


What Is Portainer?

An Introduction to Container Management for Developers

Fabian Peter



What Is Portainer?

by Fabian Peter

Copyright © 2023 O’Reilly Media Inc. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North,

Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales

promotional use. Online editions are also available for most titles

(http://oreilly.com). For more information, contact our corporate/institutional

sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: John Devins

Development Editor: Jill Leonard

Production Editor: Katherine Tozer

Copyeditor: nSight, Inc.

Interior Designer: David Futato

Cover Designer: Karen Montgomery

Illustrator: Kate Dullea

http://oreilly.com


February 2023: First Edition

Revision History for the First Edition

2023-02-16: First Release

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. What Is

Portainer? the cover image, and related trade dress are trademarks of

O’Reilly Media, Inc.

The views expressed in this work are those of the author and do not represent

the publisher’s views. While the publisher and the author have used good

faith efforts to ensure that the information and instructions contained in this

work are accurate, the publisher and the author disclaim all responsibility for

errors or omissions, including without limitation responsibility for damages

resulting from the use of or reliance on this work. Use of the information and

instructions contained in this work is at your own risk. If any code samples or

other technology this work contains or describes is subject to open source

licenses or the intellectual property rights of others, it is your responsibility to

ensure that your use thereof complies with such licenses and/or rights.

978-1-098-14209-4

[LSI]



Introduction

My first encounter with Portainer was back in 2018, when I managed a fleet

of Docker Swarm clusters for a team of developers that was running an

application composed of containerized microservices on top of it. Naturally,

the team regularly needed to interface with its containers, and doing it

through Docker’s CLI meant it was necessary to give the team access to the

underlying Swarm nodes. It also required a lot of understanding of how

Docker works to get access to logs or debug network issues between

containers. But I thought this level of understanding shouldn’t be expected of

application developers. So I started researching alternative ways to manage

such an environment and make it easy to give people access to resources in a

human-friendly but controllable way.

When my research ended, it led to two web-based solutions that seemed a

good fit: Portainer and SwarmProm. I decided to give Portainer a try because

of its simple installation procedure and the vibrant community it already had,

which gave me a good feeling about its stability and feature completeness. So

I set up a central Portainer instance running in Docker, connected the Docker

Swarm clusters through Portainer’s Edge Agent, and configured appropriate

access levels for the development team. In less than an hour, I had a web-

based management UI that gave the developers access to their respective

deployments, making their microservice architecture visible and digestible

even for nonexperts. With a few clicks, the team was able to read logs, access



container shells, and restart failed containers. Portainer not only enabled them

to better understand and manage their own services—it also allowed them to

make meaningful adjustments to the system without requiring my

intervention or deep knowledge about the inner workings of Docker.

Portainer’s UI connects all the dots for my team’s developers, giving them

access to information about networks, volumes and their contents, and even

the status of the underlying nodes. The developers were now in the position

to independently own their deployments and interface with them whenever

they needed.

I have used Portainer in every container environment since then. It’s a great

tool to give developers and operators access to containerized architectures

regardless of their personal expertise. Portainer allows administrators to

define different access levels for different people and thus enables them to

keep their container infrastructure secure and stable while still allowing

everyone to do their jobs independently. It speeds up their learning process,

eases management, and gives people confidence to own their application

deployments.

Portainer comes in two editions: the Community Edition, which is open

source and freely available on GitHub; and the Business Edition, which

bundles additional, enterprise-ready features on top of the Community

Edition.

Modern software development teams are often cross-functional and operate



with a “you build it, you run it” mentality. This report will outline how

Portainer can help developers, operators, and service managers alike to

deploy and operate containerized applications with that mindset, providing

self-service and meaningful insights to all stakeholders.

Since Docker Swarm has mostly been superseded by Kubernetes in recent

years, you will learn about the role Kubernetes plays in modern application

development, the challenges developers face with cloud native software

architecture, and how Portainer enables development teams to manage their

application stack by incorporating industry best practices like GitOps, role-

based access control, and hybrid-cloud environments.

It’s hard to understand containerized systems from log messages or YAML

manifests alone, and it’s even harder if you’re not familiar with the inner

workings of these systems. Portainer makes this visible and establishes

connections between the components of your application that you can follow

by simply clicking on them in a modern UI. It can help you to get a deep

understanding of what you’ve built and how it works together by providing

human-friendly access to these resources.

This report is for you if you know the pain of managing containers with CLI

tools or pure GitOps mechanics and want to learn more about different

approaches to it. In this report, we cover what Portainer is and how it fits into

today’s technology landscape. If you want to jump right in and put it to use,

you should head over to its official documentation since it covers the ins and

https://docs.portainer.io


outs of the tool itself, describes how to set it up correctly, and gives great

instructions on how to get started managing containers with Portainer.



Chapter 1. Kubernetes Is the Operating
System of the Cloud

Before diving deeper into the specifics of Portainer, I want to establish a bit

of context in terms of the ecosystem Portainer comes from and its broader

reasons for existence. As mentioned, I first used Portainer to manage a few

Docker Swarm clusters. Over the years, the industry has backed away from

Docker Swarm and toward Kubernetes as its container orchestrator of choice.

My clients have followed this trend. But my initial need to provide secure

access to containerized applications for teams of developers persisted—and it

still does today. Luckily, Portainer quickly added support for Kubernetes as a

container orchestrator.

While the underlying mechanics are fairly different between Docker Swarm

and Kubernetes, Portainer managed to provide the same user experience for

both systems. That made it easy for the teams I already worked with to make

a smooth transition from one platform to the other. To understand why one

would go with one orchestrator over another and why Portainer started to

focus mainly on Kubernetes, we need to know a few things about Kubernetes

itself and its own raison d’être.

In 2014, Kubernetes was developed and released by Google as an improved

variant of container orchestration, building upon the knowledge Google

acquired over years of running distributed systems at scale.



NOTE

Kubernetes was donated to the Cloud Native Computing Foundation (CNCF) in 2015 with

its first stable release and has been developed as a community project under the umbrella of

the CNCF since then. Its underlying architecture and design principles stemmed from Borg

and Omega, Google’s internal cluster management system. Many of the developers that

worked on Borg and Omega at Google work on Kubernetes now.

Given its lineage and being open source, Kubernetes (or K8s for short) soon

became the dominating container orchestration engine in the cloud native

ecosystem. It was built to handle huge distributed workloads, and the

community efforts evolving around it made sure the software was keeping up

with the requirements of the big cloud providers and individual enterprises

looking to run containers in production. One of the first companies to

incorporate Kubernetes into their commercial tech stack was Red Hat, which

used it as the foundation for its OpenShift Container Platform.

In order to understand what makes Kubernetes the operating system of the

cloud, we need to have a better understanding of the history of containers and

how they changed the way we build and deploy software today.

A Few Words on Containers

Simply put, containers are packages of software that contain all of the

necessary elements to run in any environment.

https://www.cncf.io
https://oreil.ly/vdV5f
https://oreil.ly/ingo9


With the advent of Docker in 2013, the way we perceive and use containers

has changed. Before it, software containers used to work a lot like virtual

machines (VMs)—carrying a whole operating system, running multiple long-

running applications (i.e., services), and giving you access through Secure

Shell (SSH). The main difference between containers and VMs was that VMs

emulated the full hardware stack, isolating the system fully from the

underlying operating system, while containers worked in a change-root

environment, being dependent on the kernel and resources of the surrounding

operating system.

Docker established a new paradigm by stripping away pretty much

everything but the actual application you want to run and its most important

dependencies. While before you had to run a full web application stack,

including the web server, database, and anything else you needed in a single

container, with Docker you could split each of those services into their own

containers and have them interface with each other over the network.

If done correctly, a Docker container only runs a single process, and if that

process is being terminated, the container is too. Unlike virtual machines or

“legacy” containers, this way of doing things comes closer to how process

management in an operating system works. It requires a different kind of

planning and resource management when you need multiple processes to

work together, but it also allows you to properly isolate workloads and reduce

the risk surface of applications to a minimum.



With containers only running a single process and its most important

dependencies, Docker also enables you to make those applications portable

between different operating systems since a container is no longer dependent

on its underlying or surrounding operating system. Everything is perfectly

isolated and only interfaces with the outside world over the network or by

specifically mounting directories from the host machine into the container.

As long as the server you want to run the container on supports the Docker

Engine, you can rest assured that your container will run perfectly fine on it.

So, What Is Kubernetes?

That level of portability created new possibilities in terms of scalability. It’s

very common to run an application on multiple servers and place a load

balancer in front of it to achieve higher stability or better performance. We

call this horizontal scaling. Before, the main mechanic to scale an application

was to vertically scale the server it was running on—i.e., giving more

resources to a single machine. That way of scaling has its limitations in terms

of hardware and availability since upgrading machines typically results in

downtime.

With Docker, it became very easy to run the same container on different

machines and achieve horizontal scaling. Docker Swarm was the first

approach to incorporate fast up- and downscaling over multiple clustered

machines and an integrated load-balancing mechanism into the Docker

https://oreil.ly/_vIF9
https://oreil.ly/KOvvn


Engine itself. You could easily upgrade a single container to a service and

increase its replicas, having Docker Swarm manage the placement of the

replicas on the nodes in the cluster and handle the routing of traffic through

its integrated overlay network.

Kubernetes took the concepts of containerized software and workload

orchestration to a whole new level, providing well-designed abstractions for

handling compute, network, and storage over distributed servers. While

Docker Swarm exposes a human-friendly interface to orchestrate containers,

it still lacks many advanced features. There’s no production-grade support for

distributed storage mechanisms apart from NFS (Network File System) or

SMB (Server Message Block), and it has no concept of network policies or

support for custom ingress implementations for advanced handling of

incoming traffic. Kubernetes—stemming from Google’s experience in

running distributed systems at scale—delivers all those things and more by

providing generalized building blocks instead of specific implementations.

In Kubernetes, everything is handled by APIs whose implementations are

decoupled from the core logic of the API server. As a result, the developer

community was able to build implementations for specific components like

network, storage, or ingress independently from the core logic that keeps

everything running. This works a lot like modern operating systems (OS) in

that most of the integral parts of the system have been compartmentalized to

specify clear interfaces for their domains without providing the actual logic to

do anything, giving end users the opportunity to use their own tooling to

https://oreil.ly/wrWPx


handle the domain-specific necessities.

A good example for this is the networking stack in Linux. While most

distributions use Linux’s own implementation of the TCP stack, it’s

absolutely fine and sometimes desirable to replace it with something

homegrown.

NOTE

When most people think of an OS, they think of Microsoft Windows or Linux, which are

specific implementations of what an OS actually is: low-level system software that

manages computer hardware and software resources and provides common services for

computer programs.

Looking at Kubernetes from a high level (see Figure 1-1), it does exactly this:

handling memory allocation for processes, providing ways for processes to

communicate, and providing interfaces to the underlying hardware. The

difference between a classical OS and Kubernetes is that Kubernetes does

this for a cluster of machines instead of a single one. With that said, a

container becomes a single process, and Kubernetes works like the kernel of

an OS, making sure that the process gets what it needs to work properly.

https://oreil.ly/IVZhI




Figure 1-1. Comparing Kubernetes and Linux as operating systems

The Road to Microservices

Modern operating systems profit a lot from being able to share resources

efficiently between processes. Pretty much every OS comes with some kind

of package manager or service registry, allowing software developers to reuse

components and access a central index of “what’s there.” One good example

of this is how apt (advanced packaging tool) works in debian-based operating

systems. Instead of including every necessary library or tool in their own

code, developers can reference shared libraries and programs that already

exist in the OS, making it very easy to run software without causing bloat.

Much of how this works today stems from the UNIX philosophy: do one

thing and do it well.

NOTE

The Unix philosophy is about building simple and modular code that is highly extensible

and can easily be repurposed or composed with other components to build bigger solutions

with a clear separation of concerns. In other words: keep it simple; do one thing and do it

well.

But how does this translate to Kubernetes? Well, instead of processes,

software developers often refer to the software running in containers as

https://oreil.ly/8vell
https://oreil.ly/71eZ-


microservices. Before the rise of containers, software development had a very

monolithic character—there was a single, often huge code base everybody

worked on, and software was mostly running on a single machine, making it

necessary to handle interprocess communication within the application itself

or rely on the underlying operating system to provide the necessary

resources.

Today, most of the software that is powering the web as we know it is

designed to have a clear API and do one thing—and do it well. Instead of

writing huge and complex software monoliths, developers started to further

compartmentalize their programs into single, independent microservices that

talk to each other through their respective APIs over the network. These

services are often stateless, meaning they can easily be scaled to multiple

replicas for increased throughput or availability.

This new way of building software made it necessary to have a higher-level

system that was able to orchestrate these microservices, schedule them on

different servers, allocate resources to them, and provide ways for them to

communicate with each other. That’s what Kubernetes is doing for them: like

an OS, it provides access to shared resources, enables them to know about

each other, and makes sure to keep everything running smoothly.

If you’ve ever worked with containers, this is nothing new for you. We

commonly refer to this way of building software as cloud native architecture.

The cloud was one of the biggest driving factors of technological innovation

https://microservices.io
https://oreil.ly/kMrrG


in the past decade and enabled many new patterns of building and running

software, but it also introduced new challenges for software developers. In

the following chapter, I will highlight some of these challenges and how

Kubernetes and Portainer evolved as solutions to common problems in cloud

native architecture.



Chapter 2. Challenges of Cloud Native
Architecture

Cloud native architecture is a design methodology that utilizes cloud or

cloud-like services to allow dynamic application development techniques that

take a modular approach to building, running, and updating software through

a suite of microservices rather than a monolithic application infrastructure. In

the beginning, developers were limited to services provided by actual cloud

providers. Meanwhile, cloud native technologies have evolved and are

available for on-premises systems and even developer workstations to make

them more accessible and reduce friction in the development lifecycle.

Containers have become the biggest enabler of this trend, allowing

developers to build and package software on their workstations while being

assured that their containers will run in Docker or Kubernetes on any cloud

native infrastructure. Gone are the times of “it works on my machine.”

My personal cloud native journey already began when I discovered Docker

but really accelerated once I started working with Kubernetes. As outlined in

the previous chapter, operating Kubernetes and successfully running

applications on top of it requires a different understanding of how things

work together. The new level of abstraction developers and operators have to

wrap their heads around is also important for the understanding of Portainer’s

features and their reasoning behind specific implementations. Since



everything is far more “distributed” and “decoupled” in cloud native

architecture, tools like Portainer evolved to provide simpler interfaces for end

users to be able to get their work done and not drown in the complexity of

this new world. I had a personal “aha” moment when I discovered that

Portainer can act as a proxy for the Kubernetes API server, allowing me to

define fine-grained access controls within Portainer to limit the access my

developer teams had on their respective clusters. This is so much easier than

setting up RBAC in Kubernetes itself, which is something I’ve never wasted

a thought on when using Docker before since Docker just didn’t have any

meaningful access control. While it’s great to be able to properly authorize

every single action in a system, it also poses many new challenges when

working in bigger teams with complex technologies: there’s always

something that doesn’t work as expected. Having a tool to provide

meaningful insight and workflows for setting things up not only saves me a

lot of time: I can rely on best practices and the smarts of others who’ve used

it before me and implemented things “as they should be,” as opposed to me

fiddling around with settings I don’t fully grasp. This chapter is dedicated to

explaining the cloud native ecosystem, how it changed the way we build

software today, and the challenges we face on a daily basis that tools like

Portainer try to make easier for us.

The available toolchain for developers evolved with the cloud native

ecosystem and so did the learning curve a developer had to master to be able

to make proper use of cloud native architecture. This led to new

specializations like DevOps or platform engineers, whose task it is to provide



fine-tuned workflows and toolkits to keep the development and operations of

software in sync. It also required rethinking a lot of the development

lifecycle, introducing more automation to the process, and integrating

microservices written in different languages by different developers before

they could be used effectively to work together as an application.

One of the biggest challenges developers face today is the complexity of that

ecosystem with all its new technologies and paradigms. It’s not enough to

“just know Python.” You need to know Docker, continuous integration (CI),

testing frameworks, and deployment techniques too. To properly integrate

independently developed software, a huge range of tests and checks are

required. Previously these tests could be done locally as developers had the

full monolith right at their fingertips. But today they make use of dedicated

CI platforms like Jenkins or GitLab to asynchronously build, test, and

integrate their microservices in an automated way.

Continuous delivery (CD) involves the same workflow established over time

for the deployment of these microservices into environments like Kubernetes.

CD is a methodology that ensures the delivery of the output of CI pipelines to

special test or even production environments whenever they successfully

produce usable artifacts. Oftentimes, developers push their code to a branch

in a Git repository and wait for a range of automations to succeed before they

know if the newly written code works as expected and can be merged into the

stable branch, which then automatically gets deployed to production systems.

Companies like Meta or Uber do this several thousand times a day and thus



are able to ship features and fixes to their customers almost in real time, and

this practice has become a standard in modern software development.

This requires a lot of orchestration between all involved parties and

technologies. Most of this will be automated over time, but it also raises the

bar for what’s deemed “state-of-the-art” software development. The amount

of tooling you need to develop modern applications increased tenfold with

the rise of cloud native architecture, and so did the amount of knowledge a

development team needs to bring to the table to successfully do it.

In the rest of this chapter, you will learn about a few specific challenges that

arose from the increased complexity of the software development ecosystem

to lay ground for the next chapter in which you’ll learn about the motivations

to build and use Portainer.

Distributed Development

Distributed development means two things:

Developers are working from remote locations, often in different time

zones.

Components of an application (the so-called microservices) are being

developed by different developers or teams of developers.

These things often come together in modern organizations, making it



necessary to have systems in place to coordinate asynchronously.

On the one hand, the distributed nature of development these days offers a

few perks when it comes to the velocity of development and stability of

applications:

Microservices can be developed and released to production 24 hours a

day, decreasing the time to market for features or fixes.

Applications can be supported 24 hours a day, reducing the risk surface of

software-as-a-service (SaaS) business models.

On the other hand, the amount of coordination necessary to keep everybody

in sync and applications healthy has increased a lot. Instead of a quick chat

with a colleague over the boundaries of a change one wants to implement,

developers have to follow predetermined processes and navigate their

changes through automated control-systems (like CI/CD) before they can

request qualified feedback from their peers or get a feeling for the quality and

impact their code has.

This can add lots of friction to the development process until all the bits and

pieces have been tuned to work together. Tools like Portainer, GitLab, and

Jenkins have been built to give developers a common place to work through

these processes and give them visual feedback and a good developer

experience (DX) when dealing with changes to complex systems in a

distributed environment.

https://portainer.io
https://about.gitlab.com
https://jenkins.io


Enterprise Requirements

In the world of software development, there’s basically two gears companies

can shift in:

Startup speed

Startups naturally need to be fast, adjust to change quickly, and often pivot

in terms of business and technology. As a result, their main focus is to

keep developer productivity and development velocity as high as possible

to be able to scale on disrupting markets and industries.

Enterprise quality

Enterprises have a slower pace in everything. With established ways of

doing business and usually enormous headcounts, the focus lies on

keeping things in good shape and under control to serve the business’s

needs and keep it safe from disruptions.

A typical result of a startup building disruptive technologies are enterprises

that want to use them. And with their interest come their requirements in

terms of security, stability, and integrations for their existing tech stack.

This, again, puts a lot of pressure on developers as typically enterprises are

not prepared or willing to adjust their infrastructure to the needs of modern

software. Tools like Portainer, Cilium, or Keycloak try to build bridges

between these worlds, offering interfaces and solutions that serve startups and

https://cilium.io
https://keycloak.org


enterprises alike. This helps to keep DX and velocity high while delivering

increasingly complex solutions that often serve no direct purpose for the

people developing them.

Hybrid Environments

We already learned that the cloud is the main driver of cloud native

architecture. Amazon Web Services (AWS) was the first major public cloud

provider, showing that a shared usage model for IT infrastructure is not only

possible but beneficial for all involved parties. Many companies, including

Google with Google Cloud Platform (GCP) and Microsoft with Azure Cloud,

followed their lead and launched offerings that were competitive with AWS.

Customers could now escape Amazon’s walled garden, shifting parts of their

infrastructure to other providers, creating hybrid environments.

Along with generic services like virtual machines or managed Kubernetes

clusters, these cloud providers also offer specialized services like managed

databases, managed message queues, or big data tooling, usually wrapped

inside their own business logic and APIs. This introduces additional

complexity to the tech stack of software developers as they have to deal with

each provider’s specific implementation of the underlying technology (e.g.,

PostgreSQL, MySQL, or Elasticsearch). Moving between cloud providers,

while generally possible, is a complex undertaking that requires thoughtful

design of the software integrating with their services and usually a lot of

https://oreil.ly/ApDx6
https://postgresql.org
https://mysql.com
https://oreil.ly/fw9GA


manual effort.

But being able to run software on any cloud provider is absolutely worth the

effort as it enables companies to react to pricing changes or changing

requirements. Technologies like Kubernetes try to account for the need to be

flexible in that it serves as a generic abstraction layer on top of cloud

services, so developers can focus more on their actual mission and less on

wrangling infrastructure. Tools like Portainer, Rancher, and OpenShift enable

them to run their workloads in hybrid environments that even include private

cloud infrastructure, which is very popular with enterprises.

Integrating Legacy Systems

As outlined in “Enterprise Requirements”, sometimes modern technologies

have to integrate with legacy systems. A very good example for this? Car

manufacturers: they have a huge need for stable software and thus seek to

implement technologies like Kubernetes to operate it. On the other hand, they

have to deal with lots of industrial-grade systems like a programmable logic

controller (PLC), which is a widely used standard for programming shop

floor equipment. These legacy systems typically don’t provide modern APIs

that developers can interface with, and they are always highly shielded from

unwanted access.

It’s a very complex endeavor to bridge the gap between these target systems

https://rancher.com
https://oreil.ly/YQbhj


and modern development workflows, which are heavily relying on public

cloud providers, CI/CD systems, and a high degree of developer autonomy.

Many approaches to modern software development simply do not work when

you have to deal with a microcontroller sitting inside a robot that can only be

controlled by means of physical access to the machine.

From personal experience, I can say that there are not many ways to provide

a good DX in these environments. It’s hard to implement cloud native

architecture in places that have not seen a cloud in ages, but tools like Node-

RED, Portainer, and of course Kubernetes attempt to converge their modern

approaches with these legacy systems to offer developers ways to overcome

their challenges while not giving up too much of the goodness of cloud native

architecture.

Security

Security is a basic human need and, as such, very important for all software

because it is mainly used by humans. Working with digital technologies,

security is really hard to get right, and over the past few years, there has been

a push to shift left in terms of security in software development. If you think

of the software development lifecycle as a process line running from left to

right, testing and security implications are typically something that comes

after design and implementation. After all, you mostly check for leaks in your

architecture after the house has been built, don’t you? Shifting left means to

https://nodered.org
https://oreil.ly/b0_SL


incorporate security far earlier in the process, before even building anything.

Unfortunately, the complexity of cloud native architecture makes it difficult

to catch every defect before it hits a production system. As such, control

systems like CI/CD and automated indexing and vulnerability scanning of

software running in Kubernetes clusters have become the norm. But the risk

surface is increasing proportionally to the compartmentalization of software

into smaller components. Mixed with the distributed nature of development

and hybrid deployments, where not all parts of an infrastructure can be

deemed equal, the learning curve for keeping software secure is constantly

growing, putting individual developers under increasing pressure.

Software like Portainer, Cilium, and KubeSanity try to account for that by

providing developers with tools to make defects and vulnerabilities visible

early on in the development process and give them a means to deal with those

quickly and reliably.

Of course, there are more challenges to cloud native architecture than the

ones I mentioned in this chapter. My goal was to highlight some of the

biggest ones and describe ways to deal with them. One of those ways is to

add Portainer to your tech stack. In Chapter 3, you will learn how exactly

Portainer can help you to build software in a cloud native way, demonstrating

how you can solve exactly the aforementioned challenges with it.

https://oreil.ly/4nI_r


Chapter 3. How Portainer Works

In the previous chapters, I laid out the foundations of modern software

development and the challenges developers face. In this chapter I will briefly

outline the most important functionality Portainer offers with regard to that

problem space, and you will learn how Portainer helps you to manage the

aforementioned challenges. If you want to go deeper on specific topics, many

advanced resources are available, including Portainer’s official

documentation, YouTube, and GitHub.

Portainer’s purpose is to enable you and your team to easily and securely

manage containerized workloads in different environments. It abstracts away

as much of the complexity as possible while enabling you to dive deeper and

interface with the container orchestration engine. In this chapter you will

learn the basics of how Portainer works, and how it enables you to manage

hundreds of environments with hundreds of people and securely deploy your

applications while keeping your sanity.

Managing Different Container
Environments

In Portainer, a single container orchestration system is called an environment.

Portainer allows you to manage many of these environments to which you

https://oreil.ly/Fvzz5


can deploy your application containers (see Figure 3-1).

It supports the following types of environments:

Docker

Standalone Docker hosts as well as Docker Swarm clusters
Kubernetes

Standard Kubernetes clusters
ACI

Azure Container Instances
Nomad

HashiCorp Nomad clusters
KaaS

Managed Kubernetes clusters offered by a cloud provider

https://docker.com
https://oreil.ly/F14Pc
https://kubernetes.io
https://oreil.ly/nSS-7
https://nomadproject.io




Figure 3-1. Portainer’s Environment Wizard

For each environment type, Portainer offers different options to connect to

the actual environment:

Via API

Docker, Kubernetes, ACI, and Nomad environments can be accessed
directly through their API and the respective credentials such as a
Kubeconfig.
Via Agent

The Portainer Agent can be deployed to Docker or Kubernetes and works
as a proxy for the respective environment’s API. The agent’s port needs to
be exposed so Portainer can connect to the agent to manage the
environment.
Via Edge Agent

The Portainer Edge Agent is a special variant of the Portainer Agent that
doesn’t need to expose ports for external access. Instead, it connects to the
configured Portainer instance and establishes a reverse tunnel that
Portainer can then use to manage the environment.
Via Socket

If Portainer runs inside Docker, it can use the Docker Socket (usually
/var/run/docker.sock) to manage the environment.

In the case of managed Kubernetes environments, Portainer allows you to

create a Kubernetes cluster at one of the following cloud providers right from

within Portainer: Civo, Linode, DigitalOcean, Google Cloud, Amazon Web

Services, and Microsoft Azure.

https://oreil.ly/abdqt
https://oreil.ly/LpIcj
https://oreil.ly/0lwOX
https://civo.com
https://linode.com
https://digitalocean.com
https://cloud.google.com
https://aws.amazon.com/de
https://azure.microsoft.com/en-us


Once you add an environment, you can onboard your team and implement

fine-grained access control policies to give everyone the ability to do their

work while keeping the environment secure from unwanted access.

Environments can be organized in so-called groups, which can be used to

limit user access to the respective environments. One option is to group

environments by purpose (e.g., by development or production).

Onboarding Users and Managing Access
Rights

Next to its internal authentication mechanism, Portainer offers integrations

with industry-standard authentication protocols like LDAP, Microsoft Active

Directory, or OAuth, as shown in Figure 3-2. This allows you to import and

sync your existing user base from external systems and reduces management

overhead in large enterprise organizations.

Using one of the advanced authentication mechanisms comes with a few

advantages in terms of user provisioning:

Single sign-on

Users will be logged in automatically if they are already logged in to the

authentication provider (this is only available with OAuth).



Automatic user provisioning

If users log in to Portainer for the first time, they will be created

automatically (this is only available with OAuth).

Automatic team membership

Depending on their group membership in the authentication provider,

users will be assigned to teams with the same name inside Portainer

automatically.

Automatic admin mappings

Users who are members of a specific group in the authentication provider

will automatically be promoted to Portainer administrators.



Figure 3-2. Portainer’s authentication options



In Portainer you can organize users in so-called teams and assign roles to

users and teams for environments or groups of environments. This enables

you to derive access and permissions of users for environments from their

group memberships in an authentication provider if you’re using LDAP/AD

or OAuth to provision users.

Portainer comes with five preconfigured roles:

Environment administrator

Has full control over an environment but lacks the ability to make changes

to the infrastructure that underpins it.

Operator

Can control resources deployed within a given environment.

Helpdesk

Has read-only access to resources deployed within an environment

without the ability to make changes to resources.

Standard user

Only controls resources they deploy. If the user is a member of a team,

they control the resources that users of that team deploy.

Read-only user

Has read-only access to resources they are allowed to see (e.g., resources

created by members of their team or public resources).



By integrating with industry-standard authentication providers like LDAP,

Active Directory, and OAuth, Portainer checks many boxes in highly

regulated enterprise environments and allows you to control environment

access for users from a centralized location.

Deploy Containers

Once your environments and users are set up, you can start deploying your

applications. Figure 3-3 shows a few of the options available when deploying

using a manifest. Portainer coined the term “ClickOps” for its very special

user experience, as it started out by simplifying the CLI-heavy workflow of

Docker’s early days by providing easy-to-use forms in a streamlined web

GUI to make it easier for nontechnical users to achieve their goals.





Figure 3-3. Portainer’s Wizard to deploy docker-compose stacks to Kubernetes

Today there are two options available:

Use a form-based wizard

This is the classical way to deploy containerized workloads in Portainer.

You will be guided by a form-based wizard that abstracts away Docker’s

complexity and gives you clear instructions on what to do.

Use a manifest

Over time, Portainer evolved into the enterprise space and became more

attractive to experienced engineers who didn’t want to click through forms

but instead wanted a more technical approach to application deployment.

As such, you now have additional ways to deploy your containers that

better fit the infrastructure as code movement of the recent years.

If you use a manifest, you can:

Deploy from repository

This is the GitOps way of deploying applications. You can connect a Git

repository that Portainer constantly monitors. Changes to the repository

will be deployed to the environment automatically.

Deploy from web editor

Next to the form-based wizard, this is the most convenient way to “get

going quick.” You can paste a deployment’s YAML manifests into the

https://oreil.ly/kcKNM
https://oreil.ly/8RKuO


web editor directly.

Deploy from URL

Deploying from URL is the middle ground between a deployment from a

repository and the web editor. It’s a one-off deployment, where Portainer

reads YAML manifests from an external URL and deploys them to the

environment. In contrast to the repository approach, Portainer does not

continuously monitor the URL for changes.

Deploy from template

This makes use of Portainer’s internal template system with which you

can define customized and reusable templates right from within Portainer.

Paired with its fine-grained access-control mechanisms and its ability to

manage a variety of container orchestrators, Portainer is a great choice for

organizations that handle diverse container workloads and have teams with

mixed skill sets when it comes to container management. It’s up to each team

how it deploys its applications, and Portainer makes sure that the final result

is a stack of running containers in the right environment.



Chapter 4. Portainer Use Cases

In Chapter 3 you learned about the most important features of Portainer with

regard to the challenges of cloud native architecture. In this chapter I will

outline specific use cases built upon the aforementioned features that you can

incorporate into your own infrastructure and workflows. You will learn how

to give your team tiered access to resources in your managed Kubernetes

clusters, deploy complex applications to them, and manage them with

external tooling like kubectl, k9s, or Lens.

Managing Access to Kubernetes with
RBAC

RBAC is short for role-based access control, a widely used mechanism to

restrict systems access to authorized users. This is done by defining roles

with specific privileges and assigning them to users or groups of users, as

shown in Figure 4-1.

Portainer’s built-in roles map to cluster roles and namespace roles inside a

Kubernetes cluster. Each role gives access to certain resources and the

respective actions (or “verbs,” as they are called in Kubernetes) like get,

create, or delete that are available for these resources inside the cluster.

You can learn more about the Portainer roles mapped to Kubernetes roles in

https://oreil.ly/KIKSG
https://k9scli.io
https://k8slens.dev
https://oreil.ly/q8G5c


the official documentation.

Figure 4-1. Overview of Portainer’s RBAC features

Roles can be assigned to teams or users in each environment, as shown in

Figure 4-2. Users of a team inherit the roles of their team. Depending on your

role, you gain a certain level of access to an environment and its resources

(e.g., containers, ConfigMaps, etc.). A few examples include:

https://oreil.ly/E78u5


View or edit Namespaces.

View, create, or delete containers, Secrets, or ConfigMaps.

Create or edit storage volumes or configurations.

Figure 4-2. Assign roles to teams or users

Using RBAC in combination with a centralized authentication provider and

group sync, you can easily grant multiple, distributed developers access to

resources in Kubernetes, depending on their role in your organization or the

team they are part of.



Using Portainer as a Kubernetes API
Proxy

Portainer can work as an API proxy for Kubernetes, as shown in Figure 4-3.

As opposed to connecting through the web UI, as Figure 4-1 shows, with the

API proxy you can connect external tooling like kubectl, k9s, or Lens that

needs proper configuration in the form of a Kubeconfig file to work with a

Kubernetes cluster.



Figure 4-3. Overview of Portainer as an API proxy for Kubernetes

Portainer allows you to download a special Kubeconfig file that has the

Portainer instance configured as the API endpoint for each environment that

is available to you.

With this Kubeconfig file, you authenticate against Portainer with a special

user account that inherits your user’s roles and thus privileges on the

respective clusters, so working with external tooling gives you the same level



of access as working directly from within the Portainer GUI. Some people,

like me, prefer to use specialized tooling when interfacing with Kubernetes

clusters, which makes this feature a game changer in enterprise environments.

Without Portainer, cluster administrators would need to carefully create

accounts and roles inside a cluster themselves when users need to access it

with CLI tooling that needs a Kubeconfig file. And from personal experience,

I can tell you that this is something you don’t want to deal with regularly.

Having Portainer as a proxy, taking care of the necessary security layers,

removes the burden of keeping the cluster secure from unwanted access from

the shoulders of the cluster administrators and shifts it to a centrally managed

control plane with well-designed RBAC rules.

Building Container Platforms for Cloud
Native Teams

Figure 4-4 shows the environment overview, where you can review

accumulated information about an environment at a central spot. The

overview allows you to jump directly to the referenced objects.

Working with cloud native architecture patterns involves quite a few services

apart from the actual workloads you might build. These include:

A container registry



A service catalog

A tool for continuous deployment

A tool for dealing with TLS certificates

Databases



Figure 4-4. Environment overview

Portainer makes it easy to deploy and manage all the applications a team

working with cloud native architecture patterns needs. Environment operators



can provide helper tools like a container registry or a service catalog, while

standard users (i.e., developers) can deploy their own workloads to an

environment, making use of the helper tools without themselves being able to

manipulate them (see Figure 4-5).





Figure 4-5. Namespaces list

Migrating Legacy Workloads to
Kubernetes

Portainer has a long history with Docker, and many people and organizations

use it to manage their Docker containers or docker-compose stacks. One

challenge that arose with the advent of Kubernetes was its increased

complexity compared to Docker or docker-compose. Many organizations

can’t tackle this complexity due to lack of experience or budget.

In Portainer, you can simply import existing docker-compose stacks, and

Portainer gladly converts them for you to Kubernetes manifests with the help

of Kompose. In most cases, this conversion works seamlessly and thus

enables you to safely move between Docker and Kubernetes environments

right from within Portainer.

Portainer offers a range of tutorials outlining the process of migrating your

legacy applications to Kubernetes:

Deploy a compose-based app to Kubernetes using Kompose.

“How to Transition from Docker/Swarm to Kubernetes with Portainer”.

Deploy applications to Kubernetes.

This functionality helps to bridge the gap between single-node Docker

https://oreil.ly/1CORE
https://kompose.io
https://oreil.ly/2nevb
https://oreil.ly/qDa6D
https://oreil.ly/qJbD_


environments and Kubernetes clusters. You don’t need to understand

Kubernetes’s YAML manifests to migrate your applications to Kubernetes,

but you can start by feeding Portainer an existing Docker Compose stack and

then dive deeper into Kubernetes’s configuration language by analyzing and

adapting the translated manifests.

Replace Docker Desktop for Container
Management

Docker Desktop offers a dedicated user interface for the management of

containers, images, and volumes, but it comes with a few strings attached.

For one, that user interface is only available to Windows and macOS users

but not for Linux users. Additionally, Docker Inc.’s licensing changed a lot

over the years, rendering Docker Desktop unusable for large enterprises due

to its license constraints.

Portainer can be installed on any Docker engine with a single command and

provides a common user interface to manage containers on all operating

systems:

docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce:latest

On top, Portainer also works with alternative container engines like Podman

https://podman.io


or Lima and provides the same workflows and user experience for any of

them.

This makes Portainer the ideal replacement for Docker Desktop, especially in

environments with licensing constraints or alternative container engines.

Wrap-up

In the first two chapters, I outlined why a tool like Portainer is actually

needed: while the software development ecosystem has evolved a lot in the

last few years, the problems developers face have also evolved. Portainer is a

great fit for an agile and distributed development environment and has many

additional features in addition to the ones I covered in Chapters 3 and 4. I

encourage you to catch up on them through Portainer’s documentation,

YouTube, or another of the many articles and blog posts on the topic.

Depending on your own use cases, you might find Portainer valuable for

totally different reasons: for example, as the container dashboard for your

homelab, as a multitenant control plane for a managed services offering, or to

quickly start containers from preconfigured templates. My personal

background is in infrastructure, software delivery, and distributed

development environments, so I naturally picked use cases that I’m familiar

with. However, getting started with Portainer and exploring what it can do for

you is only a single command away, and I encourage you to get your hands

https://oreil.ly/pP1PS
https://oreil.ly/Fvzz5
https://oreil.ly/kYBE5


dirty right now:

docker run -d -p 8000:8000 -p 9443:9443 --name portainer --restart=always -v /var/run/docker.sock:/var/run/docker.sock -v portainer_data:/data portainer/portainer-ce:latest

Once it’s running, you can access it on https://localhost:9443 in your

browser.

I tried to avoid step-by-step instructions on how to use Portainer in this report

because this has been covered numerous times by the sources mentioned. I

aimed to provide context as to why the tool exists and how it can help to

solve higher-order problems you might encounter in your daily work. Given

its popularity these days, it made sense to focus on Kubernetes for this report,

but Portainer makes it equally easy to work with Docker or Docker Swarm

environments, which are still very prevalent in our industry, albeit

predominantly in on-premises environments. Since Portainer isn’t a SaaS

solution but can easily be deployed to on-premises infrastructure, it’s worth a

look even if Kubernetes is not part of your tech stack (yet). After all,

Portainer is about containers at large.

As we all know, the level of abstraction in technology is constantly

increasing, but now you’re equipped with a unique understanding of the

problem space and a viable solution for some of the challenges you will

encounter when developing and deploying software in a cloud native

environment. I hope you found value in reading this report and have a clearer

https://localhost:9443


perspective on today’s software development ecosystem—and of course

Portainer.



About the Author

Fabian Peter is founder and chief executive officer at cloud native

consulting and service provider ayedo. Fabian has been in the industry for

more than 10 years, founded the Cloud Native Meetup Saar and currently

serves as a Portainer Ambassador. Fabian’s main expertise is system and

platform architecture, product development, and bootstrapping digital

businesses. When not building software, Fabian enjoys playing and listening

to music and taking long walks with his dogs.


	Introduction
	1. Kubernetes Is the Operating System of the Cloud
	A Few Words on Containers
	So, What Is Kubernetes?
	The Road to Microservices

	2. Challenges of Cloud Native Architecture
	Distributed Development
	Enterprise Requirements
	Hybrid Environments
	Integrating Legacy Systems
	Security

	3. How Portainer Works
	Managing Different Container Environments
	Onboarding Users and Managing Access Rights
	Deploy Containers

	4. Portainer Use Cases
	Managing Access to Kubernetes with RBAC
	Using Portainer as a Kubernetes API Proxy
	Building Container Platforms for Cloud Native Teams
	Migrating Legacy Workloads to Kubernetes
	Replace Docker Desktop for Container Management
	Wrap-up

	About the Author

