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Preface

The first edition of Vector Analysis for Computer Graphics was published in 2007,
and after submitting the manuscript to Springer, I came across geometric algebra.
Since then, I have thought about it intensely, and written two books on the subject.
Meanwhile, what I call traditional vector analysis, still exists, and continues to be
taught throughout the world. So, I decided to write a 2nd edition, and here it is.

It has taken over a year to prepare the final files, because the originals had been
created using MS Word, and I now use LATEX. This has meant retyping every
equation and creating all the figures again!

The book’s main objective is to introduce the subject of vector analysis to
readers studying computer graphics, although it will be of interest to a wider
readership. It includes most of the original topics, but I have extended various areas,
and it still comprises eleven chapters. Chap. 1 covers the history of vector analysis,
which answers most of the questions relating to the existence of the subject. I do
believe that the stories behind the emergence of vectors are very relevant to the
subject. Chap. 2 introduces dependent and independent equations, which are so
important to vector analysis.

Chapter 3 covers the ideas behind vectors, building upon the concepts of linear
equations, while Chap. 4 introduces the two products associated with vectors: the
scalar and the vector product. The next two chapters are new: Chapter 5 introduces
vector-valued functions and how they are differentiated and integrated; whilst
Chap. 6 deals with vector differential operators: grad, div and curl. Chapter 7
develops the use of the grad differential operator by showing how tangent and
normal vectors are computed for various curves and surfaces.

Chapters 8–10 cover applications to lines, planes and intersections. Chapter 11
examines three ways of rotating vectors in R

2 and R
3, finishing with quaternions.

I have thought very carefully about what to leave out, and what to include, and
really hope that you are happy with the result.

Breinton, UK John Vince
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Chapter 1
History of Vector Analysis

1.1 Introduction

In this chapter I trace the emergence of the name vector, the invention of quaternions,
and the branch of mathematics called vector analysis.

1.2 Vector

The word ‘vector’ derives from the Latin vehěre, to carry, and was used in astro-
nomical geometry during the seventeenth century. The Lexicon Technicum: Or, An
Universal Dictionary of Arts and Sciences by the English writer, scientist, and Angli-
can priest John Harris [1666–1719], published in 1704, refers to ‘vector’:

A Line supposed to be drawn from any Planet moving round a Center, or the Focus of an
Ellipsis, to that Center or Focus, is by someWriters of the NewAstronomy, called the Vector;
because ’tis that Line by which the Planet seems to be carried round its Center [1].

‘Vector’ also appears in the form radius vector, which in French is rayon vecteur. It
is found in Traité de mécanique céleste by the French scholar and polymath Pierre-
Simon Laplace [1749–1827], and in Application de l’Analyse à la Géométrie by the
French mathematician and inventor Gaspard Monge [1746–1818]:

... on nomme la droite r le rayon vecteur du point, et l’origine des coordonnées devient un
pôle, d’où partent les rayons vecteurs des différens points de l’espace [2].

Although ‘vector’ was being used by various astronomers and mathematicians, no
one had found a way of encoding a mathematical object that possessed magnitude
and direction—this was eventually invented by the brilliant Irish mathematician,
physicist and astronomer Sir William Rowan Hamilton [1805–1865].
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1.3 Quaternion

Today, Hamilton is recognised as the inventor of quaternion algebra, which became
the first non-commutative algebra to be discovered. One can imagine the elation he
felt when finding a solution to a problem he had been thinking about for a decade!

The invention provided the first mathematical framework for manipulating vecto-
rial quantities, although this was to be refined by the American theoretical physicist,
chemist, and mathematician Josiah Willard Gibbs [1839–1903]. Although Hamil-
ton had arrived at his invention through an algebraic route, it was obvious to him
that quaternions had significant geometric potential, and he immediately started to
explore their vectorial and rotational properties.

Unbeknown to Hamilton—and virtually everyone else at the time—the French
social reformer, and brilliant recreationalmathematicianBenjaminOlindeRodrigues
[1795–1851], had already published a paper in 1840 describing how to represent two
successive rotations about different axes, by a single rotation about a third axis [3].
What is more, Rodrigues expressed his solution using a scalar and a 3-D axis, which
pre-empted Hamilton’s own approach using a scalar and a vector, by three years!
Simon Altmann has probably done more than any other person to set this record
straight, and has published his views widely [4–7].

Thevery existence of complexnumbers presented a tantalising question formathe-
maticians of the 18th and 19th centuries: could there be a 3-D equivalent? The answer
to this question was not obvious, and many gifted mathematicians, including Gauss,
Möbius, Grassmann, and Hamilton had been searching for the answer.

Hamilton’s research is well documented and covers a period from the early 1830s
to 1843, when he invented quaternions. And for a further 22 years, until his death
in 1865, he was preoccupied with the subject. By 1833 he had shown that complex
numbers form an algebra of couples, i.e. ordered pairs [8].

As a 2-D complex number is represented by a + bi , Hamilton conjectured that a 3-
D complex number could be represented by the triple, a + bi + cj , where i2 = j2 =
−1. However, the product of two such triples raises a problem with their algebraic
expansion:

z1 = a1 + b1i + c1 j

z2 = a2 + b2i + c2 j

z1z2 = (a1 + b1i + c1 j)(a2 + b2i + c2 j)

= a1a2 + a1b2i + a1c2 j

+ b1a2i + b1b2i
2 + b1c2i j + c1a2 j + c1b2 j i + c1c2 j

2

= (a1a2 − b1b2 − c1c2) + (a1b2 + b1a2)i + (a1c2 + c1a2) j

+ b1c2i j + c1b2 j i.
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The operation almost closes—apart from the terms involving i j and j i . Even if we
assume that j i = −i j , we are still left with

(b1c2 − c1b2)i j.

This presented a real problem forHamilton and he toiled for over a decade trying to
resolve it. Then, on 16 October, 1843, whilst walking with his wife, Lady Hamilton,
along the Royal Canal in Ireland to preside at a meeting of the Royal Irish Academy
[9], a flash of inspiration came to him where he saw the solution as a quadruple,
rather than a triple. Instead of using two imaginary terms, three terms provided the
extra permutations necessary to resolve products like i j .

The solution was z = a + bi + cj + dk where i2 = j2 = k2 = −1. And because
of the four terms, Hamilton gave the name quaternion. Hamilton took the opportunity
to record the event in stone, by carving the rules into thewall of Broome bridge,which
he was passing at the time. Although his original inscription has not withstood years
of Irish weather, a more permanent plaque now replaces it.

When Hamilton invented quaternions, he also proposed all sorts of names such
as tensor, versor and vector to describe their attributes. As the inventor, it was
Hamilton’s prerogative to choose whatever names he wanted, and at the time, such
names were associated with the notation of the period. For example, he called the
quaternion’s real part a scalar, and the imaginary part a vector. However, today a
vector does not have any imaginary associations, which has slightly confused how
quaternions are interpreted.

1.4 Some History

Hamilton defined a quaternion q, and its associated rules as:

q = s + ia + jb + kc, s, a, b, c ∈ R

and
i2 = j2 = k2 = i jk = −1,

i j = k, jk = i, ki = j,
j i = −k, k j = −i, ik = − j,

[10–12], but we tend to write quaternions as

q = s + ai + bj + ck.

Observe from Hamilton’s rules how the occurrence of i j is replaced by k. The
extra imaginary k term is key to the cyclic patterns i j = k, jk = i , and ki = j , which
are very similar to the cross product of two unit Cartesian vectors:
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i × j = k, j × k = i, k × i = j.

In fact, this similarity is no coincidence, as Hamilton also invented the scalar and
vector products. However, although quaternions provided an algebraic framework to
describe vectors, one must acknowledge that vectorial quantities had been studied
for many years prior to Hamilton.

Hamilton also saw that the i, j, k terms could represent three Cartesian unit
vectors i, j and k, which had to possess imaginary qualities. i.e. i2 = −1, etc., which
didn’t go down well with some mathematicians and scientists who were suspicious
of the need to involve so many imaginary terms.

Hamilton’smotivation to search for a 3-D equivalent of complex numberswas part
algebraic, and part geometric. For if a complex number is represented by a couple
and is capable of rotating points on the plane, then perhaps a triple rotates points in
space. In the end, a triple had to be replaced by a a quadruple—a quaternion.

One can regard Hamilton’s rules from two perspectives. The first, is that they are
an algebraic consequence of combining three imaginary terms. The second, is that
they reflect an underlying geometric structure of space. The latter interpretation was
adopted by the Scottish mathematical physicist Peter Guthrie Tait [1831–1901], and
outlined in his book An Elementary Treatise on Quaternions [13]. Tait’s approach
assumes three unit vectors i, j, k aligned with the x-, y-, z-axes respectively:

The result of the multiplication of i into j or ij is defined to be the turning of j through a right
angle in the plane perpendicular to i in the positive direction, in other words, the operation
of i on j turns it round so as to make it coincide with k; and therefore briefly ij = k.

To be consistent it is requisite to admit that if i instead of operating on j had operated on
any other unit vector perpendicular to i in the plane yz, it would have turned it through a
right-angle in the same direction, so that ik can be nothing else than −j.

Extending to other unit vectors the definition which we have illustrated by referring to i, it
is evident that j operating on k must bring it round to i, or jk = i.

Tait’s explanation is illustrated in Fig. 1.1a–d. Figure 1.1a shows the original align-
ment of i, j,k. Figure 1.1b shows the effect of turning j into k. Figure 1.1c shows
the turning of k into i, and Fig. 1.1d shows the turning of i in to j.

So far, there is no mention of imaginary quantities—we just have,

ij = k, jk = i, ki = j,
ji = −k, kj = −i, ik = −j.

If we assume that these vectors obey the distributive and associative axioms of
algebra, their imaginary qualities are exposed. For example:

ij = k

and multiplying throughout by i:

iij = ik = −j
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Fig. 1.1 Interpreting the products ij, jk, ki

therefore,
ii = i2 = −1.

Similarly, we can show that j2 = k2 = −1.
Next:

ijk = i(jk) = ii = i2 = −1.

Thus, simply by declaring the action of the cross-product, Hamilton’s rules
emerge, with all of their imaginary features. Tait also made the following obser-
vation:

A very curious speculation, due to Servois, and published in 1813 in Gergonne’s Annales
is the only one, so far has been discovered, in which the slightest trace of an anticipation
of Quaternions is contained. Endeavouring to extend to space the form a + b

√−1 for the
plane, he is guided by analogy to write a directed unit-line in space the form

p cosα + q cosβ + r cos γ,

where α, β, γ are its inclinations to the three axes. He perceives easily that p, q, r must
be non-reals : but, he asks, "seraient-elles imaginaires réductibles à la forme générale A +
B

√−1?” This could not be the answer. In fact they are the i, j,k of the Quaternion Calculus.

So the French mathematician François-Joseph Servois [1768–1847], was another
person who came very close to discovering quaternions. Furthermore, both Tait and
Hamilton were apparently unaware of the paper published by Rodrigues.
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And it doesn’t stop there. The brilliant German mathematician Carl Friedrich
Gauss [1777–1855], was extremely cautious, and nervous of publishing anything
too revolutionary, just in case he was ridiculed by fellowmathematicians. His diaries
reveal that he had anticipated non-Euclidean geometry ahead of Nikolai Ivanovich
Lobachevsky. And in a short note from his diary in 1819 [14], he reveals that he
had identified a method of finding the product of two quadruples (a, b, c, d) and
(α, β, γ, δ) as,

(A, B,C, D) = (a, b, c, d)(α, β, γ, δ)

= (aα − bβ − cγ − dδ, aβ + bα − cδ + dγ

aγ + bδ + cα − dβ, aδ − bγ + cβ + dα).

At first glance, this result does not look like a quaternion product, but if we transpose
the second and third coordinates of the quadruples, and treat them as quaternions,
we have,

(A, B,C, D) = (a + ci + bj + dk)(α + γ i + β j + δk)

= aα − cγ − bβ − dδ + a(γ i + β j + δk)

+ α(ci + bj + dk), (bδ − dβ)i + (dγ − cδ) j + (cβ − bγ )k,

which is identical toHamilton’s quaternionproduct! Furthermore,Gauss also realised
that the product was non-commutative. However, he did not publish his findings, and
it was left to Hamilton to invent quaternions for himself, publish his results and take
the credit.

In 1881 and 1884, Josiah Willard Gibbs, at Yale University, printed his lecture
notes on vector analysis for his students. Gibbs had cut the ‘umbilical cord’ between
the real and vector parts of a quaternion and raised the 3-D vector as an independent
object without any imaginary connotations. Gibbs also took on board the ideas of the
German mathematician Hermann Günter Grassmann [1809–1877], who had been
developing his own ideas for a vectorial system since 1832. Gibbs also defined the
scalar and vector products using the relevant parts of the quaternion product. Finally,
in 1901, a student of Gibbs, Edwin Bidwell Wilson, published Gibbs’ notes in book
form: Vector Analysis, which contains the notation in use today [15].

Quaternion algebra is definitely imaginary, yet simply by isolating the vector
part and ignoring the imaginary rules, Gibbs was able to reveal a new branch of
mathematics that exploded into vector analysis.

Hamilton and his supporters were unable to persuade their peers that quaternions
could represent vectorial quantities, and eventually, Gibbs’ notation won the day, and
quaternions faded from the scene.
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1.5 Summary

The invention of quaternions and vectors are important subjects, and I have attempted
to summarise it within a few pages. However, if you wish to discover more about the
subject, then I can recommend Michael Crowe’s book: A History of Vector Analysis
[16].
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Chapter 2
Linear Equations

2.1 Introduction

In this chapter we review the ideas of linear equations as a foundation for the chapter
on vector algebra. The explanations require a knowledge of matrix notation and the
role of determinants, which the author has previously described in [1] and [2].

2.2 Systems of Linear Equations

In mathematics, an equation is said to be linear when it takes the form:

λ1x1 + λ2x2 + · · · + λn−1xn−1 + λnxn + c = 0.

Where the λ terms linearly scale the unknown, variable x terms, and c is an arbitrary
constant. For example, (2.1), (2.2) and (2.3) are all linear equations:

2x + 3y − 2 = 0 (2.1)

x − 2y + 5z = 0 (2.2)

6x + 7y + 8z + 20t + 35 = 0. (2.3)

Whereas, (2.4), (2.5) and (2.6), are all nonlinear equations:

2x2 + 3y − 2 = 0 (2.4)

x3 − 2y + 5z2 + 5 = 0 (2.5)

6x3 + 7y2 + 8z + 20t2 + 35 = 0. (2.6)

© Springer-Verlag London Ltd., part of Springer Nature 2021
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10 2 Linear Equations

A system of linear equations must comprise at least two or more linear equations,
where one objective is to find a solution that satisfies all the equations. In order to
find a unique solution, the equations must be independent, i.e. the equations must
not be linearly related. Let’s examine two systems of independent equations, and a
system of dependent equations, for R2 and R

3.

2.3 Independent Linear Equations in R
2

A system of independent, linear equations in R
2 is shown in (2.7), and graphed in

Fig. 2.1:
x − 2y + 2 = 0

x − y + 1 = 0.

}
(2.7)

The graphs confirm that the two lines intersect at the point x = 0, y = 1, which is
the only solution to (2.7).

The fact that two equations are independent, does not mean that a solution always
exists. For instance, parallel lines never intersect, therefore their equations do not
possess a solution. For example, (2.8) showsa systemof independent, linear equations
in R2, with identical slopes, but displaced horizontally, as shown in Fig. 2.2:

x − 2y + 2 = 0

x − 2y + 4 = 0.

}
(2.8)

Thus we must anticipate both possibilities when working with linear equations in
R

2.

Fig. 2.1 Graphs of
x − 2y + 2 = 0 (blue), and
x − y + 1 = 0 (green)
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Fig. 2.2 Graphs of
x − 2y + 2 = 0 (blue), and
x − 2y + 4 = 0 (green)
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2.4 Dependent Linear Equations in R
2

A system of dependent, linear equations in R2 is shown in (2.9), and graphed in Fig.
2.3, where the second equation is double the first:

x − 2y + 2 = 0

2x − 4y + 4 = 0.

}
(2.9)

As the two equations encode the same relationship between x and y, their graphs are
identical and there is no single solution. For instance, x = 2, y = 2 satisfies both
equations, so do x = 0, y = 1 and x = −2, y = 0. In fact, the two equations share
an infinite number of solutions over their extent.

The three conditions: a single solution, no solution, and an infinite number of
solutions, can be generalised to any system of linear equations.

Fig. 2.3 Graphs of
x − 2y + 2 = 0 (blue), and
2x − 4y + 4 = 0 (dashed
green)
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2.5 Consistent and Inconsistent Linear Equations

The terms consistent and inconsistent are often used in the context of linear equations.
A consistent system of linear equations has at least one solution, i.e. intersecting or
coincident lines, and an inconsistent system of linear equations has no solutions, i.e.
parallel lines.

2.6 Independent Linear Equations in R
3

A system of independent, linear equations in R3 is shown in (2.10):

y + z − 4 = 0

z − 2 = 0

x = 0

⎫⎪⎬
⎪⎭ (2.10)

which represent three planes in 3-D space, as shown in Fig. 2.4. They intersect at a
single point, whose coordinates are the common solution to the equations: (0, 2, 2).

Once again, the fact that three equations are independent, does not mean that a
solution always exists. For instance, parallel planes never intersect, therefore their
equations do not possess a solution. For example, (2.11) shows a system of indepen-
dent, linear equations in R

3, two, of which, have identical slopes, but displaced in
space:

y + z − 4 = 0

y + z − 3 = 0

x = 0.

⎫⎪⎬
⎪⎭ (2.11)

Figure 2.5 illustrates this combination of planes.

Fig. 2.4 Three planes
intersecting at (0, 2, 2)
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Fig. 2.5 Two parallel planes
and one other plane

2.7 Dependent Linear Equations in R
3

A system of dependent, linear equations in R
3 is shown in (2.12), and graphed in

Fig. 2.6, which are all linearly related:

y + z − 4 = 0

2y + 2z − 8 = 0

3y + 3z − 12 = 0.

⎫⎪⎬
⎪⎭ (2.12)

As the three equations encode the same relationship between x, y and z, their
graphs are identical and there is no single solution. For instance, x = 0, y = 2, z =
2 satisfies all equations, so do x = 1, y = 0, z = 4 and x = 2, y = 4, z = 0. In
fact, the three equations share an infinite number of solutions over their extent.

Fig. 2.6 Three coincident
planes



14 2 Linear Equations

2.8 Matrix Notation

2.8.1 Linear Equations in R
2

Matrix notation provides a powerful way of representing linear equations, and a
simple way of solving them. For example, the linear equations (2.13) are represented
in matrix form as shown in (2.14):

a1x + a2y = c1
b1x + b2y = c2

}
(2.13)

[
a1 a2
b1 b2

] [
x
y

]
=

[
c1
c2

]
. (2.14)

The 2× 2 matrix in (2.14) encodes two vital bits of information about the original
equations: whether they are independent, or not, and the inverse of the matrix, if one
exists. Let us start with the independence of the equations.

2.8.2 Second-Order Determinant

Consider the second-order matrix of (2.14) whose determinant is written:∣∣∣∣a1 a2b1 b2

∣∣∣∣ = a1b2 − a2b1

which is a scaling factor when the matrix is used as a geometric transform. This is
shown by applying (2.14) to the four points of a unit square, we have:

[
a1 a2
b1 b2

] [
0
0

]
=

[
0
0

]
[
a1 a2
b1 b2

] [
1
0

]
=

[
a1
b1

]
[
a1 a2
b1 b2

] [
1
1

]
=

[
a1 + a2
b1 + b2

]
[
a1 a2
b1 b2

] [
0
1

]
=

[
a2
b2

]
.
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Fig. 2.7 The area marked A
is the scaled unit square

The matrix transforms the original unit square to the parallelogram shown in Fig.
2.7, whose area is calculated as follows:

A = (a1 + a2)(b1 + b2) − 1
2a1b1 − a2b1 − 1

2a2b2 − 1
2a1b1 − a2b1 − 1

2a2b2
= (a1 + a2)(b1 + b2) − a1b1 − a2b1 − a2b2 − a2b1
= a1b1 + a1b2 + a2b1 + a2b2 − a1b1 − a2b1 − a2b2 − a2b1
= a1b2 − a2b1.

This shows that the matrix representing two independent linear equations, scales the
area of a shape by the absolute value of its determinant.

If the equations are linearly related, as shown in (2.15):

a1x + a2y = c1
λa1x + λa2y = λc1

}
(2.15)

whereλ is some scaling factor, then the determinant of the associatedmatrix collapses
to zero, as shown in (2.16):

[
a1 a2
λa1 λa2

] [
x
y

]
=

[
c1
λc1

]
∣∣∣∣ a1 a2
λa1 λa2

∣∣∣∣ = 0. (2.16)

Thus a determinant can be used to detect linear dependency.



16 2 Linear Equations

2.8.3 Third-Order Determinant

The French mathematician Pierre Sarrus [1798–1861] discovered a simple way to
compute the value of a third-order determinant, as shown in (2.17):

A =
⎡
⎣a1 a2 a3
b1 b2 b3
c1 c2 c3

⎤
⎦

det A = a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1. (2.17)

For example, given

A =
⎡
⎣ 2 3 5

7 11 13
17 19 23

⎤
⎦

then,

det A = (2× 11× 23) + (3× 13× 17) + (5× 7× 19)

− (2× 13× 19) − (3× 7× 23) − (5× 11× 17)

= 506+ 663+ 665− 494− 483− 935

= −78.

If the equations are linearly related, as shown in (2.18):

a1x + a2y + a3z = c1
b1x + b2y + b3z = c2

λa1x + λa2y + λa3z = λc1

⎫⎪⎬
⎪⎭ (2.18)

whereλ is some scaling factor, then the determinant of the associatedmatrix collapses
to zero, as shown in (2.19):

A =
⎡
⎣ a1 a2 a3

b1 b2 b3
λa1 λa2 λa3

⎤
⎦

det A = λa1a3b2 + λa1a2b3 + λa2a3b1 − λa1a2b3 − λa2a3b1 − λa1a3b2 = 0.
(2.19)
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2.9 Solving Linear Equations

In order to demonstrate how linear equations can be solved, we require the use of two
matrices: the identity matrix and the inverse matrix. The identity matrix is shown in
(2.20) for a 2× 2 matrix: [

1 0
0 1

]
(2.20)

and in (2.21) for a 3× 3 matrix:

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ . (2.21)

The identity matrix is the matrix equivalent of the scalar 1, as shown in (2.22) and
(2.23):

[
1 0
0 1

] [
x
y

]
=

[
x
y

]
(2.22)⎡

⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ x
y
z

⎤
⎦ . (2.23)

In scalar arithmetic we can divide two quantities x and y, either by writing x/y
or x · y−1. In matrix notation, the only way to divide matrix A by matrix B, is to
multiply A by B−1, that is, when it is possible to compute the inverse.

Similarly, as the product y · y−1 = 1, the product of the two matrices B · B−1,
equals the identity matrix.

For a 2× 2 matrix A the inverse is A−1 (2.24):

A =
[
a b
c d

]
, then A−1 = 1

det A

[
d −b

−c a

]
. (2.24)

For a 3× 3 matrix A the inverse is A−1 (2.25):

A =
⎡
⎣ a b c
d e f
g h j

⎤
⎦

A−1 = 1

det A

⎡
⎣ (ej − f h) −(bj − ch) (b f − ce)
−(d j − g f ) (aj − gc) −(a f − dc)
(dh − ge) −(ah − gb) (ae − bd)

⎤
⎦ . (2.25)
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2.9.1 Solving Linear Equations in R
2

Knowing that there are three possible solutions to a systemof linear equations permits
us to design three strategies to solve such equations. Sometimes it is obvious from the
equations that they are dependent, as in the case of (2.9), where the second equation
is double the first. However, it is not obvious that (2.26) is a dependent system:

123x − 45y + 937 = 0

2091x − 765y + 15, 929 = 0.

}
(2.26)

The second equation is 17 times the first, and a determinant will always detect this
condition:∣∣∣∣ 123 −45

2091 −765

∣∣∣∣ = −123× 765− (−45× 2091) = −94095+ 94095 = 0.

Using (2.7) and moving the constants across, we have:

x − 2y = −2

x − y = −1[
1 −2
1 −1

] [
x
y

]
=

[−2
−1

]
. (2.27)

Using (2.24) we have:

A =
[
1 −2
1 −1

]

A−1 = 1

1

[−1 2
−1 1

]
. (2.28)

Multiplying both sides of (2.27) by (2.28), we have:

[−1 2
−1 1

] [
1 −2
1 −1

] [
x
y

]
=

[−1 2
−1 1

] [−2
−1

]
[
1 0
0 1

] [
x
y

]
=

[−1 2
−1 1

] [−2
−1

]
[
x
y

]
=

[
0
1

]
.

Which confirms that the solution to (2.7) is x = 0, y = 1.
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Independent equations do not imply that the determinant of the associated matrix
is always non-zero; in the case of (2.8), representing parallel lines, the determinant
is zero:

x − 2y + 2 = 0

x − 2y + 4 = 0[
1 −2
1 −2

] [
x
y

]
=

[−2
−4

]
∣∣∣∣ 1 −2
1 −2

∣∣∣∣ = 0.

2.9.2 Solving Linear Equations in R
3

Let’s solve (2.10) using (2.25), even though the solution is clear, as we know that
x = 0, and z = 2, it follows that y = 2. We use (2.25) to calculate the inverse matrix
A−1:

y + z − 4 = 0

z − 2 = 0

x = 0⎡
⎣0 1 1
0 0 1
1 0 0

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 4
2
0

⎤
⎦ (2.29)

A =
⎡
⎣0 1 1
0 0 1
1 0 0

⎤
⎦

A−1 =
⎡
⎣0 0 1
1 −1 0
0 1 0

⎤
⎦ . (2.30)
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Multiplying both sides of (2.29) by (2.30), we have:

⎡
⎣0 0 1
1 −1 0
0 1 0

⎤
⎦

⎡
⎣0 1 1
0 0 1
1 0 0

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣ 0 0 1
1 −1 0
0 1 0

⎤
⎦

⎡
⎣ 4
2
0

⎤
⎦

⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣0 0 1
1 −1 0
0 1 0

⎤
⎦

⎡
⎣ 4
2
0

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣0 0 1
1 −1 0
0 1 0

⎤
⎦

⎡
⎣ 4
2
0

⎤
⎦

⎡
⎣ x
y
z

⎤
⎦ =

⎡
⎣0
2
2

⎤
⎦ . (2.31)

Equation (2.31) confirms that the solution to (2.10) is x = 0, y = 2, z = 2.

2.10 Summary

Hopefully, this chapter has clarified some important ideas about linear equations, in
particular, independent and dependent linear equations. One can see thatmatrices and
determinants are very useful in representing linear equations, and will be employed
in the chapters on problem solving.
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Chapter 3
Vector Algebra

3.1 Introduction

This chapter has six sections, and begins by reviewing the mathematical objects of
groups, rings and fields, as these are employed in the description of vectors. The
second section is about space, and covers Euclidean space, vector space and normed
vector space. The third section is concerned with vector definition, vector notation,
addition and various vector features. The fourth section describes linearly dependent
and independent vectors and shows the role of the determinant in distinguishing
between the two conditions. The fifth section covers the span of a set of vectors, and
section six introduces the ideas of basis vectors and dimension.

3.2 Groups, Rings and Fields

3.2.1 Groups

When certain arithmetic operations are applied to members of a set we can secure
closure, non-closure, or the result is undefined. For example, we secure closure for
most arithmetic operations with the set R, but division by zero causes problems, and
is undefined.

When combining sets with arithmetic operations, it is convenient to create another
entity: a group, which is a set, together with the axioms describing how elements of
the set are combined. The set might contain numbers, matrices, vectors, quaternions,
polynomials, etc., and are represented below as a, b and c.

The axioms employ the ‘◦’ symbol to represent any binary operation such as
+,−,×. And a group is formed from a set and a binary operation. For example,
we may wish to form a group of integers under addition: (Z,+), or we may wish
to examine whether quaternions form a group under the operation of multiplication:
(H,×).
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To be a group, all the following axioms must hold for the set S. In particular,
there must be a special identity element e ∈ S, and for each a ∈ S there must exist
an inverse element a−1 ∈ S, so that the following axioms are satisfied:

Closure: a ◦ b ∈ S, a, b ∈ S.

Associativity: (a ◦ b) ◦ c = a ◦ (b ◦ c), a, b, c ∈ S.

Identity element: a ◦ e = e ◦ a = a, a, e ∈ S.

Inverse element: a ◦ a−1 = a−1 ◦ a = e, a, a−1, e ∈ S.

We describe a group as (S, ◦), where S is the set and ‘◦’ the operation. For instance,
(Z,+) is the group of integers under the operation of addition, and (R,×) is the
group of reals under the operation of multiplication.

Let’s bring these axioms to life with three examples.
(Z,+): The integers Z form a group under the operation of addition:

Closure: − 23 + 24 = 1.

Associativity: (2 + 3) + 4 = 2 + (3 + 4) = 9.

Identity: 2 + 0 = 0 + 2 = 2.

Inverse: 2 + (−2) = (−2) + 2 = 0.

(Z,×): The integers Z do not form a group under multiplication:

Closure: − 2 × 4 = −8.

Associativity: (2 × 3) × 4 = 2 × (3 × 4) = 24.

Identity: 2 × 1 = 1 × 2 = 2.

Inverse: 2−1 = 0.5 (0.5 /∈ Z).

Also, the integer 0 has no inverse.
(Q,×): The group of non-zero rational numbers form a group under multiplication:

Closure: 2
5 × 2

3 = 4
15 .

Associativity:
(
2
5 × 2

3

) × 1
2 = 2

5 × (
2
3 × 1

2

) = 2
15 .

Identity: 2
3 × 1

1 = 1
1 × 2

3 = 2
3 .

Inverse: 2
3 × 3

2 = 1
1

(
where 3

2 = (
2
3

)−1
)

.
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3.2.2 Abelian Group

An abelian group, named after the Norwegian mathematician Neils Henrik Abel
[1802–1829], is a group where the order of elements does not influence the result.
i.e. the group is commutative. Thus there are five axioms: closure, associativity,
identity element, inverse element, and commutativity:

Commutativity: a ◦ b = b ◦ a, a, b ∈ S.

For example, the set of integers forms an abelian group under ordinary addition
(Z,+).

3.2.3 Rings

A ring is an extended group, where we have a set of objects which can be added and
multiplied together, subject to some precise axioms. There are rings of real numbers,
complex numbers, integers, matrices, equations, polynomials, etc. A ring is formally
defined as a system where (S,+) and (S,×) are abelian groups and the distributive
axioms:

Additive associativity: a + (b + c) = (a + b) + c, a, b, c ∈ S.

Multiplicative associativity: a × (b × c) = (a × b) × c, a, b, c ∈ S.

Distributivity: a × (b + c) = (a × b) + (a × c) and

(a + b) × c = (a × c) + (b × c), a, b, c ∈ S.

For example, we already know that the integers Z form a group under the operation
of addition, but they also form a ring, as the set satisfies the above axioms:

2 × (3 × 4) = (2 × 3) × 4

2 × (3 + 4) = (2 × 3) + (2 × 4)

(2 + 3) × 4 = (2 × 4) + (3 × 4).

3.2.4 Fields

Although rings support addition and multiplication, they do not necessarily support
division. However, as division is such an important arithmetic operation, the field
was created to support it, with one proviso: division by zero is not permitted. Thus
we have fields of real numbers R, rational numbers Q, and the complex numbers C.

It follows that every field is a ring, but not every ring is a field.
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3.2.5 Division Ring

A division ring or division algebra, is a ring in which every element has an inverse
element, with the proviso that the element is non-zero. The algebra also supports
non-commutative multiplication. Here is a formal description of the division ring
(S,+,×):

Additive associativity: (a + b) + c = a + (b + c), a, b, c ∈ S.

Additive commutativity: a + b = b + a, a, b ∈ S.

Additive identity 0: 0 + a = a, a, 0 ∈ S.

Additive inverse: a + (−a) = 0, a, −a ∈ S.

Multiplicative associativity: (a × b) × c = a × (b × c), a, b, c ∈ S.

Multiplicative identity 1: 1 × a = a, a, 1 ∈ S.

Multiplicative inverse: a × a−1 = 1, a, a−1 ∈ S, a �= 0.

Distributivity: a × (b + c) = (a × b) + (a × c) and

(b + c) × a = (b × a) + (c × a), a, b, c ∈ S.

The German mathematician Adolf Hurwitz [1859–1919], proved that there are only
three associative division algebras: real numbersR, complex numbersC, and quater-
nions H. This proof was published posthumously in 1923.

3.3 Space

3.3.1 Euclidean Space

Since the days of Euclid [c. 325 BC], 3-DEuclidean space has become an abstraction
of the space we inhabit, and 2-D Euclidean space is a special case restricted to a flat
two-dimensional plane. Both of these spaces are linear and are used to describe real-
world phenomena from atoms to galaxies. However, current thinking is forcing us to
consider other spatial models where at the smallest scales space is granular [1], and
at the largest scales spacetime is curved [2].

Historically, a Euclidean space is formed by starting with a set of axioms which
are used to construct other observations. Euclid’s postulates are [3]:

1. A straight line segment may be drawn from any given point to any other.
2. A straight line may be extended to any finite length.
3. A circle may be described with any given point as its centre and any distance

as its radius.
4. All right angles are congruent.
5. If a straight line intersects two other straight lines, and somakes the two interior

angles on one side of it together less than two right angles, then the other straight
lines will meet at a point if extended far enough on the side on which the angles are
less than two right angles.
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For example, these postulates permit one to show that a triangle’s interior angles
sum to two right angles.

Although modern mathematics still acknowledges the existence of the above pos-
tulates, Euclidean space has a more abstract definition where it is associated with
the set of real numbers R. Generally, an n-dimensional Euclidean space is equiv-
alent to the set Rn , where each point is equivalent to an n-tuple of R. Thus in
two-dimensional space, two real numbers uniquely define a single point, and in
three-dimensional space, three real numbers are required. This definition permits
the existence of Euclidean spaces with higher dimensions than three, which do not
concern us in this book.

As the set of real numbersR lends itself to the actions of addition, subtraction and
multiplication, so must Euclidean space, which means that Euclidean vectors can be
added, subtracted and multiplied together using the scalar (dot) product.

3.3.2 Vector Space

An algebra is a mathematical structure comprising a set, and the operations of mul-
tiplication, addition and scalar multiplication by elements of the associated field.
For example, algebra over the field of real numbers has well-defined operations
of addition, multiplication and division, expressed in the axioms of associativity,
commutativity and distributivity. An algebra over a field is also a vector space that
possesses a bilinear product, and we often use the expression: “Let V be a vector
space over a field F .”

A bilinear form is defined as follows:

Definition: Let V be a vector space over a field F . A bilinear form B on V is
a function of two elements r and s of V , and an element f of F , satisfying the
following axioms:

B(r1 + r2, s) = B(r1, s) + B(r2, s)

B(r, s1 + s2) = B(r, s1) + B(r, s2)

B( f r, s) = f B(r, s)

B(r, f s) = f B(r, s).

The bilinear product is also a feature of the algebra of real numbers:

Distributivity: a(b + c) = (ab) + (ac) and

(b + c)a = (ba) + (ca), a, b, c ∈ R.
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The real numbers R, can be seen as a one-dimensional vector space over the
field R, and thus are a one-dimensional algebra over itself. The complex numbers
C, can be seen as a two-dimensional vector space over the field R, and thus are a
two-dimensional algebra over R. Although one- and two-dimensional vector spaces
support division, there is no three-dimensional division algebra. However, quater-
nions form an algebra over the real numbers and support quaternion division. Thus
the quaternions H, can be seen as a four-dimensional vector space over the field R.

3.3.3 Normed Vector Space

A normed vector space is a vector space on which a norm is defined. For example,
the Euclidean norm is a real-valued function that determines the absolute magnitude
of an element:

real number x : |x | = √
x2

complex number z = a + bi : |z| =
√
a2 + b2

quaternion q = [s, λv̂] : |q| =
√
s2 + λ2

Euclidean vector a = [x y z] : ||a|| =
√
x2 + y2 + z2.

3.4 Vector Definition

3.4.1 Geometric Vector

A geometric vector encodes a numerical quantity that has magnitude and direction,
which enables it to represent a force, velocity, acceleration, etc. The most popular
form is the Euclidean vector, which is used to solve problems in two and three
dimensions, and takes the form of an ordered list (n-tuple) of scalars.

3.4.2 Euclidean Vector

A Euclidean vector is a geometric vector used to solve geometric problems in two
and three dimensions.
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3.4.3 Position Vector

A position vector is generally used to locate a point in space, and can be visualised
with its tail at the origin, and its head at the desired point. It provides a simple strategy
for solving complex 2-D and 3-D geometric problems.

3.4.4 n-tuple

Vectors are defined in different ways from a directed line to an object belonging to
a multi-dimensional abstract space. A definition that permits us to explore directed
lines or abstract spaces is that of ordered n-tuples, where a tuple is an ordered list
of elements. The number of elements n, determines the dimension of a vector, thus
a 2-tuple belongs to R

2 (2-D space), a 3-tuple belongs to R
3 (3-D space) and an

n-tuple belongs to Rn (nD space). The following are all vectors using using the idea
of tuples:

a = [1 2] ∈ R
2, b = [23 5 41] ∈ R

3, c = [27 03 20 11] ∈ R
4.

It is up to us what interpretation we assign to these elements: we can visualise the
n-tuple as a position vector locating a point relative to the origin; the elements of
the n-tuple can be Cartesian offsets of a floating directed line, or a list of numbers
associated with an imaginary space.

3.4.5 Vector Notation

Vectors are notated in various ways:
• Boldface a, b, c.
• Arrows

−→
AB,

−→
BC,

−→
AC .

Authors may employ different bracket styles to enclose a vector’s elements:
• Square [1 2 3].
• Parentheses (1, 2, 3).
• Angles < 1, 2, 3 >.

Finally, a vector’s elements may or may not be separated with commas. A personal
preference is as follows:

b =
⎡

⎣
1
2
3

⎤

⎦ , or a = [4 5 6].

and used throughout this book.
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3.4.6 Column and Row Vectors and the Transpose Operation

Vectors are expressed either as a column or row of elements:

b =
⎡

⎣
1
2
3

⎤

⎦ , or a = [4 5 6]

and are moved between the two formats using the transpose operation:

bT = [1 2 3], or aT =
⎡

⎣
4
5
6

⎤

⎦ .

One of the uses of the transpose operation is the product between two column vectors.
For example, the product bc is not permitted:

where b =
⎡

⎣
1
2
3

⎤

⎦ , c =
⎡

⎣
5
6
7

⎤

⎦

whereas, using the transpose operation the product becomes legal:

bTc = [1 2 3]
⎡

⎣
5
6
7

⎤

⎦ .

We’ll say more about vector products later on.
Column vectors arise in matrix algebra, especially in the context of systems of

linear equations. For example, the set of Equ. (3.1) is represented in matrix form
with column vectors (3.2):

3x + 4y + 5z = 12

2x + 3y − 6z = 10

1x − 7y + 3z = 8

⎫
⎪⎬

⎪⎭
(3.1)

⎡

⎣
3 4 5
2 3 −6
1 −7 3

⎤

⎦

⎡

⎣
x
y
z

⎤

⎦ =
⎡

⎣
12
10
8

⎤

⎦ . (3.2)
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3.4.7 Vector Magnitude

The magnitude or modulus of a vector is given by the associated vector space norm,
which for Euclidean vectors is its length. For example:

a = [3 4] and ‖a‖ =
√
32 + 42 = 5

b = [4 5 6] and ||b|| =
√
42 + 52 + 62 = √

77.

3.4.8 Vector Addition

Vector addition is just a question of adding the corresponding elements of the vectors,
which must be of the same dimension. Given two vectors of dimension n:

a = [a1 a2 · · · an]
b = [b1 b2 · · · bn]

a + b = [a1 + b1 a2 + b2 · · · an + bn].

For example:
a = [8 2], b = [3 3], a + b = [11 5].

See Fig. 3.1.

3.4.9 Unit Vector

A unit vector has a magnitude of unity and is readily scaled to any required length
by multiplying it by a scalar. A unit vector is given a ‘hat’ symbol â, to distinguish

Fig. 3.1 The addition of two
vectors
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it from other vectors. Any vector b, is transformed into a unit vector â, by dividing
by its magnitude:

b = [1 2 3], ||b|| = √
14, â = 1√

14
[1 2 3].

3.4.10 Null Vector

A null vector has a magnitude of zero and represented by 0. Thus, a and b are null
vectors:

a = [0 0], b = [0 0 0].

3.4.11 Vector Direction

Two- and three-dimensional Euclidean vectors possess magnitude and direction,
which are encoded within the sign and value of the associated scalars.

3.5 Linearly Dependent and Independent Vectors

Consider the two vectors (3.3):

a = [4 6], b = [2 3] (3.3)

one can see that a is twice b:
a = 2b (3.4)

and are therefore, linearly dependent. From (3.4) we observe that a − 2b = 0, which
can be expressed:

λ1a + λ2b = 0 (3.5)

λ1 = 1

λ2 = −2.

Now the two vectors (3.6):

a = [2 0], b = [0 6] (3.6)

are linearly independent, as the zero terms prevent the vectors from being related to
one another. Consequently, using (3.5), both λ1 and λ2 must be zero:
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λ1a + λ2b = 0 (3.7)

λ1 = 0

λ2 = 0.

Generalising these observations for any set of vectors, we have:

A set of vectors {v1, v2, . . . , vn}, n ∈ N, in a vector space V
is linearly dependent if the only values of the scalars

λ1, λ2, . . . , λn ∈ R, are not all zero, such that
λ1v1 + λ2v2 + · · · + λnvn = 0.

The set of vectors is linearly independent if the only values of the scalars
λ1, λ2, . . . , λn ∈ R, are all zero, such that

λ1v1 + λ2v2 + · · · + λnvn = 0.

Let’s test these definitions with another vector.
Consider the two vectors (3.8):

a = [3 6 9], b = [1 2 3] (3.8)

one can see that a is three times b:

a = 3b (3.9)

therefore,
a − 3b = 0

which implies λ1 = 1 and λ2 = −3.
Another way to detect dependent and independent vectors is with a determinant.

For example, using the two vectors (3.3), we create the following determinant:

∣∣
∣∣
4 6
2 3

∣∣
∣∣ = 0

and notice the zero result. This confirms that the vectors are linearly dependent,
because if we use two general dependent vectors:

a = [a1 a2], b = [λa1 λa2], λ ∈ R

the corresponding determinant equals zero:

∣∣∣∣
a1 a2
λa1 λa2

∣∣∣∣ = λa1a2 − λa1a2 = 0.

If the vectors are independent, such as (3.6), the corresponding determinant is not
zero:
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∣∣
∣∣
2 0
0 6

∣∣
∣∣ = 2 × 6 − 0 × 0 = 12.

Now let’s consider three linearly dependent 3-D vectors where c = a + b:

a = [1 2 1], b = [3 4 3], c = [4 6 4].

The corresponding determinant is

∣∣∣∣
∣∣

1 2 1
3 4 3
4 6 4

∣∣∣∣
∣∣
.

Using Sarrus’s rule to expand the determinant, we have:

∣∣∣
∣∣∣

1 2 1
3 4 3
4 6 4

∣∣∣
∣∣∣
= (1 × 4 × 4) + (2 × 3 × 4) + (1 × 3 × 6)

− (1 × 3 × 6) − (2 × 3 × 4) − (1 × 4 × 4)

= 16 + 24 + 18 − 18 − 24 − 16

= 0.

And once again, the determinant records a zero value due to the linear dependence.
This can be shown to be a general property by using the following vectors:

a = [a1 a2 a3]
b = [b1 b2 b3]
c = [λ(a1 + b1) λ(a2 + b2) λ(a3 + b3)], λ ∈ R.

Using Sarrus’s rule to expand the determinant we have:

∣∣
∣∣∣∣

a1 a2 a3
b1 b2 b3

λ(a1 + b1) λ(a2 + b2) λ(a3 + b3)

∣∣
∣∣∣∣

= a1b2λ(a3 + b3) + a2b3λ(a1 + b1) + a3b1λ(a2 + b2)

− a1b3λ(a2 + b2) − a2b1λ(a3 + b3) − a3b2λ(a1 + b1)

= λ(a1a3b2 + a1b2b3 + a1a2b3 + a2b1b3 + a2a3b1 + a3b1b2)

− λ(a1a2b3 − a1b2b3 − a2a3b1 − a2b1b3 − a1a3b2 − a3b1b2)

= 0.

The zero value confirms the linear dependence.
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Now let’s define three linearly independent vectors (3.10):

a = [1 2 0], b = [0 3 3], c = [5 0 4]. (3.10)

The corresponding determinant is

∣∣∣∣
∣∣

1 2 0
0 3 3
5 0 4

∣∣∣∣
∣∣
.

Using Sarrus’s rule to expand the determinant, we have:

∣∣∣
∣∣∣

1 2 0
0 3 3
5 0 4

∣∣∣
∣∣∣
= (1 × 3 × 4) + (2 × 3 × 5) + (0 × 0 × 0)

− (1 × 3 × 0) − (2 × 0 × 4) − (0 × 3 × 5)

= 12 + 30 + 0 − 0 − 0 − 0

= 42.

This time, the determinant gives a non-zero value, confirming the independence of
the vectors.

3.6 Span of a Set of Vectors

The span of a set of vectors tells us something about the space occupied by a linear
combination of the vectors. For example, if two vectors are linearly dependent, any
linear combination creates a third vector collinear with them. Consequently, their
span is confined to an infinite line. To illustrate this, consider the set of vectors S
(3.11), where the second vector is 3 times the first vector:

S =
{ [

3
1

]
,

[
9
3

] }
. (3.11)

As the two vectors are linearly related, no matter how they are linearly combined,
the span(S) is a line containing the two vectors. See Fig. 3.2.
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Fig. 3.2 The two linearly
related vectors

Next, consider the set S of two linearly independent vectors:

S =
{ [

3
2

]
,

[
5
0

] }
.

Nomatter how one tries, it is impossible to relate the second vector to the first vector
using a linear scaling factor. The vectors are linearly independent, and therefore the
span(S) is any vector in R2.

Naturally, only two linearly independent vectors are necessary to span R
2; any

extra vector must be a linear combination of the original two. For example, the vector
(3.12): [−7

2

]
(3.12)

appears to be completely unrelated to the two vectors in S, but is related as follows:

[−7
2

]
= 1

[
3
2

]
− 2

[
5
0

]
.

See Fig. 3.3.
Now consider three vectors inR3, where there exists some linear dependence. For

example, in the following set S, the third vector is the sum of the first two:

S =
⎧
⎨

⎩

⎡

⎣
3
2
1

⎤

⎦ ,

⎡

⎣
5
0
2

⎤

⎦ ,

⎡

⎣
8
2
3

⎤

⎦

⎫
⎬

⎭
.

The zero term in the second vector ensures that it is independent of the first vector.
Consequently, they coexist on a plane in R3, and as the third vector is the sum of the
first two, it, too, resides on the same plane. This means that the span(S) is a plane in
R

3.



3.6 Span of a Set of Vectors 35

Fig. 3.3 How [−7 2]T is
related to [3 2]T and
[5 0]T

If the set S contains three independent vectors:

S =
⎧
⎨

⎩

⎡

⎣
2
0
0

⎤

⎦ ,

⎡

⎣
0
3
0

⎤

⎦ ,

⎡

⎣
0
0
4

⎤

⎦

⎫
⎬

⎭

then any vector in R
3 can be defined by linearly combining these vectors. Here are

two such vectors:
⎡

⎣
10
10
10

⎤

⎦ = 5

⎡

⎣
2
0
0

⎤

⎦ + 10

3

⎡

⎣
0
3
0

⎤

⎦ + 10

4

⎡

⎣
0
0
4

⎤

⎦

⎡

⎣
5
0

−5

⎤

⎦ = 5

2

⎡

⎣
2
0
0

⎤

⎦ + 0

⎡

⎣
0
3
0

⎤

⎦ + −5

4

⎡

⎣
0
0
4

⎤

⎦ .

Thus we can say that the span(S) = R
3.

3.7 Basis and Dimension

Abasis is a finite or infinite set of linearly independent vectors that span the associated
vector space. A vector is formed by adding together the scaled, unit basis vectors. A
simple example of a basis is called the standard basis. For two dimensions the basis
vectors are e1 = [1 0] and e2 = [0 1], such that any vector inR2 is uniquely defined
as a = a1e1 + a2e2, where a1, a2 ∈ R, and are the vector’s Cartesian coordinates.
For three dimensions, the basis vectors are e1 = [1 0 0], e2 = [0 1 0] and e3 =
[0 0 1], such that any vector in R3 is uniquely defined as a = a1e1 + a2e2 + a3e3.
Figure 3.4 shows how a vector in R2 is formed from the addition of 3e1 and 2e2.

It is also possible to employ basis vectors that are non-orthogonal.
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Fig. 3.4 The role of basis
vectors

3.7.1 Cartesian Vectors

A Cartesian vector is constructed from two or three unit basis vectors: i, j and k,
aligned with the x-, y- and z-axis, respectively:

i = [1 0 0], j = [0 1 0], k = [0 0 1].

By employing the rules of vector addition and subtraction, we can construct a 2-D
Cartesian vector a by summing two scaled, unit basis vectors:

a = a1i + a2j

which is equivalent to
a = [a1 a2].

A 3-D Cartesian vector takes the form:

a = a1i + a2j + a3k

and is equivalent to
a = [a1 a2 a3].

Any pair of Cartesian vectors, such as a and b, are combined as follows

a = a1i + a2j + a3k

b = b1i + b2j + b3k

a ± b = (a1 ± b1)i + (a2 ± b2)j + (a3 ± b3)k.



3.8 Summary 37

3.8 Summary

This chapter begins with a review of the mathematical structures: groups, rings
and fields, as these are employed when describing vectors abstractly. In the section
on space, the main ideas to carry forward are vector space and a normed vector
space. As the reader has probably encountered vectors before, the section on vector
definition reviews some important ideas such as vector addition, unit vector and
linearly dependent and independent vectors. The determinant is a very useful object
in detecting linear dependency and independency. The span of a set of vectors is an
important concept, so, too, are basis vectors which lead to the last topic of Cartesian
vectors.
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Chapter 4
Products of Vectors

4.1 Introduction

This chapter describes the scalar and vector products that emerged from Hamilton’s
quaternions. The algebraic and geometric definitions are explained, together with
their associative, distributive and commutative properties. Lastly, the products are
combined to form the triple products using geometric analogues.

4.2 Products

Webeginwith the origin of the two products associatedwith today’s vectorial system:
the scalar and vector products. Readers wishing to explore the alternative system of
geometric algebra, can refer to the author’s books [1] [2].

The scalar and vector products are revealed by examining the product of two
Cartesian vectors using a vector function ◦, to be defined:

a = a1i + a2j + a3k

b = b1i + b2j + b3k

a ◦ b = (a1i + a2j + a3k) ◦ (b1i + b2j + b3k)

= a1b1i ◦ i + a1b2i ◦ j + a1b3i ◦ k

+ a2b1j ◦ i + a2b2j ◦ j + a2b3j ◦ k

+ a3b1k ◦ i + a3b2k ◦ j + a3b3k ◦ k

= a1b1i ◦ i + a2b2j ◦ j + a3b3k ◦ k (4.1)

+ a1b2i ◦ j + a1b3i ◦ k

+ a2b1j ◦ i + a2b3j ◦ k

+ a3b1k ◦ i + a3b2k ◦ j.
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Equation (4.1) contains two parts that can be separated into scalar and vector portions,
which is effected by two different functions acting upon the Cartesian vectors. If we
make ◦ = ·, where a · b = ||a|| ||b|| cos θ , and θ is the angle between a and b, then

a · b = a1b1i · i + a2b2j · j + a3b3k · k
+ a1b2i · j + a1b3i · k
+ a2b1j · i + a2b3j · k
+ a3b1k · i + a3b2k · j.

The products i · i, j · j and k · k equal 1, due to their mutual alignment, and the
remaining vector products equal zero, due to their orthogonality. Thus:

a · b = a1b1 + a2b2 + a3b3

creating a scalar.
Conversely, if we make ◦ = ×, with a × b = ||a|| ||b|| sin θ n̂, where n̂ is a unit

vector perpendicular to the plane containing a and b, then

a × b = a1b1i × i + a2b2j × j + a3b3k × k

+ a1b2i × j + a1b3i × k

+ a2b1j × i + a2b3j × k

+ a3b1k × i + a3b2k × j.

The products i × i, j × j and k × k equal 0, due to their mutual alignment, and the
remaining terms equal 1, due to their orthogonality. Thus:

a × b = a1b2i × j + a1b3i × k + a2b1j × i + a2b3j × k + a3b1k × i + a3b2k × j.

Hamilton’s work on quaternions reveal the loss of commutativity: j × i = −i × j,
etc., and the cyclic relationship between i, j and k:

i × j = k, j × k = i, k × i = j.

Therefore,

a × b = (a1b2 − a2b1)i × j + (a3b1 − a1b3)k × i + (a2b3 − a3b2)j × k

= (a1b2 − a2b1)k + (a3b1 − a1b3)j + (a2b3 − a3b2)i

= (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k

creating a vector. The use of the ‘×’ symbol for the product has created the alternative
name: cross product.

It’s worth pointing out that this vector product does not exist in geometric algebra
– Hamilton’s quaternions play no part. Instead, the vector product is replaced by the
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wedge product, which interprets the components of the vector as signed areas. The
wedge product makes ◦ = ∧, where a ∧ b = ||a|| ||b|| sin θ, then,

a ∧ b = (a2b3 − a3b2)j ∧ k + (a3b1 − a1b3)k ∧ i + (a1b2 − a2b1)i ∧ j

and j ∧ k, k ∧ i and i ∧ j are called bivectors that are signed areas.
Let us now consider these two products individually.

4.3 Scalar Product

4.3.1 Algebraic Definition

The scalar product of two vectors of the same dimension is defined as the sum of
the products of the corresponding elements. Given two vectors a and b:

a = [a1 a2 · · · an], b = [b1 b2 · · · bn], a · b = a1b1 + a2b2 + · · · + anbn

or more succinctly:
n∑

i=1

aibi .

The scalar product is also known as the dot product due to the ‘dot’ representing
the multiplication symbol. For example, given two vectors a and b:

a = [2 3 4], b = [6 7 8], a · b = 2 · 6 + 3 · 7 + 4 · 8 = 65.

4.3.2 Axioms

As the dot product is just the sum of scalar products, it satisfies the commutative
multiplication, and distributivity axioms:

Commutative multiplication: a · b = b · a.
Distributivity: a · (b + c) = a · b + a · c

a · a = ||a||2
a · 0 = 0

(λa) · b) = a · (λb) = λ(a · b), λ ∈ R.
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4.3.3 Geometric Definition

The dot product also has a geometric definition:

a · b = ||a|| ||b|| cos θ

which is proved as follows.
Figure 4.1 shows two vectors a and b separated by an angle θ , and their difference

vector a − b. The axioms of the scalar product inform us that:

a = [a1 a2 · · · an]
||a||2 = a21 + a22 + · · · + a2n = a · a.

Therefore,

||a − b||2 = (a − b) · (a − b)

= a · a − a · b − b · a + b · b
= a · a − 2a · b + b · b
= ||a||2 + ||b||2 − 2a · b. (4.2)

Applying the cosine rule to the triangle in Fig. 4.1 we have:

||a − b||2 = ||a||2 + ||b||2 − 2||a|| ||b|| cos θ. (4.3)

Substituting (4.2) in (4.3) we have:

||a||2 + ||b||2 − 2a · b = ||a||2 + ||b||2 − 2||a|| ||b|| cos θ

−2a · b = −2||a|| ||b|| cos θ

a · b = ||a|| ||b|| cos θ.

Fig. 4.1 Two vectors a and
b and their difference vector
a − b
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We can quickly test this relationship with a simple example. Given two unit vectors
â = 1i + 0j and b̂ =

√
2
2 i +

√
2
2 j, separated by an angle of θ = π/4 radians (45◦),

then:

â · b̂ = [1 0] ·
[√

2
2

√
2
2

]
=

√
2
2

â · b̂ = ||â|| ||b̂|| cos θ = cos
(

π
4

)
=

√
2
2 .

4.4 Vector Product

The vector product of two vectors, creates a third vector orthogonal to the plane
containing the vectors, and is very useful in calculating surface normals. It is very
similar to Hamilton’s quaternions where the imaginary units i, j, k are related by the
non-commutative properties: i j = k, jk = i, ki = j .

Both the scalar and the vector products were independently introduced by Josiah
Willard Gibbs and the English electrical engineer and mathematician Oliver Heav-
iside [1850–1925], who published in 1893 his description of vector algebra and
analysis [3].

Oliver Heaviside was no supporter of quaternions, as this quotation from his book
shows:

But that was before I had thrown off the quaternionic old-man-of-the sea who fastened
himself on my shoulders when reading the only accessible treatise on the subject–Prof.
Tait’s Quaternions. But I came later to see that, so far as the vector analysis I required
was concerned, the quaternion was not only not required, but was a positive evil of no
inconsiderable magnitude; and that by its avoidance the establishment of vector analysis
was made quite simple and its working also simplified, and that it could be conveniently
harmonised with ordinary Cartesian work.

Heaviside defined the vector product, using the word tensor to mean modulus, as:

But the vector product of two vectors has a strictly-fixed tensor, depending upon those of the
component vectors and their inclination. There is particular advantage in taking the tensor
of the vector product of a and b to be ab sin θ . Thus we define the vector product of two
vectors a and bwhose tensors are a and b, and whose included angle is θ , to be a third vector
c whose tensor c equals ab sin θ , and whose direction is perpendicular to the plane of a and
b; the positive direction of c being such that positive or right-handed rotation about c carries
the vector a to b. This vector product is denoted by

c = Vab,

and its tensor may be denoted by V0ab = ab sin θ .

Heaviside employedV to represent the vector product, which today has been replaced
by ×. He continues to show that
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i × j = k, j × k = i, k × i = j

i × i = 0, j × j = 0, k × k = 0.

Lastly, he writes:

Since the tensor of Vab is ab sin θ and the scalar product ab is ab cos θ , we have

(ab)2 + (Vab)2 = (ab)2 .

This last statement is a version of the Lagrange identity invented by the Franco-
Italianmathematician and astronomer Joseph-LouisLagrange [1736–1813],which in
vector calculus links the dot product, vector product with the lengths of the associated
vectors.

Given two vectors a and b, their vector product is:

a = a1i + a2j + a3k

b = b1i + b2j + b3k

a × b = (a2b3 − a3b2)i + (a3b1 − a1b3)j + (a1b2 − a2b1)k.

An aide-mémoire for computing this relationship uses the following determinant,
with the j component reversed:

a × b =
∣∣∣∣∣∣

i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣
=

∣∣∣∣
a2 a3
b2 b3

∣∣∣∣ i −
∣∣∣∣
a1 a3
b1 b3

∣∣∣∣ j +
∣∣∣∣
a1 a2
b1 b2

∣∣∣∣k

a × b = (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k.

Now let’s prove ||a × b|| = ||a|| ||b|| | sin θ |:

||a||2 = a · a
||a × b||2 = (a × b) · (a × b)

= (a2b3 − a3b2)
2 + (a1b3 − a3b1)

2 + (a1b2 − a2b1)
2

= a21
(
b22 + b23

) + a22
(
b23 + b21

) + a23
(
b22 + b21

)

− 2(a2a3b2b3 + a1a3b1b3 + a1a2b1b2)

(a · b)2 = (a1b1 + a2b2 + a3b3)
2

= a21b
2
1 + a22b

2
2 + a23b

2
3 + 2(a1a2b1b2 + a1a3b1b3 + a2a3b2b3)

||a × b||2 + (a · b)2 = a21
(
b21 + b22 + b23

) + a22
(
b21 + b22 + b23

) + a23
(
b21 + b22 + b23

)

= (
a21 + a22 + a23

) (
b21 + b22 + b23

)

= ||a||2||b||2
||a × b||2 = ||a||2||b||2 − (a · b)2



4.4 Vector Product 45

= ||a||2||b||2 − ||a||2||b||2 cos2 θ

= ||a||2||b||2 (
1 − cos2 θ

)

= ||a||2||b||2 sin2 θ

||a × b|| = ||a|| ||b|| | sin θ |.

Let’s test the vector product with the following scenario:

a = 3i + 1j + 0k

b = 1i + 2j + 0k

a × b =
∣∣∣∣∣∣

i j k
3 1 0
1 2 0

∣∣∣∣∣∣
=

∣∣∣∣
1 0
2 0

∣∣∣∣ i −
∣∣∣∣
3 0
1 0

∣∣∣∣ j +
∣∣∣∣
3 1
1 2

∣∣∣∣k

= 0i + 0j + 5k.

Which is correct, as a and b are confined to the ij plane. Let’s use the scalar product to
determine the angle between a and b, and substitute this back into the vector product:

||a|| =
√
32 + 12 = √

10

||b|| =
√
12 + 22 = √

5

a · b = 3 · 1 + 1 · 2 = 5

a · b = ||a|| ||b|| cos θ

θ = cos−1

(
a · b

||a|| ||b||
)

= cos−1

(
5√

10
√
5

)
= 45◦

||a × b|| = ||a|| ||b|| | sin θ |
= √

10
√
5 sin 45◦

= 5.

Now let’s demonstrate the non-commutativity of the vector product by reversing the
vectors a and b:

a = 1i + 2j + 0k

b = 3i + 1j + 0k

a × b =
∣∣∣∣∣∣

i j k
1 2 0
3 1 0

∣∣∣∣∣∣
=

∣∣∣∣
2 0
1 0

∣∣∣∣ i −
∣∣∣∣
1 0
3 0

∣∣∣∣ j +
∣∣∣∣
1 2
3 1

∣∣∣∣k

= 0i + 0j − 5k.

Which confirms that the vector has been reversed.
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4.4.1 Geometric Definition

The modulus of the vector product: ||a × b|| equals ||a|| ||b|| | sin θ |, which is the
area of the parallelogram that a and b span, as shown in Fig. 4.2. It is this relationship
that is behind the bivector in geometric algebra.

4.4.2 The Right-Hand Rule

The right-hand rule identifies the directions of the three vectors involved in the vector
product. The vector product is defined as

a × b = ||a|| ||b|| sin θ n̂

with vectors a and b separated by an angle θ , and n̂ is perpendicular to the plane
containing a and b. And because sin is an odd function, i.e. sin−θ = − sin θ , the
direction of a × b is reversed by changing the sign of θ .

Therefore, with a positive θ , and using one’s right hand, the index (first) finger
points along a, the middle finger points along b, which makes the thumb point in the
direction of n̂, i.e. a × b. As a test let a = i, b = j, and the thumb points along k.
If vectors a and b are reversed, n̂ is reversed. However, all of this is taken care of by
the determinant:

a = 1i + 0j + 0k

b = 0i + 1j + 0k

a × b =
∣∣∣∣∣∣

i j k
1 0 0
0 1 0

∣∣∣∣∣∣
=

∣∣∣∣
0 0
1 0

∣∣∣∣ i −
∣∣∣∣
1 0
0 0

∣∣∣∣ j +
∣∣∣∣
1 0
0 1

∣∣∣∣k

= 0i + 0j + 1k.

Fig. 4.2 The area created by
the vectors a and b
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Reversing the vectors:

a = 0i + 1j + 0k

b = 1i + 0j + 0k

a × b =
∣∣∣∣∣∣

i j k
0 1 0
1 0 0

∣∣∣∣∣∣
=

∣∣∣∣
1 0
0 0

∣∣∣∣ i −
∣∣∣∣
0 0
1 0

∣∣∣∣ j +
∣∣∣∣
0 1
1 0

∣∣∣∣k

= 0i + 0j − 1k.

And the direction is reversed.

4.5 Triple Products

So far, we have examined the scalar and vector products of two vectors; now let’s
examine two triple products of three vectors: the scalar triple product and the vector
triple product.

4.5.1 Scalar Triple Product

The scalar triple product computes the volume of a space defined by three vectors
a, b and c, and is written:

V = c · (a × b). (4.4)

Figure 4.3 shows three vectors a, b and c, that provide the basis for a prism, where
the area of the base is given by A = ||a|| ||b|| sin θ . But n = a × b, where ||n|| = A.
Now the volume of a prism is the product of its perpendicular height and its base
area, which is given by

V = (||c|| cosα) (||n||) = ||c|| ||n|| cosα

which is the dot product c · n. But as n = a × b, we can state:

V = c · (a × b).

The prism in Fig. 4.3 could be drawn with vectors b and c as the base, which using
the above reasoning would make

V = a · (b × c).
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Fig. 4.3 The prism volume
calculated by the scalar triple
product

Similarly, if vectors c and a form the base, the volume is

V = b · (c × a).

Thus, we have:
V = a · (b × c) = b · (c × a) = c · (a × b).

Given:

a = a1i + a2j + a3k

b = b1i + b2j + b3k

c = c1i + c2j + c3k

a × b = (a2b3 − a3b2)i − (a1b3 − a3b1)j + (a1b2 − a2b1)k

c · (a × b) = (c1i + c2j + c3k) · [(a2b3 − a3b2) i − (a1b3 − a3b1)j + (a1b2 − a2b1)k]

= (a2b3 − a3b2)c1 − (a1b3 − a3b1)c2 + (a1b2 − a2b1)c3

= a1b2c3 + a2b3c1 + a3b1c2 − a1b3c2 − a2b1c3 − a3b2c1

which is the Sarrus expansion of a third-order determinant:

c · (a × b) =
∣∣∣∣∣∣

a1 a2 a3
b1 b2 b3
c1 c2 c3

∣∣∣∣∣∣
. (4.5)

Let’s test (4.5) with a 2-unit sided cube:

a = 2i, b = 2j, c = 2k

c · (a × b) =
∣∣∣∣∣∣

2 0 0
0 2 0
0 0 2

∣∣∣∣∣∣
= 8.
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4.5.2 Vector Triple Product

The vector triple product is written:

v = a × (b × c). (4.6)

As (4.6) contains two cross products, one of them is enclosed within parentheses to
distinguish it from the alternative form:

v = (a × b) × c

which, due to the non-associative nature of the cross product, would generally give
a different result.

If b and c in (4.6) are linearly related, then b × c = 0, and v = 0. But, if b and
c are not linearly related, they define a plane containing both vectors, such that
b × c is perpendicular to the plane using the right-hand rule. This, in turn, implies
that a × (b × c) is perpendicular to b × c, and a × (b × c) resides in the plane
containing b and c.

For example, Fig. 4.4 shows the following scenario:

a = [0 0 1], b = [3 0 0], c = [0 2 2]

with the plane containing b and c shaded green.
The value of b × c is calculated as follows:

b × c =
∣∣∣∣∣∣

i j k
3 0 0
0 2 2

∣∣∣∣∣∣
=

∣∣∣∣
0 0
2 2

∣∣∣∣ i −
∣∣∣∣
3 0
0 2

∣∣∣∣ j +
∣∣∣∣
3 0
0 2

∣∣∣∣ k

= 0i − 6j + 6k.

The value of a × (b × c) is calculated as follows:

a × (b × c) =
∣∣∣∣∣∣

i j k
0 0 1
0 −6 6

∣∣∣∣∣∣
=

∣∣∣∣
0 1

−6 6

∣∣∣∣ i −
∣∣∣∣
0 1
0 6

∣∣∣∣ j +
∣∣∣∣
0 0
0 −6

∣∣∣∣ k

= 6i + 0j + 0k.

Thus a × (b × c) = 6i, which is in the plane containing b and c.
Knowing that b and c provide a basis that spans the plane containing b and c, and

that a × (b × c) belongs to this plane, we can state:

a × (b × c) = λ1b + λ2c, λ1, λ2 ∈ R.

In the above example, a × (b × c) = 2b.
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Fig. 4.4 The vector product
b × c and the resulting
vector

It can be shown that λ1 = a · c, and λ2 = −a · b:

a × (b × c) = (a · c)b − (a · b)c

which in the above example produces:

a × (b × c) =
⎛

⎝

⎡

⎣
0
0
1

⎤

⎦ ·
⎡

⎣
0
2
2

⎤

⎦

⎞

⎠

⎡

⎣
3
0
0

⎤

⎦ −
⎛

⎝

⎡

⎣
0
0
1

⎤

⎦ ·
⎡

⎣
3
0
0

⎤

⎦

⎞

⎠

⎡

⎣
0
2
2

⎤

⎦

= 2

⎡

⎣
3
0
0

⎤

⎦ − 0

=
⎡

⎣
6
0
0

⎤

⎦

= 6i + 0j + 0k.

4.6 Summary

This chapter shows the historical development from quaternion to vector products.
The two products associated with vectors are the scalar and vector product, where
the first is used to determine the angle between two vectors, and the second creates a
vector normal to the plane containing the two vectors. The scalar product is associa-
tive, whereas the vector product is non-associative, and the right-hand rule is used
to determine the direction of the normal vector.

The chapter finishes with the two triple products associated with vectors, where
the scalar triple product generates the volume of a parallelepiped, and the vector
triple product generates a vector aligned with the plane containing the dominant pair
of vectors.
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Chapter 5
Differentiating Vector-Valued Functions

5.1 Introduction

This chapter introduces vector-valued functions, and shows how they are differenti-
ated and integrated. In particular, we show how such functions are used to represent
velocity and acceleration vectors. The chapter assumes that readers are familiar with
calculus. If you need to brush up your calculus, then the following books may be
useful [1–3].

5.2 Vector-Valued Functions

A vector-valued function takes the form:

p(t) = x(t)i

p(t) = x(t)i + y(t)j

p(t) = x(t)i + y(t)j + z(t)k

etc.

where p(t) is a vector, and each basis vector has a scalar or scalar function that
creates some changing value depending on t . (5.1), for example, is the equation of a
2-D circle with radius r :

p(t) = r cos t i + r sin tj, t ∈ [0, 2π ]. (5.1)

With r = 5, (5.1) describes vectors for different values of t :

p(0) = 5i

p(π/2) = 5j

© Springer-Verlag London Ltd., part of Springer Nature 2021
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Fig. 5.1 Function
p(t) = 5 cos t i + 5 sin tj,
with four vectors

Fig. 5.2 Part of a helix
generated by p(t) =
5 cos t i + 5 sin tj + 2t

π
k

p(π) = −5i

p(3π/2) = −5j.

Figure 5.1 shows the curve generated by (5.1) with four vectors.
By adding a function for thek basis vector to (5.1),we create (5.2),whichdescribes

part of a helix:

p(t) = r cos t i + r sin tj + ht

2π
k, t ∈ [0, 2π ]. (5.2)

With r = 5, h = 4, (5.2) describes a helix, with the following position vectors for
different values of t :

p(0) = 5i + 0j + 0k

p(π/2) = 0i + 5j + 1k

p(π) = −5i + 0j + 2k

p(3π/2) = 0i − 5j + 3k

p(2π) = 5i + 0j + 4k.

The curve is shown in Fig. 5.2.
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5.3 Differentiating Vector-Valued Functions

When a vector-valued function’s parameter represents time, it can reveal the velocity
and acceleration of a point travelling along the function’s curve. However, in order to
reveal the velocity and acceleration, we need to differentiate a vector-valued function,
which is what we do next.

We begin by defining the position of a point P(x, y) on the plane using a vector:

p = x i + yj

or a point P(x, y, z) in 3-D space as

p = x i + yj + zk

and continue with 3-D vector-valued functions, but acknowledge that other spaces
are equally valid.

If the point is controlled by a time-based function with parameter t , then the
position vector for P has the form:

p(t) = x(t)i + y(t)j + z(t)k.

The derivative of p(t) is another vector formed from the derivatives of x(t), y(t) and
z(t):

d

dt
p(t) = p′(t) = d

dt
x(t)i + d

dt
y(t)j + d

dt
z(t)k

which shows that the total derivative is the sum of the derivatives of the individual
basis vectors.

For example, given

p(t) = 10 sin t i + 5t2j + 20 cos tk

then,
d

dt
p(t) = 10 cos t i + 10tj − 20 sin tk.

We are now in a position to reveal the velocity and acceleration from a vector-valued
function.

5.3.1 Velocity and Speed

As the function p(t) locates a point at time t , its derivative is the rate of change of
position with respect to time, i.e. its instantaneous velocity. For example, if p(t) is
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Fig. 5.3 Instantaneous
velocity at time t

the position of a point P at time t , P’s change in position from t to t + �t is

�p = p(t + �t) − p(t).

Dividing by �t :
�p
�t

= p(t + �t) − p(t)

�t
.

In the limit as �t → 0 we have:

d

dt
p(t) = v(t) = lim

�t→0

p(t + �t) − p(t)

�t

which is the instantaneous velocity of P at time t . Figure 5.3 shows this diagram-
matically.

For example, if the functions controlling a particle are x(t) = 3 cos t , y(t) =
5 sin t and z(t) = 2t , then

p(t) = 3 cos t i + 5 sin tj + 2tk

and differentiating p(t) gives the instantaneous velocity vector:

v(t) = p′(t) = −3 sin t i + 5 cos tj + 2k.

Figure 5.4 shows a point P moving along a trajectory defined by its position vector
p(t). P’s instantaneous velocity is represented by v(t) which is tangential to the
trajectory at P .

If P’s position is given by p(t) with the following derivatives:

p(t) = x(t)i + y(t)j + z(t)k

x ′(t) = d

dt
x(t)

y′(t) = d

dt
y(t)
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Fig. 5.4 Position and
instantaneous velocity of P
at time t

z′(t) = d

dt
z(t)

the instantaneous speed of P is given by the magnitude of the instantaneous velocity
vector:

||v(t)|| =
√

(x ′(t))2 + (y′(t))2 + (z′(t))2.

In the case of

p(t) = 3 cos t i + 5 sin tj + 2tk

v(t) = −3 sin t i + 5 cos tj + 2k

the instantaneous speed of P is:

||v(t)|| =
√

(−3 sin t)2 + (5 cos t)2 + 22

=
√
9 sin2 t + 25 cos2 t + 4.

At time t = 0, the instantaneous speed of P is:

||v(0)|| = √
25 + 4 = √

29

and at time t = π , the instantaneous speed of P is:

||v(π)|| = √
25 + 4 = √

29.

The red lines in Fig. 5.5 represent the instantaneous velocity vectors at time t = 0
and t = π . At time t = 0, the coordinates of the line’s base are given by:

p(0) = 3i + 0j + 0k, (3, 0, 0)

the vector is:
v(0) = 0i + 5j + 2k
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Fig. 5.5 Instantaneous
velocity vectors

which makes the coordinates of the line’s head: (3, 5, 2).
At time t = π , the coordinates of the line’s base are given by:

p(π) = −3i + 0j + 2πk, (−3, 0, 2π)

the vector is:
v(π) = 0i − 5j + 2k

which makes the coordinates of the line’s head: (−3, −5, 2 + 2π).

5.3.2 Acceleration

The instantaneous acceleration of a point with position vector p(t) is the second
derivative of p(t), or the derivative of the point’s instantaneous velocity vector:

a(t) = p′′(t) = v′(t) = d2

dt2
x(t)i + d2

dt2
y(t)j + d2

dt2
z(t)k.

In the case of

p(t) = 3 cos t i + 5 sin tj + 2tk

v(t) = −3 sin t i + 5 cos tj + 2k

a(t) = −3 cos t i − 5 sin tj + 0k

||v(t)|| =
√
9 sin2 t + 25 cos2 t + 4

||a(t)|| =
√
9 cos2 t + 25 sin2 t .
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At time t = 0:

p(0) = 3i + 0j + 0k

v(0) = 0i + 5j + 2k

a(0) = −3i + 0j + 0k

||v(0)|| = √
25 + 4 = √

29

||a(0)|| = √
9 = 3.

At time t = π/2:

p(π/2) = 0i + 5j + πk

v(π/2) = −3i + 0j + 2k

a(π/2) = 0i − 5j + 0k

||v(π/2)|| = √
9 + 4 = √

13

||a(π/2)|| = √
25 = 5.

At time t = π :

p(π) = −3i + 0j + 2πk

v(π) = 0i − 5j + 2k

a(π) = 3i + 0j + 0k

||v(π)|| = √
25 + 4 = √

29

||a(π)|| = √
9 = 3.

Figure 5.6 shows the unit, instantaneous velocity vectors in red, and the unit, instan-
taneous acceleration vectors in green, for t = 0, π/2, π .

Let’s examine one more time-based function before proceeding. For example,
(5.3) describes the curve shown in Fig. 5.7:

Fig. 5.6 Instantaneous unit
velocity (red) and unit
acceleration (green) vectors
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Fig. 5.7 Instantaneous
velocity (red) and
acceleration (green) unit
vectors

p(t) = 1
3 t

3i + 3 sin(2t)j + 6 cos(2t)k, t ∈ [0, π ]. (5.3)

From (5.3) the instantaneous velocity and acceleration of a point are given by

v(t) = t2i + 6 cos(2t)j − 12 sin(2t)k

a(t) = 2t i − 12 sin(2t)j − 24 cos(2t)k.

At time t = 0:

p(0) = 0i + 0j + 6k

v(0) = 0i + 6j + 0k

a(0) = 0i + 0j − 24k

||v(0)|| = √
36 = 6

||a(0)|| =
√
242 = 24.

At time t = π/2:

p(π/2) = π3

24 i + 0j − 6k

v(π/2) = π2

4 i − 6j + 0k

a(π/2) = π i + 0j + 24k

||v(π/2)|| =
√

π4

16 + 36 ≈ 6.488

||a(π/2)|| =
√

π2 + 242 ≈ 24.205.

At time t = π :

p(π) = π3

3 i + 0j + 6k
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v(π) = π2i + 6j + 0k

a(π) = 2π i + 0j − 24k

||v(π)|| =
√

π4 + 36 ≈ 11.55

||a(π)|| =
√
4π2 + 242 ≈ 24.809.

The three pairs of velocity and acceleration unit vectors are shown in Fig. 5.7.

5.3.3 Rules for Differentiating Vector-Valued Functions

Vector-valued functions are treated like vectors, in that they can be added, subtracted,
scaled and multiplied, which leads to the following rules for their differentiation:

d

dt

(
p(t) ± q(t)

) = d

dt
p(t) ± d

dt
q(t) addition and subtraction.

d

dt

(
λp(t)

) = λ
d

dt
p(t) where λ ∈ R, scalar multiplier.

d

dt

(
f (t)p(t)

) = f (t)p′(t) + f ′(t)p(t) function multiplier.

d

dt

(
p(t) · q(t)

) = p(t) · q′(t) + p′(t) · q(t) dot product.

d

dt

(
p(t) × q(t)

) = p(t) × q′(t) + p′(t) × q(t) cross product.

d

dt

(
p( f (t))

) = p′( f (t)
)
f ′(t) function of a function.

5.4 Integrating Vector-Valued Functions

The integral of a vector-valued function is its antiderivative, where each term is
integrated individually. For example, given

p(t) = x(t)i + y(t)i + z(t)k

then, ∫ b

a
p(t) dt =

∫ b

a
x(t)i dt +

∫ b

a
y(t)i dt +

∫ b

a
z(t)k dt.

Similarly,

∫
p(t) dt =

∫
x(t)i dt +

∫
y(t)i dt +

∫
z(t)k dt + C.
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Integrating the velocity vector used above:

v(t) = −3 sin t i + 5 cos tj + 2k

then,

∫
v(t) dt =

∫
−3 sin t i dt +

∫
5 cos tj dt +

∫
2k dt + C

= −3
∫

sin t i dt + 5
∫

cos tj dt + 2
∫

1k dt + C

= 3 cos t i + 5 sin tj + 2tk + C.

And if we know that p(0) points to (3, 0, 0), then p(t) = 3 cos t i + 5 sin tj + 2tk.

We have already seen that

v(t) = d

dt
p(t)

a(t) = d

dt
v(t)

therefore,

p(t) =
∫

v(t) dt

v(t) =
∫

a(t) dt.

5.4.1 Velocity of a Falling Object

When an object falls under the influence of gravity
(
9.8 m/s2

)
for 3 seconds, its

velocity at time t is given by

v(t) =
∫

9.8 dt = 9.8t + C1.

Assuming that its initial velocity is zero, then v(0) = 0, and C1 = 0. Therefore,

p(t) =
∫

9.8t dt = 9.8
2 t2 + C2 = 4.9t2 + C2.

But p(0) = 0, and C2 = 0, therefore,

p(t) = 4.9t2.

Consequently, after 3 seconds, the object has fallen 4.9 × 32 = 40.1m.
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If the object had been given an initial downward velocity of 1 m/s, then C1 = 1,
which means that

p(t) =
∫

9.8t + 1 dt = 9.8
2 t2 + t + C2 = 4.9t2 + t + C2.

But p(0) = 0, and C2 = 0, therefore,

p(t) = 4.9t2 + t.

Consequently, after 3 seconds, the object has fallen 4.9 × 32 + 3 = 43.1 m.

5.4.2 Position of a Moving Object

Let’s compute an object’s position after 2 seconds if it is following a parametric
curve such that its velocity is:

v(t) = t2i + tj + t3k

starting at the origin at time t = 0:

p(t) =
∫

v(t) dt + C

=
∫

t2i + tj + t3k dt + C

=
∫

t2i dt +
∫

tj dt +
∫

t3k dt + C

= 1
3 t

3i + 1
2 t

2j + 1
4 t

4k + C.

But p(0) = 0i + 0j + 0k, therefore, the vector C = 0i + 0j + 0k, and

p(t) = 1
3 t

3i + 1
2 t

2j + 1
4 t

4k.

Consequently, after 2 seconds, the object is at

p(2) = 1
32

3i + 1
22

2j + 1
42

4k

= 8
3 i + 2j + 4k.

Which is the point
(
8
3 , 2, 4

)
.
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5.5 Summary

The calculus of vector-valued functions is a large and complex subject, and in this
short chapter we have only covered the basic principles for differentiating and inte-
grating simple functions, which are summarised next.

5.5.1 Summary of Formulae

Given a function of the form:

p(t) = x(t)i + y(t)j + z(t)k

its derivative is:
d

dt
p(t) = p′(t) = x ′(t)i + y′(t)j + z′(t)k

its integral is:

∫
p(t) dt =

∫
x(t)i dt +

∫
y(t)i dt +

∫
z(t)k dt + C

and definite integral:

∫ b

a
p(t) dt =

∫ b

a
x(t)i dt +

∫ b

a
y(t)i dt +

∫ b

a
z(t)k dt.

Ifp(t) is a time-based position vector, its derivative is a velocity vector, and its second
derivative is an acceleration vector:

p(t) = x(t)i + y(t)j + z(t)k

v(t) = x ′(t)i + y′(t)j + z′(t)k
a(t) = x ′′(t)i + y′′(t)j + z′′(t)k.

The magnitude of v(t) represents the instantaneous speed:

||v(t)|| =
√

(x ′(t))2 + (y′(t))2 + (z′(t))2

and for the instantaneous acceleration:

||a(t)|| =
√

(x ′′(t))2 + (y′′(t))2 + (z′′(t))2.
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Chapter 6
Vector Differential Operators

6.1 Introduction

This chapter covers the mathematical objects: scalar and vector fields, and the three
vector differential operators: grad, div and curl. It begins with an overview of scalar
and vector fields, followed by the gradient of a scalar field, the divergence and curl
of a vector field. The descriptions assume the reader is familiar with calculus, but
those wishing to brush up their knowledge will find the following books useful [1],
[2], [3].

The figures employ a simple colour key where blue equates with a low scalar
value or small vector, moving through the rainbow to red, which equates with a high
scalar value or large vector.

6.2 Scalar Fields

A scalar field is a set of scalars normally associated with physical space, where such
scalars are derived empirically, or from mathematical functions. Some examples of
empirical scalar fields include:

• Bank of England interest rate over time.
• Barometric pressure or temperature in a weather map.
• Depth of oceans over the surface of the Earth.
• Height, weight, BMI, age, gender, etc., for a group of people.
The data for the above examples will be in various formats such as one-, two-,
three-dimensional arrays, Cartesian coordinates, spherical coordinates, etc.

Figure 6.1 shows an image of a scalar field in R
2 described by (6.1):

f (x, y) = sin(xy) (6.1)

© Springer-Verlag London Ltd., part of Springer Nature 2021
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Fig. 6.1 Scalar field in R2

for f (x, y) = sin(xy)

Fig. 6.2 Scalar field in R3

for f (x, y, z) = sin(xyz)

where,

f (1, 1) = sin(1) ≈ 0.8415, is an orange-red pixel,

f (−1, 1) = sin(−1) ≈ −0.8415, is a light-blue pixel.

Figure 6.2 shows an image of a scalar field in R
3 described by (6.2):

f (x, y, z) = sin(xyz) (6.2)

where,

f (1, 1, 1) = sin(1) ≈ 0.8415, is the nearest orange-red voxel,

f (−1,−1, 1) = sin(1) ≈ 0.8415, is the farthest orange-red voxel.

Although Figs. 6.1 and 6.2 show granularity, the mathematical functions are con-
tinuous over the fields they describe.
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6.3 Vector Fields

A vector field is a set of vectors normally associated with physical space, where such
vectors are derived empirically, or from mathematical functions. Some examples of
empirical vector fields include:

• Speed and direction of people in a photograph.
• Motion of gases in a 3-D volume.
• Wind magnitude and direction over the surface of the Earth.
• Intensity and direction of a magnetic field around an electrical conductor.
Figure 6.3 shows a vector field in R2 described by (6.3):

F(x, y) = sin yi + sin xj (6.3)

where,

F(1, 1) = sin(1)i + sin(1)j =
[
0.8415
0.8415

]
, is shown as a blue arrow.

F(−1, 1) = sin(1)i + sin(−1)j =
[

0.8415
−0.8415

]
, is shown as a green arrow.

Figure 6.4 shows a vector field in R3 described by (6.4):

F(x, y, z) = x i + yj + zk (6.4)

where,

F(5, 5, 5) = 5i + 5j + 5k, is shown red.

F(5,−5, 5) = 5i − 5j + 5k, is shown blue.

Fig. 6.3 Vector field in R2 for F(x, y) = sin yi + sin xj
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Fig. 6.4 Vector field in R3

for F(x, y, z) = x i + y
j + zk

3-D scalar and vector fields are difficult to illustrate using a single image, and are
best seen using a computer capable of animating the images in real time.

Chapter 5 shows how vector-valued functions are differentiated and integrated,
and now we introduce three differential vector operators: grad, div and curl, which
reveal features of scalar and vector fields.

6.4 The Gradient of a Scalar Field

The grad or gradient differential vector operator computes the gradient of a scalar
field, and is represented by the ∇ symbol, and called either ‘del’ or ‘nabla’. When
we are dealing with functions of the form f (x, y) or f (x, y, z), we assume that f
is differentiable at all points (x, y) or (x, y, z). For example, given a scalar field in
R

2 described by f (x, y), each (x, y) creates a scalar value, and ∇ f (x, y) shows the
scalar gradient at this point in the form of a 2-D vector. Similarly, for a scalar field
in R3 described by f (x, y, z), each (x, y, z) creates a scalar value, and ∇ f (x, y, z)
shows the scalar gradient at this point in the form of a 3-D vector.

In one, two and three dimensions, ∇ is defined as:

∇ =
[

∂

∂x

]
= i

∂

∂x
≡ ∂

∂x
i

∇ =
⎡
⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎦ = i

∂

∂x
+ j

∂

∂y
≡ ∂

∂x
i + ∂

∂y
j

∇ =

⎡
⎢⎢⎢⎢⎢⎣

∂

∂x
∂

∂y
∂

∂z

⎤
⎥⎥⎥⎥⎥⎦

= i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
≡ ∂

∂x
i + ∂

∂y
j + ∂

∂z
k.
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Fig. 6.5 Scalar field in R2

for the function
f (x, y) = 0.8x2y

Fig. 6.6 Vector field in R2

created by
∇ f (x, y) = 1.6xyi + 0.8x2j

If the function f (x, y, z) represents a scalar field, then ∇ f creates a vector field for
different values of (x, y, z):

∇ f (x, y, z) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k.

6.4.1 Gradient of a Scalar Field in R
2

Let’s illustrate the gradient of a scalar field in R2 with two examples.
Figure 6.5, shows a scalar field for the function f (x, y) = 0.8x2y, and Fig. 6.6

shows the 2-D vector field created by ∇ f (x, y), calculated as follows:

f (x, y) = 0.8x2y

∇ f (x, y) = ∂ f

∂x
i + ∂ f

∂y
j

∂ f

∂x
= 1.6xy

∂ f

∂y
= 0.8x2
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∇ f (x, y) = 1.6xyi + 0.8x2j.

Figure 6.7 shows a scalar field in R
2 for the function f (x, y) = √

x2 + y2, and
Fig. 6.8 shows the vector field in R

2, calculated as follows. Notice that the vectors
are orthogonal to the constant value contours; this is exploited to compute surface
normal vectors.

We begin by letting u = x2 + y2, then f (x, y) = u
1
2 , and differentiating:

∂ f

∂x
= ∂ f

∂u

∂u

∂x
∂ f

∂u
= 1

2
√
u

= 1

2
√
x2 + y2

∂u

∂x
= 2x

∂ f

∂x
= x√

x2 + y2

∂ f

∂y
= y√

x2 + y2

Fig. 6.7 Scalar field in R2

for the function
f (x, y) = √

x2 + y2

Fig. 6.8 Vector field in R2

created by ∇ f (x, y) =
x√

x2+y2
i + y√

x2+y2
j
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∇ f (x, y) = ∂ f

∂x
i + ∂ f

∂y
j

= x√
x2 + y2

i + y√
x2 + y2

j.

6.4.2 Gradient of a Scalar Field in R
3

Figure 6.9 shows a simple scalar field in R
3 for the function function f (x, y, z) =

xy + yz, and Fig. 6.10 shows the resulting vector field, calculated as follows:

f (x, y, z) = xy + yz

∇ f (x, y) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k

∂ f

∂x
= y

Fig. 6.9 Scalar field in R3

for the function
f (x, y, z) = xy + yz

Fig. 6.10 Vector field in R
3

for the function f (x, y, z) =
yi + (x + z)j + yk
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∂ f

∂y
= x + z

∂ f

∂z
= y

∇ f (x, y) = yi + (x + z)j + yk.

6.4.3 Surface Normal Vectors

One useful application of the grad differential operator is creating a vector orthogonal
to a curve inR2, or a surface inR3. If a function is of the form f (x, y, z) = constant,
for example the equation of a circle: f (x, y) = x2 + y2 = r2, or the equation of a
sphere: f (x, y, z) = x2 + y2 + z2 = r2, ∇ f creates a vector normal to the function
at any point.

Figure 6.11 shows an array of scalars for the function f (x, y) = x2 + y2. For
example, the cell with coordinates (5, 5) contains 50, because 50 = 52 + 52. In real-
ity, a scalar field is continuous, rather than discrete, as shown in Fig. 6.11.

One can see from Fig. 6.11 that this scalar field comprises a family of concentric
contours, one, of which, is sketched in the figure.

Taking the partial derivative of f (x, y) = x2 + y2 in the x-direction:

∂ f

∂x
= 2x

gives the instantaneous rate of change at any point (x, y) irrespective of the value of
y. Similarly, taking the partial derivative of f (x, y) = x2 + y2 in the y-direction:

Fig. 6.11 A scalar field for f (x, y) = x2 + y2
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∂ f

∂y
= 2y

gives the instantaneous rate of change at any point (x, y) irrespective of the value of
x .

But we know that the differential operator ∇ maps a scalar field to a vector field
using these partial derivatives as follows:

∇ f (x, y) =
⎡
⎢⎣

∂ f

∂x
∂ f

∂y

⎤
⎥⎦ = ∂ f

∂x
i + ∂ f

∂y
j

= 2x i + 2yj.

For example, when x = 4 and y = 2:

∇ f (4, 2) = 8i + 4j

which is sketched in Fig. 6.11. Observe that the vector is orthogonal to the contour.
In fact, all vectors are orthogonal to all such contours. In other words, the vector is
normal to any curve defined by the function f (x, y) = x2 + y2. For example, the
equation of a circle is

x2 + y2 = r2

where r is the radius. Therefore, we can create a function

f (x, y) = x2 + y2 − r2 = 0.

Therefore,
∇ f = 2x i + 2yj

which is the normal vector at (x, y), as shown in Fig. 6.11.
Although the above reasoning seems acceptable, here is the mathematical proof.
Given a surface f (x, y, z) = c, where c is a constant, let P(x, y, z) be a point on

the surface with position vector p = x i + yj + zk. Then

∇ f = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k

dp = dx i + dyj + dzk

and dp must lie in the tangent plane at P . But

d f = ∂ f

∂x
dx + ∂ f

∂y
dy + ∂ f

∂z
dz = 0
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which can be expressed as the dot product:

(
∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k
)

· (dx i + dyj + dzk) = 0

∇ f · dp = 0.

For ∇ f · dp = 0 to be true, they must be orthogonal.
In general, given a function f (x, y) = c or f (x, y, z) = c, then a normal vector

n is
n = ∇ f

and a unit normal vector is

n̂ = ∇ f

‖∇ f ‖ .

For 3-D functions, such as f (x, y, z) = 2xy + 3z = 0:

∂ f

∂x
= 2y

∂ f

∂y
= 2x

∂ f

∂z
= 3

∇ f = 2yi + 2xj + 3k.

Figure 6.12 shows the surface of the function f (x, y, z) = 2xy + 3z = 0, and
two normal vectors calculated as follows:

Fig. 6.12 The surface of the
function
f (x, y, z) = 2xy + 3z = 0
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When x = y = 1, then z = −2/3, then ∇ f = 2i + 2j + 3k, which is shown in
red.

When x = 5 and z = 4, then y = −1.2, then ∇ f = −2.4i + 10j + 3k, which is
shown in blue.

6.5 The Divergence of a Vector Field

Illustrations of vector fields are only a crude approximation of what is actually
happening in space. To begin with, vectors in the form of arrows are an artifice,
as they attempt to simulate the magnitude and direction of something represented by
a vector-valued function, be it a liquid, dust storm, electromagnetic force, etc.A liquid
such as water, is not compressible under normal conditions, so if we inspect a specific
volume of water, the number of water molecules entering the volume is balanced by
the number of water molecules leaving. In this case, we say the divergence of the
vector field at any point is zero. See Fig. 6.13.

In the case of airborne dust particles, they are compressible, as the number of
particles in a unit volume of air depends on the local pressure forces, so if we inspect
a specific volumeof dust, the number of dust particles entering the volume, is different
to the number of dust particles leaving. In this case, we say the divergence of the
vector field changes from point to point. See Fig. 6.14.

Fig. 6.13 A 2-D vector field
simulating water movement

Fig. 6.14 A vector field
simulating a dust storm
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Consider a 3-D vector field F(x, y, z) defined by three functions R(x, y, z),
S(x, y, z), T (x, y, z), (6.5):

F = Ri + Sj + Tk. (6.5)

The divergence of F is defined as:

div F = ∂R

∂x
i + ∂S

∂y
j + ∂T

∂z
k. (6.6)

Equation (6.6) can also be written as a scalar (dot) product:

div F =
(

∂

∂x
i + ∂

∂y
j + ∂

∂z
k
)

·
(
Ri + Sj + Tk

)
(6.7)

and substituting the differential operator ∇, (6.7) becomes:

div F = ∇ · F.

For example, let’s find the divergence of the vector field F = 3x i − xyj + 2yz2k:

∇ · F = ∂

∂x
(3x) + ∂

∂y
(−xy) + ∂

∂z

(
2yz2

)
= 3 − x + 4yz.

Substituting different values of x, y, z, we get

∇ · F(0, 0, 0) = 3

∇ · F(4, 0, 0) = −1

∇ · F(−4, 0, 0) = 7

∇ · F(4, 4, 0) = −1

∇ · F(4,−4, 0) = −1

∇ · F(4, 4, 4) = 63

which shows that the divergence of F changes from point to point. Figure 6.15
shows the divergence values for ∇ · F = 3 − x + 4yz, with the top red cube equal
to (5, 5, 5).
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Fig. 6.15 The scalar field
for ∇ · F = 3 − x + 4yz

Fig. 6.16 The vector field
for
F(x, y, z) = x i + yj + zk

Now let’s consider the function F(x, y, z) = x i + yj + zk, shown in Fig. 6.16,
where

∇ · F = ∂

∂x
x + ∂

∂y
y + ∂

∂z
z

= 1 + 1 + 1

= 3.

Which shows that the divergence is positive when the vector flow is away from a
point. Similarly, the divergence is negative when the vector flow is towards a point.
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6.6 Curl of a Vector Field

Having seen that the differential operator ∇ can be used with a scalar field ∇F , and
in conjunction with a vector field as a dot product ∇ · F, it is only natural to wonder
if it can be used with a vector field with the cross product. Well it can, and creates
what is known as the curl of a vector field, and is defined as

curl F = ∇ × F.

If F = Ri + Sj + Tk, and using a determinant to represent a cross product, we have:

∇ × F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
R S T

∣∣∣∣∣∣∣∣
=

(
∂T

∂y
− ∂S

∂z

)
i −

(
∂T

∂x
− ∂R

∂z

)
j +

(
∂S

∂x
− ∂R

∂y

)
k.

For example, with F = −yi + xj + 0k, then R = −yi, S = xj and T = 0k, then

∂T

∂y
= 0,

∂S

∂z
= 0

(
∂T

∂y
− ∂S

∂z

)
i = 0i

∂T

∂x
= 0,

∂R

∂z
= 0

−
(

∂T

∂x
− ∂R

∂z

)
j = 0j

∂S

∂x
= 1,

∂R

∂y
= −1

(
∂S

∂x
− ∂R

∂y

)
k = 2k

∇ × F = 0i + 0j + 2k.

Figure 6.17 shows the vector field for F = −yi + xj + 0k looking down the k
axis. The image also includes several unit vectors drawn in mauve using the vector
function, which confirm that the vector function possesses rotational qualities. It is
this curling of the vector field about a vector - in this case the k-axis - that ∇ × F
measures. A positive value indicates a counter-clockwise rotation, and a negative
value, a clockwise rotation, and a zero value indicates no rotation.
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Fig. 6.17 The vector field for f = −yi + xj + 0k

Fig. 6.18 The vector field
for F = −yi + xj + 0k

Figure 6.18 shows a 3-D view of the same vector function, looking down the
k-axis. Once again, it is clear that the vector field is rotating about the k-axis, and
the curl ∇ × F = 2k is a measure of this rotation.

Now let’s consider a similar vector field F = 0i + zj − yk, then R = 0i, S = zj
and T = −yk, that is rotating about the i-axis, then:

∂T

∂y
= −1,

∂S

∂z
= 1

(
∂T

∂y
− ∂S

∂z

)
i = −2i

∂T

∂x
= 0,

∂R

∂z
= 0

−
(

∂T

∂x
− ∂R

∂z

)
j = 0j
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Fig. 6.19 The vector field
for F = 0i + zj − yk

∂S

∂x
= 0,

∂R

∂y
= 0

(
∂S

∂x
− ∂R

∂y

)
k = 0k

∇ × F = −2i + 0j + 0k.

This time the result is negative, which is shown in Fig. 6.19 looking down the i-axis,
as a clockwise rotation.

Finally, if the vector function is F = x i + yj + 0k, then R = x i, S = yj and T =
0k, then:

∂T

∂y
= 0,

∂S

∂z
= 0

(
∂T

∂y
− ∂S

∂z

)
i = 0i

∂T

∂x
= 0,

∂R

∂z
= 0

−
(

∂T

∂x
− ∂R

∂z

)
j = 0j

∂S

∂x
= 0,

∂R

∂y
= 0

(
∂S

∂x
− ∂R

∂y

)
k = 0k

∇ × F = 0i + 0j + 0k.

The result is zero curl, as confirmed by Fig. 6.20.
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Fig. 6.20 The vector field for F = x i + yj + 0k

6.7 Worked Examples

6.7.1 Gradient of a Scalar Field

Calculate the gradient of the scalar field f (x, y, z) = x2 + y3 + z4 at (1, 2, 3).

∇ f (x, y, z) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k

f (x, y, z) = x2 + y3 + z4

∂ f

∂x
= 2x

∂ f

∂y
= 3y2

∂ f

∂z
= 4z3

∇ f (x, y, z) = 2x i + 3y2j + 4z3k

∇ f (1, 2, 3) = 2i + 12j + 108k.

6.7.2 Normal Vector to an Ellipse

Calculate four normal vectors for an ellipse.
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The equation of an ellipse is:

x2

a2
+ y2

b2
= 1.

Therefore,

f (x, y) = x2

a2
+ y2

b2
− 1

∇ f = 2x

a2
i + 2y

b2
j.

Substituting a = 2, b = 1.5 and (x, y) = (2, 0), (0, 1.5), (−2, 0), (0,−1.5):

∇ f (2, 0) = 4
4 i + 0

2.25 j

n(2, 0) = 1i + 0j

∇ f (0, 1.5) = 0
4 i + 3

2.25 j

n(0, 1.5) = 0i + 1j

∇ f (−2, 0) = −4
4 i + 0

2.25 j

n(2, 0) = −1i + 0j

∇ f (0,−1.5) = 0
4 i − 3

2.25 j

n(0,−1.5) = 0i − 1j.

Shown in Fig. 6.21.

Fig. 6.21 Four normal vectors for an ellipse
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6.7.3 Divergence of a Vector Field

Calculate the divergence of the vector fieldF(x, y, z) = x2i + y3j + z4k, at (1, 2, 1).

div F = ∇ · F
∇ · F = ∂

∂x

(
x2

) + ∂

∂y

(
y3

) + ∂

∂z

(
z4

)
= 2x + 3y2 + 4z3

∇ · F(1, 2, 1) = 2 + 12 + 4 = 18.

6.7.4 Curl of a Vector Field

Calculate the curl of the vector field F(x, y, z) = x2zi + xy3j + yz4k.

curl F = ∇ × F

∇ × F =

∣∣∣∣∣∣∣∣

i j k
∂

∂x

∂

∂y

∂

∂z
R S T

∣∣∣∣∣∣∣∣
=

(
∂T

∂y
− ∂S

∂z

)
i −

(
∂T

∂x
− ∂R

∂z

)
j +

(
∂S

∂x
− ∂R

∂y

)
k

R = x2z, S = xy3, T = yz4

∂T

∂y
= z4,

∂S

∂z
= 0

(
∂T

∂y
− ∂S

∂z

)
i = z4i

∂T

∂x
= 0,

∂R

∂z
= x2

−
(

∂T

∂x
− ∂R

∂z

)
j = x2j

∂S

∂x
= y3,

∂R

∂y
= 0

(
∂S

∂x
− ∂R

∂y

)
k = y3k

∇ × f = z4i + x2j + y3k.
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6.8 Summary

This chapter has introduced three differential operators: grad, div and curl, and shown
how they reveal the gradient of a scalar field, normal vectors to contours and surfaces,
and the divergence and curling of a vector field.

6.8.1 Summary of Formulae

The grad or gradient differential operator ∇ is defined as:

∇ =

⎡
⎢⎢⎢⎢⎢⎣

∂

∂x
∂

∂y
∂

∂z

⎤
⎥⎥⎥⎥⎥⎦

= ∂

∂x
i + ∂

∂y
j + ∂

∂z
k.

The gradient of a scalar field f (x, y, z) is:

∇ f (x, y, z) = ∂ f

∂x
i + ∂ f

∂y
j + ∂ f

∂z
k.

If a function f (x, y) or f (x, y, z) equals a constant, then a normal vector n is

n = ∇ f

and a unit normal vector is:

n̂ = ∇ f

‖∇ f ‖ .

The divergence of a vector field is defined as

div f = ∇ · f .

The curl of a vector field is defined as:

curl f = ∇ × f .
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Chapter 7
Tangent and Normal Vectors

7.1 Introduction

In the previous chapter we discovered how to compute surface normal vectors using
the grad differential operator. This chapter continues this work, showing how normal
and tangent vectors are computed for a line, parabola, circle, ellipse, sine curve, cosh
curve, helix, Bézier curve, bilinear patch, quadratic Bézier patch, sphere and a torus.

7.2 Tangent Vector to a Curve

We know that the derivative of a function measures the rate of change of the function
with respect to some parameter. In terms of the function’s graph, the derivative is the
slope of the graph at a point. For instance, the function y(x) = x3, the first derivative
is y′(x) = 3x2, as shown in Fig. 7.1. The derivative is also the slope of the tangent
vector, whose magnitude and direction depend upon the form of parameterisation
used for the function. For example, defining a cubic as

r(t) = t i + t3j

the tangent vector is
dr
dt

= r′(t) = i + 3t2j

whose magnitude is

∣
∣
∣
∣r′(t)

∣
∣
∣
∣ =

√

(1)2 + (

3t2
)2 =

√

1 + 9t4.

Figure 7.2 shows the cubic curve, with five tangent vectors for t = −0.75,−0.5,
0.0, 0.5, 0.75, which reflect the slope of the curve at the five points. However, in
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Fig. 7.1 The graphs of
y = x3, (blue) and y′ = 3x2,
(green) its derivative

Fig. 7.2 The graph of
y = x3, and five tangent
vectors

definitions for curvature, a unit tangent vector is important, and requires dividing
the tangent vector by its magnitude:

T(t) = r′(t)
||r′(t)|| .

T(t) is defined, only if r′(t) �= 0.
The rate of change of the unit tangent vector gives the curvature κ(t) at any point

along the curve length s:

κ(t) = dT
ds

.

Figure 7.3 shows the cubic curve with five unit tangent vectors.
Generally, for a vector-valued function r(t), that is continuously differentiable:

r(t) =
[

x(t)
y(t)

]

∈ R
2, r(t) =

⎡

⎣

x(t)
y(t)
z(t)

⎤

⎦ ∈ R
3
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Fig. 7.3 The graph of
y = x3, and five unit tangent
vectors

its tangent vector is

dr
dt

= r′(t) =
[

x ′(t)
y′(t)

]

�= 0,
dr
dt

= r′(t) =
⎡

⎣

x ′(t)
y′(t)
z′(t)

⎤

⎦ �= 0.

For example, a constant pitch helix with radius ρ, is defined as

r(t) =
⎡

⎣

ρ cos t
ρ sin t
ct

⎤

⎦ = ρ cos t i + ρ sin tj + ctk.

Therefore, its tangent vector is

r′(t) =
⎡

⎣

−ρ sin t
ρ cos t

c

⎤

⎦ = −ρ sin t i + ρ cos tj + ck.

7.3 Normal Vector to a Curve

Ideally, a normal vector is orthogonal to a curve or surface, and orthogonal to its
associated tangent vector. However, it would useful to confirm this mathematically.
Once again, we are interested in the unit form, denoted by N(t).

By definition:

||T(t)|| = 1

therefore,

||T(t)||2 = 1
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and as the dot product T(t) · T(t) = 1

||T(t)||2 = T(t) · T(t) = 1. (7.1)

Differentiating (7.1), and bearing in mind that the dot product is commutative, we
get

d

dt
[T(t) · T(t)] = T′(t) · T(t) + T · T′(t)

= 2T′(t) · T(t) = 0.

For T′(t) · T(t) = 0, T′(t) must be orthogonal to T(t), or T′(t) = 0.
Thus we can define N(t) as

N(t) = T′(t)
||T′(t)|| .

Also, given a tangent vector T(t):

T(t) =
[

λ1

λ2

]

= λ1i + λ2j

then two vectors exist, perpendicular to T(t):

Na =
[−λ2

λ1

]

= −λ2i + λ1j, or Nb =
[

λ2

−λ1

]

= λ2i − λ1j

as the dot productNa · T(t) = Nb · T(t) = 0,whichmeans thatNa andNb are normal
vectors. Furthermore, if T(t) is a unit vector, so too, are Na and Nb.

But which one should we choose? Figure 7.4 shows a convention, where we see
the unit normal vectors directed towards the zone containing the centre of curvature.
This is called the principal normal vector. Another convention is to place the normal
vector on one’s right-hand side whilst traversing the curve.

Fig. 7.4 The graph of
y = x3, with unit tangent
vectors (green), and unit
normal vectors (red)
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You will notice from Fig. 7.4 that there is no normal vector when t = 0. Let’s see
why.

r′(t) = 1i + 3t2j

r′(0) = 1i + 0j
∣
∣
∣
∣r′(t)

∣
∣
∣
∣ =

√

1 + 9t4
∣
∣
∣
∣r′(0)

∣
∣
∣
∣ = 1

T(0) = 1i + 0j

T′(0) = 0.

So here is a case when T′(t) = 0.

7.3.1 Unit Tangent and Normal Vectors to a Line

Figure 7.5 shows the geometry for a parametric line, where P1(x1, y1) and P(x, y)
are two points on the line, and vector s provides the line’s direction. Let’s define
r1, s, r(t):

r1 = x1i + y1j

s = xs i + ysj

r(t) = r1 + ts

= (x1 + xst)i + (y1 + yst)j.

Differentiating r(t):
r′(t) = xs i + ysj

whose magnitude is
∣
∣
∣
∣r′(t)

∣
∣
∣
∣ =

√

x2s + y2s .

Fig. 7.5 Geometry for a
parametric line
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Fig. 7.6 A unit tangent and
normal vector to a line

Therefore,

T = xs i + ysj
√

x2s + y2s
.

Figure 7.6 shows the graph of

r(t) = 2t i + (1 + t)j.

Therefore,

T = 2i + j√
5

≈ 0.8944i + 0.4472j

as shown in Fig. 7.6.
Differentiating T gives a zero vector, therefore our definition of N can’t be used.

So I’ll use one of the two options described above for a perpendicular vector:

N = −0.4472i + 0.8944j

as shown in Fig. 7.6.
Using the grad operator, we can find the unit normal vector using the line equation:

0 = ys(x − x1) − xs(y − y1)

f (x, y) = ysx − xs y − ysx1 + xs y1
∇ f = ys i − xsj

N = ys i − xsj
√

y2s + x2s
.

Evaluating N for xs = 2, ys = 1:

N = 1i − 2j√
1 + 4

≈ 0.4472i − 0.8944j

as shown in Fig. 7.6.
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For a line in R3:

r(t) = (x1 + xst)i + (y1 + yst)j + (z1 + zs t)k

r′(t) = xs i + ysj + zsk

T = xs i + ysj + zsk
√

x2s + y2s + z2s
.

However, there is no unique normal vector, only a normal plane.

7.3.2 Unit Tangent and Normal Vectors to a Parabola

We normally write a parabolic equation as

y = ax2 + bx + c

where for different values of x there is a corresponding value of y, which describes
the familiar parabolic curve. However, we require this to be described as a vector-
valued function. Working in two dimensions, I will align the x-component with the
i unit vector, and the y-component with the j unit vector, and use a parameter t to
drive the entire process. Thus it will take the general form

r(t) = dt i + (

at2 + bt + c
)

j

with suitable values for a, b, c, d. Therefore, consider the parabola:

r(t) = 2t i + (

1.5 − 1.5t2
)

j, t ∈ [−1, 1].

Differentiating r(t):
r′(t) = 2i − 3tj

whose magnitude is
∣
∣
∣
∣r′(t)

∣
∣
∣
∣ =

√

4 + 9t2.

Therefore,

T(t) = 2i − 3tj√
4 + 9t2

.
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Fig. 7.7 Three unit tangent
and normal vectors for a
parabola

Evaluating T(t) for t = −1, 0, 1, we get:

T(−1) = 2i + 3j√
13

≈ 0.555i + 0.832j

T(0) = 2i√
4

= 1i + 0j

T(1) = 2i − 3j√
13

≈ 0.555i − 0.832j

as shown in Fig. 7.7.
Computing T′(t) and normalising will be rather messy, so I’ll choose one of two

perpendicular vectors. So given the following unit tangent vectors:

T(−1) ≈ 0.555i + 0.832j

T(0) = 1i + 0j

T(1) ≈ 0.555i − 0.832j

N(−1) ≈ 0.832i − 0.555j

N(0) = 0i − 1j

N(1) ≈ −0.832i − 0.555j

which point in the direction of the principal normal vector, as shown in Fig. 7.7.
Using the grad operator, we can find the unit normal vector as follows:

x = 2t

t = 1
2 x

y = 1.5 − 1.5t2

= 1.5 − 1.5
x2

4

f (x, y) = y + 1.5
x2

4
− 1.5
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∇ f = 3
4 x i + 1j

N(x, y) =
3
4 x i + 1j

√
9
16 x

2 + 1
.

Evaluating N(x, y) for three different positions:

N(−2, 0) =
−6
4 i + 1j

√
9
164 + 1

= −1.5i + 1j√
3.25

≈ −0.832i + 0.555j

N(0, 1.5) = 0i + 1j√
1

= 0i + 1j

N(2, 0) =
6
4 i + 1j

√
9
164 + 1

= 1.5i + 1j√
3.25

≈ 0.832i + 0.555j

as shown in Fig. 7.7.

7.3.3 Unit Tangent and Normal Vectors to a Circle

Let’s find the function describing the tangent vector to a circle. We start with the
following definition for a circle:

r(t) = r cos t i + r sin tj, t ∈ [0, 2π ].

Differentiating r(t):
r′(t) = −r sin t i + r cos tj

whose magnitude is

∣
∣
∣
∣r′(t)

∣
∣
∣
∣ =

√
( − r sin t

)2 + (

r cos t
)2 = r.

Note that the magnitude of the tangent vector remains constant at the circle’s radius
r . Therefore,

T(t) = r′(t)
r

= − sin t i + cos tj.

Evaluating T(t) for four values of t :

T(0◦) = 0i + 1j

T(90◦) = −1i + 0j

T(180◦) = 0i − 1j
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Fig. 7.8 Four unit tangent
and normal vectors for a
circle

T(270◦) = 1i + 0j

as shown in Fig. 7.8.
To find N(t) we differentiate T(t) = − sin t i + cos tj:

N(t) = T′(t) = − cos t i − sin tj.

Evaluating N(t) for four values of t :

N(0◦) = −1i + 0j

N(90◦) = 0i − 1j

N(180◦) = 1i + 0j

N(270◦) = 0i + 1j

as shown in Fig. 7.8.
Using the grad operator, we can find the unit normal vector as follows:

x2 + y2 = r2

f (x, y) = x2 + y2 − r2

∇ f = 2x i + 2yj

N(x, y) = 2x i + 2yj
√

4x2 + 4y2
.

Evaluating N(x, y) for the same positions before, where r = 1:

N(1, 0) = 2i + 0j√
4

= 1i + 0j

N(0, 1) = 0i + 3j√
4

= 0i + 1j

N(−1, 0) = −2i + 0j√
4

= −1i + 0j
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N(0,−1) = 0i − 2j√
4

= 0i − 1j

as shown in Fig. 7.8.

7.3.4 Unit Tangent and Normal Vectors to an Ellipse

Having found the unit tangent and normal vectors for a circle, an ellipse should be
similar. Let’s define an ellipse as

r(t) = a cos t i + b sin tj, t ∈ [0, 2π ].

Differentiating r(t):
r′(t) = −a sin t i + b cos tj

whose magnitude is

∣
∣
∣
∣r′(t)

∣
∣
∣
∣ =

√
( − a sin t

)2 + (

b cos t
)2

=
√

a2 sin2 t + b2 cos2 t

=
√

a2
(

1 − cos2 t
) + b2 cos2 t

=
√

a2 − (

a2 − b2
)

cos2 t

= a
√

1 − ε2 cos2 t

where ε = √

1 − b2/a2 is the eccentricity of the ellipse.
Therefore,

T(t) = −a sin t i + b cos tj

a
√
1 − ε2 cos2 t

.

As an example, let’s define an ellipse with a = 2 and b = 1.5, which makes the
eccentricity:

ε =
√

1 − 1.52/22 = √
0.4375.

Evaluating T(t) for four values of t :

T(0◦) = 0i + 1.5j

2
√
1 − 0.4375

= 0i + 1j

T(90◦) = −−2i + 0j

2
√
1

= −1i + 0j
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Fig. 7.9 Four unit tangent
and normal vectors for an
ellipse

T(180◦) = 0i − 1.5j

2
√
1 − 0.4375

= 0i − 1j

T(270◦) = 2i + 0j

2
√
1

= 1i + 0j

as shown in Fig. 7.9.
Once again, there is no need to differentiate T(t) to find N(t). We simply use the

perpendicular strategy explained above. Therefore,

N(0◦) = −1i + 0j

N(90◦) = 0i − 1j

N(180◦) = 1i + 0j

N(270◦) = 0i + 1j

as shown in Fig. 7.9.
Using the grad operator, we can find the unit normal vector as follows:

x2

a2
+ y2

b2
= 1

f (x, y) = x2

a2
+ y2

b2
− 1

∇ f = 2x

a2
i + 2y

b2
j.

Substituting a = 2, b = 1.5 and (x, y) = (2, 0), (0, 1.5), (−2, 0), (0,−1.5):

∇ f (2, 0) = 4
4 i + 0

2.25 j

N(2, 0) = 1i + 0j

∇ f (0, 1.5) = 0
4 i + 3

2.25 j

N(0, 1.5) = 0i + 1j

∇ f (−2, 0) = −4
4 i + 0

2.25 j
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N(2, 0) = −1i + 0j

∇ f (0,−1.5) = 0
4 i − 3

2.25 j

N(0,−1.5) = 0i − 1j

as shown in Fig. 7.9.

7.3.5 Unit Tangent and Normal Vectors to a Sine Curve

Let’s calculate the tangent and normal vectors to a sine waveform, which may be of
interest in the rendering of sinusoidal waves. We define one period of a sine curve as

r(t) = t i + 2 sin tj, t ∈ [0, 2π ].

Differentiating r(t):
r′(t) = 1i + 2 cos tj

whose magnitude is
∣
∣
∣
∣r′(t)

∣
∣
∣
∣ =

√

1 + 4 cos2 t .

Therefore,

T(t) = i + 2 cos tj√
1 + 4 cos2 t

.

Evaluating T(t) for four values of t :

T(0◦) = 1i + 2j√
5

≈ 0.4472i + 0.8944j

T(90◦) = 1i + 0j√
1

= 1i + 0j

T(180◦) = 1i − 2j√
5

≈ 0.4472i − 0.8944j

T(270◦) = 1i + 0j√
1

= 1i + 0j

as shown in Fig. 7.10.
To differentiate T(t) and normalise it, looks as though it requires considerable

work, so we’ll take the easy root as before. Therefore,

N(0◦) ≈ 0.8944i − 0.4472j

N(90◦) = 0i − 1j

N(180◦) ≈ −0.8944i − 0.4472j
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Fig. 7.10 Four unit tangent
and normal vectors for a sine
curve

N(270◦) = 0i + 1j

as shown in Fig. 7.10.
Using the grad operator, we can find the unit normal vector as follows:

y = 2 sin x

f (x, y) = y − 2 sin x = 0

∇ f = −2 cos x i + 1j

N(x) = −2 cos x i + 1j√
1 + 4 cos2 x

.

Evaluating N(x) for four values of x :

N(0) = −2i + 1j√
5

≈ −0.8944i + 0.4472j

N(π/2) = 0i + 1j

N(π) ≈ 0.8944i + 0.4472j

N(3π/2) = 0i − 1j

as shown in Fig. 7.10.

7.3.6 Unit Tangent and Normal Vectors to a cosh Curve

Now let’s calculate the tangent and normal vectors to a cosh curve, also called a
catenary. We define part of a cosh curve as

r(t) = t i + 3 cosh
(
t
3

)

j, t ∈ [−3, 3].
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Fig. 7.11 Three unit tangent
and normal vectors for
3 cosh(x/3)

Differentiating r(t):
r′(t) = 1i + sinh

(
t
3

)

j

whose magnitude is

∣
∣
∣
∣r′(t)

∣
∣
∣
∣ =

√

1 + sinh2
(
t
3

) = cosh
(
t
3

)

.

Therefore,

T(t) = 1i + sinh
(
t
3

)

j

cosh
(
t
3

) .

Let’s find T(t) for three values of t :

T(−3) = 1i − 1.1752j
1.5431

≈ 0.6481i − 0.7616j

T(0) = 1i + 0j

T(3) = 1i + 1.1752j
1.5431

≈ 0.6481i + 0.7616j

as shown in Fig. 7.11.
This time, let’s differentiate T(t) and normalise it:

T(t) = 1i + sinh
(
t
3

)

j

cosh
(
t
3

) = sech
(
t
3

)

i + tanh
(
t
3

)

j

T′(t) = − 1
3

(

sech
(
t
3

)

tanh
(
t
3

)

i + sech 2 (
t
3

)

j
)

= − 1
3

(

sinh
(
t
3

)

cosh 2
(
t
3

) i + 1

cosh 2
(
t
3

) j

)

∣
∣
∣
∣T′(t)

∣
∣
∣
∣ = 1

3

√

sinh 2
(
t
3

)

cosh 4
(
t
3

) + 1

cosh 4
(
t
3

) = 1
3 sech

(
t
3

)
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N(t) = − cosh
(
t
3

)

(

sinh
(
t
3

)

cosh 2
(
t
3

) i + 1

cosh 2
(
t
3

) j

)

= − tanh
(
t
3

)

i + sech
(
t
3

)

j.

Note that this is one of the options if we had taken the easy route!
Therefore,

N(−3) ≈ 0.7616i + 0.6481j

N(0) = 0i + 1j

N(3) ≈ −0.7616i + 0.6481j

as shown in Fig. 7.11.
Using the grad operator, we can find the unit normal vector as follows:

y = 3 cosh
(
t
3

)

f (x, y) = y − 3 cosh
(
t
3

)

∇ f = − sinh
(
t
3

)

i + 1j

N(x) = − sinh
(
t
3

)

i + 1j
√

1 + sinh2
(
t
3

)

= − sinh
(
t
3

)

i + 1j

cosh
(
t
3

)

= − tanh
(
t
3

)

i + sech
(
t
3

)

j

which gives the same result as before.

7.3.7 Unit Tangent and Normal Vectors to a Helix

A helix is a 3D curve and used in nature to store the genetic code of all living
organisms. It can have a variable radius, and also a variable pitch. However, a fixed
radius and constant-pitch helix is a popular curve used for illustrating tangent and
normal vectors. Let’s define a helix as

r(t) = 2 cos t i + 2 sin tj + tk, t ∈ [0, 4π ].

Differentiating r(t):
r′(t) = −2 sin t i + 2 cos tj + 1k
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Fig. 7.12 Three unit tangent
and normal vectors for a
helix

whose magnitude is

‖r(t)‖ =
√

4 sin2 t + 4 cos2 t + 1 = √
5.

Therefore,
T(t) = 1√

5
(−2 sin t i + 2 cos tj + k) .

Evaluating T(t) for different values of t :

T(0) = 1√
5
(2j + 1k) ≈ 0.8944j + 0.4472k

T(π/2) = 1√
5
(−2i + 1k) ≈ −0.8944i + 0.4472k

T(π) = 1√
5
(−2j + 1k) ≈ −0.8944j + 0.4472k

as shown in Fig. 7.12.
Differentiating T(t) and normalising:

T′(t) = 1√
5
(−2 cos t i − 2 sin tj)

∥
∥T′(t)

∥
∥ = 1√

5

√

4 cos2 t + 4 sin2 t = 2√
5

N(t) =
1√
5
(−2 cos t i − 2 sin tj)

2√
5

= − cos t i − sin tj.

Evaluating N(t) for different values of t :

N(0) = −1i + 0j

N(π/2) = 0i − 1j

N(t) = 1i + 0j

as shown in Fig. 7.12.
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7.3.8 Unit Tangent and Normal Vectors to a Quadratic Bézier
Curve

Quadratic curves are normally expressed using a basis functionB(t), which generates
values using the parameter t . I will derive the derivative of a general basis function.
A 2-D quadratic curve is expressed using a column vector as

r(t) =
[

x(t)
y(t)

]

, t ∈ [0, 1]
x(t) = B2,0(t)x0 + B2,1(t)x1 + B2,2(t)x2
y(t) = B2,0(t)y0 + B2,1(t)y1 + B2,2(t)y2

B2,0 = (1 − t)2

B2,1 = 2t (1 − t)

B2,2 = t2.

Algebraically:

r(t) = B2,0(t)P0 + B2,1(t)P1 + B2,2(t)P2, t ∈ [0, 1]

where P0, P1, P2 are position vectors for the control point P0, P1, P2.
But a Cartesian vector is rarely used. So, for the time being, I will use algebraic

notation.
Let’s start with the following 2-D quadratic Bézier curve:

r(t) = P0(1 − t)2 + 2P1t (1 − t) + P2t
2, t ∈ [0, 1].

Differentiating r(t):

r′(t) = −2P0(1 − t) + 2P1(1 − 2t) + 2P2t

= −2P0 + 2P0t + 2P1 − 4P1t + 2P2t

= 2(P1 − P0)(1 − t) + 2(P2 − P1)t

= 2
(

(P1 − P0)(1 − t) + (P2 − P1)t
)

x ′(t) = 2
(

(x1 − x0)(1 − t) + (x2 − x1)t
)

y′(t) = 2
(

(y1 − y0)(1 − t) + (y2 − y1)t
)

whose magnitude is

‖r′(t)‖ =
√

(

x ′(t)
)2 + (

y′(t)
)2

.
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Fig. 7.13 Three unit tangent
and normal vectors for a
quadratic Bézier curve

Therefore,

T(t) = 2[(P1 − P0)(1 − t) + (P2 − P1)t]
√

(

x ′(t)
)2 + (

y′(t)
)2

.

Nowlet’s substitute specificvalues forP0, P1, P2, P0 = (0, 0), P1 = (1, 1), P2 =
(2, 1). Therefore,

x ′(t) = 2
(

(1 − 0)(1 − t) + (2 − 1)t
) = 2

y′(t) = 2
(

(1 − 0)(1 − t) + (1 − 1)t
) = 2(1 − t)

T(t) = 2i + 2(1 − t)j
√

4 + 4(1 − t)2
= 1i + (1 − t)j

√

1 + (1 − t)2
.

Evaluating T(t) for different values of t :

T(0) = 1i + 1j√
2

≈ 0.7071i + 0.7071j

T(0.5) = 1i + 0.5j√
1.25

≈ 0.8944i + 0.4472j

T(1) = 1i + 0j

as shown in Fig. 7.13.
Differentiating T(t) and normalising looks like a lot of work, so we’ll take the

easy route. Therefore,

N(0) ≈ 0.7071i − 0.7071j

N(0.5) ≈ 0.4472i − 0.8944j

N(1) = 0i − 1j

as shown in Fig. 7.13.
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7.4 Unit Tangent and Normal Vectors to a Surface

In the following examples I show how to calculate the tangent and normal vectors
to a bilinear patch, a Bézier patch, a sphere and a torus. They each require a slightly
different approach, which is explained for each surface.

7.4.1 Unit Normal Vectors to a Bilinear Patch

Bilinear patches are constructed from a pair of lines using linear interpolation. For
example, given two lines defined by their position vectors:

L1 = (P0,P1), L2 = (P2,P3)

we can linearly interpolate along the lines using

A(u) = (1 − u)P0 + uP1, u ∈ [0, 1]
B(u) = (1 − u)P2 + uP3, u ∈ [0, 1]

and then linearly interpolate between A(u) and B(u):

r(u, v) = (1 − v)A(u) + vB(u), v ∈ [0, 1]
= (1 − v)

(

(1 − u)P0 + uP1
) + v

(

(1 − u)P2 + uP3
)

= (1 − v)(1 − u)P0 + u(1 − v)P1 + v(1 − u)P2 + uvP3.

We now compute the partial derivatives for u and v:

∂r
∂u

= −(1 − v)P0 + (1 − v)P1 − vP2 + vP3

= (1 − v)(P1 − P0) + v(P3 − P2)

∂r
∂v

= −(1 − u)P0 − uP1 + (1 − u)P2 + uP3

= (1 − u)(P2 − P0) + u(P3 − P1).

∂r
∂u and ∂r

∂v
encode a pair of orthogonal tangent vectors, whose cross-product is a

vector normal.
Let’s demonstrate this with an example. Given:

P0 = 0i + 0j + 0k

P1 = 0i + 2j + 1k

P2 = 2i + 0j + 0k
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P3 = 2i + 2j − 1k

then,

∂r
∂u

= 0i + (

2(1 − v) + 2v
)

j + (

(1 − v) − v
)

k

= 0i + 2j + (1 − 2v)k
∂r
∂v

= (

2(1 − u) + 2u
)

i + 0j − 2uk

= 2i + 0j − 2uk.

We can now calculate their cross product:

T′(u, v) =
∣
∣
∣
∣
∣
∣

i j k
2 0 −2u
0 2 1 − 2v

∣
∣
∣
∣
∣
∣

= 4ui + (4v − 2)j + 4k

which is a vector orthogonal to the tangent vectors, depending on the value of u
and v. Let’s calculate the unit normal vector by dividing the normal vector by its
magnitude, for different values of u and v.

N(0, 0) = 0i − 2j + 4k√
20

≈ 0i − 0.4472j + 0.8944k

N(1, 0) = 4i − 2j + 4k√
34

≈ 0.686i − 0.343j + 0.686k

N(0, 1) = 0i + 2j + 4k√
20

≈ 0i + 0.4472j + 0.8944k

N(1, 1) = 4i + 2j + 4k√
34

≈ 0.686i + 0.343j + 0.686k

N(0.5, 0.5) = 2i + 0j + 4k√
2

≈ 0.4472i + 0j + 0.8944k

as shown in Fig. 7.14

7.4.2 Unit Normal Vectors to a Quadratic Bézier Patch

Bézier proposed a matrix of nine control points to determine the geometry of a
quadratic patch, as shown in Fig. 7.15. Any point on the patch is defined by
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Fig. 7.14 Five unit normal
vectors for a bilinear surface

Fig. 7.15 A quadratic
Bézier surface patch

Puv = [u2 u 1]
⎡

⎣

1 −2 1
−2 2 0
1 0 0

⎤

⎦

⎡

⎣

P00 P01 P02
P10 P11 P12
P20 P21 P22

⎤

⎦

⎡

⎣

1 −2 1
−2 2 0
1 0 0

⎤

⎦

⎡

⎣

v2

v

1

⎤

⎦ .

The individual x-, y- and z-coordinates are obtained by substituting the x , y, z
values for the central P matrix.

Let’s illustrate the process with an example. Given the following points:

P00 = (0, 0, 0), P01 = (1, 1, 0), P02 = (2, 0, 0)

P10 = (0, 1, 1), P11 = (1, 2, 1), P12 = (2, 1, 1)

P20 = (0, 0, 2), P21 = (1, 1, 2), P22 = (2, 0, 2)

we can write:

xuv = [u2 u 1]
⎡

⎣

1 −2 1
−2 2 0
1 0 0

⎤

⎦

⎡

⎣

0 1 2
0 1 2
0 1 2

⎤

⎦

⎡

⎣

1 −2 1
−2 2 0
1 0 0

⎤

⎦

⎡

⎣

v2

v

1

⎤

⎦
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xuv = [u2 u 1]
⎡

⎣

0 0 0
0 0 0
0 2 0

⎤

⎦

⎡

⎣

v2

v

1

⎤

⎦

xuv = 2v,

yuv = [u2 u 1]
⎡

⎣

1 −2 1
−2 2 0
1 0 0

⎤

⎦

⎡

⎣

0 1 0
1 2 1
0 1 0

⎤

⎦

⎡

⎣

1 −2 1
−2 2 0
1 0 0

⎤

⎦

⎡

⎣

v2

v

1

⎤

⎦

yuv = [u2 u 1]
⎡

⎣

0 0 −2
0 0 2

−2 2 0

⎤

⎦

⎡

⎣

v2

v

1

⎤

⎦

yuv = 2(u + v − u2 − v2),

zuv = [u2 u 1]
⎡

⎣

1 −2 1
−2 2 0
1 0 0

⎤

⎦

⎡

⎣

0 0 0
1 1 1
2 2 2

⎤

⎦

⎡

⎣

1 −2 1
−2 2 0
1 0 0

⎤

⎦

⎡

⎣

v2

v

1

⎤

⎦

zuv = [u2 u 1]
⎡

⎣

0 0 0
0 0 2
0 0 0

⎤

⎦

⎡

⎣

v2

v

1

⎤

⎦

zuv = 2u.

Therefore, any point on the surface patch has coordinates

puv = 2vi + 2
(

u + v − u2 − v2
)

j + 2uk.

To calculate a unit vector normal to the surface we first calculate two tangent vectors
using ∂p

∂u and ∂p
∂v
, take their cross product, and normalise the resulting vector.

∂p
∂u

= 0i + 2(1 − 2u)j + 2k

∂p
∂v

= 2i + 2(1 − 2v)j + 0k.

We can now compute their cross product:

∣
∣
∣
∣
∣
∣

i j k
0 2 − 4u 2
2 2 − 4v 0

∣
∣
∣
∣
∣
∣

= (8v − 4)i + 4j + (8u − 4)k

which is a vector orthogonal to the tangent vectors, depending on the value of u
and v. Let’s calculate the unit normal vector by dividing the normal vector by its
magnitude, for different values of u and v.

N(0, 0) = −4i + 4j − 4k√
48

≈ −0.5774i + 0.5774j − 0.5774k
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Fig. 7.16 Five unit normal
vectors for a quadratic
Bézier patch

N(1, 0) = −4i + 4j + 4k√
48

≈ −0.5774i + 0.5774j + 0.5774k

N(0, 1) = 4i + 4j − 4k√
48

≈ 0.5774i + 0.5774j − 0.5774k

N(1, 1) = 4i + 4j + 4k√
48

≈ 0.5774i + 0.5774j + 0.5774k

N(0.5, 0.5) = 0i + 4j + 0k√
16

≈ 0i + 1j + 0k

as shown in Fig. 7.16.

7.4.3 Unit Tangent and Normal Vectors to a Sphere

It should not be too difficult to find the tangent and normal vectors for a sphere. So
let’s start with the equation for a sphere with radius r in Cartesian coordinates as

x2 + y2 + z2 = r2.

Therefore, we can declare a function:

f (x, y, z) = x2 + y2 + z2 − r2.

This is best solved using the notation of a gradient vector ∇.
Therefore,

∂ f

∂x
= 2x

∂ f

∂y
= 2y
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∂ f

∂z
= 2z

∇ f = 2x i + 2yj + 2zk

which is a vector normal to the sphere.
Let’s compute the unit normal vector for different points on a sphere using

N = ∇ f

‖∇ f ‖ .

But in order to identify points on the sphere’s surface, it is easier to use spherical
coordinates, where

x = r sin φ cos θ

y = r sin φ sin θ

z = r cosφ.

Therefore,

∇ f (r, φ, θ) = 2r sin φ cos θ i + 2r sin φ sin θ j + 2r cosφk

N
(

5, π
2 , 0

) = 10i + 0j + 0k√
100

= 1i + 0j + 0k

N
(

5, π
2 , π

2

) = 0i + 10j + 0k√
100

= 0i + 1j + 0k

N (5, 0, 0) = 0i + 0j + 10k√
100

= 0i + 0j + 1k

N
(

5, π
4 , 0

) = 5
√
2i + 0j + 5

√
2k√

100
≈ 0.7071i + 0j + 0.071k

N
(

5, π
4 , π

2

) = 0i + 5
√
2j + 5

√
2k√

100
≈ 0i + 0.7071j + 0.071k

as shown in Fig. 7.17. There is no unique tangent vector, only a unique tangent plane.

7.4.4 Unit Tangent and Normal Vectors to a Torus

Lastly, let’s find the tangent and normal vectors for a torus. The equation for a torus
with major radius R and minor radius r is
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Fig. 7.17 Five unit normal
vectors for a sphere

r(θ, φ) =
⎡

⎣

(R + r cos θ) cosφ

(R + r cos θ) sin φ

r sin θ

⎤

⎦ , (θ, φ) ∈ [0, 2π ].

The tangent vectors are given by ∂r
∂φ

and ∂r
∂θ
:

∂r
∂φ

=
⎡

⎣

−(R + r cos θ) sin φ

(R + r cos θ) cosφ

0

⎤

⎦ ,
∂r
∂θ

=
⎡

⎣

−r sin θ cosφ

−r sin θ sin φ

r cos θ

⎤

⎦ .

For example, let R = 3 and r = 1, then:

∂r
∂φ

=
⎡

⎣

−(3 + cos θ) sin φ

(3 + cos θ) cosφ

0

⎤

⎦ ,
∂r
∂θ

=
⎡

⎣

− sin θ cosφ

− sin θ sin φ

cos θ

⎤

⎦ .

When θ = φ = 0:

∂r
∂φ

=
⎡

⎣

0
4
0

⎤

⎦ ,
∂r
∂θ

=
⎡

⎣

0
0
1

⎤

⎦

which are shown in Fig. 7.18 as unit vectors.
If we now compute the cross product ∂r

∂φ
× ∂r

∂θ
, we obtain the normal vector at that

point:

N =
∣
∣
∣
∣
∣
∣

i j k
0 4 0
0 0 1

∣
∣
∣
∣
∣
∣

= 4i + 0j + 0k

which is shown in Fig. 7.18.
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Fig. 7.18 The tangent vectors (green) and normal vector (red) on the left are for θ = φ = 0. The
vectors on the right are for θ = φ = π/2

Let’s compute a similar set of vectors for θ = φ = π/2:

∂r
∂φ

=
⎡

⎣

− (

3 + cos
(

π
2

))

sin
(

π
2

)

(

3 + cos
(

π
2

))

cos
(

π
2

)

0

⎤

⎦ ,
∂r
∂θ

=
⎡

⎣

− sin
(

π
2

)

cos
(

π
2

)

− sin
(

π
2

)

sin
(

π
2

)

cos θ

⎤

⎦

∂r
∂φ

=
⎡

⎣

−3
0
0

⎤

⎦ ,
∂r
∂θ

=
⎡

⎣

0
−1
0

⎤

⎦

which are shown in Fig. 7.18 as unit vectors.
If we now compute the cross product ∂r

∂φ
× ∂r

∂θ
, we obtain the normal vector at that

point:

N =
∣
∣
∣
∣
∣
∣

i j k
−3 0 0
0 −1 0

∣
∣
∣
∣
∣
∣

= 0i + 0j + 3k

which is shown in Fig. 7.18.

7.5 Summary

This chapter has shown how to calculate tangent and normal vectors to various curves
and surfaces. The very same techniques can be applied to other curves and surfaces,
but there is no guarantee that normalising vectors will always be an easy calculation.
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7.5.1 Summary of Formulae

Unit tangent vector

r(t) = x(t)i + y(t)j + z(t)k

T(t) = r′(t)
||r′(t)|| .

Unit normal vector

N(t) = T′(t)
||T′(t)|| .

Unit tangent and normal vector to a line
Line in R2:

r(t) = (x1 + xst)i + (y1 + yst)j

r′(t) = xs i + ysj

T = xs i + ysj
√

x2s + y2s
= λ1i + λ2j

N = −λ2i + λ1j, or = λ2i − λ1j.

Line in R3:

r(t) = (x1 + xst)i + (y1 + yst)j + (z1 + zs t)k

r′(t) = xs i + ysj + zsk

T = xs i + ysj + zsk
√

x2s + y2s + z2s
.

Unit tangent and normal vector to a circle

r(t) = r cos t i + r sin tj

T(t) = − sin t i + cos tj

N(t) = − cos t i − sin tj.

Unit tangent and normal vector to an ellipse

r(t) = a cos t i + b sin tj

ε =
√

1 − b2/a2

T(t) = −a sin t i + b cos tj

a
√
1 − ε2 cos2 t

= λ1i + λ2j

N = −λ2i + λ1j or = λ2i − λ1j.
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Unit tangent and normal vector to a quadratic Bézier curve

r(t) = P0(1 − t)2 + 2P1t (1 − t) + P2t
2, t ∈ [0, 1]

x(t) = B2,0(t)x0 + B2,1(t)x1 + B2,2(t)x2
y(t) = B2,0(t)y0 + B2,1(t)y1 + B2,2(t)y2
x ′(t) = 2[(x1 − x0)(1 − t) + (x2 − x1)t]
y′(t) = 2[(y1 − y0)(1 − t) + (y2 − y1)t]

T(t) = 2
(

(P1 − P0)(1 − t) + (P2 − P1)t
)

√
(

x ′(t)
)2 + (

y′(t)
)2

= λ1i + λ2j

N = −λ2i + λ1j, or = λ2i − λ1j.

Unit tangent and normal vector to a bilinear patch

L1 = (P0,P1)

L2 = (P2,P3)

r(u, v) = (1 − v)(1 − u)P0 + u(1 − v)P1 + v(1 − u)P2 + uvP3

∂r
∂u

= (1 − v)(P1 − P0) + v(P3 − P2) = λu1i + λu2j + λu3k

∂r
∂v

= (1 − u)(P2 − P0) + u(P3 − P1) = λv1i + λv2j + λv3k

T′(u, v) = ∂r
∂u

× ∂r
∂v

=
∣
∣
∣
∣
∣
∣

i j k
λu1 λu2 λu3

λv1 λv2 λv3

∣
∣
∣
∣
∣
∣

N(t) = T′(t)
||T′(t)|| .

Unit normal vector to a sphere

f (x, y, z) = x2 + y2 + z2 − r2

∇ f = 2x i + 2yj + 2zk

N(x, y, z) = ∇ f

‖∇ f ‖
x = r sin φ cos θ

y = r sin φ sin θ

z = r cosφ

∇ f (r, φ, θ) = 2r sin φ cos θ i + 2r sin φ sin θ j + 2r cosφk.
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Unit tangent and normal vector to a torus

r(θ, φ) =
⎡

⎣

(R + r cos θ) cosφ

(R + r cos θ) sin φ

r sin θ

⎤

⎦ , (θ, φ) ∈ [0, 2π ]

∂r
∂φ

=
⎡

⎣

−(R + r cos θ) sin φ

(R + r cos θ) cosφ

0

⎤

⎦ ,
∂r
∂θ

=
⎡

⎣

−r sin θ cosφ

−r sin θ sin φ

r cos θ

⎤

⎦

N(θ, φ) = ∂r
∂φ

× ∂r
∂θ

.



Chapter 8
Straight Lines

8.1 Introduction

This chapter explores different ways of using vectors to represent straight lines and
line segments. We begin with parametric line equations, followed by the Cartesian
form, and the general form of the line equation. Then we examine 2-D space par-
titioning, where we exploit the ability of line equations to partition space. We then
introduce perpendicular vectors and show how they are used to resolve geometric
problems such as finding a line perpendicular to a vector, and the position of a point
reflected in a line. Finally, we examine how to use vectors to represent line segments,
and the intersection of two straight lines, and two line segments.

8.2 Line Equations

Having explored the basics of vector analysis, let us apply some of these ideas to the
description of straight lines. There are various ways of describing straight lines that
include:

• The normal form of the line equation y = mx + c.
• The general form of the line equation ax + by + c = 0.
• The Cartesian form of the line equation ax + by = c.
• The parametric form of the line equation p = t + λv̂.

The first three only apply to 2-D straight lines, whereas the fourth applies to 2-D and
3-D straight lines. So let’s begin with this.
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8.2.1 The Parametric Form of the Line Equation

The first objective is to find a way to move along a straight line using a scalar
parameter. Fortunately, vectors provide such amechanism in the formof the operation
λv̂, which scales the unit vector v̂ with the scalar λ. But we also need to relate our
position relative to some reference point, which must be included in our definition.
We begin as follows.

Figure 8.1 shows a line passing through the point T (xt, yt), where P(xp, yp) is a
point on the line. The unit vector v̂ provides the line’s direction. From this scenario
we can state −→

OP = −→
OT + −→

TP.

Given:

• v̂ is a unit vector defining the line’s direction,
• λ is a parameter to position us anywhere along the direction of v̂,
• T (xt, yt) is a reference point on the line,
• P(xp, yp) is any point on the line,
• t is T ’s position vector,
• p is P’s position vector.

Then,
p = t + λv̂. (8.1)

It should be clear that (8.1) works equally well in 3-D as it does in 2-D, so let us
bring it alive with the following conditions:

Fig. 8.1 A 2-D parametric
line
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Fig. 8.2 A 3-D parametric
line

T = (1, 2)

t = 1i + 2j

v = 1i − 1j

v̂ = 1√
2
(1i − 1j)

p = 1i + 2j + λ√
2
(1i − 1j) =

(
1 + λ√

2

)
i +

(
2 − λ√

2

)
j.

When λ = 0, p = 1i + 2j, and when λ = 1, p = (1 + 1√
2
)i + (2 − 1√

2
)j ≈ (1.707,

1.293). Thus (1.707, 1.293) is a point one unit along v̂ from T . By changing the
value and sign of λ one can move forward or backwards along v̂.

Let’s illustrate (8.1) in a 3-D context as shown in Fig. 8.2. Let

T = (0, 1, 2)

t = 0i + 1j + 2k

v = 2i − 1j − 2k

v̂ = 1
3 (2i − 1j − 2k)

p = 0i + 1j + 2k + λ
3 (2i − 1j − 2k) = 2λ

3 i +
(
1 − λ

3

)
j +

(
2 − 2λ

3

)
k.

Whenλ = 0,p = 0i + 1j + 2k, andwhenλ = 1,p= 2
3 i + 2

3 j + 4
3k≈ (0.667, 0.667,

1.333). Thus (0.667, 0.667, 1.333) is a point one unit along v̂ from T . Similarly, by
changing the value of λ, we can move forward and backward along the 3-D line.

As we may not always have an explicit description of v̂, let’s consider the case
when the line is represented by two points in space. If the two points are P1(x1, y1)
and P2(x2, y2) we can state that

v = (x2 − x1)i + (y2 − y1)j

from which we can compute ‖v‖. v̂ is then equal to v
‖v‖ and T can be P1.
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Fig. 8.3 A 2-D parametric
line

We can now write (8.1) as follows:

p = p1 + λv̂ (8.2)

where p1 is the position vector for P1. This scenario is shown in Fig. 8.3.
In the current R2 context (8.2) reveals:

x = x1 + λv̂

y = y1 + λv̂

x = x1 + λ

‖v‖ (x2 − x1)

y = y1 + λ

‖v‖ (y2 − y1)

x =
(
1 − λ

‖v‖
)
x1 + λ

‖v‖x2 (8.3)

y =
(
1 − λ

‖v‖
)
y1 + λ

‖v‖y2. (8.4)

It is clear from (8.3) and (8.4) that when λ = ‖v‖, x = x2, and y = y2, and represents
a point (x, y), ‖v‖ units along the line from P1.

Let us follow this parametric description of a straight line with the derivation of
the Cartesian form of the line equation.

8.2.2 The Cartesian Form of the Line Equation

We know that the Cartesian form of the line equation is ax + by = c, but what is
not obvious is the geometric significance of a, b and c. Fortunately, vector analysis
provides an insight into these terms, which is the objective of this section.
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Fig. 8.4 Step 1

Fig. 8.5 Step 2

We begin by setting out to discover the coordinates of any point P(x, y) on a
2-D straight line. The strategy used may not immediately appear intuitive, but try
following it, and hopefully the approach will become clear.

Step 1

Construct a line away from the originO containing the pointP(x, y) and its associated
position vector p as shown in Fig. 8.4.

We now need to construct a second path from O to P.

Step 2

Construct a line from O to a point C on the line such that
−→
OC is perpendicular to the

line. It is convenient to make
−→
OC a scalar multiple of a unit vector n̂ = ai + bj. i.e.−→

OC = cn̂, where c is some scalar as shown in Fig. 8.5.

Step 3

Extend the diagram to include the vector
−→
CP, which completes the second path from

O to P, as shown in Fig. 8.6. We can now write
−→
OP = −→

OC + −→
CP. Substituting vector

names:
p = cn̂ + −→

CP. (8.5)
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Fig. 8.6 Step 3

Although we know c and n̂, and the fact that p points to any point on the line, we

do not know
−→
CP. Somehow,

−→
CP has to be eliminated, which can be achieved by the

following cunning subterfuge.

The dot product of two perpendicular vectors is zero, therefore cn̂ · −→
CP = 0.

In fact, the scalar c is superfluous, therefore n̂ · −→
CP = 0. Unfortunately (8.5) does

not contain such a term, but there is nothing to stop us from introducing one by
multiplying (8.5) by n̂ using the dot product:

n̂ · p = cn̂ · n̂ + n̂ · −→
CP

which reduces to:
n̂ · p = cn̂ · n̂. (8.6)

But n̂ · n̂ = 1, we can write (8.6) as

n̂ · p = c (8.7)

which expands to:

(ai + bj) · (xi + yj) = c

ax + by = c.

Which is the Cartesian form of the line equation where:

• x and y are the coordinates of a point on the line,
• a and b are the components of a unit vector normal to the line,
• c is the perpendicular distance from the origin to the line.

Although the above interpretation is correct for our example, we must be careful not
to be too hasty when interpreting straight line equations. For example, in (8.8),

3x + 4y = 10 (8.8)
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Fig. 8.7 The graph of
0.6x + 0.8y = 2

Fig. 8.8 The graph of
−0.6x − 0.8y = 2

10 does not represent the perpendicular distance from the origin to the line. This is
because 3 and 4 are not the components of a unit vector—they are the components
of a vector 5 units long.

Therefore, if we divide (8.8) by 5 we obtain:

0.6x + 0.8y = 2 (8.9)

where 0.6 and 0.8 are the components of a unit vector, and 2 is the perpendicular
distance from the origin to the line. Figure 8.7 shows the graph of the line Eq. (8.9).

So far, all this seems reasonable and consistent, but how do we interpret (8.10)
where c is negative?

0.6x + 0.8y = −2. (8.10)

Clearly, the Euclidean perpendicular distance from the origin to the line cannot
be negative. Furthermore, Fig. 8.8 shows that the normal vector n̂ = −0.6i − 0.8j,
which provides the real clue. These two facts are simply reminding us to rewrite
(8.10) in a form that preserves a positive c term, which is achieved by multiplying
(8.10) by −1:

− 0.6x − 0.8y = 2. (8.11)
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Now the vector components are correct and the perpendicular distance from the
origin to the line is +2 (8.11), with a positive c term makes geometric sense, and
makes the normal vector components explicit.

8.2.3 The General Form of the Line Equation

The general form of the line equation is:

ax + by + c = 0 (8.12)

and to convert it to its equivalent Cartesian form we require two things: the c scalar
must be negative, and a and b must represent a unit vector.

For example, given (8.13)

5x + 12y + 26 = 0. (8.13)

We convert the 26 into −26 by multiplying throughout by −1:

− 5x − 12y − 26 = 0. (8.14)

The magnitude of the perpendicular vector is
√

(−5)2 + (−12)2 = 13, so we divide
throughout by 13:

− 5
13x − 12

13y − 2. (8.15)

Finally, we write (8.15) in its Cartesian form:

− 5
13x − 12

13y = 2 (8.16)

where the unit perpendicular vector is n̂ = − 5
13 i − 12

13 j, and the line is 2 units from
the origin.

8.3 2-D Space Partitioning

One recurring problem in computer graphics is whether a point is inside or outside
a 2-D area or 3-D volume. There are various solutions to this problem, but let’s see
how vector analysis provides some assistance.

Equation (8.17) shows the general form of a line equation, whose graph is shown
in Fig. 8.7.

0.6x + 0.8y − 2 = 0. (8.17)
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When we substitute values of (x, y) for points on the line, the expression (8.18)

0.6x + 0.8y − 2 (8.18)

equals zero. But what happens if the point is off the line? Well, let’s try substituting
some points.

The point (10, 10) is clearly above the line, and when substituted in (8.18) we
obtain the value+12. However, the point (−10,−10) is below the line, and produces
the value −16.

If we continued substituting other points in (8.18), we would discover that the line
partitions space into three zones: a zone above the line where (8.18) is positive, and
a zone below the line where (8.18) is negative, and points on the line where (8.18) is
zero. But the terms ‘above’ and ‘below’ are incorrect, as they have no meaning for
vertical lines!

To discover the key to this problem we need to see what happens when the line’s
normal vector is reversed:

− 0.6x − 0.8y − 2 = 0. (8.19)

whose graph is shown in Fig. 8.8. This time the expression is

− 0.6x − 0.8y − 2. (8.20)

Substituting the point (10, 10) in (8.20) equals −16, whereas (−10,−10) equals
+12. Notice that for both equations, the positive sign is in the zone containing the
normal vector, which is always the case. The reader may wish to reason why this is
so.

Therefore, if we had a convex boundary formed by straight edges, how can we
arrange that their normal vectors point outwards or inwards? This is what we’ll
investigate next. Ideally, we want to create one of the scenarios shown in Fig. 8.9.

We begin by making the convex boundary from a list of vertices P1,P2,P3 and
P4, defined in a counter-clockwise sequence, which create a corresponding chain of

Fig. 8.9 Normal vectors
pointing inwards and
outwards
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Fig. 8.10 A quadrilateral
composed of four vectors

Fig. 8.11 One side of the
quadrilateral

vectors. For instance, a quadrilateral has been chosen as shown in Fig. 8.10. We now
need to find the general form of the line equation for each boundary vector. If we do
not apply a consistent algorithm, we could end up with an incoherent collection of
normal vectors.

We start with two points P1(x1, y1) and P2(x2, y2) that are the ends of a directed
line, as shown in Fig. 8.11. Next we let

n = ai + bj

which is perpendicular to
−−→
P1P2. Therefore,

−−→
P1P2 · n = 0

[(x2 − x1)i (y2 − y1)j] · [ai bj] = 0

a(x2 − x1) + b(y2 − y1) = 0
a

b
= y1 − y2

x2 − x1
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and
a = y1 − y2, b = x2 − x1.

The general form of the line equation is:

(y1 − y2)x + (x2 − x1)y + c = 0 (8.21)

and c is found by substituting P1 or P2 in (8.21).
We now evaluate (8.21) for each boundary edge.−−→

P1P2: Substituting x1 = 2, y1 = 1, x2 = 3, y2 = 2 in (8.21) we get

− x + y + c = 0 (8.22)

and substituting the point P1(2, 1) in (8.22) makes c = 1.
The general form of the line equation is:

−x + y + 1 = 0

with a normal vector:
n1 = −i + j.

−−→
P2P3: Substituting x1 = 3, y1 = 2, x2 = 2, y2 = 3 in (8.21) we get

− x − y + c = 0 (8.23)

and substituting the point P2(3, 2) in (8.23) makes c = 5.
The general form of the line equation is:

−x − y + 5 = 0

with a normal vector:
n2 = −i − j.

−−→
P3P4: Substituting x1 = 2, y1 = 3, x2 = 1, y2 = 2 in (8.21) we get

x − y + c = 0 (8.24)

and substituting the point P3(2, 3) in (8.24) makes c = 1.
The general form of the line equation is:

x − y + 1 = 0

with a normal vector:
n3 = i − j.
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Fig. 8.12 The scaled four
normal vectors

−−→
P4P1: Substituting x1 = 1, y1 = 2, x2 = 2, y2 = 1 in (8.21) we get

x + y + c = 0 (8.25)

and substituting the point P4(1, 2) in (8.25) makes c = −3.
The general form of the line equation is:

x + y − 3 = 0

with a normal vector:
n4 = i + j.

Figure 8.12 shows the boundary with the four normal vectors superimposed, and
we see that they all point to the boundary’s inside. The four expressions can now be
tested with different points, and it is the sign of the expression that confirms their
space partition.

If only one expression is zero, the point is on the boundary.
If two expressions are zero, the point is a boundary vertex.
If any expression is negative, the point is outside the boundary.
If all expressions are positive, the point is inside the boundary.

Table 8.1 summarises some of these conditions. The reader may wish to verify other
points, but the contents of Table 8.1 should be sufficient to demonstrate the integrity of
this strategy. However, this technique is sensitive to the boundary’s vertex sequence.
For if the vertices are taken in a clockwise order, the four line equations are effectively
multiplied by −1, which flips the normal vectors:
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Table 8.1 Partition for various points

Point −x + y + 1 −x − y + 5 x − y + 1 x + y − 3 Partition

(2, 2) + + + + Inside

(1, 1) + + + − Outside

(2, 0) − + + − Outside

(3, 1) − + + + Outside

(4, 2) − − + + Outside

(3, 3) + − + + Outside

(2, 4) + − − + Outside

(1, 3) + + − + Outside

(0, 2) + + − − Outside

(2, 1) 0 + + 0 Vertex

(3, 2) 0 0 + + Vertex

(2, 3) + 0 0 + Vertex

(1, 2) + + 0 0 Vertex

−x + y + 1 ⇒ x − y − 1

−x − y + 5 ⇒ x + y − 5

x − y + 1 ⇒ −x + y − 1

x + y − 3 ⇒ −x − y + 3.

Now the normal vectors point away from the boundary’s inside, which makes the
inside partition negative and the outside positive. This still works, but highlights the
care required when using this technique.

8.4 Perpendicular Vectors

When working in 2-D we often employ vectors that are perpendicular to some ref-
erence vector. For instance, Fig. 8.13 shows two vectors v and n, where n is perpen-
dicular to v, and is expressed mathematically as n ⊥ v.

Fig. 8.13 Two
perpendicular vectors
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Fig. 8.14 Two arrangements
of perpendicular vectors

Fig. 8.15 Vectors v and v⊥

The symbol ‘⊥’, (pronounced ‘perp’) can be regarded as an operator, such that
given a vector v, v⊥ is a vector perpendicular to v. However, there is a problem:
which way does v⊥ point? Figure 8.14 shows the two possibilities. Either one is
valid, however mathematics does employ a convention where a counter-clockwise
rotation is positive. Consequently, the orientation shown in Fig. 8.14a is the one
adopted. The next step is to find the components of v⊥.

Figure 8.15 shows vector v = ai + bj which makes an angle α with the x-axis,
and 90◦ − α with the y-axis. If we transpose v’s components to −bi + aj we create
a second vector, which must be perpendicular to v, as the angle between the two
vectors is 90◦. Therefore, we can state

v = ai + bj

v⊥ = −bi + aj. (8.26)

Further confirmation is found in the dot product where

v · v⊥ = (ai + bj) · (−bi + aj) = −ab + ab = 0.
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A second way of demonstrating this is to convert v into a complex number:

v = ai + bj ≡ a + ib (8.27)

where,
i2 = −1.

If we multiply (8.27) by i, it rotates it through 90◦:

i(a + ib) = ai + i2b = −b + ai

where,
−b + ai ≡ −bi + aj.

Although the sign change and component switching is a simple operation, it can be
represented formally by this determinant:

v⊥ = −
∣∣∣∣
i j
a b

∣∣∣∣ = −bi + aj.

It may be obvious that the magnitude ‖v⊥‖ equals the magnitude ‖v‖.

8.5 A Line Perpendicular to a Vector

In this section we examine how to define a straight line perpendicular to a given
vector, and passes through a specific point. Figure 8.16 shows this scenario where
the reference unit vector n̂ passes through the origin O and the specified point is
T (xt, yt). Figure 8.16 shows the following conditions:

Fig. 8.16 A line
perpendicular to a vector
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Fig. 8.17 A line
perpendicular to a vector

• n̂ = nxi + nyj is a unit vector,
• v̂ = −yni + xnj is perpendicular to n̂, and directs the line,
• T (xt, yt) is the reference point on the line,
• t = xt i + ytj is T ’s position vector,
• P(xp, yp) is any point on the line,
• p = xpi + ypj is P’s position vector,
• λ is a scalar and locates P relative to T .

From Fig. 8.16 we can state

p = t + λ(−yni + xnj). (8.28)

Therefore, from (8.28):

xp = xt − λyn (8.29)

yp = yt + λxn. (8.30)

With reference to Fig. 8.17, T = (3, 0) and n̂ = 1√
2
(i + j), therefore, using (8.29)

and (8.30) we have:
When λ = 0, P = (3, 0), and when λ = √

2, P = (2, 1).

8.6 The Position of a Point Reflected in a Line

In this section we consider the problem of calculating the reflection of a point in a
straight line, and once more we consider two separate strategies using two forms of
the line equation. In both cases, the key to the solution is based on the fact that the
line connecting the point to its reflection is perpendicular to the reflecting line.
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8.6.1 The Cartesian Form of the Line Equation

We start with the following conditions shown in Fig. 8.18:

• ax + by = c is the line’s equation,
• P(xp, yp) is the point to be reflected,
• Q(xq, yq) is P’s reflection,

• T (xt, yt) is a point on the line such that
−→
TP is orthogonal to the line,

• p = xpi + ypj is P’s position vector,
• q = xqi + yqj is Q’s position vector,
• t = xt i + ytj is T ’s position vector,
• n = ai + bj is the line’s normal vector,
• λn is the vector

−→
TP and

−→
QT .

The objective is to produce a vector equation of the form q = p + · · · . The RHS of
this equation must only contain references to p and variables in the line equation. λ

is acceptable, so long as it can be defined. As
−→
QP is orthogonal to the reflecting line,

we must anticipate employing the dot product.
With reference to Fig. 8.18:

n · t = (ai + bj) · (xt i + ytj) = axt + byt = c (8.31)

and
p = t + λn. (8.32)

Multiply (8.32) by n using the dot product,

n · p = n · t + λn · n. (8.33)

Fig. 8.18 The reflection of a
point P in a line
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Substitute (8.31) in (8.33)
n · p = c + λn · n. (8.34)

Therefore, we have

λ = n · p − c

n · n = n · p − c

‖n‖2 . (8.35)

Now,
q = p − 2λn. (8.36)

Therefore,

q = p − 2

(
n · p − c

‖n‖2
)
n. (8.37)

If n is a unit vector n̂, then

q = p − 2(n̂ · p − c)n̂. (8.38)

Let’s test (8.37) with a simple example—one where we can predict the result.
Figure 8.19 shows the graph of the line equation x + y = 3. The reference point

is P(2, 0) and it is obvious that the reflected point must be Q(3, 1). The conditions
are:

• x + y = 3 is the Cartesian line equation,
• n = 1i + 1j is the normal to the line,
• ‖n‖ = √

2 is the magnitude of n,
• c = 3 is from the line equation,
• p = 2i + 0j is P’s position vector,
• q = xqi + yqj is Q position vector.

Fig. 8.19 The reflection of a
point P in a line
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Fig. 8.20 The reflection of a
point P about a line

Therefore, using (8.37):

q = (2i + 0j) − 2

(
(1i + 1j) · (2i + 0j) − 3

2

)
(1i + 1j)

= (2i + 0j) − (−1)(1i + 1j)

= (2i + 0j) + (1i + 1j)

= 3i + 1j

xq = 3

yq = 1.

As predicted.

8.6.2 The Parametric Form of the Line Equation

Now let’s use the parametric form of the line equation. Figure 8.20 shows the fol-
lowing conditions:

• v is the line’s direction vector,
• T is some point on the line,
• t is T ’s position vector,
• P is the point to be reflected,
• p is P’s position vector,
• Q is P’s reflection,
• q is Q’s position vector,
• n is orthogonal to v,
• R is midway between P and Q,
• λv is

−→
TR.
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The following analysis exploits the fact that
−→
QP is perpendicular to v, and the

objective is to find q in terms of t, p and v. We begin with

r = t + λv. (8.39)

Multiply (8.39) by v using the dot product:

v · r = v · t + λv · v. (8.40)

As p and r have a common projection on v, we have

v · p = v · r. (8.41)

Substitute (8.41) in (8.40):
v · p = v · t + λv · v. (8.42)

Therefore,

λ = v · (p − t)
v · v = v · (p − t)

‖v‖2 . (8.43)

If v is a unit vector v̂, then
λ = v̂ · (p − t). (8.44)

From Fig. 8.20 we have

p = r + an

2p = 2r + 2an

q = p − 2an

q + 2p = p + 2r

q = 2r − p. (8.45)

Substitute (8.39) in (8.45):
q = 2(t + λv) − p. (8.46)

Let’s test (8.46) with the previous example.
Figure 8.21 shows the following conditions:

• v = 1i − 1j is the line’s direction vector,
• T (1, 2) is on the line,
• t = 1i + 2j is T ’s position vector,
• P(2, 0) is the point to be reflected,
• p = 2i + 0j is P’s position vector,
• Q(3, 1) is P’s reflection,
• q = 3i + 1j is Q’s position vector.
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Fig. 8.21 The reflection of a
point P in a line

Using (8.43) and (8.46):

λ = v · (p − t)
‖v‖2

= [1i − 1j] · [[2i 0j] − [1i 2j]]
2

= [1i − 1j] · [1i − 2j]
2

= 1.5

q = 2(t + λv) − p

= 2
(
(1i + 2j) + 1.5(1i − 1j)

) − (2i + 0j)

= 2(2.5i + 0.5j) − (2i + 0j)

= 3i + 1j

Q = (3, 1).

Which is correct.

8.7 The Equation of a Line Segment

The line segment is very important in computer graphics as it is a fundamental
building block for 2-D and 3-D polygons, and all sorts of surface meshes. In R

2

we need to clip line segments against rectangular windows; in R
3 we need to clip

line segments against a viewing frustum; and in R
2 and R

3 we need to compute the
potential intersection of two line segments.
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Fig. 8.22 Defining a line
segment

The parametric form of the straight-line equation is the most practical basis for
manipulating straight-line segments, where the controlling parameter can be used to
determine the position of a point along the segment.

Figure 8.22 shows the following conditions:

• P1(x1, y1) and P2(x2, y2) define the line segment,
• p1 = x1i + y1j is P1’s position vector,
• p2 = x2i + y2j is P2’s position vector,
• P(xp, yp) is a point on the line segment,
• p = xpi + ypj is P’s position vector,

• v = −−→
P1P2 = xvi + yvj ,

• λ is a scaling parameter for v.

Therefore,

v = p2 − p1
xv = x2 − x1
yv = y2 − y1
p = p1 + λv

xp = x1 + λ(x2 − x1)

yp = y1 + λ(y2 − y1).

Point P is between P1 and P2 for λ ∈ [0, 1]. And by changing λ between 0 and 1,
we slide along the line segment.
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8.8 The Intersection of Two Straight Lines

The need to compute line intersections arises in 2-D and 3-D clipping, modeling and
animation. Most of the time we are concerned with line segments, rather than infinite
lines, although the latter are required in illumination calculations, ray casting and
ray tracing. To set the scene, let us calculate the point of intersection of two straight
lines in R2.

To begin, we must anticipate the two possibilities that can arise with two lines:
the first is that the lines intersect, giving a single point of intersection; second, the
line equations are linearly related, producing no intersections. Although one can
approach this problem using line equations, we consider only a vector approach.

The two parametric lines are shown in Fig. 8.23 and are defined as follows:

• R(xr, yr) is a point on the line with direction vector a = xai + yaj,
• r = xri + yrj is R’s position vector,
• S(xs, ys) is a point on the line with direction vector b = xbi + ybj,
• s = xsi + ysj is S’s position vector,
• P(xp, yp) is the point of intersection between the two lines,
• p = xpi + ypj is P’s position vector,

• λa is the vector
−→
RP,

• εb is the vector
−→
SP,

where,

p = r + λa

p = s + εb.

The task now is to discover the values of λ and ε (epsilon) at the point P. Therefore,

r + λa = s + εb. (8.47)

Fig. 8.23 Two parametric
lines
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In order to isolate λ, we multiply (8.47) by b⊥ = −ybi + xbj using the dot product:

b⊥ · r + λb⊥ · a = b⊥ · s + εb⊥ · b
λb⊥ · a = b⊥ · (s − r) + εb⊥ · b. (8.48)

But in (8.48) b⊥ · b = 0, therefore,

λb⊥ · a = b⊥ · (s − r)

λ = b⊥ · (s − r)
b⊥ · a

from which we can state:

λ = xb(ys − yr) − yb(xs − xr)

xbya − ybxa
. (8.49)

In order to isolate ε we multiply (8.47) by a⊥ = −yai + xaj using the dot product:

a⊥ · r + λa⊥ · a = a⊥ · s + εa⊥ · b
εa⊥ · b = a⊥ · (r − s) + λa⊥ · a. (8.50)

But in (8.50) a⊥ · a = 0, therefore,

εa⊥ · b = a⊥ · (r − s)

ε = a⊥ · (r − s)
a⊥ · b

from which we can state:

ε = xa(yr − ys) − ya(xr − xs)

xayb − yaxb
. (8.51)

The coordinates of P are given by

xp = xr + λxa, yp = yr + λya

or
xp = xs + εxb, yp = ys + εyb.

But what if the line equations are linearly related? Well, this can be detected by

∣∣∣∣
xa ya
xb yb

∣∣∣∣ = 0.

Let’s test the above equations with an example.
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Fig. 8.24 Two intersecting
parametric lines

Figure 8.24 shows two lines intersecting at P(1, 1), with the following conditions:

• R(3, 3),
• r = 3i + 3j,
• S(2, 0),
• s = 2i + 0j,
• a = −1i − 1j,
• b = −1i + 1j.

Therefore,

λ = xb(ys − yr) − yb(xs − xr)

xbya − ybxa

= −1(0 − 3) − 1(2 − 3)

(−1)(−1) − 1(−1)

= 3 + 1

2
= 2

or,

ε = xa(yr − ys) − ya(xr − xs)

xayb − yaxb

= (−1)(3 − 0) − (−1)(3 − 2)

(−1)1 − (−1)(−1)

= −3 + 1

−2
= 1
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and

xp = xr + λxa = 3 + 2(−1) = 1

yp = yr + λya = 3 + 2(−1) = 1

or,

xp = xs + εxb = 2 + 1(−1) = 1

yp = ys + εyb = 0 + 1(1) = 1

making the point of intersection (1, 1), which is correct.

8.9 The Point of Intersection of Two Line Segments in R
2

In the previous section we calculated the intersection point of two infinite 2-D lines,
and in this sectionwe exploit this knowledge to detect the potential intersection of two
finite 2-D line segments. As the segments are represented by parametric vectors, the
value of the parameter is the key to identifying intersections, non-intersections and
touch conditions. Figure 8.25 shows two line segmentswith the following conditions:

• R1(xr1, yr1) is the end of a line, with position vector r1 = xr1i + yr1j,
• R2(xr2, yr2) is the end of a line, with position vector r2 = xr2i + yr2j,
• S1(xs1, ys1) is the end of a line, with position vector s1 = xs1i + ys1j,
• S2(xs2, ys2) is the end of a line, with position vector s2 = xs2i + ys2j,
• P(xp, yp) is the point of intersection between the two lines,
• p = xpi + ypj is P’s position vector,

• λa is the vector
−−→
R1P,

• εb is the vector
−→
S1P,

where,

p = r1 + λa

p = s1 + εb.

For intersection at P:
r1 + λa = s1 + εb. (8.52)

In order to isolate λ, we multiply (8.52) by b⊥ = −ybi + xbj using the dot product:

b⊥ · r1 + λb⊥ · a = b⊥ · s1 + εb⊥ · b
λb⊥ · a = b⊥ · (s1 − r1) + εb⊥ · b. (8.53)
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Fig. 8.25 Two intersecting
line segments

But in (8.53) b⊥ · b = 0, therefore,

λb⊥ · a = b⊥ · (s1 − r1)

λ = b⊥ · (s1 − r1)
b⊥ · a

from which we can state:

λ = xb(ys1 − yr1) − yb(xs1 − xr1)

xbya − ybxa
. (8.54)

In order to isolate ε, we multiply (8.52) by a⊥ = −yai + xaj using the dot product:

a⊥ · r1 + λa⊥ · a = a⊥ · s1 + εa⊥ · b
εa⊥ · b = a⊥ · (r1 − s1) + λa⊥ · a. (8.55)

But in (8.55) a⊥ · a = 0, therefore,

εa⊥ · b = a⊥ · (r1 − s1)

ε = a⊥ · (r1 − s1)
a⊥ · b

from which we can state:

ε = xa(yr1 − ys1) − ya(xr1 − xs1)

xayb − yaxb
. (8.56)
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Fig. 8.26 Two intersecting
line segments

Only if λ, ε ∈ [0, 1], do the lines intersect or touch one another, and the coordi-
nates of P are given by

xp = xr1 + λxa, yp = yr1 + λya

or,
xp = xs1 + εxb, yp = ys1 + εyb.

Figure 8.26 shows two intersecting line segments at P(2, 2), with the following
conditions:

• R1(0, 3) and R2(4, 1) define the first line segment,
• S1(1, 2) and S2(3, 2) define the second line segment,
• r1 = 0i + 3j and r2 = 4i + 1j are position vectors,
• s1 = 1i + 2j and s2 = 3i + 2j are position vectors,
• a = 4i − 2j and b = 2i + 0j are direction vectors.

Therefore,

λ = xb(ys1 − yr1) − yb(xs1 − xr1)

xbya − ybxa

= 2(2 − 3) − 0(1 − 0)

2(−2) − 0(4)
= 1

2

xp = xr1 + λxa

= 0 + 1
24 = 2

yp = yr1 + λya

= 3 + 1
2 (−2) = 2
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and,

ε = xa(yr1 − ys1) − ya(xr1 − xs1)

xayb − yaxb

= 4(3 − 2) − (−2)(0 − 1)

4(0) − (−2)2
= 1

2

xp = xs1 + εxb

= 1 + 1
22 = 2

yp = ys1 + εyb

= 2 + 1
2 (0) = 2.

Confirming that the point of intersection is P(2, 2).
Now let’s examine the case of two line segments that touch, as shown in Fig. 8.27

with the following conditions:

• R1(0, 3) and R2(4, 1) define the first line segment,
• S1(1, 3) and S2(4, 1) define the second line segment,
• r1 = 0i + 3j and r2 = 4i + 1j are position vectors,
• s1 = 1i + 3j and s2 = 4i + 1j are position vectors,
• a = 4i − 2j and b = 3i − 2j are direction vectors.

Therefore,

λ = xb(ys1 − yr1) − yb(xs1 − xr1)

xbya − ybxa

= 3(3 − 3) − (−2)(1 − 0)

3(−2) − (−2)(4)
= 1

xp = xr1 + λxa
= 0 + 1(4) = 4

yp = yr1 + λya
= 3 + 1(−2) = 1

and,

ε = xa(yr1 − ys1) − ya(xr1 − xs1)

xayb − yaxb

= 4(3 − 3) − (−2)(0 − 1)

4(−2) − (−2)3
= 1

xp = xs1 + εxb
= 1 + 1(3) = 4

yp = ys1 + εyb
= 3 + 1(−2) = 1.
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Fig. 8.27 Two touching line
segments

Fig. 8.28 Relative positions
of two line segments

Confirming that the line segments touch at P(4, 1). The line segments are parallel
if the denominator in (8.54) or (8.56) is zero. Figure 8.28 illustrates the relative
positions of the line segments for different values of λ and ε.

8.10 Summary

This chapter has examined different ways of representing lines and line segments
using vectors, in various geometric scenarios. Hopefully you will have noticed that
I am a firm believer in drawing a clear diagram with all the vectors associated with
the scenario, as it helps reveal possible ways of solving the problem. One particular
problem-solving strategy is the use of perpendicular vectors in conjunction with the
dot product.



Chapter 9
The Plane

9.1 Introduction

Themain objective of this chapter is to solve useful geometric problems involving the
plane.We begin this exploration by examining the Cartesian form, and the parametric
form of the plane equation. This is followed by a variety of problems that include:
defining a plane from three points, 3-D space partitioning, the angle between two
planes, the position and distance of a point to a plane, the reflection of a point in a
plane, and lastly, a plane between two points. Each problem includes a diagram and
a method of defining the equations that reveal a solution.

9.2 The Cartesian Form of the Plane Equation

The general form of the plane equation creates an equation that equals zero, whereas
the Cartesian form arranges the equation such that a constant term is isolated on one
side of the equals sign:

ax + by + cz = d.

Both forms have their individual advantages, but the Cartesian form is useful from a
geometric perspective.

Weuse vector analysis to derive the plane equation and the readerwill see that there
is an intimate relationship between this and the Cartesian form of the line equation
described in Chap. 8. Furthermore, wewill approach the analysis in a similar fashion.

Step 1
Define a plane containing the point P(x, y, z) and its associated position vector
p = x i + yj + zk, away from the origin O , as shown in Fig. 9.1.
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Fig. 9.1 Step 1

Fig. 9.2 Step 2

Step 2
Construct a line from the origin to a point C on the plane such that

−→
OC is perpen-

dicular to the plane. It is convenient to make
−→
OC a scalar multiple of a unit vector

n̂ = ai + bj + ck. i.e.
−→
OC = dn̂, where d is some scalar as shown in Fig. 9.2. We

can now write
−→
OP = −→

OC + −→
CP . Substituting vector names gives

p = dn̂ + −→
CP . (9.1)

Although we know d and n̂, and the fact that p points to any point on the plane, we
do not know

−→
CP . Somehow it has to be eliminated, which is achieved by multiplying

(9.1) by n̂ using the dot product:

n̂ · p = dn̂ · n̂ + n̂ · −→
CP. (9.2)

However, the dot product of two perpendicular vectors is zero. Therefore,

n̂ · −→
CP = 0

and (9.2) reduces to
n̂ · p = dn̂ · n̂. (9.3)
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But we already know that n̂ · n̂ = 1. Therefore,

n̂ · p = d. (9.4)

Expanding (9.4) we get

(ai + bj + ck) · (x i + yj + zk) = d

ax + by + cz = d

which we recognise as the Cartesian form of the plane equation where:

x, y, z are the coordinates of a point on the plane,
a, b, c are the components of a unit vector normal to the plane,
d is the perpendicular distance from the origin to the plane.

The above analysis assumes that the vector normal to the plane is a unit vector,
which gives a precise geometric meaning to d. However, we must be careful not to
apply this geometric meaning to all plane equations. For example, consider (9.5):

2x + 3y + 4z = 10. (9.5)

The vector normal to the plane is clearly not a unit vector as its magnitude is

√
22 + 32 + 42 = √

29.

But if we divide (9.5) throughout by
√
29, we obtain (9.6):

2√
29
x + 3√

29
y + 4√

29
z = 10√

29
(9.6)

where the perpendicular distance from the origin to the plane is 10√
29

.

Let us now consider an alternative definition of the plane equation – the parametric
form.

9.3 The Parametric Form of the Plane Equation

The parametric form of the plane equation requires two non-linearly connected vec-
tors and a single point to define a plane. The two vectors provide the orientation of
the plane, whilst the single point identifies a specific plane. Such a scenario is shown
in Fig. 9.3, with the following points and vectors:

• T (xt , yt , zt ) is the given point on the plane,
• t = xt i + yt j + ztk is T ’s position vector,
• a = xa i + yaj + zak is the first vector parallel to the plane,
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Fig. 9.3 The parametric
form of a plane

• b = xbi + ybj + zbk is the second vector parallel to the plane,
• P(x, y, z) is any given point on the plane,
• p = x i + yj + zk is P’s position vector,
• c = −→

T P ,
• λa is

−→
T P’s projection on a,

• εb is
−→
T P’s projection on b,

• λ and ε are scalars.

Therefore,
c = λa + εb (9.7)

and
p = t + c. (9.8)

Therefore, combining (9.7) and (9.8)

p = t + λa + εb. (9.9)

More explicitly:

x = xt + λxa + εxb
y = yt + λya + εyb
z = xt + λza + εzb.

If a and b are unit vectors, and are mutually perpendicular, i.e. a · b = 0, λ and ε

become linear measurements along the a- and b-axes relative to T .
Figure9.4 illustrates a parametric plane with the following points and vectors:

• T (2, 0, 0) is the given point on the plane,
• a = −2i + 2j + 0k is the first vector parallel to the plane,
• b = −2i + 0j + 2k is the second vector parallel to the plane,
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Fig. 9.4 The parametric
form of a plane

• P(x, y, z) is any given point on the plane.

Point T : λ = 0, ε = 0:

x = 2 + 0 + 0 = 2

y = 0 + 0 + 0 = 0

z = 0 + 0 + 0 = 0.

Point P1: λ = 1, ε = 0:

x = 2 + 1(−2) + 0(−2) = 0

y = 0 + 1(2) + 0(0) = 2

z = 0 + 1(0) + 0(2) = 0.

Point P2: λ = 0, ε = 1:

x = 2 + 0(−2) + 1(−2) = 0

y = 0 + 0(2) + 1(0) = 0

z = 0 + 0(0) + 1(2) = 2.

Point P3: λ = 1
2 , ε = 1

2 :

x = 2 + 1
2 (−2) + 1

2 (−2) = 0

y = 0 + 1
2 (2) + 1

2 (0) = 1

z = 0 + 1
2 (0) + 1

2 (2) = 1.
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9.4 A Plane Equation from Three Points

We know that two points are required to define a line, but three points are needed to
define a plane. So let us now consider how the plane equation is derived from three
such points.

Figure9.5 shows a plane defined by three points with the following points and
vectors:

• R(xr , yr , zr ) is a point defining the plane,
• S(xs, ys, zs) is a point defining the plane,
• T (xt , yt , zt ) is a point defining the plane,
• P(x, y, z) is any point on the plane,
• −→

RS = u = xu i + yuj + zuk is a vector parallel to the plane,
• −→

RT = v = xvi + yvj + zvk is a vector parallel to the plane,
• −→

RP = w = xwi + ywj + zwk is a vector parallel to the plane,
• u × v is a vector normal to the plane.

The three points are assumed to be in a counter-clockwise sequence viewed from the
direction of the surface normal. The vector product u × v provides a vector normal
to the plane containing the points:

u × v =
∣∣∣∣∣∣

i j k
xu yu zu
xv yv zv

∣∣∣∣∣∣
.

We now take the point P on the plane and form the vector w = −→
RP . Therefore, the

dot product w · (u × v) = 0. This condition can be expressed as a determinant and
converted into the general equation of a plane:

Fig. 9.5 Three points R, S,
T defining a plane
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w · (u × v) =
∣∣∣∣∣∣

xw yw zw

xu yu zu
xv yv zv

∣∣∣∣∣∣
= 0. (9.10)

Expanding (9.10), we obtain (9.11):

xw

∣∣∣∣
yu zu
yv zv

∣∣∣∣ + yw

∣∣∣∣
zu xu
zv xv

∣∣∣∣ + zw

∣∣∣∣
xu yu
xv yv

∣∣∣∣ = 0 (9.11)

which becomes (9.12):

(x − xr )

∣∣∣∣
ys − yr zs − zr
yt − yr zt − zr

∣∣∣∣

+ (y − yr )

∣∣∣∣
zs − zr xs − xr
zt − zr xt − xr

∣∣∣∣

+ (z − zr )

∣∣∣∣
xs − xr ys − yr
xt − xr yt − yr

∣∣∣∣ = 0. (9.12)

Equation (9.12) can be arranged in the Cartesian form of the line equation ax +
by + cz = d, where,

a =
∣∣∣∣
ys − yr zs − zr
yt − yr zt − zr

∣∣∣∣ or a =
∣∣∣∣∣∣

1 yr zr
1 ys zs
1 yt zt

∣∣∣∣∣∣
(9.13)

b =
∣∣∣∣
zs − zr xs − xr
zt − zr xt − xr

∣∣∣∣ or b =
∣∣∣∣∣∣

xr 1 zr
xs 1 zs
xt 1 zt

∣∣∣∣∣∣
(9.14)

c =
∣∣∣∣
xs − xr ys − yr
xt − xr yt − yr

∣∣∣∣ or c =
∣∣∣∣∣∣

xr yr 1
xs ys 1
xt yt 1

∣∣∣∣∣∣
(9.15)

d = axr + byr + czr . (9.16)

Let’s test these results with an example. Figure9.6 shows a plane with the following
points and vectors:

• R(2, 0, 0) is a point defining the plane,
• S(0, 2, 0) is a point defining the plane,
• T (0, 0, 2) is a point defining the plane,
• P(x, y, z) is any point on the plane.



156 9 The Plane

Fig. 9.6 Three points R, S,
T , defining a plane

Therefore, substituting values into (9.13), (9.14), (9.15) and (9.16), we have:

a =
∣∣∣∣∣∣

1 yr zr
1 ys zs
1 yt zt

∣∣∣∣∣∣
=

∣∣∣∣∣∣

1 0 0
1 2 0
1 0 2

∣∣∣∣∣∣
= 4

b =
∣∣∣∣∣∣

xr 1 zr
xs 1 zs
xt 1 zt

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 1 0
0 1 0
0 1 2

∣∣∣∣∣∣
= 4

c =
∣∣∣∣∣∣

xr yr 1
xs ys 1
xt yt 1

∣∣∣∣∣∣
=

∣∣∣∣∣∣

2 0 1
0 2 1
0 0 1

∣∣∣∣∣∣
= 4

d = axr + byr + czr = 4 × 2 + 4 × 0 + 4 × 0 = 8

which makes the plane equation:

4x + 4y + 4z = 8.

9.5 3-D Space Partitioning

In Section 8.3 we discovered how it is possible to determine whether a point is
inside or outside a convex boundary. The technique also reveals whether a point is
on a boundary vertex or edge. Now let’s explore a similar technique where we can
determine whether a point is inside, outside, or on a vertex, edge or surface forming
a convex polyhedron.
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Fig. 9.7 Six views of a unit
cube

A simple example reveals the underlying mechanism of this form of 3-D space
partitioning. A unit cube is chosen aligned with the x-, y- and z-axis, as it keeps
the mathematics very simple. However, it should be clear from this example that the
mathematical reasoning holds for any convex polyhedron.

Figure9.7 shows six views of a unit cube with each surface highlighted with its
normal vector n. To ensure that all the normal vectors point outwards, it is derived
from two similar edges forming each surface.We assume that the surfaces are defined
by a chain of edges defined in a counter-clockwise sequence when viewed from the
outside, as shown in Fig. 9.7.

The cross-product operation is used to create a normal vector from two adjacent
edges selected from each surface. Any two will do, but the selection procedure must
be the same for all the surfaces, otherwise the normal vectorwill not point consistently
inwards or outwards. The chosen edges are the vectors u and v, as shown in Fig. 9.7.

n =
∣∣∣∣∣∣

i j k
xu yu zu
xv yv zv

∣∣∣∣∣∣
.

Furthermore, given a vector
n = ai + bj + ck

the plane equation is given by

ax + by + cz − (axp + byp + cz p) = 0

where P(xp, yp, z p) is a point on the plane. Such a point is shown on each view in
Fig. 9.7. For example, in the first view:

u = −j, v = k, P = (0, 0, 0)
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n =
∣∣∣∣∣∣

i j k
0 −1 0
0 0 1

∣∣∣∣∣∣
= −i

therefore, the plane equation is:
−x = 0.

In the second view:
u = k, v = i, P = (0, 1, 1)

n =
∣∣∣∣∣∣

i j k
0 0 1
1 0 0

∣∣∣∣∣∣
= j

therefore, the plane equation is:
y − 1 = 0.

In the third view:
u = j, v = k, P = (1, 1, 0)

n =
∣∣∣∣∣∣

i j k
0 1 0
0 0 1

∣∣∣∣∣∣
= i

therefore, the plane equation is:
x − 1 = 0.

In the fourth view:
u = k, v = −i, P = (1, 0, 1)

n =
∣∣∣∣∣∣

i j k
0 0 1

−1 0 0

∣∣∣∣∣∣
= −j

therefore, the plane equation is:
−y = 0.

In the fifth view:
u = −j, v = i, P = (0, 0, 1)

n =
∣∣∣∣∣∣

i j k
0 −1 0
1 0 0

∣∣∣∣∣∣
= k
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therefore, the plane equation is:
z − 1 = 0.

In the sixth view:
u = i, v = −j, P = (1, 1, 0)

n =
∣∣∣∣∣∣

i j k
1 0 0
0 −1 0

∣∣∣∣∣∣
= −k

therefore, the plane equation is:
−z = 0.

These results are shown in Table9.1.
The LHS of the plane equation returns a value of zero for any point on the plane;

a positive or negative value is returned for points not on the plane. If the point is
in the space partition occupied by the surface normal, a positive value is returned,
otherwise it is negative. Table9.2 illustrates how the LHS expressions of the plane

equations react to five different points. With reference to Fig. 9.7 the point
(
1
2 ,

1
2 ,

1
2

)

is clearly inside the convex volume, and all the expressions are negative. Whereas,
the point (1, 0, 2) is outside the volume and the expression z − 1, returns a positive
value. Consequently, if any expression goes positive, the search can halt and the point
is declared outside.

If a point resides on one of the surfaces the corresponding expression returns a

zero value, as shown with the point
(
1
2 , 1,

1
2

)
. If a point resides on an edge, two

expressions return a zero value, as shown with the point
(
1
2 , 0, 1

)
. Finally, if a point

resides on a vertex, three expressions return a zero value, as shown with the point
(1, 1, 1).

Hopefully, this simple exercise has revealed just how useful vectors are in resolv-
ing a very useful space partitioning technique.

Table 9.1 Summary of vectors and plane equations

Surface u v n P Equation

1 −j k −i (0, 0, 0) −x = 0

2 k i j (0, 1, 1) y − 1 = 0

3 j k i (1, 1, 0) x − 1 = 0

4 k −i j (1, 0, 1) −y = 0

5 −j i k (0, 0, 1) z − 1 = 0

6 i −j −k (1, 1, 0) −z = 0
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Table 9.2 Partition for five points

LHS
expression

(
1
2 , 1

2 , 1
2

)
(1, 0, 2)

(
1
2 , 1, 1

2

) (
1
2 , 0, 1

)
(1, 1, 1)

−x − − − − −
y − 1 − − 0 − 0

x − 1 − 0 − − 0

−y − 0 − 0 −
z − 1 − + − 0 0

−z − − − − −
Result Inside Outside Surface Edge Vertex

9.6 The Angle Between Two Planes

The angle between two planes is readily computed using the dot product of the two
surface normals. For example, given two Cartesian plane equations:

a1x + b1y + c1z = d1
a2x + b2y + c2z = d2.

The normal vectors are

n1 = a1i + b1j + c1k

n2 = a2i + b2j + c2k.

Therefore,
n1 · n2 = ‖n1‖ ‖n2‖ cosα

and

α = cos−1

(
n1 · n2

‖n1‖ ‖n2‖
)

.

For example, Fig. 9.8 shows two planes whose plane equations are given by:

z = 0, and y + z = 1.

Therefore, the two normal vectors are

n1 = k, and n2 = j + k.

Therefore,

α = cos−1

(
k · (j + k)

1 × √
2

)
= cos−1

(
1√
2

)
= 45◦.
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Fig. 9.8 The angle between
two planes

9.7 The Position and Distance of the Nearest Point
on a Plane to a Point

This problem is concerned with the relationship between a point and a plane; in
particular, the problem of finding the position and distance of a point on a plane
that is the nearest to some specific point. For example, Fig. 9.9 shows a plane and
a point P in space. The problem is to find the location and distance of a point on
the plane nearest to P . Hopefully, it is obvious that the nearest point on the plane is
perpendicular to P , which means that the dot product plays some role in the solution.
Let’s examine how vector analysis reveals a solution.

Figure9.9 shows the following points and vectors:

• ax + by + cz = d is the plane’s equation,
• n = ai + bj + ck is the plane’s normal vector,
• P(xp, yp, z p) is a point away from the plane,
• p = xpi + ypj + z pk is P’s position vector,
• Q(x, y, z) is the nearest point on the plane to P ,
• q = x i + yj + zk is Q’s position vector,
• • −→

QP = λn is the distance from the plane to P ,
• λ is a scalar.

Fig. 9.9 The point P and a
plane
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Therefore,

n · q = (ai + bj + ck) · (x i + yj + zk) = ax + by + cz = d. (9.17)

From Fig. 9.9,
q = p − λn. (9.18)

Multiply (9.18) by n using the dot product:

n · q = n · p − λn · n. (9.19)

Substitute (9.17) in (9.19):
d = n · p − λn · n

and

λ = n · p − d

n · n = n · p − d

‖n‖2 .

Q is given by (9.18), and the distance of Q to P is

‖−→
QP‖ = ‖λn‖.

If n is a unit vector, then
λ = n̂ · p − d

and
‖−→
QP‖ = λ.

Let’s test (9.18) with an example.
Figure9.10 shows a plane whose equation is

x + y + z = 2.

Therefore,
n = 1i + 1j + 1k

and
d = 2.

We will find the nearest point on the plane to the origin by making P = (0, 0, 0).
Therefore,

λ = n · p − d

‖n‖2 = (1i + 1j + 1k) · (0i + 0j + 0k) − 2√
3
√
3

= − 2
3
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Fig. 9.10 The point P and a
plane

and

q = p − λn = (0i + 0j + 0k) − ( − 2
3

)
(1i + 1j + 1k) = 2

3 i + 2
3 j + 2

3k.

Therefore, the nearest point to P(0, 0, 0) is
(
2
3 ,

2
3 ,

2
3

)
, and the distance is ‖λn‖ =

2
3

√
3.

Now let’s place P at (2, 2, 2). The nearest point should still be Q, but the distance
is 2

√
3 − 2

3

√
3 = 4

3

√
3.

λ = n · p − d

‖n‖2 = (1i + 1j + 1k) · (2i + 2j + 2k) − 2√
3
√
3

= 4
3

and

q = p − λn = (2i + 2j + 2k) −
(
4
3

)
(1i + 1j + 1k) = 2

3 i + 2
3 j + 2

3k.

Therefore, the nearest point to P(2, 2, 2) is
(
2
3 ,

2
3 ,

2
3

)
, and the distance is ‖λn‖ =

4
3

√
3, as predicted.

9.8 The Reflection of a Point in a Plane

When dealing with mirrors we need to know how to compute the virtual position of
an object’s reflection. Once we know how to compute a single point, most objects
can be processed. Central to the solution of this problem is the fact that the virtual
reflection appears the same distance behind the mirror as the object is in front of



164 9 The Plane

Fig. 9.11 P’s reflection in a
plane

the mirror. Furthermore, a line connecting a real point to its virtual reflection is
orthogonal to the mirror.

Figure9.11 shows the following points and vectors:

• ax + by + cz = d is the plane’s equation,
• n = ai + bj + ck is the plane’s normal vector,
• P(xp, yp, z p) is the point to be reflected,
• p = xpi + ypj + z pk is P’s position vector,
• Q(xq , yq , zq) is the reflection of P ,
• q = xq i + yq j + zqk is Q’s position vector,

• T (x, y, z) is a point on the plane such that
−→
T P is parallel to n,

• t = x i + yj + zk is T ’s position vector,
• −→

QT = −→
T P = λn is the distance from the plane to P ,

• λ is a scalar.

Therefore,
n · t = ax + by + cz = d. (9.20)

From Fig. 9.11 we see that
p = t + λn. (9.21)

Multiply (9.21) by n using the dot product:

n · p = n · t + λn · n. (9.22)

Substitute (9.20) in (9.22)
n · p = d + λn · n. (9.23)

Rearrange (9.23):

λ = n · p − d

n · n = n · p − d

‖n‖2 . (9.24)

From Fig. 9.11 we see that
q = p − 2λn. (9.25)
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Fig. 9.12 P’s reflection in a
plane

Therefore,

q = p − 2

(
n · p − d

‖n‖2
)
n. (9.26)

If n is a unit vector, then
q = p − 2(n̂ · p − d)n̂. (9.27)

Let’s explore two scenarios for these equations: one with a point behind the plane
and one in front, which will demonstrate that planes possess two reflecting sides.

Figure9.12 shows a plane with the following points and vectors:

• x + y + z = 2 is the plane’s equation,
• n = 1i + 1j + 1k is the plane’s normal vector,
• P(0, 0, 0) is the point to be reflected,
• p = 0i + 0j + 0k is P’s position vector,
• Q(xq , yq , zq) is the reflection of P ,
• q = xq i + yq j + zqk is Q’s position vector.

Using (9.26):

q = (0i + 0j + 0k) − 2

(
(1i + 1j + 1k) · (0i + 0j + 0k) − 2√

3
√
3

)
(1i + 1j + 1k)

= −2
(

−2
3

)
(1i + 1j + 1k)

= 4
3 i + 4

3 j + 4
3k.

If we now place P at
(
4
3 i + 4

3 j + 4
3k

)
, its reflection should be at the origin.
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Using (9.26):

q =
(
4
3 i + 4

3 j + 4
3k

)
− 2

( (1i + 1j + 1k) ·
(
4
3 i + 4

3 j + 4
3k

)
− 2

√
3
√
3

)
(1i + 1j + 1k)

=
(
4
3 i + 4

3 j + 4
3k

)
− 2

(
2
3

)
(1i + 1j + 1k)

=
(
4
3 i + 4

3 j + 4
3k

)
−

(
4
3 i + 4

3 j + 4
3k

)

= 0i + 0j + 0k

making the reflection at the origin.

9.9 A Plane Between Two Points

Given two points P1 and P2, we can connect a straight line between them, and locate
a plane orthogonal to this line and a specified distance from P1. Let’s examine how
such a plane is identified.

Figure9.13 shows two points P1 and P2 joined by a connecting line, with the
following points and vectors:

• ax + by + cz = d is the plane’s equation,
• n = ai + bj + ck is the plane’s normal,
• P1(x1, y1, z1) is one of the points,
• p1 = x1i + y1j + z1k is P1’s position vector,
• P2(x2, y2, z2) is one of the points,
• p2 = x2i + y2j + z2k is P2’s position vector,
• Q(x, y, z) is a point on the plane located λn from P1,
• q = x i + yj + zk is Q’s position vector,
• −−→

P1Q = λn ,
• λ is a scalar.

The plane’s normal vector is
n = p2 − p1. (9.28)

Let Q be a point on
−−→
P1P2, such that

q = p1 + λn. (9.29)

Therefore,
n · q = d. (9.30)
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Fig. 9.13 A plane between
two points

Fig. 9.14 A plane between
P1 and P2

Substitute (9.29) in (9.30):

d = n · (p1 + λn) = n · p1 + λ‖n‖2. (9.31)

Finally:
a = x2 − x1, b = y2 − y1, c = z2 − z1.

Let’s test the above equations with the scenario shown in Fig. 9.14, with the following
conditions:

• p1 = 0i + 0j + 2k is P1’s position vector,
• P2(0, 4, 0) is one of the points,
• p2 = 0i + 4j + 0k is P2’s position vector,
• ax + by + cz = d is the plane’s equation,
• n = ai + bj + ck is the plane’s normal,
• Q(x, y, z) is a point on the plane located λn from P1,
• q = x i + yj + zk is Q’s position vector.

Let’s find the plane equations for λ = 0, 0.5, 1.
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Therefore,

n = (0i + 4j − 2k)

‖n‖2 = 20

a = x2 − x1 = 0, b = y2 − y1 = 4, c = z2 − z1 = −2.

With λ = 0, we have:

d = (0i + 4j − 2k) · (0i + 0j + 2k) + 0 × 20 = −4

therefore, the plane equation is

4y − 2z = −4.

With λ = 0.5, we have:

d = (0i + 4j − 2k) · (0i + 0j + 2k) + 0.5 × 20 = 6

therefore, the plane equation is
4y − 2z = 6.

With λ = 1, we have:

d = (0i + 4j − 2k) · (0i + 0j + 2k) + 1 × 20 = 16

therefore, the plane equation is

4y − 2z = 16.

9.10 Summary

In this chapter we have shown a vectorial basis for the plane equation, and explored
a variety of geometric problems involving a plane. Hopefully, this should enable the
reader to solve similar problems with vectors.



Chapter 10
Intersections

10.1 Introduction

In this chapter we explore how vector-based techniques are used to resolve a variety
of problems that arise in computer graphics such as proximity testing, modeling,
collision detection, ray casting and ray tracing.

In some cases, as we shall see, we can work directly with vector-based equations
without incorporating extra transformations. For example, to compute the intersec-
tion of two lines we can work directly with the line equations. But say we wish to
compute the intersection of a cylinder with a line? Then, it is highly likely that the
cylinder will have to be scaled, rotated and translated away from the origin. In which
case, the cylinder’s equations have to be transformed before performing the inter-
section. Unfortunately, the resulting solution is neither simple nor elegant. However,
it just so happens that if we transform the line instead such that the relative orienta-
tion between the line and cylinder is preserved, the geometric analysis remains both
simple and elegant.

For instance, let’s assume that an object O is modeled such that its center is at the
origin, and is then subjected to three transforms: S (scale),R (rotate) andT (translate)
to produce the transformed object O′:

O′ = TRSO.

If we attempt to compute an intersection with O′ using a line described by

p = t + λv

the algebraic analysis becomes rather convoluted. However, if we leave the object
where it is and transform the line instead, all that we have to make sure is that the
line is transformed such that the relative orientation between the line and the object
is preserved. Basically, this requires finding the inverse transforms of T, R and S:
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T−1, R−1, S−1

and applying them to the line. But before so doing, we must remember that vectors
are rather sensitive to transforms.

No attempt is made in the following sections to develop fast algorithms. The
underlying goal is to identify strategies and to reveal patterns in solutions. Let’s
begin this survey with the simple case of two intersecting lines in R

2.

10.2 Two Intersecting Lines in R
2

10.2.1 Parametric Line Equations

Given two parametric lines in R
2, there are two possible orientation scenarios: they

intersect, or they are parallel. We begin by assuming that they intersect as shown in
Fig. 10.1, with the following points and vectors:

• R(xr , yr ) is a point on the first line,
• r = xr i + yr j is R’s position vector,
• a = xa i + yaj is the first line’s direction vector,
• S(xs, ys) is a point on the second line,
• s = xs i + ysj is S’s position vector,
• b = xbi + ybj is the second line’s direction vector,
• P(x, y) is the point of intersection,
• p = x i + yj is P’s position vector,
• λa = −→

RP ,

• εb = −→
SP .

We begin by defining p for the two lines:

p = r + λa

p = s + εb.

Fig. 10.1 Two intersecting
parametric lines
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Therefore, for an intersection:

r + λa = s + εb. (10.1)

To eliminate ε in (10.1), multiply by b⊥ using the dot product:

b⊥ · r + λb⊥ · a = b⊥ · s + εb⊥ · b.

But b⊥ · b = 0, therefore,

b⊥ · r + λb⊥ · a = b⊥ · s. (10.2)

Rearrange (10.2),

λ = b⊥ · (s − r)
b⊥ · a (10.3)

where,
b⊥ = −ybi + xbj. (10.4)

Substitute (10.4) in (10.3):

λ = (−ybi + xbj) · ((xs − xr )i + (ys − yr )j)
(−ybi + xbj) · (xa i + yaj)

= xb(ys − yr ) − yb(xs − xr )

xb ya − xa yb
. (10.5)

(10.5) can be written using determinants:

λ =

∣
∣
∣
∣

xb yb
xs − xr ys − yr

∣
∣
∣
∣

∣
∣
∣
∣

xb yb
xa ya

∣
∣
∣
∣

. (10.6)

To eliminate λ from (10.1), multiply by a⊥ using the dot product:

a⊥ · r + λa⊥ · a = a⊥ · s + εa⊥ · b.

But a⊥ · a = 0, therefore,

a⊥ · r = a⊥ · s + εa⊥ · b. (10.7)

Rearrange (10.7),

ε = a⊥ · (r − s)
a⊥ · b (10.8)
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where,
a⊥ = −ya i + xaj. (10.9)

Substitute (10.9) in (10.8):

ε = (−ya i + xaj) · ((xr − xs)i + (yr − ys)j)
(−ya i + xaj) · (xbi + ybj)

= xa(ys − yr ) − ya(xs − xr )

xb ya − xa yb
. (10.10)

(10.10) can be written using determinants:

ε =

∣
∣
∣
∣

xa ya
xs − xr ys − yr

∣
∣
∣
∣

∣
∣
∣
∣

xb yb
xa ya

∣
∣
∣
∣

. (10.11)

The coordinates of P are:

x = xr + λxa, y = yr + λya

or
x = xs + εxb, y = ys + εyb.

The lines are parallel if
∣
∣
∣
∣

xb yb
xa ya

∣
∣
∣
∣
= 0.

Let’s test the above equationswith the example shown in Fig. 10.2, with the following
points and vectors:

• R(0, 0) is a point on the first line,
• r = 0i + 0j is R’s position vector,
• a = 1i + 1j is the first line’s direction vector,
• S(0, 1) is a point on the second line,
• s = 0i + 1j is S’s position vector,
• b = 1i − 1j is the second line’s direction vector,
• P(x, y) is the point of intersection,
• p = x i + yj is P’s position vector,
• λa = −→

RP .
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Fig. 10.2 Two intersecting
parametric lines

Therefore, using (10.6)

λ =

∣
∣
∣
∣

xb yb
xs − xr ys − yr

∣
∣
∣
∣

∣
∣
∣
∣

xb yb
xa ya

∣
∣
∣
∣

=

∣
∣
∣
∣

1 −1
0 1

∣
∣
∣
∣

∣
∣
∣
∣

1 −1
1 1

∣
∣
∣
∣

= 1

1 + 1
= 1

2

and,
x = 0 + 1

2 × 1 = 1
2 , y = 0 + 1

2 × 1 = 1
2 ,

which is correct.

10.2.2 Cartesian Line Equations

In Chap. 2 we investigated the solution to two linear equations in R
2, which we

now use to calculate the possible intersection of two lines. This technique does not
require the use of vector analysis, but is included as a comparison. Starting with two
Cartesian line equations:

a1x + b1y = d1
a2x + b2y = d2,

which is expressed using matrices as

[

a1 b1
a2 b2

] [

x
y

]

=
[

d1
d2

]

. (10.12)

Define A in (10.12):

A =
[

a1 b1
a2 b2

]

.
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Therefore,

A−1 = 1

det A

[

b2 −b1
−a2 a1

]

where,

det A =
∣
∣
∣
∣

a1 b1
a2 b2

∣
∣
∣
∣
= a1b2 − a2b1.

Multiply (10.12) by A−1:

1

det A

[

b2 −b1
−a2 a1

] [

a1 b1
a2 b2

] [

x
y

]

= 1

det A

[

b2 −b1
−a2 a1

] [

d1
d2

]

[

x
y

]

= 1

det A

[

b2 −b1
−a2 a1

] [

d1
d2

]

. (10.13)

(10.13) provides the coordinates of an intersection, so long as det A �= 0.
Let’s test (10.13) using the two lines shown in Fig. 10.3. The two line equations

are:

x + y = 1

x − y = 0

which in matrix notation are:
[

1 1
1 −1

] [

x
y

]

=
[

1
0

]

. (10.14)

Let

A =
[

1 1
1 −1

]

.

Therefore,

det A =
∣
∣
∣
∣

1 1
1 −1

∣
∣
∣
∣
= −2.

Next,

A−1 = − 1
2

[−1 −1
−1 1

]

.

Therefore,
[

x
y

]

= − 1
2

[−1 −1
−1 1

] [

1
0

]

=
[ 1

2
1
2

]

,

which is correct.
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Fig. 10.3 Two intersecting
Cartesian lines

10.3 A Line Intersecting a Circle in R
2

Now let’s consider the case of a line intersecting a circle in R
2, for which there

are three possible scenarios: the line intersects the circle at two points; the line is
tangential to the circle at a single point; or the line does not intersect the circle at all.

Figure 10.4 shows a line intersecting a circlewith the following points and vectors:

• P(xp, yp) is a point on the circle,
• p = xpi + ypj is P’s position vector,
• T (xt , yt ) is a point on the line,
• t = xt i + yt j is T ’s position vector,
• v̂ = xvi + yvj is the line’s unit direction vector,

• λv̂ = −→
T P ,

• r is the circle’s radius.

The algebraic equation of a circle centered at the origin is

x2p + y2p = r2. (10.15)

Fig. 10.4 A line intersecting
a circle
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But (10.15) can also be expressed in vector form as

p · p = r2 (10.16)

where, from Fig. 10.4, we see that the equation for a line is

p = t + λv̂. (10.17)

Therefore, for an intersection:

(t + λv̂) · (t + λv̂) = r2

t · t + λ2v̂ · t + λ2v̂ · v̂ = r2. (10.18)

But v̂ · v̂ = 1, therefore (10.18) becomes:

λ2 + λ2v̂ · t + ‖t‖2 − r2 = 0. (10.19)

(10.19) is a quadratic in λ, and solved using

λ = −B ± √
B2 − 4AC

2A
(10.20)

where,
A = 1, B = 2t · v̂, C = ‖t‖2 − r2.

Substitute A, B,C in (10.20):

λ = −2t · v̂ ± √

4(t · v̂)2 − 4(‖t‖2 − r2)

2

= −t · v̂ ±
√

(t · v̂)2 − (‖t‖2 − r2)

= −(xt xv + yt yv) ±
√

(xt xv + yt yv)(xt xv + yt yv) − x2t − y2t + r2

= −(xt xv + yt yv) ±
√

x2t x2v + 2xt xv yt yv + y2t y2v − x2t − y2t + r2

= −(xt xv + yt yv) ±
√

x2t (x2v − 1) + 2xt xv yt yv + y2t (y2v − 1) + r2.
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But x2v − 1 = −y2v , and y2v − 1 = −x2v :

λ = −(xt xv + yt yv) ±
√

−x2t y2v + 2xt yt xv yv − y2t x2v + r2

= −(xt xv + yt yv) ±
√

r2 − (

x2t y2v − 2xt yt xv yv + y2t x2v
)

= −(xt xv + yt yv) ±
√

r2 − (

xt yv − yt xv

)2

λ = −(xt xv + yt yv) ±
√

r2 −
∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

. (10.21)

The value of the discriminant of (10.21) determines whether the line misses, touches
or intersects the circle:
Miss condition:

r2 −
∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

< 0.

Touch condition:

r2 −
∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

= 0.

Intersect condition:

r2 −
∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

> 0.

Let’s test these conditions using the three lines and circle shown in Fig. 10.5.
Figure 10.5 shows three lines that miss, touch and intersect a circle with the

following points and vectors:

• r = 1 is the circle’s radius,
• L1 is a line that misses the circle,
• v̂1 = 0i + 1j is L1’s unit direction vector,
• T1(2, 0) is a point on L1,

Fig. 10.5 Three lines and a
circle
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• t1 = 2i + 0j is T1’s position vector,
• L2 is a line that touches the circle,
• v̂2 = 0i + 1j is L2’s unit direction vector,
• T2(0, 1) is a point on L2,
• t2 = 0i + 1j is T2’s position vector,
• L3 is a line that intersects the circle,
• v̂3 = 1√

2
i + 1√

2
j is L3’s unit direction vector,

• T3(0, 0) is a point on L3,
• t3 = 0i + 0j is T3’s position vector.

From Fig. 10.5, L1 misses the circle, therefore,

r2 −
∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

= 12 −
∣
∣
∣
∣

2 0
0 1

∣
∣
∣
∣

2

= −3.

From Fig. 10.5, L2 touches the circle, therefore,

r2 −
∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

= 12 −
∣
∣
∣
∣

0 1
1 0

∣
∣
∣
∣

2

= 0.

Therefore,
λ = −(xt xv + yt yv) = −(0 × 1 + 1 × 0) = 0

and
p = t2 + λv̂2 = (0i + 1j) + 0(1i + 0j) = 0i + 1j.

L2 touches the circle at (0, 1).

From Fig. 10.5, L3 intersects the circle, therefore,

r2 −
∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

= 12 −
∣
∣
∣
∣

0 0
1√
2

1√
2

∣
∣
∣
∣

2

= 1.

Therefore,

λ = −(xt xv + yt yv) ± 1 = −
(

0 × 1√
2

+ 0 × 1√
2

)

± 1 = ±1.

With λ = +1:

p = t3 + λv̂3

= (0i + 0j) + 1
(

1√
2
i + 1√

2
j
)

(

xp1, yp1
) =

(
1√
2
, 1√

2

)

.
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With λ = −1:

p = t3 + λv̂3

= (0i + 0j) − 1
(

1√
2
i + 1√

2
j
)

(

xp2, yp2
) =

(

− 1√
2
,− 1√

2

)

.

L3 intersects the circle at
(

1√
2
, 1√

2

)

, and
(

− 1√
2
,− 1√

2

)

.

10.4 A Line Intersecting an Ellipse in R
2

In this section we develop the previous idea of the line-circle intersection with a
line-ellipse intersection. We begin with the equation of an ellipse centered at the
origin

x2p
a2

+ y2p
b2

= 1 (10.22)

where a and b are the x- and y-radius, respectively.
Figure 10.6 shows a line intersecting an ellipse with the following points and

vectors:

• P(xp, yp) is a point on the ellipse,
• p = xpi + ypj is P’s position vector,
• T (xt , yt ) is a point on the line,
• t = xt i + yt j is T ’s position vector,
• v̂ = xvi + yvj is the line’s unit direction vector,

• λv̂ = −→
T P ,

• a is the ellipse’s x-radius,
• b is the ellipse’s y-radius.

Fig. 10.6 A line intersecting
an ellipse
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From Fig. 10.6 we see that:
p = t + λv̂ (10.23)

where,

xp = xt + λxv (10.24)

yp = yt + λyv. (10.25)

Next, we substitute (10.24) and (10.25) in (10.22):

(xt + λxv)

a2
+ (yt + λyv)

a2
= 1

b2(x2t + 2λxt xv + λ2x2v ) + a2(y2t + 2λyt yv + λ2y2v ) = 1

λ2(b2x2v + a2y2v ) + λ(2b2xt xv + 2a2yt yv) + a2y2t + b2x2t − a2b2 = 0. (10.26)

(10.26) is a quadratic in λ, and solved using:

λ = −B ± √
B2 − 4AC

2A
(10.27)

where,

A = b2x2v + a2y2v , B = 2b2xt xv + 2a2yt yv, C = a2y2t + b2x2t − a2b2.

Substitute A, B,C in (10.27):

λ =
−(b2xt xv + a2yt yv) ±

√

(b2xt xv + a2yt yv)2 − (b2x2v + a2y2v )(a2y2t + b2x2t − a2b2)

b2x2v + a2y2v

=
−

(
xt xv

a2
+ yt yv

b2

)

±

√
√
√
√
√ x2v

a2
+ y2v

b2
−

∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

a2b2

x2v
a2

+ y2v
b2

. (10.28)

Once again, the value of the discriminant reflects whether the line misses, touches
or intersects the ellipse:

Miss condition:

x2v
a2

+ y2v
b2

−

∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

a2b2
< 0.
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Touch condition:

x2v
a2

+ y2v
b2

−

∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

a2b2
= 0.

Intersect condition:

x2v
a2

+ y2v
b2

−

∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

a2b2
> 0.

We can check the validity of (10.28) by setting a = b = r , which reveals:

λ =
−

(
xt xv

r2
+ yt yv

r2

)

±

√
√
√
√
√ x2v

r2
+ y2v

r2
−

∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

r2r2

x2v
r2

+ y2v
r2

= −(xt xv + yt yv) ±
√

r2 −
∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

(10.29)

and λ in (10.29) is the same as λ in (10.25), for the circle.
Now let’s test (10.28) with three lines that miss, touch and intersect an ellipse.
Figure 10.7 shows three lines that miss, touch and intersect an ellipse with the

following points and vectors:

• a = 1 is the ellipse’s horizontal radius,
• b = 1 is the ellipse’s vertical radius,
• L1 is a line that misses the ellipse,
• v̂1 = 0i + 1j is L1’s unit direction vector,
• T1(2, 0) is a point on L1,
• t1 = 2i + 0j is T1’s position vector,

Fig. 10.7 Three lines and an
ellipse
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• L2 is a line that touches the ellipse,
• v̂2 = 0i + 1j is L2’s unit direction vector,
• T2(0, 1

2 ) is a point on L2,
• t2 = 0i + 1

2 j is T2’s position vector,• L3 is a line that intersects the ellipse,
• v̂3 = 1√

2
i + 1√

2
j is L3’s unit direction vector,

• T3(0, 0) is a point on L3,
• t3 = 0i + 0j is T3’s position vector.

From Fig. 10.7, L1 misses the ellipse, therefore,

x2v
a2

+ y2v
b2

−

∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

a2b2
= 02

12
+ 12

1
2
2 −

∣
∣
∣
∣

0 1
2 0

∣
∣
∣
∣

2

12 1
2
2 = 4 − 16 = −12.

From Fig. 10.7, L2 touches the ellipse, therefore,

x2v
a2

+ y2v
b2

−

∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

a2b2
= 12

12
+ 02

1
2
2 −

∣
∣
∣
∣

0 1
2

1 0

∣
∣
∣
∣

2

12 1
2
2 = 1 − 1 = 0.

Therefore,

λ =
−

(
xt xv

a2
+ yt yv

b2

)

x2v
a2

+ y2v
b2

=
−

(
0 × 1

12
+

1
2 × 0
1
2
2

)

12

12
+ 02

1
2
2

= 0

and

p = t + λv̂2
= t + 0v̂2
= t

(xp, yp) =
(

0, 1
2

)

.

L2 touches the ellipse at
(

0, 1
2

)

.

From Fig. 10.7, L3 intersects the ellipse, therefore,

x2v
a2

+ y2v
b2

−

∣
∣
∣
∣

xt yt
xv yv

∣
∣
∣
∣

2

a2b2
=

1√
2

2

12
+

1√
2

2

1
2
2 −

∣
∣
∣
∣

0 0
1√
2

1√
2

∣
∣
∣
∣

2

12 12
2 = 1

2 + 2 = 2.5.
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Therefore,

λ =
−

(0 × 1√
2

12
+

0 × 1√
2

1
2
2

)

± √
2.5

1√
2

2

12
+

1√
2

2

1
2
2

=
√
2.5

1
2 + 2

= ±
√
2.5

2.5

and

p = t ± λv̂3
= ±λv̂3

= ±
√
2.5

2.5

(
1√
2
i + 1√

2
j
)

≈ ±(0.447i + 0.447j)

(xp, yp) ≈ ±(0.447, 0.447).

L3 intersects the ellipse at ≈ (0.447, 0.447) and ≈ (−0.447,−0.447).

10.5 The Shortest Distance Between Two Skew Lines in R
3

Having seen how to cope with two-dimensional lines, circles and ellipses, now let’s
explore the relationship between two lines in R3.

We already know that lines in R2 either intersect or are parallel with one another.
However, inR3 a third option is possible—one where the lines approach one another
then recede, allowing a shortest distance to be calculated. Such lines are called
skew lines, and the shortest distance between them will be the length of a mutual
perpendicular to both lines.

Figure 10.8 shows two skew lines with the following points and vectors:

• L1 is the first skew line,
• P1(x1, y1, z1) is a point on L1 at the closest point,
• p1 = x1i + y1j + z1k is P1’s position vector,
• T1(xt1, yt1, zt1) is a point on L1,
• t1 = xt1i + yt1j + zt1k is T1’s position vector,
• v1 = xv1i + yv1j + zv1k is L1’s direction vector,

• λv1 = −−→
T1P1,

• L2 is the second skew line,
• P2(x2, y2, z2) is a point on L2 at the closest point,
• p2 = x2i + y2j + z2k is P2’s position vector,
• T2(xt2, yt2, zt2) is a point on L2,
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Fig. 10.8 Two skew lines

• t2 = xt2i + yt2j + zt2k is T2’s position vector,
• v2 = xv2i + yv2j + zv2k is L2’s direction vector,

• εv2 = −−→
T2P2,

• û is a unit vector parallel to p2 − p1.

In Fig. 10.8, the shortest distance d between the skew lines is the magnitude of the
vector

−−→
P1P2, which is perpendicular to both lines. The equations for the two lines

are

p1 = t1 + λv1
p2 = t2 + εv2.

Let û be the unit vector parallel to
−−→
P1P2, then

û = v1 × v2
‖v1 × v2‖ . (10.30)

Figure 10.9 shows a right-angled triangle formed from û and t2 − t1. Therefore,

d = ‖t2 − t1‖ cos θ

= ‖û‖ ‖t2 − t1‖ cos θ

= |û · (t2 − t1)|. (10.31)

Substitute (10.30) in (10.31), we have:

d =
∣
∣
∣
∣

(v1 × v2) · (t2 − t1)
‖v1 × v2‖

∣
∣
∣
∣
. (10.32)

If d = 0, then the lines intersect.
Let’s test (10.32) with a simple example as shown in Fig. 10.10. By inspection,

the shortest line between L1 and L2, is a perpendicular to L1 from the origin, which
is

√
2
2 in length.
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Fig. 10.9 A right-angled
triangle

Fig. 10.10 Two skew lines

The two lines have the following definitions:

T1 = (1, 0, 0)

t1 = 1i + 0j + 0k

v1 = −1i + 1j + 0k

T2 = (0, 0, 0)

t2 = 0i + 0j + 0k

v2 = 0i + 0j + 1k.

Calculating v1 × v2 and ‖v1 × v2‖:

v1 × v2 =
∣
∣
∣
∣
∣
∣

i j k
−1 1 0
0 0 1

∣
∣
∣
∣
∣
∣

= 1i + 1j + 0k

‖v1 × v2‖ =
√

12 + 12 + 02 = √
2.
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Therefore,

d =
∣
∣
∣
∣

(v1 × v2) · (t2 − t1)
‖v1 × v2‖

∣
∣
∣
∣
=

∣
∣
∣
∣

(1i + 1j + 0k) · (−1i + 0j + 0k)√
2

∣
∣
∣
∣

=
∣
∣
∣
∣

−1√
2

∣
∣
∣
∣
=

√
2

2
,

which confirms our prediction.

10.6 Two Intersecting Lines in R
3

Aswehave seen in the previous section, two straight lines inR3 can cross one another,
but not necessarily intersect. Therefore, in order to calculate a possible intersection,
we have to ensure two things:

1. The two lines are not parallel.
2. The two lines touch.

We begin by defining the two lines as shown in Fig. 10.11, with the following
points and vectors:

• L1 is the first intersecting line,
• P1(x1, y1, z1) is a point on L1,
• p1 = x1i + y1j + z1k is P1’s position vector,
• T1(2, 0, 1) is a point on L1,
• t1 = 2i + 0j + 1k is T1’s position vector,
• v1 = −2i + 2j + 1k is L1’s direction vector,

• λv1 = −−→
T1P1,

• L2 is the second intersecting line,
• P2(x2, y2, z2) is a point on L2,
• p2 = x2i + y2j + z2k is P2’s position vector,
• T2(0, 2, 1) is a point on L2,

Fig. 10.11 Two intersecting
lines
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• t2 = 0i + 2j + 1k is T2’s position vector,
• v2 = 2i − 2j + 1k is L2’s direction vector,

• εv2 = −−→
T2P2.

Step 1: If v1 × v2 �= 0, the lines are parallel and do not intersect.
Step 2: The distance d between two skew lines is given by

d =
∣
∣
∣
∣

(v1 × v2) · (t2 − t1)
‖v1 × v2‖

∣
∣
∣
∣
.

If (v1 × v2) · (t2 − t1) �= 0, the lines do not intersect.

Step 3: Equate the two line equations:

t1 + λv1 = t2 + εv2

(xt1i + yt1j + zt1k) + λ(xv1i + yv1j + zv1k) = (xt2i + yt2j + zt2k)

+ ε(xv2i + yv2j + zvk)

(xt1 − xt2 + λxv1 − εxv2)i + (yt1 − yt2 + λyv1 − εyv2)j + (zt1
− zt2 + λzv1 − εzv2)k = 0.

For this vector to be null, its components must vanish. Therefore, we have:

λxv1 − εxv2 = xt2 − xt1 (10.33)

λyv1 − εyv2 = yt2 − yt1 (10.34)

λzv1 − εzv2 = zt2 − zt1 (10.35)

which provide values for λ and ε which, when substituted in (10.36), reveal the
intersection point. For example, the lines in Fig. 10.11 have equations:

p1 = t1 + λv1, and p2 = t2 + εv2 (10.36)

where,
t1 = 2i + 0j + 1k, and t2 = 0i + 2j + 1k

and
v1 = −2i + 2j + 1k, and v2 = 2i − 2j + 1k.

The first step is to discover whether the lines are parallel, i.e. if v1 × v2 = 0.
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We calculate v1 × v2:

v1 × v2 =
∣
∣
∣
∣
∣
∣

i j k
−2 2 1
2 −2 1

∣
∣
∣
∣
∣
∣

= 4i + 4j + 0k.

But as v1 × v2 �= 0 the lines are not parallel.
The second step is to discover if the distance d between the two lines is zero:

d =
∣
∣
∣
∣

(v1 × v2) · (t2 − t1)
‖v1 × v2‖

∣
∣
∣
∣

=
∣
∣
∣
∣

(4i + 4j + 0k) · ((0i + 2j + 1k) − (2i + 0j + 1k))

‖4i + 4j + 0k‖
∣
∣
∣
∣

=
∣
∣
∣
∣

(4i + 4j + 0k) · (−2i + 2j + 0k)

‖√32‖
∣
∣
∣
∣

=
∣
∣
∣
∣

−8 + 8 + 0

‖√32‖
∣
∣
∣
∣
= 0.

Therefore, the lines do intersect.
The third step is to find the point of intersection using (10.33), (10.34) and (10.35):

−2λ − 2ε = −2

2λ + 2ε = 2

λ − ε = 0

and

λ + ε = 1

λ + ε = 1

λ − ε = 0.

Therefore,
λ = 1

2 , and ε = 1
2 .

Substituting λ and ε in (10.36):

p1 = (2i + 0j + 1k) + 1
2 (−2i + 2j + 1k) = 1i + 1j + 3

2k.

Double checking:

p2 = (0i + 2j + 1k) + 1
2 (2i − 2j + 1k) = 1i + 1j + 3

2k.

The point of intersection is (1, 1, 11
2 ) , which is correct.



10.7 A Line Intersecting a Plane 189

10.7 A Line Intersecting a Plane

There are two scenarios for a line and plane: they either intersect or they are parallel,
and we must be able to detect both possibilities. The plane could be defined either
using a plane equation or using two vectors, and as the former is the most probable
format let’s proceed with this.

We define the plane equation using the Cartesian form:

ax + by + cz = d

where the normal vector n is given by

n = ai + bj + ck.

We identify a point P(x, y, z) on the plane using a position vector p = x i + yj + zk.
And as we have seen in previous chapters, we can state:

n · p = d (10.37)

which reminds us that if n is a unit vector, the projection of p on n equals the
perpendicular distance d from the origin to the plane.

Figure 10.12 shows the scenario described above with the following points and
vectors:

• P(x, y, z) is a point on the plane,
• p = x i + yj + zk is P’s position vector,
• n = ai + bj + ck is the plane’s normal vector,
• T (xt , yt , zt ) is a point on the line,
• t = xt i + yt j + ztk is T ’s position vector,
• v = xvi + yvj + zvk is the line’s direction vector,
• p = t + λv is the equation of the line.

The line and plane equations can be satisfied for some value of λ, which can be
found by substituting p into (10.37):

Fig. 10.12 A line
intersecting a plane
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Fig. 10.13 A line
intersecting a plane

n · (t + λv) = d

n · t + λn · v = d

λ = d − n · t
n · v .

However, if the line is perpendicular to the planes normal, n · v = 0, and λ will
be undefined. Furthermore, if both n and v are unit vectors, then

λ = d − n̂ · t.

Finally, the position vector for the point of intersection is given by

p = t + λv.

To test the technique, consider the scenario shown in Fig. 10.13, with the following
points and vectors:

• P(x, y, z) is a point on the plane,
• p = x i + yj + zk is P’s position vector,
• x = 10 is the plane’s equation,
• n = 1i + 0j + 0k is the plane’s normal vector,
• T (0, 0, 10) is a point on the line,
• t = 0i + 0j + 10k is T ’s position vector,
• v = 1i + 1j + 1k is the line’s direction vector.

The plane equation is
x = 10

and the line equation is
p = t + λv.
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Therefore,

λ = d − n · t
n · v

= 10 − (1i + 0j + 0k) · (0i + 0j + 10k)

(1i + 0j + 0k) · (1i + 1j + 1k)

= 10 − 0

1
= 10.

The point of intersection is given by:

p = t + λv

= (0i + 0j + 10k) + 10(1i + 1j + 1k)

= 10i + 10j + 20k

P = (10, 10, 20),

which is correct.

10.8 A Line Intersecting a Sphere

The line-sphere intersection problem is central to ray tracing and is worth investi-
gating. However, before we start exploring the associated geometry, let’s pause and
remember the case of the line-circle intersection problem in Sect. 10.3.

Figure 10.4 shows a line intersecting a circle, but Fig. 10.14 is a similar diagram,
but with a z-axis, and illustrates a line intersecting a sphere. Therefore, surely, the
same vector analysis applies, apart from the fact that the vectors are now inR3 rather
than R

2?

Fig. 10.14 A line
intersecting a sphere
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The algebraic equation of a sphere centered at the origin is

x2p + y2p + z2p = r2. (10.38)

But (10.38) can also be expressed in vector form as

p · p = r2 (10.39)

where, from Fig. 10.14, we see that the equation for a line is

p = t + λv̂. (10.40)

Therefore, for an intersection:

(t + λv̂) · (t + λv̂) = r2

t · t + λ2v̂ · t + λ2v̂ · v̂ = r2. (10.41)

But v̂ · v̂ = 1, therefore (10.41) becomes:

λ2 + λ2v̂ · t + ‖t‖2 − r2 = 0. (10.42)

(10.42) is a quadratic in λ, and solved using

λ = −B ± √
B2 − 4AC

2A
(10.43)

where,
A = 1, B = 2t · v̂, C = ‖t‖2 − r2.

Substitute A, B,C in (10.43):

λ = −2t · v̂ ± √

4(t · v̂)2 − 4(‖t‖2 − r2)

2

= −t · v̂ ±
√

(t · v̂)2 − ‖t‖2 + r2.

Simplifying the discriminant:
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(t · v̂)2 − ‖t‖2 + r2 = (xt xv + yt yv + zt zv)(xt xv + yt yv + zt zv)

− x2t − y2t − z2t + r2 = r2 + x2t x
2
v + xt xv yt yv

+ xt xvzt zv + y2t y
2
v + xt xv yt yv + yt yvzt zv

+ z2t z
2
v + xt xvzt zv + yt yvzt zv − x2t − y2t − z2t

= r2 +
(

x2t
(

x2v − 1
)

+ y2t
(

y2v − 1
)

+ z2t
(

z2v − 1
)

+ 2xt xv yt yv + 2xt xvzt zv + 2yt yvzt zv

)

.

But x2v − 1 = −
(

y2v + z2v
)

, y2v − 1 = −
(

z2v + x2v
)

, z2v − 1 = −
(

x2v + y2v
)

:

(t · v̂)2 − ‖t‖2 + r2 = r2 −
(

x2t
(

y2v + z2v
)

+ y2t
(

z2v + x2v
)

+ z2t
(

x2v + y2v
)

− 2xt xv yt yv − 2xt xvzt zv − 2yt yvzt zv

)

= r2 −
(

x2t y
2
v + x2t z

2
v + y2t z

2
v + x2v y

2
t + x2v z

2
t + y2v z

2
t

− 2xt xv yt yv − 2xt xvzt zv − 2yt yvzt zv

)

= r2 −
(

(xv yt − xt yv)
2 + (yvzt − yt zv)

2 + (zvxt − zt xv)
2
)

= r2 −
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

yv zv

yt zt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

zv xv

zt xt

∣
∣
∣
∣

2

.

Therefore,

λ = −(xt xv + yt yv + zt zv) ±
√

r2 −
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

yv zv

yt zt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

zv xv

zt xt

∣
∣
∣
∣

2

. (10.44)

The value of the discriminant of (10.44) determines whether the line misses, touches
or intersects the circle:
Miss condition:

r2 −
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

yv zv

yt zt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

zv xv

zt xt

∣
∣
∣
∣

2

< 0.

Touch condition:

r2 −
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

yv zv

yt zt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

zv xv

zt xt

∣
∣
∣
∣

2

= 0.

Intersect condition:

r2 −
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

yv zv

yt zt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

zv xv

zt xt

∣
∣
∣
∣

2

> 0.
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Fig. 10.15 Three lines and a
sphere

Let’s test the above formulae with the unit-radius sphere shown in Fig. 10.15,
with the following points and vectors:

• r = 1 is the sphere’s radius,
• L1 is a line that misses the sphere,
• v̂1 = 0i + 0j + 1k is L1’s unit direction vector,
• T1(0, 2, 0) is a point on L1,
• t1 = 0i + 2j + 0k is T1’s position vector,
• L2 is a line that touches the sphere,
• v̂2 = 0i + 1j + 0k is L2’s unit direction vector,
• T2(0, 0, 1) is a point on L2,
• t2 = 0i + 0j + 1k is T2’s position vector,
• L3 is a line that intersects the sphere,
• v̂3 = 0i + 1√

2
j + 1√

2
k is L3’s unit direction vector,

• T3(0, 0, 0) is a point on L3,
• t3 = 0i + 0j + 0k is T3’s position vector.

From Fig. 10.15, L1 misses the sphere, therefore,

12 −
∣
∣
∣
∣

0 0
0 2

∣
∣
∣
∣

2

−
∣
∣
∣
∣

0 1
2 0

∣
∣
∣
∣

2

−
∣
∣
∣
∣

1 0
0 0

∣
∣
∣
∣

2

= −3.

From Fig. 10.15, L2 touches the sphere, therefore,

12 −
∣
∣
∣
∣

0 1
0 0

∣
∣
∣
∣

2

−
∣
∣
∣
∣

1 0
0 1

∣
∣
∣
∣

2

−
∣
∣
∣
∣

0 0
1 0

∣
∣
∣
∣

2

= 0.

Therefore,
λ = −t · v̂ = (0i + 0j + 1k) · (0i + 1j + 0k) = 0
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and
p2 = t2 = (0i + 0j + 1k).

Therefore, the touch point is (0, 0, 1).
From Fig. 10.15, L3 intersects the sphere, therefore,

12 −
∣
∣
∣
∣

0 1√
2

0 0

∣
∣
∣
∣

2

−
∣
∣
∣
∣

1√
2

1√
2

0 0

∣
∣
∣
∣

2

−
∣
∣
∣
∣

1√
2
0

0 0

∣
∣
∣
∣

2

= 1.

Therefore,

λ = −t · v̂ = (0i + 0j + 0k) ·
(

0i + 1√
2
j + 1√

2
k
)

± 1 = ±1

and
p3 = t3 + λv3 = (0i + 0j + 0k) ±

(

0i + 1√
2
j + 1√

2
k
)

.

The intersecting points are
(

0,− 1√
2
,− 1√

2

)

and
(

0, 1√
2
, 1√

2

)

.

10.9 A Line Intersecting a Cylinder

Another primitive used in ray tracing is the cylinder. So let’s consider a cylinder with
radius r and infinite length with its rotational axis aligned with the z-axis. Figure
10.16 shows this scenario with the following points and vectors:

• P(x, y, z) is a point on the cylinder,
• p = x i + yj + zk is P’s position vector,
• r is the cylinder’s radial vector,
• T (xt , yt , zt ) is a point on the line,
• t = xt i + yt j + ztk is T ’s position vector,
• v̂ = xvi + yvj + zvk is the line’s unit direction vector,
• p = t + λv̂ is the equation of the line.

The line equation is given by
p = t + λv̂ (10.45)

and the point P(xp, yp, z p) is the first point of intersection.
Therefore,

‖p‖2 = x2p + y2p = r2. (10.46)

But from (10.45), we see that

xp = xt + λxv

yp = yt + λyv.
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Fig. 10.16 A line
intersecting a cylinder

Substituting these in (10.46) we obtain

(xt + λxv)
2 + (yt + λyv)

2 = r2. (10.47)

Expanding (10.47) we obtain

λ2 + λ2(xvxt + yv yt ) + x2t + y2t − r2 = 0

which is a quadratic in λ, and solved using

λ = −B ± √
B2 − 4AC

2A

where,
A = 1, B = 2(xvxt + yv yt ), C = x2t + y2t − r2

and can be represented by

λ =
−(xvxt + yv yt ) ±

√

r2(x2v + y2v ) −
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

x2v + y2v
. (10.48)

The value of the discriminant of (10.48) determines whether the line misses, touches
or intersects the cylinder:
Miss condition:

r2(x2v + y2v ) −
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

< 0.

Touch condition:

r2(x2v + y2v ) −
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

= 0.
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Fig. 10.17 A line
intersecting a cylinder

Intersect condition:

r2(x2v + y2v ) −
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

> 0.

It is highly unlikely that the cylinder will be aligned with the z-axis, and it is
simple to subject the intersecting line L to the cylinder’s inverse transforms. But
in order to compute the inverse transform sequence, we need to know the original
transform sequence.

We start with the scenario shown in Fig. 10.17, where the cylinder has been scaled
by a factor of 2, rotated 90◦ about the x-axis, and translated 10 units along the z-axis.
Therefore, if L is the intersecting line in Fig. 10.17, it must be transformed as follows
for the cylinder to be realigned with the z-axis:

L ′ = S−1R−1T−1L .

The scale transform is:

S =

⎡

⎢
⎢
⎣

2 0 0 0
0 2 0 0
0 0 2 0
0 0 0 1

⎤

⎥
⎥
⎦

, and S−1 =

⎡

⎢
⎢
⎣

1
2 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

⎤

⎥
⎥
⎦

.

The rotate transform is:

R =

⎡

⎢
⎢
⎣

1 0 0 0
0 cos 90◦ − sin 90◦ 0
0 sin 90◦ cos 90◦ 0
0 0 0 1

⎤

⎥
⎥
⎦

, and R−1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎤

⎥
⎥
⎦

.
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The translate transform is:

T =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 10
0 0 0 1

⎤

⎥
⎥
⎦

, and T−1 =

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 −10
0 0 0 1

⎤

⎥
⎥
⎦

.

The intersecting line is
p = t + λv

where,
t = 0i + 0j + 0k, and v = 0i + 1j + 1k

as shown in Fig. 10.17, from which we can predict that the line intersection points
are (0, 8, 8) and (0, 12, 12).

Let’s transform the line’s vectors using:

v′ = S−1R−1v

t′ = S−1R−1T−1t

p = t′ + λv′. (10.49)

Note that v is not subjected to the translation transform. Therefore, (10.48) becomes

λ =
−(xv′xt ′ + yv′ yt ′) ±

√

r2(x2v′ + y2v′) −
∣
∣
∣
∣

xv′ yv′

xt ′ yt ′

∣
∣
∣
∣

2

x2v′ + y2v′
. (10.50)

Calculate:

S−1R−1 =

⎡

⎢
⎢
⎣

1
2 0 0 0
0 1

2 0 0
0 0 1

2 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 −1 0 0
0 0 0 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1
2 0 0 0
0 0 1

2 0
0 − 1

2 0 0
0 0 0 1

⎤

⎥
⎥
⎦

and

S−1R−1T−1 =

⎡

⎢
⎢
⎣

1
2 0 0 0
0 0 1

2 0
0 − 1

2 0 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 −10
0 0 0 1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

1
2 0 0 0
0 0 1

2 −5
0 − 1

2 0 0
0 0 0 1

⎤

⎥
⎥
⎦

.
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Therefore,

t′ =

⎡

⎢
⎢
⎣

1
2 0 0 0
0 0 1

2 −5
0 − 1

2 0 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
0
0
1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0
−5
0
1

⎤

⎥
⎥
⎦

and

v′ =

⎡

⎢
⎢
⎣

1
2 0 0 0
0 0 1

2 0
0 − 1

2 0 0
0 0 0 1

⎤

⎥
⎥
⎦

⎡

⎢
⎢
⎣

0
1
1
1

⎤

⎥
⎥
⎦

=

⎡

⎢
⎢
⎣

0
1
2− 1
2
1

⎤

⎥
⎥
⎦

.

Substituting t′ and v′ in (10.50) we get:

λ =
−(0 − 21

2 ) ±
√

1
4 −

∣
∣
∣
∣

0 1
2

0 −5

∣
∣
∣
∣

2

1
4

= 21
2 ± 1

2
1
4

= 8, and 12.

Substituting λ in (10.49) we have:

p = 0 + 8(0i + 1j + 1k)

(xp, yp, z p) = (0, 8, 8)

p = 0 + 12(0i + 1j + 1k)

(xp, yp, z p) = (0, 12, 12).

As predicted!
What has been covered so far assumes that the cylinder has an infinite extent

along the z-axis, which is not always the case. Normally, cylinders have a finite
length, and a mechanism is required to set these physical limits. One convenient
method is to identify the minimum and maximum z-extents of the cylinder, zmin and
zmax, respectively. And when we calculate the two possible intersection values for λ,
e.g. λ1 and λ2, we can test whether the z-component of p is within the defined range:

z1 = zt + λ1zv

z2 = zt + λ2zv

by making sure that:
zmin < (z1, z2) < zmax.
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Fig. 10.18 A cylinder’s end
caps

Another assumption with the above analysis is that the cylinder is open either
end. If end caps are required, then plane equations can be placed at zmin and zmax, as
shown in Fig. 10.18.

We also need to recognise the conditions when such an intersection can arise. An
intersection with the zmin end cap occurs when z1 and z2 are either side of the zmin

plane. Similarly, an intersection with the zmax end cap occurs when z1 and z2 are
either side of the zmax plane.

We have already examined the intersection of a line with a plane, and discovered
that given a line:

p = t + λv

and a plane equation:
ax + by + cz = d

where,
n = ai + bj + ck

that,

λ = −(n · t + d)

n · v .

If we place a plane at zmin, we have

d = zmin, and n = −k

and

λ3 = −(−zt + zmin)

−zv

= zmin − zt
zv

.

λ3 can now be used to reveal the intersection point using

p = t + λ3v.
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Similarly, if we place a plane at zmax, we have

λ4 = zmax − zt
zv

and
p = t + λ4v.

Note that both end cap normal vectors point in the same direction.

10.10 A Line Intersecting a Cone

Another geometric primitive is the cone, and once again this is normally aligned,
like the cylinder, with the z-axis, as shown in Fig. 10.19. A simple form of the cone
equation is

z2 = x2 + y2

which makes the internal angle of the apex 90◦.
The line equation is given by

p = t + λv.

Then for an intersection at P , we have:

z2p = x2p + y2p

which means that

(zt + λzv)
2 = (xt + λxv)

2 + (yt + λyv)
2. (10.51)

Fig. 10.19 A line
intersecting a cone
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Expanding and simplifying (10.51):

z2t + 2λzt zv + λ2z2v = x2t + 2λxt xv + λ2x2v + y2t + 2λyt yv + λ2y2v
0 = λ2(x2v + y2v − z2v) + λ(2xt xv + 2yt yv − 2zt zv)

+ x2t + y2t − z2t

which is a quadratic in λ, and solved using

λ = −B ± √
B2 − 4AC

2A

where,

A = x2v + y2v − z2v, B = 2xt xv + 2yt yv − 2zt zv, C = x2t + y2t − z2t .

Thus:

λ =
−(xt xv + yt yv − zt zv) ±

√

(xt xv + yt yv − zt zv)2 − (

x2v + y2v − z2v
) (

x2t + y2t − z2t

)

x2v + y2v − z2v

which reduces to

λ =
−(xt xv + yt yv − zt zv) ±

√
∣
∣
∣
∣

yv zv

yt zt

∣
∣
∣
∣

2

+
∣
∣
∣
∣

zv xv

zt xt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

x2v + y2v − z2v
. (10.52)

The value of the discriminant of (10.52) determines whether the line misses, touches
or intersects the cone:
Miss condition: ∣

∣
∣
∣

yv zv

yt zt

∣
∣
∣
∣

2

+
∣
∣
∣
∣

zv xv

zt xt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

< 0.

Touch condition: ∣
∣
∣
∣

yv zv

yt zt

∣
∣
∣
∣

2

+
∣
∣
∣
∣

zv xv

zt xt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

= 0.

Intersect condition:

∣
∣
∣
∣

yv zv

yt zt

∣
∣
∣
∣

2

+
∣
∣
∣
∣

zv xv

zt xt

∣
∣
∣
∣

2

−
∣
∣
∣
∣

xv yv

xt yt

∣
∣
∣
∣

2

> 0.

If the denominator of (10.52) is zero, the ray is parallel with the cone’s side.
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Limits to the cone’s length can be set using the same technique for the cylinder,
where zmin and zmax define the z-extent of the cone. These can be negative or posi-
tive, and determine whether the cone is aligned with the negative or positive z-axis,
respectively.

If the line intersects the cone twice, there will be two values of λ: λ1 and λ2, which
generate the two z coordinates of the intersections:

z1 = zt + λ1zv

z2 = zt + λ2zv.

Once again, to ensure that the intersections occur in the isolated part of the cone, we
test for

zmin < (z1, z2) < zmax.

By making either zmin or zmax equal zero retains the cone’s apex. However, if they
are both negative or positive, a truncated cone is created. And if the cone requires
end caps, the same technique used for capping cylinders can be applied to cones.

10.11 A Line Intersecting a Triangle

Triangles play an important role in modeling CG objects, and the line-triangle inter-
section problem is important in the design of renderers. Triangles are planar and it is
easy to compute whether, andwhere, a line intersects the plane shared by the triangle.
What is not so easy is proving that the intersection is within the triangle’s boundary.
Fortunately for us, in 1827, August Ferdinand Möbius [1790–1868] published Der
barycentrische Calcul, which formalised the analysis of centers of gravity, and also
laid the foundations for vectors. Today, the work of Möbius is called barycentric
coordinates.

Barycentric coordinates provide the key to unlocking this problem, and if you
have never used them, refer to the author’s book [1].

We begin by defining triangle ΔP1P2P3 with vertices P1, P2 and P3 and their
corresponding position vectors p1, p2 and p3. This scenario is shown in Fig. 10.20,
with the following points and vectors:

• P1(x1, y1, z1) is a vertex of the triangle,
• p1 = x1i + y1j + z1k is P1’s position vector,
• P2(x2, y2, z2) is a vertex of the triangle,
• p2 = x2i + y2j + z2k is P2’s position vector,
• P3(x3, y3, z3) is a vertex of the triangle,
• p3 = x3i + y3j + z3k is P3’s position vector,
• P(x, y, z) is a point on the triangle,
• p = x i + yj + zk is P’s position vector,
• T (xt , yt , zt ) is a point on the line,
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Fig. 10.20 A line
intersecting a triangle

• t = xt i + yt j + ztk is T ’s position vector,
• v = xvi + yvj + zvk is the line’s direction vector,
• p = t + λv is the equation of the line.

We can state that for any point P(xp, yp, z p) on triangle ΔP1P2P3 is given by

p(r, s) = qp1 + rp2 + sp3

where p is P’s position vector. The scalars q, r and s are barycentric coordinates and
satisfy the following conditions:

q + r + s = 1, (q, r, s) ∈ [0, 1]

which makes
q = 1 − r − s.

If the intersecting line is given by:

p = t + λv.

Then,

t + λv = (1 − r − s)p1 + rp2 + sp3
= p1 − rp1 − sp1 + rp2 + sp3
= p1 + r(p2 − p1) + s(p3 − p1)

t − p1 = −λv + r(p2 − p1) + s(p3 − p1)

and

t − p1 = [ − v p2 − p1 p3 − p1
]

⎡

⎣

λ

r
s

⎤

⎦ . (10.53)



10.11 A Line Intersecting a Triangle 205

Solving (10.53) reveals the value of λ, r and s. The barycentric coordinates r and s
tell us whether the point is on the triangle, and λ is the position along v. First, though,
we need to solve (10.53).

As an aside, consider the simultaneous equations:

c1 = a1x + b1y (10.54)

c2 = a2x + b2y. (10.55)

We can remove y from (10.54) and (10.55) by multiplying (10.54) by b2, (10.55) by
−b1, and adding:

b2c1 = a1b2x + b1b2y

−b1c2 = −a2b1x − b1b2y

b2c1 − b1c2 = a1b2x − a2b1x

x = b2c1 − b1c2
a1b2 − a2b1

=

∣
∣
∣
∣

c1 b1
c2 b2

∣
∣
∣
∣

∣
∣
∣
∣

a1 b1
a2 b2

∣
∣
∣
∣

.

Similarly, we can remove x from (10.54) and (10.55) by multiplying (10.54) by−a2,
(10.55) by a1, and adding:

−a2c1 = −a1a2x − a2b1y

a1c2 = a1a2x + a1b2y

a1c2 − a2c1 = a1b2y − a2b1y

y = a1c2 − a2c1
a1b2 − a2b1

=

∣
∣
∣
∣

a1 c1
a2 c2

∣
∣
∣
∣

∣
∣
∣
∣

a1 b1
a2 b2

∣
∣
∣
∣

.

This symmetry was discovered by the Swiss mathematician Gabriel Cramer [1704–
1752] and is now known as Cramer’s Rule; however, it only works when the deter-
minant in the denominator is non zero.

Similarly, for three simultaneous equations:

d1 = a1x + b1y + c1z

d2 = a2x + b2y + c2z

d3 = a3x + b3y + c3z.

Therefore,
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x =

∣
∣
∣
∣
∣
∣

d1 b1 c1
d2 b2 c2
d3 b3 c3

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

, y =

∣
∣
∣
∣
∣
∣

a1 d1 c1
a2 d2 c2
a3 d3 c3

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

, z =

∣
∣
∣
∣
∣
∣

a1 b1 d1
a2 b2 d2
a3 b3 d3

∣
∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
a3 b3 c3

∣
∣
∣
∣
∣
∣

.

Before applying Cramer’s Rule, let’s tidy up (10.53) as follows:

k = t − p1, p21 = p2 − p1, p31 = p3 − p1.

Therefore,

k = [−v p23 p31
]

⎡

⎣

λ

r
s

⎤

⎦ (10.56)

and

λ =

∣
∣
∣
∣
∣
∣

xk x21 x31
yk y21 y31
zk z21 z31

∣
∣
∣
∣
∣
∣

DET
, r =

∣
∣
∣
∣
∣
∣

−xv xk x31
−yv yk y31
−zv zk z31

∣
∣
∣
∣
∣
∣

DET
, s =

∣
∣
∣
∣
∣
∣

−xv x21 xk
−yv y21 yk
−zv z21 zk

∣
∣
∣
∣
∣
∣

DET
(10.57)

where,

DET =
∣
∣
∣
∣
∣
∣

−xv x21 x31
−yv y21 y31
−zv z21 z31

∣
∣
∣
∣
∣
∣

.

There is an alternative solution using the scalar triple product:

∣
∣
∣
∣
∣
∣

xa ya za
xb yb zb
xc yc zc

∣
∣
∣
∣
∣
∣

= a · (b × c) = b · (c × a) = c · (a × b)

= −a · (c × b) = −b · (a × c) = −c · (b × a).

Applying this relationships to (10.56), we obtain:

λ = | k p21 p31 |
| −v p21 p31| = (k × p21) · p31

(v × p31) · p21 (10.58)

r = | −v k p31 |
| −v p21 p31| = (v × p31) · k

(v × p31) · p21 (10.59)

s = | −v p21 k |
| −v p21 p31| = (k × p21) · v

(v × p31) · p21 . (10.60)
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Fig. 10.21 A line
intersecting a triangle at P2

Note that the equations (10.58), (10.59), (10.60), contain two common terms:k × p21
and v × p31. If these are computed separately, we can write:

λ = m · p31
n · p21 , r = n · k

n · p21 , s = m · v
n · p21

where,
m = k × p21, n = v × p31.

Let’s put the above theory into practice using a triangle formed from the points
P1(0, 2, 0), P2(0, 0, 4) and P3(3, 1, 2), with the line p = t + λv, where

t = 0i + 4j + 0k, v = 0i − 1j + 1k

and intersects the triangle at P2 as shown in Fig. 10.21.
Therefore,

k = t − p1 = (0i + 4j + 0k) − (0i + 2j + 0k) = 0i + 2j + 0k,

p21 = p2 − p1 = (0i + 0j + 4k) − (0i + 2j + 0k) = 0i − 2j + 4k

p31 = p3 − p1 = (3i + 1j + 2k) − (0i + 2j + 0k) = 3i − 1j + 2k.

Using (10.57) we obtain:

DET =
∣
∣
∣
∣
∣
∣

−xv x21 x31
−yv y21 y31
−zv z21 z31

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

0 0 3
1 −2 −1

−1 4 2

∣
∣
∣
∣
∣
∣

= 6

λ =

∣
∣
∣
∣
∣
∣

xk x21 x31
yk y21 y31
zk z21 z31

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 0 3
2 −2 −1
0 4 2

∣
∣
∣
∣
∣
∣

6
= 4
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r =

∣
∣
∣
∣
∣
∣

−xv xk x31
−yv yk y31
−zv zk z31

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 0 3
1 2 −1

−1 0 2

∣
∣
∣
∣
∣
∣

6
= 1

s =

∣
∣
∣
∣
∣
∣

−xv x21 xk
−yv y21 yk
−zv z21 zk

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 0 0
1 −2 2

−1 4 0

∣
∣
∣
∣
∣
∣

6
= 0.

r = 1 confirms that the line intersects the triangle at P2. Similarly, with λ = 4, the
line intersects the point:

p = (0i + 4j + 0k) + 4(0i − 1j + 1k) = 0i + 0j + 4k

which is P2.
Using (10.58), (10.59) and (10.60) we have:

m =
∣
∣
∣
∣
∣
∣

i j k
xk yk zk
x21 y21 z21

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

i j k
0 2 0
0 −2 4

∣
∣
∣
∣
∣
∣

= 8i + 0j + 0k

n =
∣
∣
∣
∣
∣
∣

i j k
xv yv zv

x31 y31 z31

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

i j k
0 −1 1
3 −1 2

∣
∣
∣
∣
∣
∣

= −1i + 3j + 3k

n · p21 = (−1i + 3j + 3k) · (0i − 2j + 4k) = 6

λ = m · p31
n · p21 = (8i + 0j + 0k) · (3i − 1j + 2k)

6
= 4

r = n · k
n · p21 = (−1i + 3j + 3k) · (0i + 2j + 0k)

6
= 1

s = m · v
n · p21 = (8i + 0j + 0k) · (0i − 1j + 1k)

6
= 0

which are identical to the previous results. Now let’s try another line:

t = 0i + 4j + 0k, v = 1i − 1j + 1k.

Using (10.57), we obtain:

k = t − p1 = (0i + 4j + 0k) − (0i + 2j + 0k) = 0i + 2j + 0k

DET =
∣
∣
∣
∣
∣
∣

−xv x21 x31
−yv y21 y31
−zv z21 z31

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

1 0 3
−1 −2 −1
1 4 2

∣
∣
∣
∣
∣
∣

= 6
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λ =

∣
∣
∣
∣
∣
∣

xk x21 x31
yk y21 y31
zk z21 z31

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 0 3
2 −2 −1
0 4 2

∣
∣
∣
∣
∣
∣

6
= 4

r =

∣
∣
∣
∣
∣
∣

−xv xk x31
−yv yk y31
−zv zk z31

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

1 0 3
−1 2 −1
1 0 2

∣
∣
∣
∣
∣
∣

6
= 1

3

s =

∣
∣
∣
∣
∣
∣

−xv x21 xk
−yv y21 yk
−zv z21 zk

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

−1 0 0
1 −2 2

−1 4 0

∣
∣
∣
∣
∣
∣

6
= 11

3 .

As the value of s > 1, the intersection point is outside the triangle.
Let’s make sure that we obtain the same result using (10.58), (10.59) and (10.60):

m =
∣
∣
∣
∣
∣
∣

i j k
xk yk zk
x21 y21 z21

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

i j k
0 2 0
0 −2 4

∣
∣
∣
∣
∣
∣

= 8i + 0j + 0k

n =
∣
∣
∣
∣
∣
∣

i j k
xv yv zv

x31 y31 z31

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

i j k
1 −1 1
3 −1 2

∣
∣
∣
∣
∣
∣

= −1i + 1j + 2k

n · p21 = (−1i + 1j + 2k) · (0i − 2j + 4k) = 6

λ = m · p31
n · p21 = (8i + 0j + 0k) · (3i − 1j + 2k)

6
= 4

r = n · k
n · p21 = (−1i + 1j + 2k) · (0i + 2j + 0k)

6
= 1

3

s = m · v
n · p21 = (8i + 0j + 0k) · (1i − 1j + 1k)

6
= 11

3

which confirm the previous values.
Finally, let’s select a line that intersects the triangle:

t = 0i + 4j + 0k, v = 2i − 4j + 2k.

Using (10.57), we obtain:

k = t − p1 = (0i + 4j + 0k) − (0i + 2j + 0k) = 0i + 2j + 0k

DET =
∣
∣
∣
∣
∣
∣

−xv x21 x31
−yv y21 y31
−zv z21 z31

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

−2 0 3
4 −2 −1

−2 4 2

∣
∣
∣
∣
∣
∣

= 36
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λ =

∣
∣
∣
∣
∣
∣

xk x21 x31
yk y21 y31
zk z21 z31

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 0 3
2 −2 −1
0 4 2

∣
∣
∣
∣
∣
∣

36
= 2

3

r =

∣
∣
∣
∣
∣
∣

−xv xk x31
−yv yk y31
−zv zk z31

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

−2 0 3
4 2 −1

−2 0 2

∣
∣
∣
∣
∣
∣

36
= 1

9

s =

∣
∣
∣
∣
∣
∣

−xv x21 xk
−yv y21 yk
−zv z21 zk

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

−2 0 0
4 −2 2

−2 4 0

∣
∣
∣
∣
∣
∣

36
= 4

9 .

r = 1
9 , and s = 4

9 , confirms that the line intersects the triangle. The point of inter-
section is given by:

p = t + λv

= (0i + 4j + 0k) + 2
3 (2i − 4j + 2k)

= 4j +
(
4
3 i − 8

3 j + 4
3k

)

P =
(
4
3 ,

4
3 ,

4
3

)

.

Using (10.58), (10.59) and (10.60):

k = t − p1 = (0i + 4j + 0k) − (0i + 2j + 0k) = 0i + 2j + 0k

m =
∣
∣
∣
∣
∣
∣

i j k
xk yk zk
x21 y21 z21

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

i j k
0 2 0
0 −2 4

∣
∣
∣
∣
∣
∣

= 8i + 0j + 0k

n =
∣
∣
∣
∣
∣
∣

i j k
xv yv zv

x31 y31 z31

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

i j k
2 −4 2
3 −1 2

∣
∣
∣
∣
∣
∣

= −6i + 2j + 10k

n · p21 = (−6i + 2j + 10k) · (0i − 2j + 4k) = 36

λ = m · p31
n · p21 = (8i + 0j + 0k) · (3i − 1j + 2k)

36
= 2

3

r = n · k
n · p21 = (−6i + 2j + 10k) · (0i + 2j + 0k)

36
= 1

9

s = m · v
n · p21 = (8i + 0j + 0k) · (2i − 4j + 2k)

36
= 4

9

which are identical to the previous results.
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10.12 A Point Inside a Triangle

Having discovered how to test whether a line intersects a triangle, it is an opportune
moment to describe how to test whether a point is inside or outside a triangle. Once
again, we draw upon barycentric coordinates to reveal the solution. Figure 10.22
shows a triangle ΔP1P2P3 with the following points and vectors:

• P1(x1, y1, z1) is a vertex of the triangle,
• p1 = x1i + y1j + z1k is P1’s position vector,
• P2(x2, y2, z2) is a vertex of the triangle,
• p2 = x2i + y2j + z2k is P2’s position vector,
• P3(x3, y3, z3) is a vertex of the triangle,
• p3 = x3i + y3j + z3k is P3’s position vector,
• P(x, y, z) is a point on the triangle,
• p = x i + yj + zk is P’s position vector.

Given a point P , which resides on the plane containing ΔP1P2P3, we can state that,

p = rp1 + sp2 + tp3 (10.61)

where r + s + t = 1, and (r, s, t) ∈ [0, 1].
Equation (10.61) can be written:

p = [

p1 p2 p3
]

⎡

⎣

r
s
t

⎤

⎦

which is solved using Cramer’s Rule with

r = |p p2 p3|
|p1 p2 p3| , s = |p1 p p3|

|p1 p2 p3| , t = |p1 p2 p|
|p1 p2 p3| (10.62)

Fig. 10.22 A point inside a
triangle
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Fig. 10.23 A point inside a
triangle

or explicitly:

r =

∣
∣
∣
∣
∣
∣

xp x2 x3
yp y2 y3
z p z2 z3

∣
∣
∣
∣
∣
∣

DET
, s =

∣
∣
∣
∣
∣
∣

x1 xp x3
y1 yp y3
z1 z p z3

∣
∣
∣
∣
∣
∣

DET
, t =

∣
∣
∣
∣
∣
∣

x1 x2 xp
y1 y2 yp
z1 z2 z p

∣
∣
∣
∣
∣
∣

DET
.

where,

DET =
∣
∣
∣
∣
∣
∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣
∣
∣
∣
∣
∣

.

If r , s and t satisfy the above constraints, then P is inside the triangle.
Let’s test (10.62) with the scenario shown in Fig. 10.23 with the following points

and vectors:

• P1(0, 2, 0) is a vertex of the triangle,
• p1 = 0i + 2j + 0k is P1’s position vector,
• P2(0, 0, 2) is a vertex of the triangle,
• p2 = 0i + 0j + 2k is P2’s position vector,
• P3(2, 0, 0) is a vertex of the triangle,
• p3 = 2i + 0j + 0k is P3’s position vector,
• P(1, 1, 1) is a test point,
• p = 1i + 1j + 1k is P’s position vector.

DET =
∣
∣
∣
∣
∣
∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

0 0 2
2 0 0
0 2 0

∣
∣
∣
∣
∣
∣

= 8

r =

∣
∣
∣
∣
∣
∣

xp x2 x3
yp y2 y3
z p z2 z3

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

1 0 2
1 0 0
1 2 0

∣
∣
∣
∣
∣
∣

8
= 1

2



10.12 A Point Inside a Triangle 213

s =

∣
∣
∣
∣
∣
∣

x1 xp x3
y1 yp y3
z1 z p z3

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 1 2
2 1 0
0 1 0

∣
∣
∣
∣
∣
∣

8
= 1

2

t =

∣
∣
∣
∣
∣
∣

x1 x2 xp
y1 y2 yp
z1 z2 z p

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 0 1
2 0 1
0 2 1

∣
∣
∣
∣
∣
∣

8
= 1

2 .

As r + s + t > 1, the point P(1, 1, 1) is not inside the triangle.

Now let’s try again with P
(
2
3 ,

2
3 ,

2
3

)

:

DET =
∣
∣
∣
∣
∣
∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

0 0 2
2 0 0
0 2 0

∣
∣
∣
∣
∣
∣

= 8

r =

∣
∣
∣
∣
∣
∣

xp x2 x3
yp y2 y3
z p z2 z3

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

2
3 0 2
2
3 0 0
2
3 2 0

∣
∣
∣
∣
∣
∣

8
= 1

3

s =

∣
∣
∣
∣
∣
∣

x1 xp x3
y1 yp y3
z1 z p z3

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 2
3 2

2 2
3 0

0 2
3 0

∣
∣
∣
∣
∣
∣

8
= 1

3

t =

∣
∣
∣
∣
∣
∣

x1 x2 xp
y1 y2 yp
z1 z2 z p

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 0 2
3

2 0 2
3

0 2 2
3

∣
∣
∣
∣
∣
∣

8
= 1

3 .

As r + s + t = 1, the point P
(
2
3 ,

2
3 ,

2
3

)

is inside the triangle.

Lastly, let’s try with P(2, 0, 0):

DET =
∣
∣
∣
∣
∣
∣

x1 x2 x3
y1 y2 y3
z1 z2 z3

∣
∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣
∣

0 0 2
2 0 0
0 2 0

∣
∣
∣
∣
∣
∣

= 8

r =

∣
∣
∣
∣
∣
∣

xp x2 x3
yp y2 y3
z p z2 z3

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

2 0 2
0 0 0
0 2 0

∣
∣
∣
∣
∣
∣

8
= 0

s =

∣
∣
∣
∣
∣
∣

x1 xp x3
y1 yp y3
z1 z p z3

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 2 2
2 0 0
0 0 0

∣
∣
∣
∣
∣
∣

8
= 0
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t =

∣
∣
∣
∣
∣
∣

x1 x2 xp
y1 y2 yp
z1 z2 z p

∣
∣
∣
∣
∣
∣

DET
=

∣
∣
∣
∣
∣
∣

0 0 2
2 0 0
0 2 0

∣
∣
∣
∣
∣
∣

8
= 1.

As r + s + t = 1, the test point is classified as inside, and as two of the barycentric
coordinates are zero, it must be the vertex: P3(2, 0, 0).

10.13 A Sphere Intersecting a Plane

Detecting collisions between irregular objects is difficult. However, it is greatly sim-
plified by enclosing an object within a tight-fitting sphere and calculating collisions
between spheres. As part of this analysis let’s investigate the geometric relationship
between a sphere and a plane. But apart from finding the conditions for collision,
let’s also find the diameter of the circle when a sphere intersects a plane.

We begin by positioning a sphere juxtaposed with a plane as shown in Fig. 10.24,
with the following points and vectors:

• P(x, y, z) is a point of the plane,
• p = x i + yj + zk is P’s position vector,
• ax + by + cz = d is the plane’s equation,
• n̂ = ai + bj + ck is the plane’s unit vector,
• d is the perpendicular distance from the origin to the plane,
• C(xc, yc, zc) is the centre of the sphere,
• c = xci + ycj + zck is C’s position vector,
• r is the sphere’s radius,

• −→
CP is the vector between the centre C and P .

The shortest line between the sphere’s centre C and the plane is a perpendicular.
Naturally, this line is parallel with the plane’s normal n̂, and is represented by

−→
CP .

The length of
−→
CP :‖−→CP‖, determineswhether the sphere intersects, touches ormisses

Fig. 10.24 A sphere and a
plane
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the plane:

‖−→CP‖ < r, intersect condition,

‖−→CP‖ = r, touch condition,

‖−→CP‖ > r, miss condition.

As ‖n̂‖ = 1, d represents the perpendicular distance from the origin to the plane.
Therefore, we can state that −→

CP = λn̂. (10.63)

The position vector p is defined as:

p = c + −→
CP = c + λn̂. (10.64)

Knowing n̂ · p = d, multiply (10.64) by n̂ using the dot product:

n̂ · p = n̂ · c + λn̂ · n̂
d = n̂ · c + λ

λ = d − n̂ · c. (10.65)

But from (10.63), we see that:
‖−→CP‖ = |λ|

and by finding |λ|, we find ‖−→CP‖, and the problem is solved.
Let’s illustrate this technique with the following example: a plane is defined by

√
3

3
x +

√
3

3
y +

√
3

3
z = 10

and as its normal vector is a unit vector, the perpendicular distance from the origin
to the plane is 10, as shown in Fig. 10.25.

Fig. 10.25 A sphere and a
plane
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Fig. 10.26 A sphere and a
plane

The sphere’s radius is 5, and its centre is located at C(9, 9, 9) which makes it√
243 ≈ 15.588 from the origin. Obviously, in this example we know that the sphere

and plane do not intersect.
Using (10.65):

|λ| = |d − n̂ · c|

where,

d = 10, n̂ =
√
3

3
i +

√
3

3
j +

√
3

3
k, c = 9i + 9j + 9k.

Then:

|λ| =
∣
∣
∣
∣
∣
10 − 9

√
3

3
− 9

√
3

3
− 9

√
3

3

∣
∣
∣
∣
∣
≈ | − 5.588|

|λ| ≈ 5.588

and the sphere misses the plane because |λ| > 5.
If the plane is represented parametrically, as shown in Fig. 10.26, then using two

orthogonal, unit vectors â and b̂ gives:

p = t + αâ + βb̂

where α and β are scalars, we can proceed as follows.
We find the plane’s normal vector n̂ using the cross product:

n̂ = â × b̂.

Therefore,
n̂ · t = d
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Fig. 10.27 A sphere and a
parametric plane

which can be substituted in (10.65):

λ = n̂ · t − n̂ · c
= n̂ · (t − c)

and
|λ| = ∣

∣n̂ · (t − c)
∣
∣ .

Let’s test this technique with a simple example shown in Fig. 10.27, and as the plane
is placed 2 units above the ground plane, which is the sphere’s diameter, they touch.
The plane’s equation is

p = t + αâ + βb̂

where,
â = j, b̂ = i, t = 1j + 2k, c = 1i + 1j + 1k.

Calculate n̂:

n̂ = â × b̂ =
∣
∣
∣
∣
∣
∣

i j k
0 1 0
1 0 0

∣
∣
∣
∣
∣
∣

= 0i + 0j − 1k

and
n̂ = 0i + 0j − 1k.

Therefore,

|λ| = |(0i + 0j − 1k) · ((0i + 1j + 2k) − (1i + 1j + 1k)|
= |(0i + 0j − 1k) · (−1i + 0j + 1k)|
= 1.

As |λ| = r = 1, the sphere touches the plane.
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Fig. 10.28 Geometry for
circle of intersection

The point of contact is given by (10.64):

p = c + λn̂ = (1i + 1j + 1k) − 1(0i + 0j − 1k) = 1i + 1j + 2k

which makes the point of contact P(1, 1, 2).
Now let’s calculate the diameter of the circle of intersection when the sphere

intersects the plane. Figure 10.28a shows a side view of the sphere and plane, whilst
10.28b shows the intersecting circle. The figures employ the following points and
vectors:

• P(x, y, z) is a point of the plane,
• C(xc, yc, zc) is the centre of the sphere,
• r is the sphere’s radius,

• −→
CP is the vector between C and P ,

• R is the radius of the intersecting circle.

Using the theorem of Pythagoras:

r2 = R2 + ‖−→CP‖2 = R2 + |λ|2.

Therefore,
R =

√

r2 − λ2. (10.66)

10.14 A Sphere Touching a Triangle

Having seen how to detect a sphere touching or intersecting a plane, let’s investigate
the problem of a sphere touching a triangle. Basically, we need to follow three steps:

1. Derive the triangle’s plane equation, probably using the cross product of two
vectors taken from the triangle’s edges.

2. Determine whether the sphere touches the triangle’s plane.
3. If a touch condition occurs, discover if the touch point is inside the triangle.
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Fig. 10.29 A sphere and a
triangle

To illustrate how the above steps are implemented, let’s investigate a simple exam-
ple. Figure 10.29 shows a triangle ΔP1P2P3 located near the origin and a sphere of
radius r = 1 with centre C(1, 1, 2).

• P(x, y, z) is a point of the plane,
• C(1, 1, 2) is the centre of the sphere,
• c = 1i + 1j + 2k is C’s position vector,
• r = 1 is the sphere’s radius,

• −→
CP is the vector between C and P .

We extract two vectors from the triangle:

u = −−→
P1P2, and v = −−→

P1P3

where,
P1 = (1, 0, 0), P2 = (0, 2, 0), P3 = (0, 0, 3).

Therefore,
u = −1i + 2j + 0k, and v = −1i + 0j + 3k.

Calculate n:

n = u × v =
∣
∣
∣
∣
∣
∣

i j k
−1 2 0
−1 0 3

∣
∣
∣
∣
∣
∣

= 6i + 3j + 2k

n̂ = 6
7 i + 3

7 j + 2
7k

and
6
7 x + 3

7 y + 2
7 z = d (10.67)

where d is the perpendicular distance from the origin to the plane. We can find d by
substituting P1 in (10.67):

d = 6
7 .
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Using (10.65) where |λ| = |d − n̂ · c|, we have:

|λ| = ∣
∣ 6
7 − (

6
7 i + 3

7 j + 2
7k

) · (1i + 1j + 2k)
∣
∣

= ∣
∣ 6
7 − 13

7

∣
∣ = | − 1|

|λ| = 1.

Remember that ‖−→CP‖ = |λ|, and as r = 1, it is a touch condition. The negative value
of λ informs us that

−→
CP is in the opposite the direction of n̂.

From (10.64):

p = c + λn̂

= (1i + 1j + 2k) − (
6
7 i + 3

7 j + 2
7k

)

= 1
7 i + 4

7 j + 12
7 k

and
P = (

1
7 ,

4
7 ,

12
7

)

.

Using Eq. (6.33) we can confirm whether this point is inside the triangle:

DET = | p1 p2 p3 | =
∣
∣
∣
∣
∣
∣

1 0 0
0 2 0
0 0 3

∣
∣
∣
∣
∣
∣

= 6

r = | p p2 p3 |
DET

=

∣
∣
∣
∣
∣
∣

1
7 0 0
4
7 2 0
12
7 0 3

∣
∣
∣
∣
∣
∣

6
=

6
7

6
= 1

7

s = | p1 p p3 |
DET

=

∣
∣
∣
∣
∣
∣

1 1
7 0

0 4
7 0

0 12
7 3

∣
∣
∣
∣
∣
∣

6
=

12
7

6
= 2

7

t = | p1 p p3 |
DET

=

∣
∣
∣
∣
∣
∣

1 0 1
7

0 2 4
7

0 0 12
7

∣
∣
∣
∣
∣
∣

6
=

24
7

6
= 4

7 .

Note that r + s + t = 1, and that they are all positive and less than 1, which
means that the point

(
1
7 ,

4
7 ,

12
7

)

is inside the triangle, and the sphere touches the
triangle within its boundary.
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10.15 Two Intersecting Planes

Hopefully, it is obvious that two planes give rise to a straight line at their intersection.
We can discover the vector representing this line by exploiting the fact that the
intersecting line is perpendicular to the normal vectors associated with the planes.
Therefore, the cross-product of the plane’s normal vectors reveals the vector, the
direction, of which, is determined by the order of the normal vectors. Figure 10.30
illustrates such a scenario, with the following points and vectors:

• v = xvi + yvj + zvk is a vector parallel with the line of intersection,
• P(x, y, z) is any point on v,
• p = x i + yj + zk is P’s position vector,
• T (xt , yt , zt ) is a point on v such that t is orthogonal to v,
• t = xt i + yt j + ztk is T ’s position vector,
• n1 is the first plane’s normal vector,
• n2 is the second plane’s normal vector.

To derive a parametric line equation for the intersectionwe require the coordinates
of a point on the line. It is convenient to select a point whose position vector t is
perpendicular to v.

We begin by defining the two plane equations

a1x + b1y + c1z = d1
a2x + b2y + c2z = d2

where,

n1 = a1i + b1j + c1k

n2 = a2i + b2j + c2k.

Fig. 10.30 Intersecting
planes
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Therefore,
n1 × n2 = v

where v is the vector representing the line of intersection.
The line equation is

p = t + λv.

As T must satisfy both plane equations:

d1 = n1 · t (10.68)

d2 = n2 · t. (10.69)

Furthermore, as v and t are orthogonal,

0 = v · t. (10.70)

Equations (10.68), (10.69), (10.70) can be combined and written as

⎡

⎣

d1
d2
0

⎤

⎦ =
⎡

⎣

a1 b1 c1
a2 b2 c2
av bv cv

⎤

⎦

⎡

⎣

xt
yt
zt

⎤

⎦

and solved using Cramer’s Rule, where

DET =
∣
∣
∣
∣
∣
∣

a1 b1 c1
a2 b2 c2
av bv cv

∣
∣
∣
∣
∣
∣

xt =

∣
∣
∣
∣
∣
∣

d1 b1 c1
d2 b2 c2
0 bv cv

∣
∣
∣
∣
∣
∣

DET
, yt =

∣
∣
∣
∣
∣
∣

a1 d1 c1
a2 d2 c2
av 0 cv

∣
∣
∣
∣
∣
∣

DET
, zt =

∣
∣
∣
∣
∣
∣

a1 b1 d1
a2 b2 d2
av bv 0

∣
∣
∣
∣
∣
∣

DET
.

To illustrate this technique, let’s consider a scenario whose outcome can be predicted
as shown in Fig. 10.31 with the following points and vectors:

• v = xvi + yvj + zvk is a vector parallel with the line of intersection,
• T (xt , yt , zt ) is a point on v such that t is orthogonal to v,
• t = xt i + yt j + ztk is T ’s position vector,
• n1 is the first plane’s normal vector,
• n2 is the second plane’s normal vector.

The plane equations are

y − z = 1, and y + z = 1
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Fig. 10.31 Intersecting
planes

and
n1 = 0i + 1j − 1k, and n2 = 0i + 1j + 1k.

Therefore,

v = n1 × n2 =
∣
∣
∣
∣
∣
∣

i j k
0 1 −1
0 1 1

∣
∣
∣
∣
∣
∣

= 2i + 0j + 0k

DET =
∣
∣
∣
∣
∣
∣

0 1 −1
0 1 1
2 0 0

∣
∣
∣
∣
∣
∣

= 4

xt = 1

4

∣
∣
∣
∣
∣
∣

1 1 −1
1 1 1
0 0 0

∣
∣
∣
∣
∣
∣

= 0

yt = 1

4

∣
∣
∣
∣
∣
∣

0 1 −1
0 1 1
2 0 0

∣
∣
∣
∣
∣
∣

= 4

4
= 1

zt = 1

4

∣
∣
∣
∣
∣
∣

0 1 1
0 1 1
2 0 0

∣
∣
∣
∣
∣
∣

= 0.

Therefore, the line equation is
p = j + λi.

Remember that the direction of v is reversed if n1 and n2 are reversed in the cross-
product calculation.
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10.16 Summary

The last example concludes this chapter on intersections. Hopefully, the reader will
feel confident to undertake other intersection problems by implementing some of the
above strategies.

Reference
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Chapter 11
Rotating Vectors

11.1 Introduction

This chapter covers the rotation of 2-D vectors about the origin, and 3-D vectors
about an axis. It draws upon material I have written about in other books, which you
may wish to explore for further information [1–4].

11.2 Rotating Vectors in R
2 About the Origin

We can approach the problem of rotating a 2-D point about the origin in two ways:
using the associated coordinate geometry to develop a formula, or developing a
matrix that acts upon the point’s position vector. Let’s choose the second approach,
as it is simpler.

We start by declaring a 2 × 2 matrix Rθ , which rotates a vector p, by an angle θ ,
about the origin:

p′ = Rθp

where p′ is the rotated vector.
When θ = 0, Rθ is the identity matrix:

Rθ =
[
1 0
0 1

]
.

Notice that the first column of Rθ is the unit basis vector i, and the second column is
the unit basis vector j:

i =
[
1
0

]
, j =

[
0
1

]
.
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Fig. 11.1 The unit basis
vectors rotated by θ

Figure 11.1 shows the unit basis vectors rotated by θ , where vector i is rotated to
[cos θ sin θ ], and vector j is rotated to [− sin θ cos θ ]. Writing these as column
vectors, we have:

Rθ =
[
cos θ − sin θ

sin θ cos θ

]
. (11.1)

For unit scaling, the determinant of Rθ must equal 1:

det Rθ = cos2 θ + sin2 θ = 1.

Let’s test (11.1) with an example.
Rotate p = [1 0] through an angle 90◦:

p′ =
[
cos 90◦ − sin 90◦
sin 90◦ cos 90◦

] [
1
0

]

=
[
0 −1
1 0

] [
1
0

]

=
[
0
1

]
.

Which is correct.

11.3 Rotating Vectors in R
3 About an Axis

In this section we examine three ways of rotating 3-D vectors about an axis: Euler
angles, Rodrigues’ rotation formula and quaternions.
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11.3.1 Euler Angles

The Swiss mathematician Leonhard Euler (1707–1783), introduced three angles for
rotating a rigid object relative to a fixed coordinate system. Today, they are known
as Euler angles, and can readily be expressed as 3 × 3 matrices. There are numerous
ways of describing and combining the angles, but in this short description I will adopt
a simple convention that can be exchanged for any personal preference.

The three Euler angles are the angles used to rotate a rigid object about the three
axes. For example, one convention is:

• Rotate about the z-axis by α.
• Rotate about the x-axis by β.
• Rotate about the y-axis by γ .

Figure 11.2 shows a view looking along the z-axis towards the xy-plane which
contains the coordinates that are affected by the first rotation. Figure 11.3 shows a
view looking along the x-axis towards the yz-plane which contains the coordinates
that are affected by the first rotation. Figure 11.4 shows a view looking along the
y-axis towards the zx-plane which contains the coordinates that are affected by the
first rotation.

Fig. 11.2 Rotating by α

about the z-axis

Fig. 11.3 Rotating by β

about the x-axis
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We start by declaring a 3 × 3 matrix Rα , which rotates a vector p, by an angle α,
about the origin:

p′ = Rαp

where p′ is the rotated vector.
When α = 0, Rα is the identity matrix:

Rα =
⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ .

Notice that the first column of Rα is the unit basis vector i, the second column is the
unit basis vector j, and the third column is the unit basis vector k:

i =
⎡
⎣ 1
0
0

⎤
⎦ , j =

⎡
⎣0
1
0

⎤
⎦ , k =

⎡
⎣0
0
1

⎤
⎦ .

Figure 11.2 shows the unit basis vectors rotated by α, where vector i is rotated
to [cosα sin α 0], and vector j is rotated to [− sin α cosα 0]. Writing these as
column vectors, we have:

Rα =
⎡
⎣ cosα − sin α 0
sin α cosα 0
0 0 1

⎤
⎦ . (11.2)

Figure 11.3 shows the unit basis vectors rotated by β, where vector j is rotated to
[0 cosβ sin β], and vector k is rotated to [0 − sin β cosβ]. Writing these as
column vectors, we have:

Rβ =
⎡
⎣ 1 0 0
0 cosβ − sin β

0 sin β cosβ

⎤
⎦ . (11.3)

Figure 11.4 shows the unit basis vectors rotated by γ , where vector k is rotated
to [sin γ 0 cos γ ], and vector i is rotated to [cos γ 0 − sin γ ]. Writing these as
column vectors, we have:

Rγ =
⎡
⎣ cos γ 0 sin γ

0 1 0
− sin γ 0 cos γ

⎤
⎦ . (11.4)

The matrices Rα,Rβ,Rγ can be used individually, or chained together in any
sequence. However, when chained together, and the angles are multiples of 90◦, it
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Fig. 11.4 Rotating by γ

about the y-axis

is possible to lose control of a rotational axis. This is known as gimbal lock. Let’s
show one of the matrices in action.

Rotate the vector p = [10 10 10], 90◦ about the z-axis. This is expressed as
follows:

p′ = Rαp

=
⎡
⎣ cos 90◦ − sin 90◦ 0
sin 90◦ cos 90◦ 0

0 0 1

⎤
⎦

⎡
⎣10
10
10

⎤
⎦

=
⎡
⎣0 −1 0
1 0 0
0 0 1

⎤
⎦

⎡
⎣10
10
10

⎤
⎦

=
⎡
⎣−10

10
10

⎤
⎦ .

Which is correct.

11.3.2 Rodrigues’ Rotation Formula

The French banker and mathematician Benjamin Olinde Rodrigues, received his
doctorate in mathematics from the University of Paris, where his dissertation con-
tained a formula showing how a rigid body is rotated about an arbitrary axis. Today,
Rodrigues’ rotation formula is expressed:
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p′ = (1 − cos θ)(v̂ · p)v̂ + cos θp + sin θ(v̂ × p) (11.5)

where,

v is the unit vector defining the arbitrary axis,
p is the vector to be rotated,
θ is the angle of rotation,
p′ is the rotated vector.

Let’s illustrate (11.5)with the previous examplewhere vectorp = [10 10 10] is
rotated 90◦ about the z-axis. This makes v̂ = k = [0 0 1] and θ = 90◦. Therefore,
cos θ = 0 and sin θ = 1:

p′ = [0 0 1] × [10 10 10] + [0 0 1]([0 0 1] · [10 10 10])
= [−10 10 0] + [0 0 1]10
= [−10 10 10].

Which is correct.
Rodrigues’ rotation formula can also be expressed in matrix notation:

R = I + (sin θ)K + (1 − cos θ)K2 (11.6)

where,

R is the rotation matrix,
I is the identity matrix,
θ is the angle of rotation,
v̂ = vx i + vyj + vzk is the unit vector defining the arbitrary axis,
K is the cross-product matrix

K =
⎡
⎣ 0 −vz vy

vz 0 −vx
−vy vx 0

⎤
⎦ .

Let’s illustrate (11.6) with the previous example where vector p = [10 10 10]
is rotated 90◦ about the z-axis. This makes v̂ = [0 0 1] and θ = 90◦. Therefore,
cos θ = 0 and sin θ = 1:
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K =
⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦

K2 =
⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦ =

⎡
⎣−1 0 0

0 −1 0
0 0 0

⎤
⎦

R = I + K + K2

=
⎡
⎣ 1 0 0
0 1 0
0 0 1

⎤
⎦ +

⎡
⎣0 −1 0
1 0 0
0 0 0

⎤
⎦ +

⎡
⎣−1 0 0

0 −1 0
0 0 0

⎤
⎦

=
⎡
⎣0 −1 0
1 0 0
0 0 1

⎤
⎦ .

Which is Rα in the original example.

11.3.3 Quaternions

If a point (x, y) is turned into a complex number: x + yi , it can be rotated to another
point by multiplying it by a second complex number. For example, the point (1, 1)
is rotated through 30◦ by multiplying it by cos 30◦ + i sin 30◦:

(1 + i1)
(√

3
2 + i 12

)
=

√
3
2 + i 12 + i

√
3
2 + i2 1

2

=
√
3−1
2 + i

√
3+1
2

which makes the new point
(√

3−1
2 ,

√
3+1
2

)
.

I doubt whether 3-D rotations were the objective of Hamilton’s search for a 3-
D equivalent of a complex number, but quaternions do solve this problem. In fact,
Hamilton found that sandwiching the point to be rotated between two quaternions
resulted in the desired rotation:

qpq−1

where p encodes the position vector for the point to be rotated, q is the quaternion
controlling the axis and angle of rotation, and q−1 is q’s inverse.

Today, there are two ways of defining a quaternion:

q = [s, v] (11.7)

q = [s + v]. (11.8)
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The difference is rather subtle: (11.7) separates the scalar s, and the vector v, with
a comma, whereas (11.8) preserves the ‘+’ sign as used in complex numbers. I will
employ the comma notation for the rest of this section.

A quaternion q is the combination of a scalar and a vector:

q = [s, v]

where s is a scalar and v is a 3-D vector. If we express the quaternion q in terms of
its components, we have in an algebraic form:

q = [s, x i + yj + zk], where s, x, y, z ∈ R.

11.3.4 Adding and Subtracting Quaternions

Given two quaternions q1 and q2:

q1 = [s1, v1] = [s1, x1i + y1j + z1k]
q2 = [s2, v2] = [s2, x2i + y2j + z2k]

they are equal, only if their corresponding terms are equal. Furthermore, like vectors,
they can be added and subtracted as follows:

q1 ± q2 = [(s1 ± s2), (x1 ± x2)i + (y1 ± y2)j + (z1 ± z2)k].

11.3.5 Multiplying Quaternions

When multiplying quaternions we must employ the following rules:

i2 = j2 = k2 = ijk = −1

ij = k, jk = i, ki = j

ji = −k, kj = −i, ik = −j.

Note that whilst quaternion addition is commutative, the rules make quaternion prod-
ucts non-commutative.

Given two quaternions q1 and q2:

q1 = [s1, v1] = [s1, x1i + y1j + z1k]

q2 = [s2, v2] = [s2, x2i + y2j + z2k]

the product q1q2 is given by:
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q1q2 = [
(s1s2 − x1x2 − y1y2 − z1z2), (s1x2 + s2x1 + y1z2 − y2z1)i

+ (s1y2 + s2y1 + z1x2 − z2x1)j + (s1z2 + s2z1 + x1y2 − x2y1)k
]

which can be rewritten using the dot and cross product notation as

q1q2 = [(s1s2 − v1 · v2), s1v2 + s2v1 + v1 × v2]

where,
s1s2 − v1 · v2 is a scalar

and
s1v2 + s2v1 + v1 × v2 is a vector.

11.3.6 Pure Quaternion

A pure quaternion has a zero scalar term:

q = [0, v].

Therefore, given two pure quaternions:

q1 = [0, v1] = [0, x1i + y1j + z1k]

q2 = [0, v2] = [0, x2i + y2j + z2k]

their product is another pure quaternion:

q1q2 = [0, v1 × v2].

11.3.7 The Inverse Quaternion

Given the quaternion
q = [s, x i + yj + zk]

its inverse q−1 is given by:

q−1 = [s, −x i − yj − zk] .

It can also be shown that
qq−1 = q−1q = 1.
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11.3.8 Unit Quaternion

A unit quaternion has a magnitude equal to 1:

|q| =
√
s2 + x2 + y2 + z2 = 1.

11.3.9 Rotating Vectors About an Axis

Quaternions are used with vectors rather than individual points. Therefore, in order
to manipulate a single point, it is turned into a position vector. A point is then
represented in quaternion form by its equivalent position vector with a zero scalar
term. For example, the point P(x, y, z) is represented in quaternion form by

p = [0, x i + yj + zk]

which is transformed into another position vector using the process described below.
The coordinates of the rotated point are the components of the rotated position vector.
This may appear complicated, but in reality it turns out to be rather simple. Let’s
consider how this is achieved.

Hamilton showed that a pure quaternion p is rotated about an axis using the
following operation:

p′ = qpq−1

where the axis and angle of rotation are encoded within the unit quaternion q, and
p′ stores the rotated vector. For example, to rotate a point P(x, y, z) about an axis
v̂, we use the following steps:

1. Convert the point P(x, y, z) to a pure quaternion p:

p = [0, x i + yj + zk].

2. Define the axis of rotation as a unit vector v̂:

v̂ = vx i + vyj + vzk

3. Define the transforming quaternion q:

q =
[
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]
.

4. Define the inverse of the transforming quaternion q−1:
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q−1 =
[
cos

(
θ
2

)
, − sin

(
θ
2

)
v̂
]
.

5. Compute p′:
p′ = qpq−1.

6. Unpack (x ′, y′, z′):

P ′(x ′, y′, z′) ⇐ p′ = [
0, x ′i + y′j + z′k

]
.

We can verify the action of the above transform with a simple example.
Consider the point P(0, 1, 1) in Fig. 11.5, with position vector p = 0i + 1j + 1k,

which is to be rotated 90◦ about the y-axis. We can see that the rotated point P ′ has
the coordinates (1, 1, 0) which we will confirm algebraically. The position vector p
is represented by the quaternion p:

p = [0, 0i + 1j + 1k]

and is rotated by evaluating the quaternion p′:

p′ = qpq−1

which stores the rotated vector. The axis of rotation is j, therefore the unit quaternion
q is given by

q = [
cos

(
90◦
2

)
, sin

(
90◦
2

)
(0i + 1j + 0k)

]
= [

cos 45◦, 0i + sin 45◦j + 0k
]
.

The inverse quaternion q−1 is given by

q−1 = [
cos 45◦, −0i − sin 45◦j − 0k

]
.

Let’s evaluate qpq−1 in two stages: (qp)q−1, and for clarity let α = 45◦:

Fig. 11.5 The point
P(0, 1, 1) is rotated to
P ′(1, 1, 0) using a
quaternion coincident with
the y-axis
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(qp) = [cosα, 0i + sin αj + 0k] [0, 0i + 1j + 0k]

= [− sin α, sin αi + cosαj + cosαk]

(qp)q−1 = [− sin α, sin αi + cosαj + cosαk] [cosα, −0i − sin αj − 0k]

= [ − sin α cosα + sin α cosα,

+ sin2 αj + sin α cosαi + cos2 αj + cos2 αk

+
∣∣∣∣∣∣

i j k
sin α cosα cosα

0 − sin α 0

∣∣∣∣∣∣]
= [

0, sin α cosαi + (sin2 α + cos2 α)j + cos2 αk + sin α cosαi − sin2 αk
]

= [
0, 2 sin α cosαi + (sin2 α + cos2 α)j + (cos2 α − sin2 α)k

]
p′ = [0, 1i + 1j + 0k] .

The vector component of p′ confirms that P is indeed rotated to (1, 1, 0). Let’s
evaluate another example before continuing.

Consider a rotation about the z-axis as illustrated in Fig. 11.6. The original point
has coordinates (0, 1, 1) and is rotated −90◦ to (1, 0, 1). This time the quaternion q
is defined by

q =
[
cos

(
−90◦
2

)
, sin

(
−90◦
2

)
(0i + 0j + 1k)

]

= [
cos 45◦, 0i + 0j − sin 45◦k

]

with its inverse
q−1 = [

cos 45◦, 0i + 0j + sin 45◦k
]

and the point to be rotated in quaternion form is

p = [0, 0i + 1j + 1k] .

Fig. 11.6 The point
P(0, 1, 1) is rotated −90◦ to
P ′(1, 0, 1) using a
quaternion coincident with
the z-axis
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Evaluating this in two stages with α = 45◦, we have:

(qp) = [cosα, 0i + 0j − sin αk] [0, 0i + 1j + 1k]

= [
sin α, cosαj + cosαk +

∣∣∣∣∣∣
i j k
0 0 − sin α

0 1 1

∣∣∣∣∣∣
]

= [sin α, sin αi + cosαj + cosαk]

(qp)q−1 = [sin α, sin αi + cosαj + cosαk] [cosα, 0i + 0j + sin αk]

= [
sin α cosα − sin α cosα,

+ sin2 αk + sin α cosαi + cos2 αj + cos2 αk

+
∣∣∣∣∣∣

i j k
sin α cosα cosα

0 0 sin α

∣∣∣∣∣∣
]

= [
0, sin α cosαi + cos2 αj + (sin2 α + cos2 α)k

+ sin α cosαi − sin2 αj
]

= [
0, 2 sin α cosαi + (

cos2 α − sin2 α
)
j + 1k

]
= [0, 1i + 0j + 1k] .

The vector component of p′ confirms that the rotated point is (1, 0, 1).

11.3.10 The Double Angle

Now let’s showwhy it’s necessary to halve the angle of rotation.We begin by defining
a unit-norm quaternion q:

q = [
s, λv̂

]

where s2 + λ2 = 1. The vector to be rotated is encoded as a pure quaternion:

p = [
0, p

]

and the inverse quaternion q−1 is

q−1 = [
s, −λv̂

]
.
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Therefore, the product qpq−1 is

qpq−1 = [
s, λv̂][0, p

] [
s, −λv̂

]
= [−λv̂ · p, sp + λv̂ × p

] [
s, −λv̂

]
= [−λsv̂ · p + λsp · v̂ + λ2(v̂ × p) · v̂,

+ λ2(v̂ · p)v̂ + s2p + λsv̂ × p − λsp × v̂ − λ2(v̂ × p) × v̂
]

= [
λ2(v̂ × p) · v̂, λ2(v̂ · p)v̂ + s2p + 2λsv̂ × p − λ2(v̂ × p) × v̂

]
.

Note that (
v̂ × p

) · v̂ = 0

and (
v̂ × p

) × v̂ = (v̂ · v̂)p − (p · v̂)v̂ = p − (p · v̂)v̂.

Therefore,

qpq−1 = [
0, λ2

(
v̂ · p)

v̂ + s2p + 2λsv̂ × p − λ2p + λ2
(
p · v̂) v̂]

= [
0, 2λ2

(
v̂ · p)

v̂ + (
s2 − λ2

)
p + 2λsv̂ × p

]
. (11.9)

Obviously, this is a pure quaternion as the scalar component is zero. However, it is
not obvious where the angle doubling comes from. But look what happens when we
make s = cos θ and λ = sin θ :

qpq−1 = [
0, 2 sin2 θ

(
v̂ · p)

v̂ + (
cos2 θ − sin2 θ

)
p + 2 sin θ cos θ v̂ × p

]
= [

0, (1 − cos(2θ))
(
v̂ · p)

v̂ + cos(2θ)p + sin(2θ)v̂ × p
]
.

The double-angle trigonometric terms emerge! Now, if we want this product to
actually rotate the vector by θ , then we must build this in from the outset by halving
θ in q:

q =
[
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

(11.10)

which makes

qpq−1 = [
0, (1 − cos θ)

(
v̂ · p)

v̂ + cos θp + sin θ v̂ × p
]
. (11.11)

The product qpq−1 was discovered by Hamilton who failed to publish the result.
Cayley, also discovered the product and published the result in 1845 [5]. However,
Altmann notes that “in Cayley’s collected papers he concedes priority to Hamil-
ton.” [6], which was a nice gesture. However, the person who had recognised the
importance of the half-angle parameters in (11.10) before Hamilton and Cayley was
Rodrigues—who published a solution that was not seen by Hamilton, but apparently,
was seen by Cayley.
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11.3.11 Quaternion as a Matrix

In order to represent qpq−1 as a matrix, it is convenient to describe the unit-norm
quaternion as

q = [s, v]

= [s, x i + yj + zk]

where
s2 + ‖v‖ = 1

and the pure quaternion as

p = [
0, p

]
= [

0, px i + pyj + pzk
]
.

A simple way to compute qpq−1 is to use (11.9) and substitute ‖v‖ for λ:

qpq−1 = [
0, 2λ2

(
v̂ · p)

v̂ + (
s2 − λ2

)
p + 2λsv̂ × p

]
= [

0, 2‖v‖2 (
v̂ · p)

v̂ + (
s2 − ‖v‖2)p + 2‖v‖sv̂ × p

]
.

Next, we substitute v for ‖v‖v̂:

qpq−1 = [
0, 2 (v · p) v + (

s2 − ‖v‖2) p + 2sv × p
]
.

Finally, as we are working with unit-norm quaternions to prevent scaling:

s2 + ‖v‖2 = 1

and
s2 − ‖v‖2 = 2s2 − 1.

Therefore,
qpq−1 = [

0, 2(v · p)v + (
2s2 − 1

)
p + 2sv × p

]
.

If we let p′ = qpq−1, which is a pure quaternion, we have

p′ = qpq−1

= [
0, p′]

= [
0, 2(v · p)v + (

2s2 − 1
)
p + 2sv × p

]
p′ = 2(v · p)v + (

2s2 − 1
)
p + 2sv × p.
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We are only interested in the rotated vector p′ comprising the three terms 2(v · p)v,(
2s2 − 1

)
p and 2sv × p, which can be represented by three individual matrices and

summed together:

2 (v · p) v = 2
(
xxp + yyp + zz p

)
(x i + yj + zk)

=
⎡
⎣ 2x2 2xy 2xz
2xy 2y2 2yz
2xz 2yz 2z2

⎤
⎦

⎡
⎣ px
py
pz

⎤
⎦ .

(
2s2 − 1

)
p = (

2s2 − 1
)
xpi +

(
2s2 − 1

)
ypj + (

2s2 − 1
)
z pk

=
⎡
⎣2s2 − 1 0 0

0 2s2 − 1 0
0 0 2s2 − 1

⎤
⎦

⎡
⎣ px
py
pz

⎤
⎦ .

2sv × p = 2s
((
yz p − zyp

)
i + (

zxp − xz p
)
j + (

xyp − yxp
)
k
)

=
⎡
⎣ 0 −2sz 2sy

2sz 0 −2sx
−2sy 2sx 0

⎤
⎦

⎡
⎣ px
py
pz

⎤
⎦ .

Adding these matrices together:

p′ =
⎡
⎣2

(
s2 + x2

) − 1 2 (xy − sz) 2 (xz + sy)
2 (xy + sz) 2

(
s2 + y2

) − 1 2 (yz − sx)
2 (xz − sy) 2 (yz + sx) 2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣ px
py
pz

⎤
⎦ (11.12)

or

p′ =
⎡
⎣1 − 2

(
y2 + z2

)
2 (xy − sz) 2 (xz + sy)

2 (xy + sz) 1 − 2
(
x2 + z2

)
2 (yz − sx)

2 (xz − sy) 2 (yz + sx) 1 − 2
(
x2 + y2

)
⎤
⎦

⎡
⎣ px
py
pz

⎤
⎦ (11.13)

where,
[0, p′] = qpq−1.

Now let’s reverse the product. To compute the vector part of q−1 pq all that we have
to do is reverse the sign of 2sv × p:

p′ =
⎡
⎣2

(
s2 + x2

) − 1 2 (xy + sz) 2 (xz − sy)
2 (xy − sz) 2

(
s2 + y2

) − 1 2 (yz + sx)
2 (xz + sy) 2 (yz − sx) 2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣ px
py
pz

⎤
⎦ (11.14)



11.3 Rotating Vectors in R3 About an Axis 241

or

p′ =
⎡
⎣1 − 2

(
y2 + z2

)
2 (xy + sz) 2 (xz − sy)

2 (xy − sz) 1 − 2
(
x2 + z2

)
2 (yz + sx)

2 (xz + sy) 2 (yz − sx) 1 − 2
(
x2 + y2

)
⎤
⎦

⎡
⎣ px
py
pz

⎤
⎦ (11.15)

where, [
0, p′] = q−1 pq.

Note that (11.14) is the transpose of (11.12), and (11.15) is the transpose of (11.13).
Let’s test (11.12) using the example illustrated in Fig. 11.5, where p = 0i +

1j + 1k is rotated 90◦ about the y-axis. This makes px = 0, py = 1, pz = 1. The
quaternion q takes the form:

q = [
cos

(
θ
2

)
, sin

(
θ
2

)
v̂
]

which means that θ = 90◦ and v̂ = 1j, therefore,

q = [
cos 45◦, sin 45◦j

]
.

Consequently,
s =

√
2
2 , x = 0 y =

√
2
2 , z = 0.

p′ =
⎡
⎣2

(
s2 + x2 j

) − 1 2 (xy − sz) 2 (xz + sy)
2 (xy + sz j) 2

(
s2 + y2

) − 1 2 (yz − sx)
2 (xz − sy j) 2 (yz + sx) 2

(
s2 + z2

) − 1

⎤
⎦

⎡
⎣ px
py
pz

⎤
⎦

=
⎡
⎣2

(
1
2 + 0

) − 1 2 (0 − 0) 2
(
0 + 1

2

)
2 (0 + 0) 2

(
1
2 + 1

2

) − 1 2 (0 − 0)
2

(
0 − 1

2

)
2 (0 + 0) 2

(
1
2 + 0

) − 1

⎤
⎦

⎡
⎣0
1
1

⎤
⎦

⎡
⎣ 1
1
0

⎤
⎦ =

⎡
⎣ 0 0 1

0 1 0
−1 0 0

⎤
⎦

⎡
⎣0
1
1

⎤
⎦ .

Which is correct.
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11.4 Summary

I will leave it up you to decide whether you use quaternions or Rodrigue’s rotation
formula to rotate a vector. After all, it is a question of how fast it takes to code an
algorithm, and how fast it takes to compute the result.
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