020 0

0 0 0 025

.

.

.

Matrix Inverse
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1.4 Eigenvalues and Eigenvectors

In the application of matrix methods for the solution of stability and 
vibration of structures, as will be seen in Chapters 11 and 12, an 
eigenvalue problem arises. In such cases the right-hand-side vector, 
b, of the set of simultaneous equations is zero and a trivial solution 
for the unknown vector x is zero. A non-trivial solution can be 
obtained by the so called eigenvalue procedure which is explained 
below.

1.4.1 The Algebraic Method

Consider the following set of equations
 A11x1 + A12x2 + A13x3 = lx1

 A21x1 + A22x2 + A23x3 = lx2

 A31x1 + A32x2 + A33x3 = lx3

Which can be written as Ax = lx or (A – lI)x = 0, where 

A =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

a a a

a a a

a a a

11 12 13

21 22 23

31 32 33

, x

x

x

x

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

, 
1 0 0

0 1 0

0 0 1

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

 and l is a constant called 

the eigenvalue of matrix A, thus
 (a11 – l) x1 + a12x2 + a13x3 = 0

 (a21x1 + (a22 – l)x2 + a23x3 = 0

 a31x1 + a32x2 +(a33 – l)x3 = 0

 A set of equations with the right-hand-side vector b, equal to 
zero is called a homogeneous system of simultaneous equations. The 
solution for the unknown vector, x, is given by Cramer’s rule as

 x
D

D
x

D

D
and x

D

D
1

1

2

2

3

3= = =, ,

where, D

b a a

b a a

b a a

1

1 12 13

2 22 23

3 32 33

= -
-

l
l

, D

a b a

a b a

a b a

2

11 1 13

21 2 23

31 3 33

=
-

-

l

l
, and
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 D

a a b

a a b

a a b

3

11 12 1

21 22 2

31 32 3

=
-

-
l

l .

 A determinant with zero coefficients in any column is equal to 
zero and since

 b

b

b

b

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

0

0

0

 then D1 = 0, D2 = 0, and D3 = 0.

 x
D

D D
x

D

D D
and x

D

D D
1

1

2

2

3

30
0

0
0

0
0= = = = = = = = =, , .

 The above solution vector x = 0 is called the trivial solution of the 
set of simultaneous equations.
 A non-trivial solution exists, i.e. the vector x does not equal to 
zero if the determinant D of the matrix (A – lI) is zero.
 In this case, x1 = D1/D = 0/0 which is not defined, i.e. indeterminate 
and can have any value. Similarly, x2 = D2/D = 0/0 and x3 = D2/D = 
0/0. The condition of D = 0 will give the required values of l.

Example 17

Find the eigenvalues and eigenvectors of the following matrix given 
by the following two homogeneous equations:
 3x1 – x2 = lx1

 –6x1 – 4x2 = lx2

which can be written as:
 (3 – l)x1 – x2 = 0 (1.9)

 –6x1 + (4 – l)x2 = 0 (1.10)

or, ( ) ,A I x where x
x

x
- = =

È

Î
Í

˘

˚
˙l 0

1

2

.

 The trivial solution of the above equations is x1 = 0 and x2 = 0, but 
a non-trivial solution exists if the determinant of matrix (A – lI) is 
equal to zero.

Eigenvalues and Eigenvectors
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 A I- =
-

-
È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

- -
l l

l
l

l3 1

6 4

1 0

0 1

3 1

6 4

0

0

3 11

6 4- -
È

Î
Í

˘

˚
˙l

 D A I= - =
- -
- -

= - - - - -det( ) ( )( ) ( )( )l
l

l
l l

3 1

6 4
3 4 1 6

 D = l2 – 7l + 6

 The eigenvalues are given by D = 0, i.e. the roots of l2 – 7l + 6 
= 0 which is called the characteristic equation of matrix A and is a 
polynomial of degree 2 since A in this case is a 2¥2 matrix, hence 
there are two roots.
 (For an n¥n matrix, the characteristic equation is a polynomial of 
degree n with n roots, i.e. n eigenvalues)
 The solution of the above quadratic equation is given by:

 l =
± - -

=
7 7 4 6

2
1 6

2
( ) ( )( )

and

 Therefore, the eigenvalues of matrix A are: l1 = 1 and l2 = 6
 For each eigenvalue there is a corresponding eigenvector, x, i.e. 
values of the unknowns, in this case, x1 and x2 as shown here.
 Substitute l1 = 1 in equations (1.9) and (1.10)
 (3 – 1)x1 – x2 = 0 (1.9a)

 –6x1 + (4 – 1)x2 = 0 (1.10a)

or

 2x1 – x2 = 0

 –6x1 + 3x2 = 0

 The second equation gives x2 = 2x1
 Putting an arbitrary value of x1 = 1 will give x2 = 2 and the 
eigenvector is

 x
x

x
=

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

1

2

1

2

 The values of the unknowns are not absolute but rather relative to 
each other and for this reason the vector of unknowns is sometimes 
normalised by making the largest coefficient in absolute value equal 
to unity. Thus dividing the above vector by 2 to give:
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 x
x

x
=

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

1

2

1

2

0 500

1 000
a

.

.
 where a is any scalar multiplier.

 Substitute l2 = 6 in equations (1.9) and (1.10)
 (3 – 6)x1 – x2 = 0 (1.9b)

 –6x1 + (4 – 6)x2 = 0 (1.10b)

or

 –3x1 – x2 = 0

 –6x1 + 2x2 = 0

 The second equation gives x2 = –3x1.
 Putting an arbitrary value of x1 = 1 will give x2 = –3 and the 
eigenvector is

 x
x

x
=

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙

1

2

1

3
.

 The values of the unknowns are not absolute but rather relative to 
each other and for this reason the vector of unknowns is sometimes 
normalised by making the largest coefficient in absolute value equal 
to unity. Thus dividing the above vector by 3 to give the normalised 
eigenvector

 x =
-

È

Î
Í

˘

˚
˙b

0 333

1 000

.

.
 where β is any scalar multiplier.

 To summarise:
 Eigenvalue l1 = 1 and the corresponding normalised eigenvector, 

x =
È

Î
Í

˘

˚
˙

0 500

1 000

.

.
.

 Eigenvalue l2 = 6 and the corresponding normalised eigenvector, 

x =
-

È

Î
Í

˘

˚
˙

0 333

1 000

.

.
.

 Note that the trace of a matrix, which is defined as the sum of 
the coefficients of the main diagonal, is equal to the sum of the 
eigenvalues of the matrix.
 Trace 3 + 4 = 7 and the sum of eigenvalues = l1 + l2 = 1 + 6 = 7 
and this will provide a check on the previous computations.

Eigenvalues and Eigenvectors
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 In the above example, we had two equations and the determinant 
resulted in a quadratic characteristic equation, i.e. a polynomial of 
the second degree whose two roots were calculated algebraically.
 In the analysis of structures by matrix methods we often deal with 
large sets of equations and the degree of the resulting polynomials 
will be high. The algebraic method of finding the roots of these 
polynomials is not practical and other more efficient methods are 
used such as the one explained in the next section.

1.4.2 The Direct Evaluation of Determinant

In the preceding section, a polynomial was obtained as the 
characteristic equation. The eigenvalues are the roots of the 
polynomial which were found algebraically. The degree of the 
resulting polynomial is equal to the number of equations and for 
large sets of equations the algebraic method of solution to calculate 
the roots is not practical. One of the alternative methods is the direct 
evaluation of the determinant for different values of l and finding 
the eigenvalues by either tabular or graphical methods as shown in 
the following example.

Example 18

Use the direct evaluation of determinant method to calculate the 
eigenvalues and eigenvectors of the matrix:

 A =
-

- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5 2 4

2 9 3

4 3 8

 A I- =
- -
- - -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

l
l

l
l

5 2 4

2 9 3

4 3 8

 det A I D-( ) = =
- -
- - -

- -
l

l
l

l

5 2 4

2 9 3

4 3 8

 The determinant D is calculated for different values of l and 
the eigenvalues of matrix A are those which give D = 0. This occurs 
between points where D changes sign and the values of l are 
calculated by interpolation as shown below.
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l D l D l D
1 80 6 –5 11 110
2 11 7 26 12 91
3 –26 8 59 13 44
4 –37 9 88 14 –37
5 –28 10 107 15 –158

 By linear interpolation: D = 0 when

 l
1

2
11

11 26
2 297= +

+
= .

 l
2

6
5

5 26
6 161= +

+
= .

 l
3

13
44

44 37
13 543= +

+
= .

 Sum of eigenvalues = l1 + l2 + l3 = 2.297 + 6.161 + 13.543 = 
22.001, and as a check, this should be equal to the trace of the 
matrix which is defined as the sum of the coefficients on the leading 
diagonal of the matrix.
 Trace = 5 + 9 + 8 + = 22 , which agrees with the sum of eigenvalues.
 Alternatively, the eigenvalues can be found by plotting D against 
l and the points where the curve intersects with the l axis give the 
required eigenvalues as shown below.

-200

-150

-100

-50

0

50

100

150

0 2 4 6 8 10 12 14 16

D

λ
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 The eigenvectors of a matrix represent solutions of the unknown 
variables for the different eigenvalues of the matrix.

 
5 2 4

2 9 3

4 3 8

0

0

0

1

2

3

- -
- - -

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙

l
l

l

x

x

x ˙̇

 Let x1 = 1 and delete the first row.
 The second and third rows become
 (9 – l)x2 – 3x3 = 2

 –3x2 + (8 – l)x3 = –4

 Substitute the first eigenvalue, i.e. l = l1 = 2.297 to get
 6.703x2 – 3x3 = 2

 –3x2 + 5.703x3 = –4

 The solution of the above simultaneous equations is:
 x2 = –0.020 and x3 = –0.712. So the full solution vector is:

 x

x

x

x

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

1 000

0 020

0 712

.

.

.

.

 Similarly, for l = l2 = 6.161, we get x

x

x

x

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

1 000

2 202

1 417

.

.

.

 Divide by 2.202 to get the normalised eigenvector x =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 454

1 000

0 644

.

.

.

 Similarly, for l = l3 = 13.543, we get 
x

x

x

1

2

3

1 000

1 427

1 494

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

.

.

.

 and the 

normalised eigenvector is x = -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 669

0 955

1 000

.

.

.

.
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 To summarise:

	 l1 = 2.297, the corresponding eigenvector is x = -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 000

0 020

0 712

.

.

.

,

	 l2 = 6.161, x =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 454

1 000

0 644

.

.

.

,  and for l3 = 13.543, x = -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 669

0 955

1 000

.

.

.

.

 There are other more efficient methods for the determination 
of matrix eigenvalues particularly when dealing with large sets of 
simultaneous equations. These methods are beyond the scope of 
this book and the reader can refer to specialised literature on the 
subject.

Example 19

Given matrix A =
- -È

Î
Í

˘

˚
˙

8 3

1 7
 and matrix B =

È

Î
Í

˘

˚
˙

2 4

3 5
, find the 

eigenvalues l and the corresponding eigenvectors of the following 
relationship:
 (A – lB) = 0

 In order to reduce the above equation to a standard eigenvalue 
problem premultiply by the inverse of matrix B, i.e.
 (B–1A – lB–1B) = 0

 (B–1A – lI) = 0 or (C – lI) = 0, where C = B–1A

 B
-

-

=
È

Î
Í

˘

˚
˙ =

-
-

È

Î
Í

˘

˚
˙

1

1
2 4

3 5

2 5 2 0

1 5 1

. .

.
,

  (check B B I
- =

-
-

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ =1

2 5 2 0

1 5 1

2 4

3 5

1 0

0 1

. .

.
)

 C B A= =
-

-
È

Î
Í

˘

˚
˙

- -È

Î
Í

˘

˚
˙ =

- -
È

Î
-1

2 5 2 0

1 5 1

8 3

1 7

22 0 21 5

13 0 11 5

. .

.

. .

. .
ÍÍ

˘

˚
˙

 ( )
. .

. .

. .

.
C I- =

- -
È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

-
-

l l
l22 0 21 5

13 0 11 5

1 0

0 1

22 0 21 5

13 00 11 5- -
È

Î
Í

˘

˚
˙

. l
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 Det
22 0 21 5

13 0 11 5
22 0 11 5 21 5 13

. .

. .
. . . .

-
- - -

È

Î
Í

˘

˚
˙ = -( ) - -( ) - -

l
l

l l 00 0( ) =

	 l2 – 10.5l + 26.5 = 0

 l l
1 2

2
10 5 10 5 4 26 5

2
4 22 6 28,

. ( . ) ( )( . )
. . .=

± - -
= and

 Calculation of eigenvectors
 (C – lI)x = 0

 
22 0 21 5

13 0 11 5

0

0

1

2

. .

. .

-
- - -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

l
l

x

x

	 l1 = 4.22

 
22 0 4 22 21 5

13 0 11 5 4 22

0

0

1

2

. . .

. . .

-
- - -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

x

x

 17.78x1 + 21.50x2 = 0

 –13.00x1 – 15.72x2 = 0

 Let, x1 = +1.00 and from the second of the above two equations, 
we get

 x
2

13 00

15 72
0 83= - = -

.

.
.

 The first eigenvector is: 
x

x

1

2

1 00

0 83

È

Î
Í

˘

˚
˙ =

+
-

È

Î
Í

˘

˚
˙

.

.
.

 Similarly, for l2 = 6.28, the second eigenvector is: 
x

x

1

2

1 00

0 73

È

Î
Í

˘

˚
˙ =

+
-

È

Î
Í

˘

˚
˙

.

.
.

 Alternatively, particularly when matrix inversion is to be avoided

 A B-( ) =
- -È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

- - - -
- -

È

Î
Í

˘

˚
˙l l

l l
l l

8 3

1 7

2 4

3 5

8 2 3 4

1 3 7 5

 Det
- - - -

- -
È

Î
Í

˘

˚
˙ = - + - =

8 2 3 4

1 3 7 5
2 21 53 0

2
l l

l l
l l

	 l2 – 10.521l + 26.5 = 0 which is the same characteristic equation 
obtained previously and its roots are
	 l1 = 4.22 and l2 = 6.28.
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 The eigenvectors are given by

 
- - - -

- -
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

8 2 3 4

1 3 7 5

0

0

1

2

l l
l l

x

x
.

 For l1 = 4.22

 
- - ¥ - - ¥

- ¥ - ¥
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚

8 2 4 22 3 4 4 22

1 3 4 22 7 5 4 22

0

0

1

2

. .

. .

x

x
˙̇

 
- -
- -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

16 44 19 88

11 66 14 10

0

0

1

2

. .

. .

x

x

 Let, x1 = +1.00 and from the second of the above two equations, 
we get

 x
2

11 66

14 10
0 83= - = -

.

.
. .

 The first eigenvector is: 
x

x

1

2

1 00

0 83

È

Î
Í

˘

˚
˙ =

+
-

È

Î
Í

˘

˚
˙

.

.
.

 Similarly, for l2 = 6.28, the second eigenvector is: 
x

x

1

2

1 00

0 73

È

Î
Í

˘

˚
˙ =

+
-

È

Î
Í

˘

˚
˙

.

.
.

Problems

 P1.1. Given, A =
-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3 1 2

4 6 4

5 3 4

 and B =
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 5 1

4 1 4

2 3 5

,

  find A + B and A – B.
Answer:

  A B+ =
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5 4 3

8 7 0

7 0 1

, A B- =
-
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 6 1

0 5 8

3 6 9

 P1.2. Given, A = [5  –7  4] and B =
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3

6

2

, find AB.

Answer:
  AB = [–35]

Eigenvalues and Eigenvectors
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 P1.3. Given, A =
-È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4

2

5

 and B = [6  4  –3], find AB.

Answer:

  AB =
- -

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

24 16 12

12 8 6

30 20 15

 P1.4. Given, A =
-

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 1 4

4 5 2

3 6 1

 and B =
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

5

6

3

, find AB.

Answer:

  AB = -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

28

16

54

 P1.5. A =
-

-
È

Î
Í

˘

˚
˙

5 2

4 6
 and B =

-
-

È

Î
Í

˘

˚
˙

3 6

5 2
,  find 3AB.

Answer:

  3AB = 
-
- -

È

Î
Í

˘

˚
˙

15 78

54 36

 P1.6. Given, A =
-È

Î
Í

˘

˚
˙

2 1

5 3
, B =

-
-

È

Î
Í

˘

˚
˙

4 3

2 5
, and C =

-
-

È

Î
Í

˘

˚
˙

3 5

4 2
,  find 

ABC.
Answer:

  ABC =
-
-

È

Î
Í

˘

˚
˙

74 72

42 70

 P1.7. Given, A =
-

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4 1 2

0 3 4

5 2 6

, B = -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

2 5 0

3 6 7

4 1 5

, and

  C =
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3 5 4

2 1 2

6 3 4

,  find ABC.
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Answer:

  ABC = - -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

207 68 56

349 16 36

34 51 118

 P1.8. Given, A =
-

È

Î
Í

˘

˚
˙

3 6

5 2
 and B =

-
È

Î
Í

˘

˚
˙

2 4

3 5
. Show that (AB)T = BTAT.

Answer:

  ( )AB B A
T T T=

-È

Î
Í

˘

˚
˙ =

12 16

42 10

 P1.9. Find the determinant of the following matrices:

  ( )i
6 5

3 4

È

Î
Í

˘

˚
˙ , ( )ii

5 4

3 7-
È

Î
Í

˘

˚
˙ , ( )iii

4 6

2 5-
È

Î
Í

˘

˚
˙ ,

    ( )iv
3 4

6 8

È

Î
Í

˘

˚
˙ , ( ) .v

7 2 4

2 5 3

6 4 1

-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Answer:
  (i) 9, (ii) –47, (iii) 32, (iv) 0, (v) 143
 P1.10. Use Gauss elimination to calculate the unknowns x1, x2, and 

x3 that satisfy the following three simultaneous equations:
  4x1 – x2 – 5x3 = 3
  –2x1 + 5x2 + 3x3 = –9
  –3x1 + 4x2 + 8x3 = 4
Answer:
  x1 = 4, x2 = –2, x3 = 3
 P1.11. Use Cholesky’s method to calculate the unknowns x1, x2, 

and x3 in the following simultaneous equations:
  6x1 – x2 + 3x3 = –8
  –x1 + 8x2 – 2x3 = 11
  3x1 – 2x2 + 5x3 = 7
Answer:
  x1 = –3, x2 = 2, x3 = 4
 P1.12. Use Jacobi iteration to calculate the unknowns x1, x2, and x3 

in the following equations:
  5x1 – x2 + 2x3 = 20

Eigenvalues and Eigenvectors
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  –x1 + 7x2 – 4x3 = –42
  2x1 – 4x2 + 6x3 = 38
Answer:
  x1 = 2, x2 = –4, x3 = 3
 P1.12. Repeat P.1.10 to find the unknowns by using Gauss–Seidel 

iteration and compare the required number of iterations 
with that obtained by the Jacobi iteration method to achieve 
the same accuracy.

 P1.13. Use Gauss–Jordan method to compute the inverse of the 
matrix

  
7 2 3

2 8 4

3 4 5

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Answer:

  
0 857 0 786 1 143

0 786 0 929 1 214

1 143 1 214 1 857

. . .

. . .

. . .

-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙̇

 P1.14. Calculate the eigenvalues and normalised eigenvectors of 
the matrix

  
6 8

1 4

È

Î
Í

˘

˚
˙

Answer:

  l
1

1

2

2
1

0 50
=

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙,

.

x

x
, l

2

1

2

8
1

0 25
=

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙,

.

x

x

 P1.15. Calculate the eigenvalues and normalised eigenvectors of 
the matrix

  
4 1 2

1 7 3

2 3 6

-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Answer:

  l
1

1

2

3

1 525

1 000

0 676

0 901

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

. ,

.

.

.

x

x

x

, l
2

1

2

3

5 876

1 000

0 691

0 592

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

. ,

.

.

.

x

x

x

,
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  l
3

1

2

3

9 600

0 143

1 000

0 911

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

. ,

.

.

.

x

x

x

 P1.16. Given matrix A =
-

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

8 1 3

1 4 0

3 0 7

 and matrix B =
-

-
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

4 2 0

2 6 3

0 3 5

,  

find the eigenvalues l and the corresponding normalised 
eigenvectors of the following relationship:

  (A – lB) = 0
Answer:

  l
1

1

2

3

0 530

0 253

1 000

0 191

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
+
-
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

. ,

.

.

.

x

x

x

, l
2

1

2

3

0 985

0 875

0 187

1 000

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
+
-
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

. ,

.
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.

x

x

x
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  l
3

1

2

3

5 423

1 000

0 928

0 900

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
+
+
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙
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.

.

.
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x

x
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2.1 Bar Element Subjected to an Axial Force

In order to illustrate the general principles of matrix methods for 
the analysis of structures, the simplest type of element will be 
considered in this chapter and treated in detail first. This will make it 
easy for the reader to follow and grasp the basic principles involved 
in the derivation of a stiffness matrix and the process of computing 
the resulting displacements and forces developed in the members of 
the structure. The element of this type is subjected to an axial force, 
causing either uniform tensile or compressive stress across the whole 
cross section. Consequently, the element will deform by increasing 
or decreasing in length depending on whether it is in tension or 
compression. The complete analysis of an isolated individual bar 
by classical methods is quite straight forward and quick. But its 
treatment here by matrix methods is to show the process and general 
principles followed in the derivation of relationships between the 
various variables involved. These principles can be applied for the 
treatment of more complicated structures as will be seen later.

2.1.1 Derivation of Stiffness Matrix

The equation relating the change in length of a bar subjected to an 
axial force can be derived from elementary mechanics of materials 
as follows:

Chapter 2

General Principles

Analysis of Structures by Matrix Methods
Fathi Al-Shawi
Copyright © 2023 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4968-19-5 (Hardcover), 978-1-003-29130-5 (eBook)
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 Axial force = stress ¥ cross-sectional area
 X = sA

 Stress = strain ¥ modulus of elasticity
	 s = eE

 Strain
change in length

initial length
=

 e =
u

L

Therefore, X
EA

L
u=  (2.1)

where X is the applied axial force,
 u is the change in length,
 L is the initial length of the bar,
 A is the cross-sectional area, and
 E is the modulus of elasticity of the material of the bar.
 The stiffness matrix of a bar is the relationship between the 
forces and displacements at the ends of the bar.
 The derivation of the stiffness matrix is based on the local 
coordinates system x y z, ,  with the x -axis running along the axis of 
the bar. The displacements and forces are relative to the local x -axis 
thus they are written with a bar.
 Consider a bar subjected to axial forces X

i
 and X

j
 acting at the 

nodes i and j respectively. The corresponding axial displacements at 
the ends of the bar are u

i
 and u

j
 as shown in Fig. 2.1 and we want to 

derive a relationship between these displacements and forces acting 
at the nodes.

z–

–

– –

, z

Xi

ui

i

L

x,xXj

uj

j
– –

Figure 2.1 Bar element.
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 The derivation is carried out in two stages using a single prime 
for the first stage and double primes for the second. In the first stage 
assume that node i undergoes a displacement of u

i
 along the x -axis 

and node j is fixed as shown in Fig. 2.2, then

 X X and u u
i i

= =¢

z–

–

– – –

, z

Xi′

ui

i
x, xXj′

j

Figure 2.2

 Substituting these values in equation (2.1) to get:

 X
EA

L
u single prime is used for this case

i i

¢ = ( )

From equilibrium of forces in the x -direction

 X X giving X X
i j j i

¢ ¢ ¢ ¢+ = = -0

 X
EA

L
u

j i

¢ = -

 For the second stage, assume that node j undergoes a 
displacement of u

j
 along the x -axis and node i is fixed as shown in 

Fig. 2.3, then

 X X and u u
j j

= =¢¢

x, xXj′′

uj

j

z,z

i
X– –

–

–

–

i
′′

Figure 2.3
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 Substituting these values in equation (2.1) to get:

 X
EA

L
u double prime is used for this case

j j

¢¢ = ( )

 From equilibrium of forces in the x -direction

 X X giving X X
i j i j

¢¢ ¢¢ ¢¢ ¢¢+ = = -0

 X
EA

L
u

i j

¢¢ = -

 The final result is obtained by combining the above two cases, 
thus

 X X X
i i i

= +¢ ¢¢

 X
EA

L
u

EA

L
u

i i j
= -  (2.2)

 X X X
j j j
= +¢ ¢¢

 X
EA

L
u

EA

L
u

j i j
= - +  (2.3)

 Equations (2.2) and (2.3) are written in matrix form as:

 
X

X

EA

L

EA

L

EA

L

EA

L

u

u

i

j

i

j

È

Î
Í
Í

˘

˚
˙
˙

=
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î
Í

˘

˚
˙  (2.4)

 The above relationship can be written as:

 F k= d  (2.5)

 where k

EA

L

EA

L

EA

L

EA

L

is the stiffness matrix of a ba=
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

rr element

subjected to axial forces at its ends and d
d

d
=

È

Î
Í
Í

˘

˚
˙
˙

i

j

 is the displacement 

vector which is composed of the displacements at nodes i and j.
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 Since there is only one degree of freedom, namely the  
translational displacement u  in the x -direction, it follows that, 
d

i i
u=  and d

j j
u= , thus

 d =
È

Î
Í

˘

˚
˙

u

u

i

j

 The right-hand side of (2.4) is the load vector which is composed 
of the forces at nodes i and j and these correspond to the relevant 
displacements, i.e.

 F
F

F

X

X

i

j

i

j

=
È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í
Í

˘

˚
˙
˙

 The above relationships can alternatively be derived by a finite 
element approach using the so-called interpolation polynomial 
which defines the displacement along the element as explained in 
Appendix 1.

2.1.2 The Overall Structure Matrix

The overall stiffness matrix is assembled relative to global coordinate 
system. So, the first step is to find the stiffness matrices of the bar 
elements relative to the global coordinate system. Since the local 
x -axis coincides with the global x-axis then the stiffness matrices 
and displacements derived relative to local coordinates will have 
the same values relative to global coordinates. Thus u u

i i
= , u u

j j
= , 

X X
i i

=  and X X
j j
= , and the relations in (2.4) become

 

EA

L

EA

L

EA

L

EA

L

u

u

X

X

i

j

i

j

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙  (2.6)

where k

EA

L

EA

L

EA

L

EA

L

u

u
and F

X

X

i

j

i

j

=
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙, ,d

 Thus (2.6) in terms of global coordinates is written as:
 kd = F (2.7)

Bar Element Subjected to an Axial Force
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The stiffness matrix is written in the following general form

 k
k k

k k
where k

EA

L
k

EA

L
k

EA

L
and k

ii ij

ji jj

ii ij ji j
=

È

Î
Í
Í

˘

˚
˙
˙

= = - = -, , ,
jj

EA

L
=

 Note that the element stiffness matrix is symmetric since kij = kji.
 One of the steps in the analysis of a structure by matrix methods 
is the assembly of the overall structure stiffness matrix which is 
built up from the stiffness matrices of its constituent (individual) 
elements. Thus, for the overall structure the general relationship is
 Kd = F (2.8)

where K is overall stiffness matrix of the structure, d is the vector 
of displacements at the nodes, and F is the load vector of external 
forces acting at the nodes of the structure with all these quantities 
written relative to global coordinates.
 When the local x -axis of any member of the structure does not 
coincide with the global x-axis transformation from local coordinates 
to global coordinates is required as will be explained in subsequent 
chapters.

Example 1

Calculate the displacements and the forces developed at nodes 1, 2, 
and 3 of the stepped aluminium bar shown in Fig. 2.4 which is free at 
node 1 and fixed at node 3 for the following data:
 Element 1, L1 = 0.42 m, A1 = 150 ¥ 10–6 m2,
 Element 2, L2 = 0.56 m, A2 = 240 ¥ 10–6 m2,
 The modulus of elasticity E = 70 ¥ 106 kN/m2.

3 kN

node

1
node

2
node

3
RX 3

element 2element 1

Figure 2.4

 This example will be treated in detail showing the calculations 
step by step to highlight the general procedure followed in a typical 
computer program.
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Element stiffness matrices

These are obtained from (2.6) as shown below.

Element 1

 EA

L
kN m=

¥ ¥ ¥
=

-
70 10 150 10

0 42
25000

6 6

.
/

From (2.6a)

 k

k k

k k

ii ij

ji jj

1

1 1

1 1

25000 25000

25000 25000
=

-
-

È

Î
Í

˘

˚
˙ =

È

Î
Í
Í

˘

˚
˙
˙

 (superscript 1 indicates element 1)

 i e k k k k
ii ij ji jj

. ., , , ,
1 1 1 1

25000 25000 25000 25000= = - = - =

Element 2

 EA

L
kN m=

¥ ¥ ¥
=

-
70 10 240 10

0 56
30000

6 6

.
/

 k

k k

k k

ii ij

ji jj

2

2 2

2 2

30000 30000

30000 30000
=

-
-

È

Î
Í

˘

˚
˙ =

È

Î
Í
Í

˘

˚
˙
˙

 (superscript 2 indicates element 2)

 i e k k k k
ii ij ji jj

. ., , , ,
2 2 2 2

30000 30000 30000 30000= = - = - =

Assembly of the overall structure stiffness matrix

The overall structure stiffness matrix K in (2.8), is assembled by 
starting with a square matrix of order n where n is the total number 
of degrees of freedom. Since there is only one degree of freedom at 
each of the three nodes, namely the displacement u in the x direction, 
it follows that the overall structure stiffness matrix is a 3¥3 matrix 
whose coefficients are denoted by Kij where the subscripts i and j 
refer to the number of row and number of column, respectively. Thus

 

K

u u u

K K K

K K K

K K K

u

u

u

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1 2 3

11 12 13

21 22 23

31 32 33

1

2

3

Bar Element Subjected to an Axial Force
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 In order to find the coefficients of the above matrix, it is useful 
to relate the element address to the structure address as explained 
below.
 Element 1 has its i node at node1 of the structure and its j node 
at node 2 of the structure. This leads to the following relationship 
between element address and structure address.

  Element 1 address    i j
  The corresponding structure address 1 2

 From the above correspondence between nodes 1 and 2 of the 
structure and the element nodes, i and j, it follows that element 1 
will contribute to the coefficients of the overall structure stiffness 
matrix K as shown below:

subscript of coefficient in K 11 12 21 22
subscript of contributing coefficient from k1 ii ij ji jj

 So the contribution of element 1 to the overall structure matrix is

 
K k K k K k

K k

ii ij ji

jj

11

1 1

12

1 1

21

1 1

22

1

25000 25000 25000= = = = - = = -

=

, , ,

11
25000=

 Element 2 has its i node at node 2 of the structure and its j node 
at node 3 of the structure. This leads to the following relationship 
between element address and structure address.

  Element 2 address    i j
  The corresponding structure address 2 3

 From the above correspondence between nodes 2 and 3 of the 
structure and the element nodes i and j, it follows that element 2 will 
contribute to the coefficients of the overall structure stiffness matrix 
K as shown below:

subscript of coefficient in K 22 23 32 33
subscript of contributing coefficient from k2 ii ij ji jj

 So the contribution of element 2 to the overall structure matrix is

 
K k K k K k

K k

ii ij ji

jj

22

2 2

23

2 2

32

2 2

33

2

30000 30000 30000= = = = - = = -

=

, , ,

22
30000=
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 Note that the superscript in k indicates the number of the element 
and superscript in K indicates the number of the contributing 
element to the overall stiffness matrix.
 Steps in the construction of the overall structure stiffness  
matrix K

 (1) Write the value of zero for all coefficients and call it the zero 
matrix K°. Parts of this matrix will be filled and the rest will 
remain to have zeros as can be seen later.

u1 u2 u3

0 0 0 u1

K° = 0 0 0 u2

0 0 0 y3

  Strictly speaking, the above table should be written in the 
usual matrix notation but the use of tabular form, here and 
in other parts of the book, makes the presentation clearer 
particularly when one matrix is superimposed on another.

 (2) Enter the contribution of element 1 and call it K1

u1 u2 u3

k
ii

1
25000( )= k

ij

1
25000( )= - 0 u1

K1 = 
k

ji

1
25000( )= - k

jj

1
25000( )= 0 u2

0 0 0 u3

  (The superscript in K indicates the number of the contributing 
element, in this case it is element 1.)

 (3) Enter the contribution of element 2 and call it K2

u1 u2 u3

0 0 0 u1

K2 = 0 k
ii

2
30000( )= k

ij

2
30000( )= - u2

0 k
ji

2
30000( )= - k

jj

2
30000( )= u3

  (The superscript in K indicates the number of the contributing 
element, in this case it is member 2.)

Bar Element Subjected to an Axial Force
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 (4) The final overall structure matrix K is obtained by adding the 
contributions of all elements of the structure, i.e. K = K° + K1 
+ K2 simply by superimposing them one on top of the other to 
get

u1 u2 u3

k
ii

1
25000( )= k

ij

1
25000( )= - 0 u1

K = k
ji

1
25000( )= -

k k
jj ii

1 2+

( )= +25000 30000

k
ij

2
30000( )= - u2

0 k
ji

2
30000( )= - k

jj

2
30000( )= u3

 K =
-

- -
-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

25000 25000 0

25000 55000 30000

0 30000 30000

 (2.9)

 To summarise the procedure of assembly of the overall structure 
matrix K is to start with all the coefficients equal to zero and then 
dumping kii, kij, kji, and kjj of the element stiffness sub-matrices in the 
appropriate location in the K matrix.

 The displacement vector, d
d
d
d

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

 consists of the displacements 

at the three nodes.
 Since there is only one degree of freedom at each node which 
is the translation u in the global x-direction it follows that, d1 = u1,  
d2 = u2, and d3 = u3, therefore

 d =
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

u

u

u

1

2

3

 (2.10)

Load vector

The external load vector F

F

F

F

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

 consists of the external forces 

(loads) acting at the nodes and since there is only one degree of 
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freedom at each node these forces will be acting in the direction of 
that degree of freedom. Thus F1 = X1, F2 = X2, and F3 = X3, therefore

 F

X

X

X

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

 The forces X1, X2, and X3 are the external forces applied to the 
structure at the nodes 1, 2, and 3, respectively, and are written 
relative to the global coordinates. Therefore, at node 1, X1 = +3 kN 
and at node 2, X2 = 0. At node 3 where the bar (structure) is fixed 
the displacement is known (i.e., u3 = 0) but the force, which is the 
reaction of the support on the structure, is unknown. If we denote 
the reaction by RX3 then the force at node 3, X3, will take the value of 
RX3. Hence the load vector F is:

 F

R
X

=
+È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3

0

3

 (2.11)

Setting up the full set of equations

Substituting (2.9), (2.10), and (2.11) in (2.8) to get

 
25000 25000 0

25000 55000 30000

0 30000 30000

1

2

3

-
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

Èu

u

uÎÎ

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

3

0

3
R

X

 (2.12)

 The structure matrix in (2.9) and (2.12) is singular, i.e. its 
determinant is equal to zero. Therefore it has no inverse and 
consequently no unique solution can be obtained and the structure 
will move as a rigid body. In order to obtain a solution, some 
constraints must be imposed on the structure and these are called 
the boundary conditions as shown in the following section.
 The relationship in (2.12) can be written as a set of simultaneous 
equations
 25000u1 – 25000u2 + 0u3 = 3 (2.12a)

 –25000u1 + 55000u2 – 30000u3 = 0 (2.12b)

 –0u1 – 30000u2 + 30000u3 = RX3 (2.12c)

Bar Element Subjected to an Axial Force
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Applying the boundary conditions

The next step is to introduce the boundary conditions (constraints) 
which in this case is the fixed end, i.e. node 3, thus u3 = 0 resulting 
in the so-called reduced matrix. This can be enforced by deleting 
the corresponding row (number 3) and the corresponding column 
(number 3) to give
 25000u1 – 25000u2 = 3

 –25000u1 + 55000u2 = 0

 Notice that the determinant of the matrix 
25000 25000

25000 55000

-
-

È

Î
Í

˘

˚
˙  

is not zero, therefore it is non-singular and there exists a unique 
solution of the above simultaneous equations.

Solution of the reduced set of equations

The above two simultaneous equations are solved by any of the 
methods explained in Chapter 1 to give the displacements as u1 = 
0.00022 m and u2 = 0.00010 m. With the boundary condition at the 
fixed end, i.e. u3 = 0, the full displacement vector is:

 d
d
d
d

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

1

2

3

1

2

3

0 00022

0 00010

0

u

u

u

.

.
˙̇
˙
˙

Calculation of reactions at the constrained nodes

These are usually calculated from the appropriate equations of the 
original (unreduced) matrix by using the values of the displacements 
obtained from the previous step.
 The reactions at the nodes where there are constraints are 
calculated relative to global coordinates. In this example there is 
only one reaction RX3 at the support (node 3) and is obtained from 
(2.12c)
 –30000u2 + 30000u3 = RX3

 RX3 = –30000 ¥ 0.00010 + 30000 ¥ 0 = –3.00 kN

 The negative sign means that it is actually in the opposite 
direction to that shown, i.e. in the negative x-direction.
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Calculation of actions (forces) developed in the elements

The internal forces (also called actions) induced in each of the 
individual elements are calculated relative to the local coordinates 
from the relation F k= d  whose expanded form is given in (2.4).

Element 1

 F k
1 1 1= d

 F
X

X

k
u

u

i

j

1 1

1

2

1

1 1

1
25000 25000

25000 25000
=

È

Î
Í
Í

˘

˚
˙
˙

=
-

-
È

Î
Í

˘

˚
˙ =, , d

11

1

2

0 00022

0 00010

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

u

u

.

.

 
X

X

1

1

2

1

25000 25000

25000 25000

0 00022

0 00010

È

Î
Í
Í

˘

˚
˙
˙

=
-

-
È

Î
Í

˘

˚
˙

È .

.ÎÎ
Í

˘

˚
˙ =

+
-

È

Î
Í

˘

˚
˙

3 00

3 00

.

.

 (The subscript indicates the node number and the superscript 
represents the number of the element.)

3.00 kN3.00 kN

element    

node i

element    

node j

structure    

node 1

structure    

node 2 

Figure 2.5

 Notice that the force at node 1 (or i for the element) is positive 
and that at node 2 (or j for the element) is negative and this means 
that the element is in compression as shown in Fig. 2.5.

Element 2

 F k
2 2 2= d

 F
X

X

k
u

u

i

j

2 2

2

3

2

2 2

2
30000 30000

30000 30000
=

È

Î
Í
Í

˘

˚
˙
˙

=
-

-
È

Î
Í

˘

˚
˙ =, , d

22

2

3

0 00010

0

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

u

u

.

 
X

X

2

2

3

2

30000 30000

30000 30000

0 00010

0

È

Î
Í
Í

˘

˚
˙
˙

=
-

-
È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

. ++
-

È

Î
Í

˘

˚
˙

3 00

3 00

.

.
,

i.e. the element is in compression as shown in Fig. 2.6.

Bar Element Subjected to an Axial Force
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3.00 kN3.00 kN

element    

node i

element    

node j

structure    

node 2

structure    

node 3

Figure 2.6

 This is a very simple example that can be solved quite easily 
(and quickly) by elementary methods. However, it illustrates the 
procedure followed in the analysis of structures by matrix methods.

2.1.3 Bar Elements with Variable Cross Section

Sometimes the bar has a continuously variable cross section and 
one of the methods to deal with such a case is to derive the stiffness 
matrix from first principles for the specific type of cross section 
variation. Alternatively, the bar is divided into elements each of 
which is assumed to have a constant average cross section resulting 
in a stepped bar as shown in the example below. The solution is of 
course approximate and the accuracy can be improved by increasing 
the number of elements.

Example 2

A steel bar with its ends fixed at nodes 1 and 4 has uniform thickness 
0.006 m and its width is given by the equation b = 0.12 + 2x2 as 
shown in Fig. 2.7. Calculate the displacements and forces induced in 
the bar at nodes 1, 2, 3, and 4. The modulus of elasticity of steel E = 
210 ¥ 106 kN/m2.
 The bar is divided into three elements and the width of each 
element is assumed to be equal to the width at the middle of the 
element as shown in Fig. 2.7. The resulting analysis model is a 
stepped bar and is treated in the same way as in Example 1.

  Element 1: A1 = b1t = 0.14 ¥ 0.006 = 840 ¥ 10–6 m2

  Element 2: A2 = b2t = 0.30 ¥ 0.006 = 1800 ¥ 10–6 m2

  Element 3: A3 = b3t = 0.62 ¥ 0.006 = 3720 ¥ 10–6 m2
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Element stiffness matrices

These are obtained from (2.6) as shown below.

Element 1

 EA

L
kN m=

¥ ¥ ¥
= ¥

-
210 10 840 10

0 2
882 10

6 6

3

.
/

 k
1 3

10
882 882

882 882
=

-
-

È

Î
Í

˘

˚
˙

Element 2

 EA

L
kN m=

¥ ¥ ¥
= ¥

-
210 10 1800 10

0 2
1890 10

6 6

3

.
/

 k
2 3

10
1890 1890

1890 1890
=

-
-

È

Î
Í

˘

˚
˙

Element 3

 EA

L
kN m=

¥ ¥ ¥
= ¥

-
210 10 3720 10

0 2
3906 10

6 6

3

.
/

 k
3 3

10
3906 3906

3906 3906
=

-
-

È

Î
Í

˘

˚
˙

 Following the same procedure of example 1 the following matrix 
is obtained by inspection.

u1 u2 u3 u4

k
ii

1

(= 882)

k
ij

1

(= –882)
0 0 u1

K = 103

k
ji

1

(= –882)

k k
jj ii

1 2+

(=882 + 1890)

k
ij

2

(= –1890)
0 u2

0
k

ji

2

(= –1890)

k k
jj ii

2 3+

(= 1890 + 3906)

k
ij

3

(= –3906)
u3

0
0

k
ji

3

(= –3906)

k
jj

3

(= 3906)
u4
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 K =

-
- -

- -
-

È

Î

Í
Í10

882 882 0 0

882 2772 1890 0

0 1890 5796 3906

0 0 3906 3906

3

ÍÍ
Í

˘

˚

˙
˙
˙
˙

 (2.13)

 The displacement vector for the structure is

 d

d
d
d
d

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1

2

3

4

1

2

3

4

u

u

u

u

 (2.14)

Load vector

The force vector, F, is composed of the external forces acting at the 
nodes, i.e. at node 1, X1 = RX1; at node 2, X2 = –90 kN; at node 3, X3 = 
+170 kN; and X4 = RX4 at node 4. Hence the force vector F is given by:

 F =

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=
-

+

F

F

F

F

X

X

X

X

R
X1

2

3

4

1

2

3

4

1

90

170

RR
X4

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

 (2.15)

Setting up the full set of equations

Substitute (2.13), (2.14), and (2.15) in (2.8) to get:

 10

882 882 0 0

882 2772 1890 0

0 1890 5796 3906

0 0 3906 3906

3

-
- -

- -
-

È

Î

Í
Í
Í
Í

˘̆

˚

˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

-
+

u

u

u

u

R

R

X

X

1

2

3

4

1

4

90

170
 (2.16)

 The boundary conditions are the fixed ends of the bar, i.e. u1 = 0 
and u4 = 0, hence delete rows and columns 1 and 4 respectively to 
get
 2772 ¥ 103u2 – 1890 ¥ 103u3 = –90

 –1890 ¥ 103u2 – 5796 ¥ 103u3 = +170

 The solution of the above set of simultaneous equations is:
 u2 = –0.0000160 m and u3 = +0.0000241 m

Bar Element Subjected to an Axial Force
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 The full displacement vector is:

 d =

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=
-
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙

u

u

u

u

1

2

3

4

0

0

0 0000160

0 0000241

.

.
˙̇

 The reaction RX1 at the left support can be found from the first 
row of (2.16)
 882 ¥ 103u1 –882 ¥ 103u2 = RX1

 RX1 = 882 ¥ 103 ¥ 0 –882 ¥ 103 ¥ (–0.0000160) = +14.11 kN

 The reaction RX4 at the right support can be found from the 
fourth row of (2.16)
 –3906 ¥ 103u3 + 3906 ¥ 103u4 = RX4

 RX4 = –3906 ¥ 103 ¥ 0.0000241 + 3906 ¥ 103 ¥ 0 = –94.14 kN

 The exact values are: u2 = –0.0000163 m, u3 = +0.0000248 m,
 RX1 = +14.66 kN and RX4 = –94.66 kN. The largest difference 
between the values obtained from dividing the member into only 
three elements and the exact values is –3.75%. Higher accuracy 
can be achieved if the member is divided into a larger number of 
elements.

Calculation of actions (forces) developed in the elements

The final step is to calculate the internal forces induced in the 
elements relative to local coordinates using (2.4).

Element 1

 
X

X

1

1

2

1

3
10

882 882

882 882

0

0 0000160

1È

Î
Í
Í

˘

˚
˙
˙

=
-

-
È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙ =

+
.

44 11

14 11

.

.-
È

Î
Í

˘

˚
˙

14.11   kN14.11 kN

element    

node i

element    

node j

structure    

node 1

structure    

node 2

 

 Notice that the force at node 1 (or i for the element) is positive 
and that at node 2 (or j for the element) is negative and this means 
that the element is in compression.
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Element 2

 
X

X

2

2

3

2

3
10

1890 1890

1890 1890

0 0000160

0 000

È

Î
Í
Í

˘

˚
˙
˙

=
-

-
È

Î
Í

˘

˚
˙

-
+

.

. 00241

75 79

75 79

È

Î
Í

˘

˚
˙ =

-
+

È

Î
Í

˘

˚
˙

.

.

(i.e. the element is in tension)

75.79 kN75.79 kN

element    

node i

element    

node j

structure    

node 2

structure    

node 3

Element 3

 
X

X

3

3

4

3

3
10

3906 3906

3906 3906

0 0000241

0

È

Î
Í
Í

˘

˚
˙
˙

=
-

-
È

Î
Í

˘

˚
˙

+È

Î
Í

˘

˚

.

˙̇ =
+
-

È

Î
Í

˘

˚
˙

94 14

94 14

.

.

(i.e. the element is in compression)

94.14 kN94.14 kN

element    

node i

element    

node j

structure    

node 3

structure    

node 4

2.1.4 Some Important Properties of the Stiffness Matrix

It can be seen in the above examples that the structure stiffness 
matrix is symmetric since Kij = Kji. This important property is a 
consequence of Maxwell reciprocal theorem which states that the 
displacement at node j produced by a unit load applied at node i is 
equal to the displacement at node i produced by a unit load applied 
at node j. The displacement may be translational or rotational and 
the load may be a force or a moment.
 Another useful property of the structure stiffness matrix is that it 
is positive definite, i.e. the quadratic form dTKd is always positive as 
explained below.

Bar Element Subjected to an Axial Force
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 Consider a set of forces F1, F2, ... ... Fn acting on a structure and 
the resulting displacements are d1, d2, ... ... dn, then the work done U 
is given by

 
U F F F F F F

n n n

n

= + ºº+ = ÈÎ ˘̊

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
1

2

1

2

1

2

1

2
1 1 2 2 1 2

1

2

d d d

d
d

d

. . .

.

˙̇
˙
˙
˙
˙

=
1

2
F

Td

 But F K then U K
T= =d d d

1

2
( )

 Since (Kd)T = dTKT and KT = K because K is symmetric, therefore

 U K
T=

1

2
d d

 The work done U is always positive, hence dTKd is positive for 
any non-zero displacement vector d thus K is positive definite.

2.2 Coordinate Systems

The standard right-handed xyz cartesian coordinates system is 
formed by the right hand where the thumb represents the x-axis, the 
index finger the y-axis and the middle finger the z-axis.
 The three systems shown in Fig. 2.8 are all right-handed xyz 
coordinate systems and they are the same except that they are 
viewed from different points. The orientation of the coordinate 
system shown in Fig. 2.8(i) is the one used in this book where the xy 
plane is the horizontal plane and the z-axis is perpendicular to it.

x

y

z
(iii)

x

y

z

(ii)(i)

x (thumb)

y (index �inger)

z (middle �inger)

Figure 2.8 Right-handed xyz coordinate systems.
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Definitions and sign convention

u, v, and w: Translational displacements in the x, y, and z directions.
F, q, and Y: Rotational displacements about the positive x, y, and z 
axes.
X, Y, and Z: Forces in the x, y, and z directions.
T, M, and N: Moments about the x, y, and z axes.
 Translational displacements and forces are positive when 
they are in the positive direction of the relevant axis. Rotational 
displacements and moments are positive when they are clockwise 
about the positive direction of the relevant axis as shown in Fig. 2.9.

w

Ψ v

θ

u

Φ

Z

N Y

M

X

T

Figure 2.9 Sign convention.

2.3 Extension of Bar Stiffness Matrix to Other 
Types of Structural Elements

Due to the systematic nature of the subject of matrix methods in the 
analysis of structures, the detailed steps followed in this chapter 
can be applied to more complex problems. The principles are the 
same but some modifications might be necessary where appropriate 
as will be seen in the chapters that follow. Therefore, a thorough 
understanding of the contents of this chapter is essential since this 
will make the reader familiar with the procedures which will help 
in making good progress through the book and leave more time for 
understanding any additional development that may occur as the 
material gets more involved.

Extension of Bar Stiffness Matrix to Other Types of Structural Elements
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 In general, for any individual element with two ends the element 
stiffness matrix, k, is made of 4 sub-matrices, kii, kij, kji, and kjj. For 
a bar element it was seen that kii, for example, is a 1¥1 sub-matrix 
(i.e. just one number). This is a consequence of the fact that the 
displacement at each node is defined by only one degree of freedom, 
namely, the translation u along the x-axis. The load is defined by 
only one force acting in the x-direction at each node. For skeletal 
structures the stiffness matrix of any element is analogous to that 
of an individual bar except that the number of degrees of freedom 
is generally more than one. For example in a pin-connected plane 
frame lying in the xz plane there are two degrees of freedom at 
each joint (node), namely, the translations, u and w, in the x and z 
directions respectively. As a consequence, kii, for example, is a 2¥2 
sub-matrix and the displacement at each node is a 2¥1 vector made 
of the translation u along the x-axis and the translation w along the 
z-axis. The load at each node is a 2¥1 vector made of a force in the x 
direction and a force in the z direction. It follows that for an element 
with n degrees of freedom at each end sub-matrices such as kii will 
be of size n¥n. Similarly the displacement and load vectors at each 
end will be vectors of size n¥1. The above statement is illustrated in 
the cases considered below.
 The general relationship for an element with two ends i and j is:

 k F or

k k

k k

F

F

ii ij

ji jj

i

j

i

j

d
d
d

=
È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙  (2.17)

 kii, kij, kji, and kjj are the four sub-matrices of the stiffness matrix, 
k.
	 di and dj are the two sub-matrices of the displacement vector, d.
 Fi and Fj are the two sub-matrices of the load vector, F.

 (1) Bar element (Fig. 2.10)

z

i j
x

ui uj

Figure 2.10
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 k: each of the four sub-matrices is 1¥1, for example kii = [EA/L]
	 d: each of the two sub-vectors is 1 coefficient, for example di = 

[ui]
 F: each of the two sub-vectors is 1 coefficient, for example Fi = 

[Xi]

 (2) Element in a pin-connected plane frame (Fig. 2.11)

z

xui

wi

i

j

wj

uj

Figure 2.11

 k: each of the four sub-matrices is 2¥2; k
ii

=
È

Î
Í

˘

˚
˙

* *

* *

  (The asterisk means one number.)

	 d: each of the two sub-vectors is 2 coefficients; d
i

i

i

u

w
=

È

Î
Í

˘

˚
˙

 F: each of the two sub-vectors is 2 coefficients; F
X

Z
i

i

i

=
È

Î
Í

˘

˚
˙

 (3) Element in a beam (Fig. 2.12)

 k: each of the four sub-matrices is 2¥2; k
ii

=
È

Î
Í

˘

˚
˙

* *

* *

	 d: each of the two sub-vectors is 2 coefficients; d
qi

i

i

w
=

È

Î
Í

˘

˚
˙

Extension of Bar Stiffness Matrix to Other Types of Structural Elements
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 F: each of the two sub-vectors is 2 coefficients; F
Z

M
i

i

i

=
È

Î
Í

˘

˚
˙

z

x
θi

wi

i j

wj

θj

Figure 2.12

 (4) Element in a rigidly connected frame (Fig. 2.13)
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x

i

j
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wj

ui

uj

Figure 2.13
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 k: each of the four sub-matrices is 3¥3, k
ii

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

* * *

* * *

* * *

	 d: each of the two sub-vectors is 3 coefficients; d
q

i

i

i
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u

w=
È
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Í
Í

˘

˚

˙
˙
˙

 F: each of the two sub-vectors is 3 coefficients, F

X

Z
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i

i

i
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=
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Î
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Í
Í

˘

˚

˙
˙
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 (5) Element in an arch (Fig. 2.14)
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Figure 2.14

 k: each of the four sub-matrices is 3¥3; k
ii

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

* * *

* * *

* * *

Extension of Bar Stiffness Matrix to Other Types of Structural Elements
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	 d: each of the two sub-vectors is 3 coefficients; d
q

i

i

i

i

u

w=
È
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Í
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˘

˚

˙
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˚

˙
˙
˙

 (6) Element in a grillage (Fig. 2.15)

x

y

i

j

Displacements wi and  wj in the 

z-direction not shown

θi

θj

Φj

Φi

Figure 2.15

 k: each of the four sub-matrices is 3¥3; k
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 (7) Element in a beam curved in plan (Fig. 2.16)

x

y

i

j

Displacements  wi and wj in the 

z-direction not shown

Φi

Φj

θi

θj

Figure 2.16
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 (8) Element in a pin-connected space frame (Fig. 2.17)
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Figure 2.17

 F: each of the two sub-vectors is 3 coefficients; F
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 (9) Element in a rigidly connected space frame (Fig. 2.18)
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 F: each of the two sub-vectors is 6 coefficients; F
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2.4 Banded Matrix

In most applications of matrix methods of structural analysis 
the matrix is not fully populated but rather banded with zero 
coefficients outside the band. In order to reduce the computer 
storage requirements only those coefficients within the band are 
stored and subsequently used in the computations. So, the smaller 
the band width the more efficient it is and this depends on the way 
the nodes of the structure are numbered.

Banded Matrix
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Table 2.1 Summary of the relation between the number of degrees of 
freedom per node and the size of sub-matrices in the standard 
form (2.17) for various types of structures

Type of structure

Degrees of freedom 
per node

Size of 
any sub-
matrix

kii, kij, kji, 
kjj

Size of 
any sub-

vector
di, dj, Fi, Fju v w F q Y

Bar √ 1¥1 1¥1

Pin-connected plane 
frame √ √ 2¥2 2¥1

Continuous beam √ √ 2¥2 2¥1

Rigidly connected 
plane frame √ √ √ 3¥3 3¥1

Arch √ √ √ 3¥3 3¥1

Grillage √ √ √ 3¥3 3¥1

Beam curved in plan √ √ √ 3¥3 3¥1

Pin-connected space 
frame √ √ √ 3¥3 3¥1

Rigidly connected 
space frame

√ √ √ √ √ √ 6¥6 6¥1

 Since the stiffness matrix is symmetrical, only the semi-band 
width is considered which is defined by the coefficient on the 
main diagonal and the non-zero coefficients to its right side. To 
illustrate this consider the frame shown in Fig. 2.19a, where nodes 
are numbered in the short direction. The semi-band width is 3 and 
since the number of degrees of freedom per node is 3, consisting 
of u, w, and q, i.e. each asterisk is a 3¥3 sub-matrix, so the number 
of coefficients in the semi-band width is 3¥3=9. The total number 
of rows is 3¥14=42 giving the number of coefficients to be stored 
as 9¥42=378 compared with the total number of coefficients in the 
stiffness matrix which is, 42¥42=1746. Thus there is significant 
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saving in computer storage in this small problem but for large 
matrices the saving can be very large.
 If the nodes are numbered in the long direction as shown in 
Fig. 2.19b, then the semi-band width will be 7 and the total number 
of coefficients to be stored is 7¥3¥42=882. Thus for this case and in 
general, numbering in the short direction requires less storage than 
numbering in the long direction.

d3 d4 d5 d6 d7 d8 d9 d10 d11 d12 d13 d14

* * * d3

* * * d4

* * * * d5

* * * * d6

* * * * d7

* * * * d8

* * * * d9

* * * * d10

* * * * d11

* * * * d12

* * * d13

* * * d14

2

4

6

8

10

12

1413

11

9

7

5

3

1

Figure 2.19a

Banded Matrix
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d2 d3 d4 d5 d6 d7 d9 d10 d11 d12 d13 d14

* * * d2

* * * * d3

* * * * d4

* * * * d5

* * * * d6

* * * d7

* * * d9

* * * * d10

* * * * d11

* * * * d12

* * * * d13

* * * d14

8

9

10

11

12

13

147

6

5

4

3

2

1

Figure 2.19b

 (Each asterisk is an r¥r sub-matrix where r is the number of 
degrees of freedom per node.)

Problems

Calculate the displacements at the nodes and forces developed in the 
elements of the structures shown in Problems P2.1 to P2.4.
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 P2.1. Element 1, L1 = 0.56 m, A1 = 720 ¥ 10–6 m2, element 2, L2 = 
0.35 m, A2 = 240 ¥ 10–6 m2. The material is aluminium with 
a modulus of elasticity E = 70 ¥ 106 kN/m2.

0.56 m 0.35 m

69 kN 321

1 2

Figure P2.1

Answer:
  u1 = 0, u2 = –0.0005 m, u3 = 0, RX1 = 45.00 kN, RX3 = 24.00 kN

  Element 1: 
X

X

kN compression
1

1

2

1

45 00

45 00

È

Î
Í
Í

˘

˚
˙
˙

=
+
-

È

Î
Í

˘

˚
˙

.

.
( )

  Element 2: 
X

X

kN tension
2

2

3

2

24 00

24 00

È

Î
Í
Í

˘

˚
˙
˙

=
-
+

È

Î
Í

˘

˚
˙

.

.
( )

 P2.2. Element 1, L1 = 0.45 m, A1 = 5000 ¥ 10–6 m2, element 2, L2 = 
0.36 m, A2 = 8000 ¥ 10–6 m2. The material is timber with a 
modulus of elasticity E = 9 ¥ 106 kN/m2.

40 kN 321
30 kN

0.36 m0.45 m

1 2

Figure P2.2

Answer:
  u1 = 0.00065 m, u2 = 0.00035 m, u3 = 0, RX3 = –70.00 kN

  Element 1: 
X

X

kN compression
1

1

2

1

30 00

30 00

È

Î
Í
Í

˘

˚
˙
˙

=
+
-

È

Î
Í

˘

˚
˙

.

.
( )

Problems
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  Element 2: 
X

X

kN compression
2

2

3

2

70 00

70 00

È

Î
Í
Í

˘

˚
˙
˙

=
+
-

È

Î
Í

˘

˚
˙

.

.
( )

 P2.3. Element 1, L1 = 0.18 m, A1 = 300 ¥ 10–6 m2, element 2,  
L2 = 0.42 m, A2 = 800 ¥ 10–6 m2, element 3, L3 = 0.25 m,  
A3 = 500 ¥ 10–6 m2. The material is steel with a modulus of 
elasticity E = 210 ¥ 106 kN/m2.

38.5 kN
321 493.5 kN 174.0 kN

0.18 m 0.42 m 0.25 m

1 2 3

Figure P2.3

Answer:
  u1 = 0.00034 m, u2 = 0.00023 m, u3 = –0.00010 m, u4 = 0,  

RX4 = 42.00 kN

  Element 1: 
X

X

kN compression
1

1

2

1

38 50

38 50

È

Î
Í
Í

˘

˚
˙
˙

=
+
-

È

Î
Í

˘

˚
˙

.

.
( )

  Element 2: 
X

X

kN compression
2

2

3

2

132 00

132 00

È

Î
Í
Í

˘

˚
˙
˙

=
+
-

È

Î
Í

˘

˚
˙

.

.
( )

  Element 3: 
X

X

kN tension
3

3

4

3

42 00

42 00

È

Î
Í
Í

˘

˚
˙
˙

=
-
+

È

Î
Í

˘

˚
˙

.

.
( )

 P2.4. A block of concrete of thickness 0.120 m and its other 
dimensions are as shown in Fig. P2.4 is fixed at nodes 1 and 
4. Calculate the displacements and the forces developed at 
the nodes of the block. The modulus of elasticity of concrete 
E = 20 ¥ 106 kN/m2.

1 2
3

4
0.10 m

0.75 m0.50 m0.30 m

96 kN 88 kN
3210.60 m 0.40 m

Figure P2.4
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Answer:
  u1 = 0, u2 = –0.00003 m, u3 = –0.00005 m, u4 = 0
  RX1 = 144.00 kN, RX4 = 40.00 kN

  Element 1: 
X

X

kN compression
1

1

2

1

144 00

144 00

È

Î
Í
Í

˘

˚
˙
˙

=
+
-

È

Î
Í

˘

˚
˙

.

.
( )

  Element 2: 
X

X

kN compression
2

2

3

2

48 00

48 00

È

Î
Í
Í

˘

˚
˙
˙

=
+
-

È

Î
Í

˘

˚
˙

.

.
( )

  Element 3: 
X

X

kN tension
3

3

4

3

40 00

40 00

È

Î
Í
Í

˘

˚
˙
˙

=
-
+

È

Î
Í

˘

˚
˙

.

.
( )

Problems
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Structures are usually three dimensional but the type of connections 
between the members and the framing can be so arranged that the 
main support structure can be analysed as a plane frame. This is a 
simplifying assumption that gives results not too far from the actual 
behaviour of the overall structure particularly when the secondary 
members are pin-connected to the main supporting structure. 
Secondary members can be in the form of purlins supporting roof 
decking which are in turn supported by the main frame. There are 
many types of main frames used in practice and one of these is the 
truss which is treated in this chapter.
 Roof trusses are used when a single member will not be an 
efficient structural design option in certain situations such as large 
span column free spaces as shown in Fig. 3.1. Also, one of the options 
of bridge design is the use of trusses when these are considered as a 
suitable choice for a particular span and applied loads as shown in 
Fig. 3.2. The members in such frames are usually assumed to be pin-
connected to each other although in practice they might not have 
physical pins at their ends. This assumption means that the joints 
of the frame are not capable of transferring moments. Of course, 
the actual construction of such frames must be consistent with this 
assumption in that the connections are detailed in such a way that 
they can transfer forces but are not capable of resisting moments. 

Chapter 3

Pin-Connected Plane Frames

Analysis of Structures by Matrix Methods
Fathi Al-Shawi
Copyright © 2023 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4968-19-5 (Hardcover), 978-1-003-29130-5 (eBook)
www.jennystanford.com

http://www.jennystanford.com
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The applied loads on the frame are usually applied at the joints 
and as a consequence, the members of a pin-connected frame will 
develop axial forces only.

Foundation

Roof deck

Purlins

Figure 3.1 Large span pin-connected frame (side rails and cladding not shown).

Bridge main truss

Longitudinal beam

Cross beam

Top chord bracing

Roller support

Hinge

support

Figure 3.2 Pin-connected truss as the main structure of a bridge (only main 
truss pins are shown and deck not shown for clarity).

3.1 Derivation of Stiffness Matrix

From Chapter 2, of bars subjected to axial forces where each end has 
one degree of freedom, we had a relationship between the stiffness, 
displacements, and forces at the ends of a bar as:
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EA

L

EA

L

EA

L

EA

L

u

u

X

X

i

j

i

j

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í
Í

˘

˚
˙
˙

 (3.1)

 The joints in a pin-connected plane frame have two degrees of 
freedom defined by displacements in the x- and z-directions and in 
order to make relation (3.1) applicable to such cases we introduce 
displacements, w

i
 and w

j
 in the z -direction as shown in Fig. 3.3.

z–

– –

–

–

wi wj

Xi Xj
i j

x

ujui

Zi Zj
– –

–

––

Figure 3.3 Bar in local coordinates system, x  and z .

 The matrix in (3.1) is extended to incorporate the displacements 
in the z -direction to give

 

EA

L

EA

L

EA

L

EA

L

u

w

u

w

i

i

j

j

0 0

0 0 0 0

0 0

0 0 0 0

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í
ÍÍ

˘

˚

˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

X

Z

X

Z

i

i

j

j

 (3.2)

 Notice that the expansion of the above matrix gives the forces Z
i
 

and Z
j
 in the z -direction at the ends of the member equal to zero 

which means that the state of the applied forces is not changed and 
the bar is still subjected to only axial forces.
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 Equation (3.2) can be written in the general form

 k Fd =  (3.3)

where the stiffness matrix relative to local coordinates is:

 k =

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

EA

L

EA

L

EA

L

EA

L

0 0

0 0 0 0

0 0

0 0 0 0

 (3.4)

the displacement vector, d
d
d

=
È

Î
Í
Í

˘

˚
˙
˙

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

i

j

i

i

j

j

u

w

u

w

 and the action vector,

F
F

F

X

Z

X

Z

i

j

i

i

j

j

=
È

Î
Í
Í

˘

˚
˙
˙

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

.

3.2 Transformation from Local to Global 
Coordinates

Quantities in (3.2) are relative to the local x - and z -axes where x  
represents the direction of the longitudinal axis of the member and 
when this does not coincide with the global x-axis these quantities 
have to be transformed to become relative to the global x- and z-axes. 
Such transformation is necessary because the overall structure 
stiffness matrix is written relative to global coordinates.
 Suppose that a member lies initially along the global x-axis and 
then it is moved to take the final position shown in Fig. 3.4. The new 
position of the member is achieved by a rotation about the y -axis by 
a clockwise (i.e. positive) angle of jy . Notice that the y - and y-axes 
are still coincident but the local x -axis is now making an angle jy  
with the global x-axis.
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y,

z

xO

Figure 3.4 

 The displacements and forces relative to local coordinates are 
transformed to be relative to the global coordinates as follows:

x

x

uj

wj

uj

wj

z

z
–

–

–

–

–

–

–

–

ui

wi

ui

wi

φy

φyi

j

Figure 3.5 

Transformation from Local to Global Coordinates
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3.2.1 Transformation of Displacements

With reference to Fig. 3.5, the displacement u
i

 along the x -axis is 
equal to the algebraic sum of the components of the displacements 
ui and wi and is given by:
 u u cos w sin

i i y i y
= -j j

 Similarly, the displacement w
i
 along the z -axis is equal to the 

algebraic sum of the components of the displacements ui and wi and 
is given by:
 w u sin w cos

i i y i y
= +j j

and in matrix form

 
u

w

cos sin

sin cos

u

w

i

i

y y

y y

i

i

È

Î
Í

˘

˚
˙ =

-È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙

j j

j j

 
u

w

u

w

i

i

y

i

i

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙r , where r

j j

j jy

y y

y y

cos sin

sin cos
=

-È

Î
Í
Í

˘

˚
˙
˙

 Sometimes it is more convenient to write the above transfor-
mation matrix in a general form as

 r
y

xx xz

zx zz

=
È

Î
Í

˘

˚
˙

l l
l l

where the λ’s are called the direction cosines in vector analysis and 
are defined as follows:
 lxx is the cosine of the angle made by the local x -axis with the 
global x-axis = cos

y
j .

 l
xz

 is the cosine of the angle made by the local x -axis with the 
global z-axis = cos sin

y y
j j+( ) = -90 .

 l
zx  is the cosine of the angle made by the local z -axis with the 

global x-axis = cos 90 -( ) =j j
y y

sin .
 lzz  is the cosine of the angle made by the local z -axis with the 
global z-axis = cosj

y
.

 Similarly for node j

 
u

w

u

w

j

j

y

j

j

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í
Í

˘

˚
˙
˙

r
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 For nodes i and j, 
u

w

u

w

O

O

u

w

u

w

i

j

j

y

y

i

i

j

j

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=
È

Î
Í
Í

˘

˚
˙
˙

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

r

r

, where O =
È

Î
Í

˘

˚
˙

0 0

0 0

 The full transformation matrix is

 

u

w

u

w

cos sin

sin cos

cos s

i

j

j

y y

y y

y

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

-

-

j j

j j

j

0 0

0 0

0 0

0 0

iin

sin cos

u

w

u

w

y

y y

i

i

j

j

j

j j

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

or

 d d= r  (3.5)

where r is the transformation matrix which is given by:

 r

cos sin

sin cos

cos sin

sin cos

y y

y y

y y

y y

=

-

-

È

Î

Í
Í
Í
Í

j j

j j

j j

j j

0 0

0 0

0 0

0 0ÍÍ

˘

˚

˙
˙
˙
˙
˙

 (3.6)

3.2.2 Transformation of Forces

With reference to Fig. 3.6, the force X
i
 is equal to the algebraic sum 

of the components of the forces X
i
 and Zi along the x -axis and is 

given by:

 X X cos Z sin
i i y i y

= -j j

 Similarly, the force Z
i
 is equal to the algebraic sum of the 

components of the forces X
i
 and Zi along the z -axis and is given by:

 Z X sin Z cos
i i y i y

= +j j

and in matrix form

 
X

Z

cos sin

sin cos

X

Z

i

i

y y

y y

i

i

È

Î
Í

˘

˚
˙ =

-È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙

j j

j j

Transformation from Local to Global Coordinates
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X

Z

X

Z

i

i

y

i

i

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙r

x

x

Xj

Zj

Xj

Zj

z

z
–

–

–

–

–

–

–

–
Xi

Zi

Xi

Zi

φy

φyi

j

Figure 3.6 

 Similarly for node j

 
X

Z

X

Z

j

j

y

j

j

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í
Í

˘

˚
˙
˙

r

 For nodes i and j, 

X

Z

X

Z

O

O

X

Z

X

Z

i

i

j

j

y

y

i

i

j

j

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=
È

Î
Í
Í

˘

˚
˙
˙

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

r

r
˙̇

, where O =
È

Î
Í

˘

˚
˙

0 0

0 0
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 The full transformation matrix is

 

X

Z

X

Z

cos sin

sin cos

cos

i

i

j

j

y y

y y

y

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

-

-

j j

j j

j

0 0

0 0

0 0

0 0

ssin

sin cos

X

Z

X

Z

y

y y

i

i

j

j

j

j j

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

or

 F rF=  (3.7)

 Notice that matrix r for the transformation of forces from 
local coordinates to global coordinates is the same as that for the 
transformation of displacements as given by (3.6) because both of 
them are vectors having the same respective directions relative to 
the relevant coordinate axes.
 The transformation matrix, r given by (3.6) can be written in a 
more convenient form by expressing sin

y
j  and cos

y
j  in terms of 

the coordinates at the ends of the member as shown in Fig. 3.7.

x

i

j

L

O

z

zj

zi

xi
xj

φy–

Figure 3.7 

 cos
x x

L

x

L
y

j i ijj =
-

=

Transformation from Local to Global Coordinates
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 sin
z z

L

z z

L

z

L
y

i j j i ijj =
-

= -
-

= -

 Notice that for positive rotation jy , zj < zi and hence zij is  
negative.

 L x x z z x z
j i j i ij ij

= - + - = +( ) ( )
2 2 2 2

 Thus the transformation matrix r becomes:

 r

x L z L

z L x L

x L z L

z L x L

ij ij

ij ij

ij ij

ij ij

=
-

-

È

Î

Í
Í
Í
Í

/ /

/ /

/ /

/ /

0 0

0 0

0 0

0 0ÍÍ

˘

˚

˙
˙
˙
˙
˙

 (3.8)

3.3 Stiffness Matrix Relative to Global 
Coordinates

The overall structure matrix is written relative to global coordinates, 
therefore the stiffness matrices of the members of the structure 
have to be transformed and written relative to global coordinates as 
explained below.
 We have from (3.3), k Fd =  (relative to local coordinates).
 Substitute d d= r  and F rF=  from (3.5) and (3.7) in the above 
equation to get

 k r rF( )d =

 Premultiply both sides by r–1

 r k r r rF
- -=1 1

( )d  and since r–1r = I (the unit matrix)

 r kr F
- =1 d

 One of the properties of the transformation matrix is that its 
inverse is equal to its transpose, i.e. r–1 = rT

( )r kr F
T d = , which can be written as

 Kd = F (3.9)

where k is the stiffness matrix of the member relative to global 
coordinates and is given by:
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 k r kr
T=  with k  and r as given by (3.4) and (3.8) respectively. 

Thus

  

k

x L z L

z L x L

x L z L

z L x L

ij ij

ij ij

ij ij

ij ij

=

-

-

È

Î

Í
Í
Í
Í

/ /

/ /

/ /

/ /

0 0

0 0

0 0

0 0ÍÍ

˘

˚

˙
˙
˙
˙
˙

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

EA

L

EA

L

EA

L

EA

L

x L
ij

0 0

0 0 0 0

0 0

0 0 0 0

/ zz L

z L x L

x L z L

z L x L

ij

ij ij

ij ij

ij ij

/

/ /

/ /

/ /

0 0

0 0

0 0

0 0

-

-

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙̇
˙

 k

EAx

L

EAx z

L

EAx

L

EAx z

L

EAx z

L

EAz

L

ij ij ij ij ij ij

ij ij ij

=

- -
2

3 3

2

3 3

3

2

3
-- -

- -

EAx z

L

EAz

L

EAx

L

EAx z

L

EAx

L

EAx z

L

ij ij ij

ij ij ij ij ij ij

3

2

3

2

3 3

2

3 33

3

2

3 3

2

3
- -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙

EAx z

L

EAz

L

EAx z

L

EAz

L

ij ij ij ij ij ij

˙̇
˙
˙
˙
˙
˙
˙
˙
˙
˙

 (3.10)

 Equation (3.9) can be written as:

 
k k

k k

F

F

ii ij

ji jj

i

j

i

j

È

Î
Í
Í

˘

˚
˙
˙

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

d
d

 k

EAx

L

EAx z

L

EAx z

L

EAz

L

k
ii

ij ij ij

ij ij ij

ij
=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

2

3 3

3

2

3

, ==
- -

- -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

EAx

L

EAx z

L

EAx z

L

EAz

L

ij ij ij

ij ij ij

2

3 3

3

2

3

,

Stiffness Matrix Relative to Global Coordinates
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 k

EAx

L

EAx z

L

EAx z

L

EAz

L

ji

ij ij ij

ij ij ij

=
- -

- -

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

2

3 3

3

2

3

,, and      k

EAx

L

EAx z

L

EAx z

L

EAz

L

jj

ij ij ij

ij ij ij

=

È

Î

Í
Í
Í
Í
Í

2

3 3

3

2

3

˘̆

˚

˙
˙
˙
˙
˙

Note: Use the global stiffness matrix k in (3.10) to calculate the displacements 
δ and hence the external reactions. Then use the local stiffness matrix k  in 
(3.4) and d  as calculated from (3.5) to find the actions on the member as 
explained in the example below.

Example 1

Calculate the displacements in the x- and z-directions at nodes 1, 2, 
3, and 4 of the pin-connected plane frame shown in Fig. 3.8. Hence 
find the reactions at the supports 1 and 4 and the internal forces 
developed in the members of the frame. The modulus of elasticity of 
all the members is E = 210 ¥ 106 kN/m2 and the cross-sectional area 
of the members is as follows:
  A1 = 350 ¥ 10-6 m2, A2 = 320 ¥ 10-6 m2,
 A3 = 440 ¥ 10-6 m2, A4 = 350 ¥ 10-6 m2,
 A5 = 680 ¥ 10-6 m2.

3
20 kN

45 kN

roller supportpin support

1
2

3
2

1 4

5

4RX1

RZ1 RZ4

2 m

4 m3 m

(Node 1 is taken as the origin of the global coordinates system.)

Figure 3.8 
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Calculation of stiffness matrices of the members of the 
structure

Member 1

i j
1 2

x–

 Member address in the member stiffness matrix k: i j
 Structure address in the overall structure matrix K: 1 2
 The above correspondence means that member 1 contributes to 
only nodes 1 and 2 of the overall structure.
 E = 210 ¥ 106 kN/m2, A = 350 ¥ 10-6 m2

 xi = 0, xj = 3 m, xij = xj – xi = 3 – 0 = 3 m
 zi = 0, zj = 0, zij = zj – zi = 0 – 0 = 0

 L x z m
ij ij

= + = + =2 2 2 2
3 0 3

 Substitute the above values in (3.10) to get the stiffness matrix of 
member 1 relative to global coordinates as:

 

d d d d
d

i j

i i i ju w

u w

u w

u w

k

= =

=

1 2

1

1 1 2 2

1 3
10

24 50

� ���� ����

� �� �� � �� ��

. 00 24 50 0

0 0 0 0

24 50 0 24 50 0

0 0 0 0

1

1

2

2

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

. .

u

w

u

w

 (3.11)

 k k
ii ij

1 3 1 3
10

24 5 0

0 0
10

24 50 0

0 0
=

È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙

.
,

.
,

 k k
ji jj

1 3 1 3
10

24 5 0

0 0
10

24 50 0

0 0
=

-È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

.
,

.
.

Stiffness Matrix Relative to Global Coordinates
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Member 2

i

j

2

3

x–

 Member address: i j
 Structure address: 2 3
 (i.e. member 2 contributes to only nodes 2 and 3 of the structure.)
 E = 210 ¥ 106 kN/m2, A = 320 ¥ 10-6 m2

 xi = 3 m, xj = 3 m, xij = xj – xi = 3 – 3 = 0
 zi = 0, zj = 2 m, zij = zj – zi = 2 – 0 = 2 m

 L x z m
ij ij

= + = + =2 2 2 2
0 2 2

 Substitute in (3.10) to get

 

d d d d
d

i j

i i j ju w

u w

u w

u w

k

= =

=

2 3

2

2 2 3 3

2 3
10

0 0 0 0

0

� ���� ����

� �� �� � �� ��

333 60 0 33 60

0 0 0 0

0 33 60 0 33 60

2

2

3

3

. .

. .

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

u

w

u

w

 (3.12)

 k k
ii ij

2 3 2 3
10

0 0

0 33 60
10

0 0

0 33 60
=

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙

.
,

.
,

 k k
ji jj

2 3 2 3
10

0 0

0 33 60
10

0 0

0 33 60
=

-
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

.
,

.
.
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Member 3

i 

j 

1 

3 

x–  

 Member address: i j
 Structure address: 1 3
 (i.e. member 3 contributes to only nodes 1 and 3 of the structure.)
 E = 210 ¥ 106 kN/m2, A = 440 ¥ 10-6 m2

 xi = 0, xj = 3 m, xij = xj – xi = 3 – 0 = 3 m
 zi = 0, zj = 2 m, zij = zj – zi = 2 – 0 = 2 m

 L x z m
ij ij

= + = + =2 2 2 2
3 2 3 606.

 Substitute in (3.10) to get

 

d d d d
d

i j

i i j ju w

u w

u w

u w

k

= =

=

1 3

3

1 1 3 3

3
10

� ������ ������

� ��� ��� � �� ��

33

17 740 11 83 17 74 11 83

11 83 7 89 11 83 7 89

17 74 11 83 1

. . . .

. . . .

. .

- -
- -

- - 77 74 11 83

11 83 7 89 11 83 7 89

1

1

3

3

. .

. . . .- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

u

w

u

w

 (3.13)

 k k
ii ij

3 3 3 3
10

17 74 11 83

11 83 7 89
10

17 74 11 83

11
=

È

Î
Í

˘

˚
˙ =

- -
-

. .

. .
,

. .

.883 7 89-
È

Î
Í

˘

˚
˙

.
,

 k k
ji jj

3 3 3 3
10

17 74 11 83

11 83 7 89
10

17 74 11 83

11
=

- -
- -

È

Î
Í

˘

˚
˙ =

. .

. .
,

. .

.. .
.

83 7 89

È

Î
Í

˘

˚
˙

Stiffness Matrix Relative to Global Coordinates
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Member 4

i j

2 4
x–

 Member address: i j
 Structure address: 2 4
 (i.e. member 4 contributes to only nodes 2 and 4 of the structure.)
 E = 210 ¥ 106 kN/m2, A = 350 ¥ 10-6 m2

 xi = 3 m, xj = 7 m, xij = xj – xi = 7 – 3 = 4 m
 zi = 0, zj = 0, zij = zj – zi = 0 – 0 = 0

 L x z m
ij ij

= + = + =2 2 2 2
4 0 4

 Substitute in (3.10) to get

 

d d d d
d

i j

i i j ju w

u w

u w

u w

k

= =

=

2 4

4

2 2 4 4

3 3
10

18 38

� ���� ����

� �� �� ��� ��

. 00 18 38 0

0 0 0 0

18 38 0 18 38 0

0 0 0 0

2

2

4

4

-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

. .

u

w

u

w

 (3.14)

 k k
ii ij

4 3 4 3
10

18 38 0

0 0
10

18 38 0

0 0
=

È

Î
Í

˘

˚
˙ =

-È

Î
Í

˘

˚
˙

.
,

.
,

 k k
ji jj

4 3 4 3
10

18 38 0

0 0
10

18 38 0

0 0
=

-È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙

.
,

.
.
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Member 5

i

j

3

4

x–

 Member address: i j
 Structure address: 3 4
 (i.e. member 5 contributes to only nodes 3 and 4 of the structure.)
 E = 210 ¥ 106 kN/m2, A = 680 ¥ 10-6 m2

 xi = 3 m, xj = 7 m, xij = xj – xi = 7 – 3 = 4 m
 zi = 2 m, zj = 0, zij = zj – zi = 0 – 2 = –2 m

 L x z m
ij ij

= + = + - =2 2 2 2
4 2 4 472( ) .

 Substitute in (3.10) to get

 

d d d d
d

i j

i i j ju w

u w

u w

u w

k

= =

=

3 4

3

3 3 4 4

5

� ������ ������

� ��� ��� � ��� ���

110

25 54 12 77 25 54 12 77

12 77 6 39 12 77 6 39

25 54 12 77 2

3

. . . .

. . . .

. .

- -
- -
- 55 54 12 77

12 77 6 39 12 77 6 39

3

2

4

4

. .

. . . .

-
- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

u

w

u

w

 (3.15)

 k k
ii ij

5 3 5 3
10

25 54 12 77

12 77 6 39
10

25 54 12 77

12
=

-
-

È

Î
Í

˘

˚
˙ =

-. .

. .
,

. .

.777 6 39-
È

Î
Í

˘

˚
˙

.
,

 k k
ji jj

5 3 5 3
10

25 54 12 77

12 77 6 39
10

25 54 12 77

12
=

-
-

È

Î
Í

˘

˚
˙ =

-
-

. .

. .
,

. .

.. .
.

77 6 39

È

Î
Í

˘

˚
˙
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Assembly of the overall stiffness matrix relative to global 
coordinates

The general relationship for the overall structure is Kδ = F which can 
be written as

u w
1 1

1
d� �� ��

u w
2 2

2
d� �� ��

u w
3 3

3
d� �� ��

u w
4 4

4
d� �� ��

K11 K12 K13 K14
u1 δ1

X1 F1w1 Z1

K21 K22 K23 K24
u2 δ2

X2 F2w2 = Z2

K31 K32 K33 K34
u3 δ3

X3 F3w3 Z3

K41 K42 K43 K44
u4 δ4

X4 F4w4 Z4

 Since there are two degrees of freedom (u and w) at each node, 
the coefficients in the overall structure stiffness matrix, K, are 2¥2 
sub-matrices rather than single numbers. Any coefficient in K is 
derived from the summation of the contributions of the members in 
the structure to that coefficient, i.e.

 K K
ij

g

g m

ij

g=
=

=

Â
1

where K
ij

g  is a 2¥2 sub-matrix representing the contribution of 
the gth member to the ijth coefficient in K, and m is the number of 
members in the structure (=5 in this example).
 Each of the members of the frame will contribute to the overall 
structure stiffness matrix, K, according to the relationship between 
the member address and the structure address.
 Contribution of member 1 to the overall stiffness matrix, K, will 
be denoted by K1 and found as follows:
 Member address i  j
 Structure address 1 2
 From the above correspondence between nodes 1 and 2 of the 
structure and the member nodes, i and j, it follows that member 1 
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will contribute to the coefficients of the overall structure stiffness 
matrix, K, as shown in the table below:

subscript of coefficient in K  11  12  21  22
subscript of contributing coefficient from k1  ii  ij  ji  jj

 From (3.11)

 K k K k
ii ij11

1 1 3

12

1 1 3
10

24 5 0

0 0
10

24 50 0

0 0
= =

È

Î
Í

˘

˚
˙ = =

-È

Î
Í

˘

˚
˙

.
,

.
,

 K k and K k
ji jj21

1 1 3

22

1 1 3
10

24 5 0

0 0
10

24 50 0

0 0
= =

-È

Î
Í

˘

˚
˙ = =

È

Î
Í

˘

˚
˙

.
,

.
..

 Contribution of member 2
 Member address i j
 Structure address 2 3

subscript of coefficient in K  22  23  32  33
subscript of contributing coefficient from k2  ii  ij  ji  jj

 From (3.12)

 K k K k
ii ij22

2 2 3

23

2 2 3
10

0 0

0 33 60
10

0 0

0 33 60
= =

È

Î
Í

˘

˚
˙ = =

-
È

Î
Í

˘

˚
˙

.
,

.
,

 K k and K k
ji jj32

2 2 3

33

2 2 3
10

0 0

0 33 60
10

0 0

0 33 60
= =

-
È

Î
Í

˘

˚
˙ = =

È

Î
Í

˘

˚.
,

.
˙̇ .

 Contribution of member 3
 Member address i j
 Structure address 1 3

subscript of coefficient in K  11  13  31  33
subscript of contributing coefficient from k3  ii  ij  ji  jj

 From (3.13)

 K k K k
ii ij11

3 3 3

13

3 3 3
10

17 74 11 83

11 83 7 89
10

17 74
= =

È

Î
Í

˘

˚
˙ = =

-. .

. .
,

. --
- -

È

Î
Í

˘

˚
˙

11 83

11 83 7 89

.

. .
,

Stiffness Matrix Relative to Global Coordinates
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 K k and K k
ji jj31

3 3 3

33

3 3
10

17 74 11 83

11 83 7 89
10= =

- -
- -

È

Î
Í

˘

˚
˙ = =

. .

. .
,

33
17 74 11 83

11 83 7 89

. .

. .
.

È

Î
Í

˘

˚
˙

 Contribution of member 4
 Member address i j
 Structure address 2 4

subscript of coefficient in K  22  24  42  44
subscript of contributing coefficient from k4  ii  ij  ji  jj

 From (3.14)

 K k K k
ii ij22

4 4 3

24

4 4 3
10

18 38 0

0 0
10

18 38 0

0 0
= =

È

Î
Í

˘

˚
˙ = =

-È

Î
Í

˘

˚
˙

.
,

.
,

 K k and K k
ji jj42

4 4 3

44

4 4 3
10

18 38 0

0 0
10

18 38 0

0 0
= =

-È

Î
Í

˘

˚
˙ = =

È

Î
Í

˘

˚

.
,

.

˙̇ .

 Contribution of member 5
 Member address i j
 Structure address 3 4

subscript of coefficient in K  33  34  43  44
subscript of contributing coefficient from k5  ii  ij  ji  jj

 From (3.15)

 K k K k
ii ij33

5 5 3

34

5 5 3
10

25 54 12 77

12 77 6 39
10

25
= =

-
-

È

Î
Í

˘

˚
˙ = =

-. .

. .
,

.554 12 77

12 77 6 39

.

. .
,

-
È

Î
Í

˘

˚
˙

 K k and K k
ji jj43

5 5 3

44

5 5 3
10

25 54 12 77

12 77 6 39
10

2
= =

-
-

È

Î
Í

˘

˚
˙ = =

. .

. .
,

55 54 12 77

12 77 6 39

. .

. .
.

-
-

È

Î
Í

˘

˚
˙

 Note that in general, not all the members contribute to a 
particular value of Kij.

 K K K K K K k O k O O
ii ii11 11

1

11

2

11

3

11

4

11

5 1 3= + + + + = + + + +

 =
È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ =10

24 50 0

0 0
10

17 74 11 83

11 83 7 89
10

42 24 11
3 3 3

. . .

. .

. ..

. .

83

11 83 7 89

È

Î
Í

˘

˚
˙

(i.e. only members 1 and 3 contribute to K11)

 K K K K K K k O O O O
ij12 12

1

12

2

12

3

12

4

12

5 1= + + + + = + + + +
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 =
-È

Î
Í

˘

˚
˙10

24 50 0

0 0

3
.

(i.e. only member 1 contributes to K12)

 K K K K K K O O k O O
ij13 13

1

13

2

13

3

13

4

13

5 3= + + + + = + + + +

 =
- -
- -

È

Î
Í

˘

˚
˙10

17 74 11 83

11 83 7 89

3
. .

. .

(i.e. only member 3 contributes to K13)

 K K K K K K O O O O O
14 14

1

14

2

14

3

14

4

14

5
0 0

0 0
= + + + + = + + + + =

È

Î
Í

˘

˚
˙

(i.e. no member contributes to K14)

 K K K K K K k O O O O
ji21 21

1

21

2

21

3

21

4

21

5 1= + + + + = + + + +

 =
-È

Î
Í

˘

˚
˙10

24 50 0

0 0

3
.

 K K K K K K k k O k O
jj ii ii22 22

1

22

2

22

3

22

4

22

5 1 2 4= + + + + = + + + +

 = È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ =10

24 50 0

0 0
10

0 0

0 33 60
10

18 38 0

0 0
10

3 3 3 3
.

.

. 442 88 0

0 33 60

.

.

È

Î
Í

˘

˚
˙

 K K K K K K O k O O O
ij23 23

1

23

2

23

3

23

4

23

5 2 3
10

0 0

0 33 60
= + + + + = + + + + =

-
È

Î
Í

˘
. ˚̊

˙

 K K K K K K O O O k O
ij24 24

1

24

2

24

3

24

4

24

5 4 3
10

18 38 0

0 0
= + + + + = + + + + =

-È

Î
Í

˘.

˚̊
˙

 K K K K K K O O k O O
ji31 31

1

31

2

31

3

31

4

31

5 3= + + + + = + + + +

 =
- -
- -

È

Î
Í

˘

˚
˙10

17 74 11 83

11 83 7 89

3
. .

. .

 K K K K K K O k O O O
ji32 32

1

32

2

32

3

32

4

32

5 2 3
10

0 0

0 33 60
= + + + + = + + + + =

-
È

Î
Í

˘
. ˚̊

˙

 K K K K K K O k k O k
jj jj ii33 33

1

33

2

33

3

33

4

33

5 2 3 5= + + + + = + + + +

 =
È

Î
Í

˘

˚
˙ +

È

Î
Í

˘

˚
˙ +

-
10

0 0

0 33 60
10

17 74 11 83

11 83 7 89
10

25 54 1
3 3 3

.

. .

. .

. 22 77

12 77 6 39

.

. .-
È

Î
Í

˘

˚
˙

Stiffness Matrix Relative to Global Coordinates
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 =
-

-
È

Î
Í

˘

˚
˙10

43 28 0 94

0 94 47 88

3
. .

. .

 K K K K K K O O O O k
ij34 34

1

34

2

34

3

34

4

34

5 5= + + + + = + + + +

 =
-

-
È

Î
Í

˘

˚
˙10

25 54 12 77

12 77 6 39

3
. .

. .

 K K K K K K O O O O O
41 41

1

41

2

41

3

41

4

41

5
0 0

0 0
= + + + + = + + + + =

È

Î
Í

˘

˚
˙

 K K K K K K O O O k O
ji42 42

1

42

2

42

3

42

4

42

5 4 3
10

18 38 0

0 0
= + + + + = + + + + =

-È

Î
Í

˘.

˚̊
˙

 K K K K K K O O O O k
ji43 43

1

43

2

43

3

43

4

43

5 5= + + + + = + + + +

 =
-

-
È

Î
Í

˘

˚
˙10

25 54 12 77

12 77 6 39

3
. .

. .

 K K K K K K O O O k k
jj jj44 44

1

44

2

44

3

44

4

44

5 4 5= + + + + = + + + +

 =
È

Î
Í

˘

˚
˙ +

-
-

È

Î
Í

˘

˚
˙ =10

18 38 0

0 0
10

25 54 12 77

12 77 6 39
10

43 92
3 3 3

. . .

. .

. --
-

È

Î
Í

˘

˚
˙

12 77

12 77 6 39

.

. .

 Or by inspection (based on the correspondence of the member 
and structure addresses) as:

k k
ii ii

1 3+ k
ij

1
k

ij

3 O

K=
k

ji

1
k k k

jj ii ii

1 2 4+ + k
ij

2
k

ij

4

(3.17)
k

ji

3
k

ji

2
k k k

jj jj ii

2 3 5+ + k
ij

5

O k
ji

4
k

ji

5
k k

jj jj

4 5+

Load vector

The load vector, which is written in terms of global coordinates, will 
be composed of the forces acting at the nodes and is given by:
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 F

F

F

F

F

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

1

2

3

4

 Since there are two degrees of freedom at each node which are 
defined by the displacements u and w in the x- and z-directions 
respectively, the corresponding forces will be X and Z. Thus:

 F
X

Z

R

R

X

Z

1

1

1

1

1

=
È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ , where Rx1 and Rz1 are the reactions in the x- 

and z-directions respectively at the hinged support 1.

 F
X

Z
2

2

2

0

45
=

È

Î
Í

˘

˚
˙ =

-
È

Î
Í

˘

˚
˙ , F

X

Z
3

3

3

20

0
=

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ ,  and F

X

Z R
Z

4

4

4 4

0
=

È

Î
Í

˘

˚
˙ =

È

Î
Í

˘

˚
˙ ,  

where Rz4 is the reaction in the z-direction at the roller support 4.

 F

R

R

R

X

Z

Z

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

-

1

1

4

0

45

20

0

0

 (3.18)

 Substitute the values of K in (3.17) and F in (3.18) to get:

42.24 11.83 –24.50  0 –17.74 –11.83  0  0 u1

=

RX1

11.83 7.89  0  0 –11.83 –7.89  0  0 w1 RZ1

–24.50  0 42.88  0  0  0 –18.38  0 u2 0

103 0  0  0 33.60  0 –33.60  0  0 w2 –45  (3.19)
–17.74 –11.83  0  0 43.28 –0.94 –25.54 12.77 u3 20

–11.83 –7.89  0 –33.60 –0.94 47.88 12.77 –6.39 w3 0

0  0 –18.38  0 –25.54 12.77 43.92 –12.77 u4 0

0  0  0  0 12.77 –6.39 –12.77 6.39 w4 RZ4

Stiffness Matrix Relative to Global Coordinates
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Boundary conditions

The next step is to apply the boundary conditions as follows:
 At node 1 where there is a pinned support allowing no 
displacement, then u1 = 0; and in order to enforce this boundary 
condition, delete row 1 and column 1 of the above matrix.
 Similarly, w1 = 0; and in order to enforce this boundary condition, 
delete row 2 and column 2 of the above matrix.
 At node 4 where there is a roller support allowing displacement 
in the x-direction only but not in the z-direction, then, w4 = 0; and in 
order to enforce this boundary condition, delete row 8 and column 8 
of the above matrix.
 In some cases the matrix needs to be compacted after deletion of 
some of the rows and columns. However, matrix compaction is not 
necessary in this particular example.
 The resulting ‘reduced’ matrix is:

 10

42 88 0 0 0 18 38

0 33 60 0 33 60 0

0 0 43 28 0 94 25 54

0 33 60 0

3

. .

. .

. . .

.

-
-
- -

- - .. . .

. . . .

94 47 88 12 77

18 38 0 25 54 12 77 43 92

2

2

- -

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

u

w

u
33

3

4

0

45

20

0

0

w

u

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

=
-

È

Î

Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙

Calculation of displacements

The above set is written in the form of simultaneous equations as:
 42880u2 + 0w2 + 0u3 + 0w3 – 18380u4 = 0
 0u2 + 33600w2 + 0u3 – 336000w3 + 0u4 = –45
 0u2 + 0w2 + 43280u3 – 940w3 – 25540u4 = 20
 0u2 – 33600w2 – 9480u3 + 47880w3 + 12770u4 = 0
 –18380u2 + 0w2 – 25540u3 + 12770w3 + 43920u4 = 0
 The solution of the above set of simultaneous equations is:
 u2 = 0.002039 m, w2 = –0.008540 m, u3 = 0.003113 m,
 w2 = –0.007200 m, and u4 = 0.004757 m.
 We also have, from the boundary conditions, u1 = 0, w1 = 0, and 
w4 = 0.
 So the full column vector of displacements for the whole structure 
is:
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 d

d
d
d
d
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u
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u
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u
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˙
˙
˙
˙
˙
˙
˙

=
-

-

È
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0

0
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0 003113
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.

.

.

.

.

ÍÍ
Í
Í
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Í
Í
Í
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˙
˙
˙
˙
˙
˙
˙
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˙

 (3.20)

 And the deformed shape of the frame is shown in Fig. 3.9.

initial shape

de�lected shape

Figure 3.9 Deformed structure.

Calculation of the reactions at the supports

The reactions can be found from the full matrix in (3.19) as follows:
 The reaction at support 1 in the x-direction is calculated from the 
first row
 42240u1 + 11830w1 – 24500u2 – 17740u3 – 11830w3 = RuX1
  RX1 = 42240 ¥ 0 + 11830 ¥ 0 – 24500 ¥ 0.002039 – 17740 ¥ 

0.003113 – 11830 ¥ (–0.007200) = – 20.00 kN
 The reaction at support 1 in the z-direction is calculated from the 
second row
 11830u1 + 7890w1 – 11830u3 – 7890w3 = Rz1
  Rz1 = 11830 ¥ 0 + 7890 ¥ 0 – 11830 ¥ 0.003113 – 7890 ¥ 

(–0.007200) = 19.98 kN

Stiffness Matrix Relative to Global Coordinates
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 The reaction at support 4 in the z-direction is calculated from the 
eighth row
 12770u3 – 6390w3 – 12770u4 + 6390w4 = Rz4
  Rz4 = 12770 ¥ 0.003113 – 6390 ¥ (–0.007200) – 12770 ¥ 

0.004757 + 6390 ¥ 0 = 25.01 kN

Calculation of actions (forces) developed in the members

These are usually calculated relative to the local coordinates of 
the member from (3.3) as F k= d , where k  is given by (3.4), the 
displacement vector d  is obtained from (3.5) as d d= r , r is the 
transformation matrix which is given in (3.8) and d is the vector 
of displacements at the ends of the member relative to global 
coordinates obtained from (3.20).

Member 1

 EA

L
kN m=

¥ ¥ ¥
=

-
210 10 350 10

3
24500

6 6

/

 Substitute in (3.4) to get

 k
1

24500 0 24500 0

0 0 0 0

24500 0 24500 0

0 0 0 0

=
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-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 xij = 3 m, zij = 0, L = 3 m,
 Substitute in (3.8) to get

 r I the unit matrix
1

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

=

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

= ( )

 The above result could have been found by inspection since the 
local x -axis of member 1 coincides with and pointing in the positive 
direction (i.e. node j is to the right of node i) of the global x-axis.

 d
d

d

d
d
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1

1
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2
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.

, 
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 The negative force at node i indicates tension.

i j
49.96 kN 49.96 kN

1 2

Member 2
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L
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¥ ¥ ¥
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2
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/

 k
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 xij = 0, zij = 2 m, L = 2 m,
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2
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 The negative force at node i indicates tension.

45.02 kN

i

j

45.02 kN

3

2
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 The positive force at node i indicates compression.

i 

j 

36.03 kN  

36.03 kN  

1 

3 

Member 4

 EA

L
kN m=

¥ ¥ ¥
=

-
210 10 350 10

4
18375

6 6

/

Stiffness Matrix Relative to Global Coordinates
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 Since the member local axis lies along the global x-axis, r4 = I.
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 The member is in tension.
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 xij = 4 m, zij = –2 m, L = 4.472 m
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 The member is in compression.

i

j

55.79 kN

55.79 kN

3

4

Problems

 P3.1. Calculate the displacements at the nodes, the reactions at 
the supports, and the forces developed in the members of 

Problems
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the pin-connected plane frame shown in Fig. P3.1. A1 = 500 
¥ 10-6 m2, A2 = 800 ¥ 10-6 m2 and both members are made of 
steel with modulus of elasticity, E = 210 ¥ 106 kN/m2.

1 

2 3 
35 kN 

3 m 

2 m 

45 kN 

1 

2 

Figure P3.1 

Answer:
 u1 = 0, w1 = 0, u2 = 0, w2 = 0, u3 = 0.002929 m, w3 = –0.007532 m,
 RX1 = 67.50 kN, RZ1 = 45.00 kN, RX2 = –102.50 kN, RZ2 = 0.

 Member

X

Z

X

Z
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˙
˙

( )kN Tension ,
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X
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X
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2

1

2

3

2
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2
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È

Î

Í
Í
Í
Í

˘

˚

˙
˙̇
˙
˙

( )kN Compression .

 P3.2. Calculate the displacements at the nodes, the reactions at 
the supports, and the forces developed in the members of 
the pin-connected plane frame shown in Fig. P3.2. A1 = A5 = 
900 ¥ 10-6 m2, A2 = 300 ¥ 10-6 m2, A3 = A4 = 600 ¥ 10-6 m2 and 
all members are made of steel with modulus of elasticity, E = 
210 ¥ 106 kN/m2.
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Not a joint

1 2

3 4

60 kN

40 kN

6 m

4 m

2

1 5

3 4

Figure P3.2 

Answer:
 u1 = 0, w1 = 0, u2 = 0, w2 = 0, u3 = 0.006986 m, w3 = 0.001292 m,
 u4 = 0.006169 m, w4 = –0.002517 m,
 RX1 = –12.86 kN, RZ1 = –60.00 kN, RX2 = –27.14 kN, RZ2 = 120.00 kN.
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X

Z

X

Z
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0
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1

1

1

1
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1
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È
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Í
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˙
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˙
˙

( )kN Compression ,

Problems
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 Member

X

Z

X
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( )kN Compression .

 P3.3. Calculate the displacements at the nodes, the reactions at 
the supports, and the forces developed in the members of 
the pin-connected plane frame shown in Fig. P3.3. A1 = 7000 
¥ 10-6 m2, A2 = A3 = A6 = 3000 ¥ 10-6 m2, A4 = A5 = 4000 ¥ 10-6 

m2 and all members are made of timber with modulus of 
elasticity, E = 8 ¥ 106 kN/m2.

1

2

3

4

5

10 kN

1.5 m 1.5 m

1 m

3

2

1

4

5

6

Figure P3.3 
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Answer:
 u1 = 0, w1 = 0, u2 = 0, w2 = 0, u3 = –0.000804 m, w3 = 0.003647 m,
  u4 = 0.000937 m, w4 = –0.003959 m, u5 = –0.001507 m, 
 w5 = –0.010067 m,
 RX1 = 30.00 kN, RZ1 = 0, RX2 = –30.00 kN, RZ2 = 10.00 kN.

 Member

X

Z

X

Z
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( )kN Compression ,
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( )kN Compression ,
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Problems
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 P3.4. Calculate the displacements at the nodes, the reactions at 
the supports, and the forces developed in the members 
of the pin-connected plane frame shown in Fig. P3.4. All 
members have the same cross-sectional area, A = 120 ¥ 10-6 

m2 and are made of aluminium with modulus of elasticity,  
E = 70 ¥ 106 kN/m2.

10 kN

20 kN

1

2

3

4

5
60° ° ° °

2 m 2 m

62

1 3
5 7

4

60 60 60

Figure P3.4 

Answer:
 u1 = –0.005130 m, w1 = 0, u2 = –0.003274, w2 = –0.005621 m,
 u3 = –0.003160 m, w3 = –0.010105 m, u4 = –0.007213 m,
 w4 = –0.005965 m, u5 = 0, w5 = 0,
 RX1 = 0, RZ1 = 14.33 kN, RX5 = 10.00 kN, RZ5 = 5.67 kN.
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Problems
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Beams are straight members subjected to loads acting between the 
supports and usually in the direction of gravity, i.e. along the z-axis. 
The boundary conditions may include fixed, hinged, roller, elastically 
restrained, or free types of support. The beam may be prismatic, i.e. 
with a constant cross section otherwise it is non-prismatic. In this 
book only prismatic beams are treated in detail. When a case of 
non-prismatic beam is encountered then the beam may be divided 
into elements, each of which is assumed to have constant cross 
section leading to an approximate solution and the accuracy can be 
improved if the number of elements is increased.
 The beam under load will deform undergoing deflections and 
rotations due to the curvature of the deflection curve and the actions 
developed in the beam are bending moments and shear forces.

4.1 Derivation of Beam Stiffness Matrix

The stiffness matrix of a beam is the relationship between the 
actions (forces and moments) and displacements (translational and 
rotational) at the ends of the beam.
 The derivation of the stiffness matrix is based on the local 
coordinates system x y z, ,  with the x -axis running along the axis 
of the beam. The displacements and forces are relative to the local  
x -axis thus they are written with a bar.

Chapter 4

Bending of Beams

Analysis of Structures by Matrix Methods
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116 Bending of Beams

 Consider a beam subjected to forces and moments Z
i
 and M

i
 at 

node i and Z
j
 and M

j
 at node j as shown in Fig. 4.1. The beam will 

deform from its initial straight horizontal position into the shape 
shown with the translational and rotational displacements w

i
 

and qi  at node i and w
j
 and q j  at node j. The moment M  and the 

rotation q  are both about the local y -axis.

L

i

j

node i node j

initial shape

shape after deformation

x

wwi

wj
Zj

Zi

Mi

Mj

x, x

z–

–

–

, z

θi

θj

–

–

–

–

–

–

–

–

–

Figure 4.1 A beam element.

 Castigliano’s theorem is used to find a relationship between the 
actions (forces and moments) applied at the ends of the beam and 
the corresponding displacements (translational and rotational).
 The derivation is divided into two parts: the first part assumes 
that the beam is fixed at nod j and the second part assumes that the 
beam is fixed at node i and then these two parts are superimposed 
linearly to get the final result. For the first part where the beam is 
fixed at node j, assume that the beam undergoes a translational 
displacement, w

i
 and a rotational displacement, qi  at node i. The 

forces and moments (actions) Z
i

' , M
i

' , Z
j

' , and M
j

'  at the ends i and j 
of the beam are as shown in Fig. 4.2 and these will be found in terms 
of w

i
 and qi .
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ji

beam element

initial shape

M

L

i¢

V ¢

V ¢

¢

¢

M ¢

M ¢

–

=

=

z–

Mj
–

Zi
–

Zi
–

θj
–

θi
–

wj
–wi

–

x–

x–
0

0

Figure 4.2 

 Cut a section at a distance x  from node i and consider the 
equilibrium of the left potion of the beam. At the right end of the 
left portion of the beam the clockwise bending moment M' and the 
shear force V' in the positive z-direction, shown in Fig. 4.2, are both 
positive.
 From equilibrium of the left part of the beam and by taking 
moments about the cut section, we get

 M Z x M
i

'

i

' '+ + = 0

 M M Z x
'

i

'

i

'= - -  (4.1)

 The strain energy in bending is:

 E
M dx

EI
S

'

L
'

= Ú
0

2

2
 (4.2)

where E is the modulus of elasticity and I is the second moment of 
area of the cross section about its centroidal y -axis. Strictly, it should 
be written as I

y
 but because bending is about the y -axis only and 
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for simplicity it is written as I. This notation is used in subsequent 
chapters except in Chapter 10 where there is bending about the y - 
and z -axes and the appropriate subscripts will be used.
 Castigliano’s theorem states that the deflection at a point in the 
structure is equal to the partial derivative of the strain energy in 
with respect to the force acting at that point. Thus:

 w
E

Z

E

M

M

Z
i

S

'

i

'

S

'

'

'

i

'
=

∂
∂

=
∂
∂

∂
∂

 (4.3)

 From equation (4.2),
∂
∂

= ÚE

M

M dx

EI

S

'

'

L
'

0

 From equation (4.1), ∂
∂

= -
M

Z
x

'

i

'

 Equation (4.3) becomes, w
M

EI
x dx

M Z x x

EI
dx

i

L
'

L

i

'

i

'

= - =
- - -Ú Ú

0 0

( )
( )( )

 w
EI

M
L

Z
L

i i

'

i

'= +
Ê

ËÁ
ˆ

¯̃
1

2 3

2 3

 (4.4)

 Similarly, Castigliano’s theorem states that the rotation at a point 
in the structure is equal to the partial derivative of the strain energy 
with respect to the moment acting at that point. Thus:

 qi =
∂
∂

=
∂
∂

∂
∂

E

M

E

M

M

M

S

'

i

'

S

'

'

'

i

'
 (4.5)

 From equation (4.1), ∂
∂

= -
M

M

'

i

'
1

 Equation (4.5) becomes, qi = - =
- - -Ú Ú

0 0

1
1

L
'

L

i

'

i

'
M

EI
dx

M Z x

EI
dx( )

( )( )

 qi = +
Ê

ËÁ
ˆ

¯̃
1

2

2

EI
M L Z

L

i

'

i

'  (4.6)

 Solving equations (4.4) and (4.6) simultaneously for the 
unknowns Z

i

'  and M
i

'  to get:

 Z
EI

L

w
EI

L
i

'

i
= -

12 6

3 2
qi  (4.7)
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 M
EI

L

w
EI

L
i

'

i
= - +

6 4

2
qi  (4.8)

 Equations (4.7) and (4.8) represent k
ii

 of the stiffness matrix.
 The force and moment at end j are calculated from consideration 
of equilibrium of the whole beam.
 Summation of the forces in the z -direction is zero
 Z Z Z Z

i

'

j

'
j

'

i

'+ = = -0,  and substitute equation (4.7) we get

 Z
EI

L

w
EI

L
j

'

i
= - +

12 6

3 2
qi  (4.9)

 Summation of the moments about node j is zero
 M Z L M M M Z L

i

'

i

'

j

'

j

'

i

'

i

'+ + = = - -0,  and substitute equations (4.7) 
and (4.8) to get

 M
EI

L

w
EI

L
j

'

i
= - +

6 2

2
qi  (4.10)

 Equations (4.9) and (4.10) represent k
ji

 of the stiffness matrix.
 For the second part of the derivation, assume that the beam 
is fixed at node i and has a translational displacement, w

j
 and a 

rotational displacement, qi  at node j. The forces and moments 
(actions) Z

i

'' , M
i

'' , Z
j

'' , and M
j

''  at the ends i and j of the beam are 
shown in Fig. 4.3 and these will be found in terms of w

j
 and q j .

 The bending moment M
'' at a distance x  from end i is now found 

in terms of the moment M
j

''  and force Z
j

''  at node j as follows:
 From the equilibrium of the whole beam, Z Z

i

''

j

''= -  and the 
summation of the moments about node i is zero, M M Z L

i

''

j

''

j

''= - + .
 From the equilibrium of the left part of the beam

 M M Z x
''

i

''

i

''= - -

 Substitute for Z
i

''  and M
i

''  in term of Z
j

''  and M
j

'' , respectively to 
get

 M M Z L x
''

j

''

j

''= - -( )  (4.11)

 (The above equation could have been derived directly by 
considering the equilibrium of the right part of the beam, but that 
might cause some confusion to the reader with the signs of the forces 
and moments.)

Derivation of Beam Stiffness Matrix
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 E
M dx
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''
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2
 (4.12)
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 From equation (4.12), 
∂
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= ÚE
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S
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 From equation (4.11), ∂
∂
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Figure 4.3 

 Equation (4.13) becomes

 w
M

EI
L x dx

M Z x L x

EI
dx

j

L
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L
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j
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Ú Ú
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j j
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 (4.14)
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 qi =
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∂
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∂

E

M

E
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M
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S
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 From equation (4.11),   ∂
∂

= +
M

M

''

j

''
1

Equation (4.15) becomes  q j = + =
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dx( )

[ ( )]

 q j = -
Ê

ËÁ
ˆ

¯̃
1

2

2

EI
M L Z

L

j

''

j

''  (4.16)

 Solving (4.14) and (4.16) simultaneously to get

 Z
EI

L

w
EI

L
j

''

j
= +

12 6

3 2
q j  (4.17)

 M
EI

L

w
EI

L
j

''

j
= +

6 4

2
q j  (4.18)

 Equations (4.17) and (4.18) represent k
jj

 of the stiffness matrix.
 From equilibrium of the whole beam
 Z Z Z Z

i

''

j

''

i

''

j

''+ = = -0, ,  substitute (4.17) to get

 Z
EI

L

w
EI

L
i

''

j
= - -

12 6

3 2
q j  (4.19)

 Summation of the moments about node i is zero
 M Z L M M M Z L

i

''

j

''

j

''

i

''

j

''

j

''- + = = - +0, , substitute (4.17) and (4.18) 
to get

 M
EI

L

w
EI

L
i

''

j
= +

6 2

2
q j  (4.20)

 Equations (4.19) and (4.20) represent k
ij

 of the stiffness matrix.
 The final end forces and moments are obtained by adding the 
appropriate equations obtained from cases one and two as follows:
 Z Z Z

i i

'

i

''= + , and from (4.7) and (4.19) we get

 Z
EI

L

w
EI

L

EI

L

w
EI

L
i i j

= - - -
12 6 12 6

3 2 3 2
q qi j  (4.21)

 M M M
i i

'

i

''= + , and from (4.8) and 4.20) we get

 M
EI

L

w
EI

L

EI

L

w
EI

L
i i i j

= - + + +
6 4 6 2

2 2
q q j  (4.22)
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 Z Z Z
j j

'

j

''= + , and from (4.9) and (4.17) we get

 Z
EI

L

w
EI

L

EI

L

w
EI

L
j i j
= - + + +

12 6 12 6

3 2 3 2
q qi j  (4.23)

 M M M
j j

'

j

''= + , and from (4.10) and (4.18) we get

 M
EI

L

w
EI

L

EI

L

w
EI

L
j i j
= - + + +

6 2 6 4

2 2
q qi j  (4.24)

 Writing equations (4.21) to (4.24) in matrix form leads to:
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 (4.25)

 or

 F k= d  (4.26)

where F
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Z
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 is the displacement 

vector, and
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hhe stiffness matrix( ).  (4.27)
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 The above relationships can alternatively be derived by a finite 
element approach using the so-called interpolation polynomial 
which defines the displacement along the element as explained in 
Appendix 2.
 The overall stiffness matrix is assembled relative to global 
coordinates. So, the first step is to find the stiffness matrices of the 
members relative to the global coordinates. For a beam element 
where its x -axis coincides with the global x-axis the displacements 
and stiffness matrices derived relative to local coordinates will 
have the same values relative to global coordinates, i.e. they do not 
need to be transformed. This follows from the fact that in this case 
the transformation matrix r will be equal to the unit matrix I and 
by noting that k r kr I kI k

T T= = = . Thus, the stiffness matrix of the 
beam relative to local coordinates is used as the stiffness matrix 
relative to global coordinates, thus:

 k
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EI

L
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EI
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=
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12 6 12 6

6 4 6 2
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3 2 3 2

2 2

3 2

112 6

6 2 6 4
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L

EI

L
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L
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È
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Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 (4.28)

 The stiffness matrix derived above is for an individual member 
and structures are normally composed of more than one member 
that are connected together to form the structure. The required 
overall structure stiffness matrix is assembled by adding the 
contributions of the individual members’ stiffness matrices to any 
joint that is common to these members.

Example 1

Calculate and draw the shear force and bending moment diagrams 
and the deflected shape for the continuous beam shown in Fig. 4.4.
 The beam is made of concrete with modulus of elasticity E = 35 ¥ 
106 kN/m2 and has the following properties:
 Member 1: L = 7 m, I = 490 ¥ 10–6 m4

 Member 2: L = 6 m, I = 660 ¥ 10–6 m4

Derivation of Beam Stiffness Matrix
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A 
B D C 

7 m 4 m 2 m 

135 kN 

24 kN/m 

1 2 3 2 1 

Figure 4.4 

Stiffness matrices of the members

Member 1

 Member address: i j
 Structure address: 1 2
 L = 7 m, I = 490 ¥ 10-6 m4, E = 35 ¥ 106 kN/m2.
 Substitute the above values in (4.28) to get

 

d d d d
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-

È

Î
Í

˘

˚
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1
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È

Î
Í

˘

˚
˙ .
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Member 2

 Member address: i j
 Structure address: 2 3
 L = 6 m, I = 660 ¥ 10-6 m4, E = 35 ¥ 106 kN/m2.
 Substitute the above values in (4.28)
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 The general relationship for the whole structure is
 Kd = F (4.29)

where K is the structure overall stiffness matrix relative to global 
coordinates, d is the vector of displacements at the nodes of the 
structure, and F is the load vector.

Assembly of the overall stiffness matrix relative to global 
coordinates

There are three nodes in the structure therefore the overall stiffness 
matrix K will consist of 3¥3 submatrices. And since each node has 
two degrees of freedom, w and q, then each submatrix will be 2¥2 
as shown below.
 Each of the members of the frame will contribute to the structure 
stiffness matrix K according to the relationship between the member 

Derivation of Beam Stiffness Matrix
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address and the structure address. In the following, the translation 
w and rotation q at the nodes will be treated as one displacement d. 
This will make the assembly process more manageable and easily 
handled. Thus, the overall stiffness matrix of the structure is

d1 d2 d3

k
ii

1 k
ij

1 0 d1

K= k
ji

1
k k

jj ii

1 2+ k
ij

2 d2

0 k
ji

2
k

jj

2 d3

w1 q1 w2 q2 w3 q3

600 –2100 –600 –2100 0 0 w1

–2100 9800 2100 4900 0 0 q1

K= –600 2100 1883 –1750 –1283 –3850 w2 (4.30)

–2100 4900 –1750 25200 3850 7700 q2

0 0 –1283 3850 1283 3850 w3

0 0 –3850 7700 3850 15400 q3

4.2 Load Vector

In the previous chapter we had pin-connected frames where the 
forces on the structure were considered as point loads acting on 
the joints. For continuous beams most of the loads are acting on 
the members rather than directly on the joints and they have to be 
transferred to the joints as equivalent forces (as well as moments). 
For this purpose the members are first assumed fixed at their ends 
and the forces and moments acting at these ends are calculated as 
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explained in Appendix 5. The forces and moments acting on any 
joint are obtained by adding up the contributions from the members 
meeting at that joint.
 Consider beam AB with fixed ends at nodes i and j and is subjected 
to an arbitrary load as shown in Fig. 4.5.

(M–

–

–

–

i)f (Mj)f

j

(Mi)s (Mj)s

(Zi)f (Zj)f(Zi)s (Zj)s

loads

joint i
A B

i j

Figure 4.5 

 The forces ( )Z
i f

 and ( )Z
j f

 and moments ( )M
i f

 and ( )M
j f

 are 
called actions on the beam due to the applied forces on the span of 
the beam and are calculated assuming that the beam is fixed at its 
ends i and j. The forces (Zi)s and (Zj)s and moments (Mi)s and (Mj)s 
are called loads on joints i and j of the structure and from the beam-
joint section equilibrium they have the same magnitude of forces and 
moments as those acting on the beam but in the opposite direction.
 Note that all forces and moments acting on the beam are drawn 
in the positive directions as shown in Fig. 4.5 and if any of them 
turns out to be negative then its actual direction is opposite to that 
assumed.
 The subscript (f) is for the vector of actions (forces and moments) 
on the ends of the member due to the forces acting on the span 
of the member. These actions are calculated relative to the local 
coordinates of the member. The subscript (s) is for the load vector 
on the joints of the structure. For equilibrium at the section between 
the member end and the joint the quantities in the load vector on 
the joint have opposite signs to those in the vector of actions on the 
member. The load vector on the joints of the structure is calculated 
relative to global coordinates, but because the beam local x -axis 
coincides with the global x-axis transformation is not required.
 When two beams meet at a continuous rigid joint then the force 
and moment applied on that joint are given by the algebraic sum of 
forces and moments at the meeting ends of the two beams.

Load Vector
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 The total force and moment acting on any joint of the structure 
are calculated from the combined effect of the applied load on the 
beams and the reactions exerted by their support.
 The load vector for the overall structure is obtained from the 
magnitudes and directions of the forces and moments acting at all 
joints of the structure.
 To build up the load vector for the whole structure a similar 
procedure as that in building up the structure stiffness matrix is 
followed.
 The total load vector F acting on the joints of the structure is 
composed of forces and moments FS due to the forces acting on 
the span of the members in addition to the forces and moments FC 
exerted by the restraints, for example the reactions of the supports 
on the structure at the nodes, hence
 F = FS + FC

Member 1

joint 2

24 kN/m 

L = 7 m

98 kNm98 kNm 98 kNm 98 kNm

84 kN84 kN 84 kN84 kN

joint 1  
1 2

Figure 4.6 

 With reference to Fig. 4.5 for the notation and n = –24 kN/m

 ( )Z
nL

kN
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2

24 7

2
84= - = -

-( ) ¥
= +

 ( )Z
nL

kN
f2
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2

24 7

2
84= - = -

-( ) ¥
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12
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12
98= + = +

-( ) ¥
= -

 ( )M
nL

kNm
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2 2
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24 7

12
98= - = -

-( ) ¥
= +
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 Hence the action vector for member 1 is:
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 (4.31)

 From equilibrium of the beam-joint section at node 1
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 From equilibrium of the beam-joint section at node 2
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 (4.32)

Member 2

32
joint 2

120 kNm 60 kNm

100 kN 35 kN

joint 3

120 kNm 60 kNm

100 kN 35 kN

L = 6 m

a  = 2 m b  = 4 m

135 kN

Figure 4.7 

Load Vector
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 With reference to Fig. 4.5 for the notation and W = –135 kN
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 The action vector for member 2 is:
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 From equilibrium, the joint load vector is given by:
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 (4.34)

 Now calculate the resultant forces and moments acting on the 
joints of the structure.

Joint 1: This joint is acted upon by a downward force of 84 kN and 
a clockwise moment of 98 kNm due to the load on member 1. In 
addition, the support at joint 1 exerts a force RZ1 and a moment RM1.
 The resultant force is given by the algebraic sum of the forces.
 R1 = –84 + RZ1

 The resultant moment is given by the algebraic sum of the 
moments.
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 M1 = +98 + RM1

joint 1 (M1
1)S = 98 kNm

RZ1

RM1

(Z1
1)S = 84 kN

Joint 2: This joint is acted upon by a downward force of 84 kN and 
an anticlockwise moment of 98 kNm due to the load on member 1 
and a downward force of 100 kN and a clockwise moment of 120 
kNm due to the load on member 2. In addition, the support at joint 
2 exerts a force R

Z2
.

joint 2
(M2

1)S = 98 kNm (M2
2)S = 120   kNm

RZ2

(Z2
1)S = 84 kN (Z2

2)S = 100 kN

 The resultant force, Z2 = –84 –100 + RZ2 = –184 + ZZ2.
 The resultant moment, M2 = –98 +120 = + 22 kNm.

Joint 3: This joint is acted upon by a downward force of 35 kN and 
an anticlockwise moment of 60 kNm due to the load on member 2. In 
addition, the support at joint 3 exerts an upward force RZ3.
 The resultant force, Z3 = –35 + RZ3.
 The moment, M3 = –60 kNm.

joint 3
(M3

2)S = 60 kNm

RZ3

(Z3
2)S = 35  kN

Load Vector
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 Therefore, the total load vector for the whole structure is
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 (4.35)

 The above result can also be found by direct vector addition of 
the load vectors due to the loads acting on the members and the 
reactions of the supports on the structure as follows:

 Due to load on member 1 from (4.32), F
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 Due to load on member 2 from (4.34), F
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 Due to support reactions, F
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which is the same as (4.35) and this simple method of vector addition 
will be used in the chapters that will follow.
 Substitute K from (4.30) and F from (4.36) in the general relation 
(4.29) to get:

600 –2100 –600 –2100 0 0 w1 –84+RZ1

–2100 9800 2100 4900 0 0 q1 +98+RM1

–600 2100 1883 –1750 –1283 –3850 w2
=

–184+RZ2
(4.26)

–2100 4900 –1750 25200 3850 7700 q2 +22

0 0 –1283 3850 1283 3850 w3 –35+RZ3

0 0 –3850 7700 3850 15400 q3 –60

 The next step is to introduce the boundary conditions as follows:
 At node 1 where we have a fixed end, both the vertical deflection 
and rotation are equal to zero, i.e. w1 = 0 hence delete row 1 and 
column 1, and q1 = 0 hence delete row 2 and column 2.
 At node 2 where there is a non-yielding support, the vertical 
deflection is equal to zero, i.e. w2 = 0 hence delete row 3 and column 
3.
 At node 3 where there is a non-yielding support, the vertical 
deflection is equal to zero, i.e. w3 = 0 hence delete row 5 and column 
5.

Load Vector
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 The shaded rows and columns are those which are deleted and 
the resulting ‘reduced’ matrix is:

 
25200 7700

7700 15400

22

60

2

3

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

+
-

È

Î
Í

˘

˚
˙

q
q

 The above can be written in the form of two simultaneous 
equations as:
 25200q2 + 7700q3 = +22

 7700q2 + 15400q3 = –60

 The solution of the above equations is:
 q2 = +0.00244 rad

 q3 = –0.00511 rad

Calculation of reactions at the supports

The reactions at the supports are calculated from (4.26) as follows
 From the first row
 600w1 – 2100q1 – 600w2 –2100q2 = –84 + RZ1
 600 ¥ 0 – 2100 ¥ 0 – 600 ¥ 0 – 2100 ¥ 0.00244 = –84 + RZ1
 RZ1 = 78.88 kN
 From the second row
 –2100w1 + 9800q1 + 2100w2 + 4900q2 = +98 + RM1
 –2100 ¥ 0 + 9800 ¥ 0 + 2100 ¥ 0 + 4900 ¥ 0.00244 = +98 + RM1
 RM1 = –86.04 kNm
 From the third row
  –600w1 + 2100q1 + 1883w2 –1750q2 –1283q3 –3850q3 = –184 + 

RZ2 –600 ¥ 0 + 2100 ¥ 0 + 1883 ¥ 0 – 1750 ¥ 0.00244 – 1283 ¥ 0 
–3850 ¥ (–0.00511) = –184 + RZ2

 RZ2 = 199.40 kN
 From the fifth row
 –1283w2 + 3850q2 + 1283w3 +3850q3 = –35 + RZ3
  –1283 ¥ 0 + 3850 ¥ 0.00244 + 1283 ¥ 0 + 3850 ¥ (–0.00511)  

= – 35 + RZ3
 RZ3 = 24.72 kN

Calculation of resultant actions at the ends of the members

The vector of resultant actions on the member at its ends F
r

 is 
calculated relative to the local x -axis and is given by: F F F

r d f
= +
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where
 F

d
 is the vector of actions at the ends of the member due to the 

resulting displacements and is given by equation (4.26) as F k
d

= d
with k  from (4.27).
 F

f
 is the vector of actions at the ends of the member due to 

the applied forces acting on the span of the member assuming the 
member is fixed at its ends (these are commonly called fixed end 
moments and forces), thus

 F k F
r f

= +d

Member 1

 k
1

600 2100 600 2100

2100 9800 2100 4900

600 2100 600 2100

2100 4

=

- - -
-
-

- 9900 2100 9800

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 d d= r
where r is transformation matrix and since the member local x -axis 
lies along the global x-axis r = I the unit matrix, thus d d= .

 d d
d

d

d
d

q

q

1
1

1

1

1

2

1

1

2

2

0

0

0
= =

È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ =

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=i

j

w

w

00 00244.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 F k
d

1 1
1

600 2100 600 2100

2100 9800 2100 4900

600 2100 600 2100
= =

- - -
-
-

d

--

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

-

2100 4900 2100 9800

0

0

0

0 00244

5 12

.

.

++
+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

11 96

5 12

23 91

.

.

.

 We had from (4.31)

 F
f

1

84

98

84

98

=

+
-
+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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r
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r d f
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1 1 1

5 12
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˙
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+
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È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

+ 888

86 04

89 12

121 91

-
+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

.

.

.

21

L = 7 m

86.04 kNm 121.91 kNm

78.88 kN 89.12 kN

M

O

24 kN/m

V

x–

–

–

Shear force V  and bending moment M  diagrams

Consider a section at a distance x  from node 1 and apply the 
equations of equilibrium on the left part of the member.
 Summation of the forces in the z -direction:
 + - + = = - +78 88 24 0 78 88 24. , .x V V x  

 Summation of the moments about point O:

 - + - Ê
ËÁ

ˆ
¯̃

+ = = - +86 04 78 88 24
2

0 86 04 78 88 12
2

. . , . .x x
x

M M x x  

Calculation of deflection along the beam

The deflection along the beam can be found by solving the standard 
differential equation for the deflection of beams which is derived in 
Appendix 2 as given by equation (A2.4) as explained below.

 EI
d w

dx

M with EI kNm

2

2

6 6 2
35 10 490 10 17150= - = ¥ ¥ ¥ =-

,

 EI
d w

dx

x x

2

2

2
86 04 78 88 12= - + -. .
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 Integrate with respect to x  to get

 EI
dw

dx
x x x C= - + - +86 04 39 44 4

2 3

1
. .

 At
dw

dx
hence Cx = = =0 0 0

1
, ,

 Integrate again to get

 EIw x x x C= - + - +43 02 13 15
2 3 4

2
. .

 At w hence Cx = = =0 0 0
2

, ,

Therefore w
x x x

=
- + -43 02 13 15

17150

2 3 4
. .

Member 2

 k
2

1283 3850 1283 3850

3850 15400 3850 7700

1283 3850 1283 3850
=

- - -
-
-
-33850 7700 3850 15400

È
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˙
˙
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.
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 F k
d

2 2
2
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3850 15400 3850 7700
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d
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 We had from (4.33)

 F
f

2

100

120

35

60

=

+
-
+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙



139

 

( )

( )

( )

( )

.Z

M

Z

M

F F F

r

r

r

r

r d f

2

2

2

2

3

2

3

2

2 2 2

10 28
È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

= = + =

+
-11 77

10 28

59 91

100

120

35

60

.

.

.

-
-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

+

+
-
+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

=

+1110 28

121 77

24 72

0 09

.

.

.

.

-
+
+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 Notice that ( )M
r3

2  should be zero but the small value of 0.09 is 
due to rounding off in the computations.

3
24.72 kN

0.09

2

121.77 kNm

110.28 kN

M

O

135 kN

V

x–

–

–

Shear force V  and bending moment M  diagrams

Consider a section at a distance x  from node 2 and apply the 
equations of equilibrium on the left part of the member
 Summation of the forces in the z -direction is zero

 For x m V V kN£ + + = = -2 110 28 0 110 28: . , .

 For m x m V V kN2 6 110 28 135 0 24 72£ £ + - + = = +: . , .

 Summation of the moments about point O is zero

 For x m x M M x£ - + + = = + -2 121 77 110 28 0 121 77 110 28: . . , . .

 For m x m x x M2 6 121 77 110 28 135 2 0£ £ - + - -( ) + =: . .

 M x x= + - + -( )121 77 110 28 135 2. .

Calculation of deflection along the beam

 M x x= + - + -121 77 110 28 135 2. . [ ]

(The quantity inside the Macaulay’s square brackets is ignored if 
negative, i.e. when x < 2 m.)

 EI
d w

dx

M

2

2
= -

Load Vector
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 EI
d w

dx

x x

2

2
121 77 110 28 135 2= - + - -. . [ ]

 Integrate twice with respect to x  to get

 EIw x x x C x C= - + - -[ ] + +60 89 18 38 22 5 2
2 3 3

1 2
. . .

 At x w= =0 0, , and ignoring the term with the square brackets 
gives C

2
0= .

 At x m w= =6 0,

 0 60 89 6 18 38 6 22 5 6 2 6
2 3 3

1
= - + ( ) - -[ ] +. ( ) . . ( )C ,

 hence C kNm
1

2
56 34= - . .

 Therefore, w
x x x x

EI
=

- + - -[ ] -60 89 18 38 22 5 2 56 34
2 3 3

. . . .

with EI = 35 ¥ 106 ¥ 660 ¥ 10–6 = 23100 kNm2.
 Alternatively, the beams can be divided into ‘small’ elements and 
the shear force, bending moment and deflection are determined at 
the ends of each element and full diagrams are obtained. This will 
result in more degrees of freedom requiring longer computer time 
and more storage. But for hand calculations, the method followed in 
the above example may be more suitable particularly when dealing 
with relatively small problems and there is no access to specialised 
software.

4.3 Beams with Elastic Supports

Sometimes the supports of the beam are not rigid but have certain 
elasticity in the translational or rotational sense. For example, when 
a beam is supported by a helical spring it will be subjected to a force 
that is proportional to the amount of deformation of the spring. 
Another example is when a bolted connection of a steel beam to a 
steel column is neither completely pinned nor completely fixed but 
somewhere in between. In such a case it can be assumed that the 
beam is elastically restrained by a spiral spring whose rotational 
stiffness is derived from the details of the connection. The treatment 
of beams with elastic supports is the same as for beams with rigid 
supports except that the elasticity of the supports is taken into 
account as shown in the following sections.

Beams with Elastic Supports
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4.3.1 Helical Spring

The relationship between the force developed in a helical spring due 
to an extension w (in the positive z-direction) is Zhs = +khsw as shown 
in Fig. 4.10. Where khs is the stiffness of the spring and the value of 
the extension w is the displacement at one end of the spring relative 
to its other end. The force acting on the joint will be in the opposite 
direction, i.e. –khsw. Notice that when w is negative, the spring will 
be in compression and the force exerted on the joint will be in the 
positive z-direction.

w

Zhs

Fixed support

Node

Initial shape

Deformed shape

Figure 4.10 

 The presence of the helical spring will be taken into account 
when calculating the force acting on the joint as follows. Let the force 
acting on the joint due to the applied loads on the beam is Zbeam, 
then the total force acting on the joint will be Z = Zbeam – Zhs = Zbeam 
– Zhsw and this is placed on the right-hand side of the simultaneous 
equations since it is part of the load vector. The quantity –khsw is 
transferred to the left-hand side of the equation and combined with 
the term containing the relevant w which means that Zhs will be 
added to the appropriate coefficient in the standard stiffness matrix.

4.3.2 Spiral Spring

The moment developed in the spiral spring due to a positive rotation, 
q is Mss = +kssq as shown in Fig. 4.11 where q is the rotation at one 
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end of the spring relative to the other end. The moment acting on 
the joint will be of the same magnitude but in the opposite direction, 
i.e. –kssq.

Mss
θ

Figure 4.11 

 The presence of the spiral spring will be taken into account when 
calculating the moment acting on the joint. Let the moment acting on 
the joint due to the applied loads on the beam is Mbeam, then the total 
moment acting on the joint will be M = Mbeam – Mss = Mbeam – kssq and 
this is on the right-hand side of the simultaneous equations since it 
is part of the load vector. The quantity – kssq is transferred to the left-
hand side of the equation and combined with the term containing 
the relevant q which means that kss will be added to the appropriate 
coefficient.

72 kN 160 kN

2 m 3.5 m3.5 m2 m2 m

1 2
3

1 2

72 kN

Figure 4.12 

Example 2

Draw the shear force and bending moment diagrams for the 
continuous beam shown in Fig. 4.12. The beam has a roller support 
at node 2 which is expected to settle by 0.009 m and is hinged to the 
support at node 3 to provide stability in the x-direction. A helical 

Beams with Elastic Supports
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spring with stiffness khs = 13000 kN/m provides support in the 
z-direction to the beam at node 1 and the central spindle of a spiral 
spring with stiffness kss = 7000 kNm/radian is fixed to the beam at 
node 3 to provide rotational resistance. The beam has a uniform 
cross section with I = 150 ¥ 10-6 m4 and its modulus of elasticity E = 
210 ¥ 106 kN/m2.

Member 1

 L = 6 m, I = 150 ¥ 10-6 m4, E = 210 ¥ 106 kN/m2.
 From (4.18)

 k
1

1750 5250 1750 5250

5250 21000 5250 10500

1750 5250 1750 5250
=

- - -
-
-
--

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

5250 10500 5250 21000

Member 2

 L = 7 m, I = 150 ¥ 10-6 m4, E = 210 ¥ 106 kN/m2.
 From (4.18)

 k
2

1102 3857 1102 3857

3857 18000 3857 9000

1102 3857 1102 3857
=

- - -
-
-
-33857 9000 3857 18000

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 The overall structure stiffness matrix is

1750 –5250 –1750 –5250 0 0

–5250 21000 5250 10500 0 0

K = –1750 5250 2852 1393 –1102 –3857  (4.27)

–5250 10500 1393 39000 3857 9000

0 0 –1102 3857 1102 3857

0 0 –3857 9000 3857 18000
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Calculation of the load vector

The total load vector for the overall structure will be composed of 
the applied forces on the beams and the forces and moments exerted 
by the supports.
 Contribution of loads on member 1

96 kNm

2

2 m 2 m 2 m

96 kNm

6 m

joint 3

96 kNm 96 kNm

72 kN 72 kN

joint 2  

72 kN 72 kN
1 

72 kN 72 kN

 For symmetrical loads applied at the third points of the beam

 ( )Z W kN
f1

1
72 72= - = - -( ) = +

 ( )Z W kN
f2

1
72 72= - = - -( ) = +

 ( )M
WL

kNm
f1

1 2

9

2 72 6

9
96= + = +

¥ -( ) ¥
= -

 ( )M
WL

kNm
f2

1 2

9

2 72 6

9
96= - = -

¥ -( ) ¥
= +

Action vector on member 1

 F

Z

M

Z

M

f

f

f

f

f

1

1

1

1

1

2

1

2

1

72

96

72

96

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

+
-
+
+

È

Î

Í
( )

( )

( )

( )

ÍÍ
Í
Í

˘

˚

˙
˙
˙
˙

 (4.28)

Load vector on joints 1 and 2

 F F
S f

1 1= -

Beams with Elastic Supports



146 Bending of Beams

 F

Z

M

Z

M

S

S

S

S

S

1

1

1

1

1

2

1

2

1

72

96

72

96

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

-
+
-
-

È

Î

Í
( )

( )

( )

( )

ÍÍ
Í
Í

˘

˚

˙
˙
˙
˙

 And since joint 3 is not affected by the loads on member 1 then
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 Contribution of loads on member 2

3
joint 3

140 kNm 140 kNm

80 kN 80 kN

joint 4

3.5 m 3.5 m

140 kNm 140 kNm

80 kN 80 kN
2

160 kN

 For a beam with a point load at mid-span
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Action vector on member 2
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Load vector on joints 2 and 3
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 And since joint 1 is not affected by the loads on member 2 then
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 Load vector due to the reactions at the supports is
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 The total load vector on the structure is given by the sum of 
values due to the applied loads from (4.29) and (4.31) and those 
exerted by the reactions from (4.32), thus
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 (4.33)

 Substitute K from (4.27) and F from (4.33) in (4.19) to get:
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 (4.34)

 In rows 1 and 6 transfer the terms –13000w1 and –7000q3 
respectively from the right-hand side to the left-hand side.
 The next step is to introduce the boundary conditions as follows:
 At node 2 there is a downward settlement of the support of 0.009 
m, hence delete row 3 which correspond to w2 and substitute the 
value of w2 = –0.009 m in the rest of the rows.
 At node 3 where there is a non-yielding support the translational 
displacement in the z-direction is zero, i.e. w3 = 0, hence delete row 
5 and column 5.
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 The resulting set of simultaneous equations simplify to
 14750w1 – 5250q1 –5250q2 = –87.75
 –5250w1 + 21000q1 + 10500q2 = +142.25
 –5250w1 + 10500q1 + 39000q2 + 9000q3 = +55.54
 + 9000q2 + 25000q3 = –174.71
 The solution of the above equations is:
  w1 = –0.00363 m, q1 = 0.00530 rad, q2 = 0.00122 rad,
 q3 = –0.00743 rad.
 And together with w2 = –0.00900 m and w3 = 0, the full 
displacement vector will then be:
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Calculation of reactions at the supports

 From the third row of (4.34)
  –1750w1 + 5250q1 + 2852w2 + 1393q2 –1102w3 –3857q3 = –152 

+ RZ2–1750 ¥ (–0.00363) + 5250 ¥ 0.00530 + 2852 ¥ (–0.00900) 
+ 1393 ¥ 0.00122 – 1102 ¥ 0 – 3857 ¥ (–0.00743) = –152 + RZ2, 
RZ2 = +190.83 kN

 From the fifth row of (4.34)
 –1102w2 + 3857q2 + 1102w3 + 3857q3 = –80 + RZ3

  –1102 ¥ (–0.00900) + 3857 ¥ 0.00122 + 1102 ¥ 0 + 3857 ¥ 
(–0.00743) = –80 + RZ3, RZ3 = + 65.96 kN

 Force developed in the helical spring,
 Zhs = khsw1 = 13000 ¥ (–0.00363) = –47.19 kN, i.e. compression
 Moment developed in the spiral spring,
 Mss = kssq3 = 7000 ¥ (–0.00743) = –52.01 kNm, i.e. anticlockwise

Beams with Elastic Supports
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Calculation of actions on the members

The vector of resultant actions at the ends of the member is calculated 
in a similar way as in the previous example and is given by:
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 A useful check may be made by noting that the force at node 1 
of the beam is +47.17 kN while that on the helical spring was found 
to be –47.19 kN. The bending moment on the beam at the simple 
support at node 1 which should be zero has the small value of 0.08 
kNm due to rounding off.
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Member 2
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 Note that the moment at node 3 of the beam is +51.95 kNm while 
that on the spiral spring was found to be –52.01 kNm.



153

94
.0

3 
kN

3 
 

2 

7 
m

3.
5 

m

15
0.

20
 k

Nm
51

.9
5 

kN
m

65
.9

7 
kN

i
j

x–

16
0 

kN

Be
nd

in
g 

m
om

en
t d

ia
gr

am
, 

+1
50

.2
0 

kN
m -1

78
.9

1 
kN

m

+5
1.

95
 k

N m

Sh
ea

r f
or

ce
 d

ia
gr

am
, 

-9
4.

03
 k

N

+6
5.

97
 k

N

V–

V–

M–

M–

Fi
gu

re
 4

.1
4 

Beams with Elastic Supports



154 Bending of Beams

Problems

 P4.1. The continuous beam shown in Fig. P4.1 is simply supported 
on rollers at nodes 1 and 2 and fixed at node 3. Calculate and 
draw the shear force and bending moment diagrams and 
the deflected shape of the beam.

  The beam is made of concrete with modulus of elasticity E = 
25 ¥ 106 kN/m2 and has the following properties:

  Member 1: L = 6 m, I = 300 ¥ 10-6 m4

  Member 2: L = 4 m, I = 200 ¥ 10-6 m4

4 m

40 kN

30 kN/m

1 2 321

3 m3 m

Figure P4.1 

Answer:
 w1 = 0, q1 = 0.00629 rad, w2 = 0, q2 = –0.00057 rad, w3 = 0, q3 = 0

 Member 1: 

( )

( )

( )

( )

.

.

.

Z

M

Z

M

r

r

r

r

1

1

1

1

2

1

2

1

12 86

0

27 14

42 86

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

+

+
+

ÈÈ

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

, Member 2: 

( )

( )

( )

( )

.

.

.

Z

M

Z

M

r

r

r

r

2

2

2

2

3

2

3

2

61 07

42 86

58 93

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

+
-
+
+338 57.

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 P4.2. Draw the shear force and bending moment diagrams for 
the continuous beam shown in Fig. P4.2. The beam is fixed 
at node 1 and has roller supports at nodes 2 and 3. It is 
expected that when the loads are applied the support at 
node 3 will settle by 0.006 m. The beam has a uniform cross 
section with a value of I = 80 ¥ 10-6 m4 and its modulus of 
elasticity, E = 210 ¥ 106 kN/m2.



155

90 kN 50 kN

1 2 3

21

4 m 4 m5 m3 m

Figure P4.2 

Answer:
  w1 = 0, q1 = 0, w2 = 0, q2 = 0.00112 rad, w3 = –0.00600 m,  

q3 = –0.00539 rad.
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 P4.3. Calculate and draw the shear force and bending moment 
diagrams for the continuous beam shown in Fig. P4.3. The 
beam is hinged at support 1 and is resting on rollers at 
nodes 2 and 3. At node 4 the beam is supported by a helical 
spring with a stiffness khs = 7000 kN/m. The beam is made 
of concrete with modulus of elasticity E = 30 ¥ 106 kN/m2 
and has the following properties:

  Member 1: L = 6 m, I = 400 ¥ 10-6 m4

  Member 2: L = 10 m, I = 900 ¥ 10-6 m4

  Member 3: L = 8 m, I = 700 ¥ 10-6 m4

40 kN
15 kN/m

1 2 41

40 kN60 kN

2 33

10 m 2 m2 m 4 m3 m 3 m

Figure P4.3 

Problems
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Answer:
  w1 = 0, q1 = 0.00344 rad, w2 = 0, q2 = 0.00437 rad, w3 = 0,  

q3 = –0.00295 rad, q4 = –0.00363 m, q4 = –0.00356 rad.
 Force developed in the spring = –25.41 kN (compression)
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 P4.4. Calculate and draw the shear force and bending moment 
diagrams for the continuous beam shown in Fig. P4.4. The 
beam is hinged to the support at node 1 and supported by 
rollers at nodes 2 and 3. The central spindle of a spiral spring 
with kss = 11000 kNm/rad is fixed to the beam at node 1 to 
provide rotational resistance at that node. The material of 
the beam is steel of modulus of elasticity E = 210 ¥ 106 kN/
m2 and has a uniform cross section with a value of I = 190 ¥ 
10–6 m4.

9 m3 m4 m

1
2 3

2

140 kN

1

20 kN/m

Figure P4.4 
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Answer:
  w1 = 0, q1 = 0.00272 rad, w2 = 0, q2 = 0.00095 rad, w3 = 0,  

q3 = –0.00809 rad.
 Moment developed in the spring = 29.92 kNm (clockwise)
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Problems
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The members of these frames are connected in such a way that their 
joints have sufficient stiffness to resist moments. This implies that 
the angle between two rigidly connected members is not changed, 
i.e. members meeting at a joint do not rotate relative to each other. 
However, the joint as a whole will rotate when loads are applied to 
the structure. There are mainly two methods for achieving rigidity 
of the joints in steel frames: either by welding the members together 
therefore establishing continuity across the joint or more commonly 
by designing a bolted ‘moment resisting’ connection. The assumption 
made in the analysis of frames as to whether they are regarded pin-
connected (as explained in Chapter 3) or rigidly connected depends 
upon the way they will be constructed. Reinforced concrete frames 
are designed as rigid frames when continuity is achieved by proper 
detailing of steel reinforcement at the joints between beams and 
columns.
 Rigidly connected frames are often used for single storey 
industrial or leisure buildings of medium spans when a column free 
space is required as shown in Fig. 5.1. Another application of this 
type of frames is in design of multistorey buildings shown in Fig. 5.2 
when resistance to wind loading is assumed to be dependent partly 
or wholly on the rigidity of the joints rather than by using cross 
bracing of some type.

Chapter 5

Rigidly Connected Plane Frames

Analysis of Structures by Matrix Methods
Fathi Al-Shawi
Copyright © 2023 Jenny Stanford Publishing Pte. Ltd.
ISBN 978-981-4968-19-5 (Hardcover), 978-1-003-29130-5 (eBook)
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Figure 5.1 Single storey portal frame.

Figure 5.2 Multistorey frame.

5.1 Derivation of Stiffness Matrix

The members of rigidly connected frames are subjected to the 
combined effect of shear forces and bending moments as well as 
axial forces. The treatment of members subjected to shear forces 
and bending moments is explained in Chapter 4 and the additional 
effect of axial forces is covered in Chapter 2.
 In Chapter 4 (Section 4.1) the stiffness matrix for the bending 
about the y -axis of a beam lying in the xz  plane was derived and is 
given by (4.25) as:
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 In Chapter 2 (Section 2.1.1) the stiffness matrix for a bar element 
lying along the x -axis was derived and is given by (2.4) as:
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 Combining (5.1) and (5.2) we get
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(5.3)

 or

 F k= d  (5.4)

where the stiffness matrix relative to local coordinates is:
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5.2 Transformation from Local to Global 
Coordinates

The stiffness matrix in (5.5) is written in terms of local coordinates 
and when the member local x -axis does not coincide with the global 
x-axis, this matrix needs to be transformed from local to global 
coordinates as explained below.

5.2.1 Transformation of Displacements

In Chapter 3, the displacements at node i, u
i

 and w
i
 along the 

local x - and z -axes respectively were transformed to ui and wi 
along the global x- and z-axes respectively resulted in the following 
relationships
 u u cos w sin

i i y i y
= -j j

 w u sin w cos
i i y i y

= +j j

 The member has taken up its final position by a rotation about 
the y -axis only and this means that the y - and y-axes are still 
coincident and the rotational displacement relative to the local 
coordinates is not changed as shown in Fig. 5.3, thus

 q qi i=



163

x

x

uj

wj

uj

wj

z

z
–

–

–
ui

wi

ui

wi

φy

φy
θi = θi

θj = θj

–

–
–

–

–

–

–

Figure 5.3 

 In matrix form
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 Similarly, at node j
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Transformation from Local to Global Coordinates
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 The full transformation is
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or d d= r  where r is the transformation matrix which is given by

 
r

cos sin

sin cos

cos sin

sin

y y

y y

y y

=

-

-

j j

j j

j j

0 0 0 0

0 0 0 0

0 0 1 0 0 0

0 0 0 0

0 0 0 jj j
y y

cos 0

0 0 0 0 0 1

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

5.2.2 Transformation of Actions

From Chapter 3, we had at node i

 X X cos Z sin
i i y i y

= -j j

 Z X sin Z cos
i i y i y

= +j j

 The location of the local y -axis is not changed since it is still 
coincident with the global y-axis, it follows that the moment is not 
changed as shown in Fig 5.4. Thus
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 Similarly, for node j
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Transformation from Local to Global Coordinates
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 The full transformation is
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 Notice that matrix r for the transformation of actions from 
local coordinates to global coordinates is the same as that for the 
transformation of displacements because both of them are vectors 
having the same respective directions relative to the relevant 
coordinate axes.
 The transformation matrix r can be written in a more convenient 
form by expressing sin

y
j  and cos

y
j  in terms of the coordinates at 

the ends of the member as shown in Fig. 3.7 of Chapter 3 as
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 (5.6)

 Notice that the transformation matrix from local coordinates 
to global coordinates, r, is similar to that for axial straining with 
the additional transformation of rotations and moments about the  
y -axis.
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 The equation relative to local coordinates is F k= d  and with the 
substitution of  F rF=  and d d= r  we get rF kr= d , premultiply 
both sides by r

-1  we get r rF r kr
- -=1 1 d, and since r–1r = I (the unit 

matrix), F r kr= -1 d .
 Also note that one of the properties of the transformation matrix 
is that its inverse is equal to its transpose, i.e. r–1 = rT, thus F r kr

T= d , 
and this can be written as F = kd, where k r kr

T=  and k  and r as 
given in (5.5) and (5.6) respectively.
 The stiffness matrix k and the column vectors of displacements d 
and actions F are all relative to global coordinates.
 The stiffness matrix relative to global coordinates is given by
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Transformation from Local to Global Coordinates
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Example 1

The rigidly jointed plane frame shown in Fig. 5.5 is fixed at base 
A and pin-connected to base D. The properties of the members of 
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the frame are as follows: member AB, I1 = 0.003 m4, A1 = 0.14 m2, 
member BC, I2 = 0.005 m4, A2 = 0.18 m2, and member CD, I3 = 0.008 
m4, A3 = 0.23 m2. The modulus of elasticity of all members, E = 25 ¥ 
106 kN/m2. Analyse the frame for the loading shown and draw the 
axial force, shear force and bending moment diagrams.

8 m

4.0 m2.4 m 3.6 m
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9 kN/m

3

4
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B C
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1

2

3
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Figure 5.5 

Calculation of stiffness matrices of the members

Member 1

 Member address in k:  i j
 Structure address in K: 1 2
 E = 25 ¥ 106 kN/m2, A = 0.14 m2, I = 0.003 m4.
 xi = 0, xj = 6 m, xij = xj – xi = 6 – 0 = 6 m
 zi = 0, zj = 8 m, zij = zj – zi = 8 – 0 = 8 m

 L x z m
ij ij

= + = + =2 2 2 2
6 8 10
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 From (5.7)

 

u w

u w

u w

u w

i i i j j j

i
j

q
q

d d
q

q

d d
d

1 1 1 2 2 2

1
2

1

= =
� ����� ����� � ����� �����
�� ������������ ������������

k
1

126576 167568 3600 126576 16756

=

- - 88 3600

167568 224324 2700 167568 224324 2700

3600 2700 30000 3

- -
-

- -
- 6600 2700 15000

126576 167568 3600 126576 167568 3600

167568 2

- - - -
- - 224324 2700 167568 224324 2700

3600 2700 15000 3600 2700 30000- -

È

Î

Í
Í
ÍÍ
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

u

w

u

w

1

1

1

2

2

2

q

q

Member 2

 Member address in k:  i j
 Structure address in K: 2 3
 E = 25 ¥ 106 kN/m2, A = 0.18 m2, I = 0.005 m4.
 xi = 6 m, xj = 15 m, xij = xj – xi = 15 – 6 = 9 m
 zi = 8 m, zj = 8 m, zij = zj – zi = 8 – 8 = 0
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Notice that the member local x -axis coincides with the global x-axis 
with the transformation matrix r = I (the unit matrix) then k k

2 2=  
which means that transformation is not necessary in such a case.
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Member 3

 Member address in k:  i j
 Structure address in K:  3  4
 E = 25 ¥ 106 kN/m2, A = 0.23 m2, I = 0.008 m4.
 xi = 15 m, xj = 15 m, xij = xj – xi = 15 – 15 = 0 m
 zi = 8 m, zj = 0, zij = zj – zi = 0 – 8 = –8 m
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Assembly of the overall structure stiffness matrix

Since the frame has four nodes, the overall structure stiffness matrix 
is made of 4¥4 sub-matrices each of which is a 3¥3 matrix.
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Load vector

This is calculated relative to global coordinates from loads acting on 
the members and the directly applied loads on the joints. In addition, 
the joints are subjected to loads resulting from the reactions of the 
supports on the structure.
 All forces and moments on the members and joints will be 
shown in the positive directions and if the calculations give negative 
answers to any of these then their actual directions will be opposite 
to those shown.

The structure load vector due to the external loads acting 
directly on the members

Member 1

 x m z m L m a m b m
ij ij

= = = = ¥ = = ¥ =6 8 10 2 4
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Figure 5.6 
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 The load of 50 kN is resolved into two components, X and W, 
along and at right angles to the axis of the member respectively and 
are given by
 X = –50cosb = –50 ¥ 0.8 = –40 kN
 W = –50sinb = –50 ¥ 0.6 = –30 kN
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 (5.9)

(The above actions are relative to the local coordinates of the 
member and will be use later in the calculation of the resultant end 
actions on member 1.)

Loads on joints 1 and 2

For the calculation of loads on the joints relative to global axes it 
is more convenient to resolve the actions in (5.9) into components 
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along the global axes and from equilibrium the loads on the joints 
will be equal to these but acting in the opposite direction and hence 
with a reversed sign, thus
For joint 1:
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Similarly, for joint 2
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 The above equations are written in matrix form as:
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 (5.10)

 Alternatively, and to make the computations more systematic, 
the load vector on the joints of the structure, FS, which is relative 
to global coordinates can be calculated from the actions at the ends 
of the member which are relative to the local coordinates of the 
member by using the transformation matrix as follows:
 Consider the equilibrium of a section cut at the junction of the 
member and the joint FS + Ff = 0 or FS = –Ff where Ff is the action 
vector on end of the member relative to global coordinates. The 
action vector relative to local coordinates is F

f
, therefore, F rF

f
=

f
 or 

F r F r F
f

T

ff
= =-1  (since r–1 = rT) and hence F r F

S

T

f
= - .
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 We have from (5.6) and with xij = 6 m, zij = 8 m, L = 10 m
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which is the same as the load vector obtained in (5.10).
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Actions on member 2 (W = –60 kN)
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 (5.11)

 (The above actions are relative to the local coordinates of the 
member and will be used later in the calculation of the resultant end 
actions on member 2.)

Loads on the joints 2 and 3
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 The above vector could have been obtained by matrix operation 
as follow:
 xij = 9 m, zij = 0, L = 9 m and from (5.6)

 r
2

1 0 0 0 0 0
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 (the unit matrix)
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Figure 5.8 
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Actions on member 3 (n = +9 kN/m)
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 (5.13)

 (The above actions are relative to the local coordinates of the 
member and will be use later in the calculation of the resultant end 
actions on member 3.)

Loads on joints 3 and 4
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f
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3
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3
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 (5.14)

 The above vector could have been obtained by matrix operation 
as follow:
 xij = 0, zij = –8 m, L = 8 m and from (5.6)
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 The total load vector on the joints due to the external loads acting 
directly on the members is:
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 From (5.10), (5.12), and (5.14)
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 (5.15a)

The structure load vector due to the external loads applied 
directly at the nodes

A load of +15 kN applied at node 2 in the x-direction and a load of 
–35 at node 3 in the z-direction, thus
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 (5.15b)
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The structure load vector due to the reactions at the supports
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 (5.16)

 Total load vector on the joints of the structure is obtained from 
the algebraic addition of (5.15a), (5.15b), and (5.16) as:
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 (5.17)

 From (5.8) and (5.17) we get (in a tabular form)
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Apply the boundary conditions

For the fixed support at A: u1 = 0, w1 = 0, and q1 = 0. Hence delete 
rows 1, 2, and 3, and columns 1, 2, and 3.
 For the pinned support at D: u4 = 0 and w4 = 0. Hence delete rows 
10 and 11 and columns 10 and 11.
 The resulting set of equations are:
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 The solution of the above set is:
 u2 = +0.026181 m, w2 = –0.019634 m, q2 = +0.000328 rad,
  u3 = +0.026198 m, w3 = –0.000136 m, q3 = –0.000577 rad,  

q4 = +0.005681 rad.
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De�lected shape 

Initial shape 

Deformed frame

Calculation of reactions at the supports
From the first row of (5.18)
  126576u1 + 167568w1 + 3600q1 – 126576u2 – 167568w2 + 

3600q2 = +1.15 + RX1
  126576 ¥ 0 + 167568 ¥ 0 + 3600 ¥ 0 – 126576 ¥ 0.026181 – 

167568 ¥ (–0.019634) + 3600 ¥ 0.000328 = +1.15 ¥ RX1,  
RX1 = –23.83 kN

 From the second row
  167568u1 + 224324w1 – 2700q1 – 167568u2 – 224324w2 – 

2700q2 = –30.86 + RZ1167568 ¥ 0 + 224324 ¥ 0 – 2700 ¥ 0 – 
167568 ¥ 0.026181 – 224324 ¥ (–0.019634) – 2700 ¥ 0.000328 
= –30.86 + RZ1, RZ1 = +47.25 kN

 From the third row
  3600u1 – 2700w1 + 30000q1 – 3600u2 + 2700w2 + 15000q2 = 

+43.20 + RM1
  3600 ¥ 0 – 2700 ¥ 0 + 30000 ¥ 0 – 3600 ¥ 0.026181 + 2700 ¥
  (–0.019634) + 15000 ¥ 0.000328 = +43.20 + RM1,  

RM1 = –185.54 kNm
 Similarly, RX4 = –63.12 kN and RZ4 = +97.75 kN are obtained  
from rows ten and eleven, respectively.

35 kN 

9 kN/m 

 50 kN 

 15 kN 

60 kN 

23.83 kN 

47.25 kN 

185.54 kNm 
63.12  kN 

97.75 kN 

Figure 5.9  External reactions on the frame.
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Calculation of actions on the members

Sign convention

When calculating the internal actions (axial force, shear force, and 
bending moment) along the member it is usual to start at the left 
end and working towards the right end of the member. A section is 
cut at a distance x  from the left end (node i) and the sign of the 
internal actions are based on their directions at the right (not the 
left) end of the cut portion of the member. The positive axial force at 
the right end means that the member is in tension and the positive 
shear force is tending to move the section in the positive z  direction. 
The positive bending moment at the right end of the member causes 
tension in the top face and compression in the bottom face of the 
member as shown in Fig. 5.10.

x

x

z

Shear force

V(+ve)

Bending moment

M(+ve)

Axial force

P(+ve)

Tension face 

(due to M)
–

–

Compression face 

(due to M)

Oi
–

–

–

–

–

–

Figure 5.10 Internal actions developed in the member at section O.

 The actions on the member are calculated relative to local 
coordinates and the resultant action, F F F

r d f
= +  .

 Where the action due to displacements, F k
d

= d , and F
f

 is the 
action due to the applied loads.

Transformation from Local to Global Coordinates
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Member 1

The stiffness matrix relative to local coordinates k  is given in (5.5), 
thus

 k
1

350000 0 0 350000 0 0

0 900 4500 0 900 4500

0 4500 30000 0 4500 150
=

-
- - -

- 000

350000 0 0 350000 0 0

0 900 4500 0 900 4500

0 4500 15000 0 4500 30000

-
-

-

ÈÈ

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
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Internal actions (axial force, shear force,  
and bending moment)

1

2

23.65 kN 47.42 kN

185.54 kNm

16.35 kN

17.42  kN

108.62 kNm
50 kN

β

A

B

C

4 m

6 m

50cosβ = 40 kN

50sinβ = 30 kN

23.65 kN
47.42 kN

185.54 kNm A

x

P

oz–
–

sinβ = 0.6, cosβ = 0.8

V–

M–
–

Figure 5.11 

 For part AB:

 Â = + + = = -X P P kN i e compression0 23 65 0 23 65, . , . , . .

 Â = + + = = -Z V V kN0 47 42 0 47 42, . , .

 Â = - + + = = + -M x M M x
o

0 185 54 47 42 0 185 54 47 42, . . , . .

 For part BC:

 Â = + - + = = +X P P kN i e tension0 23 65 40 0 16 35, . , . , . .

 Â = + - + = = -Z V V kN0 47 42 30 0 17 42, . , .

 Â = - + - - + =M x x M
o

0 185 54 47 42 30 4 0, . . ( ) ,

 M x x= + - + -185 54 47 42 30 4. . ( )
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 From (5.6) with xij = 0, zij = –8 m, and L = 8 m
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Transformation from Local to Global Coordinates
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5.3 Members with a Pin at One End

Sometimes a hinge is inserted at the end of a member in a rigidly 
connected frame to achieve certain structural behaviour. Such a 
member has a special stiffness matrix whose derivation is explained 
below.

(a) Beam member with a pin at node j
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Figure 5.15 Beam element.

 For a beam member we have the following relationships:
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Members with a Pin at One End
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 At node j where there is a pin the moment is zero, i.e. M
j
= 0. 

Therefore (5.22) becomes:
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 Substitute the above value of q j  into (5.19) to (5.21) and simplify 
to get:
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 Writing the above equations in matrix form leads to:
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 The inclusion of q j  in the above matrix is to maintain consistency 
of using a 4¥4 matrix and also to indicate that it is not equal to zero 
since the pin at node j will rotate.
 The full stiffness matrix with the added axial force effect is:

 

X

Z

M

X

Z

EA

L

EA

L

EI

L

EI

L

i

i

i

j

j

0

0 0 0 0

0
3 3

0
3

3 2

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

-

- -
EEI

L

EI

L

EI

L

EI

L

EA

L

EA

L

EI

L

EI

L

EI

L

3

2 2

3 2 3

0

0
3 3

0
3

0

0 0 0 0

0
3 3

0
3

0

0 0 0 0

-

-

-

00 0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

u

w

u

w

i

i

j

j

q

q

i

j

˘̆

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

 i e k

EA

L

EA

L

EI

L

EI

L

EI

L

EI

L

EI

L

EI

L

E

. ., =

-

- -

-

-

0 0 0 0

0
3 3

0
3

0

0
3 3

0
3

0

3 2 3

2 2

AA

L

EA

L

EI

L

EI

L

EI

L

0 0 0 0

0
3 3

0
3

0

0 0 0 0 0 0

3 2 3
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙̇
˙
˙
˙
˙
˙
˙
˙
˙

 (5.24)

 To transform the above matrix into global coordinates

 k r kr
T=  and r is given in (5.6), thus

Members with a Pin at One End
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(b) Beam member with a pin at node i
At node i where there is a pin the moment is zero, i.e. M

i
= 0  and 

following the same procedure as in (a) above leads to the following 
relationship
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 The above matrix can be transformed, if required, from local to 
global coordinates in the usual way and the resulting matrix is:
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 For a member with pins at both ends then the stiffness matrix 
is the same as that for an axially loaded member as explained in 
Chapter 3, i.e. a 4¥4 matrix but with the addition of zero rows and 
zero columns to get a 6¥6 matrix thus making it consistent with 
the stiffness matrices of the rest of the members of the structure. 
The nodal forces acting on the joints due to the loads applied to the 
member are calculated in the normal manner except that the fixed 
end moments are zero.

Example 2

The frame shown in Fig. 5.16 is pinned at support A and fixed to 
the supports at points B and D. Members AC and CD are rigidly 
connected together at joint C while member BC is pin-connected to 
joint C. Analyse the frame for the loading shown for the following 
data:
  E = 210 ¥ 106 kN/m2, I1 = 66 ¥ 10–6 m4, A1 = 0.003 m2,  

I2 = 75 ¥ 10–6 m4, A2 = 0.004 m2, I3 = 16 ¥ 10–6 m4, A3 = 0.001 m2.
 For member 1, which has a pin at node 1, the standard matrix 
can be used because the pin occurs at the support. The boundary 
conditions take account of the pin, i.e. u1 = 0 and w1 = 0 but the 
rotation q1 is unknown and is determined in the usual way from the 
set of the resulting simultaneous equations (see example 1 above). 
Alternatively, it can be treated as a member with a pin at node i as is 
shown in the following analysis.
 For member 2, which has a pin at node 3 (node j), it is necessary 
to use the modified matrix because the pin occurs at an internal 
node.
 Member 3 is treated as a standard member since both its ends 
are continuous.
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Figure 5.16 

Member 1: (i,j) = (1,3) with a pin at node 1

 E = 210 ¥ 106 kN/m2, I1 = 66 ¥ 10–6 m4, and A1 = 0.003 m2.
 xi = 0, xj = 0, xij = xj – xi = 0 – 0 = 0
 zi = 0, zj = 6 m, zij = zj – zi = 6 – 0 = 6 m

 L x z m
ij ij

= + = + =2 2 2 2
0 6 6

 For a member with a pin at node i the stiffness matrix is given by 
(5.27), thus
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Member 2: (i,j) = (2,3) with a pin at node 3

 E = 210 ¥ 106 kN/m2, I2 = 75 ¥ 10–6 m4, and A2 = 0.004 m2.
 The local x -axis of this member lies along the global x-axis, 
therefore k k=  as given by (5.24) for a member with a pin at node j, 
thus
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Member 3: (i,j) = (3,4)

 E = 210 ¥ 106 kN/m2, I3 = 16 ¥ 10–6 m4, and A3 = 0.001 m2.
 The standard stiffness matrix is given by (5.7), thus
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0 1260 1680 0 1260 3360

-
-

È

Î

Í
Í
Í
Í
Í
Í
ÍÍ
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 By inspection the overall structure matrix is given by
d1 d2 d3 d4

K k
ii11

1= O K k
ij13

1= O

K =
O K k

ii22

2= K k
ij23

2= O

K k
ji31

1= K k
ji32

2= K k k k
jj jj ii33

1 2 3= + + K k
ij34

3=

O O K k
ji43

3= K k
jj44

3=
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 u
1

 w
1

θ 1
u 2

w
2

θ 2
u 3

w
3

θ 3
u 4

w
4

θ 4

19
3

0
0

0
0

0
–1

93
0

11
55

0
0

0

0
10

50
00

0
0

0
0

0
–1

05
00

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

0
0

16
80

00
0

0
–1

68
00

0
0

0
0

0
0

0
0

0
0

37
8

–1
89

0
0

–3
78

0
0

0
0

K 
=

0
0

0
0

–1
89

0
94

50
0

18
90

0
0

0
0

 (5
.2

8)
–1

93
0

0
–1

68
00

0
0

0
22

06
93

0
–1

15
5

–5
25

00
0

0
0

–1
05

00
0

0
0

–3
78

18
90

0
10

60
08

–1
26

0
0

–6
30

–1
26

0
11

55
0

0
0

0
0

–1
15

5
–1

26
0

10
29

0
0

12
60

16
80

0
0

0
0

0
0

–5
25

00
0

0
52

50
0

0
0

0
0

0
0

0
0

0
–6

30
12

60
0

63
0

12
60

0
0

0
0

0
0

0
–1

26
0

16
80

0
12
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33

60
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206 Rigidly Connected Plane Frames

 Applying the boundary conditions of u1 = 0, w1 = 0, u2 = 0, w2 = 0, 
q2 = 0, u4 = 0, w4 = 0, q4 = 0 and noting that all the coefficients in row 3 
and column 3 are equal to zero, therefore, delete the corresponding 
rows and columns from the above matrix to get

 K =
-
-

- -

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

220693 0 1155

0 106008 1260

1155 1260 10290

 (5.28a)

Load vector

Member 1

Contribution of loads acting on member 1 to the loads on joints 1 
and 3:

z

84 kN

3

1 i

j

x

a = 3 m

b = 3 m

x

z

(X1
1)f

(Z1
1)f

(M1
1)f = 0

(X–3
1)f

(Z3
1)f

(M–

–
–

–

–

–

–

3
1)f

(Z1
1)S

(X1
1)S

(M1
1)S

(Z3
1)S

(X3
1)S(M3

1)S

Figure 5.17 
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Actions on member 1 (W = –84 kN, L = 6 m, a = 3 m, and  
b = 3 m)

 ( )X
f1

1
0=

 ( )X
f3

1
0=

  ( ) .Z
Wa

L
La a kN

f1

1

3

2

3

2

2
3

84 3

2 6
3 6 3 3 26 25= - -( ) = -

-( ) ¥

¥
¥ ¥ -( ) = +

 ( ) .Z
Wb

L
L b kN

f3

1

3

2 2

3

2 2

2
3

84 3

2 6
3 6 3 57 75= - -( ) = -

-( ) ¥

¥
¥ -( ) = +

 ( ) ,M
f1

1
0= because there is a pin at end i of this member.

 ( ) .M
Wab

L
L b kNm

f3

1

2 2
2

84 3 3

2 6
6 3 94 50= - +( ) = -

-( ) ¥ ¥

¥
+( ) = +

 F

X

Z

M

X

Z

M

f

f

f

f

f

f

f

1

1

1

1

1

1

1

3

1

3

1

3

1

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

( )

( )

( )

( )

( )

( )

˙̇
˙
˙
˙

=

+

+
+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

0

26 25

0

0

57 75

94 50

.

.

.

 (5.29)

Loads on joints 1 and 3

 ( ) .X Z kN
S

f
1

1

1

1
26 25= ( ) = +

 ( )Z X
S

f
1

1

1

1
0= -( ) =

 ( )M M
S

f
1

1

1

1
0= -( ) =

 ( ) .X Z kN
S

f
3

1

3

1
57 75= ( ) = +

 ( )Z X
S

f
3

1

3

1
0= -( ) =

 ( ) .M M kNm
S

f
3

1

3

1
94 50= -( ) = -

Members with a Pin at One End
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 F

X

Z

M

X

Z

M

S

S

S

S

S

S

S

1

1

1

1

1

1

1

3

1

3

1

3

1

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

( )

( )

( )

( )

( )

( )

˙̇
˙
˙
˙

=

+

+

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

26 25

0

0

57 75

0

94 50

.

.

.

 (5.30)

Member 2

Contribution of loads acting on member 2 to the loads on joints 2 
and 3:

Actions on member 2 (W = –125 kN, L = 5 m, a = 2 m, and  
b = 3 m)

 ( )X
f2

2
0=

 ( )X
f3

2
0=

 ( )Z
Wb

L
L b kN

f2

2

3

2 2

3

2 2

2
3

125 3

2 5
3 5 3 99= - -( ) = -

-( ) ¥

¥
¥ -( ) = +

 ( )Z
Wa

L
La a kN

f3

2

3

2

3

2

2
3

125 2

2 5
3 5 2 2 26= - -( ) = -

-( ) ¥

¥
¥ ¥ -( ) = +

 ( )M
Wab

L
L b kNm

f2

2

2 2
2

125 2 3

2 5
5 3 120= + +( ) = +

-( ) ¥ ¥

¥
+( ) = -

 ( ) ,M
f3

2
0=  because there is a pin at end j of this member.

 F

X

Z

M

X

Z

M

f

f

f

f

f

f

f

2

2

2

2

2

2

2

3

2

3

2

3

2

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

( )

( )

( )

( )

( )

( )

˙̇
˙
˙
˙

=

+
-

+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

0

99 00

120 00

0

26 00

0

.

.

.

 (5.31)



209

b 
= 

3 
m

x,
x

12
5 

kN

z,
z

a =
 2

 m

2
3

i
j

(X–
–

–

–

–

–

–

–

22 ) f

(Z
22 ) f

(M
22 ) f

(X
32 ) f

(Z
32 ) f

(M
32 ) f

=
0

(X
22 ) S

(Z
22 ) S

( M
22 ) S

(X
32 ) S

(Z
32 ) S

(M
32 ) S

Fi
gu

re
 5

.1
8 
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Loads on joints 2 and 3

 F

X

Z

M

X

Z

M

S

S

S

S

S

S

S

2

2

2

2

2

2

2

3

2

3

2

3

2

=

( )
( )
( )
( )
( )
( )

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙̇
˙
˙
˙
˙
˙
˙
˙
˙
˙

= - =

-
+

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

F
f

2

0

99 00

120 00

0

26 00

0

.

.

.

˙̇

 (5.32)

Member 3

Contribution of loads acting on member 3 to the loads on joints 3 
and 4:

Actions on member 3 (n = –24 kN/m)

 ( )X
f3

3
0=

 ( )X
f4

3
0=

 ( ) .Z
nL

kN
f3

3

2

24 4

2
48 00= - = -

-( ) ¥
= +

 ( ) .Z
nL

kN
f4

3

2

24 4

2
48 00= - = -

-( ) ¥
= +

 ( ) .M
nL

kNm
f3

3

2 2

12

24 4

12
32 00= + = +

-( ) ¥
= -

 ( ) .M
nL

kNm
f4

3

2 2

12

24 4

12
32 00= - = -

-( ) ¥
= +

 F

X

Z

M

X

Z

M

f

f

f

f

f

f

f

3

3

3

3

3

3

3

4

3

4

3

4

3

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

( )

( )

( )

( )

( )

( )

˙̇
˙
˙
˙

=

+
-

+
+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

0

48 00

32 00

0

48 00

32 00

.

.

.

.

 (5.33)
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4 
m
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–

–

33 ) f
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4
i

j
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x

z,
z

(Z
33 ) f

(M
33 ) f

(X
43 ) f

(Z
43 ) f(M

43 ) f
(X

33 ) S

(Z
33 ) S

(M
33 ) S

(X
43 ) S

(Z
43 ) S

(M
43 ) S

–
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Loads on joints 3 and 4

 F

X

Z

M

X

Z

M

S

S

S

S

S

S

S

3

3

3

3

3

3

3

4

3

4

3

4

3

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

( )

( )

( )

( )

( )

( )

˙̇
˙
˙
˙

= - =

-
+

-
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

F
f

3

0

48 00

32 00

0

48 00

32 00

.

.

.

.

 (5.34)

From (5.30), (5.32), and (5.34)

 F

X

Z

M

X

Z

M

S

S

S

S

S

S

S

1

1

1

1

1

1

1

3

1

3

1

3

1

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

( )

( )

( )

( )
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˙̇
˙
˙
˙

=

+

+

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

26 25

0

0

57 75

0

94 50

.

.

.

,   F

X

Z

M

X

Z

M

S

S

S

S

S

S

S

2

2

2

2

2

2

2

3

2

3

2

3

2
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( )
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È

Î
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Í
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Í
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Î
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0
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0
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0

.

.

.
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M

X

Z
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S

S

S

S

S

S

S

3

3

3

3

3

3

3

4

3

4

3

4

3

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

( )

( )

( )

( )

( )

( )

˙̇
˙
˙
˙

=

-
+

-
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

0

48 00

32 00

0

48 00

32 00

.

.

.

.
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 F

X

Z

M

X

Z

M

X

Z

M

X

Z

S

S

S

S

S

S

S

S

S

S

S

S

=

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

( )

1

1

1

2

2

2

3

3

3

4

4

(( )M

F F F

S

S S S

4

1 2 3

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

= + + =

+226 25

0

0

0

0

0

57 75

0

94 50

0

0

0

.

.

.

+

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘
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˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙̇
˙
˙
˙
˙
˙
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+

-
+

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

0

0

0

0

99 00

120 00

0

26 00

0

0

0

0

.

.

.

˙̇
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

+

-
+

-
-

È

Î

Í
Í
Í
Í
Í

0

0

0

0

0

0

0

4 00

32 00

0

4 00

32 00
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.
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.
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ÍÍ
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
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˙
˙
˙
˙
˙
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-
+
+
-
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-
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Î

26 25
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0

0

99 00

120 00
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74 00

62 50

0
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32 00

.

.

.

.

.
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ÍÍ
Í
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˙
˙

 (5.35)

 Since there are no externally applied direct actions at the nodes 
then:

 FN = 0 (5.36)
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The load vector due to the reactions at the supports

 F

F

F

F

F

X

Z

M

X

C

C

C

C

C

C

C

C

C

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

( )

( )

( )

( )

( )

( )

( )

( )

1

2

3

4

1

1

1

2

(( )

( )

( )

( )

( )

( )

( )

( )

Z

M

X

Z

M

X

Z

M

C

C

C

C

C

C

C

C

2

2

3

3

3

4

4

4

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
ÍÍ
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í

R

R

0

R

R

R

0

0

0

R

R

R

X

Z

X

Z

M

X

Z

M

1

1

2

2

2

4

4

4

ÍÍ
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 (5.37)

 Note that the reaction moment at the pinned support A,  
(M1)c = 0.
 Total load vector, F, is given by:
 F = FS + FN + FC

 From (5.35) to (5.37)

 F =

+

-
+
+
-
-

-
-

È

Î

Í
26 25
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0

0

99 00
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74 00
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È
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Í
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0
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˙
˙
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X

Z
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Z
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4
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0
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 (5.38)

 From (5.28) and (5.38)
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 The boundary conditions are: u1 = 0, w1 = 0, u2 = 0, w2 = 0, q2 = 0,  
u4 = 0, w4 = 0, and q4 = 0, so delete rows and columns 1, 2, 4, 5, 6, 
10, 11, and 12. Also delete the third row and third column because 
the rotation at node 1 is not included since the stiffness matrix for 
member 1 is derived as a member with a pin at one end.
 The resulting reduced set is:
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 The solution of the above set is: u3 = +0.000230 m, w3 = –0.000771 
m, and q3 = –0.006143 rad (which is the rotation of the rigid joint at 
node 3).
 Reactions at the supports of the frame are calculated from (5.39) 
and using the above values of u3, w3, and q3.

Actions on member 1

  E = 210 ¥ 106 kN/m2, I1 = 66 ¥ 10–6 m4, A1 = 0.003 m2, L = 6 m,  
xij = 0, and zij = 6 m.

 From (5.26) for a member with a pin at node i
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 For the calculation of actions on members with a pin at one end 
it is more convenient to delete the row and column corresponding to 
the rotation of the pin since the moment at the pinned end is zero. 
Hence delete the third row and third column which correspond to 
the pin at node i of this member.
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 Notice that the third row and third column have been deleted 
since they correspond to q1 which is not included for a member with 
a pin at one end.
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 The actions on members 2 and 3 are calculated in a similar 
manner. Once the actions at the ends of the members are calculated, 
the axial force, shear force, and bending moment diagrams can be 
determined and these are shown in Fig. 5.20.

(a) Axial force diagram, 

-80.96 kN (Compression)

+38.64 kN (Tension)

-12.08 kN 

(Compression)

+40.74 kN

(b) Shear force diagram, 

-33.39 kN
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-99.29 kN

+25.71 kN

+50.61 kN

P V––

+121.46 kNm

-77.12 kNm

+51.66 kNm

-11.95 kNm

-100.17 kNm

+22.65 kNm

(c) Bending moment diagram, (d) De�lection diagramM–

Figure 5.20 

Problems

 P5.1. The rigidly jointed plane frame shown in Fig. P5.1 is fixed 
at its bases A and D. The properties of the members of the 
frame are as follows: member AB, I1 = 0.0028 m4, A1 = 0.19 
m2, member BC, I2 = 0.0021 m4, A2 = 0.16 m2, and member 
CD, I3 = 0.0024 m4, A3 = 0.17 m2. The modulus of elasticity 

Problems
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of all members, E = 30 ¥ 106 kN/m2. Analyse the frame for 
the loading shown and draw the axial force, shear force, and 
bending moment diagrams.
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Figure P5.1 

Answer:
  u1 = 0, w1 = 0, q1 = 0, u2 = +0.01260 m, w2 = –0.00003 m,  

q2 = +0.00213 rad,
  u3 = +0.01252 m, w3 = –0.00007 m, q3 = +0.00034 rad, u4 = 0,  

w4 = 0, q4 = 0,
 RX1 = –103.99 kN, RZ1 = +30.48 kN, RM1 = –191.76 kNm
 RX4 = –46.01 kN, RZ4 = +59.52 kN, RM4 = –142.11 kNm
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 P5.2. The rigidly jointed plane frame shown in Fig. P5.2 is fixed at 
base A and pinned at base D. The properties of the members 
of the frame are as follows: member AB, I1 = 0.0002 m4,  
A1 = 0.009 m2, member BC, I2 = 0.0001 m4, A2 = 0.005 m2 and 
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Figure P5.2 

Problems



222 Rigidly Connected Plane Frames

  member CD, I3 = 0.00009 m4, A3 = 0.004 m2. The modulus 
of elasticity of all members, E = 210 ¥ 106 kN/m2. Analyse 
the frame for the loading shown and draw the axial force, 
shear force, and bending moment diagrams. In this problem 
use the standard stiffness matrix for member 3 and not 
the stiffness matrix for a member with a pin at node j. The 
treatment of the hinged base at node 4 is similar to that 
followed in example 1.

Answer:
  u1 = 0, w1 = 0, q1 = 0, u2 = –0.01530 m, w2 = –0.00020 m,  

q2 = +0.00072 rad,
  u3 = –0.01535 m, w3 = –0.00904 m, q3 = –0.00035 rad, u4 = 0,  

w4 = 0, q4 = –0.00314 rad.
 RX1 = +50.45 kN, RZ1 = +53.44 kN, RM1 = +126.53 kNm
 RX4 = –10.45 kN, RZ4 = +21.56 kN, RM4 = 0
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 P5.3. The frame shown in Fig. P5.3 is fixed to the supports at A 
and D. Members BC and CD are rigidly connected together 
at joint C while members AB and BC are pinned at joint B. 
Analyse the frame for the loading show and draw the axial 
force, shear force, and bending moment diagrams. The 
modulus of elasticity of frame is E = 210 ¥ 106 kN/m2 and all 
the members have the same cross-sectional area A = 0.008 
m2 and second moment of area I = 0.0003 m4.
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Figure P5.3 

Answer:
  u1 = 0, w1 = 0, q1 = 0, u2 = –0.00840 m, w2 = –0.00016 m,  

u3 = –0.00849 m,
 w3 = –0.00022 m, q3 = –0.00360 rad, u4 = 0, w4 = 0, q4 = 0.
 RX1 = +24.80 kN, RZ1 = +68.95 kN, RM1 = +99.21 kNm,
 RX4 = +55.20 kN, RZ4 = +91.05 kN, RM4 = +127.10 kNm.
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 P5.4. The frame shown in Fig. P5.4 is pinned to the support at A 
is fixed to the supports at C and D. Members AB and BC are 
rigidly connected together at joint B while member BD is 
pinned to joint B. Analyse the frame for the loading shown
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  and draw the axial force, shear force, and bending moment 
diagrams for the following data: E = 210 ¥ 106 kN/m2,  
I1 = 80 ¥ 10–6 m4, A1 = 0.005 m2, I2 = 70 ¥ 10–6 m4, A2 = 0.004 
m2, I3 = 90 ¥ 10–6 m4, and A3 = 0.006 m2. The treatment of 
the hinged support at node 1 is similar to that followed in 
example 1.

Answer:
  u1 = 0, w1 = 0, q1 = +0.00796 rad, u2 = –0.00003 m, w2 = –0.00053 m,  

q2 (for the rigid part of joint 2) = –0.00493 rad.
 u3 = 0, w3 = 0, q3 = 0, u4 = 0, w4 = 0, q4 = 0
 RX1 = +4.92 kN, RZ1 = +52.02 kN, RM1 = 0,
 RX3 = –25.35 kN, RZ3 = +89.79 kN, RM3 = –38.88 kNm,
 RX4 = +4.43 kN, RZ4 = +48.18 kN, RM4 = +105.47 kNm.
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These are some of the most efficient forms of structures particularly 
for long spans. The horizontal components of the reactions at the 
supporting foundations produce bending moments that act in the 
opposite direction to the simple span moments. A theoretical case 
arises when the arch is in the shape of a parabola and the applied 
load is uniformly distributed along the whole span then the arch will 
be in pure compression with no bending moment at all sections. This 
makes the arch ideal when using a brittle material such as brickwork 
that is strong in compression but weak in tension. When the arch lies 
in the xz plane its treatment is similar to that of rigidly connected 
plane frame. In this chapter, only circular arches will be considered 
since the treatment of parabolic and elliptic arches leads to very 
involved expressions due to the additional parameters which define 
their geometry.
 In the analysis of circular arches, the stiffness matrix for an 
element is derived relative to its local coordinates first and the 
overall structure stiffness matrix is then assembled relative to global 
coordinates in the usual way. Obviously the various elements of the 
arch have different orientations thus the stiffness matrices relative 
to local coordinates have to be transformed into global coordinates.

Chapter 6
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228 Arches

6.1 Derivation of Stiffness Matrix

Consider an element of the arch subtending an angle b with the 
centre and its local axis, x -axis, is defined by the line joining the end 
points, i and j, of the element with the z -axis being at right angles to 
it as shown in Fig. 6.1.

O

iXi xa b

R

c
j

ds

Mi

Zi

Xj

Zj

M

z–

–
d

(
β
2 −

ξ
2)

ξ
β

dξ
–

– –

–

– –

Figure 6.1 A circular arch element.

 The derivation of the stiffness matrix is in two parts; in the first 
part, end i is given displacements u

i
, w

i
, and qi  while end j is fixed. 

Application of Castigliano’s theorem will give the actions X
i

' , Z
i

' , and 
M

i

'  and from the equilibrium of the whole element the actions at end 
j X

j

' , Z
j

' , and M
j

'  can be found. In the second part, end i is fixed and 
end j is given displacements u

j
, w

j
, and q j  resulting in the actions 

X
j

'' , Z
j

'' , and M
j

''  and the actions at end i X
i

'' , Z
i

'' , and M
i

''  are found 
from equilibrium of the whole element. The final actions at ends i 
and j are determined from the algebraic sum of the two sets.
 Consider first the case where end i is given displacements u

i
, w

i
,  

and qi  while end j is fixed.
 In Fig. 6.2, the internal actions, P', V', and M' at the cut section 
which is making an angle x are drawn in their respective positive 
directions since they are acting at the right end of the left part of the 
member.
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i
a b

c

X
–

–
–

i
′

P′

Zi
′

Mi
′

V′

M′

(
β

2
− ξ)

O

ξ

end j is ixed: uj = wj = θj = 0
– – –

Figure 6.2 

 Summation of the forces in the x -direction is zero:

 X P V
i

' ' '+ -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

=cos sin
b b

x x
2 2

0  (6.1)

 Summation of the forces in the z -direction is zero:

 Z P V
i

' ' '+ -Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

=sin cos
b b

x x
2 2

0  (6.2)

 Summation of the moments about the cut section, c, is zero:

 M X bc Z ab M
i

'

i

'

i

' '- ( ) + ( ) + = 0  (6.3)

where (from Fig. 6.1)

 ab ac bc ac sin and ac R( ) = ( ) -Ê
ËÁ

ˆ
¯̃ ( ) = ( ) -Ê

ËÁ
ˆ
¯̃ ( ) =cos , ,

b bx x
2 2 2 2

2 ssin
x
2

Ê
ËÁ

ˆ
¯̃

 Solving (6.1) and (6.2) simultaneously to get

 P X Z sin
'

i

'

i

'= - -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

cos
b b

x x
2 2

 (6.4)

 V X Z cos
'

i

'

i

'= -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

sin
b

x
b

x
2 2

 (6.5)
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 From (6.3) and with the substitution of the values of (ab) and 
(bc) we get:

 M M X Rsin sin Z Rsin
'

i

'

i

'

i

'= - + Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

- Ê
ËÁ

ˆ
¯̃

2
2 2 2

2
2

x b x x
cos

bb x
2 2

-Ê
ËÁ

ˆ
¯̃

 (6.6)

 Neglect the effect of shear force on deformations and apply 
Castigliano’s theorem as follows:

 The strain energy, U
M ds

EI

P ds

EA

'

' '

= +Ú Ú
2 2

2 2

where the length of a small arc, ds = Rdx and integrating from 0 to 
b to get

 U
R

EI
M d

R

EA
P d

' ' '= +Ú Ú2 2
0

2

0

2

b b

x x  (6.7)

 u
U

X

U

M

M

X

U

P

P

X
i

'

i

'

'

'

'

i

'

'

'

'

i

'
=

∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

 (6.8)

 w
U

Z

U

M

M

Z

U

P

P

Z
i

'

i

'

'

'

'

i

'

'

'

'

i

'
=

∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

 (6.9)

 qi =
∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

U

M

U

M

M

M

U

P

P

M

'

i

'

'

'

'

i

'

'

'

'

i

'
 (6.10)

 From (6.7) we get

 ∂
∂

=
∂
∂

=Ú ÚU

M

R

EI
M d and

U

P

R

EA
P d

'

'

'

'

'

'

0 0

b b

x x

 From equation (6.4) we get:

 ∂
∂

= - -Ê
ËÁ

ˆ
¯̃

∂
∂

= - -Ê
ËÁ

ˆ
¯̃

∂
∂

=
P

X

P

Z
sin and

P

M

'

i

'

'

i

'

'

i

'
cos , ,

b
x

b
x

2 2
0

 From equation (6.6) we get:

 ∂
∂

= Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

∂
∂

= - Ê
ËÁ

ˆ
¯̃

M

X
Rsin sin

M

Z
Rsin

'

i

'

'

i

'
2

2 2 2
2

2

x b x x
, ccos ,

b x
2 2

1-Ê
ËÁ

ˆ
¯̃

∂
∂

= -and
M

M

'

i

'

 Substituting (6.4), (6.6), and the relevant derivatives, as 
appropriate, from above into (6.8) will give
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u

i
= - + Ê

ËÁ
ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

- Ê
ËÁÚR

EI
M X Rsin sin Z Rsin

i

'

i

'

i

'

0

2
2 2 2

2
2

b
x b x x ˆ̂

¯̃
-Ê

ËÁ
ˆ
¯̃

È

Î
Í

˘

˚
˙

Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

+

cos
b x x

b x
x

2 2
2

2

2 2
0

Rsin

sin d
R

EA

bb
b

x
b

x
b

xÚ - -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

È

Î
Í

˘

˚
˙ - -Ê

ËÁ
ˆ
¯̃

È
X Z sin

i

'

i

'
cos cos

2 2 2ÎÎ
Í

˘

˚
˙dx

 Introducing the parameter a = I/AR2 and integrating from x = 0 
to x = b to get

 
u

R

EI
cos sin RX cos sin

i i

'= + -( ) + +( )ÈÎ ˘̊ + + -[ ]
2

0 5 3 2 0 5 1. .b b a b b a b b b{{
+ ( ) -ÈÎ ˘̊ }RZ sin M

i

'

i

'b b bcos / ( / )2 2 2

 
(6.11)

 Similarly (6.9) is simplified to give

 
w

R

EI
cos sin RX cos sin

i i

'= + -[ ] - + +( ) - +( )ÈÎ ˘̊
2

0 5 1 0 5 1 2b b b b b a b b a. .{{
+ [ ] }RZ sin M

i

'

i

'b b( / )2 (6.12)

 And (6.10) is simplified to

 q b b b b b bi = ( ) -ÈÎ ˘̊ + ( ) +{ }R

EI
sin RX RZ M

i

'

i

'

i

'
cos / ( / ) sin /2 2 2 2  (6.13)

 Solve equations (6.11), (6.12), and (6.13) simultaneously for the 
unknowns X

i

' , Z
i

' , and M
i

'  to get:

 X
EI

R

C u C R
i

'

i
= +( )3 1 2

qi  (6.14)

 Z
EI

R

C w C R
i

'

i
= -( )3 3 4

qi  (6.15)

 M
EI

R

C Ru C Rw C R
i

'

i i
= - +( )3 2 4 5

2qi  (6.16)

 Equations (6.14), (6.15), and (6.16) represent k
ii

 of the stiffness 
matrix.
 From the overall equilibrium of the arch element the following 
equations are obtained:
 Summation of the forces in the x -direction:

 X X X X
i

'

j

'

j

'

i

'+ = = -0, , hence

Derivation of Stiffness Matrix
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 X
EI

R

C u C R
j

'

i
= - -( )3 1 2

qi  (6.17)

 Summation of the forces in the z -direction:

 Z Z Z Z
i

'

j

'

j

'

i

'+ = = -0, , hence

 Z
EI

R

C w C R
j

'

i
= - +( )3 3 4

qi  (6.18)

 Summation of the moments about end j:
 M Z L M

i

'

i

'

j

'+ + = 0  [The span of the arch element, L = 2Rsin(b/2)]

 M M RZ sin
j

'

i

'

i

'= - - 2 2( / )b

 Substitute for Z and M
i

'

i

'  from (6.12) and (6.13) respectively we 
get

 M
EI

R

C Ru C Rw C R
j

'

i i
= - - -( )3 2 4 6

2qi  (6.19)

 Equations (6.17), (6.18), and (6.19) represent k
ji

 of the stiffness 
matrix.
 The above process is repeated with end i fixed and end j is given 
displacements u

j
, w

j
, and q j .
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Figure 6.3 
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 The equations for the axial force and moment at section c in this 
case are similar to (6.4) and (6.6) but the single primes are replaced 
by double primes as shown in Fig. 6.3, thus

 P X Z sin
''

i

''

i

''= - -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

cos
b

x
b

x
2 2

 (6.20)

 M M X Rsin sin Z Rsin
''

i

''

i

''

i

''= - + Ê
ËÁ

ˆ
¯̃

-Ê
ËÁ

ˆ
¯̃

- Ê
ËÁ

ˆ
¯

2
2 2 2

2
2

x b x x
˜̃ -Ê

ËÁ
ˆ
¯̃

cos
b x
2 2

 (6.21)

 Since we want to find expressions for the displacements u
j
, w

j
,  

and q j  the above two equations are written in terms of X
j

'' , Z
j

'' , and 
M

j

''  whose derivatives will give the respective displacements. To 
achieve this, the equilibrium of the whole arch is considered.
 Summation of the forces in the x -direction is zero:

 X X X X
i

''

j

''

i

''

j

''+ = = -0,

 Summation of the forces in the z -direction is zero:

 Z Z Z Z
i

''

j

''

i

''

j

''+ = = -0,

 Summation of the moments about node i is zero:

 M M Z L where L Rsin
i

''

j

''

j

''+ - = =0 2 2, ( / )b

 M M Z Rsin
i

''

j

''

j

''= - + 2 2( / )b

 Substitute the above values of X
i

'' , Z
i

'' , and M
i

''  in (6.17) and 
(6.18) respectively to get

 P X Z
''

j

''

j

''= -Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

cos sin
b

x
b

x
2 2

 (6.22)

 M M X Rsin Z R
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2
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x b x b
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¯̃

È

Î
Í

˘

˚
˙sin cos

x b x
2 2 2

 

(6.23)
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b b

x x  (6.24)
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∂
∂
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 (6.25)
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Z

U

M

M

Z

U

P

P

Z
j

''
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''

''

''

''

j

''

''

''

''
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∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

 (6.26)
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 q j =
∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

U

M

U

M

M

M

U

P

P

M

''

j

''

''

''

''

j

''

''

''

''

j

''
 (6.27)

 Equations (6.25), (6.26), and (6.27) are simplified and integrated 
from x = 0 to x = b to give:

 
u

R

EI
R cos sin X R cos sin

j j

''= + -( ) + +ÈÎ ˘̊ + - -
2

0 5 3 2 1 0 5. ( ) .b b a b b a b b b[[ ]{
+ ( ) -ÈÎ ˘̊ }Z sin M

j

''

j

''b b bcos / ( / )2 2 2

 

(6.28)

 
w

R

EI
R cos sin X R cos sin

j j

''= - -[ ] - + +( ) - +ÈÎ
2

1 0 5 0 5 1 2b b b b b a b b a. . ( )˘̊̆{
- [ ] }Z sin M

j

''

j

''b b( / )2

 

(6.29)

 q b b b b b bj = ( ) -ÈÎ ˘̊ - [ ] +{R

EI
R sin X R sin Z M

j

''

j

''

j

''
cos / ( / ) ( / )2 2 2 2 }}

 (6.30)

 Solve equations (6.28), (6.29), and (6.30) simultaneously for the 
unknowns X

j

'' , Z
j

'' , and M
j

''  to get:

 X
EI

R

C u C R
j

''

j
= +( )3 1 2

q j  (6.31)

 Z
EI

R

C w C R
j

''

j
= +( )3 3 4

q j  (6.32)

 M
EI

R

C Ru C Rw C R
j

''

j j
= + +( )3 2 4 5

2q j  (6.33)

 Equations (6.31), (6.32), and (6.33) represent k
jj

 of the stiffness 
matrix.
 From the overall equilibrium of the arch

 X X X X
i

''

j

''

i

''

j

''+ = = -0,

 X
EI

R

C u C R
i

''

j
= - -( )3 1 2

q j  (6.34)

 Z Z Z Z
i

''

j

''

i

''

j

''+ = = -0,

 Z
EI

R

C w C R
i

''

j
= - -( )3 3 4

q j  (6.35)
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 Taking moments about end i of the arch

 M M Z L M M RZ sin
i

''

j

''

j

''

i

''

j

''

j

''+ - = = - +0 2 2, ( / )b

 Substitute for Z
j

''  and M
j

''  from (6.27) and (6.28) respectively to 
get

 M
EI

R

C Ru C Rw C R
i

''

j j
= - + -( )3 2 4 6

2q j  (6.36)

 Equations (6.34), (6.35), and (6.36) represent k
ij

 of the stiffness 
matrix.
 Finally, adding quantities with single prime to the corresponding 
quantities with double primes to get the resultant values of the end 
forces in terms of the end displacements as shown below.
 From (6.14) and (6.34): X X X

i i

'

i

''= +
 From (6.15) and (6.35): Z Z Z

i i

'

i

''= +
 From (6.16) and (6.36): M M M

i i

'

i

''= +
 From (6.17) and (6.31): X X X

j j

'

j

''= +
 From (6.18) and (6.32): Z Z Z

j j

'

j

''= +
 From (6.19) and (6.33): M M M

j j

'

j

''= +

 The above six equations are written in matrix form to give the 
general stiffness matrix of a circular arch element relative to local 
coordinates as:
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(6.37)

where C1, C2, … … … , C6 are functions of α and b given by
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 The above expressions are derived from detailed calculations for 
the derivation of the stiffness matrix and the values of a1 to a10 are 
functions of b which have been calculated for different values of b 
and are given in Table 6.1.

Table 6.1

β a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

150 587139 152837 3348 671 87.6 583797 2331211 34.4 1163570 11.5

300 18475 9456 419 84.8 21.9 18059 71752 17.1 35611 5.75

450 2463 1838 125 25.6 9.78 2340 9224 11.3 4528 3.84

600 595 569 52.9 11.0 5.52 543 2119 8.41 1021 2.90

750 199 227 27.2 5.83 3.55 173 667 6.65 312 2.33

900 82.3 106 15.9 3.50 2.48 67.3 256 5.46 114 1.96

 The stiffness matrix in (6.37) is relative to the local coordinates 
and for the assembly of the overall stiffness matrix it is required to 
be written relative to global coordinates. The transformation of the 
arch element is similar to that of the rigidly connected plane frames 
discussed in the previous chapter.

6.2 Transformation of Coordinates

Consider an element of the arch whose local x -axis lies initially 
along the global x-axis and then it is rotated about the y -axis by an 
angle jy  as shown in Fig. 6.4.

φy

x

x
xi , zi

z

L

z–

–

–

xj, zj

Figure 6.4 
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 Since the element lies in the xz plane, its transformation matrix, 
r, is the same as that for a straight member in a rigidly connected 
frame which was derived in chapter five as given by equation (5.6) 
but with the length L being the straight distance between nodes i 
and j, thus:

 r
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/ /
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 (6.38)

where   x x x z z z and L x z
ij j i ij j i ij ij

= - = - = +, ,
2 2

and the stiffness matrix relative to global coordinates is k r kr
T= .

6.3 Calculation of Actions Developed in the 
Elements

For an arch element lying in the xz plane, the actions that are of 
interest are the axial force P, shear force V, and the bending moment 
m rather than the actions relative to the local coordinates as was 
explained in the previous chapters. A convenient way is to find X , 
Z , and M  relative to local coordinates and then transformed them 
into P, V, and m as shown in Fig. 6.5.
 With reference to Fig. 6.5 and by resolving the actions that are 
relative to local coordinates into their components we get
 P X Z sin

i i i
= +cos( / ) ( / )b b2 2

 V X Z cos
i i i

= - +sin( / ) ( / )b b2 2

 The moment, m M
i i

=  (since both moments are about the same 
y-axis)
 Similarly

 P X Z sin
j j j
= -cos( / ) ( / )b b2 2

 V X Z cos
j j j
= +sin( / ) ( / )b b2 2

 m M
j j
=

Calculation of Actions Developed in the Elements
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 In matrix form
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 But,  F k and r= =d d d , therefore

 f r kr= b d  (6.40)

Example

Analyse the circular arch whose geometry and the forces acting on it 
as shown in Fig. 6.6 using the following data:
 E = 210 ¥ 106 kN/m2, I = 0.00048 m4, A = 0.0125 m2, and R =16 m.

 a = =
¥

=
I

AR
2 2

0 00048

0 0125 16

0 00015
.

.

.

60
45 30

1

2
3

4

60 kN

2

1

3

80 kN

R=16 m

22.522.5 x

z

O

Figure 6.6 

Coordinates of nodes (Taking point O as the origin)

Node 1:
 x1 = R – Rcos(22.5∞) = 16 – 16 cos(22.5∞) = 1.22 m
 z1 = Rsin(22.5∞) = 16 sin(22.5∞) = 6.12 m

Calculation of Actions Developed in the Elements
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Node 2:
 x2 = R – Rcos(82.5∞) = 16 – 16 cos(82.5∞) = 13.91 m
 z2 = Rsin(82.5∞) = 16 sin(82.5∞) = 15.86 m

Node 3:
 x3 = R + Rcos(52.5∞) = 16 + 16 cos(52.5∞) = 25.74 m
 z3 = Rsin(52.5∞) = 16 sin(52.5∞) = 12.69 m

Node 4:
 x4 = R + Rcos(22.5∞) = 16 + 16 cos(22.5∞) = 30.78 m
 z4 = Rsin(22.5∞) = 16 sin(22.5∞) = 6.12 m

Element 1 (b = 60∞), from Table 6.1
 a1 = 595, a2 = 569, a3 = 52.9, a4 = 11.0, a5 = 5.5,
 a6 = 543, a7 = 2119, a8 = 8.41, a9 = 1021, a10 = 2.90
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(6.41)

  xi = x1 = 1.22 m, xj = x2 = 13.91 m,
 xij = xj – xi = 13.91 – 1.22 = 12.69 m
  zi = z1 = 6.12 m, zj = z2 = 15.86 m,
 zij = zj – zi = 15.86 – 6.12 = 9.74 m

 L x z m
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Element 2 (b = 45∞), from Table 6.1

 a1 = 2463, a2 = 1838, a3 = 125, a4 = 25.6, a5 = 9.78,
 a6 = 2340, a7 = 9224, a8 = 11.3, a9 = 4528, a10 = 3.84
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(6.44)

  xi = x2 = 13.91 m, xj = x3 = 25.74 m, 
 xij = xj – xi = 25.74 – 13.91 = 11.83 m
  zi = z2 = 15.86 m, zj = z3 = 12.69 m, 
 zij = zj – zi = 12.69 – 15.86 = –3.17 m
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Element 3 (b = 30∞), from Table 6.1

 a1 = 18475, a2 = 9456, a3 = 419, a4 = 84.8, a5 = 21.9,
 a6 = 18059, a7 = 71752, a8 = 17.1, a9 = 35611, a10 = 5.75
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(6.47)

  xi = x3 = 25.74 m, xj = x4 = 30.78 m, 
 xij = xj – xi = 30.78 – 25.74 = 5.04 m
  zi = z3 = 12.69 m, zj = z4 = 6.12 m, 
 zij = zj – zi = 6.12 – 12.69 = –6.57 m
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 Assembly of the overall structure stiffness matrix, K:

K k
ii11

1= K k
ij12

1= O O

K =
K k

ji21

1= K k k
jj ii22

1 2= + K k
ij23

2= O

O K k
ji32

2= K k k
jj ii33

2 3= + K k
ij34

3=

O O K k
ji43

3= K k
jj44

3=

where k1, k2, and k3 are given in (6.43), (6.46), and (6.49), 
respectively.

Load vector

At node 1 the reactions on the structure are: the force in the 
x-direction RX1, the force in the z-direction RZ1, and the moment RM1.
 At node 2 the external force of –60 kN in the z-direction and at 
node 3 the external force of 80 kN in the x-direction.
 At node 4 the reactions on the structure are: the force in the 
x-direction RX4, the force in the z-direction RZ4, and the moment RM4.
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 The reduced matrix is obtained by applying the boundary 
conditions as follows:
 At node 1
 u1 = 0, w1 = 0, and q1 = 0, therefore delete rows and columns 1, 2, 
and 3.
 At node 4
 U4 = 0, w4 = 0, and q4 = 0, hence delete rows and columns 10, 11, 
and 12.
 Thus the reduced matrix is

 

52968 5350 50162 44387 11732 38273

5350 8948 312 11732 3776 627

- - -
- - - 44

50162 312 113274 36279 13714 15624

44387 11732 36279 115425

- - -
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38273 6274 1

- - -
- - 55624 72911 65612 135198

2

2

2

3

3

3-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

È

Î

Í
Í

u

w

u

w

q

q

ÍÍ
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

-
È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

0

60

0

80

0

0

 The solution of the above simultaneous equations is:
 u2 = 0.018931 m, w2 = –0.023316 m, q2 = –0.002081 rad
 u3 = 0.027037 m, w3 = 0.021005 m, q3 = 0.001814 rad
 So the full displacement vector is:
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Figure 6.7 Deflected shape of the arch.

Calculation of the reactions at the supports

These are usually calculated relative to the global coordinates and 
may be found from the full overall stiffness matrix (6.50) as shown 
below.
 For node 1:
 From row 1
 8581u1 + 6382w1 + 16531q1 – 8581u2 – 6382w2 – 13883q2 = RX1

  8581 ¥ 0 + 6382 ¥ 0 + 16531 ¥ 0 – 8581 ¥ 0.018931 – 6382 ¥ 
(–0.023316) –13883 ¥ (–0.002081) = RX1, 

 RX1= +15.25 kN

 From row 2
 6382u1 + 5172w1 + 9954q1 – 6382u2 – 5172w2 – 13402q2 = RZ1

  6382 ¥ 0 + 5172 ¥ 0 + 9954 ¥ 0 – 6382 ¥ 0.018931 – 5172 ¥ 
(–0.023316) –13402 ¥ (–0.002081) = RZ1, 

 RZ1= +27.66 kN

 From row 3
  16531u1 + 9954w1 + 50652q1 – 16531u2 – 9954w2 – 15939q2 = 

RM1

  16531 ¥ 0 + 9954 ¥ 0 + 50652 ¥ 0 – 16531 ¥ 0.018931 – 9954 ¥ 
(–0.023316) –15939 ¥ (–0.002081) = RM1, 

 RM1= –47.69 kNm

 Similarly for node 4:
 From row 10, RX4 = –95.29 kN
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 From row 11, RZ4 = +32.39 kN
 From row 12, RM4 = –282.88 kNm

60 kN 

80 kN 

95.29 kN 

32.39 kN 

282.88 kNm 

15.25 kN 

27.66 kN 

47.69 kNm 

Figure 6.8 

Calculation of actions on the elements

Element 1

From (39) with b = 60∞
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 From (6.40)
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Element 2

From (39) with b = 45∞
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k and r
2 2 are given in (6.44) and (6.45) respectively.
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 From (6.40)
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Element 3

From (39) with b = 30∞
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k and r
3 3 are given in (6.47) and (6.48) respectively.
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 Notice the discontinuity in the values of P2, V2, P3, and V3 which is 
due to the presence of the 60 kN in the negative z-direction at node 
2 and the 80 kN in the positive x-direction at node 3.
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Problems

 P6.1. Analyse the circular arch whose geometry and the forces 
acting on it as shown in Fig. P6.1 using the following data:

  A = 0.0036 m2, I = 0.00004 m4, E = 210 ¥ 106 kN/m2.

75
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3

Figure P6.1 

Answer:
 u1 = 0, w1 = 0, q1 = 0, u2 = 0.009889 m, w2 = 1.027113 m,
 q2 = –0.002584 rad, u3 = 0, w3 = 0, q3 = 0
 RX1 = –52.51 kN, RZ1 = –5.60 kN, RM1 = –46.61 kNm
 RX3 = –7.49 kN, RZ3 = +5.60 kN, RM3 = –19.12 kNm
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 P6.2. Analyse the circular arch whose geometry and the forces 
acting on it as shown in Fig. P6.2 using the following data:

  A = 0.08 m2, I = 0.0012 m4, E = 25 ¥ 106 kN/m2.

Problems
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Figure P6.2 

Answer:
 u1 = 0, w1 = 0, q1 = 0, u2 = –0.003555 m, w2 = –0.018162 m,
 q2 = –0.001149 rad, u3 = 0, w3 = 0, q3 = 0.002123 rad
 RX1 = 213.71 kN, RZ1 = 128.00 kN, RM1 = 177.19 kNm
 RX3 = –213.71 kN, RZ3 = 122.000 kN, RM3 = 0
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 P6.3. Analyse the circular arch whose geometry and the forces 
acting on it as shown in Fig. P6.3 using the following data:

  A = 0.40 m2, I = 0.025 m4, E = 30 ¥ 106 kN/m2.
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Figure P6.3 

Answer:
 u1 = 0, w1 = 0, q1 = –0.002195 rad,
 u2 = –0.008941 m, w2 = 0.009568 m, q2 = 0.000311 rad,
 u3 = –0.008941, w3 = –0.010202, q3 = 0.000103 rad,
 u4 = 0, w4 = 0, q4 = –0.001913 rad
 RX1 = 94.64 kN, RZ1 = 39.78 kN, RM1 = 0
 RX4 = –24.64 kN, RZ4 = 60.22 kN, RM4 = 0
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 P6.4.  Analyse the circular arch whose geometry and the forces 
acting on it as shown in Fig. P6.4 using the following data:

  A = 0.004 m2, I = 0.00006 m4, E = 210 ¥ 106 kN/m2.

1 2

3

20 kN

4

10 kN/m

4 m

1

2

3

3 m 4 m3 m

5 m

Figure P6.4 

Answer:
 u1 = 0, w1 = 0, q1 = 0.008167 rad,
 u2 = 0.000038 m, w2 = –0.018513 m, q2 = –0.003507 rad,
 u3 = 0.015093 m, w3 = –0.000041 m, q3 = –0.000471 rad,
 u4 = 0, w4 = 0, q4 = 0
 RX1 = –5.32 kN, RZ1 = 13.17 kN, RM1 = 0
 RX4 = –44.68 kN, RZ4 = 6.83 kN, RM4 = –68.85 kNm
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A typical example of this type of frame is a bridge deck carrying 
gravity loads resulting from road or rail traffic. The bridge deck 
transfers the loads to beams running in two directions which are 
usually at right angles to each other as shown in Fig. 7.1. There are 
three degrees of freedom at each node, which are the translation w 
in the z-direction and the rotations F and q about the x- and y-axes 
respectively as shown in Fig. 7.2. The beams are connected rigidly 
at their intersections, thus they develop bending moment (and 
the associated shear force) as well as torsion as shown in Fig. 7.3. 
In order to derive the stiffness matrix for a grillage member, the 
bending and torsion are combined together to give the full stiffness 
matrix. The stiffness matrix for the bending of beams was derived 
in Chapter 4 and the stiffness matrix for the torsion of bars will be 
derived in the next section.

x

y
z

Figure 7.1 Grillage structure.
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w– i w– j

i

θ– i θ– j

Φ– jΦ– i j

Figure 7.2 Displacement at the ends of a typical member.

Z– i Z– j

T–i

M– i

T–j

M– j

i

Figure 7.3 Actions at the ends of a typical member.

7.1 Derivation of Stiffness Matrix

Consider first a bar subjected to torques T
i
 and T

j
 at its ends i and 

j with the corresponding twists Fi  and F j  about the x -axis as 
shown in Fig. 7.4.

T–i T–j
Φ– i Φ–j

x
i

L

j
–

Figure 7.4 Bar subjected to torsion.

 Assume that end j is fixed as shown in Fig. 7.5, i.e. F j 0= :

 T
GJ

L
i

' = Fi  (a)

Φ–iT–i′ T–j′

Φ– j = 0
x–i

L

j

Figure 7.5 
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 From equilibrium, T T T T
i

'

j

'

j

'

i

'+ = = -0,

   Thus, T
GJ

L
j

' = - Fi  (b)

 Assume that end i is fixed as shown in Fig. 7.6, i.e. Fi 0= :

 T
GJ

L
j

'' = F j  (c)

 From equilibrium, T T T T
i

''

j

''

i

''

j

''+ = = -0,

   So, T
GJ

L
i

'' = - F j  (d)

x–
i

L
Φ– jT–i

′′ T–j
′′

Φ– i = 0

j

Figure 7.6 

 The total twisting moment at each end is the sum of the above 
two cases, thus from (a) and (d) we get

 T T T
GJ

L

GJ

L
i i

'

i

''= + = + -F Fi j

and from (b) and (c)

 T T T
GJ

L
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L
j j

'

j

''= + = - +F Fi j

 In matrix form
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 (7.1)

 The above relationships can alternatively be derived by a finite 
element approach using the so-called interpolation polynomial 
which defines the displacement along the element as explained in 
Appendix 3.
 From Chapter 4 about bending of beams we had the relation 
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(4.17) as:
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 Combining the above relation with (7.1) we get:
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 E is the modulus of elasticity,

   G is the modulus of rigidity  =
+
E

2 1( )
,

m
 μ is Poisson’s ratio = 0.15 for concrete and 0.30 for steel,
 I is the second moment of area of the cross section about its 
neutral axis,
 J is the torsion constant. For a circular cross section, J = pd4/32 
where d is the diameter and for a rectangular cross section, J = chb3 
with b as the short side, h is the long side and c is a constant given in 
Roark’s Formulas for Stress and Strain and simplified to the following 
equation
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 (7.4)

 For open sections consisting of rectangular parts, for example an 
‘I’ section,

 J c h b

i

i n

i i i
=

=

=

Â
1

3 , where n is the number of parts that make the 

section.

7.2 Transformation from Local to Global 
Coordinates

The above relationships are relative to the local coordinates and 
they need to be transformed to the global coordinates system if the 
member x -axis does not lie along the global x-axis. Since the grillage 

Transformation from Local to Global Coordinates
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is in the xy plane the orientation of any member is defined by the 
rotation about the z  -axis as shown in Fig. 7.7.

x

x

φz y
y

, z

φz

φz

–

–

–

–

–

–

Figure 7.7 

 Consider the member shown in Fig. 7.8 which has taken its 
final location by a rotation about the z -axis by an angle jz  in the 
clockwise direction.

x

y

x

node i 

φz

node j

y–

–

–

–

–

–
Φi

θi

Φi

φz

θi

Figure 7.8 

 Since the member has taken up its final position by rotating the 
z -axis only and this means that the local z -axis is coincident with 
the global z-axis then the translational displacement relative to the 
local coordinates is not changed thus:
 w w

i i
=

 The rotational displacements are vectors, so they are resolved 
into components along the relevant axes in the same way as the 
translational displacements vectors as shown in Fig. 7.8.
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 The rotational displacement Fi  is equal to the algebraic sum of 
the components of the rotational displacements Fi and qi along the 
x -axis and is given by:

 F Fi i z i z= +cos sinj jq

 Similarly, the rotational displacement qi  is equal to the algebraic 
sum of the components of the rotational displacements Fi and qi 
along the y -axis and is given by:

 q qi i z i z= - +F sin cosj j

 The above transformations are written in matrix form as
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node i.

 Similarly the transformation matrix for node j, r
j
= rz .

 The transformation matrix for nodes i and j is
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Transformation from Local to Global Coordinates
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 The transformation matrix r can be written in a more convenient 
form by expressing sinjz  and cosjz  in terms of the coordinates at 
the ends of the member as shown in Fig. 7.9

 where  sin
y y
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L
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x x
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Figure 7.9 

 Substitute in (7.4) to get:
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 (7.5)

 The stiffness matrix relative to global coordinates is k r kr
T=  

with k   from (7.3) and r from (7.5), thus
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Example

Analyse the grillage shown in Fig. 7.10 given that the properties of 
all members are: E = 210 ¥ 106 kN/m2, μ = 0.30, I = 0.00059 m4,  
J = 0.00092 m4.

12 kN/m

4

3

21

2

1

3

108 kN

10  kN

2 m

4 m

4 m

2 m 2 m

3 m

30 kN

x

y

z

Figure 7.10 
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Stiffness matrices from (7.6)

Member 1

 xi = 0, xj = 4 m, xij = xj – xi = 4 – 0 = 4 m
 yi = 0, yj = 0 m, yij = yj – yi = 0 – 0 = 0

 L x y m
ij ij

= + = + =2 2 2 2
4 0 4
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Member 2

 xi = 4 m, xj = 4 m, xij = xj – xi = 4 – 4 = 0
 yi = 0, yj = –6 m, yij = yj – yi = –6 – 0 = –6 m
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Member 3

 xi = 4 m, xj = 0, xij = xj – xi = 0 – 4 = –4 m
 yi = –6 m, yj = –9 m, yij = yj – yi = –9 – (–6) = –3 m
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 The overall stiffness matrix of the structure is:
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Load vector

Member 1

Actions on member 1, W = –30 kN
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 The load vector on joints 1 and 2 is given by

 F r F
S

T

f

1 1 1= -( )

where r1 is the transformation matrix which is given by (7.5) and 
since this member coincides with the positive global x-axis, then r1 = 
I (the unit matrix), thus

 F

Z

T

M

Z

T

M

S

S

S

S

S

S

S

1

1

1

1

1

1

1

2

1

2

1

2

1

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

( )

( )

( )

( )

( )

( )

˙̇
˙
˙
˙

= - =

-

+
-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

F
f

1

15

0

15

15

0

15

 (7.9)

Member 2

Actions on member 2, W = –108 kN

W=108 kN
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 The action vector for member 2 is:
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 The load vector on joints 2 and 3 is given by

 F r F
S

T

f

2 2 2= -( )

where r2 is the transformation matrix which is given by (7.5). Thus 
for member 2 where xij = 0, yij = –6 m and L = 6 m, it is given by

 r
2

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

=

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙̇
˙
˙

 F

Z

T

M

Z

T

M

S

S

S

S

S

S

S

2

2

2

2

2

2

2

3

2

3

2

3

2

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

( )

( )

( )

( )

( )

( )

˙̇
˙
˙
˙

= -
-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 1 0

˙̇
˙
˙
˙
˙
˙
˙

+

-
+

+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

-
+

-
-

È28

0

48

80

0

96

28

48

0

80

96

0ÎÎ

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (7.11)

Member 3

Actions on member 3, n = –12 kN/m
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12 kN/m 
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 It follows that the action vector on the member assumed fixed at 
its ends is given by:
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 The load vector on joints 2 and 3 is given by

 F r F
S

T

f

3 3 3= -( )

where r3 is the transformation matrix which is given by (7.5).  
Thus for this member, where xij = –4 m, yij = –3 m and L = 5 m, it is 
given by

Transformation from Local to Global Coordinates
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The load vector, FS, due to the forces acting on the members is
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 From (7.9), (7.11), and (7.13)

 F

F

F

F

F

Z

T

M

Z

S

S

S

S

S

S

S

S

S

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

( )

( )

( )

( )

( )

( )

( )

( )

1

2

3

4

1

1

1

2

(( )

( )

( )

( )

( )

( )

( )

( )

T

M

Z

T

M

Z

T

M

S

S

S

S

S

S

S

S

2

2

3

3

3

4

4

4

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
ÍÍ
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

+
-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

15

0

15

15

0

15

0

0

0

0

0

0

ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

+

-
+

-
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

0

0

0

2

4

0

0

0

0

0

0

8
8

8
96

ÍÍ
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

+
-
+
-
-
-
+

È

Î

Í
Í
Í
Í
Í

0

0

0

0

0

0

30

15

20

30

15

20

ÍÍ
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

+
-
+
-

-
-
-

15

0

15

43

4

15

110

1

2

8

8
00

30

15

20

-
-
+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 (7.14a)



277

The load vector, FN, due to external forces directly applied at 
the nodes

 A load of –10 kN applied at node 2 in the z-direction, thus
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The load vector, FC, due to the reactions at the supports

At node 1 the reactions on the structure are: the force in the 
z-direction RZ1, the moment about the x-axis RT1, and the moment 
about the y-axis RM1. Similarly, at node 4 the reactions are RZ4, RT4, 
and RM4.
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 The total load vector on the joints of the structure is obtained 
from the algebraic addition of (7.14a), (7.14b), and (7.15) as:
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 (7.16)

 Substitute (7.7) and (7.16) in the general relationship Kd = F to 
get (see equation 7.17 on next page).
 The boundary conditions are w1, F1, q1, w4, F4, and q4, thus 
delete rows and columns 1, 2, 3, 10, 11, and 12 to get:
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 The solution of the above set is:
 w2 = –0.013445 m, F2 = 0.002555 rad, q2 = 0.005028 rad,
 w3 = –0.021157 m, F3 = –0.001230 rad, q3 = 0.006113 rad,
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 The full displacement vector is
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Calculation of reactions at the supports from (7.17)

The first row
 –23231 w2 – 464632 = –15 + RZ1
 –23231 ¥ (–0.013445) – 46462 ¥ 0.005028 = –15 + RZ1,
 RZ1 = +93.73 kN
The second row
 –18400 ¥ 0.002555 = RT1, RT1 = –47.01 kNm
And the third row
 46462w2 + 61950q2 = +15 + RM1
  46462 ¥ (–0.013445) + 61950 ¥ 0.005028 = +15 + RM1,  

RM1 = –328.20 kNm
 Similarly, from rows 10, 11, and 12, RZ4 = +114.27 kN,  
RT4 = +193.52 kNm, and RM4 = –323.85 kNm, respectively.

Calculation of actions on the members

The resultant actions on any member of the frame is given by

 F F F
r d f

= +  (7.18)

where
  F k

d
= d  is the actions on the member due to displacements at 

the ends of the member.
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  F
f

 is the column vector of actions on the member due to the 
applied loads assuming that the member is fixed at its ends.

  k  is the stiffness matrix of the member relative to local 
coordinates given by (7.3).

  d d= r  is the column vector of the displacements at the ends of 
the member relative to local coordinates.

 r is the transformation matrix of the member given by (7.5).
  δ is the column vector of the displacements relative to global 

coordinates at the ends of the member. Thus equation (7.18) 
becomes

 F k F
r f

= +d  (7.19)

Member 1
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 xij = 4 m, yij = 0, L = 4 m

where r1 is the transformation matrix which is given by (7.5) and 
since this member coincides with the positive global x-axis, then  
r1 = I (the unit matrix), thus
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 and from (7.12) F
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 Calculation of internal actions for member 3
 Considering the left part of the member, the summation of the 
forces in the z -direction is zero:

 - - + = = +54 30 12 0 54 30 12. , .x V V x kN

 Summation of the moments about the x -axis is zero:

 - + = = +39 51 0 39 51. , .T T kNm

 Summation of the moments about the y -axis about point O is 
zero:

 + - - + =46 28 54 30
12

2
0

2

. . x
x

M

 M x x kNm= - + +46 28 54 30 6
2

. .

Problems

 P7.1.  The frame shown in Fig. P7.1 is fixed at supports 1 and 3 and 
carries a point load of 50 kN at node 2. Analyse the frame 
and draw the shear force, bending moment and twisting 
moment diagrams for the following data:

  E = 32 ¥ 106 kN/m2, G = 14 ¥ 106 kN/m2 and all members 
have the same cross section with I = 0.003 m4 and  
J = 0.002 m4.

130 kN

1 2

3

2

1

6 m

x

y
z 4 m

Figure P7.1 
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Answer:
 w2 = –0.01897 m, F2 = –0.00428 rad, q2 = +1.00678 rad
 w3 = 0, F3 = 0, q3 = 0
 RZ1 = +97.23 kN, RT1 = +29.92 kNm, RM1 = –357.26 kNm
 RZ3 = +32.77 kN, RT3 = +166.71 kNm, RM3 = –31.66 kNm
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 P7.2. The frame shown in Fig. P7.2 is fixed at support 1 and is 
pinned at support 3, so that the external moment exerted 
on the frame about the global x-axis at that support is zero, 
and. Analyse the frame and draw the shear force, bending 
moment, and twisting moment diagrams for the following 
data:

  E = 210 ¥ 106 kN/m2, G = 80 ¥ 106 kN/m2, I1 = 0.000190 m4, 
J1 = 0.000230 m4, I2 = 0.000120 m4, J2 = 0.000170 m4.

90 kN 
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2 1 
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z 

2.5 m 

1.5 m 

3 m 

50 kN/m 

Figure P7.2 

Problems



290 Grillage Analysis

Answer:
 w1 = 0, F1 = 0, q1 = 0
 w2 = –0.01715 m, F2 = –0.00092 rad, q2 = +0.00740 rad
 w3 = 0, F3 = –0.00806 rad, q3 = 0
 RZ1 = +182.34 kN, RT1 = +5.64 kNm, RM1 = –296.88 kNm
 RZ3 = +57.66 kN, RT3 = 0 kNm, RM3 = –25.15 kNm
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 P7.3. The frame shown in Fig. P7.3 is fixed at the supports 3 and 
4. Analyse the frame and draw the shear force, bending 
moment, and twisting moment diagrams for the following 
data:

  I1 = I2 = I3 = 0.00022 m4, J1 = J2 = J3 = 0.00014 m4, I4 = 0.00030 
m4, J4 = 0.00017 m4,

  E = 210 ¥ 106 kN/m2, and G = 80 ¥ 106 kN/m2.

10 kN 
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2 3 
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4 
30 kN 

Figure P7.3 

Answer:
 w1 = –0.01615 m, F1 = +0.00081 rad, q1 = –0.00447 rad
 w2 = –0.01118 m, F2 = +0.00102 rad, q2 = –0.00342 rad
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 w3 = 0, F3 = 0, q3 = 0
 w4 = 0, F4 = 0, q4 = 0
 RZ3 = +17.97 kN, RT3 = –38.01 kNm, RM3 = +103.58 kNm
 RZ4 = +22.03 kN, RT4 = –1.82 kNm, RM4 = +96.42 kNm
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 P7.4. The frame shown in Fig. P7.4 is fixed at supports 3 and 4 
with a rigid joint at node 2 and is pinned to the support at 
node 1 so that it cannot develop moment about the global
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Figure P7.4 

Problems
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   y-axis. Analyse the frame and draw the shear force, bending 
moment, and twisting moment diagrams for the following 
data:

  E = 27 ¥ 106 kN/m2, G = 12 ¥ 106 kN/m2, I = 0.0015 m4, and  
J = 0.0012 m4.

Answer:
 w1 = 0, F1 = 0, q1 = +0.01086 rad
 w2 = –0.01634 m, F2 = –0.00195 rad, q2 = –0.00467 rad
 w3 = 0, F3 = 0, q3 = 0, w4 = 0, F4 = 0, q4 = 0
 RZ1 = +114.96 kN, RT1 = +4.68 kNm, RM1 = 0
 RZ3 = +94.41 kN, RT3 = +208.58 kNm, RM3 = +16.82 kNm
 RZ4 = +110.63 kN, RT4 = –228.78 kNm, RM4 = +13.45 kNm
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This type of beams occurs in curved bridges and buildings where the 
plan is of a curved shape as shown in Fig. 8.1. In most common case 
the shape of the curve is circular and this chapter deals specifically 
with that type of curved beams. The behaviour of these beams is 
characterised by torsion that develops due to their curvature in plan. 
So, a beam curved in plan subjected to gravity loads will develop 
torsion in addition to the bending moment, and the shear force that 
occur in straight beams.

x

y
z

Figure 8.1 Beam curved in plan.
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294 Beams Curved in Plan

8.1 Derivation of Stiffness Matrix

Consider an element of a beam curved in plan whose local x-axis 
is defined by the line joining its two ends and is coincident with 
the global x-axis as shown by the line (ae) in Fig. 8.2. At node i the 
element is subjected to a shear force Z

i
 in the z -direction and 

moments T
i
 and M

i
 about the local x- and y-axes respectively. The 

corresponding displacements are translation w
i
 in the z -direction 

and rotations Fi  and qi  about the x- and y-axes respectively. 
Similar actions and displacements occur at the other end of the 
element but with the subscript j.

O

i

β

a b

R

c
j

dx

: indicates a force in the   
upward positive z-direction.

y

Z–

–

–

–
–––

–

i

Ti

Zj

Tj

Mi Mjξ

dξ

ds

Figure 8.2 A circular beam curved in plan element.

 First consider end i and assume that it is displaced by a 
translational displacement w

i
 and rotational displacements Fi

and qi  about the x - and y -axes respectively, while end j is fixed, 
i.e. w

j
= 0 , F

j
= 0 , and q

j
= 0 . For this case, the forces and moments 

developed at the ends of the element are calculated in terms of w
i
, 

Fi , and qi  and they are superscripted by a single prime. The second 
part of the derivation assumes that end j is given displacements w

j
, 

F j, and q j while end i is fixed, i.e. w
i

= 0, F
i

= 0, and q
i

= 0 . This will 
lead to forces and moments developed at the ends of the element in 
terms of w

j
, F j, and q j, these are superscripted by double primes. 

The final forces and moments are obtained by adding the quantities 
from the two steps.
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 With reference to the circular beam element of radius R shown in 
Fig. 8.2, consider section c which makes an angle x with the line oa, 
thus
 bc = R – Rcosx = R(1 – cosx) and ab = Rsinx

 Consider the equilibrium of part ac shown in Fig. 8.3.

i
a

b

c

Zi′

V′

t

n

x

y

(
β
2 − ξ)

Ti′

Mi
′

M′

T′

end j is �ixed: wj = Φj = θj = 0

–

–

–

–

–

– – –

Figure 8.3

 Summation of the moments about the tangential t-axis:

 T M Z bc T
i i i

¢ ¢ ¢ ¢cos sin ( )
b

x
b

x
2 2

0-Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

- + =

 T T M Z R
i i i

¢ = - -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

+ -¢ ¢ ¢
cos sin ( cos )

b
x

b
x x

2 2
1  (8.1)

 Summation of the moments about the normal n-axis:

 - -Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

+ + =¢¢ ¢ ¢
T M Z ab M

i i i
sin cos ( )

b
x

b
x

2 2
0
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 M T M Z R
i i i

¢ = -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

-¢ ¢ ¢
sin cos sin

b
x

b
x x

2 2
 (8.2)

where T¢ and M¢ are the internal moments about the tangential and 
normal axes respectively at point c.
 Neglecting the effect of shearing forces on the deformation the 
strain energy is given by:

 U
M ds

EI

T ds

GJ
where ds Rd¢

¢ ¢
= + =Ú Ú

2 2

2 2
, x

 U
R

EI
M d

R

GJ
T d¢ ¢= + ¢Ú Ú2 2

0

2

0

2

b b

x x  (8.3)

 Applying Castigliano’s theorem leads to the following equations:

 w
U

Z

U

M

M

Z

U

T

T

Z
i

i i i

=
∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

¢ ¢
¢

¢ ¢
¢

¢
¢ ¢ ¢  (8.4)

 F
i

i i i

U

T

U

M

M

T

U

T

T

T
=

∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

¢ ¢
¢

¢ ¢
¢

¢
¢ ¢ ¢  (8.5)

 q
i

i i i

U

M

U

M

M

M

U

T

T

M
=

∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

¢ ¢
¢

¢ ¢
¢

¢
¢ ¢ ¢  (8.6)

 From (8.3) we get

 ∂
∂

=
∂
∂

=
¢
¢

¢
¢

¢Ú ÚU

M

R

EI
Md and

U

T

R

GJ
T d

0 0

b b

x x

 From (8.1)

 ∂
∂

= -
∂
∂

= - -Ê
ËÁ

ˆ
¯̃

∂
∂

= - -
T

Z
R

T

T
and

T

M
i i i

¢ ¢ ¢
¢ ¢ ¢( cos ), cos sin1

2 2
x

b
x

b
xxÊ

ËÁ
ˆ
¯̃

 From (8.2)

 ∂
∂

= -
∂
∂

= -Ê
ËÁ

ˆ
¯̃

∂
∂

= - -Ê
ËÁ

¢
¢

M

Z
R

M

T
and

M

M
i i i

sin , sin cosx
b

x
b

x
¢ ¢
¢ ¢2 2

ˆ̂
¯̃

 Substitution of (8.1), (8.2), and the relevant derivatives, as 
appropriate, from above into (8.4) will give
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 w R

EI
T M Z R R d

i i i i
= - - - -( ) - +Ú

0

2 2

b

b x b x x x x¢ ¢ ¢
sin( / ) cos( / ) sin ( sin )

R

GJ
T M Z R R

i i i

0

2 2 1 1

b

b x b x x xÚ - - - - + - -¢
( cos( / ) sin( / ) ( cos )) ( cos )

¢ ¢
ddx

 Introducing the parameter a = EI/GJ and integrating from x = 0 
to x = b to get

w R EI RZ
i i

= +( ) - + -( )ÈÎ ˘̊ +{( / ) . sin . sin cos
2

0 5 3 1 2 0 5 1b a a b a b b ¢

0 25 1 3 2 0 5 1 2 0 25 7 1 2. ( )sin( / ) . ( )cos( / ) . ( )sin( / )a b b a b a b- + + - +[ ]T
ii

¢ +

0 25 1 3 2 0 5 1 2 0 25 1 2. ( )cos( / ) . ( )sin( / ) . ( )cos( / )a b b a b a b- + + - -[ ]M
i

¢¢ }
 (8.7)

 Similarly (8.5) is simplified to give

 F
i

R EI= - + + -{( / ) [ . ( )sin( / ) . ( )cos( / )0 25 1 3 2 0 5 1 2a b b a b

 0 25 7 1 2 0 5 1 0 5 1. ( )sin( / )] . ( ) . ( )sina b b a a b+ + + + -[ ] }¢
RZ T

i i

¢  (8.8)

 And (8.6) is simplified to

 q a b b a b
i

R EI= - + + -{( / ) [ . ( )cos( / ) . ( )sin( / )0 25 1 3 2 0 5 1 2

 0 25 1 2 0 5 1 0 5 1. ( )cos( / )] . ( ) . ( )sina b b a a b- + + - -[ ] }RZ M
i i

¢ ¢  (8.9)

 Solve equations (8.7), (8.8), and (8.9) simultaneously for the 
unknowns Z

i

¢ , T
i

¢ , and M
i

¢  to get:

 Z
EI

R

C w C R C R
i i i i

¢ = + -( )
3 1 2 3

F q  (8.10)

 T
EI

R

C Rw C R C R
i i i i

¢ = + -( )3 2 4

2

5

2F q  (8.11)

 M
EI

R

C Rw C R C R
i i i i

¢ = - - +( )3 3 5

2

6

2F q  (8.12)

 Equations (8.10), (8.11), and (8.12) represent k
ii

 of the stiffness 
matrix.
 From the overall equilibrium of the element the following 
equations are obtained:

Derivation of Stiffness Matrix
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 Â = + = = -Z Z Z Z Z
i j j i

0 0: ,
¢ ¢ ¢ ¢  and from (8.10) we get

 Z
EI

R

C w C R C R
j i i i

¢ = - - +( )
3 1 2 3

F q  (8.13)

 Â = + = = -T T T T T
i j j i

0 0: ,
¢ ¢ ¢ ¢ and from (8.11) we get

 T
EI

R

C Rw C R C R
j i i i

¢ = - - +( )3 2 4

2

5

2F q  (8.14)

 Â = + + = = - -M M Z L M M M Z L
i i j j i i

0 0: ,
¢ ¢ ¢ ¢ ¢ ¢ , where L is the length 

of the straight line joining ends i and j of the element and is equal to 
2Rsin(b/2).

 Substitute M
i

¢  and Z
i

¢  as given in (8.12) and (8.13) respectively 
in the above equation leads to:

 M
EI

R

C Rw C R C R
j i i i

¢ = - - +
3 3 5

2

7

2
( )F q  (8.15)

 Equations (8.13), (8.14), and (8.15) represent k
ji

 of the stiffness 
matrix.
 And C1, C2, ... ... ... , C7 are functions of α and β.
 The above process is repeated with end i fixed and end j is given 
displacements

 w
j
, F j , and q j .

 The equations for the torque and moment at section c in this case 
are similar to (8.1) and (8.2) but the single primes are replaced by 
double primes as shown in Fig. 8.4, thus

 T T M Z R
i i i

¢¢ ¢¢ ¢¢ ¢¢= - -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

+ -cos sin ( cos )
b

x
b

x x
2 2

1  (8.16)

 M T M Z R
i i i

¢¢ = -Ê
ËÁ

ˆ
¯̃

- -Ê
ËÁ

ˆ
¯̃

-¢¢
sin cos sin

b
x

b
x x

2 2

¢¢ ¢¢  (8.17)

 Since we want to find expressions for the displacements w
j
, F j,  

and q j  the above two equations are written in terms of Z
j

¢¢, T
j

¢¢, and 
M

j

¢¢  whose derivatives will give the respective displacements. To 
achieve this, the equilibrium of the whole beam is considered.
 Summation of the forces in the z -direction is zero:

 Z Z Z Z
i j i j

¢¢ ¢¢ ¢¢ ¢¢+ = = -0,
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′′
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end i is ixed: wi = Φi = θi = 0––

Figure 8.4

 Summation of moments about the x-axis is zero:

 T T T T
i j i j

¢¢ ¢¢ ¢¢ ¢¢+ = = -0,

 Summation of moments about node I is zero: 

 M Z L M
i j j

¢¢ ¢¢ ¢¢- + = 0,   M RZ M
i j j

¢¢ ¢¢ ¢¢= Ê
ËÁ

ˆ
¯̃

- =2
2

0sin ,
b

 Substitute the above values of Z
i

¢¢, T
i

¢¢, and M
i

¢¢ in (8.16) and (8.17) 
respectively and simplify to get

 T T M Z R
j j j

¢¢ ¢¢ ¢¢ ¢¢= -Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

- - -( )( )cos sin cos
b

x
b

x b x
2 2

1  (8.18)

 M T M Z R
j j j

¢¢ ¢¢ ¢¢ ¢¢= - -Ê
ËÁ

ˆ
¯̃

+ -Ê
ËÁ

ˆ
¯̃

- -sin cos sin( )
b

x
b

x b x
2 2

 (8.19)

 U
R

EI
M d

R

GJ
T d¢¢ ¢¢ ¢¢= +Ú Ú2 2

0

2

0

2

b b

x x  (8.20)
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 w
U

Z

U

M

M

Z
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T

T

Z
j

j j j

=
∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

¢¢ ¢¢
¢¢

¢¢ ¢¢
¢¢

¢¢
¢¢ ¢¢ ¢¢  (8.21)
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j j j
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T
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M
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T

U

T

T

T
=

∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

¢¢ ¢¢
¢¢

¢¢ ¢¢
¢¢

¢¢
¢¢ ¢¢ ¢¢  (8.22)
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j

j j j

U

M

U

M

M

M

U

T

T

M
=

∂
∂

=
∂
∂

∂
∂

+
∂
∂

∂
∂

¢¢ ¢¢
¢¢

¢¢ ¢¢
¢¢

¢¢
¢¢ ¢¢ ¢¢  (8.23)

 Equations (8.21), (8.22), and (8.23) are respectively simplified 
and integrated from x = 0 to x = b to give:

w R EI RZ
j j
= ( ) - - + +( )ÈÎ ˘̊{2

0 25 1 2 2 0 5 3 1/ . ( )sin sin .a b a b b a ¢¢

+ - ( ) + + ( ) - + ( )[ . ( )sin / . ( )cos / . ( )sin / ]0 25 1 3 2 0 5 1 2 0 25 7 1 2a b b a b a b TT
j

¢¢

+ - + - - +[ . ( )cos( / ) . ( )cos( / ) . ( )sin( / )]0 25 1 3 2 0 25 1 2 0 5 1 2a b a b b a b M
jj

¢¢ }
 (8.24)

F
j

R EI= ( ) -( ) ( ) + +{/ [ . sin / . ( )cos( / )0 25 1 3 2 0 5 1 2a b b a b

- +( ) + -( ) + + }0 25 7 1 2 0 5 1 0 5 1. sin( / )] [ . sin . ( )]a b a b b aRZ T
j j

¢¢ ¢¢  (8.25)

q a b a b
j

R EI= ( ) -( ) ( ) + -( ){/ [ . cos / . cos( / )0 25 1 3 2 0 25 1 2

- +( ) + -( ) + + }0 5 1 2 0 5 1 0 5 1. sin( / )] [ . sin . ( )]b a b a b b aRZ M
j j

¢¢ ¢¢  (8.26)

 Solve equations (8.24), (8.25), and (8.26) simultaneously for the 
unknowns Z

j

¢¢ , T
j

¢¢ , and M
j

¢¢  to get:

 Z
EI

R

C w C R C R
j j j j

¢¢ = + +( )
3 1 2 3

F q  (8.27)

 T
EI

R

C Rw C R C R
j j j j

¢¢ = + +( )3 2 4

2

5

2F q  (8.28)

 M
EI

R

C Rw C R C R
j j j j

¢¢ = + +( )3 3 5

2

6

2F q  (8.29)

 Equations (8.27), (8.28), and (8.29) represent k
jj

 of the stiffness 
matrix.
 From the overall equilibrium of the element the following 
equations are obtained:

 Â = + = = -Z Z Z Z Z
i j i j

0 0: ,
¢¢ ¢¢ ¢ ¢  and from (8.27) we get
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 Z
EI

R

C w C R C R
i j j j

¢¢ = - - -( )
3 1 2 3

F q  (8.30)

 Â = + = = -T T T T T
i j i j

0 0: ,
¢¢ ¢¢ ¢¢ ¢¢  and from (8.28) we get

 T
EI

R

C Rw C R C R
i j j j

¢¢ = - - -( )3 2 4

2

5

2F q  (8.31)

 Â = - + = = - +M M Z L M M M Z L
i j j i j j

0 0: ,
¢¢ ¢ ¢¢ ¢¢ ¢¢ ¢¢ ,

where L = 2Rsin(b/2).

 Substitute Z
j

¢¢  and M
j

¢¢  as given in (8.27) and (8.29) respectively 
in the above equation leads to:

 M
EI

R

C Rw C R C R
i j j j

¢¢ = + +( )3 3 5

2

7

2F q  (8.32)

 Equations (8.30), (8.31), and (8.32) represent k
ij

 of the stiffness 
matrix.
 Finally

 from (8.10) and (8.30): Z Z Z
i i i

= +¢ ¢¢

 from (8.11) and (8.31): T T T
i i i

= +¢ ¢¢

 from (8.12) and (8.32): M M M
i i i

= +¢ ¢¢

 from (8.13) and (8.27): Z Z Z
j j j
= +¢ ¢¢

 from (8.14) and (8.28): T T T
j j j
= +¢ ¢¢

 from (8.15) and (8.29): M M M
j j j
= +¢ ¢¢

 The above six equations are written in matrix form to give the 
general stiffness matrix of a beam curved in plan element relative to 
local coordinates as:
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 (8.33)
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 (8.34)

 Expressions for calculating the values of C1, C2, ... ... ... , C7 are as 
given below.

 C
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a
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1 1

a a
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+ +
+ +

a a

a a( )( )

where a = EI/GJ and the values of a1, a2, ... ... ... , a17 for various values 
of β are shown in Table 8.1.

8.2 Transformation from Local to Global 
Coordinates

Since the resulting stiffness matrices for the elements are derived 
relative to local coordinates, transformation is necessary to make 
them relative to the global coordinates system. The direction of the 
secant, AB, is assumed to represent the local x-axis. For the element 
shown in Fig. 8.5, the secant has rotated about the z -axis by an angle 
jz .
 The stiffness matrix relative to global coordinates is given by:
 k r kr

T= , where the transformation matrix, r is the same as that 
for a grillage member which was derived in Chapter 7 in (7.5) as

 r

x L y L

y L x L

x L y L

ij ij

ij ij

ij ij

=
-

1 0 0 0 0 0

0 0 0 0
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˙

y L x L
ij ij
/ /

 (8.35)
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where x x x y y y and L x y
ij j i ij j i ij ij

= - = - = +, ,
2 2 .

8.3 Calculation of Actions Developed in the 
Elements

The actions on an element in a curved beam are calculated relative to 
the tangent and normal to the curve at the ends of the element. So the 
twisting moment, t, is the resultant moment about the tangent to the 
curve and the bending moment, m, is the resultant moment about 
the normal to the curve. Expressions for t and m are derived from 
the moments T  and M  about the local x - and y -axes respectively 
as shown in Fig. 8.6. The shear force, V, acting on the element in the 
z -direction is the same as the force, Z .

β/2

β/2
β/2

φz

x

x

y

Miti
O

β/2

y– –
–

–

–

–

–

mi

tj

mj

Ti
Mj

Tj

Figure 8.6

 It follows that:

 V Z
i i

=

 t T M
i i i

= ( ) + ( )cos / sin /b b2 2

 m T M
i i i

= - ( ) + ( )sin / cos /b b2 2

 V Z
j j
=
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 t T M
j j j
= ( ) - ( )cos / sin /b b2 2

 m T M
j j j
= ( ) + ( )sin / cos /b b2 2

 In matrix form

 

V

t

m

V

t

m

i

i

i

j

j

j

È

Î

Í
Í
Í
Í
Í
Í
Í
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˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=
-

1 0 0 0 0 0

0 2 2 0 0 0

0

cos / sin /

s

b b
iin / cos /

cos / sin /

sin / cos /

b b

b b
b b

2 2 0 0 0

0 0 0 1 0 0

0 0 0 0 2 2

0 0 0 0 2 2

-

È
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Í
Í
ÍÍ
Í
Í
Í
Í
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˘
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˙
˙
˙
˙
˙
˙
˙
˙

È
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Í
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˚
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˙
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˙
˙
˙
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M
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T

M

i

i

i

j

j

j

 or f r F= b , where

 rb

b b
b b

b

=
-

1 0 0 0 0 0

0 2 2 0 0 0

0 2 2 0 0 0

0 0 0 1 0 0

0 0 0 0 2

cos / sin /

sin / cos /

cos / --

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

sin /

sin / cos /

b
b b

2

0 0 0 0 2 2

 (8.36)

and F k k r= =d d( ), thus

 

V

t

m

V

t

m

f r k r

i

i

i

j

j

j

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

= = b d( )  (8.37)

Example

The beam shown in Fig. 8.7 is circular in plan and has a radius R = 
4 m and a rectangular cross section with width, b = 0.3 m and depth, 
h = 0.6 m. The beam is made of concrete with modulus of elasticity, 
E = 25 × 106 kN/m2 and Poisson’s ratio, μ = 0.15. Calculate the 
displacement, shear force, twisting moment, and bending moment 
at the nodes 1 to 4.

Calculation of Actions Developed in the Elements
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Figure 8.7

 I
bh

m= =
¥

=
3 3

4

12

0 3 0 6

12
0 0054

. .
.

 G
E

kN m=
+

=
¥
+

= ¥
2 1

25 10

2 1 0 15
10 9 10

6

6 2

( ) ( . )
. /

m
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Coordinates of nodes

Node 1:
 x1 = 0, y1 = 0
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Node 2:
 x2 = 4 – 4cos45 = 1.172 m, y2 = 4sin45 = 2.828 m

Node 3:
 X3 = 4 + 4cos75 = 5.035 m, y3 = 4sin75 = 3.864 m

Node 4:
 X4 = 4 + 4cos45 = 6.828 m, y4 = 4sin45 = 2.828 m

Stiffness matrices

Element 1

	 a = 3.35

From Table 8.1, for b = 450:
 a a a a a a

1 2 3 4 5 6
24 252 1 273 0 010 2 471 1 176 9 284= = = = = =. , . , . , . , . , . ,

a a a a a a
7 8 9 10 11 12

0 487 0 265 1 087 0 944 0 451 0 201= = = = = =. , . , . , . , . , . ,

a a a a a
13 14 15 16 17

4 918 0 187 0 054 0 173 2 231= = = = =. , . , . , . , .

 C
a a

a
1

1 2

3
1

24 252 3 35 1 273

3 35 0 010 3 35 1
23 8=

+
+

=
¥ +

¥ +
=

a
a a( )

. . .

. ( . . )
. 33

 C
a a

a
2

4 5

3
1

2 471 3 35 1 176

3 35 0 010 3 35 1
2 05=

-
+

=
¥ -

¥ +
=

a
a a( )

. . .

. ( . . )
.

 C
a a

a
3

6 7

3
1

9 284 3 35 0 487

3 35 0 010 3 35 1
9 12=

+
+

=
¥ +

¥ +
=

a
a a( )

. . .

. ( . . )
.

 C
a a

a
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8 9

3
1

0 265 3 35 1 087
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+
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=
¥ +

¥ +
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a
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. . .

. ( . . )
.

 C
a a

a
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10 11

3
1
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-
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=
¥ -

¥ +
=

a
a a( )

. . .

. ( . . )
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 From (8.34)
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. . . . . .
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- ¥ - ¥ ¥ ¥ ¥ ¥
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È
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Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

 k1

50266 17297 76950 50266 17297 76950

17297 19238 26325 1729

=

- - - -
- - 77 19238 26325

76950 26325 156263 76950 26325 79313

50266 1729

- -
- -
- - 77 76950 50266 17297 76950

17297 19238 26325 17297 19238 26325

769

- -
- 550 26325 79313 76950 26325 156263-

È
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Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (8.38)

 x x x x m x x x m
i j ij j i

= = = = = - = - =
1 2

0 1 172 1 172 0 1 172, . , . .

 y y y y m y y y m
i j ij j i

= = = = = - = - =
1 2

0 2 828 2 828 0 2 828, . , . .

 L x y m
ij ij

= + = + =2 2 2 2
1 172 2 828 3 061. . .

 From (8.35)

 r
1

1 0 0 0 0 0

0 0 383 0 924 0 0 0

0 0 924 0 383 0 0 0

0 0 0 1 0 0

0 0 0 0 0 383 0 924

=
-

. .

. .

. .

00 0 0 0 0 924 0 383-

È
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Í
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Í
Í
Í
Í
Í

˘

˚
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˙
˙
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˙
˙
˙. .

 (8.39)
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 k r k r
T1 1 1 1= ( )

k
1

50266 77709 13481 50266 64465 45440

77709 154799 29856 7770

=

- - -
- - 99 64868 61180

13481 29856 20701 13481 8530 4793

50266 77709 1

-
- - - -
- - 33481 50266 64465 45440

64465 64868 8530 64465 117557 67071

454

-
- - -

- 440 61180 4793 45440 67071 57943- - -

È

Î

Í
Í
Í
Í
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Í
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˘

˚
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˙
˙
˙
˙
˙
˙
˙

 (8.40)

 Similarly for element 2 with b = 600

k
2

20588 12403 41175 20588 12403 41175

12403 17888 24975 1240

=

- - - -
- - 33 17888 24975

41175 24975 109013 41175 24975 55688

20588 1240

- -
- -
- - 33 41175 20588 12403 41175

12403 17888 24975 12403 17888 24975
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- -
- 775 24975 55688 41175 24975 109013-

È
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Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (8.41)

x x m x x m x x x m
i j ij j i

= = = = = - = - =
2 3

1 172 5 035 5 035 1 172 3 863. , . , . . .

y y y y m y y y m
i j ij j i
= = = = = - = - =

2 3
2 828 3 864 3 864 2 828 1 036. , . , . . .

 L x y m
ij ij

= + = + =2 2 2 2
3 863 1 036 4 000. . .

 r
2

1 0 0 0 0 0

0 0 966 0 259 0 0 0

0 0 259 0 966 0 0 0

0 0 0 1 0 0

0 0 0 0 0 966 0 259

=
-

. .

. .

. .

00 0 0 0 0 259 0 966-

È
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Í
Í
Í
Í
Í
Í
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˚
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˙
˙
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˙
˙. .

 (8.42)

 k r k r
T2 2 2 2= ( )

 k2

20588 22645 36557 20588 1314 42983

22645 36499 44422 22645

=

- - - -
- - -- -

- -
- -

12951 43383

36557 44422 90401 36557 6567 50751
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42983 4338

- - -
- - 33 50751 42983 1175 115395-

È
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˙
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 (8.43)
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 And for element 3 with b = 300

k
3

173285 26747 179381 173285 26747 179381

26747 23625 27675

=

- - - -
- -226747 23625 27675

179381 27675 247050 179381 27675 124538

173

- -
- -
- 2285 26747 179381 173285 26747 179381
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È
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 (8.44)

x x m x x m x x x m
i j ij j i
= = = = = - = - =

3 4
5 035 6 828 6 828 5 035 1 793. , . , . . .

y y y y m y y y m
i j ij j i
= = = = = - = - = -

3 4
3 864 2 828 2 828 3 864 1 036. , . , . . .

 L x y m
ij ij

= + = + - =2 2 2 2
1 793 1 036 2 071. ( . ) .

 r
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 (8.45)

 k r k r
T3 3 3 3= ( )
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3

173285 66584 168700 173285 112902 141937

66584 55570 8296

=

- - - - -
- 33 66584 13459 36506

168700 82963 215105 168700 91856 87453
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141937 36506 87453 141937 110605 167152-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙̇
˙
˙
˙
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 (8.46)
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K k
ii11

1= K k
ij12

1= O O

K= K k
ji21

1= K k k
jj ii22

1 2= + K k
ij23

2= O

O K k
ji32

2= K k k
jj ii33

2 3= + K k
ij34

3=

O O K k
ji43

3= K k
jj44

3=

 Substitute k1, k2, and k3 from (8.40), (8.43), and (8.46) 
respectively to get the overall structure matrix.

Load vector

At node 1 the reactions on the structure are: the force in the 
z-direction RZ1, the moment about the x-axis RT1, and the moment 
about the y-axis RM1.
 At node 2 the external force of –190 kN in the z-direction and at 
node 3 the external force of –80 kN in the z-direction.
 At node 4 the reactions on the structure are: the force in the 
z-direction RZ4, the moment about the x-axis RT4, and the moment 
about the y-axis RM4.
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 For the boundary conditions that node 1 is fixed, i.e. w1 = 0,  
F1 = 0, and q1 = 0, therefore delete rows 1, 2, and 3 and columns 1, 
2, and 3.
 The boundary conditions that node 4 is fixed, i.e. w4 = 0, F4 = 0, 
and q4 = 0, therefore delete rows 10, 11, and 12 and columns 10, 11, 
and 12. The resulting reduced matrix is as shown below.

70854 41820 8883 20588 1314 42983

41820 154056 111493 22645

- - - -
- - - -112951 43383

8883 111493 148344 36557 6567 50751

20588 22645 365

-
-

- - 557 193873 65270 125717

1314 12951 6567 65270 67075 81788

4298

- -
- - -

- 33 43383 50751 125717 81788 330500

2

2

2

- -

È
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Í
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˙
˙
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 The solution of the above set of simultaneous equations is:
 w m rad rad

2 2 2
0 00716 0 00367 0 00065= - = - = -. , . , . ,F q

 w m rad and rad
3 3 3

0 00340 0 00131 0 00228= - = - = -. , . , . .F q
 The full displacement vector is
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Calculation of reactions at the supports

These are calculated relative to global coordinates from (8.47) as 
follows:
From row 1
50266 77709 13481 50266 64465 45440

1 1 1 2 2 2 1
w w R

Z
+ - - + - =F Fq q

R
Z1

50266 0 00716 64465 0 00367 45440 0 00065

152

= - - + - - -
= +

( . ) ( . ) ( . )

.885 kN

From row 2
77709 154799 29856 77709 64868 61180

1 1 1 2 2 2 1
w w R

T
+ - - + - =F Fq q

R
T1

77709 0 00716 64868 0 00367 61180 0 00065

358

= - - + - - -
= +

( . ) ( . ) ( . )

.110 kNm

From row 3
- - + + - - =13481 29856 20701 13481 8530 4793

1 1 1 2 2 2 1
w w R

M
F Fq q

 
R

kN

M1
13481 0 00716 8530 0 00367 4793 0 00065

62 10

= - - - - -
= -

( . ) ( . ) ( . )

. mm

Similarly, rows 10, 11, and 12 respectively give:
 R kN R kNm and R kNm

Z T M4 4 4
117 31 156 80 235 37= + = + = +. , . , . .

Calculation of actions on the elements

These are calculated from (8.37) as shown below:
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from (8.36) with b = 450,

 rb
1

1 0 0 0 0 0

0 0 924 0 383 0 0 0

0 0 383 0 924 0 0 0

0 0 0 1 0 0

0 0 0 0 0 924 0 3

=
-

-

. .

. .

. . 883

0 0 0 0 0 383 0 924. .

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

and k and r
1 1  from (8.38) and (8.39) respectively, thus

 f
1

1

1

1

1

1

1

2

1

2

1

2

1
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0 0 924 0
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Í
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Í
Í
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˚

˙
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˙
˙
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˙
˙

=

V

t

m

V

t
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-

-
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Í
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Í
Í
Í
Í
Í
Í

˘
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˙
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˙
˙
˙
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˙
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0 0 0

. .
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. .
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1

2

153.11 kN

153.11 kN

62.06 kNm

358.40 kNm

30.37 kNm

135.27 kNm

Element 2

 

V

t

m

V

t

m

f r k r wh

i

i

i

j

j

j

2

2

2

2

2

2

2 2 2 2 2

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

= = b d , eere

w

w

i

j

d
d

d

d
d

q

q

2

2

2

2

3

2

2

2

3

3

3

=
È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙F

F

˙̇
˙
˙
˙
˙
˙
˙

=

-
-
-
-
-
-

È 0 00716

0 00367

0 00065

0 00340

0 00131

0 00228

.

.

.

.

.

.ÎÎ

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

,

from (8.36) with b = 600,

 rb
2

1 0 0 0 0 0
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and k and r
2 2  from (8.41) and (8.42) respectively, thus

 f
2
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Element 3

 

V

t

m

V

t

m

f r k r wh

i

i

i

j

j

j

3

3

3

3

3

3

3 3 3 3 3

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

= = b d , eere

w

w

i

j

d
d

d

d
d

q

q

3

3

3

3

4

3

3

3

4

4

4

=
È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙F

F

˙̇
˙
˙
˙
˙
˙
˙

=

-
-
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

0 00340

0 00131

0 00228

0

0

0

.

.

.

from (8.36) with b = 300,
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and k and r
3 3  from (8.44) and (8.45) respectively, thus
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1 0 0 0 0 0

0 0 866 0 500 0 0 0

0 0 500 0 866 0 0 0

0 0 0 1 0 0

0 0 0 0 0 866 0 500

0 0

. .

. .

. .

-

-
00 0 0 500 0 866

0 00340

0 00131

0 00228

0

. .

.

.

.

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

-
-
-

00

0

116 90

27 81

34 39

116 90

55 61

2

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

-
-
-

+
-

+

.

.

.

.

.

776 95.

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

3

4

116.90 kN
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Problems

Analyse problems P8.1 to P8.4 below for the circular beams which 
are curved in plan for the data and loading shown.
 P8.1. An aluminium beam with E = 70 × 106 kN/m2, G = 26 × 106 

kN/m2, I = 0.000012 m4, and J = 0.000019 m4.

R = 1.5 m

3 kN

1

2

Figure P8.1

Answer:
 w

1 1 1
0 0 0= = =, , ,F q

 w m rad rad
2 2 2

0 01677 0 00338 0 01087= - = - = +. , . , .F q ,

Problems
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 R kN R kNm R kNm
Z T M1 1 1
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 P8.2. A timber beam with E = 8 × 106 kN/m2, G = 0.5 × 106 kN/m2, 
I = 0.000020 m4, and J = 0.000015 m4.

3030

18 kN

1
2

3

R = 2 m

1 2

Figure P8.2

Answer:
 w

1 1 1
0 0 0= = =, , ,F q

 w m rad
2 2 2

0 00749 0 03185 0= - = - =. , . ,F q ,
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3 3 3
0 0 0= = =, , ,F q
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 P8.3. A concrete beam with E = 30 × 106 kN/m2, G = 13 × 106 kN/m2,  
I = 0.00099 m4, and J = 0.00038 m4.

1 2

3

4

3

2

1

2 m 3 m

130 kN

60 kN

2 m

3 m

Figure P8.3

Answer:
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1 1 1
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 w m rad rad
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 P8.4. A steel beam with E = 210 × 106 kN/m2, G = 80 × 106 kN/m2, 
I = 0.00022 m4, and J = 0.00014 m4.

15 kN

35 kN

1

2

3

460 45

1

2

3

75

Figure P8.4

Answer:
 w

1 1 1
0 0 0= = =, , ,F q

 w m rad rad
2 2 2

0 02264 0 00706 0 00102= - = - = +. , . , . ,F q
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 w m rad rad
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Problems
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These are three-dimensional structures that consist of pin-
connected members in which no moments are transferred through 
the pin joints. The analysis of such frames is similar to pin-connected 
plane frames as explained in Chapter 3 where the members develop 
axial forces only.

9.1  Derivation of the Stiffness Matrix

It was shown in Chapter 2 that the stiffness matrix relative to local 
coordinates for a member subjected to axial forces is given by (2.4) 
as:

 
X

X

EA

L

EA

L

EA

L

EA

L

u

u

i

j

i

j

È

Î
Í
Í

˘

˚
˙
˙

=
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î
Í

˘

˚
˙

 The above equation is for a bar lying along the x-axis and in order 
to write it in a general form, the displacements and forces in the y- 
and z-axes are introduced as shown in the relationship below.

Chapter 9
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È
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˙
˙
˙
˙

,  (9.1)

or   F k= d .

9.2 Transformation of Coordinates

Assume that the member local x-axis lies initially along the global 
x-axis and its direction is OA as shown in Fig. 9.1a. The final position 
of the member is OA

''  which is achieved by two rotations. The first 
is a rotation about the y-axis by an angle jy  to get to the position 
along the line OA

'  where the x-axis has moved to x
'  and the z

-axis to z
' . The second stage is a rotation about the z

' -axis by an 
angle jz  to the position of OA

''  where x
' -axis has moved to x

''  and  
y -axis to y

' . So, the final directions of the local coordinates xyz  are 
now defined by x y z

'' ' ' .
 With reference to Fig. 9.1b the angles of rotation can be defined 
by the coordinates of the ends of the member as:

 sin
z z

L

z z

s

z

s

i j j i ijjy =
-

= -
-

= - .

 Notice that for positive rotation jy , zj < zi and hence zij is  
negative.

 cos
x x

s

x

s
sin

y y

L

y

L
cos

s

L

j i ij j i ijj j jy z z=
-

= =
-

= =, ,  

where s x z L y x y z
ij ij ij ij ij ij

= + = + = + +2 2 2 2 2 2 2
, .s

 One way of deriving the transformation matrix is to consider the 
effect of rotating the y - and z -axes separately and then combining 
the two effects as shown below.
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(a)

x, x

x′

φy

O
A

A′

A′′

y, y–

z,z–

x′′

y– ′z–′

φy

φz–

–

φz

(b)

φy

x

O

L

s

z

y

s = projection of the length of 

the member 'L'on                           

the xz plane

x

φz

(xi , yi , zi)

(xj, yj , zj)

–

–

–

–

–

–

–

–

Figure 9.1 
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9.2.1 Rotation about the y-axis by an Angle jy  

x

z

x

O
u

w φy

z

u

w

φy

–
–

–

–

–

–

Figure 9.2 

 Although the y -axis is rotated axially it remains pointing in the 
same direction as the y-axis which means that displacements and 
forces relative to the rotated y -axis are the same as those relative to 
the y-axis, thus
 v v=

 The displacement along the x -axis is equal to the algebraic sum 
of the components of the displacements along the x- and z-axes 
respectively, hence
 u ucos wsin= -j jy y .

 The displacement along the z -axis is equal to the algebraic sum 
of the components of the displacements along the x- and z-axes 
respectively, thus
 w usin wcos= +j jy y

and in matrix form
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È
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Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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sin cos

0

0 1 0

0

 (9.2)

9.2.2 Rotation about the z -axis by an Angle jz  

x

y

x

O u

v

y

uv

φz

φz

–

– –

–

–

–

Figure 9.3 

 Although the z -axis is rotated axially it remains pointing in the 
same direction as the z-axis which means that displacements and 
forces relative to the rotated z -axis are the same as those relative to 
the z-axis, thus
 w w.=  

Transformation of Coordinates



330 Pin-Connected Space Frames

 The displacement along the x -axis is equal to the algebraic sum 
of the components of the displacements along the x- and y-axes 
respectively, hence

 u ucos vsin= +j jz z . 

 The displacement along the y -axis is equal to the algebraic sum 
of the components of the displacements along the x- and y-axes 
respectively, hence
 v usin vcos= - +j jz z  

and in matrix form
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.  (9.3)

 The combined effect of rotations about the y - and z -axes 
respectively is achieved by pre-multiplying (9.2) by (9.3) to give

 d r r d rdd= =z y or  
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 (9.4)
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 The above treatment may be considered to apply to one end of 
the member, and if the transformation is carried out for the two ends 
of the member, then

 r
O

O
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 Substitute the values of sinjy , cosjy , sinjz , and cosjz  as 
derived previously to get:
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 (9.5)

 The above transformation matrix has been derived for the 
displacements and it applies equally well for the forces since both 
are vectors in the respective directions.
 A special case arises when the local x -axis of the member is 
coincident with the global y-axis where xij = 0 and zij = 0. And since 
s x z

ij ij
= +2 2  then xij/s = 0/0 and zij/s = 0/0 which are indeterminate 

quantities. To overcome this situation we revert back to the original 
transformation matrix in (9.4) and substitute the rotation about the 
y -axis, jy 0=  and the rotation about the z -axis, jz = 90  degrees 
to get:

Transformation of Coordinates
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 r = -
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

0 1 0

1 0 0

0 0 1

. 

 It should be noted that rotation of the x -axis was not considered 
in the above transformation since only axial forces will develop in 
the members of a pin-connected frame and these are not changed if 
the member is rotated about its own axis.
 The stiffness matrix k  in (9.1) is transformed into global 
coordinates by applying the following equation:
 k r kr

T=  which leads to:
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=
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.  (9.6)

Example 1:
Determine the displacements at the nodes and the forces developed 
in the members of the ball-connected space frame shown in  
Fig. 9.4. Given that the cross-sectional area, A, of all the members is 
700 × 10-6 m2 and the modulus of elasticity, E = 210 × 106 kN/m2. The 
forces acting on the structure are as follows:
 At node 4: X4 = +30 kN and at node 5: Z5 = –80 kN.

 The coordinates of the joints of the frame are given in the table below.

Node number x (m) y (m) z (m)
1 0 0 0
2 6 0 0
3 3 4 0
4 4 2 6
5 9 5 8
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The member and structure addresses are shown below.

Member number Node i Node j

1 1 4

2 2 4

3 3 4

4 2 5

5 3 5

6 4 5

x

y

z

1

2

3

4

5

6

1

2

3

4
530 kN (in the 

x-direction)

80 kN (in the 
z-direction)

Figure 9.4 

Calculation of the stiffness matrices of the members

E = 210 × 106 kN/m2, A = 700 × 10–6 m2 for all the members.

Transformation of Coordinates
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Member 1

Node i of the member is node 1 in the structure and node j of the 
member is node 4 in the structure.
 xi = 0, xj = 4 m, xij = xj – xi = 4 – 0 = 4 m
 yi = 0, yj = 2 m, yij = yj – yi = 2 – 0 = 2 m
 zi = 0, zj = 6 m, zij = zj – zi = 6 – 0 = 6 m

 s x z m
ij ij

= + = + =2 2 2 2
4 6 7 211.  

 L x y z m
ij ij ij

= + + = + + =2 2 2 2 2 2
4 2 6 7 483.  

From (9.6)
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Member 2

Node i of the member is node 2 in the structure and node j of the 
member is node 4 in the structure.
 xi = 6 m, xj = 4 m, xij = xj – xi = 4 – 6 = –2 m
 yi = 0, yj = 2 m, yij = yj – yi = 2 – 0 = 2 m
 zi = 0, zj = 6 m, zij = zj – zi = 6 – 0 = 6 m

 s x z m
ij ij

= + = - + =2 2 2 2
2 6 6 325( ) .  

 L x y z m
ij ij ij

= + + = - + + =2 2 2 2 2 2
2 2 6 6 633( ) .  
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Member 3

Node i of the member is node 3 in the structure and node j of the 
member is node 4 in the structure.
 xi = 3 m, xj = 4 m, xij = xj – xi = 4 – 3 = 1 m
 yi = 4 m, yj = 2 m, yij = yj – yi = 2 – 4 = –2 m
 zi = 0, zj = 6 m, zij = zj – zi = 6 – 0 = 6 m

 s x z m
ij ij

= + = + =2 2 2 2
1 6 6 083.  

 L x y z m
ij ij ij

= + + = + - + =2 2 2 2 2 2
1 2 6 6 403( ) .  
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Member 4
Node i of the member is node 2 in the structure and node j of the 
member is node 5 in the structure.
xi = 6 m, xj = 9 m, xij = xj – xi = 9 – 6 = 3 m
yi = 0, yj = 5 m, yij = yj – yi = 5 – 0 = 5 m
zi = 0, zj = 8 m, zij = zj – zi = 8 – 0 = 8 m

 
s x z m

ij ij
= + = + =2 2 2 2

3 8 8 544.
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Member 5

Node i of the member is node 3 in the structure and node j of the 
member is node 5 in the structure.
xi = 3 m, xj = 9 m, xij = xj – xi = 9 – 3 = 6 m
yi = 4 m, yj = 5 m, yij = yj – yi = 5 – 4 = 1 m
zi = 0, zj = 8 m, zij = zj – zi = 8 – 0 = 8 m

 s x z m
ij ij

= + = + =2 2 2 2
6 8 10 000.

 L x y z m
ij ij ij

= + + = + + =2 2 2 2 2 2
6 1 8 10 050.
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Member 6

Node i of the member is node 4 in the structure and node j of the 
member is node 5 in the structure.
xi = 4 m, xj = 9 m, xij = xj – xi = 9 – 4 = 5 m
yi = 2 m, yj = 5 m, yij = yj – yi = 5 – 2 = 3 m
zi = 6 m, zj = 8 m, zij = zj – zi = 8 – 6 = 2 m

 s x z m
ij ij

= + = + =2 2 2 2
5 2 5 385.

 L x y z m
ij ij ij

= + + = + + =2 2 2 2 2 2
5 3 2 6 164.
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 The boundary conditions are: u1 = 0, v1 = 0, w1 = 0, u2 = 0, v2 = 0, 
w2 = 0, u3 = 0, v3 = 0, and w3 = 0, so delete rows and columns 1 to 9, 
respectively. The resulting set of simultaneous equations will then 
be:
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23 88 9 08 12 01 15 69 9 41 6 28

9 08 11 31 7 30 9 41 5 65 3

3

. . . . . .

. . . . .
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- - - ..

. . . . . .

. . . . .

77

12 01 7 30 53 43 6 28 3 77 2 51

15 69 9 41 6 28 22 27 12 5

- - -
- - - 66 16 86

9 41 5 65 3 77 12 56 9 58 10 99
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- - - .. .99 21 48
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È
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0

The solution to the above equations is:
 u4 = 0.01237 m, v4 = 0.00802 m, w4 = –0.00147 m,
 u5 = 0.01919 m, v5 = 0.01725 m, w5 = –0.02276 m,

Calculation of reactions

The set of equations (9.6) will give the external reactions on the 
structure by substituting the values of the above displacements.

From row 1 of (9.6)

 10 5 61 2 81 8 42 5 61 2 81 8 42
3

1 1 1 4 4 4 1
( . . . . . .u v w u v w R

X
+ + - - - =  

 10 5 61 0 2 81 0 8 42 0 5 61 0 01237 2 81 0 00802
3
( . . . . . . .¥ + ¥ + ¥ - ¥ - ¥  

 - ¥ -( ) = = -8 42 0 00147 79 55
1 1

. . , .R R kN
X X

 

From row 2

 10 2 81 1 40 4 21 2 81 1 40 4 21
3

1 1 1 4 4 4 1
( . . . . . .u v w u v w R

Y
+ + - - - =  

 10 2 81 0 1 40 0 4 21 0 2 81 0 01237 1 40 0 00802
3
( . . . . . . .¥ + ¥ + ¥ - ¥ - ¥  

 - ¥ -( ) = = -4 21 0 00147 39 80
1 1

. . , .R R kN
Y Y

 

From row 3

 10 8 42 4 21 12 63 8 42 4 21 12 63
3

1 1 1 4 4 4 1
( . . . . . .u v w u v w R

Z
+ + - - - =  

 10 8 42 0 4 21 0 12 63 0 8 42 0 01237 4 21 0 00802
3
( . . . . . . .¥ + ¥ + ¥ - ¥ - ¥  

 - ¥ -( ) = = -12 63 0 00147 119 35
1 1

. . , .R R kN
Z Z
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 Similarly rows 4 to 9 respectively give the values of the reactions 
at nodes 2 and 3 as:
R kN

X2
0 08= - . , R kN

Y2
46 65= . , R kN

Z2
99 31= . , R kN

X3
50 19= . ,

R kN
Y3

6 87= - . , and R kN
Z3

99 57= . .

Calculation of the forces in the members

The forces in the members are calculated relative to local coordinates 
from the relation F k= d  with k  from (9.2) and d d= r  with the 
transformation matrix r as given in (9.5).

Member 1

From (9.1)
 xij = 4 m, yij = 2 m, zij = 6 m, s = 7.211 m, L = 7.483 m
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Transformation of Coordinates
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Member 3

 xij = 1 m, yij = –2 m, zij = 6 m, s = 6.083 m, L = 6.403 m

 EA

L
kN m=

¥ ¥ ¥
= ¥

-
210 10 700 10

6 403
22 96 10

6 6

3

.
. /

 k
3 3

10

22 96 22 96

22 96 22 96

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0 0

0 0 0 0

=

-

-

. .

. .

00 0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 r
3

0 16 0 31 0 94 0 0 0

0 05 0 95 0 31 0 0 0

0 99 0 0 16 0 0 0

0 0 0 0 16 0 3
=

-

-
-

. . .

. . .

. .

. . 11 0 94

0 0 0 0 05 0 95 0 31

0 0 0 0 99 0 16

.

. . .

. .-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 
d

d

d

d
d

3

3

3

3

4

3

3

3

4

4

4

=
È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

i

j

u

v

w

u

v

w

˙̇
˙
˙

=
+
+
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

0

0

0

0 01237

0 00802

0 00147

.

.

.

 

d d
3

3 3

0 16 0 31 0 94 0 0 0

0 05 0 95 0 31 0 0 0

0 99 0 0 16 0 0 0

0 0 0 0 1
= =

-

-
r

. . .

. . .

. .

. 66 0 31 0 94

0 0 0 0 05 0 95 0 31

0 0 0 0 99 0 0 16

-

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙

. .

. . .

. . ˙̇

+
+
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=
-

0

0

0

0 01237

0 00802

0 00147

0

0

0

0 00.

.

.

. 1189

0 00778

0 01248

+
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

.

.

 

Transformation of Coordinates



344 Pin-Connected Space Frames

F k
3 3

3
3

10

22 96 22 96

22 96 22 96

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

= =

-

-
d

. .

. .

00

0 0 0 0 0 0

0

0

0

0 00189

0 00778

0 01248

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

È

Î

Í

-
+
-

.

.

.

ÍÍ
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

+

-

43 39

43 39

0

0

0

0

.

.

 F

X

Y

Z

X

Y

Z

3

3

3

3

3

3

3

4

3

4

3

4

3

43 39

43 39

0

0
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (i.e., the member is in compression)
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Member 6

xij = 5 m, yij = 3 m, zij = 2 m, s = 5.385 m, L = 6.164 m
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0 45 0 87 0 18 0 0 0

0 37 0 0 93 0 0 0

0 0 0 0 81 0 4
=

- -
-

. . .

. . .

. .

. . 99 0 32

0 0 0 0 45 0 87 0 18

0 0 0 0 37 0 93

.

. . .

. .

- -
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 d
d

d

d
d

6

6

6

4

5

4

4

4

5

5

5

=
È

Î
Í
Í

˘

˚
˙
˙

=
È

Î
Í

˘

˚
˙ =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

i

j

u

v

w

u

v

w

˙̇
˙
˙

=

+
+
-
+
+
-

È

Î

Í
Í
Í

0 01237

0 00802

0 00147

0 01919

0 01725

0 02276

.

.

.

.

.

.

ÍÍ
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 

d d
6

6 6

0 81 0 49 0 32 0 0 0

0 45 0 87 0 18 0 0 0

0 37 0 0 93 0 0 0

0 0 0 0
= =

- -
-

r

. . .

. . .

. .

.881 0 49 0 32

0 0 0 0 45 0 87 0 18

0 0 0 0 37 0 0 93

. .

. . .

. .

- -
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙̇
˙
˙

+
+
-
+
+
-

È

Î

Í
Í
Í
Í

0 01237

0 00802

0 00147

0 01919

0 01725

0 02276

.

.

.

.

.

.

ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

+
+
-
+
+
-

0 01348

0 00168

0 00594

0 01671

0 01047

0

.

.

.

.

.

..02827

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 

F k
6 6

6
3

10

23 85 23 85

23 85 23 85

0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0

0 0 0 0 0

= =

-

-
d

. .

. .

00

0 0 0 0 0 0

0 01348

0 00168

0 00594

0 016

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

+
+
-
+

.

.

.

. 771

0 01047

0 02827

77 04

77 04

0

0

0

0

+
-

-

+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

È

Î

.

.

.

.

ÍÍ
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

Transformation of Coordinates
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 F

X

Y

Z

X

Y

Z

6

4

6

4

6

4

6

5

6

5

6

5

6

77 04

0

0

77 04
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

+

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (i.e., the member is in tension)

i

j
4

5
77.04 kN

77.04 kN

The forces in members 2, 4, and 5 are calculated in a similar manner 
to be as follows:

 F

X

Y

Z

X

Y

Z

2

2

2

2

2

2

2

4

2

4

2

4

2

58 55

0

0

58 55
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Compression),

 F

X

Y

Z

X

Y

Z

4

2

4

2

4

2

4

5

4

5

4

5

4

57 62

0

0

57 62
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Compression),
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 F

X

Y

Z

X

Y

Z

5

3

5

3

5

3

5

5

5

5

5

5

5

72 71

0

0

72 71
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Compression).

Problems

Analyse the pin-connected space frames for the loading and data 
shown in problems P9.1 to P9.3.

 P9.1. E = 210×106 kN/m2, A1 = 0.0024 m2, A2 = 0.0036 m2, A3 = 
0.0028 m2, X4 = +100 kN, and Z4 = –140 kN.

1

2

3

1

2

3

4

100kN (in the
x-direction)

(0,0,0)

(3,-2,-1)

(4,4,1)

(2,1,5)

x

y

z

140 kN (in the
z-direction)

Figure P9.1 

Problems
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Answer:

 u v w u v w u v w
1 1 1 2 2 2 3 3 3

0 0 0 0 0 0 0 0 0= = = = = = = = =, , , , , , , , ,

 u m v m w m
4 4 4

0 00434 0 00152 0 00026= = - = -. , . , .

 R kN R kN R kN
X Y Z1 1 1

35 88 17 94 89 69= - = - = -. , . , . ,

 R kN R kN R kN
X Y Z2 2 2

25 36 76 08 152 17= - = =. , . , . ,

 R kN R kN R kN
X Y Z3 3 3

38 76 58 14 77 53= - = - =. , . , . .

 F

X

Y

Z

X

Y

Z

1

1

1

1

1

1

1

4

1

4

1

4

1

98 25

0

0

98 25
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

+

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

(Tension),

 F

X

Y

Z

X

Y

Z

2

2

2

2

2

2

2

4

2

4

2

4

2

172 01

0

0

172
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.001

0

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Compression),

 F

X

Y

Z

X

Y

Z

3

3

3

3

3

3

3

4

3

4

3

4

3

104 37

0

0

104
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.337

0

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Compression).
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 P9.2. For all members: E = 70 × 106 kN/m2 and A = 0.0019 m2,  
X4 = +20 kN, Z4 = –60 kN, and Y5 = –40 kN.

(0,0,0)

(0.3,1.0,0.2)

(1.5,1.2,-0.4)

(0.6,0, -2.0)

1

2

3

4

5

20 kN (in the
x-direction)

1

3

4

2

5

6

(1.8,0,0)
x

y

z

60 kN (in the 
z-direction)

40 kN (in the
y-direction)

Figure P9.2 

Answer:

 u v w u v w u v w
1 1 1 2 2 2 3 3 3

0 0 0 0 0 0 0 0 0= = = = = = = = =, , , , , , , , ,

 u m v m w m
4 4 4

0 00147 0 00046 0 00217= = - = -. , . , . ,

 u m v m w m
5 5 5

0 00402 0 00206 0 00192= = - =. , . , . ,

 R kN R kN R kN
X Y Z1 1 1

50 97 1 33 28 12= - = - =. , . , . ,

 R kN R kN R kN
X Y Z2 2 2

33 30 32 00 34 99= = =. , . , . ,

 R kN R kN R kN
X Y Z3 3 3

2 33 9 33 3 11= - = = -. , . , . .

Problems
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 F

X

Y

Z

X

Y

Z

1

1

1

1

1

1

1

5

1

5

1

5

1

55 17

0

0

55 17
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

(Compression),

 F

X

Y

Z

X

Y

Z

2

5

2

5

2

5

2

4

2

4

2

4

2

20 61

20 61

0

0
=

+

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Compression),

 F

X

Y

Z

X

Y

Z

3

1

3

1

3

1

3

4

3

4

3

4

3

87 04

0

0

87 04
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

+

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Tension), F

X

Y

Z

X

Y

Z

4

2

4

2

4

2

4

5

4

5

4

5

4

21 58

0

0

21 58
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

+

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Tension),

 F

X

Y

Z

X

Y

Z

5

3

5

3

5

3

5

4

5

4

5

4

5

10 11

0

0

10 11
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Compression),
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 F

X

Y

Z

X

Y

Z

6

2

6

2

6

2

6

4

6

4

6

4

6

74 68

0

0

74 68
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 (Compression).

 P9.3. For all members: E = 210 × 106 kN/m2, A = 0.0012 m2.
 X4 = +70 kN, Y5 = +30 kN, and Z5 = –50 kN.

1

3

4

570 kN (in the 
x-direction)

1
3

4

2

5

6

2

6

7

89

(0,0,0)

(0,4,0)
(3,4,0)

(0.5,2,4)   

(1,3,4.5)

Node 6 coordinates:
(1.5,2.5,3.5)

x

y

z

30 kN (in the 
y-direction)

50 kN (in the 
z-direction)

Figure P9.3 

Problems
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Answer:
 u v w u v w u v w

1 1 1 2 2 2 3 3 3
0 0 0 0 0 0 0 0 0= = = = = = = = =, , , , , , , , ,

 u m v m w m
4 4 4

0 00498 0 00193 0 00035= + = - = -. , . , . ,

 u m v m w m
5 5 5

0 00222 0 00037 0 00091= + = - = -. , . , . ,

 u m v m w m
6 6 6

0 00478 0 00147 0 00059= + = - = +. , . , . ,

 R kN R kN R kN
X Y Z1 1 1

18 43 21 76 21 25= - = - = -. , . , . ,

 R kN R kN R kN
X Y Z2 2 2

3 28 23 86 38 75= - = + = -. , . , . ,

 R kN R kN R kN
X Y Z3 3 3

48 30 32 10 110 00= - = - = +. , . , . .

 F

X

Y

Z

X

Y

Z

1

1

1

1

1

1

1

4

1

4

1

4

1

34 53

0

0

34 53
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

, F

X

Y

Z

X

Y

Z

2

1

2

1

2

1

2

6

2

6

2

6

2

67 60

0

0

67 60
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

+

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

, F

X

Y

Z

X

Y

Z

3

3

3

3

3

3

3

6

3

6

3

6

3

43 39

0

0

43 39
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

,

 F

X

Y

Z

X

Y

Z

4

2

4

2

4

2

4

4

4

4

4

4

4

61 74

0

0

61 74
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

+

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

, F

X

Y

Z

X

Y

Z

5

2

5

2

5

2

5

5

5

5

5

5

5

16 91

0

0

16 91
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

, F

X

Y

Z

X

Y

Z

6

3

6

3

6

3

6

5

6

5

6

5

6

81 40

0

0

81 40
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

,

 F

X

Y

Z

X

Y

Z

7

4

7

4

7

4

7

5

7

5

7

5

7

15 19

0

0

15 19
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

, F

X

Y

Z

X

Y

Z

8

5

8

5

8

5

8

6

8

6

8

6

8

55 39

0

0

55 39
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

-

+

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

, F

X

Y

Z

X

Y

Z

9

4

9

4

9

4

9

6

9

6

9

6

9

74 44

0

0

74 44
=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+

-

.

.

00

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

.



These are three-dimensional frames composed of members that 
are rigidly connected at their joints. In contrast with pin-connected 
space frames where the members develop axial forces only, rigidly 
connected space frames develop shear forces and bending moments 
as well.

10.1 Derivation of Stiffness Matrix

The stiffness matrix is derived from the combination of stiffness 
matrices for bending about the y - and z -axes, torsion about the x
-axis and axial force along the x -axis as follows:

 (i) For axial force along the x -axis the stiffness matrix was 
derived in Chapter 2 as:
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˙  (10.1)

 (ii) The stiffness matrix for torsion about the x -axis was derived 
in Chapter 7 as:
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 (iii) The stiffness matrix for bending about the y -axis was derived 
in Chapter 4 as:
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 (iv) The stiffness matrix for bending about the z -axis is derived in 
Appendix 2 as:
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 (10.4)

	 Notice	the	change	in	sign	of	some	of	the	coefficients	in	comparison	
with the matrix for bending about the y -axis.
 The resulting stiffness matrix for the general case is obtained 
by combining cases (i), (ii), (iii), and (iv) as given by (10.1), (10.2), 
(10.3), and (10.4) to get:
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or simply,

 k Fd = . (10.6)

10.2 Transformation to Global Coordinates

The quantities in (10.6) are relative to local coordinates and in the 
assembly of the stiffness matrix for the overall structure they need 
to be transformed and written relative to the global coordinates.
 In Chapter 9 the members of the space frame develop axial 
forces only since the frame is pin-connected and only rotations of 
the y - and z -axes are considered in the transformation as shown in  
Fig. 10.1a.

(a)

φy

x

(x,0,0)

O

L

s

z

y

s = projection of 'L'      

on the xz plane

x

φz

(x,0,-z)

(x,y,-z)

(b)

x

y
z

(c) x

y

zφx

–

–

–
–

–

–

–
– φx–

φx–
–

–

Figure 10.1 
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 In this chapter where the members develop moments (as well 
as axial forces) due to the rigidity of the joints, the rotation about 
the x -axis is also considered since this rotation will change the 
orientation of the principal axes of the cross section which affects 
the bending stiffness of the member relative to the global axes. 
Therefore, transformation from local to global coordinates due to 
rotations of the y - and z - as well as the x -axes is carried out. The 
transformation is done in three separate stages which are combined 
to	give	the	final	transformation	matrix.	In	the	first	stage	a	rotation	
jy  about the y -axis is made to calculate the transformation matrix 
ry  and in the second stage a rotation jz  about the z -axis is made 
to calculate the transformation matrix rz . These two transformation 
matrices have been derived in Chapter 9 for the pin-connected space 
frame as given in (9.2) and (9.3), respectively, as follows:
 For rotation of the y -axis

 r

j j

j j
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y y

y y
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Î
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cos sin

sin cos
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0 1 0

0

 (10.7)

and for rotation of the z -axis
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j j

j jz
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z z= -
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Î
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˘

˚

˙
˙
˙

cos sin

sin cos

0

0

0 0 1

 (10.8)

 Sometimes the member is rotated about its longitudinal axis 
(i.e., its x -axis)	 to	achieve	more	efficient	use	of	 its	cross-sectional	
geometric properties or make the details of the connections between 
members of the structure more practical. In such a case a third 
separate transformation is required for a rotation of the x -axis. 
Consider a member that is originally lying along the x-axis and is 
rotated about its own axis by an angle jx  in the clockwise direction 
as shown in Fig. 10.1c and Fig. 10.2.
 Although the x -axis is rotated axially it remains pointing in the 
same direction which means that displacements and forces relative 
to (along) the rotated x -axis are the same as those relative to the 
x-axis, thus

 u u= .

Transformation to Global Coordinates
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Figure 10.2 

 The displacement along the y -axis is equal to the algebraic sum 
of the components of the displacements along the y- and z-axes, 
respectively, thus
 v vcos wsin= +j jx x .

 The displacement along the z -axis is equal to the algebraic sum 
of the components of the displacements along the y- and z-axes, 
respectively, hence
 w vsin wcos= - +j jx x .

 In matrix form
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 (10.9)

 The complete transformation matrix r is obtained by multiplying 
the three transformation matrices (10.7), (10.8), and (10.9) in the 
order of rotations of the local axes, thus
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(10.10)

 
u

v

w

u

v

w

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

r

 The above transformation is for the translational displacements
u , v , and w  and since the rotational displacements F , q , and 
Y  are vectors about the same axes, then the same transformation 
matrix, r, will apply, thus
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Transformation to Global Coordinates
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thus 
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 Similarly, for the transformation of the displacement vector at 
node j: d dj j j

r=
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and for both nodes, d d= r , where r
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final	transformation	matrix	as:
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 (i.e., a 12×12 matrix)

 The above transformation matrix is for the displacements and it 
is the same for the actions since both displacements and actions are 
vectors relative to the same axes, thus
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or F rF= .
 The stiffness matrix relative to global coordinates is given by:

 k r kr
T=  (10.11)

with k  and r from (10.5) and (10.10), respectively.
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	 The	 transformation	 matrix	 in	 (10.10)	 can	 be	 simplified	 by	
referring to Fig. 10.1 and making the following substitutions
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(10.12)

Example 1:

Analyse the rigidly connected space frame shown in Fig. 10.3 given 
that all the members have the same cross section with the following 
properties:
 A	=	17800	¥ 10–6m2, I m

y
= ¥ -

1117 77 10
6 4

. , I m
z

= ¥ -
45 05 10

6 4
. ,

 J	=	2.16	¥ 10–6m4,	E	=	210	¥ 106kN/m2, and m	=	0.3.
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kN m=
+

=
¥
+

= ¥
2 1
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2 1 0 3
80 77 10

6

6 2

( ) ( . )
. / .

m

 The coordinates of the joints of the frame are given in the table 
below.

Node number x (m) y (m) z (m)
1 0 0 0
2 0 0 6
3 0 4 6
4 5 4 6

 The member and structure addresses are shown below.

Transformation to Global Coordinates
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Member number Node i Node j
1 1 2
2 2 3
3 3 4

2 m

2 m

6 m

20 kN (in the 

z-direction)
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3 4
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2
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x y
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y

z

Global coordinates

x
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z

φy = 0,φz = 0, φx = +900

φy = 0, φz = +900, φx = 0

φy = −900, φz = 0, φx = 0

–

–

–

–

–

–

–

–

–

––

–

– ––

––

– –

–

–

Figure 10.3 

Calculation of member stiffness matrices

Member 1, L = 6 m

From (10.5)
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 xi	=	0,	xj	=	0,	xij	=	xj – xi	=	0	–	0	=	0
 yi	=	0,	yj	=	0,	yij	=	yj – yi	=	0	–	0	=	0
 zi	=	0,	zj	=	6	m,	zij	=	zj – zi	=	6	–	0	=	6	m

 s x z m
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= + = + =2 2 2 2
0 6 6
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From (10.12)
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 The transformation matrix for this member represents a 
special case that arises when the local x -axis of the member is 
coincident with the global y-axis, where xij	=	0	and	zij	=	0. And since, 
s x z

ij ij
= +2 2  then xij/s	 =	 0/0 and zij/s	 =	 0/0	 are	 indeterminate	

quantities. To overcome this situation, we revert to the original 
transformation matrix (10.10) which is in terms of trigonometric 
functions and substitute jy 0= , jz = +90

0 , and jx 0= . The 
resulting transformation matrix will then be:

 r2
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0 0 90 0 0 90 0=
-

-
cos cos sin cos sin
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From (10.11)

 k r k r
T2 2 2 2= ( )
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 xi	=	0,	xj	=	5	m,	xij	=	xj – xi	=	5	–	0	=	5	m
 yi	=	4	m,	yj	=	4	m,	yij	=	yj – yi	=	4	–	4	=	0
 zi	=	6	m,	zj	=	6	m,	zij	=	zj – zi	=	6	–	6	=	0

 s x z m
ij ij

= + = + =2 2 2 2
5 0 5

 L x y z m
ij ij ij
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 j j jx x x= + = =90 1 0
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From (10.11)

 k r k r
T3 3 3 3= ( )
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 The overall structure stiffness matrix is assembled by inspection 
as:

d1 d2 d3 d4

K k
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1= K k
ij12

1= O O d1

K	=
K k
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1= K k k
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O K k
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2= K k k
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At	the	fixed	supports	1	and	4, d1	=	0	and	d4	=	0,	respectively,	hence	
rows and columns 1 and 4 are deleted to give the reduced structure 
stiffness matrix as:

d2 d3

K	=
K k k

jj ii22

1 2= + K k
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2= d2

K k
ji32

2= K k k
jj ii33

2 3= + d3
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Calculation of load vector

Actions on Member 1: n = –10 kN/m and L = 6 m
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Loads on joints 1 and 2
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Figure 10.4 �(a)�and� (b)�actions�on�member�1� (relative� to� local� coordinates), 
(c)�and�(d)�loads�on�joints�1�and�2�(relative�to�global�coordinates).

 Alternatively, and to make the computations more systematic, 
the load vector on the joints of the structure, FS, which is relative 
to global coordinates can be calculated from the actions at the ends 
of the member which are relative to the local coordinates of the 
member by using the transformation matrix as follows:
 Consider the equilibrium of a section cut at the junction of the 
member and the joint FS + Ff	=	0	or	FS	=	–Ff, where Ff is the action 
vector on end of the member relative to global coordinates. The 
action vector relative to local coordinates is F

f
, therefore, F rF

f f
=  or 

F r F r F
f f

T

f
= =-1  (since r–1	=	rT) and hence F r F

S

T

f
= - .

F r F
S

T

f

1 1 1= -( )  and with r1 from (10.14) and F
f

1  from (10.23) we get
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which is the same result obtained in (10.24).

Actions on Member 2: P = –20 kN and L = 4 m
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Loads on joints 2 and 3

F r F
S

T

f

2 2 2= -( )  and with r2 from (10.17) and F
f

2  from (10.25) we get
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Actions on Member 3: P = –40 kN, a = 3 m and b = 2 m
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Loads on joints 3 and 4

F r F
S

T

f

3 3 3= -( )  and with r3 from (10.20) and F
f

3  from (10.27) we get
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 The load vector on the joints of the structure due to the applied 
loads on the members is given by
 F F F F

S S S S
= + +1 2 3

where F
S

1 , F
S

2 , and F
S

3  are given in (10.24), (10.26), and (10.28), 
respectively, thus
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 The load vector due to loads directly applied at the nodes is zero 
since there are no direct loads at the joints, thus
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 The load vector due to the reactions at the supports 1 and 4 is:
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where RX1, RY1, and RZ1 are the reaction forces at support 1 and RT1, 
RM1, and RN1 are the reaction moments at support 1. Similar reaction 
forces and moments exist at support 4 and are given the subscript 4.
 The total load vector for the whole structure is
	 F	=	FS + FN + FC, and from (10.29), (10.30), and (10.31) we get
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 (10.32)

	 At	the	fixed	support	1:	u1	=	0,	v1	=	0,	w1	=	0,	F1	=	0,	q1	=	0,	and  
Y1	=	0.	So,	delete	rows	1,	2,	3,	4,	5,	and	6.
	 At	the	fixed	support	4:	u4	=	0,	v4	=	0,	w4	=	0,	F4	=	0,	q4	=	0,	and	 
Y4	=	0.	So,	delete	rows	19,	20,	21,	22,	23,	and	24.	Thus	the	resulting	
load vector becomes:
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The solution of the above equations is:

 u2	=	+	0.005873	m,	v2	=	+	0.001807	m,	w2	=	–	0.000026	m,

 F2	=	–	0.004243	rad,	q2	=	+	0.001275	rad,	Y2	=	+	0.002378	rad,

 u3	=	+	0.000004	m,	v3	=	+	0.001801	m,	w3	=	–	0.017199	m,

 F3	=	–	0.004275	rad,	q3	=	–	0.005124	rad,	Y3	=	–	0.000368	rad.

Forces Developed in the Members

The resultant forces (and moments) developed in the members 
are given by F F F

r d f
= + , where the forces developed due to the 

displacements, F k
d

= d  ( d d= r ) and F
f

 is the force vector due to 
the applied loads on the member.
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and with r1 from (10.14)
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 Note that the sign in the above diagrams is for the forces and 
moments acting at a section at distance x  from node i which is node 
1 for member 1. 
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Member 2:
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2  from (10.16)

 F k
d

2 2
2

5 70

3 28

6 02

0 28

13 92

0 07

5 70

3 28

6 02

0

= =

+
-
+
+

-
-
-
+
-
-

d

.

.

.

.

.

.

.

.

.

.228

10 16

13 06

-
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

.

.

From (10.25)

 F
f

2

0

0

10

0

10

0

0

0

10

0

10

0

=

+

-

+

+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙̇
˙
˙
˙



397

2

(X2
2)r = 5.70 kN

2 m

2 m

20 kN
3

x

y

z

xy

z

x

y

z

(Y2
2)r = 3.28 kN

(Z2
2)r = 16.02 kN (T2

2)r = 0.28 kNm

(M2
2)r = 23.92 kNm

(N2
2)r = 0.07 kNm

(X3
2)r = 5.70 kN

(Y3
2)r = 3.28 kN

(Z3
2)r = 3.98 kN (T3

2)r = 0.28 kNm

(M3
2)r = 0.16 kNm

(N3
2)r = 13.06 kNm

P = −5.70 kN
(compression)

S = +3.28 kN V = −16.02 kN

+3.98 kN

–

–

–

–
–

–

–

–
–

–

––

–

–

–

– – –

–

–

–

–

–

–

T = −0.28 kNm

M = +23.92 kNm

−8.12 kNm

−0.16 kNm

N = +0 .07 kNm
−13.06 kNm

–

–

–
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and r3 from (10.20)
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From (10.27)

 F
f

3

0

0

14 08

0

19 20

0

0

0

25 92

0

28 80

0

=

+

-

+

+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙

.

.

.

.

˙̇
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 F

X

Y

Z

T

M

N

X

Y

Z

r

r

r

r

r

r

r

r

r

r

3

3

3

3

3

3

3

3

3

3

3

3

3

4

3

4

3

4

3

=

( )

( )

( )

( )

( )

( )

( )

( )

( )

(( )

( )

( )

T

M

N

r

r

r

4

3

4

3

4

3

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙̇
˙
˙
˙
˙

= + =

+
-

-
-

+
-
-
+

+

F F
d f

3 3

3 29

3 99

19 82

0 15

32 26

0 27

3 29

3 99

.

.

.

.

.

.

.

.

119 82

0 15

66 85

19 66

.

.

.

.

+
+
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙̇
˙
˙

+

+

-

+

+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

0

0

14 08

0

19 20

0

0

0

25 92

0

28 80

0

.

.

.

.

˙̇
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

=

+
-
-
-

+
-
-
+

3 29

3 99

5 74

0 15

13 06

0 27

3 29

3

.

.

.

.

.

.

.

.999

45 74

0 15

95 65

19 66

+
+

+
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

.

.

.

.

˙̇
˙
˙
˙
˙
˙



401

3 4

3 m 2 m

40 kN

y

z

y

z

x

y

z

(X3
3)r = 3.29 kN

(Y3
3)r = 3.99 kN

(Z3
3)r = 5.74 kN

(M3
3)r = 13.06 kNm

(N3
3)r = 0.27 kNm

(T3
3)r = 0.15 kNm

(X4
3)r = 3.29 kN

(Y4
3)r = 3.99 kN

(Z4
3)r = 45.74 kN

(M4
3)r = 95.65 kNm

(N4
3)r = 19.66 kNm

(T4
3)r = 0.15 kNm

S = +3.99 kN

V = +5.74 kN

+45.74 kN

P = −3.29 kN
(compression)

T = +0.15 kNm M = −13.06 kNm

+4.16 kNm

+95.65 kNm

N = +0.27 kNm

−19.66 kNm

–

–

–

–

–

––

–
–

–

–

–

–

–

–

–

–

–

–
–

–

–

–

–

–

–

– x x

Problems

Analyse the rigidly connected space frames shown in Problems 
P10.1 and P10.2 for the given data.
 P10.1 All members of the frame have the same rectangular cross 

section as shown in Fig. P10.1(b) with the dimensions  
b	=	0.30	m	and	h	=	0.54	m.	The	material	of	the	frame	has	a	
modulus	of	elasticity,	E	=	29	× 106 kN/m2 and modulus of 
rigidity,	G	=	12.6	× 106 kN/m2.

Transformation to Global Coordinates
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2 m 2 m

550 kN (in the

z-direction)

x

y

z

3 m

2 m

350 kN (in the

x-direction)

1 2

3

4

2

1

3

(a) Frame and loading

(b) Dimensions and local axes

z y

x

b

h

–

–

–

Figure P10.1 

Node x y z Member Node i Node j
1 0 0 0 1 1 2
2 4 0 0 2 2 3
3 4 3 2 3 2 4
4 4 0 -5

j
x

= 0  for all members

Answer:
	 A	=	0.162	m2, I m

y
= ¥ -

3937 10
6 4 , I m

z
= ¥ -

1215 10
6 4 ,

	 J	=	3076	¥ 10–6 m4,

 u2	=	–0.000111	m,	v2	=	+0.000166	m,	w2	=	–0.000259	m,

 F2	=	+0.000090	rad,	q2	=	–0.000439	rad, Y2	=	–0.000069	rad.
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 P10.2 All members have the same cross section with the 
properties:

Problems



404 Rigidly Connected Space Frames

	 	 A	=	0.0155	m2, I m
y

= ¥ -
760 40 10

6 4
. , I m

z
= ¥ -

33 88 10
6 4

. ,
	 	 J	=	1.78	¥ 10–6 m4,
	 	 E	=	210	× 106 kN/m2	and	G	=	81	× 106 kN/m2.

Global coordinates

x

y

z

90 kN
20 kN 

(in the

x-direction)1 2

3

4

3 m

3 m

5 m

40 kN (in the 

y-direction)

2 m 2 m

30 kN (in the 

z-direction)

1

2
3

member 2

x

y

z

x

yz

xy

z

member 3

member 1

φy = 0, φz = 0,
φx = 0

φy = 0, φz = +900,

φx = +900

φy = +900, φz = 0,
φx = +900

–

–

–

–

–

–

–

– –

–

–

–

–

–
–

–

–

Figure P10.2 

Node x y z Member Node i Node j
1 0 0 0 1 1 2
2 4 0 0 2 2 3
3 4 6 0 3 3 4
4 4 6 –5

 Member 1: j j j
y z x

= = =0 0 0, ,

 Member 2: j j j
y z x

= = + = +0 90 90
0 0

, ,

 Member 3: j j j
y z x

= + = = +90 0 90
0 0

, ,
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Answer:
 u2	=	+0.000020	m,	v2	=	+0.005627	m,	w2	=	–0.003587	m,
 F2	=	+0.001679	rad,	q2	=	+0.001064	rad, Y2	=	–0.003275	rad,
 u3	=	+0.020854	m,	v3	=	+0.005583	m,	w3	=	–0.000048	m,
 F3	=	–0.001613	rad,	q3	=	+0.006234	rad, Y3	=	–0.003429	rad.
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One of the considerations in the design of framed structures is 
to ensure that the structure is stable under the applied design 
loads. It is also important to consider the effect of change in the 
geometry of the structure as the loads are applied which results in 
a modification of the stiffness of the structure. This is particularly 
so when the deformation of the structure (or part of it) is large. For 
example, consider the simple case of a column that is subjected to 
an axial compressive force applied at an eccentricity at its top end. 
The resulting bending moment is the product of the force times its 
eccentricity relative to the centroidal axis of the column. This bending 
moment is assumed constant along the whole length of the column 
if it remains straight (or nearly so). But because the column deflects, 
its axis is no longer vertical and the eccentricity will increase by the 
amount of lateral deflection at the section considered. This is called 
second order effect which can be significant when the deflection is 
large. Obviously, when the deflection is small the second order effect 
is neglected. Another situation where bending moments develop 
even when the strut (or column) is axially loaded and that is due to 
imperfections (out of straightness) in the manufacture of the column 
which result in an unavoidable eccentricity.
 The second order analysis is nonlinear due to the change in 
geometry of the structure as the applied loads are increased and 
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for a member that is subjected to a compressive force its stiffness is 
reduced as can be seen in the next section.
 In this chapter, two aspects of stability are presented; the 
first consideration is to determine the magnitude of the axial 
compressive force required to produce buckling assuming an 
ideal strut that is perfectly straight before applying the load. The 
second consideration is to investigate the nonlinear behaviour of 
a strut under progressively increasing load up to the stage when 
deformations become excessively large and the strut approaches 
instability.

11.1 Derivation of Strut Buckling Matrix

Consider the strut shown in Fig. 11.1 which is acted upon by shear 
forces Z

i
 and Z

j
 and bending moments M

i
 and M

j
 at its ends. In 

addition, the strut is subjected to axial compressive forces, P , at 
nodes i and j.
 Summation of moments about node j

 M M Z L P w w
i j i j i
+ + - -( ) = 0

 Z
M M

L

P w w

L
i

i j j i

= -
+

+
-( )

 (11.1)

 Consider a section at a distance x  from node i and the equilibrium 
of the left part of the beam, and take moments about point O. The 
bending moment M  is given by:

 M M Z x P w w
i i i

+ + - -( ) = 0

 Substitute for Z
i
 from (11.1) to get

 M M
M M

L

P w w

L
x P(w w )

i

i j j i

i
= - +

+
-

-( )È

Î

Í
Í

˘

˚

˙
˙

+ -  (11.2)

 The governing differential equation for the deflection of beams 
as derived in appendix 2 is:

 EI
d w

dx

M Substitute for M from to get

2

2
11 2= - . ( . )
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 EI
d w

dx

M
M M

L

P w w

L
x P w w

i

i j j i

i

2

2
= -

+
-

-( )È

Î

Í
Í

˘

˚

˙
˙

- -( )

 d w

dx
w

M Pw

P

M M P w w

PL
x

i i
i j j i

2

2

2

2
2

+ =
+

-
+ - -( )È

Î
˘
˚b

b b( )
 (11.3)

where   b2 =
P

EI
.

 The general solution to (11.3) is:

 w C sin x C cos x

M M P w w

PL
x

M Pw

P

i j j i i i= + -
+ - -( )È

Î
˘
˚ +

+( )
1 2

b b .  

(11.4)

 Now apply the boundary conditions to find the constants C
1

 and 
C

2
 as follows:

 At x w w gives C
M

P
i

i= = = -0
2

, ,

 At x L w w leads to C
M cos L M

Psin L
j

i j= = =
+

, , .
1

b
b

 Substitute C
1

 and C
2

 in (11.4) to get
 

w
M cos L M

Psin L
sin x

M

P
cos x

M M P w w

PL
x

i j i
i j j i

=
+

- -
+ - -( )È

Î
˘
˚ +

( ) (b
b

b b
MM Pw

P

i i
+ )

 q = -
dw

dx

 q
b b

b
b

b
b= -

+
- +

+ - -( )È
Î

˘
˚( )M cos L M

Psin L
cos x

M

P
sin x

M M P w w

PL

i j i
i j j i

 At x i= =0, q q

 q
b b

b
i

i j i j j iM cos L M

Psin L

M M P w w

PL
= -

+
+

+ - -( )È
Î

˘
˚( )

 (11.5)
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 At x L j= =, q q

 q
b b

b
b

b
bj

i j i
i j j iM cos L M

Psin L
cos L

M

P
sin L

M M P w w

P
= -

+
- +

+ - -( )È
Î

˘
˚( )

LL
 

(11.6)

 Solving the simultaneous equations (11.5) and (11.6) for M
i
and 

M
j
 we get:

 M
EI

cos L Lsin L
w cos L Lcos L sin L

i i i=
+ -

-( ) + -( )È
Î2 2

1
2

b b b
b b q b b b b

 + -( ) + -( )˘˚w cos L sin L L
j jb b q b b b2

1  (11.7)

 M
EI

cos L Lsin L
w cos L sin L L

j i i=
+ -

-( ) + -( )È
Î2 2

1
2

b b b
b b q b b b

 + -( ) + -( )˘˚w cos L Lcos L sin L
j jb b q b b b b2

1  (11.8)

 In order that the analysis of stability is simplified, the process of 
calculations is linearized as explained below.
 Equation (11.7) is written in an approximate form by using the 
infinite series for sin Lb  and cos Lb ,  i.e.

 sin L L
L L L

b b
b b b

= -
( )

+
( )

-
( )

ººººº
3 5 7

3 5 7! ! !

 cos L
L L L

b
b b b

= -
( )

+
( )

-
( )

ººººº1
2 4 6

2 4 6

! ! !
..

 Neglecting powers higher than six in the above two series and 
substituting in (11.7) and simplifying to get:
 

M

EI w
L
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i i j
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˙
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(11.7a)

 The next step is to express the above equation in the form of a 
polynomial by using Taylor-Maclaurin infinite series as:

Derivation of Strut Buckling Matrix
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 M a a a a a
i 0

= + + + + +º
1 2

2

3

3

4

4b b b b , where the constants a0, a1, 
a2,…. are found from (11.7a) as
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∂
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!

.
b
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 As an approximation, consider only the first three terms of the 
above series. It is found that the first term gives the standard beam 
elastic stiffness matrix coefficients, the second term vanishes, and 
the third term represents the effect of the axial force, P . The above 
equation is simplified and with the substitution of b2

EI P= , equation 
(11.7) becomes
 

M
EI

L

w L w L P w L w L
i i i j j i i j j= - + + +( ) - - + + -Ê

ËÁ2
6 4 6 2

1

10

2

15

1

10

1

30
q q q q

ˆ̂
¯̃

 (11.9)

 Similarly, equation (11.8) can be written as:
 

M
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j i i j j i i j j= - + + +( ) - - - + +Ê
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6 2 6 4
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15
q q q q
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 (11.10)

 Substitute (11.9) and (11.10) in (11.1) to get
 

Z
EI

L

w L w L P
L

w
L

w
i i i j j i i j j= - - -( ) - - - -Ê
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ˆ
¯3

12 6 12 6
6

5

1

10

6

5

1

10
q q q q ˜̃  

(11.11)

 Also, the summation of the forces in the z  direction is zero, i.e.
 Z Z

i j
+ = 0 , hence, Z Z

j i
= -  and from (11.11) we get

 

Z
EI

L

w L w L P
L

w
L

w
j i i j j i i j j= - + + +( ) - - + + +Ê

ËÁ3
12 6 12 6

6

5

1

10

6

5

1

10
q q q q

ˆ̂
¯̃

 

(11.12)

 Equations (11.9) to (11.12) are written in matrix form as:
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 (11.13)

 The above equation is of the general form k Fd =  and can be 
written as:

 ( )k k F
E G

- =d  (11.14)

where
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 (11.15)

is the elastic stiffness matrix and

 k P

L L
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=
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=  (11.16)

is called the geometric stiffness matrix.
 It can be seen that the effect of the compressive force is a 
reduction of the elastic stiffness matrix. When the force P  is tensile 
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the solution of the differential equation will be in terms of sinhβL and 
coshβL instead of sinβL and cosβL. However, with the approximation 
used in the above derivation it is found that the sign of P  is reversed 
resulting in an increase in the elastic stiffness matrix.
 The above relationships can alternatively be derived by a finite 
element approach using the so-called interpolation polynomial 
which defines the displacement along the element as explained in 
Appendix 4.
 For a member whose local axis does not lie along the global 
x-axis, equation (11.14) is written relative to global coordinates as
 (kE – kG)d = F (11.17a)

where d and F are the displacement and load vectors relative 
to global coordinates with k r k r

E

T

E
= , k r k r

G

T

G
= , and r is the 

transformation matrix.

11.2 Stability of Struts

For the overall structure equation (11.17) is be written as:
 (KE – KG)d = F (11.17b)

 For a perfectly straight strut subjected to only a direct compressive 
force the strut will remain straight as long as the force is less than a 
critical value defined by the point where the strut buckles. Bending 
of the strut will occur as a consequence of buckling and since there 
are no lateral forces acting on the span of the strut then the load 
vector, F = 0 and (11.17b) becomes
 (KE – KG)d = 0 (11.18)

 The above relation represents a set of simultaneous equations 
whose trivial solution is d = 0. The condition for a nontrivial solution 
of the displacement vector d is that the determinant of the matrix  
(KE – KG) is zero and this will lead to the values of the axial force that 
will cause buckling. Usually the smallest value is of most interest 
while higher values may apply when intermediate restraints at 
certain locations along the length of the strut are used.
 This basically is an eigenvalue problem and the procedure for its 
solution is explained in Chapter 1.
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Example 1:

Calculate the critical buckling load and draw the buckled shape of 
the strut shown in Fig. 11.2 which is pinned at point A and fixed at 
point B. The length (S) of the strut is 3.6 m, its second moment of area 
in the plane of buckling I = 32 × 10-6 m4 and its modulus of elasticity  
E = 27 × 106 kN/m2. Assume that the strut is prevented against 
buckling out of plane.

S = 3.6 m

1 2 4

1 2 3

3
PP

L = 1.2 m L = 1.2 m L = 1.2 m

A B

Figure 11.2 

 The strut is divided into three equal elements each of length  
L = 1.2 m.
 For a member whose local axis is coincident with the global 
x-axis, the transformation matrix is the unit matrix and the stiffness 
matrix relative to the global coordinates is equal to the stiffness 
matrix relative to the local coordinates of the member. Thus, k = k  
and the elastic and geometric matrices for each element are given by 
(11.15) and (11.16), respectively.

 k k k
E E E

1 2 3
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3600 2880 3600 1440

6000 3600 6
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- - -
-
- 0000 3600
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˘
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 k k k P
G G G

1 2 3
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1 00 0 1
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-

. . . .

. . . .

. . 00 1 00 0 10

0 10 0 04 0 10 0 16

. .

. . . .- -

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
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 From (11.18) we have k = kE –kG, hence

 k k k

P P P P

P
1 2 3
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 Equation (11.18) is represented by the above matrix with the 
right-hand side load vector F = 0. Apply the boundary conditions of 
w1 = 0 (at the pinned end) and w4 = 0 and θ4 = 0 (at the fixed end) by 
deleting rows and columns 1, 7, and 8 to get:
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(11.19)

 The trivial solution to the above set of simultaneous equations 
is d = 0 . A non-trivial solution is obtained if the determinant of the 
above matrix is zero, i.e.
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Table 11.1

P (kN) Det(K)/1016

200 113.4
400 85.6
600 61.6
800 41.1

1000 23.7
1200 9.3
1400 –2.5
1600 –11.7
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Figure 11.3 Determinant against applied axial force.

 From Table 11.1 or from Fig. 11.3 the determinant changes sign 
and it is equal to zero when the value of P lies between 1200 kN and 
1400 kN. By linear interpolation the critical value of P is

 P kN
C

= +
+

Ê
ËÁ

ˆ
¯̃

¥ =1200
9 3

9 3 2 5
200 1357 6

.

. .
.

 The exact value of the lowest critical load for a pinned-fixed  
strut is

 P
EI

S

kN
C

= =
¥ ¥ ¥ ¥

¥
=

-p p2

2

2 6 6

2
0 7

36 10 24 10

0 7 3 6

1342 8

( . ) ( . . )

.

 The lowest critical load of 1357.6 kN is only 1.1% higher than the 
exact value. The number of elements in this example is three and the 
accuracy can be increased even further by increasing the number of 
elements.
 We are often mostly interested in the lowest critical load so the 
above calculations will give the desired result.

Buckling Mode

For the buckling mode (shape) for the lowest critical load, substitute 
P = 1357.6 kN in (11.19) to get:
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 Assume an arbitrary value for q1 = +1, delete row 1 and substitute 
this value of q1 in the remaining four equations and rearrange the set 
of simultaneous equations to get:
 9284 8 0 4642 4 3464 2 3464 2

2 2 3 3
. . . .w w+ - - = -q q

 0 5325 6 3464 2 1494 3 1494 3
2 2 3 3

w w+ + + = -. . . .q q
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. . .w wq q

 - + + + =3464 2 1494 3 0 5325 6 0
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. . .w wq q

 The solution to the above set of simultaneous equations is:
 w2 = –0.8732 m, q2 = +0.2399 rad, w3 = –0.5261 m, q3 = –0.6354 rad
 And together with w1 = 0, q1 = +1, w4 = 0, and q4 = 0 the complete 
displacement vector is:
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 and the buckled shape is shown in Fig. 11.4.
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PP

Figure 11.4 Buckled shape of strut for the lowest critical load.

11.3 Nonlinear Analysis of Struts

In the previous chapters the analysis of structures was based on the 
assumption that the relationship between loads and displacements 
was linear. When the effect of axial forces developed in the members 
of a structure is taken into account then the stiffness of the member 
is modified because it is a function of the axial force as can be seen 
in (11.14). This will lead to nonlinear behaviour since the stiffness 
matrix is modified as the axial force is increased.

Example 2:

Consider the previous example with a point load of 30 kN in the z 
direction applied at node 2 as shown in Fig. 11.5. An axial load in 
the x direction is applied at node 1 which increases from P = 0 to P 
= 1200 kN in steps of 200 kN. Determine the relation between the 
deflection w2 at node 2 and the load P.

S = 3.6 m

1 2 4

1 2 3

3
PP

L = 1.2 m L = 1.2 m L = 1.2 m

30 kN

Figure 11.5 
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 The load vector in this case is derived from the applied lateral 
loads on the strut as:
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 The general relation (11.17b) becomes as:
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 The displacement vector for a particular value of P is obtained 
from the solution of the above relation, for example let P = 200 kN and 
simplify to get the following set of linear simultaneous equations:
 2848 3580 1448 0 0 0

1 2 2 3 3
q q q+ + + + =w w

 3580 11600 0 5800 3580 30
1 2 2 3 3

q q q+ + - - = -w w

 1448 0 5696 3580 1448 0
1 2 2 3 3

q q q+ + + + =w w

 0 5800 3580 11600 0 0
1 2 2 3 3

q q q- + + + =w w

 0 3580 1448 0 5696 0
1 2 2 3 3

q q q- + + + =w w

 The solution of the above set of simultaneous equations is:
 q1 = +0.0196 rad, w2 = –0.0174 m, q2 = +0.0044 rad,

 w3 = –0.0100 m, q3 = –0.0120 rad.

 Similarly, the displacement vector is calculated for other values of 
P and the results are shown in Table 11.2 and a plot of the deflection 
at node 2 is shown in Fig. 11.6.
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Table 11.2

P (kN)
Downward deflection 

at node 2, –w2 (m)
0 0.0148

200 0.0174
400 0.0210
600 0.0265
800 0.0360

1000 0.0563
1200 0.1291
1300 0.3666
1350 4.6183

0
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Figure 11.6 Axial compresssion against displacement.

 For this case, the load is increased in steps and the displacements 
are calculated for each new value of the axial load, P. It should be 
noted that the rate of increase of displacements becomes larger as 
the load is increased due to the progressive decrease of the stiffness 
matrix. Instability is reached when the value of P is equal to the 
critical load of the strut. At this stage the stiffness matrix becomes 
singular and its determinant is equal to zero.
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 It will be seen later in the chapter that this is not the case when 
dealing with frames. The reason being that when increasing the 
loading on the structure from Fn (in the nth load level) to Fn+1 the 
resulting displacements δn+1 are not consistent with the axial forces 
developed in the members and the right-hand side of the equations 
which is a function of these axial forces. Therefore, an iterative 
approach is used for each load increment until convergence is 
reached and once that is achieved, the load is increased to a new 
level, i.e. Fn+2 and so on as will be explained later.

11.4 Stability of Frames

If axial strains are considered as in the case of general analysis of 
frames, then the axial stiffness of the member (EA/L) is incorporated 
leading to the following relationship:
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 (11.20)
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or k Fd = .
 For members that do not lie along the global x-axis then matrix 
transformation will be used to convert the member stiffness matrix 
from local to global coordinates and the resulting overall structure 
relationship is:

 (KE – KG)d = F,

where KE is the structure elastic stiffness matrix and KG is the 
structure geometric stiffness matrix.
 The above relationship is for the general second order analysis 
and for buckling (instability) analysis where the members are 
subjected to axial forces only then F = 0 and the resulting relationship 
is:

 (KE – KG)d = 0.

 The above relationship represents a set of homogeneous 
equations leading to the trivial solution vector of d = 0.
 For a non-trivial solution, the determinant of the matrix (KE – KG) 
must be equal to zero which is essentially an eigenvalue problem.

Example 3:

A rigidly connected frame is subjected to two loads each 
of magnitude Q and acting along the axis of the columns as 
shown in Fig. 11.7. All members of the frame have the same

1

2 3

4

1

2

3 6 m

6 m

Q Q

Figure 11.7 
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cross section with I = 0.0001 m4, A = 0.005 m2, and E = 210 × 106 kN/
m2. Determine the lowest value of Q which will cause the frame to 
buckle. Assume that buckling out of the plane is prevented.
 From (11.20)
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Member 1:

The axial compressive force acting on member 1 is Q, thus P Q=
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 From Chapter 5, (5.6), the transformation matrix for rigidly 
connected plane frames is
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Member 2:

Since the local x -axis of member 2 coincides with the global x-axis 
then the transformation matrix r is equal to the unit matrix resulting 
in k k

2 2= . Also, it is not subjected to an axial force, therefore, P = 0, 
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 The boundary conditions are for the fixed supports 1 and 4 so, d1 
= 0 and d4 = 0, therefore, delete rows 1 and 4 and columns 1 and 4.
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 (11.21)

 The values of the determinant of matrix K for different values of 
Q are as shown in Table 11.3.

Table 11.3

Q (kN) Det(K)/1026

1000 46.7
2000 30.6
3000 16.3
4000 3.8
5000 –7.1
6000 –16.5

 By linear interpolation between Q = 4000 kN and Q = 5000 kN 
in Table 11.3 or from Fig. 11.8 the value of Det(K) = 0 occurs at Q = 
QC, where QC = 4000 + [3.8/(3.8 + 7.1)]1000 = 4349 kN, which is the 
smallest load that will cause instability of the frame.
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 The exact value of the lowest critical load given by Timoshenko is
QC = 0.75(p2EI/L2) = 0.75(p2 ¥ 210 ¥ 106 ¥ 0.0001/62) = 4318 kN,  
and the difference between the calculated and the exact values is 
only +0.72%.
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Figure 11.8 Valued of the determinant against load.

 In order to determine the buckled shape (buckling mode) of 
the frame for the lowest critical load, the value of QC = 4349 kN is 
substituted in the K matrix as given by equation (11.21) and applying 
a zero load vector for the right-hand side to get:
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 Assume an arbitrary value for u2 = +1, delete row 1 and substitute 
this value of u2 in the remaining five equations, rearrange, and solve 
the resulting set of simultaneous equations to get:
 w2 = +0.003872 m, q2 = +0.098096 rad, u3 = +1.000021 m,
 w3 = –0.003872 m, q3 = +0.098100 rad.
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 With the boundary conditions u1 = 0, w1 = 0, q1 = 0, u4 = 0,  
w4 = 0, q4 = 0 together with u2 = +1, the complete displacement 
vector is:

 d

q

q

q

q

=

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

u

w

u

w

u

w

u

w

1

1

1

2

2

2

3

3

3

4

4

4

˙̇
˙
˙
˙
˙
˙

=

+
+
+
+
-
+

0

0

0

1 000000

0 003872

0 098096

1 000021

0 003872

0

.

.

.

.

.

..098100

0

0

0

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 and the normalised displacement 

vector is obtained by dividing by the largest coefficient 1.000021 
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 and the buckled shape is shown in  

Fig. 11.9, which is a sway type of buckling.

Stability of Frames



432 Stability of Struts and Frames

Figure 11.9 Buckled shape of portal frame.

11.5 Nonlinear Analysis of Frames
It was discussed earlier that changes to the geometry of a beam 
column lead to a nonlinear behaviour and magnified actions on the 
structure the so called second order effects. This principle applies 
to frames where some or all the members carry compressive forces 
resulting from the application of loads to the frame.
 Consider the frame in the previous example but with applied 
loading as shown in Fig. 11.10.

1

2 3

4

1

2

3 6 m

3 m

W = 1500γ  kN

n = 30γ kN/m

3 m

Figure 11.10 Portal frame and loading.



433

Calculation of End Moments

The fixed end moment for a beam carrying a uniformly distributed 
load, n per unit length, and subjected to an axial force, P as shown in 
Fig. 11.11 are given by:

(Mi)f (Mj)f
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Figure 11.11 
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 When there is no axial load, i.e. P = 0, α will be equal to zero.
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 The fixed end moment for a beam carrying a concentrated 
load, W at mid-span, and subjected to an axial force, P as shown in  
Fig. 11.12 are given by:
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Figure 11.12 
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 The moments and forces acting on the joints are in the opposite 
direction to the above moments.

Calculation of Axial Forces

The axial force in any member of the frame is found in the same way 
as in Chapter 2 as shown below.
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i
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–
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––

–
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Figure 11.13 Bar element subjected to axial forces.
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 For a member that does not lie along the global x-axis, 
transformation is used as was followed in Chapter 3.
 Start the incremental load process with g = 0 and this means 
that all the displacements and the axial forces are equal to zero. 
Then increase g from 0 to 1.0 and use the current values of the axial 
forces (i.e. zero) to determine new values for the displacements and 
calculate the new values of the axial forces from (11.22) as

 P X
EA

L
u u

i i i j
= = -( )  (11.22a)

 Notice that if P
i
 is positive the member is in compression.

 Use these values of axial forces to calculate new values for the 
displacements which will in turn be used to calculate new values 
for the axial forces from the above equation. This iteration is carried 
out until the difference between the values of displacements from 
two successive iterations is within prescribed limits. At this cycle of 
iteration there will be consistency between the axial forces and the 
displacements used in their calculation for that value of g. This will 
end the iteration for g = 1.0.
 Now increase the load by setting g = 2.0 and use the current 
axial forces, i.e. the last values from previous iteration and start 
the iteration until consistency is reached between axial forces and 
displacements and this will end the iteration for this load increment.
 At the end of iteration for each value of gn+1 test if for this 
load factor the structure has become unstable by calculating the 
determinant of the structure matrix K. If the determinant of the 
matrix is positive then the structure is stable and the process of 
increasing the load is continued. If the determinant is negative (i.e. 
singularity has been passed) then the value of g is reduced to a value 
between gn+1 and gn and the iteration process is continued.
 Denote the axial forces in members 1, 2, and 3 by P1, P2, and P3, 
respectively and these are obtained from (11.22a). Then the stiffness 
matrices for the three members are:
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Calculation of the load vector

Only joints 2 and 3 are considered since the reduced stiffness matrix 
includes displacements at these joints only.
 Contribution of loads on member 1 to joint 2
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 Contribution of loads on member 2 to joint 2
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 Contribution of loads on member 2 to joint 3
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 There are no loads on member 3 and hence no contribution from 
this member to joint 3.
 The resultant load vector for the whole frame is

 F
F

F

X

Z

M

X

Z

M

nL

W

=
È

Î
Í

˘

˚
˙ =

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

-

+

+
2

3

2

2

2

3

3

3

2

2

3

g

g

(ttan

tan

nL cos

sin

Wa a
a a

g a
a a

g1 1

1

2

1

2

2

2 2
12

2 1-È

Î
Í
Í

˘

˚
˙
˙

-
-È

Î
Í

˘

˚
˙

) ( ) LL

W

cos

sin

WL

8

0

2

2 1

8

2

2 2

+

+
-È

Î
Í

˘

˚
˙

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙

g

a
a a

g( )

˙̇
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 

(11.24)
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where n = –30 kN/m and W = –1500 kN.
 For the first load factor increment, let g = 1.
 Start by setting the axial forces in the members equal to zero, i.e. 
P1 = 0, P2 = 0, and P3 = 0, thus, a1 = 0, a2 = 0, and a3 = 0. The load 
vector is calculated from (11.24) as:
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, the stiffness matrix K from (11.23) and with P1 = 0, 

P2 = 0, and P3 = 0, the relationship K Fd =  becomes

 

176167 0 3500 175000 0 0

0 176167 3500 0 1167 3500

3500 3500 2800

- -
- - -

- - 00 0 3500 7000

175000 0 0 176167 0 3500

0 1167 3500 0 176167 3500

0 350

- -
-
- 00 7000 3500 3500 28000

2

2

2

3

3

3-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

È

Î

Í
Í
Í
Í

u

w

u

w

q

q

ÍÍ
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

+
-

+

-
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

90

750

1035

0

750

1125

 The resulting displacement vector is
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 These displacements are used to calculate the axial forces in the 
members from (11.13) as:
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Member 1: EA

L
 = 175000 kN/m, u

i
 = w1 = 0, and u

j
 = w2  

= –0.004139 m.
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 i.e. member 1 is in compression with a force of P1 = +724.3 kN.

Member 2: EA

L
 = 175000 kN/m, u

i
 = u2 = +0.050338 m, and u
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 = 
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 i.e. member 2 is in compression with a force of P2 = +224.5 kN.

Member 3:  EA

L
= 175000 kN/m, u

i
 = –w3 = –(–004432) m, and u
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 i.e. member 3 is in compression with a force of P3 = +775.6 kN.
 The above calculations complete the first cycle of iteration and 
it is seen that the values of the axial forces at the end of this cycle 
are different from those assumed at the beginning of the cycle. This 
means that the displacements are not consistent with the forces and 
the newly found axial forces are used in the second cycle of iteration.
 Calculate new K from (11.23) with the substitution of P1 = +724.3 
kN, P2 = +224.5 kN, and P3 = +775.6 kN to get:
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 a
1
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 The load vector from (11.24) is
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 Kd = F becomes
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 The resulting displacement vector is
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 From the above displacements a new set of axial forces in the 
members is calculated as: P1 = +717.9 kN, P2 = +229.3 kN, and  
P3 = +782.1 kN and these values are substituted in (11.23) to give a 
new stiffness matrix
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 The solution of the above set is
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 Since the difference between the displacements from two 
successive cycles (two and three in this case) is very small, the 
iteration for this load factor increment is stopped. Now increase 
the load factor g to 2.0 and use the current values of P1, P2, and P3. 
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The iteration is carried out as explained above to give the successive 
displacement vectors and the axial forces in the members as follows:
 The current values of P1 = +717.9 kN, P2 = +229.3 kN, P3 = +782.1 
kN, a1 = 0.5546 and a2 = 0.3135, and with g = 2.0 the load vector 
from (11.24) is
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 From the above displacements calculate P1 = +1435.9 kN, P2 = 
+458.3 kN, P3 = +1564.2 kN, a1 = 0.5546 and a2 = 0.3135 and these 
will lead to
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 Leading to P1 = +1415.8 kN, P2 = +467.8 kN, P3 = +1584.3 kN, a1 
= 0.7789 and a2 = 0.4477 and these will lead to

 

u

w

u

w

2

2

2

3

3

3

0 153860

0 008091

0 1260q

q

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

+
-
+

.

.

. 884

0 151189

0 009052

0 101456

+
-
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

.

.

.

 From the above displacements we get P1 = +1415.8 kN, P2 = 
+467.8 kN, and P3 = +1584.1 kN.

γ = 2.0
Cycle:   1                  2       3

u3=0.0595 0.15120.15110.119γ  = 1.0

Figure 11.14  Cycles of iteration for convergence within one load increment 
from g = 1 to g = 2 (not to scale).

 The difference between the last two cycles of iteration is small 
hence it can be assumed that convergence to the correct result is 
reached as shown in Fig. 11.14 and the iteration is stopped and a 
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new load factor increment is applied, i.e. with g = 3 and so on. The 
variation of u3 with the load factor g is shown in Fig. 11.15.

g Horizontal deflection 
at node 3, u3 (m)

0 0
1 0.0595
2 0.1512
3 0.3110
4 0.6606
5 1.9930
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0.0 0.5 1.0 1.5 2.0 2.5
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Horizontal displacement at node 3, u3 (m)

Linear Non-linear

Figure 11.15 Load factor against displacement of frame.

Problems

 P11.1 Find the smallest critical load that will cause the strut 
shown in Fig. P11.1 using the following data:

  E = 9 × 106 kN/m2, I1 = 0.000019 m4, I2 = 0.000042 m4, and 
I3 = 0.000098 m4.

Problems
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S = 3.2 m

1 2 4

2 3

3
PP

L = 0.7 m L = 1.1 m L = 1.4 m

A B1

Figure P11.1 

Answer:

 P = 149.54 kN and the buckling mode is given by: 
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 P11.2 Find the smallest critical load that will cause the strut 
shown in Fig. P11.2 given that E = 210 × 106 kN/m2 and  
I = 0.000006 m4.

S = 9 m

1 2 4

2 3

3
PP

L = 3 m L = 3 m L = 3 m

A B1

Figure P11.2 
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Answer:

 P = 627.56 kN and the buckling mode is given by:
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 P11.3 Repeat Problem P11.2 and plot w3 against P for the loading 
shown in Fig. 11.3.

S = 9 m

1 2 4

2 3

3
PP

L = 3 m L = 3 m L = 3 m

A B

15 kN

1

Figure P11.3 

Answer:

P (kN) w3 (m)
0 –0.032

100 –0.037
200 –0.045
300 –0.057
400 –0.080
500 –0.136
600 –0.599

 P11.4 Calculate the value of the load Q that will cause instability of 
the frame shown in Fig. 11.4 for the following data:

Problems
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  E = 29 × 106 kN/m2, A1 = 0.03 m2, I1 = 0.00012 m4,  
A2 = 0.09 m2, I2 = 0.00088 m4,

  A3 = 0.02 m2, and I3 = 0.00006 m4.

1

2 3

4

2

3

5 m

Q

4 m
6 m 1

Figure P11.4 

Answer:

 Q = 2498.47 kN and the buckling mode is given by:

  

u

w

u

w

2

2

2

3

3

3

1 000000

0 001284

0 0023q

q

È
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˘

˚

˙
˙
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.

 P11.5 Repeat Problem P11.4 and plot g against u2 for the loading 
shown in Fig. 11.5.
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1

2 3

4

2

3

5 m

6 m
10γ kN

2 m

2 m

75γ kN/m

1

Figure P11.5 

Answer:

 g u2 (m)
1 –0.014763
2 –0.038294
3 –0.081615
4 –0.186428
5 –0.678656

Problems
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The preceding chapters dealt with the behaviour of structures 
when subjected to static loads. However, there are instances when 
the forces acting on the structure are dynamic which means that 
they are time varying. Examples of dynamic loading on structures 
include earthquakes, wind, human induced excitation, and dynamic 
disturbances from machinery. In such circumstances the response 
of the structure, i.e. its displacements and the developed internal 
actions in the members of the structure (shear forces, bending 
moments, etc.) will also be time varying. In order to assess the effect 
of dynamic loading on a structure, the free undamped vibration 
characteristics of the structure have to be determined first and this 
forms the main part of this chapter.
 To illustrate the basic principles the case of free undamped 
vibration of a simple system with a single degree of freedom 
is considered first. The same principles are then applied in the 
treatment of vibration of structures with multi-degrees of freedom.

12.1 Systems with a Single Degree of Freedom

12.1.1 Free Undamped Vibration

Consider the single degree of freedom of spring/mass system shown 
in Fig. 12.1 which shows a horizontal spring of stiffness k with its 
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452 Vibration of Beams and Frames

left end connected to a fixed support and has a mass m attached to 
its right end and can move on a smooth horizontal plane. The initial 
condition, i.e. at time t = 0 the system is disturbed by giving the 
mass a displacement uo and velocity uo . In the absence of damping 
or an external force, i.e. natural vibration, the mass will oscillate 
freely indefinitely about the centre of vibration with a maximum 
displacement called the amplitude.

u

position of static equilibrium of mass, 

m (centre of vibration)

smooth surface

x

spring with stiffness k

�ixed support

m

position after time, t

amplitude

fi

fS

Figure 12.1 Mass with a horizontal spring.

 This is a single degree of freedom system since there is only one 
translational displacement, u, along the x-axis.
 At any instant in time t after the commencement of motion the 
displacement of the mass from the centre of vibration, defined by 
the position of static equilibrium, is u.
 The inertia force = mass × acceleration, f mu

i
=   which acts in the 

opposite direction of the acceleration and u  is the second derivative 
of displacement with respect to time, thus

 f m
d u

dt
i

=
2

2

 The tension developed in the spring is fs = ku where k is the 
stiffness of the spring.
 For dynamic equilibrium, the summation of the forces is zero, i.e. 
– fi – fs = 0

 - - =m
d u

dt
ku

2

2
0  (12.1)

 d u

dt
u

2

2

2
0+ =w  (12.2)
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where w =
k

m
 and is called the circular frequency of natural 

vibration.
 The general solution of the above differential equation for the 
displacement is:

 u = Asinwt + Bcoswt (12.3a)

where A and B are constants determined from the initial conditions.
 The velocity is the first derivative of the displacement with 
respect to time, i.e.

 u
du

dt
Acos t Bsin t= = -w w w w  (12.3b)

 At time t = 0, the initial displacement u = uo and the initial velocity 
 u u

o
=

 From equation (12.3a), uo = Asin0 + Bcos0, thus B = uo

 From equation (12.3b), u Acos0 Bsin0 so A
u

o

o= - =w w
w

,


 Substitute A and B in equation (12.3a) to get

 u
u

sin t u cos t
o

o
= +


w
w w

 The above equation can be written as
 u = Rsin(wt + h) (12.4)

where
 

R u
u

o

2 o

2

2
= +



w
is the maximum displacement called the amplitude 

and h
w

=
Ê
ËÁ

ˆ
¯̃

-
tan

u

u

1 o

o
 /

.

 Equation (12.4) represents what is called simple harmonic 
motion since sine or cosine waves are called harmonic functions.
 As an example let m = 2 kg, k = 450 N/m, uo = 0.04 m, and 
u m/s.

o
= 0 75.

 w
w

= = = = = + =
k

m
rad/s, R u +

u
m

o

2 o

2

2

450

2
15 0 04

0 75

15
0 064

2

2

2



.
.

.
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 h
w

= tan
u

u
= tan = 39 = 0.68 rad

1 o

o

1 o- -Ê
ËÁ

ˆ
¯̃

Ê
ËÁ

ˆ
¯̃ /

.

. /

0 04

0 75 15

 Substituting the above values in (12.4) to get
 u = 0.064sin(15t + 0.68) (12.4a)

 Figure 12.2 shows a plot of the above equation.
 The period of vibration is defined as the time taken for one 
complete cycle

 T =
2

=
2

15
= 0.42 s

p
w

p

 The frequency of vibration is the number of cycles per second

 f =
1

T
=

2
=

15

2
= 2.4 cycles/s

w
p p

 If the spring is in the vertical direction the vibration of the mass 
will essentially be the same as that for the horizontal spring except 
that the centre of vibration will be the position of static equilibrium 
defined by an extension of Dstatic of the spring, where Dstatic = mg/k.

12.1.2 Free Damped Vibration

Consider the single degree of freedom consisting of mass m, spring 
of stiffness k, and viscous damper with a damping coefficient c as 
shown in Fig. 12.3.

x

k

damper

u

position of static equilibrium                              
position after time, t

m

c

fs

fi

fd

Figure 12.3 Mass with a horizontal spring and damper.

Systems with a Single Degree of Freedom
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 For dynamic equilibrium, the summation of the forces is zero, i.e. 
 –fi –fd –fs = 0

where fd is the force of resistance of the damper which is proportional 
to the velocity u  of the piston inside the damper cylinder. Thus, 
f cu
d

=   where c is the damping coefficient. The equation of 
equilibrium becomes

 - - - =m
d u

dt
cu ku

2

2
0  which can be written as

 d u

dt

du

dt
u

2

2

2
2 0+ + =zw w  (12.5)

where z w= =
c

c
is the damping factor

k

m
c

( ),

and cc = 2mw (called the critical damping coefficient).
 There are three possible cases of vibration depending on the 
value of the damping factor as follows:
 Case one: when z < 1 the vibration is under-damped and the 
solution of differential equation (12.5) is

 u e Asin t Bcos t
t

d d
= +( )-zw w w  (12.6a)

where w w z
d

= -1
2 .

 Notice that for the case of no damping, i.e. z = 0 the above 
equation is reduced to (12.3a).
 Case two: when z = 1, the vibration is critically damped and the 
motion will die out in the shortest time with the solution of (12.5) as
 u = e–wt(A + Bt). (12.6b)

 Case three: when z > 1, the vibration is over-damped and the 
solution is

 u e Ae Be
t t t

o o= +- -zw w w
( )  (12.6c)

where w w z
o

= -2
1 .

 As an example, consider a system consisting of a mass of 4 kg and a 
spring of stiffness 3600 N/m with an initial displacement uo = 0.05 m  
and initial velocity u

o
= 0 . Plot the equations of motion for the 

following cases of damping
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 (i) c = 0, (ii) c = 48 Ns/m, (iii) c = 240 Ns/m, (iv) c = 360 Ns/m.
 u = 0.05cos30t (i)

 u = e–6t(0.01sin29.39t + 0.05cos29.39t) (ii)

 u = e–30t(0.05 + 0.50t) (iii)

 u = e–45t(0.05854e+33.54t – 0.00854e–33.54t) (iv)

 It can be seen from Fig. 12.4 that when there is no damping  
(Eq. (i)) the vibration continues indefinitely with constant amplitude 
while for 0.20 damping factor (under-damped) the vibration decays 
with decreasing amplitude until it dies out after about 0.8 seconds as 
shown by Eq. (ii). For the case of critical damping the vibration dies 
out without oscillations and in the shortest time which is about 0.3 
seconds as indicated by Eq. (iii). When over-damping is applied as 
shown by Eq. (iv) the time taken for the vibration to die out is longer 
than that of the critically damped case and is about 0.5 seconds.

12.1.3  Forced Vibration Due to Harmonic Force 
Excitation

In practice it is often required to investigate the behaviour of a 
system when subjected to an external action that acts for a certain 
length of time or indefinitely and hence the name forced vibration. 
Let us consider first the case of a single degree of freedom system 
subjected to a harmonic exciting force po sinWt as shown in  
Fig. 12.5. This will be used later as the bases for the treatment of 
multi-degrees of freedom systems.

x

k

u

position of static equilibrium                              
position after time, t

m

c

fs

fi

fd

p = po sinΩt

Figure 12.5 Forced vibration.
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 From dynamic equilibrium, –fi –fd –fs + po sinWt = 0 and the 
differential equation is

 - - - + =m
d u

dt
c

du

dt
ku p sin t or

o

2

2
0W ,

 d u

dt

du

dt
u

p

m
sin t

o

2

2

2
2+ + =xw w W .

 The solution of the above differential equation is
 u = uc + up

where uc is the complementary function = e–wt(Asinwdt + Bcoswdt)

and up is the particular integral =
-( ) -

-( ) + ( )
p sin t cos t

m

o
[ ]

[ ]

,

1 2

1 2

2

2 2
2 2

b W xb W

w b xb
 

therefore

u e Asin t Bcos t t
t

d d

o= + +
D

-( ) + ( )
-( )-xw w w

b xb
W j( )

[ ]

sin ,

1 2
2

2 2

 

where the frequency ration b
W
w

= , the equivalent static 

displacement D = =
o

o o
p

k

p

mw2
,  and the phase angle j is given by  

tanj =
-

2

1
2

xb
b

.

 The constants A and B are determined from the initial conditions.
 The first part of the solution which is given by the complementary 
function uC will die out after a relatively short time being an 
exponential decay function. The second part represents the steady 
state response of the system due to the exciting force and has an 
amplitude, i.e. maximum displacement given by

 u
max

o=
D

-( ) + ( )[ ]1 2
2

2 2b xb

 The dynamic amplification factor D is defined as the ratio of the 
maximum displacement umax to the equivalent static displacement 
Do, thus

Systems with a Single Degree of Freedom
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 D
u

max

o

=
D

=
-( ) + ( )

1

1 2
2

2 2
[ ]b xb

 A plot of the above equation is shown in Fig. 12.6.

12.1.4 Forced Vibration Due to Base Motion Excitation

Consider the system of mass and spring shown in Fig. 12.7 excited 
by the motion of the support A. Let the displacement of the support 
after time t is uB. The mass m moves by a distance uR relative to B 
which is the new position of the support after time t. Therefore, the 
absolute displacement of the mass m relative to the original position 
A is u = uR + uB. Assume that the support motion is harmonic, i.e. uB 
= Usinst, where U and s are the amplitude and circular frequency of 
the support motion, respectively.

x

k

uB uR

position after time, t

initial position (A) of support 

position (B) of support after time, t

m

c

fs

fi

fd

Figure 12.7 Base motion.

 The inertia force acting on the mass is, fi = ma where a is the 
absolute acceleration of m which is based on the total displacement, 
i.e.

 a
d u

dt

d u u

dt

d u

dt

d u

dt
U sin t

d u

dt

B R B R R= =
+

= + = - +
2

2

2

2

2

2

2

2

2

2

2

( )
s s

 The spring force is based on the extension of the spring relative 
to the new position of the support at B, thus fs = kuR and also the 
damping force f cu

d R
=  .

Systems with a Single Degree of Freedom
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 For dynamic equilibrium, the summation of the forces is zero, i.e. 
–fi –fd –fs =0

 - - +
Ê

Ë
Á

ˆ

¯
˜ - - =m U sin t

d u

dt
c

du

dt
ku

R R

R
s s2

2

2
0

 
d u

dt

du

dt
u U sin t where

k

m

R R

R

2

2

2 2 2
2+ + = =xw w s s w, .

 It can be seen that the above differential equation is similar to 
that of forced vibration, therefore, the rest of the analysis will follow 
in a similar manner. This procedure can be adopted for the analysis of 
multi-degrees of freedom such as the case of multi-storey buildings 
subjected to base motion excitation resulting from earthquakes. In 
this case the base motion is random and the treatment becomes 
more complex which is outside the scope of this book, but the above 
presentation gives the reader an introduction and a flavour of the 
subject matter.

12.2 Systems with Multi-degrees of Freedom

In the following sections of this chapter, damping is not considered 
and for damped systems the reader can refer to specialised textbooks 
on the subject of vibration of structures.
 In using matrix methods for the vibration of structures where 
there are many degrees of freedom an alternative form of the 
governing equation may make the analysis more practical as shown 
below.
 Equation 12.4, the displacement is given by

 u Rsin t hence the second derivative
d u

dt
is= +( )w h ,

2

2

 u = - +( ) = -w w j w2 2
Rsin t u

and this is substituted in equation 12.1 to give: –w2mu + ku = 0, or

 (k–w2m)u = 0 (12.5)

 The above equation is for a system with a single degree of 
freedom and for a structure with multi-degrees of freedom it will 
take the following form:
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 (K – w2M)d = 0 (12.6)

where K is the overall structure stiffness matrix as calculated in the 
previous chapters, M is the mass matrix of the structure, and d is the 
column vector of the displacements at the nodes of the structure.
 The first term in (12.6) represents the stiffness force, Fstiffness = 
Kd, the second term is the inertia force, Finertia = w2Md and w is the 
natural circular frequency of vibration of the structure. Equation 
(12.6) is a form of eigenvalue problem and its solution gives as many 
values for w2 as the number of degrees of freedom of the structure. 
For each eigenvalue there is an associated eigenvector d called mode 
shape, which represents the relative amplitude of displacements at 
the various points in the structure.
 The trivial solution of equation (12.6) is d = 0, but the structure 
is vibrating which means that the displacement vector d is not zero. 
The condition for d to have a non-zero value is that the determinant 
of the quantity inside the brackets of equation (12.6) must be equal 
to zero and this will lead to the required eigenvalues, i.e.
 |K – w2M| = 0. (12.7)

 The above equation gives the values of the circular frequency 
of vibration, w, and equation (12.6) is used to determine the mode 
shapes of vibration as explained in the examples that follow.
 When dealing with large matrices there are other techniques 
for determining the eigenvalues which are more efficient than the 
determinant method and these techniques are available in most 
relevant software packages.

12.3 Mass Matrix

The mass of a structure is continuously distributed throughout 
its members and this will lead to an infinite number of degrees 
of freedom. Therefore, the structure is divided into a number of 
elements (or members) with a finite number of degrees of freedom 
which will lead to a finite number of the values of w2. The next step 
is to translate the distributed mass of each element into ‘equivalent’ 
masses that are assumed to be concentrated at the end nodes of that 
element. To do this, one of the two possible approaches can be used, 
namely, the lumped mass and the consistent mass methods.

Mass Matrix
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 In the lumped mass matrix method, the element is assumed 
to have no rotational inertia and for elements with uniform cross 
section the mass is divided equally between the two end nodes as 
shown below with L = length of element (or member), A = cross-
sectional area, and 𝜌 = material density.

L

ρAL

2

i j

ρAL

2

 This is the simplest form of mass matrix that leads to a diagonal 
matrix which requires less storage space and, more importantly, less 
computer time compared with a more populated matrix.
 The consistent mass matrix is derived from the same interpolation 
polynomial for the displacement as used in the derivation of the 
stiffness matrix hence the name consistent. This method leads to a 
more populated matrix than the lumped mass matrix, consequently, 
it requires more storage and computer time, but it is generally 
accepted that it gives better accuracy. In this chapter the lumped 
mass matrix is used for its simplicity, but the general procedure of 
analysis is the same in both methods.

12.4 Matrix Condensation

When dealing with large sets of simultaneous equations, economy 
can be achieved in obtaining a solution if the number of degrees of 
freedom is reduced. For example, consider the problem of bending 
of beams and using the lumped mass method where the rotational 
displacements are not included in the mass matrix, M, but they 
are present in the stiffness matrix, K. In this case the rotational 
displacements are regarded as unwanted and can be eliminated 
from the stiffness matrix by the so-called Guyan static condensation 
method as explained below.
 The structure displacement vector d in equation (12.6) is divided 
into two groups; the translational displacements vector dw and 
the second group of degrees of freedom is the vector of rotational 
displacements dq to give
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 d
d
dq

=
È

Î
Í

˘

˚
˙

w .

 The next step is to write the matrices in equation (12.6) in a 
partitioned matrix form in terms of submatrices as

 
K K

K K

M M

M M

ww w

w

w ww w

w

wq

q qq q

q

q qq q

d
d

w
d
d

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
2

˙̇ =
È

Î
Í

˘

˚
˙

0

0

 For the simple case of lumped masses, the mass matrix is 
a diagonal matrix whose coefficients are associated with the 
translational displacements, dw only, therefore, Mwq = Mqw = Mqq = 0, 
thus

 
K K

K K

Mww w

w

w ww wq

q qq q q

d
d

w
d
d

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ -

È

Î
Í

˘

˚
˙

È

Î
Í

˘

˚
˙ =

È

Î
2

0

0 0

0

0
ÍÍ

˘

˚
˙ .

 The second equation in the above matrix is Kqwdw + Kqq dq = 0, 
pre-multiply by Kqq

-1  to give
 d dq qq q= - -

K K
w w

1  and this is substituted in the first equation to 
give
 K K K K M

ww w w w w ww w
d d w dq qq q+ -( ) - =-1 2

0 , which can be 
written as
 (Kc – w2Mc)da = 0

where the condensed stiffness matrix K K K K K
c ww w w

= - -
q qq q

1  and 
the condensed mass matrix Mc = Mww.
 It should be noted that in the case of lumped mass matrix the 
results obtained for the eigenvalues and eigenvectors from the 
condensed matrices are exactly the same as those obtained from the 
full uncondensed matrices.

12.5  Free Vibration of Pin-Connected Plane 
Frames

The lumped mass at each end of the element has components of 
acceleration in both the x and z directions and hence the use of the 
associated displacements in these directions and the mass matrix 
relative to local coordinates is
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 Since the unit matrix is unchanged when it is transformed from 
local to global coordinates it follows that the mass matrix relative to 
global coordinates, m =m , hence

 u w u w

m
AL

i i j j

i jd d

d

r
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 (12.18)

Example 1:

Calculate the natural frequencies and the corresponding modes of 
vibration of the pin-connected plane frame shown in Fig. 12.8 for 
the following data:
 E = 70 ¥ 109 N/m2, r = 2500 kg/m3, A1 = 0.0024 m2, and  
A2 = 0.0018 m2.

3

pin supports

1 2

2

1

1.2 m

1.6 m

Figure 12.8 
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 The structure mass matrix will be

 

u w u w u w
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1 1 2 2 3 3

4 8 0

0 4 8

0 0

0 0

0 0

0 0

0 0

0 0

9 3 0

0 9 3

0 0

0 0

0 0

0 0

0 0

0 0

4 5 0

=

.

.

.

.

.

00 4 5

1

1

2

2

3

3.

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

u

w

u

w

u

w

 Apply the boundary conditions of u1 = 0, w1 = 0, u3 = 0, and  
w3 = 0 to get

 
u w

M
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2 2

2

2

9 3 0

0 9 3
=
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.

.

 (12.19)

 The stiffness matrix for a pin-connected frame member relative 
to global coordinates is given in Chapter 3 (3.10) as

Free Vibration of Pin-Connected Plane Frames
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Member 1, (i,j:1,2)

 xij = xj – xi = 1.6 – 0 = 1.6 m, zij = zj – zi = 0 – 0 = 0

 L x z m
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= + = + =2 2 2 2
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Member 2, (i,j:2,3)
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 The overall structure stiffness matrix
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 Apply the boundary conditions of u1 = 0, w1 = 0, u3 = 0, and  
w3 = 0 to get
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 (12.20)

 Substitute M and K from (12.19) and (12.20) respectively in 
equation (12.6) to get
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˙  (12.21)

 The trivial solution of the above set of simultaneous equations is 
u2 = 0 and w2 = 0, i.e. the displacement vector d = 0, i.e. no vibration. 
The condition that d has a non-zero value is that the determinant 
of the quantity inside the brackets must be equal to zero and this 
will lead to the required eigenvalues. When dealing with large 
matrices there are other more efficient eigenvalue techniques that 
can be implemented on the computer and the reader is referred 
to specialist literature about the subject for details. However, the 
determinant method is used in this case because of its simplicity for 
hand calculations and the fact that the matrix is small, thus

 
+ ¥ - - ¥

- ¥ + ¥ -
=

145 32 10 9 3 30 24 10

30 24 10 22 68 10 9 3

0

6 6

6 6

. . .

. . .

,
l

l
wheree l w= 2

 86.49l2 – 1562.40 ¥ 106l + 2381.40 ¥ 1012 = 0

 The above relationship is called the characteristic equation 
whose roots are the eigenvalues of the matrix, thus
 l1 = 1.68 ¥ 106 and l2 = 16.38 ¥ 106.

Free Vibration of Pin-Connected Plane Frames
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 The circular frequency of vibration, w l=

 w l
1 1

6
1 68 10 1296 15= = ¥ =. . /rad s  and

 w
2

6
16 38 10 4047 22= ¥ =. . /rad s

 The frequency of vibration, f =
w
p2

 f cycles s and f cycl
1

1

2
2

1296 15

2
206 29

4047 22

2
644 13= = = = =

w
p p p

.
. /

.
. ees s/

Calculation of eigenvectors (mode shapes)

During vibration the displacement at each point along the member 
is described by the harmonic function u = Rsin(wt + h) as given 
by equation (12.4) where R is the amplitude, i.e. the maximum 
value of the displacement. The mode shape represents the relative 
amplitudes at the various points and is given by the eigenvector of 
the matrix for a particular value of w. Since the magnitude of the 
amplitude at any point is arbitrary the eigenvector is normalised by 
making the magnitude of the largest value equal to 1.0.
 The shape of the truss for any mode of vibration is given by the 
eigenvector for that mode and is obtained from (12.21) as follows:
 Let u2 = +1.000 m arbitrarily to get
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 For mode 1, w = w1 = 1296.15 rad/s
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 The second row of the above two equations give w2 = +4.283 m.
 The mode shape is given by the eigenvector
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 which is normalised by dividing by the 

magnitude of the largest coefficient 4.283 to give mode 1 as
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 Similarly, for mode 2 where, w = w2 = 4047.22 rad/s the second 
normalised mode is calculated as
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 The mode shapes for the pin-connected frame are shown in  
Fig. 12.9.

Mode 2Mode 1

Mode shape

Initial position

Figure 12.9 Mode shapes for the pin-connected frame.

12.6 Vibration of Beams

In the example below, the lumped mass matrix is used to determine 
the frequencies and modes of free undamped vibration of a fixed 
ended beam. These will be used later to investigate the behaviour of 
the beam under the action of an external force.

12.6.1 Free Vibration of Beams

Example 2:

Calculate the natural frequencies and the corresponding modes of 
vibration of the fixed ended beam shown in Fig. 12.10 using the 
following data: ρ = 2400 kg/m3, A = 0.15 m2, I = 0.0048 m4, and E = 
36 × 109 N/m2.

1 2 3 4

1 2 3 4 5

2.4 m 2.4  m 2.4  m

9.6 m

2.4 m

Figure 12.10 Fixed ended beam.

Vibration of Beams
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Calculation of the stiffness matrix

The stiffness matrix of a beam element whose local axis is coincident 
with the global x-axis was derived in Chapter 4 as given by (4.28) as:
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 The stiffness matrix for the overall structure:

w1 q1 w2 q2 w3 q3 w4 q4 w5 q5

150 –180 –150 –180 0 0 0 0 0 0 w1

–180 288 180 144 0 0 0 0 0 0 q1

–150 180 300 0 –150 –180 0 0 0 0 w2

 –180 144 0 576 180 144 0 0 0 0 q2

K = 106
0 0 –150 180 300 0 –150 –180 0 0 w3

0 0 –180 144 0 576 180 144 0 0 q3

0 0 0 0 –150 180 300 0 –150 –180 w4

0 0 0 0 –180 144 0 576 180 144 q4

0 0 0 0 0 0 –150 180 150 180 w5

0 0 0 0 0 0 –180 144 180 288 q5

 The boundary conditions of the fixed ends are w1 = q1 = 0 and 
w5 = q5 = 0 , hence delete rows and columns 1, 2, 9, and 10 to get the 
reduced stiffness matrix as:
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w2 q2 w3 q3 w4 q4

300 0 –150 –180 0 0 w2

 0 576 180 144 0 0 q2

K = 106
–150 180 300 0 –150 –180 w3 
–180 144 0 576 180 144 q3

0 0 –150 180 300 0 w4

0 0 –180 144 0 576 q4

Condensation of the stiffness matrix K

The above matrix is condensed as explained earlier by first 
rearranging the coefficients in order to separate the w’s from the q’s 
as shown below.

w2 w3 w4 q2 q3 q4

300 –150 0 0 –180 0 w2

 –150 300 –150 180 0 –180 w3

K = 106
0 –150 300 0 180 0 w4 
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(12.22)
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Calculation of the mass matrix

In the lumped mass method, it is assumed that the mass of the 
element is concentrated at the nodes and the rotational inertia of 
these masses is neglected. Also, if axial straining of the element is 
ignored then the mass matrix is

L

ρAL

2

i j
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2
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,
1 2 3
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˚

˙
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˙

 The mass matrix of the overall structure is:

w1 q1 w2 q2 w3 q3 w4 q4 w5 q5

432 0 0 0 0 0 0 0 0 0 w1

0 0 0 0 0 0 0 0 0 0 q1

0 0 864 0 0 0 0 0 0 0 w2

 0 0 0 0 0 0 0 0 0 0 q2

M = 
0 0 0 0 864 0 0 0 0 0 w3

0 0 0 0 0 0 0 0 0 0 q3

0 0 0 0 0 0 864 0 0 0 w4

0 0 0 0 0 0 0 0 0 0 q4

0 0 0 0 0 0 0 0 432 0 w5

0 0 0 0 0 0 0 0 0 0 q5

 Apply the boundary conditions of w1 = 0 and q1 = 0, hence delete 
rows and columns 1 and 2 to get the reduced mass matrix as:
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 The boundary conditions of the fixed ends are w1 = q1 = 0 and 
w5 = q5 = 0, hence delete rows and columns 1, 2, 9, and 10 to get the 
reduced mass matrix as:

w2 q2 w3 q3 w4 q4

864 0 0 0 0 0 w2

 0 0 0 0 0 0 q2

M = 
0 0 864 0 0 0 w3 
0 0 0 0 0 0 q3

0 0 0 0 864 0 w4

0 0 0 0 0 0 q4

Condensation of the mass matrix M

 The coefficients of the above matrix are rearranged so as to 
separate the w’s from the θ’s as shown below.

w2 w3 w4 q2 q3 q4

864 0 0 0 0 0 w2

 0 864 0 0 0 0 w3

M = 
0 0 864 0 0 0 w4 
0 0 0 0 0 0 q2

0 0 0 0 0 0 q3

0 0 0 0 0 0 q4

 The resulting condensed mass matrix is given by
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 (12.23)

 Substitute (12.22) and (12.23) in (12.6) to get
 (Kc – w2Mc)dw = 0
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(12.24)
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 For non-trivial solution the determinant of the above matrix is 
zero

 
235 714 10 864 150 10 64 286 10

150 10 187 5 10 864 1
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 –644.973 ¥ 106(l3 – 762.648 ¥ 103l2 + 127.022 ¥ 109l – 2990.150 ¥ 
1012) = 0

 l1 = 2.811 ¥ 104, l2 = 19.841 ¥ 104, l3 = 53.613 ¥ 104

 The circular frequency of vibration, w l=  ,

 w
1

4
2 811 10 167 660= ¥ =. . /rad s ,

 w
2

4
19 841 10 445 432= ¥ =. . /rad s,

 w
3

4
53 613 10 732 209= ¥ =. . / .rad s

 The exact values of the circular frequency of vibration from 
appendix 7 are:

 w
r1 4

9

4
22 382 22 382

36 10 0 0048

2400 0 15 9 6

168 259= =
¥ ¥

¥ ¥
=. .

.

. .

.
EI

AL

raad s/

 w
r2 4

9

4
61 701 61 701

36 10 0 0048

2400 0 15 9 6

463 842= =
¥ ¥

¥ ¥
=. .

.

. .

.
EI

AL

raad s/

 w
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¥ ¥
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.
EI

AL

66 rad s/

 The error between the calculated and the exact values

Mode 1 2 3
Percentage error –0.36% –3.97% –19.45%

 It can be seen in the above table that excellent accuracy is 
obtained for the first mode, but the error increases rapidly for higher 
modes of vibration.

Calculation of eigenvectors (mode shapes)

The shape of the beam for any mode of vibration is given by the 
eigenvector for that mode from (12.24) and since the mode shapes 
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are of relative magnitude assign one of the unknowns, say w2, a 
value of +1.000, arbitrarily, then calculate the remaining unknows, 
w3 and w4.
 For the first mode of vibration substitute w1 = 167.660 rad/s in 
(12.24) to get
 211.427w2 – 150w3 + 64.286w4 = 0 (12.25)

 –150w2 + 163.213w3 – 150w4 = 0  (12.26)

 64.286w2 – 150w3 + 211.427w4 = 0  (12.27)

 Delete (12.25) and substitute w2 = 1.000 m in (12.26) and (12.27) 
to get
 +163.213w3 – 150w4 = +150

 –150w3 + 211.427w4 = –64.286

 The solution to the above simultaneous equations is
 w3 = 1.838 m and w4 = 1.000 m and the full displacement vector 
is
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normalised vector for the first mode as

 y
1

2

3

4

0 544

1 000

0 544

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
+
+
+

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

w

w

w

.

.

.

 (12.28)

 Similarly, for w2 = 445.432 rad/s, the normalised vector for the 
mode 2 is
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 (12.29)

and for w3 = 732.209 rad/s, the normalised vector for mode 3 is
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 (12.30)
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 Equations (12.28), (12.29), and (12.30) are combined together 
to form the modal matrix, y, whose columns are the normalised 
mode shapes of vibration, thus

 y y y y
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(12.31)

 The three modes of natural vibration of the fixed-fixed beam are 
shown in Fig. 12.11.

Mode 1 Mode 2 Mode 3 

Figure 12.11 Mode shapes for the fixed ended beam.

12.6.2  Vibration of Beams Due to Harmonic Force 
Excitation

In practice, beams are subjected to some form of dynamic loading 
during their life in service and their behaviour in such circumstances 
must be investigated.
 It will be assumed that there is no damping present in the system 
making the analysis less involved but in practice there is always 
some form of damping that is taken into account.
 When an exciting force p(t) is acting on the system the equation 
of dynamic equilibrium will be

 - - + ( ) =M Kw p tw 0  (12.31)

where the acceleration, w d w

dt
=

2

2
.

 In order to save on space, we will use the results obtained 
from the previous example on free vibration of beams but with the 
addition of an exciting force.
 Assume that a harmonic exciting force p = posinWt is applied in 
the z-direction at node 2 so the column vector of force excitation is 
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p(t)
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, then the equation of motion is
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(12.32)

 Each of the above three simultaneous differential equations 
contains the three variables w2, w3, and w4, i.e. they are coupled and 
in order to find their solutions they require to be decoupled. The 
decoupling is particularly useful when dealing with a large number 
of simultaneous differential equations as explained below.
 Transform the differential equations (12.32) to modal 
coordinates by introducing a new variable x such that w = yx, thus

 w

w

w

w

=
È

Î

Í
Í
Í

˘

˚
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˙

2
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4

, x
x
x
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Í
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˘

˚

˙
˙
˙

2

3

4

,  w = yx , 

and the modal matrix, y = [y1 y2 y3].
 Substitute in (12.31) and pre-multiply by yT to get,

 y yx y yx yT T T
M K p t
+ = ( )  (12.33)

where yTp(t) is called the modal force vector.
 The vibration modes ψ are orthogonal with respect to 
the mass and stiffness matrices, i.e. y y

i

T

j m ij
M m= =( ) 0  and 

y y
i

T

j m ij
K k= =( ) 0  for i jπ  and for i = j, y y

i

T

i m ii
M m= ( )  and 

y y
i

T

i m ii
K k= ( ) . Consequently, yTMY = Mm and yTKy = Km where 

Mm and Km are called modal mass matrix and modal stiffness matrix 
respectively and they are both diagonal matrices with the values of 
(mm)ii and (km)ii on their diagonals respectively.
 It is more convenient to transform the modal mass matrix, Mm 
into a unit matrix by modifying the modal vectors using scaling 
factors which will not alter the relative values of the mode shapes.

 Let the modified modal matrix, f = ym where m
m
m
m

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

1

2

3

 and  
y = [y1 y2 y3] such that
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 f f f f y y y
m
m
m

m y m y m y= ÈÎ ˘̊ = ÈÎ ˘̊
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1 1 2 2 3 3
. 

 We have, yTMy = Mm and to modify Mm and make it equal to the 
unit matrix, I, we should have fTMf = I from which the values of m1, 
m2, and m3 can be calculated and hence the modified modal matrix 
from the relation f = ym with y as given by (12.31)
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 The above relation is simplified to
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 The quantities off the diagonal should be zeros and their small 
values that resulted from the multiplication operation are due to 
rounding of the numbers and they are ignored and shown equal to 
zero, hence
 m

1
1 1375 377 0 026964= =/ . . , m

2
1 1728 0 024056= =/ . , and
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 The stiffness matrix Kc was found from previous calculations, 
and dropping the subscript c for simplicity, as
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 The small off-diagonal coefficients in Km and Mm are not exactly 
zero, as they should be, due to rounding of the numbers and hence 
they are ignored.
 Notice that the values of the coefficients in the diagonal of the 
above stiffness matrix are equal to those values of w2 calculated 
previously from the free vibration of the beam from the general 
relationship (K – w2M)d = 0 which gives Km – w2Mm = 0 and with  
Mm = I leads to
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 This also serves as a check on the values of w obtained previously.
 Replace y fby  in (12.33) to get,

 f fx f fx fT T T
M + K = p(t)
  (12.33a)

 M K p(t)
m m

T
x x f+ =  premultiply by M

m

-1

 x x f+ =- -
M K M p(t)

m m m

T1 1  (12.34)

where M I
m

- =1 , M K K
m m m

- = =1 2w  and the right-hand side of the 
equation is simplified as
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 Substitute in (12.34) and write in matrix form to get
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 The general solutions of the above set of differential equation 
are,
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 The constants C1 to C6 are found from the initial conditions as 
follows:
 We have w = fx, pre-multiply by f–1 to get x = f–1w and  x f= -1

w .  
The calculations for determining the inverse of f can be avoided by 
using the previous relation fTMf = Mm and Mm = I, hence fTMf = I, 
post-multiply both sides by f–1 to get fTM = f–1 hence x = fTMw, thus

 xo = fTMwo and  x f
o

T

o
Mw=  with
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 The above result could have been written by inspection, but it is 
shown here for generality of the principles, particularly when the 
initial conditions differ from wo = 0 and w

o
= 0 .  Consider (12.36a) 

x2o = 0 therefore, C2 = 0
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 x
w W

W
w

w W
2

3

1

2 2
1

1

14 668 10
=

¥
-

- +
Ê
ËÁ

ˆ
¯̃

-
. p

sin sin t
o

Vibration of Beams



484 Vibration of Beams and Frames

 Similarly

 x
w W

W
w

w W
3

3

2

2 2
2

2

24 056 10
=

¥
-

- +
Ê
ËÁ

ˆ
¯̃

-
. p

sin t sin t
o

 x
w W

W
w

w W
4

3

3

2 2
3

3

19 066 10
=

¥
-

- +
Ê
ËÁ

ˆ
¯̃

-
. p

sin t sin t
o

 w

w

w

w

=
È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= =
È

Î

Í
Í
Í

˘

˚

˙
˙

2

3

4

11 12 13

21 22 23

31 32 33

fx
f f f
f f f
f f f ˙̇

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
+ +
+ +

x
x
x

f x f x f x
f x f x f x
f x

2

3

4

11 2 12 3 13 4

21 2 22 3 23 4

31 2
++ +

È

Î

Í
Í
Í

˘

˚

˙
˙
˙f x f x

32 3 33 4

 

w

w

w

2

3

4

0 014668 0 024056 0 019066

0 026964 0 0 02074

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

= -
. . .

. . 66

0 014668 0 024056 0 019066

14 668 10
3

1

2 2

. . .

.
(

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

¥
-

-
-

p
o

w W
WW
w

w W

w W
W
w

w W

1

1

3

2

2 2
2

2

24 056 10

19 0

sin t sin t

p
sin t sin t

o

+

¥
-

- +
-

)

.
( )

. 666 10
3

3

2 2
3

3

¥
-

- +

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

-
p

sin t sin t
o

w W
W
w

w W( )

 The values of w were found earlier as: w1 = 167.660 rad/s,  
w2 = 445.432 rad/s, and w3 = 732.209 rad/s and assume that po = 
90000 N and W=140 rad/s we get
  w2 = 10–3[–0.012 sin(732.209t) – 0.092 sin(445.432t) – 1.900 

sin(167.660t) + 2.630 sin(140t)]
  w3 = 10–3[0.013 sin(732.209t) – 3.493 sin(167.660t) + 4.114 

sin(140t)]
  w4 = 10–3[–0.012 sin(732.209t) + 0.092 sin(445.432t) – 1.900 

sin(167.660t) + 2.048 sin(140t)]
 A plot of w2 and w3 against time is shown in Fig. 12.12.
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Figure 12.12 Vertical deflection against time, (a) at node 2 and (b) at node 3.

 The inertia forces that act on the beam at the nodes is calculated 
from the product of the mass at the node times the acceleration w  
which is obtained from the second derivative of the displacement w 
at that node.

12.7  Vibration of Rigidly Connected Plane 
Frames

Buildings are constructed of frames that consist of beams and 
columns where the beams support the floor slabs and are connected 
to the supporting columns. Shear frames are defined as frames that 
resist horizontal forces by the shear stiffness of their columns and 
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the rigid connections between their beams and columns as opposed 
to frames with some type of cross bracing. In the vibration analysis 
of such frames, the horizontal floors together with their supporting 
beams are assumed to have infinite rigidity such that there is no 
rotation of the joints. The frame of the building is idealised as a 
vertical member with concentrated masses at the joints where the 
floor beams are connected to the columns. Each of the concentrated 
masses consists of the mass of the floor at that level plus the mass of 
half of the column length below and half above that level. The axial 
deformation of the columns is ignored and the joints are assumed 
to be fully restrained against rotation but they can displace in the 
x-direction. This idealisation is commonly used in the analysis of 
the response of building frames to earthquake excitation due to 
time varying base motion. The resulting model will have a reduced 
number of degrees of freedom leading to a significant computer time 
saving.
 Consider a fixed ended vertical element with lateral displacements 
at the fixed ends as shown in Fig. 12.13.

L

deformed shape

j

i

θj = 0

θi = 0

ui

Xi

Xj

uj
initial shape of column

Figure 12.13 Vertical element (moments are not shown for clarity).

 The stiffness matrix for a rigidly connected plane frame member 
derived in Chapter 5 as given by (5.7) can be modified for the 
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column shown in Fig. 12.13 where xij = 0 and zij = L. Applying the end 
conditions of qi = 0 and qj = 0 and ignoring axial displacement, i.e.  
vi = 0 and vj = 0 will result in the following equations:

 X
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u
i i j

= + -
12 12

3 3
 (12.21)
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 (12.24)

 The moments at the ends of the member are not of interest in this 
case therefore, they are not considered. The resulting matrix, which 
represents the lateral stiffness of the column, is given by (12.21) and 
(12.23) as:
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Example 3:

Calculate the frequencies and mode shapes of natural vibration of 
the shear frame shown in Fig. 12.14 using the following data: The 
masses of floors including the contribution of columns are: m2 
= 9000 kg, m3 = 8000 kg, and m4 = 6000 kg. The properties of the 
columns are: I1 = 95 ¥ 10–6 m4, I2 = 61 ¥ 10–6 m4, I3 = 46 ¥ 10–6 m4, 
L1 = 5.0 m, L2 = 4.5 m, L3 = 4.0 m, r = 7850 kg/m3, and E = 210 ¥ 109 
N/m2.

Vibration of Rigidly Connected Plane Frames
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(b) Analysis model
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4
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(a) Shear frame
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m4

A B

C

D

E

F

G

H

6.0 m

k3 = kEG + kFH

k2 = kCE + kDF

k1 = kAC + kBD

Figure 12.14 Modelling of a shear frames.
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u1 u2 u3 u4

k
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1 k
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1 0 0 u1
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1 2+ k
ij

2 0 u2
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2
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jj ii

2 3+ k
ij

3 u3

0 0 k
ji

3
k

jj

3 u4

 Apply the boundary condition of u1 = 0, i.e. delete row 1 and 
column 1 to get:
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 Substitute in (12.8) to get

 

10

7204 3374 0

3374 6996 3622

0 3622 3622

9000 0 0

0 8
3 2

-
- -

-

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

- w 0000 0

0 0 6000

0

0

0

2

3

4

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

È

Î

Í
Í
Í

˘

˚

˙
˙
˙

=
È

Î

Í
Í
Í

˘

˚

u

u

u

˙̇
˙
˙

 

(12.25)
 Let l = w2 and equate the determinant of the above matrix to 
zero to get
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 432 ¥ 109(–l3 + 22.79 ¥ 102l2 – 127.97 ¥ 104l + 108.35 ¥ 106) = 0

 The roots of the above equation are: l1 = 102.56, l2 = 730.82, and 
l3 = 1445.62.

 w l= ;  w l
1 1

102 56 10 13= = =. . /rad s ,

 w l
2 2

730 82 27 03= = =. . /rad s , and

 w l
3 3

1445 62 38 02= = =. . /rad s

 The normalised vibration modes are calculated from (12.25) for 
the different values of w in a similar way to the previous example as

 Mode 1, w1 = 10.13 rad/s, 
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 Mode 2, w2 = 27.03 rad/s, 
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 Mode 3, w3 = 38.02 rad/s, 
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 The three vibration modes of the frame are shown in Fig. 12.15.

Mode  2 Mode  3Mode  1

Figure 12.15 Vibration modes for shear frame.

 If the axial compressive force in the columns is considered, the 
elastic stiffness matrix will decrease leading to lower values of w. On 
the other hand, if the axial force is tensile, the elastic stiffness matrix 
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will increase and the resulting natural frequencies of vibration will 
be higher.
 Buildings located within a seismic zone are subjected to forces 
resulting from the ground motion in an earthquake. The vibration 
analysis follows the same principles as those for a single degree of 
freedom due to base motion as discussed in Section 12.2.2 with the 
inertia forces assumed to act at floor levels. A further complication 
arises from the fact that the ground motion in an earthquake is 
random and not as simple as, for example, a sine function that can 
be integrated analytically. This means that for the determination 
of earthquake forces acting on a building frame the differential 
equations governing the motion are integrated numerically step by 
step in small time increments to obtain the system response and 
hence the forces. The process is not suitable for hand calculations 
particularly for frames with large number of degrees of freedom 
for which specialised computer software or standard approximate 
procedures are usually used in practical design situations.

Problems

 P12.1  Use the lumped mass method to calculate the natural 
frequencies and the corresponding modes of vibration 
of the pin-connected plane frame shown in Fig. P12.1 for 
the data shown below. The roller at support 4 can move 
in the x-direction but is restrained from movement in the 
z-direction during vibration. The properties of the members 
of the frame are: A1 = A2 = A3 = 0.003 m2, E = 70 × 109 N/m2, 
and ρ = 2600 kg/m3.

2

roller support
pin support

1 3

2 3

1

1 m

3 m

Figure P12.1 

Problems
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Answer:

 Mode 1, w1 = 1398.28 rad/s, 
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 Mode 2, w2 = 2694.15 rad/s, 
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 Mode 3, w3 = 3923.87 rad/s, 
u

w

u
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.
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 P12.2 Calculate the natural frequencies and the corresponding 
modes of vibration of the beam shown in Fig. P12.2 which 
is fixed at node 1 and simply supported at node 4 using the 
lumped mass method. Determine the response of the beam 
if it starts from rest, i.e. w = 0 and w = 0  and acted upon by 
a force p(t) = po cosWt at node 3 in the z-direction. Use the 
following data: A = 0.008 m2, I = 0.000162 m4, ρ = 7850 kg/
m3, E = 210 × 109 N/m2, po = 60000 N and W = 500 rad/s.

1.8 m 1.8 m 1.8 m

1 2

1 2

3 4

3

Figure P12.2 Fixed-pin beam.

Answer:

w2 w3 q2 q3 q4

140.0 –70.0 0 –63.0 0 w2

 –70.0 140.0 63.0 0 –63.0 w3

K = 106 0 63.0 151.2 37.8 0 q2

–63.0 0 37.8 151.2 37.8 q3

0 –63.0 0 37.8 75.6 q4
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 Mode 1: w1 =  387.418 rad/s,  y
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 Mode 2: w2 =  1151.773 rad/s,  y
1
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1 0000
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+ +
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È

Î
Í

˘

˚
˙

0 0530 0 0777

0 0777 0 0530

. .

. .
, M

m
=
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˚
˙

1 0

0 1
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 K
m

=
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Î
Í

˘

˚
˙10

0 1501 0

0 1 3266

6
.

.

  w2 = 10–3 [2.473 cos(387.418t) + 0.230 cos(1151.773t) –2.703 
cos(500t)]

  w3 = 10–3 [3.626 cos(387.418t) – 0.157 cos(1151.773t) –3.469 
cos(500t)].

 P12.3 Calculate the frequencies and mode shapes of natural 
vibration of the shear frame shown in Fig. P12.3 using the 
lumped mass method and the following data: The masses of 
floors including the contribution of the columns are: m2 = 
12000 kg, m3 = 14000 kg, and m4 = 8000 kg. The properties 
of the columns are: I1 = 0.0017 m4, I2 = 0.0015 m4, I3 = 0.0012 
m4, L1 = 6 m, L2 = 5 m, L3 = 4 m, and E = 24 × 109 N/m2.

Problems
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m2

m3

m4

A B

D

E

G I

J

H

C

F

K

L

6 m

5 m

4 m

7.0 m 5.0 m

Figure P12.3 

Answer:
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 Mode 2: w2 =  117.95 rad/s, 
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 Mode 3: w3 =  178.50 rad/s, 
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In Chapter 1, the stiffness matrix was derived using direct relationship 
between the force acting on a bar of uniform cross section and the 
resulting displacement. A more general procedure may be employed 
based on assuming a polynomial to represent the variation of 
displacement along the bar. The degree of the polynomial is chosen 
so as to satisfy a certain state which in this case is a constant strain 
along the bar, i.e. ∂ ∂u x/  = constant and this condition is satisfied by 
the polynomial
 u a a x

0
= +

1
.  (A1.1)

 The above equation defines the displacement u  at a distance x   
from node i as shown in Fig. A1.1. The constants a0 and a1 are found 
from the boundary conditions at the ends of the bar, i.e. in terms of 
the displacements at nodes i and j as follows:
 At x u u hence a u

i o i
= = =0, , .

 
At x L u u thus u u a L which gives

a
u u

L

j j i

j i

= = = +

=
-

, , ,

.

1

1

 Therefore (A1.1) becomes, u u
u u

L
x

i

j i= +
-Ê

ËÁ
ˆ

¯̃
, which can be 

written as

 u
x

L
u

x

L
u

i j
= -Ê

ËÁ
ˆ
¯̃

+1 .  (A1.2)

 The above equation is called interpolation polynomial and the 
quantities ( / )1 - x L  and x L/  are called shape functions.
 The gain in strain energy in a bar subjected to an axial force X is 
given by:

Appendix 1

Bar Stiffness Matrix
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dx where X A E A and the strain

du

dx

S

L

= = =

=

Ú
0

2

2
, ,s e

e

 E EA
du

dx
dx and with

du

dx

u

L

u

L
S

L

i j= Ê
ËÁ

ˆ
¯̃

= - +Ú
0

2
1

2
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 E
EA

L
u u u u

S i i j j
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(a)
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Figure A1.1 (a) Bar element and (b) variation of u  with x .

 The work done by the actions at the ends of the element
 E X u X u

W i i j j
= - +( )  (the minus sign because it is a loss in 

potential energy).
 The total potential energy, ET = ES + EW

 E
EA

L
u u u u X u X u

T i i j j i i j j
= - +( ) - +( )

2
2

2 2
.

 For the total potential energy to be minimum, its partial derivative 
with respect to the displacements is zero, i.e.

 From 
∂
∂

= -( ) - =
E

u
we get

EA

L
u u X

T

i

i j i
0

2
2 2 0, ,  therefore
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 EA

L
u u X

i j i
-( ) = .  (A1.3)

 From 
∂
∂

= - +( ) - =
E

u
we get

EA

L
u u X
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i j j
0

2
2 2 0, ,  therefore
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i j j
- +( ) = .  (A1.4)

 Equations (A1.3) and (A1.4) are written in matrix form as
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.  (A1.5)
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A2.1 Bending about the y-axis

In Chapter 4, the stiffness matrix for a beam element was derived 
using Castigilano’s theorem to find a relationship between the 
actions at the ends of the beam and the resulting displacement. A 
more general procedure may be employed based on assuming a 
polynomial (interpolation function) to represent the variation of 
displacement along the beam.
 We have from the theory of bending of beams

 n
dV

dx
V

dM

dx
and M EI

d w

dx

hence EI
d w

dx

n
y y

= - = = - =, ,

2

2

4

4

where n is the load intensity, V  is the shear force, and M  is the 
bending moment.
 For any part of the beam where there is no load, n = 0, hence

 d w

dx

4

4
0= .

 A suitable choice for the interpolation polynomial which satisfies 
the above condition (i.e., its fourth derivative is equal to zero) may 
take the following form

 w a a x a x a x
o

= + + +
1 2

2

3

3
.  (A2.1)

 The positive rotation q  about the y -axis is equal to the negative 
slope of the deflection curve in the xz  as shown in Fig. A2.1.

Appendix 2

Beam Stiffness Matrix
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L
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node i node j
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x

wwi
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z, z
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Shape after

deformation 

–

–
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–
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–
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Figure A2.1 Beam element in the xz  plane.

 q = - = - - -
dw

dx
a a x a x

1 2 3

2
2 3 .  (A2.2)

 At x w w and
i

= = =0, , .q qi

 From (A2.1) we get, w a
i o

=   (A2.3)

 From (A2.2) we get,  qi a= -
1

  (A2.4)

 At x L w w and
j j= = =, , .q q

 From (A2.1) we get, w a a L a L a L
j o
= + + +

1 2

2

3

3
.   (A2.5)

 From (A2.2) we get, qj a a L a L= - - -
1 2 3

2
2 3 .   (A2.6)

 Solving the simultaneous equations (A2.3) to (A2.6) for the 
unknowns a0, a1, a2, and a3 and substituting them in equation (A2.1) 
and rearranging to get
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 The gain in strain energy in bending is given by:
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 The work done by the forces and moments at the end nodes of 
the element
 E Z w M Z w M

W i i i i j j j j= - + + +( )q q  (the minus sign because it is a 
loss in potential energy).
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 For minimum total potential energy we must have,
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 Equations (A2.8) to (A2.11) are written in matrix form as:
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 (A2.12)

 The above relationship is the same as that derived by Castigliano’s 
method as shown in Chapter 4.

A2.2 Bending about the z-axis

For bending about the z -axis, the same procedure is followed with 
the assumed interpolation function for the deflection polynomial as:

 v a a x a x a x
o

= + + +
1 2

2

3

3  (A2.13)
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 The positive rotation Y  about the z -axis shown in Fig. A2.2 is 
equal to the positive slope of the deflection curve in the xy  plane, 
thus

 Y = + = + +
dv

dx
a a x a x

1 2 3

2
2 3 .  (A2.14)
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Figure A2.2 Beam element in the xy  plane.

 And the resulting stiffness matrix is:
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i  (A2.15)

 Notice the change in sign of some of the coefficients in the above 
matrix in comparison with the matrix for bending about the y-axis.

Beam Stiffness Matrix
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In Chapter 7, the stiffness matrix for a uniform bar subjected to 
torques acting at its ends was derived using the direct relationship 
between the torques and the resulting angles of twist. This appendix 
employs an alternative approach based on assuming a polynomial to 
represent the variation of angle of twist along the bar. It is assumed 
that the rate of change of angle twist is constant along the bar, i.e. 
∂ ∂F / x  = constant. To satisfy this condition the linear interpolation 
polynomial given by (A3.1) is used to define the angle of twist F  at 
a distance x  from node i as shown in Fig. A3.1.

Ti
Φi Φj Tj

Φi
Φj

x, x
i j

L
x

Φ

(a)

(b)

– – –

–

– – –

–

–

Figure A3.1 (a) Bar element and (b) variation of angle of twist F  with x .

 F = +a a x
o 1

.  (A3.1)

 The constants a0 and a1 are found from the boundary conditions 
at the ends of the bar, i.e. in terms of the angles of twist at nodes i and 
j as follows:

Appendix 3

Bar Torsion Matrix
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 At x hence ai o i= = =0, , .F F F

 At x L thus a L which gives a
L

j j i

j i= = = + =
-

, , , , .F F F F
F F

1 1

 Therefore (A3.1) becomes F F
F F

= +
-Ê

ËÁ
ˆ

¯̃
i

j i

L
x,  which can be 

written as

 F F F= -Ê
ËÁ

ˆ
¯̃

+1
x

L

x

L
i j .  (A3.2)

 The above equation is called interpolation polynomial and the 
quantities ( / )1 - x L  and x L/  are called shape functions.
 The gain in strain energy in a bar subjected to torque T  is given 
by:

 E
T

GJ
dx where T GJ

d

dx
S

L

= =Ú
0

2

2
,

F

 E GJ
d

dx
dx and with

d

dx L L
S

L

i j=
Ê

ËÁ
ˆ

¯̃
= - +Ú

0

2

1

2

F F F F
,  from (A4.2) we 

get

 E
GJ

L
S i i j j= - +Ê

Ë
ˆ
¯2

2
2 2

F F F F .

 The work done by the actions at the ends of the element
 E T T

W i i j j= - +( )F F  (the minus sign because it is a loss in 
potential energy).
 The total potential energy, ET = ES + EW

 E
GJ

L
T T

T i i j j i i j j= - +Ê
Ë

ˆ
¯ - +( )

2
2

2 2

F F F F F F .

 For the total potential energy to be minimum, its partial derivative 
with respect to the angles of twist is zero, i.e.

 From 
∂
∂

= -( ) - =
E

we get
GJ

L
T

T

i

i j iF
F F0

2
2 2 0, ,  therefore

 GJ

L
Ti j i

F F-( ) = .  (A3.3)
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 From 
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i j jF
F F0

2
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 Equations (A3.3) and (A3.4) are written in matrix form as
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A4.1 Stability of Struts

Consider the strut shown in Fig. A4.1a which is pinned at its ends 
A and C and subjected to an axial compressive force P . The strut is 
initially straight but when P  is applied such that the strut buckles, 
bending will develop, and the strut will take the shape of a curve. 
The length of the neutral axis which is equal to the initial length of 
the straight strut is unchanged. Therefore, the pin at end A will have 
to move by an amount D and take the position B to accommodate the 
buckled curved shape.
 The magnitude of D which is also the distance moved by P  
will be required in the formulation of the energy equation and is 
determined as follows:
	 Consider	the	infinitesimal	length	ds  of the buckled curve shown 
in Fig. A4.1b. As dx  gets smaller and smaller the length of the 
straight line (ac) which connects the ends of the curve will approach 
the curved length ds , thus

 ( ) ( ) ( )ds dx dw
2 2 2= +

 ds dx
dw

dx
= + Ê

ËÁ
ˆ
¯̃

È

Î
Í
Í

˘

˚
˙
˙

1

2

1

2

	 Using	 the	 Taylor-Maclaurin	 infinite	 series	 expansion	 of	 the	
quantity inside the square brackets we get

 ds dx
dw
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Appendix 4

Strut Stiffness Matrix
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Figure A4.1 Pin ended strut subjected to an axial force P .

	 The	 deflection	 w  is small and so the slope dw dx/  of the 
deflection	curve	is	small	such	that	its	high	powers	are	neglected	and	
only	the	first	two	terms	of	the	above	series	are	considered.

 ds dx
dw

dx
dx= + Ê

ËÁ
ˆ
¯̃

1

2

2

 The total length of the curve, S, can be found by integration as:
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2

 Since the strain along the centroidal (neutral) axis is zero the 
length of the curved strut is the same as the original straight length, 
i.e. S = L, hence

 L L
dw

dx
dx

L

= - + Ê
ËÁ

ˆ
¯̃Ú( )D

D

1

2

2
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 But w  and dw dx/  are zero in the range of x = 0  to x = D , 
therefore
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=
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dx hence,

 D = Ê
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ˆ
¯̃Ú
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2
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2

L

dw

dx
dx.  (A4.1)

A4.2 Stability of Beam-Columns

Now consider the general case of a strut where there are lateral forces 
and moments acting at the ends in addition to the axial compressive 
force P , the socalled beam-column as shown in Fig. A4.2.

L

i

j

node i node j

initial shape

shape after deformation

x

wwi

wj
Zj

Zi

Mi

Mj

x, x

z, z

θi

θj P

P

–

–
–

–
–

–

–

–

–

–

–

–
–

–

Figure A4.2 Beam-column element.

 Assume that the beam-column ends i and j are subjected to forces 
Z

i
 and Z

j
 and moments M

i
 and M

j
, respectively. In addition, an axial 
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compressive force of magnitude P  has developed in the member. 
The presence of P  will cause an increase in the displacements w  
and q 	reflecting	a	reduction	in	the	bending	stiffness	of	the	member.	
For small values of the axial force this reduction is small and can 
be neglected. But as the load increases the reduction in bending 
stiffness	 becomes	 significant	 and	 has	 to	 be	 taken	 into	 account.	
Furthermore, at a critical value of the axial compressive force, the 
bending stiffness is reduced to zero causing the strut to become 
unstable. So, the behaviour of the member is essentially nonlinear 
since the bending stiffness is progressively reduced as the axial force 
increases.
 The gain in strain energy due to bending is

 E
M

EI
dx but M EI

d w

dx
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L

y

y
= = -Ú
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2 2

22
, ,  hence
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.

 The work done by the actions at the ends of the element is

 E P Z w M Z w M
w i i i i j j i i= - D + + + +( ),q q  with ∆ from (A4.1)

(the minus sign because it is a loss in potential energy).
 The total potential energy, ET = ES + EW
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(A4.2)

	 The	deflection	equation	 is	derived	 in	Appendix	3	and	given	by	
the	interpolation	polynomial	(A3.7)	as
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 Substituting dw dx/  and d w dx
2 2

/ , as found from the above 
equation, into (A4.2) and integrating to get an expression for the 
total potential energy, ET.
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 For the total potential energy, ET, to be minimum requires that

 
∂
∂

=
∂
∂

=
∂
∂

=
∂
∂

=
E

w

E E

w
and

E
T

i

T T

j

T

j

0 0 0 0, , , .

q qi

 The above four conditions lead to the following relationships

 Z
EI

L

w L w L P
L

w
L

w
i

y

i j j i i j j= - - -( ) - - - -Ê
ËÁ

ˆ
3

12 6 12 6
6

5

1

10

6

5

1

10
q q q qi ¯̃̄

 M
EI

L

Lw L Lw L P w
L

w
L

i

y

i j j i i j
= - + + +( ) - - + + -

3

2 2
6 4 6 2

1

10

2

15

1

10 30
q q q qi jj

Ê
ËÁ

ˆ
¯̃

 Z
EI

L

w L w L P
L

w
L

w
j

y

i i j j i i j j= - + + +( ) - - + + +Ê
Ë3

12 6 12 6
6

5

1

10

6

5

1

10
q q q qÁÁ

ˆ
¯̃

 M
EI

L

Lw L Lw L P w
L

w
L

j

y

i j j i i j
= - + + +( ) - - - + +

3

2 2
6 2 6 4

1

10 30

1

10

2

15
q q q qi jj

Ê
ËÁ

ˆ
¯̃

 The above four relationships are written in matrix form as
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A4.3 Stability of Frames
In the analysis of rigid frames when axial strains are considered, an 
additional relationship is included to take into account that effect as 
given by the following matrix which is given by Eq. (2.4) in Chapter 2
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Strut Stiffness Matrix
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	 The	matrices	given	by	(A4.3)	and	(A4.4)	are	combined	to	give	the	
general stiffness matrix for the nonlinear (second order) analysis of 
rigid frames as
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 For members whose local x -axis does not lie along the global 
x-axis then matrix transformation will be used to convert the 
stiffness matrix from local to global coordinates.



Consider a beam member (or element) which is fixed at its ends and 
subjected to an arbitrary loading as shown in Fig. A5.1.

j

(Zi)f

joint i
A B

i j

(Zj)f

(Mi)f (Mj)f

(Zi)s (Zj)s

(Mi )s (Mj)s

loading

x

z–

–

–

– –

–

Figure A5.1 

 The forces and moments acting on the beam at its ends will be 
called actions on the beam with the subscript ‘f ’ and are shown 
in the positive direction. From equilibrium at the joints the forces 
and moments acting on the joints are in the opposite direction to 
those acting at the ends of the beam and will be called loads on 
the joint with the subscript ‘s’. Four standard cases of loading are 
explained below. Other common forms of loading may be dealt with 
by superposition of the appropriate standard cases.

Appendix 5

Fixed End Moments and Forces
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A5.1  Case 1: One Lateral Concentrated Load at 
Any Point along the Span of the Beam

(i) Both Ends of the Beam Are Fixed
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i j

a

L

b

W 

j

(Zi)f

joint  i
A B

i j

(Zj)f

(Mi)f (Mj)f

(Zi)s (Zj)s

(Mi)s (Mj)s

a b

L

W 
– –

– –

Figure A5.2 

 Actions on the beam:

 ( ) ( ), ( )Z
Wb

L
L ab a M

Wab

L
i f i f= - + - = +

3

2 2
2

2

 ( ) ( ), ( )Z
Wa

L
L ab b M

Wa b

L
j f j f= - + - = -

3

2 2
2

2

 In matrix form, the action vector Ff  on the beam is:
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 F

Z

M

Z

M

Wb

L
L ab a

Wab

f

i f

i f

j f

j f

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

- + -( )
+

( )

( )

( )

( )

3

2 2

2

LL

Wa

L
L ab b

Wa b

L

2

3

2 2

2

2

- + -( )
-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 From equilibrium at the joints F Fs f= - , where Fs  is the load 
vector on the joints and is obtained simply by reversing the sign of 
the action vector. Thus:

 F

Z

M

Z

M

Wb

L
L ab a

Wab

s

i s

i s

j s

j s

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

+ + -( )
-

( )

( )

( )

( )

3

2 2

2

LL

Wa

L
L ab b

Wa b

L

2

3

2 2

2

2

+ + -( )
+

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 For the special case of a beam with a concentrated load at mid-
span, substitute a = b = L/2 to get

 ( ) , ( ) , ( ) , ( )Z
W

M
WL

Z
W

M
WL

i f i f j f j f= - = + = - = -
2 8 2 8

(ii)  One End of the Beam Is Fixed and the Other Is Pinned

 Actions vector on the beam is

 F

Z

M

Z

M

Wb

L
L b

Wab

Lf

i f

i f

j f

j f

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

- -

+

( )

( )

( )

( )

( )
2

3

2

3

2 2

22

3

2

2
3

0

( )

( )

L b

Wa

L
La a

+

- -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
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a

L

b

W 

i j

pinned end�ixed end

j

(Zi)f

joint  i
A B

i j

(Zj)f

(Mi)f

(Zi)s (Zj)s

(Mi)s 0 0

a b

L

W 
–

– –

Figure A5.3

 Load vector on the joint: F Fs f= -

 F

Z

M

Z

M

Wb

L
L b

Wab

Ls

i s

i s

j s

j s

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

+ -

-

( )

( )

( )

( )

( )
2

3

2

3

2 2

22

3

2

2
3

0

( )

( )

L b

Wa

L
La a

+

+ -

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

 Special case when the load is at mid-span, substitute a = b = L/2 
to get

 ( ) , , ( ) , ( )Z
W

(M )
WL

Z
W

Mi f i f j f j f= - = + = - =
11

16

3

16

5

16
0
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A5.2  Case 2: Uniformly Distributed Lateral Load 
Covering Part of the Span of the Beam

(i) Both Ends of the Beam Are Fixed

i j

a

L

b c

n (per unit length)

j

(Zi)f

joint  i i j

(Zj)f

(Mi)f (Mj)f

(Zi)s (Zj)s

(Mi)s (Mj)s

a

L

b c

n– –

––

Figure A5.4 

 Action vector on the beam:

 F

Z

M

Z

M

n

L
L a b c bc

f

i f

i

j f

j f

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

- - + + +

( )

( )

( )

( )

(
2

2
3

2 2 2 2 ))

( )( ) ( )

+ - - +È
Î

˘
˚

+ - + - -È
Î

˘
˚

-

2

12
3 4 3

2

3 3 4 4

2

3 3

L(a c ) a c

n

L
L a L a c L c

n

L33

2 2 2 2 3 3 4 4

2

3

2 2

12
3

L a b c ab L(a c ) a c

n

L
L c L c a

( )

( )( )

+ - + - - + -È
Î

˘
˚

- - + - 33 4 3( )L a-È
Î

˘
˚

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 Load vector on the joint:

Fixed End Moments and Forces
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 F

Z

(M )

Z

M

F

n

L
L a b c

s

i s

i s

j s

j s

s=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

= - =

+ - + +

( )

( )

( )

(
2 3

2 2 2 22 3 3 4 4

2

3 3

2 2

12
3 4 3

+ + - - +È
Î

˘
˚

- - + - -È
Î

˘

bc L(a c ) a c

n

L
L a L a c L c

)

( )( ) ( )˚̊

+ + - + - - + -È
Î

˘
˚

+ - +

n

L
L a b c ab L(a c ) a c

n

L
L c L

2
2 2

12

3

2 2 2 2 3 3 4 4

2

3

( )

(( ) 33 4 33c a L a) ( )- -È
Î

˘
˚

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙
˙

 For the special case of a uniformly distributed load covering the 
whole length of the beam substitute a = 0, c = 0, and b = L to get

 ( ) , , ( ) , ( )Z
nL

(M )
nL

Z
nL

M
nL

i f i f j f j f= - = + = - = -
2 12 2 12

2 2

 Any combination of concentrated load(s) and uniformly 
distributed load(s) can be dealt with by superposition of the 
standard cases discussed in the previous examples.

(ii) One End of the Beam Is Fixed and the Other Is Pinned

i j

a

L

b c

n (per unit length)
pinned end�ixed end

j

(Zi)f

joint  i
i j

(Zj)f

(Mi)f

(Zi)s (Zj)s

(Mi)s

a

L

b c

n

0 0

–

– –

Figure A5.5 
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 Action vector on the beam:

 F

Z

M

Z

(M

nb

L
b c L b

f

i f

i f

j f

j f

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

- + - -
( )

( )

( )

( )(

)

8
2 6

3

2 2 22 2

8
2 2 2 2

8
8 2 4

2

2

2 2 2 2

3

2

c bc

n

L
L b c bc b bc

nb

L
L a b c

-

+ - - - +

- + - +

)

( )( )

[ ( ) bbc( b c) b c4 6 4

0

3 3+ + +

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

( )]

 Load vector on the joint:

 F

Z

(M )

Z

M

nb

L
b c L b

s

i s

i s

j s

j s

=

È

Î

Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙

=

+ + - -
( )

( )

( )

( )(
8

2 6
3

2 2 22 2

8
2 2 2 2

8
8 2 4

2

2

2 2 2 2

3

2

c bc

n

L
L b c bc b bc

nb

L
L a b c

-

- - - - +

+ + - +

)

( )( )

[ ( ) bbc( b c) b c4 6 4

0

3 3+ + +

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

( )]

 Special case when the uniformly distributed load covers the 
whole span substitute a = 0, c = 0, and b = L to get

 ( ) , , ,Z
nL

M
nL

Z
nL

Mi f i f j
f

j
f

= - ( ) = + ( ) = - ( ) =
5

8 8

3

8
0

2

A5.3  Case 3: One Longitudinal Concentrated 
Load at Any Point Along the Span of the 
Beam

(Xi)f a b

jjoint i
X

i j(Xi)s (Xj)f (Xj)s
– – – –

Figure A5.6 
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 ( ) ( )X
Xb

L
and X

Xa

L
i f j f= - = -

 
( )

( )

X

X

Xb

L

Xa

L

i f

j f

È

Î
Í
Í

˘

˚
˙
˙

=
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 From equilibrium at the joints, i.e. ( ) ( )X Xi s i f= -  and 
( ) ( )X Xj s j f= -

 
( )

( )

X

X

Xb

L

Xa

L

i s

j s

È

Î
Í
Í

˘

˚
˙
˙

=
+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

 For the special case of the load at mid-span, i.e. a = b = L/2

 ( ) ( )X
X

and X
X

i f j f= - = -
2 2

A5.4  Case 4: Uniformly Distributed Longitudinal 
Load Covering Part of the Span of the 
Beam

(Xi)f
a b

jjoint  i

i j

c

n (per unit length)

(Xi)s (Xj)f (Xj)s
– – –

Figure A5.7
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b c
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È
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˘

˚
˙
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=
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- +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

2
2

2
2

ii s

j sX

nb

L
b c

nb

L
b a

)

( )

( )

( )

È

Î
Í
Í

˘

˚
˙
˙

=
+ +

+ +

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

2
2

2
2

 For the special case when the distributed load covers the whole 
span, i.e. a = 0, c = 0, and b = L then
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( )

( )

( )

( )

X

X

nL

nL
and

X

X

i f

j f

i s

j s

È

Î
Í
Í

˘

˚
˙
˙

=
-

-

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

È

Î
Í
Í

˘

˚

2

2

˙̇
˙

=
+

+

È

Î

Í
Í
Í
Í

˘

˚

˙
˙
˙
˙

nL

nL

2

2

 When the beam is subjected to more than one type of loading 
then superposition of the actions due to the various loads can be 
made.

A5.5  Transformation of Member End Actions to 
Joint Loads

For a member lying along the global x-axis the load vector on the 
joints, which is written relative to global coordinates, is obtained 
from the action vector on the member simply by reversing its sign 
as explained earlier. But for inclined members, for example in 
rigidly connected frames, the load vector on the joint is obtained 
by transformation of the action vector as explained below. Consider 
the inclined member shown in Fig. A6.8 with the actions ( )Xi f , 
( )Zi f , and ( )Mi f  at its end i and ( )Xj f , ( )Zj f , and ( )Mj f  at end j as 
calculated relative to local coordinates for a given loading from the 
cases derived above.

i

j

(Xi)f

(Xj)f(Zi)f

(Mi)f

(Mj)f

(Zj)f

x

(Zi)s

(Xi)s

(Mi)s

(Zj)s

(Xj)s

(Mj)s

φy

–
–

–

–

–

–

–

Figure A5.8 

 The loads on the joints are equal in magnitude and opposite in 
direction to the actions on the member and are written relative to 

Fixed End Moments and Forces
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global coordinates. Therefore, the actions on the member, which 
are relative to the local coordinates, are first written relative to the 
global coordinates as ( )Xi f , ( )Zi f , ( )Mi f , ( )Xj f , ( )Zj f , and ( )Mj f  and 
then their sign is reversed to get the loads on the joints as shown 
below.

 ( ) ( )X X X cos Z sini s i f i f i f
= -( ) = - +( ) + ( )j jy y

 ( ) ( )Z Z X sin Z cosi s i f i f i f
= -( ) = - -( ) + ( )j jy y

 ( )M M Mi s i f i f
= -( ) = -( )

 ( ) ( )X X X cos Z sinj s j
f

j
f

j
f

= -( ) = - +( ) + ( )j jy y

 ( ) ( )Z Z X sin Z cosj s j
f

j
f

j
f

= -( ) = - -( ) + ( )j jy y

 ( )M M Mj s j
f

j
f

= -( ) = -( )
 The above equations may be written in matrix form as

 

( )

( )

( )

( )

( )

( )

X

Z

M

X

Z

M

cos
i s

i s

i s

j s

j s

j s

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

=

- -jy ssin

sin cos

cos sin

sin

j

j j

j j

j

y

y y

y y

y

0 0 0 0

0 0 0 0

0 0 1 0 0 0

0 0 0 0

0 0 0

+ -

-
- -

+ --

-

È

Î

Í
Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙
˙

cos

X

Z

M

X

i f

i f

i f

j f

jy 0

0 0 0 0 0 1

( )

( )

( )

( )

(ZZ

M

j f

j f

)

( )

È

Î

Í
Í
Í
Í
Í
Í
Í
Í

˘

˚

˙
˙
˙
˙
˙
˙
˙
˙

 or    F r Fs s f=

where rs is a transformation matrix to transform the local actions on 
the member to global loads on the joints. Notice that rs = –rT, where 
r is the coordinates transformation matrix derived in Chapter 5. 
This relationship could have been derived directly from F rFf = ,  i.e. 
F r Ff= -1  and since r–1 = rT and Fs = –F, therefore, Fs = –rT  F r Ff s f= .
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