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Preface

This text is meant to be used for a second course in applications of Linear
Algebra to Data Analytics, with a supplemental chapter on Decision Trees and
their applications in regression analysis. Throughout the text a basic knowledge
of the concepts in a first Linear Algebra course is assumed; however, an overview
of key concepts is presented in the Introduction and as needed throughout the
text.

Knowledge of mathematical techniques related to data analytics, and expo-
sure to interpretation of results within a data analytics context, are particularly
valuable for students studying undergraduate mathematics. Each chapter of
this text takes the reader through several relevant case studies using real world
data. Some case study applications address gerrymandering issues, modeling
the spread of disease, digital facial recognition, and racial inequities in higher
education. Readers are encouraged to replicate results from the presented case
studies. All data sets, as well as Python and R syntax, are provided to the reader
through links to Github documentation. Following each chapter is a short ex-
ercise set in which students are encouraged to use technology to apply their
expanding knowledge of linear algebra as it is applied to data analytics.

The text can be considered in two different but overlapping general data
analytics categories: clustering and interpolation. Chapters 1 and 3 focus on
eigenvalues and singular values, as well as their associated vectors, that are of
key importance in clustering techniques, such as Principal Component Analy-
sis. Chapters 4 through 6 focus on techniques specific to interpolation models.
Integrated throughout this text, the reader will also find many machine learn-
ing techniques of interest, such as hidden Markov chains in Chapter 2, neural
networks in Chapter 5, decision trees and forests in Chapter 6, and random
matrices in Chapter 7.
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Introduction

In this introduction, we give an overview of background expectations. Also,
for those who are looking to use this book for a first course in Mathematical
Methods in Data Analytics, an overview of necessary Linear Algebra concepts
is presented here and embedded throughout the text.

The entire text is focused on applications of Linear Algebra in Data Ana-
lytics, so we begin with a quick overview of matrix algebra. Matrix A has entry
ai,j in row i and column j.

A =


a1,1 a1,2 a1,3 . . . a1,m

a2,1 a2,2 a2,3 . . . a2,m

...
. . .

. . .
. . .

...

an,1 an,2 an,3 . . . an,n

 .

The dimensions of A are n×m. A matrix is square if it has the same number
of rows as it does columns.

Matrix addition is entry-wise. That is, that if A and B are matrices with
the same dimensions, then (A+B)i,j = ai,j + bi,j .

If one wishes to multiply each entry of a matrix by a constant, also called a
scalar, this is referred to as scalar multiplication.

The transpose of A, denoted AT , is an m× n matrix where

ATi,j = Aj,i.

A matrix A is symmetric if A = AT .
The Hadamard product, also known as the entry-wise product, of two

matrices of the same dimensions, A and B, is

A ◦B,
where the (i,j)th entry of A ◦B is ai,jbi,j .

In order to multiply a m × n matrix A on the right by a matrix B, the
number of rows of B must be equal to the number of columns of matrix A.
That is B must be a n× p matrix for some natural number p.

A m ×n ·Bn× p© = C m × p©

xiii
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The entries of the product of AB

ABi,j =

n∑
k=1

ai,kbk,j .

Example 0.1. It is important to note that matrix multiplication is not com-
mutative. For example, if

A =

(
1 0 −2

4 1 1

)
and B =


2 −1

0 1

1 3

 ,

Then,

AB =

(
0 −7

9 −1

)
and

BA =


−2 −1 −5

4 1 1

13 3 1

 .

The identity matrix, I, is the a square matrix such that

Ii,j = 1 if i = j, and 0 otherwise.

If A is an m× n matrix and I is the m×m identity matrix then

AI = IA = A.

If A is a square matrix, we can also talk about the powers of A, where
A2 = A ·A and exponential rules of matrices hold.

Ar+s = Ar ·As
(Ar)s = Ars

In many applications of Linear Algebra, the goal of the problem is to solve
for x in the system Ax = b, where A is an n× n matrix and x and b are n× 1
matrices, also called vectors in Rn.

If A is invertible, also called non-singular, then there exists a matrix A−1

such that
A−1 ·A = A ·A−1 = I

If A is not invertible, then we say that A is singular.
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A system of m equations in n variables

a1,1x1 + a1,2x2 + · · ·+ a1,nxn = b1

a2,1x1 + a2,2x2 + · · ·+ a2,nxn = b2

...

am,1x1 + am,2x2 + · · ·+ am,nxn = bm

can be written in the matrix form Ax = b where A is a m×n coefficient matrix
and x and b are m× 1 matrices.

If A is square and invertible then the system Ax = b has exactly one solution,
x = A−1b. If A is not square or is not invertible, then it is possible for the system
have either no solutions or infinitely many solutions. It is also important to note
that if Ax = ~0 and A is invertible then the only solution is x = ~0, also called
the trivial solution.

The determinant of a square matrix A maps a matrix to a real number, |A|.
There are a variety of techniques for calculating the determinant of a matrix,
including cofactor expansion and formulas for small matrices such as 2 × 2
matrices. ∣∣∣∣∣ a1,1 a1,2

a2,1 a2,2

∣∣∣∣∣ = a1,1a2,2 − a1,2a2,1.

In order to perform cofactor expansion on a n×n matrix, A, where n > 2,
choose a row, i, or column, j to expand on. Then

|A| =
n∑
j=1

(−1)i+jai,jMi,j =

n∑
i=1

(−1)i+jai,jMi,j ,

where Mi,j is the (i,j)th minor and is the determinant of the (n− 1)× (n− 1)
submatrix of A created by deleting the ith row and jth column of A.

Example 0.2. ∣∣∣∣∣ 1 2

3 4

∣∣∣∣∣ = 1 · 4− 2 · 3 = −2

∣∣∣∣∣∣∣∣
2 0 1

0 1 2

0 3 4

∣∣∣∣∣∣∣∣ = (−1)2 · 2
∣∣∣∣∣ 1 2

3 4

∣∣∣∣∣+ (−1)3 · 0
∣∣∣∣∣ 0 2

0 4

∣∣∣∣∣+ (−1)4 · 1
∣∣∣∣∣ 0 1

0 3

∣∣∣∣∣ = −4

when we expand on the first row. Note that one can expand on any row or
column, but if you are attempting to be efficient choose a row or column with
the most zeros.
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Most importantly, the fact that determining if a square matrix is invertible
is equivalent to determining if |A| 6= 0.

Chapter 1 focuses on the applications of Linear Algebra to Graph Theory,
where powers of matrices, bases, eigenvalues, and eigenvectors are heavily im-
plemented. Eigenvalues and eigenvectors will be reviewed in Chapter 1. A brief
review of bases is presented here.

A set of vectors S = {v1, v2, . . . , vn} is called linearly independent if the
equation

k1v1 + k2v2 + · · ·+ knvn = 0

has only the trivial solution, k1 = k2 = · · · = kn = 0. If the set is not linearly
independent, we called the set linearly dependent.

If v1, v2, . . . , vn are vectors in Rn and are the columns of a matrix A, then

A =



| | . . . |
| | . . . |
v1 v2 . . . vn

| | . . . |
| | . . . |



A


k1

k2

...

kn

 =


0

0
...

0

 .

has only the trivial solution if A is invertible.
If S = {v1, v2, . . . , vn}, vi ∈ Rn, then we say that w ∈ Rn can be written

as a linear combination of the vectors in S if there exists k1, k2, . . . , kn such
that

w = k1v1 + k2v2 + · · ·+ knvn.

We say that S spans Rn if every vector w ∈ Rn can be written as a linear
combinations of the vectors in S.

Example 0.3. S1 = {(1,0,0), (0,1,0), (0,0,1)}, S2 = {(1,2,0), (0,3,4), (0,0,5)},
and S3 = {(1,1,0), (0,0,1), (0,0,0)} are sets of vectors in R3 and

A1 =


1 0 0

0 1 0

0 0 1

 , A2 =


1 0 0

2 3 0

0 4 5

 , A3 =


1 1 0

1 0 0

0 1 0

 .
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Note that |A1| = 1, |A2| = 15, and |A3| = 0 and thus matrices A1 and A2

are non-singular and A3 is singular. Thus S1 and S2 are linearly independent
sets that span R3.

The set S3 is linearly dependent and does not span R3. You can see that S3

is linearly dependent since the equation

k1(1,1,0) + k2(0,0,1) + k3(0,0,0) = (0,0,0),

has solutions other than the trivial solution, for example k1 = k2 = 0, k3 = 1.
In order for S3 to span R3, every vector (x,y,z) in R3 must be able to be written
as a linear combination of the vectors in S3.

If you remove a vector from S1, for example {(1,0,0), (0,1,0)}, the set is still
linearly independent but does not span R3.

If you add a vector to S1, for example {(1,0,0), (0,1,0), (0,0,1), (1,2,3)}, the
set is linearly dependent but still spans R3.

If a set S is a set of n linearly independent vectors which spans Rn then S
is a basis for Rn.

Example 0.4. The standard basis for R3 is the row vectors of the 3×3 identity
matrix

{(1,0,0), (0,1,0), (0,0,1)};
however, this is not the only basis for R3. A set of any three vectors in R3 that
are linearly independent form a basis for R3.

Similarly, the span of the set S1 = {(2,1)} are the vectors in R2 where
the value of the x-coordinate is twice the value of the y-coordinate. Therefore,
S1 = {(2,1)} is a basis for the set

V = {(2x,x)| x ∈ R}.
Other sets such as S2 = {(4,2)} and {(2π,π)} are also bases for V .

The main focus of Chapter 2, Stochastic Processes, is Markov Chains. Some
basic probability theory and knowledge of eigenvalues and eigenvectors would
be particularly useful in this chapter. Related to probability theory, it is helpful
for the reader to have some understanding of probability theory, particularly the
relationship between joint and conditional probability. For a basic overview of
probability theory, one can refer to Section 5.1 prior to reading Chapter 2. For
the most part, one could read Chapter 2 independently of Chapter 1; however,
the beginning stages of Chapter 2 do rely on basic knowledge of graph theory.

Chapter 3 focuses on the implementation of Singular Value Decomposition
and Principal Component Analysis in the context of data science. A good un-
derstanding of eigenvalues and eigenvectors is instrumental in this chapter. An
overview of inner product spaces and orthogonality is provided. This particular
chapter also becomes fairly technology heavy with several exercises relying on
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R or Python knowledge. Again, Chapter 3 can be taught, for the most part, in-
dependently of the previous 2 chapters, although further chapters benefit from
the knowledge of Chapter 3 material.

Both Chapters 4 and 5 focus on predictive models. Where Chapter 4 focuses
more on traditional interpolation techniques such as Chebyshev, Hermite, and
Lagrange interpolation, Chapter 5 steps back and takes a quick look at proba-
bility theory and matrix calculus before connecting the material from Chapter
4 to machine learning and neural network techniques. In these sections, some
knowledge of calculus is helpful, since there is a focus on optimizing cost func-
tions. Again, a good understanding of technology is important in Chapter 5, as
iterative methods become significantly important in neural network techniques.

Chapter 6 focuses on implementing the concepts of previous chapters in
decision trees. Several different takes on decision trees will be presented in this
chapter, including decision tree regression, Fourier transformations, and random
forests.

Finally, many models are built around random matrices; the focus is on
Chapter 7. The discussion in Chapter 7 relies heavily on probability theory,
introduced in Chapter 5, and knowledge of eigenvalues and eigenvectors. In
Chapter 7, the Kroenecker product, also called the tensor product is also
used.

If A is an m×n matrix and B is a p×q matrix then the Kroenecker product,

A⊗B =


a1,1B . . . a1,nB

...
...

am,1B . . . am,nB

 .

Example 0.5. If A is a 2×2 matrix,

(
a1,1 a1,2

a2,1 a2,2

)
and B is a 3×2 matrix,

b1,1 b1,2

b2,1 b2,2

b3,1 b3,2

, then

A⊗B =

(
a1,1B a1,2B

a2,1B a2,2B

)

=



a1,1b1,1 a1,1b1,2 a1,2b1,1 a1,2b1,2

a1,1b2,1 a1,1b2,2 a1,2b2,1 a1,2b2,2

a1,1b3,1 a1,1b3,2 a1,2b3,1 a1,2b3,2

a2,1b1,1 a2,1b1,2 a2,2b1,1 a2,2b1,2

a2,1b2,1 a2,1b2,2 a2,2b2,1 a2,2b2,2

a2,1b3,1 a2,1b3,2 a2,2b3,1 a2,2b3,2


,
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Notice that the Kronecker product is not commutative,

B ⊗A =


b1,1A b1,2A

b2,1A b2,2A

b1,3A b3,2A



=



b1,1a1,1 b1,1a1,2 b1,2a1,1 b1,2a1,2

b1,1a2,1 b1,1a2,2 b1,2a2,1 b1,2a2,2

b2,1a1,1 b2,1a1,2 b2,2a1,1 b2,2a1,2

b2,1a2,1 b2,2a2,2 b2,2a2,1 b2,2a2,2

b3,1a1,1 b3,1a1,2 b3,2a1,1 b3,2a1,2

b3,1a2,1 b3,2a2,2 b3,2a2,1 b3,2a2,2


,

A matrix A is skew-symmetric if AT = −A. In Chapter 7, we specifically
employ the Kronecker product of a skew-symmetric matrix with the identity
matrix as is seen in Example 0.6.

Example 0.6.

(
0 −1

1 0

)
⊗
(

1 0

0 1

)
=


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0

 .

Throughout the text, readers are encouraged to use a critical eye when it
comes to ethics of data analytics. Additionally, when choosing a model, the
reader should take into account the application in order to chose the most
meaningful model in context.
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1

Graph Theory

1.1 Basic Terminology

When studying data, data scientists are most concerned with the relationships
or connections between the pieces of data in a network. In this chapter, we
explore those networks in terms of graph theory and see how these ideas tie
back to data science and linear algebra.

A graph, G, can be represented by a set of vertices or nodes, V , and a
set of edges, E, where each edge in E connects two vertices in V .
The number of vertices in a graph, G, is called the order of the graph and is
denoted by |V |. The number of edges in a graph, G, is called the size and is
denoted by |E|.

An edge is said to be incident to vertices vi and vj if it connects the two
vertices. We call vertices vi and vj endpoints of this edge.
Vertex vi is said to be adjacent to vertex vj if there is an edge incident to both
vertex vi and vertex vj . The degree of a vertex is the number of incident edges
to that vertex.

Notice that in the graph in Figure 1.1, |V | = 6 and |E| = 12. Vertex v4 is
adjacent to every other vertex while v1 is adjacent to v2, v3, and v4, and thus
degree(v1) = 3 and degree(v4) = 5.

Theorem 1. (Handshaking Theorem) In any graph with n vertices,
v1, v2, . . . , vn and m edges,

n∑
i=1

degree(vi) = 2m.

An edge with only one endpoint is called a loop.
Notice that if a vertex is adjacent to itself via a loop, that edge contributes

two edges to the degree of that vertex. The handshaking theorem emphasizes
that each edge is incident to two vertices, which may or may not be unique,
and is counted twice when calculating the sum of the degrees of the graph.
If two or more edges have the same endpoints, then they are called multiple
edges.

Figure 1.2 shows a graph with multiple edges between vertices v1 and v2

and a loop from vertex v3 to itself. Vertex v3 has a degree of 4, where the loop

DOI: 10.1201/9781003025672-1 1
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v1

v2

v3

v5

v

FIGURE 1.1
|V | = 6, |E| = 12, degree (v1) = 3, and degree (v4) = 5.

v1

v2

v3

FIGURE 1.2
Example of a graph with a loop and multiple edges.

from v3 to itself contributes two edges to the degree of v3. Vertices v1 and v2

both have a degree of 3. The multiple edges between v1 and v2 contribute 2
edges to the degree of both v1 and v2.

A subgraph of graph G is another graph containing a subset of vertices
from V and all of the edges from E that connect pairs of vertices in the subset.

There are many subgraphs of the graph displayed in Figure 1.1; one example
can be seen in Figure 1.3.
For each graph, there is a corresponding adjacency matrix, A, where

Ai,j =

{
1, if vertex vi is adjacent to vertex vj ,

0, otherwise.
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v1

v2

v4

v5

FIGURE 1.3
Example of a subgraph of the graph in Figure 1.1.

v1

v2

v3

v4

v1

v2

v3

v4

FIGURE 1.4
a. Graph with a loop, b. Graph with no loops.

Notice the loop in Figure 1.4a from vertex v1 to itself. This is represented
in the adjacency matrix A, a1,1 = 1.

Note also that the vertex v4 is not adjacent to any vertex in Figure 1.4a and
thus every entry of A in row 4 and column 4 has a value of 0.

Figure 1.4b is an example of a graph with no loops in which all vertices are
adjacent to at least one other vertex in the graph.
The corresponding adjacency matrices are

A =


1 1 1 0

1 0 1 0

1 1 0 0

0 0 0 0

 and B =


0 1 1 1

1 0 1 0

1 1 0 1

1 0 1 0

 .

A path from a vertex vi to a vertex vj is a sequence of incident edges that
connect vi to vj . For example, in Figure 1.4b, v1v2v3 is a two-step path between
v1 and v3. Note that a path is also a subgraph of the entire graph.
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A connected graph is a graph in which there is a path between each pair
of vertices.


0 1 0 0 0
1 0 1 0 0
0 1 0 1 0
0 0 1 0 1
0 0 0 1 0




0 1 0 0 0
1 0 1 1 0
0 1 0 0 0
0 1 0 0 1
0 0 0 1 0



v1 v2 v3 v4 v5

v1

v2

v3

v4v5

FIGURE 1.5
Examples of tree graphs.

Figure 1.4b is an example of a graph that is connected while Figure 1.4a is
disconnected. As we noted earlier, the adjacency matrices affiliated with a dis-
connected graph contain at least one row and column of zeros.

A tree graph is a connected graph in which there is no path between a ver-
tex and itself. Some examples of tree graphs and their corresponding adjacency
matrices can be seen in Figure 1.5.

In this text, we will be focusing on simple connected graphs, those con-
nected graphs without multiple edges and loops, unless otherwise noted.

All these adjacency matrices, A, presented thus far is symmetric, meaning
that

A = AT .

This is because the edges between each pair of vertices do not have a defined
direction.

More formally, a simple connected graph is called undirected if, for each
pair of adjacent vertices, vi and vj , if vi is adjacent to vj , then vj is also adjacent
to vi.
Each of the examples presented in Figures 1.4 and 1.5 are undirected graphs.
Figure 1.6 shows an example of a directed graph.

When presented with a directed graph, we talk about the in-degree and the
out-degree of a vertex, where the in-degree is the number of edges coming into
the vertex and the out-degree is the number of edges coming out of a vertex.



Graph Theory 5

v1

v2

v3

v4

FIGURE 1.6
Example of a directed graph.

In Figure 1.6,

in-degree(v2) = 2 and out-degree(v2) = 1.

Recall that vertex vi is said to be adjacent to vertex vj if there is an edge
from vi to vj . So for example, in Figure 1.6, vertex v1 is adjacent to vertex v2;
however, vertex v2 is not adjacent to vertex v1.

The adjacency matrix associated with the graph in Figure 1.6 is

A =


0 1 0 0

0 0 0 1

0 1 0 0

1 0 0 0

 .

Notice that A is not a symmetric matrix due to the directed nature of the
affiliated graph.

All of the examples thus far have been unweighted graphs; however, a graph’s
edges can have weights associated with them.

If wij is the weight of the edge between vertex i and vertex j, then the
(i,j)th entry in the adjacency matrix is wij .

One venue in which graph theory has applications is in archeology and
similar fields with artifacts that may share similar traits.

Imagine that there are four digs located near one another and that artifacts
are found in each dig. The graph shown in Figure 1.7 shows the digs as vertices
and the number of attributes that they share as weights on the edges; this is
an example of a weighted graph.

Social networks have also been a hub of activity when it comes to graph
theory.
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5

1

6

3
Dig1 Dig2

Dig3

Dig4

 0 5 0 0
5 0 1 6
0 1 0 3
0 6 3 0


FIGURE 1.7
Example of a weighted graph.

Example 1.1. Law enforcement has looked to such networks to help fight crime
and investigate crime networks. Suppose that the local police have identified
Suspects X and Y in Figure 1.8 as individuals involved in a spree of gang-related
incidents. However, law enforcement suspects that there are more gang members
involved and that they have not identified the leader of the gang network.

M1

M2

M3

M4

M5

M6

M

M8

Suspect X

FIGURE 1.8
Adjacency matrix for Example 1.1.
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A =

M1

M2

M3

M4

M5

M6

M7

M8

X

Y



M1 M2 M3 M4 M5 M6 M7 M8 X Y

0 1 0 1 0 0 0 1 1 0

1 0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 1 1 0 0

1 1 1 0 0 0 1 0 0 1

0 0 0 0 0 1 0 1 1 1

0 0 0 0 1 0 0 1 0 1

0 0 1 1 0 0 0 1 0 1

1 0 1 0 1 1 1 0 1 0

1 0 0 0 1 0 0 1 0 0

0 0 0 1 1 1 1 0 0 0


For simplicity, in the adjacency matrix, Suspects X and Y will be placed

in rows 9 and 10 (and columns 9 and 10), respectively. The adjacency matrix
corresponding to the relationships in Figure 1.8, A, shows that both Suspects X
and Y are friends with M5.

In a much larger database, it would be difficult to quickly scan the data
to determine how many immediate relationships two vertices, or nodes, in a
network have in common. So we will introduce some mathematical ways to
explore these relationships here.

The Gramian matrix,

S = AAT ,

can be used to quantify network relationships.

S = AAT =



4 1 2 1 2 1 2 1 1 1

1 2 1 1 0 0 1 1 1 1

2 1 3 1 1 1 2 1 1 2

1 1 1 5 1 1 2 3 1 1

2 0 1 1 4 2 2 2 1 1

1 0 1 1 2 3 2 1 2 1

2 1 2 2 2 2 4 1 1 1

1 1 1 3 2 1 1 6 2 3

1 1 1 1 1 2 1 2 3 1

1 1 2 1 1 1 1 3 1 4


the main diagonal entries represent the degree of the vertex or in this context
the number of connections that the person has in the network.

Suspect X, in row 9, has 3 connections in the network, represented by S9,9,
and Suspect Y represented in row 10 has 4 connections in the network, as seen
in S10,10.
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Notice also that the (i,j)th entry in S is the number of relationships the ith

and jth person have in common.
For example, the entry, S1,3 = 2, represents the similar network connections

between M1 and M3. Both of these members are connected to M4 and M8.

It is the job of data scientists to look at data and make hypotheses about the
future. Another area in which this is particularly applicable is sports ranking .

For example, in the first half of the SEC-East 2019 football season, Florida
was winning the conference with a 4-1 record. What if you wished to look at
the teams’ conference record part-way through the season to predict
future rankings?

Representing the existence of a head-to-head competition in terms of an
adjacency matrix may not be the most useful in this case, as the entries of
this matrix would be all ones. However, a matrix that could incorporate a win-
lose structure as well as the score differential may be beneficial in studying the
outcomes of this season.

For example, on September 9, 2019, Florida defeated Kentucky 29 to 21.
One might choose to assign a weight of 8, the score differential, to the edge
connecting Florida and Kentucky; however, you may want to also be able to
indicate the direction of the win.

One way to do this is by using a directed graph, where an edge from vi to
vj may exist without the existence of an edge from vj to vi. In this application,
a directed edge from vertex vi to vertex vj would denote a victory for team i.

Florida

Tennessee

Kentucky

South Carolina

Vanderbilt

FIGURE 1.9
Directed Graph for SEC-East Football Example.
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In the case of a directed graph, the adjacency matrix may not be symmetric.
For example, since Florida defeated Kentucky, Florida is adjacent to Kentucky
but Kentucky is not adjacent to Florida.

ASEC =



FL TN KY GA MIZ SC V AN

FL 0 1 1 0 0 1 0

TN 0 0 0 0 0 1 0

KY 0 0 0 0 1 0 0

GA 0 1 1 0 0 0 1

MIZ 0 0 0 0 0 1 0

SC 0 0 1 1 0 0 0

V AN 0 0 0 0 1 0 0


Directed graphs can also be used to visualize a decision tree or neural net-
work based on raw input data and decision questions that lead to an output.
More extensive theory and applications of these techniques can be found in
Chapters 6 and 7.

1.2 The Power of the Adjacency Matrix

In Section 1.1, the relationship between a graph and its corresponding adjacency
matrix was discussed. In this section, we will explore some ways to use the
adjacency matrix to make further conclusions about data.

Powers of the adjacency matrix can give insight into indirect relationships.
The (i,j)th entry of Ak, where k is a positive integer, represents the number of
paths of length exactly k between vertices i and j. Thus the (i,j)th entry of

n∑
k=0

Ak

represents the number of paths of length n or less between vertices i and j.

Example 1.2. In the crime network problem presented in Figure 1.8, notice
that although Suspect X and Y do share one relationship, M5, law enforcement
may want to dig deeper to see who else is closely related with each of these two
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suspects. Using the adjacency matrix, A, corresponding to this crime network,

A2 =

M1

M2

M3

M4

M5

M6

M7

M8

X

Y



M1 M2 M3 M4 M5 M6 M7 M8 X Y

4 1 2 1 2 1 2 1 1 1

1 2 1 1 0 0 1 1 1 1

2 1 3 1 1 1 2 1 1 2

1 1 1 5 1 1 2 3 1 1

2 0 1 1 4 2 2 2 1 1

1 0 1 1 2 3 2 1 2 1

2 1 2 2 2 2 4 1 1 1

1 1 1 3 2 1 1 6 2 3

1 1 1 1 1 2 1 2 3 1

1 1 2 1 1 1 1 3 1 4



and

I +A+A2 =

M1

M2

M3

M4

M5

M6

M7

M8

X

Y



M1 M2 M3 M4 M5 M6 M7 M8 X Y

5 2 2 2 2 1 2 2 2 1

2 3 1 2 0 0 1 1 1 1

2 1 4 2 1 1 3 2 1 2

2 2 2 6 1 1 3 3 1 2

2 0 1 1 5 3 2 3 2 2

1 0 1 1 3 4 2 2 2 2

2 1 3 3 2 2 5 2 1 2

2 1 2 3 3 2 2 7 3 3

2 1 1 1 2 2 1 3 4 1

1 1 2 2 2 2 2 3 1 5



.

show that Suspects X and Y , corresponding to rows 9 and 10, are connected to
all members in the network through a one or two step path. Focusing in on the
rows of these matrices, and thus each member’s relationships

10∑
j=1

A2
i,j = {16, 9, 15, 17, 16, 14, 18, 21, 14, 16}

10∑
j=1

(I +A+A2)i,j = {21, 12, 19, 23, 21, 18, 23, 28, 18, 21}

highlights the fact that M8 may be the most connected member of network and
could be someone that law enforcement investigates further.
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Using similar techniques to explore the SEC-East example from Section 1.1,
let’s say that you wish to rank the SEC-East teams based on their record half
way through the 2019 season. How would you determine the #1 football team
in the SEC-East prior to the end of the regular season?

Example 1.3. Let matrix ASEC , defined in Section 1.1, model the wins and
loses for each team in the season; however, you may want to incorporate indirect
relationships between teams.

The entries of A2
SEC represent the two step win-lose relationships between

teams in the SEC-East.
For example, we know from ASEC that Florida beat South Carolina and

that South Carolina beat Georgia, so we might predict that Florida would beat
Georgia if they played head-to-head. We see this represented with a value of 1
in the (1,4) entry of A2

SEC .
Similarly, the (4,5) entry in A2

SEC represent two ways that we can think
about Georgia dominating over Missouri, through Kentucky or through Vander-
bilt.

The matrix ASEC +A2
SEC then shows the number of one step and two step

domination between teams.
Using this matrix, we can see that although South Carolina may not have

risen to the top of the ranking using just ASEC , they have almost the same
number of one- and two-step dominance paths as Florida and Georgia and could
be a contender for the number one ranking at the end of the season.

A2
SEC =



0 0 1 1 1 1 0

0 0 1 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 2 1 0

0 0 1 1 0 0 0

0 1 1 0 1 0 1

0 0 0 0 0 1 0


and

ASEC +A2
SEC =



0 1 2 1 1 2 0

0 0 1 1 0 1 0

0 0 0 0 1 1 0

0 1 1 0 2 1 1

0 0 1 1 0 1 0

0 1 2 1 1 0 1

0 0 0 0 1 1 0


.

We will look further at techniques for sports ranking in Section 1.6 that not
only incorporate win-lose but also the score differential of games.
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1.3 Eigenvalues and Eigenvectors as Key Players

If A is a n× n square matrix and

Ax = λx,

λ is called an eigenvalue of A with corresponding eigenvector x, where x is
an n× 1 vector.

Given a square matrix A, one way to find the eigenvalues for A is to find
the characteristic equation

|A− λI| = 0

and to solve for all values of λ.
The spectral radius of a matrix A,

ρ(A) = max1≤i≤n|λi|,
where λi, 1 ≤ i ≤ n, are the eigenvalues of A.

Example 1.4. If A =

(
1 2

2 4

)
then to find the eigenvalues of A

|A− λI| = 0∣∣∣∣∣ 1− λ 2

2 4− λ

∣∣∣∣∣ = 0

λ2 − 5λ = 0

λ(λ− 5) = 0.

Thus the eigenvalues of A are λ = 0 and λ = 5. The spectral radius

ρ(A) = max{ |0|, |5| } = 5.

Each of these eigenvalues has a corresponding eigenvector, also called a basis
vector for the eigenspace. For example, for λ = 5,(

1 2

2 4

)(
x

y

)
=

(
5x

5y

)
.

Here, x + 2y = 5x and 2x + 4y = 5y. Therefore, x = 0 and a basis for the
eigenspace corresponding to λ = 5 is {1, 2}.

Similarly, when λ = 0, x + 2y = 0 and {−2, −1} is a basis vector for the
eigenspace corresponding to λ = 0.
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FIGURE 1.10

Av where A =

(
1 2

2 4

)
, v = {1, 2}, {2, 4}, and {4, 3}.

In general, a n × n matrix A acts as a transformation, or function, on the
vectors v ∈ Rn.

Example 1.5. For example, if v = {4, 3} and

A =

(
1 2

2 4

)

Av =

(
1 2

2 4

)(
4

3

)
=

(
10

20

)

Notice in Figure 1.10 that the matrix A stretches the vectors {1, 2} and
{2, 4} by a factor of 5. In fact, if a vector is an eigenvector associated with
a matrix, then the matrix will stretch the eigenvector by a factor equal to its
corresponding eigenvalue. The vector x = {1, 2} is an eigenvector of A with
corresponding eigenvalue λ = 5. That is,(

1 2

2 4

)(
1

2

)
= 5

(
1

2

)
.

So, what about the vector {2, 4}?
It is important to note that there is actually a family of eigenvectors as-

sociated with any given eigenvalue. All eigenvectors associated with a given
eigenvalue are scalar multiples of one another. We see {2, 4} = 2{1, 2} and
any scalar multiple of the vector {1, 2} is an eigenvector corresponding with the
eigenvalue λ = 5 in this example. Hence, any single one of these vectors may
be referred to as the basis vector for the eigenspace, or simply the eigenvector.

One of the most significant properties related to eigenvalues is that a matrix
is singular if and only if at least of the eigenvalues of the matrix is equal to 0.
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It can also be easily shown that if λ is an eigenvalue of A with a corre-
sponding eigenvector x, then λk is an eigenvalue of Ak with a corresponding
x.

Since there are many different eigenvectors that can serve as the basis vector
associated with a given eigenvalue, it is helpful to establish a convention for
which eigenvector we will focus on the discussion in this text. Unless otherwise
noted, unit eigenvectors will be presented conventionally throughout the rest
of the text.

Recall that a unit vector, u, has a norm ||u|| = 1, where

||u|| = √< u,u >

and given a vector v,
v

||v||
is a unit vector.
The unit eigenvector of A corresponding to λ = 5 is { 1√

5
, 2√

5
}.

We will apply the concepts of eigenvalues and eigenvectors to another ma-
trix that is important in data science, the Laplacian matrix. The Laplacian
matrix, L, affiliated with an n× n adjacency matrix, A, is defined such that

Lij =

{
di if i = j,

−Aij if i 6= j,

where di is the degree of vertex i.
The normalized Laplacian matrix, L , is defined as L = TLT such that

T is a diagonal matrix with Tii =
1√
di

.

Example 1.6. Let A =


0 1 1 0

1 0 1 0

1 1 0 1

0 0 1 0

 , then

L =


2 −1 −1 0

−1 2 −1 0

−1 −1 3 −1

−1 0 −1 1

 ,
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The degree of vertex i, di, can be found at Li,i, so for example, d1 = 2. If
one wishes to normalize the Laplacian, L,

T =


1√
2

0 0 0

0 1√
2

0 0

0 0 1√
3

0

0 0 0 1



L = TLT =


1 − 1

2 − 1√
6

0

− 1
2 1 − 1√

6
0

− 1√
6
− 1√

6
1 − 1√

3

0 0 − 1√
3

1

 .

ρ(L) ≈ 4 and ρ(L ) = 1.72871.

Example 1.7. For the complete graph with five vertices, K5, seen in Figure
1.11, the Laplacian matrix

FIGURE 1.11
Complete Graph with five vertices.

L =



4 −1 −1 −1 −1

−1 4 −1 −1 −1

−1 −1 4 −1 −1

−1 −1 −1 4 −1

−1 −1 −1 −1 4
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with eigenvalues 5, multiplicity 4, and 0. The normalized Laplacian matrix

L =



1 − 1
4 − 1

4 − 1
4 − 1

4

− 1
4 1 − 1

4 − 1
4 − 1

4

− 1
4 − 1

4 1 − 1
4 − 1

4

− 1
4 − 1

4 − 1
4 1 − 1

4

− 1
4 − 1

4 − 1
4 − 1

4 1


.

The Laplacian matrix for simple weighted graphs is very similar to un-
weighted graphs. In a weighted graph, the entries of the adjacency matrix

Aij =

{
wij when vertex i and j are adjacent

0 otherwise

where wij is the weight of the edge that is incident to vertices i and j. The
degree of vertex i, di =

∑
wij .

Example 1.8. For the graph, G, pictured in Figure 1.12, the adjacency matrix

A =



0 4 4 2 2

4 0 7 4 4

4 7 0 1 1

2 4 1 0 8

2 4 1 8 0


and L =



12 −4 −4 −2 −2

−4 19 −7 −4 −4

−4 −7 13 −1 −1

−2 −4 −1 15 −8

−2 −4 −1 −8 15


.

Unlike the Laplacian matrices described thus far, the Laplacian matrix for
a simple directed graph would not be a symmetric matrix. With this in mind,
di is equal to the outdegree of the vertex.

Example 1.9. Notice that, in Figure 1.13, that vertex 4 has an outdegree of 3
and an indegree of 1.

Thus the Laplacian Matrix

L =



2 −1 −1 0 0

0 2 −1 0 −1

0 0 1 −1 0

−1 −1 0 3 −1

−1 0 −1 0 2


.

The Laplacian matrix has significant applications in spectral graph
theory.
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4

2

7

v4

v5

FIGURE 1.12
Example of a weighted K5 graph.

v1
v2

v5

FIGURE 1.13
Example of a directed K5 graph.

Spectral graph theory is related to clustering and ranking of vertices based
on the study of eigenvalues and eigenvectors of the Laplacian matrix. We will
focus our attention here on simple connected undirected graphs and their sym-
metric adjacency matrix counterparts.
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The Laplacian matrix, L, associated with graph G will have n eigenvalues,
λ1 ≤ λ2 ≤ ... ≤ λn. The eigenvectors associated with λi = 0 are the indicators
of the graph’s connected components.

The second smallest eigenvalue, λ2, is called the algebraic connectivity
of the graph or the Fiedler value [12], denoted a(G), and the corresponding
eigenvector is called the characteristic valuation or Fiedler vector.

The Fiedler value represents the algebraic connectivity of the graph asso-
ciated with the adjacency matrix. Note that a(G) > 0 if and only if G is
connected, and the further the Fiedler value is from 0 the more connected the
graph is.

Notice, in Figure 1.14, that the top graph is disconnected with two compo-
nents and thus the Laplacian has an eigenvalue of zero multiplicity 2. A graph
that is connected will have a Laplacian with an eigenvalue equal to zero of
multiplicity 1, as seen in all but the top graph in Figure 1.14. As the graphs in
Figure 1.14 get more connected, the Fiedler value increases.

It is also interesting to notice that a complete graph of n vertices, Kn,
will have Laplacian with an eigenvalue equal to n multiplicity n − 1 and an
eigenvalue equal to 0 multiplicity 1. The Fiedler value and vector of the nor-
malized Laplacian matrix can be interpreted in a similar manner to that of the
Laplacian matrix.

If one wishes to partition an undirected graph into two subgraphs, the
Fiedler theorem defines a way to do so while minimizing the number of edges
cut when doing so.

Theorem 2. (Fiedler’s Theorem for Graph Partitions [Slininger, 2013]) If G
is an undirected graph on n vertices and x the Fiedler vector. Define

i0(x) = {j | 1 ≤ j ≤ n, xj = 0}
i−(x) = {j | 1 ≤ j ≤ n, xj < 0}
i+(x) = {j | 1 ≤ j ≤ n, xj > 0}.

Partition G into G1 = i−(x) and G2 = i0(x) ∪ i+(x). Under this partitioning,
G1 and G2 will be connected subgraphs of G.

The ith value in the Fiedler vector is called the valuation of vertex i in
graph G.

Example 1.10. The Laplacian matrix corresponding to the graph featured in
Figure 1.15
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FIGURE 1.14
Examples of Graphs, their Laplacian, and Eigenvalues.
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1
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3

6

9

FIGURE 1.15
Barbell graph with 2 clear subgraphs.

L =



4 −1 −1 −1 −1 0 0 0 0 0

−1 4 −1 −1 −1 0 0 0 0 0

−1 −1 4 −1 −1 0 0 0 0 0

−1 −1 −1 4 −1 0 0 0 0 0

−1 −1 −1 −1 5 −1 0 0 0 0

0 0 0 0 −1 5 −1 −1 −1 −1

0 0 0 0 0 −1 4 −1 −1 −1

0 0 0 0 0 −1 −1 4 −1 −1

0 0 0 0 0 −1 −1 −1 4 −1

0 0 0 0 0 −1 −1 −1 −1 4


are

{1

2
(7 +

√
41), 5, 5, 5, 5, 5, 5, 5,

1

2
(7−

√
41), 0}.

The Fiedler value is 1
2 (7−

√
41) and the unit eigenvector corresponding to this

eigenvalue, the Fiedler vector, is approximately

{−0.334,−0.334,−0.334,−0.334,−0.234, 0.234, 0.334, 0.334, 0.334, 0.334}.

Following the partition from Theorem 2, the subgraph G1 should contain
vertices 1 through 5, while the subgraph G2 should contain vertices 6 through
10. As can be seen in Figure 1.15, this result is consistent with the clear par-
titioning in the barbell graph, cutting through just one edge in order to create
this partition.
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In application, the Fiedler vector is particularly helpful in clustering data
that is related to a weighted simple graph. Note that the adjacency matrix must
be symmetric in order to apply this partitioning.

There are spectral clustering techniques that can be applied to non-
symmetric Laplacian matrices such as that corresponding to the directed graph
in Example 1.9. These techniques will be explored further in Chapter 2.

One technique is to use a symmetric matrix, such as the Gramian matrix
S = AAT or A+AT , instead of the original adjacency matrix and the Laplacian
matrix affiliated with that symmetric matrix.

Example 1.11. (Crime Network Revisited) Reinvestigating the relationships
in the crime network from Figure 1.8, if we wish to cluster the members of this
network into two separate clusters, we can do so by using the unit Fiedler vector

{0.083, 0.179, 0.141, 0.685,−0.262,−0.155, 0.253,−0.474,−0.198, 0.228}.

Recall that the Fiedler vector is the eigenvector associated with the 2nd small-
est eigenvalue, so when you calculate these, you may get a scalar multiple of
the above vector. This should not affect how you cluster the entries.

With a division between those members with positive values in the Fiedler
vectors and those with negative values, the two clusters of vertices can be found

{M1, M2, M3, M4, M7, SuspectY } and {SuspectX, M5, M6, M8}.

We can use similar techniques when trying to cluster weighted and directed
graphs.

Example 1.12. Referring back to Example 1.8, the unit Fiedler vector associ-
ated with the normalized Laplacian matrix

L =



1 − 2√
57

− 2√
39

− 1
3
√

5
− 1

3
√

5

− 2√
57

1 − 7√
247

− 4√
285

− 4√
285

− 2√
39
− 7√

247
1 − 1√

195
− 1√

195

− 1
3
√

5
− 4√

285
− 1√

195
1 − 8

15

− 1
3
√

5
− 4√

285
− 1√

195
− 8

15 1


is

{−0.308,−0.257,−0.529, 0.529, 0.529}
thus clustering together vectors v1, v2, and v3.
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M1

M2

M3

M4

M5

M6

M

M8

Suspect X

FIGURE 1.16
Crime Network with 2 clear subgraphs.

So why does the Fiedler vector work in clustering data into two subgroups?
We take a moment here to explore the theory behind this concept.

A quadratic form of a symmetric matrix A is a function on Rn where
QA(x) = xTAx, or

QA(x1,x2,x3, . . . ,xn) =
∑
i≤j

aijxixj .

Example 1.13. Let A =


3 2 −1

2 3 −1

−1 −1 4

.

QA(x) =
(
x1 x2 x3

)
.


3 2 −1

2 3 −1

−1 −1 4

 .


x1

x2

x3


= 3x2

1 + 4x1x2 + 3x2
2 − 2x1x3 − 2x2x3 + 4x2

3.
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A real symmetric n× n matrix, A is called

1. Positive definite if xTAx > 0 for all x ∈ Rn,

2. Positive semidefinite if xTAx ≥ 0 for all x ∈ Rn,

3. Negative definite if xTAx < 0 for all x ∈ Rn,

4. Negative semidefinite if xTAx ≤ 0 for all x ∈ Rn.

Example 1.14. Let L =



2 −1 0 0 −1

−1 3 −1 −1 0

0 −1 2 −1 0

0 −1 −1 3 −1

−1 0 0 −1 2


,

xTLx = (x1−x2)2+(x1−x5)2+(x2−x3)2+(x2−x4)2+(x3−x4)2+(x4−x5)2 ≥ 0

and thus L is a positive semidefinite matrix.

Lemma 1. Let A be a n × n real positive semidefinite matrix, then all of the
eigenvalues of A are non-negative.

Proof. If λ is an eigenvalue of A then there is a vector x such that Ax = λx.
Thus 0 ≤ xTAx = λxTx and since xTx ≥ 0 for all vectors x, λ ≥ 0.

The Laplacian matrix, L, associated with a non-negative (real) symmetric
matrix is a real positive semidefinite matrix and thus has all non-negative eigen-
values. In addition, L.e = 0, where e = ~1 and since G is connected, e is the only
solution to xTLx = 0.

Under the fixed point characterization of eigenvalues, Ax = λx, if |λ| < 1,

limk→∞A
kx = limk→∞λ

kx = ~0.

In application, λ = 1 is of particular interest as Ax = x the values of the
corresponding eigenvector, x, remain fixed when multiplied by the matrix A.
Similarly, if |λ| = 1, there exists a positive integer k such that

Akx = x

and thus the values of x remain fixed when multiplied by the matrix Ak. We
call the eigenvector, x, the steady state vector.

Spectral clustering is dependent on the Spectral Theorem and another
characterization of eigenvalues, the optimization characterization.
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Theorem 3. (Spectral Theorem) Let A be a n× n real symmetric matrix with
eigenvalues λ1, . . . , λn, then A can be written as

A = UΛUT ,

where Λ is a diagonal matrix with ith diagonal entry λi and the columns of U ,
x1, . . . , xn, are orthonormal vectors, which are orthonormal bases vectors for
the corresponding eigenspaces of A.

The optimization characterization of eigenvalues looks at the Rayleigh
Quotient

R(x) =
xTAx

xTx
.

Theorem 4. (Rayleigh-Ritz Theorem) Let A be a n×n real symmetric matrix
with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn then

λ1 ≤ R(x) ≤ λn.

Proof. Since A is a symmetric matrix with eigenvalues λ1 ≤ λ2 ≤ · · · ≤ λn,
from the Spectral Theorem, there is an orthonormal set, {x1, . . . , xn}, such
that for every eigenvector x, x =

∑
i kixi, where ki are scalars.

R(x) =
(
∑
i kixi)

TA(
∑
i kixi)

(
∑
i kixi)

T (
∑
i kixi)

=
(
∑
i kixi)

TA(
∑
i kixi)

<
∑
i kixi,kixi>

=
∑
i k

2
iλi∑

i k
2
i
.

This shows that R(x) is a weighted sum of the eigenvalues and thus

λ1 ≤ R(x) ≤ λn.

From Theorem 7.8, we can conclude that λ1 minimizes R(x) and λn maxi-
mizes R(x).

For the n×n Laplacian matrix, L, of a connected graph, G, with eigenvalues
0 = λ1 < λ2 ≤ · · · ≤ λn,

λ2 = a(G) = minx 6=0,||x||=1,x⊥e
xTLx

xTx
.
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Now if the main goal is to partition the vertices in a graph, G, into two
subsets, G1 and G2, one might wish to do this without cutting through a large
number of edges of the graph. We will measure how well we do this by defining
the subset of vertices V1 and the boundary of V1,

∂(V1) = {(v1, v2), v1 ∈ V1, v2 ∈ V \V2}.

The isoperimetric ratio [2,3] of V1, θ(V1), is defined as

θ(V1) =
|∂(V1)|
|V1|

.

The isoperimetric number of a graph, θG, is the minimum isoperimetric
ratio over all sets of at most half of the vertices. That is

θG = min
|V1|≤ |V |2

|∂(V1)|
|V1||V2|

.

1

2

3

4

5

6 1

2

3

5

6

FIGURE 1.17
Graphs with minimal isoperimetric ratio determined with one edge cut (left)
and three edges cut (right).

Example 1.15. Referring to Figure 1.17 (left), |V | = 6 and thus we wish to
find a subset, V1, such that |V1| ≤ 3 which minimizes θG. Table 1.1 shows that
setting V1 = {1, 2, 3} and V2 = {4, 5, 6} minimizes θG and only one edge was
cut in doing so.

In the graph pictured in Figure 1.17 (right), the partition V1 = {5, 6} and
V2 = {1, 2, 3, 4} minimizes isoperimetric ratio and only cuts through three
edges.
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TABLE 1.1
Sample of subgraphs and isoperimetric numbers for Figure 1.17 (left).

V1 Number of Cut Edges Isoperimetric Number, θG

{1, 2, 3} 1 1
9

{1, 2, 4} 4 4
9

{1, 2, 5} 5 5
9

{2, 3} 2 2
8

{1, 2} 3 3
8

{1, 4} 4 4
8

{1, 5} 5 5
8

{2} 2 2
5

{1} 3 3
5

1.4 CASE STUDY: Applications in Sport Ranking

There are several ways to incorporate the score differential of games into a
sports ranking. We explore a few of these here.

In Section 1.2, we only incorporated a win-lose structure in the analysis of
the SEC-East Conference ranking. Here we wish to rank the teams by incorpo-
rating sequences of both wins and losses. These paths could arbitrarily include
a game where a team plays themselves, represented by a loop in a graph or one
in a main diagonal entry of the adjacency matrix. For further analysis, we will
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use the adjacency matrix

ASEC∗ = ASEC +ATSEC + I.

We begin this exploration of sports ranking by introducing the vector ~S,
representing the net score for each team, where

~Si =
n∑
j=1

sij
ni
,

ni represents the number of games played by team i and sij represents the point
differential in the game between team i and team j, noting that if team i loses
to team j, then sij is negative [19]. From Figure 1.18,

~S =



50

3

−40

3

−6

70

4

−3

−6

−17

2



FL

TN

KY

GA

MIZ

SC

V AN

.

With the matrices ASEC∗ and ~S, we can represent generational rankings.
First generational rankings from head-to-head matches can be expressed by

A0
SEC∗

~S,

ranking Georgia as #1, Florida as #2, and Missouri as #3.
However, we may wish to include 2nd generation games. These are indirect

relationships in a series of competitions, or tournaments, connected by one edge.
For example, in Figure 1.18, although Georgia did not play Missouri, we can

say that there is a 2nd generation game between these two teams since Georgia
played Vanderbilt and Vanderbilt played Missouri. A ranking that includes 1st,
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Florida

Tennessee

Kentucky

South Carolina

Vanderbilt

31

8

20

2

29

24

7

7

FIGURE 1.18
Weighted Directed Graph for SEC-East Football Example.

2nd, and 3rd generation games can be found with

~S + (ASEC∗)~S + (ASEC∗)
2~S

= {39.2, − 2.8, − 10.3, 30.7, − 19, − 8.8, − 36.3}

ranking Florida above Georgia, with Tennessee coming in third. Generalizing
this idea, a ranking that includes the first k generation games can be found
with

k∑
n=0

AnSEC∗~S.

Another way to rank the teams is to incorporate the points scored for each
team, defining

Aij =
Wij

(Wij +Wji)

where Wij is the score of team i in the game between teams i and j. The scores
of the games are shown in Figure 1.18.

TABLE 1.2
2019 SEC-East Football Scores.

FL(29)-KY(21) FL(34)-TN(3) FL(38)-SC(27)
TN(14)-GA(43) TN(41)-SC(21) KY(7)-SC(24)
KY(0)-GA(21) KY(29)-MIZ(7) GA(30)-VAN(6)
GA(17)-SC(21) MIZ(34)-SC(14) MIZ(14)-VAN(21)
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The absolute value of the unit eigenvector

{0.434, 0.293, 0.307, 0.514, 0.282, 0.515, 0.149}

corresponding to the largest eigenvalue with a norm equal to 1, in absolute
value, associated with this scoring technique provides a ranking of South Car-
olina, Georgia, and then Florida. This ranking technique incorporates the team’s
relative score; however, it does not incorporate the notion of a closely fought
game, a game won in overtime, or when a win occurs in the season.

In order to avoid having a team run up the score in a single game in order
to greatly improve their team rankings, some mathematicians use a slightly
different weighting system where

Aij = h
Wij + 1

(Wij +Wji + 2)

and h ∈ (0,1].
Wesley Colley developed a weighted system that is believed to deal with

some of the issues seen in the previous technique. In the Colley Method [6] of
sports ranking, the entries of C, the Colley matrix, are defined as

Cij =

{
2 +Ni wheni = j

−nji wheni 6= j
,

where Ni is the number of games played by team i and nji is the number of
times team i has played team j. The goal of this ranking system is to solve for
~r in the linear system

C~r = b where bi = 1 +
1

2
(wi − li),

wi is the number of wins for team i and li is the number of losses for team i.
For the SEC-East Conference, the Colley Method, defined with the linear

system Cr = b, with

C =



5 −1 −1 0 0 −1 0

−1 5 0 −1 0 −1 0

−1 0 6 −1 −1 −1 0

0 −1 −1 6 0 −1 −1

0 0 −1 0 5 −1 −1

−1 −1 −1 −1 −1 7 0

0 0 0 −1 −1 0 4


and b =

{
5
2 ,

1
2 ,0,2,

1
2 ,

1
2 ,1
}

produces a ranking vector,

r = {0.753, 0.627, 0.497, 0.464, 0.438, 0.363, 0.359}.
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Under this Colley method, Florida would be ranked #1 with Georgia and Van-
derbilt 2nd and 3rd respectively.

This case study presents several different ways to use matrices to produce
a ranking among sports teams. There is no single way to do a sport ranking,
and are many other famous ranking systems such as Massey method and Ford’s
method [6].

Some data used in this study can be found at 3. A larger data set of games
from the NCAA Men’s Division 1 2020 season can be found at GitHub links 4
and 5. Python and R code for this case study can be found at GitHub links 2
and 7 respectively.

1.5 CASE STUDY: Gerrymandering

Throughout American history, states have struggled with how to create voting
districts in a non-partisan manner. As recent as 2019, states, such as North
Carolina, have had congressional districts ruled unconstitutional due to partisan
gerrymander [39]. The 4th Circuit Court of Appeals has made a clear statement
that focuses on three steps to determine if a district has been gerrymandered,
violating the Constitution.

A district should be in question if there is “(1) discriminatory intent, (2) dis-
criminatory effects, and (3) a lack of justification for the discriminatory effects”
[2].

In order to think mathematically about how to develop fair districts, we
must also know some rules around districting. First of all, districts are typically
created using defined census areas, census blocks, census block groups, or census
tracts. The former is the smallest and the later is the largest of the defined
areas. Districts must also maintain three characteristics: equity, contiguity, and
compactness [15].

Equity is the principle that all districts have an equivalent number of vot-
ers. In an ideal situation, districts are compact if given any two points in the
district the line segment between these points remains completely in the dis-
trict. Keep in mind that census blocks, groups, and tracts are typically not
compact and thus the inclusion of these objects, in total, may cause a district
to fail this property. Failure to meet the property of compactness can become
more of an issue when it occurs in an unnatural manner. Failure to meet com-
pactness in the 2011 North Carolina Congressional redistricting map was voted
unconstitutional, particularly around District 12, which can be seen in Figure
1.19.

Some of the issues with districting come down to determining adjacent cen-
sus blocks. As you can see in Figure 1.20, adjacent census blocks may not have
consecutive numbers. For example, census blocks 2003 and 2009 are adjacent.
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District 12

FIGURE 1.19
2011 North Carolina Congressional Redistricting Map [26].

FIGURE 1.20
Sample of census blocks and block number in Charlotte, NC.
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Blocks are also clearly not adjacent by an entire edge or may be adjacent
along multiple edges. The question then becomes, given that there are thousands
of census blocks in a state, how do we determine if census blocks are adjacent,
and how do we prioritize adjacencies that may be more important than others.

In this case study, we will focus on a very small section of Figure 1.20, census
blocks 2000 through 2015. One way to think about this problem is to create a
graph, and corresponding adjacency matrix, based on perimeter shared.

2000
20012002

2004

2005

2006 2007

2008

2009

2010

2013

2014

2015

FIGURE 1.21
Unweighted graph representation of sample census blocks.

The edges in Figure 1.21 represent a shared edge between census blocks in
Figure 1.20. The weight from vertex i to vertex j, representing the fraction of
the boundary of census block i shared with census block j, is the (i,j)th entry
of adjacency matrix, AE .

If entries of a given row sum to 1, this indicates that a census block is
surrounded by other census blocks in the study (from 2000 to 2015). If entries
of a given row do not sum to 1 then some part of the corresponding census
block’s boundary is not shared by any other census block in the study.

AE =



0 0.06 0.08 0.05 0.1 0 0 0 0 0 0 0 0 0 0 0

0.27 0 0.34 0 0.2 0 0 0 0 0 0 0 0.19 0 0 0

0.24 0.24 0 0.44 0 0 0 0 0 0 0 0 0 0.08 0 0

0.11 0 0.35 0 0 0 0 0 0 0 0 0 0 0.2 0 0

0.28 0.13 0 0 0 0.14 0.15 0 0 0 0 0.14 0.16 0 0 0

0 0 0 0 0.19 0 0.31 0 0 0.19 0.31 0 0 0 0 0

0 0 0 0 0.2 0.3 0 0.2 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.21 0 0.21 0.58 0 0 0 0 0 0

0 0 0 0 0 0 0 0.16 0 0 0 0 0 0 0 0

0 0 0 0 0 0.21 0 0.62 0 0 0 0 0 0 0 0

0 0 0 0 0 0.24 0 0 0 0 0 0.24 0 0 0.24 0

0 0 0 0 0.16 0 0 0 0 0 0.26 0 0.13 0.19 0 0.26

0 0.23 0 0 0.30 0 0 0 0 0 0 0.22 0 0.25 0 0

0 0 0.05 0.16 0 0 0 0 0 0 0 0.12 0.09 0 0 0.17

0 0 0 0 0 0 0 0 0 0 0.25 0 0 0 0 0.2

0 0 0 0 0 0 0 0 0 0 0 0.26 0 0.27 0.21 0


.
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In Chapter 1.6, a netscore vector was created in order to rank teams in the
SEC-East Conference. A similar vector can be created for studying the census
blocks. Let

~Si =
16∑
j=1

AE(i,j) = {0.29, 1, 1, 0.66, 1, 1, 0.7, 1, 0.16, 0.83, 0.72, 1, 1,

0.59, 0.45, 0.74}.
~Si represents the percent of the boundary of census block i shared by other
census blocks in the study. Notice that AE is not symmetric; however,

AE∗ = AE +ATE + I is symmetric.

~S + ~SAE∗ = {1.7, 3.4, 3.27, 2.37, 3.9, 3.5, 2.8, 3.34, 0.7, 3.26, 2.7, 3.6,

3.4, 2.5, 1.6, 2.44}
represents a ranking of census blocks where the highest rank blocks have the
most boundary shared in the study, census blocks 2004, 2011, 2005, 2012, and
2001.

Unfortunately, the above technique does not provide a clear way to incor-
porate adjacency into a way to partition the census blocks. We will look to find
the Fiedler vector in order to aid us in accomplishing this goal.

If we create a binary adjacency matrix, A, based on whether a census block
shares edges with other census blocks in Figure 1.20, the matrix

A =



0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0

1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0

0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0

0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0

0 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1

0 1 0 0 1 0 0 0 0 0 0 1 0 1 0 0

0 0 1 1 0 0 0 0 0 0 0 1 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0
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and

I +A+A2 =



5 3 3 2 2 1 1 0 0 0 0 1 2 2 0 0

3 5 2 2 3 1 1 0 0 0 0 2 2 2 0 0

3 2 5 3 2 0 0 0 0 0 0 1 2 2 0 1

2 2 3 4 1 0 0 0 0 0 0 1 1 2 0 1

2 3 2 1 7 2 2 1 0 1 2 2 3 2 0 1

1 1 0 0 2 5 2 2 0 1 1 2 1 0 1 0

1 1 0 0 2 2 4 1 1 2 1 1 1 0 0 0

0 0 0 0 1 2 1 4 1 1 0 0 0 0 0 0

0 0 0 0 0 0 1 1 2 1 0 0 0 0 0 0

0 0 0 0 1 1 2 1 1 3 1 0 0 0 0 0

0 0 0 0 2 1 1 0 0 1 4 1 1 1 1 2

1 2 1 1 2 2 1 0 0 0 1 6 3 3 2 2

2 2 2 1 3 1 1 0 0 0 1 3 5 2 0 2

2 2 2 2 2 0 0 0 0 0 1 3 2 6 1 2

0 0 0 0 0 1 0 0 0 0 1 2 0 1 3 1

0 0 1 1 1 0 0 0 0 0 2 2 2 2 1 4


show that census blocks 2004 and 2011 have the most blocks adjacent to them
in one or two steps, with the total of the rows of

I +A+A2 = {22, 23, 21, 17, 31, 19, 17, 10, 5, 10, 15, 27, 25, 25, 9, 16}.
One might wish to make sure that these two blocks are in separate districts.

However, what if 2004 and 2011 were adjacent to one another?
The Laplacian of A,

L =



4 −1 −1 −1 −1 0 0 0 0 0 0 0 0 0 0 0

−1 4 −1 0 −1 0 0 0 0 0 0 0 −1 0 0 0

−1 −1 4 −1 0 0 0 0 0 0 0 0 0 −1 0 0

−1 0 −1 3 0 0 0 0 0 0 0 0 0 −1 0 0

−1 −1 0 0 6 −1 −1 0 0 0 0 −1 −1 0 0 0

0 0 0 0 −1 4 −1 0 0 −1 −1 0 0 0 0 0

0 0 0 0 −1 −1 3 −1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 3 −1 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 1 0 0 0 0 0 0 0

0 0 0 0 0 −1 0 −1 0 2 0 0 0 0 0 0

0 0 0 0 0 −1 0 0 0 0 3 −1 0 0 −1 0

0 0 0 0 −1 0 0 0 0 0 −1 5 −1 −1 0 −1

0 −1 0 0 −1 0 0 0 0 0 0 −1 4 −1 0 0

0 0 −1 −1 0 0 0 0 0 0 0 −1 −1 5 0 −1

0 0 0 0 0 0 0 0 0 0 −1 0 0 0 2 −1

0 0 0 0 0 0 0 0 0 0 0 −1 0 −1 −1 3


has unit Fiedler vector

{0.17, 0.16, 0.2, 0.2, 0.06,−0.1,−0.17,−0.43,−0.64,−0.31, 0.07, 0.14, 0.15,

0.18, 0.15, 0.18}.
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FIGURE 1.22
Graphically representation of sample census blocks and partition.

Based on the Fiedler vector, these census blocks can be partitioned into the
two subgraphs, or districts,

G1 = {2000, 2001, 2002, 2003, 2004, 2010, 2011, 2012, 2013, 2014,

2015, 2016}
and G2 = {2005, 2006, 2007, 2008, 2009}.

As described, Fiedler clustering would create two distinct clusters in a graph.
However, this process can be repeated in order to create clusters within a sub-
graph [3]. For example, perhaps it is essential to have three voting districts,
let’s create a Fiedler vector for G1, so that we can divide G1 into two clusters.
The adjacency and Laplacian matrix corresponding to G1 are

A1 =



0 1 1 1 0 0 0 0 0 0 0

1 0 1 0 0 0 0 1 0 0 0

1 1 0 1 0 0 0 0 1 0 0

1 0 1 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 1 0

0 0 0 0 0 1 0 1 1 0 1

0 1 0 0 0 0 1 0 1 0 0

0 0 1 1 0 0 1 1 0 0 1

0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 1 0 1 1 0



and
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L1 =



4 −1 −1 −1 −1 0 0 0 0 0 0

−1 4 −1 0 −1 0 0 −1 0 0 0

−1 −1 4 −1 0 0 0 0 −1 0 0

−1 0 −1 3 0 0 0 0 −1 0 0

−1 −1 0 0 4 0 −1 −1 0 0 0

0 0 0 0 0 2 −1 0 0 −1 0

0 0 0 0 −1 −1 5 −1 −1 0 −1

0 −1 0 0 −1 0 −1 4 −1 0 0

0 0 −1 −1 0 0 −1 −1 5 0 −1

0 0 0 0 0 −1 0 0 0 2 −1

0 0 0 0 0 0 −1 0 −1 −1 3



.

FIGURE 1.23
Subgraphs defined using Fiedler vectors.

Eigenvalues of L1 are {6.6, 6.4, 5.7, 5.2, 4.2, 4., 2.8, 2.3, 2.1, 0.7, 0}. The
unit Fiedler vector, and thus the unit eigenvector corresponding to eigenvalue
0.7, is

1√
1499

{−11, − 10, − 10, − 10, − 7, 20, 4, − 5, − 2, 22, 10}.

Using this information, we can divide G1 into two districts

{2000, 2001, 2002, 2003, 2004, 2012, 2013} and {2010, 2011, 2014, 2015}.
The three subgraph of G defined by with the Fiedler vector technique de-

scribed in this case study can be seen in Figure 1.23.
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Data related to the small weighted adjacency matrix for NC census blocks
2000-2015 and full information on the 2010 NC census blocks can be found at
Github links 9 and 10. Python and R code for this case study can be found at
GitHub links 6 and 8 respectively.

1.6 Exercises

1. Six students from Connected University are trying to figure out how
they are connected to one another. They all have some connection
to one another through the same online network platform. The adja-
cency matrix representing their connections to one another is

A =



0 1 0 1 0 0

1 0 1 1 0 1

0 1 0 0 1 0

1 1 0 0 1 0

0 0 1 1 0 1

0 1 0 0 1 0


a. Kush is a student in the network whose network connections are

represented in Row 1, or Column 1. Using the adjacency matrix,
determine how many others are directly connected, through a
1-step path, to Kush in the network.

b. Using the adjacency matrix, determine how many others are di-
rectly connected, through a 2-step path, to Kush in the network.

c. Fiona is also a student in the network. Fiona’s network connec-
tions are represented in Row 2, or Column 2 of the adjacency
matrix. Using the adjacency matrix, determine how many 1-step
or 2-step connections there between Kush and Fiona.

2. For the matrix

A =


1 0 0

2 0 1

0 1 2


find the spectral radius, ρ(A).
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3. A graph, G, is associated with the adjacency matrix

A =


1 1 1 0

1 0 0 1

1 0 0 1

0 1 1 0

 .

Use the adjacency matrix to determine if G a simple connected graph.

1

2
3

4

5

6
7

8

9

10

FIGURE 1.24
Figure for Exercises 4 and 5.

4. For the following exercises, refer to graph G in Figure 1.24.

a. Find the adjacency matrix corresponding to G.

b. Find the Laplacian matrix associated with graph G.

c. Calculate the Fiedler value and Fiedler vector.

d. Use the Fiedler vector to cluster the graph into two subgraphs.

5. Using graph G displayed in Figure 1.24, calculate the isoperimetric
number, θG, to argue how to cluster the G into two subgraphs.

6. Wey and Blumstein [37] studied the yellow-bellied marmot, a social
ground dwelling rodent, and their network of social interactions in
and around the Rocky Mountain Biological Laboratory in Colorado.
Assume that the Marmot social network can be represented by the
graph G found in Figure 1.25.

a. Find the adjacency matrix corresponding to G.

b. Let’s assume that a marmot’s social network can extend through
friend marmots, leading us to explore powers of the adjacency
matrix from part a. Determine if there is any marmot in the
network that is connected to every other marmot through direct
or two step relationships. Which marmots in the network are
connected to every other marmot through direct, two-step, or
three-step relationships?

c. Find the Laplacian matrix associated with G.

d. Determine the isoperimetric ratio θ(V ) where

V = {v1, v2, v3, v5, v6, v7}
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FIGURE 1.25
Marmot social network in Exercise 6.

affiliated with the clustering the graph G into the two subgraphs
G1 and G2.

e. Find the Fiedler vector affiliated with G.

f. Use the Fiedler vector to cluster the marmot social network rep-
resented by G into two clusters.

g. Use your result in Part e. to cluster the marmot social network
into four clusters. There are multiple answers to this question.
Argue your solution based on Fiedler vectors of subgraphs of G.

7. If we knew more about the marmot social interactions regarding dom-
inance and number of interactions, how might this affect how the
relationships are represented in the graph presented in Figure 1.25.

8. The weighted graph shown in Figure 1.26 displays the number of
interactions between corresponding marmots in a week long period.
Use this graph to answer the following questions.

a. Find the Laplacian matrix affiliated with the graph in Figure
1.26.

b. Find the Fiedler value and Fiedler vector related to the graph in
Figure 1.26 and cluster the graph into two subgraphs using these
values.

9. A subpopulation of marmots is displaying a dominance behavior rep-
resented by the directed graph shown in Figure 1.27. The weight, wij
on the edge from marmot i to marmot j represents the number of
times that marmot i showed a dominance behavior over marmot j.
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FIGURE 1.26
Weighted marmot social network in Exercise 8.

a. Use a score vector

~S =
sij
ni

similar to that used in the sports ranking in Section 1.6, where ni

6

3

11

10

15

1215

10

14

v10

v11

v12

v13

v14
v15

FIGURE 1.27
Weighted dominance interactions in Exercise 9.
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represents the number of interactions with marmot i and sij rep-
resents the number of dominant interactions between marmots i
and j noting that if marmot j is dominant over marmot i then
sij is negative.

b. If A is the adjacency matrix representing the graph in Figure
1.27, use A + I and S to determine a ranking based on 1st and
2nd generation dominance.

c. Use A + I and S, to determine a ranking based on 1st through
3rd generation dominance.

10. The Cinderella data from GitHub link 1 is a binary data set of traits
in which 31 Cinderella tales from around the world contain. Use this
data to answer the following questions.

a. Find the Gramian matrix, S.

b. What do the (1,1) and (1,2) entries represent in S?

c. Find the Fiedler vector related to the Gramian matrix, S, and use
this information to cluster the Cinderella tales into two clusters.

11. Sports Ranking in Section 1.6 uses a weighted system where 2 or 3−
step wins between teams carry equal weight to direct head to head
competition wins in order to create a ranking from

n∑
i=0

AiSEC∗
~S.

If instead, N − step wins carried a weight of 1
N and thus the ranking

would be

~S +
n∑
i=1

1

i
AiSEC∗~S.

determine the ranking of the teams in the tournament from Section
with n = 4 and n = 5.



http://taylorandfrancis.com
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Stochastic Processes

The goal of this chapter is to use matrices to explore the behavior of systems
as they change, or transition, throughout time. In order to do so, we begin by
defining some properties of matrices that will allow us to employ some important
theories, such as the Perron-Frobenius Theorem.

Reducibility

A permutation is a change of ordering. So for example, if the numbers
(1, 2, 3, 4) are rearranged, or permuted, to be read as (2, 1, 4, 3) we see
that

1→ 2, 2→ 1, 3→ 4, and 4→ 3.

We denote this permutation with the notation (12)(34). Similarly the permu-
tation denoted by (1)(234) represents

1→ 1, 2→ 3, 3→ 4, and 4→ 2

and the ordering of the four numbers is (1, 3, 4, 2).
A permutation matrix, P , is a matrix in which the rows of the identity

matrix of the same dimensions are permuted.

Example 2.1. A permutation matrix can permute one or more rows of the
identity matrix. Let

P1 =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 and P2 =


1 0 0 0

0 0 1 0

0 0 0 1

0 1 0 0

 .

DOI: 10.1201/9781003025672-2 43
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The row permutations related to P1 and P2 respectively are (1)(3)(42) and
(1)(234). Given another matrix

A =


1 2 3 4

−1 0 1 2

−2 −1 0 1

−3 −2 −1 0



P1A =



1 2 3 4

−3 −2 −1 0

−1 0 1 2

−2 −1 0 1

−1 0 1 2



P2A =


1 2 3 4

−3 −2 −1 0

−1 0 1 2

−2 −1 0 1



we can see how the respective permutation matrices transform the matrix A.
Recall that permuting two rows in an identity matrix is an elementary row
operation, and the affiliated elementary matrix has a determinant of −1. With
this in mind,

|P1| = −1, |P2| = 1, and |P2A| = |P2||A| = |A|.

A n× n matrix A is called reducible if there exists a permutation matrix
P such that

PAPT =



A11 A12

0 A22


where A11 is a r × r matrix and A12 and A22 are (n− r)× (n− r) matrices. If
a matrix is not reducible then it is called irreducible.

Notice that a matrix A is reducible if and only if a permutation matrix can
be found to put A into a block upper triangular form.
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Example 2.2.

A1 =


0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 0



A2 =


0 1 0 1

0 0 0 0

0 1 0 0

0 0 1 0



A3 =


0 1 0 1

0 0 0 0

0 1 0 1

0 0 0 0


Matrix A1 is reducible as it is already in the form of a block upper triangular
matrix. In its original form, matrix A2 is not block upper triangular; however,
there is a permutation matrix

P =


1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

 such that

PA2P
T =


0 1 0 1

0 0 1 0

0 0 0 1

0 0 0 0


which is block upper triangular. Unlike the other two matrices, matrix A3 is
irreducible.

Theorem 5. A symmetric matrix is irreducible if and only if its associated
graph is connected. A matrix is irreducible if and only if its associated graph is
strongly-connected, that is, any pair of vertices has a path between them.

Notice that the graphs affiliated with the adjacency matrices A1 and A2

in Example 2.2, shown in Figure 2.1, are strongly connected while the graph
affiliated with matrix A3 is not strongly connected since there is not a path
between vertices v1 and v3 or v2 and v4.
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FIGURE 2.1
Graphs affiliated with Example 2.2.

A square matrix, A, is said to be a non-negative matrix, denoted A ≥ 0,
if all of its entries are non-negative, and a positive matrix, denoted A > 0, if
all of its entries are positive.

A matrix, A, is said to be a primitive matrix if there exist integer k > 0
such that Ak is a positive matrix. A matrix is irreducible if for all (i,j) there
exist a k such that Aki,j > 0.

Lemma 2. If a square non-negative matrix A is primitive then it is irreducible.

Example 2.3. Let

A =


0 0 1

3 4 1

3 2 4

 .

Then,

A2 =


3 2 4

15 17 29

14 14 27

 .

Notice that A2
ij > 0 for 1 ≤ i,j ≤ n so A is primitive and irreducible.

The following theorem, the Perron-Frobenius theorem, is fundamental in the
study of discrete probabilistic behaviors, also called stochastic processes, in
relation to eigenvalues and eigenvectors of irreducible matrices.
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Theorem 6. (Perron-Frobenius Thereom) If A is an n× n non-negative irre-
ducible matrix then

• One of its eigenvalues, λPF with multiplicity 1, is greater than or equal to, in
absolute value, all of the other eigenvalues.

• There is a positive eigenvector corresponding to λPF .

Perron is also credited with a slightly different theorem that relies on a
matrix being primitive rather than irreducible.

Theorem 7. (Perron Theorem)[4]
If A is a primitive matrix with the largest eigenvalue in magnitude, the spectral
radius, ρ(A) = λPF , then λPF is an eigenvalue of multiplicity 1 and has a
corresponding strictly positive eigenvector.

In the case when a matrix is non-negative but not primitive or irreducible,
then the multiplicity of λPF may be greater than 1.

Example 2.4. Let A1 =


1 1 1

1 0 0

0 1 1

 . Notice that

A2
1 =


2 2 2

1 1 1

1 1 1


and thus A1 is primitive. From the Perron Theorem, we can conclude that

λPF = 2 is an eigenvalue with multiplicity 1

and all other eigenvalues are smaller in magnitude then λPF .

Applying the Perron-Frobenius Theorem to the matrix A in Example 2.3,
λPF = ρ(A) = 6 with corresponding unit eigenvector

{
2√
229

,
9√
229

,
12√
229

}
.

Similarly, the crime network matrix presented in Figure 1.8 is also irreducible
with λPF = 4.032 and with a corresponding unit eigenvector

{0.267, 0.305, 0.163, 0.285, 0.353, 0.324, 0.272, 0.348, 0.322, 0.447}.
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2.1 Markov Chain Basics

A stochastic process is a sequence of random variables indexed over time,
either continuous or discrete. We consider here a discrete stochastic process
referred to as a Markov chain , in which

P (Xn = xn|X1 = x1, . . . , Xn−1 = xn−1) = P (Xn = xn|Xn−1 = xn−1).

That is, that the probability of the current state is only dependent on the
previous states; there have been no other states that have occurred over time.
This property is referred to as the memoryless property.

A Markov chain has a corresponding transition matrix. The transition
matrix, M , is a probability matrix, where Mi,j is the probability of going from
state j to state i,

Mi,j = P (Xn = i, Xn−1 = j).

Example 2.5. An example of a transition matrix, M , for a Markov Chain,

New State 1

2

3



Preceding State

1 2 3

0.05 0.7 0.46

0.75 0.2 0.12

0.2 0.1 0.42


.

It is sometimes helpful in a Markov chain to visualize the system with a state
diagram, with arrows between states representing the transitions and weights
representing the probability of that transition.

An example of a state diagram corresponding to the transition matrix can
be seen in Figure 2.2.

There are a few ways that we can initially start to analyze the long-term
behavior of the states given a transition matrix.

One way is to make an assumption about the initial value of each state,
creating an initial vector, π. Then the long-term behavior can be found by
applying powers of the transition matrix to π,

limk→∞ Mkπ.

Theorem 8. Given a Markov chain X1, X2, . . . , Xk with transition matrix M ,

v = limn→∞ Xn

where v is the unit eigenvector associated with eigenvalue λPF = 1.
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FIGURE 2.2
Example of a state diagram.

Proof. The Perron-Frobenius theorem is the main tool in this proof. If the
Markov chain has one or more absorbing states, the transition matrix can be
written in a form such that the absorbing states are all in the last rows (and
columns). In this case, the transition matrix is irreducible. However, if all states
in the Markov chain are transient, the transition matrix may be irreducible or
primitive, or may only be non-negative. Thus, we will only make the assumption
that the transition matrix, M , is non-negative.

Using the general case of the Perron-Frobenius Theorem, we assume that
the largest eigenvalue in magnitude λPF has a corresponding unit eigenvector
v.

If M is an n× n transition matrix with entries Mi,j , then

λPF v = Mv =

n∑
j=1

Mi,jvj .

Thus λPF vv
T =

∑n
j=1Mi,j = 1 and λPF = 1. In addition,

limn→∞ Xn = limn→∞ Mnv = limn→∞ λnPF v = v.

The vector v∑
i vi

will provide a percent vector for the long-run behavior of the

Markov chain.

Example 2.6. For the transition matrix presented in Example 2.5, the percent
eigenvector corresponding with λPF = 1 is {.39, .40, .21}. From this eigenvector,
we can determine the long-run percentages for each state.
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In general, if X1, X2, . . . , Xn are the states in a Markov chain, then Xi is
an absorbing state if

P (Xi = xi|Xi−1 = xi) = 1,

otherwise the state is called a transient state.
If there are q transient states and r absorbing states, the states of a Markov

chain can be renumbered, thus permuting the rows and columns of the transition
matrix in order to put the transition matrix into the form(

Q 0

R I

)
,

where the q × q matrix Q represents the transition between transient states,
the r × r matrix I represents absorption, the q × r matrix R represents the
transition from a transient state to an absorbing state, and the r × q matrix
0 represents the lack of ability to move from an absorbing state to a transient
state.

By putting the transition matrix into this form, we can employ another
important matrix in the study of Markov chains, the fundamental matrix,

N =

∞∑
n=0

Qn.

Recall from your study of series that the Taylor series with center 0, also
called the Maclaurin series, for the function 1

1−x is
∑∞
n=0 x

n. Similarly, if a
Markov chain has at least one absorbing state, then I − Q is invertible with
inverse N =

∑∞
n=0Q

n.
The (i,j)th entry of the fundamental matrix, N , represents the expected

time that the Markov chain stays in state Xj given that it starts in Xi.

Example 2.7. Assume that you are in an escape room maze with 5 rooms. You
are able to escape from either room 4 or 5 and your ability to transition from
one room to the next is given by the state diagram in Figure 2.3.

You wish to determine how long you should expect it to take if you escape
through room 5 given that you start in room 1.
In this example, the transition matrix,

M =



1
3

2
5 0 0 0

2
3

1
3

3
8 0 0

0 1
5

1
2 0 0

0 1
15 0 1 0

0 0 1
8 0 1


,
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FIGURE 2.3
State diagram representing the transition between rooms in the maze.

Q =


1
3

2
5 0

2
3

1
3

3
8

0 1
5

1
2

 ,

and N =


93
14

36
7

27
7

60
7

60
7

45
7

24
7

24
7

32
7

 .

From matrix N , we can conclude that you should be expected to take

93

14
+

60

7
+

24

7
=

261

14
.

So on average, roughly 19 time steps are needed if you wish to start in room 1
and escape from room 5.

2.2 Hidden Markov Models

Markov chains are extremely helpful when we wish to determine a sequence of
events based on probabilities of observed behaviors. However, there are times
when we wish to make predictions but these probabilities are not already clear
or observed. In this case, we say that we have a Hidden Markov Model,
HMM. We begin with an example,

Example 2.8. Kalu and Rath own a small start-up day trading company. Rath
tells Kalu that if the stock market is bearish, on the decline, on any given day
then she will be unhappy; however, if the market is bullish, on the rise, then she
will be happy.
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FIGURE 2.4
Stock Market State Diagram Depicting a HMM.

If Rath calls Kalu and tells him that last week she was

{Happy, Sad, Happy, Happy, Sad},
then Kalu would assume based on this that the stock market was

{Bullish, Bearish, Bullish, Bullish, Bearish}.
Unfortunately, the health of the stock market alone may not be the only factor

weighing on Rath’s daily mood. Perhaps Rath is actually happy 75% of the time
when the market is bullish and sad otherwise, and when the stock market is
bearish, she is sad 60% of the time and otherwise happy.

Additionally, let’s assume that we know additional information about daily
changes in the stock market that are shown in the state diagram in Figure 2.4.

Under these new conditions, if Rath tells Kalu that last week she was {Happy,
Sad, Happy, Happy, Sad}, Kalu might want to determine how likely his assump-
tion is that the market status was {Bullish, Bearish, Bullish, Bullish, Bearish}.

In this example, there are observations, Rath’s daily moods, and hidden
states, which are the daily stock market trends.

Like traditional Markov chains, this model has transition probabilities, which
are those probabilities between the hidden states, the stock market states in this
example. Additionally, a hidden Markov model has emissions probabilities,
which are those probabilities emitted from the hidden states to the observations.

The question posed in Example 2.8 is one of three common questions that
are addressed by hidden Markov models. These questions fit into three general
categories
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1. The Likelihood Problem—determining the probability of an
observation sequence given a model.

2. The Decoding Problem—determining the most likely se-
quence of events given an observation sequence.

3. The Learning Problem—determining the most likely model
(with parameters) given the observation sequence.

2.2.1 The Likelihood Problem

Because we will have to use prior information to make some inferences in a
hidden markov model, a strong understanding of Bayes Theorem is essential.

Two events, X1 and X2, are mutually exclusive if

X1 ∩X2 = ∅.
Events X1, X2, . . . , Xn are exhaustive if

∪ni=1Xi = S,

where S is the set of all possible outcomes.

Example 2.9. Assume that within a population in which COVID-19 variants
are prevalent, a random human may be

X1 = susceptible, X2 = infected,

or X3 = recovered and temporarily immune.

If contraction of one variant provides temporary immunity for all variants,
these sets can be considered mutually exclusive since

X1 ∩X2 = X1 ∩X3 = X2 ∩X3 = ∅.
Additionally X1, X2, and X3 are exhaustive events. However, if contractions

of one variant only provides temporary immunity to that variant, then X1∩X3 6=
∅ and X1 and X3 are not mutually exclusive events.

Theorem 9. (Baye’s Theorem) Let X1, X2, . . . , Xn be mutually exclusive and
exhaustive events

P (Xj |Xk) =
P (Xk|Xj)P (Xj)∑n
i=1 P (Xk|Xi)P (Xi)

.

Example 2.10. Given the state diagram from Example 2.8, Kalu looked online
to determine that in recent history the stock market was bullish 87% of the time
and bearish the other 13% of the time. He used this information to determine
the probability that the stock market is bullish on a given day if he knows Rath
is happy.
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P (bullish|happy) =
P (happy|bullish)P (bullish)

P (happy|bullish)P (bullish) + P (happy|bearish)P (bearish)

=
.75 · .87

.75 · .87 + .4 · .13
≈ .93

Similarly, Kalu can determine the probability that the stock market is bearish
on a given day if he knows Rath is happy.

P (bearish|happy) =
P (happy|bearish)P (bearish)

P (happy|bullish)P (bullish) + P (happy|bearish)P (bearish)

=
.4 · .13

.75 · .87 + .4 · .13
≈ .07

Finishing off his analysis, Kalu wants to determine

P (bullish|sad) =
P (sad|bullish)P (bullish)

P (sad|bullish)P (bullish) + P (sad|bearish)P (bearish)

=
.25 · .87

.25 · .87 + .6 · .13
≈ .74

P (bearish|sad) =
P (sad|bearish)P (bearish)

P (sad|bullish)P (bullish) + P (sad|bearish)P (bearish)

=
.6 · .13

.25 · .87 + .6 · .13
≈ .26

So Kalu is much more confident in saying that the stock market is Bullish
given that Rath is Happy than he is saying that the stock market is Bearish
given that Rath is Sad.

Given that Rath tells Kalu that she is {Happy, Sad, Happy, Happy, Sad}
the likelihood of the market being {Bullish, Bearish, Bullish, Bullish, Bearish}
is

.93 · .25 · .93 · .93 · .26 ≈ .05.

Like we saw in Example 2.10, finding the probability of an observation se-
quence given a model is a type of likelihood problem. The Forward/Backward
Algorithm is an algorithm to solve this in general using hidden Markov models.
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Algorithm 1. Forward Algorithm

Let O be an observed sequence of random variables, O1, O2, . . . , On and
H be the hidden sequence of random variables, H1, H2, . . . , Hn and λ is the
hidden Markov model with initial probabilities, π. We begin by finding the joint
probability distribution

P (O1, O2, . . . , On|λ) =
∑
k

P (O1, O2, . . . , On, Hn = k|λ) =
∑
k

α(Hn)k,

where

α(Ht)
k = P (O1, O2, . . . , Ot, Ht = k|λ), for all k

= P (Ot|Ht = k, λ)
∑
i

P (Ht = k|Ht−1 = i)α(Ht−1)i,

Note that

α(H1)k = P (O1|H1 = k)P (H1 = k)

for all k, and that H0 is the start of the sequence.
The Forward Algorithm can be used to determine the probability of an ob-

served sequence given the occurrence of a hidden sequence, P (O|H), and the
likelihood of an observed sequence, P (O).

α(Ht) = E(Ot,·) ◦ (Tα(Ht−1))

P (O1, O2, . . . , Ot) = E(Ot,·)(Tα(Ht−1))

for all t where α(H0) = π.

Example 2.11. (Forward Algorithm) Continuing Example 2.10, Kalu can use
the Forward Algorithm to determine the likelihood of his observation of Rath’s
mood

P (O) = P (O1 = Happy, O2 = Sad, O3 = Happy, O4 = Happy, O5 = Sad).

Kalu can put all of the information he has found into two matrices thus far, the
transition matrix, T , and the emission matrix, E.

The entries of the transition matrix T are

Ti,j = P (Ht = state i|Ht−1 = state j).
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For this example,

T =

N
ex

t
st

a
te

Bullish

Bearish


Preceding state

Bullish Bearish

.8 .5

.2 .5

 .

The emissions matrix, E, is a transition matrix between hidden and observed
states, where

Ei,j = P (Ot = state i|Ht = state j).

Kalu has determined that the emission matrix is

E =

O
bs

er
ve

d
st

a
te

Happy

Sad


Hidden state

Bullish Bearish

.75 .40

.25 .60

 .

If π =

(
P (Bullish)

P (Bearish)

)
=

(
.87

.13

)
,

α(H1)Bull = P (O1 = Happy|H1 = Bull)P (H1 = Bull) = .87 · .75,

α(H1)Bear = P (O1 = Happy|H1 = Bear)P (H1 = Bear) = .13 · .40,

α(H1) =

(
α(H1)Bull

α(H1)Bear

)
=

(
.6525

.052

)
.

P (O1 = Happy) =
∑
k

α(H1)k = E(O1=Happy,·)π = .6525 + .052 = .7045.

α(H2)Bull = P (O2 = Sad|H2 = Bull)(P (H2 = Bull|H1 = Bull)α(H1)Bull

+ P (H2 = Bull|H1 = Bear)α(H1)Bear)

= .25 · T(Bull,·)α(H1) = .25 · (.8 · .6525 + .5 · .052)

α(H2)Bear = P (O2 = Sad|H2 = Bear)(P (H2 = Bear|H1 = Bull)α(H1)Bull

+ P (H2 = Bear|H1 = Bear)α(H1)Bear)

= .6 · T(Bear,·)α(H1) = .60 · (.2 · .6525 + .5 · .052)
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Another way to determine,

α(H2) = E(O2=Sad,·) ◦ (Tα(H1))

=

(
.25

.60

)
◦
((

.8 .5

.2 .5

)(
.6525

.052

))
=

(
.137

.0939

)

P (O1 = Happy, O2 = Sad) =
∑
k

α(H2)k = E(Sad,·)(Tα(H1)) = .2309

α(H3)Bull = P (O3 = Happy|H3 = Bull)(P (H3 = Bull|H2 = Bull)α(H2)Bull

+ P (H3 = Bull|H2 = Bear)α(H2)Bear)

= .75 · (.8 · .137 + .5 · .094)

α(H3)Bear = P (O3 = Happy|H3 = Bear)(P (H3 = Bear|H2 = Bull)α(H2)Bull

+ P (H3 = Bear|H2 = Bear)α(H2)Bear)

= .40 · (.2 · .137 + .5 · .094)

α(H3) = E(Happy,·) ◦ (Tα(H2)) =

(
.11741

.02974

)

P (O1 = Happy, O2 = Sad, O3 = Happy) =
∑
k

α(H3)k = E(Happy,·)(Tα(H2))

= .14715

α(H4) =

(
0.0816

0.01534

)
, P (O1 = Happy,Ø2 = Sad,Ø3 = Happy, O4 = Happy)

= .09693

α(H5) =

(
0.0182

0.0144

)
. Thus, P (O|λ) = .0326

Now that we have used the Forward Algorithm to compute the probability of
the joint observed states, we can use the Backward Algorithm to determine
marginal probabilities P (Ht = k|O).
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Algorithm 2. Forward/Backward Algorithm

Let O be an observed sequence of random variables, O1, O2, . . . , On and H
be the hidden sequence of random variables, H1, H2, . . . , Hn.

Compute α(Ht)
k for t = 1, . . . , n as defined in the Forward Algorithm. Then

work backward, where

β(Hn)k = 1

for all k and define

β(Ht)
k = P (Ot+1, Ot+2, . . . , On|Ht = k, λ) for all k

=
∑
i

P (Ot+1|Ht+1 = i)P (Ht+1 = i|Ht = k)β(Ht+1)i.

Using matrix operations,

β(Ht−1) = TT (E(Ot,·) ◦ β(Ht))

where E(Ot,·) is the row affiliated with Ot in the emissions matrix E.
We now can think about determining P (O|λ) using a variety of different

tools.

P (O|λ) =
∑
k

α(Hn)k =
∑
k

E(O1,k)β(H1)kπk.

The Forward/Backward Algorithm can be applied in many of the different
hidden markov model questions.

We begin by seeing how the Backward Algorithm can be applied in much the
same way as the Forward Algorithm to determine P (O|λ).

Example 2.12. (Backward Algorithm)
Recall the transition and emission matrices, T and E, from Example 2.11,

T =

N
ex

t
st

a
te

Bull

Bear


Preceding state

Bull Bear

.8 .5

.2 .5

 , E =

O
bs

er
ve

d
st

a
te

Happy

Sad


Hidden state

Bull Bear

.75 .40

.25 .60

 .

We begin by setting β(H5)Bull = β(H5)Bear = 1.

β(H4)Bull = P (O5 = Sad|H5 = Bull)P (H5 = Bull|H4 = Bull)β(H5)Bull

+ P (O5 = Sad|H5 = Bear)P (H5 = Bear|H4 = Bull)β(H5)Bear

= .25 · .8 · 1 + .6 · .2 · 1 = .32



Stochastic Processes 59

β(H4)Bear = P (O5 = Sad|H5 = Bull)P (H5 = Bull|H4 = Bear)β(H5)Bull

+ P (O5 = Sad|H5 = Bear)P (H5 = Bear|H4 = Bear)β(H5)Bear

= .25 · .5 · 1 + .6 · .5 · 1 = .425

Another way to think about this is that,

β(H4) = TT (E(O5=Sad,·) ◦ β(H5))

=

(
.8 .2

.5 .5

)((
.25

.60

)
◦
(

1

1

))
=

(
.32

.425

)

β(H3)Bull = P (O4 = Happy|H4 = Bull)P (H4 = Bull|H3 = Bull)β(H4)Bull

+ P (O4 = Happy|H4 = Bear)P (H4 = Bear|H3 = Bull)β(H4)Bear

= .75 · .8 · .32 + .4 · .2 · .425 = .226

β(H3)Bear = P (O4 = Happy|H4 = Bull)P (H4 = Bull|H3 = Bear)β(H4)Bull

+ P (O4 = Happy|H4 = Bear)P (H4 = Bear|H3 = Bear)β(H4)Bear

= .75 · .5 · .325 + .4 · .5 · .42 = .205

β(H3) = TT (E(O4=Happy,·) ◦ β(H4)) =

(
.8 .2

.5 .5

)((
.75

.40

)
◦
(

.32

.425

))

=

(
.226

.205

)

β(H2) = TT (E(O3=Happy,·) ◦ β(H3)) =

(
.8 .2

.5 .5

)((
.75

.40

)
◦
(
.226

.205

))

=

(
.152

.12575

)

β(H1) = TT (E(O2=Sad,·) ◦ β(H2)) =

(
.8 .2

.5 .5

)((
.25

.60

)
◦
(

.152

.12575

))

=

(
0.04549

0.056725

)
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If πk = (.87, .13),

P (O|λ) =
∑
k

E(Happy,k)β(H1)kπk

= .75 · .04549 · .87 + .4 · .056725 · .13 = .0326

2.2.2 The Decoding Problem

In solving the decoding problem with a HMM, we wish to find the most likely
hidden sequence H∗ of occurring given an observation sequence, O. More specif-
ically, the goal of decoding is to determine

H∗ = argmaxHP (H|O).

Note that argmaxHP (H|O) is the maximum probability of a hidden se-
quence, H, over all possible H ′s, given an observation sequence O.

We will employ both the Forward/Backward Algorithm and the Viterbi
Algorithm in our investigation of the decoding problem.
Applying the Forward/Backward Algorithm

Define

γ(Ht)
k = P (Ht = k|O,λ)

=
P (Ht = k,O|λ)

P (O|λ)

=
α(Ht)

kβ(Ht)
k

P (O|λ)

=
α(Ht)

kβ(Ht)
k

α(Hn) · β(Hn)

Example 2.13. Recall from Example 2.11 that α(H1) =

(
.6525

.052

)
and from

Example 2.12 that β(H1) =

(
.04549

0.056725

)
.

Kalu can use this information to determine the likelihood of the hidden state
sequence H = H1, H2, . . . , Hn.

P (H1 = Bullish|O,λ) = γ(H1)Bull

=
α(H1)Bullβ(H1)Bull

α(H1) · β(H1)
= .91
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and

P (H1 = Bearish|O,λ) = γ(H1)Bear

=
α(H1)Bearβ(H1)Bear

α(H1) · β(H1)
= .09

In a similar manner, Kalu determines that

P (H2 = Bullish|O, λ) = γ(H2)Bull = .638

P (H2 = Bearish|O, λ) = γ(H2)Bear = .362

P (H3 = Bullish|O, λ) = γ(H3)Bull = .81

P (H3 = Bearish|O, λ) = γ(H3)Bear = .19

P (H4 = Bullish|O, λ) = γ(H4)Bull = .80

P (H4 = Bearish|O, λ) = γ(H4)Bear = .20

P (H5 = Bullish|O, λ) = γ(H5)Bull = .56

P (H5 = Bearish|O, λ) = γ(H5)Bear = .44

Similar to the Forward/Backward Algorithm, the Viterbi Algorithm still
requires knowledge of the the transition matrix, T , and the emissions matrix, E,
as well as π, the initial probability distribution of the hidden random variables.
We begin by thinking through the recursive idea of Viterbi Algorithm.

Assume that the observed sequence of random variables is O1, O2, . . . , On
and the hidden sequence of random variables is H1, H2, . . . , Hn.

An additional important fact is that the conditional probability P (H|O) is
proportional to the joint probability P (H,O),

P (H|O)P (O) = P (H,O)

and thus if we find the hidden sequence that maximizes the joint probability,
P (H,O), this sequence will also maximize the conditional probability, P (H|O).

H∗ = argmaxHi,1≤i≤nP (Hi|Oi)
= argmaxHi,1≤i≤nP (Hi,Oi)

= argmaxHi,1≤i≤n−1P (Oi|Hi)P (Hi|Hi−1)P (Hi−1|Oi−1).

Thus if pi = P (Hi|Oi), then

pi = H∗ = argmaxHi,1≤i≤n

n−1∏
i=2

P (Oi|Hi)

n∏
i=2

P (Hi|Hi−1)p1.
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FIGURE 2.5
Example of recursive decisions in a Viterbi Algorithm matrix.

Algorithm 3. Viterbi Algorithm

Given O1, O2, . . . , On are the observed random variables and H1, H2, . . . , Hn

are the hidden random variables with possible outcomes Y1, Y2, . . . , Ynh .

1. Create a nh × n Viterbi Algorithm Matrix, V , where the entries

Vi,j =

{
P (Oj |Yi)P (Yi), if j = 1,

max1≤k≤nhVk,j−1P (Yi|Yk)P (Oj |Yi), if 1 < j ≤ n.

2. Determine argmaxHi,1≤i≤nP (Hi,Oi) = max1≤j≤nhVi,j.

3. Recall that argmaxHi,1≤i≤nP (Hi|Oi) =
argmaxHi,1≤i≤nP (Hi,Oi)

P (O) .

4. Backtrack through the Viterbi Algorithm matrix determining the
largest probability in each column, if Vm,n is the largest value in col-
umn j then the sequence determined with Hn = Ym will provide max-
imum likelihood of the observation sequence, O, occurring.

Example 2.14. Kalu knows that Rath is {Happy, Sad, Happy} on three consec-
utive days and he wants to know the most likely hidden states of the stockmarket
on those days.

We will begin by finding the Viterbi Algorithm matrix. The recursive ideas
behind each entry in the Viterbi Algorithm matrix can be seen in Figure 2.5.

V =
Bullish

Bearish


H S H

.6525 .1305 .0783

.052 .0783 .016

 .
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If M is the hidden sequence that maximizes the probability of the observed
sequence occurring, then

P (M, {Happy, Sad, Happy}) = max{.0783, .016} = .0783

and the maximum likelihood of

P (M |{Happy, Sad, Happy}) =
.0783

P ({Happy, SadHappy})

=
.0783

.67 · .345 · .65
≈ .52

where P ({Happy, Sad, Happy}) can be determined using the Forward Algo-
rithm in a similar manner to Example 2.11.

Kalu really wishes to find the hidden sequence that maximizes this likeli-
hood. Revisiting the Viterbi Algorithm matrix and the recursive paths in Figure
2.5, choose the hidden states with the largest probabilities working backwards.
Thus the most likely hidden sequence M is

{Bullish, Bullish, Bullish}.
The Viterbi Algorithm is a widely used algorithm. For those of you who

use speech or hand writing recognition on your personal devices, the Viterbi
Algorithm may be used to decipher what you are trying to communicate.

2.2.3 The Learning Problem

In both the likelihood and the decoding problems, the model was assumed and
fixed. That is, we knew the initial probabilities, π, the transmission matrix, T ,
and emission matrix, E.

This final type of problem, the learning problem, requires an algorithm that
will help determine the optimal model λ = (T, E, π).
In this section, we will discuss the Baum-Welch Algorithm.

Given an initial sequence of observed states O = (O1, O2, . . . , On), called
the training sequence, and a hidden sequence H = (H1, H2, . . . , Hn), the
Baum-Welch Algorithm will find another hidden sequence H ′ such that

P (O|H ′) ≥ P (O|H).

Ideally, we wish to find H ′ such that P (O|H ′) ≥ P (O|H) for all H, however,
that is not guaranteed under the Baum-Welch Algorithm.

Algorithm 4. (Baum-Welch Algorithm)

The Baum-Welch Algorithm is an iterative algorithm using the following
iterative steps, where α, β, and γ are defined in the Forward/Backward Algo-
rithm.
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1. Interpolate out one step by finding the probability,

ξki,j = P (Hk = j, Hk+1 = i|O,λ)

=
β(Hk+1)iE(Ok+1,i)Ti,jα(Hk)j

P (O|λ)
.

=
β(Hk+1)iE(Ok+1,i)Ti,jα(Hk)j∑n−1

i=1

∑n−1
j=1 β(Hk+1)iE(Ok+1,i)Ti,jα(Hk)j

.

It is important to note that the Forward algorithm, determining α′s, is
about determining pre-priori information and the Backward algorithm
is about smoothing the information, determining β′s, the post-priori
information.

A visualization of this idea can be seen in Figure 2.6. In order to
move from α(Hj)

t to β(Hi)
t+1, we need to move from Hj to Hi, thus

multiplying by Ti,j. Then we have to think about how we move to
β(Hi)

t+1 with observation state Ot+1. Thus,

ξti,j = β(Hi)
t+1E(Ot+1,i)Ti,jα(Hj)

t.

Since we are calculating a probability, we also have to divide by a
normalizing factor, P (O|λ).

FIGURE 2.6
Visualizing the Role of α and β.
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2. Define a new model with πnew = γ(H0)

Tnewi,j =
# of transitions from state Hj to state Hi

# of transitions from state Hj

=

∑n−1
k=1 ξ

k(i,j)∑n−1
k=1 γ(Hj)k

Enewi,j =
# of times the hidden state is Hj given the observation is Oi

# of transitions from state Hj

=

∑n
k=1,Ok=i γ(Hj)

k∑n−1
k=1 γ(Hj)k

Note that
T−1∑
t=1

γt(i)

is the expected number of transitions from Hi and

T−1∑
t=1

ξt(i)

is the expected number of transitions from Hi to Hj .
Let’s put the Baum-Welch Algorithm in action through an example.

Example 2.15. Scientists observed a short nucleotide sequence O=AGCT with
model λ defined by the transition, emission matrix

T = E =



A C G T

A .3 .322 .248 .177

C .205 .298 .246 .239

G .285 .078 .298 .292

T .210 .302 .208 .292


,

and π = {.2, .3, .3, .2}.
Unfortunately, it is common to see actual genetic makeup, and the scientist

wishes to determine if in fact a CG sequence is present in the original genetic
makeup.
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We use Forward/Backward Algorithm to determine

α(H1) = {0.06, 0.0966, 0.0744, 0.0354}
α(H2) = {0.021, 0.0053, 0.017, 0.0197}
α(H3) = {0.0032, 0.0044, 0.0042, 0.0037}
α(H4) = {0.0009, 0.0012, 0.0007, 0.0012}
β(H4) = {1,1,1,1}
β(H3) = {0.2455, 0.262, 0.2491, 0.2553}
β(H2) = {0.0543, 0.0747, 0.0588, 0.0614}
β(H1) = {0.0188, 0.0049, 0.0169, 0.0187}
γ(H1) = {0.32, 0.134, 0.357, 0.188}
γ(H2) = {0.304,0.106,0.267,0.323}
γ(H3) = {0.2,0.293,0.266,0.24}
γ(H4) = {0.225,0.3,0.175,0.3}

ξ1 =


0.121 0.21 0.125 0.042

0.031 0.073 0.047 0.021

0.131 0.058 0.169 0.079

0.099 0.228 0.121 0.081

 , ξ2 =


0.152 0.041 0.102 0.084

0.162 0.059 0.157 0.177

0.176 0.012 0.149 0.169

0.129 0.047 0.104 0.169

 ,

ξ3 =


0.096 0.142 0.104 0.066

0.094 0.189 0.149 0.127

0.09 0.034 0.124 0.107

0.093 0.185 0.122 0.15

,
3∑
t=1

ξt =


0.096 0.142 0.104 0.066

0.094 0.189 0.149 0.127

0.09 0.034 0.124 0.107

0.093 0.185 0.122 0.15

.

We can use this information to determine that the expected number of tran-
sitions from state C to state G is

3∑
t=1

ξt(2,3) = .321.

Example 2.16. Perhaps Kalu wishes to better his model to determine the
behavior of the stock market based on Rath’s reported mood. In Examples
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2.11 through 2.13, we determined α, β, and γ using the Forward/Backward
Algorithm.

ξ1 =

(
0.607871 0.0302771

0.301736 0.060116

)

ξ2 =

(
0.569295 0.243872

0.0688528 0.11798

)

ξ3 =

(
0.69083 0.109367

0.122334 0.0774684

)

ξ4 =

(
0.50013 0.0587622

0.300078 0.141029

)
.

From here we can construct an updated model with

πnew = γ(H1) = {.91, .09},

Tnew =

(
0.74914 0.52723

0.25086 0.47277

)
, Enew =

(
0.678328 0.3725

0.321672 0.6275

)

This is just one iteration of the Baum-Welch Algorithm. In order to progress
toward an even better model, the Baum-Welch Algorithm should be iterated
multiple times.

Baum-Welch Algorithm is just one method in a larger category of Expec-
tation Maximization algorithms that are generally used in machine learn-
ing to produce advanced models. There are a variety of gradient methods like
Baum-Welch Algorithm that have been developed with similar goals in mind.

2.3 CASE STUDY: Spread of Infectious Disease

In 2019, the world broke out into an international pandemic which led many
to start to think more closely about the mathematics behind the spread of
infectious diseases. Many diseases, like COVID-19, in simple terms would be
modeled with SIR models, with humans in three categories, S (Susceptible),
I (Infectious), and R (Recovered). There are more complex SIR models that
provide for temporary immunity, quarantine, or even death.
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We will explore a variety of these in this case study. In addition, most
infectious disease models would implement a stochastic continuous-time Markov
chain model; however, we will focus on discrete time models in this particular
case study.

We begin with the basic SIR model. This model has the underlying assump-
tion that birth and death occur at roughly the same rate throughout time. We
will also assume that the time step in this model is days; however, parameters
could be adjusted to accommodate for other units of time.

If the states of the Markov chain are X1, X2, . . . , and

P (Xt = R|Xt−1 = R) = 1

then recovery is an absorbing state which would happen in a case when im-
munity is guaranteed. As of May 2020, there were hopes that some temporary
immunity existed but evidence from the outbreak in China showed that if it
did exist it was fairly short lived.

We begin by assuming that social distancing is not in place and that there
may be some partial immunity based on antibodies but that it is not guaranteed.

One example of a transition matrix,

T =


S I R

0.99998 0. 0.0714286

0.00002 0.998 0.

0. 0.002 0.928571

 .

produces a spread of infection shown in Figure 2.7.

50 100 150 200 250 300 350
Days

0.001

0.002

0.003

0.004

0.005

Infectious

FIGURE 2.7
Growth of disease under a simple discrete SIR model.
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The reproduction number, R0, is the expected number of secondary cases
that one case would produce in an entire susceptible population.

A positive reproduction number is indicative of a possible probability of
outbreak, while a negative R0 indicates that an outbreak is not possible.

R0 =
infection rate

the expected disease length
.

In the simplest models, R0 can be estimated by the rate of infection, r0, and
the estimated length of the infection, L, where

R0 ≈ 1 + r0L.

Thus for the model shown in Figure 2.7, if we estimate r0 ≈ .017 and L = 21
days then R0 ≈ 1.357.

If instead, immunity is present and thus recovery acts as an absorbing state,
one might see a behavior such as in Figure 2.8.

In this case, let’s assume that the transition matrix is

T =


S I R

0.98 0 0

0.02 0.96 0

0 0.04 1

 .

Then the the expected time from susceptible to recovery can be found using

N = (I −Q)−1 =

(
50 0.

25 25

)
.

20 40 60 80 100
Days

0.05

0.10

0.15

0.20

0.25

FIGURE 2.8
Growth of disease under SIR model with immunity.
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Thus we should expect that a susceptible human will stay susceptible for 50
days and then stay infectious for 25 days before reaching a permanent recovery.

Let’s expand our model of the epidemic to include one additional state,
susceptible and social distancing (SS). We will assume that there are still sus-
ceptible individuals who are not social distancing (S); however, for those who
social distance, the transmission to other individuals is much less likely, and
those who are recovered make the decision to social distance in the future.

Using the transition matrix

T =



S SS I R

0.9 0. 0. 0

0. 0.99 0 0.

0.1 0.01 0.96 0.

0. 0. 0.04 1


the behavior can be seen in Figure 2.9. In this model, a susceptible person who
is not social distancing, will become infected within 10 days on average, where
a susceptible person who is social distancing is expected to take about 100 days
to get infected with the disease.

20 40 60 80 100
Days

0.1

0.2

0.3

0.4

% Infected

50% SS

25% SS

FIGURE 2.9
Growth of disease under SIR model with Social Distancing.

If we think of the model in terms of fertility, where fertility keeps track of
the number of new cases produced, and transition, then the population can be
described

P = F + T,
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where F is a matrix representing the fertility among classes and T represents
the transition between classes. If (I − T )−1 exists, we can determine the net
reproductive value, n, [7]

n = ρ((I − T )−1F )

and the exponential growth rate, ρ(P ).

Example 2.17. In this disease model, we are thinking of the offspring as those
in the infectious category, so we reorder our rows and columns so that the first
row/column is the infectious category. Let

T =


I S R

I 0.96 0 0

S 0.04 1− 0.0714286 0

R 0 0.0714286 0.99998

 and F =


0.4 0 0.00002

0 0 0

0 0 0

.
P = F + T and the net reproductive value n = 10 and the exponential growth
rate ρ(P ) = 1.36.

2.4 CASE STUDY: Text Analysis and Autocorrect

In Chapter 3, we will explore data compression techniques in order to do com-
parative analyses of text. Here we explore different ways that Markov chains can
be applied to text analysis by looking at a small text analysis of Jane Austen’s
work.

There are over 13,000 unique word pairings in Jane Austen’s texts, we ex-
plore just a few with the transition matrix.

T =

miss

anne

poor

marianne

when

replied

with

felt

jane

appeared

cried

but



miss anne poor marianne when replied with felt jane appeared cried but

0 0 0.04 0 0.10 0 0 0 0.08 0 0.05 0.04

0.93 0 0.64 0 0 0.58 0 0 0 0 0.75 0.7

0 0 0 0 0.10 0 0 0 0 0 0 0.04

0.02 0 0.04 0 0.10 0.03 0.01 0.13 0 0 0.10 0.04

0.01 0.09 0 0.04 0 0 0.01 0.13 0.08 0.2 0.05 0.04

0 0.09 0 0.04 0.00 0 0 0 0 0 0 0

0 0.09 0.04 0.04 0.10 0.03 0 0.13 0 0.2 0.05 0.04

0 0.18 0 0.08 0 0 0 0 0.15 0 0 0.06

0.03 0 0.04 0.00 0.10 0.06 0.01 0 0 0 0 0.04

0 0 0 0.46 0 0 0 0 0 0 0 0

0 0.18 0 0.13 0 0 0 0 0.23 0 0 0

0 0.36 0.21 0.21 0.50 0.29 0.07 0.63 0.46 0.6 0 0


.
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For this small study, we will assume that the words in the transition matrix
are the only ones present in Austen’s work. Python and R syntax to find a
database of word pairs to create a similar transition matrix for all of Austen’s
work similar can be found at Github links 11 and 12.

You should not be surprised to hear that a matrix with so many word choices
as that which is actually in these works would produce a very sparse matrix
with many entries equal to zero.

If we wished to create a random quote of 4 words from Jane Austen’s likely
transitions in T and we wanted the quote to start with Marianne, we might
look at the adjacencies to T4 since Marianne is represented in the 4th row of T .

{I, T, T 2, T 3}.{0,0,0,1,0,0,0,0,0,0,0,0}.

miss

Anne

poor

marianne

when

replied

with

felt

jane

appeared

cried

but



Marianne

I T T 2 T 3

0 0 0.02 0.03

0 0 0.26 0.3

0 0 0.01 0.03

1 0 0.04 0.05

0 0.04 0.12 0.06

0 0.04 0 0.03

0 0.04 0.12 0.06

0 0.08 0.01 0.08

0 0 0.02 0.04

0 0.46 0 0.02

0 0.12 0 0.06

0 0.21 0.39 0.26



,

seen in the columns of the matrix above. To generate our sentence, we may
choose to run a simulation using these probabilities to choose our word sequence
or choose the most likely sentence to occur based on these probabilities,

Marianne appeared but Anne.

In more practical terms, as mentioned earlier in this chapter, hidden Markov
models are regularly used in spoken and handwritten word recognition. Smart-
phones have built-in software to both suggest words and autocorrect words as
you are typing a text.
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We will take a deeper look into how hidden Markov chains can be applied
to autocorrect or autocomplete in this case study. Suppose that the observed
word set, the words that are in the text, that we wish to look at is

{heal, hear, here, heel, hele, Hela}
The language-correct software will choose the word that is most likely to

occur, but may not choose until there is a dominant choice. For example, let’s
assume that the first two letters in the word are known to be he and that the
transition matrix between letters is known to be

T =

a

e

l

r



a e l r

.10 .29 .33 .21

.17 .18 .40 .36

.28 .21 .27 .29

.45 .32 0 .14


.

Like the Jane Austen example presented earlier, given that the first two
letters in the word are he we will look at {T, T 2}.{0,1,0,0}, presented in the
columns in the matrix below, to determine the most likely choice for the last
two letters in the word,

a

e

l

r


0.29 0.22

0.18 0.28

0.21 0.27

0.32 0.23

 ,

which is here.
Next, let’s assume that you have typed a three letter word incorrect as aer.

Your phone software determines that this word is incorrect since it is not in it’s
dictionary database, so the software chooses to autocorrect.

Your typed word provides the observation sequence

O = {a, e, r}.
and we wish to determine the most likely hidden sequence. In this case, we will
assume that the only possible hidden states are a, e, l, and r.

We assume that the initial probability is π =
{

3
4 ,

1
8 , 0, 1

8

}
.

Using the Viterbi Algorithm, the most likely hidden sequence is are, which
can be seen in Figure 2.10. The likelihood of the hidden sequence are in this
situation is approximately .06%.

In order to access the bigram data used in this study, go to Github link 13.
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FIGURE 2.10
Viterbi Algorithm Example for Autocorrect.

2.5 CASE STUDY: Tweets and Time Series

In [16] and [25], the authors discuss how hidden Markov models can be used to
predict stock market behavior. In this case study, we take a close look at a few
different observation sequences for making such predictions.

We begin with an observation sequence described by states related to data
on the S&P 500 index. Continuous Markov chains and continuous HMMs can
be applied in this situation. Since we have not focused on continuous models,
an altered discrete model is discussed here.

In this case study, an observation state, Ot, will be defined as a three-
dimensional binary vector where

Ot =
(
O

(1)
t , O

(2)
t , O

(3)
t

)
=

(
1 +

⌊close− open
open

⌋
, 1 +

⌊high− open
open

⌋
, 1 +

⌊ low − open
open

⌋)
,

where open refers to the opening value of the S&P 500 index on day t, closing
is the day t closing value, and high and low are the high and low values of day
t.
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Note that a trader is looking for increasing and decreasing behaviors and a 1
in Ot would represent an increase, where a 0 would represent a decrease. These
particular observation states will allow for a record of variation throughout
time.

Since we wish to use trends to predict future values, we will assume a d = 2
day latency period. For simplicity, d is chosen to be small for this case study.
Longer latency period could be selected and analyzed in a similar manner.

Thus a trader’s problem becomes the following:

Given the observation sequence O = (O1, O2) and the model λ, predict gen-
eral relationships between opening, closing, low, and high values on day 3.

We will use the forward-backward method to determine the hidden sequence
H = (O2, O3). More particularly, we wish to determine

H∗ = argmaxO3
P (O3|O, λ)

= argmaxO3
P (O1, O2, O3|λ).

In this case study, we demonstrate with a small training set pulled from [13]
from May 2019, which can be seen in Table 2.1. A larger data set for further
study can be found at Github link 16.

TABLE 2.1
Observation State, O, in May 2019 for S&P 500.

Date, t 5/1 5/2 5/3 5/6 5/7 5/8 5/9

(O
(1)
t , O

(2)
t , O

(3)
t ) (0,1,0) (0,1,0) (1,1,1) (1,1,0) (0,1,0) (0,1,0) (1,1,0)

Date, t 5/10 5/13 5/14 5/15 5/16 5/17 5/20

(O
(1)
t , O

(2)
t , O

(3)
t ) (1,1,0) (0,1,0) (1,1,1) (1,1,0) (1,1,1) (1,1,0) (0,1,0)

Date, t 5/21 5/22 5/23 5/24 5/28 5/29 5/30

(O
(1)
t , O

(2)
t , O

(3)
t (1,1,1) (1,1,0) (0,1,0) (0,1,0) (0,1,0) (0,1,0) (1,1,0)

The probabilities for Ot, listed in Table 2.2, are found using the data in Table
2.1. Keep in mind that there are eight possible triplets for Ot; however, only
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the states that were prevalent in the May 2019 (Table 2.1) data are presented
here.

TABLE 2.2
P (O).

O (0,1,0) (1,1,0) (1,1,1)

π .524 .286 .190

The transmission matrix

T =


(0,1,0) (1,1,0) (1,1,1)

(0,1,0) .454 .66 0

(1,1,0) .273 .17 1

(1,1,1) .273 .17 0

 .

Using this transmission matrix,

T 2 =


(0,1,0) (1,1,0) (1,1,1)

(0,1,0) 0.386 0.412 0.66

(1,1,0) 0.443 0.379 0.17

(1,1,1) 0.17 0.209 0.17

 ,

If the trader observes that the O5/29 = (0,1,0) but does not know the ob-
servation of O5/30, then using T 2, the trader might guess that the behavior on
May 31st would be (1,1,0). This means that the closing and high values are
larger than the opening, and that the low value is lower than the opening value
on that day.

In addition, the distribution P (O3) can be determined

T 2π = P (O3) =


.446 if O3 = (0,1,0),

.373 if O3 = (1,1,0),

.181 if O3 = (1,1,1),

0 otherwise.

This tells the trader that the most probable observation given during the
month of data is (0,1,0). The trader could use this information to simulate the
behavior of the closing cost relative to the opening over a future period of time
as well.

There are many ways that investors predict the future of their products,
including stocks. Another way to do this is through sentiment analysis of tweets,
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reviews, and other types of posts. Similar to Rath and Kalu’s analysis presented
earlier in this chapter, studies have shown that the market can react to media
statements from prominent leaders, such as presidential tweets [21].

If a trader wishes to study the market from this perspective, they could
scrape tweets from a variety of sights, such as that seen in [30], and set up a
word bank to search for words that resemble bearish or bullish market behavior.

For the following example, we pull 11 Trump tweets from roughly the be-
ginning of 11 consecutive months, shown in Table 2.3. Words that should be
considered in a sentiment word bank are italicized. In addition, the opening of
the S&P 500 index on each of the day of the tweet and the following trading
day are shown in Table 2.4.

A larger dataset of Trump tweets about the stock market can be found at
Github link 18.

TABLE 2.3

Date Tweet Sentiment

10/2/2019 “All of this impeachment nonsense, which is going
nowhere,

Bearish

is driving the Stock Market, and your 401K’s, down.”

11/1/2019 “Stock Market up BIG!” Bullish

12/2/2019 “U.S. Markets are up as much as 21% Bullish
since the announcement of Tariffs”

1/9/2020 “STOCK MARKET AT ALL-TIME HIGH! Bullish

2/4/2020 “Market up big today on very good economic news Bullish

3/9/2020 “...That, and the Fake News, is the reason for the mar-
ket drop!”

Bearish

4/8/2020 “... Our Economy will BOOM, perhaps like never be-
fore!”

Bullish

5/13/2020 “When the so-called rich guys speak negatively about
the market,

Bearish

you must always remember that some are betting big
against it....”

6/5/2020 “It’s a stupendous number. It’s joyous, let’s call it like
it is.”

Bullish

7/21/2020 “Vote for the Radical Left with their BIG Tax Hikes” Bearish

8/24/2020 “Joe would end it all and close it all down.” Bearish
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TABLE 2.4
S&P 500 index behavior trends.

Date Opening Date Opening Trend

10/2/2019 2924.78 10/3/2019 2885.37 D

11/1/2019 3050.72 11/4/2019 3078.95 U

12/2/2019 3143.85 12/3/2019 3087.40 D

1/9/2020 3266.03 1/10/2019 3281.81 U

2/4/2020 3280.61 2/5/2020 3324.90 U

3/9/2020 2863.89 3/10/2020 2813.47 D

4/8/2020 2685 4/9/2020 2776.98 U

5/13/2020 2865.86 5/14/2020 2794.54 D

6/5/2020 3163.84 6/8/2020 3199.92 U

7/21/2020 3268.52 7/22/2020 3254.86 D

8/24/2020 3418.09 8/25/2020 3435.95 U

In this example, we will use the sentiment of Trump tweets in order to
predict the change from opening to closing behavior in the S&P 500 index. We
will assume that stock behaviors are monthly; however, in a real-life model with
a much larger data set, a similar analysis should be done with daily trends. The
data from Table 2.3 is used to create the transmission matrix

T =
Up

Down


Up Down
1
5 1
4
5 0

 .

and the emission matrix

E =
Bull

Bear


U D
5
6

1
5

1
6

4
5

 .

In addition,

π = (P (Up), P (Down)) =

(
6

11
,

5

11

)
.
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We begin by studying three month, or one quarter, trends and finding the
most likely observation sequence

O = (O1, O2, O3),

where Oi represents the sentiment in Trump’s tweet at time i in the three month
sequence and

H = (H1, H2, H3),

where Hi represents the difference between closing and opening on the ith month
of the three month sequence. Notice that

E · T · π = (0.55697, 0.44303) and E · T 2 · π = (0.547758, 0.452242)

and thus the most likely scenario in that Trump’s three month tweet sentiment
will be

(Bullish, Bullish, Bullish).

Additionally, the unit eigenvector, v, associated with λPF , for E.T ,

v = (0.553097, 0.446903).

Thus, over a long period of time, it is much more likely that the monthly
sentiment for Trump’s tweets is Bullish, based on the given data.

More importantly, one might wish to know, if Trump’s monthly tweets are
of a certain observation sequence, such as (Bullish, Bullish, Bullish), what is
happening in the market?

In this case Viterbi’s Algorithm can be followed. A diagram of Viterbi’s
Algorithm can be found in Figure 2.11 which shows that if Trump’s three month

FIGURE 2.11
Viterbi’s Algorithm for three month marker trends based on tweets.
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tweet sentiment is (Bullish, Bearish, Bullish) the most likely hidden sequence
of the market is

(Up, Down, Up) with probability .2523.

Finally, we wish to find the best model. We begin by assuming that

O = (Bullish, Bullish, Bullish),

the first three states in Table 2.3, then

α(H1)U =
5

11
, α(H1)D =

1

11
,

α(H2)U =
1

33
, α(H2)D =

16

55
,

α(H3)U =
49

198
, α(H3)D =

4

825
,

β(H3)U = 1, β(H3)D = 1,

β(H2)U =
9

150
, β(H2)D =

5

6
,

β(H1)U =
2449

4500
, β(H1)D =

49

900
.

Note that these values tell us that

P (O|λ) =
∑
k

α(H3)k = 0.2523.

Using this information, we determine

γ(H1)(U,D) = {0.98038431, 0.01961569},
γ(H2)(U,D) = {0.03923139, 0.96076861},
γ(H3)(U,D) = {0.98078463, 0.01921537},

ξt(i,j) = P (Ht = j,Ht+1 = i|O,λ)

= α(Hi)EHt+1,jTi,jβ(Ht+1)
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and the new model is πnew = {0.98038431, 0.01961569}.

Tnew =

(
0.51020408 1

0.48979592 0

)
, Enew =

(
0.96153846 0.01960784

0.03846154 0.98039216

)
.

Keep in mind that this is just one iteration of the Baum-Welch algorithm.
Python and R code related to this case study can be found at Github links

14 and 15, respectively.

2.6 Exercises

1. Determine which of the following matrices are primitive or irre-
ducible.

A1 =

(
0 2

1 1

)
, A2 =

(
2 0

1 1

)

2. Assume that from the beginning of time, UNC, Duke, and NC State
admitted only male students. Also assume that, at that time, 70
percent of the sons of UNC men went to UNC and the rest went to
NC State, 50 percent of the sons of NC State men went to NC State,
and the rest split evenly between UNC and Duke; and of the sons
of Duke men, 80 percent went to Duke, 10 percent to UNC, and 10
percent to NC State.

If this were still the case (and these were the only 3 universities), use
the Perron-Frobenius Theorem to determine what percent of students
would be at each institution long into the future.

3. If the students that attended Duke live in Raleigh, Chapel Hill, and
Durham with probabilities 25%, 35%, and 40% respectively. While
students that attend UNC live in Raleigh, Chapel Hill, and Durham
with probabilities 30%, 60%, and 10%. Finally, the students that
attend NC State live in Raleigh, Chapel Hill and Durham with prob-
ability 60%, 20%, and 20%. Those who are from Durham, Raleigh,
and Chapel Hill, go to Duke (50%), UNC (20%), and NC State (30%).

Determine the probability that a student goes to Duke given that
they are from Durham.

4. An epidemic is beginning to become prevalent in two different coun-
tries, A and B. Citizens of those countries can be in one of three
states, susceptible (S), infectious (I), or recovered (R). From our daily
observations a few weeks into the outbreak, we note that the proba-
bilities between the observed states of the infection among its citizens
and the probabilities between the states of the infection.
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If the population of country A is twice as large as the population of
country B, and we randomly sample four citizens from the combined
countries, use hidden markov chains to determine the probability that
they are from countries AABB given that their status is SIRS.

5. After thinking about Example 2.14, determine the following

a. P (O1 = Sad)

b. P (O1 = Sad, O2 = Sad)

c. P (O1 = Sad, O2 = Sad, O3 = Happy)

d. The maximum likelihood of the observation sequence
{Sad, Sad, Happy} occurring.

e. The most likely hidden sequence given that Rath is
{Sad, Sad, Happy}.

6. In the theme of attempting to find the best model, use the information
from Example 2.16, apply the Baum-Welch Algorithm one additional
time in order to find a new model λ = (π, T,E).

7. Doctors are trying to determine the original genetic making up of
their patients given mutated DNA sequences collected from biopsied
patients. You are given a mutated DNA sequence, ATG where, A
(adenine), C (cytosine), G (guanine), and T (thymine). The trans-
mission matrix, T , and emissions matrix, E, are as follows.

T = E =



A C G T

A .40 .225 .400 .252

C .20 .325 .100 .223

G .15 .300 .200 .177

T .25 .150 .300 .348
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In addition, assume that the four state, A, C, G, and T, are equally
likely. Determine the likelihood of the observation sequence ATG
using the forward algorithm.

8. Using the information from Exercise 7 and the Forward/Backward
algorithm, find the most likely original molecular structure of the
genetic code with the four possible hidden state, A (adenine), C (cy-
tosine), G (guanine), and T (thymine).



http://taylorandfrancis.com
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SVD and PCA

Like Chapter 1, this chapter on clustering techniques and their application
to data science. Chapter 1 relies heavily on powers of matrices, eigenvalues,
and eigenvectors, which are only relevant for square matrices. This chapter
digs deeper into techniques that are more practical in terms, not imposing the
limitation that matrices must be square.

We begin with an overview of vector and inner product spaces since orthog-
onality is pertinent in the discussion of further topics in the chapter.

3.1 Vector and Inner Product Spaces

A set of vectors, V , under defined vector addition and scalar multiplication is
called a vector space if the following properties hold.

1. V is closed under vector addition.

2. V is closed under scalar multiplication.

3. For all u and v in V , u+ v = v + u.

4. For all u,v and w in V ,

(u+ v) + w = u+ (v + w).

5. There exists an unique additive identity in V .

6. Every vector u ∈ V has an additive inverse −u ∈ V .

7. For each vector u ∈ V , 1 · u = u.

8. For all u and v in V and scalar k, k(u+ v) = ku+ kv.

9. For all u in V and scalars k and l, (k + l)u = ku+ lu.

10. For all u and v in V and scalar k, k(lu) = (kl)u.

Example 3.1. The set of 2 × 2 symmetric matrices under standard matrix
addition and scalar multiplication is a vector space; however, the set of 2 × 2
invertible matrices under standard matrix addition and scalar multiplication is
not.

DOI: 10.1201/9781003025672-3 85
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Notice that the set of 2 × 2 invertible matrices is not closed under matrix
addition. An example of two 2×2 invertible matrices whose sum is not invertible
is (

1 0

0 1

)
+

(
−1 0

0 −1

)
=

(
0 0

0 0

)
.

An inner product on a set V is a function that maps order pairs (x,y) ∈ V ×V
to a number < x,y > while satisfying the following properties:

1. For all v ∈ V , < v,v > ≥ 0 and < v,v >= 0 if and only if v = ~0.

2. For all u,v, and w ∈ V , < u,v + w >=< u,v > + < u,w >.

3. For all u,v ∈ V and scalars k, < ku,v >=< u,kv >= k < u,v >.

4. For all u,v ∈ V , < u,v >= < v,u >.

A vector space with a defined inner project is called an inner product
space.

In an inner product space, V , a set of vectors is called orthogonal if for
each pair of vectors v and w in V ,

< v,w >= 0.

If a set of vectors in V is orthogonal and each vector is a unit vector, then
the set is called orthonormal.

Example 3.2. If S is the set of 2×2 symmetric matrices and for all U, V ∈ S,

< U,V >= u11v11 + u12v12 + u21v21 + u22v22,{(
0 1

0 0

)
,

(
1 0

0 1

)
,

(
0 0

1 0

)}
,

is an orthogonal set in S but is not an orthonormal set in S. The set{(
0 1

0 0

)
,

(
1√
2

0

0 1√
2

)
,

(
0 0

1 0

)}
,

is an orthonormal set in S.

3.2 Singular Values

When studying data in which each data point has a large number of attributes,
it may be helpful to be able to reduce or compress the number of attributes.
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That is, we may start with data points in Rn and want to project the data
points into Rm where n > m.

In order to do so, it is important to reflect on which of the n attributes
are significant to the data set. We begin this investigation with a review of
some key linear algebra terms, linear independence, span, and basis, and an
interpretation of the visual aspects of eigenvectors.

Recall that a set of vectors {v1, v2, . . . , vm} is linearly independent if
and only if the system of equations

k1v1 + k2v2 + · · ·+ kmvm = ~0

has only the trivial solution, k1 = k2 = · · · = km = 0. Otherwise, we say that
the set is linearly dependent. If the vectors v1, v2, . . . , vm ∈ Rn, then this
system can be written as

Ax = b

(
v1 v2 · · · vm

)


k1

k2

...

km

 =


0

0
...

0

 .

This is equivalent to saying that the matrix A, whose columns are v1, v2, . . . , vm,
is invertible.

If w is a vector in Rn and there exists constant k1, k2, . . . , km such

w = k1v1 + k2v2 + · · ·+ kmvm,

we say that w can be written as a linear combination and is in the span of
the vectors v1, v2, . . . , vm.

The set S = {v1, v2, . . . , vm} is a basis for a vector space V if S is linearly
dependent and if every vector in V is in the span of S.

Example 3.3. The set {(1,0,0), (0,1,0), (0,0,1)} is called the standard basis
for R3.

In fact, this basis is an orthonormal basis for R3. However, any set of three
vectors that are linearly independent can serve as a basis for R3.

For example, since the matrix

A =


1 4 7

2 5 8

3 6 1


is invertible, the system Ax = 0 has only the trivial solution and the system
Ax = b has a solution for all b ∈ R3.
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Thus the set of vectors {(1,2,3), (4,5,6), (7,8,1)}, is a basis for R3, is linearly
independent and spans R3. Notice that although this set is a basis for R3, it is
neither orthonormal nor orthogonal.

Let A be an n × n matrix and TA : Rn → Rn be a linear transformation
with standard matrix A, defined as TA(x) = Ax. Then, based on the definition
of an eigenvalue λ

Ax = λx,

any basis vector x for the eigenspace corresponding to the eigenvector λ, also
called an eigenvector corresponding λ, will be dilated or contracted by a factor
of λ under the transform TA; however, the direction of x will remain unchanged.

-2 -1 0 1 2
-1

0

1

2

3

FIGURE 3.1
Example of affects of a linear transformation.

Example 3.4. Consider the transformation TA : R2 → R2, such that

TA(x) = Ax, where A =

(
2 1

0 3

)
,

Under the transformation TA(x), the standard basis {(1,0), (0,1)} is changed to
{(1,3), (2,0)}, as seen in Figure 3.1.

Recall that the span of a vector in R2 is any vector that lies on the same
line as the original vector. Most vectors will not remain on their own span under
a linear transformation such as TA.

An example of a vector, it’s span, and the vector under TA(x) can be seen
in Figure 3.2. Note that the eigenvectors of A, x1 = {1,1} and x2 = {1,0} will
remain on in their span under TA(x).

.
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FIGURE 3.2
An example of a vector, it’s span, and the vector under TA(x).

We have seen the importance of eigenvalues and eigenvectors in application
in Chapters 1 and 2. If a matrix is not square, no such values can be determined.
In this chapter, we will introduce singular values, the analogous values to
eigenvalues for non-square matrices, and their importance in data science.

Notice in Figure 3.1 that the grid lines under transformation TA(x) are no
longer orthogonal. If the transformed grid lines remain orthogonal then we call
this transformed grid an orthogonal grid.

Example 3.5. Consider the transformation TA : R2 → R2, such that

TA(x) = Ax, where A =

(
2 1

0 3

)
,

the same transformation and matrix as in Example 3.2. Notice from Figure 3.3
that the standard basis vector, v1 and v2, are not orthogonal under TA(x).

An angle of θ ≈ 1.28 radians can be determined such that when v1 and v2

are rotated by θ and then the transformation TA(x) is applied, the vectors

u1 = A

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
v1 and u2 = A

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
v2

are orthogonal. The norm of the resulting vectors, u1 and u2,√
7 +
√

13 and

√
7−
√

13,

are the singular values of A. The singular values also corresponding to the square
root of the eigenvalues of AAT .
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FIGURE 3.3
Example of vectors under a linear transformation that create orthogonal vectors.

3.3 Singular Value Decomposition

The term singular value relates to the distance of the given matrix to a singular
matrix. We will explore the concept of singular values in the context of the
Singular Value Decomposition (SVD) of a matrix.

The orthogonal components of a vector v in a n−dimensional vector
space W are vw and vw⊥ where vw ∈W and vw⊥ ∈W⊥ and v = vw + vw⊥ .

Given an orthonormal basis {v1, v2, · · · , vn} for W ,

vw = ProjW (v) =< v1, v > v1+ < v2, v > v2 + · · ·+ < vn, v > vn.

Using the theory above, and the visualization from Example 3.2, for any
vector x in R2, x = (v1 · x)v1 + (v2 · x)v2, where v1 and v2 are the standard
basis vectors for R2. Thus,

Ax = A(v1 · x)v1 +A(v2 · x)v2 = u1σ1(v1 · x) + u2σ2(v2 · x),

where σi, 1 ≤ i ≤ n are the singular values of A.
Noting that for any two vectors u and w in R2, u · w = uTw, we can say

that

Ax = u1σ1(vT1 x) + u2σ2(vT2 x).
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More generally, a m× n matrix A, can be decomposed into the product

A = UΣV T

where U is a m×m orthogonal matrix whose columns form an orthonormal basis
for Rm and V is a n×n orthogonal matrix whose columns form an orthonormal
basis for Rn and Σii = σi and σij = 0 otherwise.

Since the singular values of a matrix, A, are related to the eigenvalues of
the symmetric matrix ATA, the Gramian matrix, it is important to note the
following property.

Theorem 10. For any m × n matrix A, the eigenvalues of the symmetric
matrices ATA and AAT are all non-negative real numbers.

Proof. If ATA has eigenvalue λ with corresponding eigenvector x then ATAx =
λx. Then xTATAx = λxTx and ||Ax||2 = λ||x||2. Therefore,

λ =
||Ax||2
||x||2 ≥ 0.

A similar argument can be made for the symmetric matrix ATA.

Example 3.6. Let A =

(
2 1 0

1 2 0

)
, then

S = ATA =


5 4 0

4 5 0

0 0 0

 .

The eigenvalues, σ2, of S are 9, 1, and 0, so the positive singular values of
A are σ1 = 3 and σ2 = 1.

The columns of matrix V formed by eigenvectors of S,

v1 =


1√
2

1√
2

0

 , v2 =


− 1√

2
1√
2

0

 , and v3 =


0

0

1


form an orthonormal basis for R3.

Since AV = UΣ. We can determine the columns of U by computing

u1 =
Av1

σ1
=

(
1√
2

1√
2

)
and u2 =

Av2

σ2
=

(
− 1√

2
1√
2

)
,
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which form an orthonormal basis for R2. The singular value decomposition of

A = UΣV T ,

A =

(
1√
2
− 1√

2
1√
2

1√
2

)(
9 0 0

0 1 0

)
1√
2

1√
2

0

− 1√
2

1√
2

0

0 0 1

 .

Recall from Chapter 2 that all symmetric matrices are orthogonally diag-
onalizable. Thus for any m × n matrices A, S = ATA is a n × n symmetric
matrix and we can find an orthogonal matrix P such that

S = PDPT .

This shows an interesting alignment between eigenvalues of S and singular
values of A. Assume that the eigenvalues of S are λ1 ≥ λ2 ≥ · · · ≥ λn and the
corresponding singular values of A are σ1 ≥ σ2 ≥ · · · ≥ σn. Then,

S = PDPT =
n∑
i=1

λiviv
T
i

A = UΣV T =
n∑
i=1

σiuiv
T
i .

3.4 Compression of Data Using Principal Component
Analysis (PCA)

In data science, you may wish to compare m records with n attributes in a vari-
ety of ways. There are many clustering techniques, but in all of these techniques
the data scientist might also be interested in visualizing the data. In order to
do this, one should consider how to transform their data from Rn to R2 or R3.

One way to think about this is that you are projecting your data from Rn
into another space, such as R2 or R3.

We can do this using SVD by limiting the number of singular values used
to reconstruct the original matrix.

Recall that if A is a m× n matrix then the singular value decomposition of
A = UΣV T with singular values σ1, σ2 . . . , σn, Σ is a m× n matrix such that
Σii = σi.

If a data scientist wishes to transform the data from Rn to Rq, then they
could determine the q most dominant eigenvalues and define a q × n matrix Σ̃
such that Σ̃ii = σi.
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FIGURE 3.4
Example of a projection from R3 into R2.

In turn, matrix Ũ would then become a m× q matrix, where Ũi,j = Ui,j for
1 ≤ i ≤ m, 1 ≤ j ≤ q.

The rows of Ũ are vectors in Rq and are the focus of investigation in Principal
Component Analysis (PCA).

Example 3.7. Let A =


1 2 1 0 0

0 0 1 2 1

0 1 0 0 2

. Then

S = ATA =



1 2 1 0 0

2 5 2 0 2

1 2 2 2 1

0 0 2 4 2

0 2 1 2 5


has eigenvalues λ1 = 9, λ2 = 5, λ3 = 3, and λ4 = λ5 = 0. The non-zero
eigenvalues correspond to the singular values of A are 3,

√
5, and

√
3.

If PCA is applied to limit our focus to the two largest singular values, 3 and√
5, then the subsequently columns of Ũ are the corresponding set of orthonormal

eigenvectors.

Ũ =


1√
3
− 1√

2
1√
3

1√
2

1√
3

0

 .
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There are many reasons why a data scientist may apply PCA. Example 3.8
shows how PCA can be applied to the digital humanities, particularly related
to literature analysis.

Example 3.8. Five Cinderella tales with their attributes can be found in Table
3.1.

TABLE 3.1
Cinderella stories from [17] with a few highlighted attributes.

The heroine’s The heroine Magical animals Action takes place The heroine
name means ash picks lentils are present in a church buries bones

Zezzola 1 0 1 0 0
(Italy)

Aschenputtel 1 1 1 0 1
(Germany)

Rashin-Coatie 0 0 1 1 0
(Scotland)
Ye Xian 0 0 0 0 1
(China)

We construct an adjacency matrix, A, with rows representing each tale and
columns representing the traits present in each tale.

A =


Zezzola 1 0 1 0 0

Ashenputtel 1 1 1 0 1

Rahin− Coatie 0 0 1 1 0

Y eXian 0 0 0 0 1

 .

Since we are interested in focusing on the relationship between the tales, and
not the traits, we construct,

S = AAT =


2 2 1 0

2 4 1 1

1 1 2 0

0 1 0 1


which has eigenvalues equal to {5.8737, 1.85026, 1, 0.276044}.

For this example, let’s assume that we wish to project our visualization of
these tales into R2 and thus we wish to limit the eigenvalues of S to the two
largest eigenvalues, principal components, λ1 = 5.8737 and λ2 = 1.85026.
Ã = Ũ Σ̃Ṽ T with

Σ̃ =

( √
5.8737 0.

0.
√

1.85026

)

Ṽ T =

(
0.528603 0.325381 0.665063 0.136459 0.392144

0.0818573 0.288821 −0.464793 −0.546651 0.628508

)
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and

Ũ =


0.492523 −0.281521

0.788584 0.392866

0.330719 −0.743577

0.161804 0.462056

 .

Notice that the columns of Ṽ corresponding to the eigenvectors associated
with λ1 and λ2 and the ith column of Ũ is the ith column of U .

It is also important to notice that Ũ is a m× 2 matrix and thus for each of
the m = 5 tales there is associated ordered pair in Ũ .

Figure 3.5 shows a visualization of the Cinderella tales using Ũ .

ZezzolaZezzola

AschenputtelAschenputtel

Rashin-CoatieRashin-Coatie

Ye XianYe Xian
.63.63

0.2 0.4 0.8 1.0

-1.0

-0.5

0.0

0.5

FIGURE 3.5
Coordinates from Ũ representing the Tales from Table 3.1 in R2.

3.5 PCA, Covariance, and Correlation

When studying large data sets with many variables, we may wish to determine
patterns in the data and if there are variables that have a strong correlation
with one another. In this section, we will look at how PCA can be used to create
a covariance matrix and correlation matrix.

The covariance matrix of a data set A, Cov(A), captures the variance and
linear correlation in multivariate data. Covariance is a measure of how much
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m records of data, each with N attributes or pieces of information, change
together.

Note that Cov(A)i,i represents the variance, σ2
i , in the ith data record.

Cov(A) =



∑ x2
1

N

∑ x1x2

N

∑ x1x3

N . . .
∑ x1xm

N∑ x2x1

N

∑ x2
2

N

∑ x2x3

N . . .
∑ x2xm

N∑ x3x1

N

∑ x3x2

N

∑ x2
3

N . . .
∑ x3xm

N
...

...
...

. . .
...∑ xmx1

N

∑ xmx2

N

∑ xmx3

N . . .
∑ x2

m

N


.

We begin with an example in just two variables to get a sense of how variance
can be modeled using matrices.

Example 3.9. Table 3.2 shows data from several states on gun deaths per 100
thousand people and the state’s gun law strength, where a lower gun law strength
number represents more gun laws in place in the state.

TABLE 3.2
Gun Death Rate Per 100K versus Gun Law Strength by State
(Violence Policy Center [35]).

State Gun Death Rate Per 100K 2019 Gun Law Strength
Alabama 21.7 38
Alaska 20.74 42
Arizona 15.29 45
Arkansas 18.96 40
California 7.45 1
Colorado 15.14 14

Connecticut 4.91 3
Delaware 11.55 11
Florida 12.81 22
Georgia 15.72 32
Hawaii 4.03 5
Idaho 16.61 48
Illinois 10.78 8
Indiana 14.71 28

Iowa 8.62 19
Kansas 14.65 43

Kentucky 16.81 46
Louisiana 21.31 32

Maine 10.32 34

There are several pre-processing techniques that can be done to the data to
allow the data to be roughly symmetric across the origin. One of these techniques
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is called zero-centering, where the data is translated by the mean so that the
mean is at the origin.

Another technique is to standardize the data so that the data has a mean
of 0 and a variance of 1.

Many algorithms tend to do better with symmetric data, particularly when
studying the rate of change of the data, and zero-centering does not alter rela-
tionships among samples and among components of the same sample.

In this example, the data presented in Table 3.2 is zero-centered before it is
analyzed.

Thus, if the rows of A consist of the original vectors {Gun law strength,
Death rate per 100K}, the transformation matrix, under zero-centering, B is
defined as

Bi,1 = Ai,1 − 26.8947 and Bi,2 = Ai,2 − 13.7953 for 1 ≤ i ≤ 19.
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FIGURE 3.6
Gun law strength versus Gun Death Rate Per 100K.

Visually inspecting Figure 3.6, you may notice that there appears to be a
positive linear relationship between gun law strength and the gun death rate
per 100 thousand people. That is, as the gun law strength gets weaker (higher
number), the gun death rate increases in the state.

Inspecting the covariance matrix in this example,

Cov(B) =

(
255.988 64.1189

64.1189 27.1512

)
.

Cov(B)1,1 represents the sample variance in gun death rate per 100K and
Cov(B)2,2 represents the sample variance in the gun law strength.
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Cov(B)1,2 = Cov(B)2,1 = 64.1189 > 0 indicates that there is a positive
correlation between these two variables.

Principal Component Analysis can be used to decompose the covariance
matrix, limiting the singular values to the ones that are most significant.

Example 3.10. Investigated the covariance matrix from Example 3.9 further,

Cov =

(
255.988 64.1189

64.1189 27.1512

)
,

has two singular values, σ1 = 272.729 and σ2 = 10.4101. Noting that σ2 is
significantly smaller than σ1, one might focus on σ1 to do further exploration
into the relationship between gun death rate per 100 thousand people and state
gun law strength.

Reconstructing U with only σ1 taken into consideration, and thus using
PCA,

Ũ =

(
−0.967564

−0.252625

)
.

The vector Ũ , seen in Figure 3.7, visualizes the principal component of
Cov(B) and shows a ray that is most significant in the data.

You can see in Figure 3.7 that the line in which the vector Ũ lies is repre-
sentative of the most typical ratio of between gun law strength and death rate
per 100 thousand people.
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FIGURE 3.7
Gun law strength versus Gun Death Rate Per 100K with the covariance direc-
tion represented.
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The correlation matrix associated with a data set, A, Cor(A), is just a
scaling of the covariance matrix,

Cor(A)i,j =
Cov(A)i,j

Cov(A)i,iCov(A)j,j

for i 6= j and Cor(A)i,j = 1 if i = j.
It is a good idea to consider using the correlation matrix to study your data,

rather than the covariance matrix, if your variables are in scales of very different
magnitudes.

These ideas can be expanded to multiple regression techniques using Princi-
pal Component Analysis, more commonly called Principal Component Re-
gression.

Unlike Example 3.9, where there was only one dependent variable, x, and
one independent variable, y, and y = ax+ b+ e, with e representing the errors
in the residuals, it is possible to use principal component regression in a more
complex model with k independent variables. In this case, the model becomes

y = Xb

where y is an n× 1 vector, X is an n× k matrix.
Like Example 3.9, one should consider zero-centering or standardizing the

data before finding the covariance and correlation matrices. The eigenvectors
of the covariance matrix, typically stored in the matrix U in the singular value
decomposition, give a means of understanding the direction of the data based on
that variable. While the singular values, eigenvalues, of the covariance matrix
give a sense of how much the data varies in that direction.

Because of the significance of the singular values in determining variance in
the data, we must determine how many principal components, p, to include in
the model. The best way to do this is by inspecting the correlation matrix and
omitting small singular values of the correlation matrix, which typically have
values significantly less than 1.

In determining a least square regression model with all k factors integrated
into the model, we wish to determine b, where

b = (XTX)−1XT y.

In order to follow this procedure, X must be an orthogonal matrix, and thus
XTX is diagonal.

Unfortunately, most datasets are correlated and thus X is not an orthogonal
matrix. This leads most data scientists to proceed with some sort of variable
selection and thus replacing the k correlated variables of X with p uncorrelated
variables, represented by an n× p matrix X̃.

The Principal Component Regression model ŷ = X̃b can be determined by
reducing the principal components used to p < k such that X̃ = Ũ and

b = (X̃T X̃)−1X̃T y.
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TABLE 3.3
2020 Population and Number of Registered Guns by State (World
Population Review [42]).

State Population in 2020 Number of Registered Guns
Alabama 4,908,621 161,641
Alaska 734,002 15,824
Arizona 7,378,494 179,738
Arkansas 3,038,999 79,841
California 39,937,489 344,642
Colorado 5,845,526 92,435

Connecticut 3,563,077 82,400
Delaware 982,895 4,852
Florida 21,992,985 343,288
Georgia 10,736,059 190,050
Hawaii 1,412,687 7,859
Idaho 1,826,156 49,566
Illinois 12,659,682 146,487
Indiana 6,745,354 114,019

Iowa 3,179,849 28,494
Kansas 2,910,357 52,634

Kentucky 4,499,692 81,058
Louisiana 4,645,184 116,831

Maine 1,345,790 15,371

Example 3.11. In Example 3.9, we used state gun law strength to predict the
gun death rate per 100 thousand people in the state. In this example, we will
determine a model that will explore how state gun law strength, from Table 3.2,
the population of the state, and the number of registered guns in the state can
be used to predict the gun death rate per 100 thousand people. The population
in 2020 and number of registered guns by state can be found in Table 3.3.

In Example 3.9, the data was zero-centered; however, when the population
and number of guns registered by state are also included, we begin to have vari-
ables of very different magnitudes. In this case, we will standardize the data
before we begin.

After standardizing the data, the corresponding correlation matrix will be

Cor =



DeathRate GunLawStrength Population # ofGuns

DeathRate 1 0.769 −0.25 −0.002

GunLawStrength 0.769 1 −0.408 −0.188

Population −0.25 −0.408 1 0.891

# ofGuns −0.002 −0.188 0.891 1
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FIGURE 3.8
Dependent Variable Versus Respective Independent Variables in the Model.

with singular values σ1 = 2.27749, σ2 = 1.43598, σ3 = 0.212222, and σ4 =
0.0743121. We proceed with the regression using only the two largest principal
components.

Let X1 be the state gun law strength (with mean x̄1 and standard deviation
s1), X2 represents the population by state (with mean x̄2 and standard devia-
tion s2), X3 represents number of registered guns by state (with mean x̄3 and
standard deviation s3), and y the number of gun deaths by state (with mean x̄y
and standard deviation sy).

We standardize each factor in order to get each variable on a similar scale
and create X, the independent variable data matrix with columns consisting of
standardized X1, X2, X3.

When PCA is performed on X, similar to Example 3.9, with only 2 singular
values, b = {−2.68968, 2.99994}. Thus

̂gun deaths− x̄y
sy

= −2.68968

(
law strength− x̄1

s1

)
− 2.99994

(
population− x̄2

s2

)
.

Figure 3.8 shows an additional visualization of gun deaths versus gun law
strength and state population size with normalized data. The vectors on these
graphs are the eigenvectors associate with the represented principal components.
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3.6 Linear Discriminant Analysis

Like Principal Component Analysis, Linear Discriminant Analysis (LDA) is
used for dimension reduction. While PCA focuses on determining the principal
component axes, those axes that maximize the variance of the data, Linear
Discriminant Analysis also attempts to maximize the spread of the clusters or
classes in the data.

Something to note is that many times with PCA the data may not be
originally clustered into classes; however, it is necessary with LCA to originally
be identifying classes in the data.

The idea behind Linear Discriminant Analysis is to choose a projection that
will spread out the known classes while minimizing the scatter, or spread, within
each class.

Imagine that you have two classes of data in R2 and you wish to project the
data onto a line. If the classes are indeed unique, the choice of line on which
you choose to project does make a difference in terms of between class spread.

For example, in Figure 3.9, the projection of the two classes of data, repre-
sented by circles and squares, onto the x-axis and the line y = 2x do not do a
great job of spreading out the two classes, whereas a projection onto the line
y = −x, seen in Figure 3.10, completely separates the two classes.
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FIGURE 3.9
Example of projection onto the x-axis and the line y = 2x.

Let’s assume that there are n classes, C1, C2, . . . , Cn, where the ith class is
of size Ni. In addition, assume that each vector, x, representing an object, has
m entries and that the line of projection will be represented by the unit vector
v.
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FIGURE 3.10
Example of projection onto the line y = −x.

Then the

projection of x onto v =
< v, x > v

||v||2
and the distance that x is from the origin is

vTx.

Define µ̃i as the mean of the projections of vectors in classes Ci onto the
vector v. Thus

µ̃i =
∑
x∈Ci

vTx

Ni
= vT

∑
x∈Ci

x

Ni
= vTµi,

where µi is the mean of the vectors in class Ci.
Given two classes C1 and C2, we wish to choose a projection that maximizes

|µ̃1 − µ̃2|
in order to maximize the spread of the classes; however, this does not minimize
the spread within classes. The objective of Linear Discriminant Analysis is to
find a vector v that takes each of these criteria into account. In order to do this,
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we will maximize the objective function

J(v) =
(µ̃1 − µ̃2)2∑

x∈C1
(vTx− µ̃1)2 +

∑
x∈C2

(vTx− µ̃2)2

=
(vTµ1 − vTµ2)2∑

x∈C1
(vTx− µ̃1)2 +

∑
x∈C2

(vTx− µ̃2)2
.

Define the within class scatter matrix,

SW =
n∑
i=1

∑
x∈Ci

(x− µi)(x− µi)T

and the between class scatter matrix as

SB = (µ1 − µ2)(µ1 − µ2)T .

Then,

J(v) =
vTSBv

vTSW v
.

In order to maximize J(v), we determine where ∂J
∂v = 0.

∂J

∂v
=

(2SBv)(vTSW v)− (2Swv)(vTSBv)

(vTSW v)2
= 0

when (SBv)(vTSW v)− (SW v)(vTSBv) = 0.
That is, we wish to find v such that

SBv −
(SW v)(vTSBv)

vTSW v
= 0.

If SW is invertible and λ = (vTSBv)
vTSW v

, S−1
W SBv = λv and v is the eigenvector

associated with matrix S−1
W SB and eigenvalue λ.

Another way to think about this, due to the definition of SB , is that for any
vector v, SBv points in the same direction as µ1 − µ2. Therefore, we wish to
determine v such that

v = S−1
W (µ1 − µ2).

Example 3.12. For the data shown in Figure 3.9, µ1 = {1.25584, 3.42925}
and µ2 = {2.25309, 3.5972}

SW =

(
2.29589 3.62306

3.62306 6.93158

)
and SB =

(
0.994501 0.167485

0.167485 0.0282064

)
.

The best line of projection is defined by vector

v = S−1
W (µ1 − µ2) = {−2.26148, 1.15782}.
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FIGURE 3.11
Data from Figure 3.9 projected onto the vector v = {−2.26148, 1.15782}.

The concepts described in this section can be generalized for a dataset with
n classes.

1. Find each class Ci, 2 ≤ i ≤ n, find the mean vector,

µi =
∑
v∈ Ci

v

Ni
.

2. Construct the within class scatter vector SW , where the entries of
SW are

n∑
i=1

∑
x∈Ci

(x− µi)(x− µi)T .

3. Construct the between-class scatter matrix SB , where the entries of
SB are

n∑
i=1

Ni(µi − µ),

where µ is the mean of all of the samples.

4. Determine the eigenvector v of S−1
W SB .
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3.7 CASE STUDY: Digital Humanities

Some digital humanists focus on semantics and words that are regularly used or
used in a particular context. In this case study, we will focus on characteristics
of different versions of a story that are present or absent in order to determine
the story’s origin.

The Star Husband Tale was a widely known tale among Native American
tribes. The basic form of the Star Husband Tale [45] tells of two girls who are
sleeping out in the open during the night. While outside, they see two stars,
and each girl makes a wish to be married to a star. When they awake, both
have been transported to the heavens and are married to the stars as they
wished. One of the star husbands is a young man, and the other is an older
man. The girls at one point start digging in the heavens and make a hole, and
they eventually lower themselves down to earth using a rope.

Dundes [9] discusses narrative elements of 86 versions of the Star Husband
Tale coming from 44 tribes, grouped into nine geographical zones: Eskimo,
Mackenzie, North Pacific, California, Plateau, Plains, Southeast, Southwest,
and Woodlands. In this case study, we will explore the 10 tales in the Woodlands
tribe and some of their archetypes and subarchetypes. These archetypes and
subarchetypes include how the girl(s) in the folktale travel to the upper world,
taboos broken in the upper world, whether the girl(s) in the story dig a hole in
the cloud, and how the girl(s) in the story travel home.

Data for a more in-depth study of the Star Husband Tale can be found at
Github link 23. Python and R code for this case study can be found at GitHub
links 19 and 21 respectively.

The rows of data matrix, M , represent the 10 Woodland tribes and columns
represent the archetypes and subarchtypes. If the (i,j)th entry of M is equal to
1 then archetype j is present in tribe i′s tale.

M =



Ojibawa1 1 0 0 0 0 1 0 1 1 0 0 0 1 0 0 1

Ojibawa2 0 0 0 0 0 1 0 1 0 0 0 0 1 0 0 1

Ojibawa3 1 0 0 0 0 1 0 1 0 1 1 0 1 0 0 1

Ojibawa4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

Ojibawa5 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0

MicMac1 1 1 1 0 1 0 1 0 0 1 0 1 1 0 0 1

MicMac2 1 1 1 1 1 0 0 0 0 1 0 1 1 0 0 1

MicMac3 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0

Passamaquody1 1 1 0 1 1 0 1 0 0 1 0 1 1 0 0 1

Passamaquody2 1 1 0 1 1 0 0 0 0 1 0 1 1 0 0 1



.
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Using only the two largest principal components of M , σ1 = 6.37802 and
σ2 = 3.30583 the matrix

Ũ =



−0.24 −0.47

−0.17 −0.4

−0.31 −0.49

−0.13 −0.08

−0.23 −0.36

−0.43 0.24

−0.44 0.26

−0.14 0.13

−0.43 0.25

−0.41 0.2



.

If we use the rows of Ũ as the coordinates of each of the tales/tribes, we can
visualize the tales in R2. Figure 3.13 shows a visual representation of the these
tales with the tribes labeled.

It is interesting to note that, for the most part, the tales from the five
Ojibawa tribes and the tales for the Passamaquody tribes are close to one
another in this visualization.

One can also compare the results with the actual physical location of the
tribes in Figure 3.12, noting that it would be common for the Passamaquody

Ojibawa 1

Ojibawa 2
Ojibawa 3

Ojibawa 4

Ojibawa 5

MicMac 1

MicMac 2

MicMac 3

Passamaquoddy

FIGURE 3.12
Location of Woodlands tribes.



108 Linear Algebra With Machine Learning and Data

-0.40 -0.35 -0.30 -0.25 -0.20 -0.15
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Ojibwa

MicMac

Passamaquoddy

FIGURE 3.13
Visual representation of Woodland tribes using PCA.

tribes to share hunting grounds and thus stories with a nearby tribe such as a
MicMac tribe.

3.8 CASE STUDY: Facial Recognition Using PCA and
LDA

Law enforcement agents have to deal with the issue of facial recognition on a
daily basis. Let’s say that you are given a database of criminal pictures and a
new photo. Your job is to determine which photo this new photo resembles the
most.

In this case study, we will use PCA on the pixel data from each photo to
cluster the photos; however, keep in mind that there are many factors that are
important in facial recognition with which a human expert may do a better
job. These include gender recognition, changes in hair features, and even the
position that the photos are taken.

Figure 3.14 shows 10 head-shots of people that are in a line up. In a recent
crime, the photo of two suspects was captured; however, the resolution of the
photos is very poor. Their photos are numbers 5 and 10 in Figure 3.14.

Your job is to determine which of the people in the head-shots, 1-4 and
6-9, from Figure 3.14 closely resembles the suspects’ photos. If you are able to
narrow your search down to subcategories, you could look at a smaller subset
of photos to find your suspect.
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1 2 3 4 5

6 7 8 9 10

FIGURE 3.14
10 Head-shots for Facial Recognition Study [14].

The nine-byte representation of pixels in the middle of each of the 5 head-
shots, 1-4, in Figure 3.14 can be found in the columns of matrix A. We will use
a small version of the image data from the center of each photo for this case
study, which can be found at GitHub link 24.

A =



97 125 106 172 238

96 93 100 185 239

81 72 93 200 240

87 70 103 171 235

95 54 97 187 236

86 55 88 203 237

48 58 100 169 232

67 47 96 187 233

90 51 87 203 234



.

Using the two largest principal components of ATA to construct Ũ , we can
visualize a representation of these photos in R2, seen in Figure 3.15, with the
entries of the eigenvector associated with the largest principal component on
the x-axis and those associated with the second largest principal component on
the y-axis.

Unfortunately, if you are unable to narrow the group into subgroups initially,
distinctive features may not be as easily detected by PCA, with only nine data
pixels per picture. We see that the matrix, B, which includes nine data points
for each of the 10 head-shots,
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FIGURE 3.15
Visualization of photos 1-5 base on PCA.

B =



97 125 106 172 238 158 216 191 91 193

96 93 100 185 239 153 218 218 94 193

81 72 93 200 240 147 218 244 98 193

87 70 103 171 235 156 215 193 86 193

95 54 97 187 236 154 212 225 92 192

86 55 88 203 237 151 209 227 98 192

48 58 100 169 232 159 207 178 82 192

67 47 96 187 233 158 201 203 89 192

90 51 87 203 234 156 195 215 97 191



,

one can see from Figure 3.16 that the #5 suspect no longer is closest in resem-
blance to Figures 1-4 in the lineup. However, if there were over 10000 pixels per
suspect, as seen in Figure 3.17, more distinction between groups is recognized
with PCA. This data can be found at GitHub link 25.

In this analysis, using PCA, you may not be able to make an assumption
about which subgroup, 1-4 or 6-8, the two suspects belong to, nor can an as-
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FIGURE 3.16
PCA with only 9 pixels per suspect with data.

0.28 0.30 0.32 0.34 0.36
PC1

-0.40
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-0.30

-0.25

PC2

FIGURE 3.17
PCA with over 10000 pixels per suspect.
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sumption be made that there were two distinct subgroups, classes, among the
dataset. However, if there is an understanding about how the 10 photos can be
placed into two classes, a better way to analyze the photos may be with LDA.

When applying LDA, we begin by assuming that the first five columns of B
fit into one class, C1, and the last five into a second class, C2. With the larger
data set, PCA is applied to both classes in order to project the classes into R2.

Sw =

(
2 0

0 2

)
and the mean vectors are

µ̃C1
=



−0.404322 −0.433172

−0.423223 −0.419999

−0.468211 −0.0258423

−0.423255 0.795089

−0.508958 0.0559352


and µ̃C2

=



−0.393657 0.00717916

−0.494921 −0.587535

−0.433602 −0.161582

−0.437483 0.792504

−0.469771 0.0240795


.

Projecting onto the vector v = {0.0001464,−0.01026} produces Figure 3.18.

0.0035 0.0040 0.0045 0.0050 0.0055 0.0060

-0.40

-0.35

-0.30

-0.25

FIGURE 3.18
Projecting classes onto v.

Notice that the two classes are not completely well defined, separated, with
this projection; however, there are some clear distinctions between the classes.

Similar ideas can be applied to handwriting samples and other image recog-
nition problems.

Python and R code related to this Case Study can be found at GitHub links
20 and 22 respectively.
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3.9 Exercises

1. Define the transformation TA : R2 → R2 with standard matrix

A =

(
1 3

2 4

)
.

a. Graph the standard basis vectors, v1 = {1,0} and v2 = {0,1},
transformed under TA and determine if the resulting vectors or-
thogonal.

b. Find an angle of rotation, θ, such u1 and u2 are orthogonal, where

u1 = TA

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
v1,

u2 = TA

(
cos(θ) − sin(θ)

sin(θ) cos(θ)

)
v2.

c. Use u1 and u2 to find the singular values of A.

d. Use AAT to find the singular values of A.

2. Find the singular values of(
4 0 3

0 2 0

)
.

3. Find the singular values and eigenvalues of
1 2 3

2 −1 0

3 0 4

 .

4. Prove that if A is a square matrix then the eigenvalues of A are equal
to the singular values of A.

5. Carl just got a new dog and is curious about its genetic makeup
and the genetic relationship between many pure bred dogs. Matrix A
shows a small portion of the genetic makeup (specifically haplotypes)
of Carl’s new dog and that of several pure bred dogs. The haplotype
names in order of column (if you are interested are) A2, A11, A16,
A17, A18, A19, B1A.
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A =



0 1 0 0 1 1 1

0 1 0 0 1 0 0

0 0 0 1 0 1 1

1 1 0 0 0 0 1

0 1 1 1 0 1 1

0 0 0 1 1 1 1



Carl’s Dog

Breed 1

Breed 2

Breed 3

Breed 4

Breed 5

.

a. Use PCA, limited to the two largest singular values, to plot a
representation of these six dog types. Be sure to label all of the
dog types on the graph.

b. Use your graph from part a. to argue which breed or breed(s) are
closest genetically to Carl’s dog.

6. Table 3.4 shows Hectares of Palm Oil Plantations in Indonesia versus
Sumatran Orangutan populations.

TABLE 3.4
Orangutan Population versus Palm Oil Plantations.

Year Total Hectares of Sumatran Orangutan
Palm Oil Plantations Population in Indonesia Population of Indonesia

2000 4,158,077 13,500 211,513,823
2001 4,713,431 11,245 214,427,417
2002 5,067,058 10,254 217,357,793
2003 5,283,557 8,700 220,309,469
2004 5,566,635 7,500 223,285,676
2005 5,950,349 7,200 226,289,470
2006 6,250,460 6,000 229,318,262

a. Use PCA to determine a linear model for to predict the orangutan
population based on the number of hectares of palm oil planta-
tions.

b. Use Principal Component Regression to determine a linear model
to predict the orangutan population based on both the number of
hectares of palm oil plantations and the population of Indonesia.

7. Data related to traits of 86 star husband tales can be found at Github
link 23. Use Principal Component Analysis to visualize the 86 tales
in R2 to determine how close the tales are one to one another.

8. Data related to 31 Cinderella tales can be found at GitHub link 1.
Use Principal Component Analysis to visualize the Cinderella tales
in R2 and determine how close the tales are to one another.

9. A list of 10 East Coast Colleges and Universities and their character-
istics are listed in Table 3.5.
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TABLE 3.5
College and University Data.

Institution Out of State Number of Acceptance Graduation
Tuition Undergraduates Rate Rate

Bucknell
University

56092 4900 .31 .90

Davidson
College

51447 1843 .20 .93

Florida State
University

18786 32812 .50 .80

Georgia Tech
University

33020 16049 .23 .85

Lafayette
College

53630 2642 .31 .90

University of
North
Carolina

35170 19117 .24 .90

University of
Richmond

52610 3227 .33 .88

University of
Virginia

49032 11786 .27 .93

Villanova
University

56730 10983 .29 .91

William and
Mary
University

45272 6377 .34 .90

a. Standardize the data and use PCA to project each college and
university into R2. Which school appears to be the closest to
University of Virginia based on this graph?

b. Project the points from part a. onto the x-axis, using this graph,
which school appears to be the closest to University of Virginia.

c. Project the points from part a. onto the line y = 1
4x − 1

2 , using
this graph, which school appears to be the closest to University
of Virginia. Recall that given two vectors u and v, the projection
of v onto u

projuv =
u · v
v · v u.

d. If data scientists believe that the colleges represented in Table
3.5 should be split into two groups, those with an undergraduate
population below 10,000 and those below, determine SB and SW .
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e. Use your results from part d. and Linear Discriminant Analysis
to determine the best vector to project the data onto in order to
represent this grouping.

10. S&P 500 stock market data from February 2013 through February
2018 can be found at Github link 48.

Cov =


AAL ABBV CBG DAL EQR UAL

AAL 1. 0.301441 0.458315 0.96228 −0.297844 0.91458

ABBV 0.301441 1. 0.831858 0.307424 −0.919188 0.262801

CBG 0.458315 0.831858 1. 0.377223 −0.673998 0.351462

DAL 0.96228 0.307424 0.377223 1. −0.296989 0.900406

EQR −0.297844 −0.919188 −0.673998 −0.296989 1. −0.400563

UAL 0.91458 0.262801 0.351462 0.900406 −0.400563 1.


Cov is the covariance matrix for standardized data for six stocks over
this period of time. Discuss how you can use the techniques from this
chapter to visualize relationships between these stocks.
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Interpolation

In Chapter 3, we took a look at one type of regression, using Linear Discrim-
inant Analysis. In Chapters 4 and 5, we will focus on mathematical learning
techniques for creating regression models that optimize a given cost function.

In this chapter, we will assume that there is an unknown function, f(x),
and that you have been provided the values of this function at n + 1 distinct
points. These points, x0 < x1 < · · · < xn, called the interpolation points can
be equidistant or not.

Throughout the chapter, we will refer to the interpolant or the interpo-
lating function, f̂(x), as the function chosen to model the given interpolation
points.

There are several thoughts around what makes an ideal interpolating func-
tion. Ideally, given a large set of interpolation points, some of the interpolation
points are chosen at random to serve as the training set of data used to de-
velop the model, while the rest of the data is used as a testing set to test the
accuracy of the model.

Many interpolants serve only to predict the value at the given interpolation
points. The goal of this type of interpolation problem is to find a function, f̂(x),
such that

f̂(xj) = f(xj) for all 0 ≤ j ≤ n.
Although very accurate at the given points, these models, such as the La-

grange interpolation functions, and the Hermitian interpolation functions lack
flexibility when attempting to extrapolate or predict near the given points but
not within the given set.

For more flexibility, learning systems integrate regularization, a technique
for smoothing across the data. The neural network methods presented in Chap-
ter 5 incorporate optimization techniques called gradient descent with regular-
ization.

Keep in mind that there is not one solution for a best model. Throughout
this chapter, we will be discussing advantages and disadvantages of each model.
It is important that you analyze your model in context and determine the best
model for the situation.

DOI: 10.1201/9781003025672-4 117
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4.1 Lagrange Interpolation

A Lagrange interpolant, P (x), is an nth degree polynomial passing through
n + 1 known interpolation points, (x0, f(x0)), (x1, f(x1)), . . . , (xn, f(xn))
where x0 < x1 < · · · < xn, with the additional constraint that

P (x) =

n∑
j=0

Pj(x),

where,

Pj(x) =

n∏
k=0,k 6=j

f(xj)
x− xk
xj − xk

.

One can also think of the Lagrange interpolant in terms of Vandermonde
determinants.

The Vandermonde matrix, V , is a square matrix of the form

V =



1 x0 x2
0 . . . xn0

1 x1 x2
1 . . . xn1

1 x2 x2
2 . . . xn2

...
...

...
...

1 xn x2
n . . . xnn.


Notice that given n+ 1 interpolation points, x0, x1, . . . , xn, when creating

a nth degree Lagrange interpolating polynomial,

Pj(x) =

n∑
j=0

(−1)jf(xj)
|Vj |
|V ∗| ,

where

V ∗ =



1 x0 x2
0 . . . xn0

1 x1 x2
1 . . . xn1

1 x2 x2
2 . . . xn2

...
. . .

. . .
. . .

...

1 xn x2
n . . . xnn


,
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V0 =



1 x x2 . . . xn

1 x1 x2
1 . . . xn1

1 x2 x2
2 . . . xn

...
. . .

. . .
. . .

...

1 xn x2
n . . . xnn


,

V1 =



1 x x2 . . . xn

1 x0 x2
0 . . . xn0

1 x2 x2
2 . . . xn2

...
. . .

. . .
. . .

...

1 xn x2
n . . . xnn


,

and in general

Vk =



1 x x2 . . . xn

1 x0 x2
0 . . . xn0

...
. . .

. . .
. . .

...

1 xk−1 x2
k−1 . . . xnk−1

1 xk+1 x2
k+1 . . . xnk+1

...
. . .

. . .
. . .

...

1 xn x2
n . . . xnn


.

Notice that in Vk the xk is not included in the matrix.

Example 4.1. We will find the unique degree three Lagrange polynomial, P3(x),
agreeing with the data {(−1,3), (0,−4), (1,5), (2,−6)}.

V ∗ =


1 −1 1 −1

1 0 0 0

1 1 1 1

1 2 4 8

 ,
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V0 =


1 x x2 x3

1 0 0 0

1 1 1 1

1 2 4 8

 , V1 =


1 x x2 x3

1 −1 1 −1

1 1 1 1

1 2 4 8

 ,

V2 =


1 x x2 x3

1 −1 1 −1

1 0 0 0

1 2 4 8

 , V3 =


1 x x2 x3

1 −1 1 −1

1 0 0 0

1 1 1 1

 .

Then,

P3(x) = f(x0)
|V0|
|V ∗| − f(x1)

|V1|
|V ∗| + f(x2)

|V2|
|V ∗| − f(x3)

|V3|
|V ∗|

= −1

2
x
(
x2 − 3x+ 2

)
− (4− 2x− 4x2 + 2x3)

− 5

2

(
x3 − x2 − 2x

)
+ (x− x3)

= −4 + 7x+ 8x2 − 6x3.

-1.0 -0.5 0.5 1.0 1.5 2.0

-6

-4

-2

2

4

FIGURE 4.1
P3(x) through the points {(−1,3), (0,−4), (1,5), (2,−6)}.
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4.2 Orthogonal Families of Polynomials

Several of the interpolation techniques presented in this chapter depend on
special families of functions. This section focuses on the connection between
these special families and linear algebra concepts.

In Section 3.1, we reviewed the concept of an inner product. We see those
concepts applied here to families of functions.

Example 4.2. Let V be defined as the set of integrable functions such that if
f and g are in V ,

< f, g >=

∫ 2π

0

f(x)g(x)dx.

Let S = {1, cos(x), sin(x)}, since∫ 2π

0

cos(x)dx =

∫ 2π

0

sin(x)dx =

∫ 2π

0

cos(x)sin(x)dx = 0,

we say that the set S is orthogonal. Also note that∫ 2π

0

cos2(x)dx =

∫ 2π

0

sin2(x)dx =

∫ 2π

0

1 dx = 1,

and thus the set S is orthonormal.

There are a variety of families of orthogonal functions that are generated
from matrices of special forms.

Square matrices of the form

x 1 0 . . . 0 0 0

1 2x 1 0 . . . 0 0

0 1 2x 1 0 . . . 0
...

. . .
. . .

. . .
. . .

...
...

0 . . . 0 0 0 1 2x


are a special type of tridiagonal matrix, whose determinants can be viewed
recursively as

Tn+1(x) = 2xTn − Tn−1,

T0(x) = 1, T1(x) = x, and T2(x) = 2x2 − 1.
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This family of polynomials is called the Chebyshev polynomials of the
first kind and is orthogonal when we restrict to the domain to [−1, 1] with the
defined inner product

< f(x), g(x) >=

∫ 1

−1

(1− x2)−1/2f(x)g(x)dx.

The Chebyshev polynomials of the first kind can also be defined by

Tn(x) =

bn/2c∑
m=0

(
n

2m

)
xn−2m(x2 − 1)m.

Example 4.3. T3(x) = (4x3 − 3x). Note that∫ 1

−1

T2(x)T1(x)dx =

∫ 1

−1

(1− x2)−1/2(2x2 − 1) · x dx = 0,

∫ 1

−1

T3(x)T1(x)dx =

∫ 1

−1

(1− x2)−1/2(4x3 − 3x) · x dx = 0,

∫ 1

−1

T3(x)T2(x)dx =

∫ 1

−1

(1− x2)−1/2(4x3 − 3x) · (2x2 − 1) dx = 0.

Similar relationships can be seen between each pair of Chebyshev polynomials
of the first kind. However, the individual Chebyshev polynomials do not have a
norm of length 1,∫ 1

−1

T2(x)T2(x)dx =

∫ 1

−1

(1− x2)−1/2(2x2 − 1)2dx =
π

2
.

The set of Chebyshev polynomials of the first kind as defined under the inner
product presented here is orthogonal but not orthonormal.

Like the Chebyshev polynomials of the first kind, the Hermite polyno-
mials are another family of orthogonal functions that can be generated by
matrices of a special form. The Hermite polynomials are also an important
family of functions that arise in probability theory.

To take a closer look at Hermite polynomials, we look at derivatives of the
polynomial

y = a0 + a1x+ · · ·+ anx
n.

If

A =


a0

a1

...

an

 ,
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FIGURE 4.2
The first 5 Chebyshev polynomials of the first kind on [−1, 1].

then we denote

dA

dx
=



a1

2a2

...

nan−1

0


and

d2A

dx2
=



2a2

6a3

...

n(n− 1)an−2

0

0


.

Using these ideas, we introduce the first derivative operator of A as,

d

dx
→


0 1 0 0 . . . 0

0 0 2 0 . . . 0
...

. . .
. . .

. . .
. . .

...

0 0 0 0 . . . n

 ,
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the second derivative operator of A as

d2

d2x
→



0 0 2 0 . . . 0

0 0 0 6 . . . 0

. . .
. . .

. . .
. . .

. . .
...

0 0 0 0 . . . n(n− 1)

0 0 0 0 . . . 0

0 0 0 0 . . . 0


,

and the n× n Hermite differential operator as

d2

d2x
− 2x

d

dx
→



0 0 2 0 . . . 0

0 −2 0 6 . . . 0

0 0 −4 0 . . . 0

. . .
...

...
...

... . . .

0 0 0 0 . . . n(n− 1)

0 0 0 0 . . . 0

0 0 0 0 . . . −2n


.

If λ0 ≥ λ1 ≥ · · · ≥ λn are the eigenvalues of the n× n differential operator
d2

d2x − 2x d
dx with corresponding eigenvectors v0, v1, . . . , vn then the coefficients

of the kth Hermite polynomial corresponds to the eigenvector v2k.

Example 4.4. The 5×5 Hermite differential operator corresponds to the matrix

0 0 2 0 0

0 −2 0 6 0

0 0 −4 0 12

0 0 0 −6 0

0 0 0 0 −8


which has eigenvectors and corresponding Hermite polynomials

v1 = (1,0,0,0,0), H1(x) = 1

v2 = (0,2,0,0,0), H2(x) = 2x

v3 = (−2,0,4,0,0), H3(x) = 4x2 − 2

v4 = (0,−12, 0, 8, 0), H4(x) = 8x3 − 12x

v5 = (12, 0,−48, 0, 16), H5(x) = 16x4 − 48x2 + 12
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FIGURE 4.3
The first 5 Hermite polynomials on [−2, 2].

The Hermite polynomials can also be generated using the recursive definition

Hn(x) = xHn−1(x)− nHn−2(x),

Under the inner product defined by

< f(x), g(x) >=

∫ ∞
−∞

e−x
2

f(x)g(x) dx,

the Hermite polynomials, like the Chebyshev polynomials of the first kind, are
an orthogonal set of functions.

Both the Chebyshev polynomials of the first kind and the Hermite polyno-
mials are popular families of functions used for interpolating, or curve fitting,
of data.

4.3 Newton’s Divided Difference

Section 4.1 presents Lagrange interpolating polynomials which fit exactly to a
given set of interpolating points. In fact, given an unknown function f(x) and
n + 1 interpolating points, x0 < x1 < · · · < xn, there is a unique polynomial
f̂(x) such that

f̂(xj) = f(xj), 0 < j < n.
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In this section, we present several closed forms for the Newton’s interpo-
lating polynomial, f̂(x).

Let f̂1(x) = a0 and

f̂n(x) = a0 + a1(x− x0) + a2(x− x0)(x− x1) + · · ·+ an(x− x0)(x− x1) · · ·
(x− xn)

= a0 +

n∑
j=1

aj

j−1∏
i=0

(x− xi),

where

aj =
f(xj)− f̂j−1(xj)∏j−1

i=0 (xj − xi)
.

You might have noticed that Newton’s interpolating polynomials are defined
recursively. That is, that the definition of the nth degree polynomial, f̂n(x),

depends on f̂1(x), . . . , f̂n−1(x).
We can also write Newton’s interpolating polynomials, recursively, in terms

of Newton’s divided differences.

4.3.1 Newton’s Interpolation via Divided Difference

The first Newton’s divided difference between xi and xj , denoted

f [xi,xj ],

is the slope of the tangent line between (xi,f(xi)) and (xj ,f(xj)),

f [xi,xj ] =
f(xi)− f(xj)

xi − xj
.

Similarly, n + 1 points x0 < x1 < · · · < xn can be used to find the second
divided difference,

f [x0,x1, . . . ,xn] =
f [x0,x1, . . . ,xn−1]− f [x1,x2, . . . ,xn]

x0 − xn
.
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Typically, Newton’s divided differences are presented in a table similar to
the one seen in Table 4.1.

TABLE 4.1
Divided Difference where ∆x = 1.

f [x0] = 3
f [x0,x1] = −1

f [x0,x1,x2] = −3+1
2 = −1

f [x1] = 2
f [x1,x2] = −3 f [x0,x1,x2,x3] = 4.5+1

3
f [x2] = −1

f [x1,x2,x3] = 6+3
2 = 4.5

f [x3,x2] = 6
f [x3] = 5

Applying the concepts of divided difference, Newton’s interpolating polyno-
mials can be written as

f̂1(x) = a0 + a1(x− x0) = f(x0) + (x− x0)f [x0,x1]

f̂2(x) = a0 + (x− x0)f [x0,x1] + (x− x0)(x− x1)f [x0,x1,x2]

f̂3(x) = a0 + (x− x0)f [x0,x1] + (x− x0)(x− x1)f [x0,x1,x2]

+ (x− x0)(x− x1)(x− x2)f [x0,x1,x2,x3]

Example 4.5. Given a set of four interpolating points {(0,3), (1,2), (2,−1),
(3,5)},

f̂1(x) = 3− (x− 0) = 3− x
f̂2(x) = 3− (x− 0)− 1(x− 0)(x− 1) = 3 + x− 2x2

f̂3(x) = 3− (x− 0)− 1(x− 0)(x− 1) +
6.5

3
(x− 0)(x− 1)(x− 2)

=
1

6

(
11x3 − 39x2 + 22x+ 18

)

Notice that the Newton’s interpolating polynomials can be written as a
linear system as well.
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FIGURE 4.4
Data with f̂1(x), f̂2(x), f̂3(x) from Example 4.5.


f̂0(x)

f̂1(x)

f̂2(x)

f̂3(x)



=


1 0 0 0

1 (x− x0) 0 0

1 (x− x0) (x− x0)(x− x1) 0

1 (x− x0) (x− x0)(x− x1) (x− x0)(x− x1)(x− x2)




f [x0]

f [x0,x1]

f [x0,x1,x2]

f [x0,x1,x2,x3]



4.3.2 Newton’s Interpolation via the Vandermonde Matrix

We can also write Newton’s divided differences in terms of the Vandermonde
matrix. In order to do so, we introduce the concept of LU-decomposition so
that we can later decompose the Vandermonde matrix in this context.
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Let A be a square matrix. If A can be written in terms of a lower triangular
matrix, L, with diagonal entries equal to 1, and an upper triangular matrix, U ,
such that

A = LU

then we say that A has a LU-decomposition.
If a matrix A has a LU-decomposition, L and U can be determined by

finding a sequence of matrices L0, L1, . . . , Lk, such that

Lk · · · L1L0A = U,

where Li is a lower triangular elementary matrix, 0 ≤ i ≤ k. Then

L = L−1
0 . . . L−1

k .

Example 4.6. Let A =


6 18 3

2 12 1

4 15 3

 . Using Gauss Jordan elimination,

L0 =


1 0 0

− 1
3 1 0

0 0 1

 , L1 =


1 0 0

0 1 0

− 2
3 0 1

 , L2 =


1 0 0

0 1 0

0 − 1
2 1

 .

A =


1 0 0
1
3 1 0
2
3

1
2 1




6 18 3

0 6 0

0 0 1

 .

L0, L1, . . . , Lk and U may not be unique.

Theorem 11. If a square matrix A is invertible and has a LU-decomposition,
then that decomposition is unique.

Theorem 12. Let S = {(xi, f [xi])| 0 ≤ i ≤ n−1} be a given set of interpolating
points, where the Vandermonde matrix, V , is a square n×n, invertible matrix,

V =



1 x0 x2
0 . . . xn−1

0

1 x1 x2
1 . . . xn−1

1

1 x2 x2
2 . . . xn−1

2

...
...

...
...

1 xn−1 x2
n−1 . . . xn−1

n−1
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If V = LU where L is a lower triangular matrix with main diagonal entries
equal to 1, and U is an upper triangular matrix, then the elements of L and U
respectively are

Li,1 = Li,i = 1, 1 ≤ i ≤ n.
Li,j = xi, 1 < j < i.

Example 4.7. Given that x0 = 0, x1 = 1, x2 = 2, x3 = 3. The Vandermonde
matrix

V =


1 0 0 0

1 1 1 1

1 2 4 8

1 3 9 27

 .

Using Gaussian Elimination,

L0 =


1 0 0 0

−1 1 0 0

0 0 1 0

0 0 0 1

 , L1 =


1 0 0 0

0 1 0 0

−1 0 1 0

0 0 0 1

 ,

L2 =


1 0 0 0

0 1 0 0

0 0 1 0

−1 0 0 1

 , L3 =


1 0 0 0

0 1 0 0

0 −2 1 0

0 0 0 1



L4 =


1 0 0 0

0 1 0 0

0 0 1 0

0 −3 0 1

 , L5 =


1 0 0 0

0 1 0 0

0 0 1 0

0 0 −3 1



L5L4L3L2L1L0V =


1 0 0 0

0 1 1 1

0 0 2 6

0 0 0 6

 = U
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and

L = (L5L4L3L2L1L0)−1 =


1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1

 .

Note that V is a nonsingular matrix as long as xi, 0 ≤ i ≤ n− 1 are unique.
We wish to determine coefficients a = {a0, a1, . . . , an} such that

V a = f̂ .

We can use the LU decomposition of the Vandermonde matrix V to find
the divided differences,

f [x0,x1, . . . ,xi] = U−1
i,i L

−1


f [x0]

f [x1]
...

f [xn]

 .

Example 4.8. Referring back to the data from Table 4.1,

V =


1 0 0 0

1 1 1 1

1 2 4 8

1 3 9 27

 .

The LU-decomposition of V = LU produces the matrices

L =


1 0 0 0

1 1 0 0

1 2 1 0

1 3 3 1



U =


1 0 0 0

0 1 1 1

0 0 2 6

0 0 0 6

 .
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The Newton’s divided differences can be written in terms of the entries in L−1

and U−1,

L−1 =


1 0 0 0

−1 1 0 0

1 −2 1 0

−1 3 −3 1

 , U−1 =


1 0 0 0

0 1 − 1
2

1
3

0 0 1
2 − 1

2

0 0 0 1
6

 .

L−1


3

2

−1

5

 =


3

−1

−2

11


and thus 

f [x0]

f [x0,x1]

f [x0,x1,x2]

f [x0,x1,x2,x3] =




3

−1

−1
11
6



4.4 Chebyshev Interpolation

For the interpolating techniques presented in this chapter thus far, we have
assumed that interpolating points are given. There are instances where you
are able to choose the interpolating points or that equally spaced interpolating
points can be transformed onto another set of points.

Chebyshev interpolation is a method when n interpolating points are
located at the Chebyshev nodes, the roots of the nth degree Chebyshev poly-
nomial of the first kind, Tn(x),

xk = cos

(
(2k + 1)π

2n

)
, k = 0, 1, 2, . . . , n− 1.

An nth-degree polynomial, p(x), interpolating a function f(x), can be writ-
ten as the sum of Chebyshev polynomials of the first kind,

p(x) =
1

2
c0T0(x) +

n∑
i=1

ciTi(x),

where

ci =
2

n

n∑
k=0

f(xk)Ti(xk).
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Example 4.9. Assume that you have a dataset, S, of 4 equidistant points
generated from the function

f(x) =
1

1 + x2

over the interval [−1, 1]. We will find a 3rd-degree Chebyshev interpolating
polynomial, p(x).

Since we are to find a 3rd-degree interpolating polynomial, we will use four
interpolating points, which are roots of

T4(x) = 8x4 − 8x2 + 1,

These roots are

x0 = − (
√

2 +
√

2)

2
, x1 = − (

√
2−
√

2)

2
, x2 =

(
√

2−
√

2)

2
, x3 =

(
√

2 +
√

2)

2
.

The corresponding values of f(x) are

f(x0) = f(x3) =
4

(6 +
√

2)
,

f(x1) = f(x2) =
2(6 +

√
2)

17
.

Recall that T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, and T3(x) = 4x3 − 3x and
thus the generating coefficients

c0 =
2

4

3∑
i=0

f (xi)T0 (xi) ≈ 1.41176

c1 =
2

4

3∑
i=0

f (xi)T1 (xi) = 0

c2 =
2

4

3∑
i=0

f (xi)T2 (xi) ≈ −0.235294

c3 =
2

4

3∑
i=0

f (xi)T3 (xi) = 0

The interpolating polynomial is

p(x) =
1

2
c0T0(x) +

n∑
i=1

ciTi(x) = 0.705882 − 0.235294
(
2x2 − 1

)
.
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FIGURE 4.5
Example of Chebyshev interpolation of f(x) = 1

1+x2 .

It is important to note that Chebyshev interpolation is traditionally meant
to be conducted on the interval [−1, 1] since the roots of the Chebyshev polyno-
mials are on the unit circle. Thus, if you intended to use Chebyshev interpolation
on an interval [a, b] you must first create a linear transformation

T : [−1, 1]→ [a, b], where u(−1) = a and u(1) = b.

If u = αx+ β then

a = −α+ β, b = α+ β

and u = b−a
2 x+ b+a

2 .

Example 4.10. Let’s say that you would like to approximate the function
f(x) = ex on the interval [−1, 3] using a 5th-degree Chebyshev interpolation.

Using T0(x), T1(x), ..., and T4(x) seen previously in Example 4.9,

T5(x) = 16x5 − 20x3 + 5x and T6(x) = 32x6 − 48x4 + 18x2 − 1.

T6(x) has roots

xk = cos

(
(2k + 1)π

12

)
, k = 0, 1, . . . , 5.
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Roots on the interval [−1, 3] can be mapped to the interval [−1, 1] using the
linear transformation u = 2x+ 1. Under this transformation, uk = 2xk + 1 and

ci = 2
6

∑n−1
i=0 e

uk−1

2 Ti(xk).

c0 =
2

4

3∑
i=0

f (ui)T0 (xi) ≈ 6.19656

c1 =
2

4

3∑
i=0

f (ui)T1 (xi) ≈ 8.6476

c2 =
2

4

3∑
i=0

f (ui)T2 (xi) ≈ 3.74551

c3 =
2

4

3∑
i=0

f (ui)T3 (xi) ≈ 1.15656

c4 =
2

4

3∑
i=0

f (ui)T4 (xi) ≈ 0.275639

c5 =
2

4

3∑
i=0

f (ui)T5 (xi) ≈ 0.000539728

Using these coefficients,

p(x) =
1

2
c0T0(u) +

5∑
i=1

ciTi(u)

= 0.0002699x5 + 0.1365x4 + 0.02835x3 + 0.4149x2 + 1.128x+ 1.019

It may seem obscure to be able to choose interpolation points at the Cheby-
shev nodes; however, Chebyshev interpolation is used extensively in numerical
analysis, particularly in creating filters, due to it’s ability to minimize Runge’s
phenomenon.

Runge’s phenomenon occurs with polynomial interpolants of high degree
over a set of equally spaced interpolation points. Runge’s phenomenon is when
the interpolant matches the desired function or data extremely well in the mid-
dle of the interpolation interval and begins to oscillate at the edges of the
interval. This phenomena should be considered when deciding to increase the
degree of your polynomial interpolant. An example of Runge’s phenomenon can
be seen in Figure 4.7.
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FIGURE 4.6
Example of Chebyshev interpolation of f(x) = ex on [−1, 3].
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FIGURE 4.7
Example of Runge’s phenomenon with f(x) = 1

1+25x2 on [−1, 1] with 5th and

9th degree interpolants.
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4.5 Hermite Interpolation

Thus far we have been focusing on creating an interpolating function based just
on interpolating points. Hermite interpolation constructs a interpolating
function that involves both function and derivative values.

Like Lagrange interpolation, a hermite interpolating function, h(x), requires
that, for an unknown function f(x), h(x) matches f(x) and its first p derivatives
on a set of n+ 1 data points.
That is,

h(xi) = f(xi), for 0 ≤ i ≤ n
h(k)(xi) = f (k)(xi), for 0 ≤ i ≤ n, 0 ≤ k ≤ p.

By definition h(x) has (n+ 1)(p+ 1) constraints imposed on it and thus we
will be seeking a polynomial of (n+ 1)(p+ 1)− 1 degree to satisfy all of these
requirements.

We begin with an example before making general statements around hermite
polynomials.

Example 4.11. Given f(0) = 1, f(1) = 6, f ′(0) = 2, f ′(1) = 12, f ′′(0) = 0,
and f ′′(1) = 24. From this given information, we find the hermite interpolating
function

h(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4 + a5x

5.

Notice that

h(0) = a0 = 1

h′(0) = a1 = 2

h′′(0) = 2a2 = 0

h(1) = a0 + a1 + a2 + a3 + a4 + a5 = 6

h′(1) = a1 + 2a2 + 3a3 + 4a4 + 5a5 = 12

h′′(1) = 2a2 + 6a3 + 12a4 + 20a5 = 24.

This system can be written in the form Ax = b,

1 0 0 0 0 0

0 1 0 0 0 0

0 0 2 0 0 0

1 1 1 1 1 1

0 1 2 3 4 5

0 0 2 6 12 20





a0

a1

a2

a3

a4

a5


=



1

2

0

6

12

24


.
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If A is the coefficient matrix from the above system, then we can again solve
for a0, a1, . . . , a5 by determining (AAT )−1AT b,

h(x) = 1 + 2x+ 2x3 + x4.

If we wish to concern ourselves with exploring only those Hermite in-
terpolating functions that satisfy conditions up through the first derivative,
h(xi) = f(xi) and h′(xi) = f ′(xi), we can write such Hermite interpolating
functions in terms of Newton’s divided difference if the known points (xi, f

′(xi))
are treated as interpolating points as well.

TABLE 4.2
Divided Difference Incorporating the First Derivative.

z f [z] f [zi,zi+1] f [zi,zi+1,zi+2] f [zi,zi+1,zi+2,zi+3]
z0 = x0 = 0 1

f [z0,z1] = f ′[x0] = 2
z1 = 0 1

f [z0,z1,z2] = 4

f [z1,z2] = f [z1]−f [z2]
z1−z2 = 6

f [z0,z1,z2,z3] = 2
z2 = x1 = 1 6

f [z1,z2,z3] = 6
f [z2,z3] = f ′[x1] = 12

z3 = 1 6

Example 4.12. Revisiting Example 4.5 and using Table 4.2 to provide a Her-
mite interpolating polynomial that matches both the function values and first
derivative values, h(x) is a third degree polynomial.

h(z) = a0 + (z − z0)f [z0,z1] + (z − z0)(z − z1)f [z0,z1,z2]

+ (z − z0)(z − z1)(z − z2)f [z0,z1,z2,z3]

= 0 + 2(z − 0) + 4(z − 0)(z − 0) + 2(z − 0)(z − 0)(z − 1)

= 2z3 + 2z2 + 2z

4.6 Least Squares Regression

This section focuses on determining interpolating polynomials satisfying

f̂n(x) =
n∑
i=0

aix
n, f̂(xj) = f(xj), 0 ≤ j ≤ n.
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that minimize the sum of squared errors, SSE =
∑n
j=0(f̂(xj) − f(xj))

2. The
above system can be written as a system of linear equations,

1 x0 . . . xn0

1 x1 . . . xn1
...

...
...

...

1 xn . . . xnn




a0

a1

...

an

 =


f(x0)

f(x1)
...

f(xn)

 .

In order for this system to have a unique solution, the Vandermonde deter-
minant ∣∣∣∣∣∣∣∣∣∣∣

1 x0 . . . xn0

1 x1 . . . xn1
...

...
...

...

1 xn . . . xnn

∣∣∣∣∣∣∣∣∣∣∣
=
∏
i>j

(xi − xj) 6= 0.

Additionally, one might wish to fit an mth degree interpolating polynomial
to n+ 1 given interpolating points, where m < n+ 1.

In this case, the matrix

A =


1 x0 . . . xm0

1 x1 . . . xm1
...

...
...

...

1 xn . . . xmn


is not square, so is definitely not invertible. Fortunately, the system is still of
the form Ax = b, where

x =


a0

a1

...

am

 and b =


f(x0)

f(x1)
...

f(xn)

 .

Note that ATA is an m×m matrix and ATAx = AT b. Thus, we can solve
for the coefficient vector

x = (ATA)−1AT b.

So how do we know that this solution for x is the solution that minimizes
the SSE?

Recall that the entries of b are the values on the interpolation function. The
residual errors,

~r = projAxb.
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FIGURE 4.8
An interpolant and the residuals.

A visualization of this can be seen in Figure 4.8.
Recall from Linear Algebra that if Ax = b, then b is in the range of the

linear transformation Ax, which also means that b is in the columnspace of A.
Additionally, ~r is orthogonal to the columnspace of A.

~r = b−Ax
AT · ~r = AT (b−Ax) = 0.

Solving for x, we see that

AT b−ATAx = 0,

x = (ATA)−1AT b.

Example 4.13 shows us how to apply the least squares regression technique
in a real world example.

Example 4.13. Some might claim that the number of total COVID 19 cases
in North Carolina in the months from July 2020 to December 2020 grew expo-
nentially.

In this example, we begin by using least squares regression to fit a quadratic
interpolating polynomial to the data in Table 4.3 and will conclude with a discus-
sion of how to fit exponential interpolating functions using similar techniques.
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TABLE 4.3
COVID 19 total cases in NC in 2020.

Date July 1 Aug. 1 Sept. 1 Oct. 1 Nov. 1 Dec 1
Total Infections 65397 124835 172293 212909 276692 367000

The coefficients of a least squares quadratic interpolating function f(x) =
a0 + a1x+ a2x

2 to fit the data in Table 4.3 can be found by solving


a0

a1

a2

 =


6 21 91

21 91 441

91 441 2275


−1

1 1 1 1 1 1

1 2 3 4 5 6

1 4 9 16 25 36





65397

124835

172293

212909

276692

367000


=
(

39375.8 29806.7 3922.32
)
.

If instead, one wishes to fit the least squares interpolating function

g(x) = ea0+a1x

to the given data. This is equivalent to fitting the interpolating function

ln(g(x)) = a0 + a1x, where

(
a0

a1

)
= (ATA)−1AT ln



65397

124835

172293

212909

276692

367000



=

(
13
15 − 1

5

− 1
5

2
35

)(
1 1 1 1 1 1

1 2 3 4 5 6

)
ln



65397

124835

172293

212909

276692

367000


(
a0

a1

)
=

(
10.9597

0.320681

)
.

So ln(g(x)) = 10.9597 + 0.320681x and g(x) = e10.9597+0.320681x.
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The two interpolants determined in this example can be seen in Figure 4.9.

e
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FIGURE 4.9
Interpolating function for the data in Example 4.13.

There are several ways to think about the error of an interpolant, although
the goal of least square regression is to minimize the sum of the squared errors
SSE,

SSE = (l2 error)2 =

n∑
j=o

(f̂(xj)− f(xj))
2.

Additional errors to consider are the absolute error, which is equal to

n∑
j=o

|f̂(xj)− f(xj)|,

and the relative l2 error, which is

∑n
j=o

√
(f̂(xj)− f(xj))2∑n
j=o

√
f(xj)2

.

Example 4.14. For the interpolants in Example 4.13, an error analysis can
be see in Table 4.4.
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TABLE 4.4
Errors for Example 4.13.

39375.8 + 29806.7x+ 3922.32x2 e10.96+0.32x

Absolute error 51867.1 92759.8
l2 error 21311.5 41785.6

Relative l2 error 0.0385 0.0755

4.7 CASE STUDY: Chebyshev Polynomials and
Cryptography

There are many techniques for sending an encrypted code and decrypting that
code. In this case study, we see a few different techniques related to linear
algebra and discuss their qualities.

If Special Agents Rahasa and Siri agree to use Hamming encryption, Rahasa
would then place her message into a 2 × n matrix. Rahasa begins by testing
their communications with the message, “This is a test”, which translates to
the matrix

M =

(
20 9 1 5 20

8 19 20 19 20

)
.

Notice that each letter is assigned its position in the alphabet, and if Rahasa
has an odd number of letters in her message, then she just replicates the last
letter. Rahasa then creates a 2 × 2 encryption matrix, A, which is invertible
mod 29.

A =

(
1 2

3 4

)

A−1 mod 29 ≡
(

27 1

16 14

)
,

and sends the encryption matrix A as well as the encrypted message affiliated
with

M̃ = A.M mod 29 ≡
(

7 18 12 14 2

5 16 25 4 24

)
.

“GERPLYNDBX.”
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Given A and the encrypted message, Siri can recreate M̃ and determine
M ≡ A−1M̃ mod 29 and the original matrix.

Unfortunately, Rahasa’s message might be intercepted by a third party,
special agent Gizli. In order to prevent this, Rahasa and Siri have decided to
use a more secure method of transmitting their message, using Public Key
Cryptography.

Public Key Cryptography allows users who do not share any secret key to
securely communicate over a public channel.

There are several different public key algorithms. In this case study, we ex-
plore a public key algorithm based on chaos theory and Chebyshev polynomials.

In addition to being orthogonal polynomials, Chebyshev polynomials have
the remarkable property that

Tr(Ts(x)) = Trs(x) = Ts(Tr(x)), for all x.

For any given prime number, p, it is still true that

Tr(Ts(x)) mod p ≡ Trs(x) mod p ≡ Ts(Tr(x)) mod p, for all x.

Additionally, for any value k and x ∈ [−1, 1],

Tk(x) = cos(k · arccos(x)).

Rahasa may wish to use this fact or the recursive nature of Chebyshev
polynomials to generate values for large Chebyshev polynomial values.

Recall that Tn+1 = 2xTn(x)− Tn−1(x), thus

(
T1

T2

)
=

(
0 1

−1 2x

)(
T0

T1

)
(

Tn

Tn+1

)
=

(
0 1

−1 2x

)(
Tn−1

Tn

)

and more generally,(
Tn

Tn+1

)
=

(
0 1

−1 2x

)n(
T0

T1

)
.

To begin with, Rahasa generates a large prime number s and an integer
x ∈ [−1, 1]. For this exercise, Rahasa chooses s = 2731 and x = .065. Rahasa’s
public key code is

(x, Ts(x)) = (.065, T2731(.065)) = (.065, − 0.990181).



Interpolation 145

Siri receives this information and chooses another prime number r = 1951 and
calculates

Tr(x) = T1951(.065) = −0.946032,

which is then in turn shared with Siri. Now both Rahasa and Siri can calculate
Trs(x),

Trs(x) = T1951(−0.990181) = T2731(−0.946032) = 0.950496,

even though Rahasa does not know r and Siri does not know s.
From here, Siri would like to determine s with the knowledge that

Ts(x) = cos(s · arccos(x)) = −0.990181 and arccos(x) = 1.50575.

Additionally, Siri knows that

Ts(Tr(x)) = cos(s · arccos(Tr(x)) = 0.950496 with arccos(Tr(x)) = 2.81156.

Thus the possible values for s are

s =

{±arccos(Ts(x))

arccos(x)
+

2πk

arccos(x)

∣∣∣∣ k ∈ Z
}

≈ {±1.99325 + 2πk · 0.664121| k ∈ Z}.

And,

s =

{±arccos(Trs(x))

arccos(Tr(x))
+

2πj

arccos(Tr(x))

∣∣∣∣ j ∈ Z
}

≈ {±0.112382 + 2πj · 0.355674| j ∈ Z}.

Then Siri must determine prime numbers u1 and u2 such that

1.99325 + 2πk1 · 0.664121 = u1 and − 1.99325 + 2πk2 · 0.664121 = u2

0.112381 + 2πj1 · 0.355675 = u1 and − 0.112381 + 2πj2 · 0.355675 = u2.

With a quick search, Siri knows that there must be integers k1 and j2 such
that

1.99325 + 2πk1 · 0.664121 = −0.112381 + 2πj2 · 0.355675 is prime,

determining that k1 = 654 and s = 2731.
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Then if Rahasa sends Siri the entire message,(
51167940 941841 9 49485 51167940

522216 39590091 51167940 39590091 51167940

)
.

Rahasa could find the Chebyshev polynomial T2731(x) or T5(x) =
T2731 mod 5(x).

T5(x) = 16x5 − 20x3 + 5x

and solve T5(x) = M for each encrypted number M in the message. For exam-
ple,

16x5 − 20x3 + 5x = 51167940, when x ≈ 20.

Python and R code related to this case study can be found at Github links
26 and 29.

4.8 CASE STUDY: Racial Disparities in Marijuana
Arrests

According to ACLU, blacks are 3.6 more likely to be arrested for Marijuana
possession than whites in America despite similar usage rates [1]. Since the mid
1980s the United States has put in place aggressive law enforcement to tackle
the war on drugs. The United States incarcerates more people than any other
nation in the world, largely due to drug possession and usage. Unfortunately,
this mass incarceration program, lead by misguided and harsh laws have lead
to a systemic problem targeting people of color in America.

We begin by creating a Lagrange interpolation function to fit the Black
Arrest Rates as a function of time using the data from Table 4.5. We will
assume that year 2010 is year 1.

TABLE 4.5
Black and White Marijuana Arrest Rates per 100K (2010–2018)[1].

Year Marijuana Possession Black Arrest Rate White Arrest Rate
Arrest Rate

2010 250.52 659.06 199.19
2011 229.69 624.43 178.43
2012 217.79 601.68 168.75
2013 253.51 625.68 212.55
2014 199.40 552.13 155.80
2015 174.06 459.89 138.90
2016 179.99 477.64 143.42
2017 207.44 560.08 160.60
2018 203.88 567.51 156.06
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Matrices, V ∗, V0, V1, . . . , and V8 are created.

V ∗ =



1 1 1 1 1 1 1 1 1

1 2 4 8 16 32 64 128 256

1 3 9 27 81 243 729 2187 6561

1 4 16 64 256 1024 4096 16384 65536

1 5 25 125 625 3125 15625 78125 390625

1 6 36 216 1296 7776 46656 279936 1679616

1 7 49 343 2401 16807 117649 823543 5764801

1 8 64 512 4096 32768 262144 2097152 16777216

1 9 81 729 6561 59049 531441 4782969 43046721



V0 =



1 x x2 x3 x4 x5 x6 x7 x8

1 2 4 8 16 32 64 128 256

1 3 9 27 81 243 729 2187 6561

1 4 16 64 256 1024 4096 16384 65536

1 5 25 125 625 3125 15625 78125 390625

1 6 36 216 1296 7776 46656 279936 1679616

1 7 49 343 2401 16807 117649 823543 5764801

1 8 64 512 4096 32768 262144 2097152 16777216

1 9 81 729 6561 59049 531441 4782969 43046721


Recall that Vi is created by removing the i+ 1st row of V ∗ and adding the

powers of x as the first row.

P (x) =

n∑
j=0

(−1)jyj
|Vj |
|V ∗|

= −0.00425025x8 + 0.257217x7 − 6.03801x6 + 72.9773x5 − 497.339x4

+ 1944.47x3 − 4213.56x2 + 4541.35x− 1183.05.

Perhaps we wish to integrate the Lagrange interpolant that we just created
into the model, but we want to minimize Runge’s phenomenon. Let’s create a
sixth-degree Chebyshev interpolant to this data using the function P (x), the
Lagrange interpolant, as the function.
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We first have to use a linear transformation to map the domain [1, 9] to
[−1, 1],

u = 4x+ 5.

Recall that

Tn(x) =

(
0 1

−1 2x

)n (
1 x

)
.

The roots of T7(x) = 128x8 − 256x6 + 160x4 − 32x2 + 1 are

xk = cos

(
(2k + 1)π

16

)
,k = 0, 1, . . . , 7,

uk =
xk − 5

4
, k = 0, 1, . . . , 7,

c0 =
1

8

6∑
i=0

P (ui) · T0(xi) ≈ 583.06,

ck =
2

8

6∑
i=0

P (ui) · Tk(xi), k = 1, 2, . . . , 7.

{c1, c2, . . . , c7} = {−66.62, 49.51, 25.94, 2.034, −27.85, −18.711, 22.30}.

p(x) =

7∑
i=0

ciTi

(
x− 5

4

)
= 643.905− 43.277x+ 10.938x2 + 8.1211x3 − 4.8833x4 + 0.7772x5

− 0.0383x6

What questions would you start to ask in order to determine racial inequity
related to marijuana arrests?

Figure 4.11 shows the yearly black arrest rates centered with bands of width
3 standard deviations as well as the yearly white arrest rates centered with
bands of width 3 standard deviations relative to that data set. This shows
that the two data set are extremely far from one another. One might consider
following up this case study with a statistical hypothesis test.

Sample Python and R code for this case study can be found at Github links
27 and 30.
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FIGURE 4.10
Lagrange interpolant, P (x), and Chebyshev interpolant, p(x), fitted to the data
from Table 4.5.
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4.9 CASE STUDY: Interpolation in Higher Education
Data

There are many issues that institutions of higher education face related to
diversity, equity, and inclusion. Higher education is a key pathway to social mo-
bility. Unfortunately, racial and ethnic disparities still exist in higher education
enrollment and attainment [33].

In this study, we take a closer look at how success in higher education can
be related to tuition and mentorship.

The data found in Table 4.6 is a subset of data provided by the American
Council on Higher Education’s Report focusing on Race and Ethnicity in Higher
Education [18].

TABLE 4.6
Success Indicators in Higher Education by Race.

x1 x2 x3 y
Race and 12th Grade Percent Full time Percent
Ethnicity Math Proficiency enrolled faculty graduating

Asian 37.5 57.21 9.5 30.7
Black or African American 6.83 36.33 5.7 15.3

Hispanic or Latino 11.25 38.32 4.8 12.2
White 28.21 41.86 72.6 23.75

In this study, we will look at how factors from Table 4.6 can be used to
predict graduation rate and future success.

Let

A =


1 37.5 57.21 9.5

1 6.83 36.33 5.7

1 11.25 38.32 4.8

1 28.21 41.86 72.6



(ATA)−1AT


30.7

15.3

12.16

23.75

 =


−131.767

−2.59432

4.44338

0.588323



and

̂gradrate = −131.767− 2.59432x1 + 4.44338x2 + 0.588323x3

SSE = 9.41̇0−23.
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Graduation is not always the only measure of success. A measure of success
after graduation may take into account debt and the ability to pursue a career
that gives a student the ability to pay back the debt from achieving their degree.

TABLE 4.7
Data related to borrowing for college.

x4 y2

Percent borrowing Ratio of Amount Still
to achieve degree Owed to Amount Borrowed

6.6 45.6
12 105.5
15 69.7

58.5 53.5

We wish to create a 3rd degree Hermitian interpolant, h(x), using the percent
borrowed to predict the ratio still owed to the amount borrowed, but we do not
know any information about h′(x).

One strategy is to estimate derivatives with slopes of secant lines between
consecutive points. This strategy does make some assumptions and does a better
job when consecutive points are close together. We will also assume that the
derivative remains the same for the last two data points.

TABLE 4.8
Estimated h′(x).

x4 Approximate h′(x4)

6.6 105.5−45.6
12−6.6 = 11.0926

12 69.7−105.5
15−12 = −11.9333

15 53.5−69.7
58.5−15 = −0.372414

58.5

Here we employ the divided difference method.

f [z0,z1,z2,z3] =
0.248621 + 2.7411817

58.5− 6.6
.
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TABLE 4.9
Divided difference table.

z f [z] f [zi,zi+1] f [zi,zi+1,zi+2]
z0 = 6.6 45.6

f [z0,z1] = 11.0926
z1 = 12 105.5

f [z0,z1,z2] = −11.9333−11.0926
15−6.6

= −2.7411817
f [z1,z2] = −11.9333

z2 = 15 69.7

f [z1,z2,z3] = −0.372414+11.9333
58.5−12

= 0.248621
f [z2,z3] = −0.372414

z3 = 58.5 53.5

Then,

h(x) = 45.6 + 11.0926(x− 6.6)− 2.7412(x− 6.6)(x− 12)

+ 0.0576(x− 6.6)(x− 12)(x− 15)

= 0.0576x3 − 4.67656x2 + 82.7112x− 313.143

This small data set found in Table 4.10, was constructed using five east coast
schools identified as top institutions awarding degrees to minority students [22]
and seven additional east coast schools chosen at random.

The variables included in Table 4.10 are in state tuition, total enrollment,
minority enrollment, and graduation rates for the white and black (nonhispanic)
populations at each of the institutions.

We begin by exploring models that use the tuition and percent of enrolled
minority students to predict the graduation rate of black students at an insti-
tution, using the data from Table 4.10.

Using a least squares regression model, with ŷ = graduation rate,

ŷ = 0.64419 + 1.997644 · 10−6(tuition)

− 0.036985(% of enrolled minority students).

We can also normalize this data and use principal component analysis to
see which schools in Table 4.10 are similar. Python and R code for this case
study can be found at Github links 28 and 31.
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TABLE 4.10
University and College Diversity Data.

College InState Total Total Graduation Rate
Tuition Enrollment Minority for Black Students

in 2020
1 Carnegie Mellon 69883 12587 3392 80
2 Clemson 25802 21857 2849 63.4
3 Florida State 17332 41226 12238 72.5
4 James Madison 22108 20855 3574 74.1
5 High Point 49248 4399 668 74.3
6 New England College 52136 2399 638 19.2
7 Old Dominion 22492 24932 10059 53.14
8 Providence College 65090 4533 652 84.8
9 Rutgers 27680 48378 21656 79.86
10 U. of CT 28604 26541 6255 71.05
11 U. of Penn 71200 24806 7805 94.22
12 William and Mary 35636 8437 2135 88.18

4.10 Exercises

1. Table 4.11 shows some racial demographics related to Covid-19
deaths, as of February 2021, by state.

a. Use least squares regression to fit a 4th degree polynomial to the
data represented by % of the population that is white versus the
% of cases from the white population.

b. Determine the SSE related to the model in part a.

c. Relative error can be a better expression of error relate to the
size of the data. The relative l2 error is√∑

(y − ŷ)2√∑
y2

.

Determine the relative l2 error for the model in part a.

TABLE 4.11
Percent of Covid-19 cases by race.

State % of Population % of Cases that are % of Population % of Cases that are
that is white from the white that is black from the black

population population
CA .36 .20 .05 .04
FL .53 .40 .15 .15
PA .80 .82 .11 .14
TX .41 .36 .12 .19
WA .48 .68 .04 .06
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2. Use Table 4.11 and Vandermonde determinants to create a 4th de-
gree Lagrange interpolation polynomial that matches the points rep-
resented by % of the population that is black versus the % of cases
from the black population.

3. Given the data in Table 4.11, and an additional data point {0, 0}, use
the Vandermonde determinants to create a 5th degree Lagrange in-
terpolation polynomial that matches the points described in Problem
2.

4. Determine the 4th- and 5th-Chebyshev polynomials of the first kind
and show that they are orthogonal under the inner product defined
in this chapter for the set of Chebyshev polynomials.

5. The nth-degree Chebyshev polynomial of the second kind is defined
as the determinant of n× n matrix of the form

x 1 0 . . . . . . . . . 0

1 x 1 0 . . . . . . 0

0 1 x 1 0 . . . 0
...

. . .
. . .

. . .
...

...
...

0 0 . . . 0 1 x 1

0 0 . . . . . . 0 1 x


.

Determine the 3rd- and 4th-degree Chebyshev polynomials of the sec-
ond kind and determine if they are orthogonal under the inner prod-
uct defined in this chapter for the set of Chebyshev polynomials.

6. Show that Hermitian polynomials H2(x) and H3(x) are orthogonal
functions.

7. Find the LU-decomposition for
1 1 2

1 2 5

1 −1 3

 .

8. Table 4.3 shows data for the growth of COVID 19 over a period of
months,

a. Create the Vandermonde matrix with the data from Table 4.3.

b. Find the LU-decomposition of the Vandermonde matrix in part
a.

c. Find f [x0], f [x0, x1], f [x0, x1, x2], and f [x0, x1, x2, x3] using
the LU-decomposition from part b.
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d. Use the divided differences from part c. to find a fifth degree
Newton’s interpolation polynomial to fit the data.

9. In addition to the data presented in Table 4.3, the instantaneous
growth rate is given in Table 4.12. Use this information to construct
a Hermite interpolant that matches both the data from Table 4.3 and
Table 4.12.

TABLE 4.12
Growth rate of COVID 19 total cases in NC in 2020.

Date July 1 Aug. 1 Sept. 1 Oct. 1 Nov. 1 Dec 1
Growth rate .9 .4 .25 .3 .35 .5

10. One in 7 women and 1 in 25 men have been injured by an intimate
partner [24]. According to Evans et al. [10], with personal mobility
limited by COVID-19 stay at home orders, advocates expressed con-
cern about a potential increase in intimate partner violence (IPV);
however, call centers experienced up to a 50% decrease in calls in some
regions [10]. In this problem, we investigate the effects of COVID-19
on reported cases of IPV.

TABLE 4.13
Number of national contacts, calls, chats, and emails from
concerned parties, in the first half of each year 2017–2020
(National Domestic Violence Hotline [23]).

Year 2016 2017 2018 2019 2020
National contacts 124712 106276 98954 156429 152415

a. Create a least squares third degree polynomial interpolant for
the data provided in Table 4.13.

b. Table 4.14 shows the rate of change of calls to the National Do-
mestic Hotline from 2017–2020. Use this information together
with the data in Table 4.14 to create a Hermitian polynomial.

TABLE 4.14
Rate of change of calls to the National
Domestic Hotline from 2017–2020.

Year 2017 2018 2019 2020
Percent increase -.2 -.1 .6 -.1

c. Use your polynomial from part b. to estimate the number of calls to
the National Domestic Hotline midway through the year in 2021.
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d. While making an estimate within the domain of the given data is
called interpolation, making estimates outside of the domain of the
given data is called extrapolation. Use the interpolant from part b.
to estimate the number of calls in 2022.

e. Discuss what issues can arise from estimation through extrapolation.
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Optimization and Learning Techniques for
Regression

In this chapter, we look at algorithms that combine topics that we have touched
on in previous chapters with machine learning. A common goal of many of these
algorithms is the importance of optimizing, either minimizing or maximizing,
a chosen function. These ideas require some basic knowledge of probability
theory, differentiation, and integration, and thus we start with an overview of
these topics.

5.1 Basics of Probability Theory

A probability space is defined by a sample space, S, a set of events, E, and
a probability measure P : E → [0,1] where P (S) = 1.

A random variable, X, is a function on the sample space. A discrete
random variable is a random variable whose sample space is countable, finite,
or infinite. A continuous random variable is one in which the sample space
is uncountable.

If X is a discrete random variable,

P (X) = P (X = x)

is called a probability distribution function.
For a discrete random variable,X, the cumulative distribution function,

D(x) = P (X ≤ xk) =
k∑
i=1

P (X = xi),

where the sample space S = {x1,x2, . . . , xk, . . . , xn}.
The expected value, or mean, of a discrete random variable, X,

E(X) =
n∑
i=1

xi · P (X = xi),
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and the variance of a discrete random variable,

V ar(X) = E(X2)− (E(X))2 =
n∑
i=1

x2
i · P (X = xi)−

(
n∑
i=1

xi · P (X = xi)

)2

.

Example 5.1. Consider an experiment where a fair coin is tossed exactly 10
times and the random variable, X, the number of heads, is recorded.

The sample space S = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} has a finite number
of elements and thus this is an example of a finite probability space.

The random variable, X, in this example is a discrete random variable and
the probability distribution function is an example of a Binomial Distribu-
tion.

0 2 4 6 8 10
# of Heads

0.05

0.10

0.15

0.20

0.25

probability

FIGURE 5.1
Binomial Distribution representing the number of heads in 10 flips of a fair coin.

The binomial distribution representing the probability that P (X = x), where
x is the number of heads, is shown in Figure 5.1.

In general, if a random variable, x, has a binomial probability distribution,
denoted x ∼ Bi(n,p) then

P (X = x) =

{(
n
x

)
px(1− p)n−x, if x ∈ {1, 2, . . . , n},

0, otherwise,

E(x) = np,

V ar(x) = np(1− p),

where p represents the probability of success in the experiment and n represents
the number of trials of the experiment.

Another discrete probability distribution of interest is the Poisson Distri-
bution.
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The Poisson distribution is a special type of Binomial Distribution that
focuses on the average time between successes.

If the random variable X is the number of successes in a given time period
and if λ is the average time between successes then X has a Poisson distribution,
X ∼ Pois(λ), with E(X) = λ and V ar(X) = λ,

P (X = x) =
λxe−λ

x!
.

Example 5.2. Acme industries just released a new website. In the first day
after the release, they see that they are averaging 10 hits on the site per hour.
Using this information, and assuming that the average is λ = 10 hits on the
site per hour, the probability that on the next day they would experience 15 hits
in the first hour is

P (X = 10 hits) =
1015

15!
e−10 ≈ 0.03472.

and the probability that they will have more than 15 hits in the first hour is

P (X > 15) = 1− P (X ≤ 15) =
15∑
i=0

10i

i!
e−10 ≈ 0.04874.
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FIGURE 5.2
Poisson Distribution with λ = 10.

When you compare the shape of the curve in Figures 5.1 and 5.2, you might
notice that they are very similar.
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If in fact we let λ = np,

limn→∞P (X = k) = limn→∞

(
n

k

)
pk(1− p)n−k

= limn→∞
n!

(k!)(n− k)!

(
λ

n

)k (
1− λ

n

)n−k
=

(
λ

k!

)k
limn→∞

n!

nk(n− k)!

=

(
λ

k!

)k
ek

We will also be looking at problems that involve infinite probability
spaces and have continuous probability measures, called probability den-
sity functions.

If X is a continuous random variable with probability density function P (X)
then P (X) is the derivative of the cumulative distribution function, D(x), where

D(x) = P (X ≤ x) =

∫ x

−∞
P (t)dt.

The expected value of a continuous random variable, X,

E(X) =

∫ x

−∞
t · P (t)dt.

It is important to note that for discrete random variable, we focus on the
chance of X = x; however, if the random variable X is continuous we do not
discuss the event that X = x, since

∫ x
x
P (t) dt = 0.

A common continuous probability density functions is the Gaussian dis-
tribution with mean µ and variance σ2, N(µ,σ2).

If X is a random variable and X ∼ N(µ,σ2), then

P (X ≤ x) =

∫ x

−∞

1√
2πσ2

e
−(t−µ)2

2σ2 dt.

Another continuous distribution of interest is the Gamma distribution.
Figure 5.3 shows examples of each of these distributions.

Many times we will also be looking at how multiple random variables interact
and effect each others’ behavior.

If X and Y are two discrete random variables, the joint distribution of X
and Y , denoted fXY (x,y), is

fXY (x,y) = P (X = x ∩ Y = y).

If X and Y are continuous random variables, then

fXY (x,y) = P (X ≤ x ∩ Y ≤ y).
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FIGURE 5.3
(Left) Gaussian distribution with parameters µ = 4, σ2 = 1 and (Right) Gamma
distribution with parameters α = 2, β = 1.

One can also look at conditional probability distributions where we
explore the probability of a random variable Y occurring given that a random
variable X has occurred.

fY |X(y|x) = P (Y = y|X = x) =
P (Y = y ∩X = x)

P (X = x)

for discrete random variables or for continuous random variables,

fY |X(y|x) = P (Y ≤ y|X ≤ x) =
P (Y ≤ y ∩X ≤ x)

P (X ≤ x)
.

Two random variables, X and Y , are independent if

P (X = x ∩ Y = y) = P (X = x)P (Y = y)

and thus P (Y = y|X = x) = P (Y |y).

Example 5.3. If X is the random variable representing the number of heads
that occur in 8 tosses of a fair coin and Y is the random variable representing
the number of heads in 10 tosses of a fair coin.

P (Y = y|X = 4) =


1
4 , if y = 4,
1
2 , if y = 5,
1
4 , if y = 6.

Notice that P (Y = y) would be the same distribution as that for the random
variable represented in Example 5.1, which is not the same as P (Y = y|X = 4)
or P (Y = y|X = x) for any value of x = 0, 1, 2, . . . , 10.

A set of random variables is called independent and identical dis-
tributed (i.i.d.) if each of the random variables in the set has the same prob-
ability distribution and they are mutually independent.
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In general if X1, X2, ..., Xn are discrete random variables then the joint
probability distribution function

f(X1, X2, . . . , Xn) =
∑

x1, x2,..., xn

P (X1 = x1) · P (X2 = x2) · · ·P (Xn = xn),

and if X1, X2, . . . , Xn are continuous random variables then the joint probabil-
ity distribution function

f(X1, X2, . . . , Xn)

=

∫
x1, x2,..., xn

P (X1 = x1) · P (X2 = x2) · · ·P (Xn = xn)dX1dX2 . . . dXn.

Example 5.4. Suppose, in an experiment, a fair coin is flipped three times.
Define the random variable X as the random variable representing the number
of heads that occurred, and Y as the random variable representing the number
of heads in the first two tosses.

The variables in this example are dependent and are not identically dis-
tributed. f(X,Y ) can be seen in Table 5.1.

TABLE 5.1
Example of a discrete joint
probability distribution.

Y
0 1 2

0 1
2 0 0

X 1 1
2

1
2 0

2 0 1
2

1
2

3 0 0 1
2

Example 5.5. Given two i.i.d. random variables, X,Y ∼ N(µ,σ2). The joint
distribution

fXY (x,y) =
1

2πσ2
e−((x−µ)2+(y−µ)2)/2σ2

.

Theorem 13. If X1, X2,..., Xn are i.i.d. random variables with probability
distribution functions, fXi(xi) respectively, expected value, or mean, of Xi,
E(Xi) = µ and variance of Xi, V ar(Xi) = σ2 then their joint probability
distribution function

fX1...Xn(x1 . . . xn) = fX1
(x1) . . . fXn(xn),

E(X1 +X2 + · · ·+Xn) = nµ and

V ar(X1 +X2 + · · ·+Xn) = nσ2.
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Now that we have introduced the basics of probability theory, we are ready
to introduce you to some matrix calculus. Both probability theory and matrix
calculus will be applied in Chapters 5 and 7.

5.2 Introduction to Matrix Calculus

As we saw in the previous section, there are times in which integration must
be employed in order to determine the cumulative distribution function from
a probability density function. Additionally, since we are focusing on optimiza-
tion in this chapter, it is important to understand certain topics related to
differentiation with a focus toward how to apply these concept to matrices.

5.2.1 Matrix Differentiation

Given a scalar vector, X =


x1

x2

...

xn

 and function vector

Y =


f1(x1,x2, . . . ,xn)

f2(x1,x2, . . . ,xn)
...

fm(x1,x2, . . . ,xn)

 ,

the derivative of Y with respect to a scalar, xi, 1 ≤ i ≤ n, is

∂Y

∂xi
=

(
∂f1

∂xi
,
∂f2

∂xi
, . . . ,

∂fm
∂xi

)
and the derivative of Y with respect to X is a matrix

∂Y

∂X
=


∂f1
∂x1

∂f1
∂x2

. . . ∂f1
∂xn

∂f2
∂x1

∂f2
∂x2

. . . ∂f2
∂xn

...
. . .

. . .
...

∂fm
∂x1

∂fm
∂x2

. . . ∂fm
∂xn

 .

Given a transformation Y = Y (X), where X and Y are of the same dimension,
the Jacobian is

|J | = ∂Y

∂X
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Example 5.6. If Y (X) = a0 + a1X with Yi(xi) = xi, X = (x1, . . . , xn) and a0

and a1 are constants then

|J | =

∣∣∣∣∣∣∣∣∣∣∣

∂(a0+a1x1)
∂x1

0 . . . 0

0 ∂(a0+a1x2)
∂x2

0 . . .
...

. . .
. . .

...

0 0 . . . ∂(a0+a1xn)
∂xn

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

a1 0 . . . 0

0 a1 0 . . .
...

. . .
. . .

...

0 0 . . . a1

∣∣∣∣∣∣∣∣∣∣∣
= (a1)n.

Example 5.7. If Y =
(
r cos(θ) r sin(θ)

)
and X =

(
r θ

)
then

∂Y

∂r
= (cos(θ), sin(θ))

and

∂Y

∂X
=

(
cos(θ) −rsin(θ)

sin(θ) rcos(θ)

)
.

In addition,

|J | = (r cos(θ))2 + (r sin(θ))2 = r.

If instead, y = f(X) is a scalar function of matrix

X =


x11 x12 · · · x1n

x21 x22 · · · x2n

...
. . .

. . .
...

xm1 xm2 · · · xmn

, then

∇y =
∂y

∂X
=


∂y
∂x11

∂y
∂x12

· · · ∂y
∂x1n

∂y
∂x21

∂y
∂x22

· · · ∂y
∂x2n

...
. . .

. . .
...

∂y
∂xm1

∂y
∂xm2

· · · ∂y
∂xmn


=
∑
i,j

E
∂y

∂xij
,
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where Ei,j = 1 and all other entries are zero and ∇y is called the gradient
matrix.

Example 5.8. If y = tr(X) then ∇y = I. If X is a 2× 2 matrix and

y = |X| = x11x22 − x12x21

then

∇y =

(
x22 −x21

−x12 x11

)
.

The Hessian matrix, Hy, is a square matrix of second order partial deriva-
tives.

Hy =


∂2y
∂x2

11

∂2y
∂x11∂x12

· · · ∂2y
∂x11∂x1n

∂2y
∂x22∂x21

∂2y
∂x2

22
· · · ∂2y

∂x22∂x2n

...
. . .

. . .
...

∂2y
∂xnn∂xn1

∂2y
∂xnn∂xn2

· · · ∂2y
∂x2
nn

 .

Example 5.9. If f(x1,x2,x3) = x2
1 + x2

2 + x2
3 then

∇f =


2x1 0 0

0 2x2 0

0 0 2x3

 ,

and the Hessian matrix

Hf =


2 0 0

0 2 0

0 0 2

 .

Example 5.10. If X =

(
x11 x12

x21 x22

)
and y = e|X| = ex11x22−x12x21, then

∇y =

(
x22(ex11x22−x12x21) −x21(ex11x22−x12x21)

−x12(ex11x22−x12x21) x11(ex11x22−x12x21)

)
= y|X|X−T .
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The Hessian matrix

Hy =

(
x11x22(ex11x22−x12x21 + 1) −x21x22(ex11x22−x12x21)

−x11x12(ex11x22−x12x21) x11x22(ex11x22−x12x21 + 1)

)

= y|X|X−T +

∣∣∣∣∣ x11 0

0 x22

∣∣∣∣∣ I.

If y = f(X) is a scalar function where X = (x1, . . . , xn), we define the
ordinary differential as

df =

n∑
i=1

∂f

∂xi
dxi.

Whereas, if X = [xi,j ] is an m × n matrix, then we define the matrix
differential as

dX =


dx11 dx12 · · · dx1n

dx21 dx22 · · · dx2n

...
. . .

. . .
...

dxm1 dxm2 · · · dxmn

 .

The matrix differential satisfies the properties of a linear operator,

d(kX) = kdX, and d(X + Y ) = dX + dY,

where k is a scalar and additionally satisfies the chain rule

d(XY ) = (d(X))Y +Xd(Y ),

if X and Y are product conforming matrices.

Example 5.11. Let X be a 2× 2 matrix and define

f(X) = |X|, g(X) = X−1, and h(X) = e−X
2/2.

Then,

df = d|X| =
∑
i,j

∂|X|
∂xij

dxij

= x22dx11 − x21dx12 − x12dx21 + x11dx22

= tr(|X|X−1dX)
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Using the fact that X−1X = I, d(X−1)X +X−1dX = 0. Thus,

dg = d(X−1) = −X−1dX(X−1).

We also note that ln(h(X)) = −X2

2 . Thus dh(h(x))−1 = −XdX and

dh = d(e−X
2/2) = −XdXe−X2/2.

5.2.2 Matrix Integration

If A is a matrix of scalar functions and one wishes to integrate with respect to
a scalar variable, x, then ∫

A dx =

∫
aijdx,

however, if f(x) is a vector function then there are instances when one might
want to perform a transformation x = g(y), then∫

f(x)dx =

∫
f(g(y)) · |det(J(y))|dy,

where |det(J(y))| is the absolute value of determinant of the Jacobian associated
with the transformation g(y).

Example 5.12. Let A =

(
sin(t) cos(2t)

3t2 1

)
,

∫ π

0

A dt =

(
2 0

π3 π

)
.

If f(X) is a matrix function and we wish to perform a matrix transformation
Y = g(X), then ∫

f(X)dx =

∫
f(g−1(Y ))|det(J)|dY.

Another matrix of importance in the integration of matrices is the square
Vandermonde matrix.

The Vandermonde matrix plays an important role in signal processing and
distribution theory. In this chapter, this is applicable as we wish to find proba-
bility distributions and expected values for matrices.

For example, we may wish to determine the following integral, which is
related to finding the joint probability distribution of normal distributions with
mean µ and variance σ2, Xi ∼ N(µ,σ2), i = 1, 2, . . . , n,∫ ∞

−∞
. . .

∫ ∞
−∞

∫ ∞
−∞

e−(X1−µ)TΣ−1(X1−µ)/2 dX1dX2 . . . dXn,
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where

Σ =


σ2

1 cov(X1,X2) cov(X1,X3) . . . cov(X1,Xn)

cov(X1,X2) σ2
2 cov(X2,X3) . . . cov(X2,Xn)

...
. . .

. . .
. . .

...

cov(X1,Xn) cov(X2,Xn) . . . cov(Xn−1,Xn) σ2
n

 .

We may make the transformation yij = xi,j − µij , then the integral becomes∫ ∞
−∞

. . .

∫ ∞
−∞

∫ ∞
−∞

e−(Y )TΣ−1(Y )/2dY,

however, if you make the transformation Z = P−1Y where PTΣ−1P = I, then

|det(J)| = |det(P )| = |Σ|1/2

and the integral then becomes

∫ ∞
−∞

. . .

∫ ∞
−∞

∫ ∞
−∞

e−(PZ)TΣ−1(PZ)/2|Σ|1/2dZ

=

∫ ∞
−∞

. . .

∫ ∞
−∞

∫ ∞
−∞

e−Z
TZ/2|Σ|1/2dZ

= (2π)n
2/2|Σ|1/2.

Using the same transformation,

(2π)−mn/2|Σ|−1/2

∫
Rmn

Xe−(X−µ)TΣ−1(X−µ)/2dX = µ.

5.3 Maximum Likelihood Estimation

In Chapter 4, many interpolation techniques are presented including Least
Squares Regression. In this section, we take another look at least squares re-
gression through a probabilistic lens.

Unlike many of the techniques presented which look to minimize a loss
or cost function, the maximum likelihood technique for regression attempts
to determine the interpolant with the maximum probability (or likelihood) of
occurring.

We begin by assuming the interpolant is a linear function ŷ = a0 + a1x. We
wish to determine the likelihood of this function occurring, L(a0,a1),

L(a0, a1) =
n∏
i=1

p(yi| xi, a0, a1),
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where p(yi| xi, a0, a1) represents the conditional probability that Yi = yi given
that Xi = xi and the assumed interpolant ŷ = a0 + a1x.

Assume that Yi ∼ N(µ,s2) are identically independent random variables.
That is, for each yi, where i = 1, . . . , n,

p(yi| xi, a0, a1) =
1√

2πs2
e−

(yi−(a0+a1xi))
2

2s2 .

Recall that since Y1, Y2, . . . , Yn are i.i.d. random variables, their joint prob-
ability distribution, which we will call L(a0, a1) is

n∏
i=1

p(yi| xi, a0, a1).

Before we take the derivative of L(a0, a1), in order to find values for a0

and a1 that maximize L(a0, a1), it is important to note that it is often more
convenient to work with the log-likelihood function, LL(a0, a1), because you
then end up taking derivatives of sums of functions rather than products of
functions.

Recall that extremal values, maximums and minimums, can occur at critical
points, where the derivative of a function is equal to 0.

LL(a0, a1) = log

(
n∏
i=1

p(yi| xi, a0, a1)

)

=

n∑
i=1

log(p(yi| xi, a0, a1))

=

n∑
i=1

log

(
1√

2πs2
e−

(yi−(a0+a1xi))
2

2s2

)

= n log

(
1√

2πs2

)
− 1

2s2

n∑
i=1

(yi − (a0 + a1xi))
2

= −n log(2π)

2
− 2n log(s)− 1

2s2

n∑
i=1

(yi − (a0 + a1xi))
2.

Determining values, a0 and a1, that maximize LL(a0,a1) is equivalent to
determining values, a0 and a1, that maximize L(a0,a1) since log(x) is an in-
creasing function.

∂LL(a0,a1)

∂a1
= − 1

s2

n∑
i=1

xi(yi − (a0 + a1xi)) = 0



170 Linear Algebra With Machine Learning and Data

when

a1 =

∑n
i=1 xiyi∑n
i=1 xi

=

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
.

Similarly,

∂LL(a0,a1)

∂a0
= − 1

s2

n∑
i=1

(yi − (a0 + a1xi)) = 0

when

a0 =
1

n

n∑
i=1

yi −
a1

n

n∑
i=1

xi = ȳ − a1x̄.

In matrix form, (
a0

a1

)
= (XTX)−1XTY,

where

X =


1 x1

1 x2

...
...

1 xn

 and Y =


y1

y2

...

yn

 .

Example 5.13. Figure 5.4 shows five randomly generated interpolation points

x y

3.33144 15.4277

0.42681 −0.194758

1.10072 4.84892

1.91978 7.18721

2.29908 8.29164


with (x̄,ȳ) = (1.81557, 7.11213). We use maximum likelihood to determine that

a1 =

∑n
i=1(xi − x̄)(yi − ȳ)∑n

i=1(xi − x̄)2
= 5.0076

a0 = ȳ − a1x̄ = −1.9795
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FIGURE 5.4
Data from Example 5.13 together with the maximum likelihood function,
L(a0, a1) = −1.9795 + 5.0076x.

A Poisson regression model, or log-linear model assumes that the ran-
dom variables, Yi, are independent identically distributed Poisson random vari-
ables, Yi ∼ Poiss(λ).

Since λ > 0, we can determine log(λ). We will assume that

log(λ) = a0 + a1x.

p(yi|xi,a0,a1) =

n∏
i=1

e−λ
λyi

yi!

LL(a0,a1) = log

(
n∏
i=1

e−λ
λyi

yi!

)

=

n∑
i=1

−λ+ yi · log(λ)− log(yi!)

=

n∑
i=1

−e(a0+a1xi) + yi · (a0 + a1xi)− log(yi!).

Taking partial derivatives,

∂LL(a0,a1)

∂a0
=

n∑
i=1

−e(a0+a1xi) + yi = 0.
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Similarly,

∂LL(a0,a1)

∂a1
=

n∑
i=1

−xie(a0+a1xi) + xiyi.

In matrix form,

X =


1 x1

1 x2

...
...

1 xn

 , Y =



y1

y2

...

yn


, and A =

(
a0

a1

)
,

the gradient

∇LL(A) = XTY −XT eXA.

There is not an algebraic solution to
∂LL(a0,a1)

∂a0
= 0 and

∂LL(a0,a1)

∂a1
= 0.

The numeric technique called the Newton Raphson method can be used
to iteratively estimate the best choice for a0 and a1.
The Hessian matrix,

HLL(A) =


∂2LL

∂a2
0

∂2LL

∂a0∂a1

∂2LL

∂a1∂a0

∂2LL

∂a2
1



=

( ∑n
i=1 e

(a0+a1xi)
∑n
i=1 xie

(a0+a1xi)∑n
i=1 xie

(a0+a1xi)
∑n
i=1 x

2
i e

(a0+a1xi)

)

= XTWX,

where W is the diagonal matrix

W =


e(a0+a1x1) 0 0 . . . 0

0 e(a0+a1x2) 0 . . . 0
...

. . .
. . .

. . .
...

0 0 0 . . . e(a0+a1xn)

 .



Optimization and Learning Techniques for Regression 173

Using the Hessian matrix, the ith iterative estimate of A, A(i), is

A(i) = A(i−1) −HLL(A(i−1))−1∇LL(A(i−1)).

Example 5.14. Poisson regression is helpful in modeling counts of data. Walt
Disney World uses Big Data and Data Analytics to collect a vast amount of data
on its customers. In 2013, Disney released the Magic Band bracelet, which com-
municates with sensors spread throughout the parks, generating huge amounts
of data about the movements of each individual customer.

On five random days and at a random time during the day, the park collected
data on the number of guests that had arrived to ride the new roller coaster.
Table 5.2 shows that data.

In order to help with queue planning, the park wishes to predict how many
customers arrive at the ride per hour.

TABLE 5.2
Example of data related to number of customers
arriving at a ride per hour.

X(in hrs) Time 1 4 8.5 5 10
Y Visitors 110 500 1240 800 1570

x̄ = 324, ȳ = 1344

We begin with an initial guess for A, A(0) =

(
5

.25

)
.

Additionally,

∇LL(A) =

(
57.3015

−687.279

)

HLL(A) =

(
4162.7 33037.3

33037.3 290181

)
.

Then,

A(1) = A(0) −HLL(A(0))−1∇LL(A(0))

= {4.6623, 0.290816}.
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If this method is applied again A(2) = {3.89028, 0.38231}. Applying what we
learned to determine a Poisson regression model,

log(λ/T ) = a0 + a1(x)

log(λ)− log(T ) = a0 + a1(x)

Recall that the park wishes to predict how many customers arrive at the ride
in a 1 hour period. Then

log(λ)− log(1) = 3.89028 + .013821x.

Thus, on average, the number of customers that arrive at the ride per hour
is approximately

λ = 71.7071.

5.4 Gradient Descent Method

In Section 4.6, an interpolation technique, Least Squares Regression, is intro-
duced with a goal to determine an interpolating polynomial satisfying

f̂n(x) =
n∑
i=0

aix
n, f̂(xj) = f(xj), 0 ≤ j ≤ n,

that minimizes the sum of the squared error,

SSE =
n∑
j=0

(f̂(xj)− f(xj))
2.

In this section, an iterative method is presented that attempts to minimize
the sum of squared errors, SSE.

In previous sections of this chapter, we explore techniques that require that
interpolants match the given data points. The technique presented in this sec-
tion has more flexibility with the degree of the interpolating polynomials but
may not match the data points.

Matching the data points can be an important quality; however, there are
other behaviors of the data that are equally important to consider, such as
minimizing a given loss function, which in this case is the SSE.

In Figure 5.6, a loss function is pictured. The gradient (also called the rate
of change or first derivative) of the function is the rate at which the function is
changing. Notice that at point a, the function is decreasing, thus the gradient
is negative.
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FIGURE 5.5
A visualization of the sum of squared errors, SSE.

a

c

b

FIGURE 5.6
Visualization of the gradient of a loss function.

If the function is decreasing then the gradient is negative.

Similarly, notice that at point c in Figure 5.6, the function is changing in a
positive direction. Most importantly, the rate at which the function is changing
at a minimum (or maximum), the slope of the dashed line (on Figure 5.6), is
zero.

If the function is increasing then the gradient is positive.

A function reaches an optimum value (either a minimum or
maximum) when the gradient is zero.
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Thus, one can determine the values that minimize a function by calculating
the gradient of the function and finding the values, also called parameters,
that optimize the loss function.

If SSE is the loss function then we denote the gradient of SSE with respect
to the coefficient ai as

∂SSE

∂ai
.

If ŷ = ˆf(x) = a0 + a1x+ a2x
2 + . . . anx

n, then

SSE = (y − (a0 + a1x+ a2x
2 + . . . anx

n))2

∂SSE

∂a0
= −2(y − (a0 + a1x+ a2x

2 + . . . anx
n)) = −2(y − ŷ)

∂SSE

∂a1
= −2x(y − (a0 + a1x+ a2x

2 + . . . anx
n)) = −2x(y − ŷ)

...

∂SSE

∂a2
= −2xn(y − ŷ).

The Gradient Descent Algorithm consists of

1. Creating a interpolant, ŷ = f̂(x), using n interpolating points.

The coefficients, ai, 0 ≤ i ≤ n, that are determined are called the
weights in this algorithm. Begin by making a good guess for each of
the coefficients and choosing a loss function, such as SSE.

2. For each coefficient, ai, determine the gradient

∂SSE

∂ai
=

n∑
j=0

(yj − ŷj)(xj)i.

3. Adjust the weights taking into consideration a learning rate, r,

new ai = ai + r
∂SSE

∂ai
.

4. Repeat Steps 2-4 to update the coefficients and approach a minimum
SSE.

Example 5.15. In order to use the Gradient Descent method to fit a linear
function f̂(x) = a0 + a1x to the interpolation points

{(−1, 3), (0, − 4), (1, 5), (2, − 6)},
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we begin by choosing a random guess for the coefficients

a0 = 5, a1 = −.5.
The interpolant

ˆf(x) = 5− .5x has a SSE = 187.5.

yi ŷi = a0 + a1xi
∂SSE

∂a0

∂SSE

∂a1

3 5.5 5 -5
-4 5 18 0
5 4.5 -1 -1
-6 4 20 40

Total 42 36

If the learning rate is r = .01 then the new coefficients are

a0 = 5− .01 · 42 = 4.58 and a1 = −.5− .01 · 36 = −.86.

The new interpolant f̂(x) = 4.58− .86x has a SSE = 159.708.
Continuing in this fashion,

yi ŷi = a0 + a1xi
∂SSE

∂a0

∂SSE

∂a1

3 5.44 4.8 -4.88
-4 4.58 17.16 0
5 3.72 -2.56 -2.56
-6 2.86 17.72 35.44

Total 37.2 28

The new model becomes f̂(x) = 4.208− 1.14x, with an SSE = 139.47.
Figure 5.7 shows the interpolation data and the interpolating function through
this process. We can continue in this manner; however, you may notice that a
linear interpolant may not be the best choice for this data.

The next example extends this work, fitting a cubic interpolant to the given
interpolation points.

Example 5.16. The cubic interpolation function f̂(x) = a0 +a1x+a2x
2 +a3x

3

requires a random guess for

a0 = −4, a1 = 7, a2 = 7, and a3 = −4.
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-1.0 -0.5 0.5 1.0 1.5 2.0

-6

-4

-2

2

4

y = 5-.5x

y = 4.58-.86x

y = 4.208-1.14x

FIGURE 5.7
Example 5.15 data and linear interpolants for several iterations of gradient
descent.

yi f̂(xi)
∂SSE

∂a0

∂SSE

∂a1

∂SSE

∂a2

∂SSE

∂a3

3 0 -6 6 -6 6
-4 -4 0 0 0 0
5 6 2 2 2 2
-6 6 24 48 96 192

Total 20 56 92 200

We will continue to use a learning rate r = .01; however, another small
choice for r is also appropriate. With this choice for r, the updated interpolant
becomes

f̂(x) = −4.2 + 6.44x+ 6.08x2 − 6x3

with SSE = 154. The interpolation functions along with the interpolants can be
seen in Figure 5.8.

Gradient Descent methods can be written in terms of matrix system as well.
If the interpolation function is an nth degree polynomial

ŷ = a0 + a1x+ · · ·+ anx
n,



Optimization and Learning Techniques for Regression 179

-1.0 -0.5 0.5 1.0 1.5 2.0

-15

-10

-5

5
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y = -4.2+6.44x+6.08x2-6x3

y = -4+7x+7x2-4x3

FIGURE 5.8
Example 5.15 data and cubic interpolants for several iterations of gradient de-
scent.

then the SSE cost function can be written as

SSE = (XA− Y )T (XA− Y ), where

X =


1 x0 x2

0 . . . xn0

1 x1 x2
1 . . . xn1

...
. . .

. . .
. . .

...

1 xn x2
n . . . xnn

 , A =


a0

a1

...

an

 ,

and Y =


y0

y1

...

yn

 .

The gradients are
∂SSE

∂A
= XT (XA− Y ),

and if r is the learning rate then

A
(j+1)
i = A

(j)
i − r

∂SSE

∂ai
,

where A
(j)
i is the ith entry of the jth iteration of A.

Example 5.17. Revisiting Example 5.16, with interpolant

ŷ = a0 + a1x+ a2x
2 + a3x

3,
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and interpolation points {(−1, 3), (0, −4), (1, 5), (2, −6)},

X =


1 −1 1 −1

1 0 0 0

1 1 1 1

1 2 4 8

 , A(0) =
(
−4 7 7 −4

)
, and Y =


3

−4

5

−6

 .

then SSE = 154.



∂SSE

∂a0

∂SSE

∂a1

∂SSE

∂a2

∂SSE

∂a3


=


20

56

92

200

 .

Thus if the learning rate r = .01,

A(1) =
(
−4 7 7 −4

)
− .01


20

56

92

200

 =


−4.2

6.44

6.08

−6.

 .

As you can tell from Examples 5.15 and 5.16, the Gradient Descent method
can be computational expensive. That is, that for each iteration of the Gradient
Descent method, computations have to be made on each data point.

In traditional gradient descent methods, the gradient (or derivative) of the
loss function must be calculated for each interpolating point. This can be com-
putationally hard. For example, in Example 5.16, there are only six data points
with four partial derivatives in one iteration. After just four interactions, there
are almost 100 calculations. If a dataset contained 10,000 points and one wished
to use gradient descent to model the data with a cubic polynomials, each iter-
ation would take 40,000 calculations.

Stochastic Gradient Descent is one way to make computational im-
provements to these methods. When employing Stochastic Gradient Descent,
the gradient is calculated, on each iterative step, at a random point or small
random set of points called a mini-batch.

Additionally, keep in mind that depending on the loss function, the gradient
descent method is also not guaranteed to converge, so it is important to think
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carefully about both the learning rate, r, and the loss function that you are
using. Figure 5.9 shows both an example in which the method converges and
diverges.

0.51 0.52 0.53 0.54 0.55

-2.2500

-2.2495

-2.2490

-2.2485

-2.2480
-4 -3 -2 -1 1

-25

-20

-15

-10

-5

FIGURE 5.9
Examples of the gradient descent method converging (left) and diverging (right).

The gradient descent method is just one method of neural network. In the
next section, we explore the concepts of neural networks more broadly.

5.5 Introduction to Neural Networks

Neural networks are powerful tools in data science that focus on relationships
in data. It is interesting to note that neural networks are based on the systems
in the brain. In the brain, neurons receive information, or data, from other
neurons. This system of neurons is connected by axons, where some neurons
are more connected that other neurons to the network.

There are two general types of neural networks, unsupervised neural net-
works that try to predict an output given a set of input data and supervised
neural networks where both the input data and output data is know. In a
supervised neural network, the known output data can be used to determine
the accuracy of the neural network.

In an unsupervised neural network, a neuron can be viewed as receiving a set
of inputs, {x1, x2, . . . , xn}, to predict one output, y. Each input is associated
with a weighted connection between it and the output. We will represent the
matrix of weights as W . Data also naturally has bias or noise; we represent this
bias with the vector b.

With just inputs and one output, the neural network, in its simplest form
as it is visualized in Figure 5.10, is called a perceptron. The perceptron is
not a very interesting case of a neural network as we can accomplish the same
thing with the techniques provided in previous sections of this chapter, writing
y = WX, where X incorporates the inputs and the constant, bias, term.
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FIGURE 5.10
Visualization of a perceptron.

If W = {w1, w2, . . . , wn} are the weights, then we can think of this as a
linear combination of basis vectors, functions. For example, if h1(x) = 1 and
h2(x) = x,

ŷ = w1h1(x) + w2h2(x)

is a linear model. Similarly, if one wished to use a quadratic function as the
model, then the basis vectors would be

{1, x, x2}.
The concept of neural networks becomes much more interesting when there

is a hidden layer, S, adding to the complexity between the input and output
values.

Like the gradient descent method, we start with a random guess for W and
adjust the weights iteratively.

In addition, an activation function, can be incorporated such that

S = φ(WX), and y = WS,

W is an updated weight matrix found after S is determined. There are a variety
of activation techniques, which will be discussed in detail in Sections 5.5.2 and
5.5.3.

We begin with a simple example based on a binary decision, and then we
will see how this applies to the interpolation problem.

Example 5.18. Virginia is trying to decide whether to have a picnic with
friends this weekend. She have two factors that you are considering when making
this decision

x1 →Will more than five friends be able to attend?

x2 →Will the weather be pleasant?
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If we assign a false value 0 and true value 1, there are 4 possibilities of the
input given these two factors

(0,0),(0,1),(1,0),(1,1)

In the first case (0,0), less than five of Virginia’s friends can attend and the
weather will not be pleasant.

You may wish to put a weight to your two factors. For example, it may be
more important that it does not rain then the number of friends that can attend.

Let’s say that Virginia assigns weights w1 = 1 and w2 = 4 to factors x1 and
x2 respectively and a threshold value for which she will decide to hold the picnic
equal to 6. There may also be a constant value, b, associated with the decision.

z = w1x1 + w2x2 + b = x2 + 4x2 + 3.

Virginia then plugs in each of her input vectors

(0,0)→ 3

(0,1)→ 7→ PICNIC

(1,0)→ 4

(1,1)→ 8→ PICNIC

Machine learning works to adjust the weights and threshold in order to
minimize errors. In addition, when using neural networks for an interpolation
problem, typically a smoothing activation function, φ(WX), is applied at each
step.

5.5.1 The Learning Process

The most important aspect of neural networks is the ability to learn. In the
context of interpolation, this can be interpreted such that at each step the
weights, wi, i = 1, . . . n, and w̄j , j = 1, . . .m, are adjusted to minimize the
error.

After applying the activation function, φ(S) = φ(WX), the Gradient De-
scent method can be applied to find optimal weights that minimize the SSE or
any other cost function.
When an activation function is applied with learning rate, r, and the SSE as
the cost function,

new wi = wi − r
∂SSE

∂wi
.
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FIGURE 5.11
Example of General Neural Network with Activation Function.

5.5.2 Sigmoid Activation Functions

There are many different activation functions that you can use for φ(x). The
activation function, or transfer function, is the transformation function that
creates the output nodes. Thus, the choice of activation function can have a
large impact on the performance of the neural network.

Activation functions are typically differentiable. This is because, in a learn-
ing process integrating a technique such as gradient descent, occurs after the
activation function is applied. We will introduce four possible activation func-
tions here and show you how they perform.

Typical smoothing functions from regularization can be used for φ(x).
The first activation function of interest is the SoftMax function, where

φ(xk) =
exk∑n
i=1 e

xi
,

and the partial derivative of φ(xk) with respect to xk is

∂φ(xk)

∂xk
=
exk
∑n
i=1,i6=k e

xi

(
∑n
i=1 e

xi)2
.

Example 5.19. Let’s imagine that we have collected data on the effectiveness of
a 2 dose COVID vaccine. Those who did not have either dose had no immunity
to the disease, those who got 1 dose of the vaccine were 30% immune to the
newest strain of COVID, and those who received 2 doses of the vaccine were
90% immune.

We would like to use this information to determine if a future booster would
be effective.
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Here we have three input values. For this example, we will incorporate the
SoftMax activation function with two different initial weight functions, whose
coefficients are located in the columns of W , prior to the activation (any number
of weight functions, and corresponding activation functions, could be incorpo-
rated).

Let W =

(
0.25 0.1

0.25 0.9

)
,

X =


1 0

1 1

1 2

 , Y =


0

.3

.9

 .

Then

(φ(XW ))T =

(
eXW∑3

j=1 e
(XW )ij

)T

=


0.254275 0.105161

0.326496 0.258654

0.419229 0.636186

 .

We also need initial weights, W , to put the activation functions together.
For simplicity we will choose W = {.5,.5},

(φ(XW ))T (W ) =


0.179718

0.292575

0.527707

 .

Back propagation, using a technique such as the gradient descent method,
is then used to optimize the values in W and \or W . If one wishes to continue
to use the initial guess for values in W then use

∂SSE

∂W
= −2(Y − φ(XW )W )φ(XW )

iteratively to minimize SSE while updating values of W . Many iterations arrive
at a steady state of approximately

W = {−0.448, 1.69},

φ(XW )W̄ =


0.252475 0.105161

0.326496 0.258654

0.419229 0.636186


(
−0.448

1.69

)
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predicting that the vaccine is 6.3%, 29%, and 88% effective for 0, 1, and 2 doses
respectively.
The model itself is

φ(XW )W =
−.448e.25+.25x∑3
i=1 e

.25+.25xi
+

1.69e.1+.9x∑3
i=1 e

.1+.9xi

If in addition, one wishes to iteratively change W with gradient descent then
note that

∂SSE

∂W
= −2(Y − φ(XW )W )XWφ′(XW ).

FIGURE 5.12
Neural network with sigmoid activation function.

Another common activation function is called the logistic sigmoid neuron
function.

φ(X) =
1

1 + e−(WX)
.

The benefit of using the logistic sigmoid neuron function is that all out-
put values will be between 0 and 1, and thus are good predictors related to
probability.

Figure 5.12 gives you a general idea of how the sigmoid activation function
acts within a neural network, and Figure 5.13 shows an example of a logistic
sigmoid neuron function.
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FIGURE 5.13
Logistic function centered at x = 1.

Example 5.20. For the data set

x y

1 0.795

2 0.814

3 0.868

4 0.66

5 0.29


,

we could start with initial weights a0 = 1 and a1 = −0.1 with

S = WX = 1− 0.1x,

Note that if φ(x) = 1
1+e−x then

φ′(x) =
e−x

(1 + e−x)2
.

In the learning process, when ŷ = a0 + a1x+ a2x
2 + · · ·+ anx

n,

X =


1 x0 x2

0 . . . xn0

1 x1 x2
1 . . . xn1

...
. . .

. . .
. . .

. . .

1 xn x2
m . . . xnm

 , W =


a0

a1

...

an

 , and Y =


y0

y1

...

yn

 ,
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and φ(x) is a differentiable function,

SSE = (Y − φ(XW ))T (Y − φ(XW ))

∂SSE

∂W
= −2XTφ′(XW ) ◦ (Y − φ(XW )),

In this example,

X =



1 1

1 2

1 3

1 4

1 5


, W (0) =

(
1

−.1

)
, and Y =



0.795

0.814

0.868

0.66

0.29


,

SSE = 0.173107

∂SSE

∂a0
= −0.0265121

∂SSE

∂a1
= 0.348567.

In this process, a learning rate, r, must be chosen. If r = .05 then

W (1) = W (0)−r ∂SSE
∂W

=

(
1

−.1

)
−.05

(
−0.0265121

0.348567

)
=

(
1.00133

−0.117428

)
.

Figure 5.14 shows S, φ(S), and the original data. Notice that in Example 5.5.2,
weights were imposed on both the original inputs, X, and the activation func-
tions, whereas in Example 5.5.2, weights were imposed on only the inputs.
Weights on inputs and/or activation functions can be used to best model sce-
narios.

Another commonly used activation function is

φ(x) = tanh(x),

the hyperbolic tangent activation function.
In this case,

φ′(x) = sech2(x).
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FIGURE 5.14
S, φ(S).

-4 -2 2 4

-1.0

-0.5

0.5

1.0

FIGURE 5.15
φ(x) = tanh(x) = 2

1+e−2x − 1.
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If Ŷ = φ(XW ),

∂SSE

∂W
= −2XT sech2(XW ) ◦ (Y − tanh(XW ))

If we choose an activation function like φ(x) = tanh(x), then we are allowing
for output values to be both positive and negative and thus is usually used to
distinguish between two classes of data.

Example 5.21. Given the data set

S = {(−2, −.4), (−1, −.1), (1, .3), (2, .7)},
and initial guess a0 = .3 and a1 = .5,

X =


1 −2

1 −1

1 1

1 2

 , Y =


−.4
−.1
.3

.7

 , and W (0) =

(
.3

.5

)
.

-2 -1 1 2
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0.6

0.8

FIGURE 5.16
Data from Example 5.21 and Tanh(0.298689 + 0.461612x) on [−2, 2].

With these initial guesses for a0 and a1, and a learning rate of r = .03,

∂SSE

∂W
= {0.0436947, 1.27961}

W (1) =

(
0.298689

0.461612

)

The result Ŷ = φ(XW ) can be seen in Figure 5.16.
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Finally, one of the most widely used activation functions is the rectified
linear unit function, ReLU. Defined as

φ(x) =

{
0, if x < 0,

x, otherwise.

Notice that the ReLu activation function is not differentiable at x = 0 and

φ′(x) =


0, if x < 0,

undefined, if x = 0,

1, if x > 0.

-4 -2 2 4

1

2

3

4

5

FIGURE 5.17
ReLu activation function.

The ReLu activation function is the most commonly used activation function
because of it’s accuracy while remaining easy to use and train.

Additionally, the ReLu activation function is used to manage the interaction
between input, dependent, variables.

For example, if there are two input variables, x1 and x2, an activation
function φ acts on the input variables, φ(w1x1 + w2x2). Let’s assume that
w1 = w2 = 1, then

φ(w1x1 + w2x2) =

{
0, x1 < |x2|
x1 + x2, x1 ≥ |x2|

.

Note that if both x1 > |x2| > 0 then both input variables contribute to the
output.

For example, if x1 = 10 and x2 = −2 then φ(w1x1 +w2x2) = 8. However, if
either variable is a significantly larger negative number, then neither variable
unduly influences the output. If x1 = 10 and x2 = −1000 then φ(w1x1+w2x2) =
0.
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Example 5.22. In Example 5.21, we implemented the hyperbolic tangent ac-
tivation function with initial guess a0 = .3 and a1 = .5 on

{(−2, −.4), (−1, −.1), (1, .3), (2, .7)},
Let’s now see what happens when we use the ReLu activation function, φ(x),
on this same data set.

XW = {−0.7, −0.2, 0.8, 1.3},
φ(XW ) = Ŷ = {0, 0, 0.8, 1.3},
φ′(XW ) = {0, 0, 1, 1},
∂SSE

∂W
= −2XT (φ′(XW ) ◦ (Y − φ(XW )))

= −2XT ({0, 0, 1, 1} ◦ (Y − {0, 0, 0.8, 1.3})) = {2.2, 3.4}.

If a learning rate r = 0.03 is chosen then a0 = 0.3− 0.03 · (2.2) = 0.234 and
a1 = 0.5− 0.03 · (3.4) = 0.398 after one iteration.
An additional iteration would produce,

XW = {−0.562, −0.164, 0.632, 1.03},
φ(XW ) = Ŷ = {0, 0, 0.632, 1.03},
φ′(XW ) = {0, 0, 1, 1},
∂SSE

∂W
= {1.324, 1.984},

With the same learning rate, a0 = 0.19428 and a1 = 0.33848. Figure 5.18
shows a visualization of each iteration and the original data.

Next, let’s see how to apply these ideas to a regression problem involving
more than one input variable.

TABLE 5.3
Energy data [40, 41].

Country Normalized kwh Normalized % Normalized GDP
of Energy consumed of Energy from per capita in

per person(2019) Fossil Fuel(2019) USD(2019)
USA 1.08354 0.525247 1.06688
Brazil -0.826228 0.587071 -0.97821
China 0.616389 -1.49447 0.62683

Sweden -0.873701 0.382148 -0.715505
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FIGURE 5.18
Iterations of ReLu activation in Example 5.22.

Example 5.23. We will let A represents the normalized amount of energy
consumed per person and B is the normalized % of energy from fossil fuel.
Assume that w0 = .3, w1 = .7, and w2 = .1 and we wish to predict, Y , the
normalized per capita GDP, where

X =


1 1.08354 0.525247

1 −0.826228 0.587071

1 0.616389 −1.49447

1 −0.873701 0.382148

 , Y =


1.06688

−0.97821

0.62683

−0.715505

 ,

Ŷ = XW = Ŷ = w0 +w1A+w2B = {1.111, −0.219652, 0.582025, −0.273376}

and SSE = 0.774842.
We display one iteration using ReLu, φ(XW ), with SSE as the cost func-

tion.

φ(XW ) = φ({1.111, −0.219652, 0.582025, −0.273376})
= {1.111, 0, 0.582025, 0}

φ′(XW ) = {1, 0, 1, 0}
∂SSE

∂W
= −2XT (φ(XW ) ◦ (Y − φ(XW )))

= {−0.001364, 0.0403832, 0.180269}

With a learning rate of r = 0.03, new values of w0, w1, and w2 respectively
are 0.299731, 0.696355, and 0.0853578.
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There are a number of variations on the ReLu activation function that use
a non-constant function when x < 0, these include the Leaky ReLu, the Pa-
rameterised ReLu, and the Exponential Linear Unit.

All of the problems using gradient descent methods thus far use SSE as the
cost function. Although SSE is a popular cost function to use, it is important
to note that there are other cost functions that can be employed.

Some of these functions are specific to categorical neural networks, such as
the cross-entropy cost function, which will be used in Section 5.6.

5.5.3 Radial Activation Functions

The general form of a radial activation function is

φ

(
(x− c)T (x− c)

r2

)
,

where c is a centering parameter and r is a scalar radius. Notice that when
using radial activation functions, the function φ(x) acts on ||x− c||.

Figure 5.20 shows some examples of radial activation functions.
One standard smoothing function, or convolution function, used in regu-

larization is a Gaussian activation function, or Gaussian kernel,

φ(x) = e

−(x− cj)T (x− cj)
σ2


.

FIGURE 5.19
Visualization of implementation of radial activation functions.
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FIGURE 5.20
Examples of Radial Activation Functions.
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FIGURE 5.21
Example of Gaussian kernel with radius 2 centered at 3.
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Example 5.24. Given two input variables X1 ∼ N(0,1) and X2 ∼ N(0, .25),
we wish to determine a Gaussian activation function,

φj(x) = e
−

(x− cj)T (x− cj)
2σ2

j , j = 1, 2,

to model the data


x1 −2.1 −0.92 0.08 0.96 2.1

x2 −0.94 −1 −1.1 −1.08 −0.96

y 0.08 0.32 0.46 0.18 −0.02

 .

The goal is to determine the optimal w1 and w2 such that

φ(x) =

2∑
j=1

wjφj(x),

minimizes the sum of squared errors, SSE.
In this example, we are given cj and σ2

j for j = 1, 2; however, one might have
to use some sort of clustering technique to determine the centers and spreads
of the input variables.

For simplicity, we begin with initial guess w
(0)
1 = w

(0)
2 = 1

2 with activation
function

φ(0)(x) =
1

2
e−

(x−0)2

2 +
1

2
e−2(x−0)2 .

The sum of squared error and the partial derivatives with respect to the
weights, w1 and w2, at iteration k are

SSE =

4∑
i=1

(y − φ(k)(x))2

∂SSE

∂w1
=

4∑
i=1

−2(y − φ(k)(x))e−
x2

2

∂SSE

∂w2
=

4∑
i=1

−2(y − φ(k)(x))e−2x2
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TABLE 5.4
Estimations of w1 and w2 in the iterative process with r = .03.

Iteration w1 w2 SSE r · ∂SSE∂w1
r · ∂SSE∂w2

0 .5 .5 0.074 0.0163 0.0042
1 0.4837 0.4958 0.0649 0.014 0.0039
2 0.4697 0.4919 0.0580 0.013 0.0037
3 0.4567 0.4882 0.0524 0.011 0.0034
4 0.4457 0.4848 0.0481 0.010 0.0032

Example 5.24 shows how to apply a Gaussian radial activation function
when the centers and spreads of data are known. In most data situations, the
centers are unknown. We will next revisit this data problem from the Case
Study in 3.8.

Example 5.25. Recall that in the Case Study in 3.8, we were presented with
two small samples of facial pixel data, where each column of X1 and X2 repre-
sents an image,

1 2 3 4 5

0.1

0.2

0.3

0.4

0.5

y

ϕ(1) x)

y ϕ(5)(x)

FIGURE 5.22
Iterations of a radial activation in Example 5.24.
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X1 =



97 125 106 172

96 93 100 185

81 72 93 200

87 70 103 171

95 54 97 187

86 55 88 203

48 58 100 169

67 47 96 187

90 51 87 203



, X2 =



158 216 191 91

153 218 218 94

147 218 244 98

156 215 193 86

154 212 225 92

151 209 227 98

159 207 178 82

158 201 203 89

156 195 215 97



,

and two additional unclear facial images represented by the pixel data in f1 and
f2,

f1 = {238, 239, 240, 235, 236, 237, 232, 233, 234}
f2 = {193, 193, 193, 193, 192, 192, 192, 192, 191}.

The goal was to put f1 and f2 into one of the two categories, X1 or X2. We
will begin by putting the eight images into two categories X1 → 0 and X2 → 1,

y = {0, 0, 0, 0, 1, 1, 1, 1}.
We will use the Gaussian activation function,

φ(x) = w1e
− 1

2 (X−µ1)TΣ−1(X−µ1) + w2e
− 1

2 (X−µ2)TΣ−1(X−µ2),

where µ1, σ1 and µ2, σ2 are the mean and standard deviation vectors of X1 and
X2 respectively,

Σ−1 =

(
σT1 σ1 0

0 σT2 σ2

)
,

of the sample data.
An iterative process like the one described in Example 5.24 is used to de-

termine w1 and w2. If we use w1 = −0.08 and w2 = 0.9 with a learning rate
r = 0.05, then we see a progression as seen in Table 5.5.

Since the output should place the blurry image into one of two categories,
X1 represented with a 0 or X2 represented by a 1, it may be more practical
to determine a final rounded output, where bxe represents rounding x to the
nearest integer.

Using w1 = −0.0820965 and w2 = 0.895667,

φ(f1) = b0.425659e → Category 0

φ(f2) = b0.780331e → Category 1
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TABLE 5.5
Estimations of w1 and w2 in the iterative process with r = .05.

w1 w2 SSE
∂SSE

∂w1

∂SSE

∂w2

-0.08 0.9 1.60536 0.0373608 0.0565986
-0.081868 0.89717 1.6052 0.00857073 0.0275096
-0.0822966 0.895795 1.60517 -0.00176823 0.0158361
-0.0822082 0.895003 1.60516 -0.00516558 0.0108391
-0.0819499 0.894461 1.60515 -0.00598346 0.0084358

FIGURE 5.23
Visualization of using radial activation to categorize data.

In Chapter 6, we explore other iterative processes that are used for categor-
ical decisions and regression analysis.

5.6 CASE STUDY: Handwriting Digit Recognition

The MNIST is a training set for handwritten digit recognition [44]. This training
set consists of 60000 examples in 10 categories, 0–9. In this example, we show
a small example but encourage the reader to explore the larger dataset by
implementing the R code found at Github link 34 or the Python code at Github
link 32.

Assume that you have a handwritten digit such as the one pictured in Figure
5.24 and you wish to determine what digit the handwriting represents.
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FIGURE 5.24
Sample handwritten digit to identify.

For this example, we will use a much smaller training set, pictured in Figure
5.25, of digits in five categories, 0–4, and attempt to determine the probability
that each of these samples is the handwritten digit shown in Figure 5.24. This
smaller training dataset can be found at Github link 36.

x1 x2 x3 x4 x5

x6 x7 x8 x9 x10

x11 x12 x13 x14 x15

FIGURE 5.25
Small sample of digits from the training database.

Begin by assuming initial weights for each of the 15 inputs in the sample
training set. We have chosen to make each sample of training data equally likely
and thus equal weights, which is not a necessary assumption.

{w1,w2, . . . , w15} =
{ 1

15
,

1

15
, . . . ,

1

15

}
such that ŷ = w1x1 + w2x2 + · · ·+ w15x15 = XW.
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We then apply an activation function, φ(x). In this case, we employ a neural
network analysis, with the hyperbolic tangent activation function and tradi-
tional SSE cost function.

Choosing a learning rate, r, for example r = .03 to determine

∂SSE

∂W
= −2XT (φ′(XW ) ◦ (Y − φ(XW ))

W (i+1) = W (i) − r · ∂SSE
∂W

.

Additionally, if the weights, w, are a percent vector, set

wi =
wi∑15
i=1 wi

.

If

φ(X) = tanh(x) and φ′(x) = sech2(x),

then after twenty iterations of the learning algorithm,

w =



0.08427255

−0.00643189

−0.02651266

0.12066096

−0.00716325

0.03448799

0.00267105

0.08602818

0.23687438

−0.0082189

−0.01507112

0.06937072

0.13791523

0.29641327

−0.0052965



,

and thus it is most probable that our digit is x4, x9, or x14. Predicting that the
given image is the digit 3.
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Wi

ϕ(x)

tanh(x)

Learn

Input

Output

3

FIGURE 5.26
Diagram of the Neural Network Process.

Since we are dealing with choosing a category for our input image, we can
also choose to employ the categorical cross-entropy cost function, instead
of SSE.

C(X) = −
n∑
j=1

yj · log(φ(xjwj)) = −Y log(φ(XW ))

with partial derivatives,

∂C

∂W
= − XTY

φ(XW )
φ′(XW ).

If the activation function is the softmax function, φ(xj) =
ej∑n
k=1 ek

, then

∂C

∂wk
= −

n∑
j=1

yj
φ(xjwj)

∂φ(xjwj)

∂wk

=
−xkykφ(xkwk)(1− φ(xkwk))

φ(xkwk)
+

n∑
j 6=k

xjyjφ(xjwj)φ(xkwk)

φ(xjwj)

= −xkyk(1− φ(xkwk)) +
∑
j 6=k

xjyjφ(xkwk)

= −xkyk +

n∑
j=1

xjyjφ(xkwk).
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We will choose y to be a vector where yk = 1 and yj = 0 for all j 6= k, 1 ≤
k ≤ n. Thus,

∂C

∂wk
= −xkyk + xkφ(xkwk) = xk(−yk + φ(xkwk)).

Cross-entropy is computed for each value of k, noting that the smaller the
entropy the more similar the input is to yk.

In this example, with the initial values for W ,

XW (0) = 0, XW (1) =
1

5
, XW (2) =

11

3
, and

n∑
j=1

XW (j) =
4568

15
.

Applying the softmax activation function,

φ(XW )(0) =
15e0

4568
, φ(XW )(1) =

15e
1
5

4568
, and φ(XW )(1) =

15e
11
3

4568
.

In this problem, we need to calculate the cross-entropy for all 15 images
in the training set; however, if there were only these three images with y1 =
{1,0,0}, y2 = {0,1,0}, and y2 = {0,0,1}, the cross-entropy associated with y1

would be

C = 1 · log
(

15e0

4568

)
+ 0 · log

(
15e

1
5

4568

)
+ 0 · log

(
15e

11
3

4568

)
≈ −5.71878.

Similarly, the cross-entropy associated with y2 is

C = 0 · log
(

15e0

4568

)
+ 1 · log

(
15e.2

4568

)
+ 0 · log

(
15e

11
3

4568

)
≈ −5.51878.

and that associated with y3 is

C = 0 · log
(

15e0

4568

)
+ 1 · log

(
15e.2

4568

)
+ 0 · log

(
15e

11
3

4568

)
≈ −2.05211.

then the image associated with y3 is most similar to the input image x.

5.7 CASE STUDY: Poisson Regression and COVID
Counts

Suppose that an experiment consists of counting the number of confirmed
COVID-19 cases each day over a period of time, T .
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Define Yt as the random variable representing the total number of newly
confirmed positive cases on day t, where t = 1, 2, . . . , T . Thus the probability
density function of Yt is

L(Yt| t, a0, a1) =
T∏
t=1

(a0 + a1t)
Yt

Yt!
e−(a0+a1t),

where the mean

E(Yt| t, a0, a1) = λ = ln(a0 + a1t).

The data for this Case Study is from the open source data site provided
by the Ontario government on over 500000 confirmed cases of COVID-19 in
Ontario in 2020 and 2021 [27]. For this case study, a small sample of this data
is displayed. The reader is encouraged to explore this data set further.

TABLE 5.6
COVID-19 cases in Ontario, Canada in April 2020.

Date 4/13 4/14 4/15 4/16 4/17 4/18 4/19 4/20
Count 607 576 638 615 655 536 358 539
Date 4/21 4/22 4/23 4/24 4/25 4/26 4/27 4/28

Count 432 460 445 428 448 367 470 401

We will model a log-linear model to this data and start with an initial guess
of the coefficients of A(0) = {5.5, .4}.

With this guess,

LL(A(0)) = {−372768., −5.45396× 106}

H(A(0)) =

(
445954. 6.2404× 106

6.2404× 106 8.98843× 107

)
A(1) = {5.03667, 0.49285}

In this case,
λ = 5.03667 + 0.49285t.

This information can also be used to determine the R0 in mid April 2020 in
Ontario, Canada.
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5.8 Exercises

1. Given y =

(
y1

y2

)
x =


x1

x2

x3

 where y1 = x2
1 + x2 and y2 =

4x2
2 + x3

3. Find the Jacobian of the transformation.

2. Given f(x,y,z) = sin(xy + y2z) determine the Gradient matrix and
the Hessian matrix.

3. If f(X) = 4x2
1 + 6x1x

3
2 and X =

(
x1

x2

)
, find the gradient matrix

G.

4. Find the matrix differential ln(|X|).
5. Find the matrix differential of XT .

6. If Yi, 1 ≤ i ≤ n are independent identically distributed random
variables with joint likelihood function

p(yi| xi, a0, a1) = Πn
i=1

yi − (a0 + a1xi)

24
e−

(yi−(a0+a1xi))
2

2 ,

a. Determine LL = log(p(y| x1, x2).

b. Find
∂LL

∂a0
.

c. Find
∂LL

∂a1
.

7. If f(X) = −Y log(XW ) where X is a 2×2 matrix and W =

(
a0

a1

)
,

determine
∂f

∂W
.

8. SSE is a common loss function to use in gradient descent, another
common loss function is the absolute error

n∑
i=0

|ŷi − yi| =
n∑
i=0

|(a0 + a1xi)− yi|.

if the interpolating function is ŷ = a0 + a1(x), determine

∂|(a0 + a1xi)− yi|
∂a0

and
∂|(a0 + a1xi)− yi|

∂a1
.

(Hint: Recall that |f(x)| = f(x) when f(x) ≥ 0 and |f(x)| = −f(x)
when f(x) < 0.)
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9. Given the interpolation points {(−1, 3), (0, −4), (1, 5), (2, −6)} if
the loss function, L(x), is the absolute error from Exercise 8, and the
goal is to find a linear interpolating function ŷ = a0 + a1x,

a. Complete the following table for initial guess a0 = 5, a1 = −.5.

yi ŷi = a0 + a1xi
∂L

∂a0

∂L

∂a1

3 5.5 -1
-4 5 1
5 4.5
2 4 1 -6

Total

b. If the learning rate is r = .03, use the table from part a. to
determine a new value for a0 and a1.

10. In Exercise 9, what happens if the initial guess is a0 = 0, a1 = 0.

11. Table 4.3 shows the number of COVID-19 total cases in NC over a
six month period in 2020.

a. Create a quadratic interpolant f̂(x) = a0+a1x+a2x
2 with initial

guesses for the coefficients a0 = 40000, a1 = 30000, a2 = 4000
and determine the SSE for this model.

b. Determine the gradients
∂SSE

∂ai
, 0 ≤ i ≤ 2 from the model in

part a.

c. Use the gradients from part b. and a learning rate r = .0003 to
create a quadratic interpolant and calculate the SSE for the new
model.

12. Given interpolating points {(0, 3), (1, 2), (2,−1), (3, 5)}, find a linear
maximum likelihood interpolating function.

13. Example 5.19 uses the Softmax activation function to determine a
model for COVID vaccine effectiveness probabilities. Let

X =


1 0

1 1

1 2

 and Y =


0

.3

.9


the effective probabilities for 0, 1, or 2 COVID vaccines.

a. Use a logistic sigmoid activation function with weights W (0) =(
.1

.9

)
to determine estimated values for Y .



Optimization and Learning Techniques for Regression 207

b. Find SSE for your model in part a.

c. Update your weights from part a. using one iteration of gradient
descent and a learning rate of r = .03. Determine the SSE with
your new weights.

d. Use a ReLU activation function with weights weights W (0) =(
.1

.9

)
to determine estimated values for Y .

e. Find SSE for your model in part d.

f. Update your weights from part d. using one iteration of gradient
descent and a learning rate of r = .01.

14. Example 5.25 uses a Gaussian activation function to estimate cat-
egories for facial recognition. Use the data given in Example 5.25,
W (0) = {.1, .9} and the activation function

φ(X) =
w1

(X − µ1)T (X − µ1)
+

w2

(X − µ2)T (X − µ2)

with the SSE cost function to determine which category most resem-
bles the images represented by f1 and f2.
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6

Decision Trees and Random Forests

While previous chapters focus on techniques for making a single decision or
model, this chapter focuses on ways to make a series of decisions that can
incorporate previous techniques in order to best categorize data.

6.1 Decision Trees

A decision tree is a recursive partitioning of choices represented by a tree
graph. A decision tree is similar to a flow chart and can be applied in a variety
of venues. The general form of a decision tree can be seen in Figure 6.1.

Let’s begin with an example of a decision tree applied to a logic statement.

Example 6.1. Perhaps you wish to find the outcome of the logic statement
A ∩ (B ∪ C). Figure 6.2 shows a decision tree for this logic statement.

Notice that in Figure 6.2 that two leaves are True and two leaves are False
and thus both True and False are equally likely outcomes.

Typically decision trees are used for classification tasks and regression anal-
ysis. A classification tree is a decision tree where each node, or vertex, has
a binary decision connected to it based on whether an attribute is present or
not. The top node, also called the root, in a classification tree represents the
presence of all possible attributes, and each child node that is a subdivision of
the node above it, also called the parent node.

A child node may be a successor decision node or a final outcome, called the
leaf node.

Example 6.2. In Example 3.8, four Cinderella tales are presented with five
attributes. Example 3.8 uses PCA to explore a measure of closeness between
these tales. Perhaps instead, one wishes to create a decision tree to determine
how close these tales are to the Disney version of the tale, based on Charles
Perrault’s Cendrillon.

In addition to the data in Table 3.1, the attributes of the Cendrillion tale
include

DOI: 10.1201/9781003025672-6 209
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FIGURE 6.1
General Form of a Decision Tree.

FIGURE 6.2
Example of a decision tree for logic statement A ∩ (B ∪ C).

TABLE 6.1
Attributes for the Cendrillion table.

The heroine’s The heroine Magical animals Action takes place The heroine
name means ash picks lentils are present in a church buries bones

1 0 1 0 0
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FIGURE 6.3
Decision tree for classifying Cinderella tales in Example 6.2.

If we wish to see how many attributes each of the other four tales shares (in
terms of absence or presence) with Perrault’s Cinderella tale, we may create a
decision tree similar to the one shown in Figure 6.3.

A decision tree can also be used to divide quantitative data into regions or
clusters.

Example 6.3. In Figure 6.4, you can see that there are some clear splits in
classification when x < .05 and .1 < y < .15.

But not all decisions are created equally. Figures 6.2 and 6.5 show two
different decision trees for A ∩ (B ∪ C), which one do you prefer?
Given the choice, it is best to choose a root node to split a decision in a way
that provides more clarity after the split.

A decision tree defined over a domain of categorical attributes can be con-
verted into a discrete numerical function. Many times, data scientists will wish
to determine such functions that establish criteria to measure the closeness of
the data to the desired outcome. There are several standard criteria that are
used.

In Section 5.6, cross-entropy was used in order to make decisions about
handwritten digits. Entropy and the Gini index are some examples of split-
ting functions.

Entropy

If Y is a random event, then the uncertainty of Y = y occurring can be
measured by

log2

(
1

P (Y = y)

)
= −log2(P (Y = y)).
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R4R3

R2R1

R5

0.04 0.06 0.08 0.10 0.12

0.05

0.10

0.15

FIGURE 6.4
Example of data with splits and decision tree.

Example 6.4. If Y ∼ N(0,1) then

−log2(P (Y = y)) = −log2

(
1

2π
e−y

2/2

)
.

Notice that when values close to the mean, µ = 0, occur, the uncertainty is
close to 0 while values further away from the mean have greater uncertainty of
occurring.

The entropy of a random event Y is the expected uncertainty. That is, if
Y is a discrete random variable, then

Entropy(Y ) = E(−log2(P (Y = y))) = −
∑
y

P (Y = y)log2(P (Y = y))
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FIGURE 6.5
Another decision tree for logic statement A ∩ (B ∪ C).

-2 -1 1 2

1.5

2.0

2.5

3.0

3.5

4.0

FIGURE 6.6
Uncertainty of a random event Y ∼ N(0,1).
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and if Y is a continuous random variable,

Entropy(Y ) = −
∫ ∞
−∞

P (Y = y)log2(P (Y = y)) dy.

For a dataset S, entropy, Entropy(S), is a measure of homogeneity within
the dataset.

If there are classes C1, C2, . . . , Cn of data in S then

Entropy(S) =
∑
Ci

−P (Ci)log2(P (Ci)).

If the entropy related to a decision tree is 0 then the data is completely
homogenous and if there is a clear 50-50 split in the data then the entropy will
be equal to 1.

For example, in Figure 6.7, in the graph to the left, the line L1, splits the
two classes and thus, Entropy(S) = 1. In the graph on the right, roughly half of
each class is on either side of line L1 and thus the entropy would lie somewhere
between 0 and 1.
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FIGURE 6.7
Example of Linearly Separable and Non-Separable Data Sets.

Example 6.5. The facial recognition example in Figure 6.4 focuses on a variety
of categories. For example, with two categories C1 = R1 ∪ R2 and C2 = R3 ∪
R4 ∪R5,

Entropy(C1) = −P (C1)log2(P (C1)) = − 4

10
log2

(
4

10

)
≈ 0.53

Entropy(C2) = −P (C2)log2(P (C2)) = − 6

10
log2

(
6

10

)
≈ 0.44
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Thus, the entropy if using these two categories is approximately 0.97. Noting
that this value is close to 1 tells us that the data is very close to a 50-50 split
within the categories.

Similarly, if we choose to separate the data with categories, C1 = R1 and
C2 = R2 ∪R3 ∪R4 ∪R5,

Entropy(C1) = − 2

10
log2

(
2

10

)
≈ 0.46

Entropy(C2) = − 8

10
log2

(
8

10

)
≈ 0.26

with a total entropy of .73 the data is less of an even split between categories.

Another indicator of strong splits in decisions is the Gini Impurity measure.

Gini Impurity

The idea behind the Gini Impurity measure is to determine the probability
that the nodes are chosen in a way that a random sample of data is classified
incorrectly.

Gini Impurity =

n∑
i=1

pi(1− pi)

= 1−
n∑
i=1

p2
i

where P = (p1, p2, . . . , pn) and pi is the probability that an object is classified
in class i = 1, 2, . . . , n.

For example, assume we randomly select 10 data points as in Figure 6.8,
with two categories. If a decision criteria in Node 1 creates a split shown by
Nodes 2 and 3, we can then see that the

Gini Impurity of Node 2 =1− 3

4

2

− 1

4

2

=
3

8

whereas the Gini Impurity of Node 3 =1− 1

3

2

− 2

3

2

=
4

9
.

The Gini Impurity ranges from 0 to 1 and the higher the value the more im-
pure the nodes of the decision tree are. This measure is only used for measuring
categorical data. Other measures must be used for quantitative or continuous
data.
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FIGURE 6.8
Example of decision criteria splitting.

Example 6.6. Revisiting the facial recognition problem in Figure 6.4 with cat-
egories C1 = R1 ∪R2 and C2 = R3 ∪R4 ∪R5,

Gini Impurity = 1− (P (C1))2 − (P (C2))2 = 1−
(

4

10

)2

−
(

6

10

)2

=
12

25

while categories defined as C1 = R1 and C2 = R2 ∪R3 ∪R4 ∪R5 give a

Gini Impurity = 1−
(

1

10

)2

−
(

8

10

)2

=
7

20

Example 6.7. For the decision tree presented in Figure 6.2, we calculate the
Gini index for nodes A, B, and C where p = (1− p) = 1

2 for each of the nodes
and thus

Gini impurity A = Gini impurity B = Gini impurity C =
1

2
,

where the decision tree in Figure 6.5, for the same logistic statement, has a
Gini impurity = 13

25 .

Another way to think about the Gini impurity measure is that if P is a
probability matrix where Pi,j = pi when i = j and Pi,j = 0 otherwise. Then

Gini impurity = Tr(I − P 2).
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FIGURE 6.9
Training set for decision tree categorization example.

6.1.1 Decision Trees Regression

Typical linear regression models work to linearly separate data, whereas decision
tree models work to separate data that is not linearly separable. A visualization
of a linearly separable set of data versus one which is not linearly separable can
be seen in Figure 6.7.

In this section, we will focus on (1) Decision Tree Linear Regression as a
categorization problem and (2) Decision Trees as a regression model. Later, we
will take a brief look at how one might combine these ideas with those explored
in Chapter 4 to create even better models.

Since the data that will be the focus of decision tree linear regression is typ-
ically linearly non-separable, the mathematical algorithm discussed is recursive
in nature, starting at the root of the tree.

When using decision trees to determine clustering or linear regression mod-
els, it is important to hold back a set of data for a test data set for learning
purposes. We will follow the steps of this recursive algorithm with an example
related to the data in Figure 6.9.

We begin with a trained decision tree with a root node containing our entire
test data set and a splitting feature.

With a root node as seen in Figure 6.10, notice that we begin by including
all of the data points. Under the root condition, in this case x1 > 2, child nodes
are included based on whether the root condition is True or False.

After this first decision, the right child node only has data from a single
category. We call this node a pure node. Notice that the first child node on
the right in Figure 6.9 is not a pure node.

If we are given some data not in this training set, for example, (2, 1) and
(0.5, 3), then we can follow the decision tree to decide which category to place
these data points.
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FIGURE 6.10
Example decision tree for categorization example, using training data in Figure
6.9.

Since all of the child nodes are pure, (2, 1)→ and (0.5, 3)→ .
In this example, there were many choices for conditions to split the training

data, we discuss now how we best choose these conditions.
One way to do so is with a greedy algorithm in which conditions are

considered by brute force. Unfortunately, this algorithm may still not determine
the best splitting as once a condition on a root is determined the algorithm does
not go back up the tree.

The steps for the greedy algorithm include:

• Setting a root condition that produces a Gini impurity close to 1 (In the above
example, for x1 > 2, the Gini impurity is 1)

• For each possible splitting rule, calculate IG,

Information Gain = Entropy(parent)−
∑
i

wiEntropy(child).

For the data shown in Figure 6.11, with root condition x1 > 2, the child
conditions are shown in Table 6.2.
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FIGURE 6.11
Example of decision splitting for categorization example, using training data in
Figure 6.9.

TABLE 6.2
Example initial splits and corresponding entropy and information gained
based on training data in Figure 6.9.

Condition Split, S1,S2 Entropy for S1 Entropy for S2 IG

x0 > 1 (3,0), (7,3) 0 −.3log2(.3) − .7log2(.7) 1 − 3
13

· 0
≈ 0.88 − 10

13
· 0.88 ≈ 0.32

x0 > 2 (3,1), (7,2) 0.81 0.76 0.225
x0 > 3 (6,3), (4,0) 0.92 0 0.36
x0 > 4 (8,3), (2,0) 0.85 0 0.28

x1 > 3 (3,2), (7,1) 0.97 0.54 0.295
x1 > 4 (5,3), (5,0) 0.95 0 0.41

• Choose a new condition that maximizes the information gain, IG.

A pure child will produce an entropy of 0. Ideally, we would choose a smaller
grid and larger variety of conditions; however, with the choices presented in
Table 6.2, three pure child nodes exists.

The best choice for the next condition from those presented in Table 6.2 is
x1 > 4.

• Repeat Steps 1-3.

With a new parent node and condition x1 > 4, focus on the region

0 ≤ x0 ≤ 4, 2 ≤ x1 ≤ 4.

The entropy of this new parent node is 0.95.
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The condition x0 > 1 and x1 > 3 have an information gain of

0.95− log2

(
3

6

)
· 6

8
= 1.95 and

.95−
(

3

5
log2

(
3

5

)
+

2

5
log2

(
2

5

))
· 5

8
−
(

1

3
log2

(
1

3

)
+

2

3
log2

(
2

3

))
· 3

8

= 2.13078

respectively.

A decision tree that employs constraints that focus on one variable, xi, at a
time and compares the variable to a threshold value b, such as x0 > 4 or x1 > 2,
is called a univariate decision tree.

A decision tree that is developed from constraints that are linear combina-
tion of the variables, or attributes, and compares to a threshold value b, such
as 2x0 + 4x1 > 6 and 7

4x0 − x1 > 8, is called an oblique decision tree.
An oblique decision tree has constraints of the form

Ax > b.

Example 6.8. An oblique decision tree associated with the data in Figure 6.10,
may start with the root constraint x1 > 2 and then follow with child constraint

x1 +
32

19
x0 > 8,

seen in Figure 6.12. Compared to the results presented previously, with this new
root condition,

Entropy = −log2

(
1

2

)
= 1

with an information gain,

IG = 1− 0 · 7

13
− log2

(
1

2

)
· 6

13
=

19

13
.

An additional child constraint of x0 − 2x1 > 1
2 would yield an additional

pure decision.

Thus far, our examples of decision tree algorithms focus on categorization
or classification. Similar techniques can be used for regression purposes as well.
When using these algorithms for regression purposes, we can envision the re-
gression problem as a classification problem, or a combination of decision trees
and linear regression techniques can be employed.

Example 6.9 shows how a regression problem can be transformed into a
classification problem in order to use decision tree algorithms.
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FIGURE 6.12
Visualization of an example decision in an oblique decision tree related to data.

Example 6.9. Case Study 4.9 looked at using interpolation techniques to ex-
plore success for black students in higher education, using data listed in Table
6.3. For this problem, we will approach the goal of estimating graduation rates
of black students, based on the tuition of an institution and the fraction of the
student body which consists of black students, with decision tree algorithms.

TABLE 6.3
Sample of college data to predict graduation rates of black students in higher
education institutions.

College InState Total Total Graduation Rate
Tuition Enrollment Minority for Black Students

in 2020
1 Carnegie Mellon 69883 12587 3392 80
2 Clemson 25802 21857 2849 63.4
3 Florida State 17332 41226 12238 72.5
4 James Madison 22108 20855 3574 74.1
5 High Point 49248 4399 668 74.3
6 New England College 52136 2399 638 19.2
7 Old Dominion 22492 24932 10059 53.14
8 Providence College 65090 4533 652 84.8
9 Rutgers 27680 48378 21656 79.86
10 UConn 28604 26541 6255 71.05
11 Penn 71200 24806 7805 94.22
12 William and Mary 35636 8437 2135 88.18

Figure 6.13 shows the 12 schools’ tuition versus graduation rate of black
students for the respective schools.
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FIGURE 6.13
Tuition versus graduation rate of black students.

One can create a decision tree such as the one found in Figure 6.14 which
attempts to separate universities into three categories, those with a graduation
rate of less than 70%, those with a graduation rate of between 70% and 85%
and those above 85%.

With this information, a university with a tuition of $75,000 and a black
student population of 25% would have an estimated graduation rate, which is
the average of those satisfying the same criteria.

92.22(U.ofPenn) + 80(CarnegieMellon)

2
= 86.11% graduation rate.

Whereas a university with a tuition of $30,000 and a black student population
of 20% would require an average graduation rate of Clemson and James Madison
Universities’ rates, producing an estimated graduation rate of 68.75%.

Since there are three categories in this decision regression problem, the root
constraint Tuition > 60 K has an entropy of

− 2

12
log2

(
2

12

)
− 3

12
log2

(
3

12

)
− 7

12
log2

(
7

12

)
≈ 1.384
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FIGURE 6.14
Example decision tree for data in Table 6.3.

and information gain from the split,

1.384− 9

12

(
−1

9
log2

(
1

9

)
− 3

9
log2

(
3

9

)
− 5

9
log2

(
5

9

))
+

3

12

(
−1

3
log2

(
1

3

)
− 2

3
log2

(
2

6

))
≈ .14

Notice that this decision does not split the data in order to produce a pure
child node, so the information gain is small. Better approaches may be to con-
sider an oblique decision tree or to use a decision tree to create regions, or
subsets of data, which would then be used to create a piecewise function with
more traditional regression techniques. The later will be explored further in the
next section.



224 Linear Algebra With Machine Learning and Data

6.2 Regression Trees

In the previous section, decision trees were used to predict either a classification
or dependent value with discrete outcomes. A regression tree uses similar
techniques to predict dependent values which may take on continuous values.

In a regression tree, we create node constraints with restrictions on the
domain in the same way that we would in a decision tree, creating subsets
within the domain. Once these subsets are created a regression model is created
within each subset.

A common practice is to let ŷ be equal to the average of the outcomes within
each subset. Just as we begun the discussion of classification with decision trees
with an example, we do the same with regression.

Example 6.10. Table 6.4 shows attributes of popularly streamed remix songs
from Spotify and Figure 6.15 shows a visualization of the tempo versus danci-
bility for this set of songs.

TABLE 6.4
A Small Training Set of Data from Spotify Streaming.

Song Artist Tempo Dancibility
Memories Maroon 5 99.972 0.726

Dancing With A Stranger Sam Smith 111.961 0.746
Never Really Over Katy Perry 112.648 0.449

All My Friends AJ Mitchell 118.051 0.694
Say My Name David Guetta 120.002 0.678
Call You Mine The Chainsmokers 121.956 0.718

The reader can find a larger set of Spotify streaming data at GitHub link 17.
Notice that although one might fit a least squares regression line to this data, it
might be more beneficial to separate the data from the first part of the data set
from the remaining data points.

Given the set of interpolant points S = {(x1, y1), (x2, y2), . . . , (xn, yn)},
one might wish to determine a root constraint for the tree by partitioning

S = S1 ∪ S2 = {(x1, y1), . . . , (xk, yk)} ∪ {(xk+1, yk+1), . . . , (xn, yn)}.

One way to choose this partition is that if µ1, µ2 are the mean of {y1, . . . , yk}
and {yk+1, . . . , yn} respectively and ŷi = µ1 for 1 ≤ i ≤ k and µ2 otherwise,
then the value of i is chosen to minimize some cost, such as SSE.

Figure 6.16 shows a visualization of partitioning the domain in this way
along with the respective sum of squared errors. In this example, this would lead
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FIGURE 6.15
Spotify Streaming Training Data Set.

FIGURE 6.16
Determining a Constraint to Partition a Training Set.
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to a decision to start our tree with a root constraint of

x ≥ 112

With S1 = {x1, x2} and S2 = {x3, x4, x5, x6}, in this example, we can
think about partitioning S2 in a similar manner. A partition between x3 and x4

produces the lowest SSE. This produces a regression tree as seen below and a
model as seen in Figure 6.17.
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With S1 = {x1, x2} and S2 = {x3, x4, x5, x6}, in this example, we can
think about partitioning S2 in a similar manner. A partition between x3 and x4

produces the lowest SSE. This produces a regression tree as seen below and a
model as seen in Figure 6.17.

x ≥ 112

↙ ↘

x ≥ 115 SSE=0.0002

↙ ↘

SSE=0.0008 SSE=0

Decision Tree

FIGURE 6.17: A Regression Tree Model

It may seem best to create such small partitions that each partition contains
exactly one training point; however, this can lead to larger errors in your model.

Decision Tree

It may seem best to create such small partitions that each partition contains
exactly one training point; however, this can lead to larger errors in your model.
We call this issue overfitting.

If we validate a model, to see how well it does, with the entire data set,
and realize that there is an overfitting mistake, then pruning the tree will be
required. This requires eliminating some of the leaf layers in order to allow for
less constraints related to partitioning the data.

In Example 6.10, constant functions were used to create a model within each
subset of the domain; however, you might note that a linear function or other
function fits the data better. In this case, shown in Example 6.11, subsets of
the domain can still be determined in order to develop a decision tree; however,
within these subdomains other regression techniques, such as those presented
in Chapters 4 and 5, may be employed.

Example 6.11. Table 6.5 shows a small training set of U.S. poverty data
throughout time, and Figure 6.18 shows one way in which you could choose to
partition the data in order to create a piecewise model.
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FIGURE 6.17
A Regression Tree Model.

TABLE 6.5
U.S. Poverty Rate over Time (Training Data).

2001 11.7 2013 14.8
2005 12.6 2015 14.8
2008 13.2 2018 11.8
2010 15.1 2020 11.4

FIGURE 6.18
An Example of a Regression Tree Model for Poverty Rates in the U.S. (2001–
2020) [32].
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6.3 Random Decision Trees and Forests

Data scientists tend to be less interested in a single experiment that generates
data and more interested in a model for a family of experiments of data. These
families are called ensembles. In this section, we will take a look at ensembles
of decision trees.

A random forest is a classification algorithm consisting of several decision
trees. In data analytics, a random forest consists of choosing random samples
of data, training sets, from a larger data set, in order to create a decision tree,
each tree produces an outcome, and a final outcome is determined based on
majority voting. This technique is a type of bagging technique.

FIGURE 6.19
Example Random Forest.

So for example let’s say that you choose four random training sets, with
replacement, and create a decision tree to classify the data into one of four class
as seen in Figure 6.19. Given data, not within the training set, these decision
trees can be used to place the data into classes, where the final classification can
be made based on a majority rules decision. An additional example of random
forest implementation can be see in the Case Study in Section 6.5.
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6.4 CASE STUDY: Entropy of Wordle

The goal of Wordle is to come up with a secret five letter word within six
guesses. Whether your game of the day is Wordle, Quordle, or even Octordle,
you may have a go to word or set of words as part of a personal strategy to find
the word or words of the day. You might think to use many vowels and start
your game off with the initial guess “adieu”, or introduce common letters and
try an initial guess like “snort”, or finally you might be a risk taker and go for a
word that has uncommon letters that you would like to eliminate like “zesty”.

Although the actual Wordle game uses colored green, yellow, and gray
squares to represent particular qualities to the guess, the following colored
squares will be used in this analysis

green→ → guess letter present in the correct location

yellow → → guess letter present in the incorrect location

gray → → guess letter not present

There are roughly 13,000 five letter words that are acceptable in the Wordle
game and about 15900 five-letter words found in the word bank at GitHub link
41.

So how can we use entropy to choose our words wisely? A player that chooses
a word like ZESTY for the first guess and gets the Z correct and in the cor-
rect location reduces the word choice list to 1200. According to the Scrabble
dictionary, roughly 9% of five-letter words start with the letter Z.

Thus if we chose to make a decision purely based on whether the first letter
is a Z, the information gained by playing ZESTY with this outcome is

IG = 1− .09 · log2(.09)− .91 · log2(.91) ≈ 1.44.

However, if one wishes to make a decision based on whether the Y was
correct, it is important to note that there are 1254 five-letter words ending
with Y. A decision made based on a correctly placed Y at the end of the word
provides an

IG = 1−
(

1254

13000

)
· log2

(
1254

13000

)
−
(

11746

13000

)
· log2

(
11746

13000

)
≈ 1.19.

Notice that the larger the probability of an event occurring, the smaller the
information gain if the event occurs. In order to pick the best guess, it is helpful
to choose the word with the smallest entropy and thus largest information
gained. In this case study, we show a simplified version of what one might do.

From a beginning guess word, such as ZESTY , one might wish to find
the probability of each outcome occurring. Figure 6.20 shows the probability
of a word ending with a certain letter. Notice that a five-letter word with the
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FIGURE 6.20
Probability of a five-letter word ending in a certain letter.

S occurring in the last spot is most likely and thus would produce the least
information gained, while one ending in B or Z would provide a large information
gain.

If you did not want to focus on just one letter of your guess when making
decisions, you could look at the probability of outcomes occurring, such as in
Figure 6.21. The overall distribution of outcomes for the guesses ZESTY and
TARES can be seen in Figure 6.22.
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FIGURE 6.21
Probability of specific outcomes occurring with a guess of ZESTY .
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Notice that the probability distribution for the guess ZESTY is taller and
thinner than that for the guess TARES. The probability of an event occurring
and the entropy associated with the event are inversely proportional. Thus the
closer the distribution is to uniform, flat, the more information is provided by
the guess.
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FIGURE 6.22
Probability Distribution for Outcomes Given the Guess ZESTY (TOP) and
TARES (BOTTOM).

We use the heights of the bars in the simplified probability distribution
shown in Figure 6.22 as the probabilities for the entropy of the guess. Using the
simplified distribution from Python code found at GitHub link 42, the entropy,
or the expected information value, for the guesses ZESTY and TARES are
approximately 2.6 and 3.24 respectively.

So if you did start your game with a guess of ZESTY and got an outcome
of

what would your next guess be?
zapas, zapus, zarfs, ziffs, zills, zincs, zings, zoism, zooks, zooms, zoons, zoris,
zulus, zunis

Python and R code for this case study can be found at Github link 37 and
39 respectively.
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6.5 CASE STUDY: Bird Call Identification

Many times, species identification techniques require capture and release. A less
invasive species identification technique is to record the calls of the species, in
this case birds, and look for similarities. In this case study, we are given data
from several bird calls, found at Github link 43, in order to develop a model for
the classification of species of birds. In particular, we wish to identify the call
of the Sri Lankan Junglefowl, the national bird of Sri Lanka, among other bird
calls from Sri Lanka. A larger database of bird calls can be found at [43].

FIGURE 6.23
Visualization of soundwaves of two different Sri Lankan Junglefowl.

It is important to note that, in reality, this type of data could consist of
data blocks from very different times in the birds calling cycle. Therefore, one
bird’s call may just be a translated version of another’s. Additionally, certain
birds could be closer or calling louder, and thus the scale on the call may not
be significant in the identification of the species.

What might be more important to observe is the dominant frequencies
present in the call. In this case study, we discuss how to transform data into a
frequency domain for this type of analysis.

Given a discrete data set {y1, y2, . . . , yn}, the Discrete Fourier Trans-
form is defined as

Fk =
n−1∑
j=1

yje
−2πi
n kj .
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Figure 6.24 shows the frequency distribution for several Sri Lankan jungle-
fowl calls. For more information about Fourier analysis see [28].

FIGURE 6.24
Visualization of Frequencies in Sri Lanka junglefowl calls from Figure 6.23.

From this, one might wish to study what the peak frequencies are, or the
width between peak frequencies, among other characteristics.

If p1 and p2 are the two frequencies, 1K Hz as the units, occurring the most
in the call, Figure 6.25 shows p1 versus the absolute relative increase between
p1 and p2, ∣∣∣∣p1 − p2

p1

∣∣∣∣ .
The dashed lines in Figure 6.25 might be considered as criteria for a decision

tree. Given this information, a bird call with a peak frequency of 20K Hz and an
absolute relative increase of 9Hz WOULD be identify as a Sri Lankan junglefowl
while a bird call with a peak frequency of 25K Hz and an absolute relative
increase of 30Hz WOULD NOT be identify as a Sri Lankan junglefowl.

Github links 38 and 40 provide Python and R code for this case study.



234 Linear Algebra With Machine Learning and Data

FIGURE 6.25
Visualization of four outcomes from different training data sets, jungle fowl
denoted by ◦.

6.6 Exercises

1. Given the data in Figure 6.26 and root condition, x > 0,

−0.4 −0.2 0.0 0.2 0.4 0.6 0.8

−0.4

−0.2

0.0

0.2

0.4

FIGURE 6.26
Data for Exercise 1.
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a. Find the entropy and information gained for the root criteria
x > 0.

b. Determine a root condition that will create a pure child node.

c. Create a decision tree which maximizes information gain at each
stage with the root node condition x > 0.

2. Spotify training data in Table 6.6 shows loudness and acoustic fac-
tors for several songs. Use techniques presented in Example 6.10 to
determine a regression tree.

TABLE 6.6
Spotify training data.

Loudness Acousticness
-8.078 0.000464
-4.234 0.00105
-9.533 0.0612
-6.36 0.112
-7.734 0.0553
-7.165 0.379

3. Table 6.7 shows a training data set from a disease database based on
burden by cause [41].

TABLE 6.7
Training data set from a disease database.

Substance Abuse Interpersonal Violence Self-harm
1.17 2.29 0.56
1.29 1.29 0.36
0.48 1.81 2.98
3.52 3.52 1.52
0.26 0.16 0.35
0.24 1.80 1.46
0.60 0.22 0.38
0.68 0.22 0.38
2.43 1.15 0.63
1.37 0.31 0.42
0.73 0.24 0.41
0.58 3.29 2.16

a. Create a regression tree to model interpersonal violence versus
self-harm.

b. If the self harm measure is placed into 3 categories, Category 1
(low, less than .5), Category 2 (medium, between .5 and 1), and
Category 2 (high, above 2), create a graph of substance abuse
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Substance abuse Interpersonal
Country Year Self harm disorders violence

Sri Lanka 2019 3.47 1.091 0.87

versus interpersonal violence that also shows the category of self
harm.

c. Use the graph in part b. to create a decision tree to categorize
the self harm measure.

d. Use the decision tree in part c. to predict the category of self
harm for Sri Lanka in 2019.

e. Discuss why a random forest model may produce better results
than the single decision tree model from part c.

f. Using the dataset found at Github link 50, chose at least 5 ran-
dom training sets. For each random training set, replicate steps
b. through d. From this random forest algorithm again predict
the category of self harm for Sri Lanka in 2019.
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Random Matrices and Covariance Estimate

7.1 Introduction to Random Matrices

So far, we have used matrices with fixed values to model scenarios in data
science. Here we will explore the idea of matrices whose entries are determined at
random from a probability density function. Such a matrix is called a random
matrix and each entry is consider to be a random variable.

For example, we can define a 3×3 matrix, X, with entries that are randomly
distributed with a standard normal distribution, N(0,1). One example of a
random matrix, X, such that Xi,j ∼ N(0,1) is

X =


0.290226 0.91635 0.0998479

0.882873 −0.615393 −0.902417

−0.0974429 −0.855375 −0.665516

 .

The matrix X is not symmetric; however, matrices such as XXT and X +XT

will always be symmetric matrices with real eigenvalues.
A n × n matrix, M , with entries mi,j is a called a Wigner matrix if the

entries of M , mi,j for 1 ≤ i ≤ j ≤ n, are randomly i.i.d.
In this section, we will focus on random matrices whose entries come from

a Gaussian distribution,

X =



X1,1 X1,2 X1,3 . . . X1,n

X2,1 X2,2 X2,3 . . . X2,n

X3,1 X3,2 X3,3 . . . X3,n

...
. . .

. . .
. . .

...

Xm,1 Xm,2 Xm,3 . . . Xm,n


,

where Xi,j ∼ N(µ,σ2) are i.i.d, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
Typically, random matrices of importance in application fall into three gen-

eral categories based on whether their entries are real, complex, or quaternionic
random variables. In this chapter, we will be focusing on these three types of
random matrices and the behavior of their eigenvalues.
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Before taking a deep dive into these three families of random matrices, we
will explore the effects of randomness on the stability of algorithms in linear
algebra.

7.2 Stability

We have learned that, in linear algebra, if a matrix A is an invertible matrix
then the system Ax = b has a unique solution,

x = A−1b.

However, when dealing with a random matrix, A + E, such that Ei,j ∼
N(µ,σ2), computational solutions may be incorrect or may not exist, typically
due to round off error.

Example 7.1. One can see the solution to the system(
−0.1 −1

0 1

)(
x1

x2

)
=

(
0.1

−1

)
,

(
x1

x2

)
=

(
0

−1

)
.

However if A =

(
−0.01 −1

0 1

)
, Ei,j ∼ N(0, 0.01), and

A+ E =

(
0 −1

−0.02 1.02

)
,

then (
x1

x2

)
=

(
−1

−1

)
.

The condition number of a matrix, A, κ(A), is a number that represents
how fast a solution, x, to the linear system Ax = b is changing with changes in
b.

κ(A) =

{
||A|| · ||A−1||, if A is invertible,

∞, otherwise.
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Example 7.2.

κ

((
−0.1 −1

0 1

))
=

∣∣∣∣∣
∣∣∣∣∣
(
−0.1 −1

0 1

)∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣∣
∣∣∣∣∣∣
(
−0.1 −1

0 1

)−1
∣∣∣∣∣∣
∣∣∣∣∣∣

=

∣∣∣∣∣
∣∣∣∣∣
(
−0.1 −1

0 1

)∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣
(
−10 −10

0 1

)∣∣∣∣∣
∣∣∣∣∣

≈ 1.41598 · 14.1598 = 20.05

It is interesting to note that the closer a matrix, A, is to singular, that is
the closer the determinant of the matrix, |A|, is to 0, the larger the condition
number, implying the more unstable solutions are to Ax = b.

Example 7.3. For random 2× 2 matrix

A =

(
0.93426714 −1.3138943

0.10796494 0.07159739

)
,

κ(A) ≈ 12.451, whereas a defined matrix without random entries such as

B =

(
1 0

1 1

)
has a condition number, κ(B) ≈ 2.618.

When dealing with a matrix with a higher condition number, the accuracy
of results will be lower in solving problems related to the matrix. This includes
the stability of the eigensystem of the matrix.

Theorem 14. (Bauer-Fike Theorem) If A is an n × n diagonalizable matrix
with complex entries such that

A = V DV −1,

where the columns of V are eigenvectors of A, D is a diagonal matrix of corre-
sponding eigenvalues and E is an n×n matrix used to perturb the entries of A
slightly, then if λA+E is an eigenvalue of A + E, there exists an eigenvalue of
A , λA, such that

|λA+E − λA| ≤ κ(V )||E||.

Example 7.4. If

A =

(
−0.01 1

0 1

)
.
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With the eigenvectors of A as the columns of V ,

V =

(
1 − 1√

10

0 3√
10

)

A = V

(
4 0

0 1

)
V −1.

Since the columns of matrix V are eigenvectors, they are not unique. We
will explore the matrix V with unit eigenvectors as the columns.

κ(V ) = ||V || · ||V −1|| ≈ 1.38743.

If E =

(
−0.1 0.1

−0.01 0.2

)
,

A+ E =

(
3.9 1.1

−0.01 1.2

)
,

||E|| ≈ 0.230935, and λA+E ≈ 3.89592, 1.20408.
Notice that

0.10408 = |ρ(A+ E)− ρ(A)| ≤ κ(V )||E|| = 0.320405.

The pseudospectrum of a matrix A is the family of eigenvalues of A+E.
Typically data scientists deal with matrices that have errors, also called

noisy matrices. Because of this, the pseudospectrum of noisy matrices are of
particular interest.

Example 7.5. With A =

(
1 −2

0 1/2

)
and Ei,j ∼ N(0,1), if

E =

(
1 0

0 1

)
then the eigenvalues of A+ E are 2 and 3

2 . However, if

E =

(
0 1

1 1
2

)
,

then the eigenvalues of A + E are 1 + i and 1 − i. Figure 7.1 shows a graph
representing the eigenvalues and the pseudospectrum of A.
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FIGURE 7.1
Visualization of a pseudospectrum.

Example 7.6. A Toeplitz matrix is a band diagonal matrix of the form

T =



a0 a−1 a−2 . . . a−(n−1)

a1 a0 a−1
. . .

. . .

a2 a1 a0 a−1
. . .

...
. . .

. . .
. . . a−1

a(n−1) . . . a2 a1 a0


.

If T is an upper triangular Toeplitz matrix with a single eigenvalue such as

T =


3 4 2 0

0 3 4 2

0 0 3 4

0 0 0 3
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and E is a random matrix such that E ∼ N(0,σ2), Figure 7.2 shows an ex-
ample of a visualization of the eigenvalues of T and perturbed matrix T + E,
pseudospectrum, with σ2 = .01 and σ2 = .25.
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FIGURE 7.2
Visualization of a pseudospectrum, σ2 = 0, .01, .25.

Throughout the rest of this chapter, we take a look at families of random
matrices and their respective eigenvalues.

7.3 Gaussian Orthogonal Ensemble

Models for a family of matrices of data are referred to as matrix ensembles.
Recall from Chapter 5, that if X and Y are i.i.d. random variables where

X, Y ∼ N(µ,σ2) then the joint distribution of X and Y ,

fXY (x,y) ∼ N
(
µ,
σ2

2

)
.

In this section, we wish to look at the distribution of linear combinations of
X and Y , such as X + Y or X

2 , where X and Y are random matrices, and the
eigenvalues associated with them.

Theorem 15. If X1, X2, . . . , Xn are i.i.d. normal random variables with means
µ1, µ2, . . . , µn and variances σ2

1 , σ
2
2 , . . . , σ

2
n then the random variable described

by the linear combination of X1, X2, . . . , Xn,

Z =
n∑
i=1

ciXi,



Random Matrices and Covariance Estimate 243

where ci, i = 1, 2, . . . , n are scalars, has a normal distribution

Z ∼ N
(

n∑
i=1

ciµi,

n∑
i=1

c2iσ
2
i

)
.

If X is a random matrix where Xi,j ∼ N(0, 1), then

H =
X +XT

2
is a symmetric random matrix, and the probability distribution of such a sym-
metric matrix is called the Gaussian Orthogonal Ensemble (GOE).

Example 7.7.

H =

(
−0.36091 0.475152

0.475152 −0.262286

)
is an example of a matrix in a GOE, where H = X+XT

2 is created from Xi,j ∼
N(0, 1)

X =

(
−0.36091 0.380648

0.569655 −0.262286

)
.

Lemma 3. The joint distribution of the elements of an n × n random matrix
H ∼ GOE where Hi,j ∼ N(0, 1) when i = j and Hi,j ∼ N(0, 12 ) otherwise is

p(H) = (2π)−n/2(π)−n(n−1)/2e−Tr(H
2)/2.

Proof. The joint distribution of Hi,j , 1 ≤ i, j ≤ n,

p(H) =

n∏
i=1

1√
2π
e
−H2

i,i
2 ·

∏
1≤i<j≤n

1√
π
e−H

2
i,j

= (2π)−n/2(π)−n(n−1)/2e−
1
2

∑n
i=1H

2
i,i+2

∑
1≤i<j≤nH

2
i,j

= (2π)−n/2(π)−n(n−1)/2e−
1
2

∑n
i=1H

2
i,i+

∑
i6=j H

2
i,j

= (2π)−n/2(π)−n(n−1)/2e−
1
2

∑n
i,j=1H

2
i,j

Since H is symmetric,

p(H) = (2π)−n/2(π)−n(n−1)/2e−
∑n
i=1

∑n
j=1 Hj,iHi,j

2

= (2π)−n/2(π)−n(n−1)/2e−
∑n
i=1(H2)i,i

2

= (2π)−n/2(π)−n(n−1)/2e−
Tr(H2)

2 .
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Lemma 4. Let H be an n × n GOE matrix and O an n × n non-random
orthogonal matrix. Then the distribution of H is the same as the distribution
of OHOT .

Proof. First note that since matrix O is an orthogonal matrix,

Tr(OHOT )2 = Tr(OH2OT ) = Tr(H2).

The function f : H → OHOT has a Jacobian matrix whose determinants
are relative to the entries of H. That is, the entries of the Jacobian, denoted
J(O), are

∂(OHOT )i,j∂Hk,l = Oi,kOj,l.

It is important to note that

|J(O)| = |J(OT )|.
Therefore,

|J(O)|2 = |J(O)||J(OT )| = |J(OOT )| = |J(I)| = 1.

The previous two lemmas tell us about the joint distribution of the elements
of a GOE matrix. More interestingly, we will further explore the distribution of
the eigenvalues and spacing of eigenvalues of random matrices from the GOE.
For a general 2× 2 random matrix from the GOE,

X =

(
X1 X2

X2 X3

)
,

where X1, X3 ∼ N(0, 1) and X2 ∼ N(0, 1
2 ) are i.i.d. The eigenvalues of X are

1

2
Tr(X)±

√
(X1 −X3)2 + 4X2

2 .

Thus the mean of the eigenvalues is X1 +X3.
The probability density function of X1 + X3 ∼ N (0, 2), which can be seen in
Figure 7.3.

Theorem 16. (Wigner’s Semicircle Law) If X is an n×n matrix whose entries
Xij ∼ N(0, σ2),

H =
X +XT

√
2n

,
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FIGURE 7.3
Distribution of mean of eigenvalues in 2× 2 GOE.

FIGURE 7.4
Distribution of eigenvalues of 100 × 100 GOE matrices, visualizing Wigner’s
Semicircle Law.

then as n → ∞, the probability density function for the eigenvalues of H ap-
proaches

1

2π

√
4− x2, − 2 ≤ x ≤ 2.

as seen in Figure 7.4.

The Marchenko-Pastur Quarter-Circle Law is the analogous property
for the singular values of a matrix.
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Theorem 17. (Marchenko-Pastur Quarter-Circle Law) If X is an n×n matrix
whose entries Xij ∼ N(0, σ2) and

H =
X +XT

√
2n

,

then as n → ∞, the probability density function for the singular values of H
approaches

1

2π

√
4− x2, 0 ≤ x ≤ 2.

FIGURE 7.5
Distribution of singular values of 100 × 100 GOE matrices, visualizing
Marchenko-Pastur Quarter-Circle Law.

Scientists and data scientists are even more interested in the distribution of
the spacing between the individual eigenvalues of a matrix. Wigner attempted to
compare the spacing between heavy nuclei resonances and the spacing between
eigenvalues of GOE matrices.

This theory, called Wigner’s surmise, describes a phenomenon called ‘level
repulsion’. In a spatially bound system, particles can only have discrete amounts
of energy, which tend to cluster in a general sense.

In general, Wigner’s surmise states that the probability density function
of the eigenvalue spacings, S, of a random GOE matrix follows a Rayleigh
distribution.

p(s) = P (S = s) =
s2

k2
e
−s2

2k2 ,

where k is a scale parameter for the distribution.
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Since the entries of such matrices are random variables and not fixed num-
bers, we must investigate techniques to theoretically determine the probability
distribution of the eigenvalues.

We dig deeper into the theoretical aspects of Wigner’s surmise for 2 × 2
GOE random matrices.

If we define a 2× 2 random matrix from the GOE,

X =

(
X1 X2

X2 X3

)
,

where X1, X3 ∼ N(0,1) are i.i.d and X2 ∼ N(0, 12 ), the eigenvalues of X are

1

2
Tr(X)±

√
(X1 −X3)2 + 4X2

2 .

Let s = λ1 − λ2 =
√

(X1 −X2
3 ) + 4X2

2 . The probability density function for s,

p(s) =
1

2π3/2

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e
−(X2

1+2X2
2+X2

3)

2 dX1dX2dX3

δ(d−
√

(X1 −X3)2 + 4X2
2 ).

A visualization of p(s) can be seen in Figure 7.6.
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FIGURE 7.6
Example distribution of Wigner Surmise with 2× 2 GOE distribution.
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With a change of variables,

X1 −X3 = r cos(θ),

X1 +X3 = η,

X2 = r sin(θ)/2,

we get,

J =

∣∣∣∣∣∣∣∣
cos(θ)/2 −r sin(θ)/2 1/2

− cos(θ)/2 r sin(θ)/2 1/2

sin(θ)/2 cos(θ)/2 0

∣∣∣∣∣∣∣∣ = −r/4,

p(s) =
1

8π3/2

∫ ∞
0

∫ 2π

0

∫ ∞
−∞

e

− ( r cos(θ)+η
2 )

2
+(−r cos(θ)+η

2 )
2
+
r2 sin2(θ)

2
2


rδ(d− r)dηdθdr

=
1

8π3/2

∫ ∞
0

rdrδ(s− r)
∫ 2π

0

dθ

∫ ∞
−∞

e
− 1

2

(
r+ η2

4

)
dη

=
s2

2
e−s

2/4.

7.4 Gaussian Unitary Ensemble

In this section, we consider random matrices with complex entries. Recall that
if z = a+ ib then z̄ = a− ib is the complex conjugate of z. If A is a square
matrix, then the entries of Ā are the complex conjugate of each corresponding
entry in A.

A square matrix, A, is called Hermitian if

ĀT = A.

ĀT is called the conjugate transpose of A.

Example 7.8.

A =


1 2 + i 3− 2i

2− i 4 7 + 4i

3 + 2i 7− 4i 6
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is Hermitian. Notice that the main diagonal entries of a matrix must be real
in order for the matrix to be Hermitian. All real symmetric matrices are also
Hermitian.

An invertible square matrix, A, is unitary if

ĀT = A−1.

Example 7.9. If

B =
1

2

(
1 + i 1− i
1− i 1 + i

)

B̄T =
1

2

(
1− i 1 + i

1 + i 1− i

)
.

B̄TB = I and thus matrix B is unitary; however B is not Hermitian. The
matrix

Y =

(
0 1√

2
+ i√

2
1√
2
− i√

2
0

)
.

is an example of a unitary Hermitian matrix.
It is important to note that if an n × n matrix is an unitary Hermitian

matrix then its rows (and columns) form an orthonormal basis for Cn.
The inner product of the columns of Y , under a standard Euclidean inner

product, are 〈(
0,

1√
2
− i√

2

)
,

(
1√
2

+
i√
2
,0

)〉
= 0,

∣∣∣∣∣∣∣∣(0,
1√
2
− i√

2

)∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣( 1√
2

+
i√
2
,0

)∣∣∣∣∣∣∣∣ = 1.

Every Hermitian matrix, H, is diagonalizable with a unitary matrix, U ,
and the resulting diagonal matrix, D, will have real entries. That is if H is a
Hermitian matrix then there exists a unitary matrix U such that

D = U−1HU,

where Di,i ∈ R.

H =

(
1 2 + 3I

2− 3I 4

)
and U =

 (2− 3i)
√

1
26 − 3

26
√

61

√
61+3√

6
√

61+122

(−2 + 3i)
√

1
26 + 3

26
√

61

√
61−3√

122−6
√

61
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where the columns of U are the unit eigenvectors of H, then

U−1HU =

(
1
2

(√
61 + 5

)
0

0 1
2

(
5−
√

61
) ) = D.

U is a unitary matrix and the main diagonal entries of D are the real eigenvalues
of H.

Applying this idea with similar ideas to that in Lemma 4, the probability
density of a Hermitian matrix, H, is the same as that for D = U−1HU , and
thus is directly related to the probability density of the eigenvalues of H.

A random Hermitian matrix is a matrix in the Gaussian Unitary En-
semble (GUE) if Hi,i ∼ N(0, 1) and the upper triangular entries Hi,j ∼
N
(
0, 1

2

)
+ iN

(
0, 1

2

)
, for 1 ≤ i ≤ j ≤ n. The standard GUE,

H =
X + X̄T

2
,

where Xi,i ∼ N(0, 1) and Xi,j ∼ N
(
0, 1

2

)
+ iN

(
0, 1

2

)
for 1 ≤ i ≤ j ≤ n.

Example 7.10. One 3× 3 GUE is

H =


−0.168 0.042 + 0.405i 0.464 − 0.5585i

0.042 − 0.405i −0.689 −0.2945− 0.2925i

0.464 + 0.5585i −0.2945 + 0.2925i −0.131


Notice that H is a Hermitian matrix but not unitary. H was created from

X =


−0.168 + 1.909i −0.414 + 0.173i 0.878 − 0.551i

0.498 − 0.637i −0.689 + 0.403i −0.2− 0.988i

0.05 + 0.566i −0.389− 0.403i −0.131− 1.189i

 .

Like the Gaussian Orthogonal Ensemble, if we define a 2×2 random matrix
from a GUE,

X =

(
X1 X2 +X3i

X2 −X3i X4

)
,

with i.i.d random variables X1, X4 ∼ N (0,1) and X2, X3 ∼ N
(
0, 12
)
, the

eigenvalues of X are

1

2
Tr(X)±

√
(X1 −X4)2 + 4(X2 +X3i)2,

and the mean of the eigenvalues is 1
2 (X1 +X4) ∼ N

(
0, 12
)
.
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Theorem 18. The eigenvalues of a Hermitian matrix are all real and eigen-
vectors of distinct eigenvalues are orthogonal.

Proof. Let A be a Hermitian matrix with eigenvalue λ and corresponding eigen-
vector x, then

Ax = λx.

Let α = xTAx. Then α is a real number since

α = αT = (xTAx)T = xTATx = xTAx = α.

Additionally, α = λxTx, so λ is also a real number.
If x1 and x2 are eigenvectors corresponding to distinct eigenvalues λ1 and

λ2,
(Ax1)Tx2 = xT1 (ATx2) = xT1 (Ax2) = xT1 (λ2x2) = λ2x

T
1 x2.

Similarly,
(Ax1)Tx2 = λ1x

T
1 x2.

Since λ1 6= λ1 then xT1 x2 = 0 and thus x1 and x2 are orthogonal.

The result presented in Theorem 18 is not necessarily true for all random
matrices which are not GOE or GUE. Figure 7.7 shows the real versus imaginary
part of the mean eigenvalue of a non-Hermitian, non-symmetric, random matrix.

The final ensemble of this chapter is the Gaussian Symplectic Ensemble,
which focuses on random entries who are quaternion in nature.

-3 -2 -1 1 2 3

-3

-2

-1

1

2

3

FIGURE 7.7
The Real vs Imaginary parts of the mean eigenvalue of a 2× 2 Non-Hermitian
Random Matrix.
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7.5 Gaussian Symplectic Ensemble

A quaternion is a linear combination

q = a · 1 + bi+ cj + dk,

where a, b, c, and d ∈ R and i, j, and k are the quaternion units,

i2 = j2 = k2 = i · j · k = −1.

The set of quaternions is denoted H.
The complex conjugate for a quaternion, q, can also be defined

q̄ = a · 1− bi− cj − dk.
Similar to elements in Cn, if q = (q1, q2, . . . , qn) and p = (p1, p2, . . . , pn) are
in Hn then

< p, q >=

n∑
i=1

p̄iqi,

and thus the norm of q,

||q|| = qq̄ = q̄q = a2 + b2 + c2 + d2.

A 2× 2 matrix, Q, of the form

Q =

(
z w

−w̄ z̄

)
,

where z and w are complex numbers is called a real quaternion matrix. Just
like the standard basis elements of the quaternions, are 1, i, j and k, as 2 × 2
matrices

V1 =

(
1 0

0 1

)
, V2 =

(
i 0

0 −i

)
,

V3 =

(
0 1

−1 0

)
, and V4 =

(
0 i

i 0

)
,

can serve as a basis for the set of real quaternion matrices where

Q = aV1 + bV2 + cV3 + dV4.

We will see how real quaternion matrices are related to the next ensemble
presented, the Gaussian Symplectic Ensemble.

A matrix A is skew-symmetric if

AT = −A
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Example 7.11.

A =


0 2 3

−2 0 4

−3 −4 0

 and B =


0 −i −2i

i 0 3i

2i −3i 0

 .

Matrix A is an example of skew-symmetric matrix and matrix B is an example
of a skew-symmetric Hermitian matrix.

A symplectic matrix M is a 2n×2n matrix such that if S =

(
0 In

−In 0

)
is a real skew-symmetric matrix then

MTSM = S.

Example 7.12.

A =


0 0 1 0

0 0 0 1

−1 0 0 0

0 −1 0 0

 and B =


0 i 0 0

−i 0 2i 0

0 −2i 0 −i
0 0 i 0


Matrix A is and example of a symplectic matrix, where matrix B is a symplectic,
skew-symmetric, and Hermitian matrix.

If X is a 2n× 2n matrix with entries Xi,j ∼ N(0, σ2) + iN(0, σ2) and Xi,j

are i.i.d. then we define

H =
X + X̄T − S(X + X̄T )TS

4

as a Gaussian Symplectic Ensemble (GSE), where S =

(
0 −1

1 0

)
⊗ In.

Example 7.13. If

X =


0 i 0 i

0 2 0 −1 + i

−i −2i −1 −1 + i

−1− i 1 1 2i
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and X + X̄T =


0 i i −1 + 2i

−i 4 2i i

−i −2i −2 i

−1− 2i −i −i 0

 .

S =

(
0 −1

1 0

)
⊗
(

1 0

0 1

)

=


0 0 −1 0

0 0 0 −1

1 0 0 0

0 1 0 0



Then the matrix

H =
X + X̄T − S(X + X̄T )TS

4

=


1
2 0 0 − 1

4

0 1 − 1
4 0

0 − 1
4 − 1

2 0

− 1
4 0 0 −1

 .

We have seen three different types of matrix ensembles. You can find a
deep dive into the joint distributions of elements of the GOE and that of the
eigenvalues of the GOE in Section 7.3. In general if β = 1, 2, and 4, represent
the GOE, GUE, and GSE, the joint distribution of the elements from a random
matrix, X, are of the form

1

2n/2
1

πn/2+n(n−1)β/4
e−||X||

2
F

where || · ||F represents the Frobenius norm,

||X||2F =
n∑
i=1

n∑
j=1

|xi,j |2.

We now look at the importance of random matrices to a variety of applica-
tions.
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7.6 Random Matrices and the Relationship to
the Covariance

There are some particular random matrices of interest that we will explore in
this section. We first define a real symmetric m×m random matrix

M = XXT =
n∑
j=1

XjX
T
j

where X is a m × n random matrix, with columns Xj , 1 ≤ j ≤ n, are formed
from independent samples of size m from i.i.d. random variables. The matrix
M is called a real Wishart matrix. If these random variables are Gaussian
each with mean 0 and covariance

Σ =
∑

(X − X̄)(X − X̄)T ,

then M is a Gaussian Wishart matrix and is denoted Wp(n,Σ), and has a
probability distribution,

f(M) =
1

(2π)mn/2Γp(
n
2 )|Σ|n/2 |M |

(n−p−1)/2e−
1
2Tr(Σ

−1M).

Here Γp(n) is the multivariate gamma function.

Γ(x) =

∫ ∞
0

yx−1e−ydy.

Notice that since M is symmetric, all of the eigenvalues, λ1, λ2, . . . , λm of
M are real.

In Section 3.5, we talked about the covariance and correlation matrices.
Given a data set, X, the empirical covariance matrix can be found by finding

XXT .

The empirical covariance matrix is different than the true, statistical, cor-
relation matrix, C. If there are a large number of observation then, in fact, the
empirical covariance matrix will be to the true covariance matrix.

Example 7.14. Let Z = (X, Y )T where X ∼ N(0, σ2
x), Y ∼ N(0, σ2

y). Then

the covariance matrix Σ =

(
σ2
x ρσxσy

ρσxσy σ2
y

)
and

M = ZZT =

( ∑
iX

2
i

∑
iXiYi∑

iXiYi
∑
i Y

2
i

)

where ρ is the correlation coefficient.
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7.7 CASE STUDY: Finance and Brownian Motion

In this case study, we will discuss how the covariance and correlation matrices
relate to random matrices through a financial lens.

The unconditional probability distribution for any traded financial commod-
ity (such as stocks, currencies, interest rates) is far from a Gaussian distribution.
This unconditional probability distribution tends to follow a distribution simi-
lar to a Rayleigh distribution or more generally a power law distribution,
called the Tracy-Widom distribution.

The general form of a Rayleigh probability density function is

f(x) =
x

σ2
e

−x2

2σ2 , 0 ≤ x <∞,

where E(X) = σ
√

π
2 and V ar(X) =

(
4−π

2

)
σ2.

Some examples of this probability distribution can be see in Figure 7.8.

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

1.2

FIGURE 7.8
Examples of Rayleigh Distributions with different scaling factors.

The largest eigenvalue of a random Gaussian Ensemble matrix and its corre-
sponding eigenvector can be interpreted as the collective response of the market
to external factors, so it can be compared with the market index.

If H is a GUE random matrix, Figure 7.9 shows an example of what the
distribution of maximum eigenvalues of H would look like.

Stocks have quite a bit of randomness in their volatility which can been seen
in the three airline stock trends seen in Figure 7.10. Table 7.1 shows a small
subset of the data for these three airline stocks, where columns represent the
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FIGURE 7.9
Distribution of maximum eigenvalues of a GUE matrix.

trading days and rows for the different stocks. The stocks in this problem are
correlated.

We begin by manipulating the data in Table 7.1, as we have done in other
data sets throughout the text. Here we apply a logarithmic transformation of
the daily returns, which can be seen in Table 7.2.

200 400 600 800 1000 1200
Days

20

40

60

80

Closing Price

America(AAL)

Delta(DAL)

United(UAL)

FIGURE 7.10
American, Delta, and United Airline stock closing prices
February 2013–February 2018.
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TABLE 7.1
Sample of Closing Prices for Stocks (Feb 2013–Feb
2018).

AAL 14.75 14.46 14.27 14.66 13.99 14.5
ABBV 36.25 35.85 35.42 35.27 36.57 37.58
CBG 24.19 24.13 24.26 24.5 24.7 24.28
DAL 14.62 14.69 14.5 14.78 14.24 14.45
EQR 55.44 56.46 57.49 57.65 57.56 57.51
UAL 26.31 26.51 25.89 26.19 25.87 26.37

TABLE 7.2
Sample of Logarithmic Returns for Stocks (Feb 2013–Feb 2018).

AAL -0.0198569 -0.0132268 0.0269633 -0.0467799 0.0358059 -0.0166902
ABBV -0.0110958 -0.0120669 -0.00424389 0.0361955 0.0272438 0.0161017
CBG -0.00248344 0.00537302 0.00984421 0.00813013 -0.0171503 0.00902015
DAL 0.00477654 -0.0130183 0.0191263 -0.03722 0.0146395 -0.0104349
EQR 0.0182311 0.0180786 0.00277923 -0.00156236 -0.000869036 0.00121644
UAL 0.00757293 -0.0236652 0.0115209 -0.0122937 0.019143 0.0143075

First, we will calculate the logarithmic returns for consecutive trading
days for each stock.

log(return) = log

(
pi
pi−1

)
,

where pi represents the price index on trading day i. Then we normalize the
trading data for each stock, subtracting the mean and dividing by the standard
deviation.

200 400 600 800 1000 1200
Days

-0.05

0.05

0.10

Log(returns)

FIGURE 7.11
Logarithmic returns for American Airline stock February 2013–February 2018.
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In this case study, we will limit our study to small correlated data sets
representing a 6 day period. A 6 × 6, stock × log(return), matrix, X, can be
defined from the data in Table 7.2. Notice that this matrix uses the logarithmic
returns of the 6 stocks over the first six day period, Day 1 through Day 6. A
similar matrix can be created from Day 2 through Day 7 and in general in the
stock price observations are taken for M days then the matrix will have M
columns representing Day i through Day i+M .

FIGURE 7.12
Distribution of Largest Eigenvalues for the Correlation Matrix.

For each M consecutive days, we can create the correlation matrix

W =
XXT

M
,

and determine the eigenvalues of the correlation matrix W . Notice that W is a
Wishart matrix.
Figure 7.12 shows the distribution of the largest eigenvalue of W using a larger
dataset from the stocks in Table 7.2 from February 2013 to February 2018,
which can be found at Github link 48.

A covariance matrix relating the log returns over a 6 day period, can also
help us understand the behaviors of stocks in Table 7.11.

We can also look at how the largest eigenvalues of W throughout time are
related to the average covariance as well. Notice the behavior similarities in
Figure 7.13.

In order to create a optimal portfolio, one might want to maximize the
Sharpe ratio [38],

Portfolio return

Portfolio risk
=

WT r(t)√
WTΣ(t)W

,
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200 400 600 800 1000
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FIGURE 7.13
Average Covariance Vs Maximum Eigenvalue of Covariance
Matrix.

where r(t) is the expected returns for each asset and Σ(t) is the predicted
covariance matrix for these returns. One might also wish to solely optimize the
expected returns, WT r(t).

Figure 7.14 shows where WT r(t), and the Sharpe ratio, achieve their maxi-
mum throughout time. Notice that maximums occur roughly every 20 days.

Github links 44 and 46 provide Python and R syntax for this case study.

20 40 60 80 100 120

2

4
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10

FIGURE 7.14
WT r(t) throughout time.
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7.8 CASE STUDY: Random Matrices in Gene
Interaction

In reality, genes do not act in isolation within the body but interact within
a common cellular environment. This could be a dominant gene interaction, a
complementary gene interaction, or a supplementary gene interaction. Scientists
have known for some time that some genetic diseases result from mutations of a
single gene. These diseases are called monogenetic diseases. Multigenetic
diseases results from genetic mutations of more than one gene that interact
with one another. This process is called epistatis. Knowledge about gene-gene
interactions can give us a better understanding about hereditary diseases [29].

There are many databases related to gene-gene interaction. For this case
study, we use data from The Cancer Network Galaxy [5], which focuses on
gene-gene interaction related to cancer. The Cancer Network Galaxy has 256
data sets with 22,820 genes and their interactions represented. In this case study,
we focus on one such data set focusing on mRNA expression of 131 cancer cell
lines that can be found at Github link 49; however, a larger model incorporating
multiple data sets is encouraged for future study.

Figure 7.15 shows a graphical depiction of a subgraph of interactions between
genes in the dataset.

FIGURE 7.15
Visualization of a small subset of gene-gene interactions in the Cancer Network
Galaxy.
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For this case study, assume that there are n genetic makers, G1, G2, . . . , Gn
measured on m subjects. In the provided data set there is an identified parent
gene and child gene. A relationship matrix M is created such that if parent
gene Gi is related to child gene Gj then Mi,j = 1.

Otherwise Mi,j = 0. Note that the matrix M is a sparse matrix with many
entries equal to 0. Also notice that the matrix M may not be symmetric.

We define the sample correlation matrix

W =
1

n− 1
MMT .

In addition, if λi and λj are consecutive eigenvalues of W , Figure 7.16 shows
the distribution of the spacing between consecutive eigenvalues.

FIGURE 7.16
Distribution of Eigenvalue Spacing for the Gene-Gene Interaction Correlation
Matrix.

Notice that the distribution seen in Figure 7.16 follows a Rayleigh distribu-
tion similar to that seen with the Wigner Surmise. One can also see that the
distribution of the eigenvalues of the gene-gene interaction covariance matrix
follows a more symmetric distribution in Figure 7.17. If more data from [5] were
integrated, we would begin to see Wigner’s Semicircle Law displayed.

In order to further study gene-gene interaction relationship to random ma-
trices, you may consult Github links 45 and 47 for Python and R coding sug-
gestions.
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FIGURE 7.17
Distribution of Eigenvalues of Gene-Gene Interaction Correlation Matrix.

7.9 Exercises

1. Find the condition number of A =

(
−0.1 −1

0 1

)
.

2. Verify that the Bauer-Fike Theorem holds for

A =

(
4 + i 0

3 + i 1

)
and E =

(
−0.1 0.8

−0.01 0

)
.

Recall that |a+ bi| =
√
a2 + b2.

3. (Coding) The following commands can be used to visualize the pseu-
dospectrum of a matrix A using Python.

import numpy as np
import matplotlib.pyplot as plt
from scipy.linalg import svdvals ,schur

Graph the pseudospectrum of

A =

(
−0.1 −1

0 1

)
.

4. a. If H is a 4×4 GOE find the probability distribution of the mean
eigenvalues.

b. (Coding) Write code to generate 10000 4× 4 GOE matrices and
calculate the mean of the eigenvalues of each GOE. Use these
values to plot the probability distribution of the mean eigenvalues
and compare it to your answer in part a.
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5. Determine which of the follow matrices are Hermitian.

a.

(
4− 2i −8 + 12i

−8 + 12i 36− 16i

)

b.

(
1 1 + i

1− i 1

)

c.

(
1 2

2 3

)

6. Let A =


1+i
2 − 1+i

2

1√
2

1√
2

. Determine if A is a unitary matrix.

7. (Coding) Using either Python or R, generate a population of N = 100
people that have all the same initial value V = 1000. Write a loop,
where the time step represents trading periods, and keep track of
each person’s value under the following conditions.

a. Random trading with one person at each time step, total value
between the two traders is shared equally between the traders.

b. Random trading with one person at each time step, total value
between the two traders is shared where the percent split is also
generated randomly.

c. Each person is given a random initial value between V = 100
and V = 1000. Random trading with one person at each step.
The person of greater value gets 75% of the total value between
the two traders and the lesser get 25%.

d. Create a probability histogram representing the values of the
population members in parts a. through c. and estimate the dis-
tribution for each part.

e. For part c., create a matrix, M , where the rows represent the
population members and the columns represent the individual
values throughout time. Use your matrix M to create a correla-
tion matrix.

f. Create a probability histogram representing the eigenvalues of
the correlation matrix in part e. and estimate the distribution.

8. (Coding) Create code in Python or R to generate the average condi-
tion number of a 2 × 2 GOE matrix, A, and the average error in a
system Ax = b.
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Sample Solutions to Exercises

8.1 Chapter 1

1. a.
∑6
j=2A1,j = 2

b. A2
1,j 6= 0 for i = 2,3,4,5,6 so Kush has connections with all of the

other 5 in 2 steps.

c. A1,2 +A2
1,2 = 2

2. ρ(A) = 1 +
√

2.

3. The graph is not a simple connected graph since it contains a loop.

4. a. A =



0 1 0 0 0 0 1 1 0 0

1 0 1 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0

0 0 0 0 1 0 1 0 0 0

1 0 0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 1 0 1

0 0 0 0 0 0 0 1 1 0



DOI: 10.1201/9781003025672-8 265

https://doi.org/10.1201/9781003025672-8


266 Linear Algebra With Machine Learning and Data

b. L =



3 −1 0 0 0 0 −1 −1 0 0

−1 2 −1 0 0 0 0 0 0 0

0 −1 2 −1 0 0 0 0 0 0

0 0 −1 2 −1 0 0 0 0 0

0 0 0 −1 2 −1 0 0 0 0

0 0 0 0 −1 2 −1 0 0 0

−1 0 0 0 0 −1 2 0 0 0

−1 0 0 0 0 0 0 3 −1 −1

0 0 0 0 0 0 0 −1 2 −1

0 0 0 0 0 0 0 −1 −1 2


c. The Fiedler value is 0.0.237487 and the unit Fiedler vector is

{0.05213,−0.1147,−0.2543,−0.3335,−0.3335,−0.2543,

− 0.1147, 0.3734, 0.4898, 0.4898}.

d. Using the Fiedler vector from part c, we can cluster the vertices
into two subgroups V1 = {2,3,4,5,6,7} and V2 = {1,8,9,10}.

5. If V2 = {1,8,9,10} and V1 = {2,3,4,5,6,7} the number of cut edges is
2 and θ(V2) = 2

4·6 ; however, if V2 = {8,9,10} and V1 = {1,2,3,4,5,6,7}
then the number of cuts is 1 and θ(V2) = 1

3·7 . Thus the isoperimetric
ratio is θ(G) = 1

21 .

6. a. A =



0 1 1 0 1 1 0 0 0 0 0 0 0 0 0

1 0 1 0 1 0 0 0 0 0 0 0 0 0 0

1 1 0 0 1 1 1 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

1 1 1 0 0 0 1 1 0 0 0 0 0 0 0

1 0 1 1 0 0 0 1 0 0 0 0 0 0 0

0 0 1 0 1 0 0 0 1 1 1 0 1 1 0

0 0 0 0 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 1 0 0 0 1 0 1 0 0

0 0 0 0 0 0 1 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 1 0 0 0 1 0 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

0 0 0 0 0 0 1 0 1 1 1 1 0 1 0

0 0 0 0 0 0 1 0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 0 0 0 1 1 0 1 0



.
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b. Calculating I+A+A2 we can see that no marmot is connected to
every other marmot directly or through a two step relationship,
however, this calculation shows that marmot 7 is related to every
other marmot except for marmot 4 either directly or through a
two step relationship. Adding three step relationships allows for
marmot 7 to be related to every other marmot in the madness.

c. L =



4 −1 −1 0 −1 −1 0 0 0 0 0 0 0 0 0

−1 3 −1 0 −1 0 0 0 0 0 0 0 0 0 0

−1 −1 5 0 −1 −1 −1 0 0 0 0 0 0 0 0

0 0 0 1 0 −1 0 0 0 0 0 0 0 0 0

−1 −1 −1 0 5 0 −1 −1 0 0 0 0 0 0 0

−1 0 −1 −1 0 4 0 −1 0 0 0 0 0 0 0

0 0 −1 0 −1 0 7 0 −1 −1 −1 0 −1 −1 0

0 0 0 0 −1 −1 0 2 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 3 0 −1 0 −1 0 0

0 0 0 0 0 0 −1 0 0 3 0 0 −1 −1 0

0 0 0 0 0 0 −1 0 −1 0 4 0 −1 0 −1

0 0 0 0 0 0 0 0 0 0 0 3 −1 −1 −1

0 0 0 0 0 0 −1 0 −1 −1 −1 −1 6 −1 0

0 0 0 0 0 0 −1 0 0 −1 0 −1 −1 5 −1

0 0 0 0 0 0 0 0 0 0 −1 −1 0 −1 3


.

d. If V1 = {v1,v2,v3,v5,v6,v7} then the number of graph cuts is 8
and the isometric ratio is 4

27 .

e. A unit Fiedler vector is approximately
{−0.237,−0.216,−0.173,−0.459,−0.169,−0.314, 0.122,−0.287,
0.22, 0.225, 0.234, 0.286, 0.235, 0.246, 0.285}.

f. Using the result from part d., a cluster of marmots would be
V1 = {v1,v2,v3,v4,v5,v6,v8} and V2 = {v7,v9,v10,v11,v12,v13,v14,v15}.

g. Using V1 and V2 from part e., we further divide these sets of ver-
tices into subsets using similar analysis. The adjacency matrices
associated with V1 and V2 respectively are

A1 =



0 1 1 0 1 1 0

1 0 1 0 1 0 0

1 1 0 0 1 1 0

0 0 0 0 0 1 0

1 1 1 0 0 0 1

1 0 1 1 0 0 1

0 0 0 0 1 1 0
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and A2 =



0 1 1 1 0 1 1 0

1 0 0 1 0 1 0 0

1 0 0 0 0 1 1 0

1 1 0 0 0 1 0 1

0 0 0 0 0 1 1 1

1 1 1 1 1 0 1 0

1 0 1 0 1 1 0 1

0 0 0 1 1 0 1 0


with row/column 7 of A1 representing marmot 8 and row/column
1 of A2 representing marmot 7. Finding the Fiedler vector for
each of the Laplacian matrices associated with A1 and A2 yield
a clustering of

{v1,v2,v3,v5,v8},{v4,v5},{v7,v9,v10,v11,v13},{v12,v14,v15}.

7. With more knowledge about the marmot interactions, the graph may
be a directed graph related to the direction of dominance or could be
a weighted graph where the weights are representative of the number
of interactions or dominant behaviors that took place.

8. a. L =



29 −10 −3 0 −6 −10 0 0 0 0 0 0 0 0 0

−10 20 −6 0 −4 0 0 0 0 0 0 0 0 0 0

−3 −6 40 0 −3 −15 −13 0 0 0 0 0 0 0 0

0 0 0 13 0 −13 0 0 0 0 0 0 0 0 0

−6 −4 −3 0 21 0 −1 −7 0 0 0 0 0 0 0

−10 0 −15 −13 0 51 0 −13 0 0 0 0 0 0 0

0 0 −13 0 −1 0 43 0 −5 −5 −5 0 −9 −5 0

0 0 0 0 −7 −13 0 20 0 0 0 0 0 0 0

0 0 0 0 0 0 −5 0 24 0 −11 0 −8 0 0

0 0 0 0 0 0 −5 0 0 14 0 0 −6 −3 0

0 0 0 0 0 0 −5 0 −11 0 37 0 −11 0 −10

0 0 0 0 0 0 0 0 0 0 0 42 −15 −12 −15

0 0 0 0 0 0 −9 0 −8 −6 −11 −15 59 −10 0

0 0 0 0 0 0 −5 0 0 −3 0 −12 −10 44 −14

0 0 0 0 0 0 0 0 0 0 −10 −15 0 −14 39


.

b. The Fiedler value is 2.38721 and a unit Fiedler vector is approx-
imately {−0.27,−0.26,−0.2,−0.35,−0.18,−0.29,
− 0.02,−0.29, 0.28, 0.28, 0.27, 0.27, 0.23, 0.25, 0.28}.

c. Based on the Fiedler vector, two clusters could be V1 =
{v1,v2,v3,v4,v5,v6,v7,v8} and V2 = {v9,v10,v11,v12,v13,v14,v15}.

9. a. S = {−0.333,−1., 1.,−0.19, 0.231,−0.487}.
b. With ranking vector {−0.626,−2.678,1.553,−0.484,0.451,−0.744},

marmot 12 is most dominant, with marmot 14 being 2nd and
marmot 10, 3rd.

c. With ranking vector {−0.993,−4.905,1.777,−1.974,0.381,−1.905},
marmot 12 is most dominant, with marmot 14 being 2nd and
marmot 10, 3rd.



Sample Solutions to Exercises 269

10. a. If A is the binary story × attribute matrix. The gramian matrix
S = AAT .

b. A (1,1) entry of 3 shows that story 1 has 3 attributes present.
A (1,2) entry of 1 says that stories 1 and 2 share 1 attribute in
common.

c. V1 = {1, 3, 4, 5, 6, 7, 8, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 26, 31}
and V2 = {2, 9, 10, 11, 12, 13, 14, 25, 27, 28, 29, 30}

11. For n = 4 the ranking is (FL, GA, TN, SC, KY, MIZ, VAN) and for
n = 5 the ranking is (FL, TN, SC, KY, GA, VAN, MIZ)

8.2 Chapter 2

1. A1 is primitive and A2 is neither primitive nor irreducible.

2. With transition matrix

T =


.8 0 .25

.1 .7 .25

.1 .3 .5

 .

In the long run, 35.7% are at Duke, 35.7% are at UNC and 28.6%
are at NC State.

3. P (Duke|Durham)

=
P (Durham|Duke)P (Duke)

P (Durham|Duke)P (Duke)+P (Durham|UNC)P (UNC)+P (Durham|NCState)P (NCState)

= .4∗.5
.4∗.5+.1∗.2+.2∗.3 ≈ .71

4. T =


.75 0 .7

.25 .8 0

0 .2 .3

 and E =
(
.4 .5 .1

)
.

a. P (O1 = Sad) = 0.2955

b. P (O1 = Sad,O2 = Sad) = 0.10275

c. P (O1 = Sad,O2 = Sad,O3 = Happy) = 0.0646725

d. .0261
P ({Sad, Sad, Happy}) = 0.403572

e. {Bull,Bull,Bull}
6. From Example 2.16, π = {.91,.09} and

T =

(
0.74914 0.52723

0.25086 0.47277

)
, E =

(
0.678328 0.3725

0.321672 0.6275

)
.
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5.

FIGURE 8.1
Recursive decisions in a Viterbi Algorithm Matrix for Exercise 5.

α(H1) = {0.6170, 0.0337} β(H1) = {0.0649, 0.0527}
α(H2) = {0.1544, 0.1071} β(H2) = {0.2303, 0.0555}
α(H3) = {0.1168, 0.0333} β(H3) = {0.3692, 0.1193}
α(H4) = {0.0713, 0.0168} β(H4) = {0.3984, 0.4663}
α(H5) = {0.02, 0.0162} β(H5) = {1,1}

So

and the new model is λ with πnew = {0.957557, 0.0424426}

Tnew =

(
0.730663 1.11403

0.17552 0.563931

)
, Enew =

(
0.653434 0.367311

0.346566 0.632689

)
.

7. α(H1) = {0.1, 0.05625, 0.1, 0.063},α(H2) = {0.0271, 0.0093, 0.0189,
0.0297}, and α(H3) = {0.0042, 0.0051, 0.0032, 0.0043}. P (O|λ) =
0.017

8. γ(H1) = {0.3633, 0.0846, 0.29, 0.2622}, γ(H2) = {0.3145, 0.121,
0.2067, 0.3578} and γ(H3) = {0.25, 0.3036, 0.1905, 0.256}. So the
most likely hidden sequence is ATC.

8.3 Chapter 3

1. a. The transformed vectors will be {1,2} and {3,4}. These vectors
are not orthogonal.

b. θ ≈ 0.9569 ± 2πn, 2.5277 ± 2πn, 4.0985 ± 2πn, 5.6693 ± 2πn, for
n ∈ Z.



Sample Solutions to Exercises 271

c. Using θ = 0.9569, u1 = {2.21088, 4.99781} and u2 =
{0.334681,−0.148053}. The singular values are σ1 = ||u1|| =
5.46499 and σ2 = ||u2|| = 0.365966.

d. AAT =

(
5 11

11 25

)
has eigenvalues 15±

√
221. Thus the singu-

lar values of A are
√

15±
√

221.

2. The singular values are 2 and 5.

3. The singular values and eigenvalues are 6.0216, 2.69854, and
0.676943.

4. The singular values of A are the square root of the eigenvalues of
ATA. Let λ be an eigenvalue of A, then λ is also an eigenvalue of AT .
If v is the eigenvector corresponding to eigenvalue λ, then ATAx =
λATx = λ2x. Thus λ is a singular value of A.

5. a.

U =



0.476971 −0.34947

0.187933 −0.548739

0.389186 0.476451

0.281154 −0.48811

0.533879 0.153706

0.470786 0.296436


.

A graph would use the rows of U and the (x,y) point for each
type of dog.

b. Breed 4 is closest to Carl’s dog.

6. a. If the data is normalized, PCA on the covariance matrix produces
the model

̂population− 9199.86

2619.25
= −0.707107

hectares− (5.28422 ∗ 106)

718594
+ 0.707107

or
̂population = −0.00257738(hectares) + 24671.4.

7. See GitHub links 19 and 21.

8. Notice that there are really three distinct clusters in Figure 8.2 of
stories based on the attributes that are present.

9. a. Figure 8.3

b. William & Mary

c. University of Richmond
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FIGURE 8.2
Visualization for Exercise 8 (Chapter 3).
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FIGURE 8.3
Visualization for Exercise 9a (Chapter 3).
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d.

Sw =

(
26.9399 1.15269

1.15269 4.27101

)
, Sb =

(
0.372925 −0.461075

−0.461075 0.570062

)
e. {−0.0305852, 0.185033}

8.4 Chapter 4

1. f̂(x) = 11255.1− 957.206x+ 29.7221x2− 0.396603x3 + 0.00191023x4

2. P4(x) = −168x4+5321x3−54372x2+208279x−205260
9240

3. P5(x) = 1
120 (−51522x5 + 897185x4 − 5520160x3 + 14609515x2 −

9915458x +7828080)

4. T4(x) = 1− 8x2 + 8x4 and T5(x) = 5x− 20x3 + 16x5.∫ 1

−1

(1− x2)−1/2T4(x)T5(x) = 0.

5. U3(x) = x3 − 2x and U4(x) = 1− 3x2 + x4.∫ 1

−1
(1− x2)−1/2U3(x)U4(x)dx = 0.

6.
∫∞
−∞(2x)(4x2 − 2)e−x

2/2dx = 0

7. L =


1 0 0

1 1 0

1 −2 1

 , U =


1 1 2

0 1 3

0 0 7



8. a.



1 1 1 1 1 1

1 2 4 8 16 32

1 3 9 27 81 243

1 4 16 64 256 1024

1 5 25 125 625 3125

1 6 36 216 1296 7776



b. L =



1 0 0 0 0 0

1 1 0 0 0 0

1 2 1 0 0 0

1 3 3 1 0 0

1 4 6 4 1 0

1 5 10 10 5 1


, U =



1 1 1 1 1 1

0 1 3 7 15 31

0 0 2 12 50 180

0 0 0 6 60 390

0 0 0 0 24 360

0 0 0 0 0 120


.
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c.
{

65397,59438,− 5990, 2569
3 , 24871

24 ,− 8587
20

}
d. 1

120 (−51522x5 + 897185x4−5520160x3 + 14609515x2−9915458x
+7828080)

10. a. If t = 0 in year 2016, then

ˆf(x) = −24201x3

4
+

300931x2

7
− 1910463x

28
+

8909809

70
.

b. Approximate derivatives

{{2016,−18436}, {2017,−18436}, {2018,−7322}, {2019, 57475},
{2020,−4014}}.

8.5 Chapter 5

1. (
2x1 1 0

0 8x2 3x2
3

)
2. ∇f = {y cos(xy + y2z),(x+ 2yz) cos(xy + y2z),y2 cos(xy + y2z)}

∂2f

∂x2
= −y2 sin(xy + y2z)

∂2f

∂y2
= 2z cos(xy + y2z)− (x+ 2yz)2 sin(xy + y2z)

∂2f

∂z2
= −y4 sin(xy + y2z)

∂2f

∂y∂x
=

∂2f

∂x∂y
= cos(xy + y2z)− y(x+ 2yz) sin(xy + y2z)

∂2f

∂y∂z
=

∂2f

∂z∂y
= 2y cos(xy + y2z)− y2(x+ 2yz) sin(xy + y2z)

∂2f

∂z∂x
=

∂2f

∂x∂z
= −y3 sin(xy + y2z)

3. ∇f = {8x1 + 6x3
2,18x1x

2
2}.

4. d(ln(|X|) = tr(X−1dX)

5. dXT = (dX)T

6. a.

LL =

n∑
i=1

log(yi − (a0 + a1xi))− log(24)− (yi − (a0 + a1xi))
2

2
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b.
∂LL

∂a0
=

n∑
i=1

−1

yi − (a0 + a1xi)
− (yi − (a0 + a1xi))

c.
∂LL

∂a1
=

n∑
i=1

−xi
yi − (a0 + a1xi)

− xi(yi − (a0 + a1xi))

7. Since XA not necessarily invertible, we create (XA)T (XA),

∂f

∂a0
= (XA)T ((XA)T (XA))−1Y.

8.
∂|a0 + a1xi − y1|

∂a0
=

{
1 if a0 + a1xi ≥ 0,

−1 if a0 + a1xi < 0.

∂|a0 + a1xi − y1|
∂a1

=

{
xi if a0 + a1xi ≥ 0,

−xi if a0 + a1xi < 0.

9. a. See Table 8.1.

TABLE 8.1
Gradient descent table for Exercise 9a (Chapter 5).

yi ŷi = a0 + a1xi
∂L

∂a0

∂L

∂a1

3 5.5 1 -1
-4 5 1 0
5 4.5 -1 -1
2 4 1 -6

Total 2 -8

b. a0 = 5− .03(2) = 4.94, a1 = −.5− .03(8) = −.74.

10. See Table 8.2. With a learning rate of .03, a0 = 0−.03(−2) = .06, a1 =
0− .03(−2) = .06.

11. a. SSE = 500783828

b. Using the quadratic interpolating function, we get gradient Table
8.3.

c. With a learning rate of r = .0003, ˆf(x) = 39991.1 + 29961.x +
3808.73x2 and SSE = 4.63776× 108

12. ŷ = 9
5 + 3

10x
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TABLE 8.2
Gradient descent table for Exercise
9b (Chapter 5).

yi ŷi = a0 + a1xi
∂L
∂a0

∂L
∂a1

3 0 -1 1
-4 0 1 0
5 0 -1 -1
2 0 -1 -2

Total -2 -2

TABLE 8.3
Gradient descent table for Exercise 11b (Chapter 5).

Total

x 1 2 3 4 5 6
y=Total Infections 65397 124835 172293 212909 276692 367000

ŷ 74000 116000 166000 224000 290000 364000
∂SSE

a0
17206 -17670 2586 22182 26616 -6000 29748

∂SSE

a1
17206 -35340 -37758 88728 133080 -36000 129916

∂SSE

a2
17206 -70680 -113274 354912 665400 -216000 637564

13. a.
1

1 + e−XW
=

1

1 + e.1+.9x

b. SSE = 0.462321

c. Gradients are {0.424522, 0.155872}, W (1) = {0.0872644, 0.895324}
and SSE = 0.456202.

d. ReLU(XW ) = XW = {0.1, 1., 1.9} since all values XW are
positive.

e. SSE = 1.5

f. Gradients are {3.6, 5.4} and W = {0.064, 0.846}.

8.6 Chapter 6

1. a. entropy ≈ .52, IG = 1− 7
10 · .52 ≈ .36.

b. One example is y > −.2.

2. One example is that ŷ = 0.038988, when x < −7.4495 and ŷ =
0.164017, when x ≥ −7.4495
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3. b. See Figure 8.4.

c. Sample root criteria x > 1.5 and child y > 1.5

d. With root criteria x > 1.5 and child y > 1.5, Sri Lanka is pre-
dicted to have a low substance abuse measure in 2019. If one
takes the average of the training data in this region the value is
0.383333.

0.5 1.0 1.5 2.0 2.5 3.0 3.5
Substance Abuse

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Interpersonal Violence

Low

Medium

High

FIGURE 8.4
Visualization for Exercise 3b (Chapter 6).

8.7 Chapter 7

1. κ(A) = 20.0501.

5. Matrices a and c are Hermitian.

6. If r1 = { 1+i
2 , − 1+i

2 } and r2 = { 1√
2
, 1√

2
}. Then ||r1|| = ||r2|| = 1

and r1.r2 = 0. Similarly c1 = { 1+i
2 , 1√

2
} and c2 = {− 1+i

2 , 1√
2
} then

||c1|| = ||c2|| = 1 but c1.c2 6= 0.

7. (Sample Python Code, below, and Sample distribution in Figure 8.5)
import matplotlib.pyplot as plt
import numpy as np
import random
values= random.sample(range(100, 1000), 500)
data = np.zeros((500,365))
tdata =np.transpose(data)
for time in range(0,365):
for i in range(0,100):
trade=random.sample(range(0,500),2)
if values[trade[0]]¿=values[trade[1]]:
values[trade[0]]=.75*total
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FIGURE 8.5
Distribution of values.

values[trade[1]]=.25*total
else:
values[trade[0]]=.25*total
values[trade[1]]=.75*total
tdata[time]=values
data=np.transpose(tdata)
evalues=np.linalg.eig(np.dot(data,tdata))
plt.hist(values, bins=10, density=True, color = ”gray”’,edgecolor =
’black’)



Github Links

1. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

cinderellastories.csv

2. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter1.py

3. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

project1sports.csv

4. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

ncaamens2020a.csv

5. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

ncaamens2020b.csv

6. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter1b.py

7. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter1.R

8. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter1b.R

9. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

weightedcensussmall.csv

10. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

censusall.csv

11. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter2b.py

12. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter2b.R

13. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

bigram.csv

14. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter2c.py

15. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter2c.R

16. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

s n p data1920.csv

279

https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com
https://github.com


280 Github Links

17. https://raw.githubusercontent.com/rfordatascience/tidytuesday/master/

data/2020/2020-01-21/spotify songs.csv

18. https://github.com/ccoles1/LinearAlgebra datasets/

blob/master/tweets.csv

19. https://github.com/ccoles1/LinearAlgebra datasets/blob/

master/pythonchapter3a.py

20. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter3b.py

21. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter3a.R

22. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter3b.R

23. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

starhusbandbook.csv

24. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

faces.csv

25. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

fullfaces.csv

26. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter4a.py

27. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter4b.py

28. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter4c.py

29. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter4a.R

30. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter4b.R

31. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter4c.R

32. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter5a.py

33. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter5b.py

34. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter5a.R

35. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter5b.R
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36. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

digits.csv

37. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter6a.py

38. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter6b.py

39. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter6a.R

40. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter6b.R

41. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

wordle.py

42. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

words.csv

43. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

birdcallsupdated.zip

44. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter7a.py

45. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

pythonchapter7b.py

46. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter7a.R

47. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

rchapter7b.R

48. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

stockreturn.zip

49. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

GSE13598.txt

50. https://github.com/ccoles1/LinearAlgebra datasets/blob/master/

diseasedatabase.csv
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