
COMPUTING PLAYBOOK

RICHIE MILLER
PRACTICAL CLOUD DESIGN WITH AZURE, AWS AND TERRAFORM

CLOUD COMPUTING PLAYBOOK

1O IN 1

PRACTICAL CLOUD DESIGN WITH AZURE

AWS AND TERRAFORM

BOOK 1

CLOUD COMPUTING FUNDAMENTALS

INTRODUCTION TO MICROSOFT AZURE AZ-900 EXAM

BOOK 2

MICROSOFT AZURE SECURITY AND PRIVACY CONCEPTS

CLOUD DEPLOYMENT TOOLS AND TECHNIQUES, SECURITY &

COMPLIANCE

BOOK 3

MICROSOFT AZURE PRICING & SUPPORT OPTIONS

AZURE SUBSCRIPTIONS, MANAGEMENT GROUPS & COST

MANAGEMENT

BOOK 4

MICROSOFT AZURE AZ-900 EXAM PREPARATION GUIDE

HOW TO PREPARE, REGISTER AND PASS YOUR EXAM

BOOK 5

AWS CLOUD practitioner: cloud computing essentials

BOOK 6

AWS CLOUD computing: introduction to core services

BOOK 7

AWS CLOUD security: best practices for small and medium

BUSINESSES

BOOK 8

TERRAFORM FUNDAMENTALS: INFRASTRUCTURE DEPLOYMENT

ACROSS MULTIPLE SERVICES

BOOK 9

AUTOMATION WITH TERRAFORM: ADVANCED CONCEPTS AND

FUNCTIONALITY

BOOK 10

TERRAFORM CLOUD DEPLOYMENT: AUTOMATION,

ORCHESTRATION, AND COLLABORATION

RICHIE MILLER

Copyright

All rights reserved.

No part of this book may be reproduced in any form or by any

electronic, print or mechanical means, including information

storage and retrieCopyrysten©, W^hoifRichernMislion in writing from

the publisher.

Disclaimer

Every effort was made to produce this book as truthful as

possible, but no warranty is implied. The author shall have neither

liability nor responsibility to any person or entity concerning any

loss or damages ascending from the information contained in this

book. The information in the following pages are broadly

considered to be truthful and accurate of facts, and such any

negligence, use or misuse of the information in question by the

reader will render any resulting actions solely under their purview.

Table of Contents - Book 1
Introduction

Chapter 1 AZ-900 Exam Summary

Chapter 2 Skills Measured Document

Chapter 3 Why Use Microsoft Azure

Chapter 4 How to Create an Azure Subscription

Chapter 5 How to Create Resources in Azure

Chapter 6 What are Azure Regions & Availability Zones

Chapter 7 How to Choose Azure Region for Deploying Resources

Chapter 8 Azure Data Centre Fundamentals

Chapter 9 Resources and Resource Group Basics

Chapter 10 How to Explore Azure Portal

Chapter 11 How to Create Resource Groups in Azure

Chapter 12 Azure Active Directory Basics

Chapter 13 Azure Directories & Subscriptions

Chapter 14 Azure Service Models

Chapter 15 Azure Compute Options

Chapter 16 Azure Virtual Machine Basics

Chapter 17 Azure VM Scale & Availability Sets

Chapter 18 How to Create a Virtual Machine in Azure

Chapter 19 How to Explore Azure Virtual Machines

Chapter 20 Azure AD Domain Services

Chapter 21 Azure Virtual Desktop Basics

Chapter 22 Azure Container Options

Chapter 23 How to Create an Azure Container Instance

Chapter 24 Azure App Service Fundamentals

Chapter 25 How to Create an Azure App Service

Chapter 26 Serverless Computing in Azure

Chapter 27 How to Create an Azure Function

Chapter 28 Azure Networking

Chapter 29 How to Create an Azure VNET

Chapter 30 How to Add Virtual Machine to VNET

Chapter 31 How to Create a Network Security Group (NSG)

Chapter 32 How to Peer Virtual Networks

Chapter 33 Azure VPN Gateway Basics

Chapter 34 Azure ExpressRoute Basics

Chapter 35 Azure DNS Basics

Chapter 36 Azure Private Endpoints

Chapter 37 Azure Data Storage Options

Chapter 38 Azure Storage Accounts

Chapter 39 Azure Storage Account Redundancy Options

Chapter 40 How to Create a Storage Account

Chapter 41 Azure Blobs and Access Tiers

Chapter 42 Azure File Attachments

Chapter 43 How to Explore Azure Storage Accounts

Chapter 44 Azure Data Transfer Options

Chapter 45 Azure Storage Explorer

Chapter 46 How to Use AzCopy to Upload & Manage Blobs

Chapter 47 Managed Database Products in Azure

Chapter 48 Azure Migrate Fundamentals

Chapter 49 How to Use Azure Migrate to Move Apps to Azure

Chapter 50 How to Migrate Data with Azure Data Box

Chapter 51 Azure Resource Manager Basics

Chapter 52 Azure Command Line Interface

Chapter 53 Azure PowerShell

Chapter 54 How to Use Azure Cloud Shell in Azure Portal

Chapter 55 Azure Resource Manager Templates

Chapter 56 Azure Service Health

Chapter 57 How to use Azure Monitor

Chapter 58 How to Explore Azure Monitor

Chapter 59 How to Use Azure Monitor Metrics in a Resource

Chapter 60 Log Analytics in Azure Monitor

Chapter 61 How to Optimize Resources using Azure Advisor

Chapter 62 Azure App for Mobile Devices

Chapter 63 How to Manage Resources Outside Azure using Azure

Arc

Chapter 64 How to Add Local Server to Azure Arc

Table of Contents - Book 2
Introduction to Azure Identity Services

Chapter 1 Azure Active Directory Fundamentals

Chapter 2 How to Work with Conditional Access

Chapter 3 How to Implement Azure Role Based Access Control

Chapter 4 How to Implement Azure Access & Governance Tools

Chapter 5 Azure Blueprints & Security Assistance

Chapter 6 Securing Azure Virtual Networks using NSGs

Chapter 7 Azure Application Security Groups

Chapter 8 Azure Firewall Basics

Chapter 9 Azure User Defined Routes

Chapter 10 Azure Information Protection & Security Monitoring

Tools

Chapter 11 Azure Key Vault Basics

Chapter 12 Azure Security Center Basics

Chapter 13 Azure Service Trust & Compliance

Chapter 14 How to use Azure Trust Center & Compliance Manager

Chapter 15 Azure Special Regions

Chapter 16 Azure Compliance Resources

Table of Contents - Book 3
Introduction to Azure Subscriptions

Chapter 1 How to create an Azure Subscription

Chapter 2 How to Add and Name Azure Subscriptions

Chapter 3 How to Provision a New Azure Subscription

Chapter 4 Azure Management Groups

Chapter 5 Azure Planning & Management Costs

Chapter 6 Azure Free Subscription & Free Services Options

Chapter 7 What’s Affecting Azure Costs?

Chapter 8 Best Practices for Minimizing Azure Costs

Chapter 9 Azure Pricing Calculator Basics

Chapter 10 How to use the Azure Price Calculator

Chapter 11 Azure Support Options

Chapter 12 Azure Knowledge Center

Chapter 13 How to open a Support Ticket on Azure Knowledge

Center

Chapter 14 Azure Service Level Agreements

Chapter 15 How to Determine the Appropriate SLA

Chapter 16 Azure Service Lifecycle

Table of Contents - Book 4
Chapter 1 How to Register for the AZ-900 Exam

Chapter 2 How to Take your Exam at the Testing Center

Chapter 3 How to Take your Exam at Home

Chapter 4 Azure AZ-900 Exam Structure

Chapter 5 AZ-900 Exam Question Types

Chapter 6 What Happens After the Exam

Chapter 7 What if You Pass the Exam

Chapter 8 What if You Fail the Exam

Table of Contents - Book 5
Introduction

Chapter 1 Out-dated Data Centers

Chapter 2 Cloud Computing Types & Scenarios

Chapter 3 AWS Regions and Availability Zones

Chapter 4 AWS Global Infrastructure

Chapter 5 Cloud Economics

Chapter 6 How to Organize and Optimize AWS Costs

Chapter 7 How to Use the AWS Pricing Calculator

Chapter 8 How to Review Costs with the Cost Explorer

Chapter 9 How to Apply Cloud Economics

Chapter 10 How to Support AWS Infrastructure

Chapter 11 AWS Support Tools

Chapter 12 Infrastructure Support Scenarios

Chapter 13 How to Prepare for the Exam

Table of Contents - Book 6
Introduction

Chapter 1 How to Use the AWS Console

Chapter 2 How to Use the AWS CLI

Chapter 3 Amazon Compute Services

Chapter 4 Amazon EC2 Purchase Types

Chapter 5 How to Launch EC2 Instances

Chapter 6 AWS Elastic Beanstalk

Chapter 7 AWS Lambda, VPC and Direct Connect

Chapter 8 Amazon Route 53 & Elastic Load Balancing

Chapter 9 File Storage Services & Hosting Amazon S3

Chapter 10 Glacier Deep Archive & Elastic Block Store

Chapter 11 Data Transfer with AWS Sball

Chapter 12 Amazon DynamoDB, Elasticache and Redshift

Chapter 13 AWS Messaging Services

Table of Contents - Book 7
Introduction

Chapter 1 AWS High-availability and Fault Tolerance

Chapter 2 AWS Managing IAM Users

Chapter 3 How to Enable Multi-factor Authentication

Chapter 4 Amazon Cognito

Chapter 5 How to Integrate On-premise Data & Data Processing

Chapter 6 How to Integrate AI and Machine Learning

Chapter 7 Disaster Recovery Architectures

Chapter 8 Selecting a Disaster Recovery Architecture

Chapter 9 How to Scale EC2 Infrastructure

Chapter 10 How to Control Access to EC2 Instances

Chapter 11 How to Deploy Pre-defined Solutions Using Developer

Tools

Chapter 12 How to Register & Study for the Exam

Table of Contents - Book 8
Introduction

Chapter 1 Installing Terraform & Using the CLI

Chapter 2 Terraform Workflow & Deployment

Chapter 3 Terraform Data Types

Chapter 4 Output Values Syntax & Architecture Updates

Chapter 5 How to Add New Resources

Chapter 6 How to Add Load Balancer Resources

Chapter 7 Terraform State Commands & Providers

Chapter 8 How to Add Random Provider

Chapter 9 How to Use Functions and Looping

Chapter 10 How to Add Naming Prefix

Chapter 11 Terraform modules

Chapter 12 For Expressions

Chapter 13 How to Manage Sensitive Data

Table of Contents - Book 9
Introduction

Chapter 1 How to Work with Existing Resources

Chapter 2 How to Deploy the Network Configuration

Chapter 3 Terraform State Commands & Backends

Chapter 4 How to Use Data Sources & Templates

Chapter 5 How to Use Workspaces & Collaboration

Chapter 6 How to Troubleshoot Terraform

Chapter 7 Resource Taints & Crash Logs

Chapter 8 DevOps Terminology

Chapter 9 How to Add Terraform Plugin

Chapter 10 Terraform Automation Considerations

Chapter 11 How to Create Networking Pipeline

Chapter 12 How to Integrate Configuration Managers

Table of Contents - Book 10
Introduction

Chapter 1 Terraform Cloud Fundamentals

Chapter 2 How to Explore Organization Settings

Chapter 3 Terraform Cloud Workspaces

Cha pter 4 How to Confi gure Works pace Variable Values

Chapter 5 VCS and API Workflows

Chapter 6 How to Create Repository Branches

Chapter 7 HashiCorp Sentinel Fundamentals

Chapter 8 How to Operate Terraform Cloud for Teams

Chapter 9 Workspace Permissions

Chapter 10 How to Migrate to Terraform Cloud

Chapter 11 How to Use Private Registry

Conclusion

About Richie Miller

BOOK 1

CLOUD COMPUTING

FUNDAMENTALS

INTRODUCTION TO

MICROSOFT AZURE AZ-900 EXAM

RICHIE MILLER

Introduction

In the following chapters, we're going to talk about the exam and

how to prepare for it. We will first cover the benefits of getting

Azure certified and why you should consider getting the

certification. We will then do an overview of the certification exam,

what you will be evaluated on, as well as learn about the skills

measured document. Finally, we will do an overview of our

learning materials for this exam. By the end of this book, you will

know what's needed to start studying for the Microsoft

Certification exam. Let's start by learning what are the benefits of

getting Azure certified and, more particular, why the exam. Let's

start by asking, why do we even want to get a Microsoft

certification? First of all, Microsoft certifications can really help

give you a professional advantage by providing globally recognized

and evidence of mastering skills in a digital and cloud business. If

we look at the numbers, according to multiple studies, 91% of

certified IT professionals say that certification gives them more

professional credibility, 93% of decision makers agree that certified

employees provide more added value, and 52% of certified IT

professionals say that their expertise is more sought after within

the organization after getting certified. Honestly, certifications can

also help you in the financial aspect of your career. 35% of

technical professionals say that getting certified led to salary or

wage increases, while 26% of technical professionals reported job

promotions after getting certified. Now let's get a bit more and

talk why we want to get Azure certified. Microsoft Azure is one of

the top cloud providers in the world for Infrastructure and

Platform as Service workloads. 63% of enterprises in the world are

currently running apps on Microsoft Azure, second only to AWS.

However, 19% of enterprises expect to invest significantly more on

Azure in 2022, and this is leading all of the other cloud vendors

this year, so Azure is still growing at an astonishing rate. Finally,

44.5% of enterprises say that Microsoft Azure is their preferred

provider for cloud business intelligence. If we get more specific

into our Azure certification, the Azure certification portfolio is

actually the biggest certification portfolio at Microsoft, and it

includes 3 certifications, 10 certifications, 2 certifications, and 3

certifications. But what makes the unique? The Azure Fundamental

Certification is an optional, but very highly recommended

prerequisite for all of the other Azure certifications. It's the place

you should start whether you have done a Microsoft certification

before and now you want to specialize in Azure, or if this is your

first ever Microsoft certification, the is where you should begin

your Azure certification journey.

Chapter 1 AZ-900 Exam Summary

Now that we know why the is a very important and valuable

exam, let's do an overview of the exam. The Azure Fundamental

Certification is an opportunity to prove knowledge of cloud

concepts, Azure services, Azure workloads, security and privacy in

Azure, as well as Azure pricing and support. From an audience

point of view, the is intended for candidates who are just

beginning to work with solutions and services or are new to

Azure. Also, as this is a fundamentals exam, before starting to

study, candidates should be familiar with general technology

concepts, but really no other requirements as you will learn the

fundamentals in the study material for this exam. If we take a

look at the basics, the exam costs 99 USD; however, the price

might vary depending on your region. Furthermore, I highly

encourage you to check with your manager or HR person as

organizations will often reimburse the cost for learning and

certifications. The worst that they can say is no, so it's always

worth to ask. Also, something that is really nice is that

fundamental certifications do not expire. For example, associate

and Microsoft certifications expire after one year, but because this

is a exam, it doesn't expire, so that is nice. Lastly, if you're a

student, you can actually get college credit for passing Microsoft

exams and earning Microsoft certifications. This works mostly in

the United States, not internationally. If we take a look at the

skills measured, it's split up into six categories, the first one

being describe cloud concepts, which is 20 to 25% of the exam.

We then have describe core Azure services, which is 15 to 20% of

the exam. Third, we have to describe core solutions and

management tools on Azure, which is 10 to 15% of the exam.

Fourth, we have to describe general security and network security

features, which is between 10 and 15% of the exam. Our fifth

category is describing identity, governance, privacy, and compliance

features, which is 20 to 25% of the exam. Finally, describe Azure

cost management and agreements, which is between 10 to 15% of

the exam. There is one keyword that is repeated throughout each

objective, and that is the verb describe. Verbs are very important

in Microsoft certifications. So, what does the word describe mean?

As we're talking about the exam, the verb describe tells us that

you do not need to know how to configure, manage or implement

features. What you really need to know is what features are

available and what business problems they solve. The goal of this

exam is for you to be able to know what cloud computing

challenges can be solved by what Azure solution. If you talk with

someone and they say we have this business need for a workload,

you need to be able to know, this Azure solution can help you

with that. This is why the is an amazing exam for anyone working

in the Microsoft ecosystem. Whether you're an IT pro, dev, project

manager or business stakeholder, knowing what solutions

Microsoft offers can really allow you to better understand the

projects you're working on and to propose the right solution at

the right time. Now that we have talked about the objectives,

Microsoft also provides a document called the skills outline, or

the skills measured document, and it's important to review it

before and after studying for this exam. The skills outlined are the

full detailed list of everything that you need to know for the

exam. We will review it later, but really this should be our

checklist of things to study for the exams.

Chapter 2 Skills Measured Document

If you open up your browser and type this page will be one of

the first choices.

This is the Microsoft Learning page for the Microsoft Azure

Fundamentals exam. On the exam page at the top, you will see

the description and audience for the exam, you will be able to

schedule it, but what we want to talk about is the skills

measured.

You will see on the exam page, you only have the skills; however,

it's important that you click this link, Download exam skills

outline. If you click on it, it will open up a PDF, either it will

download it or open up directly in the browser depending on your

settings.

Something that is really important, because as the cloud always

changes, so do Microsoft certification exams, so you might see at

the top a warning like this one. This exam was updated on

November 9, 2020, and if you go to the bottom, at the bottom

you will have kind of a document with tracked changes on, so

you can see what were the changes that were done on the date

that it was changed. And Microsoft generally also announces at

least one or two months in advance if a change will happen, and

it will be shown the exact same way, simply the date will be on

the future so you can see if Microsoft will change the objectives.

If you go to the top, you have the Audience Profile again, same

thing, but what gets interesting is that for each exam objective, so

let's say Describe Cloud Concepts, it's broken down into and

details. Under Describe Cloud Concepts, we have Identify the

benefits and considerations of using cloud services, identify the

benefits of cloud computing such as high availability, scalability,

elasticity, agility, and disaster recovery. Then we have to describe

the differences between the categories of cloud services. So you

need to know what's the difference between Infrastructure as a

Service and Platform as a Service and Software as a Service and

then identify a service type based on a use case, so, you need to

be able to know what workloads should go where. Then for each

objective really, you have all of the details on what services do

you need to know, what are the different things you should be

able to describe. You can either save it locally or you can even

print it and then use a highlighter, once you feel confident you

learned something, highlight it, and this should be the checklist

for your exam. You need to be able to go in the details in the

skills measured document and then be able to say that all of the

different tools, services, and concepts in here, I'm able to

describe. It’s an important tool for your study to pass the exam.

Chapter 3 Why Use Microsoft Azure

We're going to look at a lot of individual services within Azure

throughout the book, but in this chapter, I want to give you a

broad overview of what Azure can do and how it's structured. I'm

going to demystify Azure for you and give you the bigger picture

of the environment that all the individual services operate in

before we go into many of those services later on. But first, I

want to talk about the Azure Fundamentals certification. If you're

studying for the exam, this book will definitely help you do that,

but this book doesn't encompass all of the exam objectives. If

you're studying for the exam, I encourage you to read the most

study guide provided by Microsoft because it does change from

time to time and then map those objectives to the topics covered

in this book. That way, you'll be able to see what else you need

to learn outside of this book in order to pass the exam. That

said, this is a book for people new to Azure, so we're going to

start from the ground up by talking about why you would want to

use Azure in the first place. Azure is a cloud platform with more

than 200 products and services that help you create applications

and solutions. The cloud platform part just means that Microsoft

abstracts away all the underlying hosting infrastructure so you can

rent basic things like web hosting, computing power, databases,

and storage, as well as some really solutions, like business

analytics tools, artificial intelligence services, and portals for

managing devices for the Internet of Things. You might never use

some of those advanced tools, but they give you options you

probably didn't have at least not without installing a bunch of

software and services on your own servers to do those things.

But even if you just host websites and file shares, traditional

things that every organization does, why would you want to use

Azure? Well, there's a lot that goes into managing your own

servers and datacenter. There's buying the physical hardware,

storing those servers in a secure place where nobody can tamper

with them, there's cooling needed because servers generate a lot

of heat, and there's electricity and of course backup electricity

unless you don't mind your applications being unavailable during

a power outage, plus all the networking components and

monitoring for health, as well as to make sure that no one hacks

your network and computers. But there's also less obvious things,

like you might have a need for a lot of computing power at

certain times of the day, week or year, so you need the servers to

be able to handle that load. Let's say you're hosting an

ecommerce application to sell your company's products and there's

way more traffic around Christmas than during the rest of the

year. You need your servers to be able to handle the load, but

they sit underutilized the rest of the year. That's a waste of

money and hard drives can fail or you might need to keep

increasing your storage because the business groups keep

generating more files. They tend to do that. Then they're storing

backups of files and databases. What about disaster recovery? If

there's a major outage at your datacenter, are you okay with the

apps not being available or do you want to maintain another

datacenter in another location that can take over that traffic?

There's also the ongoing maintenance of the operating systems on

those servers. They need to be patched and monitored for threats.

Then every five years or so, you need to replace all that hardware,

not to mention the networking components like routers, switches,

and firewalls. Microsoft, Azure and cloud computing in general

was created to address many of these issues. For the rest of this

book, we'll look at services in Azure for hosting applications and

data and all the virtual infrastructure that allows you to do that.

You'll see how easy it is to create and configure that

infrastructure in Azure without having to manage any physical

hardware like you do We'll start with signing up for a subscription

in Azure. That'll give you a way to follow along and create your

own Azure services. Then you'll start to learn how Azure is

implemented using regions, how those regions are connected, and

all about Azure datacenters in the regions. You'll learn about

resource groups, which are the containers for holding multiple

resources that make up a logical grouping, like for an application.

Then we'll explore the Azure portal, which is the main way you'll

be interacting with Azure and managing instances of services that

you create. We'll create some resources in the portal, and I'll

show you Azure Active Directory, which is the identity service in

Azure for managing user accounts, and it provides the foundation

for access control for managing Azure, as well as access control

for the people using the applications that you deploy to Azure.

Finally, we'll tie a lot of the Azure concepts together by discussing

how Azure Active Directory and subscriptions are related. So let's

get started by signing up for an Azure subscription next.

Chapter 4 How to Create an Azure Subscription

Let's create an Azure subscription we can use to explore the

Azure portal. We're going to create a free trial account at

azure.microsoft.com/free. For verification, we'll need three things, a

Microsoft account, and I'll explain that more shortly, you'll need a

phone number where a verification code can be sent, and you'll

need a credit card. The card won't get charged, not unless you

manually upgrade the account to a account. If you already have a

account, you can just use that instead, but you will get charged

for everything you create. Let's go to azure.microsoft.com/free.

If you've never signed up for a free account, you can do that and

get 200 USD credit for 30 days to use for creating resources in

Azure. In addition to that, there are certain services that are free

for 12 months and other services that are always free, but they're

pretty limited in functionality. If we scroll down a bit, this page

describes some of the things we can do in Azure, like hosting

web applications using Azure App Services, using Azure Machine

Learning, creating Azure Virtual Machines or containers, and

serverless options like Azure Functions and Azure Logic Apps,

which let you build workflows with tons of connectors to services

inside and outside of Azure.

We'll talk about all these services later on. Further down, it says

that if we upgrade this free trial to a account where our credit

card can get billed for usage, we'll be entitled to some free

azure.microsoft.com/free
azure.microsoft.com/free

services, like 750 hours of running a Linux or a Windows virtual

machine, a Azure SQL Database, and 5 GB of blob storage.

We'll talk about storage later on too. But now, let's scroll down

and click Start free. The first thing we need is either a Microsoft

email address or a GitHub account.

If you're not aware, Microsoft acquired GitHub in 2018, which is

why you can use your GitHub identity to create an Azure account.

If you're using an email address, it needs to be a Microsoft one,

so usually an Outlook, Hotmail or a Live account, but you can

even use a phone number now to create a Microsoft account. The

point is that you need that Microsoft account already in order to

create an Azure account, but you could create the account from

this link. I already have a Microsoft account, so I'll enter that

email address here and I'll enter my password. I don't have

multifactor authentication set up for this Microsoft account, but

you could do that in which case you'd need to provide another

factor of authentication when logging in, like a code that's

generated in the Microsoft Authenticator app on your phone or a

temporary code that's sent to you by text or phone call. Now I'm

brought to the screen where I can fill in my information. Since

I'm logged in, it picks up my name and I need to enter a phone

number. This can be a cellphone or a home phone because you

can choose to have the code sent to you by text or through an

automated voice call. I'll choose Text me and I get a text on my

cell phone with a code. So I'll enter that code here and click

Verify code. Now I need to enter my address.

Now we need to agree to the customer agreement and privacy

agreement. There are links here, of course, so feel free to read

through those if you'd like before agreeing. I'll click Next and

here's where you need to enter the credit card.

It says you won't be charged unless you move to pricing. You

should use a credit card here that's never been used for a free

trial account, otherwise you may get denied, which makes sense

because you shouldn't be able to keep creating free trials in order

to get credits to use Azure for free. So I'll enter my credit card

info, and just click Sign up. Microsoft will verify your credit card,

and once that's done you'll come to a screen that says you're

approved and there's a link that will bring you to the Azure

portal. So let's go to portal.azure.com, which is the administrative

portal for Azure and the browser brings me into the portal.

Next, we'll explore the Azure portal a bit and see how to create a

resource in Azure.

portal.azure.com

Chapter 5 How to Create Resources in Azure

I'm logged into the Azure portal at portal.azure.com. An Azure

Active Directory instance gets created with this Azure trial, which

means we can create individual users and assign them

permissions, so you don't have to keep using this administrative

account to log in and really you probably shouldn't because it has

superuser privileges. It's a good idea to create an administrative

account in Azure AD and use that instead. On this home page,

you can access some Azure services, and there's a menu on the

left that has shortcuts to some default services, like any Azure

virtual machines you've created, SQL databases, and the Azure

Active Directory associated with this subscription.

You can access the list of all services from this menu item. You'll

see a tour of the Azure portal later, but let's just look at creating

a resource. I'll choose the Virtual machines link here.

That brings us to a page where all the virtual machines that were

created in this subscription are listed, and of course there aren't

any yet.

Let's select the list to create one, and at this point we haven't

selected whether this will be a Linux or a Windows VM. That's

fine. What I really want to show you here are some of the

mandatory inputs.

portal.azure.com

The first one is the subscription, and that's filled out

automatically. And then there's the resource group that this virtual

machine will belong to. Resource groups are basically a container

that holds resources, and everything in Azure, including a virtual

machine, is considered a resource. We'll talk about how resource

groups are used for security and deployment purposes later on.

The other thing is the region. You need to select the region that

this virtual machine will be created in, which basically means the

datacenter where it will exist. The list is pretty small, but that's

because we're using a free trial account. Microsoft limits the

datacenters available, so regions in high demand don't use too

much capacity on free trials. But you could contact Microsoft

support if you really want to create this VM in a region that's not

listed here. I won't go through anything else on this page. We'll

look at creating virtual machines in the next chapter. So, now you

know that you'll need to choose a region when creating a

resource. Let's talk about regions in Azure in more detail, next.

Chapter 6 What are Azure Regions & Availability Zones

Now let's talk about how Azure is physically implemented. You

create services in Azure, like an Azure App Service for hosting a

web app or a storage account for storing files. You can then

deploy your applications and files to those services. That all gets

hosted on Virtual Machines in Azure. Depending on the service

you choose, you may have more or less access to those virtual

servers for configuration. If you create a virtual machine, for

example, you have full control. If you create an app service, you

don't have direct access to the virtual machine. But the virtual

servers in Azure are hosted on physical servers somewhere. That

somewhere is an Azure datacenter. Azure datacenters are physical

buildings located all around the world. At the time, there are over

200 Microsoft Azure datacenters worldwide. Each datacenter

houses thousands of servers. There are about 4 million physical

servers throughout the world. We're going to talk more about how

datacenters are implemented later on too. Datacenters are located

in regions. A region is a geographic location, often consisting of

multiple datacenters. A region is what you choose when you

create a resource. You decide which region you want your service

created in. We'll talk about considerations in choosing a region in

just a little bit. There are often multiple datacenters within a

region, which helps in case a single datacenter becomes

unavailable. But within certain regions, there's what's called

availability zones. Availability zones are unique physical locations

within a single region. There's a minimum of three separate

availability zones in the region, and each availability zone is made

up of one or more datacenters equipped with independent power,

cooling, and networking. Some services like storage in Azure

storage accounts will replicate your data automatically across all

the zones in the region. Every region is located within a

geography, which in Azure is a group of regions that define a

boundary for data residency and disaster recovery. A geography is

generally a single country, but it can be made up of multiple

countries. Within a geography, there are region pairs available.

Region pairs are datacenters that are generally at least 300 miles

apart to reduce the impact on availability caused by a natural

disaster or a major power outage. They're connected through a

dedicated regional network. Regional pairs allow you to configure

automatic replication and failover for certain Azure services, like

when you choose georedundant storage for your Azure storage

account. Azure automatically makes copies of your data across the

regions in the region pair. For services that don't have options for

failover like that, you can design your own strategy for failing over

to another region if your primary region isn't available. Virtual

machines are an example of this. You have to deploy duplicate

virtual machines in another region yourself if you want to have

them available for failover. This is called the shared responsibility

model in Azure. The services are there for you, you just have to

design the solution to take advantage of them. This page in the

Azure documentation shows you the regions that are available in

the different Azure geographies. You can see some geographies

have more regions than others. And on this page in the docs,

you can see the region pairs that are available. They're generally

located in the same country, but not always. For example, at the

bottom, it says that the Brazil South region is paired with the

South Central US region. Next, let's talk about the factors that go

into choosing an Azure region to deploy your resources to.

Chapter 7 How to Choose Azure Region for Deploying Resources

Now, let's talk about the factors that go into choosing an Azure

region when you're creating resources in Azure. The first is

proximity to users, and this has to do with performance. There

are physical limitations to how fast data can travel around the

world. If most of your users are located in Australia, for example,

it doesn't make sense to host your website and database in a

datacenter in the United States and have every request and

response travel around the world, unless of course there are other

reasons to choose that datacenter. One such consideration is that

not all Azure services are available in all regions, especially when

they're first released. You can go to this page in the Azure docs

to see what services are available in which regions.

You can choose the regions and the service you're interested in or

remove the filter and scroll through all the services to see what's

available. Notice how there are services that are nonregional.

These are ones that don't require you to choose a region when

you create them, like the Azure Bot Services. It's also possible

that within a specific service, some features might not be available

in the region closest to you. A great example of this are different

sizes for virtual machines. On the virtual machine pricing page, if

I scroll down, the region is selected as East US.

All the classes of VMs are shown below. The amount of cores,

RAM, and temporary storage is shown for each.

So, there are basic VMs and there are specialized ones for things

like compute tasks. I'll just search for a certain class of VMs. And

they're shown here for East US, but if I change the region to

South Central US, pricing is not available for this region because

you can't create this class of VM there.

So that's a consideration when choosing a region if you have

specific needs for certain services. Another reason you might

choose one region over another is for regulatory or compliance

reasons with regards to data residency. If you work in an industry

that's highly regulated or your company has policies around where

the data must reside, then you might need to choose your region

based on that criteria. Now let's talk about how datacenters are

connected together, and for this I want to show you this awesome

interactive page on microsoft.com. This lets you choose a

geography which tells you how many regions are available, and

then you can choose the regions and see details like where it's

located, the year it opened, how many availability zones the region

has, some of the products available, information on disaster

recovery options like region pairing, and standards that the

datacenter complies with.

On this map, you can also see how the Microsoft global network

is connected. There's over 165,000 miles of fiber optic and

undersea cable systems that connect Azure datacenters around the

world. When you access a resource in Azure, the traffic goes from

microsoft.com

your computer through your internet service provider to a point of

presence, or PoP, that's managed by Microsoft where it enters into

the Microsoft global network. Microsoft has over 185 of these

PoPs around the world, so you get routed to the one closest to

your location. You can click on these PoPs on the interactive map.

PoPs are often placed within milliseconds of global population

centers. Then, IP traffic stays on the Microsoft global network to

access resources in Azure where it stays encrypted, flowing across

the fiber and undersea cables to datacenter regions. You choose

which regions to create your Azure resources in, so you can place

your applications and data closest to where your users are, which

helps keep the response time quick. Next, let's talk about Azure

datacenters in more detail.

Chapter 8 Azure Data Centre Fundamentals

A Microsoft datacenter is a physical location that often looks like

a bunch of warehouses. You can actually see a tour of a

datacenter on microsoft.com. There's a virtual tour version as well

that leads you through the areas of a datacenter. Each warehouse

is big enough to store a commercial aircraft just to give you a

sense of the size. Inside those warehouses are thousands of

physical computers that host the virtual servers that you use when

you create resources in Azure. The datacenter is built to withstand

failures of individual components, so it has redundant networking,

electricity, and cooling systems, as well as backup power sources.

Because Microsoft hosts so many customers in their datacenters,

you get the economy of scale of sharing those resources. Of

course, your data is all separate from other customers and

encrypted, and Azure datacenters undergo security reviews and

have many industry certifications to ensure that your data is

protected. Multilayered security is used to protect physical

datacenters, infrastructure, and operations, and Microsoft has over

3500 cybersecurity experts monitoring activities in order to protect

your business assets and data. So Microsoft is investing a lot

more effort in security than any single customer could with their

own datacenters. Microsoft used to be pretty secretive about their

datacenters, but now they're more open about how their

datacenters are structured and are working to standardize server

and datacenter design through the Open Compute Project. Design

specifications for server racks and server blades are being shared

microsoft.com

with the open source community through Project Olympus, similar

to how software is made open source. Now let's talk about the

energy needed to power a datacenter because this is a major

consideration not only affecting cost, but affecting the

environment, and that may be important to you when considering

using Azure. Microsoft often chooses datacenter locations based

on proximity to renewable energy sources. Microsoft enters into

agreements with power companies to build wind and solar farms

across thousands of acres of land. They build datacenters near

hydroelectric dams and choose temperate locations so datacenters

can be cooled by the outside air. There's even a project to convert

waste heat from new datacenters in Finland into heating for cities.

Heat is going to be transferred to customers through a system of

insulated pipes for residential and commercial heating

requirements. When it comes to backup power systems at

datacenters, they are often powered by diesel fuel, but Microsoft

is researching alternatives like synthetic fuels and hydrogen fuel

cells. They plan to eliminate dependency on diesel by 2030. Let's

look at the global infrastructure map again.

The yellow icons represent renewable energy projects that

Microsoft is involved in for wind and solar. These are purchase

agreements with third parties. There's a lot of research and

innovation going on into datacenter design, and especially cooling.

One interesting development is Project Natick, which is an

underwater datacenter that was operated for five years off the

coast of Scotland where servers were housed in a sealed container

at the bottom of the ocean floor. That allowed servers to be

cooled using the temperature of the ocean. Another interesting

development is the Azure Modular Datacenter. This is a shipping

container that allows for setting up an Azure datacenter in a

remote area where cloud computing wouldn't have been possible.

They use Azure Stack to create a private cloud. These modular

datacenters can be used as a mobile command center for

humanitarian assistance, for military missions, and to set up

wherever high performance computing is needed, and they can

run connected to the internet or disconnected. So there's lots of

interesting things happening with regards to Microsoft Azure

datacenters, and you can read about it for hours online. But the

important thing is that Microsoft spends a lot of effort on

optimizing the design of their datacenters. Next, let's talk about

the resources you create in Azure and how they're logically

organized using resources groups

Chapter 9 Resources and Resource Group Basics

Now let's talk about resources and resource groups in Azure. A

resource is just a manageable item in Azure. Let's take a look at

the Azure portal. The All resources menu item shows all the

resources that have been created in this subscription.

This includes things like App Services for web apps, Storage

accounts, there's a Log Analytics workspace where logs are stored

from the various services, a Key vault where encryption keys and

certificates are securely stored, and there's a Virtual machine here.

When you create a virtual machine, other resources are created

too, like a public IP address for the VM so it can be reached

over the internet, a disk to hold the operating system, a virtual

network that the VM is connected to, and a network security

group that's used to secure the network. We'll look at all these

elements later on, but the point is pretty much anything that can

be configured in Azure is considered a resource, even when you

think it might just be part of another resource. Each of the

resources in this list were created in a location, which is an Azure

region, and each resources part of a subscription. A resource

group is a container that holds a set of resources that share the

same lifecycle. In other words, you deploy, update, and delete

them together. You can add and remove individual resources to

and from a resource group as your solution evolves, but the

general guidance is that if a resource needs to exist on a different

deployment cycle, then it should be in another resource group.

Each resource you provision can only exist in one resource group.

You can move a resource to another resource group if you need

to, but it won't exist in both resource groups. Resources in

different groups can communicate with each other. For example,

you might have three different web applications being maintained

by three different teams and they all exist in their own individual

resource groups, but they all share a common database. That

database can be in a completely different resource group and

those web apps will still be able to use it. One of the main

features of a resource group is that you can apply security

controls to it for administrative actions, so you can assign reader

roles to developers to be able to see what resources are in the

resource group, but only administrators can make changes to the

resource group. Resource groups allow you to leverage Resource

Manager templates so you can deploy a set of resources using a

JSON template and you can export a template from an existing

resource group in order to deploy those resources in a repeatable

way. This is great for moving a solution from a dev environment

into a production environment, for example. When you create a

resource group, you specify a region that it gets created in, but a

resource group is just a container with metadata about the

resources it contains, so the resource group can be created in a

different region than the resources in the group. You can create a

resource group during the creation of most resources, like when

you're in the process of creating a new virtual machine. In that

case, the resource group will get created in the same region that

you specify for the virtual machine. You can also create the

resource group by itself and then select it as the resource group

to use when creating other resources. Next, let's explore the Azure

portal, and in the process we'll create a resource group.

Chapter 10 How to Explore Azure Portal

Once you have an Azure account, you have access to the

subscriptions associated with that account by going to

portal.azure.com. I'll select the Microsoft account I used to create

this Azure account. And I supplied my password earlier, so I'm

already logged into my Microsoft account in this browser. That

brings us into the Azure portal, and by default we're brought to

the home page, which has some shortcuts, including shortcuts to

create resources in Azure. Let's look at the menu across the top.

At the top right is information about your account. There's a link

to sign out, a link to go to the details of this Microsoft account,

and the ability to switch directories. We'll talk about Azure Active

Directory tenants later on, which is what this refers to. You can

also access a link here to be taken to view your Azure bill if you

have one.

Next across the top is the ability to send feedback to Microsoft.

Then there's a link for Support + troubleshooting. Azure provides

unlimited free support for subscription management, and for

technical questions there are several support plans available which

do have costs involved, but during a trial, you get the Developer

support plan for free, which is normally a paid plan. Next is the

Portal settings.

The first tab here has to do with directory management, which

again involves Azure Active Directory, so I won't talk about that

portal.azure.com

just yet. But this is the one I want to show you, Appearance +

startup views.

I personally like to see the left menu permanently docked and

also prefer the first screen I see to be the dashboard. Let's apply

these changes. Now that menu appears on the left.

We'll talk about this in a second, but first let's finish off with the

menu at the top. The Notifications link shows anything that's in

progress or has recently happened, like when you create a

resource in Azure it will show here that it's in process and when

it's finished being created. The next link is to change directories.

So, this is just a shortcut to the first tab on the Portal settings.

This farthest link on the left is for the Azure Cloud Shell.

This is basically a command line interface right within the Azure

portal that lets you run PowerShell commands and commands for

the Azure CLI, or command line interface. Those are powerful

ways to manage Azure, and we'll take a look at them later on

too, as well as using this Azure Cloud Shell. Now let's look at

the menu on the left.

The Home link shows that screen we saw when we first logged

into Azure, so that was the home screen. The dashboard is the

screen that will get shown from now on when I log in because of

the portal settings I changed. The dashboard is a focused view of

your resources in Azure. You can visualize data from multiple

resources here and pin charts and views to get a complete picture

of the health and performance of applications you create in Azure.

That'll make more sense as we go along. You can add and

manage tiles, and they can be configured individually or you can

modify the whole page by adding and removing tiles. There's

some suggested ones here, but you can pin pretty much anything

in Azure to your dashboard. You can create multiple dashboards,

so you can have one for viewing the state of certain applications

or one for viewing the state of all the virtual machines, basically

whatever you want to see at a glance. Next, let's create a

resource group in the Azure portal.

Chapter 11 How to Create Resource Groups in Azure

Since we talked about resource groups earlier, let's look at how to

create one in the portal. You can do that from the existing list of

resource groups. Along the left here are shortcuts to the various

resource types in Azure.

You can modify this to list the types of resources you normally

manage, but this is the default. So I don't have any resource

groups yet, of course, but from the Create button we can create

one. But before we do that, let's pretend we don't have a shortcut

on the left menu for this type of resource. In that case, we can

go to All services on the menu. From there, we could browse the

categories or search for the name of the resource type we want

to create or manage. If I click on the resource type, we get

brought to the same screen as before. And this little pin beside

the name of the resource type, this is how you would pin this

view or list to the dashboard. The third way to create a resource

is from the link, Create a resource.

That opens the Azure Marketplace, which Microsoft calls its online

store of IT software applications and services built by companies.

It looks similar to the All services screen you saw with categories

of different types of services along the left, and you can use this

to create basic Azure services, like a resource group. But the

Azure Marketplace also contains you can install and sometimes

purchase from other companies, like SendGrid is listed here,

which is an online email service you can set up and use in your

solutions. That's not a Microsoft service, so it's available here in

the Marketplace, but not on the All services menu. Let's look at

some of the categories here. Compute is where Azure services like

virtual machines and function apps can be created, but also where

preconfigured VMs can be chosen, like certain Linux distributions

or a Windows Server VM with Visual Studio already installed.

Storage has Azure storage accounts, but also offerings from other

vendors that work in Azure on the right side. Same with Web.

You can install plain Azure services or install a VM with

WordPress already configured and ready to be used. But let's just

search for resource group from here, and it shows up in the

results, so let's click this. Now, instead of being brought to the

list of resource groups in our subscription, we're brought to the

Marketplace view, which provides an overview of the service,

information about plans that are available, and so on.

Of course, there's not much here because this is just a basic

Azure service, so let's create this resource. We're brought to the

create screen and our subscription is selected by default. I'm only

logged into one subscription.

We need to choose a name for this resource group, and this only

needs to be unique within our subscription, not across all of

Azure. You can name it whatever you want, it's just a string, but

often companies come up with a naming convention for sorting

and for searching. I like to end my resource names with an

abbreviation of the resource type, so in this case I'll add an

underscore and rg for resource group. Now you have to choose

the region. A resource group is just metadata about all of the

resources in the group, so this isn't where those resources will

get created. You'll choose that separately for each individual

resource that you create. This is just where the resource group or

metadata itself will get created. I'll select the Azure region closest

to me. Creating a resource in Azure is kind of like a wizard. You

move through the tabs using the buttons at the bottom. The next

page is Tags. Tags are key value pairs of metadata that you can

add to resources, so they can be searched and grouped together.

You might use this to mark that a resource belongs to a certain

application or a business group or an environment. Tags are

helpful when it comes to billing too. There's a service in Azure

for cost management, and you can filter resources by tags to see

how much all the resources with a particular tag are costing you.

You can also download a detailed spreadsheet of costs, and tags

are included there for filtering purposes too. I've just added an

environment tag. Let's move to the next screen. This is just a

summary, so I'll click Create. We can see the new resource group

by going to the Resource groups shortcut in the menu. Now we

have one item listed.

I'll click the name, and that opens up the details for this resource

group. The menu items are organized into groups, and this first

group is common to all resources in Azure.

The Overview tab is where we can see all the resources included

in this resource group. Of course there aren't any yet. We can

also delete the resource group from the top menu. The Activity

log is where any activity shows. I've already created and deleted a

resource group with the exact same name, so it seems to be

showing those activities on this resource group. The Access

control tab is where you specify who can access the resource and

what permissions they have. Of course there's only my account,

and I'm the owner so I have full permissions, but you might want

to grant someone access so they can't modify resources here.

Tags is where we can manage the tags for the resource. The next

group of menu items are different depending on the type of

resource you create, but you'll often see entries for monitoring

metrics and logs for the particular resource. Now let's close out

of these and go to All resources. We actually don't have anything

here.

Resource groups don't show up in all resources; just resources

contained in resource groups are listed here. that's a tour of the

Azure portal and resource groups. Next, let's talk about Azure

Active Directory.

Chapter 12 Azure Active Directory Basics

You probably don't plan on being the only person managing or

using the resources in Azure. So now, let's talk about the

directory in your subscription that stores user identities. That's

called Azure Active Directory.

I've got a shortcut on the left menu, but let's go to All services,

and Azure AD is right here at the top. This is called an Azure

Active Directory tenant. When a subscription gets created, it gets

its own tenant, so it's a place where the users for your

organization only are managed. The Azure AD tenant is the

container for users and groups that you want to give access to

resources in Azure. That could be to administer things like

deploying web apps or creating containers in Azure Blob storage,

or it could be user identities for end users for accessing a web

application or uploading data to that file storage. On the Users

blade, and by the way, when you click a menu option, the panel

that opens with the details is called a blade, so this is where all

the users in this directory are listed. You can manually add users

here, sync enabled. This means that you can actually synchronize

your Active Directory with this Azure Active Directory tenant and

then assign those users permissions in Azure. You do that by

downloading and installing a tool called Azure AD sync. this

identity is a Microsoft account. It has a really long identifier

because it's an external entity. I'll show you shortly how you can

use your own custom domain name for your company here, but

let's create a new user first.

When you create a user, the first option you have is whether you

want to create the user identity in this Azure AD tenant or you

want to invite an external user. External users are part of

something called Azure B2B collaboration, or business to business.

That's for users outside your organization who aren't part of an

Azure Active Directory tenant, and it lets you give them access to

applications and services. They become an object in your Azure

Active Directory that you can assign permissions to, but their

process is handled by their own external identity provider. Let's

create a generic account called administrator. I'll just give it a

name, and we can create the password or let Azure do it. Just

make sure you copy this somewhere. You won't see it again, but

you can reset it. It says in the Notifications area that the user

was created successfully. Let's drill into the details for this user.

From here, we can add this user to groups. Groups let you

create, well, groups of users, so you can then assign roles to

either individual users or to groups.

Those roles are used to provide access to resources in the

subscription. You don't have to use groups, but it makes

management a lot easier. There are lots of roles in Azure, and

they can get pretty granular in terms of what they allow. Let's just

give this user the Global administrator role. That will allow them

to perform pretty much any action in Azure. So I'll add this role

and then refresh the view. It might take a few seconds for the

portal to pick up the change. This user has the Global admin role

now. Farther down the menu, you can assign licenses.

By default, your Azure AD tenant has the Azure Active Directory

Free license, but there are other licenses that you can assign to

individual users, like Azure AD Premium Pi or P2 licenses. These

give users additional features, like being eligible for Conditional

Access policies. I won't go into too much depth on Conditional

Access policies, but basically they allow Azure to make

authorization decisions based on things like the Azure AD groups

that the user belongs to or the location the user is coming from

and characteristics about the device they're using. Conditional

Access policies can also work with Azure AD Identity Protection,

which uses machine learning to identify risky behavior. If the user

is approved to sign in after the Conditional Access policies are

evaluated, you can also choose to enforce authentication. That's

where a user needs to provide a second factor of authentication

after their username and password, and that's enabled by a

service called Azure Authentication, which can text a passcode to

the user's mobile device that they then enter into the browser to

complete their login to applications in Azure. There's also an app

the user can install on their device called the Microsoft

Authenticator app. Azure can send push notifications to the app

for the user to approve a sign in that was initiated in the

browser. The app can also generate a rolling token code every 30

seconds that can be used when logging into Azure. That's just a

quick introduction to Azure MFA. There's more to it than that,

like being able to use the Microsoft Authenticator app for

passwordless authentication. Let's go back to the Azure Active

Directory tenant that we were looking at. You can use Azure MFA

with Conditional Access policies if your users have at least an

Azure AD Premium Pi license.

You can also enable it for individual users so they always have to

use authentication, and you do that from this screen. Let's go

back up the hierarchy here to the root of this Azure Active

Directory tenant.

Another thing you can create in Azure AD is app registrations,

which represent an application, like a mobile app or a web app or

a web API. It creates a trust relationship between your app and

Azure AD, then those applications can use Azure AD to log in

their users. Remember I mentioned that you can sync your Active

Directory with this Azure AD tenant.

That's done using Azure AD Connect, and you can download the

tool to install it from this blade. Then you have options on how

to set up that connection, either directly or using federation with

a tool like AD FS. I also mentioned earlier that you aren't

restricted to the domain name that Azure creates for you.

You can add your company's own domain name to this Azure AD

tenant. You need to own that domain name, though, just like you

would have to own it when using it for a website. You can

purchase a domain name from a domain name registrar. But

let's create a new user and let's look at the domain list in the

tenant. It shows both domain names, the default one that Azure

created and the one I added, so I can create a user principal

name. That's all for Azure Active Directory for now. You might

have some questions still about subscriptions and directories and

how they relate, so let's talk about that relationship in a little

more detail next.

Chapter 13 Azure Directories & Subscriptions

Let's tie together some of the concepts you've learned about so

far. Earlier when we created an Azure free trial, we used a

Microsoft email account, and that created an Azure account. An

Azure account is referred to as a billing account in the

documentation. It's an entity that can have subscriptions. In other

words, I can create multiple subscriptions and access all of them

when I log in with my account. The documentation says there are

several types of billing accounts. The Microsoft Online Services

Program contains the Azure free account that we created. It also

contains the accounts that charge our credit card for the

resources consumed and the Visual Studio subscriber accounts

that are basically accounts with some free credits. There are also

enterprise agreements for organizations, Microsoft Customer

Agreements also for organizations, and Microsoft Partner

Agreements for cloud solution providers. Let's look at how these

relate to subscriptions. For the type of account we created, we

can have multiple subscriptions, so I could continue with my free

trial subscription and also create a subscription, or I could

upgrade the free trial subscription to a pay as you go.

Each of those subscriptions gets an invoice showing the resources

that were consumed each month, and each subscription has a

payment method, a credit card. Within a subscription, resources

are created, and they're actually created within resource groups.

We won't look at the other billing account types. They just add

some additional layers for management and accounting. When we

signed up for the Azure free trial, a subscription was created, and

there was an Azure Active directory tenant created too, so you

might assume that this is a relationship, but it doesn't have to

be. Multiple subscriptions can have a trust relationship with the

same Azure Active directory tenant, but each subscription can only

be linked to one Azure Active Directory tenant, and you can

change the tenant that the subscription trusts. To recap, an

account can have multiple subscriptions. Subscriptions contain

multiple resource groups, and resources groups contain resources.

A resource can only belong to a single resource group, and a

subscription has a trust relationship with an Azure Active Directory

tenant. The subscription trusts Azure Active Directory to

authenticate users, services, and devices. You can have multiple

subscriptions trust the same Azure AD tenant, but each

subscription can only trust a single directory, and all of the users

have a single home directory for authentication, but each user can

also be a guest in other directories. Okay, so you might be

wondering why would you want to have multiple subscriptions?

You might want individual subscriptions for different environments

like dev and production and be able to apply separate access to

manage each subscription using access control, or you might want

to keep resources separate in different subscriptions to make

billing easier because each subscription can provide a bill for the

resources that it uses, so maybe different business groups in your

organization want that. Having multiple subscriptions might seem

like it could be a management nightmare, but there's something

called management groups that make this easier. Management

groups can contain multiple subscriptions. They can also contain

other management groups so you can create a hierarchy. Maybe

you create management groups for different departments so they

each have their own subscriptions or for different however your

organization is structured. Then you can manage security for your

subscriptions at the management group level. Permissions given at

the management group level will get inherited by the management

groups and subscriptions underneath. All of the subscriptions

under the management group need to trust the same Azure Active

Directory tenant, though. There's also something in Azure called

Policies, and these allow you to set rules, like virtual machines

can only get created in the East US region. Then you apply that

policy to a subscription or at the management group level and it

gets enforced and reported on. We won't get into Azure Policies

in this book, but just know that you can use ones, like requiring

all resources to use certain tags or more complex policies like

ones that enforce compliance to FedRAMP and HIPAA standards.

You can browse all the policies available in Azure on

docs.microsoft.com, and you can also create your own custom

policies and apply them to your management groups and

subscriptions. In summary, so far you have learned how instances

of services that you create are organized into subscriptions and

resource groups, and you learned how the underlying physical

Azure platform is implemented through regions and datacenters.

You also saw how to create an Azure subscription, navigate the

portal, and create resources, and you learned about how Azure

Active Directory is used to manage identity and access for

managing Azure, as well as being used as the foundation for

access control by users of your applications. Next, we're going to

docs.microsoft.com

look at some of the services in Azure used for compute, like

virtual machines and app services.

Chapter 14 Azure Service Models

Let's talk about cloud computing service models. This might be a

review for you, but it helps to put Azure compute options into

perspective. These are categories that describe how much a

resource is managed for you in the cloud. Another way to look at

it is how much responsibility do you have with regards to

managing the resource. Let's look at each of these. The model

isn't a cloud model at all, it's just here to explain all the things

that you're responsible for when you host your own infrastructure

This is what we talked about earlier, but besides all the physical

infrastructure, if you're hosting your applications on virtual servers,

then there's virtualization software that needs to be configured

and managed. Then you're responsible to configure the virtual

machines, which includes OS licensing and patching. You're

responsible for installing the middleware on the servers and any

runtimes, like the .NET Framework or Java, and then managing

the data and applications that you host on those virtual servers.

When you move to the cloud with the Infrastructure as a Service

cloud service model, you can choose to provision resources like

virtual servers. In Azure, you can create Windows or Linux VMs

and everything below the OS layer of the VM is managed for you,

so you don't have to worry about hardware refreshes or disks

failing, you just choose the type of virtual machine you want and

you pay for it. The cost includes the operating system license, but

you can also leverage existing Windows Server licenses you might

already own You can install whatever you want on the VMs that

you provision as Azure Virtual Machines. If you want to install a

SQL Server database, for example, you can do that yourself. We'll

look at some other options for SQL Server and Azure later on

too. The next service model is Platform as a Service, or PaaS.

Platform as a Service is a complete development and deployment

environment in the cloud. Azure App Service is a compute service

in Azure that allows you to host web applications and APIs in a

preconfigured environment where all the runtimes are installed,

like .NET Core, Java or PHP. And those frameworks get updated

along with the underlying virtual machines that they run on. You

only need to manage the applications and services that you

develop. Microsoft manages everything else. The third cloud

service model is Software as a Service. This is actually the most

popular use of cloud computing in terms of the number of users.

These are fully functional apps that users can connect to over the

internet. Office 365 is the Microsoft solution for email, calendars,

and office tools. Instead of buying software to install on the

desktop and managing your own email servers, you can purchase

Office 365 on a basis. You can still download and install Office

tools like Word and Outlook, but they're also available in the

browser. The central hosting of the Exchange Server is handled in

the cloud and hosted by Microsoft. SharePoint is another

Microsoft offering that falls under Software as a Service. As you

can see with the Software as a Service model, you just use the

software and you get a fully managed service that's available

across devices and platforms. The services you'll be learning about

throughout this book fall into the Infrastructure as a Service and

Platform as a Service models. Now that you understand a bit

about responsibilities with these service models, let's talk more

about compute options in Azure next. Then we'll look at the

major compute models individually, starting with virtual machines.

Next, we'll talk about containers, which allow you to package

applications and dependencies for deployment. After that, we'll

look at Azure App Service. And finally, explore Azure Functions,

which allow you to run small pieces of code without requiring a

full-blown application.

Chapter 15 Azure Compute Options

Azure compute is really an overarching category for a bunch of

services in Azure that provide computing power for running

applications. The main services in Azure compute are virtual

machines, container instances, and there are a number of ways to

host containers in Azure, Azure App Service and Azure Functions.

Let's discuss each of these at a high level and then we'll get into

more detail. Virtual machines are software emulations of physical

computers. They run on physical computers in Azure, but multiple

virtual machines, or VMs, can run on the same physical host and

use the resources of that host. You connect to a virtual machine

in Azure using a remote desktop client, and you can manage all

aspects of the operating system, including installing whatever

software on the VM that you want. It gives you the most control,

but also requires the most management because you're

responsible for all the configuration and security patches and

updates required by the operating system on that virtual machine.

But you'll see that Azure offers some services to make that easier.

Let's talk about some of the benefits of choosing virtual machines

in Azure. Virtual machines are probably the most familiar option

for most IT pros because they're just like virtual servers that you

would maintain If you're planning on migrating to Azure from

virtual machines can provide a approach by creating VMs in Azure

similar to the physical or virtual servers you have You might have

applications that require operating system resources like registry

access or that use authentication mechanisms like Windows

Integrated Authentication and you don't want to rewrite those

apps to run on cloud services like Azure App Service, or you

might have older applications or custom software that needs to

be installed, VMs are the way to go. Besides having the ability to

install whatever software you want on the virtual machine, you can

deploy your own applications and you can host multiple

applications on the VM. So, virtual machines can have some cost

savings versus deploying those apps to single instances of other

services, but the applications share the resources on the VM, so

you need to be aware of one application using too much CPU or

memory and affecting the others. Or if multiple applications use a

shared library, for example, updating that library to benefit one

app could cause another app to break. That's an issue that

containers are meant to solve. Containers are used to wrap up an

application into its own isolated package. It's for applications and

services, so web apps are a typical example. When an app is

deployed using a container, everything the application needs to

run successfully is included in the container, like runtimes and

library dependencies. This makes it easier to move the container

around. Containers reduce problems with deploying applications.

Containers are kind of like virtual machines, but they run on top

of virtual or physical servers using a container runtime layer,

similar to how virtual machines run on a virtualization layer. You

can host multiple containers on a single virtual machine if you

install a container runtime, and Docker is an example of one of

those. In terms of the service models we discussed earlier, there

are services in Azure that host containers on Platform as a

Service offerings, like Azure Container Instances and Container

Apps. The next Azure compute services fall under the Platform as

a Service model. Azure App Service lets you quickly build and

deploy web apps, mobile apps, and API apps that can be

leveraged by other applications or accessed by client apps over

HTTP using REST. They also allow you to run apps and scripts,

similar to how you would install a Windows service on your web

servers to perform some task on a timer. You can choose your

application runtime, like .NET, Node.js, and several others, and

you can choose whether you want the underlying VMs to be Linux

or Azure App Services takes care of managing those underlying

VMs for you, which is the most obvious benefit, but you also get

extra features like integration with authentication providers like

Azure Active Directory to handle authenticating users to your

applications. You get something called deployment slots, so you

can have multiple versions of your app for development and

production and quickly swap those deployment slots to promote

the apps. App Services also has features to scale out the

underlying VMs. You can add and remove virtual machines

manually or Azure can autoscale the VMs based on metrics that

you configure, like the amount of CPU being used. Azure App

Services are great for running web apps and APIs that are used

by mobile apps and client apps and other services, but sometimes

you just need a piece of code to run in order to do some task

like process a file or update a database table or send a message

to another service, and that's what Azure Functions are for. It's a

service to host small pieces of code, but you can chain functions

together or use them as part of other solutions. Functions can

run on a timer or in response to events like an HTTP call, and

there are triggers that you can use, like if a file changes in Azure

Storage that can trigger an Azure Function to run. You only pay

for the compute power that you use. For small tasks, Azure

Functions are a great way to save effort and money. Azure

Functions are often called serverless computing, although that's

kind of a loose term. There are always servers involved, it's just

how much you need to interact with them. There's another service

in Azure that's often categorized as serverless compute also. It's

called Azure Logic Apps. These allow you to configure workflows

right in the browser and connect to various services inside and

outside of Azure using connectors. Logic Apps sometimes get

discussed in the context of Azure compute, so we'll look at them

later when we discuss Azure Functions. But next, let's look more

closely at virtual machines in Azure.

Chapter 16 Azure Virtual Machine Basics

Using Azure Virtual Machines, you can set up servers in the

cloud. You can basically recreate your environment in Azure if you

choose. You could have an Active Directory server storing user

accounts, a DNS server, web servers, file servers, and database

servers. Using a virtual network in Azure, these VMs can all

communicate and security can be enabled to restrict ports, all the

same things as except they're in the cloud, so you can also

enable access to the internet if you choose. There are additional

features of Azure networking like load balancers and firewalls that

allow you to secure your VM network. You can also extend your

environment into the cloud by connecting your network to a VNet

in Azure, then the VMs in Azure can essentially become part of

your network. So if you're running out of capacity and don't want

to buy new hardware, this is an option. There are several ways to

deploy VMs to Azure. You can upload your own VM images into

a storage account in Azure and use them as image templates to

create instances of virtual machines. There are some steps

involved to prepare your disk files, but there's a much easier way

to create VMs in Azure by choosing from preconfigured VM

images from the Azure Marketplace. Many of them are provided

by Microsoft, but also by other third parties. When you create a

VM from the Marketplace, the licensing costs for the operating

system are included in the price. When you create a virtual

machine in Azure, there are a lot of configuration options, but the

three big decisions are the image you want to use, the size of

the VM, and the availability options. You start by choosing a VM

image.

This is the configuration that decides what operating system is

installed, and there are several available, like different versions of

Windows Server and Windows desktop operating systems or

different distributions of Linux. You can also choose images that

are preconfigured with software. So you can create a VM image

that has WordPress Server already installed or an SMTP server or

development tools like Visual Studio. When you create a VM, you

also choose the VM size.

Azure has predefined configurations that decide how many virtual

CPUs are included and the amount of RAM. Different VM sizes

are suitable for different workloads. By browsing the VM pricing

page, you can see a description of each size of VM, and they're

grouped into categories, series, and then the actual VM instance

code that you choose when you create a VM. Under General

purpose VMs are the VMs.

It says here these are suitable for development workloads and low

traffic web applications and small databases. Farther down, the

VMs are for most production workloads. Within each series, you

can choose an instance size with a specific configuration that you

need.

Each size has a price and the price is listed per month, but

you're actually charged at an hourly rate and you can deallocate a

VM when it's not in use to save on compute charges. There are

also options with some VM classes to reserve the VM for one or

three years. If you expect to be using it for that long, you can get

some significant cost savings with that commitment. There's also

Spot VMs that allow you to use VMs that come from unused

capacity in Azure. You can get them significantly cheaper, but you

have to be able to tolerate Azure evicting the VM with only 30

seconds notice so Azure can recover the capacity. If you're just

running a DevTest environment or a batch processing job, that

might be fine. As you go farther down, the VM series gets more

and more specialized.

There are compute optimized servers, which have a high ratio.

series VMs have higher core ratio, so they're better for hosting

database servers. You'll notice that some of the series aren't

available in the region that's selected above. VMs get more

specialized as we go farther down.

It says these HBv3 VMs are optimized for computing, like

financial calculations and weather simulation. That's pretty specific

and pretty expensive. There's a new tool in Azure that can make

finding the right VM size much easier than reading through all

these descriptions.

The virtual machine selector lets you find VM sizes by workload

type, OS and software or by deployment region. I won't go

through all the screens, but you can select things like the type of

operating system and the minimum and maximum number of

CPUs and RAM, and it'll produce a list for you. You select a VM

size when you create the VM, but it is possible to resize the VM

later. That's called scaling up if you're choosing a VM size with

more CPU or RAM, or scaling down if you change to a smaller

VM size. That's part of the elasticity in the cloud that we talked

about previously. You don't have to create a new VM if you need

extra processing power, and you can release those resources when

you're done with them. Let's talk about the related resources that

a VM needs. A virtual machine needs a disk to store the

operating system. That's created when you create the VM, and it

gets managed by Azure in Azure Storage. It's basically your copy

of the VM image. You can also add data disks if you need to

store a lot of data as part of your VM. Maybe you need database

storage or some other file storage attached to your VM. A VM

also needs to exist on a virtual network in Azure, generally

referred to as a VNet. That's how it can communicate with other

VMs and out to the internet. So even if you only have a single

VM, it needs an Azure Virtual Network. You can either create one

while creating the VM or you can attach a VM to an existing

virtual network. The VM needs a network interface in order to

communicate on the network, and you can have a public IP

address for the VM so it can be remotely accessed. That could

allow you to use the VM as a web server. You can also set up

security rules to filter network traffic between resources on the

virtual network using network security groups. We'll talk more

about networking in the next module. So each of these is

considered a resource in Azure with their own configuration

screens, and when you add managed data disks, those have

associated costs. Accessing those managed disks also have costs

as storage transactions, and any data that comes out of Azure is

also charged. That's actually true of Azure in general. It's free to

put data into Azure, but there are egress charges when data

comes out, like if you're using your VM as a web server, the data

in the responses incurs charges. But these are very, very small

charges, just something to be aware of when you're pricing out a

solution that involves virtual machines. You can estimate your

costs in Azure using the Azure pricing calculator. When you add a

VM, it will add the related resources that can incur charges. Some

related resources, like virtual networks, are actually free. Next, let's

talk about the availability options with virtual machines in Azure.

Chapter 17 Azure VM Scale & Availability Sets

By now, you understand that Azure Virtual Machines are hosted

on physical machines in an Azure datacenter. Sometimes those

physical machines need maintenance or something fails or they

need to be restarted. That's just reality. So if you design your

solution with a single VM, you're introducing a single point of

failure into your application. For that reason, a datacenter is

organized into update domains and fault domains, and you can

take advantage of these to create a highly available solution using

multiple virtual machines. Update domains are groups of virtual

machines and the underlying physical hardware that can be

rebooted at the same time. Fault domains define a group of

virtual machines that share a common power source in the

datacenter and a common network switch. When you're creating a

virtual machine in Azure, you can choose to create it in an

availability set with other VMs. When you do that, Azure places

your VMs in separate update domains and fault domains. So

you're essentially telling Azure that these VMs are part of an

application so Azure can help with the resiliency and availability.

This doesn't protect you from things like operating system or

failures, but it does limit the impact of potential hardware failures,

network outages, and power interruptions. And you actually need

to create at least two VMs within an availability set if you want

the 99.95% uptime guarantee in the Azure agreement. To use

these VMs for redundancy in a solution, you'd need to put them

behind a load balancer. Users access a web server from a single

IP address and URL, but the load balancer routes the traffic to

one of the VMs in the solution based on availability and load. To

make that easier, though, Azure offers something called virtual

machine scale sets. These let you create and manage a group of

identical virtual machines, and Azure will put them behind a load

balancer for you. You can configure virtual machine scale sets to

scale with demand so Azure can add and remove VMs from the

scale set as needed, and of course you configure the parameters

around that. Those VMs are spread across fault domains, so you

have that protection as well. Virtual machine scale sets let you

maintain a consistent configuration across your VMs. You get

resiliency if one of the VMs has a problem, and the autoscaling

feature helps with application performance. If you plan to set up

a solution that requires a lot of VMs working together, up to

1000 VMs are supported in a virtual machine scale set.

Chapter 18 How to Create a Virtual Machine in Azure

We could start from the shortcut on the left menu, but let's go to

All services and search for virtual machines. I'll click that in the

search results, and let's create a VM from the Create button at

the top. There's a few options here.

Azure virtual machine with preset configuration just narrows down

the VM sizes based on whether you intend this VM for

development or production. Azure Arc lets you manage VMs in

environments outside Azure, including your environment. And

Azure VMware Solution virtual machine lets you move workloads

from your datacenter to Azure. Let's just create a VM in Azure.

That brings us to the create screen with all the tabs across the

top. We'll go in order here.

I won't go through every option on these screens, just some key

ones. We need to put this VM in a resource group, and all the

related resources will get created there too. We could use the

existing resource group, but let's just create a new one. That'll

make it easier to delete these resources later. I'll give this new

resource group a name. Now I have to give the VM a name. This

can be pretty much anything, but you'll probably develop a

naming convention for your organization. Next we choose a

region. There are only a few regions available because this is a

free Azure trial subscription. In a subscription, the list is much

bigger. Next we choose the availability option. We can choose to

use availability zones. This relates back to the discussion on

Azure regions.

Most regions have availability zones where there are separate

datacenters in the region. If you're planning on creating multiple

VMs for your solution, you can choose which zone to put the VM

in. There are also virtual machine scale sets available and

availability sets. Let's choose Availability set. And since there isn't

an existing one to add this VM to, I'll create a new one. We can

configure the number of fault domains and update domains. Let's

just leave the defaults and click OK. Next we choose the image

we want to use to create this VM. We can choose from various

flavors of Linux or versions of Windows.

I'll just choose a Windows Server image. Next we choose the size.

There are a few popular sizes listed here, and we can browse all

the sizes and their specs if we want to.

But let's choose the smallest VM listed here. Next we need an

administrator name. This will be a local account on this VM. We

can add other accounts for access later. After that, we can open

some inbound ports. You'll want at least RDP enabled on a

Windows VM so we can remote into it. So I'll leave port 3389,

the default RDP port.

Next let's go to Disks.

We can choose the type of disk to use for the operating system,

and we can add data disks here, but we can also do that after

the VM is created. So let's move on to Networking.

This is where we can add this VM to an existing virtual network

or create a new one. Since we don't have an existing VNet, we'll

create one. And you can break that VNet into subnets, and then

you can place VMs in different subnets and control

communication between them. Let's leave the defaults. And the

public IP address will get created too. The security on this VNet

will be configured to allow access from port 3389 the internet so

we can remote in.

We could configure load balancing here if we intend to have

multiple VMs as part of this solution.

Let's go to Management. Here we can configure options like boot

diagnostics, which lets you debug problems booting up your

virtual machine.

You can also create a identity, which is an Azure service account

for this VM. So you can do things like grant this VM's service

account access to a database or to a storage account in Azure.

You can enable auto shutdown. Shutting down a VM in Azure will

save you money on compute charges, but you still pay for the

storage of the underlying VM. So if this is a VM for development,

let's say, you might only need it running during business hours.

You can also shut down a VM yourself anytime you want. Let's go

to Advanced, and this is where we can configure applications to

install after deployment and run custom scripts while the VM is

being provisioned.

And we talked about tags earlier, which help with managing large

numbers of VMs. Let's review this configuration and create this

VM.

Next, we'll explore the management options once the VM is

created.

Chapter 19 How to Explore Azure Virtual Machines

It took about 2 minutes for everything to get created.

We could go to the VM configuration screen from here, but let's

go to All resource groups and let's see the resource group that

was created.

You can see all the related resources that were created with the

VM itself, like the virtual network, the operating system disk, the

network interface, public IP address, and even the availability set

is created as a separate resource with its own configuration. Let's

drill into the VM. On the Overview tab, you can see the public IP

address for this VM. So this is how you would access it from the

internet. There's also the private IP address, which is the IP

address of the VM on the VNet that was created. And on the

Overview tab, you can also stop the VM, and this is how you can

save on compute charges when not using the virtual machine.

This releases the server resources associated with the VM, like the

underlying CPU and RAM. The Networking tab allows us to

manage the ports that are open. We could open up port 80 for

HTTP traffic here, for example.

Disks are where you can attach data disks if you need more

storage later.

On the Size tab, you can resize the VM. So we could scale it up

if we found that the workloads that we're putting on here are

more than the VM can handle.

You just choose the new size and click Resize. If the VM is

running, this will cause it to restart. On the Configuration tab,

you can manage settings like the licensing for the Windows

operating system. You might have existing Windows Server licenses

you'd like to use in order to save on Azure costs.

Identity is where you enable the managed identity we discussed

during the VM creation screens, and that allows you to provide

access to other Azure resources using the Azure Active Directory

identity of this VM. Backup is where you can configure options

for backing up this VM. Azure has a service called Azure Backup

where you can store backups of VM disks, file shares, and blobs

in Azure storage. And even databases running on Azure VMs can

be backed up. Of course, there are additional costs associated

with storing backups. Azure Site Recovery provides disaster

recovery by replicating a VM to a different Azure region.

You can use this service to fail over your Azure VMs to another

region and also to replicate VMs from other environments for

failover to Azure, like VMs and even Windows virtual machines in

Amazon Web Services. The Updates tab lets you use other

services in Azure to help you provide updates to this VM.

With Infrastructure as a Service VMs, you're responsible for

updating them. Azure does help with this, though, by allowing you

to leverage a service called Azure Automation to push out updates

to VMs that are enrolled with the service. You need to configure

that and schedule the updates, though. This works for Windows

and Linux VMs. Now let's see how to connect to this VM

remotely.

On the connect page, you can connect using Remote Desktop

Protocol, SSH or using a service called Azure Bastion, which lets

you connect using your browser and the Azure portal. RDP is the

traditional way to log into a Windows VM, so let's choose this.

Azure is going to create a file for us to download. I'll go to my

Downloads folder and let's edit this file. If you've used Remote

Desktop Connection before, you see this is just a standard file

with the IP address of the VM and the RDP port 3389 already

configured. The only account that has access to this VM right

now is the local administrator account we created on the VM, so

I'll use a different account, and the name is the VM name,

backslash, the account name, and the password I used during the

VM creation. Once it connects, we're brought into the remote

session. Server Manager opens on the VM, and here we can

manage the VM and even add it to a domain.

I've used Azure VMs many times to create test environments in

the cloud by creating a VM and installing Active Directory and

then joining VMs to the network, just like you would That's a

standalone environment. If you want to give Azure AD users

access to this VM and the applications on it, there's a way to do

that using Azure AD Domain Services.

Chapter 20 Azure AD Domain Services

First of all, Azure Active Directory is not the same thing as Active

Directory They both store user identities and allow you to create

groups of users for security purposes, but Azure AD was built for

the cloud and it uses web authentication protocols for

authenticating users like OAuth 2.0 and OpenID Connect. Cloud

native services like Azure App Service use these protocols by

default. The authentication technologies used most often in Active

Directory is Windows Integrated Authentication, which uses

Kerberos and NTLM protocols. With Windows Integrated

Authentication, a user logs into the local network and a security

token gets passed around so they can get authenticated by any

computer that's joined to the network, including web servers. That

functionality is provided by domain services, which is just a part

of Active Directory. Many legacy applications use Windows

Integrated Authentication, so if you're moving them to VMs in

Azure, that can be a showstopper. You may not want to modify

those applications to use another authentication method, or in the

case of commercial software, you probably can't change the

authentication methods that they use. One possible solution if you

have an Active Directory infrastructure is to extend your network

to the cloud and use your Active Directory Domain Services, at

least for users in your Active Directory. You would join the VMs

in Azure to the same network as so really there's no connection

to Azure AD for those servers. For users accessing applications on

the VMs, though, they could still authenticate with Windows

Integrated Authentication. But user identities stored only in the

cloud have no connection, and you may be looking to minimize

your dependency to AD or you don't plan on having a hybrid

cloud at all. So there is a solution in Azure AD, and it's called

Azure Active Directory Domain Services. It's not enabled by

default, you need to turn it on, and it provides the ability to join

virtual machines to managed domain where the user identities are

stored in Azure AD, but the VMs can use legacy authentication

methods like Kerberos and NTLM. When you set up Azure Active

Directory Domain Services, Azure deploys two domain controllers

into your selected Azure region, and you don't need to manage or

update them. It's handled for you. Information from Azure AD is

synchronized into Azure AD Domain Services. Then, applications,

services, and virtual machines connected to the managed domain

can use common AD features like Domain Join, Group Policy,

LDAP, Kerberos, and NTLM authentication. If you have Active

Directory, you learned that you can synchronize users and groups

from your Active Directory to Azure Active Directory. That's not

the same thing as joining the two networks. They're still separate,

there's just an agent installed in your environment that

synchronizes the user accounts into Azure Active Directory on a

continuous basis. Then those users can be granted access to

applications in Azure. Even though they're accessing the

application from it's their Azure AD identities that are used. They

can still access applications hosted on those virtual machines that

use legacy authentication protocols. Before we leave the discussion

of virtual machines, let's talk about Azure Virtual Desktop, next.

Chapter 21 Azure Virtual Desktop Basics

Azure Virtual Desktop is a desktop and app virtualization service

in Azure. It was previously called Windows Virtual Desktop. Azure

Virtual Desktop is used to provide Windows desktops to users

with computers actually running in Azure. The user logs into a

computer in Azure where all their applications are installed and all

their data is accessible, but none of it is stored on their local

computer and all the processing by the applications is being done

in the cloud. Users can access their remote desktop and

applications from any device. There are native apps provided for

Windows, Mac, iOS, Android, and an HTML5 interface is also

provided, so the remote desktop can be accessed using a web

browser too. What's the purpose of Azure Virtual Desktop? What

problems does it solve? It separates operating systems, data, and

apps from local hardware. That enables central management and

security of user desktops with less IT management required. You

don't need support because all the apps are running remotely in

the cloud. Azure Virtual Desktop provides a separate compute

environment for users outside of their local device, so the chance

of confidential information being left on the user device is greatly

reduced. It also lets you provide standard images to users with all

the tools they need already configured without having to procure

hardware, set it up, and ship individual computers to users. They

just access the virtual computers from their existing devices. You

can choose images for Windows 11, 10, and Windows 7 with

extended support until 2023, and also Server operating systems

like Windows Server 2022, 2019, 2016, and 2012 R2. You can also

create or upload your own image with all the software and

configuration needed for users. At sign in, the user profile is

dynamically attached to the computing environment and appears

just like a native user profile on a local machine. Users have

access to their own data, and users with privileges can even add

and remove programs without impacting other users on the same

remote desktops. Azure Virtual Desktop is similar to Remote

Desktop Services and Windows Server, but if you've ever set up

that environment in an enterprise, you know there are multiple

roles and multiple servers required for scalability. You can avoid

all that configuration by using Azure Virtual Desktop. So, it's really

a Platform as a Service offering to provide remote virtual

machines. In the past, if you wanted to provide client operating

system VMs to users in Remote Desktop Services, you had to

have a single VM for each user. To have multiple users use the

same VM and conserve resources, you needed to use a server

operating system, but Azure Virtual Desktop supports Windows 10

or 11 which means you don't have to overprovision VMs. You can

let users share the resources of a single VM. Users on a

environment still have a unique secure experience, and they can

use all their apps, like Office 365. The user's data and files are

persisted on a separate disk that gets attached when the user

logs in, so they get their desktop settings and application settings

as if it's their own computer. But the user profile is separated

from the operating system, so you can update the operating

system and not lose the user's profile. Azure Virtual Desktop

works with a couple of features that you've already learned about.

You can domain join Azure Virtual Desktop VMs to Azure Active

Directory Domain Services or to an existing domain in Active

Directory if you've created a hybrid cloud. Azure AD provides a

secure, consistent experience that allows users to roam from

device to device. And it also lets you use Azure authentication for

another layer of security. Now let's move on from virtual machines

and talk about hosting containers in Azure

Chapter 22 Azure Container Options

Containers are a way to wrap up an application into its own

isolated package. It's for applications and services, so web apps

are a typical example. When an app is deployed using a container,

everything the application needs to run successfully is included in

the container, like runtimes and library dependencies. This makes

it easy to move the container around from your local workstation

to VMs in your environment that have the container runtime

installed or to a managed container hosting service in Azure, like

Azure Container Instances or the Azure Kubernetes Service. The

main characteristic of a container is that it makes the

environment the same across different deployments, so containers

reduce problems with deploying applications. Let's talk about how

containers are different from virtual machines. Virtual machines

run on some sort of infrastructure, whether it's your laptop or it's

a physical server in a datacenter in Azure. There's a host

operating system that might be Windows, Linux or macOS. Then

we have a hypervisor layer, and this is what runs the virtual

machine and provides resources to it from the host operating

system. is Microsoft's hypervisor technology, but there are others

like VMware and KVM. Then there's the virtual machine. The

virtual machine contains a full copy of an operating system, and

it virtualizes the underlying hardware, meaning the CPU, memory,

and storage. It also contains the application that you want to run.

If you want true isolation of your applications, you'll have a copy

of a VM for each application that you deploy, and that VM will

need to have all the runtimes and libraries installed that the

application needs. If you want to run three applications in

isolation, then you'd be running three virtual machines on this

hardware, each with a guest operating system that might be 800

MB in size, and each VM would require a certain amount of CPU

and memory allocated to it because, again, virtual machines

virtualize the hardware. Containers, on the other hand, virtualize

the operating system. The host could be a physical or a virtual

server, and on top of the operating system there's a runtime. This

is kind of like the hypervisor for virtual machines, but it's for

containers. On top of the runtime are the containers, which just

contain the application along with any dependencies for that

application, like frameworks and libraries for connecting storage,

for example. These are the same types of things you would

normally install on a VM to run your application. The containers

emulate the underlying operating system rather than emulating the

underlying hardware. This makes containers smaller in size than a

virtual machine and quicker to spin up because you're only

waiting for the app to launch, not the operating system. Because

containers are so lightweight, you can host more containers on

the host VM or physical server than using traditional virtual

machines for each application, so there's obvious cost savings

associated with that. A container is an instance of a container

image. An image is a template with instructions on how to create

the container, and the container is the runnable instance of the

image. You can create your own container images by leveraging

existing images and adding the frameworks, any dependencies, and

finally the code for your application. Then you can deploy the

container in a repeatable way across environments. Container

images get stored in a container registry. A container registry is a

service that stores and distributes container images. Docker Hub

is a public container registry on the web that serves as a general

catalog of images. Azure offers a similar service called Azure

Container Registry, which provides users with direct control of

their images, integrated authentication with Azure AD, and many

other features that come along with its Azure integration. I just

mentioned Docker Hub. A Docker container is a standard that

describes the format of containers and provides a runtime for

Docker containers. Docker is an open source project that

automates the deployment of containers that can run in the cloud

or Docker is also a company that promotes and evolves the

technology, and they work in collaboration with cloud vendors like

Microsoft. Docker has a runtime process that you can install on

any workstation or VM, and there are services in Azure that

provide that runtime for you. Remember that containers are

portable, so they can be moved around to different hosts. Now

let's talk about the different ways you can host containers. You

can set up a local environment by installing the Docker runtime.

Then you can develop your app locally and package up all its

dependencies into the container image that you want to deploy.

You could also host a container on your own hardware or virtual

servers by installing the Docker runtime there. You can deploy

containers on your own VMs in Azure. If you just need a small

dev environment or you're not ready yet to move into services,

you can still package your application into containers and deploy

those onto VMs that you control. Of course, you'll need to

maintain and patch those VMs, but it can at least get you started

with some of the benefits that containers offer in terms of

deployment and agility. With each of these approaches, you need

to install the container runtime, but Azure has several Platform as

a Service offerings for hosting containers. Azure Container

Instances, or ACI, is a service that provides a way to host

containers without having to maintain or patch the environment. It

hosts a single container instance per image, so it's intended for

smaller applications like simple web apps or DevTest scenarios,

but it still has obvious advantages to deploying containers to your

own virtual machines because you get a managed environment

where you only pay for the containers. Azure Kubernetes is a fully

managed container management system that can scale your

application to meet demands by adding and removing container

instances, as well as monitoring the deployed containers and fixing

any issues that might occur. Kubernetes is an open source project,

and it's one tool in a class of tools called container orchestrators.

Azure Red Hat OpenShift is a service in Azure that's a

partnership between Red Hat and Microsoft, and it allows for

running Kubernetes powered OpenShift. If your organization is

already using OpenShift, this is a way to move to a managed

hosting environment in the cloud. Azure Spring Apps is for

hosting containers that run Java Spring apps, so it's tailored to

that specific platform. You can actually deploy containers to Azure

App Service also. So in addition to deploying code onto Azure

App Service, you can package web apps as containers and host

them in App Service. You can also deploy containers to Azure

Functions for applications. And a relatively new service in Azure

for hosting containers is Azure Container Apps. This is a managed

serverless container platform for running microservices. This

service is also powered by Kubernetes, but it doesn't provide

direct access to the underlying Kubernetes configuration, which

makes management a lot easier. So the choice of how to host

your containers comes down to the development platform your

team uses, what orchestration platform they might be accustomed

to, and how much control you want over the management of the

service. Let's take a look at the simplest of the container hosting

options. Azure container instances

Chapter 23 How to Create an Azure Container Instance

From All services, I'll search for container instances. There are a

few other services here, like Container Registry for storing your

custom containers, and Container Apps, which is another service

for hosting the running of your containers. But we'll choose Azure

Container Instances, a simple service for running single containers.

And let's create one from the menu.

As always, we need to choose a resource group to store the

metadata about the container. I'll choose the one we created

earlier. Let's give this container a name, and this name only needs

to be unique within the resource group. There's a lot of regions

we can choose from to deploy this container instance, but I'll just

leave the default. Next we can choose to deploy our container

from a container registry. Azure has its own container registry

service, or you could choose another service like Docker Hub, and

that can be a public or a private registry with a login. But let's

choose a quickstart image just to get up and running. I'll select

the helloworld Linux image. And you can change the resource

requirements for the container if you'd like, so the number of

virtual CPUs and RAM that the container uses. Let's close this

and move to the Networking tab.

Here you can create a public IP address and DNS name. So this

will get prepended on the Azure service URL. You can configure

environment variables here and the restart policy for the container.

This is where an orchestration service like Azure Kubernetes offers

a lot more functionality. We won't add any tags. And let's create

this container instance. It'll take almost a minute to create this in

Azure.

And once it's created, we can navigate into the container instance.

We have some monitoring happening on the Overview page.

On the Containers page, there's the container we created. It says

the state is Running. Let's go back to the Overview page, and the

fully qualified domain name is here on the right. This is the DNS

name we added with the rest of the URL provided by Azure. Let's

paste this into another browser tab.

We get a basic web page that was served by the container, so we

know the container is running in Azure Container Instances. Let's

go back into the container on the Containers tab. And there are

logs available here, so you have some visibility into the output

from the container, and you can even remote into the container

and get a command prompt so you can run shell commands

here.

I can list out all the files and folders that are on this quickstart

container.

So it's serving the default page using Node.js. That's a quick look

at containers and one of the Azure services that can host them

for you. Next, let's talk about Azure app service

Chapter 24 Azure App Service Fundamentals

I mentioned that you can use App Service to host containers, but

it's also the Platform as a Service offering for hosting code

directly, meaning the App Service is more like traditional web

hosting where the frameworks are already installed on the servers,

like .NET, PHP or Java, and you can deploy your code onto those

servers. The difference with traditional web hosting is that Azure

handles the management and patching of the underlying servers

for you, but you do have lots of configuration options. Azure App

Service can host web applications, API apps, which are web

services that use the REST protocol, and it can host the code for

mobile applications, which are really just web services. You can

deploy containers to Azure App Service too, but you don't have

to. And there's also a feature of App Service called WebJobs that

let you run services on the underlying VMs of the App Service.

WebJobs can run continuously or on a schedule. They can run as

executable files or they can run scripts like PowerShell or Bash

scripts. So if you're running Windows services on your web

servers now and wonder how you can do that in Azure, WebJobs

offer that kind of functionality. There are other services in Azure

to accomplish those types of tasks, and we'll look at some of

them in the serverless computing section. App Service started out

as a service called Azure Websites, and when you create a new

App Service, the default URL is still suffixed with

azurewebsites.net. And yes, you can use your own custom domain

name with Azure App Service. This is just the default URL that

azurewebsites.net

first gets created. So an App Service is basically an individual

website or API web service or mobile back end that you host.

They're all really the same thing, just code that's hosted on a web

server. Before you can create an App Service, though, you need an

App Service plan. The App Service plan defines the size of the

underlying infrastructure, which are actually just virtual machines

in Azure. But remember, you don't patch or maintain those VMs

and you have limited access to them. You can run more than one

App Service on a single App Service plan. When you create an

App Service plan, you choose the size of the VMs, meaning the

CPU, RAM, and storage by selecting the plan type, also known as

the pricing tier. Depending on the pricing tier, you also have

access to different features of an App Service plan. Let's create an

App Service plan next and explore the features of Azure App

Service in the process.

Chapter 25 How to Create an Azure App Service

We won't create an App Service plan first. We'll just do it during

the creation of the App Service. I'll do that by using the shortcut

on the left menu for all App Services in this subscription. Let's

create a new one. And the first thing is the resource group to

put this App Service in.

Let's create a new resource group for this. I'll just give it a name.

And now let's give this App Service a name. This name needs to

be unique across all of Azure because it's suffixed with

azurewebsites.net. So this part here can't be the same as any

other website on all of Azure. But remember, you can add your

own domain name later. This is just the default one for creating

the App Service. Next, we can choose whether to publish code or

a Docker container or a static web app. For code, you choose a

runtime stack, and this will be available on all the underlying web

servers that the code is deployed to. The runtime you choose

here will dictate which operating systems are available below. You

can deploy your own Docker container from a container registry.

And the Static Web App option is when you're just deploying

code. There's no code running on the server, so there's no

runtime framework option.

This actually brings you to another service in Azure for hosting

these types of static web apps, and that service uses Azure

Functions for logic. Static web apps integrate directly with GitHub

azurewebsites.net

or Azure Pipelines to pull your code, so it's a serverless

environment where you don't need an underlying App Service

plan. You can create one of these apps from the All services

menu. It's just here is an easier way to get to that service, but it

does seem a bit confusing. Let's choose a traditional code

deployment, and I'll choose .NET 6, which is available on

Windows and Linux VMs. Then we need to select a region where

this will get deployed. If my subscription had an existing App

Service plan in this region, I could choose to deploy the App

Service onto that plan. But since it doesn't, a new App Service

plan will get created. Because I'm using the free trial, I don't

have the option to change from the free pricing tier. They're all

using the free pricing tier right now because I've scaled them

down to that plan to save money. Let's create a new App Service

plan, and I'll give it a name.

And now we can change the size, which is really changing the

pricing tier. It defaults to the Si pricing tier under the Production

grouping of tiers, but we can switch to the Dev group. Below the

pricing tiers are the options that are available for each one. As I

change pricing tiers, features are added. With the Di pricing tier,

we can use custom domains. At Bi, we can add VM instances

manually when we want to scale out the resources to handle

increased load. And at the Si tier, we get autoscale and staging

slots and all the features we need.

Going up from there just increases the amount of CPU, RAM,

and storage on the underlying servers. So let's choose this Si tier,

and let's move to the Deployment tab. Here we can set up

continuous deployment so our code gets pulled from a GitHub

repository automatically.

Let's move on to Networking. We could make it so this App

Service is able to call into resources in a virtual network.

Let's leave the default, though. And on the Monitoring tab, we

could create an instance of Application Insights, which would

collect all sorts of metrics from the App Service, like user

behavior and performance of the app. But let's turn this off for

now.

We can enable it after the App Service gets created. We won't

create any tags, so let's create this App Service. Once it's ready,

let's actually go to the tab with all the App Service plans. This is

the plan that was created with the App Service. In the App

Service plan, there's a tab for apps. There's only one App Service

here, the one we just created. Further down the menu, you can

change the pricing tier if there's features you need to use or you

just need more powerful VMs.

And on the Scale out tab, depending on which pricing tier you're

on, you can add VMs to the plan. And, of course, there are costs

associated with that.

And you can also configure autoscaling. So when a certain metric

is reached, more VMs will be added. In the list here, there are

lots of metrics you can have the App Service plan watch, like the

amount of CPU being used, the disk queue length, and the

percentage of RAM being used. Then you can configure some

logic to add or remove VMs under certain conditions.

Let's close this, and let's go back to the Apps tab and drill into

the App Service we created. So this is a web app that can use

.NET for its logic. We haven't deployed any code here, but there

is a default page created for you that you can access from this

Browse button. That opens up a tab with the URL that we chose

during creation, so we know that the servers are running and

serving content.

Back in the App Service, let's explore some of the things we can

configure. You can add a custom domain.

You can either purchase that through a third party and just verify

it here in which case you'd need to point your DNS provider to

this IP address or to the URL that you saw on the browse page

depending on the type of DNS record that you use, or you can

actually buy an App Service domain through Azure right here in

the portal. Let's look at the Configuration tab. This lets you add

name value pairs that can be read by your application code. You

can also add connection strings to databases here. This lets you

keep configuration and secrets out of your code.

If you've written ASP.NET applications before, you know there's a

configuration file in your project. Any values here with the same

name as what's in that file will override the values in the file, so

ASP.NET

administrators can manage configuration in the portal. Notice

there's a checkbox for deployment slot settings. Deployment slots

let you create different environments like dev, user acceptance

testing, and production.

So you can have a different version of your web app in each of

them, and you can promote your web app through the

environments from right here in the portal, and the application

settings and database connection strings that we saw can be

unique to each deployment slot. So the code gets promoted and

the values change for each environment. Now let's take a look at

authentication. One of the great things about Azure App Service is

that you can let it handle authentication for you. You just choose

the provider that your user base uses, and you can use multiple

providers.

You could use Azure Active Directory, so accounts need to exist

there. Or you could use outside authentication providers, like

Facebook, Twitter, or pretty much any service that uses this

protocol called OpenID Connect. That works with OAuth 2.0,

which is a standard on the web. Remember we talked about that

when we talked about Azure Active Directory Domain Services.

One of the scary things about turning over management of your

web servers to a third party, even Microsoft, is how do you

troubleshoot that when there's a problem? Same with a

deployment. You don't have access to the file system directly, but

you can turn on quite a bit of logging, including logs from the

web server and from the application.

Those can get stored in Azure Storage as files, or you can have

them written onto the local server in the App Service plan, in

which case you can actually stream them from here and see the

logging in real time. You can stream the logs onto your local

computer using Visual Studio or PowerShell also. There's a lot

more here that can help you with troubleshooting. Under the

advanced tools, there's a link to the Kudu portal. That's an

application that gets installed with your App Service that provides

all sorts of information about the environment like system

information and environment variables on the servers.

Under the Tools menu, there's a way you can deploy your web

app by dragging a zip file containing the website right into the

browser here. There are a lot of other ways to deploy apps to

Azure App Service too, but we'll stop here. Next, we'll look at

serverless computing in Azure and Azure Functions in particular.

Chapter 26 Serverless Computing in Azure

There's always servers involved in Azure. The term just really

refers to how little you might need to interact with those servers.

Serverless computing is about letting developers focus on the

code and business logic that they're developing and not on the

underlying infrastructure. The environment is set up for you, and

it scales automatically to meet demand, but you don't need to do

any configuration to make that happen, even the minimal config

you need to do with App Service or virtual machine scale sets.

Serverless computing also differs from the other compute models

you've seen in that you're only charged when the code runs, so

you don't need a virtual machine or an App Service running,

waiting to do the work. The two main services in Azure that are

considered serverless computing are Azure Functions and Azure

Logic Apps. Logic Apps don't really fall under the Azure compute

category. They are now categorized as part of the integration

category of services, but they're used so often with Azure

Functions that it's worth mentioning here. Both of these services

can be used independently, but are often used together to build

solutions. Azure Functions allow you to run small pieces of code

that you write yourself. Functions are started by triggers, which

could be an HTTP call to the function endpoint, an event that

happens in another Azure service, like a blob getting created in

Azure Storage, or you can run the code based on a timer event.

You can write functions in C#, Java, JavaScript, TypeScript, Python,

and even in PowerShell. Azure Functions can run completely

serverless, and this is called the model. But if you already have

an Azure App Service plan that you're paying for, you can also

leverage that to host Azure Functions. Azure Logic Apps allow you

to design workflows right in the Azure portal, so you don't need

to write any code with Logic Apps. You can automate business

processes when you need to integrate apps, data, and services.

Logic Apps have a huge library of connectors to everything from

SharePoint and Azure Storage to Zendesk and SAP. When there

isn't a connector that suits your requirements, you can always

write code in an Azure Function and call it from a Logic App. So

even though Logic Apps are very powerful, it's always good to

know that when you hit a wall in terms of functionality, there's a

way to write code to accomplish what you need. So for an

example of how these can work together, you could create a Logic

App that watches an email account for an email with attachments,

then cleanses the body of the email using an Azure Function.

Then the Logic App could create a blob in an Azure storage

account and store the email and the attachment there. In terms

of choosing one over the other, if you need a solution that calls

APIs, Logic Apps are a good place to start because of all the

connectors available. If your solution needs to execute custom

algorithms or do special data lookups, Azure Functions would be

a starting place because you already know that you need to write

code. Let's create an Azure Function next.

Chapter 27 How to Create an Azure Function

This will just be a simple HTTP trigger that returns HTML to the

browser. I'll start by going to All services and searching for

Function Apps.

A Function App is the container that holds multiple functions.

Click Create, and we get brought to the creation screen. Let's

create this Function App in the resource group.

We need to give this Function App a name. And similar to Azure

App Services, this name needs to be unique across Azure because

it's suffixed with azurewebsites.net. So you can start to see the

relationship here between Function Apps and Web Apps in the

Azure App Service. Next, we select to deploy code or a container.

Because I'm using the free trial subscription here, only code is

available. I'll select the runtime stack as .NET, but you can see

there are other options here, like Node.js and Java. I'll leave the

default framework version, .NET 6, and I'll leave the default region

too. You can deploy Function Apps onto Linux or Windows. It just

depends on the runtime stack you've selected. .NET runs on both,

but not all the frameworks do. And the plan is the most

important thing here.

The plan will take care of all the sizing and scaling of the VMs

for us, and we'll only be charged based on when the functions

are called. The other options are grayed out because I'm using

azurewebsites.net

the free Azure trial. But normally, you can select to create this

Function App on an existing App Service plan right alongside your

other web apps and API apps. Or you can choose the Function

Premium plan, which adds some network and connectivity options

and avoids having to warm up the underlying VMs, so the

performance can be better.

And this is where the Function Premium plan provides networking

options to restrict access to only virtual networks, not the public

internet. On the Monitoring tab, we have the option to enable

Application Insights for deep monitoring, just like with App

Services.

Once it's created, let's navigate into the Function App. So this

looks a lot like an App Service already. There are deployment

slots, configuration, authentication, and custom domains. But

under the Function grouping, there's this Functions tab, and there

aren't any functions yet. So again, the Function App is the

container, and you can have multiple functions here. Okay, now

let's create the function.

The first thing is the development environment. You can develop

functions using VS Code or another editor with core tools

installed like Visual Studio. Or you can develop right here in the

portal in the editor. So let's just stick with that. Next, we choose

the type of trigger, so what's going to cause this function to run?

It could be an HTTP call to the endpoint, it could run on a

timer, or this Function App could watch for events in Azure, like

when a blob is added to a specific container in Azure Storage or

a document changes in a Cosmos DB database. Let's go with the

HTTP trigger.

This is how you would call the function from another program,

like a Logic App for example. We can change the function's name,

and we can choose the authorization level. This has to do with

whether or not the caller needs to supply a key, which is just a

shared secret.

So you can prevent unauthorized callers from causing this

function to run and costing you money. Let's just leave it wide

open for the example though, and let's create this function. Once

it's created, we're brought into the function. We've got some

options along the left here.

Let's click Code + Test. That opens up the editor where you can

modify the default code. This just gives you a starting place to

see how the function is structured. The default code will write to

the log, and it will look for a string in the query string value and

send back a response over HTTP. You can write some really

complex functions to interact with other services and perform

whatever logic you want to code. But this is an example, so let's

just stick with this. Next on the menu is the Integration tab

where you can see how the function is laid out and make

modifications here. This is just an overview, so we won't go into

this. But let's go back to the code and test, and let's run this

function. Let's copy the function URL. So this is the endpoint that

the caller would use. They could do that programmatically to get

the results back, but let's open up a new browser tab and paste

this in. I'll increase the font size.

It says the function ran successfully and that we can pass a name

in the query string. So functions are an easy way to deploy small

packages of business logic onto a managed environment and can

provide cost savings over hosting a app service. In summary, you

learned about computer options in Azure, starting with the service

delivery models, then looking at virtual machines, containers,

Azure App Service, and Azure Functions. Next, we'll look at

networking in Azure.

Chapter 28 Azure Networking

Azure has a number of products for networking that allow you to

create secure networks for your virtual machines and other Azure

resources so those resources can communicate with each other

and with the internet. The underlying physical network and

components are managed by Microsoft, and you configure virtual

versions of everything that you need. An Azure virtual network is

a fundamental building block for your private network. A VNet

enables many types of Azure resources to communicate. A virtual

network has an address space that you define in Azure, which is

a group of IP addresses that can be assigned to resources like

virtual machines. A VNet is segmented into one or more

subnetworks called subnets, which are allocated a portion of the

VNet's IP address space. Then you deploy Azure resources to a

specific subnet. A VM is assigned to a subnet, and VMs can

communicate with other VMs on the same network. But you can

apply security rules to that traffic using network security groups,

or NSGs. These allow you to filter network traffic by allowing or

denying traffic into and out of the subnet. Virtual machines are

deployed into virtual networks, but you can also deploy other

Azure resources into a VNet, networking components, like Azure

Firewall, Application Gateway, and VPN Gateway. You can deploy

resources like Redis Cache and Azure SQL Managed Instances,

and analytics resources, like Azure HDInsight and Azure

Databricks. And Azure Kubernetes Service gets deployed into a

VNet also. You can also configure App Services to have a private

IP on your VNet, which enables private connections to App

Services, which have traditionally only been available over the

internet. By default, resources assigned to one virtual network

can't communicate with resources in another virtual network. So

there's some inherent security controls built in, but you can

enable that communication between virtual networks using a

feature called VNet peering. You can enable VNet peering between

virtual networks in the same region, as well as VNets in different

Azure regions, and the traffic flows privately over Microsoft's

backbone network. You can connect an network to an Azure

virtual network also using a VPN gateway or using a service called

ExpressRoute. Virtual machines on a VNet can communicate out

to the internet by default. But in order for inbound

communications to take place from the internet, the virtual

machine needs to be assigned to public IP address. Technically,

the public IP address gets attached to the network interface of the

virtual machine. So each of these is a separate resource in Azure

with their own configuration. I mentioned network security groups,

or NSGs. You also use these to control the inbound and

outbound traffic to the internet. You can assign a network security

group to the subnet or directly to the network interface of a VM.

Then you can filter traffic with rules based on the source and

destination IP addresses, the ports being accessed, and the

protocol being used, like TCP or UDP. Now let's talk about load

balancing in Azure. In order to distribute traffic between virtual

machines for high availability, you can create a load balancer.

There are public load balancers in Azure, which load balance

internet traffic to your VMs. You can actually use a public load

balancer to allow traffic to your VM without needing to attach a

public IP address to the VM. And there are also internal or

private load balancers where traffic is coming from inside the

network. A public load balancer can provide inbound connections

to VMs for traffic coming from the internet. It can translate the

public IP address to the private IP addresses of the VMs inside a

VNet. It's a solution that can handle a lot of traffic, but it's just a

load balancing and port forwarding engine. It doesn't interact with

the traffic coming in. It just checks the health of the resources.

When you're exposing resources to the internet, particularly servers

on your internal virtual network, you usually want more control

over the traffic. That's where Azure Application Gateway can offer

more features and security for publishing applications to the

internet. Application Gateway is a web traffic load balancer that

exposes a public IP to the internet, and it can do things like SSL

termination. So traffic between the client and the App Gateway is

encrypted, but then the traffic between App Gateway and the

virtual machines can flow unencrypted, which unburdens the VMs

from costly encryption and decryption overhead. App Gateway

supports autoscaling, so it can scale up and down depending on

traffic load patterns. It supports session affinity for applications

that require a user to return to the same web server after they've

started a session. It can do rewriting of HTTP headers and can

make routing decisions based on more than just the IP address

and the port that was requested. And App Gateway also uses a

service called Web Application Firewall, which protects your web

applications from common exploits and vulnerabilities like SQL

injection attacks and scripting. So again, Application Gateway is

more than just a load balancer. If you search for load balancing

in the Azure portal, you'll see descriptions of all the options.

Besides Load Balancer and Application Gateway, there are two

other options that relate to load balancing across different regions.

Traffic Manager allows you to distribute traffic to services across

global Azure regions. Front Door has more capabilities for

application delivery. We'll look a little closer at some of the major

components of virtual networking in Azure. We'll create a virtual

network and subnets. Then we'll create a virtual machine and

attach it to the existing VNet. Next, you'll see how to use network

security groups to allow traffic to the VM from the internet. After

that, we'll peer two virtual networks so the VMs on the VNets

can communicate. Then we'll discuss the options for connecting

networks to Azure using VPN Gateway and then ExpressRoute.

Next, we'll discuss Azure DNS for managing DNS services

alongside your other Azure resources. And finally, we'll talk about

private endpoints in Azure, which bring platform services like App

Services and storage accounts into your private virtual network. So

next, let's create a virtual network.

Chapter 29 How to Create an Azure VNET

I'll start by going to All services and searching for virtual network.

Click this, and there aren't any created yet, so I'll click Create. As

always, we need a resource group. I'm going to create a new one,

so I'll just give it a name, and let's call this vnet1, and I'll place

it in the closest region to me. Next, let's configure the IP address

space for this VNet.

This is called CIDR notation. The number after the slash tells how

many addresses are in the range, starting at the number before

the slash. So a /16 means there are about 64,000 IPs available in

the address space. We can assign these IP addresses to virtual

machines and other services that can be addressed within a VNet.

When you configure your IP address space, the IP addresses are

private to your VNet. The only time it matters is when you want

to connect this VNet with another network, like another VNet in

Azure using peering or with your local network using VPN

Gateway or ExpressRoute. In that case, those IP addresses can't

overlap with this address space. We can break this up into

smaller blocks of IP addresses using subnets, and then we can

apply security to a subnet. I'll call this WebSubnet because I want

to put web servers in this subnet. I'll give it an address range

that starts within the range of the VNet and has a smaller block

of IP addresses. In CIDR notation, a larger number means a

smaller group of IPs. So a /27 is only 32 IP addresses. We can

attach service endpoints to the subnet.

Service endpoints allow traffic to specific services in Azure over

the Microsoft backbone. So VMs on the subnet could connect to

Azure SQL or Azure Storage without having to connect to the

public endpoints on the internet. Let's create this subnet, and let's

create another subnet. Let's call this AppSubnet. So I might put

application servers on this subnet and have them only accessible

from VMs on the web subnet. Then you can use network security

groups to enforce that. I'll give this subnet a range that starts

higher than the highest IP available in the WebSubnet. And let's

make this a /24, so there are 256 IP addresses available on this

subnet.

Let's add this, and let's move on to the Security tab. Here, you

can enable a bastion host, which is a VM that lets you remote

into the virtual machines in this VNet without having to connect

to them directly, so that's for security. We can enable DDOS

standard protection.

Every VNet comes with basic protection against distributed denial

of service attacks. By enabling standard protection, you get

additional metrics and access to experts within Microsoft if an

attack is launched against one of your applications. That comes

for an additional charge, which is why you have to enable this.

Azure Firewall is an intelligent firewall security service. It can

watch for patterns and alert you to traffic coming from known

malicious IP addresses and domains and deny that traffic. But

let's leave these off, and let's move ahead and create this VNet.

Once the VNet is created, I'll go to the shortcut to all VNets. On

the menu here, you can see the IP address space we configured,

and you can modify it from here.

You can create and remove subnets. And down here, you can

specify the DNS servers to use. You can let Azure handle DNS

resolution for you, or you can add the IP address of your own

DNS servers.

DNS resolves domain names to the IP addresses of servers, so

you might create your own network in a VNet with a VM for

Active Directory, VMs for applications, and a VM for hosting DNS

services. You might do that if you're setting up a lab environment

in Azure here, for example. Setting that VM as the DNS server

here will allow all the VMs on the network to resolve your

internal domain names to the IPs of the servers, but you can

actually use a service called Azure DNS for that also. And on the

tab for peerings, you can peer this VNet with other VNets in

Azure, so the VMs and resources can communicate. If you have

any resources that have been assigned IP addresses on the VNet,

their network interfaces will show up here. We don't have any, so

let's create a virtual machine next and add it to this VNet.

Chapter 30 How to Add Virtual Machine to VNET

So we have a VNet, but it doesn't have anything on it. So let's

create a virtual machine just like we did earlier, but this time, we

won't create a new virtual network at the same time. We'll add

the VM to the existing VNet. We went through all this earlier, so

I'll move quickly through this. Let's put this VM in the same

resource group as the VNet. We don't have to, but that'll make it

easier to delete everything at once later. But this VM does need

to be in the same region as the VNet. Let's turn off the

availability options and change the VM image from Linux to

Windows Server.

I need to enter a username and password for the local

administrator account. Now let's move to the Disks tab, and I'll

leave the defaults.

And Networking is where I want to assign this VM to the existing

VNet. Remember the VM is being created in the same Azure

region as the VNet is in so that VNet is available in the list here.

You also need to select which subnet to put this virtual machine

on. Technically, it's the network interface attached to this VM that

will get the IP address from the subnet. The default for security is

that a network security group will get created and assigned to the

network interface of this VM. But we're going to create a separate

network security group and assign it to the subnet, not to the

VM. So I'll turn this off for now. That's all I want to change in

the defaults, so let's skip ahead through these tabs and create

this VM. It'll take a minute or so to create this, and once the

VM is created, let's navigate into it from here. I'll go to the

Connect screen.

This is where we downloaded the RDP file to connect into the

VM. It says here that the port prerequisite is not met. That's

because there's no network security group that will allow traffic to

this VM from the internet. Let's download the RDP file and try to

connect anyway just to be sure. I'll open the file and click

Connect, and I don't even get to the login screen because Azure

won't allow the connection to the VM over port 3389.

So let's fix that in the next chapter.

Chapter 31 How to Create a Network Security Group (NSG)

We can't connect into this VM from outside the Azure VNet. Let's

fix that by creating a network security group, or NSG, and

opening up port 3389 to the internet. I'll go to All services again

and search for network security. Click on Network security groups,

and there aren't any yet in the subscription. This is a different

subscription from the free trial that I used earlier in the course

when I created that VM. Otherwise, the network security group

attached to the network interface of that VM would show up here.

I'll create a new network security group. We need to put this in a

resource group, so I'll use the same one as the VNet and the

VM, and that updates the region for me. And I'll give this a

descriptive name.

That's all the configuration you can do when you create the NSG,

so let's skip tags and create this. Once the NSG is created, let's

navigate into the resource. On the Overview tab, it shows the

default inbound and outbound security rules.

Network security groups allow you to permit or deny traffic

between sources and destinations and to be specific about which

ports and which protocol are permitted or denied. Before we add

an inbound rule to allow port 3389 from the internet, let's just

verify that this NSG isn't attached to a network interface for a

virtual machine. If it was, that would show here. And this isn't

associated with any subnets either, so let's do that first.

I'll select the VNet that's in the same region as this NSG, which

is the one we want and then associate this with the subnet that

the VM is on, which is the WebSubnet. Now the security rules of

this network security group are being applied to the subnet that

the VM is on. So let's go to Inbound security rules, and let's add

a new rule. I won't go through each of these options. But if you

wanted to allow HTTP traffic from the internet to a web server in

the subnet associated with this NSG, you would allow ports 80 to

the IP address of the VM or to any VM on the subnet, which is

the default here, Let's do something similar, but allowing RDP

traffic, which changes the port to 3389.

And that's all we need to do. So let's just change the name of

the security rule and add it to the NSG. Now it shows at the top

of the list because it has higher priority than the other rules.

These rules are processed based on priority, the lower number

taking precedence. So this RDP rule overrides the rule at the

bottom to deny all inbound traffic. Now let's go back to the list

of virtual machines and drill into this VM and go to the Connect

tab.

Now it shows that the inbound access port check past, so we

should be able to connect using RDP. Let's download the RDP

file, although we could use the one we downloaded before.

Nothing's really changed. And I'm getting brought to the login

screen, so that's progress. I'll enter the credentials of the local

administrator on this VM. Okay, I can accept the certificate errors,

and I'm brought into the remote desktop of the virtual machine

in Azure. So the network security group enabled access from the

internet from my local computer. Let's just wait until the

connection is completed. Now I'll open up the command prompt,

and let's run the ipconfig command. This shows us the IP

address of this VM. It's been assigned an IP address on the

subnet of vnet1.

Next, let's see how to set up VNet peering, so this VM can

access a VM on another VNet.

Chapter 32 How to Peer Virtual Networks

Now let's see how to allow resources in different virtual networks

to communicate with each other by peering the virtual networks.

I've created another VNet for this demo. The type is kind of small

here, but the VNets have different address spaces, and the IP

addresses in each address space don't overlap.

I've also created another virtual machine. And if I drill into it, it

shows here that the VM network interface is attached to a

different VNet and subnet. The private IP address of this VM on

the VNet is 10.0.0.4. Let's remember that.

I've still got the Remote Desktop window open to the VM on the

other network, the one that we created earlier. Let's open up the

command prompt. It still shows the results of ipconfig, which

shows that this VM is on the first VNet, vnet1. Let's try and ping

the VM on the other VNet. I've turned off the firewall on that VM

by the way, so it will allow ICMP traffic, which is what ping uses.

The request is timing out as expected.

Let's go to all virtual networks, and let's go into vent1. You can

actually do this from either direction, vnet1 or vnet2. Let's go to

Peerings on the menu and add a peering.

I'll give this link a descriptive name to show what it's meant to

do, and the default is to allow traffic between the VNets. It's

going to create a peering in the other VNet, so we need to give

that one a name too. And now let's select the VNet to peer with.

I'll select vnet2 and accept the defaults, and let's add this peering.

That's all there is to it.

It says the status is connected. Let's navigate to vnet2 from the

link here, and let's go to Peerings, and there's the other side of

the peering.

Now let's see if we can ping the virtual machine in vnet2 from

the virtual machine in vnet1. I'll open up the Remote Desktop

session again, and I'll just press the up arrow key to show the

last command and hit Enter. Now the ping is working, so we

successfully peered the two VNets.

So that's how you can allow VNets in Azure to communicate with

each other. Next, let's see how to allow networks to communicate

with resources in Azure VNets.

Chapter 33 Azure VPN Gateway Basics

When you want to connect your network to an Azure VNet, there

are a couple of ways to do it. In this chapter, we'll talk about

VPN gateways, and in the next, we'll talk about Azure

ExpressRoute. What does it mean to connect your networks? It

means that from the computers and servers joined to your

network, you can access the virtual machines and other Azure

resources that have private IP addresses on that VNet in Azure.

To the users on your local network, there's no difference accessing

an application on a web server in Azure than there is accessing

one on the local network, and that web server in Azure doesn't

need to be exposed to the internet. The connection from is taking

place over a private secure connection. To make that connection

between networks, you can use a VPN gateway in Azure. VPN

Gateway creates a private encrypted tunnel over the public

internet. If you connect to your local office now using a VPN, it's

basically the same thing. Azure VPN Gateway is made up of one

or more VMs that get deployed into a subnet in your Azure VNet.

That subnet needs to have a specific name, and you can't

configure the VMs for the gateway subnet. You connect to the

VPN gateway through its public IP address. If you're connecting

your entire network to Azure, then the VPN gateway needs to

connect to a VPN device on your network that has a public IP

address to the internet. The traffic between the network and the

Azure VNet flows through the gateway. There are a few different

types of connections. Let's take a look at the documentation to

see some diagrams.

You can create a VPN gateway that connects to your network.

One major stipulation is that you have to make sure that the IP

address ranges of the VNet in Azure don't overlap with your IP

addresses. A virtual network in Azure can only have one VPN

gateway, but you can make multiple connections to it.

So if you have different regional offices with different networks,

you can connect them to the same VPN gateway and the same

VNet in Azure. There's a second type of connection possible,

which is called a VPN. This is where a single computer connects

to the VPN gateway.

You might use this if you're working from home. It doesn't

require the local computer to have a public IP address or a VPN

server, like with the VPN, but you need to authenticate using

certificates uploaded to Azure and on your local computer. It's

also possible to use VPN Gateway to set up a connection

between two VNets in Azure.

That's an alternate to VNet peering. You might do this if you

have older VNets in Azure that were created with the classic

deployment model, and you want to join them with newer VNets

that use the resource manager model. You can't have more than

one VPN gateway in an Azure VNet, but you can connect to a

VNet using both VPN Gateway and ExpressRoute. The difference is

that VPN Gateway uses the public internet, and ExpressRoute uses

a private connection that's not over the public internet.

You might do this in order to use VPN Gateway as a failover if,

for some reason, the ExpressRoute connection isn't available.

That's a lot cheaper than maintaining a backup ExpressRoute

connection.

Chapter 34 Azure ExpressRoute Basics

The other type of connection you can make from your network to

Azure is an ExpressRoute connection. The connection is made

through a service provider that's partnered with Microsoft. You

connect to the service provider, and they connect directly to the

Microsoft edge servers. So the traffic doesn't get routed over the

public internet. There are actually two ExpressRoute circuits

created, so there's redundancy. ExpressRoute can connect your

network to multiple VNets in Azure, which is called private

peering. You can also connect to Azure public services, like App

Service endpoints and storage accounts, as well as Microsoft 365,

which used to be called Office 365, and Dynamics 365, which is a

Software as a Service customer relationship management system.

This type of connection used to be called public peering, but it's

now called Microsoft peering. ExpressRoute requires you to work

with a provider, and they're partnered with Microsoft to connect to

Azure. These providers have infrastructure at data centers where

they're collocated with Microsoft edge servers. Examples of these

providers are companies like AT&T or Verizon, but there are many

regional providers, and they're listed on docs.microsoft.com by

location. Each ExpressRoute circuit has a fixed bandwidth, and you

choose a plan between 50 Mbps and 10 Gbps. The speeds

available depend on the service provider that you work with.

There's also something called ExpressRoute Direct where you can

establish a direct connection to Microsoft's global network at

peering locations around the world. This gives you increased

docs.microsoft.com

speed and encryption options and, of course, increased cost. So

ExpressRoute direct is for big corporate clients with major security

requirements like banks and government. You can choose to be

charged based on how much data you transfer out of Azure,

which is metered billing. Inbound data is always free, or you can

pay a monthly fee for unlimited data. The standard ExpressRoute

plan gives you access to all the regions in a geopolitical area, but

there are two other plans available. The local plan gives you

access to only one or two Azure regions near the location where

you're peering. You don't pay additional charges for egress for the

data coming out of Azure, so this can be economical for large

data transfers. And the ExpressRoute Premium gives you global

connectivity to any region in the world. So if there's a lot of data

moving between your network and Azure, ExpressRoute can give

you the best performance. Let's talk about Azure DNS next.

Chapter 35 Azure DNS Basics

Azure DNS is a way to manage your DNS records right in Azure

alongside all your other Azure resources. First, let's review what

DNS is. When you create a service in Azure, like an App Service

or an Azure Function, they get a name that's suffixed with

azurewebsites.net. And when you create a VM, there's a public IP

address. You can also add a DNS name label to the public IP

address of the VM right in the Azure portal, so you don't have to

use the IP address to access it. But again, it ends in an address

that you don't control. It's the region name, then

cloudapp.azure.com. But when you're publishing your applications

for clients, you'll want a custom domain name. Usually, your

application name .com or .net or ending in a suffix, like .ca for

Canada. You purchase the custom domain name from a domain

registrar, and they're responsible to make sure that no one else

owns the domain name. If it's available, you pay an annual fee to

reserve the use of the domain name. There are a lot of domain

registrars, and the biggest one is GoDaddy. Once you own the

domain name, it needs to be hosted by a DNS provider. DNS

stands for domain name system, and it's the network of DNS

servers all over the world that resolve domain names to the IP

addresses of the servers that host the corresponding applications.

Your DNS provider makes sure that all those servers can find

your domain name and resolve it. Often, when you purchase a

domain name, that same company, like GoDaddy, will often let

azurewebsites.net
cloudapp.azure.com

you host the DNS entries with them, but you don't have to. You

can host them with any DNS service, and that's what Azure DNS

is. Azure DNS is a hosting service for DNS domains that

provides name resolution by using Microsoft Azure infrastructure.

That's the definition right from the Microsoft docs. Azure isn't a

domain registrar. Azure doesn't register your domain name, but

they can manage the DNS for it. You can actually purchase

domains in Azure using a service called App Service Domains.

But App Service Domains actually use GoDaddy for the domain

registration and Azure DNS to host the domain name resolution.

So you can purchase app service domains for Azure App Services,

and everything gets configured for you to point the domain name

to the app service. But because they're managed by Azure DNS,

you can actually modify the DNS records to point the domain to

another Azure service, like a virtual machine or an Azure storage

account. If you host your domain name with another DNS

provider, you can transfer it to Azure DNS. Then you can manage

the DNS records alongside all your other Azure resources, which

means you can enable access control to control who in your

organization has access, and you can get activity logs to monitor

when records are modified, which can help with troubleshooting.

DNS domains are hosted on Azure's global network of DNS name

servers so that helps with reliability and performance. Besides

managing DNS for public domains so they can be resolved from

the internet, Azure DNS can also support private DNS domains.

That means you can use your own custom DNS domains in your

private virtual networks rather than have to set up your own DNS

servers on your VM on your VNet. It's great to be able to

manage public and private domains in one place. Azure DNS also

supports alias record sets. That means you can use an alias

record to refer to an Azure resource, like the public IP address of

a VM or a content delivery endpoint. Then, if the IP address

changes, Azure automatically updates the records. If you manage

your DNS records outside of Azure, you might not update those

records right away if there's a change in Azure, and then users

won't be able to access your service. So having that be automatic

with Azure DNS can be really helpful. Next, let's talk about private

endpoints.

Chapter 36 Azure Private Endpoints

Private endpoints allow you to essentially bring a public Azure

service into your own VNet, so the service can get referenced with

a private IP address. When you create a service in Azure, like an

App Service, it has public endpoints. That means there's an

address on the internet where that resource can be reached. For

App Service, that's a URL, the name of your App Service, then

azurewebsites.net. That resolves to an IP address. But in certain

situations, that IP address can actually change, like during the

renewal of an SSL certificate. So really it's the URL that's the

endpoint. Azure takes care of the resolution to the underlying IP

address for other services, like Azure Storage. You can go to the

Endpoints tab and see the public endpoints for your instance of

the service. In this case, the endpoint is the name of your

storage account, then the individual service in Azure Storage, like

the Blob Service, File Service, or Queue Service, and then it's

always core.windows.net. These endpoints allow people to reach

the blobs and files in the particular service from the internet, but

you'll see that you can apply security to the endpoint But, what

about if you don't want your App Service or storage account to

be accessible from the internet? You only want resources on your

own Azure VNet to be able to access the service, so virtual

machines on your VNet. Or if you've connected your network to

an Azure VNet, you want your users to be able to access the App

Service or storage account only through that secure connection

and then disable access from the public internet. You can do that

azurewebsites.net
core.windows.net

by creating a private endpoint for the Azure service. A private

endpoint is a network interface that uses a private IP address on

your virtual network. So the App Service or storage account gets a

private IP address on your VNet, and you can access it privately

and securely using that IP address. For some services, like Azure

App Service, creating a private endpoint will automatically prevent

access to the public endpoint, so from the internet. For other

services like Azure storage, the public internet access isn't

automatically disabled, but you can configure that yourself. Private

endpoints use a service called Azure Private Link. With Azure

Private Link, you can create connections to Azure Platform as a

Service offering, and your connection between your VNet and the

service travels over the Microsoft backbone network. In order to

create a private link to an Azure service, the service has to

support it. On docs.microsoft.com, you can see a list of all the

resources in Azure that support private link.

So besides App Services and storage accounts, Azure Cosmos DB

supports private endpoints, Azure Container Registry, Azure Service

Bus, Azure SQL Database. So chances are if you want to create a

private endpoint to a platform as a service offering in Azure, it's

probably possible to do it. Let's quickly see how to set up a

private endpoint for an App Service. I'll open up the App Service

we created earlier. If you go to the Networking menu item, you

can configure some options here, including private endpoints.

This is available because this App Service was created on the

standard pricing tier. If you created yours on the free tier, private

endpoints will be grayed out. Let's click this, and here we can

docs.microsoft.com

create the private endpoint. I'll click Add and select the VNet

where I want the private endpoint created and the subnet.

Then I just need to give this a name because it will get created

as a separate resource. It'll take a minute or so to create this,

and you can watch the status from the Notifications tab at the

top. Once it's created, we could navigate to the resource from

here, but let's go to the VNet where it was created. That was

vnet1. Under Connected devices, you can see there's the network

interface for the virtual machine that was added earlier, and here's

the network interface for the App Service.

And you can see they both have private IP addresses from the

VNet, and they're part of the web subnet. So that's how you can

create a private endpoint for an App Service. In summary, you

learned about networking in Azure, starting with an overview. Then

you saw how to configure some of the main services, first virtual

networks and subnets, then network security groups. After that,

you saw how to peer virtual networks in Azure, and then you

learned about the ways to connect your network to Azure using

VPN Gateway and ExpressRoute. Then we talked about Azure DNS

and how to configure private endpoints to services in Azure. Next,

we're going to look at data storage options in Azure.

Chapter 37 Azure Data Storage Options

Modern applications require data to be available quickly and

securely from all over the world, and users expect to be able to

access, share, and update their data from different devices at any

time. Organizations are creating more data than ever, so storing

data in the cloud requires addressing new problems in a flexible

way, as well as solving old problems in new ways. Azure provides

a variety of cloud storage services for different types of data that

allows you to choose the storage service that's best optimized for

your data and to include several strategies in the same solution, if

needed. But common to all the storage solutions in Azure are

important benefits like automated backup and recovery, replication

across the world to protect your data against unplanned events

and failures, encryption capabilities, and security through things

like integration with Azure Active Directory for authentication, and

developer packages, libraries, and APIs that can make data

accessible to a variety of application types and platforms. Data

generally falls into one of three general categories. Structured data

is data that adheres to a schema, usually data stored in a

database with rows and columns. It's generally referred to as

relational data. Azure lets you host databases on virtual machines

just like you would where you're responsible for managing and

patching the database product, but Azure also has managed

offerings which provide convenience and scalability. For SQL

Server, there is Azure SQL Database, and there is also Azure

Database for MySQL and Azure Database for PostgreSQL, which

are all managed Platform as a Service offerings. Unstructured data

is data that doesn't adhere to a schema and is usually data

stored in different file formats, so PDF documents, JPEG images,

video files and JSON files. For that data, Azure Storage provides

highly scalable solutions with Azure Blob storage and Azure File

storage. File storage can be attached to virtual machines using the

SMB protocol, similar to file shares, but both types of storage

also offer REST APIs, so data can be securely accessed over the

internet. Azure Storage also stores large files like disk images and

SQL databases. data doesn't fit neatly into tables, rows, and

columns. It's often called NoSQL or data, and it usually uses tags

or keys that organize the data and provide a hierarchy. For this

type of data, Azure offers Cosmos DB, which is a globally

distributed service to store data that's constantly being updated by

users around the world. Being able to provision these different

types of storage solutions quickly and in a cost effective way

helps you respond to business change without the need to

procure and manage the costly storage media and networking

components required to connect it all together. This makes data

storage a very strong value proposition for moving to Azure. We'll

be looking at Azure Storage accounts. This is the focus of the

data storage portion of the exam. We'll look at redundancy

options for storage accounts, so making copies of your data in

different locations. We'll create a storage account and explore the

features of blobs and files in Azure Storage. Then you'll learn

about some of the options for transferring data into Azure using

online methods with tools like Azure Storage Explorer and a utility

called AzCopy. And for transferring larger amounts of data, there

is a service called Azure Data Box where Microsoft will send you

hard drives for you to copy your data onto and send back to be

copied into Azure. We'll discuss migrating other types of

workloads to Azure also, like servers and applications using a

service called Azure Migrate. Let's get started by looking at Azure

Storage.

Chapter 38 Azure Storage Accounts

Azure Storage is a set of services in Azure that provides storage

for a variety of data types using a few different services. Those

services are managed under an Azure Storage account. The Blob

storage service is for unstructured data like files and documents.

Then there is File storage that's similar to Blob storage, except

that it supports the SMB protocol, so it can be attached to virtual

machines like a network drive, and this makes migrating

traditional applications to the cloud much easier. There is Disk

storage which stores the virtual machine disks used by

Infrastructure as a Service VMs. There is the Table storage service

that lets you store structured data in the form of NoSQL data,

similar to the data you can store using Cosmos DB. And finally,

there is the Queue service that's used to store and retrieve

messages to help you build asynchronous reliable applications that

pass messages. Let's talk about some of the general features of

Azure Storage. Azure Storage is durable and highly available. Your

data is stored three times in the primary data center by default,

and you can choose other replication options that copy the data

automatically to other regions in Azure. Your data in Azure

Storage can be reached over HTTPS from the internet and each of

the storage services in an Azure Storage account has its own

REST endpoint, but of course, you can apply security controls to

those endpoints to prevent unauthorized access. Security is a big

topic for storage accounts. At a high level, when you want to

control access to the data plane of a storage account to allow

access to the data, you can provide access using access control

for users with identities stored in Azure Active Directory and that

works for the blob, file, and table services in your storage

account. Or you can provide a storage account key that gives

access to the entire storage account. You can also provide a user

with something called a shared access signature. A shared access

signature is a security token string, and it can scope access to a

particular service like only the Blob service, as well as to a

particular container or even an individual blob, and it can also

scope access to a range of time and a particular set of

permissions like only allowing reads or updates or deletes. A

shared access signature gets appended to the end of the URL to

a blob or file in Azure Storage so you're able to have pretty

access control to data in Azure Storage using shared access

signatures, and data in your storage account is encrypted. You can

even use your own encryption keys. Besides accessing your data

using the REST endpoints, there are SDKs for a variety of

languages like .NET, Java, PHP, and others, as well as support for

scripting in PowerShell and the Azure CLI. Microsoft also offers

free tools like Azure Storage Explorer, which provides a graphical

user interface and a utility called AzCopy to make it easy to move

data into and out of your storage account. There are four types of

storage accounts, standard general purpose v2 storage accounts

support blobs, file shares, queues, and tables. This is the

recommended storage account type for most situations. It offers

the most redundancy options, meaning you can have copies of

your data in other regions. Premium Block Blob storage is for

storing blobs only and it's for scenarios when you need high

transaction rates and low latency. You're limited to only storing

your data within a single Azure region though. Premium file

shares are for high performance file storage, but you could only

store files with this type of account, and again, you're limited to

storage within a single Azure region. Premium page blobs are for

storing larger blobs like databases and VMs for disks. You can

store these types of files in general purpose v2 storage accounts

too, but the premium page blob account type gives you better

performance when it's needed. Again, your redundancy options are

limited. All of the premium account types use drives for low

latency and high throughput. You can't change the storage account

type after it's been created. You would need to create a storage

account of a different type and move your data over. Next, let's

talk about redundancy options for Azure Storage accounts.

Chapter 39 Azure Storage Account Redundancy Options

Redundancy with Azure Storage is about protecting your data from

unplanned events like hardware failures, network outages, and

even natural disasters. You do that by making copies of your data,

which is called replication. Your data is always replicated in the

primary data center, you can just expand that with other options.

There are three categories that group the redundancy options:

redundancy in the primary region, redundancy in a secondary

region, and read access to data in the secondary region. Let's

start with the primary region. Locally redundant storage is the

lowest cost replication option. Your data is copied three times

within a single physical data center. It protects you from failures

of a server rack or a disk drive within the data center, but

because all the data is within a single data center, there is still

the risk of a data center level disaster like a fire or a flood. To

help mitigate that risk, the next storage type is storage. This

storage replicates your data across three availability zones in a

single region. Availability zones are data centers within a region

that have their own separate power, cooling, and networking.

storage isn't available in every Azure region. Locally redundant

storage and storage provide redundancy in the primary Azure

region that your storage account is located in, but in the event of

a regional disaster where multiple availability zones are affected,

there are other options that allow you to copy your data to

another Azure region. storage copies your data three times in the

primary region within a single data center and also copies the

data asynchronously to a single location in a secondary region.

The data is copied three times in the secondary data center, it's

basically locally redundant storage in two regions. The secondary

region is decided by Microsoft and you can't change that, but it's

selected to be hundreds of miles away from the primary region to

prevent data loss in the event of a natural disaster. Microsoft lists

the paired regions on their website. The second option for

redundancy in a secondary region is storage. This replication

option uses storage in the primary data center and locally

redundant storage in the secondary data center. With and storage,

the data in the secondary region is only available to be read if

you or Microsoft initiates a failover from the primary region to the

secondary. You might want to always have the ability for your

applications to read the data in the secondary region. To enable

this, there are two other account types, storage and storage. The

two options are similar to the previous ones we discussed, and

storage. They just add the ability to always be able to read the

data from the secondary region. The replication options available

depend on which storage account type you select. Let's create a

storage account in the Azure portal.

Chapter 40 How to Create a Storage Account

Let's create an Azure Storage account so we can explore some of

the features and configuration options. As usual, I'll go to All

services and search for storage. Clicking on Storage Accounts

brings us to the list of storage accounts in this subscription. We

could have also gotten there from the shortcut on the left menu.

From here, let's create a new storage account. The first thing we

need to do is choose a resource group for the storage account, I

have one created already. Then we need to give the storage

account a name and this name needs to be unique across all of

Azure because it will become part of the URL to each of the

storage endpoints for the blob, file, table, and queue services.

Now we choose the region. Before I change the default, I just

want to show you how the choice of region affects the

redundancy options available.

For the East US region, the options are so just in a single region,

so with failover to a secondary region, and storage. If I change

the region to Canada Central, we have all the same choices plus

storage, so that's not available for all Azure regions, but let's go

with storage, the cheapest option. Next, we choose the storage

account type which is labeled as performance. The standard

selection is for a v2 storage account type, but we can change this

to Premium and choose from Block blobs, File shares, or Page

blobs.

These account types store data on drives, but they're limited to

just the type of data in the description, so file storage won't let

you store blobs, tables, or queues. Each of these options offers

better performance and might be suitable depending on your

business requirements, but you'll notice that choosing any of these

limits the redundancy options to just storage. Let's change this

back to Standard and move to the Advanced tab.

Here, you can choose from some security options like requiring

HTTPS on the REST API to the storage account allowing

anonymous access to Blob storage, then there is options to

Enable hierarchical namespace for the Blob service, which will

allow it to be used for Data Lake Storage Gen 2. That adds some

security options, and the hierarchical namespace makes it easier

to do the type of bulk operations required by big data analysis

tools. You can choose the default Access tier when uploading

blobs.

Access tiers can have a significant impact on the cost of storing

your data, and you can enable large files for Azure File storage.

Normally, file shares are limited to 5 TB in size, but by choosing

this option, you can create file shares up to 100 TB. Let's move

on to networking.

The default is to Enable public access, so this includes the

internet and this is for the REST endpoints to all the storage

services, which of course, you can secure by requiring the caller

to authenticate or you can specify virtual networks within Azure

and public IP addresses on the internet that you want to restrict

access to. And you can also select to only have the storage

account available over a private endpoint. Let's use the default

and move on to data protection. You have the ability to Enable

soft delete for blobs, containers, which hold blobs, and for file

shares.

This essentially gives you a recycle bin where you can recover

deleted files and folders. Then there are some options for

versioning of blobs and enabling the change feed to record when

blobs are created, modified, and deleted. Let's move on to

encryption. The data in your storage account is encrypted by

default, but you might have a need to manage your own

encryption keys, maybe for regulatory compliance. You can do that

using an encryption key that you store in Azure Key Vault.

We haven't talked about Key Vault, but it's a central service in

Azure to securely store secrets like encryption keys, SSL certificates

for web apps, and strings, like database connection strings. They

can all be managed in one place and accessed by applications

that have permissions. Let's leave the default and let's go to Tags.

We won't create any tags. So let's review the configuration and

create this storage account.

Once the storage account is created, we can navigate to it by

going to all storage accounts and there is the new storage

account we created. Before we explore the storage account, let's

talk about blob access tiers next.

Chapter 41 Azure Blobs and Access Tiers

Now let's talk about blobs and how you can save on storage

costs by using a feature called blob access tiers. BLOB is an

acronym for binary large object. A blob can be any type of file,

including documents, video files, text files, even virtual machine

disks. The Blob service is optimized for storing massive amounts

of unstructured data, and by unstructured data, I mean data that

doesn't adhere to a particular data model or definition. There are

three types of blobs you can store: block blobs, stored text, and

binary data. They're called block blobs because a single blob is

made up of multiple blocks and that helps you optimize

uploading. Append blobs are made up of blocks also, but they're

optimized for appending only, so they're a good choice for logs

where you only add to the file. And page blobs store random

access files up to 8 TB in size, so they're used to store disks for

virtual machines and databases. Page blobs are made up of pages

and are designed for frequent random read/write applications, so

they're the foundation of Azure Disks. Block Blob storage is the

most cost effective way to store a large number of files, and one

of the features that helps you save is blob access tiers The cost

of Azure storage comes from the amount of storage, as well as

transaction costs related to accessing the data. So there are three

blob access tiers that you can choose from to tailor these costs

to the way that you use your data. The hot access tier is for data

that's accessed frequently so it has the highest storage cost, but

the lowest transaction costs. Cool storage is for storing data that

you don't access frequently, so the storage cost is lower, but the

transaction cost is higher when compared to the hot access tier.

And the archive access tier is for storing data that you rarely

access. It's very inexpensive to store a large amount of data, but

you have to be willing to wait hours to rehydrate the data if you

do need to access it, but for organizations that have requirements

to archive large amounts of data, there can be big cost savings

by using the archive tier. With some data, the need to access it

drops as the data ages, so Blob storage also has a feature called

lifecycle management, which lets you set policies to move blobs

between access tiers so you can design policies that provide the

least expensive storage for your needs without having to manually

move the data around. Blob storage has a lot of other features

too, like creating snapshots of blobs, leasing blobs to prevent

other people from modifying them. You can enable soft delete to

essentially provide a recycle bin for your blobs, and you can even

host static websites directly in Blob storage so you don't have to

host simple HTML and JavaScript sites in Azure App service or

on a virtual machine. Blob storage also integrates with other

Azure services like the content delivery network, so you can

optimize the delivery of blobs to clients all over the world. Azure

Search integrates with Blob storage too so you can index the

contents of blobs, which enables searching inside the contents of

the documents like Word docs, PDFs, Excel spreadsheets,

PowerPoint files, and lots of other types. So the Blob service and

Azure Storage accounts can be an integral part of applications

that use unstructured data. Let's talk about File storage next.

Chapter 42 Azure File Attachments

You can attach File storage to virtual machines to act like network

drives. The file share will show up as a drive letter in the virtual

machine, just like storage. When you're moving applications from

to the cloud, there is inevitably going to be some applications

that rely on data or configuration being stored on a file share.

With the SMB support that Azure Files brings, you can migrate

those apps much easier. Something that distinguishes Azure file

storage from traditional file shares is that you can make the files

accessible from anywhere in the world using a URL to the file

with a shared access signature appended on the end. Azure file

shares can be mounted concurrently by cloud or deployments of

Windows, Linux, and macOS. In order to map an Azure file share

to using the SMB protocol, you need to open port 445, which is

used by SMB. If your organization requires that port 445 be

blocked, you can use Azure VPN Gateway or ExpressRoute to

tunnel traffic. You'll need to set up a private endpoint for your

storage account to do that though. Moreover, Azure File shares

can be cached on Windows Servers with Azure File Sync. That

provides you fast access near where the data is being used. It

actually allows you to tier files based on how they're used. You

can keep recently accessed files on your servers while seamlessly

moving old and files that aren't used as frequently to Azure. This

helps you manage unpredictable storage growth, and essentially

turns your file server into a quick cache of your Azure file share.

You do that by installing a sync agent on the local server. Azure

Files has different storage tiers. There are premium file shares,

which are part of the File Storage storage account type. We talked

about storage account types in the overview on Azure Storage

accounts. Premium file shares run on drives so you get high

performance and low latency, so milliseconds for most

input/output operations. Transaction optimized file shares are

backed by hard disk drives, and therefore, transaction heavy

workloads that don't require the low latency of the premium tier.

These are good for applications that require File storage as a

store. Hot file shares are for file sharing, like team shares, and it

works well as the storage for Azure File Sync also. Cool file

shares offer the most storage for offline archive storage. Hot and

cool file shares are similar to the access tiers that you learned

about for Blob storage. You choose the storage tier when you

create the file share, but with the tiers on the v2 storage account

type, you can change the storage tier after the file share has been

created. So next, let's explore the storage account that we created

earlier and upload some data.

Chapter 43 How to Explore Azure Storage Accounts

Let's explore some of the features of the Blob and File services in

the Azure Storage account that we created earlier. From the list of

all storage accounts, I'll open that one. From the menu on the

left, you can access each of the services in this general purpose

v2 storage account.

Containers are the Blob service, File shares are the File service,

and the Queue and Table services. Below those are general

settings for the storage account. Let's look at blob containers.

Containers are the logical groupings of blobs. You can think of

them like folders, but they're really just a path in the URL to the

file. Let's create a new container. I'll just give it a name and you

can specify an access level.

This means that you can require everyone accessing blobs in this

container to authenticate, which is the private option, or you can

allow anonymous read access to just the blobs and not to be

able to list the container contents or the container option allows

anonymous access to both the blobs and the container. Let's leave

this as private and create the container. I'll navigate into the

container and it's empty, so let's upload some data. I'll go to my

desktop and there are some files in this folder. I'll select them all

and click Open. Under Advanced, we can specify the blob type,

and we can also specify the access tier.

So if this data is meant to be archived, we can send it right to

the archive tier during the upload. We can also specify a folder,

which is similar to the container in that it's just part of the path

in the URL. Once the upload is complete, I'll close this window

and let's click on one of these files. So this just opens the

metadata about the file, not the file itself. From here, we can

change the access tier of this blob. On the right side, there is a

menu for each blob.

This is where you can download the file or create a snapshot so

a version of the file. You can acquire a lease to prevent other

users from modifying the file and you can generate a shared

access signature. Let's click that. This lets us choose the

parameters for the token, like the permissions we want to give,

how long it's valid for, and the IP addresses the user must be

coming from in order to access this blob.

Let's generate this with the defaults. That gives us a URL to the

blob with the shared access signature token appended on the end,

but let's close out of the container and go back to the Storage

Account menu. Now let's go to File shares and let's create a file

share.

You need to give the file share a name and then you can choose

the storage tier. Premium isn't available because the storage

account was created with a general purpose v2 storage account

type, but you can choose between Transaction optimized, Hot, and

Cool storage tiers. Let's create this file share. And once it's

created, I'll click to open it. From here, we can upload files and

change the storage tier. We can also generate a script to run on

a virtual machine in Azure, then it will show up on the VM with

a drive letter. We can do that for Windows, Linux, and macOS

because remember, it's also possible to connect to this file share

from Let's close out of this and let's go back to the root of the

storage account. I want to show you some of the configuration

options here. Under configuration, you can change some of the

settings we chose when setting up the storage account like the

default Blob access tier and the Replication option.

We could change this to storage. Farther up the menu, there are

a number of options under Security and networking. You can

create a shared access signature to allow access to the services

within the storage account, so this provides more access than the

token we generated to the individual blob, and you could also

provide the access key to the entire storage account.

This isn't recommended though because it provides full control of

the storage account. You can rotate the primary and backup keys

here which would remove that access, and the shared access

signatures are actually generated using these keys too, so if you

wanted to revoke the shared access signatures before they expire,

you could just rotate the keys here. On the Networking tab, you

can disable access from the internet and you might do this if you

set up a private endpoint or you can enable access from your

virtual networks.

On the Azure CDN tab, you can integrate the storage account

with the Azure Content Delivery Network, which would cache the

data in locations around the world for faster access times. We

won't go into the Azure CDN here, but it can really increase

speed and availability of files to users in locations outside the

region where the storage account is located.

Farther down the menu, there is an option for Static website. This

allows you to host static HTML pages and scripts.

This is less expensive than hosting a full app service when all you

need is a website without any processing or frameworks installed.

Azure Search lets you integrate your storage account with the

Azure Search service so your blobs can be indexed and

searchable, that includes being able to search the contents of a

variety of file types like Word documents and PDFs.

You need to create a search service in order to do that though.

We won't go into Azure Search in this book. When you want to

access a blob in the Blob service, it would be at this endpoint,

followed by the container name and the blob name. Uploading

files manually using the Azure portal can be quite so in the next

chapter, let's look at other ways to manage files in Azure.

Chapter 44 Azure Data Transfer Options

Let's talk about some of the options for moving data into Azure

Storage. The approach you choose depends on a few factors, the

amount of data you need to transfer, the frequency, meaning is

this a transfer or will you be periodically pushing data into the

Azure Storage account, and the last factor is network bandwidth.

If you've got a slow connection, transferring large amounts of

data can take quite a while. Even if you have a larger connection,

you might not want to use up all the network bandwidth for data

transfer. For smaller amounts of data, so I'm talking about

gigabytes or terabytes of data, if you've got a decent network

connection, there are a few tools available. Of course, you can

use the Azure portal to upload data to Azure Storage like you

saw it earlier, but there is also Azure Storage Explorer, which

offers a graphical user interface and makes moving data as easy

as using File Explorer, so it's a good choice if you need to

delegate some tasks to business users, but it also offers

management capabilities for a storage account so it can be used

by administrators too. Behind the scenes, Azure Storage Explorer

uses a tool called AzCopy. It's actually a command line tool that

you can use directly. AzCopy provides features for uploading in a

very performant way by leveraging multiple connections at once,

and you can integrate AzCopy commands into your scripting

activities to copy data to and from Azure. PowerShell and the

Azure command line interface also have commands for managing

data in Azure. For developers, there are also the client SDKs

available in a variety of languages, so you can integrate data

ingestion to Azure Storage as part of application development.

Earlier, I mentioned Azure File Sync as a way to extend your file

shares to Azure. This way, data that you access frequently is kept

and data that you use less often is automatically stored in Azure.

Azure File Sync is always online, and you don't need to manually

move the data to Azure. These are some of the ways that you

can get data into Azure using a connection over the internet.

Sometimes that's not convenient or even possible due to the

amount of data or the throughput of your internet connection. So

we'll talk about some options for offline data transfer later, but

first, let's take a look at Azure Storage Explorer and AzCopy.

Chapter 45 Azure Storage Explorer

Now let's talk about a tool for managing the data in your Azure

Storage account. Azure Storage Explorer is a tool that you can

download for Windows, Mac, and Linux and it runs on your local

desktop. I've already installed it on my local computer, so let's

search for it and open it up.

We need to log into Azure, so let's add an account. There are a

number of ways to authenticate. You can log into the whole Azure

subscription so the administrator would likely do this, or you can

scope the login to just the resource the user needs access to like

a blob container or a file share. This is great if you want to give

access to an end user to upload files to Azure Storage. You don't

want them to have any more access than they need so you set

the permissions in Azure Storage and have them log into the

resource that they need access to.

Let's use the subscription option and hit Next. That opens a

browser and I'll select my administrator account, enter my

password, and I have multifactor authentication enabled so I need

to send a code to my phone and then enter that. Now I'm

logged in and my account shows here along with the

subscriptions that I have access to.

I'll go to the Explorer tab and expand the subscription. All the

storage accounts are listed and below that are disks. This is a big

advantage to using Storage Explorer. You can manage the disks

used by virtual machines in your subscription, and I'll show you

that shortly. First, let's expand the storage account we created

earlier. If I on that storage account, I have some options to

manage it like copying the access keys and setting the default

blob access tier. Let's expand the Blob service and click on this

container.

The blobs show on the left, and by on the container, I can do

things like copy the container, get a shared access signature to

provide someone else access to the container, and set the public

access level.

You can manage the blobs in the container from here also. you

can change the blob access tier for the individual blob. You can

acquire a lease, create a snapshot, and edit tags.

Of course, you can upload blobs from here also with the same

options you saw in the portal like setting the access tier. Let's

cancel out and look at file shares. From here, you can create file

shares and upload and download data, and you can get the script

to attach this file share to a Windows VM, but let's close this

and look at the Tables service. There are some tables here

because classic metrics are enabled on this storage account. In

the second table here, there is some data, and you can run

queries against this data from here if you like.

With the Queues service, you can create a new queue, so this

might be for applications or components that need to pass

messages. And you can create queue messages from here also,

which you might want to do for testing during development.

Let's close this storage account and now let's look at disks. I

have this resource group that's storing the operating system disk

for the VM that I created earlier. From here, you can download

the disk image and also create a snapshot, and you can also

upload disk images from to Azure.

You select the operating system type, you can select whether it

should be stored on a drive or a hard drive, and the generation

of the image.

Azure Storage Explorer gives you a graphical user interface that

lets you do some management of your Azure Storage account,

and it's great for transferring data to and from Azure. It also lets

you delegate access to other people with an interface. Azure

Storage Explorer actually uses a utility called AzCopy to transfer

the files, and you can use AzCopy directly too, so let's look at

that next.

Chapter 46 How to Use AzCopy to Upload & Manage Blobs

Let's take a look at the AzCopy command line utility. You can

download it from docs.microsoft.com, and it's available for

Windows, Mac, and Linux. I've already downloaded it, and you

just need to unzip it and navigate to the folder where it's stored,

it doesn't get installed. I've copied it to the root of my C drive.

So I'll open up the Windows command prompt and I'll change

directories to the root of the C drive where the AzCopy file is

stored. We need to authenticate to Azure, so I'll type azcopy

login.

It says I need to open up a browser and go to

microsoft.com/devicelogin and paste in this code, so let's do that.

And I'll paste in the code I copied and select my administrator

account and just click Continue to log in. Now we can run some

commands, but before we do that, I need to show you something

in the Azure portal. I'll navigate into the storage account that

we're going to be working against with AzCopy. Let's go to Access

Control and view my access. I had to give my administrator

account this permission called Storage Blob Data Contributor.

That will give the account access to create and modify blobs in

the storage account. You don't actually have to log in using Azure

AD. You can just attach a shared access signature on all of your

calls with AzCopy, but using the Azure AD login is just more

convenient. Let's open up the Containers tab and now go back to

the command prompt and run some commands. Azcopy make will

docs.microsoft.com
microsoft.com/devicelogin

create the container name at the end of the URL to the Blob

service in my storage account.

It says it's being created, so let's go to the portal and refresh the

list, and there is the new container. Let's open it up. And now

let's upload some files back in the command prompt. I have

these files on my local computer. Let's copy the DOCX file. You

do that with the azcopy command specifying the source and

destination.

The source can be a local file or folder or even a container in

another storage account, and you can change the name of the file

in the destination, so it's the same file just with a different name.

It shows that it was successful, so let's go to the portal and

refresh the container, and there is the file with the new name.

The last thing I want to do is to use AzCopy to change the

access tier of one of these files. I want to change it from hot to

cool because I know I won't need to access this file, and I'd like

to save on storage costs. So back at the command prompt, I'll

use azcopy with a path to the file and the parameter set to cool.

No failures, so let's take a look in the portal. And the blob access

tier has been changed.

AzCopy is a powerful tool that you can use for managing files in

Azure and you can use when creating scripts for batch jobs. Next,

let's talk about managed database products in Azure.

Chapter 47 Managed Database Products in Azure

Azure offers managed database solutions for storing structured

data in relational databases. Let's start by talking about Microsoft's

own relational database management system, SQL Server. There

are three offerings for SQL Server in Azure that make up the SQL

Server family of products. You can host SQL Server on virtual

machines, which gives you full control over the product and all

the features you're accustomed to hosting SQL Server in your own

data center, but you can also provision a virtual machine with

SQL Server already installed by using the Azure Marketplace, and

you can take advantage of pricing so you don't have the costly

upfront licensing fees. You even have the ability to configure a

maintenance window for some automated patching, and you can

configure backups using a managed backup service in Azure. Then

there is a version of SQL Server called Azure SQL Database. Most

database management functions are handled for you like

upgrading, patching, backups, and monitoring. Azure SQL

Database is always running the latest stable version of SQL Server

with high availability guarantees. There is also flexible pricing

models based on either the number of virtual cores or using a

unit of measurement called DTUs, which stands for database

transaction units, and makes up a combination of CPU, memory,

and data throughput. Azure SQL database also has flexible

deployment options. You can provision a single isolated database

or what's called an elastic pool, which is a collection of databases

with a shared set of resources. With single databases, you can

still harness the elasticity of the cloud by scaling database

resources up and down when needed. There are different service

tiers available too like the standard tier for common workloads,

the business critical premium tier for applications with high

transaction rates, and the hyperscale tier for very large

transactional databases. Running SQL Server on a virtual machine,

you get access to all the features of the product so there are

some limitations to using Azure SQL Database. The majority of

core features are available in the managed version, but if you

have some specific requirements, you can verify compatibility with

Azure SQL Database in the Microsoft documentation. If you have

compatibility concerns, there is also a third offering called Azure

SQL Managed Instance. It combines the broadest set of SQL

Server capabilities with the benefits of a platform. It allows you to

deploy a managed VM with SQL Server onto your own virtual

network. Some organizations have security concerns about

deploying databases onto a managed public cloud platform, so

SQL Server Managed Instance lets you lift and shift your

databases to the cloud with minimal changes and into an isolated

environment with the networking controls while also getting the

advantages of automatic patching and version updates, automated

backups, and high availability. Those are some of the options for

using SQL Server in Azure, but there are other database options

available in Azure. Using the Azure Marketplace, you can provision

a variety of virtual machines with various relational database

systems preinstalled, but of course, you'll be managing those

servers and databases yourself. In terms of offerings, Azure offers

Azure Database for my SQL and Azure Database for PostgreSQL.

These are hosted versions with pricing, and you get high

availability and automated patching of the underlying database

engine. Next, let's talk about how you can migrate different types

of workloads, including SQL Server from your environment into

Azure.

Chapter 48 Azure Migrate Fundamentals

Azure Migrate is a unified migration platform that allows you to

start, run, and track your migrations to Azure. It lets you assess

your infrastructure, data, and platforms to determine how to

migrate them to Azure. Azure Migrate can assess your physical

and virtual servers for migrating them to Azure virtual machines.

It can assess SQL Server instances to migrate them to SQL

running on a VM, an Azure SQL Database, or an Azure SQL

Managed Instance. It can assess web applications running and

migrate them to run on Azure App service or the Azure

Kubernetes service. For migrating large amounts of unstructured

data offline, Databox is a service that's part of Azure Migrate. You

can track your data migrations in the Azure Migrate portal, and

you can also assess your virtual desktop infrastructure and migrate

it to Azure Virtual Desktop. Azure Migrate is made up of several

tools, let's look at some of them. Let's start with migrating

servers. The Azure Migrate: Discovery and Assessment tool looks

at physical servers hosted and virtual machines running on and

VMware. It assesses whether the VMs are ready for migration to

Azure, including the web apps and SQL servers running on the

VMs. The tool estimates the size of the virtual machine that will

be needed in Azure and estimates the costs for running the

servers that you need. The tool also identifies dependencies and

makes recommendations for optimization. You download a virtual

appliance to your environment to do the assessment, and it can

run on a physical or virtual server. It discovers servers and sends

metadata and performance data to Azure Migrate. Then you can

use the Azure Migrate Server Migration tool to actually replicate

your servers into Azure. You can also migrate servers hosted in

other cloud environments. You download and install a replication

appliance in your environment and install the mobility service

agent on the servers you want to replicate to Azure, Then you

can replicate up to 10 servers at once and track the progress in

the Azure Migrate portal. The server migration tool also attracts

incremental changes to the disks after the initial replication and

makes updates to the disks in Azure. For migrating SQL Server

databases, there is the Data Migration Assistant and Azure Data

Migration service. The migration assistant detects compatibility

issues that can impact functionality when migrating to newer

versions of SQL Server in the cloud or to Azure SQL Database. It

can also recommend performance and reliability improvements. For

smaller databases, the migration assistant can move the schema

data and objects from your source server to your target database

in Azure. The Azure Database Migration service is for large

migrations in terms of the number of databases and the size of

those databases. Both of the tools can move your SQL Server

databases to SQL Server hosted on virtual machines, Azure SQL

Database, or Azure SQL Managed Instances. Azure Migrate also

has tools to assess and migrate.NET and Java web applications

hosted They can be moved to Azure App Service as containers or

as code. You can also use the Azure Migrate App Containerization

tool to containerize existing ASP.NET and Java applications and

move them to the Azure Kubernetes service. A Docker file gets

created and the container is pushed to the Azure Container

Registry for deployment to Kubernetes. The process doesn't even

migrate.NET
ASP.NET

require access to your code base. So next, let's take a look at

Azure Migrate in the Azure portal.

Chapter 49 How to Use Azure Migrate to Move Apps to Azure

I'll go to All services and search for migrate. This isn't a service

that you create, it's a portal inside the Azure portal to organize all

your migration projects.

The different migration options are listed on the left menu. Let's

go to Servers. I've already created a project, so the instructions

for assessment and migration are listed here. Let's click on

Discover.

It asks if the servers we want to migrate are virtual or physical,

and notice that physical includes servers hosted on other cloud

platforms like Amazon or Google. Let's select The next screen is

where you can download the appliance to your environment that

will do the discovery and assessment.

We won't do this. Let's close out of this and let's see what's

involved in creating a new project. There is only a few things you

need to enter here, the resource group, give the project a name,

and you need to select a geography.

Notice this isn't an Azure region. You learned earlier that

geography is organized groups of Azure regions. Under Advanced,

you can select whether the migration will be over the public

internet or a private endpoint. That's all you need to create a

project. Let's close out of this though and let's look at another

type of project for migrating web apps. I'll create a new project

here, and this looks exactly like the servers project, but let's go

ahead and create this. I'll use an existing resource group and

enter a project name. Now I'll select my Azure geography, and I'll

leave the public endpoint.

The project gets created and the steps here are different than for

the server project. It says to download the App Service Migration

Assistant.

Let's click this link. That brings us to the overview page for the

tool. Scroll down and the tool is available here.

Let's download this. I just have to accept the license terms and

an MSI gets downloaded to my local computer. Clicking on the

file actually runs the installer, although there is no wizard here to

step through. So when this is done, I'll minimize this window and

there has been a shortcut installed on my desktop. I'll click this

to open up the tool. So I have a web server installed on this

Windows 10 computer, Internet Information Services, or IIS, is

running the same web server that you would install on a

production server in your environment. So the tool detects that

and scans the web server. There is only the default site running

which is just a web page actually, but it did discover the site so

let's proceed with this.

Once the assessment report is complete, it shows all the things

that were scanned and it passed all the checks. Next, I'm told to

log into Azure. I'll click this and paste in the code that was

copied to the clipboard. I need to choose an account, and I'll

skip filming all the login stuff because I have multifactor

authentication enabled. And once I'm logged in, it asks if I'm

trying to sign into the App Service Migration Assistant.

So let's continue and go back to the assistant. Now we can select

a project in Azure Migrate. I have several. Let's choose the one I

just created. Next, we enter the target in Azure. I'll choose an

existing resource group and give this app service a name, which

remember, needs to be unique across Azure.

I'll choose an existing app service plan and that's it, let's hit

Migrate. And while this is creating the app service in Azure and

migrating the code, you can export the Azure Resource Manager

template for this app service configuration.

Once the migration is complete, you can navigate to the website

deployed in Azure.

This is just a default web page that gets installed locally with IIS,

but it shows that the files were successfully copied into Azure

App service. So Azure Migrate makes it pretty easy to move

resources from and other cloud providers into Azure. Next, let's

talk about Azure Data Box for moving large amounts of data into

Azure.

Chapter 50 How to Migrate Data with Azure Data Box

Azure Data Box is a service where Microsoft will ship you a

secure device that you copy data onto and send back to Microsoft

to load into at Azure. Data Box is actually part of Azure Migrate.

So let's go to the Azure Migrate portal and go down to Data Box

on the menu.

You select a resource group for the order, then a source country

or region, and a destination. Click Apply and the options are here.

There are three tiers to the service depending on how much data

you need to transfer. The standard Data Box service is a secure

device that can move up to 80 TB of data. It gets transported to

you and you copy your data onto the device and ship it back to

Microsoft. Or you can use it to export your data from Azure and

copy onto your local network. You might use this to move some

virtual machines or databases to Azure in a migration. Keep in

mind, this isn't just a hard drive that Microsoft is shipping you.

These are pictures of the device from the documentation.

It's a rugged device with fast transfer speeds and multiple layers

of security and encryption. You can track the status of the transfer

right in the Azure portal. For smaller transfers, Azure Data Box

Disk can be used. Microsoft can ship you 1 to 5 disk drives that

can hold up to 35 TB of data. The process is the same, and one

of the advantages is that it can use USB 3.0 to copy the data

locally, so you don't need a network interface like you do with the

standard Data Box. You might use this to send backups to Azure

Backup without having to transfer them over the network or to

seed files in Azure File Sync. On the other end of the spectrum,

if you need to transfer more data than the standard Data Box

service, you can go with Azure Data Box Heavy. This is a device

with 800 TB storage capacity, and it uses a 40 Gbps network

interface. You might use this to move your virtual machine farm

or SQL Servers to Azure in a lift and shift type scenario. There is

another service available for Microsoft for drive shipping also

called the Import/Export service. This allows you to ship your own

disk drives to Microsoft to load the data into Azure Blob or File

storage. You can also ship disks to Microsoft and have them load

your blob data onto the disks to be shipped back to you. There is

another product with Azure Data Box and it moves data online so

it's not storage that you ship back and forth to Azure. Azure Data

Box Gateway is a virtual device hosted in your environment. You

write data to the device like using a file share and then as the

data is written to the gateway device, the device uploads the data

to Azure Storage. You might still use Data Box for the initial

offline transfer and then use Data Box Gateway for incremental

ongoing transfers over the network. In summary, you learned

about storage options in Azure. We went into depth on storage

accounts and their configuration options. We created a storage

account and explored blobs and files. You learned about data

migration options like using Azure Storage Explorer to upload

small amounts of data and Azure Data Box for transferring large

amounts of data offline. You also learned about using Azure

Migrate to move different types of workloads to Azure. Next, we'll

look at ways to manage Azure other than using the Azure portal,

as well as monitoring tools in Azure to ensure the health and

performance of your resources.

Chapter 51 Azure Resource Manager Basics

So far, we've been creating resources in Azure using the Azure

portal. That's a pretty intuitive way to do it, but there are also

several tools for managing Azure from the command line and

using infrastructure as code. Central to all of Azure Management

is Azure Resource Manager, which goes by the acronym ARM.

ARM is the deployment and management service for Azure and

it's central to all the creation, deletion, and modification of

resources that you do in Azure. When you're using the Azure

portal, you're really just using a website that sends requests to

the ARM endpoint. ARM handles authentication using Azure Active

Directory and authorizes that you can perform the action that

you're attempting to perform. ARM then sends the request to the

Azure Service that you're attempting to create or manipulate. That

could be an app service, a virtual machine, an Azure SQL

Database, a machine learning workspace, anything in Azure that's

a resource, which is basically everything in Azure. ARM is used by

all the tools that you use to manage Azure. The Azure portal is

an obvious tool, but you can also use PowerShell to create and

manage resources in Azure. It's actually done through a set of

cmdlets that you install as the Azure PowerShell module.

PowerShell works from a Windows, macOS, or Linux computer,

and with PowerShell, you can write scripts to automate a series of

tasks, so it's really powerful. There is also the Azure interface, or

Azure CLI. The Azure CLI is a set of commands used to create

and manage Azure resources and it's also available for Windows,

macOS, and Linux. It runs in the Windows command prompt on

Windows or the Bash Shell on Linux. You can download and

install PowerShell or the Azure CLI onto your local workstation,

but there is also something called the Cloud Shell in the Azure

portal that lets you use these scripting tools right from within the

portal in your browser, so you don't need anything installed

locally. There is a mobile app for managing Azure that lets you

use a graphical user interface on your phone to create and

manage Azure resources and receive alerts. There are also SDKs

for different programming languages that allow you to call the

Azure Resource Manager endpoints so you can build Azure

management into a custom solution. Azure Resource Manager was

introduced in 2014. Before that, there was the classic deployment

model where every resource existed independently. You couldn't

group resources together. The concept of resource groups was a

major addition that came with ARM. Azure Resource Manager also

brought the ability to use Resource Manager templates, which

allow you to define your infrastructure using JavaScript Object

Notation, or JSON. That lets you deploy infrastructure as code to

create the resources for your solutions. And the Azure Resource

Manager model also brought the concept of tags which allows you

to logically group the resources in your subscription. We're going

to look at different ways to manage Azure using the Azure CLI,

Azure PowerShell, and we'll see those in the Azure Cloud Shell

also. Then you'll learn about Resource Manager templates for

deploying infrastructure in a repeatable way. Then I want to show

you some of the services in Azure that can help with monitoring

and troubleshooting your deployed solutions. Azure Service Health

gives you a view of the health of the overall Azure service, so

you'll know if there are problems with the platform that could be

impacting your applications. Azure Monitor integrates with all the

Azure services to provide monitoring of different metrics with

alerts you can set up to know when there is an issue. Azure

Monitor also contains log analytics which provides extensive

logging capabilities that can help with troubleshooting. You'll learn

about Microsoft Defender for Cloud which assesses the security of

your cloud workloads, provides recommendations, and alerts you

to security events. After that, we'll discuss Azure Advisor which

provides recommendations for configuration of your deployed

resources. Next, you'll see the Azure mobile app, which is a

native app for your phone to manage your Azure subscription and

receive alerts. Finally, we'll talk about Azure Arc, which lets you

monitor resources that are deployed outside of Azure. We've got a

lot to get through, so let's start by looking at the Azure CLI next.

Chapter 52 Azure Command Line Interface

The Azure CLI lets you manage Azure resources from the

command line. You can download it to your local workstation, and

it's available for Windows, Mac, and Linux, and I'll show you later

that it's also available right in the Azure portal using the Cloud

Shell. All Azure CLI commands start with az, then the command.

Before you can use the CLI with your Azure subscription, you

need to log in. That's done with the az login command. The first

command I'll run is to get the list of resource groups in this

subscription. Azure CLI commands are organized into groups and

subgroups. Az is actually the parent group, and group is the

name of the set of commands for resource groups, then list is

the actual command. I'll hit Enter to run this.

That gives us back a list of the resource groups and their

properties, and this is showing a JavaScript Object Notation

format, or JSON. Let's run this again, but this time, we'll use a

global argument called output, and this lets you format the output

of any query. You can modify this to include whatever properties

you want, but let's move on. Another useful global argument is

help, this will give you information at whatever level you use it.

So by typing help after the subgroup name called group, we get a

list of all the commands that are available in that subgroup.

There is the list command we used. Let's try using the help

argument at the root, the az group. That gives us a list of all the

subgroups which have commands for the different services in

Azure.

There is the appservice subgroup, the Cosmos DB subgroup, the

group subgroup that we've been using for resource groups, and

there is a subgroup called resource for managing resources. Let's

use that one. And we'll list out the resources in a resource group.

Let's use the second resource group here. I'll use az resource list,

then we need to use some parameters. is the name of the group

we want it to list the contents of, and let's format the output as

a table again. So there is just two resources in this resource

group, an app service plan, which is actually called a serverFarm

type behind the scenes in Azure, and a site, which is an

appservice.

Now let's create some resources. First, I'll create a resource group

using az group create, then the location parameter, and I'll use

canadacentral, and the name of this resource group will be cli_rg.

The JSON that's returned indicates that it was created successfully.

Otherwise, there would be an error showing. Now let's create an

appservice, but first we need an app service plan, so I'll use az

appservice plan create then the resource group I want it created

in, the name I want to call the appservice plan, and we need to

provide a sku, which is the code for the pricing tier. I'll use the

standard Si pricing tier, the same one we used when we created

an appservice plan earlier in the portal. It'll take a second to

provision this, but then the JSON returns to indicate that it

worked.

Now let's create an appservice for the plan. This is actually a

different subgroup. We use the create command in the webapp

subgroup passing the resource group name, the appservice plan

name, and the name of this app service.

It looks like it was created, so let's go to the Azure portal and

check. I'll go to Resource groups, and there is the resource group

we created using the CLI. It only shows the appservice plan, but

sometimes there is just a delay in it showing up in the portal, so

I'll hit Refresh, and there is the app service.

Let's click the Browse button and make sure it's working with the

default page.

That's how to use the Azure CLI to query and manage resources

in Azure. Next, let's look at Azure PowerShell.

Chapter 53 Azure PowerShell

Another way to manage Azure resources is using Azure

PowerShell, which is a module for PowerShell that you can install.

PowerShell runs on Windows, Mac, and Linux, and Azure

PowerShell requires PowerShell version 7 or higher, so you might

have to install that first, which is what I had to do on my

Windows 10 computer. Then you can install the Azure PowerShell

module from right within PowerShell using the install module

command. Let's open up PowerShell 7 which runs alongside

previous versions of PowerShell. Just like with the Azure CLI, the

first thing you need to do is authenticate to Azure. In PowerShell,

that's done with connect az account. A browser opens up just like

with the CLI allowing us to enter our credentials. I'll use the

administrator account in my Azure Active Directory tenant, and

I'm already logged in so I don't have to enter the password. Back

in PowerShell, it shows that I'm authenticated. Now let's run

some commands against Azure. First, let's list the resource groups

in the subscription. That's done with with no parameters.

PowerShell commands always start with the action verb so get, in

this case. That returns the list, but we can format this in

PowerShell too. To do that, you send the output of the first

command into another PowerShell command using the pipe

operator. So we'll use the command with the AutoSize parameter.

That's easier to read.

Let's clear this, and now let's list the contents of the resource

group we created using the CLI. That's with the

ResourceGroupName parameter, and we'll pipe this to So there is

the app service and app service plan we created.

Now let's add a storage account to this resource group. First, I'll

create a variable to hold the name of the region where I want the

storage account created. You can start to see how PowerShell can

be used for scripting. Now let's call passing in the name of the

resource group, the name we want to give the storage account,

then for the location, we'll use the variable we created. Next is

the sku name. I'll use the locally redundant storage option, and

finally, the kind of storage account which will be StorageV2.

It shows that the provisioning succeeded, so let's go to the Azure

portal and take a look. I'll go to resource groups again and I'll

open up the cli_rg, and there are the app service resources.

So using Azure PowerShell or the Azure CLI, you can use

commands to manage Azure and also integrate those commands

into scripts for more complex operations and deployments, but

you do need to install the tools locally. If you're working remotely

or don't have permissions to install applications on your local

computer, there is an easier way to use the Azure CLI and

PowerShell right in the Azure portal using your browser. Let's look

at that next.

Chapter 54 How to Use Azure Cloud Shell in Azure Portal

You can run Azure CLI and PowerShell commands right in the

Azure portal using the Cloud Shell. Cloud Shell runs on a

temporary host container in the background and it requires an

Azure file share in an Azure storage account. You only need to

create this once, and it will get mounted each time you use the

Cloud Shell, so you can persist files that you upload between

sessions. You choose either the Bash shell or PowerShell here, but

you can change between them any time after this gets created.

You can change the options for the storage account creation if

you like, the region and resource names, but I'll just leave the

defaults.

Let's create the storage account for the Cloud Shell. Once the

storage account is created, it'll connect the terminal. You can

resize the window, and let's make the text a little bigger from the

Settings menu. Let's clear this, and since we're in the Bash shell,

it's the clear command. Because I'm already logged into the Azure

portal, I don't need to authenticate like I did with the Azure CLI

installed on my local computer, so let's run a command against

this subscription. I'll just run the az group list command.

Now let's look at the menu across the top. If you have problems

starting the Cloud Shell, like if it hangs during connection, you

can restart it from here. This can come in handy. You can upload

and download files. You might have scripts you want to run here

or you might upload a file with variables that you want to use

when running commands. Remember, there is a file share

attached, so those files are only accessible to you. You can

actually see the files and edit them right here too. If I expand

this and click on a file, it opens in the editor on the right, and I

can modify the contents, but let's hide this and now let's switch

over to the PowerShell version of the Cloud Shell.

I'll just confirm, and the terminal connects again. I'm already

authenticated in the portal, so I can run PowerShell commands

here.

Before we leave the Cloud Shell, I just want to show you that

besides accessing it here in the Azure portal, you can also go to

shell.azure.com, and that opens a full screen version of the Azure

Cloud Shell. Depending on your device format, that might be

easier to use.

Next, let's talk about Azure Resource Manager templates.

shell.azure.com

Chapter 55 Azure Resource Manager Templates

Now let's talk about using Azure Resource Manager templates to

deploy resources in a repeatable way. Many development teams

are adopting agile methods and quick iterations where they want

to deploy repeatedly and know that their infrastructure is in a

reliable state. That's a big part of DevOps where the traditional

division between developers and IT operations roles has

disappeared. Teams are now managing infrastructure using code,

so those definitions can be stored in code repositories alongside

the source code, and they can be deployed in repeatable ways,

sometimes using the same continuous integration continuous

deployment process that's used to deploy web applications and

database code. To implement infrastructure as code, Azure has

Resource Manager templates. These are files written using

JavaScript Object Notation, or JSON, and the contents define the

infrastructure and configuration for all the Azure resources in your

solution. It uses a declarative syntax, which means you state what

you intend to deploy without having to write a series of

programming commands to create it. Once you write the code in

the template, you can deploy it in a variety of ways. In the Azure

DevOps service, Azure Pipelines allow you to automate code

deployments to hosting environments and you can deploy

Resource Manager templates as part of an Azure Pipeline too. You

can also deploy templates from within GitHub using GitHub

Actions, which is a service that's similar to Azure Pipelines. It's

also possible to deploy templates using PowerShell or the Azure

CLI, and you can also deploy templates using the Azure portal.

Let's take a look at how to do that. I'll open up the list of

resource groups and drill into the one we created using the Azure

CLI. There are three resources in this resource group, an app

service, an app service plan, and a storage account.

Every resource in Azure is defined by an ARM template. Let's look

at this storage account. If we go down to the export template tab

at the bottom, Azure will generate an ARM template based on the

current configuration.

Parameters are broken out by default, so it's easy to change the

name of the storage account when you deploy a new one using

this template, but you can turn off that feature and have the

name generated inline in the JSON.

Often, you'll want to deploy groups of resources though, so let's

go back to the resource group and there is a tab on the menu

here too that will generate an ARM template with all the

resources in this resource group, but it's also possible to select

just the resources you want and export the template from the

menu here at the top. Now we've got just the app service plan,

which is called serverFarms in the JSON, and the app service

whose resource type is actually called microsoft.web/sites. From

this screen, you can download the template and that creates a zip

file with the template and a file with the parameters.

If I the template file, it opens in Visual Studio Code, which is the

default editor on my local computer. So you could use this as a

starting place and modify it to configure or add resources.

Let's go back to the browser though and let's see how we can

deploy the template from here. Now when you're generating a

template like this from the existing state of deployed resources,

you often need to massage it a bit.

Besides changing the names of resources to deploy new instances,

sometimes there are things included that actually can't get

deployed. Let's edit this template. I'll scroll down to the bottom,

and there are two entries for snapshots.

The documentation says that these are which means they can't be

deployed, so let's remove them and let's save these changes.

Okay, now let's create a new resource group to deploy this

template to. The parameters from the template are showing here,

so let's change the name of the app service and the app service

plan.

That's all we need to do. The validation passed, so let's create

this.

It'll take about a minute to deploy the resources in the template.

And it says the deployment is complete. Let's go to the Resource

groups tab and there is the new resource group. There is an app

service and an app service plan. Let's drill into the app service,

and I'll just click browse to make sure it's running.

So that's how you can use Azure Resource Manager templates to

deploy resources in a repeatable way. Next, let's talk about

monitoring the health of the Azure platform.

Chapter 56 Azure Service Health

Azure Service Health keeps you informed about the health of your

cloud resources. This includes information about current and

upcoming issues that might impact your deployed resources like

outages and planned maintenance. There is actually three services

that make up service health. Azure status gives you information

on service outages across all of Azure, Service Health is a

personalized view of the services and regions that you're actually

using, and Resource health provides information on your specific

resources. Let's look at these. Azure status isn't part of the Azure

portal. You go to azure.status.microsoft. It gives you an overview

of all the Azure services and their current status. So this is a

view of Azure.

The regions are organized into groupings with each region and

columns and Azure services and rows, it's quite a long list of

services. Let's go to the Azure portal and look at Service Health,

which is the recommended way to check the health of your

resources. I'll search for it under All services.

So Service Health scopes the affected services to just the ones

that you use, so you might not be impacted by an outage in

Azure Front Door, for example, if you're not using that service.

Azure Service Health will trim those notifications to just what

matters to you. You can find out about planned maintenance in

Azure that might affect you, so you might want to notify clients

of an upcoming event or reschedule an application deployment.

There is some planned maintenance here for Azure App Service in

regions where I have app services deployed. Notice the impact

category says that there is no impact expected.

Health advisories are changes in Azure services that require your

attention. For example, if features in a service that you use are

being deprecated or you need to upgrade your web applications

because the framework version in Azure App Service is being

updated.

There is also a link to Health history here which has one of the

same links from planned maintenance, but also this historical

entry about a DNS failure with Azure Monitor. Security Advisories

are notifications or violations that might affect the availability of

your Azure services.

The Resource health tab lets you scope to just certain resource

types in your subscriptions.

The first two app services are grayed out because they're on a

free pricing tier where resource health isn't available, but these

other two are on the standard pricing tier, so you can get a quick

summary of the overall health and drill in to see more.

If there were issues here, there would also be information on

actions that Microsoft is taking to fix the problems and it would

identify things that you can do to address them.

You can see a history of the health of the resource if you need to

do some historical troubleshooting, and you can add a health alert

from here also. Let's back out and let's add a service health alert.

You can use this to be notified when there are any changes to a

particular service, you can filter the alerts to just service issues or

health advisories, security alerts, or planned maintenance, and you

can filter the services and regions that you want to be notified

about.

The alerts get sent to an action group. Let's open this up and

create a new action group. Let's just move ahead to the

Notifications tab.

You can just have an email sent to the people in the Resource

Manager role, or you can set up a custom notification for email,

text message, and automated voice message, and there is an

option here for Azure app push notifications.

You can get notified on your mobile device through the Azure app

too. So Azure Service Health can make you aware of when there

is an issue with the underlying platform that can prevent you

from chasing down a problem with your application when it isn't

your application at all. But sometimes the problem isn't with the

entire service, it's with your resource. So let's look at how to

monitor resources next.

Chapter 57 How to use Azure Monitor

Azure Monitor is a service in Azure that collects metrics and logs

from the Azure resources in your subscription. You can use these

to check on the performance and availability of your applications

and services. Metrics are numerical values that describe some

aspect of a system at a particular point in time, and they're

constantly being collected. This could be things like the response

time of a web application, the amount of CPU being used on a

VM, the amount of data coming out of a storage account. Metrics

are good for alerting and fast detection of issues. The tool in

Azure Monitor that helps you explore the collected metrics is

called Metrics Explorer, and it's available inside each Azure

resource. Logs, on the other hand, are different kinds of data that

are organized into records with different properties for each type

of log entry. Logs are good for troubleshooting issues and for

analyzing trends. Azure Monitor includes a tool called Log

Analytics, which is used to edit and run queries on the log data.

It uses a powerful query language called the Kusto Query

Language that's kind of like SQL, and it lets you sort, filter, and

visualize the data in charts. Another service that's part of Azure

Monitor is Application Insights. This monitors the availability,

performance, and usage of your web applications. For Azure App

Service, you can turn on Application Insights and it will monitor

your app from the hosting environment, so things like

performance counters on the servers, Docker logs, and you can

set up web tests to send requests to your application. You can

track API calls and dependencies outside of your application also.

For deeper monitoring, you can use the Application Insights SDK

to include instrumentation right in your code, and it's available for

a number of programming languages. So your application doesn't

need to be hosted in Azure to send data to Application Insights

from the SDK. Let's take a look at the documentation.

Metrics and logs are collected from different sources inside Azure,

and you can collect data from virtual machines outside Azure by

installing agents on the machines. Then the data is stored as

metrics, logs, and traces, and traces refers to distributed traces.

When you have an application with different components deployed

to different virtual machines or app services or containers,

distributed traces are the data gathered from each of those hosts

so it traces a web request through the different tiers of the

application and all that data is linked together through some

correlation id, which is all possible by using Application Insights.

The data that gets collected by Azure Monitor gets used in

different ways. Experiences are visualizations and queries that are

organized for you already. You'll see shortly in Azure Monitor that

these are also called Insights with Application Insights being one

of them. You can visualize the data in Azure Monitor using

dashboards and a Microsoft service called Power BI. There are

tools in the Azure portal to inspect the metrics and log analytics

for querying the logs, and you can respond to changes in the

metrics by setting up alerts and performing actions like

autoscaling an app service to add virtual machines when the load

is heavy or calling other services to perform an action like a Logic

app.

Chapter 58 How to Explore Azure Monitor

Now let's take a look at Azure Monitor in the Azure portal. Let's

look at the central Azure monitor service in this subscription.

On the overview page, there are shortcuts to the same things as

on the menu on the left. Metrics are all the metrics collected by

the different resources we've deployed. You need to drill into

individual resources in order to view the metrics. If I apply this,

the metrics are scoped to the ones that are relevant just to this

app service, like average response time and the number of

requests. Logs are where you can query the logs sent to your Log

Analytics workspace.

There are queries here to get you started and they fall into

categories like alerts, audit logs for Azure Active Directory. You

can actually send metrics to Log Analytics too so they can be

queried like other logs. And there are performance queries here

related to Azure functions. Let's just pick a query and run it. This

shows you the syntax of the Kusto Query Language so you can

start to write your own queries.

You can access Service Health from within Azure Monitor too.

Insights are referred to as curated visualizations. It's a customized

monitoring experience for a particular service. Application Insights

is for web applications, and it can collect information from

outside the application from the hosting platform, as well as from

inside the code of your web application.

The virtual machine insights allows you to monitor the health and

performance of your windows and Linux VMs inside Azure, as well

as virtual machines hosted or even in other cloud environments.

To enable that, you need to install an agent on the virtual

machines to send data to Azure Monitor. You can monitor the

overall health of your storage accounts. There are some metrics

here, and the Capacity tab tells you the amount of storage being

used by each service in the storage account. Network insights

gives you a view of the health and metrics for all your deployed

networking resources.

This is good for checking on application gateways and load

balancers, but not all networking resources have health checks.

You can also set up connectivity tests to monitor things like

latency between VMs and storage and applications hosted in

Azure and which also requires installing agents to run the

connectivity tests. Let's take a look at setting up alerts for metrics

in Azure Monitor. Up at the top of the menu is the Alerts tab.

From here, you can create an alert rule. Let's create an alert for

an app service.

Next, we set up conditions for the alert. There is a number of

metrics to choose from here. Let's select CPU time.

This is the amount of CPU consumed by the app in seconds. We

could scope this metric to a particular virtual machine in the

underlying app service plan if there is more than one. And we

can set the alert logic so when the total CPU time is greater than

80 seconds, then the alert will get fired. Let's finish this part. And

next, you decide what happens when the alert is fired. Just like

with the service health alerts, you do that with an action group.

We don't have any created, so let's create one.

I'll create it in the same resource group and give this action

group a name. And next, we set up the notification type. I'll

choose the push notification option, and this can be an email,

text message, voice message, or we can push out a notification to

the Azure app on the mobile device of this user. Let's give this

notification a name.

And besides sending a notification, you can also configure an

action when the alert is fired. That could be calling an Azure

function or a Logic app, calling a webhook in an outside web

service.

There is lots of options for taking actions when an alert gets

fired. We'll skip tags and let's create this action group. And now

let's create the alert rule. Now let's move forward and create this

alert.

You can see all the alerts from the Alert Rules tab at the top.

Next, let's look at using Azure Monitor metrics and logs from

right inside Azure resources.

Chapter 59 How to Use Azure Monitor Metrics in a Resource

Azure Monitor collects metrics for Azure services by default, it's

turned on automatically. So let's navigate into a service that we've

created like this app service we deployed earlier using an ARM

template.

Right on the overview page, there are charts showing things like

HTTP server errors, the amount of data moving in and out of the

app service, the number of requests, and the average response

time. These are coming from Azure Monitor and these are just

predefined views of the metrics that are being collected. You can

dig deeper by going down the menu to the Monitoring group and

clicking Metrics.

Most Azure resources have a Monitoring section on the menu,

although the exact tabs might be different depending on the

service. We have a blank slate here. Because we're inside a

resource already, some of these items are already populated like

the scope of the resource and the metric namespace. The same

metrics are here that you saw on the charts on the overview

page, but there are others too like CPU time for the underlying

virtual machines in the app service plan. Let's select that. It

shows a slight spike here around 6 PM.

If we scroll further down the list, there are all sorts of metrics

around IO, and there is the number of requests. Let's choose

that.

It shows 125 total requests. With these charts, you can choose a

different aggregation. So instead of summing all the requests, we

could show the count at different time periods or the average

requests. Let's try a different metric like Private Bytes, which is

the working memory set on the server that the app service has

allocated.

If this number keeps growing, you might have a memory leak in

your application. Depending on the resource, you can apply

splitting to the graph. In the case of an app service, I've

increased the instance count of the underlying app service plan,

so there are two virtual machines, and we can split the graph to

show how the metric, Private Bytes in this case, applies to each

VM. Let's see what that looks like for a different metric. Let's try

Response Time.

It looks like there is quite a difference here, but that's probably

because I just added the second instance a short time ago, so it

hasn't serviced many requests. Across the top, you can give the

chart a name, and you can pin it to the dashboard so it will

show up on the main dashboard page along with any other charts

and graphs that you want to see every time you log in. That's a

quick look at metrics in this app service. Let's look at logs next.

Chapter 60 Log Analytics in Azure Monitor

Now let's look at Logs. I'm still inside the app service. There are

a bunch of predefined queries that you can run against the log

data that's been collected, but before we can do that, we have to

enable that log collection.

You do that from the Diagnostic settings. Let's add a diagnostic

setting. Depending on the resource you're in, there are different

types of logs available, and you can choose to send metrics also.

We need to give this diagnostic setting a name and then you

choose where you want to send the logs. Log Analytics is the

obvious choice where you can aggregate all your logs together and

run queries. There is a default workspace created automatically,

but you can have multiple Log Analytics workspaces. You can send

these logs to a storage account and specify how long you want to

retain each of the log types for. You can stream the logs to an

event hub where they can get ingested by another Azure service

or you can send the logs to a tool, maybe you have one in your

organization already and you want to keep all the logs together.

Let's just send these logs to Log Analytics and save this setting.

Now that we have a diagnostic setting, we can go to the Logs

tab, which lets us run queries against the data. You can choose a

query from here, and these queries fall into the categories on the

left menu.

Let's scroll down and choose the query related to response times.

This is actually a metric that's being sent to Log Analytics. You

can see the Kusto Query Language syntax here, and this is a

good way to learn how to write queries by using these ones.

We just turned on logging so there won't be any data yet. I'll go

to the default page in the app service, which is already open, and

keep refreshing it so there is data generated. It won't show up

right away in the logs, but it will come back later when the data

is available. There is a chart generated from the results of this

query, and the individual data is showing on the Results tab.

So even though this is metric data like we saw in the metrics

demo, because it was sent to Log Analytics, there is individual

records for each web response here, it's not aggregated like in the

Metrics Explorer. Let's try a different query, the one for HTTP

response codes. It's showing that all the response codes were in

the 200s, which indicates successful HTTP responses.

You can do some formatting of the chart from right here, and

across the top, you have some options. You can share this query,

you can create an alert based on this query, and you can export

the query results to a CSV file, Excel, or to Power BI, and you

can also pin the query to the dashboard just like on the Metrics

tab. Let's navigate out of here and look at another resource

group. This one has a storage account. Let's open that up. And

down the menu on the storage account, there is a Monitoring

section here too.

Some of the items are different from the app service, but we've

got logs and metrics here too. You can scope the metrics to each

of the services in the storage account and there are different

metrics here that apply to Azure storage, so things like the count

of blobs in the containers or the ingress of the data that I

uploaded.

On the Logs tab, there are custom queries here related to

storage, and you still need to turn on logging from the Diagnostic

settings, but here you can set up logging on the individual

services in the storage account. That's a quick look at logs.

Remember, in the central Azure Monitor service, you can access

the logs for all the resources you've configured to send logs to

Azure Monitor, then you can write custom queries to correlate

data across services. Next, let's look at Azure Advisor.

Chapter 61 How to Optimize Resources using Azure Advisor

Microsoft refers to Azure Advisor as a personalized cloud

consultant that helps you follow best practices to optimize your

Azure deployments. It's actually a great tool to provide

recommendations on how to improve performance, availability, and

security of your Azure resources, as well as recommending ways

that you can save on costs in Azure. Let's go to All services and

search for advisor, and click on here to open up Azure Advisor. It

refreshes your recommendations when it loads.

These are personalized recommendations, so Azure is looking at

the resources that you have deployed, it's not just providing a list

of generic recommendations. This dashboard provides a summary

of the recommendations broken down by five categories, cost,

security, reliability, operational excellence, and performance. You

can click on the tiles at the bottom to get links to each of the

recommendations or you can use the menu on the left. Let's look

at the security recommendations.

The first one says Accounts with owner permissions should be

MFA enabled. So it's telling me to enable multifactor

authentication on all the administrator accounts. There is a

medium impact recommendation that storage accounts should use

a private link connection. Some of these might not make sense

for the design of your solution, so you can actually turn these off

individually so you don't keep seeing them. Let's go to the next

page. Here is one that has a quick fix.

It says web application should only be accessible over HTTPS.

Let's click this. On the remediation steps, it says I can just select

the app service and click the Fix button.

It will turn on a setting in the app service that only allows

incoming traffic over HTTPS so HTTP is disabled. So in some

cases, Azure Advisor can make the required changes for you,

otherwise, it will just describe what you need to do. Let's go back

to the main screen and let's look at the Reliability tab.

There is just one recommendation and it's for the virtual network

being used by the virtual machine that I created. It says add NAT

gateway to your subnets to go outbound. If I click on the link, it

brings me to a screen to create a NAT gateway.

In this case, it isn't fixing the problem for me, but it's making it

easier to fix. We won't complete this though. Let's go back and

move on to cost recommendations. There actually aren't any, but

there is this link to the list of cost recommendations that Azure

Advisor uses.

This is a way to be proactive and configure your resources to

best save on costs. The first recommendation is for compute and

it says to use standard storage for disk snapshots rather than

using premium storage. For another service like Azure storage, it

has a recommendation about retention policies for log data so

you're not storing old data you'll never use. Operational excellence

has to do with deployment best practices and things like creating

service health alerts. I don't have any recommendations here and

performances to help improve the speed of the applications I have

deployed. Again, you can view the standard list of

recommendations here to get an idea of what Azure Advisor looks

for. The last thing I want to show you is on the Overview page.

At the bottom, you can download the recommendations in PDF

and CSV format, so you could share this report with other team

members who might not have access to the Azure portal. Next,

let's step outside of the Azure portal and look at the Azure app,

which allows managing Azure from your mobile device.

Chapter 62 Azure App for Mobile Devices

Let's take a look at the Azure app. This is a tool that lets you

monitor the health and status of your Azure resources, quickly

diagnose and fix issues, and you can even run commands using

the Cloud Shell.

You can download the app from the Apple App Store and from

Google Play. I've already installed the app on my iPhone so let's

open it up. I'm logged in and I've chosen a subscription. On the

home page here, any alerts would show right away. I don't have

any so let's scroll down, and I have access to Service Health from

here too.

There aren't any service issues, but there is a maintenance

notification. It's something about routine maintenance on app

services. So I can see the Maintenance window and the impacted

regions, and there is more detail further down. It says there is no

impact expected.

Back on the home screen, you can create shortcuts to resources

that you frequently check on. Let's open up all the resource

groups. I'm going to open up a resource group where I know

there is a storage account. There is cost management information

here showing how much this resource group is costing me.

At the bottom are the resources, so I'll drill into this storage

account. I can see some metrics that show me the health of the

storage account, and these are coming from Azure Monitor. The

Resource health tells me that the storage account is available.

There is some information about the resource, and at the bottom

is Access Control. So I can give someone access to the storage

account from here, which can be handy if you're out of the office

and there is an issue or a new client needs to upload files.

Let's back out of here and go back to the list of resource groups.

I'll choose one that has a virtual machine in it. I'll open up this

virtual machine. You can see the metrics for the virtual machine

and you can restart the VM from here if there is a problem.

I'll actually shut it down so I don't incur compute charges. And

you can even connect to this VM. This button will launch another

app, Microsoft Remote Desktop. Let's back out of here and go

back to the home screen. At the bottom, you can open up the

Cloud Shell.

You can choose between the Bash Shell and PowerShell, and from

here, you can type in PowerShell and Azure CLI commands to

manage your resources. Let's run this az group list command, and

we get back information on all the resource groups in the

subscription.

We can switch to PowerShell and it will restart the Cloud Shell.

The last thing I want to show you is that from the menu at the

top left, you can manage your log in and change directories, and

you can even access support requests from here.

So the Azure app provides an easy way to perform some Azure

management tasks from your mobile device. Next, let's talk about

Azure Arc.

Chapter 63 How to Manage Resources Outside Azure using Azure Arc

Azure Arc is a service in Azure that allows you to manage

resources outside of Azure. So resources that you host or in other

cloud platforms like Amazon Web Services or Google Cloud. You

can manage a few different types of resources hosted outside of

Azure. You can manage Windows and Linux physical servers and

virtual machines, that means being able to monitor them, secure

them, and update them from within Azure Arc. When you're

hosting your virtual machines on private cloud platforms like

VMware vSphere or Azure Stack HCI, you get additional

integration with Azure Arc like the ability to perform lifecycle

operations like provisioning, restarting, resizing, and deleting

virtual machines as if they were hosted in Azure. SQL Server

instances hosted outside of Azure can be managed using Azure

Arc also, and with Azure Arc, you can manage Kubernetes clusters

running and with other cloud providers. Remember, Kubernetes is

an orchestration service for containers. You can apply Azure

policies to the Kubernetes clusters to enforce configuration and

compliance. Once you have Kubernetes clusters being managed,

you can run other Azure services on them like data services. SQL

managed instances and postgreSQL hyperscale databases are

available running on Kubernetes. You can deploy Azure machine

learning workloads onto those clusters also. And you can deploy

Azure App Services on Azure Kubernetes clusters, including web

apps, function apps, and even Logic apps so your developers can

leverage the features of app service while you maintain corporate

compliance by hosting the app services on internal infrastructure

or leveraging your existing investment with other cloud providers.

You get features of Azure Resource Manager when your resources

are managed using Azure Arc. That includes organizing resources

using management groups and tags, searching and indexing them

using Azure Resource Graph, security and access control through

access control and subscriptions, automation using templates and

extensions, and update management. For physical and virtual

machines hosted outside Azure that you want to manage with

Azure Arc, you install the Azure connected machine agent on the

servers. That lets you proactively monitor the operating system

and workloads running on the machine, and you can leverage

Azure features like update management to manage operating

system updates. You can apply Azure policies to audit settings

inside the machine. You can leverage Microsoft Defender for threat

detection and Microsoft Sentinel to collect events, and you can

collect log data using the Log Analytics agent. The data gets sent

to a Log Analytics workspace.

Chapter 64 How to Add Local Server to Azure Arc

Let's look at Azure Arc in the Azure portal. I'll go to All services

and search for Arc. When Azure Arc opens, all the infrastructure

services that can be hosted are listed on the menu.

The data services are below and the application services are below

that. Let's go to Servers. These are the physical and virtual servers

that you host or in cloud environments other than Azure. There

aren't any being hosted, so let's add one. I'll add a single server,

and this will be a virtual machine running on my local computer

using

It says the server will need HTTPS access to Azure services for

outbound connectivity. It'll need local admin permissions and the

server can connect over a public endpoint, so over the internet, or

using a private endpoint. We also need an existing resource group

to add the server to. I'll click Next, and I've already created a

resource group for this which will change the region to Canada

Central.

This VM will be using the Windows operating system, but it could

use Linux. And connectivity will be over the internet. Next, we can

fill out some tags. The default ones define the location of the

server. You can add your own custom ones also. On the next

page, a script is generated. We need to run this script on the

local server in order to download and install the agent and

connect the server to Azure Arc, so I'll copy this script. And I

have this virtual machine running on my local computer using I'll

search for PowerShell and open it up as an administrator. Now I'll

paste in the script I copied from the Azure portal, and let's run

this script on the local VM. It'll take a few minutes because it's

downloading the agent from Azure.

Next it's asking me to sign into Azure by going to

microsoft.com/devicelogin and entering the code here. So let's

open up a browser and navigate to the URL and it's asking for

the code, so I'll switch back to PowerShell to enter it in. Now I

need to authenticate. My administrator account has already logged

into the browser so I'll use that and it has MFA enabled, so I

get a code sent to my phone. I'll enter that in, and now it says

Are you trying to sign in to Azure Connected Machine Agent?

So I'll hit Continue, and now we can go back to PowerShell, and

it'll continue with the installation.

Once that's done, the machine should be getting managed by

Azure Arc. Let's go back to the Azure portal. I'll close out of this

and out of the Add server screen, and we're already on the

Servers tab so I'll just hit Refresh. There is the server that was

added and it says it's connected. There is information here about

the operating system and tabs along the left with actions we can

perform on this VM. Let's look at Security. Microsoft Defender is

running on this virtual machine now, so it's scanning for threats,

and there are also recommendations being made related to

security.

microsoft.com/devicelogin

One of them says that Log Analytics agent should be installed on

Azure machines. So Log Analytics doesn't get installed by default,

that's another agent we can install on the local VM. We can also

manage operating system updates on this VM using Azure

automation, and there is something called Automanage that will

apply a preset configuration to the VM depending on whether it's

being used for dev or production, and that includes things like

backup and monitoring.

You can also assign policies to the VM so you can assess it for

compliance to rules set up in Azure Policy. There is a lot of

functionality here that makes it seem like this virtual machine is

running right inside Azure, but of course, it's not, it's running on

my local computer. So Azure Arc provides a lot of possibilities for

simplifying your resource management across other clouds and

Let's have a quick review of what you've learned. We started with

understanding how Azure is implemented physically with regions

and data centers and logically with subscriptions and resource

groups. You saw how to use the Azure portal and learned a bit

about Azure Active Directory for controlling access. Next you

learned about Azure compute. We looked at virtual machines,

containers, and Azure App Services for hosting web apps, as well

as Azure Functions for smaller pieces of code. Then you saw

some of the main features of networking in Azure, like virtual

networks, network security groups, Azure DNS, and private

endpoints. You also learned about connecting your network to

Azure using VPN Gateway and ExpressRoute. Then you learned

about data storage in Azure with Azure Storage accounts,

including how to copy files in Azure and migrate data into the

cloud. Then you learned about managing and monitoring Azure

using features like the Azure CLI and Resource Manager templates

and services like Azure Monitor and Azure Arc. We've covered a

lot in Azure, but there are a lot more features and services that

are worth checking out like solutions for big data ingestion and

analysis, solutions for the Internet of Things, machine learning

services, and artificial intelligence. Those things actually used to be

part of the Azure Fundamentals exam, but they were removed

probably because they're pretty advanced and aren't relevant to as

many people as these topics, but I encourage you to jump in and

try Azure, create a free trial account, and take some of the

services for a drive.

BOOK 2

MICROSOFT AZURE

SECURITY AND PRIVACY CONCEPTS

CLOUD DEPLOYMENT TOOLS AND TECHNIQUES, SECURITY &

COMPLIANCE

RICHIE MILLER

Introduction to Azure Identity Services

In the following chapters, we'll be taking a look at Azure identity

services. We will first focus on Azure identity services, so we're

going to be taking a look at authentication and authorization,

we're going discuss Azure Active Directory, and discuss the

benefits of authentication. We'll cover Azure AD and discuss why

it's important to a secure deployment inside Azure. We'll take a

look at access control too. access control gives you granularity of

permissions assignment inside Azure. We'll also take a big look

Azure governance and policies. We'll look at practical things we

can do to make sure that we stay within certain compliance

standards, looking at both Azure governance features and

documentation to back them up. We'll take a look at securing

network access. Almost all the Azure projects I work on have

some sort of virtual networking involved in them, and managing

access to those virtual network can be a bit challenging. We'll

also take a look at reporting and compliance. We'll detail some of

common compliance standards your organization might be

interested in and tools we can use to achieve them. You might be

asking yourself, why is this important to you? Well, if you're

thinking about deploying resources to the cloud, a good

understanding how they can be securely deployed is important to

you. The hat of that is authentication, you must have a good

understanding of how your users, computers, and applications are

authenticated and authorized to use Azure. Also, monitoring is so

important to us today. Understanding how we monitor the security

posture of our organization, how we comply to various security

standards is vital for all deployments. So if you're interested in

any of these areas of Azure, then this book is for you. I would

recommend this book to anyone that's interested in securing

compliance in Azure, anyone that's thinking about migrating or

deploying workloads to Azure and anyone that's studying for exam

because this book is part of a series of books that should prepare

you well for that certification. There are some prerequisites that

would be recommended before starting this book. First of all, a

familiarity of cloud concepts, a basic understanding of cloud

computing. Even if you don't meet these prerequisites, then as

long as you have an interest in Microsoft Azure, then you'll

benefit from this book. Let's now talk about authentication and

authorization and how the two compare. When we think about

authentication, we need to think about the act of proving who or

what something is. Authentication is something we do on almost

a daily basis in our lives. Each time you show your pass to get

into a building, each time you provide a copy of your signature

that can be compared with a copy on file, or each time you go

through a passport control on your holiday, we're going through a

process of authentication. Authentication works hand in hand with

authorization. Once you can guarantee beyond a reasonable doubt

who or what something is, you can then authorize them to do

certain things. So think about the passport analogy. When I travel

to some countries, my passport is required to prove who I am,

but then a visa is required to show that I'm allowed to enter that

country and what I can do when I'm there. The passport is

authentication. The visa is authorization. Authorization is saying,

now that we can prove who this person is, this is what they can

then do. In Azure, authentication is provided by Azure AD and

authorization is provided by access control. There may be some

overlapping areas, but this is the list I came up with. A user logs

in with a password is authentication. This is an example of

something the user knows being used to authenticate them. A

user uses their thumbprint to get access to a laptop. This is an

example of using biometrics. The third example is a bit more

general A user proves she's a member of your staff. Well, if they

prove they're a member your staff, they've authenticated. The next

three are authorization. Once you've been authenticated, you can

be given the rights to create virtual machines, get access to files,

allowed access to a building. Hopefully, you could see the flow

here. Authentication has to take place first, and then authorization

can occur.

Chapter 1 Azure Active Directory Fundamentals

Fundamental to authentication in Azure is Azure AD. So now,

we're going to give you a good grounding in what Azure AD is.

Azure Active Directory sits at the heart of authentication for the

Microsoft cloud. If you've ever signed up for an Azure

subscription, Office 365 or any of the Dynamics products, then

you're using Azure AD. When using any of these products, if

you've created a user, a group, you've granted permissions, then

you've been using Azure Active Directory. Azure Active Directory

underpins the security for all these products. When using these

products, an Azure Active Directory tenant is created for you. This

is dedicated for your company's exclusive use. Usually, an

organization will have one Azure Active Directory tenant that

manages the security for each of their Microsoft products, so for

each Azure subscription or each Office 365 installation that they

have. But Azure Active Directory is not just about securing access

to Microsoft products, Azure Active Directory can also be used to

secure access to your applications, applications, and applications

provided by other cloud providers. When we think Azure Active

Directory, think single sign on. A user will have a single user

account that can be used to access all these different applications.

If your company uses Microsoft products, then you're probably

already using Active Directory Domain Services Azure AD is not

the same product, so let's try and compare the two. Azure AD is

all about user and computer registration and providing single sign

on capabilities for Users and Computers. Active Directory Domain

Services also performs Users and Computers registration. Azure

AD does not give access to Group Policies, but Active Directory

Domain Services does. Azure AD cannot perform trust

relationships, whereas Active Directory Domain Services can. When

thinking about Azure AD and single sign on, also think about

application management. Applications can register for Azure AD,

so your users can be given single sign on access. Active Directory

Domain Services offers application and device management, as

well as application deployment. Active Directory Domain Services

supports both Kerberos and NTLM as authentication protocols.

Active Directory Domain Services also gives you access to schema

management so that you can add custom objects and attributes

into the domain service. Finally, Active Directory Domain Services

follows a hierarchical design using domains, trees, forests, and

organizational units. It scales almost infinitely, whereas Azure AD

is a flat structure, which offers limited scale. For most

organizations that already use Microsoft products, when moving to

Azure, you'll use a mixture of Active Directory Domain Services

and Azure AD in the cloud. But there is a third option as well. In

Azure, we have another domain service called Azure AD Domain

Services. The names are very similar here, but we have three

distinct products. We have Azure AD. This is for single sign on

and application integration. We have Active Directory Domains

Services. This is the full Active Directory Domain Service that

we've used for years And sat between the two, we have Azure AD

Domain Services. Azure AD Domain Services was introduced

several years ago now. It was initially introduced to make it easier

to migrate legacy applications as it supports both NTLM and

Kerberos for authentication. But it also supports Group Policies,

trust relationships, as well as several over domain service features.

Azure AD Domain Services is a Platform as a Service offering

provided by Microsoft. Instead of you having to manage the

virtual machines, the operating systems, and the directory service,

you just deploy Azure AD Domain Services and let Microsoft take

care of the rest. The question I get asked most often is can

Azure AD Domain Services replace Active Directory Domain

Services? The answer right now is still no. It's not as as Active

Directory Domain Services, and there's a little way for it to go

before it can replace Active Directory. Do we need Azure AD?

Well, giving a short answer, yes, it's a requirement. If you're

thinking about working with Microsoft Azure, then you will need

to work with Azure AD. But that doesn't mean we've wasted all

our investment with Active Directory Domain Services. In fact,

Azure AD and Active Directory Domain Services work very well

together. There's a product called Azure AD Connect that we can

deploy Think of Azure AD Connect as being like a synchronization

tool. As I perform actions those actions are replicated into the

cloud. For example, as I create a new user account that user

account is replicated in the cloud. Most of your administration of

users, of groups, will still be done We can then feel the benefit of

those actions in Azure AD. When we use Azure AD, there are no

domain controllers for us to manage, we just access a list of

users and groups applications. Azure AD provides us with user

management, application integration, and single sign on, and

through the use of products like Azure AD Connect, we can

integrate with other directory services. Imagine a typical

organization. They have different categories of staff. For example,

they have a IT staff, end users, as well as contractors who are

brought in to work on various projects. What the company would

like from us is an understanding of where the different user

accounts will be created and managed for these different sets of

users. Take a minute and have a think. Where will these user

accounts be created for the company? Well, the IT staff can be

created or in Azure AD. The majority of the IT staff will be

created and their user accounts will then be replicated into Azure

so they can be assigned access to perform Azure tasks. Some IT

staffed will be That means that their user accounts will just be

created in Azure AD. These tend to be administrators who will

only need access to Azure and do not need access to services.

Our users should have their user accounts created in Microsoft

Active Directory Domain Services. Remember, Active Directory

Domain Services is almost a limiting scale. It's hierarchical, so the

bulk of your user management should be done through there. For

the company’s users that need access to Azure, well, their user

accounts can also then be replicated with Azure AD Connect.

Contractors will already have user accounts somewhere, either in

an directory service themselves or in an email product like

Outlook or Gmail. Using their existing user accounts, we can

grant them access to perform admin tasks in Azure subscriptions.

As a company, you might have to go through a project where you

categorize your staff and discuss how those user accounts can get

access to resources we deployed to Azure. When thinking about

authentication, Microsoft strongly recommends that we use

authentication. authentication involves providing several pieces of

information to prove who you are. This information includes

something you know, like a password, something you have, like a

smart card with digital certificates installed, and some think you

are, like biometric information. Microsoft Azure provides several

different ways for us to enable authentication for users and to

enforce it.

Chapter 2 How to Work with Conditional Access

One of the key features of Azure AD is Azure AD single Single

means the ability for users to use a single set of credentials to

access a whole group of applications and services. This way, your

users only have one username and one password to remember no

matter which applications they're trying to access. We can

integrate Azure AD with applications, applications, and custom

applications that we and our teams develop The goal is that users

should be asked for their credentials once and not prompted to

provide their credentials over and over again. Some applications

that we integrate in Azure AD even include the ability to provision

users and assign levels of access to those applications directly

from the Azure AD console. But controlling access to all of these

integrated applications can be difficult. For example, do you want

all of your Azure AD integrated applications to be accessed from

outside your firewall? There might be some applications that give

access to sensitive information that you only want to be used if

the user is at one of your corporate centers. Are there times

when applications should only be accessed if the user has used

authentication to authenticate? Should access to applications be

restricted to certain secure devices? There'll be plenty of scenarios

when working with integrated applications in Azure where

restricted access based on criteria like this will be a good thing.

Azure AD Conditional Access can be used to secure access to

Azure AD integrate applications based on the criteria previously

discussed and more. Azure AD Conditional Access can be used to

control access to applications no matter where our users are. We

create Conditional Access policies, which at their heart are

statements. If the user is authenticated in this way and is using

this type of device, then grant access. If not, then deny access. In

conditional access policies, signals are used to make decisions.

These include IP location information, risk analysis based on the

user's login, information about the device the user is using to try

and get access to applications, and the application being accessed.

Ultimately, the Conditional Access policy is trying to make one of

two decisions, either to block access to an application if various

conditions in a policy are met or grant access to an application.

And even when we grant access, that access can be qualified by

enforcing requirements like MFA required or that the user is

accessing the application from an Active Directory joined device.

Let's take a look at conditional access. In this demonstration,

we're going to be working with Azure Active Directory to enable

conditional access. We're going to be working with the Azure

console and, as always to follow along, you will need the Azure

subscription. But be warned, some of the features that we're

enabling can incur costs. I'm in the Azure console. Specifically, I'm

looking at my Azure AD tenant and a list of its enterprise

applications. These are some of the applications that have been

integrated with my Azure AD tenant for single

If I select Conditional Access here and then select New policy,

we'll start off by giving our new policy a name.

I want this policy to be assigned to a user, so in the Users and

group section, I click the blue writing, 0 users and groups

selected, and I'm going to choose the Select users and groups

radio button and the Users and groups tick box.

Using search, I'm going to search for the user that I want this

policy to be assigned to. But don't forget, you can select groups

of users, directory roles or guests and external users. Next, I'm

going to choose Cloud apps or actions.

Here I can choose the application that I want this policy to affect.

So if I choose the Select apps radio button, and for this

demonstration I'll just choose Office 365, but you can select any

of the applications that you've integrated with Azure AD.

With Office 365 selected, I click Select. We're starting to build up

our policy. So far I've identified a user and the Office 365

application. Let's select Conditions. And for this demonstration,

we'll choose Device platforms.

Then we'll select Yes to apply this policy to selective device

platforms. And we'll say this policy should take effect if the user

is using selected device platforms, such as Android, iOS, and

macOS.

I'm happy with my selections, so I select Done. Let's select

Locations, and here you'll select Yes to control access based on

the physical location.

This time we'll leave the default any location selected, but you can

build up a list of trusted locations based on IP addresses. I'm

happy with the conditions selected, so if I scroll down a little bit,

and on the side we have Access controls.

In the Grant section, if I select 0 controls selected, here we get

to decide whether this policy will block access or grant access

based on the conditions that we've input into this policy.

I want this policy to grant the user access to Office 365, but if

the user is using one of the device platforms selected, then I

require that he is authenticated using authentication. So if I select

that tick box and then choose Select, notice here this policy can

be turned On, Off, but the default is

This generates report information that would indicate whether this

policy would have taken effect if it was turned on. I want this

policy to be enforced, so I'm going to select On. And I'm happy

with my policy, so I select Create. It should only take a second,

and your policy is created. Now if the user tries to access Office

365 from any of the devices listed, he will be granted access as

long as he's logged in with authentication. So far, we introduced

our customer to a company. You learned the differences between

authentication and authorization, and you were introduced to

Azure Active Directory. You were shown how to create users and

groups using Azure Active Directory, and you were shown how to

enable Conditional Access. Next, we're going to look at Azure

access control and Azure locks.

Chapter 3 How to Implement Azure Role Based Access Control

In this chapter we'll be looking at implementing Azure access

control. We'll begin by discussing shared access to an Azure

subscription and how difficult it is to manage multiple user

accounts who have different requirements. We'll then move on and

introduce you to Azure access control. We'll take a look at the

different types of Azure roles and discuss using custom Azure

roles. access control is used daily by your organization. It's central

to access control in Azure. Azure provides shared access. By this

I mean there are different types of users that require different

access to Azure, and we can provide access to them all. Some

users will require admin access to Azure while other users will

require access to the resources we deploy. Each type of user has

to be authenticated and authorized at the correct level, as well as

managing each type of user. Each type of user also has to be

monitored to make sure they have the correct level of access, but

also to make sure they're not trying to breach the access levels

they've been assigned. Azure access control is the tool we use to

provide shared access. RBAC is made up of several different

components, starting off with roles. Roles are groups of

permissions that are needed to perform different administrative

actions in Azure. We can make users or groups members of

different roles that inherit all permissions that are assigned to that

role. When using roles, we first choose a role or we create a

custom role of our own. We then assign role members before

configuring a scope for the role. A scope details where a role can

be used. There are many roles, each giving different sets of

permissions, but three roles are used more than any other. The

Owner role, for example, is used a lot. If you are assigned the

Owner role for a resource, you have full control of that resource,

including the ability to assign other users and group access. We

then have the Contributor role. The Contributor role allows you to

do everything except manage permissions, so you would not be

able to assign your friend access to the resource with the

Contributor role, you would with the Owner role. We then have

the Reader role. This role is It lets you view everything, but you

can't make changes. These three roles are used most often in

Azure, and these roles can be used to grant access at the

subscription level, the resource group level, or to individual

resources. Here we've got an example of using roles in Azure.

We've got a user, and this user needs full control of the

development resource group. The user does not need to assign

permissions to the resources, he just needs full access for

administration. Because the user will be making changes, the

Reader role is no good. Because he doesn't want to assign

permissions to other users, the Owner role is not required. The

Contributor role fits for the user’s requirements nicely, so you

would assign the user the Contributor role and scope it to the

development resource group, giving the user full control of that

group. When using roles in Azure, start off by using the roles.

There's dozens of these to choose from. Some grant access to

Azure resources, some to Azure AD itself, some to applications

like Office 365, but if you have a requirement to grant access,

start off by looking for a role that meets those requirements. If

you can't find the role, then create a custom role. You can use

one of the roles as your template. So if you find a role that gives

you 90% of what you need, you can copy that role to create your

custom role, and then just change the final few percent. Always

follow the principle of least privilege. Make users and groups

members of roles that allow them to do their job, but no more.

A company has different sets of users, like most organizations,

and these different sets of users have different requirements. The

company will have to go through a process of identifying each of

their user's needs and then mapping those needs to the roles

that will grant them access to Azure. The company has got three

types of users. They have Azure administrators who are quite

administrators that need a lot of control in Azure. They have

Azure developers who will be working with projects and they will

need full control of a subset of resources. And then they have

Azure compliance officers. These compliance officers perform

audits, making sure the resources that we deploy are compliant

with the various standards that the company is trying to certify

against. Your organization will go through a similar project to the

company, identifying the different types of administrative access

required and choosing appropriate roles to make your

administration work.

Chapter 4 How to Implement Azure Access & Governance Tools

In this chapter we're going to take a look at Implementing Azure

Access and Governance Tools. We'll first discuss the importance of

governance tools in Azure. We'll then take a look at Azure policies

and initiatives before moving on to take a look at Azure Blueprint.

We will demonstrate both sets of governance tools, and we'll

discuss the importance of governance generally. We'll discuss how

we can use Azure governance tools to restrict the sets of features

that can be used in your subscriptions and how we can use

Azure governance tools to enforce sets of security standards.

Before we get into the Azure governance tools themselves, let's

just take a minute to discuss why we need the governance tools

in the first place. We will discuss with our security teams the

different security requirements we need for our cloud deployments.

The actual governance tools gives a way to enforce those

requirements. We will have also discussed the technical

requirements we need for our various deployments, and again our

governance tools gives a way of enforcing those technical

requirements. So instead of allowing engineers to make their own

decisions that might impact security, scale, and cost of our

deployment, the governance tools gives a way of putting guardrails

in place that our different users in Azure must follow. One often

overlooked component of governance and compliance in Azure it

Azure tags. And because they are often overlooked, they're worth

a special mention now. Azure tags are key value pairs that we

assign to Azure resources. Tags might identify the department or

project that particular Azure resource belongs to or identify the

cost center that should be paying for the resource. All resources

that you deploy to Azure should be tagged, but we shouldn't

leave it up to the individual to apply any old tag. Instead,

organizations should have a tagging policy enforced by Azure

policies. This way, the tags applied to our resources in Azure will

be consistent. Tags can be used to enforce security requirements,

so access to resources will be granted only if certain tags are on

the resources, tags can also be used to control costs. We can use

Azure Cost Analysis to search resources that have a specific tag,

let's say a tag for a particular department or a tag for a particular

project, and use that information to build cost reports. We can

also put in rules that say that if costs for resources associated

with a particular tag go above a particular amount, that we'll be

informed and even the automation steps can kick in to close

those resources down. We can also use tags when we're deploying

software. Our DevOps teams can deploy an application, but on its

virtual machines they are tagged in a particular way. Two of the

most powerful tools available to us are Azure policies and

initiatives. What is Azure Policy? Well, at its heart, Azure Policy is

a collection of rules. Each policy we create is assigned to a

scope, such as an Azure subscription. By creating a set of rules

that the user of that subscription has to then abide by, it will

mean the resources they deploy will remain compliant with

corporate standards. When using Azure Policy, we create a policy

definition, a policy assignment, and policy parameters. When we

create Azure policies, they can be used by themselves or they can

be used with initiatives. Initiatives are a collection of policies.

These policies tend to be grouped together to achieve a larger

goal. It is the initiatives then that we assign to a scope, such as

a management group, a subscription or resource group. To use

initiatives, we create an initiative definition, an initiative

assignment, and initiative parameters. To get us started, there are

a set of Azure policies that we can use. We have a policy that

controls the characteristics of storage accounts, a policy that

controls resource types that can be used inside resource groups.

One really useful policy is a policy that controls the locations that

can be used by your subscription. So if you only want resources

deployed to the UK, we can use this policy to make sure that's

enforced with a policy that enforces tags and a policy that

controls the size of virtual machines to get deployed. So these

five, and several more policies, are available to give us a head

start when using Azure policies. When working with Azure, think

about your teams and think about the resources that they all need

to deploy. You'll then create Azure policies so that those resources

can be deployed, but nothing else. This will save you money, but

also lead to a more secure Azure deployment.

Chapter 5 Azure Blueprints & Security Assistance

Let's now take a look at Azure Blueprints. Azure Blueprints give

us an advanced way of orchestrating the deployment of resources.

You may have used ARM templates in the past to deploy virtual

machines, virtual networks, entire resource groups. Think of Azure

Blueprints as a big extension of what resource templates can

already do. One of the benefits of using Blueprints is that they

maintain a relationship between themselves and the resources that

they deployed. If you use a resource template to deploy resources,

changing the template later on will have no effect on the deployed

resources. If you deploy your Blueprints on the other hand, a

change to the Blueprints can affect the deployed resources.

Imagine a situation where you've got set of deployed resources

and you want to change the roles that associated with those

resources. By changing the roles in the Blueprint, it will update

those resources for you. Blueprints can include Azure policies and

initiatives, as well as artifacts like Azure roles. These can be

deployed along with ARM templates to set up your subscriptions

or to deploy a set of resources to existing subscriptions. To use

Blueprints, we require a Blueprint definition, we publish the

Blueprint, and then assign it to a scope. When we create a

Blueprint definition, we can provide details of resource groups that

we wish to deploy. We could include the Azure resource manager

templates that we want to use as part of that deployment, Azure

policies to enforce compliance. We can also use Blueprint

definitions to assign roles to the resources that Blueprints have

deployed. So far, we've used governance tools that allow us to

enforce our security and compliance standards on our

subscriptions. Azure also has tools that will look at our

subscriptions and provide recommendations to us. One of those

tools is Azure Advisor, and part of Azure Advisor is Azure Advisor

Security Assistance. Azure Advisor Security Assistance integrates

with Security Center. Security Center has lots of information from

lots of sources. The job of Azure Advisor Security Assistance then,

is to filter through all the information and provide best practice

security recommendations. Azure Advisor Security Assistance helps

prevent, detect, and respond to security threats. You or your team

should be using this tool every day to get the latest security

recommendations. Configuration of this tool, the amount of

information it is gathering, the type of information it is gathering,

is controlled through Security Center. It's the results that we're

seeing in Azure Advisor Security Assistance. In this demonstration,

we're going to work with Azure blueprints before taking a look at

Azure Advisor security assistance. Back in Azure portal, I'm in a

Blueprints dashboard. If I scroll down here, we're going to create

a new blueprint by clicking Create. Like most governance and

compliance tools that Azure gives us, we have a choice of where

we start from.

We can start from a blank blueprint, or with a set of samples.

Again, if I scroll down, we can see some of the sample blueprints

that we can choose from.

In this example, we're not going to use a sample; we are going

to start with a blank blueprint. The first part of creating a

blueprint is a very familiar wizard. We need to assign a name to

the blueprint and provide a location. The location could be a

management group or a subscription.

The location you choose dictates where this blueprint can be

used. Once we have these basic properties in place, we can click

Artifacts. Artifacts control what your blueprint can do.

Let's click Add artifact, and then click the for Artifact type. Here

you can see that we have a choice of four different artifacts that

this blueprint can work with; Azure policies, Azure roles, Resource

Manager templates, and resource groups.

The first thing I want our blueprint to do is to deploy a resource

group, so let's select that. We have to select a name for the

artifact, and we can either fill in the properties of this artifact

now, or say the properties will be filled in when the blueprint is

deployed.

That's the default, and that's what I'll leave it as. So I'll say, add

here. Notice how we've got two levels for our blueprint now,

subscription and resource group.

So let's add a second artifact, but let's add it to our resource

group. Notice the type of artifacts have changed. We can no

longer select resource group because you cannot have one

resource group inside another. What we can select, though, is role

assignment, so let's select that.

And from the role let's choose a role. This time, we will untick

the box that says this value should be specified when the

blueprint is assigned, and in the Add user, app, or group, we'll

select the user. With the role assignment properties filled in, we

say Add.

I'm happy with this blueprint, so I want to save the changes. So

at the bottom here, we say Save Draft. And it might take a

minute, but our blueprint will be saved. We can view our

blueprint from the Blueprint definitions section.

And we can see our blueprint. Draft blueprints cannot be

deployed. Blueprints have to be published first. So let's select our

blueprint, and at the top left, we can say Publish blueprint. We'll

have to provide a version of this blueprint, and then we click

Publish.

It should take no time at all to publish the blueprint. And once

we have published it, we can then say Assign blueprint. During

the assignment of the blueprint, we can finish off its

configuration. So we can choose a location, we can select the

version of the blueprint we want to assign, and then as we scroll

to the bottom, we can fill in the parameters for the artifacts that

we've chosen to deploy.

In our case, a resource group name and location. We don't have

the choice of filling the role artifact because we did that when the

artifact was added. It'll take a minute to create the blueprint

assignment. Once created, we'll see the assignment under

Assigned blueprints. Notice the provision section. Right now my

blueprint is being deployed. Depending on the size of the

blueprint and how much work it's got to do, it could take

seconds, minutes, or even hours to deploy your resources. Here

we can see my deployment succeeded.

The resource group has been created. If we go inside there and

under Access control assignments, we can see that the user has

been assigned a contributor role. Back over in Blueprints and

Blueprint definitions, we have the option here to edit the

blueprint. In artifacts, we'll say add artifacts to the resource group,

and for artifact type ,let's choose policy assignment.

And here you can see the Azure policies that we created earlier.

So let's choose the require tag Azure policy. Now we've made a

change to the blueprint, we say Save Draft, and then we publish

the blueprint again, this time with a different version number.

Once the draft is published, if we go to Assign blueprint, in the

version section we can now see we can assign both version 1.0

and version 1.1.

We've seen how we can create blueprints, publish and assign

blueprints, and how we can create a new version of blueprints.

One more thing to show here, on the side, you can see the

section that says Track assignments.

Let's click Track there. Here we can see our original assignment.

If we select that and say Update assignment, through here, we

can change the version of the blueprint that's been assigned from

version 1.0 to version 1.1. If we scroll down, we can now set a

tag for this resource group and say Assign. Here we can see that

our change succeeded, and now version 1.1 of our blueprint has

been deployed.

For the second part of this demonstration, we're going to move

away from Azure blueprints and take a look at Azure Advisor

security assistance. This is Azure Advisor security assistance.

When you access this tool, it will perform a scan of your

subscription, and it's going to make security recommendations.

Let's take a look at some of those security recommendations. We

can see that I've got 12 recommendations in total. We can see

there's 36 security alerts for me to view.

So if we scroll down a bit more, you can see that I've been

advised about all sorts of different areas.

The idea here, then, is that we would select one of these

recommendations, view the more detailed information about that

recommendation, and then decide whether we want to act on the

recommendation or not.

For each recommendation, you should find a description, general

information, and then, if you're lucky, remediation steps, which will

give you information on how you can remediate this particular

issue. We should be using security assistance every day, as our

security parts change as resources are deployed and removed from

our subscriptions. In summary, you have learned the importance

of the Azure governance tools. You learned how to use Azure

policies, initiatives and blueprints, and you learned the benefit of

regularly using Azure Advisor security assistance. Next, we're going

to take a look at securing Azure virtual networks.

Chapter 6 Securing Azure Virtual Networks using NSGs

In this chapter we'll take a look at Securing Azure Virtual

Networks. You will learn about network security groups and their

use for securing Azure Virtual Networks. We'll demonstrate

network security groups before taking a look at a feature called

application security group and how we can use application security

groups to simplify the management of network security. We'll

finish off by demonstrating application security groups. To help us

relate network security groups to your corporate network. We will

discuss a sample company’s security group requirements. We'll

also highlight areas where security groups can help secure your

deployments, and hopefully by the end you'll have a good

understanding of where network security groups and application

security groups can help you. One of the key recommendations

when planning your network security is to plan your security

based around defense in depth. This means planning multiple

layers of security so that if one layer is breached, other layers are

still there to protect you. In Azure, defense in depth starts with

physical security. This is managed by Microsoft. They will protect

their physical data centers and the physical infrastructure inside

those data centers. Another layer of your defense in depth is

Identity and Access Control. This is managed by you by working

with products like Azure AD and within a great suite of products

like Active Directory Domain Services and Active Directory

Federation Services. At the perimeter of your virtual networks in

Azure, standard distributed protection is enabled by default. You

can choose to enable additional layers of DDoS protection if you

feel your organization would benefit from the additional monitoring

and security that those additional layers will provide. To protect

our Azure Virtual Networks and applications, we can deploy

network security groups, firewalls, and gateways to offer protection

from layer 4 to layer 7 of the OSI model. To protect your

compute and data, we would implement the appropriate operating

system security and access controls and encryption. A typical

deployment integer would implement all of these layers of

protection, defense in depth. So let's start off by looking at

network security groups then. Fundamentally, network security

groups filter traffic. Each network security group has an inbound

list and an outbound list. Inbound traffic is filtered through the

inbound list and is either allowed or denied, outbound traffic

filtered by the outbound list. Each list contains a series of rules,

and each rule has a number, a private number with rule 100

having the highest priority and rule 4096 having the lowest

priority. As you create rules in each inbound and outbound list,

you must get the order right or you might end up with behavior

that you didn't expect. Each network security group we create can

be attached to subnets on network cards, and each network

security group can be linked to multiple resources so we can

reuse network security groups. Network security groups are

stateful. That means if I allow traffic inbound, the return traffic

will be allowed outbound automatically, and vice versa. If I allow

certain traffic outbound, the return traffic will be allowed inbound.

This makes network security groups relatively straightforward to

administer. There are a lot of network security group properties,

but they include a name for the network security group, a priority

number, the source and destination of the traffic that we're trying

to filter, the protocol we're trying to filter, so TCP, UDP, etc. We

include a direction for each rule that we create, so inbound to

outbound. We include a port range that rules should monitor for,

and this could be an individual port or a set of ports. And finally,

an action, either allow or deny. So for each rule that we create,

we can either allow traffic or explicitly deny it. Imagine that we've

got an Azure Virtual Network, and this network contains two

subnets, Subject 1 and Subnet 2, and we can see that Subnet 1

contains two servers and Subnet 2 a single server named Server

3. We will use network security groups to control the flow of

traffic inbound and outbound to these subnets and servers. If

each subnet requires the same set of rules, then they will use a

single network security group. We've got a network security group

called NSG1, we created that group and associate it with both

subnets. And as traffic flows into those subnets, it will be

assessed by the inbound rules of NSG1. Server 2 needs slightly

different rules, so I can create another network security group

called NSG2, attach that to Server 2's network interface, and

NSG2, assess its traffic inbound and outbound for that server. We

can have granularity of access using different layers of network

security groups.

Chapter 7 Azure Application Security Groups

Now we know about network security groups. Let's have a look at

another feature that'll make it easier to work with them,

application security groups. Network security groups are a great

feature, but they can become complex to manage. Each network

security group can contain lots of rules, and the more rules they

have, the more complex they are to manage. Network security

groups can also be difficult to maintain. The more resources we

add to our virtual networks, the more we might have to go back

and edit network security groups and sometimes several layers of

network security groups at that. Anything we can do to simplify

the management of network security groups, then, is a good thing

and there are several things we can do. First of all, we can use

service tags. Service tags are given to us by Azure. Service tags

represent services like Azure load balancer, Azure API

management, and locations like the internet. In general, if you

want to allow strict default traffic, we can use service tags. We

can also make use of default security rules. Default security rules

allow common outbound traffic such as internet traffic. They also

allow traffic from subnet to subnet and traffic from common

services like the Azure load balancer. At the same time, the

default security rules restrict the flow of inbound traffic. A third

option for simplifying network security groups is to make use of

application security groups. Application security groups tend to

represent a tier of your application. And if we use them correctly,

will mean that network security groups are configured once and

do not have to be readjusted every time we add a new subnet or

set of servers. So what are application security groups? Well, they

allow us to reference a group of resources such as web servers,

application servers, or database servers. They can be used as even

a source or destination of traffic. They do not replace network

security groups. They enhance them. So network security groups

are still required. When working with application security groups,

we create the application security group, we link the application

security group to a resource, we then use the application security

group when working with network security groups. Let’s say that

we have an example of an Azure virtual network with two

subnets. If we want to restrict access to these subnets, we can

create a network security group and associate it with both

subnets. When we create new subnets, we can go back to the

network security group and adjust it to include the association

with our new subnets. Network security group 1 now is associated

with subnets 1, 2, 3, and 4. This generally isn't a problem

because we're not adding new subnets every day, but resources

are different. We've got two virtual machines, and we want to

protect access to these virtual machines by using network security

group. As we create the machines, we create a network security

group called NSG2, and we associate it with the two virtual

machines. These virtual machines are part of our web tier. So as

I add more resources in our web tier across a range of subnets,

we have to keep constantly going back and adjusting network

security group 2. Resources like virtual machines will change much

more frequently than subnets will. The more we change the virtual

machines across these different subnets, the more we might have

to change the network security group. So instead of associating

network security group 2 with the constantly changing network

interface cards of our resources, we're going to use application

security groups. In another example, we've got a fore of nets, and

we have an NSG called NSG1. And we create an application

security group called web tier that's used by the network security

group to allow the appropriate traffic inbound and outbound. With

that network security group in place, we just add resources. As

we add resources, we just make sure they use the appropriate

application security group reference. There's no need to go back

to the NSG every time we add a new set of resources. Have a

think about your requirements. You might be deploying

applications. In that case, each tier would get its own application

security group. Resources in your DMZ would also have their own

application security group, and as we build in automation

pipelines to our deployment, the application security group will be

part of that pipeline. So as I'm deploying new virtual machines,

new containers, we make sure they include a reference to the

appropriate application security group.

Chapter 8 Azure Firewall Basics

In this chapter, we will be taking a look at Azure firewalls and

user defined routes. We'll first take a look at Azure Firewall and

Azure's distributed denial of service protection. We will go on to

discuss user defined routes and how user defined routes can help

us route traffic through our security appliances. We will learn

about the different firewall protection options available to us.

Understanding of the different firewall options available to you will

lead to a more secure Azure deployment and a more cost

effective Azure deployment. Let's begin with Azure Firewall and

DDoS. What is Azure Firewall? Well, Azure Firewall is a stateful

firewall service provided by Azure. It's a virtual appliance

configured at the virtual network level. It protects access to your

virtual networks and is a highly available solution. Features of

Azure Firewall include advanced threat intelligence, so the firewall

service can learn about the traffic going in and out of your

network to determine which traffic is good or bad. It supports

both outbound and inbound NAT, reducing our reliance on public

IP addresses. Azure Firewall integrates with Azure Monitor for all

our porting needs. It includes support for network traffic filtering

rules so that we can tightly control the traffic flowing through

Azure Firewall, and it's almost unlimited in scale. If we want to

support a small deployment of just a few services or hundreds or

thousands of instances, Azure Firewall will scale. Imagine that

we've got an Azure Firewall in place. We've got resource subnets

and a separate subnet for Azure Firewall. The Azure Firewall will

have a public IP address, and inbound traffic will be directed

towards the Azure Firewall service. We'll then have NAT rules and

intelligent protection looking at all that traffic that's coming in and

then passing the good traffic towards our resources. Azure Firewall

works hand in hand with Azure DDoS protection. Azure DDos

protection provides DDoS mitigation for networks and applications.

It's always on as a service. So right now if you're using Azure,

you're using Azure DDoS protection. It provides protection all the

way up to the application layer. And like Azure Firewall, integrates

Azure Monitor for reporting services. Features offered by Azure

DDoS protection include support, so protection from layer 4

attacks up to layer 7 attacks, attack analytics, ao we can get

reports on attacks in progress, as well as post attack reports. Like

the firewall service, we have scale and elasticity, so this service

will go ahead and try and absorb the attacks that are in progress.

Azure DDoS protection also provides protection against unplanned

costs. If our service is of scale because of a DDoS attack, then

those costs can be recouped. We do need to be aware that Azure

DDoS comes in two different service tiers, basic and standard. It

is the basic service that's always on for your account. The basic

service offers availability guarantees, and it's backed by an SLA,

and crucially, is free. The standards here offers everything the

basic tier offers, but that includes features like metrics that will

monitor when an attack in progress, reports so you can see

details of attacks that have happened and where they came from

and what the results were. The standards here also offer live

support so you can have contact with DDoS experts at Azure

during the attack to help you fight against it. The standards here

also integrates with your SIEM systems, but the standard tier is

not free. You are charged a monthly fee and a fee based on the

usage of the feature of the standard tier. Not everyone will need

Azure Firewall or the standard DDoS tier. So think about your

network that you have now and think about the networks you'll

deploy in the cloud. If you use network firewalls now, you'll

probably need Azure Firewall in the cloud. If you decide that you

need Azure Firewall, you'll have to go through a planning phase.

During this planning phase, you will figure out what rules will

need to be configured in Azure Firewall. As we said a moment

ago, the basic tier is free, but you have to ask yourself, do you

need that standard tier? As well as Azure Firewall and Azure

DDoS protection, you can also deploy virtual appliances for the

marketplace. These virtual appliances can add additional protection

or be used in place of features like Azure Firewall.

Chapter 9 Azure User Defined Routes

When working with Azure firewall or virtual appliances, you have

to think about how traffic is routed around your virtual networks.

There may be a requirement to alter the default routing, so that

traffic flows through your firewall or virtual appliance you are

deploying. And that's where user defined routes come in. When

traffic flows around your Azure Virtual networks, it is governed by

a set of system routes. These system routes were enabled by

default. System routes make sure that resources deployed to

different subnets can communicate with each other and the

resources deployed to your subnets can connect out to the

internet. User defined routes allow us to override Azure's default

system routes. They're most often used when we want to fill our

outbound traffic through a virtual appliance. Imagine that we got

three subnets, and I've got virtual machines deployed to Subnet 1

and Subnet 2. Using the system routes, if traffic wants to leave

the internet, traffic rerouted directly from Subnet 1 to the internet

and direct them to Subnet 2 to the internet. But let's say I want

to deploy a virtual appliance to Subnet 3. I want all traffic going

out to the internet to be filtered through that virtual appliance.

This is where user defined routes come in. Or we've got the

same three subnets, but now I've introduced user defined routes.

Can we see how they user defined routes are now filtering the

outbound traffic towards our virtual clients first? This virtual

appliance can inspect the traffic. It may even alter the traffic

before allowing that traffic outbound to the internet. Subnet 3

itself is governed by the system routes for internet access. So

using user defined routes, we have a lot of control over the flow

of traffic between our subnets and towards the internet. We've got

a lot of Azure security options available to us. Let's see if we can

try and differentiate between a few of them. So far, we've

discussed Azure Firewall and Azure DDoS protection. So hopefully

we've got an idea of where those two fit. We also have a feature

called Azure Web Application Firewall. Azure Web Application

Firewall is designed to publish your applications to the outside

world, whether they're in Azure or and lures bound traffic towards

them. We've discussed network security groups previously, so

hopefully we have a good idea of where network security groups

fit into our security. We also have a feature called forced

tunneling. Forced tunneling allows the control of flow of traffic. So

instead of traffic being routed directly into that, traffic is sent first

where your security monitoring tools can assess that traffic and

decide what is allowed or not. Finally, you can deploy any

marketplace devices available. So if you already have an existing

skill set and you want to take advantage of licenses that you

already own, you might find a marketplace device that better suits

your needs. To help determine when we need to use these six

different types of security options, think about these three

scenarios. In scenario one, you want to control the flow of

internet traffic. You wish to control the flow of traffic heading to

the internet so that it can be inspected at layer 7. In scenario

two, you've got an SQL Server. Only traffic from your Azure

subnets should be allowed to access the Azure SQL Server. In the

final scenario, all traffic that's generated by your application

servers must be routed through HQ. So take a minute, think

about these three scenarios, and decide which of the previous six

security solutions would you implement to satisfy the needs of

each scenario. There can be a variety of answers here. If I was

asked this question, for scenario one, I would say we deploy user

defined routes. The user defined routes will allow us to control

the flow of traffic, and then would even deploy Azure Firewall or

a marketplace device to filter that traffic. For scenario two, well,

it's network security groups. Network security groups will allow us

to control which traffic is allowed to communicate with those SQL

Servers by restricting the source of traffic that those SQL Servers

will accept. And for scenario three, forced tunneling. If we want to

force traffic to HQ, forced tunneling is what we need.

Chapter 10 Azure Information Protection & Security Monitoring Tools

In this chapter we're going to be working with Azure Security and

Reporting Tools. We're first going to introduce you to Azure

Information Protection. We're then going to discuss Azure Monitor

and Service Health, and we're going to introduce you to Azure

Key Vault. We're then going to introduce you to Azure Sentinel

before introducing you to and demonstrating Azure Security Center.

By the end, you'll understand the core monitoring tools available

in Azure, and you will understand the benefits of these tools to

your organization. Let's start off then with Azure Information

Protection and security monitoring tools. Azure Information

Protection is a pretty useful tool. We use Azure Information

Protection to classify documents and emails. Azure gives us some

classifications that we can use, and you and the stakeholders in

your organization will create classifications relevant for you.

Classifications are labels that are attached to documents Think of

security levels like open, secret, these can all be classifications

that your company uses. Each classification can be added as a

label to a document. Once documents are labeled, they can be

protected. This protection comes in the form of encryption, and in

order to gain access to the documents in the future, you must be

assigned the appropriate rights. These labels go beyond standard

permissions because these labels will stay with the document no

matter where it is, whether that document is on your SharePoint

service in Azure Storage, or even if that document is downloaded

onto removable media, the labels and its protection stay with the

document. Azure Information Protection labels can be applied

automatically, can be applied manually, and we can recommend

the use of different labels to our users based on the content that

they are creating. There are two sides to Azure Information

Protection. First of all, the classification of documents. These

classifications come in the form of metadata that can be attached

to the header or added as watermarks to the documents you're

trying to protect. Once classified, then the documents can be

protected. Azure uses Azure Rights Management to encrypt the

documents using Rights Management templates. Then when a

user wants to again access to a document, they can apply for a

certificate that will grant them the appropriate rights. This process

tends to be automatic and performed by the applications that the

user is using. Ideally, documents and emails will be classified

when they're created. But you'll probably have a load of existing

documents, even Azure or that need to be protected. For data

stores, you can use Azure Information Protection scanner to scan

those data stores and apply labels, and then those documents can

be protected. For data stores, we can use Microsoft Cloud App

Security. Just like Azure Information Protection scanner, this tool

will scan your cloud stores, classify documents so we can apply

protection to them. Azure gives us a lot of security and reporting

tools. Three tools that are commonly used include Azure Monitor

to collect and analyze metric information, both and in Azure,

Azure Service Health that we can use to see the health status of

the Azure services, and Azure Advanced Threat Protection that can

be used to detect and investigate attacks against our users. Let's

chat about these three tools in a bit more detail. Azure Monitor

is used to collect, analyze, and act on telemetry. It acts as a

central point where resources both in Azure and can report

information. We can use the information reporting to troubleshoot

issues and run in performance. There were two types of data

collected by Azure Monitor, metric information from services that

we've deployed and logs from services we've deployed. And again,

these metrics and logs coming from both Azure deployed

resources and Azure Service Health is a service that's

automatically provided to us by Azure. It notifies us about the

status of Azure services around the globe. Through Azure Service

Health, we can see the reports of incidents that have occurred,

such as downtime to services and downtime to regions and

availability zones, and planned maintenance that might affect the

services and resources that we're consuming in Azure. Azure

Service Health offers personalized dashboards that you can use to

view the health status of services that are relevant for you and

your organization, configurable alerts so you don't have to be sat

in front of a dashboard when a situation occurs. Instead, you can

receive emails that will alert you to the changing of a service's

status, and guidance and support that will help you navigate

through a service issue. Azure Advanced Threat Protection is all

about your users. It can be used to monitor and analyze user

activity, it's used to identify suspicious activity events that you can

then try and protect against. Azure Advanced Threat Protection

works with both Azure and your Active Directory forests. It can be

used to identify reconnaissance attacks, compromised credentials,

lateral movements, when an attacker gains access to your network

and then slowly moves through your network looking for

vulnerable systems, and domain dominance where legitimate

credentials have been used to gain access to your forest to

perform malicious activity.

Chapter 11 Azure Key Vault Basics

A long time ago, it took a lot of effort to encrypt and, especially,

decrypt information. Today, most secure operations like that is

done in specialist hardware. So particularly in the cloud, we

attempt to encrypt everything. The conversation today, then, is

about secrets management. Where do we keep the secrets that

are used to perform our encryption? Where do we keep the

secrets that are used to access Azure secure resources? Azure Key

Vault is a service we can use to protect our secrets. Secrets come

in many forms like certificates, keys, connection strings,

passwords, and it's the secure management of the secrets that

can be an issue for IT. How do we control access to things like

passwords, API keys, and of secrets? Have a little think. How do

you control access to passwords and API keys right now? Are they

stored securely? How do you create and control encryption keys?

Where are they stored and who has access to them? And how do

you provision, manage, and deploy digital certificates? You need to

answer these questions, and your answer should involve some

form of secure storage for your secrets, date audited, and only

select people and applications have access to it. And this is where

Azure Key Vault comes in. Azure Key Vault can be used to

centralize the storage of application secrets. Azure Key Vault uses

hardware. It uses hardware security modules. These hardware

security modules have been validated to support the latest Federal

Information Processing Standards. That means if you want secret

storage that can be used while you're working on government

contracts, Key Vault can work for you. When using Azure Key

Vault, we can enable logging to monitor how and when our

secrets are being used. And crucially, Azure Key Vault can just

centralize administration of all our secrets. Azure has some

recommendations for us when we're using Key Vault. Firstly, we

should use a separate Key Vault for each application that requires

centralized key management. This makes it easier for us to control

access to sets of keys and secrets on an basis. We should also

make sure that we take regular backups of all our Key Vault That

way, if something goes horribly wrong, we can restore from those

backups. We should turn on logging and set up alerts to inform

us when certain events occur, and we should also enable soft

delete and purge protection. This makes it even easier for us to

recover secrets if they've been accidentally deleted and protects

the Key Vaults themselves from accidental deletion.

Chapter 12 Azure Security Center Basics

Now, we're going to take a look at Azure Security Center and

Azure Sentinel. Security is always a challenge, but in the cloud,

it's even more of a challenge than In part, that's because services

in the cloud changed rapidly. How do we know that changes to

Azure services meet our security requirements? As security tools

improve, attacks are becoming more sophisticated. But how do we

keep up to date with new threats? We also have to contend with

a skills shortage. We have lots of information available to us in

the cloud, but do we have all the stuff we need to digest and act

upon that information? Azure Security Center is designed with

these challenges in mind. If you are using Platform as a Service

services in Azure, like Azure Web Apps, then Azure Security

Center is already working for you, monitoring those services and

reporting on their security status. There's no need for you to do

anything for those services. For services, like operating systems

you deploy in the cloud, we can deploy monitoring agents to

gather security information. As well as monitoring for security

threats, Azure Security Center also reports our compliance status

against certain standards. It provides continuous assessment of

existing and new services that we deploy. It also provides threat

protection for both infrastructure and Platforms as a Service

services. One of the newer security services provided by Azure is

Azure Sentinel. Azure Sentinel is both a security information and

event management system and a Security Orchestration,

Automated, and Response system, so both a SIEM and SOAR

solution. Azure Sentinel offers a single solution for collecting data

at cloud scale. It can then take that data and help detect

previously undetected threats. Azure Sentinel looks for threats

using artificial intelligence. It allows us to respond to incidents

rapidly, much quicker than traditional monitoring tools would have

highlighted the threat. With Azure Sentinel, you connect to your

security sources using data connectors. These sources can be

storage, virtual machines, security appliances that we want to

collect information from. We can then analyze the data collected

using Azure Monitor Workbooks and Analytics Workspaces. These

are very powerful tools that allow us to search for and display

information that's relevant for us. We could then take the

information we've gathered and use that to trigger security

automation using Orchestration Playbooks. Playbooks are an

extension of Azure Logic Apps. Logic Apps are a serverless

workflow service that allow us to automate a series of steps. In

this example, perhaps a series of steps in response to a security

threat that Azure Sentinel detected. With Azure Sentinel, we could

perform deep investigation and hunting. This allows us to discover

isolated pieces of information that by themselves might seem

innocuous, but when brought together, help us discover a security

threat.

Chapter 13 Azure Service Trust & Compliance

In this chapter we'll be taking a look at Azure compliance and

data protection standards. We will first discuss some of the

common industry and compliance standards that Azure supports

and your company might be trying to achieve. We'll discuss

Microsoft's privacy statement and what that statement means to

you and your organization. We'll introduce Azure's Service Trust

Portal, and we'll also discuss Azure special regions as well.

Understanding compliance will lead to secure Azure deployments,

save your company money, and help win contracts you may

otherwise have lost. So we'll start off by talking about some of

the industry compliance standards that Azure supports. A lot of

us work in industries where some form of regulatory compliance

is required. Regulatory compliance is the process of ensuring that

you follow the standards or laws laid out by a governing body. As

a company, we'll employ people and develop processes to help

detect and prevent violations of our security regulation

requirements. Compliance monitoring can be complex, particularly

in today's hybrid world where we have both and cloud systems to

manage. Azure provides several tools to help us assess and

maintain our compliance posture. There are lots of compliance

standards out there that you might have to adhere to. Here we've

got a selection of some of the most common standards. First of

all HIPPA, the Health Insurance Portability and Accountability Act.

HIPPA is a US standard that lays out data privacy and security

provisioning for safeguarding medical information. We have PCI,

the Payment Card Industry Standard. PCI lays out standards for

securing the handling of credit cards. In the EU, we have GDPR,

General Data Protection Regulation. This is an EU standard for

data protection and privacy. FedRAMP is the Federal Risk and

Authorization Management Program and is an information security

standard used by the US government. Any organization working

with the US government at any level would have to adhere to

FedRAMP. We then have standards laid out by the International

Standards Organization, such as ISO 27001, which is part of their

information security standard. These five are just examples. There

are many more standards that you might have to adhere to. And

although we will have to keep our own proofs and documentation

proving that we're adhering to these standards, Azure gives a

series of tools that we can use to measure our services against

these and many more. Azure supports more than 90 global

compliance standards. They provide documentation about their

services and which standards their services are certified against.

And Azure gives guidance on what areas of these standards are

our responsibility and which areas are theirs. Azure supports over

35 offerings with documentation to support the rollout and

management of compliance features. If our Azure subscriptions

have to be deployed to support a particular standard we can use

Azure Blueprints to deploy a complete environment configured to

our compliance needs. As well as providing tools that allows us

to honor our compliance posture, Azure itself is certified against

all the standards that it supports. And Azure offers access to

reports from orders that gives us proof of their compliance. One

powerful compliance tool that we outlined in module 7 is Azure

Security Center. As part of Security Center, we can see our current

compliance posture measured against some of the most common

standards like GDPR and PCI. One of the most important tools

for modeling your compliance posture and for viewing information

of Azure's compliance status is Azure Service Trust Portal and

Service Trust Center. The Azure Service Trust Portal is probably the

first tool you will use on your compliance journey. In this portal

you will find details of Microsoft's implementation of controls and

processes against Azure and other Microsoft products. Although

anyone can access the portal, if you log in as an authenticated

user you'll get access to information not visible to everyone. When

you log in you need to log in with a Microsoft cloud service

account. This could be any user in Azure Active Directory with the

correct delegated permissions. In the portal you will find

Compliance Manager. This is your section of the portal where you

can document the steps you are taking to become compliant

against certain standards. You'll find trust documents. These

include Microsoft security information, as well as design

information that will help you on your compliance journey. You

will find compliance information specific to different industries and

regions, as well as links to Microsoft's general trust center. You

will also find My Library. This is where you can save and access

your compliance documents so all your compliance information is

in one place. Microsoft Trust Center is accessed through the Trust

Portal. Through Trust Center you can view security, privacy, and

compliance information, access to Microsoft product compliance

information, and you'll find compliance tools such as compliance

score, audit reports, and data protection resources. So let's take a

look at the Service Trust Portal and Microsoft Trust Center.

Chapter 14 How to use Azure Trust Center & Compliance Manager

In this demonstration, we're going to be working with Azure

Compliance Manager and the Azure Service Trust Portal. This is

the Service Trust Portal.

Notice the URL, servicetrust.microsoft.com, and the fact that I'm

logged in. I've logged in with a user account that's been assigned

the compliance role in Azure AD. Through this portal then, we

can access Service Trust, Compliance Manager, Trust Documents,

and if we click on the next to More, we can see links, amongst

other things, Industries and compliance information, Trust Center,

and My Library.

If we scroll down on this first page, here we can see links to

independent Audit Reports for Microsoft Cloud Services. These

provide information about Microsoft's compliance status. Notice

here FedRAMP, ISO 27001, and the link where you can View all

Audit Reports. Scroll down a bit further, and we get to

Documents and Resources.

Through here, we can see the results of penetration tests and

security assessments carried out by third parties. We can see

information on Azure Blueprints that we can use to rule out

compliant subscriptions, as well as access to documentation,

including White Papers, FAQs, and Compliance Guides. Let's go

back up to the top of this page, and we'll select Compliance

Manager.

servicetrust.microsoft.com

If you're not logged in with your proper credentials, you'll get an

error when you try to access Compliance Manager. If you're not

familiar with Compliance Manager, you can take a tour. If you are,

you can scroll down and get started. Compliance Manager is all

about assessing your deployments against certain standards.

So here you can see I'm measuring my Office 365 deployment

against GDPR and NIST, I'm measuring Azure against ISO 27001,

as well as GDPR, FedRAMP, and the UKNHS standard.

If I select Azure GDPR, at the top here, we could see Assessed

Controls, and mine indicates that I'm 36% Assessed, and that

would be 47 out of 130 controls.

And the statement of this assessment is In Progress. Let's scroll

down and see a few more details about the assessment. We

should see three sections, Azure Cloud Services, Microsoft

Managed Controls, and Custom Managed Controls.

Let's view the Azure Cloud Services. There's a long list here.

Each one of these services then can be secured against the GDPR

standard. You should be able to see a similar list for each of the

standards that Compliance Manager supports. Just because of

service is on this list, it doesn't mean it's fully compliant. To be

fully compliant with standard, we have to break down the

responsibility between ourselves and Microsoft. If I minimize this

list, we have Microsoft Managed Controls, these have passed the

standards that Microsoft is responsible for, and we have Custom

Managed Controls, these have passed the standards that you're

responsible for implementing.

If we view the Microsoft Managed Controls, here we can see a

number of assessments in different categories and the number of

assessments that have been assessed.

If we take a look at Rights of individuals, for example, this

contains one control detailed on the side, we can see a Test date,

and the fact that this was tested by a independent auditor.

Crucially, we can see the Test result. So Microsoft passed this

test. You will be affined the independent audit, which provides

proof that Microsoft passed this control. Let's collapse the

Microsoft controls, and now take a look of the Customer

Managed Controls.

These controls are your responsibility. In order to be GDPR

compliant, you would have to make sure that all of these controls

are enforced. Let's take a look Right of individuals, for example.

So there are 11 controls as part of this section, and none of them

have been assessed.

As an organization then, it would be up to you to research the

relevant articles and put procedures in place to enforce the article

controls ready for assessment. In this section, I can assign this

control to an individual by using Assign option. I can also

implement status information, and we can provide a date for

status changes. Using Manage Documents, we can upload

documents that are relevant for this article, that perhaps outline

the steps we have taken to fulfill this article. We can also provide

dates of tests that have been run to assess adherence to these

controls and the results of those tests. Ideally, your tests would

also be run by a independent auditor. What Compliance Manager

is given us then is a way to visualize our readiness for

assessment. Instead of you having to fight your way through all

the different controls for a particular standard, and then document

your adherence to those controls in a tool, we have all the

information we need here in one place. Let's go back to the

Service Trust Portal.

If you're trying to find the Microsoft Audit Reports, you can find

that from the Trust Documents section, along with information

and information on Azure Security and Compliance Blueprints. If

we select More, one useful section is Resources.

Through here, we could see information about Microsoft's Global

Datacenters, access Frequently Asked Questions, and access the

Security and Compliance Center. The Security and Compliance

Center offers more general information around security and

compliance, including security information on Office 365. If we

select More again, and select My Library, it's in My Library where

you could save reports, as well as white papers and other

resources that will help you document your compliance posture.

There's one other website that I want to show you in this demo.

This website, privacy.microsoft.com, gives us access to Microsoft's

Privacy Statement. Here we can find details on the type of

personal data Microsoft collects about you.

It gives information on how Microsoft uses that personal data,

reasons why they might share your personal data, and how we

can access and control our personal data. This statement was last

updated in January 2020, and it's well worth you getting to know

this statement, so you and your organization have a good idea of

how your personal data will be used by Microsoft. As this

statement gets updated, it's also somewhere that you should visit

on a regular basis.

privacy.microsoft.com

Chapter 15 Azure Special Regions

When a deployment's launched in Azure, we deploy to Azure

regions. Most regions are equal, but some are special. In this

section, we're going to cover Azure special regions. Azure services

are deployed to multiple data centers around the world. For ease

of management, high availability, and disaster recovery, these data

centers are grouped into regions such as West US and UK South.

You can deploy your resources to a region that matches your

requirements. Requirements are based on cost. Some regions are

cheaper than others. You might choose regions that are closest to

your customer base all because the services that you want are

only available in certain regions. Azure special regions exist for

compliance and legal reasons. These regions are not generally

available, and you have to apply to Microsoft if you want to use

one of these special regions. Currently, there are three categories

of special regions. US Gov regions support US government

agencies. This includes US Gov Virginia and US Gov Iowa. We

have the China special regions. This includes China East, China

North. The China regions are managed in partnership with

21Vianet. We also have the Germany regions, Germany Central and

German Northeast. These regions are managed for a data trustee

model. This model means that data in the Germany regions will

reside in Germany only and be compliant with German data laws.

You must request access to Azure special regions if you want to

deploy resources to them. The US Gov regions are for additional

compliance certifications such as FedRAMP and DISA Level 5 DoD

approval. So if you're working on a federal, state, or local US

government project and you need to adhere to the standards, you

could apply for access to the US Gov region. Regarding the China

regions, it's worth pointing out that Microsoft does not directly

maintain these data centers. They are owned in partnership with

21Vianet. China has some very specific rules about how data

enters and leaves the China regions, and by partnering with a

Chinese organization to manage these data centers, Azure could

adhere to these rules. Germany has very specific rules about data

residency. To conform with these rules, all data in the Germany

region stays under the control of is a company owned by

Deutsche Telekom.

Chapter 16 Azure Compliance Resources

In this chapter, we're going to be discussing Azure compliance

resources. The goal is to introduce additional compliance material

that Microsoft makes available online. One of Microsoft's building

blocks for their online services is Trusted Cloud. Trusted Cloud is

built on a series of foundations, including security, privacy, and

compliance. Building on the security foundation, Azure helps keep

our customer data secure. Azure provides network and

infrastructure security, data encryption, strong authentication and

authorization, as well as tools that allow us to audit access to

Azure subscriptions so that we can keep track of who is accessing

data. One of the principles of the Privacy Foundation is that

Azure customers own and control their own data. We get to

decide the regions that our data is stored in, we have the ability

to access our data from any location at any time, our data is

encrypted both at rest and in transit, and there's even rules of

how Microsoft will dispose of our data if we cancel our

subscriptions. To help us satisfy compliance, Microsoft currently

supports integration with over 90 international compliance

standards. These include global, national, and compliance

standards that we can certify against. To help you build secure,

compliant architectures in Azure, you should spend time with the

Microsoft Cloud Adoption Framework. This framework outlines

cloud adoption best practices that have been brought together

from Microsoft employees, partners, and customers. The guidance

laid out in the Cloud Adoption Framework is not only for IT

decisionmakers, but also for business leaders. The Cloud Adoption

Framework helps you define a business strategy for cloud

adoption. It provides guidance on best practiced governance of

Microsoft Cloud Services. So if you're starting out on your

Microsoft Cloud journey, the Cloud Adoption Framework should be

one of the first resources that you use. It will keep us away from

bad practices and will help all parts of the business, both

technical and nontechnical, understand why the cloud is right for

them and the best way to adopt cloud services for each

department's particular requirements. If you are responsible for

compliance for your organization, then I encourage you to seek

out the Azure compliance documentation. This documentation is

your starting point for learning about compliance in Azure. The

Azure compliance documentation is organized into both regional

and global compliance offerings, as well as several offerings. These

include compliance standards aimed at financial services, the

automotive industry, media, and energy companies. By using the

Azure compliance documentation, you can find out how Microsoft

can help you conform to compliance standards such as GDPR,

HIPAA, and FedRAMP to name just three of over 90 compliance

offerings that Microsoft Online Services supports today. Most

organizations are keen to keep personal information private, so

understanding what personal information Microsoft collections

from us and how it uses that information is very important. The

Microsoft Privacy Statement explains how Microsoft collects and

processes personal data and for what purposes that personal data

is collected. The privacy statement includes information. This

means we can identify the type of personal information that each

individual product is collecting from us. This helps understand

what information might be exposed when we're using individual

products. Microsoft collects and uses our personal data for things

like improving and developing products, personalizing products

and making recommendations, advertising and marketing, and

performance analysis and research. You can find the Microsoft

Privacy Statement online, and it's definitely something you and

your team should seek out so you can have a clear understanding

of what personal information each Microsoft Service collects and

how it uses that data. When you start to use any Microsoft online

service, such as Microsoft Azure, Microsoft 365 or Microsoft

Dynamics, you are agreeing to a set of Microsoft terms and

conditions. These terms and conditions are laid out in agreements

such as the Microsoft Online Subscription Agreement. Amongst

other things, this agreement lays out acceptable use and

unacceptable use of Microsoft Online Services. This agreement is

an agreement between Microsoft and the organization you're

representing or Microsoft knew if you didn't specify an

organization when you signed up to an online service like Azure.

Depending on the industry you're in or the region you're in, there

may be other subscription agreements that you're also agreeing to

when you first sign up for Microsoft services. So again, a bit like

the privacy statement, seek them out and make sure you're happy

with the terms of agreement before you start consuming Microsoft

Online Services. Another useful piece of documentation is the

Online Service Terms. These lay out the terms by which each

Microsoft Online product is offered. It's through the Online

Service Terms that you find the licensing agreements for each of

Microsoft's online services. One addendum to the Online Service

Terms is the Online Service Data Protection Addendum. This

addendum lays out how data is protected, what Microsoft's

responsibilities are for data protection, and what the customer's

responsibilities are. In today's world where data protection is a key

aspect of what we do, a good understanding to the addendum is

vital. Microsoft also published their service level agreements for

each of their services that are bound by an SLA. On a more

technical note, when we initially think about cloud, we often think

about shared resources, so shared compute, shared storage that

our company might be sharing with other companies that are also

using Azure. But if the compliance standards that we're hoping to

certify against require additional levels of isolation, then we might

consider using dedicated hosts. Azure dedicated hosts provide

physical servers that we can use to host one or more virtual

machines. Each dedicated host is dedicated to a single

organization. This gives you isolation that can help you address

certain compliance requirements. Dedicated hosts also give you

visibility of the underlying cause, and this can help you meet

software licensing requirements, which can help you bring your

own licenses into the cloud. Dedicated hosts may not be the first

thing we think about when we think about compliance in Azure,

but by giving us our own dedicated servers that allow us to

isolate our virtual machines from the virtual machines of all the

other customers in Azure, dedicated hosts can be an important

part of our compliance tool set. In summary we started off by

looking at Identity and Access Management. We looked at Azure

AD and discussed how important Azure AD is for Azure cloud

security. But not only Azure, Azure AD underpins security of all

Microsoft cloud platforms. We mentioned Azure AD Domain

Services, Microsoft's managed directory service in the cloud, we

discussed access control and how it can be used to provide

granular access to Microsoft cloud services, such as Azure and

Office 365. We discussed the use of and custom roles in RBAC,

as well as the three most commonly used roles, Owner,

Contributor, and Reader. We also demoed how we could use these

roles to provide access to resource groups. We then moved on to

discuss governance tools and secure virtual networks. We

discussed governance tools like Azure Policy, Azure Initiatives, and

Azure Blueprint, and we saw how each one of these builds upon

the other with Azure Policy enforcing controls during deployment

and Azure Initiatives that we can use combine a group of policies

so they can all be applied in one go. We then discussed Azure

Blueprints and saw how they can be used to deploy a secure and

compliant subscription. We looked at security and virtual networks.

We have network security groups and application security groups,

and we discussed how application security groups can simplify our

network security group deployment. Next we focused on Azure

firewalls and routes. We discussed Azure Firewall and its

capabilities, we discussed Azure DDoS protection for our virtual

networks, and then we discussed routes and how we can use

routes to control the flow of traffic. We also showed you a

selection of Azure security solutions and identified different use

cases for those solutions. Finally, we discussed security and

compliance. We talked about Azure Information Protection, we

discussed and demonstrated Azure Key Vault, we discussed Azure

Monitor, and we discussed and demonstrated Azure Security

Center. We then moved on to discuss compliance. We discussed

some of the common compliance standards, we discussed Azure

special regions, and we had a look at Azure Trust Center and the

Azure Trust Portal along with Compliance Manager and Microsoft's

Privacy Statement. Next, you have learned about some of the

common industry compliance standards. We discussed the Azure

Service Trust Portal and how we interact with it, and you learned

about Azure special regions.

BOOK 3

MICROSOFT AZURE

PRICING & SUPPORT OPTIONS

AZURE SUBSCRIPTIONS, MANAGEMENT

GROUPS & COST MANAGEMENT

RICHIE MILLER

Introduction to Azure Subscriptions

Azure subscriptions are the first construct of Azure, and in the

following chapters, we're going to learn all about Azure

subscriptions, how to use them, why they're there, and other

aspects of Azure subscriptions. We're also going to learn about

management groups and how those work with Azure

subscriptions. The first thing is we're going to describe an Azure

subscription and understanding what it is, understanding the

different uses and options with Azure subscriptions, and then

we're going to understand management groups, when you would

use them, why you would use them, and how they fit with

subscriptions. Let's look at the scenario first that we'll be covered

and you'll see throughout the duration of this entire book. The

scenario is that we work for a company that has decided to adopt

cloud. The company is exploring different cloud providers, not just

Azure, but Azure is one of those cloud providers. One of the very

first steps of adopting Azure is to understand how the pricing

and the support options work to make sure they fit your

organization's needs. You have been tasked with learning the

fundamentals about the pricing and support options. You need to

document these and bring these back to the team and report on

these to help the team make the decision on if they're going to

go with Azure or if they're going to go with another cloud

provider.

Chapter 1 How to create an Azure Subscription

The first thing with adopting Azure is creating a new subscription

and then tying that subscription to an account and deploying your

cloud resources that you will consume into the subscription. At

the top level, you have the subscription, and then you have what's

called a resource group and a resource group is used to group

your resources that share a lifecycle. Each resource is going to

belong to a resource group, and then the resource group is going

to belong to a subscription. So regardless if your resources are

web apps, databases, virtual machines, maybe a Kubernetes

cluster, they're all going to be associated with some sort of

resource group, and that resource group has to be associated with

a subscription. An Azure account is used for contact information

and billing details for an Azure subscription. Every time you spin

up a new subscription, it has to be associated with an Azure

account. There's an email tied to an Azure account, and the

person that owns that email is responsible for the monthly cost

of the Azure consumption that happens in that subscription. An

Azure subscription is just a logical container and grouping of

Azure resources and administration. The different elements of an

Azure subscription are it's a legal agreement, it's a billing unit, it's

a logical boundary of scale, and it's also the very first container

that's created, and it's an administrative boundary. So let's walk

back through these. So it is a legal agreement, so if you have

charges against a subscription, you are legally bound to paying for

those and also the use of the subscription and the things that

are done within that subscription. It's a billing unit, so you can

have many subscriptions, and you can have different billing tied to

different accounts and go to different, let's say, like departments

or people. So if you need to separate billing for any reason, a

subscription might be a way to do that. It's also a logical

boundary of scale, so you can only have a certain amount of

VNets deployed into a subscription, or you could only have a

certain amount of web apps deployed into a subscription.

Microsoft has soft limits around different amounts of resources

that can be deployed in a subscription. If you need a higher

amount, you can reach out to Microsoft and ask to have that

increased. But just keep in mind that the subscription can be a

logical boundary of scale. Then the first container created is you

create this subscription before you create any resource groups or

before you create any resources. You have to have that

subscription there. But let's talk about the relationship between

Azure Active Directory and subscriptions. This is key, and this is

important to understand. What is Azure Active Directory? It's

Microsoft's identity and access management service that runs in

Azure itself. It's used for being able to sign in and access cloud

resources. A subscription is going to have a trust relationship with

at least one Azure Active Directory. An Azure Active Directory can

have trust with multiple subscriptions, but each subscription could

only trust one single Azure Active Directory, and this is something

important to keep in mind as you're working with subscriptions

and you're deploying more subscriptions. In your Azure Active

Directory is where your accounts will live, like your user accounts

and your different groups. So when you're assigning permissions

to subscriptions, you're assigning permissions to resource groups,

etc., keep in mind the relationship between Azure Active Directory

and your subscriptions, and that will help you understand how

things work as you go to assign permissions.

Chapter 2 How to Add and Name Azure Subscriptions

But when should I add a new subscription? The first question

that you'll ask when you want to know, should I add another

subscription here or not is going to be do you have concerns of

exceeding limits within a subscription? Are you going to add more

VNets than Microsoft allows in a subscription? If the answer is

yes, then you'll add a subscription. If the answer is no, then

you'll move to the next question. Do I trust the subscription

owners? When you spin up a subscription, you will be a

subscription owner, but you can also assign that permission to

someone else. That could be another department head or just

another person on your team. Maybe you need to separate that

security. Maybe you don't want that person having access to the

resource groups and resources in your subscription. If the answer

is no and you don't trust the subscription owners, then add

another subscription, and you will add that person to that

additional subscription. If the answer is yes, then move on to the

next question. This question is, do you need to constrain or

scope resource providers within a subscription? A resource

provider is there in Azure behind all of the services. For example,

virtual machines in Azure have their own resource provider, SQL

databases for the PaaS SQL offering have their own resource

provider. So maybe you want to have a subscription and you want

to allow folks that will be consuming from that subscription to

deploy VMs, but maybe you don't want them deploying Azure App

Services to run web apps. Maybe you want to have that capability

in a totally separate subscription. You could certainly do that, and

you could scope the resource providers at a subscription level. So

if the answer is yes, that you need to scope a subscription based

on resource providers, then you'll add an additional subscription.

If the answer is no, then you move on to the last question, and

that is can administration be delegated through RBAC controls? If

the answer is no on that, then you'll add an additional

subscription. If it's yes, that's usually the criteria that we look at

when deciding, do I need another subscription or not? Naming of

your subscriptions is absolutely critical. This should be done as a

part of your planning and really as the first step. This can help

with things like chargeback, help IT teams find and managed

resources, and just overall be an aid in the operations of your

Azure environments. There's many ways to name subscriptions,

and you may come up with your own method. At the top level

we have the company name, and then we're going to add a

department to the name, and then we're going to add a location

to the name, and then we're going to tag it with an environment.

We'll have that be a part of the name, and then we'll increment

the instances with a number. So if we have several of the same

names, we'll add an additional number, like 1, 2, 3. The pattern

starts with company, department, location, environment, and then

instance.

Chapter 3 How to Provision a New Azure Subscription

As far as provisioning a new Azure subscription, you have a

couple of options. The first option is you could come out to this

azure.microsoft.com/ site:

You can click on this Start free or you could click on the Or buy

now below. I'm going to go ahead and click on the Start free.

This is kind of the first way that you could sign up for a

subscription. The other way is you could add a subscription from

an existing account.

Here you would need to put in either an email account, or you

would need to go ahead and create one, or you could sign up

with your GitHub account. We're not going to go all the way

through the process here, but we're going to take you partway

through the process so you can see what it looks like. So I'm

going to go New, and I'm just going to paste in just an example

account, and then we'll go Next. Then it wants a password, so

we'll give it a password, and we'll click Next. We put in our

information, and then we verify our identity. The next step would

be to identify by a credit card.

You do have to have a credit card for this. Note that this would

be the free account, so you would have the $200 credit and you

could use only free services on here, so you won't be charged.

Then the last step would be to go ahead and accept the

agreement, and then you would have your new free Azure

azure.microsoft.com/

account. We're going to switch gears, and we're going to go

ahead and look at provisioning a new Azure subscription from an

existing account. I'm going to click on

That's the offer that we're going to go with here and then it asks

for payment information.

Then it's going to ask you what type of technical support do you

need on this new subscription? I'm going to say no for none.

Then you accept the agreement and then go ahead and click on

Sign up, and it will provision your new subscription.

Setting up the account sometimes can take a few minutes. Then

when it's done, it brings you into the Azure portal right into this

Quickstart Center.

We can go ahead and click on Subscriptions, and it will bring us

to the list of subscriptions. That was the process of provisioning

a new subscription, to an existing account.

Chapter 4 Azure Management Groups

Management groups allow you to apply governance conditions a

level above subscriptions. The governance conditions are talking

about access, so RBAC and Azure policies. Azure policies are a

way to either audit or enforce conditions on a subscription,

resource groups, or resources in a subscription. For example,

maybe you want to only allow people that have access to your

subscription to deploy in a certain region. An Azure policy can be

used to do that. So if you have many Azure subscriptions, you

can use management groups to help make the management of

those subscriptions easier. Let's look at the container hierarchy in

Azure, and this is not to be confused with Docker containers. At

the top level, you have your management group, and then you

have your subscription that rolls into that, or you could have

multiple subscriptions. Then you have a resource group that rolls

into the subscription, and then you have resources that roll into a

resource group. This is a breakdown of the overall container

hierarchy from top to bottom. How to use management groups

with Azure subscriptions. So when we deploy our first

management group, that's what's known as the root management

group. We have access and Azure policies applied to that. We can

have additional management groups roll up to this root

management group. Let's say for example we have a marketing

management group, and we have separate access controls and we

have separate Azure policies apply to that management group and

we have a subscription there, and then resources inside of that.

We also have an IT management group, but we have groups

under the IT management group. In there, we have one for

development and one for an infrastructure team. The development

management group and the infrastructure management group both

have multiple subscriptions. Something to note is we're applying

the access and the Azure policies at the IT management group

level, and the development and the infrastructure management

groups are inheriting those permissions and Azure policies and so

are the subscriptions underneath those and the resources as long

as we didn't break the inheritance. This is a visual of how

management groups fit into the overall picture of your Azure

container hierarchy and how subscriptions fit into that picture as

well.

Chapter 5 Azure Planning & Management Costs

A key component of adopting Azure Cloud is knowing cost. It is

important to map out the Azure products and services that will

be used and their initial and costs. In the following chapters we

will explore the various pricing options and calculators that are

available to assist us when estimating cloud. Understanding

options for purchasing Azure products and services will be the

first topic and then we'll learn about the Azure free account and

what that means and what that comes with. We'll look at different

factors that can impact your cost in Azure. We'll learn about

zones for billing purposes and then best practices for minimizing

Azure costs. Then we'll take a look at the different Azure pricing

calculators and how you can use those for estimating. The first

one here is the Azure free account. With this account, you get

$200 in Azure credit that can be used within 30 days. You also

get access to free Azure services. The second type is the So you

will be charged monthly for the services that you use in a billing

period, which is the monthly billing period. The next one is the

student account, and you get $100 in Azure credits that can be

used in a period. No credit card is required to sign up or use

this type of Azure subscription. The final one is the enterprise

agreement, and this is where you purchase Azure services and

Microsoft software under a single agreement, and this is usually

used for organizations to purchase their Azure credit from

Microsoft.

Chapter 6 Azure Free Subscription & Free Services Options

What are the options for purchasing Azure products and services?

Well, let's go through the list. First, you have your enterprise

agreement, which we just touched on, and these are usually

designed for very large organizations. This comes with the premier

support and dedicated Azure resources. There's generally an

annual commit for spend with the Enterprise Agreement. What

that means is that you have committed to spending a certain

amount on Azure on an annual basis. This happens at your

organizational level, and usually with this, you can get deep

discounts on your Azure cost. The second is the Direct - from

Microsoft. So you'll get a bill for Microsoft, you'll have a support

plan through Microsoft, and you or you can use a partner to help

you with your Azure provisioning, your deployment, and basically

building out your cloud environment. The last is the Indirect -

Cloud Solution Provider or also known as CSP. You will receive a

bill from the CSP, not for Microsoft, and you will get your

support through the CSP, not directly through Microsoft. And

you'll work with the CSP for any Azure provisioning, deployment,

and uses management. There are some benefits to working with

the CSP. For example, a lot of times CSPs will have very talented

folks as a part of their organization that you will be able to work

with. Now, let's talk about the Azure free account. You can go

and sign up for this and you will have access to many popular

services for free for 12 months. Again, you also get that $200

credit for 30 days. Then you'll have access to 25+ services free

forever. What are some of the popular services that are free for 12

months? You have Linux VMs, you have Windows VMs, and you

have 750 hours for each one of those. You have other things like

managed disks. You have access to 5GB of file and blob storage.

You can deploy SQL Database, Cosmos DB, and also egress

bandwidth. In regards to the free services that are free forever,

here's a list. Keep in mind that this always changes. Microsoft is

always releasing new services to Azure, and they often make

services free and include them on this list. Let's go through some

of the popular ones. You can have like Azure App Service where

you can have up to 10 of web, mobile, or API apps. Azure

Functions is another popular one where you can have up to a

million requests per month. So you can get some good use out

of that one. DevTest Labs, so if you're running like lab

environments and you want some of the capabilities that come

with DevTest Labs, that's a free service. If you're running VMs, if

you're running other things in those labs, you will be charged for

that. But you won't be charged for the DevTest Lab service itself.

Also like AKS, so Azure Kubernetes Service. You've probably heard

of Kubernetes. This is a managed Kubernetes service from

Microsoft. The service itself is free, but keep in mind you will pay

for any VMs that are run, any underlying storage that's consumed,

you'll pay for those things, but you won't pay for the AKS service

itself. Other valuable services are like Security Center. There's a

free tier. So as you're deploying things on Azure, you definitely

want to turn that on to give you insight into your security posture

on your cloud environment. Event Grid, you can get up to

100,000 operations per month. There's some Active Directory B2C,

authentications that you can you can leverage. Azure automation

is another big one where you can get up to 500 minutes per

month and then networking. The networking is usually free, so

VNets, subnets, load balancers, that stuff is free, which is great.

Keep in mind you'll usually be using VMs with your networking or

PaaS services, and so you will be paying for those things, but you

won't be paying for the underlying networking itself. Then another

big one is App Insights and Azure Monitor. You get up to 1GB

free per month of storage, but the services, you can just turn on

and start using them. Then the one that I really like is the Azure

DevOps where you can get up to five users with private repos

with that Azure DevOps.

Chapter 7 What’s Affecting Azure Costs?

Let's now cover the factors that can affect your costs in Azure.

Location is a big one. Azure is global with regions all over the

world, and it does matter where you deploy your resources and

what regions you select. Regions are going to have different

pricing. For example, North Central US is going to have a lower

cost than West US or even East US. South Central US is going to

have a lower cost than US East or US West. Part of the reason is

there's local factors that are impacting the costs such as staffing

in those local areas, in those data centers, connectivity costs,

cooling costs, things like that. That is all factored into the actual

price that you receive as an Azure customer. The next item is the

resource type. Costs are specific to each resource and the usage

that the meter tracks, and the amount the meter has associated

to the resource will depend on the resource type. So keep that in

mind as well as you're consuming and the different types of

resources. The next one is service. As your usage rates and

building periods can be different if you're using, let's say, an

enterprise agreement versus a direct or even a CSP. So, for

example, with the enterprise agreement, you will probably have

discounted services. As you're consuming services from Azure,

you'll be receiving those discounts, so you'll have a lower cost

because of your enterprise agreement and what you've negotiated

with Microsoft. The last one is egress traffic. Sending data into

Azure, aka ingress, also known as inbound, is always free. It's

always free to get your data into the cloud. Pulling data out of

the cloud, known as egress or outbound, has a cost. Bringing

data into the cloud, ingress, is free. Sending data out of the

cloud, egress, is going to have a cost. You really need to

understand the traffic flow for your environment or the solution

that you're running in Azure, and that will help you estimate the

cost that you will be paying for any egress traffic. An Azure zone

is a geographical grouping of Azure regions for billing purposes.

Data transfer pricing is based on the zones. But what are the

zones? Zone 1 is the United States, US Government, Europe,

Canada, UK, France, Switzerland. Zone 2 is APAC, so it's East

Asia, Southeast Asia, Japan, Australia, India, Korea. Zone 3 is

Brazil, South Africa, and UAE. Then there's something called DE

zone 1, which includes Germany. Keep in mind that these change

over time, and Microsoft is adding new regions, new countries, to

Azure all the time. So the zones will update and will expand. So

make sure you check the Microsoft documentation on these for

the latest and greatest.

Chapter 8 Best Practices for Minimizing Azure Costs

The first one is reserved instances. Let's say, for example, you

know, as an organization, you're going to run X amount of VMs

for the year. You just know that. What you can do is you can for

those virtual machines and get a discounted rate. It's a really

great way to save money and minimize your cost when you know

what you're going to consume. The next is Azure cost

management. Once you're running workloads in Azure, you could

take a look at the Azure cost management tools inside of Azure

and start to and see what things are costing you, what resources

are costing you, on a monthly basis, on a daily basis. There's a

great breakdown. There is also some forecasting that could be

done in the Azure cost management so you can predict what it's

going to cost you for the next 30 days or into the future. This is

a great way to go and analyze your spend and start to minimize

your cost and make adjustments. The next is quotas. You can put

quotas in place around the resources and the amount of

resources that you're using. The next one is spending limits. You

can actually put spending limits in place. If you are approaching

that spending limit, you won't be able to deploy like more

resources, and you can ensure you're not going to go over a

budget. There's also Azure Hybrid Benefit. What this is if you

have software assurance and you're bringing, let's say, servers

from on premises, whether it's Windows servers or maybe even

SQL servers up to Azure, you get deep discounts on the licensing

for running in Azure. I've seen this change a little bit over time,

so make sure you go out to the documentation to understand the

latest and greatest with the Azure Hybrid Benefit and/or talk to

your Microsoft representative, and they'll be able to give you the

insight and the latest information on the Azure Hybrid Benefit and

how it can apply to your specific scenario. The final item on this

list is tags. When you're deploying resources in Azure, you will

want to tag your resources. You can use this as a tool for

showback or chargeback in your organization, and it's also useful

just to identify and know what things are and what they're for.

For example, I usually like to put tags in place to ask the

question of when will this expire? Do we need this resource

indefinitely? Can we spend this resource down in 60 days? It's

good to ask that question, and having a policy for tagging is

going to help you enforce that. Also, it's good to identify what

things are for. If you have a resource that's costing you a lot of

money per month, and it's tagged so you can identify it, identify

who the application owner is, maybe who the team is, then you

can go talk to that individual and find out do they really need

that? Do they know it's costing that much money per month?

Chapter 9 Azure Pricing Calculator Basics

There's two calculators that you can use to help you estimate

costs. The first one is known as the Azure pricing calculator, and

you can use this to estimate cost of Azure products. The second

is the total cost of ownership or TCO calculator, and this is good

for estimating the cost of migration and the cost of ownership.

The Azure pricing calculator is and you can use this to estimate

the cost of Azure services and really go down to a granular level.

If you're putting together a solution and you want to know how

much that solution is going to cost to you, this is a great tool to

help you get that cost. You can add services, you can add tiers,

and you can get your estimated consumption out of this

calculator. For example, let's say you are designing a solution that

consists of maybe three web front ends, and you need to run

them on Azure App Service. Maybe you need to run SQL Server,

and you need to run that on an IaaS VM for whatever reason,

and you need some storage, and maybe you need something like

Event Hub. Well, you can go and add all of those individual

components to this calculator, and then you can see a breakdown

of the cost per service, and you can see the breakdown or the

summary of the cost of all of these services together, and you

can see the cost on a monthly basis and the cost on an annual

basis. You also can add different levels of support to the

calculator. You can see that right in the cost as well. Then you

can save an estimate to come back to it later, or you could even

share it with colleagues if you need to. You can export the

estimate from a calculation on this calculator to Excel and then

work with it from there. It's pretty flexible, and it's really easy to

use. The TCO calculator is good when you're planning a migration

to Azure from your data center. This is very helpful when you

need to see what it's going to cost to run X amount of workloads

in Azure over a period of 5 years. This helps you understand and

estimate your operations costs or your run costs. You can use

that data to compare and contrast with your cost for running the

same workloads on premises. This is good to see how much

things are going to cost you in Azure for the same type of

workloads and help you understand if you have a savings there.

Chapter 10 How to use the Azure Price Calculator

In this demonstration, we're going to go ahead and price an

solution using the Azure pricing calculator, and then we're going

to go into the total cost of ownership calculator, and we're going

to calculate how much it's going to cost us to run this solution

over a period of 5 years. We are out on the Microsoft Azure site

at Azure Pricing.

This is where it's easy to find both calculators. On the pricing

calculator, you'll notice several things. The first thing is you will

want to log in with your Windows Live account. You'll know that

by looking in the upper corner, you'll see that you're actually

logged in. The reason we want to log in is because we're able to

save estimates, and were able to share estimates. So if you want

to get back to your estimate, you'll need to be logged in so it

can be saved to your account. At the top of the pricing calculator,

we have several tabs that we could work through.

We have products here, and this is where we would actually add

products to our estimate so we could flip through the different

products in Azure Services like so. We could actually click on a

product here, and it would add it to our estimate. Here we have

Example Scenarios and under Example Scenarios, you could create

an entire estimate from a pattern that Microsoft has developed

and that they have out there on the Microsoft documentation on

their docs site.

There's several patterns here, and it doesn't cover all the patterns

that Microsoft has created, but there's a lot of them here. So if

we wanted to do CI/CD for containers, we could see the solution,

which is the pattern.

We could see the products that are involved in that. Then we

could go ahead and add this to an estimate. What that will do is

create a brand new estimate, and it will actually add all of these

products to that estimate. Then you could go and tweak the cost

for each of those products for your specific needs. Then you

would have an estimate that goes along with this pattern. You

could also go and click on this and that would bring you out to

the Microsoft docs site where it has full information about this

specific pattern. We could also click on Saved Estimates too and

this will show any estimates that you have that you've done in

the past that you saved. You could actually open them from here,

you could delete them or you can export them. You could even

copy and then work from there and then there's an FAQs tab that

just kind of gives you information on how to use the calculator.

You can add the amount of hours you will require and it's going

to reflect the actual cost. You can change some other things too,

like you could say, you could go to months, you could go to days

as far as how often you think you're going to be running this

service in Azure. You can also do some things like change the

tier, and that's also going to impact the price. You really need to

understand the services that you're planning to use and then

come in here and modify accordingly and tweak so that you can

get the accurate pricing. You'll have different options for different

services and products that you have added. We could also change

the operating system. For example when I switch the requirements

to Linux look the pricing will decrease because there is no

licensing cost. So keep in mind if you're going to run Windows

servers on Azure in your environment, you will want to look at

the hybrid benefit to see if you can save some money there or

even your enterprise agreement. Then we can change the instance

types. So you see all of the different virtual machine types, so you

could change that. You could make it a bigger one, and it's going

to increase the cost. Then under OS, we could say that we have

the hybrid benefit, and that brings the cost down as well.

Or if you don't have a license for this server yet, you can say

license included, and then when you deploy that server, you get

the license with your Azure subscription. You also have an option

of reserved instances. You could also configure some other

options, like managed disks and etc. So in our solution, we have

virtual machines, and then we have App Service. App Service is

actually PaaS, so Platform as a Service. And let's say we wanted

to add that because we're running some web servers and we're

running SQL Server so we want to keep that server in this

solution. We're going to have three instances of the App Service

because we're running three servers on premises, and we want to

continue to have three web servers so we can do load balancing.

You have some options to configure this App Service, which will

impact your pricing. And you have different options, so things like

SSL and IP for the App Service that you don't have with the

virtual machines. If we keep going, I have virtual network added

here. We can calculate our inbound and outbound, so our egress

and our ingress. I've also added an application gateway with WAF,

or web application firewall.

That is just to protect my traffic coming into these app services,

or my web servers. It's there to protect it, and there's a cost with

this as well. You can go ahead and estimate this is well, and

there's options to configure that. As you tweak and move the

dials up and down, you'll impact the hours. If we keep going, we

have some storage accounts.

Then as we keep moving down to the bottom, we have support

added.

With support, we have the option to check different levels of

support. I have it on Professional Direct but look at what happens

to the price as I change it to Developer.

So it decreased the price by a lot. We've gone over the pricing

and support options, so keep in mind the proper level of support

that you need for your solution that you're going to deploy on

Azure. At the very bottom of your estimate, you have several

options.

You can export this out to Excel or you could save this. When

you save this, it will save it to the Azure site under your account

and that's why it's important to make sure that you're logged in.

You could also do a save as if you want to change the name

instead of having a generic name. Then you can also share the

link. What this does, is that it generates a custom link for this

estimate, and you could go ahead and share this with the rest of

your IT team or someone else if they need to look at the cost,

and they would be able to come in and adjust the resources as

well so that the cost could go up or go down and you could

collaborate on a calculation on an estimate. Then you have some

options to display SKUs and/or display resources which you could

turn on or off.

Chapter 11 Azure Support Options

Another part of adopting Azure is to understand all of the

available support options and channels so in the following

chapters we will explore the various support channels and leave

with an understanding of where to go for help when needed.

First, we'll look at understanding the support plans that are

available in Azure. Then, we'll understand how to open a support

ticket and what that process looks like. Then we'll look at the

available support channels that are outside of the standard

support plan channels in the Azure portal. Then we'll take a look

at the Azure Knowledge Center and how to use that. The first one

we have to cover is the basic support plan. This comes with all

Azure subscriptions, and it's a basic support plan that includes

the following: 24/7 access to billing and subscription support, so

that's billing and subscription support. It doesn't necessarily mean

you get support if you're having issues with a virtual network or a

network security group or some other service. It does include

online Azure products and services, documentation and

whitepapers around those, and support forums. Other Azure

support plans include the following. There's a developer plan.

There's a standard plan. There's the professional direct. Then

finally, there's the premier. What are the details of all of these

plans? These consist of the following. The developer plan is really

for From a tech support perspective, it's email only and it goes

up to a severity C, and you can get a response within 8 business

hours. From an architecture standpoint, Microsoft will give you

some general guidance. The standard plan is really meant for

production subscriptions, so if you're running production

workloads, you'll want to have the standard plan at a minimum.

This gives you tech support access 24 x 7 via email or phone.

This can go anywhere from severity C up to severity A, and you

can get a response within a timeframe. From an architecture

standpoint, Microsoft will give you some guidance based on best

practices. From an operation standpoint, they'll give you some

support for onboarding services, service reviews, Azure Advisor,

consultations, and such. From a training perspective, you'll have

access to some web seminars that are led by Azure engineering.

Then you do get some proactive guidance with this as well from

a ProDirect delivery manager. The next one up is the professional

direct, and this is for those workloads or subscriptions in Azure.

The tech support and the response times are going to be

identical to what you get with standard - same thing with the

architecture, operations, training, and the proactive guidance. With

the premier, that's kind of the top tier that you have available for

you, and this gives you some extra things. The tech support and

the response times are going to look the same. When you get to

architecture, you'll have architectural guidance. Microsoft will

actually help you with your design. They'll help you with some

reviews there and give you tips, best practices. They'll help you

with some performance tuning if you need it around certain

services. Think about like databases, web apps, etc., and some

help with configuration. From an operations perspective, there's a

TAM, that's a technical account manager, that's dedicated to you

and will help lead service reviews and if you have support tickets

in and you need to know what's happening with those, you can

reach out to that dedicated person for those things. The TAM is

very, very helpful is what I've found. From a training perspective,

you've got access to the online web seminars, but you also have

access to some training. Then from the proactive guidance, you

also have the ProDirect delivery manager, but you also have your

TAM that you can reach out to for help there if you need some

guidance there. Then you also have access to launch support.

That's for an additional fee though. That covers the comparison

and the details of all the different plans that you have available

with your Azure subscription. But how do you open a ticket in

Azure? The first step is you need to go to the Azure portal. The

second step is you need to click on the help and support. The

third step is click on a new support request. When you click on

the support request, you will be presented with a form, and go

ahead and fill out the form with the details like what is the

service that you're having an issue with or you need help with,

what are the details, what's the severity level of the support

request. Once you have that all completed, you go ahead and

submit it, and then Microsoft will get back to you within the

designated response time. It's pretty straightforward.

Chapter 12 Azure Knowledge Center

Now let's talk about the different support channels that are

available outside of the support plan, the typical standard support

plan. The first few are actually forums. You have the MSDN

forum, you have the StackOverflow forum, and you also have the

Serverfault forum. You will find Microsoft MVPs out on these

forums, answering questions, other community folks, and you may

find Microsoft employees from time to time out on these forums

answering questions as well. So they are a really great resource.

But keep in mind, there's no official SLA around response times,

but they're still very, very helpful. With the StackOverflow, that's

more geared towards developers. And the Serverfault is more

geared towards the IT pro. And MSDN is kind of a mix of all.

The last one here is Azure Support on Twitter. So you can

actually tweet @AzureSupport, and Microsoft will respond to you.

I've found this to be very, very useful as well, and they're very

responsive. Again, there's no guaranteed response time or SLA on

this. It's just kind of like you tweet at this, and Microsoft will get

back to you. These are the support channels that are outside of

the standard support channels that you can leverage when you're

looking for support on Azure. Let's now look into the Knowledge

Center. This is an online website where you can go for general

questions and get those answers and get them quickly. The

knowledge is comprised from community, Azure experts,

developers, and customers all brought into a single place. You can

search in this Knowledge Center, you can browse, or you can filter

by products. You can scope it down to what you need to get to

quickly. So if you're looking for something around networking or

maybe DNS in Azure or websites or whatever, you can filter down

and get to the answers very quickly and this will link out to

documentation or other resources. The Knowledge Center is very

helpful and a great resource for you to use as you're looking for

support around your Azure subscription in your Azure

environment.

Chapter 13 How to open a Support Ticket on Azure Knowledge

Center
In this demo we're going to cover how to search the Knowledge

Center, and how to open a support ticket within the Azure portal.

You can get to the Azure Knowledge Center website on the URL;

From here, you can scroll down and you can see the Popular

questions, and you can click on any one of these.

What I want to do is target a specific scenario just to kind of

give you an idea on how this works. I could search, but what I'm

going to do is use the filter here, and I'm going to click on

Browse and then I want to check on something in regards to

networking.

I'm going to click on Networking, and then it gives me this

additional flyout where I want to click on Virtual Network. When I

click on Virtual Network, it gives me options at the bottom of the

screen but I'm going to scroll down again and you'll see the

options here, and maybe you don't see what you're looking for

yet, so you can click on the View more button, and that's going

to expand.

What I'm actually looking for is that I need to increase the

number of network security groups in my subscription. When I

click on that, that's going to bring me to another page, and from

here what it gives me is this Learn More, and if I click on this,

I'll open it in another tab, this is going to link me out to the

Microsoft documentation on how to do this and give me more

information on my network security group limits and my

subscription.

On the documentation and I can scroll through and you would

see the different limits for your network security groups and you

would be able to go from there and get the information you

need.

Back in the Azure portal, I went ahead and I clicked on Help +

support, and it brought me to the dashboard.

I have a few options here. I can look at Support Plans, Service

Health, Advisor, All support request that maybe I have something

that I've already submitted and I want to see what the status of

those are. But what I want to do here in this scenario is just

open a new support request, so we'll go ahead and click on that,

and it's going to go ahead and open up and ask what's my issue

type?

What I want to do is increase the limit of network security groups

on my subscription. That's my goal. So I need to go ahead and

select a subscription here, and the quota type and then I'm going

to click Next on Solutions and this will give us our details that

we need to fill out for the form.

It's a severity C, so it’s not a big deal. I'm going to do email for

my contact, and I'm going to leave everything default there. If you

needed to describe the issue if you were putting in a support

ticket for something else, you would be able to describe the

details there. I'm actually going to select the resource that I want

to increase the limit on. We're looking for Network Security

Groups, so we select that and we can see the current limit is

5000, so let's just say we want to request this to increase to

7000.

We're going to save this and continue, and then we'll go ahead

and click on Next for the review and create.

Here is a summary of what you're going to submit with this

ticket, and then you would go ahead and click Create to go ahead

and submit the ticket.

Chapter 14 Azure Service Level Agreements

A part of planning and supporting cloud environments is

understanding the available service level agreements and it's

important to understand the SLAs and how they apply to the

cloud services that you will consume. So, in this chapter, we're

going to take you through the ins and outs of SLAs and how

they apply in Azure specifically. Let's look at the topics we're

going to cover specifically. The first topic is we're going to dive

into what an SLA is and make sure we have a clear

understanding of SLAs. Then, we're going to talk about something

called composite SLAs and how they work and how you would

figure out a composite SLA for a solution that you have in Azure.

Then finally, we'll finish off with understanding how you can

determine the appropriate SLA for the services you plan to

consume and/or the solution that you plan to spin up in Azure.

SLA stands for service level agreement, and a service level

agreement really comes from ITIL, which is a framework for

managing IT that's been around for quite some time. An SLA is a

commitment between a service provider, so think of Azure, think

of Microsoft as that service provider, and its internal or external

customers. You, as someone that's consuming cloud services,

would be that external customer. Microsoft is the service provider,

and they're providing you an SLA as an external customer. The

SLA itself outlines what the service provider, in this case

Microsoft, will provide to its customers and the standards that the

provider will meet. Azure SLAs are a little bit different, so let's

talk about this. In the context of Azure, an SLA is going to detail

the commitments for uptime and connectivity, and this is what

Microsoft is going to guarantee around its various services. The

different services within Azure are going to have different SLAs,

and so it's important for you to know what the SLAs are of those

services before you just go ahead and consume it and to make

sure that those SLAs fit with your business and meet the needs

of the business. Before you're consuming a service within Azure,

make sure you go out and look at the SLAs that are available

and what they are and what the connectivity and uptime

commitments are for Microsoft around those services and make

sure they align with your business needs. Now let's talk about a

composite SLA. What is a composite SLA? Well, in Azure, this is

when it involves more than one service that's really supporting an

application. It's rare that you will have one service that you're

consuming in Azure, and you need that SLA around that service.

Chances are in cloud, in Azure, you're going to have multiple

services that you're consuming from Azure that are powering an

application. This is where the composite SLA comes into play

because each of those services are going to have their own SLA,

and those together make up the composite SLA that's supporting

that application. This is going to be centered around availability

and connectivity of those services. Let's look a little bit more at a

composite SLA, and let's look at an example here. So let's say, for

example, a company is planning to have a web app as the front

end of an application and planning to have some databases or a

database as the back end of an application. Within Azure, we'll

have a web app, and it has 99.95% for it's SLA. That's what's

guaranteed from Microsoft around that service. That would be a

web app running on Azure App Service. For the database, let's

just go with a SQL database, and this is managed SQL, so it's

PaaS SQL database, and that's going to have 99-99% for the SLA.

What you have to do for the composite SLA is basically calculate

these two together to come up with the composite SLA

percentage, and this is what that would look like; your web app

and your database together. So we have 99.95% guaranteed for

the SLA for the web app and 99.99% for the database. We

multiply those two together, and we get 99.94% for the composite

SLA. For your business needs, that 99.94% SLA might be good

enough. Maybe it's not. There are methods to increase that SLA.

You can do things like replication with the SQL back end. You

could look at replicating the front end. That all goes into the

architecture and the design and the way you design your

application, and that will enhance or modify that SLA to meet

those business needs.

Chapter 15 How to Determine the Appropriate SLA

Now let's talk about things you should look at to help you

determine the appropriate SLA for your business. Let's kind of

start from the bottom up because we just got done talking about

a composite SLA. What you want to do is look at the included

services and their SLAs and how that's going to make up the

entire overall SLA of the application that you're planning to run.

As your architecting or designing an application, you'll map out

what services you're planning to use. You need to go look up

those SLAs. Then just like we just went through, you start to

calculate, what is the composite SLA, and does that really meet

my business needs or not? The next thing is you want to look at

the availability metrics, so your mean time to recover, your mean

time between failures, and we have the definition of what those

are there. Just make sure that you understand what those are

against the services and make sure those meet your business

needs. Same thing with your recovery metrics; those are critical as

well, so your RTO and your RPO. So your RTO, your recovery

time objective, and that's what is the maximum that's acceptable,

for an application to be unavailable after an incident. Then your

RPO, the duration of data that you can afford to lose if there's a

disaster. You want to take all of this into consideration when

you're designing your application and when you're looking at

services within Azure, and you're looking at the SLAs. You want to

look at the SLAs and see if the SLAs meet your objectives and

your goals of that application and the business needs. If they

don't, what adjustments do you need to maybe make in regards

to replication or disaster recovery technologies there to help meet

that? The next one is dependencies. It's critical to understand all

internal and external dependencies of the application, and then

you can understand any SLAs that are around any of those

dependencies. Chances are your dependencies are all going to live

in Azure. You have the URL to go look up the SLAs, but there

may be dependencies on other services that are outside of Azure,

and it's important to understand those SLAs as well. You can take

the same steps that you took to calculate the composite SLA even

with external dependencies and use that formula to figure out the

composite SLA with external dependencies as well. The last one is

really critical, and it's cost and complexity. We can get better SLAs

if we need to, but chances are that's going to come at a cost. Is

the better SLA really worth the increased costs that you may incur

by increasing that SLA? Or does it make sense to go with what

you get out of the box from Azure, and can the business live

with that? This warrants really understanding the SLAs that are

there around the services, understanding the composite SLA,

understanding the business needs, and understanding the cost.

You may need to go have a conversation with the business to

understand if the SLAs are good enough, and maybe they are.

Maybe they meet what has already been determined in regards to

SLA needs. If not, go have that cost and find out if the business

is willing to pay a higher cost to get increased SLAs.

Chapter 16 Azure Service Lifecycle

Azure is constantly changing at a very, very fast rate. It's

important to be able to identify what features and services are

and plan around the future roadmap of Azure. In this chapter,

we're going to dive into how you do that, how you plan for the

services and the feature updates. We're going to talk about

preview for public and private, as well as general availability, and

what all of that means and how you can stay up to date with

services in Azure and how you can know when services are ready

for production use. First we are going to cover public and private

preview features, what that is, what that means, how you can

identify those. Then we are going to look at understanding the

term general availability and then, understanding how to monitor

feature updates and product changes. But what are Azure

previews? Microsoft has Azure feature previews, and these

previews are for eval features, products, services in Azure are still

in a beta or stage. This is when you can get early access to the

services that Microsoft is still working on, and you can start to

provide feedback. You can start to consume the service, try it out,

see if it's going to fit for the use for what you need, and really

just get that early access. These previews are also a way for

Microsoft to get services to customers early on and start to get

feedback so they can improve the products as they're still

developing on those products and start to interact with the

customers to make sure the use cases for the services in Azure

are good to go. What is public and private preview? Well, Public

is when any customer that's consuming Azure can go out and

sign up for the preview of a service and start using that service

and start getting that feedback to Microsoft and just start using

and consuming that service. Keep in mind that with a public

preview, you may not have SLAs around the service, and you may

not have official support around the service. Also, you may see

things changing rapidly in the UI or the way that service works,

and you might see some bugs here and there. Private preview is

like a public preview in that it's a way for Microsoft to get early

access to you to a service, but this is usually by invite only, or

you might have a form in the Azure portal or outside of Azure

that you have to sign up for to get access to the preview of that

service or product feature, etc. An example I can give here is that

the Azure Kubernetes Service has been out for a while, but it's

rapidly changing, and Microsoft is rapidly adding updates to that

service. Some of the updates you've been able to get access to

through private preview, like when Microsoft started working on

the Azure policies for the Azure Kubernetes Service, you couldn't

just go into the portal and sign up for that, and it would be

turned on, and it would start working. You had to fill out a form

and then get approval on the back end to start using the Azure

Policy services for that Azure Kubernetes Service. So the public

preview is available to anyone, where the private preview is limited

and you have to sign up for it whether it's directly or whether

you have a link to a form from Microsoft. Now let's talk about

access to the public previews. Within the Azure portal, there's

really two ways where you can get to the public previews. You can

create a resource, or you can go to All Services. You will see a

label on the service preview, and that's how you'll know that the

service is in a preview state. Then you can go ahead and just

click on the service, go ahead and create the service and start

consuming it. Or if you go to All Services, you'll just see it and

you'll know that it's in preview, and you might already be using it,

or you could create it from there and start to consume it as well.

The term general availability - what does this mean? Well, after

Microsoft is done with the preview stage of a service or product

feature, once they've had it out there in the market for a while

with Azure customers, it's been successfully tested, it's finally

released to Azure customers, generally it becomes a part of

Azure's default product set. This is when it moves to becoming

generally available or often referred to you as GA. And when a

service goes into a GA state, it will basically have SLAs on it. It

will officially be supported so you could call tech support and get

help with that service. You won't have to work with a special

group that's actually working on that service. And it will be ready

for production use. But how do we monitor feature updates and

product changes in Azure? There's three main areas to do this.

The first one is the What's New page in the Azure portal. The

second one is the official site for important updates, roadmap,

and announcements to Azure products. This is great because it

has the roadmap there as well. So you can go out there, and if

you want to see what Microsoft is planning for the future, what's

coming to Azure even before it hits a preview state, you can go

to this updates site. Then the last one is the official

announcements from the Azure blog. As Microsoft releases stuff

to general availability or even if they announce something new in

a preview or a feature add to a service in preview, they'll

announce it on this Azure blog as well. This is just generally a

good place to follow for good information around Azure, and

you'll find other Azure blogs out there under the

azure.microsoft.com/language of your company/blog. I highly

recommend that you go out and you follow this blog, subscribe

to it. because it has a lot of good updates. These are the three

main areas where you can go and get updates around what's

coming in Azure. Now, we're going to take you through some of

the links so you can see preview services in Azure, and you can

learn about upcoming previews and updates to Azure. We're in

the Azure portal, and we're on All Services and I just wanted to

show you that you can scroll through here and you can see the

services that are in preview.

If we keep scrolling down, you can easily identify the services

within Azure that are in preview and the ones that are not. So we

can see Mesh applications there is in preview. We can also see

SAP HANA on Azure is in preview and then Azure Spring Cloud.

It's really easy to go through here and identify the services that

are in preview. We're on the What's New page in the Azure portal

now, and you can see updates around all Azure services from this

What's New page.

You can click on the link for any of these updates, and it's going

to bring you out to the Microsoft update site for Azure. Also,

while you're in here, you can change the timespan for these

updates. You can see what's new in the last month, what's new in

the last 6 hours. You also can change the tag here to scope it

azure.microsoft.com/language

down to a specific service that you want to see what's new about

this service.

So we could scope this down to Azure Monitor, click Apply here,

and we'll see the latest update there for this service. A couple of

other things to note here is you could go to the Azure blogs, so

you could see updates right here, or you could see updates from

the Azure blogs and link right out to the latest blogs. And you

could go to Videos here and see updates from here as well. Now

we're on the Azure updates site, and on this site, you'll see that

you can search for the service that you care about.

You could type in Azure Monitor or any other service, like

Network, and then it will give you the list of updates and preview

features for that service. You also could just do the browse, and

you could scope it down to get a narrowed list. When you scroll

through here, you'll see links, and you can click on the link to get

to the specific page for that update with more information around

that update. It's very useful and good information to understand

what things are in preview, what updates are coming, what's

happening with Azure overall. Back on the homepage of the Azure

updates site, you also can scope things down just to preview

services by checking the box and go ahead and filter the results.

Or you could see things that are in a GA status by clicking on

Now Available and filter the results. Then you would scroll down

and you would only see services that are in GA, or, in

comparison, you could do the same thing for the preview. This is

a good way to come and quickly see what's what from a GA and

a preview status on the Azure updates page. The last site here is

the Azure announcements blog.

Again, you can see that Microsoft is making full blogs about

announcements. Here's one that's the general availability of Azure

files on premises with Active Directory Domain Services

authentication. If you click on that, it just links out to a full blog

with a lot of information about the release of this service and

links to getting started, who to contact. It links out to the Azure

Storage forum. So it’s very useful and a great way to understand

what Microsoft's done with services or doing with services. They'll

often write blogs when they're announcing previews, and you'll

have links out there to get in contact with Microsoft or go to

forums or different special places to understand more about that

service.

BOOK 4

MICROSOFT AZURE

AZ-900 EXAM PREPARATION GUIDE

HOW TO PREPARE, REGISTER

AND PASS YOUR EXAM

RICHIE MILLER

Chapter 1 How to Register for the AZ-900 Exam

In the following chapters, we're going to learn how to register for

the Certification exam. We will first learn how to register for the

Certification exam, learn about the different certification providers,

as well as the different steps in the registration process. We will

then look at the flow and really some tips and tricks whether you

decide to take your exam at a testing center or take your exam at

home or in your office. By the end, you will be able to register

for the exam, as well as have an overall idea on how the

examination process will work. Let's start by learning how to

register for the Certification exam. First things first, in order to

register, you need to have a Microsoft account. It's very important

that if you have done a Microsoft certification before, make sure

to use the same account all the time. If not, you'll have two

different MCP, or Microsoft Certified Professional, IDs and your

transcript will be split. To be honest, it's a bit of a mess to

actually merge them afterwards. It's doable through support if it

ever happens by accident, but let's hope we don't have to use the

support. So try to always use the same Microsoft account every

single time. If this is your first ever Microsoft certification, make

sure to choose a Microsoft account that you want to use for the

long term, and you will create your certification profile. As a tip,

make sure to enter your name exactly as it appears on your

government issued identification. For example, a lot of us have

middle names or really names we don't use all the time, so make

sure your certification profile matches exactly what you have on

your ID. There are two exam providers for the exam. The first one

is Pearson VUE, and the second one is Certiport, which is for

students or instructors. Certiport is actually a Pearson VUE

business, but it's still shown as two different options on the site.

Even if you're a student, unless you have a very specific reason to

go use Certiport, such as a class requirement, I would personally

go with Pearson VUE since all of the other exams above Associate

level, so Associate, Expert, Specialty, are only provided by Pearson

VUE. This way, if you decide to pursue your certification journey

further, you will already have the experience with the certification

provider and it will be one less thing to worry about rather than

switching providers between your Fundamental exam and then

your Associate exams and higher. To start the registration, you

need to go to the exam page, and you will have the schedule

exam option with either Pearson VUE or Certiport. So, let's go

through the process. First, it will ask you to sign with your

Microsoft account, and if you have done certifications before, you

will need to validate your certification profile.

If this is your first certification, you will need to fill it up, but it

should only take you 2 to 3 minutes. You will see your email, as

well as your MCP ID so you can make sure that you're logged in

with the right account. If you have participated in various

Microsoft promotions or conferences, you might have a discount

on your exam, which will be presented to you on the Exam

Discounts tab. After you validate your information and choose a

discount if you have any, we need to choose where will we take

the exam. The two choices are either at a test center or online at

your home or office.

Depending on what option you choose, you will actually be

presented right away with some extra interesting information and

links to resources. Remember that even if you take the exam at

home, it's still a proctored exam, so a proctor will be watching

you on camera and hearing everything through your microphone,

so whether you take it at a test center or at your home or office,

still the same security standards apply. The next step will be to

select the exam language.

As the is a very popular exam, it actually exists in multiple

languages, but not all Microsoft certifications have as many

options. If you have selected to do it in person, the next step will

be to choose the location where you want to do the exam. You

will be presented with choices based on the address in your

certification profile, and you can also choose multiple test centers

if you want to compare availability. Next, you will need to select

the date, as well as the time you want to do your exam at. Make

sure you check your calendar and block that time off. This way,

nobody schedules meetings or anything during that time and I

would block off extra time before and after because you really

don't want anything, a meeting, a presentation, to stress you

while you take the exam. Something to consider as you select

your date and time is if you need an accommodation, both

Pearson VUE and Certiport can provide appropriate arrangements

for individuals that demonstrate a documented need. It can be

things such as extra testing time, a separate testing room, or

even breaks. Special accommodations can take up to 10 business

days to be approved, so if you need to request a special

accommodation, try to schedule your exam a bit more in advance.

This way, you can go through the request process without being

stressed for time. After you've selected everything, our next step is

to review and confirm the exam in your cart. It will show us the

exam name, language, the appointment location, as well as the

price, and finally, we have to put our credit card number in and

pay for the exam.

After this, your exam registration is complete. Before we finish off

the registration part, I just want to share a quick reminder to

verify the reschedule and cancellation policies in case you need it.

Traditionally, it has been six business days before the exam date

in order to change or cancel without paying a fee; however, make

sure to double check it. This information will be available in the

confirmation email, as well as on Microsoft Docs.

Chapter 2 How to Take your Exam at the Testing Center

Now that we know how to register, let's look at how it works

when we take an exam at a testing center. First of all, try to

arrive early. You have probably heard this about every important

appointment in life, but planning to arrive early will make you so

much less stressed in case there's traffic, the subway breaks

down, or anything else. An exam is stressful enough, we don't

want to add arriving late to the list of things that can stress us

out before the exam. Very important: don't forget to bring the

required piece of ID with you. According to my last exam

confirmation, you need to bring one valid, unexpired, government

issued ID with a signature and a photo and the name must

match the name on the registration exactly. Always double check

your confirmation email for the requirements. I always bring two

pieces of ID with me just in case. Also, don't forget to go to the

restroom before starting the exam. Microsoft exams do not have

scheduled breaks, and while I'm sure that the proctors can find a

way if needed, let's not add more stress to our exam. Let’s now

look at the overall process and how it works. First, you will arrive

at the testing center a bit early and at the reception, give them

your name, as well as your appointment details. If they ask you

for your exam sponsor or provider, just say Microsoft as Pearson

VUE does exams for a lot of different organizations and

sometimes they have a lot of different sheets for different exam

providers and by knowing to look in the Microsoft pile, it can

help them find your appointment a lot easier. They will ask for

your ID, as well as to assign the exam rules, and they will

probably mark the time on there. After that, the procedure can

vary a bit by testing center but they generally take a picture of

you and then they will compare it with the last picture of you

taking an exam so they can make sure that you're the same

person. Some other testing centers might use different forms of

biometrics, but just so you know, there might be an extra form of

identification depending on the testing center. After that, you will

be provided a locker for all of your personal effects, and you have

to put everything in there, and don't forget to turn off your cell

phone. I generally like to fully turn it off and not just put it on

vibration or silent mode to make sure it doesn't ring or annoy

other people as I get a ton of notifications. Remember, you

cannot bring anything with you in the exam room except

something to take notes on, generally like an erasable whiteboard

sheet that the testing center will provide to you. So you don't

have to bring anything, the testing center will provide you

everything that you are allowed to take in the examination room.

After that, you will take the exam and receive your score at the

end. Finally, as you leave, make sure you don't forget anything in

the locker or your coat before going back home. Adrenaline is

generally high after taking the exam and we often forget things.

Something to remember is that one of the advantages of doing

an exam in person is that you have plenty of people working at

the testing center who you can ask for questions. They are nice

people, and don't hesitate to tell them this is your first exam if it

is so they can really help explain it to you step by step.

Chapter 3 How to Take your Exam at Home

Now that we know what it's like to take an exam at the testing

center, what about taking an exam at home? First of all, a few

days before the exam I highly encourage you to go perform a

system test on the device you intend to take the exam with. This

way, if anything is not working, you have a few days to find

another machine. Before you actually start the exam, you need to

clean up your desk space and room. You need to make absolutely

sure there are no papers, electronics, or anything within arm's

length of your device. Make sure that you tell your family or

coworkers to not interrupt you during the exam. This is very

important as if the proctor hears anything or sees anybody else in

your camera, it's an automatic failure. Something I didn't realize

the first time I took an exam at home, make sure you have your

smartphone and a piece of ID nearby because you will need them

during the process. When I first did an exam online, I had my

phone turned off and in another room, and then during the

process it asked me to use my phone to submit a piece of my

ID. So it took me a bit of extra time to go get the phone, turn it

on, so make sure you have them by you. Also, make sure to

close all of the apps and unnecessary services on your machine.

The testing system will provide the proctor with a list of

everything running, so try to close everything in advance. It makes

the process a lot smoother. The last thing is that if you're doing

the exam on a laptop, make sure to plug in your laptop or at

least have a full battery. To share with you a bit of what has

worked for me personally, I prefer to do my exams on the dining

table instead of my office. I have too many gadgets in my office

and things everywhere, so doing the exam at the dining table

means there is less things for me to clean up, and also I don't

have to worry about things such as the whiteboard as there is a

lot more space around me on the dining table. So I have less

things for the proctor to check out before the exam. Also from a

device perspective, I use an old laptop with a base Windows

install. This way, there's less apps, notifications, services, and

things to worry about during the exam. This is not possible for

everyone, but I just wanted to share with you what has worked

for me personally. Now that we have our preparations, you can

actually begin online check in and system check for the exam 30

minutes before the exam start time. This gives you more time in

case anything doesn't work with your system and allows you to

go through the process more calmly knowing that you've got the

time. If everything goes smoothly, you'll probably be able to start

your exam even before the scheduled time. As soon as your

system checks are ready, you'll be put in a queue and when a

proctor is ready you will be able to start the exam. But where do

we start the exam from? You need to go to the Microsoft

Learning dashboard, and from there you will see your

appointments and, if you have an online exam, you'll have a

button that says Start online exam, right there. If we take a look

at an overview of how it works, at a very view, you will first start

the exam from the Learning dashboard, and then it will ask you

to download the OnVUE proctored exam app in which you will

first start by doing a system test. If everything is good, you will

provide your phone number where you will get a text message

with a link where you can submit your information. You'll be

asked to take pictures of you, your ID, as well as your

surroundings. After all of that is submitted, you will be connected

with a proctor, and depending on the proctor you get, they might

talk to you through the device speakers or they might write to

you on the chat. Some of them are okay with only the pictures

you provided, some of them might ask you to move your device

camera around as they might want to see some more things in

detail. After all of those checks by the proctor are good, you're

ready to take the exam. Remember, the proctor will always see

you and hear everything through your device camera and

microphone, and you are not allowed to mute it, stop it, block

the camera. If not, it's an automatic disqualification. Pearson VUE

also has their own nice preparation video on how to take an

exam at home and it's about 5 minutes long, so if you want to

watch it, it's a nice introduction video if you are taking the exam

for the first time. In summary, we have first covered how to

register for the exam, the different exam providers, either Pearson

VUE or Certiport, as well as how the registration process works.

We have then looked at the process, as well as tips and tricks

whether you decide to take your exam at a testing center or take

your exam at home. Next, we will learn about the exam structure

and question types.

Chapter 4 Azure AZ-900 Exam Structure

Now, we're going to talk about the exam structure and question

types. We will first talk about the basics of the such as how

many questions you should expect, how much time you have, and

the overall structure of the exam. We will then talk about the

different question types you can expect in the exam. Let's first

cover the basics of the exam. Microsoft does not share the exact

information about each exam, like other certification authorities

might do. Also the number of questions for the same exam might

even be different from person to person again on the same exam.

Microsoft does provide guidelines for each exam category, which is

what I will share, but don't worry if it's not exactly the same

when you take the exam. With that in mind, for a exam such as

the you should expect to have between 45 and 60 minutes to do

the exam, but in your schedule, plan for around 80 minutes of

time, which includes the time to set up, sign the agreement,

comment the questions, so make sure you block 80 minutes on

your calendar in total, but only for the questions or exam part,

you'll have somewhere between 45 and 60 minutes. For the

number of questions, you should expect anywhere from 40 to 60

questions for this exam. But isn't this almost saying like I only

have 1 minute to answer each question, and the answer is yes,

for fundamentals exams, you will have somewhere between a

minute and a minute and a half for each question, if we look at

it from a purely mathematical perspective; however, you should

expect short questions. We will talk about the types of questions

later more in detail, but really for fundamental exams, I like to

describe them as fairly straightforward questions, whether if you

know to answer, you should be able to answer it in no time. I

do, however, understand that taking an exam is stressful, and

adding a time constraint adds even more stress, so my advice is

that Microsoft actually offers a feature allowing you to mark

questions for review later. So if you read a question, and you're

not sure about the answer, you can mark it for review later. This

way, you quickly answer all of the questions that you know you've

got the answer for, and at the end, you can use the time left to

spend more time thinking at the questions you're not 100% sure

about. To give you an idea of what it looks like, at the top of the

screen, you will have two options, Review later or Comment later.

Review later is for yourself to tell yourself that at the end, come

back and recheck this question, and the commenting is for after

the exam, if you want to give feedback to Microsoft that maybe

there's a typo in the question, or that it doesn't make sense, or

maybe that is outdated. The commenting is not included in the

exam time, but it's included in the 80 minutes that we have

talked about earlier. After you get to the end of the exam, you

will get a review screen like this one where you will see how

many questions you have answered and how many you didn't.

You will also see all of the questions you marked for review and

for comment, as well as the time remaining. You can then click

on the tiles to see the ones you marked for review, and then now

did you know how much time you've got left and how many you

marked for review, you can really more calmly review them so you

can feel 100% confident in your answers. Before we end this

chapter, here is the general exam flow that you should be

prepared for. After you check in for the exam and all of the

prerequisites are done, the first thing you will have to do is read

the instructions and accept the Microsoft nondisclosure agreement

in regard to certifications. You can also read it before the exam

so you have one listing to worry about reading on the exam day.

You will also probably have some optional questions about your

level of proficiency around the different exam sections. This is for

Microsoft to better balance the exams in the future and has no

impact in the level of difficulty of the questions you will actually

get. After that, it's exam time where you will have all of the

different questions for the exam, and after you're done with the

exam, you'll have dedicated time to provide comments to

Microsoft on questions. This is optional, and it's for you to give

your feedback if you found questions were confusing, outdated,

had typos, and so on. Again, this is optional. You don't have to

do it if you don't want to, but if you see something that's wrong,

please do it because it can help Microsoft fix any mistakes, and

by providing comments, we make sure the certification experience

is better for everyone.

Chapter 5 AZ-900 Exam Question Types

Now that we know the overall structure, let's talk about the types

of questions you should expect in the exam. Microsoft will not

specifically say which types of questions you will get on a specific

exam, but they do share the types of questions for all exams.

There are actually 10 types of questions you can expect on any

Microsoft exam. They are called active screen, best answer, build

list, case studies, drag and drop, hot area, multiple choice,

repeated answer choices, short answers, and labs. Given the time

constraints, you can really rule out some of them, such as short

answer, labs, case studies, as those, in theory, should not show

up on the Fundamentals exam. But Microsoft can never confirm

the types of questions you can expect, so better be prepared. Let's

take a look at what those types of questions actually look like.

The one that you're probably the most familiar with is the best

answer. You have a question, a list of answers, and you can only

select one answer. A very similar one, but slightly different is the

multiple choice where you have a question and multiple answers,

and you need to select all of them that apply. Microsoft has been

fairly good at giving a bit more information on those questions,

such as select the three answers that apply and not simply all

that apply, but that is not a guarantee. The next one, which is

very popular, is the drag and drop. You have a question, you have

possible answers on the left, and then you need to drag and drop

them to the answer areas on the right. You can often expect

questions that are scenario based and they would question you on

what Azure products would fit that particular use case. Most

times, you will actually have more answer options on the left than

possibilities on the right. So you might have like say five possible

answers, but only three drag and drop spots, so it doesn't mean

that everything on the left will actually be used. Another very

popular one is the build list type of question in which you are

given a task, and then you need to put the actions from the left

in the correct order on the right. This is a bit more complicated

because not only do you need to know the appropriate choices

because not all of the options on the left are needed, but also

put them in the right order. Microsoft does offer some amazing

short videos for each type of question and what I like about their

videos is that they are filmed in the actual exam interface, so it

can give you a good idea on what the actual interface looks like.

Once you go to the page, you'll see a bunch of short videos for

each exam in the actual interface. It will either play in line, or you

can go to YouTube to watch it in full screen. In summary we

have first looked at the exam basics. You have between 45 and 60

minutes to do the exam, but you should plan for about 80

minutes, which includes the NDA, instructions, and comments at

the end. You should also expect anywhere between 40 to 60

questions for this exam. To better manage time, if you're not sure

about a question, use the Review later option. This way, you can

answer all of the questions that you know first and at the end

spend the time you have left on those that you are not sure

about and maximize the time you have. We have also looked at

plenty of question types, such as best answer, multiple choice,

drag and drop, build list, and you can go watch short videos for

all of the rest of them. Next, we will coever what happens after

the exam.

Chapter 6 What Happens After the Exam

Now we will cover about what happens after the exam. There are

actually two things that can happen after the exam. You pass the

exam or you fail the exam, which can happen as well, and it's

okay. I have failed a few Microsoft certifications as well, so we

have to talk about that option as well. If you pass the exam, we

will learn about the different digital assets that you get and the

different steps that you can take afterwards. We will also cover

what happens if you fail the exam, who you can see and what are

required before you can reattempt this exam. As soon as you click

the end exam button, you'll get your score right away. The max

score you can get is 1000, but the passing score, or the

minimum you need to pass, is 700. A pass is a pass, meaning

that only you can see the score on the official transcript. You will

not see the score, only if it's a pass. So whether you pass with

701 or 1000, a pass is a pass. If you did your exam at a testing

center, you will get a printed version of the score report right

away, which you'll not get if you do your exam at home, but you

could always print your own score report if you wanted to.

Something that is really interesting, the score report will show you

how well you did for each exam objective. I personally find the

Performance by exam section to be very important. Whether you

pass or fail the exam, it will show you the areas that you did

great or not so great in. It's important to remember that not each

section of the exam will get an equal number of questions. The

score report will cover things such as Understand Cloud Concepts,

Understand Core Azure Services, Understand Security, Privacy,

Compliance and Trust and Understand Azure pricing and Support.

But you won’t be able to directly find out how many questions

you got wrong.

Chapter 7 What if You Pass the Exam

Once you got your score report, let's take a look at what happens

if you passed the exam. Once you pass the exam, you'll get three

types of digital assets to help you promote your achievement.

First of all, you will get a Credly badge, which you might know

under the name Your Acclaim, but it has recently rebranded to

Credly. You will also get a digital certificate, as well as the exam

will show up on your official Microsoft transcript. But with all of

those options, what's the goal or how should you use them? Well,

the Credly badge is built for sharing on social media or

professional sites such as LinkedIn, for example, to show your

achievement. As for the digital certificate, you can print it and

showcase it in your office, for example. A few years ago, Microsoft

used to allow you to order printed copies, but that's not possible

anymore. But with a good quality printer, you will get similar

results. Lastly, the Microsoft official transcript is very useful when

a potential employer or client needs an official document to

validate your certifications. If we dive a bit deeper about the

Credly badge, they actually made it very easy to click the Share

button, and then you can both share it as an update on LinkedIn,

as well as add it to your LinkedIn profile as an active certification.

If you prefer to not use the Credly mechanism, you can also

manually add the certification on your LinkedIn profile. I strongly

encourage you to add the certifications to your LinkedIn profile or

any other professional social network that you use in order to

showcase your continuous learning. Lastly, let's talk about the

Microsoft certification official transcript. When you share the

transcript, you have an ID, which you cannot change, but you can

customize your password, as well as decide if you want to include

your address details or not. After that, a prospective employer can

go to the transcript validation tool, enter your ID and password,

and then validate your certifications directly on the Microsoft site.

This makes sure that no one tampered with the transcript or

faked anything in the PDF. The information comes directly from

Microsoft, so it's more official. Now that we have talked about all

of the ways to share your achievement, don't forget to celebrate

your accomplishment. It's important to celebrate when we succeed.

However big or small you decide to do it, don't forget to

celebrate what you have just achieved. Also, don't forget to take a

break, sit down, and enjoy the moment. Whether it's for a day or

a week, take some time after the certification to just enjoy. And

after that, start looking into your next certification, whether it's

another exams or so on or a more advanced certification such as

an or The cloud is always evolving, and it's important to always

keep learning more and staying up to date, and I personally find

that certifications are a great way to motivate me to keep

learning.

Chapter 8 What if You Fail the Exam

Now that we have covered what to do if you pass the exam, what

happens if the exam score report comes out and it's a fail? First

of all, don't put yourself down too much. It's never fun to fail an

exam, but it happens. I have failed certification exams myself, and

it's important to see them as a learning opportunity to get better

rather than a failure. Also, it’s important to know that if you fail,

it will not show up on your transcript. So you're the only one

that has access to this information that you did not pass an

exam. Remember the score report that we have talked about

previously? This shows you how well you did for each exam

section. That information is even more useful now, because it can

help you understand what to focus on as you review the material

again for the next time you attempt the exam. Talking about

retaking the exam, let's talk a bit about Microsoft's exam retake

policy. If you fail the exam for the first time, you need to wait at

least 24 hours before being able to retake the exam. If you fail a

second time, however, you will need to wait 14 days before taking

the exam a third time, and there is also a delay between twice

for the third, fourth, and fifth attempts as well. Microsoft does

have a restriction where you cannot attempt an exam more than 5

times in a period, starting from your first attempt. I hope that it

never happens to you but I still wanted to share the information

so you know about it. In summary, we have covered what

happens right after the exam, and we have talked about the score

report and the information it provides. We have also learned what

to do if you pass the exam and I think you share it with the

world and celebrate. Next we have covered the different digital

assets you'll receive, such as the Credly badge, the digital

certificate, as well as the Microsoft Official Transcript. After that,

don't forget to take a break and then start looking at what your

next certification might be, so you always keep learning and keep

your skills up to date. We have also covered what happens if you

fail, which can happen to all of us, and don't forget, failed

attempts do not show up on your transcript, so really only you

know. Remember to use the score report to identify which areas

you need to improve on. This way, when you go back, you will

feel more confident. This is it - you are now ready to go schedule

your exam. Good luck and I hope you are going to pass it for

the first attempt.

BOOK 5

AWS CLOUD PRACTITIONER

CLOUD COMPUTING ESSENTIALS

RICHIE MILLER

Introduction

This book will help you prepare for the AWS Certified Cloud

Practitioner exam (Exam Code CLF-C01). In fact, this book is

designed to be a shop for you. It has everything that you need to

get ready for the exam. This book will not just help you through

sample questions, but it will also walk you through and teach you

how to think about the exam questions to become an AWS

Certified Cloud Practitioner. AWS says that cloud computing is the

delivery of compute power, database storage, applications, and

other IT resources through a cloud services platform via the

internet with pricing. First, we're going to walk through the

process of creating your own AWS account, and this can be

extremely beneficial as you're going throughout this book to be

able to follow along and actually experiment within AWS. So, we're

going to do three things. First, we're going to create a new

personal AWS account, we will then activate the new account, and

then finally, we will be configuring a budget alert for the account

so we can make sure we don't have any unexpected charges that

end up growing on our account. I'm going to go ahead and go

through the process of creating an AWS account. I'm on the AWS

home page, and it'll probably look different depending on when

you're looking at it, but you should see at the top right a button

that says Create an AWS Account.

So I'm going to go ahead and click on this option. Next, we're

going to need to put in two different pieces of information.

First, we need to enter in a root email address. Next, we're going

to need to give this an AWS account name. Once this is in place,

we can click Verify email address. And so here it's going to send

something to your email address, and you'll need to enter in the

verification code. Once I've entered in the code, I can click Verify.

Next it's telling me my email address has been verified, and I

need to create a password.

Once the password is in place, I'm going to hit Continue. From

here, it's going to ask if I want this to be a business or a

personal account.

So I'm going to assume that most of you in walking through this

book just want to create a personal account that you can test as

you're going through this book, so I'm going to click Personal. I'll

enter in my full name, I'll enter in my phone number, and then

I'll enter in my address. Once all of that information has been

entered in, I need to agree to the terms of the AWS customer

agreement, and then I can continue. Next it's going to be asking

for my credit card information, and it's important to note here

AWS is a service, and when you utilize this service, it may charge

your credit card.

However, it's letting you know here that there is a free tier where

there are many different services you can try out without having

to pay anything for those services within given limits, so keep that

in mind, and we will set up a billing alarm so you shouldn't have

any big surprise charges that end up on your account. The next

step is confirming your identity, and it's going to do this by

sending either a text message or a voice call to a mobile number

that you specify.

So I'm going to go ahead and enter in my mobile number. The

next thing I'm going to need to do is I'm going to need to pass

the security check. Here I'll enter in the characters that are on

the screen, and then I'll hit Send SMS. Next I'm going to enter

in the code that I received on my phone, and I'll hit Continue.

The next step is to select a support plan.

Don't worry, later on we'll walk through each of these support

plans in detail, but for now, we will just stick with the Basic

support option and hit Complete sign up.

We have completed the creation of an AWS account. From here, I

can click the option to go to the AWS Management Console. I'm

going to specify here that I want to sign in as a root user, and

I'm going to give the root user email address.

Then I'll hit Next, and I need to enter in the password. Now I

am here within the AWS Console, and this is the way that I'll

interact with AWS from my browser.

But the first thing that we need to do is to set up the billing

alarm so there aren't going to be unexpected charges that end up

on the account. So I'm going to click under the name of the

account, and I'm going to go to the option here that says Billing

Dashboard. Now that I'm here, I'm going to go here under the

left pane and go down to the option that says Budgets.

From here, I'll specify that I want to create a budget, and I'm

going to select the option here that says Use a template, and

then I'll go to Monthly cost budget. I'll specify here that my

budget amount is going to be $10.00. You could specify a lower

amount if you would like. I'll leave the budget name that they

specify here, and I'll specify the email addresses that I want it to

notify once the notification threshold has been met. So you'll

notice here that all AWS services are in scope in this budget. We

will be notified when our spend reaches 85% of the total amount,

which in this case would be $8.50 for one month.

Also, we'll be notified when our actual spend reaches 100%. So

with that being said, we can say Create Budget. Now we have a

budget in place with notifications to let us k if our costs are even

approaching the budget that we've specified.

Now we should be able to take advantage of many of the free

tier services without having to worry about cost, but you shouldn't

have to worry that you would have costs growing without being

notified.

Chapter 1 Out-dated Data Centers

Now we're going to talk through how organizations leverage

traditional data centers, and so we're specifically going to be

focusing on organizations that have not yet shifted to the cloud,

and we're going to be starting with a fictional organization called

Acme. And within Acme, there is a group that has decided that

they should launch a new social network for professionals as a

new line of business for the organization. Initially, they're focusing

on the United States at launch, and if they're successful, they are

looking to expand into Europe and Asia. They’re currently working

to secure funding for the initial infrastructure because it's going to

cost a good deal of money to build up the initial data center. So

let's begin to play this out. So here at Acme, they were able to

secure an initial round of funding, and since they're located in

Chicago, they built a data center in Chicago. It took five months

from when they started to when they were actually able to move

in. And once they were able to load their servers in, they knew

they needed several types of servers. They needed some web

servers so they could serve their content out through their

website, they needed some file servers so that they can store user

uploads like profile pictures, and they also needed a database

server so that they could store user information like messages

and who their friends are. They had a great launch in the United

States, and they feel like there is a lot of growth ahead, so they

want to plan a move into Europe. They specifically want to plan

to move into London. However, once this process starts, it's going

to be another 6 to 7 months for them to be able to move into

that new data center. Because of this, they need to go through

that entire process and secure more funding, and they need to

order some more servers. After seven months, they're finally able

to move in some servers in their data center in London as well.

But they don't want to just stop there. They also want to move

into Asia, but something unexpected happens. They have

tremendous growth in the United States, and they need to expand

their data center in Chicago so they're able to go in and add

some more servers. But once that demand happens, it takes them

at least a month to order the servers, get them there, get them

installed, and configured. So during that time, several users were

experiencing performance issues with their social network. Once all

of that's in place, they're finally able to shift their attention to the

data center in Asia, which is going to be in Hong Kong, and it

takes another six months to begin to get that in place and to

order servers, and they then deploy their servers in Hong Kong.

But something happens. Users that were interested in the platform

in Hong Kong have already moved on to something else. And so

they have all of these servers and their data center sitting there in

Hong Kong being barely used, and they have put a significant

investment in getting it up and running. Let's pause on Acme for

a minute, and let's take a look at what we've learned. First of all,

when we're looking at traditional data centers, it takes an initial

upfront investment, and a pretty large one at that. Organizations

have to plan to either build a new data center or rent space

within an existing data center. Next, forecasting demand is

difficult. Even the best organizations struggle at this,

understanding how many users are going to latch onto a new

solution, whether it's an external one, like a social network, or

even an internal business application. Next, it's slow to deploy

new data centers and servers, so not everything can be ordered

overnight via Amazon Prime, and so there are times when it will

be very difficult to get up and running if we need to respond to

a change in demand quickly. Next, maintaining data servers is

expensive. With Acme, for every new data center that they spun

up, they're going to need to add dedicated resources, dedicated

individuals to maintain that server infrastructure at each of those

data centers, and that's a cost that's ongoing. And next, you own

all of the security and compliance burden with each of those data

centers. So nobody wants to get hacked, and nobody wants to be

sued for being hacked, but if you're an organization owning those

data centers, that entire responsibility rests on your shoulders to

be sure that you're following all of the industry best practices.

With this said, we're next going to look at some of the benefits

of cloud computing. AWS calls out several key advantages. The

first of them is you trade capital expense for variable expense. Let

me break that down for you. What that means is we don't have

this large capital investment initially to build out a data center,

like we talked about with Acme. In this case, we get a variable

expense, meaning that if we're using a server in the cloud, we

simply pay for the amount of time that we're using it, and we

can throw it away at any point. We're going to talk a lot more

about the economics of the cloud later within this book. Next, we

get to benefit from the massive economies of scale. So this really

factors in in two different areas. One is just the cost of building

out a data center and all of the equipment involved. AWS buys

things on a very large scale, and so they're able to make sure

that they're getting the best price for those. In addition, in the

economy of scale, when we look at it from a maintenance

perspective, Amazon has determined how to manage all of these

fleets of servers effectively at scale, and so those cost savings get

passed down to us as consumers. Next, you can stop guessing

capacity. We talked about with Acme how difficult it can be to

properly predict demand. Well, what if you just didn't have to?

What if you could choose to have a system that could either grow

or shrink based on demand? That's one of the paradigm changes

you get with cloud computing. Next, you get to increase speed

and agility. So when we talked about Acme in the previously, we

mentioned that they were looking to find funding partners before

they were able to go out and test their social network. Well, that's

not very agile. Ideally, we want to be able to test out our

hypothesis against real users and to do it quickly, and one of the

things you can do with cloud computing is try out new ideas and

have minimal cost to do so. Next is you can stop spending

money maintaining data centers. So with Acme, they were having

to staff individuals at each of the data centers, and at each of the

data centers they would own that maintenance burden for as long

as the data center was up and running, and so this allows you to

shift away from that. And next, go global in minutes. So in the

case of Acme, they were having to wait six or seven months to

move to a new region within the world. However, what if they

could simply send data over to Hong Kong or to London at any

point without having to build out new data centers? They literally

could do it within minutes instead of within months. With these

advantages, I want to focus on a few key terms that you need to

be familiar with. The first of them is the concept of elasticity, and

this is what we talked about earlier when we were talking about

demand, but it's the ability to acquire resources when you need

them and then release them when you no longer need them. And

in the cloud, you want to do this automatically. AWS has several

services available to you to do just this, and we'll talk more about

these later. The next concept I want to talk about is reliability.

When we talked about Acme, one of the things that we didn't

even cover within their data centers are things like failover. So

what happens if one of your data centers goes down? Well, one

of the advantages of AWS is that it has global infrastructure that

is built with reliability in mind because we want our solution,

whatever it is, to always be available to our users when they need

it, and so we can take advantage of this by building a solution

on AWS. And the next concept I want to talk about is agility. We

want to have the ability to lower the cost of trying new ideas or

business processes. So instead of having to go out, for example,

let's take a new concept like blockchain, instead of having to go

out ourselves, hire individuals that have their expertise, buy the

hardware that we need, install it in a data center, and then start

using it, in this case, we're simply able to tie into the resources

that AWS has and use the services that they provide to us. Next,

it reduces the time required to maintain infrastructure. So we

begin to shift. Instead of simply spending time maintaining, we're

able to spend time working on things that add business value.

Next, it does reduce the risk for the organization around security

and compliance. , don't let anyone tell you that you don't have to

think about security when you move to the cloud, you certainly

do, and we will be looking later at the AWS shared responsibility

model so we understand what is our responsibility and what is

AWS' responsibility when it comes to security and compliance.

And next, it provides access to emerging technology, as we

mentioned earlier with blockchain, without having to spend a ton

of money to ramp up on that new technology

Chapter 2 Cloud Computing Types & Scenarios

So now that we've gone through and discussed benefits of using

cloud computing, let's take a minute and talk about different types

of cloud computing. And before we dive too deep into that, let's

discuss a definition for cloud computing as a whole. AWS says

that cloud computing is the delivery of compute power, database

storage, applications, and other IT resources through a cloud

services platform via the internet with pricing. And that pricing is

critical, as we discussed previously. Let’s look at some different

models of how we use cloud computing. So let's imagine for a

minute that we have a spectrum, and on this spectrum on one

end we have absolute control, but on the other end we have

minimum maintenance where things just run without us even

having to think about it. Let's imagine three different points on

this spectrum. First of all, on the far left with maximum control,

we have Infrastructure as a Service, or commonly abbreviated as

IaaS. This is where we run servers in the cloud, virtual servers,

that are very similar to how we would run servers in our own

data center, meaning that we have full access to those servers.

We can change the OS that's running on them, we can completely

configure them to do exactly what we want; however, we also have

to perform maintenance on those servers, keep them up and

running to do exactly what we want them to do. But then if we

go to the far right of the spectrum, we end up with something

else, and that's Software as a Service, or SaaS, commonly

abbreviated as SaaS. For Software as a Service, you might not

realize it, but you're probably using multiple Software as a Service

solutions every day, and that could be your email provider, or that

could be your specific chat service that you use with other

employees. It's just a piece of software that you're able to run

with. You don't have to worry about configuring servers. It is just

provided to you as a service. And in the middle of these two, we

have something called Platform as a Service, or PaaS, and this

means that we're given a service that is configured for us where

we simply need to deploy our customizations onto it. And so if

you've ever used maybe a WordPress host, like WP Engine, you

can simply drop in your code, and you can be up and running.

They configure the WordPress install in the server for you. There

also is a Platform as a Service solution on AWS called Elastic

Beanstalk. So with these different options, we can understand that

there are different ways to use cloud computing. Next, let's talk

about different cloud deployment models. The first model is public

cloud, or sometimes people will just say cloud, and this is when

you are deploying a solution onto a public cloud provider, like

AWS. And there are others here as well, like Azure from Microsoft

or the Google Cloud Platform. Next, we have or private cloud.

You'll also sometimes hear people say just And this is when you

have a platform in a private data center. So if you wanted to be

able to be somewhat scalable, like you have with AWS, but you

wanted to be able to do it within your own data center, there are

solutions that you can deploy from companies like VMware, for

example, to have a private cloud. And in some cases, you will

have what we call hybrid, meaning you have an organization that

is leveraging both a public cloud, but those public cloud

applications are working in tandem with a private cloud within

their own data centers. And so it's important to understand that

for some, especially large organizations, they could be using both

a public, private, or using them together in a hybrid model. Now,

we're going to run through some scenarios that are based on

what you learned so far. We'll be following this pattern for the

remainder of the books in this path. So we'll present the

scenarios here, and then we'll be running through the solutions.

That way, we'll give you time to think about the answers. So let's

look here at Scenario 1. We have Rob, and his company runs

several production workloads within its data center. They use

VMware to manage the infrastructure in their data center, but they

want to use AWS, and they want to integrate it in with their data

center for some of their new workloads, so using the two in

tandem. In this case, which cloud deployment model would his

company be following? Now, let's look at Scenario 2. So here we

have Elenor, and her company is trying to decide whether to fund

a new line of business, and in this case, her team is looking to

monetize a new emerging technology. The new line of business

will require some new infrastructure, so beyond what they

currently have. So what benefit of cloud computing would be most

relevant to her company? Now, let's look at our last scenario, and

this is going to be Judit. And Judit is the CTO at an insurance

company, and this is just a insurance company, and they are

considering moving to the cloud instead of colocating servers,

which means where you're renting space in another data center.

They want to make sure that they have maximum control of the

cloud servers, and they want to do that for security and

compliance reasons. So in this case, what cloud computing model

would they need to leverage? Well we'll go ahead and run through

each of these scenarios and explain the answer, as well as why

that's the right answer for that scenario. In summary we've

covered quite a bit in this initial chapter here in this book, and I

want to quickly review each of the things we've covered before we

dive in and take a look at our scenarios. Then, we created an

AWS account for personal use. Following that, we examined how

organizations leverage traditional data centers, and we focused on

a fictional company, Acme, and how they were looking to deploy a

new professional social network. Following that, we explored the

benefits of cloud computing, and then we reviewed the different

cloud computing models. And finally, we understood the cloud

computing deployment models. So with that said, let's take a look

at our scenarios. So our first scenario was Rob, and his company

was running their own data center where they were managing

their virtual servers with VMware, and then they wanted to also

work alongside AWS in the public cloud. So which cloud

deployment model would his company be following? Well, the

answer to that is hybrid cloud, because they were using both a

private cloud in their own data center and a public cloud, being

AWS. Next, let's take a look at Elenor, and they were looking to

monetize a new emerging technology. So with this new line of

business and the new infrastructure that would be required, what

benefit of cloud computing would be most relevant to her

company? Well, the answer here is the concept, transitioning from

that large, upfront investment to a variable cost. This way, they

can try out this new emerging technology, and they can try it out

at a small scale and only pay for what they're using instead of

having to make a large, upfront capital investment. And, we'll be

talking through the economics of the cloud later within this book.

Next, Judit is the CTO at an insurance company, and they were

looking to move to the cloud, but they wanted to make sure they

had maximum control of their cloud servers, so which cloud

computing model would they need to leverage? Well, in this case,

it's going to be Infrastructure as a Service, or IaaS, because they

want to have maximum control, so just like they were running

these servers in their own data center, and probably for security

and compliance purposes given that they're an insurance company.

So in this case, instead of choosing to do Platform as a Service

or Software as a Service, they would fully take advantage of

Infrastructure as a Service to make sure that they had that

maximum level of control.

Chapter 3 AWS Regions and Availability Zones

Now, we're going to be talking about the AWS Global

Infrastructure, and that just means we're going to be looking at

how AWS deploys its infrastructure globally and then how they

make those different bits of infrastructure available to us to build

solutions on the platform. We're going to talk about four distinct

areas of the AWS Global Infrastructure. First, we're going to be

discussing the concept of Regions. Then, we'll be discussing

Availability Zones. We'll take a look at Local Zones, and then we'll

take a look at edge locations. So, over the book of this chapter,

we're going to first be reviewing the elements of the AWS Global

Infrastructure. We'll start off by understanding the use of AWS

Regions. We'll then be understanding Availability Zones within

AWS Regions. We'll also be taking a look at a newer concept,

which is the use of Local Zones. We'll then be reviewing the

purpose of edge locations, and we'll take a look at how you can

utilize the AWS Global Infrastructure visualization. So next, I'm

going to be introducing two very key concepts of the AWS Global

Infrastructure. The first is AWS Regions, and the second is

Availability Zones, and you'll see that these are very closely

connected. First of all, let's take a look at AWS Regions. The first

thing to k with a Region is that each of them are located within

a specific geographic location. You might think, that means they

have a data center there. Well, no. In this case, each geographic

location has a cluster of data centers, so more than just one.

AWS currently has 30 Regions that have been launched around

the globe. So here we can take a quick look at these, but I'm

also going to show you in a bit where you can go to get an

always updated map that shows you where the Regions are

located.

But next, let's talk about another concept, Availability Zones.

Within an Availability Zone, it contains one or more data centers.

In addition, multiple Availability Zones are included with each AWS

Region. And this is different from some other cloud providers

where Availability Zones is an optional feature. Here, every AWS

Region does include multiple Availability Zones. Also, it's important

to note that these Availability Zones, they are located within the

geographic area of the AWS Region. So when we have a Region

like the one in London, all of the Availability Zones will be

located within that Region. These Availability Zones have

redundant power, networking, and connectivity. So the reason that

these exist is to make sure that you generally wouldn't ever have

a scenario where an entire Region would go down, and we'll talk

more later about how these Availability Zones enable high

availability for your applications. And there are currently 96

Availability Zones globally. Let's just take a look at some Regions

within the United States. First of all, we have six different Regions

that exist within the United States.

So the Availability Zones here are associated with the Region that

you can see that they're closest to, and these Availability Zones

provide a level of failover to ensure that you have high availability

for the applications that you deploy. And let's talk about a few

terms here. First, we have the term of availability, and this is the

extent to which an application is fulfilling its intended business

purpose, and applications that are highly available are built in a

manner where a single failure won't lessen the application's ability

to be fully operational. There’s another concept that you need to

be aware of, and that is how we name AWS Regions and

Availability Zones. So you might see something at some point like

so let's talk about what this means. Let's break down each of the

components. So first, you might guess that us in the beginning

stands for United States, and you would be correct. Here, this is

going to be the area. We then have a underneath that main area.

So in this case, this would be on the eastern side of the US. We

then have a number because we might have two different Regions

or more in a specific area, and that is the case. We have both a

which is in Northern Virginia, and a which is in Ohio. But we

also have a letter at the end, and this is for the Availability Zone.

So, for example, if you had two Availability Zones you were

considering in Ohio, you would have and That’s the complete

name, but if we leave off the letter, that gives us the Region

name. So when we're talking about a Region, we would say as a

Region. But if we want the entire Availability Zone name, it would

include everything, from all the way to the end to 2a. I want to

just show you here is a list of the currently launched AWS

Regions.

There are some Regions in China and those that are used by the

US government, and those are not on the list because those

aren't available for everyone to use.

Chapter 4 AWS Global Infrastructure

I want you to be familiar with two additional concepts when it

comes to AWS Global Infrastructure. The first is the concept of a

Local Zone, and the second is a Wavelength Zone. So let's take a

look at these two concepts. An AWS Local Zone places compute,

storage, database, and other select AWS services closer to end

users. Each AWS Local Zone location is an extension of an AWS

Region. AWS Local Zones provide a secure connection between

local workloads and those running in the AWS Region, allowing

you to seamlessly connect to the full range of services to the

same API and tool sets.

That might not make a lot of since yet. Let's take a look at a

map and see if I can help drive this point home. So here you

can see the six different AWS regions that I included on the map

previously. In this case, we have two primary regions that are

going to be associated with Local Zones, so here I'm going to

fade the others out. And these two that we're looking at here is

we have and we have I'm going to go ahead and show you all of

the current Local Zones that exist within the United States. And

you might notice that these actually are in key areas, such as

Dallas and Houston and Miami and Chicago and Seattle and Los

Angeles, as well as many, many more.

The way this works is that highly efficient connection that exists

between those specific Local Zones, and the Region can be

demonstrated this way. Here you can see that a vast majority of

the Local Zones on the West Coast actually link up with as their

parent region. And what we see over on the East Coast is that all

of those link up with as its parent region. So, why would this

matter? Well, if you're trying to build an application in Chicago,

you might want to make sure you have some infrastructure

running close to the end users that are going to be in Chicago,

and you could accomplish this by utilizing a Local Zone, in this

case, the one in Chicago, partnered with the parent zone, which

is which is located in Northern Virginia. Next, I want to talk to

you about Wavelength Zones. Wavelength Zones are AWS

infrastructure deployments that embed AWS compute and storage

services within communication service providers' 5G networks, so

application traffic from 5G devices can reach application servers

running in Wavelength Zones without leaving the

telecommunications network. So if you're looking to create a

highly efficient application that can run off of wireless providers

on a 5G network, this is what Wavelength Zones were designed to

do.

So next, we're going to discuss another element of AWS Global

Infrastructure, and that is AWS edge locations. But to understand

this, I also need to introduce you to another term. Points of

Presence are elements of the AWS Global Infrastructure that exists

outside of AWS Regions. These elements are located in or near

populated areas, and specific AWS services use them to deliver

content to end users as quickly as possible. Within the overall

Points of Presence, there are two types of infrastructure edge

locations, which we'll be focusing on here, and regional edge

caches, which we won't be covering to prepare you for your Cloud

Practitioner exam, but it is important to know that they exist. At

the time of this book, there were over 410 Points of Presence

globally within the AWS Global Infrastructure with over 400 edge

locations and 13 regional edge caches. Let's talk about why that's

significant. First of all, these edge locations are used as nodes of

a global content delivery network, and there are specific services

that leverage these edge locations, primarily Amazon CloudFront

and Amazon Route 53, and you'll learn more about these services

and what they do next. But there are over 400 different locations,

as I previously mentioned. Next, it allows AWS to serve content

from locations closest to users. So, for example, if you wanted to

create a application and you wanted to be sure that it could be

served as quickly as possible, and let's say you have an end user

in Copenhagen, well, you could make sure that this is being

served from the edge location in Copenhagen via Amazon

CloudFront instead of making them go to wherever the next

closest AWS Region would be. Now, I want to show you a

resource that can help you actually plan how you utilize the AWS

Global Infrastructure. We will be reviewing the method of

accessing the AWS Global Infrastructure site. We'll also be

reviewing Regions and Availability Zones within the site, as well as

the edge locations. So I want to show you the AWS Global

Infrastructure site.

If you scroll down from this main part of the page, first of all,

you'll notice here are some key statistics about the global

infrastructure, including the number of Regions and Availability

Zones and Points of Presence. But if we scroll down, we're going

to see a map.

There doesn't seem to be a whole lot going on with this map,

and so you might think this isn't of huge value, but I believe that

as you are creating infrastructure on AWS, this is going to be an

extremely valuable tool for you to take advantage of. Let's say, for

example, that you want to build a solution in Asia and Australia.

Well, if I go in here to the map and I mouse over this area, you

can see that all of Asia and Australia actually lights up. I'll point

out here that first, at a high level, we can see the different

Regions that exist. So for example, I can see that Hyderabad has

a region that launched in 2022, and it has three Availability

Zones.

I can also see another one in Mumbai, and this one has three

Availability Zones and one Local Zone. And I can see that for all

of the Regions. Some of the Regions aren't always available to

you. For example, if I look here at the Region here in China, this

particular one requires you to opt in, and not everyone can have

access. It will also show you regions that are planned. We can

see, for example, that a region is planned here in Thailand, as

well as in Melbourne, and in Auckland. So, with that said, that

information in and of itself is valuable. But if we click into an

area, we can see a lot more information. Here, I can see a listing

of all of the Regions, and then in parentheses, I can actually see

the number of Availability Zones associated with that Region.

I also here can see all the edge locations that exist, as well as

the regional edge caches that exist within this area as well. And

at the top, I can get here just some key statistics. So we can see

at a very high level there are 35 Availability Zones within 11

geographic regions, 34 edge network locations, and 5 regional

edge cache locations. And you can do this for every geographic

area that's included here on the map. We can see the same here

for North America. We can see, for example, that there are 25

Availability Zones within 7 geographic regions, 44 edge network

locations, and 2 regional edge cache locations.

So for example, if I look at Atlanta, Georgia, I might not have a

Region that is super close to Atlanta, Georgia, but I can see that

there are three different edge locations there ensuring that if I'm

using a service like CloudFront, that my data is going to be

extremely close to the end user. So this is how you can utilize

the AWS Global Infrastructure visualization to help plan how you

utilize the AWS infrastructure that exists globally. Next, we're going

to cover some scenarios here, and these scenarios are going to

help you see how well you have retained the information that has

been covered in this chapter. As a reminder, we're going to go

through the scenarios here, and I'm not going to go through the

answers, so be sure that you take time to write down your

answers before you move on to the next chapter. For our first

scenario here, we have Jack, and Jack's company is looking to

transition to AWS, and they're going to start with just a few

workloads. However, it is a requirement to store backup data in

multiple geographic areas. So, which element of AWS Global

Infrastructure will best suit this need? Moving on, next we have

Tim, and Tim's company serves content through their site to

users around the globe, and they're looking to optimize

performance to users around the world. They're looking to

leverage a content delivery network, or CDN. So, which element of

the AWS Global Infrastructure will be used in this case? Elise's

company is transitioning one of their legacy applications to AWS,

and this application requires uptime of at least 99.5%. They want

to be sure that any issues at a single data center don't cause an

outage. So, which element of the AWS Global Infrastructure

supports this need? Before we move on to the answers to the

scenarios that I presented previously, let's just take a quick look

back at what we have been able to cover. First of all, we reviewed

the elements of the AWS Global Infrastructure. As a part of that,

we understood the use of AWS Regions and why having these

different geographically based regions helps people create

applications that can be highly available. And as a key part of

that, we talked about the Availability Zones that exist within those

AWS Regions and how they make sure that even if you have an

Availability Zone that goes down, the entire Region still stays up

and running. We also talked about the use of Local Zones and

how they partner with parent zones to help bring content to end

users. We also talked about the purpose of edge locations,

especially as it ties into a content delivery network, or CDN. We

also utilized the AWS Global Infrastructure visualization to help

understand which infrastructure elements exist at what place in

the world. So, with that out of the way, let's go ahead and visit

our scenarios. So first up, Jack's company was looking to

transition to AWS, and if you remember, we were trying to

determine which element of the AWS Global Infrastructure will

best suit the needs that they have. Well, in this case, the answer

is AWS Region because there are Regions that are geographically

based, and so even if they're deploying workloads within a single

Region, they can actually save that backup data across multiple

Regions. Maybe they're running in Northern Virginia with but they

want to store that backup data in which is in Ohio, as well as

which is in Oregon. The next scenario here we had Tim, and he

was serving content through their site to users around the globe.

So, to do this, which element of the AWS Global Infrastructure

will be used? Well, in this case, it's going to be the edge location.

And the key word here is content delivery network, or CDN,

because here Amazon CloudFront, which is the content delivery

network solution on AWS, utilizes edge locations to make sure

that that content is as close to possible to those end users. And

if you remember, we have over 400 of those locations that exist

globally. For our final scenario, we had Elise, and if you

remember, her company was transitioning a legacy application to

AWS. So which element of the AWS Global Infrastructure

supported her need? Well, in this case, the answer is the AWS

Availability Zone, which will sometimes be referred to as an AZ.

And the reason is, is because here, if we need to have a high

uptime, that means we need our application to be highly available.

So by taking advantage of multiple Availability Zones within a

single Region, we can help make sure that the application won't

go down if just one data center has a problem. The Availability

Zones help make sure we can create applications that are indeed

highly available.

Chapter 5 Cloud Economics

So in this chapter, we're going to be talking about the economics

of the cloud, and we're going to cover several topics. First of all,

we're going to be looking at the funding differences between

traditional data centers and the cloud. And then we're going to

look at the tools for the organization of our costs. And then we'll

be utilizing AWS tools to actually make a case for moving our

organization to the cloud. And then we'll be exploring AWS costs

using the tools. To start off with, I want to talk about two terms

that have to do with how we finance our projects. The first term

is capitalized expenditure, or CapEx. So, let's say you're building

your own data center. When you're building that data center, you

have to make a large upfront investment, and that's going to

cover buildings and servers and supporting equipment. This type

of expense is there to attain a fixed asset, and we're going to call

that a capitalized expenditure. The other type of expenditure we're

going to talk about is an operating expenditure, or OpEx, and this

has to do with the regular expenses of your business, and these

are OpEx. So when you build a data center, your ongoing costs

around connectivity and your utilities and your maintenance cost,

those would be considered OpEx. You might be saying, what does

this have to do with the cloud? Well, let's dive into that. Let's talk

first about having your own data center. So if you have your own

data center, let's say that you decided to launch an application

within that data center, and let's say that here is your demand. It

starts off pretty low because it's a new application, but then it

continues to grow, and you can even see, for example, that

between month 2 and month 3 it more than doubled. And so

with this, we're going to look at our capacity. So our data center

was built to handle an initial amount of capacity, and we're

noticing here that there's a few problems. First of all, we have

unused capacity. So when our data center launched and we then

launched our application within the data center, we had to

account for the amount of capacity that we believed our

application needed. So in the beginning, before users were

leveraging our application, there was a lot of unused capacity, and

that's capacity that we're paying for whether it gets used or not.

But then we have another even more critical issue, and that's that

we have demand over capacity. And that means in these cases we

have users that are getting denied access to our application

because we don't have the data center power that we need to

actually serve those users. So if you notice, between month 4 and

month 5, we decided to make an investment and build out our

data center to handle more capacity. Let’s talk about how you

fund this type of initiative. So initially, when you're building out

your own data center, you're first going to have a very, very large

upfront capitalized expenditure, or CapEx, to build out your data

center, to take care of that building and all of those servers that

are going to be needed. Then, you're going to have an operational

expenditure that's going to happen month to month. But if you

notice, when we increased our capacity between month 4 and

month 5, we had another large upfront capitalized expenditure,

followed by an increased operational expenditure as we have to

operate more servers and more equipment. This is how it works

with your own data center, but let's talk about how this works in

the cloud. So let's say that we have the exact same application

with the exact same demand in the cloud. In this case, we're able

to do something different with capacity. We're able to make sure

that we have just enough capacity to meet the demand that our

users have for our application. And another thing is different. Let's

look at the costs. So here, with the costs in the cloud, so there

is no capitalized expenditure because we're leveraging the cloud,

and here our operational expenditure mirrors what we have in

terms of the demand. So what does all of this mean? Well, let's

compare and contrast our own data center and cloud

infrastructure. So with our own data center, there is a large

upfront cost. That's CapEx. Also, there's a potential for either

underused capacity or unmet demand, and in many cases, these

are going to be inevitable unless you can predict the future. Also,

increasing capacity takes time and additional investment because

you have to order servers, you have to build onto your data

center, you have to add additional cooling and networking and a

lot of other things to support your data center, and that doesn't

just happen overnight. So you're going to have situations where if

there is a need for increased demand, there will be time that will

elapse before you can meet that. Then, monthly costs, in this

case, will map to predicted infrastructure needs. This is why I

mentioned earlier that you need to be able to predict the future if

you're going to go down this path, because you're going to, in

this case, have costs that align with what you think the demand

will be. But let's talk about cloud infrastructure. So first of all,

there's no upfront investment. So you don't have that large CapEx

at the front end because you're not building out your own data

center. Next, you pay as you go for infrastructure. And this

concept is critical because it allows you to only pay for the

demand that your users have. And it can scale to meet that

demand, and that additional capacity can be provisioned

immediately, which is a big difference to having to build onto

your data center and add more servers. And another factor is that

monthly cost will map directly to the user demand.

Chapter 6 How to Organize and Optimize AWS Costs

Now that you have an understanding about the difference between

working within your own data centers and working in the cloud,

let's take a look at how we can organize and optimize our AWS

costs. So first, we're going to be looking at one of the most

critical tools for managing your cost within AWS, and that is the

AWS Cost Explorer. It provides you with a user interface for

exploring your AWS costs, and you access this user interface

through the console in your browser, and it will provide you with

breakdowns on your cost, including by service. And it's important

to note here that, again, AWS is a collection of services. So if

you're utilizing a service like EC2 for your virtual machines and S3

for your storage, you would want to k how much am I spending

on each service. In addition, we have a breakdown by cost tag,

and we'll talk about cost tags later. One of the useful features of

Cost Explorer is that it also provides predictions for the next three

months of your costs based on your current usage. This can help

you better understand what your monthly run rate is for the AWS

services that you're leveraging. And here, it also will provide

recommendations for how you can optimize your costs. , you

might want to utilize the console in the beginning, but if you

wanted to automate aspects of this cost analysis, you can also

access the same data via an API. Let’s talk about another service

that works hand in hand with Cost Explorer, and that would be

AWS Budgets. Earlier, we set a budget alarm, so you already have

had some level of exposure to AWS Budgets. But this utilizes data

from the AWS Cost Explorer to plan and track your usage across

AWS services, and it can track cost per service, service usage,

Reserved Instance utilization and coverage, and Savings Plans

utilization and coverage. I understand that we haven't yet talked

about Reserved Instances or Savings Plans, but we will be talking

about those throughout the book of this learning path. There are

some tools that we can use to help plan our future costs. And

first, we have the AWS Pricing Calculator, and we'll actually do a

demo of this later within this chapter. But this gives some

analysis of your potential costs by utilizing multiple AWS services

for your workloads. So let me explain that. Let's say you were

looking to launch a social network for your company, and you

believe you're going to need five different web servers, you're

going to need two different database servers, and you're going to

need 500 GB of storage inside of a service like S3. Well, you can

enter all of those factors into the Pricing Calculator and determine

how much it would cost. You can even look at different ways to

build it and then compare costs between the different approaches.

So another approach we can take is when we're just looking to

migrate existing workloads into the cloud, and there are tools you

can use to actually make the business case for moving into the

cloud. One of those tools would be Migration Hub, but it's not

the only tool. But this gives you the ability to go through and

make a business case for transitioning your workloads to the

cloud by comparing costs from your own data center to what it

would be in the cloud. We will examine the way you can utilize

AWS tools to make the business case for moving to the cloud. So

next, I want to highlight a couple of deprecated tools in case you

see those listed in blog posts or other things you'll k what people

are talking about. Originally, we had the TCO Calculator, which did

enable an organization to determine what could be saved by

leveraging cloud infrastructure. That's been replaced by some other

tools that we'll talk about later. Also, before we had the AWS

Pricing Calculator, we had the AWS Simple Monthly Calculator, and

it did similar things to what the Pricing Calculator can do. It just

couldn't do everything that the current Pricing Calculator can do.

So if you see either of these, just know that these are deprecated

tools. These, in essence, are previous generation tools that we no

longer use. So let's talk next about AWS resource tags. Really,

these are just metadata that gets assigned to a specific AWS

resource within our account. We can give it a name and an

optional value. So let's say, for example, with the use case I

mentioned just a little bit ago, if we have a social network that

we're launching and we have maybe five web servers, well, we

could go in and just put Web Server as a tag on each of those,

and then when we went in to look at our costs, we could say,

okay, how much are we spending on everything that has the tag

Web Server? But another common use case here is to include

department, environment, or project. So, let's look at that for a

minute. Let's say that you have some internal applications that HR

is using. What you can do is you could set a name of

Department, and then you could enter in an optional value of HR.

Or we could break it down by environment. Many times when we

build applications in the cloud, we'll have a testing environment

and a production environment. So we could create a tag with the

name Environment, and the value could be either Production or

Testing. With this, you can utilize cost allocation reports to see

your cost grouped by active tags. This is something you can

enable within Cost Explorer. Also, we can use the tags within Cost

Explorer when we're looking at our costs. There’s another way that

we can actually group our costs together, and that is with AWS

Organizations. And this allows organizations to manage multiple

accounts under a single master account. So instead of doing what

we mentioned earlier with Department and having HR, for

example, as one department, we can actually create a completely

separate AWS account under a master account that is for HR.

And in some ways, that makes tracking and access control even

easier because it's in a completely separate account. One of the

features you get by using AWS Organizations is consolidated

billing. So this means that even if you have 100 different AWS

accounts using AWS Organizations under a single master account,

you only get one bill. And we can see within this bill a

breakdown of our costs by account. We also can go into Cost

Explorer in the master account, and we can see the breakdown of

costs within each account and then even breakdowns further

beyond that. And this also can enable organizations to centralize

things like logging and security standards across multiple

accounts. Now, let's talk about how organizations can actually

build a business case for moving into the cloud from their own

data centers. So let's talk about what you need to do to build a

business case. First of all, you need to analyze your current

workloads. You need to understand the applications and processes

that you have running so that you can begin the process of

forecasting what those infrastructure needs could be in the cloud.

We’ve already reviewed a tool that once we k what resources we

need, we can use to determine the cost in the cloud, and that

would be the AWS Pricing Calculator. But in this case, how can

you streamline the process of analyzing those workloads and

forecasting the future needs, because then you ultimately can

create a TCO analysis, or total cost of ownership analysis, of both

options? There are tools that help you in this process within AWS.

First, we have Migration Hub, and this is a central location to

gather information from multiple different AWS tools together to

forecast your needed infrastructure, and you can use this

information to begin to build out your business case. There's also

a more option that goes even further in building out your

business case, and that would be the Migration Evaluator. And

this is an service to calculate your infrastructure needs and build

a business case for the cloud. There’s a lot of discussion we

could go into with each of these, but what I want you to

understand at this level is to understand that these both are tools

that can help organizations decide if a move to the cloud makes

sense for them.

Chapter 7 How to Use the AWS Pricing Calculator

Now, we're actually going to walk through the process of using

the AWS Pricing Calculator. And as a reminder, this is designed to

estimate future workloads. we did have an older tool, the AWS

Simple Monthly Calculator, but this was replaced by the newer

AWS Pricing Calculator, and that's what we'll be using here. So

let's talk about what we're going to do exactly. First, I'll show you

how to access the AWS Pricing Calculator in your browser, and

then we'll talk through the process of estimating costs for a

workload on the cloud using the calculator. We'll even look at

how we can save and share the results with other people. So here

I have my browser pulled up to the AWS Pricing Calculator.

You don't need to be logged into an AWS account to use the

AWS Pricing Calculator. So here I'm going to click the option to

create an estimate. Here we can see a lot of different options.

Let's just take this piece by piece.

First of all, we're going to say here that we want to work within

the region, which is in Northern Virginia, and it lets me know

here that there are 148 different AWS services that are available

here. So here, if we want to use a service, we can simply go in

and enter the name for the service. I'll add a caveat here. I know

we haven't reviewed a lot of AWS services yet, so I'm going to

enter in some information here, and you might not fully

understand what those services are for just yet, but we'll be

covering that in depth later. But from here, let's use our social

network example. Let's say that I need to have some web servers

for my social network, so I'm going to spin up some virtual

machines in this case. So I'm going to search for EC2 as a

service. So I'm going to click here where it says Configure.

From here, I can enter in a description for this part of the

estimate, so we'll say Webservers. And then we can specify that

we either want to do a quick estimate or an advanced estimate.

For the purpose of this demo, we're going to stick with the quick

estimate, but the more you learn about AWS, you may want to go

through the advanced estimate process, and it will be able to give

you a more accurate description of what your future costs would

be. Here we're going to say that we're going to use Linux servers,

and let's say I want to have at least 8 vCPUs and 32 GB of

memory. And then it's going to give us a recommendation, which

in this case is a t4g2xlarge. I realize that sounds like a foreign

language, but this is a name given to an instance type for a

virtual machine that we're spinning up. I'm going to say that I

want to have five of these, and these are going to be 100%

utilized. We have the option here to pick different pricing

strategies. And again, I know we haven't been through this fully

yet.

I'm just going to leave the options that they have selected here,

and I'm also going to say that I want each of those virtual

machines to have a 20 GB volume attached to them. So we can

save and actually add this.

So now that I have this in place, a portion of my estimate has

already been added in. You can see here that I can see at the

bottom an overview of my monthly cost and my total 12 month

cost already. But we also need to add in some database servers.

So I'm going to go here, and I'm going to say rds. Tat stands for

Relational Database Service. And I'm going to scroll down. I’ll

select the option for Postgres, so I'm going to hit Configure for

this. And let's say that we're fine here with the size, a

db.m1.large, but let's say I want to have three different nodes.

And I can scroll down here and see that I also want these to be

100% utilized, and we want to use the Zone deployment option,

and that's going to give us the ability to have high availability

with this particular database cluster.

We're also going to say here that we want to use an RDS proxy,

and I'm going to say that 30 GB of storage for each node is

going to make sense. We also could go in and add in backup

storage. Let's say that we want to have an additional 40 GB of

backup storage, and we can just leave the rest of the values at

their current defaults. So I can hit Save and add that to the

service. So you can see that the bottom has been updated to

include an updated monthly cost and our total cost. I'm going to

go ahead and click the option to view the summary.

This is going to give me a complete breakdown, and we can see

here that we have Amazon EC2, we can see we have Amazon

RDS, and in all likelihood we would have several more things as

well. We would need to calculate storage, and we would need to

look at the data that's going in and out of AWS, but for this

gives us a good baseline to work from. We could go in, and we

could add an additional service. We could go in and we could

group different costs together. But for we have an estimate, and

what we can do from here is we can actually export it. We can

either export it to a CSV or PDF file, but another great feature,

and one that you'll find yourself using often if you're collaborating

with other people to build applications, is the ability to share

these costs. So I'm going to click on the option here to share,

and it first is going to tell me that this is going to be public

data. It's going to be stored on public AWS servers, and it's going

to give a link that doesn't require you to log in because, as you

don't have to log in at all to use the Pricing Calculator. So you'll

have to agree to this before you're able to actually create a URL

where you can access this estimate. If you say, I don't want my

information to be public, well, you can simply export your

estimate as a PDF or as a CSV file and then send it to

whomever you'd like. But with this approach, you end up with a

URL that someone else can utilize to go in and look at your

estimate and then continue customizations based on that

estimate.

Chapter 8 How to Review Costs with the Cost Explorer

So next, we're actually going to get in and utilize the Cost

Explorer within the AWS Console, and we'll see how we can

review our costs within our account utilizing this tool. So here in

this demo, here's what we're going to be doing. First, I will show

you how to actually access the AWS Cost Explorer within an AWS

account. We'll then be reviewing charges by service for an AWS

account, we'll be utilizing the predefined reports included with

Cost Explorer, and then ultimately, we will be downloading the

data from the AWS Cost Explorer.

I'm here in the AWS Console, and I've actually logged into a

different account than the one I created earlier within this book,

because since we're looking at AWS costs, I wanted to give you

an account that actually had some real AWS charges on it. So to

get to Cost Explorer, I'm going to go under my name, and I'm

going to select Billing Dashboard. Here, within the left pane, I'll

select Cost explorer, and then I'll need to click this button here to

actually launch Cost Explorer. So we're inside of AWS Cost

Management, and at a high level you can see here on the

dashboard I have a current month. And you can see here on the

dashboard I have my current monthly cost, as well as my

forecasted month and costs. And in some cases, this might be all

the information you need. But when you're dealing with many

different AWS services, you might want to dive into it a little bit

more deeply, and that's where Cost Explorer comes in. So here I

can see my daily unblended costs, and I'm going to click the

button to view in Cost Explorer.

So the first thing I'm going to do is I'm going to close the side

panel here so we have a little bit more room to look at Cost

Explorer. This is grouping my costs together on a daily basis, so I

can see my daily costs across all AWS services. This is another

thing that can be valuable, but a lot of times we're going to want

to k what AWS service actually generated those charges. So you

can choose to go in and group your cost by several different

factors, but one of the things you'll often use is to group by

service. And I can see that I'm generating these charges from

services like EC2 and App Runner, as well as several others. I

could choose to go through and look at more detailed information

in the table below, but maybe I don't really want to k by service.

Maybe I'm utilizing an AWS organization, which I am in this case,

and I want to see each of the different accounts and how they're

generating charges within consolidated billing.

So I can actually click out of Service, and instead, I can say

group by Linked Account. And in this case, I can see the different

accounts and which ones are actually generating charges.

This enables me to see a complete breakdown by the different

accounts that I have. I can choose to group by many different

things, including by region. I can do it by usage type. I can even

do it by tags, which we talked about in a previously. And I can

even choose to go through and change the date range and even

change how they are grouped. But instead of going in and

actually just generating these reports on the fly, I might want to

take a look at some reports that AWS has already created for me.

So I'm going to go back to AWS Cost Management, and from

here I can click the option that says Reports in the left pane. I

can see here that there are reports that are already generated,

Monthly costs by service, Monthly costs by linked account. Let's

just go ahead and take a look at Monthly costs by linked account.

I can see here that there is a report that's already created for me

so that I can see this breakdown by linked account month to

month. So instead of simply having to go in and do this every

time, I can utilize this report. I can even save my own reports

and access them at a later time.

If I were to scroll down below the graph and see the table view, I

can actually click the Download CSV button, and I can download

the actual data that is being used to generate the graph. And in

that way, I can do my own analysis on the data inside of

separate tools. I can even send this information to someone else

who doesn't have access to my billing dashboard if I wanted

them to explore our costs within AWS.

Chapter 9 How to Apply Cloud Economics

So we're going to apply these principles of cloud economics by

looking at some scenarios, and you can judge how well you've

absorbed the material that has been covered within this chapter.

So grab those guided notes, grab a pencil, and be ready to jot

your answers down, and I'll be reviewing the answers for these

scenarios next. So here is our first scenario, and here we're going

to be talking about Oliver. And Oliver's company has multiple

departments that work within AWS, and in this case, Finance is

asking for a clean separation of AWS costs between departments.

, currently, all resources are included within a single AWS account.

So what approach would meet this need for future costs with

minimal effort? Think about the answer for that one. And, let's

look at scenario 2. So for scenario 2, Sophia's company is

considering a transition to the cloud. They currently have two

physical data centers that they own and maintain. Stakeholders are

questioning whether this approach will save money. So which

approach should Sophia take to make a case for the cloud??

Here, we have scenario 3. And in this case, we have Don, and he

is a web developer at his company, and given some recent

downtime, he is looking at moving there site to the cloud, but

Finance is asking for an estimate of costs for this transition to

AWS. So what approach should Don take to get this data to his

finance team? So, next, we'll walk through the answers to these

scenarios. Before we dive in and explore the answers to the

scenarios, let's just take a step back, and let's take a look at all

the things that we've been able to cover here within this chapter.

So first of all, we understood funding differences between

traditional data centers and the cloud. We also utilized AWS tools

for cost organization. We then examined the AWS tools that you

could use in making a case for moving to the cloud, and we

actually explored real AWS costs using the tools. So, with all of

that information behind us, let's take a look at the scenarios and

their answers. So first, we have Oliver, and if you remember, he

was looking to provide data to finance that was cleanly separated

between departments, and he needed to do this with minimal

effort. Well, what would he do in this case? In this case, he

would create and leverage a resource tag for each department.

And you might say, well, wouldn't they be more cleanly separated

by using AWS Organizations? And that's a great point. But

moving resources between different accounts would be a bit of

additional effort required here, and he was looking to do

something here with minimal effort. So in this case, the tag

approach makes sense. And next, we have Sophia, and Sophia's

company was considering a transition to the cloud, but she

needed to make a case for the cloud, so what would she do

here? Well, in this case, she could look at utilizing AWS Migration

Hub or Migration Evaluator to build her business case for moving

into the cloud. Last, we have Don, and if you remember, he

needed to provide Finance with an estimate of cost for

transitioning an existing workloads into the cloud. So how should

he do this? Well, in this case, he can utilize the AWS Pricing

Calculator and then share results with his finance team.

Chapter 10 How to Support AWS Infrastructure

So next, we're going to talk about how you support your AWS

infrastructure once you transition some of your workloads to the

cloud. So over the book of this chapter, here's what we're going

to be covering. First of all, we'll be understanding the tools that

are provided by AWS to support your workloads in the cloud, and

we'll be reviewing the AWS Support plan tiers. Then, we'll be

reviewing AWS Trusted Advisor recommendations and exploring the

AWS Personal Health Dashboard. So next, let's talk about the

tools that AWS provides to support your infrastructure. And

anytime we're talking about support, we're really talking at a high

level about AWS Support, which is the service that enables you to

file support requests with AWS resources. However, within AWS

Support, there are two additional services that are also made

available to you. The first is the AWS Personal Health Dashboard,

and the second is AWS Trusted Advisor. So let's take a look at

each of these three services. So first of all, we're going to talk

about AWS Support. So with AWS Support, it enables you to get

support from AWS resources for your workloads that are running

in the cloud, and it is provided in different tiers based on your

need and the scope of your need. it includes tools to provide

both automated answers and recommendations, and we'll look at

some of those recommendations later within this chapter. The next

service is the AWS Personal Health Dashboard, and it is going to

provide both alerts and remediation guidance when AWS is

experiencing events that may impact you. For example, if there is

a partial outage of a service within a region, this is where you

can gain insight on that and understand how this could affect

your infrastructure. the next service is the AWS Trusted Advisor,

and this is a powerful automated tool that enables you to check

your AWS usage against best practices. So in many cases, if you

are regularly implementing the recommendations that Trusted

Advisor provides, you may even eliminate the need to file a

support request. It can be accessed from the AWS Console, and

different checks within Trusted Advisor are provided based on the

AWS Support plan tier that you have, but all AWS customers,

even ones without a paid support plan, get access to seven core

checks within Trusted Advisor. the Trusted Advisor checks are

really divided into five different categories. The first is cost

optimization, the second is performance, the third is security, then

we have fault tolerance, and finally, service limits. And so if you

have a support plan that supports all of the checks, you can gain

guidance in each of these areas for your workloads that are

running on AWS. So now that we've discussed the different

services that AWS provides to support your infrastructure in the

cloud, we're going to break down the specific AWS Support plan

tiers that are included. First, we need to understand the

differences between the different Support plan tiers, and it really

falls into four key areas. The first is communication method, the

second is response time, the third is cost, and the fourth is the

type of guidance offered. So let's look first at the support plan,

AWS Basic Support. AWS Basic Support is provided for all AWS

customers, and you have access to Trusted Advisor, to the seven

core checks within Trusted Advisor. You also get 24x7 access to

customer service, documentation, forums, and white papers;

however, you'll need to note here that you don't have access to

AWS support engineers for your technical implementation

questions. You do, however, get access to AWS Personal Health

Dashboard, and with this plan there is no monthly cost. However,

if we move up a level, we get to AWS Developer Support, and

this is targeted at an individual developer that's looking to get

support for running their workloads in AWS. It does include all

the features of Basic Support, but you also gain business hours

email access to support engineers. However, we'll talk in a minute

about the response times between the different Support plans.

Developer Support is limited to one primary contact, so that

individual needs to be the one to actually file the support

requests. It starts at $29 per month, but it is tied to a

percentage of AWS usage. So if you have a lot of AWS resources

that are currently deployed, you may end up paying more than

$29 per month. Next, we have AWS Business Support, and this

includes all of the features of Developer Support, but it also adds

in a full set of Trusted Advisor checks. It goes quite a bit beyond

the seven core checks that are just provided with Basic and

Developer Support. You hear have 24x7 phone, email, and chat

access to support engineers. If you want to be able to pick up a

phone and actually call an engineer, this becomes the first tier

where you are able to do that, but you also have access here to

email and chat. Next, we have unlimited contacts. So this is not

just limited to potentially your root user. It allows you to let all of

your resources have access to the Support Center and file support

requests. it also provides software support. So if you're in a

scenario where you want help in deploying a piece of software

onto AWS, this is the tier where you can start to get that access.

it starts at $100 per month, but just as the previous plan, it is

tied to your AWS usage. So with more AWS usage, you would

end up paying more than just $100 per month. The last support

plan is AWS Enterprise Support, and it includes all of the features

of Business Support. It also includes a designated technical

account manager, so a single individual that can become your

point of contact for the account. It also includes a concierge

support team. This starts at $15,000 per month, but it is also

tied to your AWS usage. Next, let's review one of the most

important aspects of comparing these different support plans, and

that's the support response times. So we have five different

categories that are provided by AWS in terms of their response

time, General guidance, when we simply have questions that we

need to have answered; System impaired, where something is not

working as it should; Production system impaired, when we

actually have a production system that is not performing at its

desired capacity; Production system down, meaning that we

actually have a production system that is completely and finally,

system down, meaning that this is a core system for our

organization, and it is completely down. So in terms of the

Developer Support plan, we're able to provide support response

times across two of these categories. So within 24 business

hours, we should be able to receive a response for General

guidance and 12 business hours for System impaired. With the

Business Support plan, the first thing you'll notice is we're

dropping the business hours designation. We're actually talking

here about just hours. So within 24 hours, we should have

General guidance questions answered. Within 12 hours, we should

have a System impaired response. Within 4 hours, for impaired,

and 1 hour for Production system down. But when we transition

to Enterprise, we're going to see this expand all the way down to

our fifth category. So within General guidance, again, 24 hours;

with System impaired, 12 hours; Production system impaired, 4

hours; Production system down is 1 hour, but for system down,

here we're able to see that there is a response time provided if

you have the Enterprise Support plan.

Chapter 11 AWS Support Tools

Now that we've reviewed AWS Support, we're actually going to

dive into the AWS Console and review some of the services that

are provided as a part of AWS Support. We are first going to be

accessing AWS Trusted Advisor in the console, and then we'll be

reviewing the AWS Trusted Advisor recommendations. Following

this, we'll be accessing the AWS Personal Health Dashboard and

then reviewing the information provided in the Personal Health

Dashboard. I want to point out a few things. With the widget

configuration that we have, we're going to see little bits of

information from the tools that we're looking for just here on the

home page of the console. For example, we can see our

personalized health view here under age AWS Health, and we can

go directly to there from this link.

And we also can see Trusted Advisor, and we can click on it to

go directly to Trusted Advisor from here. But I want to show you

another way that you can navigate through the console. You can

simply type in the search bar above.

So first, I'm going to search for Trusted Advisor, so I'll type in

trusted, and I can click here on this service.

So here I can see that there are some recommendations already.

But before we get to that, I want to point out here on the left

pane you can see that we have the five categories that we

mentioned earlier, Cost optimization, Performance, Security, Fault

tolerance, and Service limits. Because here we're simply using a

Basic Support plan, we are only going to see recommendations

that are included under Security and Service limits. But if we were

to upgrade the plan, then we would get more checks.

However, we'll be able to see what some of those checks would

be when we're examining Trusted Advisor here. So first of all, you

can see that we do have a recommended action, that we need to

set up authentication on the root account. And so we can actually

see how we go through this process by simply following the steps

here within Trusted Advisor. We can also see here there are just

some areas that would require some investigation, maybe not

immediate action, and we can see here that we're discouraging

the use of the root user access, and so they want to see that we

have at least one IAM user, just for example.

However, you can see here at the bottom if we did upgrade our

AWS Support plan, we could get access to all Trusted Advisor

checks. Let me go through here, for example, and click on

Security. Here you can see the things that it is checking for our

account, things that are included in those core checks. But if I

scroll down here, we'll see that we can see the items that it isn't

currently checking because of the Support plan that we have. So

you can begin to understand the full scope of the capabilities that

can be provided by Trusted Advisor if you did happen to have a

bigger support plan than the one we currently have configured on

this account. So I'm going to go ahead and scroll back to the

top, and from here you notice we also have the ability to actually

download those checks. So if we don't simply want to use them

here in the console, but we want to save them for later, we can

get that information here directly from the console. I'm going to

move away from Trusted Advisor, and I'm going to go back here

to the home page of the console. I could just click on AWS

Health Dashboard here under my Recently visited services, but

again, I want to help you navigate through the console, so here

we're going to type in personal health, and we can see that the

AWS Health Dashboard shows up here at the top of the list.

And you can see here that for this particular account, there have

been no recent issues, and that makes sense, to be honest,

because I haven't configured any resources yet within this

account.

However, we can see some of the issues that have happened

recently under the Event log. For example, I can see here that

there was an operational issue with EC2 in Northern Virginia,

which is the region.

So I'm going to go ahead and click on this issue, and here we

can gain a summary of when the issue was reported and when it

ended. We can see the summary of what actually was happening

here. So for example, we can see that some EBS volumes, which

stands for Elastic Block Store volumes, experienced degraded IO

performance within the region. The issue has been resolved and

the service is operating normally. So this is very beneficial

information if you're utilizing the service and you want to k why

something isn't working exactly as it should have been working.

And so you get all of this information here within the Health

Dashboard. And there's a lot of different ways you can get access

to this information. This can even show up on the home page of

the console when you log in under the widget for your AWS

health. So hopefully here you've been able to see how we can

leverage multiple tools that are included within the AWS Console

to support our use of the platform

Chapter 12 Infrastructure Support Scenarios

When organizations make the shift into the cloud, they quickly

find that they're going to need some help because in most cases

they really want to answer the question, are we doing it right?

And sometimes that's more than can be handled in just a support

request with an AWS Support plan. And so there are three

resources that can be very helpful for organizations that are in

this position, and to be honest, these are also resources you

should be familiar with for the exam. So the first resource for

organizations that are looking to answer that question about

whether or not they're doing it right is the AWS Quick Starts.

Each Quick Start provides deployment instructions for a common

technology platform into AWS. This is a great place for

organizations that are using a standard platform and just want to

know if they're deploying it in the right way. But in many cases,

organizations are also going to want to bring in subject matter

experts to come in and help with their migration to AWS. And if

you want to find trusted third parties that have been vetted by

AWS through their partner program, you can take advantage of

the AWS Partner Network Consulting Partners. These people don't

work for AWS, but they do work for a consulting company that

has been vetted. And next, if you want to work directly with AWS

resources, you can choose to take advantage of the AWS

Professional Services team. So here, these are three resources that

can help organizations move forward with their migration into the

cloud. So next, we're going to be taking the knowledge that we've

gained in this chapter in terms of AWS Support, and we're going

to be applying it to some scenarios. And our first scenario here

has to do with Kate, and Kate's company is in the process of

moving multiple workloads into AWS. One of these workloads is a

application, one that they want to be sure they maximize the

uptime of. Her CTO has given her some specific guidance in

saying that they need to be able to call support 24 hours a day.

With all of these criteria here, the question that he is asking her

is, what is the most support plan that meets this criteria? Next,

let's look at Danny, and his company is evaluating AWS for some

future workloads. One of these future workloads that they're

planning would be supporting multiple offices globally, so it would

be in use 24 hours a day, and the company wants to be able to

call, text, or email support if any issue occurs. Because this is

going to be so for their company globally, they want to be able to

get a response within 15 minutes if there is a complete outage of

this infrastructure. So for Danny and his company, what is the

most support plan that meets the criteria? We're going to be

talking about Don. And we've talked about Don before. He is a

web developer at a company. But in this case, we're going to be

talking about Don's personal account that he is using for a

personal project on AWS. Because in his day job he works in

AWS, he doesn't expect he's going to need technical guidance

from AWS; however, he does want access to AWS Trusted Advisor

and the core checks that are provided. So for Don, what is the

most support plan that meets his criteria? So we're going to take

a minute and review what we have covered within this chapter.

And in addition to that, we're going to go through and talk about

the solutions to the scenarios that we introduced before. We

started off by understanding the tools that are provided by AWS

to support workloads in the cloud, and then we reviewed the

specific AWS Support plant ears that they provide. We then

reviewed AWS Trusted Advisor recommendations, and we looked at

the different categories of recommendations that are provided. And

we also looked at the difference between the Trusted Advisor

checks that are included within the Basic and Developer Support

versus the Business and Enterprise Support tiers. And then we

explored the AWS Personal Health Dashboard. Let’s dive into our

scenarios. Scenario 1 had Kate needing to recommend a support

plan for her company, and we were specifically looking at the

most support plan for her criteria. And the answer to this one is

Business Support. But let's talk about why. So first of all, her

CTO said that they needed to be able to call support. So first off,

we k that if we're calling support, we have either a Business or

an Enterprise Support plan because the Developer plan only

includes email access, and the Basic Support plan does not

include access to Support Engineers for technical implementation

questions. So because of this, we k we are immediately dealing

with one of those two support plans. It says that she needs to be

able to call support 24 hours a day. Well, in this case, that works

for both Business and for Enterprise. So, when we're looking at

this, if we're looking at the most support plan, we k that

Business Support would be more than Enterprise Support, and in

this case, she doesn't have any requirements that would only be

met by Enterprise Support. So next, let's look at Danny. So

Danny's company, again, is evaluating AWS for future workloads.

So for him, what should he recommend? Enterprise Support. Let's

talk about why. First of all, if we look at it, it says the company

needs to be able to call, text, or email support if an issue occurs.

Just as before, we k that this means that we are looking at either

the Business or the Enterprise Support plan. However, the key

here is the company wants a response from an issue within 15

minutes if there is an outage. That means that the Enterprise

Support plan is the only option because that's going to give us

that increment if we have a system down. Next, let's talk about

Don, and Don has an AWS account for a personal project, which

is separate from what he's doing for work, and he doesn't think

he's going to need technical guidance, but he does want access

to the AWS Trusted Advisor core checks. So what would his

support plan be? Well, in this case, we're going to say Basic

Support, so the general support that is provided for anyone that

has an AWS account. This includes access to the seven core

checks that are provided by AWS Trusted Advisor. It doesn't

provide technical implementation assistance. He can't email a

support engineer. However, in this case, he doesn't believe he's

going to need it, so he can choose to leverage Basic Support

until he has a need to use one of the paid support options.

Chapter 13 How to Prepare for the Exam

Let's now talk about what comes next and how you get ready for

the exam. The first thing you'll need to do is you'll need to make

sure that you don't sign up for your certification exam until you've

completed all our books in this learning path. Later on in this

path, we'll walk you through the entire process of getting signed

up for the exam and how to get ready for taking the exam. That

being said, what you can do is you can go through and study the

guided notes that you've taken throughout this book. That will

give you the material that you need to get ready for the exam,

and then you're going to be ready to move on to the next book,

Understanding AWS Core Services. And please don't skip the last

book in this path. This is truly a differentiator where it will walk

you through how to get ready for the exam and how to think

about the questions that you'll find on the exam, and it will walk

you through two complete sets of questions to help you evaluate

whether or not you're ready to take the exam. So, I'm excited for

you to go ahead and take your next step on your journey to

becoming an AWS Certified Cloud Practitioner.

BOOK 6

AWS CLOUD COMPUTING

INTRODUCTION TO CORE SERVICES

RICHIE MILLER

Introduction

This is the second book designed to get you ready for the exam.

So hopefully by this point, you've already had a chance to go

through the Fundamental Concepts book. We're going to be diving

deep and understanding many of the AWS services that are

covered on the exam, but this is a lot of information to

remember and so that we have a good understanding of AWS as

a whole, we're going to be looking at how we leverage the

services that are included within the platform. And when we're

talking about interacting with those services, we're really looking at

three different approaches. The first of these is the AWS Console,

and we used this when we set up our initial AWS account in a

previous book within this path. In addition to that, we also have

the AWS CLI, or Command Line Interface, and this is what allows

you to access those same AWS services, but just from the

command line on your machine. If you want to program access

to your AWS resources, this is when you would look to leverage

the AWS SDK, which is supported across a variety of languages.

Let’s take a look at each of these in turn. First of all, we have

the AWS Management Console, and, we have used the browser

version of this earlier in this path. But there also is a mobile

application that goes along with this. It provides access to most

all of the 150+ AWS services, and in this case, all major browsers

and mobile operating systems are supported. You'll probably

primarily use the interface, but it wouldn't hurt to download the

mobile version and explore that on your own. So here's an

example of the browser version of the console. We can see here

that we're logged in, and we can see that I'm using the Northern

Virginia region.

And you can see a list of some recently visited services that I

have had here on this version of the console. We'll dive into the

console later on within this chapter. Next, we have the AWS

Command Line Interface, or CLI, and this is a tool that allows

you to manage your services from the command line, and this

works on Windows, Mac, and Linux. And most everything you

could do in the browser with the console, you can do with the

CLI. So as an example, if we wanted to list the current users for

our specific AWS account, we could run the command aws iam

For those of you that maybe have some experience with the

platform, you're noting that this is just limited to IAM users and

not the root user, which is totally true. And we'll cover more of

that in a later book within this path. The next thing we have is

the AWS Software Developer Kit, or SDK. And this is what allows

us to use a programming language to actually script the process

of how we interact with AWS. This is great because it can allow

us to automate many things within the platform. And as we look

at the different languages that are supported, we do have quite a

range here, and this includes Java, .NET, Node.js, JavaScript in the

browser, PHP, Python, as well as Ruby, Go, and C++. For most

developers, you're working in one of these languages, and that is

supported with an AWS SDK. Let's talk about when you would

use one of these approaches versus another. So, first of all, the

console is a great method for testing out AWS services. So if you

want to leverage a service for the first time, if you want to spin

up a virtual server and maybe you haven't used EC2 before, or

maybe you're looking at testing out a new service that AWS just

announced, the console is a great way to do this. However, if you

have repeated tasks, you might want to look at using either the

CLI or the SDK. If we require a person to log into their browser

and go and perform tasks, that can be very cumbersome. But if

we're going to be doing these tasks continually, this becomes a

great case for automation, and both the CLI and SDK can enable

that automation. And next, the SDK enables automation of AWS

tasks within custom applications. So if you have a custom

application that you're running on AWS and you want it to

automate some way of interacting with an AWS service, the SDK

becomes a great choice for that. It's important to note here, most

all services and actions can be performed in any of these three.

There are some exceptions to that rule, and we'll cover a few of

those within this book. But at a high level, just k that for most

services, you'll be able to use either the console, or the CLI, or

the SDK to perform whatever tasks you need when using these

services.

Chapter 1 How to Use the AWS Console

Now, we're going to look at how we leverage the AWS Console,

and we're specifically looking at the browser version of this and

not the mobile app version of the console. We're first going to be

accessing the AWS Console in the browser, and then we'll be

talking about the login differences between root and IAM users.

We'll be introducing this concept. Then, we'll look at how we

select a specific region, and then we will be reviewing the list of

services that are supported within the AWS Console. It's important

to note that the root user is a special kind of user. It was the

user that was created when you initially created the AWS account,

and it has special permissions that no other account has,

including things like selecting a support plan and deleting the

account. In this case, if you're here, you need to be sure that

you're using the root user to log in. There is another type of user

that can access the AWS Console, and that is an IAM user, and

we'll talk more about IAM later. However, in this case, I'm going

to be able to log in, I'm going to take my password, I'll sign in,

and then here I have it currently set up for authentication, and

that means I'm going to have to enter in a special code in

addition to my password to be able to log in. So I'll enter in the

code, and I'm logged in to the AWS Console.

At a high level, there's a few things I want to point out. One of

them is here, you can clearly see my user information, and if I

pull down on this, I'll be able to go in and look at the

information for this account, including the account, the

organization, which we've talked some about, as well as the billing

dashboard.

I can see all of my invoices, and I can go look at my security

credentials if I need to change those. In addition to this, we also

have a next to that for selecting the AWS region. So here, I've

currently selected N. Virginia, which is but we can see that there

are many different regions, and we've already talked about the

AWS global infrastructure and the different regions that are

supported.

But in this case, if I were to switch over and select any of the

resources that I launched here within the console would be

launched within the Ohio region as opposed to the N. Virginia

region. For most all services, this matters. There are a few

services that don't, and we'll talk about those shortly. , the next

thing I want to do is I want to look at the Services From here,

you can see a list of all AWS services, and they're currently

grouped according to category. For example, you can see the

Compute category, which has EC2 and Lightsail, and ECR, and

ECS, and EKS, and several more, and we'll talk more about those

in an upcoming chapter. But this gives us a high level way of

looking at the services based on their category.

However, we can also choose to go in and search for a service.

For example, if I wanted to look at a service like Lambda, I could

simply type that in, and you can see a list here of services that

include Lambda. In this case, we would be looking here just for

Lambda. And if we click on it, we would go into the console for

this specific service.

Next, we can also go back to the home page and there also is a

search box that is included here within the home page of the

console. And so we could go in here and we could type in a

service like rds, which is Relational Database Service. In this case,

we also can look at recent services that we have launched here

within the console, which include Lambda, and Trusted Adviser,

and Cost Explorer. And so, if you're working within a small

handful of services, this can be a very quick way to simply click

on these and actually launch into those specific services. I'm

going to search for a service called Route 53, and I'll click on

Route 53.

One of the things that I want to point out here as we go into

this service, and this is AWS' DNS service, is that this is one of

the few services where the region doesn't matter. You'll notice

here that it says global as opposed to region. And it says here

that Route 53 does not require region selection.

So you can note when you're working with services whether or

not they are global services or whether or not they are services.

So I'll navigate back to the home page of the console. And the

last thing that I want to point out is we can go here within our

user and go to Security Credentials.

So here, we can go in as the root user, and we can update our

password. You can turn on authentication, which we'll do later.

You also can configure access keys, and access keys will be where

we pick up our next demo when we're looking at leveraging the

SDK and the CLI.

Chapter 2 How to Use the AWS CLI

So next, we're going to be talking about using the AWS CLI. I

need to make a note here. You don't need to k how to install

and configure the CLI for the Certified Cloud Practitioner exam.

You do need to k what it is and why you would use it. However,

it's a valuable tool if you'll be working within AWS, so we're going

to do a quick review here. We will first be accessing AWS access

keys. We'll then be reviewing installation instructions for the CLI.

We'll then be configuring the CLI for a specific user. And finally,

we will be interacting with AWS utilizing the CLI. So, I'm here at

your security credentials, and this is where we left off when we

were demoing the console. Just as a reminder, you can get here

by going under your username and then going into My Security

Credentials. I mentioned that access keys were critical. This is

basically the way that we control authentication and authorization

when we are using the CLI and the SDK. I'm going to select

Access keys, and AWS is going to present me with a warning,

and rightly so. They let us know that root users have unrestricted

access to the entire AWS account.

They recommend using an IAM user with limited permissions if

we're going to be creating access keys, and that is great advice. ,

as a note, we will be creating access keys here. However, I am

going to be deleting these immediately following this demo. You

should not create root user access keys and use them on a basis.

That is not a good practice. However, for simply demoing the CLI,

in this case, that should be fine. So I'm going to select Create

New Access Key, and it lets us know here that it has created our

access key.

And it lets us k here that this is our one chance to see this

information, and we need to download our key file. It will not

show it to us again. If I click here on Show Access Key, we can

see here, both our access and secret access key, and this is the

information that we will need to be able to access our AWS

resources from the CLI. Before we use these keys, I'm going to

navigate over to the installation instructions. So here within the

AWS documentation, there are instructions for installing the CLI.

There are currently two versions of the CLI, version 1 and version

2. Version 2 is a newer version that is just currently in preview,

so for, we'll look at version 1.

Depending on your platform, you can install the CLI in different

ways. For example, Windows has an installer that actually comes

with Python integrated in. Python is what the CLI is actually built

on and what is required. So in Windows, there's a single installer

that will handle it for you. For many users that are on Linux or

Mac, Python is already included on your machine, and you can

simply use tools like pip to install the CLI. Next, I'm going to

navigate over to the terminal so we can actually use the access

keys that we've created. So from here, I can first check to see if

the AWS CLI has been properly installed on my machine. I can

simply type aws and I can see that I'm using the AWS CLI

version 1.16.180, so I do have it properly installed on my machine.

The next step is going to be to configure it with the access keys

that I just created. The first step will be to enter in the access

key. Next, I'm going to be entering in the secret access key. Once

we have that in place, we can enter in the default region name,

and in this case I'm going to choose Finally, we can choose the

default output format. In this case, I'm just going to choose

JSON because that's a format that I'll work with. Once I have all

of that in place, I'm going to hit Enter. And we have configured

the AWS CLI to work with those credentials in a profile called PS

test. So, I should be able to utilize the AWS CLI to get

information about the AWS resources that I'm leveraging. In this

case, I'm going to run a command that's going to list the S3

buckets that I have created within this account. And here you can

see it has returned to me a list of all of the different S3 buckets

that I have created within this account.

So, to quickly review what we've done. We have gone in and

created access keys for our user with a caveat there that we don't

generally want to create access keys for the root user, but for

simple testing purposes, as long as you delete them after the

fact, that should be fine. Then, we went through the process of

looking at how you would go about installing the AWS CLI. And

we noted that there are different instructions for Windows, Mac,

and Linux users. We then configured the AWS CLI to use the

credentials that we had created. And finally, we verified that we

could access the AWS resources that we're leveraging, utilizing

those credentials from the CLI. So next, we're going to help you

gauge how well you understand the material that has been

presented in this chapter by looking at three different scenarios.

We're going to take time and review each of these scenarios here.

Be sure, in your guided outline, to write down the notes about

what you think the answer is for each scenario. Next, we will be

walking through the answers to each scenario. So here's our first

one. We're going to start off with Rob, and his company runs

several production workloads in AWS. They have a new web

application that manages digital assets for their marketing team.

And what they want to do is they want to automatically create a

user account in Amazon Cognito when the user signs up through

their custom application. In this case, Amazon Cognito, we

haven't covered yet, but it is basically a user directory for our

custom applications. And what they want is they want this to

seamlessly integrate into the application that they have, and the

application that they have is a web application that actually has

some microservices on the back end that are written in Node.js.

In this case, which interaction method would Rob's company use

for this? Next, we're going to look at Elenor, and her company is

considering moving to AWS, and they want to leverage a service

called Amazon Relational Database Service, and she just wants to

test out a single database on the service. She hasn't ever used it

before, so she just wants to get in and understand how it works.

So in this case, what interaction method would Elenor use for

this use case? Next we're going to look at Judit, and her company

is a startup, and they created a social network for entrepreneurs

that has both a web and a mobile app. , she has a set of tasks

that she needs to run each day to help generate some reports on

usage, so in her case, what interaction method would she use for

this use case? Next, we'll run through and look at the answers.

Before we dive in and take a look at the different scenarios that

were presented previously, let's take a minute and look back at

what we have covered in this initial chapter in this book. First of

all, we reviewed the ways you interact with AWS services. We

talked about leveraging the console, the CLI, and the SDKs. We

then looked specifically at the AWS Console and its use. We even

went through a demo to highlight key areas of the console. , with

this as well, we talked about the fact that the console is primarily

a experience, but there also is a mobile application that you can

leverage. We then introduced the AWS Command Line Interface, or

CLI, and its use. We also did a quick demo to showcase how you

would configure the CLI with your credentials. Then we introduced

the AWS Software Developer Kits, and we talked through the

different programming languages that are supported with the

SDKs. Let's take a look at our scenario. Here in this first

scenario, we talked about Rob, and he wanted to seamlessly

integrate Amazon Cognito into his custom application. Well, in

this case, the solution is going to be the SDK, or Software

Developer Kit. The reason is because Rob wants to bake this into

his custom application. So, because he wants to bake it into his

custom application, if you remember, we talked about some

services that were using Node.js, in this case, he can choose to

leverage the SDK for Node.js to interact with Amazon Cognito

within his web application. So that's scenario one. Let's look next

at scenario two. And we were talking about Elenor, and she

wanted to leverage Amazon Relational Database Service, or RDS.

What should she use? Well, in this case, using the AWS Console

makes sense. Elenor is not looking to automate this. She's not

looking to create this for production. She just wants to get in and

use the service and understand how it works. So this seems to

be a great fit for using the console. Next, let's look at Judit, and

when we were talking about Judit's specific scenario, she had

tasks that she performs on a daily basis that she needs to utilize

something to automate. And so what interaction method would

she use? Well, in this case, we're going to say the CLI. However,

you could also say the SDK, in this case. She could build it out

either way. But what she doesn't need to do is go in and perform

the same tasks in the console day in and day out. There's a more

efficient way to do it using one of the two different approaches

for automation, either the CLI, where she could write a custom

script to do these things for her, or bake it into a custom

application utilizing one of the supported programming languages

with the SDK.

Chapter 3 Amazon Compute Services

Now, we're going to be talking through compute services on AWS,

and we're going to be focused on the compute services that will

be covered in the Certified Cloud Practitioner exam. At a high

level a compute service is just a service that enables you to

leverage virtual machines for your workloads. And this could be a

lot of different things, running a database, having a web server, or

data processing. We're going to primarily be talking about three

different compute services on AWS. First, we're going to be

looking at Amazon EC2, which is a foundational core service on

AWS, and this is what enables us to run virtual servers on AWS.

Then, we'll be looking at Elastic Beanstalk, which is a platform, so

this is platform as a service for scaling and deploying web apps

and services. And then, we're going to be looking at AWS

Lambda, which enables compute, but without having to manage

any servers. First of all, we're going to be introducing Amazon

EC2 capabilities, and then alongside that, we'll be exploring the

different pricing approaches for EC2 instances because there are a

lot of options to consider here. Then, we'll be introducing the

capabilities of AWS Elastic Beanstalk and then reviewing use cases

for Elastic Beanstalk. And finally we'll be introducing AWS Lambda.

So, next we're going to talk about Amazon EC2. And Amazon EC2

is one of the fundamental core services of AWS. And AWS defines

it as a Web service that provides resizable compute capacity in

the cloud, and it's designed to make computing easier for

developers. So, before we get too deep into EC2, let's look at

some sample use cases where we could choose to use EC2. Let's

say, for example, that we want to host a web application in the

cloud. We could choose to an EC2 instance, and then on that

instance, we could install a Web server, and then on that web

server, we could go in and put the files for our web application.

So, in that case, EC2 would totally meet that need. But we also

could do things like batch processing of data. So if your

organization produces maybe a 1,000,000 rows of point of sale

data each day and you want to pull that in and do some

preprocessing before you analyze it, you could use an EC2 server

for that. You could also use it to just be an API server, where

you take web services and launch them in the cloud and let other

applications access them. Or you could do something like, even

having a desktop in the cloud. So if you want to launch a

windows instance on Amazon EC2 and then be able to connect to

that through remote desktop, all of those things are possible

utilizing Amazon EC2. Next, we're going to talk about the core

concepts that we need to k before we're able to launch an EC2

instance in the cloud. First, we need to understand instance types,

and then we need to understand root device type. Next, we're

going to look at the Amazon Machine Image, or AMI, and then

we're going to look at the different purchase options for EC2

instances. But let's start off by looking at instance types. So, an

EC2 instance type defines the processor memory and storage that

are available to any servers that are launched with that instance

type, and you can't change this without downtime. So, if you've

launched an EC2 instance, which is your virtual server, and it has

a certain amount of memory, based on the instance type that you

chose when you launched it, you can't simply go to that server

and say, I want to put a new instance type in. So, we do want to

make sure that we make good choices on instance types when we

launch them. We have instance types across several different

categories, including general purpose. So, for most workloads that

you're going to put in the cloud, general purpose will probably

work fine for you, but we also have compute, memory and

storage, optimize instance types. And again, that's three separate

categories there.

So, for example, if we wanted to launch an database on our EC2

instance, we might choose a memory optimize instance type. But

we also have accelerated computing, and these are for specialized

use cases, for example, machine learning, because in this case,

with those instance types, you could get access to a GPU, for

example, which could be very important for the different machine

learning work that you're doing. , pricing is based on the instance

type. So if you choose something that has more resources

available to it, and it's a specialized type, it will cost more than

just using a general purpose instance. But some instance types

also have unique capabilities, so some families of instance types

have access to things like specialized storage, or GPUs, as we

mentioned earlier. So next, we're going to look at some sample

EC2 instance type pricing. , I need to make a couple of caveats

here. One is, is that EC2 pricing changes over time, so these

numbers might not be accurate in the future, but in addition to

that, the prices can also change from region to region. So let's

just use these prices I'm showing here, even though I pulled

them from let's just use them to help us understand relatively

what different instance types cost. So I'm going to start off here

with a couple of different general purpose instance types. You can

see here that we have a t3.medium and an m5.large. Well, we can

see that the m5.large has twice as many vCPUs and four times as

much memory, and in this case, it's just a little over twice as

much per hour, in this case, coming out to be just a little bit

under 10 cents per hour. Here is an example of a compute

optimized instance type, a c5d.24xlarge. We can see here that we

have a dramatic jump in all three categories, vCPUs, memory, and

pricing, with this coming out to be about $4.60 per hour. But

then we have a p3.16xlarge. , this is a very specialized instance

type that comes from the accelerated computing category because

this gives us access to some of the industry leading GPUs for

things like our machine learning workflows. And in this case, this

one comes out to be about $25 per hour, so, even though it

looks here, like it has less vCPUs, these factors into some of

those special capabilities that are included within the P3 instance

type family. And then, we have a storage optimized instance type,

an i3.16xlarge, which again has 64 vCPUs and a lot of memory,

and it comes out to be about $5 per hour, but it has some

special access to storage capabilities that the other instance types

don't have. Next, let's move away from instance types, and let's

take a look at the root device type. There really are two different

root device types that you need to k when working with EC2. The

first is what we call the instant store, which is ephemeral storage,

and it is actually physically attached to the host that the virtual

server is running on. So that's one type. And the next type is

Elastic Block Store, or EBS, which is persistent storage that exists

separately from the host that the virtual server is running on. ,

when EC2 initially launched, we just had instance store, but that

we have EBS, I'll go ahead and tell you that for most work you're

going to do on EC2, you want to use Elastic Block Store, which

is EBS, unless you have a specific reason not to. It provides a lot

of capabilities that will help you, but one of the key differences is

the difference between the words ephemeral and persistent. So

with an instant store, if you your EC2 server and you actually

completely shut it down, then the data on that instant store will

go away. However, EBS data will be persistent, and we can even

go in and take snapshots of it and copy it and launch new EC2

instances with EBS volume. There's a lot that we can do, and

we'll cover that more, later within this book, when we talk about

the different storage services that are available on AWS. But just

know here, that instant store is ephemeral, meaning that if you

shut down the server, that data will go away, and EBS data is

persistent, meaning that if you shut down the server, that data is

still there. Let's look next at Amazon Machine Images, or AMIs. ,

I should probably also mention here, that there is fierce debate

amongst the AWS community on whether or not this is

pronounced or Amy, but in this case, you'll hear me refer to it as

an But just know if you hear somebody else refer to it as an

Amy, that's what they're referring to. , an AMI is a template for

an EC2 instance that includes configuration, the operating system,

and the data that actually would go on that specific instance. And

AWS provides many different AMIs that you can leverage, and

when we go through, actually using EC2, later within this chapter,

you'll see that there are several provided by AWS that are

relatively easy to a new instance from. But AMIs can also be

shared across accounts. So if your organization has a specific

version of, let's say, Ubuntu Linux that you want to modify in a

certain way for security purposes and you want to have it be just

exactly the specific way and you want it to have one extra drive

that's attached where you store other pieces of data, those are all

examples of configurations that you can make within an Amazon

Machine Image. And, you can create your own custom AMIs, and

there also is a marketplace for commercial AMIs. So if you want

to use AWS Marketplace, you can go and explore the different

AMIs that are provided from commercial vendors.

Chapter 4 Amazon EC2 Purchase Types

Now we're going to talk through the different purchase types that

you get when you're working with EC2. So first of all, we have

And if you just launch an instance by default, this is what you're

going to get. We then have the option for Reserved Instances.

Then we have Savings Plans, which was a newer option. Then we

have Spot Instances and Dedicated Host Instances. So let's

understand each of these options and when you would want to

use them. So, first of all, we have Reserved Instances, and what

this does is this provides discounts over that model, which is

going to be your default model when you can commit to a

specific period of time, which is going to be one or three years.

In addition, it also provides a capacity reservation for the specific

instance type that you specify. So you can make sure that when

you go to launch that that that's going to be there for the entire

period of time that you sign up for. Within Reserved Instances,

there are multiple types, and let's quickly review these. , as a note

here, you're not going to need to dive super deep into each of

these for the exam, but I do think it's important to understand

the different approaches that you can take. So first we have

Standard, and this gives you the highest discount, and it works

well for steady workloads. But, if you have a Standard Reserved

Instance, what that means is is that if you want to get a bigger

instance type, you can't make that change, you're locked in for

that period of either one or three years. And that's why we have a

Convertible Reserved Instance. And with this, this does allow us to

convert some of the attributes if it's going to be of equal value to

what we already have. This is also great for steady workloads. , in

some situations you're going to have predictable, but not steady

workloads, and if that's the case, you can create a Scheduled

Reserved Instance. So this is able to have a time window attached

to it, and so if you know, for example, that during weekdays for a

specific period of time you're going to have a lot of usage and

you want to get a Reserved Instance for that, the Scheduled type

would work well. Let's look at just the Standard Reserved Instance

cost model. So, with this you have some choices. You can specify

that you want to pay this all up front. So you can say if it's one

or three years, you want to pay all of it, and this is going to give

you the highest level of savings, but it's also going to require the

biggest upfront investment for that instance. You can then do a

partial up front, and this is going to enable you to pay part of

that one or period up front, and then you'll have a reduced

monthly cost. But even if you don't choose either of those, if you

take a no upfront approach, you're not going to have to pay

anything up front, but you'll still get a reduced monthly cost over

the option. So here's the way to look at it. You need to be able

to evaluate a situation and determine which of these would make

the most sense. Next we have the option that is the Savings

Plans option. This is very similar in concept to Reserved

Instances, but one of the key differences is that it's not just

limited to EC2, it supports compute with EC2, Fargate, and AWS

Lambda. But unlike Reserved Instances, it does not reserve

capacity. That being said, there's still a way you can reserve

capacity with savings, but it's going to be in addition to what you

do with Savings Plans, and it can provide savings of up to 72%.

And just as with Reserved Instances, it comes in one or terms.

However, if you want to get the biggest price reduction, you can

look at Spot Instances, and this really enables you to leverage the

excess EC2 compute capacity that might exist within an availability

zone. So let's quickly look at some notes here on Spot Instances.

First of all, it can provide up to 90% in discounts over pricing.

With this, there is a market price for instance types per availability

zone, and this is called the Spot price. So think of this almost

like a stock market for excess compute capacity. , when you

request instances, if your bid is higher than the Spot price, then

you'll be able to launch your instances. If the Spot price grows to

exceed your bid, then your instance is going to be terminated. It's

not instant, you do get 2 minutes prior to termination. However,

what this means is this will only work for workloads that can

start and stop without affecting what you're trying to do. So if

that's your use case, you can get great savings by using Spot

Instances. Next, we have the Dedicated Host option, and this

gives you a dedicated physical server in the data center. This is

going to be your most expensive option, but there's two use

cases that you need to know that would require this approach.

The first is going to be if you have a licensing model and you

want to be sure you're abiding by the terms of that license. In

that case, you'll need to use this option. Also for some

compliance requirements, it requires that you utilize a dedicated

host, and if that's the case you'll also need to use this pricing

model. So let's quickly review the different options. First of all, if

you have an instance that is consistent and always needed, you

should purchase a Standard or Convertible Reserved Instance.

Next, if you have batch processing where you can start and stop

without affecting the overall job, this is where you should look to

leverage Spot Instances because this is going to give you the

maximum savings. So next, if you have an inconsistent need for

instances and you can't stop it without affecting the overall job,

this is where you want to look at just the Standard Instances. A

few other notes here - if you have specific licensing or if you

have a compliance requirement for a dedicated server, you should

use Dedicated Host. And also here if you're leveraging Lambda

and/or Fargate alongside EC2 and want to achieve discounts for a

one or period, this is where you can choose a Savings Plan. But

if you have predictable, but not steady workloads in EC2, you

should purchase a Scheduled Reserved Instance. Let’s look at

some examples specific to Reserved Instances.

So first, let's say that we have a t3.medium. So we can see here

it's a little over $.04 per hour. If we look to purchase an EC2

Reserved Instance, if we do all upfront for one year, we pay $213.

If we look at the effective hourly rate, that's going to be about

$.02.4. That's going to save us about $150. And if we look at the

same thing for three years, we're going to have the ability to save

over $680. So here, our savings are only going to increase as we

move to bigger instance types. So here, if we look at a compute

optimized instance like a c5d.24xlarge, the rate is going to be

$4.60, almost $.61 cents per hour. If we look here at just a

partial upfront for only a year, what we're going to do is we're

going to pay $12,000 plus a little bit more up front, and then

we're going to pay about $1000 monthly. What this does is this

lowers the effective hourly rate to $2.76 a little bit more per hour.

That gives us about 40% savings. We can look also here at an

i3.16xlarge. We can see here that the rate is almost $5 and we're

able to achieve 52% savings. So even though the cost is high

here, if you need this specific instance type, this approach is

going to give you a lot of savings if you can commit to the one

or period. If we look here at spot instances, this is where we're

going to see even more savings.

So let's take a look at our t3.medium that we mentioned earlier.

So is going to be about $.04 per hour, and with Spot pricing we

can see this get down to maybe a little bit over $.01 per hour. As

a reminder, this is a market price, so this is going to change.

This is when I was actually looking at the pricing when I was

creating, here's what you could get this for. You can see here, this

is going to give us about 70% savings. We can also look at our

c5d.24xlarge. Here we're going to see 80% savings. And we also

can see 70% if we're looking at our i3.16xlarge. So you can see

here that there are huge benefits to exploring the different pricing

models that you can leverage with Amazon EC2.

Chapter 5 How to Launch EC2 Instances

Now that we've covered the core concepts that you need to

launch an EC2 instance, we're actually going to dive into the

console and launch an instance ourselves. I do want to here, you

need to understand EC2 for the exam. You don't necessarily need

to k how to launch an instance yourself, although this will be

valuable in understanding the concepts that have already been

presented within this chapter.

So here's what we're going to do. We're, first, going to launch a

new EC2 instance based on an AMI provided by AWS. And then,

we're going to be exploring the launch wizard in the AWS

Console. We'll then be configuring an EC2 instance to be used as

a web server. And finally, we will cover how you terminate an EC2

instance once you're done.

So, I'm here within the AWS Console. I've already logged in as

my user and here, from the search box, I'm going to search for

EC2. I'm going to click on EC2, and from here I can see my

dashboard for EC2 which will list all of my running instances as

well as many of the other types of information that are contained

within this dashboard. , the next thing I'm going to do is I'm

going to scroll down, I'm going to go to the option to launch an

instance, and from here we're going to click on Launch Instance.

We get a chance here to choose an AMI.

There are several that are provided by AWS. There also are some

that are provided by the community, and then there are some that

are provided in the AWS marketplace, which those could charge

an extra fee for using those AMIs. We also can see here that

there's an option for my AMIs because, we can actually create our

own AMIs based off of our own customizations. In this case, I'm

going to choose the Amazon Linux 2 AMI. So I'm going to select

this first one. And we get an option to go in and select our

instance type. We've talked a lot about instance types, and if we

were to scroll down, this list is pretty long, and we can go all the

way from general purpose into commute storage, memory

optimized, and accelerated computing.

For now, though, since we're just interested in testing this out,

we're going to use a t2.micro instance type, and part of the

reason that we're going to use that is because that is free until

you're eligible. So if this is a new AWS account for you, you

should be able to run this within the free tier and not incur

charges in doing so. However, I do want to quickly remind you

that if you leave these instances up and running there will be

charges associated with them. Make sure that you've set up the

billing alarm that we guided you through in the previous book. So

next, I'm going to hit the Next option to Configure Instance

Details.

From here, I'm telling it to only launch one instance. That's all

that we need. , the next step is we have an option here for our

purchasing option. So I do have the option here to make this a

Spot instance or to at least request a Spot instance. However, I'm

not going to do that here, and we're going to choose to simply

launch an instance. We haven't yet talked about VPCs, and so I'm

going to leave these options here as the default values for both

the network in the subnet, but I do want to switch Public IP to

be Enable. And we can look here that we have some other values

for things that we haven't covered yet, but I'm going to navigate

down to the bottom, and I'm going to go to the section for

Advanced Details. Here within this section we have something

called User data, and this is basically just commands that the

server will run when it starts.

And so I'm going to paste in a value here that will basically have

it install a web server and then start that web server. And if all of

this works correctly, when we're done we should be able to go

and see the test page for that web server up and running. So

let's go ahead and hit Next and add storage. So here, we do

have an EBS volume that we're going to be leveraging, and we

could choose to add additional storage if we wanted to onto this

server. we don't need to, and so because of that, I'm not going

to change anything on this screen, but just k that you can. And

we'll talk more about EBS later, but we even have the option here

to go in and change the type of volume that we're using, in this

case, we're just going to keep it as a General Purpose SSD, which

is kn as a gp2.

Next, we could go through here and add tags, so I could go in

and add a tag here. We could say here that this is just a test

server, and so if we used that purpose tag across everything, we

could note how much of our charges are associated with, for

example, test versus production.

We could change a lot of different things on that, but in this

case we'll keep that tag in place, and next, we'll go in and

configure the security group. This is something else that we

haven't covered in depth yet, but we will be covering more later

on within this book.

But I need to do two things here. First of all, currently any IP

address, so any user, could go in an attempt to log into the

server to manage it, and we don't want that to be the case. And

fortunately, AWS provides an easy way to limit access. At this

point, I'm just going to say my IP, so only my IP address, can

actually go in to manage the server. But I need to add one more

rule. We want to set up a web server. The type of communication

that a web server has is called HTTP, so I'm going to select

HTTP, here on the left. If we leave this at the default value where

it says 0.0.0.0/0, in this case, what that's saying is is that anyone

can access the web information from this server, and that's what

we want.

Now that we have that in place, we're going to hit Review and

Launch, and then we will look at the summary page here.

Everything looks good, and we'll just hit Launch. , it's going to

ask us here to create a key pair, and if you haven't done that yet,

you will need to do it. In this case, this is what will allow you to

actually sign in to this server, utilizing this key pair. We're not

going to be signing into this server to administer it. But you still

will need to create a key pair, then we'll need to acknowledge that

we have access to that key pair, and then we can finalize the

launch process.

From here, it's telling us that our instance is launching, so

congratulations, you have launched an instance in EC2, so you've

launched a web server in the cloud. It’s going to take in a minute

to get started, but what we can do is we can click on this little

value here.

This is the identifier for our EC2 instance, and it will let us k

right that it is currently pending, so it is going through the

launching process. So we'll give this just a minute to complete.

So we can see that our instance is currently set to be running,

and so we should be able to access it.

So, what I'm going to do is I'm going to look at the section

down here that gives the information for this instance, and there

will be a section called Public DNS. I'm going to click on this to

copy it to the clipboard, and then I'm going to go up here and

I'm going to open up a new tab in the browser and I'm going to

paste that value in. I'm going to hit Enter and you can see that

we do indeed see our test page.

This means that you have properly configured a web server to be

up and running in the cloud, so this is what we want to see.

However, we just don't want to leave an instance running if we

don't need it. So I'm going to go in here and I'm going to be

sure that my instance is selected, and then from here we're going

to go under Actions, and then we're going to go to Instance State

and we're going to go to Terminate.

Here, this is going to let us know that the EBS volume will be

deleted when we delete the instance, and this is actually what we

want. So we can hit Yes, Terminate, and by doing so, we have

shut down our instance and it'll take it a little bit to shut down

and be fully terminated. But let's walk through what we've done

here. We've been able to go in through the console, launch a new

EC2 instance from an AWS provided AMI. We have then been

able to go in and configure it as an instance to be a web server,

and then we've launched it, we've seen that it worked, and we

have terminated our instance. So congratulations on firing up and

spinning down your first server on EC2.

Chapter 6 AWS Elastic Beanstalk

Up to this point, we've been focusing on Amazon EC2, but we're

going to look at a different compute option that is available on

the platform, and that is AWS Elastic Beanstalk. So at a high

level, Elastic Beanstalk automates the process of deploying and

scaling your workloads on EC2, but the difference is instead of

dealing with those servers directly, which we would call

Infrastructure as a Service, this is more of a Platform as a Service

type approach. Because of that, it does support a specific set of

technologies. So unlike EC2 where you can really do anything you

want, as long as you can get it up and running on a server, you

can do that on EC2. Here, Elastic Beanstalk works within a set of

technologies. It does leverage existing AWS services, and you only

pay for the other services that you leverage, and so this brings up

kind of a new category of services for us on AWS, and these are

services that really just make it easier to use other AWS services.

So in this case, we're still theoretically running all of our compute

on EC2, but the process of managing those servers and handling

things like provisioning and load balancing, scaling, and

monitoring are all handled automatically through the work of

Elastic Beanstalk by connecting other services into the overall

platform. You might be asking, well, what platforms does it

support, and that's a great question. So here, we're going to be

looking at a lot of the usual suspects here, like Java and NET. We

also have PHP and Node.js, as well as Python, Ruby, Go, and

then interestingly enough, it also supports Docker. So the good

thing here is even if you weren't using one of these other

platforms, but you still wanted to use Elastic Beanstalk, if you

could configure a Docker container with whatever framework you

wanted to leverage, you could still find a way to support it on

Elastic Beanstalk, but with just a little bit of extra work. You

might be saying, well, I get that, and I get that all of these

different technologies are supported, but why would I choose

Elastic Beanstalk? What are the features that it has that would be

an advantage over using EC2 directly? Well, first of all, one of the

great things about Elastic Beanstalk is it does have integrated

monitoring included, and again, it's using other services that we'll

talk about later to pull that monitoring information in. here,

deployment is critical. You might just think well I'm just copying

some files to a server, how hard can it be? But in reality, in

production, deployments aren't that easy, especially when we're

talking about load balanced environments and you're dealing with

multiple servers and trying to figure out how to appropriately

deploy things onto servers and make that available to end users,

and Elastic Beanstalk manages all of that for us. In addition, it

also handles scaling. So if we want to be sure that our web

application that's used within our business as an internal

application, if we k that there's going to be a huge demand

upcoming, we can trust that Elastic Beanstalk is going to be able

to handle that scaling appropriately, and we can add some

configuration to that so that we can best handle upcoming

demand. But it also allows for EC2 customization. So here is the

one area where it kind of starts to maybe stretch beyond just a

little bit, the Platform as a Service approach, it does give you the

ability to add some customizations to those servers that it's

actually going to be running on. So why would you want to use

Elastic Beanstalk? So, if you want to deploy an application with

minimal knowledge of other services, so let's say you know Elastic

Beanstalk, but you're not familiar with really administering EC2

servers or auto scaling groups or getting metrics from

CloudWatch, setting scaling rules, these are things that you can

simply rely on Elastic Beanstalk to do for you. In addition, if you

want to reduce the overall maintenance needed for the application,

this can be a great choice. So if you can fit into the specific use

case that Elastic Beanstalk has, you can avoid having to deal with

many of the other administrative tasks that are simply taken care

of by the platform. In addition, this makes sense if you're not

looking to completely customize the environment that you're in.

And if you say, well, I want to use this specific AMI and it has

to have this specific package and I don't want it to upgrade to

this other version of the package, you can get really specific about

those things. If that's you, you probably want to look at using

EC2 directly. But if you say, you know what, I really don't need to

customize it, I can take what it gives me by default, then Elastic

Beanstalk can be a great choice and one that will save you time,

especially over the life of the application. Now that we've had a

chance to understand the purpose and features within Elastic

Beanstalk, we're going to launch a sample application on the

platform. We are first going to be accessing the sample Elastic

Beanstalk applications from the Elastic Beanstalk documentation.

We will then be launching one of those sample applications on

Elastic Beanstalk. And then finally, we will be deleting a deployed

Elastic Beanstalk application. So I'm here on the Tutorials and

samples page within the Elastic Beanstalk documentation.

And I'm going to scroll down to the bottom half of the page

where we actually have sample applications that have been

included. I'm going to click on this Node.js application to

download it. In this case, this is going to be the sample

application that I choose. If you wanted to try out one of the

others, you certainly could as well.

But when we go to launch it within Elastic Beanstalk, you'll need

to be sure that you select the correct platform. So I'm going to

navigate over to the AWS console, and I'm already logged into the

console. And from here, I'm going to either click on Elastic

Beanstalk within Recently visited services, or if you don't have it

within recently visited services, you can simply type in Elastic and

then search for Elastic Beanstalk.

From here, it's going to tell us Welcome to Elastic Beanstalk, and

we're going to click on the Get started button. Next, we're going

to create a web application, and I'm going to call this one And

then from here, we're going to go down and choose the platform.

Because I chose Node.js, this is the platform that I'm going to

select here.

We do have the option here to just do a sample application

without having to leave the Elastic Beanstalk dashboard here in

the console; however, I'm going to choose to go to the Upload

your code option. Part of the reason I'm doing this is because I

want you to have experience uploading your own code into Elastic

Beanstalk. I'm going to hit Upload, and I'm going to select the

local file. And here I'm going to go in and select the Node.js

sample application, and then I'm going to hit Upload. From here,

we'll get a chance to go in and configure more options. At a high

level, we don't need to change any of the settings that are

included here; however, I wanted to show this to you so that you

can see some of the different capabilities that you can configure

within Elastic Beanstalk.

At this point, we'll choose to leave all of these values in place,

but you can see there's quite a bit of configuration that is

available to you. We'll hit Create app. And we can see that Elastic

Beanstalk is going through the process of guiding our initial

deployment and we're able to use this console here to view the

progress as it deploys it out for the first time.

And we can see that our application has launched successfully. It's

currently letting us k that the health of this application is okay.

And if we look, there is a URL that we can click on to get access

to our web application.

And if we go look at this, we can see that we have indeed

launched our first web application here on Elastic Beanstalk. And

it actually allows you to kind of scroll through and look at the

different documentation based on the links that are included.

If we go back and look at the dashboard, as a reminder there are

several different things that are included within the platform,

including keeping things like our logs, so we can see our logs, we

actually can go in and request those at any point in time, we can

look at the health, it'll go through and let us know the instances

that are running and the percentage of requests, we can see here

that we have had some good 200 requests, which is what we

would want. We can go in and see monitoring so we can actually

see how our web application is performing.

This has just started up, so we're not going to have any good

data to look at the moment. We can even go in and configure

alarms based on, for example, if our application becomes

unhealthy if it's not responding. So these are all the things that

are provided by Elastic Beanstalk just as a part of the platform as

a whole, and it doesn't require you to know how to go in and

configure all of the backing services that are feeding into Elastic

Beanstalk. But we're going to take our last step, and that's we're

going to delete our application. So I'm going to go here under

this application, so I'm going to go here under Actions and I'm

going to choose to Terminate environment.

And here to terminate it, we're going to need to enter in the

name of our application, and then we're going to hit Terminate,

and this will destroy the web application that we've just deployed,

which is what we want. So, through this process, we have been

able to take a sample application provided by Elastic Beanstalk,

launch it within the platform, see it running, see some of the

capabilities that are provided by Elastic Beanstalk, and then

ultimately terminating our custom application.

Chapter 7 AWS Lambda, VPC and Direct Connect

We have already talked through two of the three compute services

that we said we would be covering in this chapter, and that

would be Amazon EC2 and AWS Elastic Beanstalk. But, now, we're

going to be introducing the third, which is AWS Lambda. Lambda

is different in that it lets you run code without provisioning or

managing servers, and you only pay for the compute time that

you consume, and so you can run code for pretty much any type

of application or service, all with zero administration. So at a high

level, AWS Lambda does enable you to run code without

provisioning infrastructure, and, as we said, it is only charged for

usage based on execution time. the real variable when it comes to

pricing with Lambda is the amount of memory that you make

available to it, and you can choose to have anywhere from 128 to

3008 MB allocated for your functions that are running on AWS

Lambda. The great thing is, is that it integrates with many AWS

services just out of the box. For example, the work with things

like S3 and DynamoDB is just automatic once you configure it.

And because of that, it can enable what we would call work flows.

So, you could say something like when I upload a file, I want you

to execute this function. This is the primary service in terms of

compute for the serverless architecture approach, and we'll be

talking more about serverless later within this path. , let's look at

some advantages for Lambda. First of all, there are reduced

maintenance requirements, so you don't have to worry about

those underlying servers and keeping them up to date. In this

case, AWS owns that for you. Also, it enables fault tolerance

without you having to build it in. So this concept of running

across multiple availability zones and making sure that no single

point of failure can take down your application, well that's just

built in to Lambda. Also, its scales based on demand, so

irrespective of the number of users you have that are using your

lambda function, you can k that it will scale. And your pricing is

based on direct usage, whereas with EC2 if you have a server up

and running and let's say it supports 1000 people and you only

have 10 people using it, you're having to pay for that whole

server, but with Lambda it truly maps to usage because it's only

going to charge you based on the usage that you have. Now

we're going to walk through three different scenarios that will help

you gauge how well you have absorbed the information that we

have presented within this chapter. So first of all, we're going to

be looking at Kate, and her company is in the process of moving

multiple workloads into AWS. And one of those workloads is an

application that will be leveraged for at least five more years. This

is just a core business application that her company will be

leveraging for the foreseeable future. However, they're looking to

be as cost efficient as possible for this EC2 usage. So for them,

what EC2 purchase option should be chosen for the application?

Next we have Danny, and he's looking to deploy his PHP web

application to a virtual server, but he doesn't have experience

managing EC2 instances on AWS. He does need the ability to

scale, though, because he does think this application is going to

be pretty popular. So for Danny, what is the best compute option

for him based on this criteria? And our third scenario; Sophia's

company is transitioning to the cloud for its data processing

workloads. These workloads happen daily and can start or stop

without a problem, so they're configured to handle that. The

workload will be leveraged for at least one year, so for Sophia,

what EC2 purchase option would be the most cost efficient

choice? Compute services are at the heart of any cloud platform,

and we have introduced three different compute approaches on

AWS in this chapter. So here's what we've gone through. First, we

introduced Amazon EC2 and its capabilities. We also explored

different pricing approaches for EC2 instances. Then, we

introduced the capabilities of AWS Elastic Beanstalk, as well as

reviewing use cases for Elastic Beanstalk. And then finally, we

introduced AWS Lambda. Let’s go back and take a look at the

three scenarios that we presented before. So first we had Kate,

and she was looking to move a workload over that was going to

last for at least five more years, and her organization was looking

to be as cost efficient as possible. So what purchase option

should she choose? Well in this case, we would look at an all

upfront reserved for three years. In this case, we can maximize

the cost savings by having a reserved instance and paying for it

all up front. Next, let's look at Danny. For Danny, he was looking

to deploy his web application, but he doesn't have experience

working with EC2 directly, so what should he do? So in this case,

Elastic Beanstalk would be the best choice for Danny. Elastic

Beanstalk supports PHP, and it also handles things like scaling

out of the box, and it doesn't require manual configuration for

that. So Danny could get pretty far by leveraging that platform.

Let’s look at the third scenario. Here, we're talking about Sophia's

company, and they're transitioning to the cloud for its data

processing workloads. And the question is, what EC2 purchase

option would be the most cost efficient choice? While you're

looking at this here, you might be looking at the line that says

this workload will be leveraged for at least one year and think, ah,

exactly, this is about reserved instances, but it's not. The solution

here is spot instances. Why? Well, because this workload can start

and stop without a problem. So any time you see anything about

starting and stopping a workload without a problem, and it's

going to talk about the most cost efficient choice, the solution is

always going to be spot instances, because spot instances are by

far the most cost efficient way to leverage EC2; however, it can't

work with an application that can't start and stop on demand. So

in this case, spot instances would be the best choice for Sophia's

company. Now, we're going to be talking through the content and

network delivery services on AWS. And when we're talking about

these services, we're really primarily talking about six different

services, and that includes Amazon Route 53, Amazon VPC, or

Virtual Private Cloud, AWS Direct Connect, Amazon API Gateway,

Amazon CloudFront, and Elastic Load Balancing. First of all, we're

going to be introducing the concept of virtual private clouds on

AWS, and then we'll be understanding the purpose of AWS Direct

Connect, when you would use it and why it's important. Then,

we're going to be examining DNS utilizing Amazon Route 53. We'll

then be reviewing Amazon CloudFront, which we talked about

briefly when we were talking about the AWS global infrastructure.

And then we'll be reviewing API Gateway. And finally, we'll be

introducing Elastic Load Balancing and some different scaling

approaches on AWS. First, we're going to be talking about

Amazon VPC and Direct Connect. When we're talking about a

virtual private cloud, or VPC, really what we're talking about is a

logically isolated section of the AWS cloud, and this is where you

can launch your EC2 servers in that area and k that it is just

your slice of the cloud. And this is a virtual network that you

define and you can configure. When we're talking about VPC,

there are a couple of things to note here. First of all, it does

enable you to have a virtual network in AWS. You don't have to

be a networking guru to be able to pass your Certified Cloud

Practitioner exam, but you do need to understand what a virtual

private cloud is. But for those of you that want to dive a bit

deeper, let me tell you that within a virtual private cloud, you can

support both IPv6 and IPv4 addresses, and those are just different

standards that we have for the addresses that our computers have

on the networks that they're on. And you can configure an IP

address range, subnets, route tables, and network gateways. Again,

you don't have to know all of those details for the exam, but if

this is an area of interest, you should know that you can

configure all of these things within your VPCs. In addition, it does

support both private and public subnets, so if you want to have

areas that can't communicate or can't be reached from the

internet, you can do that. If you want to have areas that are

accessible to the internet, for example if you have a web server

that you want to be available, you can do that here as well. If

you do have private subnets, you can use network address

translation, or NAT, for those private subnets, and there are

multiple ways that you can actually establish a connection to your

datacenter, and we'll talk about one of those shortly. And, you can

connect VPCs to each other. So you can have what we call

peering connections or use transit gateway to be able to connect

multiple VPCs. You also can have private connections to many

AWS services. Let me explain why that's important. If you want to

be able to make sure that your sensitive application doesn't have

to send traffic through the internet, that can just stay within your

VPC, there's a way to do that, even when you're using specific

AWS services. Next, we have AWS Direct Connect. This is a

service that makes it easy for you to establish a dedicated

network connection from your datacenter to AWS. So let's say, for

example, you have a business application that uses application

data that's stored within your datacenter, but the application itself

is running on AWS. Well, it would be ideal to have a connection

between your datacenter and AWS directly, as opposed to having

to send it through the internet. And that's what AWS Direct

Connect provides for you.

Chapter 8 Amazon Route 53 & Elastic Load Balancing

Now we're going to talk about Amazon Route 53, and this is

Amazon's DNS service. And we'll talk more about what DNS

means shortly. But if you remember, we have already mentioned

this service. This is one of the two services that leverage AWS's

edge locations within their global infrastructure. But at a high

level, Amazon Route 53 is a domain name service, as we

mentioned, and it's also a global service, which we also had

mentioned previously. That means that it is not a regional service,

that means any changes that you make are applied globally. Next,

it's highly available, which means this service is going to have

minimal, if any, downtime. In addition to it being highly available,

it enables you to create highly available services, and we'll actually

give an example of that shortly. Next, it enables global resource

routing. So you could actually send people to a specific server

based on what country they're coming in from. Or, in addition,

you also could say I want to send them to the server that

responds the fastest. What is DNS? DNS is really just a process

by which we can map domain names, like pluralsight.com or

amazon.com, to the specific addresses that are needed for

identifying the computer services and the devices that are going

to serve that content. So this is the connective tissue between

those domain names and those IP addresses. When we look here

at the console utilizing Route 53, as we've mentioned before, it is

a global service and it does not require region selection. That

means that any changes that you make here within the Route 53

pluralsight.com
amazon.com

console are applied globally. But you do need to know that DNS

changes are not instantaneous.

It does need to what we call propagate those changes throughout

the network of DNS servers around the world. So it might take a

couple of hours for some of your changes to be realized for

everyone. So let's give an example of how Route 53 can enable

you to have a highly available application. So in this case, we

have an ecommerce site, and it is currently hosted in US East 1,

which is in Northern Virginia. And we have users from all over

the globe that actually leverage this site. In this case, we have a

customer that's coming in from South America, and when they

access the site, normally it's going to route them to US East 1

and everything works great; however, what happens if our server

goes down in US East 1?

Let's say we deploy a bad configuration, and that actually goes

down. Well, what do we do? Well, we can configure Route 53 to

have a failover so that if it can't reach its primary server, it can

then route users to a new server. In this case, we can route them

to EU West 1, which is in London. And in this manner, the user

doesn't have to k that anything has changed, but we're routing

them to a server that can fulfill their requests because we have

that failover in place. And that's just one of several ways that we

can utilize Route 53 to create highly available applications. Next,

we're going to talk about a service called Elastic Load Balancing.

And this might be a term that you're familiar with because we did

introduce earlier the concept of elasticity. And just as a reminder,

it is the ability for infrastructure that's supporting an application

to grow and contract based on how much it is used at a point in

time. Well, one aspect of that is how we actually route users to

the correct infrastructure. And that's where Elastic Load Balancing

comes in. So what Elastic Load Balancing does, in essence, is

that it can distribute traffic across multiple targets. So at a really

high level, if we have users that are coming to our web

application and we have two servers, it can choose to route the

users between those two different servers based on the load of

each of those servers. So by default, it will integrate with EC2,

ECS, which we haven't yet talked about, but this is AWS's

container service, so for running Docker containers, and Lambda.

So it supports one or more availability zones within a region. So

you could say, for example, we want to have our customer

website running across three different availability zones, and we

want to have servers that exist in each availability zone. And then

we can leverage Elastic Load Balancing to distribute users to the

right servers in one of those three availability zones. There are

three types of load balancers. We have Application Load Balancers,

or ALBs, Network Load Balancers, which you'll hear called NLBs,

and we have Classic Load Balancers, and in some cases, those

will just be referred to as either classic or ELBs. Next, let's talk

about the process of scaling, specifically with Amazon EC2. And

we will be diving down into this quite a bit deeper in a later

book within this path, but at a high level, we have a couple of

choices when we need to scale our servers on EC2. So the first

here is what we call vertical scaling. This is when you scale up.

So note here that vertical scaling and scale up are talking about

the same approach. We scale up our instance type to a larger

instance type with additional resources. So let's say we were using

a t3 medium instance type, and let's say that we just noticed that

our users are hitting that server pretty hard, and it's not

responding as quick as it needs to, and it's even dropping the

connection for some of our users. Well that's not a good thing,

we need to address that. And sure, we could go in and say that

we want to get a larger server, we could do something like an

m4 xlarge, but if we do that, we're going to have to shut our

server down, and then we can add those additional resources to

it by changing the instance type, spin it back up, and we're able

to meet our customer's need. However, that's usually not the best

way. The best approach is what we would call horizontal scaling,

or scale out. And again, remember here that horizontal scaling

and scale out are talking about the same approach. This is where

we leverage Elastic Load Balancing and we add additional

instances to handle the demand of the application. So in that

case, maybe we have a t3 medium server, and maybe then we

just add two more t3 medium servers, and then we rely on

horizontal scaling with the Elastic Load Balancer to actually handle

the process of routing our users to the correct server. Later, we're

going to tie this together with EC2 and talk about how you can

leverage auto scaling groups alongside Elastic Load Balancing to

make this work.

Now, we're going to talk about two additional AWS services, and

those are going to be Amazon CloudFront and API Gateway.

We’ve mentioned CloudFront before. This is a service that

leverages the edge locations within the AWS global infrastructure.

And it is a content delivery network, which means that there are

servers around the world that you can send your content to. And

why would you do that? Well, because it enables your users to

get content from the server that's closest to them, which will

increase performance. It also supports both static and dynamic

content. Many people think about content delivery networks only

serving static content, like images and videos or even specific text,

but in this case, you can also configure it to support dynamic

content. And it also utilizes the AWS edge locations that we've

mentioned, which we also noted were the most prevalent form of

the AWS global infrastructure. It also includes several advanced

security features, and those include things like AWS Shield, which

handles distributed denial of service attacks and their web

application firewall. Within a later book in this path, we'll be

diving more into security and understanding how that factors in

to your use of CloudFront. But just as a reminder, there are edge

locations that exist globally, so this gives you the power to take

your content and distribute it globally within just a matter of

minutes. So next, let's talk about another service, Amazon API

Gateway. API Gateway is a fully managed API management service.

This means that you can create APIs, which are just web services

that then other applications can call, and you can make those

available. And you can actually distribute those through

CloudFront. It directly integrates with multiple AWS services,

including several of the services that we have learned about so far

within this book. It also gives you concepts like monitoring and

metrics on your API calls so that you can understand how your

APIs are being used and also debug them if they're not working

properly. You can also integrate this in with both VPC and private

applications, so it doesn't just have to be for public API calls. So

next, we're going to discuss a service called the AWS Global

Accelerator. And according to AWS, this is a networking service

that sends your user's traffic through Amazon Web Services' global

network infrastructure, improving your internet user performance

by up to 60%. Let’s talk for a minute about how that's possible.

So, first of all, Global Accelerator and one of the ways it's

different from a solution like CloudFront is that it does utilize IP

addresses, and in this case it still uses edge locations like

CloudFront, but it's actually using it from IP resolution instead of

DNS. So, once the user reaches the edge locations, instead of

routing traffic with the user request through the public internet,

once they reach those edge locations, no matter where you're

resolving it to, it's going to route that traffic through the AWS

network and not the public internet. And it can route requests to

many different AWS resources, and that includes things like a

network load balancer, or NLB, an application load balancer, or

ALB, or even just EC2 instances, or maybe you've just assigned

an elastic IP address to some type of AWS infrastructure, you

could use that as well. Let’s talk about the different performance

improvements that are possible with Global Accelerator. First of

all, the distance between that user request and the initial endpoint

is going to be minimized because it's using edge locations. This

is also true when you're using something like CloudFront. Traffic is

going to be optimized by using the AWS network instead of the

public internet with that resolution. And what this does is it does

result in improvement in that first byte latency, the jitter, and the

throughput. So overall, the request is going to be more efficient,

and it does also provides superior fault tolerance by not relying

on DNS resolution. And let me speak to this for just a minute.

So with most solutions, what can happen is that we use a

hostname, and that hostname, the IP address, might get cached.

So if you're using something like Route 53 for failover, what

happens is that if the client remembers an old IP address and it

needs to fail over to a new region, for example, in some cases

that switchover might not be seamless. But here, because of

Global Accelerator, we are using resolution so it is able to make

that transition seamlessly. So let's talk about when you would

consider AWS Global Accelerator, especially over a solution like

CloudFront, because they are similar. First of all, if you're using a

protocol, things like UDP, MQTT or VOIP, so you might be using

UDP in a gaming context or in a video/audio type context, with

MQTT, you might be leveraging this for devices. And then VOIP if

you're doing, again, internet telephony. If we look at another use

case, and that's going to be if you have a situation that requires

a static IP and not a resolution, then in this case you're going to

need to use Global Accelerator. Also, if you need instant failover

with the highest level of high availability, then in this case you

would certainly want to take a look at the AWS Global Accelerator.

Now, we're going to walk you through some scenarios so that you

can see how you have mastered the content that has been

presented within this chapter. So first of all, we're going to look

at Jack, and her company maintains two different corporate

datacenters, and they want their datacenters to work directly

alongside AWS for specific workloads. So in this case, they

probably have some data that's stored within their own datacenter,

but they want to have some public applications on AWS, and they

need to have those public applications to be able to communicate

with their datacenter. And so she's wondering if there's any way to

have a persistent connection to AWS because she's worried about

just sending everything out on the public internet that that could

potentially be slow, and ideally, she'd like some of this

communication to happen kind of behind the firewall. So, what

service from AWS would you recommend that her company

implement to meet these criteria? Next, we're going to talk about

Tim, and his company is looking to serve content through their

site to users all around the globe. And they're looking to optimize

their performance to users around the world. They want to

leverage a content delivery network. Previously, we asked what

element of the AWS global infrastructure Tim would be leveraging,

but in this case, we're going to get even more specific and we're

going to ask the question, which service would enable optimized

performance globally for this company's content? We've got one

more scenario. Here, we're going to be looking at Elise, and her

company has an internal application that runs on an EC2 server.

Currently, there is some downtime because demand is greater than

capacity for the server. So, for example, the server could probably

handle about 150 users without fail, but in this case we have up

to 200 simultaneous users. So this is a problem. So here, Elise is

trying to decide if she should use bigger servers, so in essence

changing the instance type, or more servers, so more servers of

the same kind that they already have. So, which scaling approach,

based on the ones that we've discussed, would you recommend

for Elise's company? And then what services should they use

alongside that approach? So we'll cover these answers next. Let's

quickly give an overview of what we've learned, and then we'll

dive into the scenarios that we discussed in the previously. So

first of all, we introduced virtual private clouds on AWS. We also

understood the purpose of AWS Direct Connect, which gives you

that direct connection between your datacenters, your office

locations, and AWS. We examined DNS with Amazon Route 53.

We understood what DNS does and how Amazon Route 53 can

help us build highly available applications. And then we reviewed

Amazon CloudFront, as well as API Gateway. And then finally, we

introduced Elastic Load Balancing and the different scaling

approaches that you can take when you're leveraging it. Let’s look

back at our scenario with Jack. So Jack's company has two

different corporate datacenters, and they're looking to have their

datacenters work closely with AWS. So, what service from AWS

would you recommend for her company? Well in this case, AWS

Direct Connect is a great fit. They can build direct connections

between their datacenters and AWS, which means that that traffic

does not have to go over the public internet. That also means

that a lot of this communication it can happen behind the firewall

for them. Next, we're going to talk about Tim, and his company

serves content through their site to users all around the globe,

and they really are looking to optimize performance. And they

want to leverage a CDN, or content delivery network, so what

service would optimize that performance globally? Well, in this

case, this would be Amazon CloudFront. That is the content

delivery network that is present on AWS. So any time you hear a

question on the exam talking about a content delivery network,

think about Amazon CloudFront and how that could help the

users that are leveraging that service. So next we have Elise, and

her company is running that internal application on an EC2 server

and they're having the downtime. So which scaling approach

would you recommend? Well, in this case, we would recommend

horizontal scaling, or scaling out, using Elastic Load Balancing.

This is preferable over using just bigger servers because it can

handle whatever future load you can throw at it. However, if you

get bigger servers, it's possible you're just going to have to take

those servers down again and make them even bigger. We went

to limit downtime, and we're going to do that by taking a

horizontal scaling approach. And by using Elastic Load Balancing,

we can make sure that we are routing users to the best server

for them to use.

Chapter 9 File Storage Services & Hosting Amazon S3

Now, we're going to be talking through file storage services on

AWS, and that means that we're really going to be looking

primarily at six different services. And these are going to cover

both file storage, but as well as data transfer. And so first of all,

we'll be looking at Amazon S3, and this is one of the core AWS

services. And then, we'll also be looking at Amazon S3 Glacier.

We'll then be looking at Amazon Elastic Block Store, or EBS,

Amazon Elastic File System, or EFS, as well as AWS Sball and

AWS Smobile. So that's what we're going to cover. But let's talk

about how we're going to cover that within this chapter. So first

of all, we will be reviewing the overall storage services that are

available on AWS to help you understand the ecosystem. But then,

we will be doing a deep dive on Amazon S3 and its capabilities.

Because it is a core service, it will be important to understand

many aspects of this service. Then, we'll actually be implementing

a static web site using Amazon S3. Then we'll be exploring the

different archive capabilities that are present with both Glacier and

Glacier Deep Archive. Next, we'll be looking at EC2 storage, and

we'll be looking at that storage with both the Elastic Block Store

and the Elastic File System. And then finally, we will be examining

data transfer into AWS. First, we're going to be talking about

Amazon S3, and Amazon S3 is a core AWS service. It is the first

service that I ever leveraged on AWS, and chances are if you've

leveraged the platform at all, you have used Amazon S3 at some

point. , Amazon S3 at a high level lets you store files as objects

inside of buckets. Buckets are the unit of organization within S3.

You will create a bucket, it will have a set of settings, and then

any file that you drop in can have those settings applied to it. It

provides different storage classes for different use cases, and we'll

dive through those storage classes in just a bit. It allows you to

store data automatically across multiple availability zones, which

gives you durability and resiliency for your data. Another great

feature of S3 is that it enables you to have URL access for your

files. So if you want to be able to send a link to someone else

to access a file within S3, assuming the permissions are correct,

you can actually do that. And it also offers configurable rules for

data lifecycle so if you want something to expire after a period of

time or go to a different storage class. It also can serve as a

static web host, and we'll actually be implementing that later

within this chapter. So next, let's talk about the storage classes for

S3. As a note here, we will cover the archival storage classes later

on. So first of all, we have S3 Standard, and by default, if you

upload a file to S3, it will have the S3 Standard storage class.

Then, we also have S3 and this is a special storage class that will

allow you to move your data to a correct storage class based on

usage. And we'll talk more about shortly. Then, we have S3

Access. So, if you have data that is not frequently accessed, you

can get a lower cost by utilizing this particular storage class. it

still has the standard resiliency because it leverages multiple

availability zones, but we also have S3 One Access, and this is for

data that is not frequently accessed, but it is only stored within

one availability zone. So you get a much lower cost point than

you do with the other options; however, you do have less

resiliency. So let's talk about , is the only way that you can

automatically move data between different storage classes based

on access. And within this overall storage class, it has two

different classes associated with it. The first is frequent and the

second is infrequent, so it will move your data back and forth

between those two different classes. It gives you pretty much the

same performance as what you get with S3 Standard, but it can

provide a cost savings if you have some data that needs to be

moved between those different storage classes. Next, let's talk

about the S3 lifecycle policies. This is an approach that allows you

to transition, based on your own custom criteria, the objects in

your bucket. Transitions in this case can enable objects to move

to another storage class based on time. It’s important to note

here, you can't move something back and forth based on usage,

that's only available with but you can do it based on time. And

you also can delete objects with expiration based on age. So if

you want a certain file to only last for 30 days, for example, you

could configure that also using lifecycle policies. Policies can also

factor in the concept of versions for an object within the bucket.

So S3 does support versioning of data, and you could say

something like, for example, delete a version of a file that's not

the current version after seven days. So those are different things

that you can configure utilizing S3 lifecycle policies. One additional

concept here for S3, and that is the concept of S3 Transfer

Acceleration. So this is a feature that enables you to upload data

into your bucket much faster, and it does it by utilizing the AWS

edge locations as a part of Amazon CloudFront. So if you need to

upload your data in a fast and efficient way into your S3 buckets,

you can consider utilizing S3 Transfer Acceleration. Next, we're

going to walk through the process of hosting a static website on

Amazon S3. And so over the book of this demo, here's what

we're going to be doing. First, we're going to be creating a new

S3 bucket from within the AWS console, and then we'll be

uploading objects to that S3 bucket. After that, we'll be accessing

objects from the S3 bucket using a URL. And finally, we will be

configuring a bucket for website hosting. So I've logged into the

console and I'm going to navigate to S3. I'm going to choose to

search for it, and then we'll select S3 to go to the S3 console.

And from here, the first thing I'm going to do is I'm going to

create a bucket, so we'll hit Create bucket.

The first thing we need to do is give the bucket a name. You’ll

need to choose your own unique name. S3 buckets do need to

have unique names, even across accounts. So now that I've

entered in a bucket name and I have the region selected, I can

hit Next.

From here, we have additional options that we can configure for

our bucket, including versioning, but I'm going to choose to not

set any of these values. We can hit Next.

From here, we have to specifically enable public access. By default,

AWS is trying to block all public access. This is because

organizations that put sensitive data into S3, AWS wants to be

sure they don't accidentally enable public access to one or more

files. So by default, they're telling everyone that the buckets need

to block public access.

But in this case, because we do want to allow public access into

our bucket, we're going to choose to deselect this. It’s important

to note, this doesn't change the permissions for the data you put

into your bucket yet, it just gives you the option to make items

public. So I'll go ahead and hit here that I acknowledge this, and

then we'll hit Next.

Once we see the information here for our bucket and everything

looks correct, we can hit Create. So now that we've created our

bucket, we can scroll to it and we can click on our bucket. From

within here, we can go to upload files, so I'll hit Upload. We

need to select the files, and I'll go in and select the files that I

want to upload. We'll go ahead and select both of them, and we

need to go through the wizard for uploading files. We can go

ahead and hit Next here. The first step is to set permissions, and

at this point we're not going to change any of the permissions,

so we can go ahead and hit Next. We have the opportunity to go

in and set the properties for those uploaded files.

You'll see first, we can go in and set the storage class, and we

can see here the different storage classes that we have discussed

for S3. We'll choose to leave it at S3 Standard for. But, once we

go down to Encryption, I'm going to select Amazon S3

This will help us make sure that the data is encrypted at rest that

we're uploading into the S3 bucket. We can hit Next. Once we

look at the data here, if everything looks correct, we can hit

Upload. We have two objects that have been uploaded into our

bucket. We can see here when we click on it, it presents us with

an object URL. Everything within S3 you can access via a URL. So

if I open up a new tab and I try to go to that URL, we'll see

here that we get an AccessDenied message. That's because we

haven't actually changed the permissions on our object yet.

So I'm going to go back to the console, we'll choose to scroll

down here and go to Permissions. From within permissions, we're

going to scroll down to where it says Public access. We'll then

click on Everyone and we will say Read object. So this will give

everyone read access to this particular object from within our

bucket. I'll hit Save.

Once this is in place, I should be able to go back to the tab we

were on previously and reload. When I do, we should be able to

see the website that was included within the files that were

uploaded into the bucket. We’ll navigate back to the Management

Console tab. From within here, we're going to go back to our

bucket. From within the bucket, we're going to go under

Properties. We're going to enable the option for static website

hosting, so I'll click on Static website hosting.

From here, we're going to say that we do want to use this bucket

to host a website. The first thing we need to do is we need to

enter the name for the index document for our site, which in this

case will be index.html. We also can choose to go in and enter a

custom error document.

This document will be shown every time the bucket needs to

throw an error, for example a 404 error, which means they're

trying to access a file that isn't included within the bucket. In that

case, it would serve this error document, but we're not going to

enter an error document for. We also have the option to go in

and use the redirect rules. So, for example, if we wanted to

redirect someone from index.htm to index.html, we could define

those rules here, but we also aren't going to add any of those.

We can hit Save. Once we do, we can see here that Bucket

hosting is enabled. So if we click back on Static website hosting,

we can see here that it gives us a unique URL. So we're going to

click on this link to launch our site, but if you remember, we

haven't yet set any permissions for our index.html file. So when

we click on this, we should see, indeed, we do have a Forbidden

message.

So let's navigate back into the console, let's go back to our

bucket, and let's go to our index.html file. From within here, we

should be able to go down to Permissions, we can go in for

everyone, and we can choose to give everyone read access to the

object, and then hit Save.

Once we have that in place, we should be able to go back to the

tab where we had loaded in the specific URL that was given for

static website hosting, and reload this.

And when we do, we can see that we have indeed loaded our

index.html file and we're pulling in both the index.html file that

we uploaded within the bucket. You've been able to create a

bucket, upload files into that bucket, configure access for the

objects within the bucket, and then ultimately enable static website

hosting for the contents of that bucket.

Chapter 10 Glacier Deep Archive & Elastic Block Store

Next, we're going to be talking through Glacier and Glacier Deep

Archive. So at a high level, Amazon S3 Glacier is designed for

archiving of data within S3 as a separate storage class. Let’s talk

about what that means. Let's say, for example, that your company

needs to hold onto payment information from your customers for

one year or for three years. In those cases, you need to have

somewhere to store it, and you need to be able to produce that

data for legal or compliance reasons, but you're not generally

going to go in and access that on a regular basis. That is a great

use case for archiving data within S3 using Amazon S3 Glacier.

The way that this works is that it offers configurable retrieval

times. So with this data, you won't be able to retrieve it right

away, but you can choose to either retrieve it quickly or retrieve it

less quickly, and you'll pay different based on the choice that you

make. You can send files directly, or you can actually utilize the

lifecycle rules in S3 to transition data into S3 Glacier. It does

provide two different storage classes, being S3 Glacier and S3

Glacier Deep Archive. Let's quickly compare these two different

options. So first of all, S3 Glacier. It's designed for archival data,

and it has a minimum storage duration change. So, we wouldn't

just store data here for a week or for a month. In this case, it

needs to be at least 90 days, and it can be retrieved in either

minutes or hours. This is where you pay based on the decision

that you make, you would have a higher cost to retrieve in

minutes over hours. You do pay a retrieval fee per gigabyte

retrieved. So in this case, in addition to the storage cost, you do

pay to retrieve it. , it will be about five times less expensive than

using the S3 Standard storage class, so there is a compelling

reason to utilize this if you do have data that you k you won't

need to access at all except for rare circumstances. Then we have

S3 Glacier Deep Archive, and this is also designed for archival

data. But in this case, it has a minimum storage duration change,

so you're going to want data here for basically about half a year

at minimum. And in this case, it can be retrieved in hours, so we

don't have the option to get it back in minutes like we do with

S3 Glacier. Here, you also pay a retrieval fee per gigabyte that you

retrieve. But in this case, it is over 23 times less expensive than

the S3 Standard storage class. So in this case, the AWS

Management Console can be used to set up S3 Glacier; however,

when we're looking at uploading and retrieving data, this is where

you're going to be using the programmatic approaches, so either

utilizing the CLI or using the SDKs. This is one of those

situations that I alluded to earlier where there are certain things

you can't do within the console that you can do within the other

interaction methods.

So next, we're going to talk about Elastic Block Store, or EBS. But

before we get too deep into EBS, let's take a look at some

different approaches that we have for file storage within Amazon

EC2. The first is Amazon EBS, which is persistent block storage

for use within Amazon EC2, and that's what we're going to be

covering. But the next option is Amazon EFS, or Elastic File

System, which is a network file system that is designed for

workloads, and we'll be covering next. So at a high level, EBS is

block storage that's designed to be connected to a single EC2

instance, and it can scale to support petabytes of data and also

support multiple volume types based on what you need. So let's

quickly give a overview of EBS. So first of all, it does enable

redundancy within an availability zone. This way, you can make

sure that your data is durable. It also allows users to take

snapshots of its data. So if you have data that you want to have

on a drive attached to your EC2 instances, but you do want to

periodically take backups of this data, EBS can be a compelling

choice. It does offer encryption of its volumes, but it doesn't

necessarily encrypt things by default. You do need to make sure

that is a step that you take if you're leveraging EBS. It also

provides multiple volume types, including General Purpose SSDs,

Provisioned IOPS SSDs, Throughput Optimized hard disk drives,

and Cold hard disk drives. And we're going to review each of

those volume types at a deeper level. So first of all, your General

Purpose SSD is a cost effective type that is designed for general

workloads. But if you have a more intense use case, you might

want to take a look at Provisioned IOPS SSDs. So this is a

situation where you're looking at volume, but you really need a

low latency. We also have Throughput Optimized hard disk drives,

and this is designed for frequently accessed data. But, if we have

situations where we have less frequently accessed data, we might

want to consider the Cold hard disk drive volume type.

So next, we're going to talk about Elastic File System, or EFS.

Previously, we talked about Elastic Block Store, or EBS, as one

approach for attaching storage to an EC2 instance. And here, this

is going to be the other option. So here, for EFS, first of all, it's

important to note that it is a fully managed NFS file system, and

it is designed specifically for Linux workloads. , similar to EBS, it

supports up to a petabyte scale. So we're talking here about

petabytes of data. It also can store data across multiple availability

zones, so you get some of that durability by default. It provides

two different storage classes, the first being Standard and the

second being

And it can provide configurable lifecycle data rules so you can

transition between those storage classes. Let’s quickly take a look

at an example of how we could leverage Elastic File System, or

EFS. So here you can see an example where we have two

different EC2 instances, one in availability zone A and one in

availability zone B. And in this case, Elastic File System is working

across both of those availability zones and has a mount point

within each availability zone. So unlike EBS where we're targeting

attaching a volume to a single EC2 instance, Elastic File System

has an ability to be a network file system that you can attach to

multiple instances at the same time. If you're running Windows

workloads on AWS, one option you need to be familiar with is

Amazon FSx for Windows File Server. And it is a fully managed

native Windows file system, as opposed to being a Linux file

system like we saw with EFS. And it includes native Windows

features, and this includes things like SMB support, Active

Directory integration, and support for Windows NTFS. And it also

utilizes SSD drives for low latency.

Chapter 11 Data Transfer with AWS Sball

Next, we're going to talk about how you actually get large

amounts of data onto the AWS cloud, even if you don't want to

put it over the public internet. And one of the ways that we can

do that is by leveraging the data transfer services that are

provided with AWS. The first is AWS Sball, and this is a service

where you want to physically migrate petabytes of data onto the

cloud. But if that's not enough, there's even another service called

AWS Smobile, and this is a service if you physically want to

migrate exabytes of data onto the cloud. So let's compare these

two options. First of all, we have AWS Sball, and it is designed

for data transfer, and as we mentioned, it supports petabyte scale

in terms of data. In this case, it is going to be a physical device

that is delivered by AWS to your office location, and you can

actually connect this to your network and then upload your data

from within your network. When you return it, it's going to be

returned by a local carrier back to AWS, and then when they get

the device, they're going to load your data into S3. And so that's

how AWS Sball works. , AWS Smobile is a little bit more intense.

First of all, it is also designed for data transfer, but in this case

it supports exabyte scale. It is a ruggedized shipping container,

and it is going to be delivered to your location. A shipping

container like one that's pulled by a truck. This is rather large,

and this is for some more extreme type scenarios. AWS will be

there to set up a connection from your network to that shipping

container, and then it actually loads your data onto the Smobile,

and then AWS will work to be sure your data is then loaded into

S3 when that shipping container is received back at AWS and they

can do multiple trips to get, again, exabytes of data. Now, we're

going to talk through some example scenarios to see how well

you've absorbed the material that we have presented within this

chapter. And then, we're going to be walking through the answers

to these scenarios. So, here is our first scenario. We have Elaine,

and Elaine has launched a site that offers daily tutorials for

developers. And she uses S3 to store the assets that are needed

per tutorial. These assets are very popular within the first week

that the tutorial is launched, but then, you know what, after this

initial week, these assets are rarely accessed. So, how could Elaine

reduce her S3 costs while maintaining durability? Next we have

Rob, and Rob works for a social networking company, and they

are moving to AWS. As a part of this transition, they have about

2 PB of content that they need to migrate into the cloud. He’s

trying to determine if there is a faster approach than uploading

over the internet, because that is just going to take too long. So

in this case, would there be another approach you would

recommend for Rob's company? Finally, we have Bianca, and

Bianca works for a company that produces a messaging app. And

she's looking for a shared file system that'll connect to eight

different Linux EC2 instances. The file system would need to

support 1 PB of data, so what approach would you recommend

for Bianca? We have looked at several different services over the

book of this chapter that have to do with both file storage and

data transfer. So, let's quickly review what we've covered before we

dive in and take a look at our scenarios. So first of all, we were

able to review the different storage services that are available on

AWS. As a part of that, we examined Amazon S3 and its

capabilities. We also implemented a static website on Amazon S3.

We then explored the archive capabilities within Glacier and

Glacier Deep Archive. We reviewed EC2 storage, leveraging both

EBS and EFS. And then, we also examined the data transfer

services that are available on AWS. So, let's review our scenarios.

So first of all, we had Elaine, and she was trying to determine

how she could reduce her S3 costs while maintaining durability.

Well, what's the answer for her? Well in this case, it would be to

use S3 lifecycle rules with S3 Access. So let's break that down.

First of all, she could use S3 lifecycle rules because in this case,

the assets are only popular within a week of when they are

released, so she could define a policy that would change storage

classes for the data after seven days of when they are placed

inside of the S3 bucket. And then we could choose to leverage

the S3 Access storage class because that data is not frequently

accessed, but we would want to stick to this storage class and

not one zone Infrequent Access because we do want to maintain

the durability of the data. Next, let's look at Rob. And so what

approach would you recommend for him to get 2 PB of content

into the cloud? Well in this case, it's going to be AWS Sball. If

we look here, we're looking at 2 PB of data. If we were looking at

exabytes of data, AWS Sball wouldn't work. We would need to

look at AWS Smobile. But because we're still dealing in petabytes,

this would work just fine. So next we have Bianca, and Bianca

was looking for a shared file system that would work between

eight different Linux EC2 instances and would need to support up

to 1 PB of data. So what approach would you recommend? Well

in this case, it would be Amazon Elastic File System, or EFS. But

note that there are a few conditions that need to be true before

we can choose EFS. First of all, it needs to be for Linux

instances, and in this case, it is. Also, it needs to be in petabytes

of data or less, and not in exabytes of data. So it seems like

both of these criteria are met, and EFS would be a great

candidate for Bianca.

Now, we're going to be talking through the database services and

utilities on AWS. At a high level, the services we're going to look

at are, first, Amazon RDS, and then Amazon Aurora, Amazon

DynamoDB, Amazon Redshift, Amazon ElastiCache, and the AWS

Database Migration Service. It’s important to note here that we're

talking about several different types of services. So if we go back

to our cloud computing models that we talked about previously,

we talked about Infrastructure as a Service, Platform as a Service,

and Software as a Service. With Infrastructure as a Service, this is

the approach that gives us maximum control. But another option

gives us minimum maintenance. So if we look at this, if we want

to take the Infrastructure as a Service approach to databases on

AWS, we would just take an EC2 server and we would deploy our

database onto it. So, if you are a DevOps engineer, for example,

and you want to have complete control over the OS that your

database is running on, then you could utilize EC2 directly.

However, maybe you want to have control over your database, but

you don't need control over the underlying infrastructure. In that

case, you could look to leverage Relational Database Service, or

RDS. But then we'll also be talking about some different Software

as a Service approaches that are available on AWS, like, for

example, DynamoDB, ElastiCache, and Redshift. So, we're going to

be talking through these services. First of all, we'll be reviewing

the cloud computing models for databases on AWS, and then

we'll be introducing the Relational Database Service, or RDS. Then,

we'll be examining the capabilities of Amazon Aurora, which is

one of the options within RDS. And then we'll be introducing the

DynamoDB service. We'll then be reviewing the ElastiCache service,

and then finally, examining how we do data warehousing on AWS.

Another core service on AWS is the Amazon Relational Database

Service, or RDS. And this takes a Platform as a Service approach

to running databases that we can leverage within our applications

that are running on the platform. So at a high level within RDS,

first of all, it's important to note that it is a fully managed service

for relational databases, and it does handle core things like

provisioning and patching, backup and recovery of your database.

These are all things that if you had to do it yourself, it would

take a fair amount of time to implement this. And then to handle

it at scale, it would take a fair amount of automation to integrate

it in, and you get this by default when leveraging the service. One

of the great things about RDS is that it does support

deployments across multiple availability zones, and it also

supports read replicas for some of the platforms. That means you

can actually scale out your databases. This can help you scale

more efficiently within the applications that are leveraging this

database. It’s important to note that when you launch an RDS

instance, it does launch into a VPC, or virtual private cloud. We

talked previously about EBS and different volume types, and here

within RDS, we have two different volume types that are available

to us. First of all, we have General Purpose SSDs, and then we

have Provisioned IOPS SSD drives. Let’s talk about the different

platforms that are supported within Amazon RDS. First of all, we

have MySQL. In addition, we have Postgres, MariaDB, Oracle, SQL

Server, and Amazon Aurora. Amazon Aurora is an option that was

actually created in the beginning to work on RDS. It is a MySQL

and Postgres compatible relational database that was built from

the beginning for the cloud. And it combines performance and

availability of traditional enterprise databases with the simplicity

and cost effectiveness of open source databases. You might be

wondering if you have a database that's running within your own

datacenter and you want to figure out how to get your data into

a service like RDS, how would you do that? Well, AWS helps you

solve that problem too. So we have the Amazon Database

Migration Service, or DMS. And what this enables you to do is to

move your data into AWS from your existing databases. And it

supports both a and a continual migration of your data. And the

great thing is, is it does support out of the box, many both

commercial and open source databases, and in this case you only

pay for the compute that you leverage in the migration process.

Chapter 12 Amazon DynamoDB, Elasticache and Redshift

Now, we're going to be diving in and taking a look at Amazon

DynamoDB, which is a very exciting service on AWS. So first of

all, it's important to note here what it is. It is a fully managed,

NoSQL database service. So fully managed in this case, this is a

Software as a Service option. Not only do you not manage the

underlying infrastructure, but you also don't even manage the

database layer, you simply use the database. In this case, it is not

a relational database, it is a NoSQL database approach, which

gives you some flexibility in terms of your schema, but also

provides some other limitations depending on how you build your

applications. And it provides both key value, and it also is a

document database. And one of the great things about it is that

it does enable extremely low latency at virtually any scale. You

might be wondering how they were able to achieve that. Well, if

you think about it, they have some great challenges to work with,

including supporting amazon.com. And so DynamoDB was built

with that kind of scale in mind. And so they were able to build a

database that could perform extremely efficiently at a very, very

high scale. And it does support automated scaling based on

amazon.com

configuration, so you can choose to have its scale based on the

predicted need that you think you're going to have, but it can

also scale automatically based on your usage. And there's also

several other additional features, like the Accelerator, or DAX,

which gives you an cache that you can use alongside the

database. We can handle more than 10 trillion requests per day

and can support peaks of more than 20 million requests per

second. And so this gives you just the scale that you can't get

with many other databases, and it's provided here in a way where

you don't have to manage any of the underlying infrastructure. So

let's talk through some of the use cases on when you might

leverage DynamoDB. Here we have scale without excessive

maintenance. This is critical. If you have ever tried to scale a

database in the cloud, it can be quite challenging. So if you have

run up to an issue where you've had difficulty scaling, DynamoDB

could be a great choice. Also, if you're embracing a serverless

architecture, DynamoDB fits into that nicely because, again, you're

not having to manage any of the underlying infrastructure or even

the database layer. Also, if you have implementations where low

latency is key, you want to be able to get responses quickly from

the database, DynamoDB is a great use case. But also, if you

have data models without blob storage, so big bits of binary data

within your database schema, if you have that, it's not going to

work well with Dynamo, but if you don't, this could be a great fit.

So next, we have two other managed services that you can

leverage on AWS, and those are Amazon ElastiCache and Amazon

Redshift. So ElastiCache is a fully managed, datastore, and it

actually has two different engines that are supported, both

Memcached and Redis, which are really the two most popular

options you could choose within datastores. It provides extremely

low latency in terms of response times, and you can include

things like scaling and read replicas to meet your application

demand. And again, you can do this without having to be able to

manage that underlying infrastructure. It handles most common

use cases, including things like database layer caching. So if

you're working with another database, even something like

DynamoDB, and you want to add a cache layer in between your

application and the database, ElastiCache could help fill that need,

and even session storage. So if you're working with a web

application that is doing sessions storage, you can utilize

ElastiCache with something like Redis to be able to get quick

responses on session data. Next, you need to be familiar with

Amazon Redshift. It is Amazon's scalable data warehouse service.

So if you're looking to do data warehousing for your user

behavior data or for your analytics data, Amazon Redshift becomes

a great choice. It supports petabyte scale, and in addition it also

leverages disks and column storage. So this gives you the ability

to beat out many traditional data warehousing solutions because,

again, this was designed with the cloud in mind. It does give you

the ability to fully encrypt the contents of your data warehouse,

and it does give you a level of isolation within your own virtual

private cloud. There are some great features that have been added

to Amazon Redshift, including Redshift Spectrum, and this gives

you the ability to query exabytes of data directly within Amazon

S3. Now, we're going to run through a few scenarios to see how

well you've done at absorbing the material we have presented

within this chapter. And so the first scenario that we're going to

look at has to do with Judit, and she is an IT executive in a

financial services company. They’re transitioning their data

warehouse to AWS to take advantage of some of the great

analysis features that are there, including some machine learning

features they want to take advantage of in the future. Their data

warehouse would need to support up to 2 PB of data, so for

Judit and her company, which approach would you recommend?

And so next, we're going to be talking about Sam, and Sam is a

DevOps engineer at a tech company, and he needs to launch a

MySQL database for a new web application they're going to start

building next month. In this case, because of some of their

security needs, they need to have direct access to the virtual

server that MySQL is running on. So, what approach would you

recommend for Sam's company? Next we have Dan, and he is the

CTO at a gaming company, and they are trying to determine how

to store user analytics. They need really low latency and the ability

to scale to handle up to a million players for this new game that

they're getting ready to launch that they know is going to be a

hit. He also wants to minimize the amount of time it takes to

maintain the database, because in the past, they've worked with

some very complicated databases to be able to get this level of

performance. But in this case, he wants to look at AWS first for a

solution. So which AWS approach would you recommend for Dan?

Next, we're going to be walking through the answers to this

scenario and take a look back at all the things we've covered

within this chapter. We have covered a lot in relation to databases

and database utilities on AWS. So let's quickly take a look back

and review what we've covered. First, we reviewed the cloud

computing models for databases on AWS. We talked about how

the concept of Infrastructure as a Service, Platform as a Service,

and Software as a Service play out through the different database

services that are available. We also introduced the Relational

Database Service, or RDS. And we talked about Amazon Aurora,

which is one of the specialty made engines for RDS that was

built by Amazon for the cloud. We then introduced the

DynamoDB service. We talked about how it is a completely

managed NoSQL database, and we talked about some of the

unique capabilities that it provides. Then, we reviewed the

ElastiCache service, as well as looking at data warehousing on

AWS with Redshift. Let's go back and take a look at the three

scenarios that we introduced previously. First of all, we had Judit,

and she is an IT executive at a financial services company and

she has a need for a data warehouse in AWS. So, what approach

would you recommend? Well in this case, the answer is going to

be Amazon Redshift. This is the data warehousing solution from

AWS. So if somebody asks you, what do you recommend for data

warehousing on AWS, Redshift is going to be the best answer.

And in addition, we need to look here and see that it is dealing

with petabytes of data. If we were talking about something like

exabytes of data, Redshift Spectrum might be an ideal option to

consider. Next we have Fiona, and Fiona was looking to launch a

MySQL database for a new web application. So what approach

would you recommend for Fiona's company? Well, let me be

honest with you. This is a bit of a tricky question. You might look

at this and say, well, I know that MySQL is supported within

RDS, so Fiona should choose RDS, but here's the problem. Fiona

says that he needs to have direct access to the virtual server that

MySQL is running on. So if she wants to manage that server

directly, RDS can't be the solution for her. So in this case, we

would be recommending EC2, and we would recommend this

because he is wanting an Infrastructure as a Service option, which

is going to be taking MySQL and installing it onto an EC2 server.

If Fiona didn't need to manage the underlying infrastructure, we

would certainly push her towards RDS because many aspects of

the platform would be managed for him. Next, let's talk about

Dan, and Dan needed a low latency database that could scale to

handle up to a million users of the new game they're building.

So, which AWS approach would you recommend for Dan? Well in

this case, DynamoDB is going to be a great choice. It can

absolutely handle this level of scale, and it can also handle the

low latency requirement, so many gaming companies have adopted

DynamoDB for requirements just like this.

Chapter 13 AWS Messaging Services

Now, we're going to look at another category of services called

app integration services. When we're talking about app integration

services, we're really talking about three distinct services on AWS.

First of all, we're talking about Amazon SNS, or Simple

Notification Service, which is a managed pub/sub messaging

service. Then, we have Amazon SQS, which is a managed

message queue service. Both of these services together would also

be known as the messaging services on AWS. But in addition to

those two, we are also going to look at AWS Step Functions, and

that is a serverless workflow management service on AWS. So

here's what we're going to be covering as we go throughout this

chapter. First of all, we'll be introducing Amazon SNS, Simple

Notification Service, and introducing Simple Queue Service, or

SQS. And then, we're going to be exploring architectures that

leverage SNS and SQS. Then after that, we're going to be

examining AWS Step Functions, and we'll even have a chance to

review sample AWS Step Function usage. So next, we're going to

talk about the AWS messaging services, and the first one we're

going to take a look at is Amazon SNS, or Simple Notification

Service. This is a fully managed pub/sub messaging service. And

what this enables you to do is it gives you the ability to create

decoupled applications, and we'll talk more shortly about what

that means specifically. But the way it works is that it organizes

information according to topics, so you can choose to listen to

one topic and not listen to another. And that's what we mean by

pub/sub, it is publish and subscribe. So you can publish

messages about, let's say, new orders, and then you could choose

to subscribe to new orders and maybe order refunds. It integrates

with multiple AWS services out of the box. And in addition to just

providing messaging, meaning one part of your application can

talk to another part of your application, you also can integrate

this in and have end user notifications. So through this, you

could send out an SMS notification or an email notification or a

push notification to your mobile app. let's see some of this at

work. So here we have a sample SNS architecture. Let's say that

we're a Software as a Service company and we have a new user

sign up, so we have a new user on our platform. We could

choose to connect that process to an SNS topic. And let's say the

first thing that we want to do is we want to integrate them into

our CRM tool. Well in that case, we could choose to connect that

to a Lambda function that would then talk to our CRM and put

their data in there. Let's say that we also want to have a queue

for some of our sales people to follow up with them directly.

Well, we could use an SQS queue for that, and we'll talk more

next about how you leverage SQS queues. But let's say we also

want to send out an email so that the regional sales director in

that area knows that you have a new customer that's come into

the platform. We could also do that through SNS. But SNS works

a little bit like some of the social networks that send out

messages that then disappear. In this case, if we aren't listening

for a message when it's published, we are not going to get it.

These messages aren't kept around, they're short lived. However,

there's another approach we can look at, and that is leveraging

Simple Queue Service, or SQS. So this is a fully managed

message queue service, and it also enables you to build

decoupled applications. But it also enables you to build fault

tolerant applications, and we'll look next at how that works. It

supports a decent amount of data, you can put about 256 Kb into

a message, and it allows messages to be stored for up to 14

days. So while we're thinking about SNS being more like some of

those new social media apps that enable you to just send

messages and then they disappear, SQS is a little bit more like a

mailbox. Those messages will stay there until you actually go and

get them out of the mailbox. There are two different types of

queues that are included with SQS. A standard queue does not

guarantee the order of the items that you're going to be pulling

off of the queue, but if you use a first in/first out queue, it will

guarantee that you're actually processing those messages in order.

Let’s begin to see what happens when you put together SNS and

SQS into an architecture. First of all, we're going to have a user

order, and this is going to come into our ecommerce company.

And the first thing we're going to do is we're going to send that

through an SNS topic. We're going to do something here called

fanout. This is one of the benefits of using an SNS topic is that

we can actually send messages out to multiple places. The first

place we're going to send it is we're going to send it to a

fulfillment queue. So this is going to connect to a server that we

have in our warehouse, and this is going to be our order

fulfillment service. And so our order fulfillment service knows to

go and get a message off of the queue and then send that out

so that we k what we need to put in the mail to send to our

customers. But we also have another queue, and this is where the

fanout happens. So coming from that SNS topic, we're sending

out to multiple queues. The next queue is our analytics queue,

and this is where we want to be able to store the information

about the products that we're sending out to customers. And we

want to eventually be able to pull this into our BI tool so we can

see trends for our products. So to drop this into our data

warehouse, we have a Lambda function on AWS that's going to

drop that information into our data warehouse tool. But

something happens. We send out an update to our analytics

integration service and it goes away, it doesn't work. Here’s the

great thing. While that's not working, we're still loading up items

into the queue. We haven't lost any information. And the moment

that that service gets back up and running, it will be able to go

and grab messages off the queue and put it into our data

warehouse. This is what we mean by fault tolerant, is that we can

have an aspect of our system go down, and it can still work

according to its purpose. But let's say we also have something

else happen in the same day, that server that's sitting in our

warehouse just dies, the hardware itself goes kaput. Well, in this

case, we're also still able to get orders in through our fulfillment

queue. And the moment we get both our analytics ingestion

service and our order fulfillment service back up and running, we

will continue with our normal business processes without any lost

data.

Now, we're going to talk about AWS Step Functions. And here are

a few things that you need to know about AWS Step Functions.

First of all, it enables orchestration of workflows through a fully

managed service, and it does this in a way that supports

serverless architectures. So this is one of the services that really

enables this serverless mindset where you're trying to limit the

amount of actual infrastructure that you have to own and

maintain. It also can support very complex workflows, including

error handling, and we'll see in a minute how you define those

workflows within the service. You’re charged per state transition,

along with any of the other AWS services that you leverage. In

this case, that might sound strange to you, but here's what that

means. If you have four steps in your workflow, you're going to

be charged for each transition from one step to another. And then

if that's running on a service like Lambda, you'll be charged the

normal rates for the Lambda services that you're using. Workflows

are defined using something called Amazon States Language. And

you don't need to know how to write States Language at all, but

I want to give you an example of how some of this would be

defined. Let's say here that we wanted to get user signups and

we wanted to do some things simultaneously.

After we get the signup, we want to insert the data into our

CRM, and then we also want to send them a welcome email. And

then when we get done with that welcome email, we want to

schedule a call with one of our sales people. Once all of that's

done, we want to wait a week, and then we want to send another

follow up email to see how they're doing. This is an example of

what you can accomplish utilizing a Step Function on AWS. And

you see a very small portion of how that's defined on the left.

This is using a format called JSON to define the Amazon States

Language, and this is what allows us to define the different steps

within the workflow. It does have a lot of integrations in to other

AWS services. So we have, for example, compute services like

integrating with Lambda, for example. It also can integrate with

database services like DynamoDB, which we'll talk more about

later within this book. It also can integrate in with the messaging

services, meaning SQS and SNS that we have just talked about.

Also, data processing services, and even machine learning services.

So this is a powerful tool that you can use to build out very

complex workflows and have Amazon manage the state for you of

the different steps within that workflow. Now, we're going to walk

through some scenarios to see how well you've absorbed what we

have covered within this chapter. So our first scenario has to do

with Ronald, and she started a nonprofit that assigns volunteers

to open opportunities to serve. And recently, their database server

went down, so when users went to sign up, it wouldn't let them

do anything, so they actually lost some people that could have

volunteered for some opportunities. While they have improved

their database server, they're still not able to guarantee that there

won't be downtime in the future. He really wants to explore an

AWS service that could prevent these lost user signups. So in this

case, what service would you recommend to Ronald? Next, we're

going to talk about Jessica, and she created a list of onboarding

steps for new customers for their app. , these steps have a lot of

integrations with things like their CRM, they want to send out an

email to users, they want to integrate this in with analytics. ,

Jessica's a bit worried that it's going to take her development

team a long time if they have to build all of this from scratch.

So is there an AWS service that can help with this approach?

Let's look at our third scenario, and this one has to do with Rob.

And his company is an ecommerce company that's building a

custom ecommerce platform, so they're not using one of the ones

off the shelf. They’re still adding some new functionality into their

platform, and he wants aspects of the platform to listen for some

key events, like orders and refunds. But, they don't yet k all the

elements that need to respond to the events because they're still

building it out. So, is there a service that would allow current and

future parts of the platform to listen for events like these? Next,

we're going to walk through the answers. We have covered three

different app integration services. So before we go look at our

scenarios, let's quickly review what we've covered. So first of all,

we introduced Amazon Simple Notification Service, or SNS, and

we talked about how it enabled you to either publish messages to

a topic or subscribe to get messages from that topic. We then

looked at Amazon Simple Queue Service, or SQS, and we talked

about how in many ways it worked like a mailbox. You can put

messages in and it will keep them there for up to 14 days. And

this will help us build fault tolerant applications. We also explored

architectures that leverage both SNS and SQS. And after that, we

examined AWS Step Functions, and we reviewed how you could

take a very complex workflow and define it within a Step Function.

So, let's take a look at our scenarios. So our first scenario was

Ronald, and his was losing volunteer signups because their

database server went down. So what is Ronald really trying to

solve for here? Well, he's trying to solve for being fault tolerant

because right they're not fault tolerant, they're losing data with

user signups. So what service would you recommend? Well, that's

going to be Simple Queue Service, or SQS. This way they can

take user signups even if their database server is down. And when

their server comes back up, it can simply go pull messages offof

the queue. Next, let's look at Jessica, and she had the complex

list of onboarding steps. So is there a service that she could use

to model these steps? Well, in this case, that would be AWS Step

Functions because she could go in and take all the steps that she

has in her onboarding process and integrate them into a workflow

where every time there is a new customer, you could send them

through that workflow with Step Functions. Last, let's look at Rob.

And his ecommerce company was building that custom platform,

but they don't k all the different components and what messages

they're going to need to listen to, so they want to get a service

that would allow for both current and future parts of the platform

to listen for those key events. Well in this case, that would be

Simple Notification Service, or SNS. In this way, certain parts of

the platform could listen for order events and other parts could

listen for refund events.

Now, we're going to be talking about management and governance

services. And when we're talking about this category, we're

primarily talking about six different services. First of all, we have

AWS CloudTrail, and then AWS CloudFormation, Amazon

CloudWatch, AWS Config, AWS Systems Manager, and AWS

Control Tower. Here's what we're going to cover. First, we're just

going to be reviewing the ecosystem of services that are provided

for management. While we've looked at a lot of services that we

can launch, this is where we transition to looking at what do we

do once we launch resources within the cloud. Then, we're going

to be examining how to create an audit trail by leveraging AWS

CloudTrail. And then, we'll be exploring how you track

infrastructure with both CloudWatch and Config. Then we'll be

looking at a concept called infrastructure automation, or

infrastructure as code, with CloudFormation. And then we'll be

looking at operational insights utilizing Systems Manager. And

then finally, we'll be reviewing AWS Organizations, which is a

concept we have already explored, but we'll be looking at how

that works with Control Tower. Now, we're going to talk about a

service called AWS CloudTrail. And according to AWS, CloudTrail is

a service where you can log, continuously monitor, and retain

account activity related to actions across your AWS infrastructure.

One of the great things about this is no matter which interaction

method you're using, whether that's the console or whether you're

using the CLI or whether you're working within the SDKs,

CloudTrail is going to log all of those actions. So when we look

at CloudTrail, first of all you need to k that it includes this

information into an S3 bucket, or you can even utilize

CloudWatch, which we'll talk about later. And it logs events in the

regions in which they occur. One of the good things about

CloudTrail is that it meets many different compliance requirements

for infrastructure auditing. So in terms of even just general best

practices, you want to know who is initiating actions that change

your infrastructure. But for some of you, you might be in

environments where that's not just a like to have, that is a

requirement based on different compliance standards, and for

many of those standards, CloudTrail will meet that. As a best

practice, it should be enabled on every AWS account. if you have

your own personal development account and you're the only one

that has access to it and you don't want to deal with the cost of

storing this information in S3, you could choose to forgo it. But

for any other situation besides that, you want to be sure that this

is turned on. And you can consolidate this. So if you are using

AWS Organizations, you could utilize the organizational trail to get

information across all of your accounts. , let's talk about some

general use cases for using CloudTrail. First of all, and we've

alluded to this already, it might be a compliance requirement. If

you want to be able to track information specifically for

compliance purposes, CloudTrail can meet that. It could be that

you're using this for forensic analysis. So if you have already had

a data breach and you want to go back and see what actions

were taken against infrastructure, you could utilize it for that.

Also, you could use it for operational analysis. So if you're looking

to determine who potentially changed infrastructure that caused a

crash or caused an outage, you could go in and analyze the users

that perform that and then work with them to make sure that

that action isn't taken again. You also can do it generally just for

troubleshooting. So you could go back and look at when a

specific bad configuration was injected into the system and use

that to fix any issues that are happening within your infrastructure.

So next, we're going to look at two services, Amazon CloudWatch

and AWS Config, that help you manage your infrastructure. But

let's quickly take a step back and look at all of the services that

enable you to manage your infrastructure. And the first of these

that we have is Amazon CloudWatch, and this provides metrics,

logs, and alarms for your infrastructure. Then, we have AWS

Config, and this continually evaluates your infrastructure against a

predefined set of rules. We’ll be covering both of these. And the

next option is AWS Systems Manager, and it provides operational

data and automation across your infrastructure, and we'll be

covering that next. These are not the only services that help you

manage infrastructure on AWS, but these are the ones that you

will need to k for your Certified Cloud Practitioner exam. Let’s first

look at Amazon CloudWatch. So it is a monitoring and

management service, and there are several different facets to

CloudWatch. So it collects logs, so for example if you have log

messages coming from your custom applications, this can actually

collect those logs. It also gets metrics. So you could have metrics

being the number of users that are visiting one of your load

balancers, for example. Or you can even get events that are

coming from most AWS services, and it truly is a citizen in AWS,

which means that most services integrate with CloudWatch by

default. But one of the powerful features is that it enables alarms

based on metrics. So most all of the clients that I work with, we

go in and set alarms so that if something is down or not

performing as it should, CloudWatch lets you k as opposed to you

having to go and find that out yourself or have your customers

tell you. So next, it provides visualization capabilities for metrics.

So if you want to have a chart that shows a metric over time,

that's part of what is included with CloudWatch, and because of

that, you can create custom dashboards based on the metrics that

it collects. So here's a sample dashboard where you can see some

of this in use. You can see here that it's tracking things like CPU

utilization on some EC2 servers and network traffic and EBS

activity for Elastic Block Store.

And so this is just an example of some of the types of data that

you can put into a custom dashboard. But next, let's talk about

another service, and that's AWS Config. So, AWS Config

continually monitors and records your resource configuration, and

it uses this so that you can evaluate that against the desired

configuration. So let's look at how that works. So here within AWS

Config, first of all is it does provide a level of configuration

history for your infrastructure, and it's also going to take a look

at a set of rules. These rules, there are many that are included

within AWS Config. In addition, you can also customize the rules

that are there, or you can even create completely new ones. Next,

it includes conformance packs for compliance standards, including

things like PCI DSS. that is a standard that if you're going to be

accepting payment information, you need to be able to meet this

criteria, and to do that, you can follow the rules that are already

in place within AWS Config to be sure that the infrastructure that

you have is compliant. , Config can also work within an AWS

organization to look at all of your regions, as well as all of the

separate accounts that you have. And one of the great things

about it is that it also provides remediation steps. So if your

infrastructure doesn't meet some of these standards, it will give

you insight on how you can fix that. So next, we're going to talk

about the third service that provides resources for managing

infrastructure within AWS, and that is going to be AWS Systems

Manager. , Systems Manager provides this unified user interface

so you can look at operational data from multiple AWS services.

And for many of those services, you can even automate some

operational tasks across those resources. So let's look at AWS

Systems Manager at a little bit of a deeper level. First of all, k

that it provides multiple tools that makes your life easier when

you're managing infrastructure on AWS, and we will not be

reviewing all of them, but we will touch on a few of them. First

of all, it can enable you to automate tasks for common

maintenance actions. Let's say that you have two applications in

your AWS account that you're supporting. Let's say you have 10

servers that support one application and 10 servers that support

another, and you want to update those EC2 instances for your

first application with a new version of a library. You can actually

write that action one time and then simultaneously send it out to

all the servers that need to receive it, and then you could choose

to have it update on those servers, but not have it affect the

other servers at all. That's just a example of how you can use

this automation capability. It also gives you a secure way to

access your servers using just your AWS credentials. So if you

don't want to have to deal with separate keys or separate

passwords, you can utilize this approach for accessing those

servers. Another thing is that you can store commonly used

parameters securely for operational use. So let's say that you have

a specific database password and you don't want to store that

with each of your applications, but you want your applications to

securely access that password when they launch. You could utilize

Systems Manager for that. Next, we're going to talk about AWS

CloudFormation. Let's say for a minute that we have a custom

application, and this custom application requires two S3 buckets,

five EC2 servers, two SQS queues, and three Lambda functions.

Well, we could go in and set up all of that in the console, but

that creates a problem. There are a lot of manual steps that need

to happen to make that work. And what happens if we miss one

of them or we incorrectly apply settings to a resource? Well,

CloudFormation exists to solve this problem, and let's talk about

how it works. First of all, it is a managed service for provisioning

infrastructure based on templates. So, instead of going in and

manually clicking in the console, or instead of writing a custom

CLI script, or instead of going in and using the SDK to write

your own custom logic for creating your infrastructure, here you're

going to use a service that manages that for you. There is no

additional charge for CloudFormation. So with CloudFormation, you

only pay for the resources that you launch, but the service itself

does not have a charge. You can write these templates in two

formats, one is YAML and another is JSON, and those are both

common formats, and many different tools can support the

writing of YAML or JSON templates. This enables an approach

that we call infrastructure as code. This means that we're able to

write a template that every resource on our team can use to

launch infrastructure. And this means that we're taking the manual

processes out of the picture. It also handles the management of

dependencies between resources. So if we require one resource to

be in place before we launch another one, it will go through and

manage those dependencies. One of the powerful features that

you get with CloudFormation, and this is going to be similar to

what we've seen in services like AWS Config, but this is specific

here to CloudFormation, is that it provides drift detection. So if

we launch our application that has all of those resources I

mentioned earlier, but somebody goes in and changes the S3

permissions to be globally available, then in that case, we can

notice that change and we could choose to take action. Here’s a

very quick and limited example of what we can do.

This is a template, and with this information included in the

template, if we ran it through CloudFormation, it would create an

S3 bucket for us, and it would have the name , this is a very

simple example, but you can expand to have very, very large

templates. You can even have kind of templates within templates

that enable you to launch infrastructure. So if you have a set of

infrastructure, our custom application, you could launch that

within one account and then turn around and launch it within

another account. You could have one environment for production

and another environment for testing and make sure that the two

of those were completely identical because they're both based off

the same template. And that's what you get with CloudFormation.

So next we're going to discuss another approach for managing

your infrastructure on AWS, and that is going to be AWS

OpsWorks. OpsWorks is a configuration management service, and

it provides managed instances of both Chef and Puppet, so if

you're already using either Chef or Puppet, OpsWorks might be

something that you want to take a look at. If you're not familiar

with Chef and Puppet, don't worry about diving into those to

prepare for the exam. Next, your configuration is going to be

defined as code for the servers that you're going to deploy it

onto, and Chef and Puppet are going to manage the lifecycle of

those configuration changes with your servers. One of the things

to note about OpsWorks is that it can work in a hybrid cloud

architecture, so you can utilize it if you want to manage your

deployments both in the cloud, as well as within your own data

center. OpsWorks itself is really made up of three separate

subservices. First, we have AWS OpsWorks for Chef Automate.

And so here this is your configuration management service that

utilizes Chef Automate. Then we have AWS OpsWorks for Puppet

Enterprise. So if you want to have a fully managed service that

utilizes Puppet Enterprise, this would be for you. And next we

have AWS OpsWorks Stacks, and this is what enables you to go

in and define your application in layers, and then you can actually

manage that using Chef recipes with Chef Solo. So, depending on

what you would be looking to do, you would choose the specific

subservice that matches the stack that you're working with. Next,

we're going to revisit a topic that we have already discussed

called AWS Organizations. But we're bringing it back because we

want to talk about another management service, and that is

Control Tower. So quickly, revisiting AWS Organizations. So it

allows companies to manage multiple accounts under a single

master account, and it provides organizations with the ability to

leverage a feature called consolidated billing where it'll roll up all

those child accounts under the parent account for the billing. And,

it enables organizations to centralize logging and security

standards across accounts. But really up to this point, we've

talked about what you can do with AWS Organizations, but we

haven't necessarily talked about what you should do with it. And

so, AWS collected a lot of the best practices for this setup under

a service called Control Tower. And so Control Tower is a service

that creates this environment based on recommended best

practices in areas like operational efficiency, security, and

governance. So let's look at Control Tower at a little bit of a

deeper level. So first of all, it does things like centralizing users

across all AWS accounts, and this allows us to minimize effort of

creating users across multiple accounts. And, it provides a way to

create new AWS accounts based on templates. So maybe you

want to be sure that every AWS account that is created within

your finance department has specific settings included with it. It

also includes this feature called guardrails, and this helps make

sure that there are specific protections for accounts underneath

your master account. So let's say, for example, you want to be

sure that CloudTrail doesn't get turned off in any of the child

accounts. Well, that is an example guardrail that can be included

to make sure that they stay in compliance with what you want

each of your child accounts to be doing. And it also includes a

dashboard so that you can gain operational insights from a single

view across all of your accounts. So next, we're going to talk

through three different scenarios that will help you gauge how

well you're doing at absorbing the information that we have

presented within this chapter. So here in our first scenario, we're

going to be looking at Elise, and he is an operations engineer at

a financial services company. And he recently, by chance,

discovered that someone had disabled a key security setting on a

server. he's really concerned that events like this are going to go

undetected, there's no way to k about them, and he's afraid

they're going to have a data breach and then it's going to become

a huge deal. So for Elise and his company, which service would

allow the organization to continuously track configuration of

infrastructure? Next, we're going to be talking about Phillip, and

he is the lead architect at a SaaS company, a Software as a

Service company, and they're going to be launching a new

application that includes several components. It has some EC2

instances, some Lambda instances, it's also going to have some

S3 buckets and some SNS topics and SQS queues. And he's

looking to minimize the manual work that is required to create

this infrastructure. So they're going to be launching dev

environments and prod environments and testing environments

and they don't want to have to do this manually every time. So,

what service would enable Phillip to automate much of this effort?

Okay, our last scenario here has to do with Caroline, and she is

the CTO at a manufacturing company. And a cloud server that

was needed to support their manufacturing process was

accidentally deleted. They’ve managed to fix that issue, but they

want to follow up with the individual that accidentally deleted that

server so they can help them k how to not do that next time. So

if they wanted to figure out who this individual is, what service

would they leverage so they can go back and find out who

performed this action? Next, we'll be walking through a summary

of what we covered in this chapter and looking at the answers to

these scenarios. So we have covered quite a bit within this

chapter as we have looked at management and governance

services on AWS. So let's quickly just take a look at what we've

been able to cover. First of all, we reviewed the ecosystem of

services that are provided for management of infrastructure on

AWS. We then looked at how to create an audit trail utilizing a

service called AWS CloudTrail. And then we explored how you

track infrastructure utilizing services like CloudWatch and Config.

And then, we introduced infrastructure automation with

CloudFormation and this concept called infrastructure as code. We

then were able to look at operational insights with a service called

Systems Manager. And then finally, we reviewed the capabilities of

AWS Organizations when you are leveraging Control Tower. Let's

take a look at our scenarios. So here in this first scenario, we

had Elise, and he was concerned that some of these changes on

servers might go undetected until there was a data breach. So,

what service would allow him to continuously track the

configuration of infrastructure? Well in this case, this would be

AWS Config, and they could make sure that there is a set of

rules enabled on Config that checks for the settings they care

most about. Next, let's take a look at Phillip, and Phillip was the

lead architect at a SaaS company, and he was looking to

minimize the manual work required to spin up new infrastructure

for their new application. So what service would enable Phillip to

automate much of this effort? Well, this is going to be AWS

CloudFormation because, here, Phillip and his developer team

could go through and create templates, and these templates could

be launched with CloudFormation, which would manage that

infrastructure. Next, let's talk about Caroline, and Caroline is the

CTO at a manufacturing company, and she was looking again to

find out who deleted one of their production servers. They know

it was an accident, but they want to be able to follow up with

that resource. So what service could she use? Well in this case,

this is going to be AWS CloudTrail because it is going to provide

an audit trail of actions performed on AWS, irrespective of

whether or not they were done with the console or with the CLI,

or with one of the SDKs.

BOOK 7

AWS CLOUD SECURITY

BEST PRACTICES FOR SMALL

AND MEDIUM BUSINESSES

RICHIE MILLER

Introduction

This is the third book designed to get you ready for the Cloud

Practitioner exam. Hopefully by this point you have already

completed the Fundamental Concepts and AWS Core Services

books in this learning path. Since we're covering security and

architecture, we want to start off with just a simple overview of

what we're going to be covering, as well as a few basic concepts.

So first of all, here's what we'll be covering over the first few

chapters. We will be reviewing these core concepts around security

and architecture. We'll also be exploring the AWS Shared

Responsibility Model, which is a critical piece to understand if

you're going to be using the platform. We'll then be introducing

the AWS Framework. We will then be examining fault tolerance

and high availability on AWS. And finally, we'll be understanding

the provided tools for compliance. So first of all, let's look at a

concept that governs how we use AWS, and that is the Acceptable

Use Policy. And this is AWS's policy for both acceptable and

unacceptable uses of their platform. And for you to be able to

have an account on AWS, you need to agree to abide by this

policy. This policy covers several things, including some simple

things that are prohibited, for example, sending unsolicited mass

emails. That's not something they want you to do on their

platform. And, if they were to detect that you were doing that,

they could completely close your account. Also, hosting or

distributing harmful content, things like viruses and malware, that's

something that's also prohibited. One of the things that has

changed within the Acceptable Use Policy, there are certain things

you previously couldn't do without AWS permission that you can

do. One example of that is penetration testing, and that's a type

of testing that lets you see potentially where different holes are

within your security. For example, you can see what ports are

open on a specific server. It used to be you couldn't do that

without talking to AWS, but they have provided a list of services

where you are able to do this type of testing, and as long as the

service you're wanting to test is in that list, you can do that

without permission. But let's talk about one of the core security

concepts that we need to understand when using AWS, and that

is the concept of least privilege access. And the core of this

concept is simply that when you're giving somebody permission to

access AWS resources within one of your accounts, you should

only grant them the minimum permissions needed to complete

their tasks, and no more. You might say, well, this applies to

other people. Well, one of the ways that you can even apply this

to the work that you do on the accounts that you own is that

AWS recommends that you don't use your route account as your

account. There are specific things that the route account can do

that no other account can do, so they recommend that you set

up an IAM account to use on a daily basis, and this is just

another example of least privilege access. But in terms of

understanding how this plays out, if you're at a company, for

example, and you have several employees and maybe one

employee needs to have access to a majority of the systems, but

another employee is only doing a maintenance task and only

needs access to those two systems, well, you need to make sure

that that employee only has access to those two systems. While it

would be easier to give everyone the same access, we want to be

sure that we are following least privilege access and only give

them access to what they need to do the jobs that they have

been given.

Chapter 1 AWS High-availability and Fault Tolerance

First, we're going to talk about the AWS Shared Responsibility

Model, and this is something that everyone that uses the platform

should understand at a detailed level. AWS puts it this way.

Security and compliance is a shared responsibility between AWS

and the customer. But since it is a shared responsibility, we need

to have a good level of understanding of what is the responsibility

of AWS and what is our responsibility as the customer. At a high

level, we can put it this way. AWS is responsible for the security

of the cloud, and the customer is responsible for security in the

cloud. So AWS has a responsibility for those core systems that

are running the entire platform. But the customer has control over

the things that they are putting onto the platform and how they're

using it. But let's look at this at a more granular level of detail.

So first of all, for AWS, they have the responsibility for doing

things like access control and training for their employees. So they

control what employees can access what things and then make

sure that they have the training to k what they need to do. As a

part of that, AWS is responsible for those global datacenters and

the underlying network. So when we looked at the Global AWS

Infrastructure, they're responsible for those different availability

zones and those regions and making sure that all of the

connectivity exists between those. They're also responsible for the

hardware for global infrastructure. So they're going to take care of

replacing servers and switches and all the other bits of networking

gear that they have. They also are responsible for configuration

management for the infrastructure, so determining how bits of

data get from one location to another, they control all of that.

And they also handle patching of the cloud infrastructure and

services. The core servers, the bare metal servers that are actually

running some of your virtual servers or the servers that are

running many of the services you use on AWS, they're in charge

of patching those bits of cloud infrastructure. But, let's turn and

look at what is our responsibility. It is our responsibility for

individual access to cloud resources and training, so we need to

make sure that we give least privilege access to those people in

our company that need to access cloud resources, and we are

then also responsible for training them to make sure that they

know how to use the services that are available on AWS. Another

key one, and one of the ones that is missed the most often, is

the customer is ultimately responsible for data security and

encryption, and we say here both meaning data going back and

forth between different services or different locations, and data at

rest, so data that is actually stored somewhere. It is our

responsibility to be sure that we're following best practices there.

For example, you could choose to put unencrypted data in S3;

however, you also have the ability to configure the service to store

that data so it is encrypted at rest. That is your responsibility. In

addition, the operating system, network, and firewall configuration,

that is on you as the customer. So if you're using Infrastructure

as a Service, so let's say you're using just EC2 virtual servers,

you're responsible for that operating system, including patching. If

you're configuring your own VPCs, you're responsible for that

network configuration and things like your access control list and

security groups. You're also responsible for all the code that you

deploy onto the cloud infrastructure. There's no way AWS can be

fully responsible and own all of the code that you upload, so that

is on you as the customer. You're also responsible for patching

any guest OS and custom applications that you are leveraging, so

it's important to note here, when you think of any solution that

you're deploying on the cloud that you clearly understand what is

the responsibility of AWS and what is the responsibility of the

customer. And as you prepare for your Certified Cloud Practitioner

exam, it will be important that you can look at scenarios and

understand who has responsibility in those scenarios. If you're

new to AWS, it can be challenging to k how to best create

solutions on the platform. And over time, AWS has collected best

practices that you should follow in these cases, and they have put

these together into a single resource called the AWS Framework.

And this framework is a collection of best practices that are

organized across five key pillars that help you k how to best

create systems that drive business value. So let's look at these

different pillars. First of all, we have operational excElisece. This is

what helps us k that we are both running, as well as monitoring

our systems for business value. We want to be sure that we're

being efficient with the time it takes to both build and deploy our

solutions onto the cloud. Then, we're going to look at security,

and this has to do with how we protect information and business

assets, not just as we deploy them to the cloud, but also how we

monitor to ensure that we are following the same standards of

security throughout the life of those assets. Then, we're going to

be looking at reliability. And later within this chapter, we're going

to be covering the concepts of high availability and fault tolerance,

and both of those fall under this overall pillar of reliability. This

helps us make sure that our systems are up and running as often

as possible. And next, we have performance efficiency, and this is

how we can make sure that we are leveraging the resources that

we have spun up on AWS and using only the amount that are

needed to perform the tasks that we have for them. But we also

want to be concerned with cost, and that takes us to the fifth

pillar of cost optimization. We want to be sure that we're not

paying any more than we need to achieve the level of business

value that we need. And this is going to cover concepts like

reserved instances, or spot instances, or different S3 storage

classes that we have already discussed. , AWS has collected this

information on a microsite about the Framework, and so as you

go to get ready to build your custom solutions on the cloud, you

can go review this resource to k how to best follow the

recommendations within these five pillars. Now, we're going to

talk about high availability and fault tolerance, and both of these

fall under the reliability pillar of the Framework. And the quote

that should be our driving force as we look at this concept comes

from the CTO of Amazon, and he says that "everything fails all

the time." So as we start to build anything, even when we're

looking at a cloud platform that has many capabilities, we need to

be sure that we are building king that failure can happen at any

point in our architecture. So let's look at the concept of reliability

on AWS, and we're really going to look at two different concepts.

The first is fault tolerance. This means that we're able to support

the failure of components within your architecture. And if you

remember, we have looked at this already when we've looked at

services like SQS, and we looked at what we could do in using a

queue to help mitigate challenges that would exist if some of our

processing power were actually to go offline downstream from the

queue. Then we also have another concept, and that's an overall

concept of high availability. This means that we want to keep our

entire solution up and running in its expected manner despite any

issues that may occur. So let's look at how we build solutions on

AWS with these things in mind. First of all, most managed AWS

services provide high availability out of the box. And this is great

because this limits the amount that we have to build. For

example, if we're storing data using the S3 standard storage class

within S3, that data is going to be stored across multiple

availability zones. So we don't have to worry about building in a

type of backup system for our production applications, that's

already baked into the service. However, when we're building

solutions directly on EC2, for example, vault tolerance must be

architected. We have to figure out where to build that in. And this

goes back to our different cloud deployment models. If we're

looking at solutions that are Infrastructure as a Service, this is

where we need to really consider fault tolerance because we're

going to have to figure out how to build it into our custom

solutions. And at a minimum, we know that we need to integrate

with multiple availability zones so that we can deal with the

potential failure of a complete availability zone within a region.

Some services can enable fault tolerance in your custom

applications, so there's a few to remember. We can build queues

so that data or events that need to be processed can be held in

the queue until they are ready to be processed. That way, if

anything downstream goes offline, we can still have a functional

application. But in addition, we also have Route 53, and we've

discussed earlier within this path about how you can use Route 53

to detect if there are endpoints that are unhealthy and then route

users to the right services that are available. Now, we're going to

talk about the concept of compliance, and depending on what

your experience is within the technical world, this might or might

not be a familiar concept to you. But let's talk at a high level

about some common different compliance standards. We have

some standards like PCI DSS. And this is a standard for

processing credit cards, so a part of the agreement that you'll

have with the credit card companies for being able to process

those cards if you're dealing with the data directly is that you'll

need to meet certain standards. This means you need to be in

compliance with PCI DSS. But we also have other standards like

HIPAA, and you might have heard of this one during some of

your trips to the doctor's office, especially if you're in the United

States. This is a compliance standard for healthcare data in terms

of privacy, making sure that only certain people have access to

certain pieces of data. Then we also have some more technical

standards like SOC 1, SOC 2, and SOC 3, and these are reviews

of operational processes related to your datacenters. There also

are some that are focused on government standards like

FedRAMP, and this is standards for US government data handling.

And then we have others that are standards around things like

personally identifiable information with ISO 27018. These are

different compliance standards, and there are services on AWS

that can help you know how to navigate these compliance

standards. So we're going to look at three in particular. First of

all, we're going to look at AWS Config, which we have already

mentioned within this path. And there are some conformance

packs that are provided to help you with aspects of compliance.

In addition, we have AWS Artifact, which provides access to AWS

compliance reports. And then we have AWS GuardDuty, which

provides intelligent threat detection so you can help monitor and

try to detect if there are scenarios that are happening that are

unusual that could lead to you being out of compliance. So let's

look here at what we're going to cover over the book of this

demo. First of all, we're going to examine how you get access to

compliance reports utilizing AWS Artifact, and then we're also

going to be looking at the concept of conformance packs within

AWS Config. So I'm here in the AWS console, and the first thing

I'm going to do is I'm going to navigate to Config. So I'll search

for Config, we'll launch it, and I have already gone through the

process of setting up Config here within this account.

In this point, we can go in and add rules directly, or we could go

in and just go under Conformance packs.

Here in going under Conformance packs, we can simply go to

Deploy conformance pack, and here, if we knew that we were

going to be processing credit card information, we could look at

the sample template for operational best practices for PCI DSS.

And if we chose to deploy this template, this would help us

monitor whether or not we were in conformance with PCI DSS

standards. The next service we're going to look at is going to be

AWS Artifact, and you can see here this is in my Recently visited

services, so I could search for it or I can just simply click on the

name. From within here, we're going to be able to get access to

two different pieces of information. The first is going to be

compliance reports, and the second are going to be any specific

agreements that we have in place with AWS.

For example, if we were processing data, we would need to have

a BAA agreement in place with Amazon, and we would be able to

find that here. But here within AWS Artifact, we could go in and

search for information around specific compliance standards that

we were interested in. And in some cases we would be required

to provide this information to other sources, whether they are

governmental or just regulatory agencies for specific areas. And

so, if we needed to find a specific standard, we could actually

scroll through this list, find the right standard, and then we could

actually get the artifact.

For many of these artifacts, we will need to sign a agreement

with AWS to get access to that, but this provides a way to get

access to these compliance reports that are needed. Now, we're

going to talk through some samples scenarios to see how well

you have done at absorbing the material that has been presented

within this chapter. And first, we're going to be talking about Jack,

and her company is building an application and they will be

processing credit cards, and they're going to be processing those

cards directly and not through a service. And so the bank that

they're working with needs a PCI DSS compliance report for AWS.

So for Jack, where should she go to get this information? Next

we're going to be looking at Tim, and Tim's company is

considering a transition into the cloud, and they do store some

personal information, but they store it securely within their

systems. And so Tim's CTO has asked him what the company's

responsibility is for security on this once this is transitioned to

AWS. So if you were in Tim's role, what would you tell his CTO?

Next we're going to be talking about Elise, and she is a solutions

architect at a startup. And they're building a new tool for digital

asset management, and she's curious how to best leverage the

capabilities of AWS in this application because they haven't built

any applications in the cloud yet as a company. So, what resource

would you recommend for Elise and her team to review? Next,

we're going to run through a quick summary of what we've

covered in this chapter, and then we'll run through the answers to

these scenarios. We've covered quite a bit in terms of introducing

security and architecture on AWS here within this initial chapter,

and so let's quickly take a look back at what we've covered. First,

we reviewed the core concepts around security and architecture.

We also explored the AWS Shared Responsibility Model so we had

a clear understanding of what is our responsibility as the

customer and what is AWS's responsibility when we're leveraging

the cloud. We also introduced the AWS Framework and we talked

about the five different pillars that it provides for helping us k

how to best take advantage of the platform. We then examined

fault tolerance and high availability in terms of concepts around

reliability that we need to put in place with our custom solutions.

And, we also understood the provided tools for compliance. Let's

now review our three scenarios that we presented within the

previously. And so first we had Jack, and his company was

looking to process credit cards and she needs to get a PCI DSS

compliance report for AWS. So, where would he go? Well in this

case, she would go to AWS Artifact. This service exists to be a

solution for getting these types of compliance reports, whether we

need to give them to organizations like banks we're working with

or governmental agencies. The next scenario has to do with Tim,

and Tim's company is considering a transition to the cloud, but

the CTO has asked, what is the company's responsibility in terms

of security? And so here, what should Tim tell his CTO? Well, he

should tell him to review the Shared Responsibility Model, because

in terms of this data that they're storing because they need to

understand that concepts like data security and encryption are the

responsibility of the customer and not the responsibility of the

cloud provider. And finally, we have Elise, and Elise was curious

how to best leverage the capabilities of AWS for this custom

application that is being built at her startup. So, what would you

recommend? In this case the Framework would be a great

resource for Elise and her team to review because they're going to

be able to look at the five different pillars and understand how to

best take advantage of those capabilities within the cloud.

Chapter 2 AWS Managing IAM Users

Now, we're going to be talking about AWS identities and how we

handle user management on the platform. I quickly want to

remind you of a term that we introduced in the last chapter, and

that is least privileged access. This has to do with granting

permission for a user to access your AWS resources and granting

them the minimum permissions needed to complete their tasks

and no more. And we're going to see in this chapter how you

actually make this happen on AWS. We will first be introducing a

service called AWS Identity and Access Management, or IAM. We

will then be reviewing the different IAM identity types. We will be

enabling authentication, or MFA, and we'll also be introducing a

service called Cognito that will enable you to take this kind of

authentication and authorization to your own custom applications.

So next we're going to be talking about the AWS IAM service. So

at a high level, this is the service that controls access to AWS

resources. So if you want to give someone within your company

access to AWS, let's say through the console, for example, and

you want them to be able to spin up EC2 servers but nothing

else, this would be the service where you would go and both

create their user and also go in and configure what that user can

do. This service is free. So, unlike many of the other services on

AWS where you pay based on the resources you create within the

service, this service is included at no charge to everyone that has

an AWS account. And it manages both authentication and

authorization, and we kind of mentioned both of these earlier, but

we didn't use the terms. Authentication is what verifies users for

us and lets them log in and manages their credentials, for

example. Authorization is where we actually configure what that

user can do. So we could say you have access to all EC2 actions

but nothing else, for example. IAM also supports a concept called

identity federation, and this allows us to use an external identity

provider to actually handle that authentication portion of IAM.

This might not make sense if you have a company of three

people, you can simply go into IAM, and you can create all of

those users and manage their permissions. But if you have a

company of 2000 resources, all of whom need to have access to

AWS, using an external identity provider, especially if you already

have one in use, would totally make sense. You don't need to k

how identity federation works for the exam, but you do need to k

that this is an option when you're working within IAM. Next, let's

talk about the three different identity types that exist within IAM,

and the first one is just a user. And this is an account for a

single individual so that they can access AWS resources. So let's

say we have a new employee named Jack, and he is one of our

developers. And so we could go in, give Jack an account, and

then give her permissions to access specific AWS resources.

However, let's say it's not just Jack. Let's say Jack is a part of a

new development team that we're bringing on board, and there

are five developers. Well, we could easily go in and create an

account for each of those and then go in for each of them and

then add the exact same permissions on all five of them.

However, there is a better approach. So another identity type

within AWS IAM is a group, and a group allows you to manage

permissions for a group of IAM users. So you would still need to

go in and create users for each of them; however, you could then

go in and add them to a group and then assign permissions to

that group. And when we're talking here about an IAM identity,

we're really just saying anything that you can assign permissions

to. And so we've talked about users, we've talked about groups.

We have a third type that's a little bit different, and that is a type

called a role. And this enables us to either have a user or a

service assume permissions to perform a specific task. We have

run across this already, although we didn't call it out. So when

you launch an EC2 server, it has the option to specify a role for

that server. So you could say that that server needs to have

access to an S3 bucket, for example. Maybe a part of the web

application on that server is that it needs to upload photos to an

S3 bucket. Well, it can't do that by default. The permissions won't

allow for that. However, you could give it a role and then give

that role the permission of being able to write to that S3 bucket.

And this is what you can do utilizing roles within IAM. Next, let's

talk about how you assign permissions, and this is what leads us

to the concept of policies within IAM. So a policy is just a JSON

document, and it defines permissions for and IAM identity, so

again, a user, group, or a role. And it defines both the services

that the identity can access and what actions can be taken on

that service. So let's go back to the example that we mentioned

earlier with our EC2 server. We might want it to have read access

and write access to a specific S3 bucket. But we wouldn't want it

to have permissions for everything on S3 because that would also

include deleting the bucket, and that's not a part of what that

web application would need to do. So we can say that it can

access the S3 service for just the read and write actions on a

specific bucket. Also, policies can be either customer managed or

managed by AWS. So let's look at the portion. So if you need

custom policy needs, for example, in looking at our web

application, if we know that we want to give that web application

access to read and write to a specific bucket, we could write a

custom policy to do that for us. But AWS also provides what are

called managed policies, and these policies have already been

created. So if you want to have something like access to an entire

AWS account or if you want to have something like full access to

S3, there are policies that AWS has already created and they

maintain and you can choose to use those without creating your

own custom policies. Here is an example policy.

This is written as a JSON object, and you can go in and have

specific permissions. You can see here that we do have a

statement here that is allowing, and in this case it is allowing all

S3 actions on a bucket and on the contents of that bucket. Right

below that, we have another statement, and this is a statement

denying access except for having access to that specific bucket

and its contents. This is just an example policy. As a note, you

will not need to know how to create a policy or any of the

specific aspects of policies for the exam. But I did want to give

you an example in terms of what one of these policies looks like.

Let’s next talk about some different best practices when working

within IAM. The first best practice is multi-factor authentication.

And what this does is, this gives an extra layer of security for our

users. So when they log in, they will log in with their username

and their password and then a token. And this is either going to

be a physical or a virtual device that's going to generate that

token for login. And you might have seen this in other places.

Many web services offer multi-factor authentication, but this is just

another layer of security. Then we also have least privilege access,

which we have already talked about. So when we're creating and

managing users within IAM, it is ideal that we encourage our

users to set up multi-factor authentication, and we configure

permissions to be geared towards least privilege access.

Now, we're going to begin working within the IAM service and

we're going to be creating and managing IAM users. We will first

be creating a new IAM user, we will then be configuring

permissions for that IAM user, and then we can go in and create

an IAM group and attach permissions to that specific IAM group.

I'm here within the console, and you'll see here that IAM is listed

under my Recently visited services.

So I could either search for it, I could use the Services but in

this case I'll just click on IAM. Then, I'll make sure that Users is

selected within the left navigation, and then I can go in and

actually work to add a new user. So I'll select the option for Add

user. We'll go ahead and give this name.

We'll say that Tom is a new developer on our team, and in this

case we have a choice. We can choose to give Tom just

programmatic access, and this is going to be with an access key

and the secret access key, or we can choose to give console

access, or we can do both. In this case, we will just grant Tom

access to the AWS Management Console. And in this case, we

could choose to have an password or a custom password.

And we're going to also set it so that Tom will have to reset his

password when he logs in next to the console. So, this has what

we need, so we can click the

Next option to set some permissions, and in this case you can

see that it gives us several choices. We can go in and add the

user to a group, and we're not going to do that just yet, we will

do that later within this demo. We also can copy permissions

from an existing user or we can attach existing policies directly.

So I'm going to go ahead and select this option. , we have an

option in here to look at the managed policies. You can see here

that it's a managed policy when under Type you see that it is

AWS managed. In this case, we can select those, or we could

choose to create a new policy using the Create policy button.

In this case, Tom needs to have access to S3, so let's enter S3

and let's search for what policies are available. And we can see

here that there are four different policies that show up, and they

are all AWS managed. Well in this case, let's say that Tom is

going to manage all of our S3 buckets for the organization, but

we probably want to have him have S3 full access. So we can go

ahead and attach that to his user. We could choose here to go in

and add tags for this specific user. This could be valuable if you

wanted to document different departments or different

organizational structures, but we're not going to use this for the

moment. And then we can go into Review. , when we get to

Review, here we can see that we have the username, we have the

different settings that we put in place, as well as the specific

policies that were added in. , you'll notice here that it also has

another policy for IAMUserChangePassword.

Because we selected the option to force him to reset his

password, it automatically added this managed policy to his user.

Once we have all of that in place, we can simply hit Create user.

While this was relatively easy for us to put into place, this would

become problematic if we were trying to enter in a bunch of

users and trying to configure specific permissions for those users,

especially if we weren't creating them all at the same time. So in

this case, I'm going to go ahead and I'm going to click Close.

And from here, we're going to navigate to the Groups option. And

here we're going to create a new group. So here, we'll call this

devteam1 is going to be our group name. And so from here,

we're going to go in and add the AmazonS3Full Access managed

policy. We'll then hit Next Step, and we can just create a group.

There are not a lot of steps involved with creating a new group.

This group is currently in place, but it has no users attached to

it. So, let's navigate back over to the Users tab, and from here

we're going to go into the user that we previously created. First,

we're going to go in and we're going to remove the

AmazonS3FullAccess managed policy because we're going to

choose to not manage that within the specific user. But instead,

we're going to manage it from the group. So we've detached that

policy. Tom has no access to S3. But then we're going to go over

to the Groups tab, and from here we're going to select the option

to Add user to groups. We're going to select the devteami group,

and then we'll say Add to Groups.

It’s important to note here that you can have users in multiple

groups, that's part of the benefit. So, if you had someone that

was a member of devteam1, they can be a part of that specific

group. But let's say they're also an architect and they're part of

the enterprise architecture group for the organization. You could

create another group for that, and then you could add him to

that group as well, and he would actually have the sum of both

of the permissions from those groups. So we've been able to walk

through and create an IAM user, we have configured permissions

for that user, and then created a group, added them to the

group, and then attached permissions to that AWS IAM group.

Chapter 3 How to Enable Multi-factor Authentication

Next, we're going to walk through the process of enabling

authentication. Since this is one of the best practices for working

within IAM, I want to be sure you have the tools to k how to do

this. So, first of all, we will be enabling authentication for the

root user, and then we'll talk about enabling authentication for an

IAM user because these two processes are different and you do

them from different places.

So I'm here in the management console. I have logged in as a

root user, and it's important to note here that you can only

manage the authentication for the root user as the root user. So

I'm going to first go under my name here on the top, I'll open

up the and I'll go to the option for My Security Credentials, and

this is where you manage all of the information around security

credentials for the root user.

This is where you would go to change your password as the root

user or to update other things like your root access keys. I'm

going to open the tab here for authentication, and I have an

option here to activate authentication. I purposely went through

on this and the IAM account that I'm using for this demo and

removed authentication before this demo. You should always have

authentication enabled, it's just a best practice that you should

follow. So I'll hit the option here to activate authentication.

You have several choices here. You have a virtual device, you have

a U2F, and you have other hardware tokens. For most of you, you

should use the Virtual MFA device option. This is what will let

you use an application like Google Authenticator or you can use a

password manager that has it built in like Password. So I'm

going to go ahead and select Continue, and you'll note here that

it gives you a list of compatible applications, and this list lets you

k other things that you can use to actually use authentication.

And you can go through and see also the hardware keys that are

supported. But you can see here if you're using iPhone or

Android, we have solutions like Authy, Duo Mobile, LastPass,

Microsoft Authenticator, and Google Authenticator.

So in this case, I'm going to go back over to the console and I

have a password manager that I use that I'll use to set this up.

So the first step is going to be I need to actually show this QR

code. , you also can use a secret key to make this work, but I'm

just going to go ahead and select the option to show the QR

code.

I will be deleting this authentication device after I finish this

demo and then I'll be going back in and adding another one. So

for security reasons, you wouldn't want anyone else to have

access to this QR code because then they would have access to

be able to generate your secret keys. So I'm going to go in, and

here with my password manager, it lets me actually just drag over

the QR code, and then it's actually entered in.

And so what they're going to have you do is you're going to type

in two consecutive codes, and this is important because they want

to be sure that it has properly synced, and so it's going to

validate these two codes before this adds it to your device

because once you add authentication to your device, you will have

to log in with that, and if you need to disable that or if you lose

access to the device that has it on it, you will need to contact

AWS support to try and get access back to your account. So I'm

going to go ahead and enter in the second code, and then I'll hit

Assign MFA. And we can see that it has been added. And so I

will have to enter in the secret code every time I actually log in

to this root account.

Next, let's go look at how we do this for an IAM user. So I'm

going to choose the user, and from within here, I'm going to go

to the tab for Security credentials.

And you can see here that there is not an assigned MFA device,

and so I'll go to Manage. I'm going to choose the same option

for Virtual MFA device, and just as before, we would go through

the process as we just did to show the QR code, add that to our

password manager, and then enter in two successive keys. And

then once we did that, we would have it in place for our IAM

user so they would have to enter in that token every time they

logged in.

Chapter 4 Amazon Cognito

So next, let's talk about a new service, Amazon Cognito, and this

service gives you the capability to manage authentication and

aspects of authorization for your custom web and mobile

applications through AWS. So, let's go ahead and dive through

this a bit more, and we'll talk about some use cases that tie in

with it. So, Amazon Cognito, first of all, is a fully managed user

directory service for custom applications. So, IAM deals with

permissions for AWS resources, but what happens if you basically

want to build something like IAM for your own custom

applications? Amazon Cognito fills that role. But it does more

than just that. It also provides UI components from many

platforms. So if you want to have a sign in or sign up UI, for

example, for your iOS application or for your React web

application of your Android application, you can get those out of

the box with Cognito. It also provides some advanced security

controls to control account access. There's actually some pretty

advanced functionality baked into Cognito that you can choose to

take advantage of. But the other part of this, and this is where it

intersects with IAM, is it also enables you to control access to

AWS resources. Let me give you an example. Let's take the

example that we mentioned earlier within this chapter. Let's say

you have a web application that lets users upload some of their

photos, for example. Well, you would want to be sure that users

have access to a part of a specific S3 bucket that's just for them.

Well, there's a way with Cognito that you can configure access to

specific pieces of AWS infrastructure that you would want a user

to actually have access to, but without having to have them sign

up for an IAM user account. This can also work with social and

enterprise identity providers. So we talked a little bit earlier about

identity federation, and Cognito has wide support for that with

providers like Google, for example. And let's be honest, most

people seem to have a Google account, so you could let your

users log into your custom application with Google and have that

correspond to a Cognito identity. But it also supports Amazon and

Facebook and Microsoft Active Directory, as well as any SAML 2.0

provider. And so Cognito gives you the ability to take this level of

authentication and authorization and tie it into your custom

applications. Now, we're going to talk through some specific

scenarios to see how well you've absorbed the material that we've

presented within this chapter. So first of all, we have Kate, and

she manages a team of DevOps engineers for her company. Each

member of that team needs to have the same access to cloud

systems, and it's going to take her a long time to attach

permissions to each user for access. So if you've got a team of

10 and need to go through to each individual user and go in and

add those permission, she's just saying, man, it's taking a really

long time. So, what approach would help Kate manage the team's

overall permissions on AWS? Next we have Danny, and he works

for a startup that is building a mapping visualization tool. And

their EC2 servers need to access some specific data that's located

within S3 buckets. He created a user in IAM for these servers,

and then he uploaded those keys directly to the server. So is

Danny following best practices for this approach? And if not, what

should he do? Okay, finally we have Don, and he is leading the

effort to transition his organization to the cloud. His CIO is

concerned about securing access to AWS resources with a

password, and he's asking Don to research approaches for

additional security for their users. So what approach would you

recommend to Don for this additional level of security? Next,

we're going to go through the answers to these scenarios, as well

as taking a quick look back at what we've covered within this

chapter. So we have covered a great deal within this chapter, and

before we dive in and go look at our scenarios, let's take a

minute to look back at what we've covered. First of all, we

introduced the IAM, or Identity and Access Management service,

and as a part of that, we reviewed the three different IAM identity

types, users, groups, and roles. We then were able to go through

the process and enable authentication, and we did that after we

went through and learned how to create IAM users and groups

within IAM. And finally, we introduced Amazon Cognito, a service

that enables us to configure aspects of AWS access for our

custom applications and our users within those applications. So,

let's take a look at our three scenarios. And first, we had Kate,

and she was trying to figure out how to manage the team's

permissions. So what would you recommend for her? Well, in this

case, using an IAM group would give her one location for setting

permissions for every single member of the team. However, we do

need to add a caveat here. We have the principle of least privilege

access. We want to be sure that no one has access to more than

what they need. So for the members of Kate's team, it totally

makes sense to have an IAM group. But, if she simply put all of

her technical resources in a single group and gave them all

admin access, that would not be following least privilege access.

So we do need to use a group here, but we want to be sure

we're not giving them more access than what they need. Next we

have Danny, and he has EC2 servers that need to have access to

S3 buckets, and so he just created a user in IAM and then

uploaded that access key and secret access key to the server

directly. So is he following best practices? No, he's not following

best practices here. And part of the reason I bring this scenario

up is even this week I was working with a client and I had pretty

much this exact scenario happen where I found out the client was

creating a user for something and uploading that directly to the

server. The solution here is to use an IAM role within EC2

because this mitigates much of the security risk as opposed to

taking the approach that Danny is taking. So roles are around for

just this reason, to give our services the ability to work with other

services on AWS, but to have it happen in a secure way. So,

Danny should transition away from his approach and move to

using an IAM role with specific permissions, in this case to

access S3. Finally we have Don, and he's leading the effort to

transition his organization to the cloud, but he needs an extra

level of security. So, what approach would you recommend to

Don? Well in this case, authentication should be what they move

towards. This is built in to AWS, and because of that, it's

something that should be relatively easy for them to implement.

And it moves from the user simply having to just have a

password, which obviously we k that passwords can be either

hacked or they can be stolen from other services, and especially if

users are using the same password on multiple sites, it can

expose organizations to risk, but with authentication, you have to

be able to provide this other token to be able to log in. So this

should give Don the security that he needs.

Chapter 5 How to Integrate On-premise Data & Data Processing

Since we're talking about architecture on AWS within this book,

one of the areas that we need to touch on has to do with data.

So let's talk about what we are going to cover within this chapter.

First of all, we're going to look at some different approaches for

how you integrate data from your own data center. This is

different than what we talked about earlier with just data transfer

services. We're going to talk about how you integrate the data you

have within your data center with experiences on AWS. We're also

going to be examining approaches for how you process your data.

Because in so many architectures, there is a processing step that

needs to happen with data before you can dive in and fully

analyze it. But then we'll be looking at the different data analysis

approaches and services that you can leverage on AWS. And then

finally, we're going to talk about an exciting topic, and that's how

you integrate machine learning and AI, those capabilities that AWS

has integrated into the platform into how you analyze your own

data. So first, we'll be looking at how you integrate your data into

AWS. And really, we're going to be talking about two different

solutions. One of them is AWS Storage Gateway. And this is a

hybrid cloud storage service, so merging together the storage you

have between your data center and AWS. And then we have AWS

DataSync, and this is an automated data transfer service, so

different than Sball, but here we're talking about how you actually

can set up a system from your network to sync data with AWS.

So first of all, we have AWS storage Gateway, and this integrates

cloud storage into your local network. And the way this works is

you can deploy either a virtual machine or a specific hardware

appliance running the Storage Gateway software on it onto your

network, and it integrates with S3 and EBS. within Storage

Gateway, there are three different gateway types that you can

leverage. One of them is a tape gateway, then we have a volume

gateway, and finally a file gateway. So let's look at those three

different gateway types. So first of all, let's look at the file

gateway. This enables you to store files within Amazon S3, but yet

keep certain files local to your network on the storage gateway

device so that you can have low latency local access, and it can

have this local cache pull certain files or files that are the most

recently accessed. Then we have the tape gateway, and this

enables you to have basically a tape backup experience. So if you

don't have a lot of historical IT background, one of the ways that

data is backed up, especially within the enterprise, is on tape

devices, and you can end up with a tape library where you have a

machine that's able to read data and write data to multiple tapes.

Well, the tape gateway for Storage Gateway basically acts like a

virtual tape library or VTL. And so you can have that same

backup experience still using your same backup software, but have

it store to the cloud where it's much more durable than actually

storing on tapes. Then we have volume gateway, and this gives

you the ability to have iSCSI volumes that are needed by certain

local applications, but have that data actually stored in the cloud.

So next, let's talk about AWS DataSync. , DataSync works by

having the DataSync agent deployed as a virtual machine on your

network. And in this case, we have wider support than just with

the previous approach with Storage Gateway. Here, we can

integrate with S3, EFS, and FSX for Windows File Server. We also

here see a greatly improved speed of transfer due to this custom

protocol that AWS has developed and different optimization. And

in this case, you are charged per GB of data transferred between

your data center and AWS. So next, we're going to cover how you

process data on AWS and the different services that are provided

for you to do this, because in many cases, if we're looking at

how organizations analyze their data, there's a step for converting

and preparing data before you actually analyze it, and that's what

we're covering here. And we're really going to be talking about

three different services. First of all, AWS Glue. This is a managed,

extract, transform, and load service. We’re going to be talking

about extract, transform, and load quite a bit. And so we'll call

this ETL , but let's talk about what that means. Usually it means

you have data stored somewhere, you need to pull it out of

where it's stored, that's the extract; then you have transform. This

means you're going to do things like normalizing the data. Maybe

you need to change the way that phone numbers are represented

or group things together or change the structure of the data. You

need to do something to change it. Then we have the load step.

This means you're going to put it in a new location so that you

can then go in and analyze it. So that's what we mean by extract,

transform, and load. Then we have another service, and that is

Amazon EMR or elastic map reduce, and this is a big data cloud

processing suite, and it uses popular tools, and we'll cover what

those tools are shortly. And then finally, we have AWS Data

Pipeline, and this is a workflow orchestration service across

separate AWS services. So if you want to manage the process of

how data gets from point A to point B, especially if it needs to

go through a specific type of AWS service in the middle, this is

where Data Pipeline can be very, very helpful. So let's look at

each of these in turn. First of all, we have AWS Glue, and as

mentioned, it is a fully managed ETL service on AWS. It also

supports Amazon RDS, DynamoDB, Redshift and S3. So if you're

looking for the AWS services that it integrates with, those are the

ones that you can look at. it supports a serverless model of

execution. That means you don't need to spin up specific servers

or specific instances. You just use the service, and it handles the

management of the infrastructure for you. Next, we're going to

talk about Amazon EMR or elastic map produce, and what this

does is this enables big data processing on Amazon EC2 and S3.

And it supports popular open source frameworks and tools, which

we will cover in just a bit. And it operates in a clustered

environment without additional configuration, and this is really one

of the benefits of the service. If you were choosing to do this on

your own, just directly in Amazon EC2, there would be a lot of

configuration that would go with getting these tools set up, and

then having them operate in environments where you have more

than one server where they all need to work together, and this is

just included as a part of the service. And because it includes

these popular tools and it has this clustered environment, it

supports many different big data use cases. So let's look at the

different frameworks that are supported. First of all, we have

Apache Spark, Apache Flink, we have Apache Hive, Apache Hudi,

we have HBase, and Presto. So if you look around in terms of

what people are doing within big data, generally these are the

tools that are involved. So EMR gives you the ability to take

advantage of these tools without having to spend a massive

amount of time configuring them. Next, we have Data Pipeline,

and Data Pipeline is also a managed ETL service on AWS. It does

manage the data workflow through AWS services, and it supports

S3, EMR, Redshift, DynamoDB, and RDS. And there also are ways

with this where it can integrate your data stores within your data

pipeline.

So now that we've talked about how we get our data to AWS and

how we process it, we're going to talk about how you actually

analyze the data that you have within AWS. And so we're going to

be talking about several services. First of all, we're going to be

talking about Amazon Athena, which this is a service that lets you

query data not stored in the database, but actually stored in

Amazon S3. Then we're going to look at Amazon Quicksight,

which is AWS's BI tool that gives you interactive dashboards. And

then, we'll be talking about Amazon CloudSearch, and this is a

search service that can be used for custom applications. So let's

dive in and look at these. First of all, we have Athena, and this

is a fully managed serverless service. So you don't have to

configure any of the underlying infrastructure. You can simply

leverage the service. And the great thing about Athena is it does

enable you to query data stored within Amazon S3. So if you're

taking more of what we would call a data lake approach and your

company is just dropping a bunch of data within Amazon S3,

there are formats that you can store it to make this process more

efficient, but as long as you have that data there and you want to

run a query a determine your sales year over year, you could do

that utilizing Amazon Athena. You also can write queries just

using standard SQL. So this becomes advantageous for people

that are used to working within databases. They can take that

exact knowledge and use it to then query this data stored within

S3. With Athena, you are charged based on the data that you

have scanned for a query. So depending on the amount of data

that it needs to search through, that's how you are charged for

Athena. So next, let's talk about Amazon Quicksight, and this is a

fully managed business intelligence or sometimes you'll hear it

called BI service. And this enables some dynamic data dashboards

that are based on data that you have stored within AWS. There

are a couple of different pricing models depending on how you're

leveraging it. So we do have a and a pricing model, and it

depends on how you're using it, how many authors you need

versus how many people that are just reading the data. And there

are multiple versions provided based on your needs, so like a

standard version versus an enterprise version, and they have

different capabilities and different cost points. And so you could

dive into the documentation and see which of those fits your

specific needs. So here you can see an example from Quicksight.

This is using a sample dataset that you can load into the

platform once you have an account. And this gives you the view

of an author who is able to go in and actually create new

visualizations based on data that you have stored within AWS.

we're going to look at Amazon CloudSearch, and this is a fully

managed search service on AWS. So in some cases, you want to

go through an analyze data in dashboards like we were talking

about with Quicksight. Or in some cases, you might want to run

through a bunch of data like we have with Athena. But maybe

you want to build a custom application and make a lot of data

available to your users. And this is where CloudSearch can be

very beneficial.

The great thing is it does support scaling of search infrastructure

to meet your demand. So you can trust that this is a service that

can scale for you. You are charged per hour and instance type of

your search infrastructure. So this is where you need to know

what size of an instance you need to have, and then you will be

charged based on that. It does enable developers to integrate

search into their custom applications. That's the goal of this

service. So if you want to be able to have users search through a

ton of PDF documents that your organization has stored or other

custom information, this becomes a great resource to plug into.

Chapter 6 How to Integrate AI and Machine Learning

Now, we're going to talk about the exciting world of AI and

machine learning on AWS because that you have data that you

have included into the platform and you've processed it and

you've analyzed it, there's a lot you can do with that data. And AI

and machine learning give us capabilities that we did not have

available to us previously for analyzing large amounts of data. So

let's look at some of the different services. We are not covering

all of the services on AWS. I'm simply covering a of the services,

things that you will need to k for your Certified Cloud Practitioner

exam. But there are many more. Services beyond what I'm

covering here. So we're really going to be looking at three

different services. The first is Amazon Rekognition. And this is a

computer vision service that is powered by machine learning. And

by this, we mean we can get insights out of images that we have

stored on the platform. Then, we're going to look at Amazon

Translate, and this is what allows us to translate text from one

language to another. And finally, we're going to look at Amazon

Transcribe, which is a solution, and this is also using machine

learning. So let's look at each of these. First of all, we have

Amazon Rekognition, and this is a fully managed image and video

recognition deep learning service. That’s a mouthful. But what this

is it means we can pull data and insights out of both images

and video, and it can identify objects within images. So if you

want to try to just quickly detect within an image, what objects

are there, you can simply pass the image into Rekognition, and

then you'll get a response back that contains those images.

However, it does get interesting when we're looking at videos

because you can identify objects and actions. So there are certain

things that we wouldn't know if we only looked at a still image.

But when we can see it in motion, we can begin to detect

actions that are happening within that video. Another part of this

is that it can detect specific people using facial analysis. So you

can go in and say here's an image of an individual, and then you

can have it go through a bunch of other images and see if it

finds that person within those images. This falls under the

category of facial recognition, and obviously people have a lot of

varied opinions about facial recognition. But if you're looking to

implement something like that or a custom authentication system,

you could use Amazon Rekognition for that. It also supports

custom labels for your business objects. So let's say you had a

store, a retail store, and you wanted to take pictures of your

products, and then you wanted to be able to detect when people

are checking out just based on a picture of their shopping cart

the items that they had, and we've seen Amazon implements

similar technology with their Go stores, you could use custom

labels for your business objects. There's a way to train the system

to be able to detect those custom objects. Next, let's talk about

Amazon Translate, and this is also a fully managed service. And

in this case, we're translating from one language to another. And

it currently supports 54 different languages. It also has some cool

features, like just language identification. So it's possible that

you're receiving information and you don't even k what the source

language is. So you can get that from the service as well. And it

also can work both in batch and in So in terms of batch, we

mean we have a bunch of text after the fact, and we want to get

it translated. And means we're actually able to stream that in and

get the translation back as we're streaming it in. we also have

Amazon Transcribe, and this is a fully managed speech recognition

service. This means we want to take audio either again through or

in a batch mode, and we want to be able to get that converted

into text. So you can have this where you do record speech and

then convert it into text in your custom applications. And one of

the great things about this is there is a specific subservice here

that is just for medical use. If you're working within the medical

area and you want to be able to transcribe information that's

going to have medical terms in it, there is a part of this service

for that. This also supports both batch and transcription, and it

currently supports 31 different languages globally. So next, we're

going to dive through and look at some scenarios to help you

know how well you have absorbed the material within this chapter.

So first of all, here we have Ronald, and she is a data scientist

for a financial services company, and they need to be able to

process a dataset before they're able to analyze it. Ronald doesn't

want to manage servers. She really just wants to define how the

data needs to be transformed. So if that was the case, what

service would you recommend to Ronald? Next we have Jesse,

and Jesse is a member of the IT team for a biotech company,

and she's currently working to identify an approach for controlled

lab access. So in other words, they need to be sure that that lab

stays locked except to the people that need to be in there. He

wants to leverage AI to determine access based on facial imaging.

So they have a camera posted there. He wants to be able to just

scan somebody's face and determine if they need to be in the

lab. So is there an AWS service that can help with this approach?

And finally, we have Rob, and his company sells custom services

around machine learning. His head of sales is trying to find a

great way to visualize their sales data because they're tired of

having to always go to the engineers to get this data. Their data

is currently stored within Redshift, and so what they're doing is

they're trying to figure out a way that they can have a experience

for their salespeople to get access to that data. So what AWS

service would allow this access to the data by resources? We’ll

cover the answers to these scenarios, as well as a review of what

we've covered within this chapter, next. Let's quickly take a step

back and review what we've covered. So first of all, we reviewed

some different approaches for integrating data from your own data

center. Then, we examined approaches for processing data, and we

looked at concepts like ETL and the different services that can

support it. We then explored some different data analysis

approaches, everything from using Athena to look at the data in

S3 to diving into using BI dashboards with Quicksight, as well as

even looking at creating a custom search solution using

CloudSearch. And then after that, we integrated machine learning

and AI into our data analysis with services like Translate and

Transcribe and image and video analysis with Rekognition. So let's

look at our scenarios. First of all, we have Ronald, and he was

looking to find a way to process data without having to manage

the underlying servers. So what would you recommend? Well, in

this case, AWS Glue becomes a great choice. It gives her that

ETL capability, but in a serverless way without having to manage

any of the underlying infrastructure. Then, we have Jesse, and she

is looking here to use AI to determine access to the lab based

on facial imaging. So what would she use? Well, in this case,

Amazon Rekognition becomes a great choice because there are

ways within Rekognition to store the images of specific people

and then detect those in other images. So they could integrate

that in to the camera that they have posted for lab access. Next,

we have Rob, and he was looking for a way to have their sales

team get access to sales data, but in a way where they didn't

have to go in and query a database, so in an interactive

dashboard. So what AWS service would allow this access to the

data by resources? Well, in this case, that would be Amazon

Quicksight. This gives a great way to create some dashboards

based on the data that's stored in Redshift.

Chapter 7 Disaster Recovery Architectures

Now, we're going to be talking about disaster recovery on AWS.

When we talk about disaster recovery, according to the AWS

definition, we're talking about how we prepare and recover from a

disaster, which can be any event that has a negative impact on

your company's business, so this could include things like

hardware or software failures, network outages, power outages,

physical damage to a building like a fire, or flooding, human error,

or some other significant event. Let’s look at this from two

different perspectives. First of all, let's say that you are a company

that has your own data center, and if that data center is located

within your town and there is a major event that happens, let's

say an earthquake, for example, and your network connectivity gets

disrupted, how do you handle that? That's something you need to

prepare for. But there also is another scenario. Let's say that

you're leveraging the cloud for your infrastructure and let's say

you're using AWS and you're basing everything in one of the AWS

regions. While a complete region outage is pretty much unheard

of at this point, it certainly could happen, especially if there were

a significant natural disaster. So how do you prepare there? How

can you leverage the AWS global infrastructure to limit the effect

of this disaster? So over the book of this chapter, we're going to

be talking about several things. First of all, we'll be helping to

understand the need for a disaster recovery strategy, and then

we'll be reviewing the four different disaster recovery approaches

that are recommended by AWS. We'll then be exploring the factors

that you need to k when you are selecting an approach, and then

ultimately, we will be examining specific scenarios and disaster

recovery needs. Next, we're going to talk about the different

disaster recovery architectures that are recommended by AWS, and

we're going to be looking at four of these architectures. So let's

think about it in terms of a spectrum, and we're going to start

on the far left of the spectrum with backup and restore. Then, as

we move over, we will look at another option, which is called

pilot light. Then we'll continue to move to warm standby. And

then finally, we'll look at multisite. Let’s talk about what this

spectrum means. First of all, we have a line going to the right

that is increasing cost and complexity. This means that backup

and restore is going to be cheaper than pilot light and much less

complex than warm standby, for example. But we also have a line

going the other way, and that is that we see recovery time

decreasing. So if we look at backup and restore, it will have a

longer recovery time than what we see with multisite. So let's

begin to look at each of these to understand what that means.

First, when we look at backup and restore. With this approach,

you're going to take all your production data and you're going to

back it up into Amazon S3. And you can do something like

storing it in just the standard or an archival storage class. So

let's say, for example, that you have a social network site. All of

that data is going to be stored inside of S3. And we also can

even take EBS data from our EC2 instances and store that in S3

as snapshots as well. What happens is if we have a disaster

recovery event, we start a process to launch a completely new

environment. So we're going to spin up all of our servers and our

database instances, everything that we need for our environment,

but we are not going to have any of that running until we get to

a disaster recovery event. This approach has the longest recovery

time. We're going to talk more about the recovery time, but in

essence, that's just the amount of time it takes for us to get back

up and running. And while this will have that longest recovery

time, this approach will also have the least cost. Then we have

pilot light, and with pilot light, you keep some key infrastructure

running in the cloud. Not all of it, not enough for a complete

environment, but just key components. And this is designed to

reduce your recovery time over what you get with the backup and

restore approach. It’s important to note, though, it does incur the

cost of having this infrastructure running in the cloud. And for

the items that you don't keep running, you'll have some AMIs

that are ready so that you can launch your servers at a moment's

notice if there is a disaster recovery event. it's important to note

here that this does give you a quicker recovery time because the

core pieces of the system, not the entire system, but those core

pieces, are running and are kept up to date. So this is something

that you would have to maintain over time. If we take another

step up, we end up with warm standby, and what this is this is a

scaled down version of the full environment running in the cloud.

So this is not just core components, this is everything, but it's

just maybe not everything at its full scale. So what we could do

is we could have our critical systems running on less capable

instance types. So if we need a super large server in terms of an

instance type on our cloud environment, maybe we just go with a

medium sized server here for warm standby, and what we can do

is we can actually scale up if we have a disaster recovery event

for those specific servers. But this also incurs the cost of running

this infrastructure continually in the cloud. Let’s talk about the

final option, which is multisite. Multisite means that at all times

we have a full environment running in the cloud. So if we're

talking about the scenario where we have our own data center,

that means we have our data center up and running and we have

the cloud up and running, and both of those are up the entire

time. If we're talking about a cloud deployment model, this could

mean that maybe we have data in the US East 1 region, and then

we also simultaneously have it in the US West 2 region so that

both of them are running all the time. This utilizes the instance

types needed for production, not just recovery. This means that

we have our full environment at its full scale up and running.

And this can provide a near seamless recovery process. So if we

want to make this seamless, if we do have one of those disaster

recovery events, this is the best approach to take. However, this

does incur the most cost over the other approaches, so you will

pay more for multisite than you do any other, but you will also

have the least amount of recovery time.

Chapter 8 Selecting a Disaster Recovery Architecture

Now, we're going to talk about the process that you take to select

a disaster recovery architecture for your organization. So there are

really two different terms that we need to know when we're

considering our approach. The first is Recovery Time Objective, or

RTO, and the second is Recovery Point Objective, or RPO, so let's

take each of these in turn. First of all, we have Recovery Time

Objective, and what we need to note here is that Recovery Time

Objective is about time, and it's about our systems being back up

and running. So this is defined as the time that it takes to get

your systems back up and running to the ideal business state

after a disaster recovery event. So for your organization, you

might have a standard that says, if we have one of these

significant events, we need to be back up and running within 8

hours. That would mean that your RTO is 8 hours, but we also

have another term, and that is Recovery Point Objective, or RPO.

This means the amount of data loss, in this case, specified in

terms of time for a production system during a disaster recovery

event. So what this means is, let's say we have our production

system that's tracking our orders for our company. We might say

that our Recovery Point Objective is an hour. That means that we

might lose data for an hour when we have one of these

significant disaster recovery events. But by the end of the hour,

we are back to receiving full production data. And so this is

defined in terms of time, and it's important to remember that

Recovery Point Objective is all about data, whereas Recovery Time

Objective is all about time. Let’s look at this in terms of our

different scenarios again, and this is the visualization that we've

already seen. In both RTO and RPO, we're going to see the least

of those values when we're looking at multisite. But as before,

that's going to mean that we have the highest cost. With backup

and restore, we will see the least cost, but we will also see the

highest RTO and RPO. And then with pilot light and warm

standby, you can customize these based on what your needs are

in each of those specific areas to determine what systems need to

be up and running. For example, with pilot light, you might

choose to have key production databases up and running with a

smaller scale in the cloud so that you can decrease your overall

Recovery Point Objective. Let's now review some scenarios to see

how well you have absorbed this material. So first of all, we're

going to have Rob, and his company runs several production

workloads within AWS. And he is tasked with architecting the

disaster recovery approach. In this case, they don't have an

approach yet, and he's trying to figure out which approach they

should adopt. His organization wants there to be a seamless

transition if there is a disaster recovery event. For Rob, which

approach would you recommend for his company? Next we have

Judit, and she is at a startup, and they do not currently have a

disaster recovery approach. They are leveraging the cloud, but they

don't have an approach in place yet. And for her company, the

goal here is to minimize cost, and that's going to be more critical

than minimizing the RTO or recovery time objective. In the case

of Judit and her company, which approach would you recommend?

Finally, we have Elenor, and she is documenting her company's

disaster recovery approach. And for them, they keep a few key

servers up and running in AWS in case of an event, and these

servers have some smaller instance types than what you would

normally have within a production environment. So in this case, if

she's trying to document this, which disaster recovery approach

most closely matches this scenario. Next, we're going to be

summarizing what we've learned within this chapter, as well as

giving answers to these scenarios. We have covered several

different aspects of disaster recovery on AWS. And this includes,

first of all, understanding the need for disaster recovery strategy.

We talked about whether you are running in your own data center

or even in the cloud, there is still a need to have a disaster

recovery approach. And then, we reviewed the four different

disaster recovery approaches that AWS recommends all the way

from backup and restore up to multi site. We then explored the

factors to k when you are selecting an approach. We talked about

RTO or recovery time objective and RPO, recovery point objective.

And we went through and examined some specific scenarios and

disaster recovery needs. Since we looked at those scenarios, let's

go dive in and find out what the answers are. So our first

scenario had to do with Rob and his company, and so they were

really wanting to have a seamless transition. So which disaster

recovery approach would Rob use for his company? Well in this

case, it would be multi site, and the reason here is they want to

have as seamless of a transition during a disaster recovery event

as possible. That means they would need to leverage the multi

site approach. They would have full production instances up and

running both in their own data center, as well as within AWS.

Next we have Judit, and her company was the startup that wanted

to minimize cost, but still have an effective disaster recovery

approach. So what would you recommend? Well, in this case, the

answer is going to be the backup and restore approach. And the

reason is that Judit's company is looking to minimize cost, and

that is the driving factor. She’s going to have more time to get

the systems back up and running, so a higher RTO. So here,cost

is what we're optimizing for, and backup and restore is the most

approach to disaster recovery. So next, we have Elenor, and she is

documenting her company's disaster recovery approach. They keep

a few key servers up and running in AWS with smaller instance

types and what production would need. So which approach is

this? You might be confused here if the answer is warm standby

or pilot light because it seems to include examples of both, and

you would be correct. However, the key thing to note here is that

they only keep a few key servers. They don't have a complete

environment up and running. They are using smaller instance

types than what production would need, and that might lead you

to think oh, this is warm standby. But when we see here that

they're only using a few key servers, we would then say that this

is the pilot light approach because they are only keeping kind of

core systems up and running in the cloud, and they will have to

launch all of the other instances that support their environment if

there is a disaster recovery event.

Chapter 9 How to Scale EC2 Infrastructure

Now we're going to be talking through how you architect

applications on Amazon EC2. We'll be walking through several

different aspects of this. We'll start off by reviewing scaling

approaches and the services that support scaling for Amazon EC2,

and we have spent some time talking about this already, and we

will revisit the concepts of horizontal and vertical scaling, but we'll

go even deeper and talk about the services that enable that. Then

we will examine approaches for how you control access to your

Amazon EC2 instances. So making sure that it is only available to

whoever you want it to be available to. Then we're going to be

exploring services to protect infrastructure from hacking and

attacks, because we live in a world where this has to be a

consideration, when you're deploying any infrastructure out to the

public internet. Then we'll be introducing the developer tools that

are provided by AWS to help with any of our development work

on the platform. And then finally, we will be reviewing approaches

for launching predefined solutions on Amazon EC2. First, we're

going to be talking about scaling our EC2 infrastructure. And

while we have already introduced this topic, we're going to be

taking a bit of a deeper dive. So let's quickly revisit the concepts

that we have already covered. We talked about different ways that

you can scale on EC2, the first being vertical scaling or scale up,

and that means if we've reached the end of the demand that our

server can support, we can simply make it a bigger server, make

it to have more resources by having a larger instance type. But

then we also have horizontal scaling, and this is where we scale

out. Instead of making our server bigger or making our servers

bigger, we're going to actually just make more servers, and then

we'll be able to route users to whichever server has the lowest

demand. This is horizontal scaling, and we talked about the fact

that in the cloud, horizontal scaling is a much more sustainable

approach than vertical scaling, and this is baked into EC2 with a

couple of specific services. So first of all, we have the concept of

an Auto Scaling group, and this allows us to have a group of

EC2 instances that work together with shared rules for scaling and

management. Then we have a concept that we have already

introduced, which is an Elastic Load Balancer, which allows us to

distribute traffic across multiple targets. So let's learn more about

the new concept that we've introduced here, Auto Scaling groups.

So within EC2 Auto Scaling groups, first of all, there is a launch

template that defines the instance configuration for the group. So

if you know, for example, that you're going to want to have a

Windows 2019 server, and it needs to be a certain instance type,

and you know that it's going to need to have this certain security

group associated with it, you can define all of those settings

within the launch template. And then every instance that gets

launched within the Auto Scaling group will have those

characteristics. You also can define the minimum, maximum, and

desired number of instances within the Auto Scaling group. So

let's say that we have a web application that we're running on

EC2, and we k that we need to have at least two servers running,

so two can be our minimum. And let's say that our maximum

here is six, but we want to have four as our desired number. Just

on a normal day, at a normal point in time, it needs to have four

servers up and running. You can define those, and the Auto

Scaling group will manage the group of instances to that. It

performs health checks on each instance, so you can define how

it knows if an instance is healthy or not. If you have a web

application, for example, that's running on this EC2 server, you

can choose to give the specific URL that it should check against

that server to make sure that it's working properly. If it returns a

proper status code, it assumes the instance is healthy. But if it

doesn't, then it would assume the instance is unhealthy, and it

would take action. An Auto Scaling group exists within one or

more availability zones in a single region, and you usually have it

span multiple availability zones because this adds a level of fault

tolerance that even if you had a complete availability zone go

down, your Auto Scaling group could still be up and running.

This can work with on demand and spot instances. Let’s look at

the following scenario. So first, we have a region, and in this

case, this will be And inside of our region, we have configured a

VPC with an internet gateway, and this VPC will house our

custom application. And we have supported that across two

different availability zones, a and b, and we created our Auto

Scaling group, and it exists within both availability zones. And we

chose to have a desired capacity here of two. So it's going to try

to keep it balanced between the different availability zones, so it

will launch one instance in availability zone a and one instance in

availability zone b. we want to have users be able to be routed to

a server, the server that has the most room to handle their

request, and so we're going to have a specific type of ELB called

an Application Load Balancer that's going to be between our users

and the specific servers that they're going to be accessing. It

knows how to work effectively with the Auto Scaling group, so it

knows what instances are healthy and which ones are not. So in

the beginning, all of these instances are healthy, so the

Application Load Balancer can route user traffic to either of the

servers. However, let's say that something changes and the server

that we have in availability zone a is no longer healthy. Well, the

Auto Scaling group will note that, it will let the Application Load

Balancer k that, and it will stop sending traffic to that particular

server while the Auto Scaling group terminates that server and

then goes in and actually starts a new server. Once that startup

process is complete, it can communicate with the Application

Load Balancer and let it k that it is safe to send traffic back to

availability zone a. Let's talk about another concept for how we

scale, and that has to do with the AWS Secrets Manager. So you

need a way when you're scaling out to multiple servers to securely

integrate things like credentials and API keys and tokens and

really any other secret content in a way that can't be

compromised. This wouldn't need to be with our startup code, for

example, on the server. It wouldn't need to be with our custom

code that might be sitting in a repository somewhere. There needs

to be a safe way that we store this information. For example, if

our web application we're going to work with RDS as a database,

it would need to have a secure way to get the credentials for that

database. And Secrets Manager integrates natively with RDS,

DocumentDB, and Redshift, and it can auto rotate credentials with

these integrated services. So you wouldn't want to keep the same

username and password for RDS for 3 years, for example. You do

need to change it periodically just to make sure that there are no

vulnerabilities. And so this is included by default within Secrets

Manager that you can configure this auto rotation. And another

benefit is that it does enable you to have access control to those

secrets. So you know exactly what servers and what applications

have access to which secret values that are stored within the

Secrets Manager.

Chapter 10 How to Control Access to EC2 Instances

Now that we've talked about how we actually scale our EC2

instances, we need to take a minute and think about how we

control who can access and can't access our EC2 instances. We're

going to talk about 3 different ways that we can go about this

process. The first is by using EC2 security groups, and these are

controls for your resources within your VPC. Then we're going to

talk about network ACLs, and these control both inbound and

outbound traffic for entire subnets within the VPC. And then

finally, we're going to talk about AWS VPN, which gives us the

ability to create a secure encrypted tunnel between our network

and the AWS infrastructure. So let's go in and look at each of

these in turn. So first we have security groups, and these basically

serve as a firewall for your EC2 instances, and they have the

ability to control both inbound and outbound traffic. Unlike what

we're talking about with access control lists, these don't work at

the subnet level, or even at the VPC level. These actually work at

the instance level. So you will associate a security group with a

specific EC2 instance, and they can actually belong to multiple

security groups. So you might create some security groups for

common purposes. For example, if you have web servers, they

might have certain configurations that are enabled on them. And

then every web server that your company uses can have that

security group attached. VPCs do have a default security group,

and so if you don't choose to specify any other security group,

that security group will be associated with your instance. But

other than that use case, you have to explicitly associate an EC2

instance with a security group. It doesn't happen by default. It

doesn't happen to everything within the same subnet. And by

default on security groups, all outbound traffic is allowed. That

means that your server can send any information out to the

internet. When we have network ACLs, they work a bit differently.

They work at the subnet level within a VPC. So when you define

your network configuration, every server that gets spun up within

a subnet will adopt the ACL for that subnet, and this allows you

to both allow and deny traffic. Each VPC comes with a default

ACL, and that default ACL allows all inbound and outbound traffic.

However, if you go in and create a new custom ACL, it, by

default, denies all traffic until you have gone in and added rules

to that custom ACL. Let’s talk next about a different approach,

and that is utilizing AWS VPN. And what this does is, this

enables you to create an encrypted tunnel into your VPC. So you

might not even want to make your VPC available to the public

internet, but you still want to have a way to get access to

manage the servers that are within that VPC. So you can use this

to either connect your data center, or maybe you just want to

connect a single machine to your VPC. And it supports both of

these in two different services. First of all, we have the VPN, and

then second we have the Client VPN. So let's talk through this

and let's see what a VPN example would look like. So let's say

that we have our own corporate data center, and we have several

servers that need to interact with some EC2 instances that we

have spun up within our VPC on AWS. Well, we could utilize the

AWS VPN service. We would create a customer gateway, and we

would need to enter that information into the service, and then

we would have a VPN gateway that would exist within our VPC

on AWS. And once these things are in place and once they know

how to communicate with one another, we then would be able to

have encrypted traffic traveling back and forth between our

corporate data center and AWS. You may be asking, how is this

different from AWS Direct Connect? And that's a great question.

With AWS Direct Connect, you have a direct connection to the

AWS global infrastructure that doesn't have to go over the public

internet. However, when you're using AWS VPN, that traffic does

go over the internet; it is just encrypted the entire way. Next,

we're going to talk about how you protect your infrastructure and

your data from different cyber threats that exist, and there are

several services that support this for us on AWS. And first we're

going to be looking at AWS Shield, which is a managed

distributed protection service for apps on AWS. Shortly, we'll go

through a definition of what that means. Next, we're going to be

looking at Amazon Macie, which is a data protection service that

is powered by machine learning, and so it enables us to watch

things that we maybe couldn't watch if we were looking at

manual processes. And then we'll be looking at Amazon Inspector,

which is an automated security assessment service for EC2

instances. Before we dive into these, let's first give a definition to

that term and that is distributed denial of service, or DDoS, and

this is a type of attack where a server or group of servers are

flooded with more traffic than they can handle in a coordinated

effort to bring the system down. And in the time that we live in,

this is something that can happen. If you want to have protection

against this, AWS has provided a service that makes that

available, and that service is called AWS Shield, and it does

provide the protection against the DDoS attacks for your custom

applications that are running on AWS, and it enables ongoing

threat detection and mitigation. So it's not one of those things

you simply turn on when you need it. It's something that you

keep running, and it can create a scenario where it knows when a

DDoS attack is happening. There are two different service levels

for this service. We have AWS Shield Standard, and then we have

AWS Shield Advanced. So depending on what your needs are, you

might choose a different service level for this particular service.

Then we have Amazon Macie, and this utilizes machine learning

to analyze the data that we have stored within Amazon S3. One

of the big benefits of this service is without us having to classify

the data, it can detect personal information and intellectual

property that is stored within S3. Many organizations worry that

the information they have stored somewhere in the cloud can leak

out, and this service is designed to continually watch and

categorize data to make sure that that doesn't happen. It does

provide a level of dashboards to show how your data is being

stored and accessed, and it can provide alerts for you if it detects

anything unusual about data access. This is the type of detection

that we probably couldn't do if we were monitoring manually, but

it can use machine learning to do anomaly detection and find out

when there is a strange pattern of how our data is being

accessed. Then third, we have Amazon Inspector and what this

does, is it enables scanning of our Amazon EC2 instances for

security vulnerabilities? So if we want to be sure that we are

keeping our instances up to date, we're being sure that they're

patched for any critical vulnerabilities that have been released in

the community, if we want to be sure that we're following best

practices, here we can utilize Amazon Inspector and run those in

an manner. Here you are charged per instance, per assessment

run. So if you choose to run an assessment across 10 of your

instances, you would be charged accordingly. There are two types

of rules packages that are included with Amazon Inspector. The

first is a network reachability assessment. This is where we want

to understand what is available to the internet from our servers.

And then we have host assessment, and this is what is going to

check our EC2 instances to make sure that they have been

patched for critical vulnerabilities, and make sure that no common

configuration errors have been made within the server.

Chapter 11 How to Deploy Pre-defined Solutions Using Developer

Tools

So in some cases we're going to create a custom application, and

we're going to go through all of the configuration needed to make

that run in the cloud. But in some cases, we want to deploy

predefined solutions on our AWS account. So how do we do that?

Well, there is a couple of different ways depending on how you're

going about it. First, if you're an organization that is looking to

make certain services on AWS easy to deploy, you can leverage

AWS Service catalog, and this is a manage catalog of IT Services

on AWS for an organization. But then we have AWS Marketplace.

This is a catalog of software that's going to run on AWS, but

from third party providers that have made their specific

configuration available on the cloud. Within AWS service catalog, it

is targeted to serve as an organization service catalog for the

cloud. So let's say that you have several different groups within

your organization that need to spin up a WordPress server, for

example, and that's going to be the blog that they're going to use

for their different department. Well, if that's the case, you can

configure everything that's needed to get this up and running and

they can be able to launch it with pretty much just a click within

the service catalog. This can include everything from maybe a

single server image to even a custom application, so this can

handle a wide variety of infrastructure needs on AWS. And one of

the things it can do is it can enable you as an organization to

leverage services that meet compliance. So if your IT group has

already constructed a specific way to launch a certain type of

server and make sure that it follows all of your organizational and

industry best practices, you can then allow others to take

advantage of that learning without having to recreate the wheel. It

does support also a life cycle for services that are released in the

catalog. So you could have a version 1 of a specific service and

then update it to version 1.1 and everyone that's using that would

be notified that there is an update to the service that they're

using. Next, we have AWS marketplace and there are many

similarities between service catalog and between AWS Marketplace,

but marketplace is geared at vendors, or ISVs, that are going to

publish their software for use on AWS. So this is a curated

catalog of solutions for any AWS customer to run, and it provides

everything from AMIs, CloudFormation stacks, and even solutions

through the marketplace, and it enables some different pricing

options to overcome some of the challenges of licensing in the

cloud because many vendors had licensing that was tied more to

physical servers, and so they provide different types of licensing

terms for the cloud. the charges for what you use on AWS

Marketplace, and some things are free that are just offered by the

community and some things have an additional charge on top of

your AWS infrastructure costs, and these charges will all appear in

one place on your AWS bill. And here, you can see an example

from the AWS Marketplace.

This is looking at some different public sector data that is

available that you can access using the AWS marketplace, but

there are many different categories of services that are available,

and there are many, many different vendors that are supported

within the marketplace.

In building solutions for the cloud, AWS has produced a suite of

services to try to make that development process as easy as it

can be, as well as making sure that it is easy for developers to

follow best practices. So let's quickly review this suite of tools that

are provided by AWS. First, we have AWS CodeCommit, and this

is a managed source code repository using Git. Think of this as

an alternative to using GitHub but one that's deeply integrated

with AWS. Then we have AWS CodeBuild, and you can think of

this as a build service, or a continuous integration service. This

can run the build commands for your custom application to then

create your output artifacts. Then we have AWS CodeDeploy, and

this is a service that will take care of the deployment out to

many different AWS services. And then we have AWS

CodePipeline. So this knows how to work with all of the other

services we've mentioned previously to create a pipeline so that

we can go through and look at the entire process of building,

testing, and then ultimately deploying our applications. But they

have made it even easier with a service called AWS CodeStar,

which gives us a great way to bootstrap this entire process for

our custom applications. So let's look at each of these. So first of

all, we have AWS CodeCommit, and this is a managed source

control service on AWS, and it does utilize Git for repositories.

However, unlike many Git providers, it uses IAM policies because

it is an AWS resource. So you would control access to this just

like you would control access to any other AWS resource. And it

does serve as an alternative to GitHub and Bitbucket. However, in

most cases, AWS has built a way to leverage GitHub with each of

the other development services if you choose not to use

CodeCommit. Then we have AWS CodeBuild, and this is a fully

managed build and continuous integration service on AWS. And

because this is fully managed, you don't have to worry about

maintaining infrastructure. You only are charged per minute for the

compute resources that you utilize. And here this can take care of

building your application and creating those output artifacts. And

then we have AWS CodeDeploy. And this is a managed

deployment service for deploying your custom applications. And

we certainly have been talking about EC2 in this particular chapter,

but it works with more than just EC2. So you can deploy out to

EC2, but also to Fargate, which is a container service. We also

can look at AWS Lambda and even your servers that you're

leveraging. It does provide a dashboard for deployments within the

console, so you can keep track of the progress of your

deployments and even kick off new deployments directly from the

console. Next, we have AWS CodePipeline. So this takes everything

a level up and creates a fully managed continuous delivery service

on AWS. And so it knows how to integrate with the previous

services that we've mentioned to handle building, testing, and

deploying. So it can work with your source code in CodeCommit,

it can then build and test within CodeBuild, and then it can use

CodeDeploy to deploy out the output artifacts. It does integrate

with other developer tools, including GitHub, earlier. Next, let's

talk about AWS CodeStar. This is a workflow tool that automates

the use of the other development services that we already have

talked about. So it can create a complete continuous delivery

toolchain for your custom applications, and it can do it with just

a couple clicks and a couple configuration values. It also provides

some custom dashboards and configurations within the AWS

console. So if you want to k effectively how all of these different

pieces work together, that's what is included within those custom

dashboards. And here the great thing about CodeStar is you are

only charged for the other services that you leverage. So it is one

of the services, like some of the others that we have mentioned,

where you don't pay for this service. It is simply a tool to make

it easier to use other AWS services. But let's take a step back

and let's look at some scenarios to see how well you've absorbed

the content within this chapter. And so first, we're going to be

looking at Elise and Elise is a solutions architect at a traditional

financial services company. they recently made a transition to AWS

and they've gone all in, but they are concerned, they want to be

sure that each department is following best practices, and they

want to create some compliant IT services that other departments

can use, but without the risk of them going rogue and doing

something that could cause them trouble down the road. For

Elise's situation, what service would you recommend for Elise and

her team? Next, we have Tom and his company leverages AWS

for multiple production workloads, and recently, they had

downtime due to one of their applications failing on EC2. Tom’s

job is to avoid downtime if an instance stops responding. So

what approach would you recommend to Tim to solve this issue?

Finally, we have Jack and Jack's company deals with sensitive

information from its users, and they have some reasonable

policies in place for the data that they have stored in S3, but

she's a bit worried that if some of these policies accidentally get

changed, they might actually leak out some data or have a

potential data breach and she's worried about that going

unnoticed. So if you were Jack, what would you recommend to

her company? Next, we're going to be walking through a summary

of what we've covered within this chapter, but we're also going to

be taking a look at the answers to each of these scenarios. First

let's review what we have covered over the book of this chapter.

First of all, we reviewed the different scaling approaches and

services for Amazon EC2. We reviewed horizontal versus vertical

scaling, and we talked about leveraging auto scaling groups and

ELBs. We then examined approaches for controlling access to

Amazon EC2 instances, and we talked about ways that you could

leverage security groups, network ACLs, and AWS VPN. We then

explored services to protect our infrastructure from hacking and

attacks, so we looked at services like Shield, and Macie, and

Inspector. And then we introduced the developer tools on AWS.

We looked at Codecommit, and Codebuild, and Codedeploy,

Codepipeline, and Codestar. And then we reviewed approaches for

launching predefined solutions on Amazon EC2 from both the

AWS Service catalog and the AWS Marketplace. So let's take a

look at our scenarios. So we had Elise and Elise was trying to

figure out how they could create compliant IT services that other

departments could use. So what would you recommend? Well in

this case, AWS Service catalog would be a great choice. These

services are designed just for use within their organization, so

here is where service catalog would work well, whereas

marketplace would be more for services that can be launched on

AWS. Next, we had Tom and he was trying to figure out how to

deal with this downtime on EC2. So what would you recommend

for Tom? Well, in this case, Tom needs to look at creating an EC2

Auto Scaling group alongside an Elastic Load Balancer because

this would enable them to respond automatically if a server goes

down and spin up another one. In addition, they could have

multiple servers running at any point in time and route users to

the healthy servers and not to the unhealthy ones. Finally, we had

Jack and Jack's company is dealing with this sensitive information

and she is worried about a breach going unnoticed. So what

would you recommend to Jack and her company? Well, in this

case, Amazon Macie would be a great choice because it gives

them the ability to use machine learning to classify their data,

find the data that's sensitive, and then monitor that data and its

access patterns, and it can proactively alert them if it sees any

anomalies happening within any of those patterns.

Chapter 12 How to Register & Study for the Exam

Congratulations. You have made it to the end of this path

covering all the information that we have to prepare you for your

Certified Cloud Practitioner exam. In this particular chapter, we're

going to walk you through the core information about the exam.

Next, we'll help you understand what you need to k to register for

the exam. And then, we will walk you through tips on how you

study and prepare for the exam. First of all, this is a proctored

exam. Most of you are going to register online and then you're

going to go to a testing center to actually take this exam. There

are two different types of questions that you will find on this

exam. First of all, you will have multiple choice where you're able

to go through and see a list of possible answers and select the

right one, some of them will also be multiple answer. So for

multiple answer questions, you will have several options and you

will need to pick the two or three options that are correct from

the list or are incorrect. So with these two types of questions, you

will end up with a score anywhere between 100 and 1000. A

score of 700 or higher will be passing. This exam covers four key

areas, and don't worry, we have covered these areas in this path.

The first area has to do with fundamental cloud concepts, and

this represents roughly a fourth of what is going to be on the

exam. This is what covers general information about the cloud.

Then the next section has to do with technology and technology

will represent about a third of the overall exam. This is where you

need to understand concepts like the AWS global infrastructure, as

well as all of the different AWS services that we've mentioned.

Following this, we have security and compliance, and this

particular category also represents about a fourth of the overall

exam, and this has to do with concepts like the shared

responsibility model, as well as how you can access AWS

compliance reports. And then the final category is billing and

pricing, and in this category, you need to understand the tools

that are provided for you, things like the Cost Explorer, and the

TCO calculator, and the simple monthly calculator, and understand

how these can actually provide value to you when you're using

AWS, and this represents around 15% of the overall exam. So if

you have the knowledge that we have provided in these four

areas, you should be prepared to go and take your AWS Certified

Cloud Practitioner exam. Now, we're going to talk about how you

actually sign up to take your AWS Certified Cloud Practitioner

exam. The way that you do this is you will go to the Cloud

Practitioner Certification page, and from there you will click on the

button to schedule an exam. You will then be taken to the AWS

training and certification portal. From here, you will need to create

an account if you don't have one and then sign into this portal.

It is important to note, if you have a partner account, you will

need to be sure that you select that when you log in, as opposed

to just a standard log in. But once you're in, you'll have the

opportunity to select an exam that you're eligible for. You'll

obviously be choosing the Certified Cloud Practitioner exam. There

is an option for this exam you can take this at your home,

assuming that your computer qualifies. So if you want to check

that, you can go through the process of signing up with Pearson

VUE and go through and see if your computer qualifies. This is

not available in all countries, unfortunately, so you might or might

not be able to take advantage of this depending on where you're

located. But either way, you can either take it through an online

proctor where you are at home, or you can go into a physical

testing center, and different testing centers are supported based

on the countries that you're in. But once you go through this

process, you will be signed up and ready to take your AWS

Certified Cloud Practitioner exam. So next, we'll be diving into

how you study and get ready for the exam. Now we're going to

talk about how you prepare and take your Certified Cloud

Practitioner exam. First of all, we know that there are several

steps to getting your AWS Certification. We need to learn. That's

hopefully what you have done through this book, then sign up,

and that's what we covered in the previously. But we get to both

study, and actually taking the test. And those are the things that

we're going to be focusing on here. First, let's talk about studying

for the exam. So let's review each of the different areas that you

need to k for the exam. Let's look at cloud concepts. So you

need to k within this area the differences between traditional data

centers and cloud platforms and understand why those differences

are important. We also need to look at how AWS organizes its

infrastructure globally and look at how scalability differs between

the cloud and traditional data centers. Also know things like the

difference between capex and opex expenditures. Then let's look at

security. So within security, you first need to understand the

shared responsibility model from AWS that we covered in this

book. We also need to review the highlighted best practices for

securing your account. Then we need to review the options for

securing traffic within a VPC. And this is when we look at

concepts like EC2 security groups and access control lists for

VPCs. We also need to understand IAM and the different identity

types, and also understand the principle of least privilege access.

Then, within billing and pricing, you need to review the tools that

can help you understand your AWS costs. You need to be able to

explain each of those tools and when you would use them. You

also want to understand the most ways to leverage core services,

understand the cost impact between different S3 storage classes,

or between EC2 and Reserved Instances and Spot Instances. You

also want to review how costs differ from traditional data centers

and review the different ways that organizations can manage and

review their costs and also understand the different support plan

levels. Next, we'll look at technology, and technology covers, again,

a third of the exam for your Certified Cloud Practitioner

certification. So first of all, you need to review each of the AWS

services that are included in the services list that we have

provided with the second and third book in this path. That's

going to be critical. You should ideally be able to cover up the

name of the service, read the description, and be able to give the

name. That's going to help you know if you really understand

what that service is. You also need to implement some basic

solutions using the services that we've covered. So we have

included several demos within this path, and you can choose to

explore those services from within the AWS Console. You also

want to review those architectural principles for fault tolerance and

high availability that we talked about also within this book, and

look at the different scalability approaches. So now that you've

studied that, what do you do? Well, once it gets to be the day

where you're taking the exam, after you've signed up for the exam

through what we covered, we're ready to talk about how you take

the exam. So first of all, let's go through some general best

practices for this certification test. First of all, you do need to

take time to analyze each question for its intent. There's a reason

AWS is asking a specific question. So if we have spent time

talking about a specific concept and you see a question around

that concept, try to remember how we covered it within the book.

We also want to review what is required for the answer on each

question, and this is critical because you have both multiple

choice and multiple answer. So it could be that you need to

select two or three answers for a specific question, so make sure

that you review that for each question. Another thing to note here

is just skip a question if it takes too much time, and you can do

that by leveraging the review capability. You can mark a question

that you need to go back and review later. Then you can go back

and spend time on those questions that you weren't sure on. And

once you go through that review phase, just guess if you don't

know the answer. Because this is a multiple choice and a multiple

answer test, you still have the opportunity to get things right,

even if you don't really know the answer. Next, you want to

examine the clock after each 10 questions, so just make a mental

habit of saying, question 10, let me look at the time. Question

20, let me look at the time. This way, it will keep you from

looking at the time, especially if you have some anxiety around

timed tests. This way, you can see how you're progressing towards

that limit. You don't want to be looking at it after each question,

so just choose to look after each 10 questions. Once you have

these things in place, I believe you'll do well on your Certified

Cloud Practitioner exam. We've covered a lot in this book, and

you are so close to being ready to take your Certified Cloud

Practitioner exam. Go ahead and go through the Exam Prep book,

and then if you do well in the Exam Prep book, then you'll be

ready to sign up for your certification exam and go and take the

exam. Best of luck on your next step to becoming an AWS

Certified Cloud Practitioner.

BOOK 8

TERRAFORM FUNDAMENTALS

INFRASTRUCTURE DEPLOYMENT ACROSS MULTIPLE SERVICES

RICHIE MILLER

Introduction

Before we dive into the wonderful world that is Terraform, first I

wanted to level set a little bit about infrastructure as code.

Throughout the book, we are going to be using a lot of

terminology that comes from the concepts in infrastructure as

code, and in order to get the most out of this book, I first want

you to have a good idea of what I mean when I say infrastructure

as code. So let's get into what you need to know about

infrastructure as code. First we are going to define infrastructure

as code. Then we'll get into the core concepts of what

infrastructure as code is, and then finally, we'll talk about the

benefits of using infrastructure as code. But why would you even

use Terraform? Well, Infrastructure as code is provisioning

infrastructure through software to achieve consistent and

predictable environments. There are a lot of important terms in

this definition. A few that I want to call out is the fact that this

is being done through software. It's not a manual process. And

the goal is to achieve consistency. That means every time you use

this software to deploy infrastructure, it does it in a consistent

way and that the environment you get at the end is a predictable

environment. It doesn't leave you guessing. It's going to look

exactly like the configuration files say it should look. That's very

important, especially when you have multiple environments that

will be running the same version of an application. To achieve

this goal, there are some core concepts we have to understand.

The first, and this should be fairly obvious, but need to mention

it, is infrastructure as code as defined in code. You're going to be

creating files using some sort of software and coding mechanism

to define your infrastructure, and whether that format is JSON,

YAML, or HashiCorp configuration language, infrastructure as code

is going to be defined in code. The next big concept is that you

should be storing that code somewhere in source control. You are

using code, after all. You might as well treat it like code. The

source control management that most people are familiar with is

Git and GitHub. GitHub uses Git source control to store

repositories of code. The code is versioned, and multiple

developers can work on it simultaneously. Your infrastructure that

you've defined in code should be stored in a versioned source

control repository. When it comes to the actual code itself, there

are two different approaches to implementing infrastructure as

code. There is declarative or imperative. Many people like to eat

burgers. In fact my favorite day of the week is Burger Wednesday,

and if I were to instruct software to make me a burger in an

imperative way, I would do that by telling it what the exact steps

are to make me a burger. First get me the ingredients for a

burger. You need to get the shell, the beans, the cheese, the

lettuce, and the salsa. And then I need to tell the software how

to assemble those ingredients to make me a burger. I would tell

the software to put the beans in the shell, put the cheese on the

beans, put the lettuce on the cheese, and the salsa on the

lettuce, because that is the proper order that one should assemble

a burger in. Now you can see this is very procedural in nature.

I'm telling the software exactly what to do. Declarative takes a

slightly different approach. Let's say in a declarative world I also

want software to make me a burger. That software is going to

have a rudimentary idea of how to make food, like a cook. Just

like I can tell a cook I want a burger with the following toppings,

I can use a configuration language like HashiCorp Configuration

Language to declare what I want. In this case, I'm telling it I

want something that is of type food and of the burger, and I'm

going to give it a name I can refer to it with, in this case And

then within my configuration block, I'm going to tell it the

ingredients I want in my burger; beans, cheese, lettuce, and

ketchup. And that's all I have to tell the software. It already has a

predefined routine for how to get ingredients and it has a

predefined order in which to assemble those ingredients. If I want

to change the defaults, I might put additional information in this

configuration block, but the idea here is I'm declaring what I

want. I want a bean burger with these ingredients, and then I'm

leaving it up to the software to figure out exactly how to

implement what I want. Terraform is an example of a declarative

approach to deploying Infrastructure as Code. Another core

concept is idempotence and consistency. You're probably already

familiar with the idea of consistency. Each time you do something,

the results should be the same. But idempotent is one of those

words that gets thrown around, but you may not necessarily know

what it means. Let's use another example to define it better. Let's

say my syster, who also loves burgers, has asked me to make her

a burger, and I do it. I say, "Here's your burger." In an

idempotent world, if she asks me again to make her a burger, I

will go, "Um, you already have a burger." I'm not going to go

ahead and make another burger because I'm aware of her state

and the fact she already has a burger. If she gives me the same

instruction again, I'm not going to do anything because her

instruction already matches the state of the world she wants. She

has the burger. In a world, each time she told me to make her a

burger, I would make and give her another burger. Terraform

attempts to be idempotent in the sense that if you haven't

changed anything about your code and you apply it again to the

same environment, nothing will change in the environment

because your defined code matches the reality of the infrastructure

that exists. And that's what's meant by idempotent. The last

concept to look at with Infrastructure as Code is are you pushing

or pulling configurations to the target environment. So again, to

give a fun example of what I mean by push or pull, in a

scenario, once my syster has expressed her desire for a burger, I

would simply go, take this burger, and push the burger over to

her, and hopefully, if she's feeling polite, she'll say thanks. In a

scenario, once she expresses that she wants the burger, she'll take

the burger from me and I'll say, sure, here you go. In the world

of Infrastructure as Code, Terraform is a model. The configuration

that Terraform has is getting pushed to the target environment.

An opposite example would be a situation where there's an agent

running in the target environment and it pulls its configuration

from a central source on a regular basis. All of this is great, but

first let's talk about the benefits of using infrastructure as code.

Why would you go through all the trouble of defining your

infrastructure in code as opposed to just manually going out and

deploying it? One, you've automated your deployment, which

means that you don't have to go through the manual steps every

time you need to build a new environment. That makes

deployment faster, and faster is usually better in the world of

technology. You've also created a repeatable process. Each time

you need to build out or update the environment, you simply

apply the configuration. Your new repeatable process can also be

used to create multiple consistent environments. This is especially

important if you want your dev, QA, staging, and production

environments to all match. Your reputable process is defined in

code, and code can be reused. Once you figured out how to

properly deploy, say, a database server for a particular application,

you can take the code for that database server deployment and

reuse it in any other application that needs a similar database

server backend. Having those reusable components will make your

life a lot easier. It follows a principle that developers call Don't

Repeat Yourself, or DRY programming. Once you write the code

for a process, then you should make that process reusable so you

don't have to repeat yourself. Lastly, one of the great things about

defining your infrastructure as code is you've actually documented

your architecture in the process of defining it within code. I've

encountered situations where I thought I understood an

architecture, but when I went to go define it as code, I realized

there were components that I either didn't realize were part of the

architecture, or I didn't understand how they actually worked. By

defining my infrastructure deployment with code, I now had a

deeper and better understanding of how my architecture was

actually working. That's a huge benefit when everything is

documented in code. Hopefully, in this first introductory chapter,

I've allayed some of your concerns about Infrastructure as Code. It

really isn't all that scary, and it does make your life easier. At the

end of the day, manual processes are generally the enemy.

Humans are fallible, we make mistakes, we forget things all the

time, and if you are relying on manual processes to deploy

environments consistently and repeatedly, at some point someone's

going to miss a step; it's just the nature of human beings.

Automating your infrastructure deployments makes a lot of sense.

Lastly, when in doubt, go have a burger and think about it. I find

that walking away for a moment on a particularly difficult project

and having something delicious, like a burger, really helps my

thinking process. Coming up in the next chapter, we're going to

dive into Terraform proper by deploying our first Terraform

configuration.

Chapter 1 Installing Terraform & Using the CLI

Now that we've laid a solid foundation for what Infrastructure as

Code is, it's time to dive into Terraform, and I find the best way

to do that is to go right in and get something deployed so you

can start getting your head around the core concepts that make

up Terraform. But what are we going to cover in this chapter?

Well, first, we're going to talk about what Terraform even is. You

probably already have some idea, but now we're going to get into

the core components that make up Terraform, the basic workflow

you'll use with Terraform to deploy infrastructure, and how to get

Terraform installed on your workstation so you can follow along.

Before we dive into actually deploying a Terraform configuration,

I'd like to present you with a scenario that's going to help place

some of the tasks and information you'll be learning into a

context. As an IT practitioner I'm always eager to learn with any

new tool, and I suspect you're going to feel the same way, and

having a construct where you would be practicing these skills

helps make sense of what might be just abstract concepts. Then

finally, we're going to walk through a demonstration of deploying

a basic configuration based on the requirements we define in the

scenario. You can think of it as a Terraform: "Hello world", if you

like, but I promise it's going to be a little more useful and

practical than your usual hello world example. Let's explore what

Terraform is, the core components that are used with Terraform,

and how to get it installed. Terraform is simply a tool to

automate the deployment and management of infrastructure. The

term infrastructure can be a bit nebulous, but I like to think of it

as any layer of technology that a developer consumes without

having to deploy and manage it. Networking, virtual machines,

even containers all fall under the moniker of infrastructure. The

core of Terraform is an project maintained by HashiCorp. There

are paid versions of Terraform available as either Terraform Cloud

or Terraform Enterprise. We're not going to cover those services in

this book. We'll be sticking with the core version only. Terraform

is also a vendor agnostic, meaning it doesn't prefer any particular

cloud or service. You can use it against AWS, Azure, DigitalOcean,

VMware, etc. Pretty much any infrastructure service you can think

of probably works with Terraform. The core software for Terraform

is a single binary compiled from Go. HashiCorp offers compiled

versions for multiple operating systems, so chances are there is a

Terraform binary that will work for you. Terraform configuration

files use a declarative syntax rather than an imperative one. You

are describing how you want the world to be, and Terraform is in

charge of handling the heavy lifting. The actual configuration files

are written in either HashiCorp Configuration Language, a

derivative of JSON, or in JSON directly. Unless you are using

another programming language to create Terraform configuration

files, I'd recommend sticking to HCL. It's much more human

readable and human writeable. Finally, Terraform uses a push style

of deployment to create infrastructure. Terraform is going to reach

out to the API for any given service and tell it what to create.

There's no agent to install on a remote machine. That's a relief

for those of us who have developed agent fatigue over the years.

One less thing to patch and maintain is a positive. There are four

core components you should be aware of in Terraform. The first

is the executable itself. This is the single binary file you invoke to

run Terraform. It contains all the core Terraform functionality. The

configuration that you're going to deploy will be contained in one

or more Terraform files, which typically have the file extension .tf.

When Terraform sees one or more Terraform files in a directory, it

will take all of those files and stitch them together into a

configuration. The next component is how Terraform talks to all

the various services out there. The provider plugins are

executables invoked by Terraform to interact with a service's APIs.

For instance, AWS would be considered a provider, and if

Terraform wants to talk to AWS and provision resources, it uses a

provider plugin to do so. The most common plugins are hosted

on the public Terraform Registry at registry.terraform.io. And then

finally, once resources have been created, Terraform likes to keep

track of what's going on, so it maintains state data which

contains the current information about your deployment. It's a

mapping of what you've defined in your configuration to what

exists in your target environment. When you want to do an

update of your environment, Terraform compares your updated

configuration to what is in the state file, calculates the changes

needed to make the two match, and then makes the changes and

updates the state data. Installing Terraform is exceedingly simple.

You simply download the executable compiled for your operating

system, make sure that it's added to your path variable, and start

using Terraform. Terraform is also available in common package

managers like apt, yum, Homebrew, and Chocolatey. You could

even grab it as a Docker container. In this demonstration, we're

going to run through a couple quick items. First I'll show you

where you can get Terraform installed. Once you've got it

installed, we can try out some of the basic commands so you can

learn the command structure favored by Terraform. If you would

like to follow along, and I hope you do, you're going to need a

system where you can install Terraform, a code editor to view the

files. We are using Visual Studio Code. This is my preferred code

editor of choice, but you use whatever works for you. I like this

because I can see all of my files in the left pane, I can see the

contents of those files in the center pane, and I can bring up a

terminal from the bottom if I want to run commands all from

within Visual Studio Code.

In the top folder base_web_app, we have the base configuration

that we'll be working with, and it's called main.tf. In the

commands folder, we have the commands that you can run for

each of the chapters in this book. Then below the commands

directory, we have a directory for the solution for each chapter

beyond chapter three. Don't worry about what's in those right

now. We'll discuss that more when we get to chapter four. For

now, let's expand commands and open up m3_commands. Now if

you want to play along, the first thing you're going to need to do

is install Terraform if you don't already have it, and you can get it

if you go to terraform.io/downloads. Let's take a look at that page

right now. Here is the download page for Terraform.

If we scroll down a little bit, we can see all the different

operating systems and the downloads for each of those operating

systems.

This would be one way to install Terraform. If we scroll up a little

bit, we can see that there are instructions for setting up the

repository for APT or Yum if you wanted to install it that way. If

you're using macOS, you can use Homebrew, and if you're using

Windows, you could use Chocolatey to install Terraform. Let's head

back to Visual Studio Code. Now I'm running Windows, so I used

Chocolatey to install Terraform. Let's go ahead and bring up the

terminal and see what version of Terraform I'm using.

First, I am going to run terraform version, and I am running

Terraform version 1.0.8. That is the same as what we saw on the

download page, so I'm running the current version on Windows

AMD 64. And if I needed to upgrade my Terraform, I could run

choco upgrade terraform and that would upgrade my version, but

I'm on the current one. If we want to get some information about

how to use the Terraform CLI, we could run either terraform or

just type in terraform. The output from just running Terraform will

list out the main commands you'll use, as well as other

commands that are available.

If we look at the general usage for the CLI, we can see it's

terraform, followed by any global options, then the subcommand

that you want to run, followed by arguments. If we scroll down to

the bottom again, we can see the global options include things

like to specify what directory to run these commands from, can

be used to get more information about Terraform or a specified

subcommand, and is an alias for the version subcommand.

One other thing I want to point out is when you're specifying

arguments with Terraform, even if the argument is multiple

characters, you can still use a single dash instead of a double

dash. Terraform will accept either, but the preferred syntax is a

single dash. Now we have a base configuration in the

base_web_app directory, but before we look at that base

configuration, let's first get some context by introducing our

scenario. To help put some context around what we're going to

be doing in this book, I have a scenario involving the fictional

company ACME. For our scenario, you have just started as an

ITOps admin at ACME, a global risk assessment company.

Congratulations! And welcome to the team! They're excited you're

here and they already have a project lined up for you to work on.

Your friend, Samantha the developer, has requested that you

provision a development environment that's going to be part of a

new application ACME is developing to turn their existing product

into a SaaS product for their clients. The application is a basic

web application right now. It's got a web frontend that will serve

up content to potential customers. It's nothing super complicated.

ACME has recently started using the public cloud for deploying its

new applications, and you've been asked to spin up this

environment in AWS, Amazon Web Services. You could, of course,

simply log into the AWS console and set up the environment

manually, but someone told you about this new software called

Terraform, and this seems like an ideal project to take Terraform

for a test run. In fact, Samantha has found a really basic

Terraform deployment file she thinks you could get started with.

The base configuration Samantha found includes the following.

We're going to be deploying to the AWS region, and within that

region we are creating a VPC with a single public subnet. And

inside that subnet, we are creating a single EC2 instance that is

running Nginx as a web server. We're also going to have to create

routing resources and a security group to allow web traffic to

reach that web server. You think this sounds like an excellent

start. Before we dig into the configuration file, let's first talk a

little bit about HCL syntax so you know what you're looking at.

Before we look at the configuration, there are three Terraform

object types you need to know about. They are providers,

resources, and data sources. Provider blocks define information

about a provider you want to use. For instance, we are going to

be using the AWS provider and that provider wants to know what

AWS account and region you're going to be using. Resources are

things you want to create in a target environment and they are

the bulk of what you'll be writing. Each resource is associated

with a provider and will usually require some additional

information for a configuration. A resource could be an EC2

instance, a virtual network, or even a database. Data sources are

a way to query information from a provider. You aren't creating

anything, you're simply asking for information you might want to

use in your configuration. Just like resources, data sources are

associated with a provider. A data source could be a current list

of availability zones in a region, an AMI to use for an EC2

instance, or a list of templates on a vSphere cluster. But, what do

these object configuration blocks look like? HashiCorp

configuration language uses block syntax for everything in the file,

it's a simplified version of JSON that is easier to read and it

supports inline comments. Each block is going to start with the

block type keyword that describes what type of object is being

described in the block.

Next is going to be a series of labels that are dependent on what

type of object we're working with. The last label in the series is

usually the name label, which provides a way to refer back to the

object in the rest of the configuration. Within that block, we are

going to have one or more key value pairs that make use of

available arguments for the object type. Each key will be a string

and the value could be any of Terraform's different data types,

which we'll get into in a later chapter. You can also have nested

blocks inside of the main block. Nested blocks will start with the

name of the nested block and curly braces. Inside the nested

block will be more key value pairs. This might seem a little too

abstract so let's see how the syntax would be applied to an EC2

instance in AWS. The object type we're describing here is a

resource. We're creating an EC2 instance so we use the keyword

resource, the type of resource is an EC2 instance, which based on

the documentation for the AWS provider, uses the label

aws_instance. Finally, the name label for our resource is

web_server. This gives us a way to refer to it, especially if we've

got multiple EC2 instances in our configuration.

Inside the block, we can specify a name for our EC2 instance.

This is the name that we will see in the AWS console. Finally, we

could use a nested block to specify an ebs_volume to attach to

our EC2 instance, and inside that block, we could specify the size

of the ebs_volume we want. If we have multiple ebs_volumes to

attach, we can repeat the nested block multiple times. I've

mentioned a few times the ability to refer to other objects inside

of a Terraform configuration. HCL has a defined syntax for doing

so. The general format to refer to a resource is the resource type,

the name label, and then the attributes you want to reference

from the resource. If you want the whole resource, you can skip

the attribute. As an example, let's say we want to reference the

name of our web server. The syntax would be the resource type

aws_instance, the name label, web_server, and the attribute, name.

By doing this, we can get the value that is stored in the name

attribute of our web server. Now that we have a little background

about reading HCL syntax, let's take a look at that base

configuration. Comments in HCL are supported by using the

pound sign, and in this file, we've used comments to break up

the file into providers, data, and resources.

Let's first look at the provider block. In our provider block, we're

using the provider keyword to say this is a provider object, and

then we're specifying the type of provider, in this case, AWS. This

will let Terraform know we're using the AWS provider. Inside of

the block, we have a set of pairs. We're telling the provider what

AWS account we want to use and how we are going to access it

by specifying our access key and secret key. And we're also telling

it what region we want to use by specifying the argument region

and setting it equal to If we scroll down into the data area, we

have a single data source here.

We use the data keyword to specify that it is a data source. The

data source type is aws_ssm_parameter. So, this is a service

manager parameter, and we're giving it a name label of AMI.

Within the configuration block, we have a single argument name,

and we're setting it equal to a path to a parameter. This

particular parameter grabs the latest Amazon Linux to AMI ID for

the region we're currently using. We will make use of this value

later when we create our AWS instance. Scrolling down a little bit

more, we get into the resources portion of our configuration, and

we start with networking.

We're going to create an AWS VPC, and we start the block by

specifying the resource keyword followed by the resource type, in

this case, aws_vpc, and then we're giving it a name label of vpc.

Inside of the configuration block, we're setting the CIDR block

that should be used by the VPC, and we're also enabling DNS

hostnames. Looking at the next block, we are going to create an

aws_internet_gateway, and we want to associate that internet

gateway with the VPC we just created. To do that, inside the

configuration block, we have the single argument vpc_id, and then

we're using the reference syntax to reference the ID of our VPC.

So that is aws_vpc.vpc, because that's the name label we assigned

to our VPC resource, and then .id is the attribute that we want

from that resource. You might be wondering, how do I know what

arguments and attributes are available for a resource? And the

short answer is you have to read the documentation for the

provider and the resource. The longer answer is what we're going

to explore in a future chapter as we add additional resources to

this configuration. Scrolling down a little bit more, we can see

that we are creating an aws_subnet with the name label subnets

We're assigning it a cidr_block, and we're referencing the same

vpc_id that we just used for the internet gateway, and we're

setting map_public_ip_on_launch to true, so when we spin up an

EC2 instance in this subnet, it gets a public IP address. Scrolling

down a little bit more, we are going to create an aws_route_table

called rtb. We're going to associate it with our vpc, and here is

our first nested block. In our nested block, we can specify a route

to add to that route table. In this case, we're creating a default

route and pointing it at our internet gateway. In this way, traffic

can get out of our VPC through that internet gateway.

The last portion of the networking is associating our route table

with our single subnet, and we will do that by creating an

aws_route_table_association called Within that configuration block,

we're going to specify the subnet_id of our single subnet, and the

route_table_id of the route table we just created, and now there's

an association between those two objects. Scrolling down a little

bit more, we are going to create an aws_security_group that

allows port 80 from anywhere to talk to our EC2 instance. We are

associating this security group with our VPC, and we're creating a

single ingress group using a nested block, and inside of that

ingress nested block, we're setting the from_port and to_port to

port 80 to allow port 80 in, we're setting the protocol to tcp, and

the cidr_block is set to all 0's /0, which means allow traffic from

anywhere on port 80. And then below, that we have an egress

block, and this egress nested block allows outbound traffic to

anywhere. Lastly, we have our EC2 instance. We're creating a

resource of aws_instance type and naming it nginx1.

For the AMI ID, we are now going to be referencing our data

source, and we can see the syntax for that is a little different

than regular resources. We first have to specify it is a data source

by saying data dot the type of data source dot the name label

and then the attribute that we want from that data source, in this

case, value. So this will return the AMI ID for Amazon Linux 2 in

the region we're currently working in. If you're curious about what

the term is, that is a function, and we're going to cover functions

a little bit later, so don't worry about that for now. Instance_type

sets the instance type to t2.micro. We are trying to keep this

thing as small as possible to stay on the free tier. The subnet_id

will reference the single subnet that we have created, and then

the argument vpc_security_group_ids, you see that's plural, that's

expecting a list of security group IDs. We only have a single

security group ID to give it, but we still need to put it in a list.

Lists are enclosed in square brackets, and then the elements in

the list are separated by commas. We only have a single element

for the list, which is the security group we created to allow port

80. And then lastly, we are sending some user data to our

instance, and this is simply a script that will run when the

instance starts up for the first time. In the script, we are

installing nginx and starting it up, we're deleting the default

index.html file, and replacing it with something else. If you're not

familiar with the EOF syntax that you're seeing right there, that is

a way of specifying a block of text that should not be interpreted

in any way; it should just be passed directly to the argument as

is. And this is an easy way for you to specify a script without

having Terraform try to interpolate it. The syntax is simply two of

the less signs followed by a keyword, in this case, EOF, the text

you want, and then closing it with that same keyword, EOF again.

That is everything that's in the configuration. Now we need to

deploy our configuration. But how do we go about doing that?

Chapter 2 Terraform Workflow & Deployment

Terraform has a basic workflow that allows you to provision,

update, and remove infrastructure. Let's dig into that workflow

now. If you'll recall from earlier, Terraform makes use of provider

plugins to interact with services like AWS. Before it can use those

plugins, it needs to get them. This is done as part of the

initialization process, and the command to do so is terraform init.

Terraform init looks for configuration files inside of the current

working directory and examines them to see if they need any

provider plugins. If they do, it will try and download those plugins

from the public Terraform Registry, unless you specify an alternate

location. Terraform will also need to store state data about your

configuration somewhere. Part of the initialization process is

getting a state data back end ready. If you don't specify a back

end, Terraform will create a state data file in the current working

directory. Once initialization is complete, Terraform is ready to

deploy some infrastructure. The next step in the workflow is to

plan out your deployment with terraform plan. In this case,

Terraform will take a look at your current configuration, the

contents of your state data, determine the differences between the

two, and make a plan to update your target environment to

match the desired configuration. Terraform will print out the plan

for you to look at, and you can verify the changes Terraform

wants to make. You don't have to run a terraform plan, but it is

pretty useful to know what Terraform is planning to do before it

does it. You can save the plan changes to a file and then feed

that back to Terraform in the next step. It's now time to actually

make changes in the target environment, and you do that by

running terraform apply. Assuming you ran terraform plan and

saved the changes to a file, Terraform will simply execute those

changes using the provider plugins. The resources will be created

or modified in the target environment, and then the state data

will be updated to reflect the changes. If we run terraform plan or

apply again without making any changes, Terraform will tell us no

changes are necessary since the configuration and the state data

match. There is one more command I want to bring up, which

might seem a little strange, and that's terraform destroy. If you

are done with the environment, the command terraform destroy

will do exactly that, destroy everything in the target environment

based off of what is in state data. This is a dangerous command,

and Terraform will ask you if you're sure. We're going to use this

command in the book to save money when we're done with the

chapter, but in the real world, please take care. With the basic

workflow fresh in our brains, let's get our base configuration

deployed. We'll start by initializing the configuration, then we'll

plan our deployment, and finally, we'll apply the plan to create

resources. If you're following along, and again, I hope that you

are, you're going to need an AWS account and AWS access keys.

I'd recommend creating a separate AWS account to use for this

book so it doesn't conflict with anything else, but that's entirely

up to you. Quick disclaimer. Some of the resources deployed in

AWS may cost you money. I tried to use the smallest instances

possible, but there is a chance you will be charged some small

amount of money for what you're provisioning in AWS, so

consider yourself suitably warned. Let's get our basic configuration

deployed. Now before we do that, let's make a copy of our base

configuration and edit that copy. So first I'm going to open up

the terminal. I'll go ahead and do that now. Before we run

through the actual workflow, there is one tiny change we need to

make in the main.tf file. Go ahead and open that now. You can

see the AWS access_key and secret_key have placeholders in them.

I'm going to update those values with a valid AWS access key

and secret key.

While I am filling this out, I want to provide a quick disclaimer.

You should never hardcode your access key and secret key into a

Terraform configuration. We're doing it right now because we

haven't yet learned a better way of doing it, but rest assured, in

the next chapter we are going to remove this from the

configuration and never do it again. This is purely for

demonstration purposes. In fact, I've already invalidated this

access_key and secret_key by the time you read this book. With

that being said, I'll go ahead and save this file, and now we can

run through the initialization process, and I'll do that by running

terraform init.

It's going to go ahead and initialize the backend it will use for

state data and download any provider plugins that it needs for

our configuration. And lastly, it will create a special lock file called

.terraform.lock.hcl.

So if we scroll up a little bit, we can see where it initializes the

backend, initializes the provider plugins by downloading the latest

plugin from the public Terraform registry, and creating that lock

file as the last thing. And if we look over in our directory, we can

see there's that .terraform.lock file, and there's also a new

directory called .terraform, and inside that, if we expand it, that is

where it downloads the provider executable that will be used to

talk to AWS. Now that our Terraform configuration is initialized,

we can go ahead and run terraform plan. So I will run terraform

plan, and I'm going to add a new argument here, This will write

the plan out to a file, and I'm specifying the file as m3.tfplan. So

I'll go ahead and run that now. And as part of the plan, it is

going to reach out to AWS and determine what it needs to create

to match our AWS environment to what's in the configuration.

And that ran pretty quickly.

We can see that it's saying in the plan there are seven resources

to add. And if we go ahead and expand this all the way up, we

can scroll up and review what's in the plan. So let's scroll up to

the top, and we can see it starts with the instance that's going to

be created. You should note, anything with a green plus sign

indicates that the resource or attribute is going to be created. So

we can see there is our AWS instance. If we scroll down a bit

more, we can see the internet_gateway, the route_table, etc.

So it's going to create seven resources in total. It's not going to

change any, and it's not going to destroy any. If we want to apply

our plan, we can simply run terraform apply and feed it our file,

m3.tfplan. So I'll go ahead and do that now. And if we had run

terraform apply without specifying a plan file, it would first print a

plan of what it's going to do and then ask for confirmation of the

changes that it's going to make. Because we supplied a tfplan file,

it doesn't have to confirm those changes because it assumes

we've already reviewed that plan.

So this could take a few minutes, so I'll go ahead and jump to

where the deployment has completed successfully. Our deployment

has completed successfully. We can see seven resources were

successfully added.

Let's go over to the AWS console and get the public IP address

of our EC2 instance and validate that the web page is available.

Here we are in the EC2 console. I'll go ahead and refresh our

view of instances.

There is our instance that has been created. I can click on that

and see that it does have a public DNS. So we can go ahead

and grab that address, and I'll open up a new browser tab, and

we can go to that address. Going back to Visual Studio Code,

since this was simply a demonstration environment, the last thing

we can do is destroy the environment so it doesn't cost us any

money, and we'll do that by running terraform destroy.

Once you run terraform destroy, it will plan out the changes it

needs to make to destroy everything that's in your environment,

and then it will ask for confirmation. In the read out, the red

dash indicates that something is going to be destroyed or

removed, and now it's asking if we're sure we really want to do

this. And we do, so I will type in yes, and now it will go through

the process of removing all of those resources, and we no longer

have to worry about paying for them. I encourage you to do this

when you finish any exercise and you know you won't be coming

back to the environment for a while.

It's very simple to stand it back up by simply running terraform

plan and apply again when you're ready to work with the

environment. In summary, Terraform is a tool used to automate

infrastructure, which is way more fun than manually deploying

stuff. Terraform itself is a single binary available for just about any

operating system out there. The configurations Terraform uses are

written in either HCL or JSON, although HCL is way more

popular. Finally, the basic workflow for Terraform is initialization,

plan, and then apply. The base configuration we just deployed is

pretty simple and it leaves lots of room for improvement. In the

next chapter, we're going to take a look at how we can use

variables and outputs to improve our configuration.

All programming languages have a way to submit information into

the software and retrieve output. Terraform is no different. In this

chapter, we are going to explore how to use input variables, local

values, and outputs to improve our Terraform code making it

more dynamic and reusable. The base configuration we deployed

to AWS had all of its values hardcoded and provided us with no

output. It's time to change that. We'll first start with learning how

to supply input values to Terraform for use in a configuration,

and then we'll learn how we can construct internal values inside

the configuration for reuse. We'd also like to get some information

out of our configuration once it's deployed and that is done

through outputs. Finally, we are going to make a bunch of

changes to our configuration, but what if we get something

wrong? It sure would be nice to validate our config before we try

and deploy it, and we'll see how Terraform has some tools to

help. Terraform can accept values as input, transform values inside

a configuration, and return values as output. With that context,

let's explore how to work with data inside Terraform. There are

three different concepts to consider when working with data in a

Terraform configuration. The first is called input variables, or just

variables for short. Input variables are used to pass information to

a Terraform configuration. The variables are defined inside the

configuration, and the values are supplied when Terraform is

executed. Local values, sometimes just called locals, are computed

values inside the configuration that can be referenced throughout

the config. In other programming languages, these would usually

be called variables. The values for locals are not submitted directly

from an external input, but they can be computed based on input

variables and internal references. Data is returned by Terraform

with output values. The outputs are defined in the configuration,

and the value of each output will depend on what it references

inside the configuration. Just like locals, the output value can be

constructed from one or more elements. Since everything starts

with inputs, let's take a closer look at input variables. Variables

are defined inside of a block just like everything else in Terraform.

A variable block starts with the variable keyword followed by a

single label, and that is the name label. All the other properties

of the variable are defined inside the block and all of those

properties are optional. You can have a variable with no

arguments and that's acceptable, although it's not really preferred.

Let's take a look at the optional arguments inside the variable

block. The type argument defines the data type associated with

your variable and it provides a certain level of error checking. If

you say the variables should be a number and someone submits

a string, Terraform will throw an error. Now you might be

wondering what data types are available to me. Don't worry, we'll

cover that in the next section. The description argument helps

provide some context for the user when they get an error and it

will also be useful when we package configurations up in

chapters, but we'll cover that later in the book. The default

argument allows you to set a default value for the variable. If no

value is submitted for the variable, Terraform will use this default

value. If you don't set a default value and none is submitted

when the configuration is invoked, Terraform will prompt you at

the command line to supply a value. The last argument I will

cover is the sensitive argument. It accepts a Boolean value of true

or false. If it's set to true, Terraform will not show the value of

the variable in its logs or the terminal output. This argument is

useful when you have to submit potentially sensitive values like a

password or an API key and you don't want them showing up in

clear text in your logs or terminal output. Let's take a look at a

few examples of actual variables and how to refer to their value

inside a configuration.

The first example shows a variable with the name label,

billing_tag. No arguments are provided and none are needed. This

is a quick and dirty way of adding a variable to a configuration.

Since no default value is specified, you'll need to provide one at

execution time. Our second variable has the name label

aws_region, and this time, we have some arguments. We're going

to set the type to string since the value will be one of the AWS

regions and those are strings. We've got a helpful description here

and we're setting a default value of So if no value is specified at

execution time, Terraform will use Finally. This is not a sensitive

value so we've set it to false. We don't actually have to set

sensitive to false as it is false by default. To refer to the value

stored in the variable, we simply use the var identifier dot the

name_label. For instance, to refer to the value stored in our

aws_region variable, the syntax would be var.aws_region and you

would get back the string stored in the variable.

Speaking of strings and data types, let's talk about the different

data types that exist in Terraform.

Chapter 3 Terraform Data Types

We can group the data types supported by Terraform into three

categories. The most basic are the primitive data types. These are

string, number, and Boolean. A string is a sequence of Unicode

characters, a number can be an integer or a decimal, and Boolean

is either true or false. The next category is collection data types,

and they represent a grouping of the primitive data types. A list

is an ordered group of elements, a set is an unordered group of

elements, and a map is a group of pairs. In each case, the

values stored in any of these collection data types must be of the

same data type. The last group is structural data types, and

they're very similar to collection data types, except they allow you

to mix the data types stored in each grouping. Aside from that

difference, tuples are functionally equivalent to lists and objects

are basically equivalent to maps. It's useful to be aware of

structural data types, but chances are you're not going to use

them for basic configurations. They're more of an advanced topic.

Let's take a look at some examples of the collection data types to

help clarify things. Here's a couple examples of lists. Notice that

each element of the list is of the same data type, all numbers in

the first list and all strings in the second.

The third list mixes data types, which would be invalid for a list,

but valid for a tuple. Our Map example has three pairs. The keys

are going to be strings, and the values must all be the same

data type. In this case, they are all of type string. You can create

more complex structures using the object data type, but that's

really beyond the scope of this book. If you want to use a

collection for a variable, how do you construct it, and how do you

reference the values inside? Let's take a look.

Let's say we'd like to have a variable with a list of AWS regions.

The type argument takes the form of the collection type we'd like

to use and what data type will be stored in it. In this case, we

have a list collection type that will be storing string values. For

our default value, we have provided a list of four regions, each as

strings. Lists are an ordered data type. We can refer to an

element by number, starting with 0. If we want the first element

in our list, which is our syntax would be var.aws_regions and a 0

for the first element enclosed in square brackets.

We can get the whole list by only specifying the name label and

skipping the square brackets. What if we want a map holding

AWS instance sizes? The type argument is basically the same. We

want to have a map with strings as the value held in the map.

For the default, we can define the keys as small, medium, or

large and associate an EC2 instance size with each key. If we

want to refer to the value stored in one of those keys, there are

actually two ways of doing so.

The first is var... The second is var., followed by the key_name in

quotes inside of square brackets. We can retrieve the value stored

in the small key by writing var.aws_instance_sizes.small or

var.aws_instance_sizes, then small in quotes and brackets.

Armed with our new knowledge of using variables, let's check in

with the folks at ACME and see how we can improve our base

configuration.

Samantha is excited that you got the environment up so quickly,

but the folks over in ops have some requests about how the

environment is deployed. Let's review the current architecture and

the requests for improvement. The current deployment architecture

is a single EC2 instance in a public subnet inside a VPC in the

region of AWS. The ops team doesn't want you to change the

architecture yet, but they do want you to make some code

improvements. Jack is from the ops team, and he has a little

experience with Terraform. He's come up with a list of possible

improvements for your code. For starters, those AWS credentials

can't live in the code file. It's just not safe to throw those things

around. Jack would like you to find a better way, preferably a way

that doesn't store the credentials in a file at all. Speaking of

values, Jack would like you to use variables wherever possible so

the configuration can be more dynamic and possibly reusable.

ACME is also instituting default tags for their AWS resources, and

Jack would like an easy way to apply default tags to all the

resources in the config without doing a lot of find and replace.

Finally, it would be nice to know the public DNS hostname of the

EC2 instance without having to go to the AWS console. You tell

Jack, no problem. We'll start by adding some variables. Now it's

time to start adding some variables to our configuration. Before

you get started, if you destroyed the environment from the

previous chapter, go ahead and recreate it now because we're

going to be making changes to the configuration and then seeing

how those changes apply to what's been deployed already. With

that in mind, let's take a look at our current configuration by

opening up the main.tf file in. This is our current main.tf file. We

wanted to find some variables for this configuration and the first

thing we can do is create a file called variables.tf in the same

directory. Remember, Terraform will put together any .tf files it

finds in the same directory. By keeping the variables in a separate

file, we can easily look between the main.tf file and the variables.tf

file as we add new variables. I'm going to go ahead and hide the

file tree and we'll split the view between variables.tf and the

main.tf file. Now we can add variables in the variables.tf file and

make the changes in the main file. Let's first start by getting rid

of those AWS access key and secret key values. We'll start by

creating a new variable, and remember, this starts with the

variable keyword. We'll give it the name label, aws_access_key.

This is going to be of type string. We can add a description of

aws_access_key. We're not going to set a default for this variable

because the whole point is getting the access key out of the

configuration, but we should set one more argument and that's

setting sensitive to true. After all, we don't want this access key

to be exposed in the logs or in the terminal output. Now that we

have our first variable, let's go ahead and replace the hardcoded

string with a reference to this variable. We'll do that by removing

the current value and now we'll add a reference to our variable.

Remember that goes var. the name of the variable, which is

aws_access_key.

If you're using VS Code or something that has similar plugins. it

might even helpfully finish that for you. Now let's go ahead and

do the same with the AWS secret key. So I'm going to copy this

variable and paste it down below, and I'm going to change the

name from access key to secret key, I'll change the description,

and now we'll replace the secret key value with a reference to our

variable. Our access key and our secret key are no longer

hardcoded into our configuration. Let's also take this opportunity

to add a variable for our region in case we wanted to deploy to a

different AWS region. We'll start with the variable keyword and

we'll set this variable to aws_region. Just like the keys, this is

going to be of type string. We'll set a description of AWS Region

to use for resources, and let's set a default value for this variable

of Now this is not a sensitive value, so we won't set the

sensitive argument since it defaults to false. Let's go ahead and

replace the region with our variable. We'll set it to var.aws_region.

Our provider is now using all variables for its values.

Let's scroll down a little bit more and see where else we could

use variables. In our networking configuration, we can see the

CIDR block has a hardcoded value, enable DNS hostnames has a

hardcoded value, and in the subnet, the CIDR block and the

map_public_ip_on_launch both have hardcoded values. Scrolling

down a bit more, in the security groups, you could potentially set

variables for the port numbers if you would like to, and scrolling

down beyond that, there is an instance type which is hardcoded

for the AWS instance, that's another good place where we could

add a variable.

Try to add all these variables to your configuration. When you're

done, you can go ahead and look in the file layout for the M for

solution and that will show you the variables that I added to the

configuration and how I reference them in the main.tf file. Let's

see how you did.

Looking in the variables file, we've got our access key, secret key,

and region that we created. Scrolling down some more, we've got

enable_dns_hostnames, the vpc_cidr_block, the

vpc_subnet1_cidr_block, and map_public_ip_on_launch. And

scrolling down a bit more, we have the instance type and there

should be references in the main.tf file for each of these variables.

The next thing that we're going to talk about is local values and

how we can use those to add those common tags that Jack was

asking for.

Local values are values computed inside of the configuration. You

can't submit values directly to them, unlike input variables. The

syntax for locals starts with the keyword locals, and that's it for

labels on the block. The rest of the information goes inside of the

block. Inside the block are key value pairs. The value can be any

supported Terraform data type, string, list, object, the supported

data types are the limit. Here's an example of a locals block. The

first key value pair defines a local with the name instance_prefix

and the value. The next key is common_tags, and its value is a

map defining some common tags. You can refer to other values

inside of your configuration for the values on local. For instance,

the project key is being assigned the value in the variable project.

This seems pretty useful for our ACME requirements. You can

specify the locals block multiple times in your configuration if you

want to, but the name of each key must be unique within the

configuration since that is how you reference a locals value.

To refer to the value stored in a local, the syntax starts with the

local keyword. Note that local is singular, not plural, followed by

dot and the name_label. To get the value in the instance prefix,

the syntax would be local.instance_prefix. If we've got a collection

data type in our local, the same syntax we saw from the variable

example applies. We could get the value stored in company by

writing local.common_tags.company. If we'd rather get the entire

map, we only need to write local.common_tags. Let's head back to

our configuration and update it based on this new information.

ACME is looking to add three common tags to start to all

resources we've defined in our configuration. We can define the

common tags in a locals value and then use that value

throughout our configuration. Let's start by creating a new file

called locals.tf. In our locals.tf, we will start by defining a locals

block. Within our locals block, let's go ahead and define a map of

common tags. We'll start with common_tags =, and then we'll use

the curly braces to specify a map data type, and then we'll add

our pairs.

The three values they want to start are company, project, and

billing_code. But where are we going to get this information from?

Let's use variables to get this information. Let's open up our

variables file and add three variables for company, project, and

billing_code. We'll scroll down to the bottom of our variables file,

and we'll go ahead and add those three variables. Here's a chance

for you to take the wheel again. Try to add those three variables.

Again, they are company, project, and billing_code. I have added

those variables to my configuration, and as you can see, I set a

default of ACME for the company and specified no default value

for the project or the billing_code. Now let's go ahead and add

these variable values to our locals. And we can do the same

thing we did before, which is hide the File Explorer. We'll split

variables out to the right side so it's easier to work with and

showed the locals on the left side so we remember exactly what

we're working with. We'll start by adding company. Next, we'll add

project. And for this one, Jack has requested that the project be

the company name dash the project name for the value.

But how do we go about referencing a variable inside a larger

string? We're going to use interpolation syntax, which sounds real

fancy, but it's actually quite easy. We start by adding quotes to

indicate that this is going to be a string, and then we need to

reference our variable. We start with a dollar sign followed by

curly braces. This let's Terraform know that we're going to be

referencing a value from a variable or some other object within

our configuration. Now we can add the variable reference, which

will be var.company. Next, we're going to add a dash after the

curly braces and another reference to the project value stored in

the variable project. Now we've created a string from our two

variables that is of the form

Lastly, let's add our billing_code. And We have successfully created

our common_tags local value. The next thing to do is add this

common_tags value to our main.tf file for each AWS resource that

supports tags. Let's go ahead and add the first one together. So

I'll switch over to the main.tf file, and let's go down to our first

resource, which is the aws_vpc. Within the configuration block, I'll

go ahead and add tags, and I'm going to set tags equal to

local.common_tags. Now this map will be submitted to the tags

argument, which expects a data type of map, and those tags will

be applied to the VPC. My challenge to you is to add this tags

argument to all the other resources in our configuration that

support a tags argument. The only resource that does not is the

aws_route_table_association, so you can add the tags argument to

all the other resources in the configuration. I have successfully

added the tags argument to all of my resources, and hopefully

you have too. The last thing we're going to do is add an output

so that we know what the public DNS hostname is for our EC2

instance.

Chapter 4 Output Values Syntax & Architecture Updates

Output values are how we get information out of Terraform.

Outputs are printed out to the terminal window at the end of a

configuration run. It also exposes values when a configuration is

placed inside a chapter, something we'll cover later in the book.

The syntax for an output starts with the output keyword followed

by the name_label for the output. Inside the configuration block,

the only required argument is the value of the output.

Just like the value of a local, the value of an output can be any

supported Terraform data type. You can return a simple string or

a complex object. Optional arguments include the description,

which is only seen when looking at the code for a configuration,

so it's not all that useful. The sensitive argument will set an

output to sensitive, meaning that the actual value will not be

printed in the terminal. This is useful when you want to pass a

value from one chapter to another and avoid having it printed in

clear text in the logs or the terminal. That will make more sense

when we get to those chapters.

Here's our example of an output with the name_label

public_dns_hostname. We're setting the value equal to the

public_dns attribute of our web_server EC2 instance using the

same reference syntax we saw in the previous chapter. We've

included a description of the output, too, for our own personal

reference. Sensitive is not set, so it defaults to a value of false.

That's good, because we want this value printed to the terminal

window so we can use it. Let's head back to the configuration

and add an output. Just as we did with the locals and with the

variables, let's go ahead and add a file for the outputs. Within the

outputs, we are going to define a single output. We'll start with

the output keyword, and we'll set the name to

aws_instance_public_dns. For the value, we're going to reference

our EC2 instance. So let's go ahead and go back into mode here

and bring up our main.tf file. We'll scroll down to our instance

definition, and for that we'll go ahead and copy the type, paste it

in, we'll add the name_label, nginx1, and we'll add the property of

public_dns.

You can see that because we've initialized our configuration

previously and I have the Terraform extension installed in VS

Code, it knows all the attributes that are available for the

aws_instance resource type, and so I don't have to remember all

of them or look them up. I'll go ahead and save the file, and

now we've added our single output that we wanted. Now you

might be wondering, how do I know that I got all of this

configuration syntax correct? Well, your code editor should help

you a little bit by highlighting improper syntax, but Terraform can

also help you with the validate command. Let's learn more about

that now. Before we try to apply our update, it would be nice to

know if the configuration is syntactically correct. Our linter does

its best to help, but Terraform can also lend a helping hand.

Terraform has a command called validate that will help you make

sure your configuration is correct. Before you run the command,

you'll need to run Terraform init. That's because it's checking the

syntax and arguments of the resources in the providers, and it

needs the provider plugins to do so. When you run validate, it

will check the syntax and the logic of your configuration to make

sure everything looks good. If it finds any errors, it will print out

the error and the line where it found the issue. Sometimes it will

even make a suggestion. Terraform validate does not check the

current state of your deployment; it's just verifying the contents of

your configuration. It also carries no guarantee that your updated

deployment will be successful. Your syntax and logic might be

correct, but the deployment could still fail for any number of

reasons; insufficient capacity, incorrect instance size, overlapping

address space. Validate does what it can, but it can't do

everything. Why don't we try to use validate against our updated

configuration? The configuration we have now should pass

validation, but we want to see what validation does, so let's go

ahead and add a couple errors to our main.tf file and then see

how Terraform catches them. Let's start by scrolling down, and

we'll put some square brackets around enable_dns_hostnames as

if it were a list and not a Boolean value. That should definitely

throw an error. We can also use a variable reference that does

not exist, so let's go ahead and delete block off var.vpc_cidr, and

that should also throw an error.

Now that we've made those changes, we'll go ahead and save the

file and we'll bring up the terminal to run terraform validate. I'm

already in the working directory, and I've run terraform init, so all

I should need to do is run terraform validate.

And as you can see, Terraform has come back with an error. Let's

go ahead and expand the window so we can see the full error.

Here it's telling us that we have a reference to an undeclared

input variable, vpc_cidr.

Well, we knew that, so let's go ahead and fix that problem. We'll

scroll down here and we'll add _block back to our variable name

label. I'll go ahead and save the file, and now we can run

terraform validate again. Now we can see that Terraform says we

have an incorrect attribute value type. The value attribute for

enable_dns_hostnames should be a Boolean, and we've supplied a

list, so let's go ahead and take those square brackets off and save

our file once more, and we'll go ahead and run terraform validate

a third time

Our configuration is valid. Now you may find that you have other

issues in your configuration if you've been working on your own,

so go ahead and remediate those now. The next step in our

process is to supply values for the variables we've defined in our

configuration. But how do we go about doing that? Let's find out.

When it comes to setting the value for a variable, there are at

least six ways of doing so. That's a lot. The easiest way to set a

value is to set the value with the default argument. We've already

seen that in our configuration. You can also set the variable at

the command line when executing a terraform run. You can use

the flag followed by the name of the variable and the value you

want to set it equal to. You can repeat this flag for each variable

you'd like to set. You can also have all your variable values in a

file and submit that file with the argument. Inside the file will be

each variable name label as a key, followed by an equal sign and

the value for the variable. There are two other ways to submit

values from a file. If there is a file in the same directory as the

configuration named terraform.tfvars or terraform.tfvars.json, which

needs to be properly formatted JSON, Terraform will use the

values it finds in that file. Additionally, if there is a file in the

same directory as the configuration ending in .auto.tfvars or

.auto.tfvars.json, Terraform will use those values as well. The final

option is to use environment variables. Terraform will look for any

environment variables that start with TF_VAR_ followed by the

variable name. If you don't submit a value for a variable in any of

these ways, Terraform will prompt you for a value at runtime. I

know that's a lot of options. And what if you set the same

variable in multiple ways, what's going to happen? There is an

order of precedence. Here's what it looks like, but I have to

admit, I always have to look it up. Terraform evaluates each of

these options, with the last one winning. If you find that your

variable has the wrong value being set, this might be the culprit.

Now that we know how to set values for our variables, let's go

make use of our updated and validated deployment. Reviewing the

variables in our configuration, there are a few that don't have a

default set. We're going to have to set the aws_access_key and

aws_secret_key. Scrolling down to the bottom of our variables, we

can see that the project and the billing code also need a value

supplied. All the other variables have a default set and we can go

ahead and keep using that default. Let's take a look at the

potential syntax if we wanted to submit values for all of these

variables at the command line. I'll go ahead and expand

commands over here and we'll take a look in m4 commands. In

our m4 commands, we have already initialized and validated our

Terraform configuration.

Now we can pass our variables at the command line if we'd like

to and the syntax for that is the name label of the variable and

then another equals and the value you want to set that variable

to. Now, as you can see, this command can get very long. There

has got to be a simpler way to do this and we know there is.

Let's go ahead and create a file called terraform.tfvars and

populate it with some of our variables and values. I'll go ahead

and create a new file called terraform.tfvars in the same directory

as our configuration. And let's go ahead and split screen things

again so we can add the values and see what the values should

be. We'll start with the first variable, billing_code. I'll go ahead

and grab that value and paste it over in our file and I'm going to

set it equal to the value described in the command.

Now let's set the next variable, which is project, go ahead and

paste that over and set that one equal to And the next two

variables are AWS access key and secret key. We don't want those

in a file, instead, we can store them inside an environment

variable. Let's go ahead and save our terraform.tfvars file, we'll go

ahead and close that out, and then looking at our m4 commands,

we can see we are going to export 2 environment variables. If

you're working in Linux or Mac OS, you can use the export

command. If you're using PowerShell, you can use the $env: and

then the name of the environment variable. Once again, the

environment variable is going to be TF_VAR_ the name of the

variable that you want to set a value to. So the first one is going

to be aws_access_key. I'm working in PowerShell so I'm going to

go ahead and paste in my access key and secret key so I can set

them as environment variables. , I've updated the two commands

with my AWS access key and secret key. Let's go ahead and copy

both those commands and paste them in the terminal down

below. Now I have those environment variables set, they're not

stored in a file with our configuration and they won't be shown in

the terminal output or in any logging we enable for Terraform.

Let's go ahead and clear the terminal and now we can go ahead

and run Terraform plan with our output file and we don't have to

worry about including any variable values in the command

because we have defined them in files and environment variables.

We'll go ahead and run Terraform plan now, and because the only

change we made is to create variables, local values, and outputs,

and add some tags to our resources, the only real change on the

AWS side is to add those tags. So let's go ahead and expand the

terminal up and take a look at what's changing in our

configuration.

Now we can see that there are six changes with nothing to add

and nothing to destroy. If we look at what's being changed about

our VPC, the yellow tilde means that something is being updated

or changed, and the green plus sign means a value is being

added so we can see the tags that are being added to our VPC.

Let's go ahead and run the terraform_apply to update the tags on

all of our resources. This should go very quickly because we're

simply modifying the tags for our resources, it's not having to

create or destroy anything.

Now we can see that the output we get at the end is, in fact,

the public DNS of our AWS EC2 instance. We can use that as

opposed to going into the console. At this point, we have

accomplished all the goals that Jack set out for us. So far, we

made our configuration a bit more viable. We used input variables

so we can supply the proper values at runtime and get those

credentials out of here. We also saw the multitude of ways to set

values for our variables. It can get confusing quickly, so I

recommend keeping it simple. We also managed to get some

information out of our configuration with output values. And

finally, we validated our configuration before trying to deploy it to

catch any syntax or logic errors in our code. With a viable

configuration in place, it's time to turn our attention back to the

architecture. Our current design isn't exactly resilient, so we're

going to add another instance and load balancing to the

deployment. We've updated our configuration to include variables,

locals, and outputs. Now it's time to update the architecture of

our deployment to include resiliency by adding new resources. Our

existing architecture is a single EC2 instance running in a single

subnet on AWS. If something were to happen to that instance or

the availability zone associated with the subnet, our application

would go down. That's probably okay for development, but not if

this application is going to make its way to production. We will

start our process by updating the architecture design, determining

what new resources we need to add. Once we know what

resources we need to add, we can consult the official HashiCorp

docs to see what arguments are required for each resource.

Armed with the knowledge gleaned from the docs, we will set

about updating the configuration with new resources and data

sources and apply the updated config to our existing deployment.

We will also take a moment to talk a bit more about the magical

state data Terraform uses to map a config to a deployment.

What's in that data, and how should you interact with it? First,

we will start by planning and infrastructure update with our friend

Jack. Adding variables, locals, and outputs to the configuration

was a great start, but now it's time to add some resources to

improve the architecture. Let's see what ACME has in mind. Our

current architecture is using a single subnet in a single availability

zone with a single EC2 instance. That's a lot of single points of

failure. Jack from the Ops Team has some suggestions to improve

the reliability of the deployment. First, we'll start by adding a

second availability zone in AWS. If you're not familiar, each

availability zone in an AWS region is a separate physical data

center, and each subnet is associated with one, and only one,

availability zone. Adding a second subnet in a separate availability

zone will protect from a zone failure. We also only have a single

EC2 instance. Jack suggests that we add a second instance in

case the first instance fails. Of course, adding a second instance

doesn't magically fix things; we need a way to make both

instances accessible, and we'll do that through a load balancer.

Lastly, Jack wants to make sure we maintain the readability of the

code. He noted that we made a separate file for variables, locals,

and outputs, and he thinks it would be a good idea to split the

resources out as well. Perhaps we could make one for base

networking, another for instances, and one for the load balancer.

Not only does that make it easier to read the code, it might

make some files reusable in other configurations. What does this

updated architecture look like? Here's our current architecture with

the single subnet and EC2 instance. We didn't specify an

availability zone for our subnets, so AWS picked one for us. And

here's the new architecture. We now have two subnets that should

be in separate availability zones, meaning we're going to need to

specify an availability zone for each one. We now have two

instances that will be identical in nature except for the subnet

they attach to, and we are adding an application load balancer,

which will serve as the public endpoint for our application and

direct traffic to our instances. If you're not overly familiar with

AWS, or even if you are, you might be wondering exactly which

resources you'll need to add to the Terraform configuration to

create this architecture. Well, I'm not going to leave you hanging

to figure that out on your own. This is a Terraform book, after

all, and we're not here to learn the intricacies of AWS. Here are

the new data sources and resources we'll need to add to our

configuration. With our two subnets, we now care which

availability zone each one is in. We could add a variable to

specify the availability zone for each subnet, but there's a better

and more dynamic way.

We can add a data source that gets the list of availability zones

in the current region and use that list in our subnet settings. For

the load balancer component, there are actually several resources

that need to be added, and I have to admit, it's not immediately

obvious what they are. The first is the aws_lb resource itself,

which will be the application load balancer. Next will be the

aws_lb_target_group, which defines a group that the application

load balancer can target when a request comes in. To service

incoming requests, we need an aws_lb_listener that listens on port

80 for inbound requests. And lastly, we need to associate our

target group with our EC2 instances. The

aws_lb_target_group_attachment resource takes care of that. Well,

that's all the new resource types. We're also going to add an

additional subnet, EC2 instance, and a security group for the load

balancer. Why don't we head over to the configuration and add

some placeholders for the new resources?

Chapter 5 How to Add New Resources

Let's get started by updating the file structure a little bit for our

webapp. I'll go ahead and expand the folder out now, and we'll

start by creating some new files. Let's go ahead and create one

for the load balancer, and we will create one for the instances,

and we can rename our main.tf network because the only thing

that's going to be left in it once we move stuff around is

networking components. now that we've created our files, let's go

ahead and move the instance configuration into its own file.

Scrolling down to the bottom, I'll go ahead and grab this entire

body of text that defines the instance, cut it, go into the instance

file, and paste it in there. Our instances will now have their own

file to reside in. I'll go ahead and save that. For the load

balancer, we haven't actually created any of the resources yet, so

let's instead add some placeholders for the resources we know we

need to create.

I often add comments that let me know what resources I need to

create before I actually create them, so I'll go ahead and add

some comments to this file now. I'll add the aws_lb, the

aws_lb_target_group, the aws_lb_listener, and the

aws_lb_target_group_attachment. Now I know what needs to go in

this file, but, of course, I still have to create the resources and

understand all the arguments that go into each resource.

How am I going to get that information? The answer is to read

the documentation. There is no shame in going to the docs to try

and figure out how to configure a resource or work with some

Terraform syntax. Whenever I am writing a new Terraform

configuration, I usually have the code editor open in one monitor

and multiple docs tabs open in another monitor. So why don't we

go check out those docs?

The documentation for the providers and the resources within

them can be found at registry.terraform.io. The provider that we

are interested in is the AWS provider which we can find by simply

clicking on Browse Providers and it gives us a list of the most

popular providers on the first page. We want to work with the

AWS provider, and lucky us, it's right there. Let's go ahead and

click on that. The front page will tell you some information about

the current AWS provider and you'll note there is a tab for

documentation. Let's go ahead and click on that to go to the

documentation. The main page of the documentation explains a

little bit about how to use the AWS provider. It gives some

examples of how to instantiate it, as well as how to authenticate

to the provider. We'll cover that more in a later chapter.

Right now, we are mostly concerned with adding our data source

and our resources. The easiest way to find those is usually to

search through the filter box so I'll go ahead and start typing in

availability zones. After typing just a portion of the phrase, we can

see under Data Sources in the matching results, we have

aws_availability_zone and aws_availability_zones, that's the one I'm

interested in so I'll go ahead and click on it, and this is the

documentation for the data source. It gives us a description of

what the data source does and then it provides us a simple

example for usage. This is great. This explains how to use this

data source.

First, we declare it using the type of data source and giving it a

name label, and then there is some optional arguments that go in

the configuration block. When we want to use this data source. It

gives us an example of how to use it with a subnet, which is

pretty convenient because that's exactly how we want to use this

data source.

If we want to inspect some more information about this data

source, we can go to the arguments reference. I'll go ahead and

click on the link. This takes us down to the Arguments Reference

portion of the page.

These are the arguments you can supply inside of the

configuration block. We might want to specify the state argument

that filters the list of availability zones that are returned by the

data source. We could say just give me the available ones. Below

the argument reference is the attribute reference. These are the

attributes that are exposed for the data source. The one that we're

most interested in is the names of the availability zones because

that's what we're going to use to configure our subnet, and based

off the information here, it is a list that is returned of the

availability zone names, which means we can reference each zone

by its element within the list.

If we go back up to the example usage, that makes sense with

what it's showing us here that we use the names attribute along

with an element of that list to retrieve a single availability zone

name.

Now that we know this, we can go ahead and just copy a portion

of this example and put it right into our configuration file. There

is no need to recreate the wheel here. With that text copied, let's

go over to our configuration, and since this is going to be part of

our network configuration, let's go to the network file, we'll scroll

all the way up to the top, and we'll add another data source in

the data area. We've added our new data source for the

availability zones.

Now we can make use of them in our subnet. The next thing to

do is add the additional subnet, security group, and EC2 instance.

Now that we've successfully added our availability zone's data

source, it's time to update our subnet's security group and EC2

instances. Let's first start by updating our existing subnet to use

an availability zone. I'll go ahead and scroll down in the file to

our subnet. There it is. And we're going to add a new argument

here for the availability zone. The argument is going to be

availability zone, and I will set that equal to the

data.aws_availability_zones.available data source. And the attribute

we want, remember, is names. So we'll do .names. And for this

first subnet, let's take the first element from the list. So we'll do

square brackets and o, since lists are We’ve added our availability

zone.

Before we create a second subnet, the CIDR block is defined with

the variable vpc_subnet1_cidr_block. Wouldn't it be easier if we

had a variable that had all of the subnet blocks defined in it?

Why don't we go ahead and create that first. So, we'll go ahead

and open up variables, and we'll scroll up to that variable

definition for the subnet1_cidr_block, and instead we'll change that

to vpc_subnets_cidr_block. Instead of type string, we'll make it a

list of strings. And for the default, we can update this to a list of

strings. I'll add the square bracket, so it's a list, and I will add a

second element to the list of 10.0.1.0/24 for our second subnet

and close the square bracket, and we can update our description

to CIDR Block for Subnets in VPC. Let’s go back to our subnet

configuration in the network.tf file.

And we'll update this variable to vpc_subnets_cidr_block, and we'll

select the first element out of the list. You'll see the reason I did

this in a moment as we add the second subnet for our

configuration. Before I add the second subnet to our

configuration, my challenge to you is to go ahead and try to add

these resources on your own.

You're going to need to add a second subnet, a route table

association, and a second EC2 instance in the instances file. Go

ahead and try to do that now. If you run into trouble, you can

always check the solution, and come back in a moment to see

my updated solution. we're back. Let's go ahead and see what I

did in my solution.

For the second subnet, I made a copy of the existing subnet

resource, and I changed the name label to subnet2. For the

cidr_block, I changed the element to 2 to reference the second

element in the list, and for availability_zones, I changed that to a

1 as well to reference the second availability zone. By setting it up

in this way, we could add a third or fourth subnet and just make

sure that we update the subnet's cidr_block appropriately. Scrolling

down into the routing, let's take a look at those route table

associations.

Once again, I simply copied the existing

route_table_association_resource, changed the name label to

subnet2, and changed the subnet_id reference to subnet2. Both of

these subnets are going to use the same route table. Moving over

to the instances file, for the second instance, once again, I made

a copy of the existing aws_instance resource, I changed the name

label to nginx2, and I changed the subnet to subnet2. To

differentiate the two web pages, I changed the echo command for

the first one to say Team Server 1, and if we scroll down, the

second one is now Team Server 2. The next thing we need to do

is create an additional security group for our load balancer so it

allows port 80 traffic from anywhere.

So let's go back to the network file. And if we scroll down here,

we already have a security group for our instances that allows

HTTP access from anywhere. Let's make a copy of the security

group. I'll go ahead and update the name label of this new

security group. We'll call it alb_sg, and we'll update the name to

nginx_alb_sg.

We're gonna be using the same VPC ID, and the ingress block is

already correct. We want to allow port 80 access from anywhere.

We do want to make a change to our existing security group for

the instances. Now that we have a load balancer in front of them,

they should only accept traffic from addresses that are within the

VPC. So we can scroll up and change this cidr_block reference to

var.vpc_cidr_block. Now, it will only allow traffic from addresses

that are in the vpc_cidr_block. Let's go ahead and save the

network file. The next thing to do is add our load balancer

resources. But before we do that, we need to know how to

construct each of those resources. Let's head back to the docs.

Chapter 6 How to Add Load Balancer Resources

Back in the docs, let's try to search for aws_lb, and, that returns

over 1000 results. That's not going to be very helpful. Let's go

ahead and clear the filter, and I happen to know from experience

that this is under Elastic Load Balancing v2. So let's scroll down

to that. There's Elastic Load Balancing v2. That includes the

application load bouncer and the network load balancer. We'll go

ahead and expand that out, and we can see it split up into

Resources and Data Sources. That means if we had an existing

AWS load bouncer and we wanted to use it as a data source, we

could. But in our case we want to create an AWS load balancer

resource, so let's go ahead and click on that resource. And just

like the data source, this gives us an example usage for both the

application load bouncer and the network load balancer.

The example here is very close to what we actually want, so let's

go ahead and copy this and place it in our configuration and

then make a few simple updates. I'll go ahead and copy the text

and go over to the configuration, and we'll paste it directly in the

file. Now let's update the name label and the name of our load

balancer. We'll set the name label to nginx, and we'll set the

name to web_alb.

Internal should be set to false because we're creating a public

load balancer. The load_balancer_type should be application. That's

the type that we want. For the list of security_groups, we should

update it to the security group that we just created. So let's go

into split screen mode and bring up our network configuration on

the left and scroll down to our new load balancer security group

and grab that name label, and we'll paste it over here. And now

we need to update the subnets argument to the list of subnets

that we're going to be using.

So we'll go ahead and delete this subnets argument and add

square brackets to indicate a list, and now we can add our two

subnets. So I'll go ahead and scroll up to our subnet definitions,

and I'll grab the resource type, followed by the name label, and

the attribute that we want is id, so I'll do .id, then I'll add a

comma, and we'll copy this text, paste it, and update it to

subnet2. We've included both of the subnets we want to associate

with our load balancer. The next property is

enable_deletion_protection. We're going to set that to false

because we want Terraform to be able to delete this load balancer

when we're done with it. For now, we're not going to configure

the access logs, so I'll go ahead and delete this block. And lastly,

we'll update our tags to reference our local value,

local.common_tags. That's everything for the load balancer. My

challenge to you now is to create the rest of the resources using

the documentation. If you get stuck, you can reference the

solution, and when we come back, you can see how I updated

my solution. Here's my updated solution, and why don't I get out

of split screen mode here so we can better see what's in the

configuration.

I added the aws_lb_target_group, specifying the correct port of 80,

the protocol of http, and the correct VPC ID.

Scrolling down a bit more, I created the aws_lb_listener, which

needs to reference the ARN of the load balancer that we've

created, the proper port and protocol, and we're going to set the

default_action of type forward to send traffic to a target group,

and then we'll specify the target_group_arn of the target group we

just created. Scrolling down a little bit more, we have two target

group attachments, one for each EC2 instance.

In there I've specified the target_group_arn, the target_id is going

to be the idea of each EC2 instance, and the ports is going to be

ports 80. That's everything that goes into this configuration. Now

before we apply our updated configuration to our deployment, let's

talk a little bit about Terraform state.

So far, we've talked about state data as the way that Terraform

maps what's in your configuration to the actual deployment on

target environment, but what's in that state data and how can you

interact with it when necessary? Terraform state data is stored in

a JSON format. You should not try to alter this JSON data by

hand. Bad things can and will happen. We'll be looking at how

you can use Terraform commands to work with it shortly. State

data stores important information about your deployment,

including mappings of resources from the identifier in the

configuration to a unique identifier in your target environment.

Each time Terraform performs an operation like a plan or apply, it

refreshes the state data by querying the deployment environment.

The state data also contains metadata about the version of

Terraform used, the version of the state data format, and the

serial number of the current state data. When Terraform is

executing an operation that potentially alters state data, it tries to

place a lock on the data so no other instance of Terraform can

make changes. Imagine if the state data was in a shared location

and two admins tried to make conflicting changes at the same

time, that's no good. Locking helps to prevent that situation from

arising. Speaking of the state data location, you can store the

state locally on your file system, which is what Terraform does by

default, or you can specify a remote backend for the state data,

that could be an AWS S3 bucket, an Azure storage account, an

NFS share, or HashiCorp's Terraform Cloud service. A remote

backend for state is useful when working on a team to collaborate

and to move state data off your local machine for safety's sake.

We're not going to cover remote state data in this book. Another

feature supported by Terraform state is workspaces which enable

you to use the same configuration to spin up multiple instances

of a deployment, each with their own separate state data. We will

cover workspaces in more detail in a future chapter. What does

state data look like? Here is a rough sketch of what is in the

state data.

We've got the current version of the state data format and the

version of Terraform that was last used on the data. This is

important because older versions of Terraform might not be

compatible with the latest format of the state data. Terraform will

let you know if that's a problem. The serial number is

incremented each time the state data is updated.

The lineage is a unique ID associated with each instance of state

data and prevents Terraform from updating the wrong state data

associated with a config. The Output section contains the outputs

we saw printed in the terminal window in the last chapter, and

resources is a list of resource mapping and attributes.

Let's jump over to our configuration and look at the actual state

file. Back in our configuration, we can see the state file is

terraform.tfstate. Let's go ahead and open it. Starting from the

top, the version is version 4, the terraform version used is 1.0.8,

and the serial number is 32, that is incremented each time the

state is changed. And then we have our lineage, which is the

unique ID for this particular state data. Below that, we have the

outputs. We have a single output defined and the value is stored

in the state. Below that, we have a list of resources. The data

source is considered a resource, in this case, and it has

information about that data source. If we scroll down some more,

we have our first actual resource, which is our AWS instance. It

has the name label we've associated with this specific resource,

the provider that was used to create it, and then information

about that resource including its attributes. That is what you'll

find if you look inside the state file, which leads me to another

very important point. You do not want to make any changes to

this file directly and honestly you probably shouldn't even open

the file, in general. Let's look at some commands you can use to

work with state data.

Chapter 7 Terraform State Commands & Providers

There are a subset of commands with Terraform specifically to

deal with state. We won't cover all of the commands, but I did

want to touch on some of the most commonly used ones. To see

all the resources being managed by Terraform, you can run

terraform state list. From that list, you might want to know more

about a specific resource. You can find out more by running

terraform state show and the resource address, which is the

resource type and the name label. You can move an item to a

different address in the same state file.

This can be useful for renaming resources or moving them into

chapters. The syntax for that command is terraform state mv for

move, followed by the source address and the destination address

for the resource. Lastly, if you need to purge something from the

state, you can do so by using terraform st rm and the address of

the resource. You might want to remove a resource from

Terraform management without destroying it. You could remove

the resource block from the configuration and then remove the

entry from state. Otherwise, the next time you ran terraform apply,

it would attempt to destroy the deployed resource in the target

environment, which leads me to my next and maybe most

important point. The first rule of Terraform is to make all changes

with Terraform. Don't try to manually edit state data, and don't

make changes to managed resources with the cloud console or

the CLI. Make changes in the configuration, and then apply those

changes through Terraform; otherwise, Terraform will either undo

your changes at best or get hopelessly confused at worst. With

that advice in mind, let's head back to our configuration and get

our updates deployed. Back in our configuration, let's go ahead

and expand the commands directory and open up the

m5_commands. First, let's try out a couple of those Terraform

state commands. I'll go ahead and bring up the terminal down

below, and let's first run terraform state list.

If we want to see the properties of a specific resource, we can

use the address that's shown on the screen. Let's run terraform

state show and then look at the information for the

aws_instance.nginx1.

This now shows us all of the available information about nginx1.

We can see all of the information that's , and it's a fairly

significant amount. Next up, let's validate our configuration and

run the update against our existing deployment. Before we try to

run a plan for our configuration, let's first run terraform validate

and make sure we don't have any mistakes in our configuration.

Now our configuration is valid. Let's go ahead and run terraform

plan. I'll go back to my m5_commands. If you haven't already,

you're going to need to export the environment variable

TF_VAR_aws_access_key and secret_key. I've already done that, so

I can scroll down to the terraform plan command. I'll go ahead

and run that now, and we'll save the plan to m5.tfplan. we're

going to be making some significant changes here.

We have 12 things to add, 1 to change, and 3 to destroy. I'll go

ahead and expand the terminal so we can see what is going on

in the plan. Scrolling up a bit, let's see what's being replaced.

Well, subnet1 needs to be replaced because it's changing

availability zones, so it's letting us know it's going to delete that

subnet and recreate it.

Scrolling up a bit more, our security group for the NGINX

instances is going to be updated because we're changing the

ingress block.

Our route table association for subnet1 has to be replaced

because the subnet is being replaced. And scrolling all the way up

from there to our first nginx1 instance, that also has to be

replaced in part because we're changing the subnet ID, but also

because we changed the user data that's associated with the

instance.

We are fine with all of these changes, so let's go ahead and run

terraform apply to apply the changes to our target environment.

This is going to take a little while because it's going to create

that subnet and the load balancer and the EC2 instance. Generally

speaking, the load balancer is what actually takes the longest to

create, so I'll jump to when the deployment has completed

successfully. Our deployment is successful, but our output is still

giving us the AWS instance public DNS.

That's something we should probably change. Let's go ahead and

open up outputs, and instead of the instance, we want to get the

public DNS of our load balancer. Let's go back in split screen

mode and we'll hide the terminal for a moment, and let's go to

the load balancer. We'll grab the address for the load balancer,

which is aws_lb.nginx.dns_name for the attribute. And we'll go

ahead and save that output.

We'll bring the terminal back up. We can run a terraform validate

to make sure our change didn't mess anything up.

And now, because we haven't made any changes to the resources,

we can just run terraform apply directly, and we can do that by

simply doing terraform apply and adding the flag so it doesn't

prompt us to approve any changes. I would only recommend

doing this when you're absolutely certain that no changes will be

made that might be destructive to your target environment. Since

we're only changing an output, it's not going to make any

changes to our target environment, and now we have the public

DNS for our load balancer.

We know that both instances are responding on the load balancer

and our deployment is successful. In summary, we've added new

resources to our configuration to make it more resilient and

production ready. We also took a look at the docs for the AWS

provider to help us with the arguments and syntax for all our new

resources. Just remember, there is no shame in reading the docs

or copying examples. State data is Terraform's map from the

config to the deployment and it is very important. A corrupt state

is a dire circumstance to find yourself in. Treat the state data with

respect and all will be well. So far, we've only worked with the

AWS provider. Now it's time to see how you add an additional

provider, how to work with provider versions, and we're going to

learn what provisioners are and why you probably shouldn't use

them.

One of the key strengths of Terraform is its vendor agnostic and

pluggable approach. Anyone can develop a provider plugin for

Terraform and you can use more than one provider in a

configuration. We will see how to add and configure providers in

this chapter. Our configuration will continue to evolve in this

chapter based on requests from both the development and ops

teams at ACME. One of their requests will require adding a new

provider to the configuration, but before we do that, we'll learn a

bit more about how to add and configure a provider. We are also

going to dig into the dependency graph that Terraform creates

when planning a deployment and learn when it might be

necessary to specify an explicit dependency in your configuration.

Finally, we are going to examine the options that exist for post

deployment configuration of resources. Once our EC2 instances

are deployed, how do we perform the initial configuration and

manage them going forward? First, it's time to check in with

Samantha and Jack. Our deployment is shaping up nicely. We've

got a application running up in AWS. But, of course, nothing in

IT is ever really done. The Dev and Ops teams both have new

requests. Our friend Samantha has a couple requests from the

development side of the house. For starters, she would like to

give us the website files and have them dynamically uploaded to

the web servers at startup. She would also like to get access to

the request logging from the load balancer for analysis and

debugging. Jack has a few things he'd like to see us implement

as well. As Terraform is adopted by ACME, he wants to make

sure we are all using the same major version of Terraform and

the provider plugins. He would also like the Terraform files to be

formatted consistently to help with sharing across the teams. Why

don't we start with Samantha's two requests by updating our

architecture to support her needs. It sounds like she needs an S3

bucket for logging, and we can also put her website files there to

be picked up by the EC2 instances when they start up. In our

architecture, we will add an S3 bucket and upload the website

content to it. Then we will assign the EC2 instances a profile that

has access to copy information from the S3 bucket. The load

balancer configuration supports logging to an S3 bucket, so we

can use the same S3 bucket to write those access logs out. S3

buckets need to have globally unique names, and that's something

we can generate with the random provider for Terraform. With

that in mind, let's see how we can add a provider and meet

some of Jack's requests. Provider plugins are Terraform's

superpower. We talked about providers in an earlier chapter, but

now that you've had a chance to use them, it's time to go into

greater detail. As we have already seen, Terraform provider plugins

are available in the public registry at registry.terraform.io, but you

can also get provider plugins from other public registries, privately

hosted registries or even your local file system. We aren't going to

get into that use case in this book, but it's useful to know. There

are three types of provider plugins available on the Terraform

hosted registry, Official, Verified, and Community. Official providers

are written and maintained by HashiCorp. Verified plugins are

written and maintained by a organization that has been verified by

HashiCorp and is part of the HashiCorp technology partner

program. Community provider plugins are written and maintained

by individuals in the community, and have not gone through the

verification process. There's nothing inherently wrong or bad about

using community providers, but you should be aware of their

providence and probable level of support. One thing all the

providers have in common is that they are open source and

written in Go. If you have the inclination to inspect or contribute

to a provider, the code is readily available for you to do so.

Providers themselves are a collection of data sources and

resources, as we have seen when reviewing the documentation.

Providers are versioned using semantic version numbering. You

can control what version of a provider plugin you use in your

configurations so you can avoid a situation where a provider is

updated and it breaks something in your deployment. Within your

configuration, you can invoke multiple instances of the same

provider and refer to each instance by an alias. For example, an

instance of the AWS provider is limited to one region and

account. If you wanted to use more than one region in a

configuration, you could do so with multiple instances of the AWS

provider and aliases. Let's take a look at how you can specify the

source of a provider plugin and the desired version. This will help

us fulfill Jack's request.

We have already seen how to create a provider block in our

configuration, and you might assume that is where you would

specify more information about the provider, like its version and

source. That assumption would be well founded, but unfortunately

incorrect. Provider information is defined in the terraform

configuration block using a nested block called required_providers.

We haven't seen the terraform block before.

It is used to configure general settings about a Terraform

configuration, including the version of Terraform required, settings

for the state data, required provider plugins, provider metadata,

and experimental language features. For the purpose of this book,

we will focus on using the terraform block to define our

required_providers. Each key in the required_providers block will be

the name reference for a provider plugin. The convention is to

use the standard provider_name, unless you're going to have

multiple instances of a plugin from different sources. That's an

advanced topic and one you're unlikely to encounter when you're

first getting started with Terraform, so don't worry about it right

now. The value for the provider key will be a map defining the

source of the plugin and the version of the plugin to use. By

default, Terraform assumes you are getting your plugin from the

Terraform Registry, and it provides a simple shorthand for the

address value. There is an expanded form of the address for

alternate locations. The version of the provider can use several

different arguments, including setting it equal to a version, a

range of versions, or using a special sequence of a tilde followed

by a symbol. That last one is not immediately intuitive, so let's

look at an example. We've been using the AWS provider from the

Terraform Registry. If we wanted to add it to our

required_providers block, we would set the key to aws, as that is

the name of the provider in the documentation. For the source,

we can use the shorthand of hashicorp/aws. Since we're not

giving Terraform a full address of the plugin, it will try and find

the plugin on the Terraform Registry. Under our version, let's say

we wanted to stay on version 3 of the plugin, but we don't care

about the minor version. Using the tilde and symbol tells

Terraform to find the latest plugin that is of the form 3.x. If we

wanted to stay on the minor version of 3.7, we could update the

expression to 3.7.0, and that would keep us on the latest 3.7

release.

Most of the breaking changes in a provider will come from a

major version release, so staying on the same major release of a

plugin should keep things stable, although your mileage may vary

depending on the provider. Once we've defined our

required_providers, we can reference them in a provider block. The

block starts with the provider keyword, and then the name of the

provider used in the required provider block.

If you are going to create more than one instance of the provider,

you can add an alias argument inside the block, providing a

string for that instance of the provider. And then you can provide

any additional arguments that are specific to that provider.

Assuming we've gone with the convention and used aws as the

provider_name for the AWS provider, our provider block stays the

same, with aws as the name label.

If we want to create an additional instance of the AWS provider

for a different region, we could give an alias of west in the block.

To use the aliased instance of the provider with a resource or

data source, we would add the provider argument to the

configuration block. The value would be the

provider_name.thealias, which would be aws.west, in this case. If

no provider argument is specified, Terraform will use a default

provider instance with no alias set. Armed with all this new

knowledge, let's head over to our configuration and add a

required_providers block for the AWS and random providers.

Before we add the terraform and required_providers block to our

configuration, let's take a look at the docs.

We can browse to the AWS provider by clicking on Browse

Providers and going to AWS. And let's go into the Documentation

tab, and in the beginning of the AWS Provider it provides some

Example Usage, and there is the terraform block and

required_providers block. That's exactly what we want, so let's go

ahead and copy that text from the example. So I'll copy that text,

and let's go over to our configuration. In our configuration, let's

go ahead and expand the directory, and we're going to create a

new file called providers.tf, and in the providers.tf file we'll go

ahead and paste that text. now we are sourcing our provider from

the public registry, and we're setting the version to stay on major

version 3. Right now 3.63 is the latest version, but when they

come out with 3.7, we'll automatically upgrade to 3.7. If version 4

comes out, we will not automatically upgrade to that, and that is

what we want.

Now that we have our AWS provider added, there's something

else I want to point out about the AWS provider documentation.

Something that we glossed over when we were looking at the

documentation earlier is the Authentication section for the AWS

provider. This provides information about how to authenticate

using the provider. We've been using static credentials up until

now, defined in variables. There are many other options for

authentication. We have environment variables; a shared credentials

or configuration file which is generated by the AWS CLI; and also

if you're running Terraform on AWS, you can leverage CodeBuild,

ECS, EKS or the EC2 Instance Metadata Service.

Instead of using credentials with variables, an approach that I've

often seen is using environment variables. Let's scroll down to the

Environment Variables area. We can provide our credentials with

two environment variables as opposed to defining variables inside

of the Terraform configuration.

By doing that, we will prevent someone from accidentally

credentials in a terraform.tf vars file and checking that into source

control. That's bad. We don't want that to happen. So let's go

back to our configuration, remove those variables, and from here

on out we can use the environment variables instead. back in the

configuration, let's go ahead and open up our variables file, and

we are going to delete the aws_access_key and aws_secret_key

from our list of variables. We'll go ahead and do that now; we’re

going to keep the aws_region, because we need to define that for

our provider. I'll go ahead and save that file, and now let's go to

where our provider is defined. Right now that's sitting in the

network.tf file. That's probably not the best place for it, so let's go

ahead and remove that from the network.tf file, and instead we'll

add it to the providers.tf file. So I'll go ahead and add it in there,

and now I can remove the access_key and secret_key arguments,

since we'll be supplying those values through the environment

variables defined in the documentation.

Now let's head back to the documentation and we will walk

through adding the random provider to our configuration.

Chapter 8 How to Add Random Provider

We are going to use the random provider and the random_integer

resource in the provider to help generate a unique ID for our S3

bucket. Remember S3 bucket names need to be globally unique.

The easiest way to do that is add some sort of unique ID to the

end of the name for your S3 bucket. Let's go ahead and search

for the random provider, and it comes up as the first result. We

can go ahead and click on that, and if we want to see how to

use the provider, we can actually click on the USE PROVIDER

That will give us an example of how to add it to our existing

terraform block or add a new terraform block if we don't have it.

My challenge to you now is to add this additional provider to the

required_providers block in the configuration and set the version

to stay on major version 3, but accept updates in the minor

version. Go ahead and try to add the provider on your own. Let's

see how you did.

Going back to the configuration, I have added the random

provider to my required_providers block, and I've set the version

to ~> 3.0, which will keep us on the major 3.0 version. The

resource we want to add from random is the random integer, so

let's go back to the documentation and see how we add that.

Back on the website, let's click on the Documentation area, and

before we expand the resources, one thing I want to point out

about the random provider is that it doesn't have any

configuration options for the provider block, which means you

don't actually need to include a provider block in your

configuration since there's nothing to configure.

With that in mind, let's expand the resources here and take a

look at the random_integer. Here's the random_integer with an

example usage.

What I would like for you to do now is add the random_integer

resource to the locals.tf file in our configuration, and set the

minimum to 10000 and the maximum to 99999. You don't have

to include the keepers argument, just a min and a max and use

the name_label of rand. Go ahead and we'll come back and see

how you did. Let's go to my updated configuration and see how I

added the random_integer resource to my locals.tf file. Here is my

locals.tf file, and you can see I've added the resource

random_integer with the name_label rand, setting a minimum

value of 10000 and a maximum value of 99999.

When we use this as part of our S3 bucket naming, we will have

a random integer that will be appended to the name of the S3

bucket. With those components in place, let's look at the

resources we need to add for our S3 bucket and to allow access

from the EC2 instances. With our provider situation figured out,

we can turn to Samantha's request to add an S3 bucket for

website content and logging. Before we jump back into the

configuration, let's figure out what resources we will need to

create. We are going to create an S3 bucket and place objects in

that bucket for the website. To accomplish that goal, we are going

to use the aws_s3_bucket resource and the aws_s3_bucket_object

resource.

Our EC2 instances will need access to the S3 bucket, but we

don't want to make the bucket public for everyone, instead we

can create some IAM resources to help us grant access to the

EC2 instances. We'll create a role using the aws_iam_role and

grant that role permissions to the bucket with an

aws_iam_role_policy. Then we can assign the role to the EC2

instances by creating an aws_iam_instance_profile and then adding

an entry to our aws_instance block to use that instance profile.

We also need to provide the load balancer access to the S3

bucket, and we can do that through a bucket policy that refers to

a data source of aws_elb_service_account. That will give us the

service principal account for the elastic load balancer in the region

that we're currently working in, and we can grant that access to

the S3 bucket. With all that context in mind, let's head over to

our configuration and add some placeholders for each resource.

Back in our configuration, let's add a file for the S3 configuration

and we'll call it s3.tf, and within that file let's add placeholders for

all the different resources that we need to create. So I'll add in

the comments for the file, aws_s3_bucket, aws_s3_bucket_object,

aws_iam_role, aws_iam_role_policy, and aws_iam_instance_profile.

In addition to these resources, let's go ahead and open up the

loadbalancer file, and let's add a placeholder to the beginning of

this loadbalancer file.

, now we've got all of our placeholders. For the website files that

we'll be uploading to our S3 bucket, those are located in the root

of the exercise files. So we can scroll down to the bottom here.

Those are the website files. We've got an index.html file and an

image file of the ACME logo. We'll go ahead and copy this

website directory and paste it in our directory. We now have our

website files. The other thing we need to do is create a name for

our S3 bucket, and we can do that by defining a new local value.

So let's open our locals.tf file, and we'll add another value . That

will append a unique ID to our S3 bucket name. Going back to

the s3.tf file, my challenge to you, if you really do want a

challenge, is to try to add all of the necessary resources to this

file. I will say that many of these resources require you to write

an IAM policy or a bucket policy, and that's very difficult, so

maybe skip those portions of the resource configuration and try to

do the rest, along with the loadbalancer data source. And then

you can take a look in the M6 solution directory to see how the

IAM policies are configured for each of the resources that uses it.

This is going to be a real challenge, so if you want to do it, go

ahead and we'll come back to see my solution. Let's see how you

did. And first, we'll start with the S3 bucket. The bucket argument

is going to be the name of the bucket, and we're going to set

that to our local value.

The acl Is going to be private because we don't want this to be

a public bucket. We'll set the force_destroy = true, which allows

Terraform to destroy the bucket. Now below that is the policy, and

we're going to embed the entire policy here, which is in JSON. In

order to do that, we are going to use the heredoc syntax that we

saw when we configured the user data for our instances. And this

will replicate this text exactly except for the interpolation that

we've added for the values from Terraform. So let's take a look at

what's in this policy. And don't worry about being a bucket policy

or an IAM policy expert. This is a Terraform book, after all, and

not one on AWS. So I'm just going to point out the relevant

things for you if you're ever writing one of these policies. In our

statement for the bucket policy, we want to allow the load

balancer and the delivery logs service access to this S3 bucket. We

do that by adding an effect of allow, and we're going to reference

a principle here from our Elastic Load Balancer service account

data source.

So if we go over to the loadbalancer file, this is the data source

that you'll need to reference the service account used by Elastic

Load Balancers in your region. Going back to the S3 file, for the

action, we're giving it s3:PutObject, and for the resource, we're

giving it the bucket name and then the path, This gives the

Elastic Load Balancer permission to write data to that path in our

S3 bucket. We're also going to give that same permission to the

service delivery.logs.amazonaws.com. And we're going to give that

service an additional permission of s3:GetBucketAcl.

This entire policy is available on the AWS docs, so don't worry

about trying to memorize it or anything. You can always go back

to the documentation and find it. Scrolling down to the next

resource, we have our two bucket objects, which are the website

components we want to upload to the S3 bucket. We first have

the bucket argument that references the S3 bucket, and then we

delivery.logs.amazonaws.com

have a key, which is the destination on the S3 bucket where it

should create that object, and the source is where to get that

object from.

We're getting it from the website directory that we copied into our

configuration directory earlier. Scrolling down a bit more, we get

into the IAM portion of things by first creating the IAM role that's

going to be used by our instances.

The name is allow_nginx_s3. And for the assume role policy, this

allows EC2 instances to assume this role. That's all that does.

Scrolling down a little bit more, we get into the role policy, and

this is the policy that actually grants permissions to access the S3

bucket. We're naming it allow_s3_all, and we're assigning it to the

role that we just created by name, and then we define the policy

with the same heredoc syntax.

We're giving it the Action s3:*, which means you can do anything

in the S3 bucket, and we're assigning it the resource of the

bucket name and any paths along that bucket name. That's the

policy that's assigned to the IAM role we just created.

Scrolling down a bit more, we get into the instance profile. The

instance profile is what's going to be assigned to the EC2

instance. We're giving it the name nginx_profile. We're associating

it with the role that we created earlier, and we're giving it the

common tags like we have with everything else in this

configuration that supports common tags. The next thing we need

to do is update our instance and our load balancer to take

advantage of this S3 bucket. But before we do that, we need to

talk about dependencies.

When Terraform is trying to make the deployment match your

configuration, it has to run through a planning process. Terraform

goes through this process when you run a plan, apply or destroy.

As part of the planning process, it needs to figure out the order

in which to create, update or delete objects. To calculate a plan

of action, Terraform will first refresh and inspect the state data.

Then it will parse the configuration and build a dependency graph

based on the data sources and resources defined in the code.

Comparing the graph to the state data, Terraform will make a list

of additions, updates, and deletions. Ideally, Terraform would like

to make the updates in parallel, so it tries to figure out which

changes are dependent on other changes. Changes that are not

dependent on other changes can be made at the same time,

while changes that have a dependency will have to be done

serially. How does Terraform figure out the order in which changes

need to happen? References. Let's look at an example that we

have in our configuration right now. In our current configuration,

we are creating a VPC, a subnet, and an EC2 instance. The VPC

doesn't refer to any other resources in the configuration, so

Terraform can create it immediately. If we look at the arguments

in the aws_subnet resource, we have a reference to the vpc.id.

The reference creates a dependency on the VPC resource.

Terraform will wait until the VPC is created, and then use the ID

to create the subnet. Our aws_instance configuration has a

reference to the aws_subnet ID. That creates a dependency for the

EC2 instance, so Terraform will wait for the VPC and then the

subnet to be created before it tries to create the EC2 instance.

Terraform can infer the dependency tree for this configuration

implicitly. It doesn't need you to tell it that the subnet is

dependent on the VPC. Sometimes a dependency is and you must

explicitly tell Terraform about it. We actually have that situation in

our configuration right now, you just don't know it yet. It's one of

those things that you only figure out once it breaks, so let me

explain. In our configuration, we are creating an aws_iam_role.

Both the instance_profile and the role_policy directly reference the

iam_role, so Terraform will wait until the role exists to create

those two resources. To assign proper permissions to our EC2

instances, we have to add the instance_profile to our aws_instance

configuration, which creates a dependency between the

instance_profile and the instances. However, in order for the EC2

instances to actually access the S3 bucket using the

iam_role_policy, it also needs to be created. If the EC2 instance

starts up before the iam_role_policy is ready, access to the bucket

will be denied, and that's bad. The solution is to add a

depends_on argument to the aws_instance resource that references

the iam_role_policy. With that explicit dependency, Terraform will

wait until the iam_role_policy creation is complete before moving

on to creating the aws_instances. Generally speaking, Terraform is

pretty good at detecting implicit dependencies. The depends_on

argument should be used sparingly, and only when an explicit

dependency is required. Armed with that knowledge, let's go back

to the configuration and update the load balancer and EC2

instances. My challenge to you is to go into the load balancer

and add the access log configuration and go into the EC2

instance, add the instance profile, and add that depends_on

argument. The depends_on argument is expecting a list of

references to other resources within the configuration. So go

ahead and try that now, and when we come back, we can take a

look at my updated configuration. Let's see how you did. Let's

first take a look at the load balancer configuration. In the load

balancer configuration, you can see there's now an access_logs

configuration block inside of the resource, and in there, we are

referencing the bucket that we created.

We're going to use the actual reference and not the bucket name,

so we create a dependency between the load balancer and the

bucket. The prefix is going to be and enabled is set to true. We

want to write logs there. now let's take a look at the instances. In

our instances, I have added an argument, iam_instance_profile,

and it's set to the name attribute of the profile that we created.

For depends_on, we're giving it a list of resources it should be

dependent on, so we need the square brackets, and then in there,

I am referencing the iam_role_policy.allow_s3_all. So the instance

will wait until that role policy is created before spinning up the

instance.

If we scroll down a little bit, we also have to update our second

AWS instance, so don't forget to do that. We want them to be

configured the same. The last thing we need to do is update our

user data script. But before we do that, let's discuss post

deployment configuration options. After a resource is created,

sometimes you need to perform configuration. It could be loading

an application onto a virtual machine, configuring a database

cluster or generating files on an NFS share based on resources

that are created. If you want to stay in the Terraform ecosystem,

there are many providers and resources that can help you with

activities. If you want to create a file, there's a file resource. If

you need to configure a MySQL database cluster, there is a

MySQL provider. Using native Terraform resources will often be

the answer. Another option specific to servers is to pass data as

a startup script to the server operating system. All the major

cloud providers offer a way to pass a script, although the name

of the argument changes. For AWS, we are already using the user

data argument to pass a startup script. The downside to passing

a script is that Terraform has no way to track if the script is

successful or not. It's simply another argument in the

configuration. If the script fails, you need to gracefully handle that,

or you could go outside of Terraform and leverage configuration

management software. There are many different config

management options out there, which Terraform can hand off to

for post deployment configuration. Ansible, Chef, Puppet are three

examples. A common practice is to bake the configuration

management software into a base image for a machine and have

Terraform use that base image when it creates an instance. If all

else fails, you can use Terraform provisioners. You're likely to

encounter these out in the wild as you ramp up on Terraform, so

let's dig into what provisioners are and why they're usually a bad

idea. Provisioners are defined as part of a resource, and they are

executed during resource creation or destruction. A single resource

can have multiple provisioners defined with each provisioner being

executed in the order they appear in the configuration. If you

need to run a provisioner without a resource, there is a special

resource called the null_resource that allows you to run

provisioners without creating anything. If a provisioner fails, you

can tell Terraform to either fail the entire resource action or

continue on merrily. Which one you choose will depend on what

the provisioner is doing. HashiCorp considers provisioners as a

last resort when all other options have been considered and found

lacking. Provisioners are not creating objects Terraform can fully

understand and manage, which puts the onus on you and your

team to ensure things like error checking, idempotence, and

consistency are implemented properly. There are three provisioner

types. The file provisioner will create files and directories on a

remote system. The provisioner allows you to run a script on the

local machine that is executing the Terraform run. is used as a

workaround for functionality that may not yet be in a provider,

and it's probably the provisioner you'll see most often. allows you

to run a script on a remote system. Most of the time, the file

provisioner and the can be easily replaced with a startup script

through something like user data. There used to be more types

that were specific to configuration management products like Chef

or Puppet, but all of those have been deprecated. In case you

encounter provisioners out there in the wild, let's look at some

examples of how they're configured.

In the file provisioner example, we are first defining how the

provisioner can connect to the remote machine to copy those

files. It is also possible to define a connection block for all

provisioners used in a resource. The connection types are either

going to be SSH or WinRM. A provisioner can refer to the

attributes of the resource it lives in using the self object.

For instance, here we are getting the public IP attribute of an EC2

instance the provisioner needs to connect to. The source and

destination arguments define the files or directories that should be

copied to the remote machine. The provisioner does not need a

connection block since it is running on the local machine. You

can pass it a command to execute and specify which interpreter

to use for executing the command, for instance, Bash, PowerShell,

Perl or any other interpreter that you have.

The provisioner will need connection information defined in the

resource or in the provisioner. can execute an inline script, a

script stored in a file or a list of paths to local scripts executed

in the order they are provided, which is what I'm showing here in

the example. As I said, HashiCorp recommends heavily against

using provisioners whenever possible, but you still may encounter

them in your Terraform travels. For our configuration,we're going

to stick with user data for config. Let's head over to our

configuration and update it to grab those website files from the

S3 bucket onto those EC2 instances. Our goal here is to update

the script that's defined in the user data argument for each

instance. Were trying to grab the two files that make up our

website from the S3 bucket, copy them down locally, and then

move them to the /usr/share/nginx/html directory. So we're going

to replace some of the commands that are here with new

commands. The good news is Amazon Linux comes with the AWS

CLI, so we can use the AWS S3 commands that are baked into

the CLI, and the command line will automatically use the instance

profile that's been associated with the EC2 instance to authenticate

to the S3 bucket. If you'd like to, you can update the command

to copy those files over. And when we come back, I will show

you the updated script that I have. Here's my updated script.

We're using the aws s3 cp command to copy two files from the

bucket to our home directory, that's and then we are removing

the default index.html file from the nginx installation and copying

the files from our home directory over to that nginx HTML

directory.

With our configuration complete, let's step into the next phase,

which is to get this configuration validated and deployed. One of

the things that Jack from the ops team asked us to do is to

make sure that our files are formatted properly, and we can do

that by using the terraform fmt command. So I'll open up the

terminal window now, and terraform fmt works on any files it

finds in the current directory that you run it from.

So if we run terraform fmt, it will look at the current formatting

for each of the files in the directory and then make updates to

those files to bring them in line with HashiCorp standards for

HashiCorp configuration language files. If you're curious about

what has changed in those files, go ahead and open up and

inspect those files, and you can see how the formatting has

changed. The next step in our process is running terraform init

again. You might be wondering why. And the reason is because

we added a provider to our configuration, and Terraform needs to

download that provider plugin from the Terraform registry. So let's

go ahead and run terraform init now. if we scroll up a little bit,

we can see it installs the HashiCorp random version 3.1.0.

It's going to continue to use the previously installed AWS plugin

because our updated version setting doesn't change which version

is installed. Now that we have initialized our configuration, the

next thing to do is validate our configuration. So we'll go ahead

and run terraform validate. And my Terraform configuration is

valid.

You may get some errors, so go ahead and remediate those

errors now, and then we'll resume by running terraform plan.

Remember that we removed our AWS access and secret key from

the variables, so we now need to set them as environment

variables. If we expand the commands directory and open up

m6_commands, here are the commands for Linux and macOS or

for PowerShell to set the proper environment variable for the AWS

access key and secret access key. Go ahead and update those

values and run the command to set your environment variables.

I've already run those to set my environment variables.

Once we have those environment variables set, now we can run

terraform plan, and we'll send the output plan to m6.tfplan. I'll

go ahead and run that now. And based on the plan, we have 11

things to add, 1 to change, and 4 to destroy.

We know we're creating a bunch of resources because we added

them, but I'm curious to see what is changing or being destroyed.

So let's scroll up, and we see that the target_group_attachment is

being replaced because the target_id is being replaced, which tells

me that the instances are also being replaced.

If we scroll up to one of the instances, we can see the instance

is being replaced. And if we scroll down with the instance, the

user data has been updated, which forces a replacement of the

EC2 instance. It's interesting to note that adding an IAM instance

profile does not require a replacement of the EC2 instance, so it's

actually updating that user data that is forcing the replacement.

Lastly, the load balancer is being updated in place because we

have updated the access logs configuration. That doesn't force a

replacement. We're just updating as is. Let's go ahead and run

terraform apply "m6.tfplan", and that will apply the changes that

were listed in the plan. This will take a few minutes to recreate

those AWS instances, so I'll resume when the deployment is

complete. My deployment is complete, although I had to run it a

second time because the nginx profile I was trying to create

already existed.

So I had to delete it and then let Terraform recreate it. So pro

tip, make sure you don't already have a profile named

nginx_profile. Now that the deployment is complete, let's go ahead

and go to the address so we can generate some traffic on our

website, which will then cause the load balancer to write data to

the access logs. We've removed the ability to differentiate between

the two different servers since it's not really necessary anymore.

We know that that works. I'll go ahead and refresh the website a

few times just to generate some web traffic that will be written to

the S3 bucket.

Now that we have generated some traffic for our website, we can

go over to the S3 console. Here's the S3 bucket that we created

using Terraform. In there, we can see we have two paths. We

have and the website. Let's go into the And there we have a

folder, AWSLogs, and there we have one based off of our account.

And in there, there is a test file that was run when we updated

our configuration of the Elastic Load Balancer. It may take 5 or 10

minutes for the load balancer to process new requests and add

them to the access log for the S3 bucket. So if you don't see

access logs right away, don't worry. They will be there shortly. At

this point, we have met all the requirements from both the

development team and the ops team. In summary, we learned

how to add a new provider to a configuration, and we also saw

how to properly specify the version and the source for our

provider using the required provider's block. We updated the

architecture for our configuration to include an S3 bucket, and in

the process, learned about Terraform's dependency graph. Lastly,

we talked about why provisioners are a bad idea and other

options for performing post deployment configuration. The next

step in evolving our configuration is to add functions and looping

into the mix. Looping helps us create multiple instances of an

object efficiently and dynamically, and functions can help us

transform data in our configuration to make it more useful and

effective.

Chapter 9 How to Use Functions and Looping

Terraform has some more tricks up its sleeve when it comes to

creating a dynamic and efficient configuration. A key feature of any

programming language is the ability to create loops and use

functions, and Terraform is no exception. We'll kick off this

chapter with some new ideas from our old buddy, Jack. He's been

reading up on iteration and functions in Terraform, and he has a

few ideas to improve our configuration. That means it's time to

do some learning of our own. We'll check out what looping

constructs exist in Terraform and how they can be used to make

our config more dynamic and flexible. We're also going to want to

use some functions to fulfill Jack's requests. We'll see what type

of functions are available, how they're used in a configuration, and

how to test expressions using Terraform console. First, let's check

in with Jack and see what suggestions he has. We fulfilled the

requests from Samantha when it comes to the deployment

architecture, but now Jack has a few suggestions on how our

code could be more effective and efficient. To start with, Jack

would like to be able to dynamically increase the number of

instances deployed for the application. Two instances might be

good for development, but in a production scenario he'll likely

need more. He would also like to decouple the startup script

from the configuration files and store it in its own file for

possible updates and reuse. Jack also thinks it's a little

cumbersome to set CIDR addresses for the subnets and the VPC.

He'd like to be able to just set the VPC CIDR address and let

Terraform split it up among the subnets. Finally, he's noticed that

we've been a little inconsistent with our naming of AWS

resources. He'd like to be able to add a naming prefix and apply

it consistently across all resources. You tell him, not a problem.

Terraform and you can take care of it. The updates that Jack

requested aren't going to change our architecture. The goal is to

keep the deployment the same while improving our infrastructure

as code. Let's start by checking out the looping constructs in

Terraform. Terraform has several different ways to create multiple

instances of an object or manipulate collection objects. We'll start

with an overview of the various options and then drill down into

the two that are most useful for our configuration. The first

looping construct to consider is the count for chapters and

resources. Count is used to create multiple instances of a

resource or chapter when the instances are very similar in nature,

the value for a count argument is an integer, and that includes 0.

You can tell Terraform to create 0 of a resource by setting the

count to 0, which sounds like an odd thing to do. It's actually

super useful when you want to make the creation of a resource

conditional on other factors in the configuration. The next

construct is the for_each which is also used for chapters and

resources. For_each takes a set or a map as a value. It's used

instead of count in situations where each instance will be

significantly different than the others. You have full access to the

values stored in the set or map you submit, and those values can

be used when configuring each instance of the resource. That

gives you a lot more flexibility than a simple count integer.

Dynamic blocks are used to create multiple instances of a nested

block inside a parent object. They accept a map or a set for a

value to construct the blocks. This is an advanced topic that we're

not going to cover in this book, but I included it for

completeness. Let's focus in on the syntax of the count and

for_each since we will be using both in the configuration. The

count can be used for resources or moduls. The syntax for either

is the same, and since we haven't touched on moduls yet, we are

going to use resources for our example. The count argument goes

inside the resource and accepts an integer as a value. The integer

determines how many of the resource should be created. In our

example, the count is set to 3, so Terraform will create three EC2

instances. When the count argument is used, a special new

variable is available called count.index. As Terraform loops through

the creation of each instance, count.index will resolve to the

current iteration Terraform is on. You can use this value anywhere

in the resource configuration block. In the example, we are using

count.index to name our EC2 instance's web’s number of the

iteration. Count starts at 0, making the first instance Using a

count argument is going to create a list of resources. Each

element of the resource list can be referenced by number. The

syntax is similar to standard resource addresses. We start with the

., then we add a square bracket with the element number of the

instance we want, optionally followed by the attribute of the

instance, if needed.

In our example, if we wanted to refer to the name attribute of

the first AWS instance, the syntax would be

aws_instance.web_servers[0].name. If you would like to get an

attribute of all of the instances, you can use an asterisk in the

square brackets. That will return a list containing the attribute

value for each instance. The for_each can also be used in

resources or chapters. The value for the for_each argument will be

either a set or a map. As a quick reminder, a set is an unordered

collection of objects. A tuple and a list are ordered collections, so

you cannot use a list or a tuple directly, but you can transform a

list or a tuple with the toset function. In our example, we are

using a map with a set of pairs. Terraform will look at the

number of elements in the map or the set and create a

corresponding number of instances. In this example, we have two

entries in the map, so Terraform will create two S3 bucket objects.

In a for_each loop, there are two special variables, each.key and

each.value. During the looping process, each.key will be set to the

key of the map item currently being iterated over. What about

each.value? You can probably guess what it's set to, the value

corresponding to the current key. If you are iterating over a set

instead of a map, each.key and each.value will be equal to the

same thing. Values in the map or set do not have to be a

primitive data type, like a string or a number. It could be a

complex object with nested values that you'd like to use in each

iteration of the resource. Using a for_each argument is going to

create a map of resources.

Each entry in the map can be referenced by the key name, just

like we've seen when dealing with map data types in the past.

The syntax is the resource type, followed by the name_label, and

then square brackets with the key string in quotes, followed by

dot and the attribute you're interested in. Just like the count

syntax, if we want to get the id attribute of all of the instances,

we can swap out the key string with an asterisk. The returned

value would be a list of all of the IDs. Based on these two

looping constructs, let's see if we can find some places in our

configuration that would benefit from using count or for_each.

Within our configuration, we should be on the lookout for

anywhere we are creating more than one of the same resource. If

you'd like to look through the config now and make some

guesses, feel free to do so. Here's the list that I came up with,

starting with the primary resources that we can update. We have

two AWS subnets right now and possibly more in the future,

depending on how the architecture evolves.

Each subnet is almost identical to the others, except for the CIDR

address and availability zone, which makes them a good candidate

for the count loop. Likewise, we are creating multiple EC2

instances that are fairly undifferentiated, except for the subnet they

attach to. Looks like we'll be using a count loop for them as well.

Lastly, we are creating multiple AWS S3 bucket objects, but those

have different names and paths, so it might make more sense to

use a for each loop to create them. Since we are going to use

loops to create these resources, there are going to be other

resources that will be impacted as well. We need to create an

AWS route table association for each subnet, so we can use a

count argument there. We also need to create an AWS load

balancer target group attachment for each EC2 instance, so we'll

use a count argument there as well. Let's jump over to the

configuration and set a few things up.

Let's start by opening our network.tf file. I'll go ahead and expand

the directory and open network.tf. And let's scroll down to the

definition for our subnet. Scrolling down to the first subnet, we

are going to update this first subnet resource for all of our

subnets by adding a count argument. What's going to drive that

count argument? Let's first set up a variable to define how many

subnets we're going to create with this resource. Let's open the

variables.tf file.

And we are going to add a value. Let's go ahead and add it

below the vpc_cidr_block. We'll call the variable vpc_subnet_count,

we'll set the type = number, we'll set the description to the

number of subnets to create, and we'll set the default = 2.

Now that we have our variable ready, let's go back to the

network.tf file and update the resource block. For the resource

block, let's change it from subnet1 to subnets. This is going to

create all of our subnets after all. And below there, we will add

our argument for count, and we'll set the value of the count =

vpc_subnet_count. Next we need to update our CIDR block, and

we can use the count.index to select an item from the

vpc_subnets_cidr_block variable, so we'll set this to count.index.

On the first iteration, it will select the first element from the list,

and on the second iteration, it will select the second element

from the list, and so on. The vpc_id will remain the same.

They're all in the same VPC.

The map_public_ip_on_launch will remain the same. The

availability_zone will also need to update with the count.index to

select the element from the names list. , we've updated the value

to count.index. That's everything we need to change for this

resource. Below it, we have our subnet2. We no longer need

subnet2 because we're defining all of our subnets with that single

resource block, so we'll go ahead and delete this resource block.

Now the other thing we need to update our the route table

associations for the subnets. Let's scroll down to that resource.

Let's rename our first route table association resource And now

we'll add the count argument to this resource. We'll set the count

equal to the number of subnets because that's how many route

table associations we need to create. Now we need to reference

each subnet that we created with our subnet resource. We'll use

the resource addressing that we learned earlier to create that

reference. So it should be aws_subnet, and remember, we changed

the resource to subnets. And we want to specify a particular

subnet, so we'll add the square bracket, and within the square

bracket we'll add count.index.

This way, in the first iteration, it will reference the first element in

the list of subnets and the id attribute. And then on the second

iteration it'll reference the second subnet, and so on. The route

table id stays the same because we're associating all these

subnets with the same route table. Now that we've updated this

resource, we can delete the resource. And that takes care of

updating our subnets and the route table association. My

challenge to you is to update the instances with a count

argument as well. In the instances file, you can update the first

instance to nginx instances or whatever name label you would like

to use, and add a count argument. You'll need to add a variable

like instance_count for the number of instances that will be

created, and within the configuration, you're going to need to

reference the proper subnet for each instance. That's going to end

up being a little more complicated than you would initially think

so. For now, we can safely assume that we just have the two

instances and two subnets, one instance per subnet. The other

thing you'll have to update is the target load balancer group

attachment, and that is in the load balancer.tf. Down at the

bottom we have our two target group attachments. You're going

to update it so that there is only one that is also using the count

argument and referencing the proper target IDs to the instances

that you're creating with the loop. So go ahead and try to do that

now, and when we come back you can see my updated

configuration. Let's see how you did. First, I added a variable for

the instance_count, and I added it right below instance_type to

kind of keep the same variables together. Instance_count is set to

type number, and the default is equal to 2.

Now let's check out the instances.tf file. For instances.tf I

renamed the resource to nginx instead of nginx1. The count is set

to var.instance_count, and the subnet_id reference I updated to

subnets and then the count.index.

We're actually going to change that a little bit in the future, but

for now it's okay to leave it like that.

Under loadbalancer I set the count to var.instance_count, and for

the target_id I updated the reference to nginx and the count.index

for that element out of the list of instances. The last thing to

update is our bucket objects. So let's go into s3.tf, and we are

going to update the bucket objects to be a single bucket object.

We'll start by updating the name label to website_content. Then,

we will add a for_each meta argument, and we're going to use a

map for our for each. So I'll set the curly braces to indicate a

map. The first item in the map, the key will be website, and we'll

set it to the path of the website file that we want to upload to

our S3 bucket, which would be /website/index.html.

We're going to use the same bucket as the target for each bucket

object, so we can leave that the same. The key, which is the path

for the object on the S3 bucket, we can set that to each.value,

which will use the value that's stored in each map key. And then

the source is the path to the file that we want to create as an

object. We're going to use the current directory by specifying dot,

and then we'll use the interpolation syntax to set it to each.value.

So on the first loop, this will evaluate to ./website/index.html. And

that way we will create all of our AWS bucket objects. We can

also delete the second resource here because we no longer need

it. You could make this more dynamic by creating a variable that

includes all of the items that need to be uploaded or even use a

function of some kind to evaluate all of the files in a directory. If

you'd like to do that, I leave that as an exercise to you. For now,

we're going to leave this as hard coded values in the for each

statement. Speaking of functions, we are going to need to use

functions to meet the rest of the requirements that Jack has laid

out for us, so let's dig a little deeper into functions and

expressions within Terraform. Terraform includes functions and

expressions to support the manipulation of data in HCL files.

We've already seen the expressions and even some of the

functions at work, but now it's time to examine them in more

detail. We've been using Terraform expressions for a while now, in

particular, the interpolation and heredoc expressions to include

resource and variable values in a string or pass an entire string

to an argument like user data. Terraform also supports arithmetic

and logical operators like and, or, equals, greater than, etc. The

evaluation will depend on the data type you are operating on and

whether that data type supports the comparison. Terraform also

supports conditional expressions, which are essentially an if

statement followed by a value to return if true and a value to

return if false. You can combine a conditional expression with a

count argument to decide if a resource is created or not. The for

expression is used to manipulate and transform collections. It can

take any collection object type, map, list, set, etc., and it will

return a new list or map. For expressions are a great way to work

with the set of instances that a count or a for each argument

generates from a resource block. Just like any other programming

language, Terraform supports functions that help you transform

and manipulate data. Unlike provider plugins, functions are built

into the Terraform binary, so you don't have to initialize or

download anything to use them. Since they don't use an external

service or executable, they also evaluate much faster than a

resource or data source from a provider. If I wanted to build a

model of what a basic function looks like, it's going to be

something like this. You have the function name and then

parentheses, and then some number of arguments to go with that

function. Some functions actually take no arguments, while others

take many. Arguments are not named, unlike some other

programming and scripting languages, instead, the arguments

must be in the proper order. You could test functions by placing

them in a Terraform configuration and running a plan, but that's

a little time consuming and difficult to debug. For that reason,

Terraform has a subcommand called console that opens up an

interpretation console where you can have Terraform evaluate

functions and other expressions. That is much more efficient than

testing things in a configuration directly. Console will also load the

current state data values of a configuration, allowing you to use

real data to test your functions and expressions.Based on the

current Terraform documentation, there are at least nine function

categories with more possibly coming in the future. I'm not going

to list all of those categories here. Instead, we'll focus on those

you'll probably use as you build your first configurations. The first

category is numeric functions. These are functions that are used

to manipulate numbers. For instance, if I had a list of numbers

and I want to get the smallest number, I can use the min

function, and it will return, in this case, the number 7. There are

also string manipulation functions. A possible use for a string

function is working with Azure Storage account names. They

cannot have uppercase letters, and if someone provided a string

with uppercase letters for a storage account, you would receive an

error. There is a function called lower that takes a string and will

put anything that's capitalized into lowercase and return that

string to you. There are functions to deal with collections. And

when I'm talking about collections, I'm talking about lists and

maps, basically. We will be using the merge function shortly in

our configuration to merge the common tags map with another

map. One interesting category is the functions for IP networking.

If you've done any work with IP networking, you know that math

in IP addressing is kind of funky, and for that reason, the

standard numeric functions don't work very well. There are

dedicated functions like cidersubnet(), which takes a network

range, carves out a subnetwork in that range based off of

arguments that you give it. There are also functions that interact

with the local filesystem. One of the most common ones to use

is the file function. That takes a path argument pointing to a file,

reads the contents of that file out to a string, and returns the

string. So if you need to get the contents of a file, you use the

file function, very straightforward. Lastly, type conversion functions

allow you to convert one data type to another. You probably won't

use most of these functions often with the exception of toset(). If

you'll recall from earlier, the for each argument takes a map or a

set, and the toset() converts a list or a tuple to a set. That's

pretty useful. If you're interested in looking at the other categories

and functions, they are all nicely laid out in the Terraform

documentation. Let's take a deeper look at some individual

Terraform functions we will use in our configuration.

We can leverage the functions in Terraform to meet the

requirements given to us by Jack. We'll start with the Startup

script. Currently we define the Startup script using a heredoc

expression, but Jack wants us to move that into a file. We could

try using the file function, but we need to dynamically update the

bucket name used by our script. Instead, we will use the

templatefile function, which reads in the contents of a file and

replaces variables in the file with values submitted as part of the

function.

Another request from Jack was to simplify the networking by

determining the subnet addressing dynamically. We can do that by

leveraging the cidrsubnet function, giving it the VPC cidr_range

and carving out space for our subnets. The function takes the

cidr_range you would like to work with, the subnet bits to add to

the existing subnet mask, and which network number you want

out of the resulting subnetworks. Jack also wants us to

consistently name all of the resources. We can do that by adding

a variable for a naming prefix and adding a name tag for each

resource that doesn't have a name argument. But we already have

a list of common tags in a map. What are we going to do? No

problem. We can use merge to merge our common tags map

with a map of additional tags for each resource. Finally, we are

going to be adding a naming prefix variable to the configuration.

When we use it for our bucket name, we should apply the lower

function to make sure our bucket name is always lower case, even

if someone submits an uppercase value with the naming prefix.

Ready to add some functions to the configuration? Well, before we

try to add functions to our configuration, let's first test out some

of these functions using the Terraform console. I'll go ahead and

open up the commands directory and open up m7_commands,

which has some examples for us to run to try the different

functions and syntax. You do need to initialize the configuration

before terraform console will work.

We've already initialized our configuration, so we don't have to

worry about that. We can simply run terraform console. This starts

the interactive environment where we can test different functions,

and we can make use of variable values and resource and data

source values within our functions. Let's first test out a basic

numeric function, the min with the arguments 4, 5, and 16. I'll go

ahead and copy this and paste it down below. The result is 5,

which is correct. That is the lowest number. Now let's try using

the lower function that takes a string. I'll go ahead and copy that

one, and paste it down below, and It evaluated our string and set

it to all lowercase. Now we're going to test out the cidrsubnet,

and we're going to feed it the vpc_cidr_block as a value. The

value it uses for the variable is the default value we defined for

that variable. If you don't remember, let's go ahead and open up

the variables file, and let's find that vpc_cidr_block. It's set to

10.0.0.0/16.

Based off of the syntax, we are going to add 8 bits to that to

make it a /24. And the 0 argument says we're going to select the

first available network from the set of subnetworks. So let's go

ahead and run this command and see what the resulting value is.

The resulting value is 10.0.0.0/24. That's exactly what we would

expect. And this is an excellent way we can leverage the

cidrsubnet function to automatically generate the cidersubnet

ranges for the subnets we're creating in the count loop. Before we

get to that, let's try a few other functions. The next one I want to

try is lookup. The lookup function is used to look up the value in

a map. You first have to specify a map in the argument. We'll

use local.common_tags, and then the key that you want to look

for. We'll specify company. If that key is not found, we can give it

an alternate value to return, in this case, unknown. Let's try out

this function now. And it returns the value ACME based off the

key, company. If we instead use a key of missing, which I know is

not in the common_tags map, and then it returns the alternate

value we specified, Unknown. In addition to trying out functions,

you can also just retrieve a value. Let's retrieve the value stored

in local.common_tags, and it returns the map that's stored in our

current local.common_tags.

You can also try out some arithmetic operators. One arithmetic

expression we're going to use is the modulo operator to assign

an instance to a subnet. Now that might not make sense right

now. We'll get into that in a moment. Let's first start by moving

our startup script to a separate file and making use of that

template file function. We are going to move our startup script to

its own file and make use of the templatefile function. So for now

I will hide the terminal, and let's create a new file in that's going

to hold our startup script. I'll name that file startup_script.tpl. You

don't have to name it .tpl, that's something that I do just so I

know it's a template file. Within that template file we're going to

have our startup script. So let's open up the instances file and

we'll copy the script that we've defined in user data. So I'll go

ahead and copy this entire script and paste it into the

startup_script file. You'll note in the script we are referencing the

aws_s3_bucket.web_bucket.id attribute.

When the template file is evaluated, it's not going to be able to

directly evaluate that expression. We need to put a variable that

we can reference in our template file function. So let's change this

instead to s3_bucket_name. That's a variable we can now reference

in our template file function, and I'll update that for the second

entry as well. I'll go ahead and save the file, and back in

instances we will replace the current user data arguments with the

templatefile function. So I'll go ahead and delete what's and start

this off with a templatefile function. The first argument in the

templatefile function is the path to the template file we want to

use. To start off the path to the startup script, we can make use

of a special variable that exists in Terraform, it's the path.chapter

variable. This will resolve to the full path of the chapter that we're

currently working in. Then we can add a slash and the

startup_script.tpl. That's the path to the file we want to use, and

now we can provide a map of variables and values to use in that

template file.

So I'll add a comma, and then I'll start a map with curly braces.

We only have one variable in our template file, which is

s3_bucket_name, and I'll set the value to

aws_s3_bucket.web_bucket.id, which is what we had in the initial

startup script. Now it will pass that value and replace wherever it

sees s3_bucket_name with that value. Go ahead and save that.

The next thing to do is add the CIDR subnet function to our

definition of the subnets. We are going to use the cidrsubnet

function to get the CIDR ranges for our subnets. Let's go ahead

and open up the network file and scroll up to where our subnets

are. There's the cidr_block argument. My challenge to you is to

use the cidrsubnet function to define the value for the cidr_block

for our AWS subnets. Go ahead and try that now, and when we

come back, I'll show you my solution for setting that cidr_block

argument. Let's see how you did. We're basically mimicking what

we did in the console.

So we have cidrsubnet the function, we're passing it the

cidr_block we're using for our VPC, we're adding 8 bits to the

subnet mask, and we're using count.index to select the

subnetwork that's evaluated by adding those bits. As we saw at

the console, the first one should evaluate to 10.0.0.0/24, and the

next one will evaluate to 10.0.1.0/24. While we're still thinking

about networking, there's something we need to update about our

instances. Let's go over to the instances.tf file. You'll notice for

the subnet_id we're using the expression

aws_subnets.subnets[count.index].id.

That's going to work well when we have two instances and two

subnets, but what happens if we want four instances distributed

evenly across two subnets? This expression is not going to work

anymore because count.index will go beyond the number of

subnets that we have. We need a different expression here that

evaluates properly, and we can use the modulo expression to do

that. So let me show you how that works by bringing up the

console again. Going with our example, let's say that we have four

instances, and we want to place it in either the first or second

subnet. We can use the modulo operator to do that. We would

start with the count.index of the first instance, which would be 0,

and then the modulo operator, which gets the remainder after a

division. And then we'll look at the number of subnets we have,

which is 2. That will evaluate to the number 0, so it will get

placed in the first subnet.

Our next instance will be instance number 1, and when we do %

2 on that, we'll get a remainder of 1. So far, so good. That's

going to go in the second subnet. Our third instance, if we do %

2 on that, because there is no remainder, that will resolve to 0,

and it will put it in the first subnet. Our fourth instance will

evaluate to 1, so it will be placed in the second subnet. All we

need to do is encapsulate this modulo expression so that it puts

our instances evenly across two subnets, and this will work for

more than just two subnets. Let's go ahead and update our

expression to be [(count.index % var.vpc_subnet_count)], and we'll

put the whole expression in parentheses so it's evaluated before it

tries to get the element. Now we can increase the number of

instances beyond 2 and not worry about how they're distributed

across our subnets. I'll go ahead and save this file now. The next

request to deal with from Jack is consistent naming across all of

the resources, so let's get started on that.

Chapter 10 How to Add Naming Prefix

Jack wants a naming prefix to be added to the configuration and

then consistent naming across all resources. Let's go ahead and

start by adding a variable to the variables file. We'll scroll down

and open up the variables file. We'll create a new variable and

name it naming_prefix. We'll set the type = string, the description

= Naming prefix for all resources, and we'll set a default of

globweb. Instead of using this naming prefix directly, why don't we

add a local value where we manipulate this naming prefix a little

bit?

So let's go ahead and open up the locals.tf file, and we'll add a

new local value here called name_prefix, and we'll set that equal

to the variable naming_prefix and add to it. We could update this

for each environment as we create them, and that's something

we'll deal with in a later chapter. The S3 bucket name does not

currently use the name_prefix. So my challenge to you is to use

this new local value name_prefix and add it to the S3 bucket

name instead of and then make sure that the entire S3 bucket

name is all in lowercase. Go ahead and try that out now. And

when we come back, we'll see my solution. Here's how I

approach that solution. I'm using the lower function here to make

sure everything in the string is set to lowercase. I'm referencing

the name_prefix local.

Did you know you can reference a local inside of ae locals block?

You sure can. I'm referencing the name_prefix local, dash, and

then the random integer result for the bucket name. The last

thing to do is add common naming to all the resources within

our configuration. Let's first start with the VPC. I'll go ahead and

open up the network.tf file, and let's scroll up to where we define

our VPC. We can add a name tag for our VPC by adding an

additional tag, but we already have our local.common_tags. How

are we going to combine that with a new tag? We can use the

merge function.

Let me show you how the merge function works. Be sure to save

both the variables and locals file before you try this expression. I'll

go ahead and bring up the terminal again so we can test out the

merge function in the terraform console. I exited out of the

terraform console because it didn't have our new variables and

locals loaded into it yet. It only loads those values when you first

start up the console. To make sure I have the latest variables and

locals, I am going to launch terraform console again. Now we can

try to use the merge function. We're going to try to merge

together the local.common_tags and add a new map that has a

name tag in it.

We start with the merge function, and then in parentheses, the

first map we want to use is (local.common_tags, and then we

want to add another map to it, so we'll add a comma and start

another map with the curly braces. Within that map, all we want

to add is a name tag. So we'll start with the key, Name, and set

it equal to the local.name_prefix value and add on for the string.

Then we'll close our map with the curly braces and close our

merge function with parentheses. And if I hit Enter, we have an

updated map that will be submitted to the tags argument that

has all the values we want. So I'll go ahead and close the

terminal, and now we'll update the tags with the merge function.

I'll add the merge function, add a comma after local tags and

start a map. We'll set the key to Name. We'll set the value to the

same value we just used in the console, local.name_prefix and

add And then we'll close the map and close the parentheses for

the merge function. That's all done.

My challenge to you is to go through the rest of the resources

within the configuration. If there's a name argument, go ahead

and update the name argument as needed. If there is no name

argument, add a name tag to the tags argument using the merge

function. A good example of a resource that does have a name

argument, if we scroll down to our first security group, this does

have a name argument, which will be applied as the name tag.

So we can update this one with the naming prefix. Any resources

that don't have this name argument, you can add it to the tags

argument instead. One other thing to note is for resources where

we're using the count argument or the for each argument, you

may want to use that value in the naming tag, so you name each

instance of the resource differently. Subnets would be a good

example of that where you want to name each subnet based off

of the count index. Go ahead and try to make those changes

now. When we come back, we'll go through the process of

formatting, validating, and deploying our updated configuration.

Let's go ahead and format and validate our configurations. I'll exit

the Terraform console by doing exit, and go ahead and run

terraform fmt. All of our files are now nicely formatted, let's run

terraform validate to make sure we don't have any syntax issues,

and it looks like we missed something with our subnets, we're

going to have to update our configuration.

Let's go into the loadbalancer.tf file, and scroll all the way up to

our load balancer, and sure enough, we're referencing two

resources that don't exist anymore. We need to update this. What

we want is a list of all the subnets that exist.

If you'll remember from the reference syntax we looked at earlier,

we can do this by using an asterisk, so I'll change the reference

to aws_subnet.subnets, and then we'll use square brackets and the

asterisk to indicate that we want to retrieve all of the instances,

and then we'll use .id to get the ID attribute of all of those

instances. The object returned is going to be a list, so we can

get rid of this other reference of subnet2, and we can get rid of

the square brackets, because the object being returned is already a

list, we don't want to put a list inside of a list. So I'll go ahead

and save this, and now, let's try running terraform validate again.

Our configuration is valid. That's why you always run terraform

validate after you make changes, because you're always going to

forget something in your configuration.

With a valid configuration, we can go ahead and run through the

plan and apply process. Going back to m7_commands, if you

haven't already exported your AWS access key and secret key as

environment variables, go ahead and do that now. I already have

that set, I can move onto the next step, which is running

terraform plan, and sending the plan to the file m7.tfplan. Go

ahead and copy that, and run it down below. This is probably

going to make some significant changes, because we're changing

the naming, we're changing some of the subnet references, it's

going to make a lot of changes is what I'm saying. So, it's going

to add 19 new things, change 3, and destroy 19 things; and that's

because, like I said, we're making some pretty significant changes.

Fortunately we're still in a development context, so we can go

ahead and run terraform apply to apply these changes to our

deployment. Since we're recreating a lot of stuff, this is going to

take a while to apply, so we'll resume when the deployment has

completed.

Our deployment has completed successfully, it's made all the

changes that we asked of it, let's go ahead and make sure our

application is back up and running. Let's go over to the EC2

Management Console. Looking at the names for our EC2

instances, we've got I used the count index to help with the

naming of the instances. If you'd like to go to your AWS console,

you can verify the naming and the creation of all of your

resources to make sure your configuration operated correctly. At

this point, we have satisfied all of Jack's requirements. In

summary, we explored the concepts of looping and functions in

Terraform. We started with adding count and for each loops to

make our configuration more dynamic. Then we leveraged

functions to further improve the code and simplify the required

inputs for deployment. In the next chapter, we'll examine Terraform

moduls. Terraform moduls are used to package up common

configurations for reuse, and they are incredibly useful.

Chapter 11 Terraform modules

A common feature of programming languages is the ability to

import libraries or modules for common tasks, data structures, or

functions. Terraform implements a similar ability through the use

of modules. Terraform chapters stop you from reinventing the

wheel by allowing you to use common configurations built by

others. We'll start by first defining what a Terraform module is.

You've been using a module this whole time and didn't even

realize it. Once we've established what a module is and how it's

used, we'll check in with Jack to see what improvements he thinks

we could make by leveraging modules in our code. Then we'll

implement those changes, first by using an existing module from

the Terraform public registry, and then creating our own module

for S3 buckets. But first, what is a Terraform module? Whether or

not you realize that you've been using Terraform modules all

along, what is a Terraform module? It is simply a configuration

that defines inputs, resources, and outputs, and all of those are

optional. When you create a set of tf or tf.json files in a directory,

that is a module. The main configuration you are working with is

known as the root module, and you can invoke other modules to

create resources. Modules can form a hierarchy with the root

module at the top. Our root module could invoke a child module,

which could in turn invoke another child module. For instance,

let's say we use a module to create a load balancer with a VPC

and an EC2 instance. The load balancer module may use a

module to create the VPC and another to create each EC2

instance. The motivation behind creating or using modules is to

leverage a common set of resources and configurations for your

deployment. Where can you get modules? They can be sourced

from the local filesystem, a remote registry or any properly

implemented website that follows the HashiCorp provider protocol.

The most common source is the Terraform public registry. In fact,

you may have noticed the browse module option on the public

registry. Modules that are hosted on a registry are also versioned

in the same way that providers are. You can specify a version to

use when invoking a module. Staying on your preferred version

can prevent breaking changes from impacting your deployments.

Once you've added the module to your configuration, terraform

init will download the module from the source location to your

working directory. If the module's already in the current working

directory, Terraform will not make a copy of it. As I mentioned in

the discussion of looping, you can create multiple instances of a

module using either the count or for_each meta arguments. The

components that make up a module should already be very

familiar to you. Modules generally have input variables, so you

can provide values for input to the module, and output values

that are based off of what the module is creating, and, of course,

the actual resources and data sources within the module. A

module is not required to have any of these components, but it

probably would not be very useful without them. Now that we

know a bit about modules, let's see what ACME has in mind for

using them with our configuration. After learning about modules,

you're probably already thinking of how the configuration could be

improved and simplified. Looking at the current architecture, we've

got our application sitting in a VPC, which we know is made up

of subnets, routes, route associations, an internet gateway, and

more. That seems like a common configuration that should go

into a module. Also, our S3 bucket with the bucket and the IAM

policies seems like something that might be used in other

deployments at ACME. What does Jack think about that? You

caught up to Jack in the hallway to talk about your module idea.

Turns out, he's been researching them on his own, and he thinks

it would be a great idea to add them to your configuration. He

would like everybody at ACME to standardize on the VPC module

from the Terraform public registry. He also really likes the idea of

creating a module for the S3 portion of the configuration, with all

the necessary IAM roles, profiles, and bucket policies that will

allow a load balancer to write access logs and EC2 instances to

grab website content. Before we try to implement these

improvements, first, we need to check out the syntax used to

create and instantiate a module. A module really is just a

collection of Terraform files in a directory. In the same way that

we have been crafting our configuration with files for variables,

outputs, and different resource groupings, you can do the same

with a module or just put it all in one big file. The contents of a

module will include input variables, resources to be created, and

outputs that the parent module might want to use. In this

example, we are building a chapter for an S3 bucket. The input

variable bucket_name can be used to name the S3 bucket. Then

we have the actual resource being created. And in that resource,

we can use the input variable bucket_name. The parent module is

probably going to want some information about that bucket, and

we can expose that information using an output value, passing

back the bucket_id. Now is probably a good time to mention why

input variables and output values are so important to a module.

The only way for a parent module to pass information to a child

module is through input variables. The child module has no

access to local values, resource attributes, or input variables of

the parent module. Any information a module might need has to

be passed through those input variables. Likewise, the parent

module has no access to the local values and resource attributes

of the child module, the only way to pass information back to the

parent module is through output values. The good news is that

the input variables and output values support any data type

available in Terraform, so you can pass a complex object, an

entire resource, or a simple string. The choice is up to you.

Bearing this in mind, let's take a look at how you instantiate a

chapter, pass variable values to it, and reference outputs from it.

Invoking a module starts with the module keyword, followed by a

name label for the module. The rest of the configuration

information goes inside the block. The source argument tells

Terraform where to get the module from. The source can be the

local file system, the Terraform registry, or any other supported

source type. If the source supports versioning, you can specify the

version argument with a version expression, just like the

expressions we used for a provider version. If you'd like to use a

specific instance of a provider within a module, you can do so

with the providers argument. The value for the argument will be a

map where the key is the name of the provider in the child

module, and the value is the name of the provider alias in the

parent module. If you don't specify a providers block, Terraform

will use the default provider instance. The remainder of the block

will be pairs, with the key being the name of an input variable in

the child module and the value that you would like to pass to the

child module.

Let's take a look at an example with our potential S3 bucket

chapter. We'll start with the module keyword and a name label of

XYZ_bucket. In the block we'll specify the source as the current

directory and the S3 subdirectory where we have our module files.

Since this is a local source, it doesn't support versions. Beyond

that, we can pass the single variable bucket_name to the module,

and that's it. The module will take care of creating the resources

and making output values available. Let's take a look at how we

can reference those values. The general format for referencing a

module output is the module keyword, dot, the name label of the

module, dot, the output value name. In our example, we can get

the bucket id by using the syntax module.XYZ_bucket.bucket_id.

The output value can be any data type, and naming is up to you.

We used the attribute name in this example, but we could've

called the output value s3_bucket_id or whatever else makes sense

in the context of the module. Armed with all of this module

knowledge, let's start making use of it. First, we will replace the

current VPC resources with the VPC chapter on the Terraform

registry. That means going to the registry and reading about the

VPC module. We've already gone into the Providers section, so

now let's go into the modules section. We can filter by Provider

for the modules that we want. The module we actually want is

the vpc module, which happens to be the top module. So let's go

ahead and click on that module. Within this module, I want to

point out a few things.

It has a basic set of instructions on how to use the module. It

also provides the source code for the module on GitHub. So if

you want to view what's actually in the module, you can click

through on that link and view it yourself. Scrolling down a little

bit, we have a README section, which describes how to

potentially use this module. And then it also gives us a list of

inputs that are accepted by the module, output values that are

given by the module, any dependencies and the resources that

would be created by the module. A lot of this is dependent on

the inputs you give the module. We're going to be setting up a

fairly basic VPC, so we can simply copy this example and paste it

into our configuration and then make some simple updates. I've

copied the text, let's head over to our configuration, and I'll

expand and open up the network.tf file. And, we are going to be

replacing a bunch of resources with this. We're going to be

replacing the vpc, the internet_gateway, the subnets, the

route_table, and the route_table_associations, all with this module.

That's a lot of resources that we no longer have to manage. Let's

scroll back up to the top and paste in the module example. Since

this module is from the Terraform Registry, we should definitely

add a version argument to pin it to a specific version. This way,

if the module is updated in a way that breaks our configuration,

we can test it in a development environment before upgrading to

the newest version of the module. If we go back to the browser,

we can see the current version is 3.10. So let's go ahead and pin

it to 3.10 for now.

We'll set the version = to 3.10.0, and this way it will only use

that version until we change this argument. now we need to

update some of the values that are used for the arguments here.

We'll first delete the name argument since we'll be submitting that

through our tags. Next, we'll update the cidr block to use our

variable.

For the availability zones argument, we want to give it a list of

availability zone names that's equal to the number of subnets that

we're currently using. To do that, we can use the slice function to

slice off a list of names from the availability zones data source.

Let's see how we do that. The slice function takes a list as input

and then slices off a portion of that list for use. We'll specify the

data source aws_availability_zones.names. The next argument is

the starting index for the slice. We'll start at the first element in

the names list. The last argument is the ending index of our

slice, and it is not inclusive, so it won't include that element in

our list. We'll set that to var.vpc_subnet_count. So when our

subnet count is 2, it will return 2 availability zone names and it

will already be in a list format. For the private_subnets, we don't

have any private subnets, so we can go ahead and delete the

private_subnets. For the public_subnets, we are going to need to

calculate a list of public subnet CIDR ranges for our public

subnets. Let's look at how we've done this already. If we scroll

down to our subnets, we compute the CIDR block using the

cidrsubnet function and the count.index since we're creating our

subnets and accounts. We're no longer generating our subnets in

account, so we need an alternate way to generate this list of

CIDR subnets. The way that we'll do that is with a for expression.

I briefly mentioned for expressions in the previous chapter, now

it's time to dig into those a little more deeply.

Chapter 12 For Expressions

For expressions are a way to create a new collection based off of

another collection object. It's especially useful when you're dealing

with resources that have a count or a for each argument. The

input in a for expression can be any collection data type, list, set,

tuple, map, or even object. The contents of the collection will be

available for transformation in the for expression. The result of the

for expression will be either a tuple or an object data type.

Remember that these are structural data types, which means the

values inside don't all have to be of the same data type. To help

customize the result, you can filter it with an if statement. You

can filter on any value from the inputs. Let's check out the syntax

in a for expression to lend some clarity. First, let's see how you

would create a tuple result with a for expression. The expression

starts with either curly braces or square brackets. The square

brackets indicate that the result will be a tuple. The brackets or

braces that you use to encapsulate the for expression determine

the result type. After the square brackets, the expression starts

with the keyword for, followed by syntax that identifies the input

value and the iterator term to use during evaluation. The structure

is the iterator term, followed by in, and then the input value.

After that we have a colon, which signals the start of the value

which will be stored in each tuple element in the resulting

collection. If that sounds esoteric and difficult to parse, I agree,

and an example will clear things up. Let's say we have a local

value called toppings of type list with three elements in it, and

we'd like to create a new tuple with the word added to each

element in the list. We can accomplish this with a for expression.

The square bracket says that we want a tuple as the result. The t

is the placeholder for each value in the input value local.toppings.

After the colon is the resultant value we want to use for each

element, which is simply the string Globo and the value stored in

placeholder t. Remember that the input value doesn't have to

match the result. Local.toppings could have been a map. Now

let's check out the syntax for creating an object. The expression

will start with curly braces to indicate that we want an object as

a result. As a quick refresher, an object is basically a set of pairs

where the values can be of different data types. In this expression,

the input value is a map, which means we now need two iterator

identifiers, one for the key and the other for the value. Next, we

have a colon and an expression to evaluate for each entry in the

object. The syntax is the object key, followed by equals and the

symbol and then the object value. Again, an example will probably

help. Here's a local value called prices of type map with three key

value pairs. Let's say we'd like a new object where each price is

rounded up to the next whole integer. We can do that with a for

expression, where i is the map key, and p is the map value. The

expression to evaluate keeps the same key i, but alters the value

with the ceiling function. The resulting object has the value for

each pair rounded up to the closest integer. We are going to use

a for expression to dynamically generate a list of subnet CIDR

ranges. Let's head over to the configuration and see how. We are

trying to create a tuple of cidrsubnet addresses to pass to the

public subnets argument. The number of elements in the tuple

should equal the value stored in vpc_subnet_count, which means

we'll need an input to the for expression that is a list of integers

from 0 to the value in vpc_subnet_count. Fortunately, there is a

function called range that will do exactly that. Let me pull up the

terminal, and we'll start up terraform console to test out these

expressions. First we will test the range function. The syntax is

the range function and then the value you want it to count up to.

We'll specify the variable vpc_subnet_count. Range will hand back

a list of 0 and 1.

That sounds good; that's a good start. Now we have a list to use

as an input value for the for expression. For the evaluation

portion of the expression, we can use the cidrsubnet function,

passing it the vpc_cidr_block variable, 8 bits to add to the subnet

mask, and the element value in our input list. Let's try to

construct a for expression with that information. We'll start the

expression with square brackets because we want a tuple back,

we'll have the for keyword to start our for expression, we can set

an iterator for our list, we'll call it subnet, and that's going to be

in the range, and we'll set the range to var.vpc_subnet_count,

which we know will return a list with two elements, 0 and 1.

Then we'll add the colon and then the expression we want to use

for the result of each element. We'll do the cidrsubnet function,

we'll feed it the variable vpc_cidr_block, 8, to add 8 bits to the

subnet mask, and then the subnet iterator. That will be 0 on the

first evaluation and 1 on the second. We'll close that parentheses

for the cidrsubnet function and close the for expression with a

square bracket. I'll go ahead and hit Enter, and we get back a

tuple that has two subnets in it. Perfect, that's exactly what we

need. And this will be dynamic based off of the values of the

cidr_block and the subnet_count. Let's go ahead and copy this

entire expression, and I'll hide the terminal. Scrolling up to our

vpc module, we can replace the value for public_subnets with our

new expression. For enable_nat_gateway, we want to set that to

false. We don't have any private subnets, so we do not need a

NAT gateway. We'll also set enable_vpn_gateway to false, because

we are not using a VPN gateway. For our tags, we can go down

and grab the tags argument from our existing VPC resource, and

go ahead and paste that as the value for the tags argument in

the module. With our vpc module ready to go, we can remove

the other resources. I have removed all the resources that we're

replacing with the vpc chapter. The next thing we need to do is

replace any of the references to our VPC resources with the

chapter references. There are two output values that you'll need to

use to update the rest of the configuration. The first is the

vpc_id, and the second is the public_subnets list. For the vpc_id,

we'll update the expression to module .vpc.vpc_id. Vpc_id is the

output value from our vpc module.

We also need to update anywhere that the subnets are referenced.

For example, let's go to the load balancer. In the load balancer we

were referencing all of the public subnets with this expression. We

need to update the value for the argument to use the public

subnets that are created by the module. To do that, we will

update the value to module.vpc.public_subnets, which is a list of

all the public subnets.

My challenge to you is to go through the rest of the configuration

and update it to use these module outputs. If you have any

questions, you can always reference the solution that's in the

m8_solution directory. Go ahead and when we come back we are

going to create our S3 module. The S3 module we are creating

should create an S3 bucket with a bucket policy that allows a load

balancer to write logs and the proper IAM resources to grant

access to an EC2 instance. Our inputs are going to include the

bucket_name, the elb_service_account_arn, and the common_tags

to be applied to all resources. Those can all go in the file

variables.tf. The resources we need to create already exist in our

configuration. We've got the S3 bucket itself, the IAM role, the

role policy, and the instance profile. In terms of output values, we

are going to use the S3 bucket and instance profile. We can

simply return the entire object for each resource and make use of

all the attributes within. Let's head over to the configuration and

start setting up our module.

Let's create the S3 module inside of the directory. We'll start by

adding a directory called modules, just in case we want to add

any future modules to our configuration. Within that modules

directory, let's add a subdirectory for our S3 module, and we'll

name the directory, so that's pretty descriptive of what this

module is intended for. Within that directory we'll create three

files. We'll start by creating the variables.tf, followed by a main.tf

file to hold all of our resources, and then an outputs.tf file for

our output values. Within the variables file, I'm going to add

some comments here for variables we want to create. My

challenge to you is to create these three variables, the bucket

name, the ELB service account, and the common tags to pass to

this module. Go ahead and try that now, and when we come back

you can see my updated solution. Here is my solution.

I've got a variable named bucket_name that's of type string; a

variable called elb_service_account_arn, which is also of type

string; and then a variable called common_tags, which is of type

map with strings as the values for the map. And I set a default

for the common_tags in case someone using this module doesn't

submit a list of common tags to use in the configuration. Next

up, we will add our resources to the main.tf file. So let's scroll

down and open up the s3.tf file.

We are going to copy all the resources except for the S3 bucket

objects. Those will still be created in part of our main

configuration. First, I will grab the S3 bucket resource, remove

that from the s3.tf file, and paste it into the main.tf file. Next, I

will grab all of the IAM resources below the bucket object

resource and paste those into the main.tf file. Let's go ahead and

save the s3.tf file. And now back in the main.tf file, my challenge

for you is to update the references here to use the input variables

for all of the resources. Go ahead and try that now, and when we

come back we can review my updated solution.

In my updated solution the bucket value is going to be

var,bucket_name. In the policy statement, we're now using the

variable elb_service_account_arn instead of the data source, and

for the references to the bucket_name, we'll use the variable

bucket_name. Scrolling down to the end of the S3 bucket

resource, the tags have been updated to use the var.common

tags. For the IAM role, I've updated the naming to use the

bucket_name as the beginning of the name for the role, and I've

updated the tags to be var.common_tags.

For the role policy, I'm also using the bucket_name to name the

role policy and updating the reference to the bucket_name to use

the bucket_name variable.

And down in the instance profile, I updated the name to use the

bucket_name for naming and also updated the tags to use

var.common_tags. That's everything that's in the main. The last

thing to do is to create two outputs. I'll go ahead and save the

main.tf file, and let's go over to outputs and I'm going to put

two comments for the bucket object and the instance profile

object. My challenge to you is to add the output values here to

pass the whole bucket object and the whole instance profile object

back up to the parent module. Go ahead and try that now, and

when we come back we can view my updated solution.

In my updated solution, we have the output web bucket, which is

set to a value of aws_s3_bucket.web_bucket. Because we don't

specify an attribute, it will pass the entire bucket object back as

an output value. That's pretty useful. And then we do the same

thing for instance profile, referring to

aws_iam_instance_profile.instance_profile. We'll go ahead and save

this output file, and now we need to add the module reference to

our s3.tf file. I'll go ahead and select that now. Now my challenge

to you is to add the module block with the proper input

variables. Try it out, and when we come back you can see my

updated solution.

We're creating a module with the name_label web_app_s3. The

source will be the current working directory / We have to give it

three input variable values, bucket_name set to the

local.s3_bucket_name, elb_service_account set to the

elb_service_account data source, and common_tags set to

local.common_tags. Now that we've updated to use a module,

we're going to have to update any references to the bucket or the

instance_profile with the output values from this module. For

instance, our bucket argument in the aws_s3_bucket object should

be updated to module.web_app_s3.web_bucket.id. My challenge to

you now is to update any other references to the bucket or the

instance_profile in our configuration to use the proper output

value from our S3 module. Go ahead and do that now, and then

we'll review my updated configuration when we come back. In the

loadbalancer file, I simply updated the access_logs argument to

use the S3 bucket created by our module.

Over in instances, the iam_instance_profile has been updated to

use the instance_profile output value, .name. We had to update

the depends_on, because it was referencing the iam_role, but

that's not available to us anymore, so instead we just make it

dependent on the module itself. And then in the templatefile

function we have to update the s3_bucket_name to be the

web_bucket output value and the .id attribute. While we're looking

at the instance configuration, one thing I want to point out is the

configuration for the subnet_id. At the end of the module

expression, I have removed the .id attribute, and that is because

what's returned by the module is actually a list of public subnets

and not the public_subnets object itself, which would have the id

attribute. That's going to do it for all the updates to our

configuration. Go ahead and save those updates. The next step is

to get those updates deployed. We have updated our configuration

to use a VPC chapter from the Terraform Registry and an S3

module that we wrote ourselves. Let's go ahead and get those

changes deployed. I'll go ahead and open up the m8_commands

file. And the first thing we need to do is run Terraform in it

because Terraform needs to get these modules and include them

in the configuration. So I'll go ahead and open up the terminal.

And we'll run Terraform in it. Terraform has successfully initialized.

If we scroll up, we can see under initializing modules that it

downloaded the VPC module and placed it in the

.terraform\modules\vpc folder. Because our module is already in

the local directory, it will not try to download or copy the files for

that module. Now that we have successfully initialized Terraform,

the next step is to run terraform fmt. But we don't just want to

format our files in the directory, we also want to make sure that

the files in our S3 module are formatted properly.

And we can do that by running terraform to go into those

subdirectories and properly format those files as well. And it has

updated the formatting for all of our files. The next step is to run

terraform validate.

Our updated configuration is valid. The next step would be to

export your environment variables if you haven't already done so.

And after that, we'll run Terraform plan and send the output to

m8.tfplan. We'll go ahead and run that now. Since we're moving a

lot of things to modules, it's also going to have to recreate a lot

of our infrastructure. Let's go ahead and run terraform apply to

apply all of these changes. If you happen to be running in

production and you needed to move resources from the root

module to a child module, that's a case where using the

terraform state mv command can help you move things from the

existing address to a new address that's inside the module, and

that would stop Terraform from destroying the target infrastructure

that you're trying to update. That's a pretty advanced topic, which

we're not going to get into here. For our purposes, we're still in

the development environment, so tearing down this infrastructure

and recreating it is no big deal. This is going to take a while, so

we'll resume when the deployment has completed successfully.

Our deployment is successful. We are now using a VPC module

and an S3 module. In summary, Terraform modules are incredibly

useful. You can find existing chapters on the Terraform Registry

and save time and effort by not reinventing the wheel. You can

also write your own modules to assist with creating common

configurations in your organization and share those modules

internally or publish them on the Terraform Registry. It turns out

we've been using modules this whole time. The root module is

simply the module you're currently working in. It has input

variables, resource and data sources, and output values, just like

any other module. The last thing we will cover is how to use the

same configuration to spin up multiple deployments. We can

leverage Terraform workspaces to manage state data for multiple

environments.

One of the great things about infrastructure as code is its

reusability. With a few minor tweaks, the same code can be used

to deploy nearly identical infrastructure in multiple environments.

Terraform has a special feature called workspaces to help with

reusability. We'll start by talking to Samantha over in software

development. She's ready to move this web project out of

development and into production, and she wants to make sure

each environment is consistent. With that objective in mind, we'll

take a look at how Terraform can be used to handle multiple

environments with the same configuration. We will have to

consider things like input values and state data management. One

way to handle state data is with Terraform workspaces, and we

will put that into practice with our configuration. But first, let's

have a chat with Samantha. Our configuration and deployment for

the web app at ACME has evolved and improved since that base

configuration was handed to us. Now ACME is ready to roll this

little project into a staged environment workflow. We can think of

our current deployment as the development environment. We've

kept things small with tiny EC2 instances and only using 2

subnets. That is probably not going to work so well in a

production environment. Samantha has approached us about

adding a user acceptance testing environment and a production

environment to the existing development environment. She would

like us to make sure we are using the same configuration for

each environment but supplying different input values depending

on the environment. Fortunately, we have used variables extensively

in our configuration, so it should be relatively easy to make

adjustments for input values. Then we can feed those input values

into our single configuration and use it to create and maintain

each environment. But what about state data, credentials, and the

deployment workflow? Let's examine what it means to deploy

multiple environments and how to leverage Terraform workspaces.

We are going to support multiple environments from a single

configuration. Before I introduce Terraform workspaces to help with

this goal, let's first think about some of the challenges inherent in

supporting multiple environments. When you're working with

multiple environments in Terraform, there's a few things to bear in

mind. First of all, generally speaking, your environments are going

to have more in common than they have differences between

them. That's kind of the whole point of having multiple

environments in a configuration. Your dev should be very close to

your UAT, and your UAT should be very close to your production

because anything you test and validate in UAT should be what

actually ends up in production. It also means that it's useful to

have abstractions within your configuration where you can apply

those different values, making your code more reusable. We've

done that by making extensive use of input variables. Another

thing to consider in the whole process is access. You're probably

not going to have access to production if you're the one

deploying to the lower environments. Often there's a separation of

responsibility and access between what's called the lower

environments and the production environment, so it's important to

keep that in mind, especially when you're thinking about dealing

with access keys and secret keys. One of the ways to create

multiple environments in Terraform is by using workspaces, and

this is the HashiCorp recommended way of working with multiple

environments. We'll see how that works in a moment. There are

some decisions you need to make when it comes to having

multiple environments. First is the management of your state.

Where is your state data going to live and how are you going to

manage the state data for multiple environments? Typically, it's not

a single state file for all of your environments. Instead, you'll have

your state data stored separately for each environment, or in more

complicated setups, you might actually have a state file for your

networking and a separate state file for each application running

in an environment. That's a lot of state data to manage. Then

you have to determine where you're going to store your variable

values. Where are these values coming from? Are you going to

store them in a file, are you going to submit them at the

command line or are you going to use some tool to generate

these values and submit them to Terraform? You also have to

think about credentials management. You're not necessarily going

to use the same credentials to deploy to production as you do to

the lower environments. And in fact, in a lot of places, you use a

different set of credentials for each environment. How do you

manage those credentials and where are they stored? And finally,

there's a balance to be struck between the complexity of your

configuration and the amount of administrative overhead there is

to maintain that configuration. You could go with something that

is relatively simple, but requires a significant amount of admin

overhead or make something that's fairly complex, but also

dynamic and robust, so when you want to add or edit an

environment, there's not a whole lot of administrative work to do.

Let's look at two examples of how you could potentially manage

multiple environments. In this example we are going to manage

our environment using multiple state files and multiple

configuration value files. We have our primary folder where our

Terraform configuration lives, along with a common set of

variables that is the same across all environments. And then we

can have folders for each environment, dev, uat, and prod. When

we are running our terraform plan, we can specify that we want

to store the state file in one of those directories. For instance, if

we're running terraform plan for development, we can say, place

the state file in the dev folder and call it dev.state. Then we can

specify a variable file called common.tfvars that has our common

values within it. And then finally, an additional var file called

dev.tfvars that's in the development folder that has our

development values. Everything to do with development is stored

in the development folder. We could proceed with the same for

uat and with production.

That's one way you can manage your state data and your variable

values. Another potential way is to use workspaces. In workspaces,

you still have your primary directory where your main configuration

and your Terraform tfvars files exist. Workspaces will manage the

state for you. It creates a terraform.tfstate.d directory and places

the state files and child directories within that main directory.

When you want to create a new workspace, you simply run the

command terraform workspace new, and the name of the

workspace.

Terraform will create that workspace and switch you over to that

context, and then you can just run terraform plan using your

main configuration and the terraform.tfvars. Rather than manually

managing your state, now Terraform is managing the state for

you. But how do you get the individual value settings for each

environment dynamically based off a workspace? Let's take a look

at how we could do that in our configuration. For our three

environments from Samantha, she would like us to change the

following values based on environment, the VPC CIDR range, the

subnet count, the instance type, and the number of instances. She

wants us to use the values that you see in this table.

We can accomplish this goal by using a map for each variable

and the special value terraform.workspace, which resolves to the

currently selected workspace. Let me show you what I mean by

making an update to our configuration.

As I just mentioned, there is a special value called

terraform.workspace, which evaluates to the currently selected

Terraform workspace. Let's bring up the terminal now, and I'll go

ahead and enter the terraform console. We can retrieve the special

value by simply typing in terraform.workspace. The current

terraform.workspace value is default, and that's the only workspace

we have available. The default workspace cannot be deleted, and

it's selected by default when you create a new Terraform

configuration.

We can make use of the terraform.workspace value throughout our

configuration. For example, we could update a setting in our

locals.tf file. Let's go ahead and expand the directory and open up

the locals.tf file. I'll go ahead and hide the terminal to give us

some more room, and if you remember from earlier, we created a

name_prefix local value, and we added to the end of that value.

But instead of doing that, why don't we use the name of the

terraform.workspace? So I'll go ahead and delete dev off of the

end and update the value to terraform.workspace. The naming

prefix will reflect the environment that it's deployed in. We can

also add an additional common tag called environment and set

that equal to terraform.workspace. Any resource that uses the

common tags will have an environment tag equal to the

terraform.workspace. We can also use the value of

terraform.workspace to select a value from a map in our variables.

So let's open up our variables file and update the type for one of

the variables that Samantha specified. As a quick reminder, those

variables are the CIDR block, subnet count, instance type, and

instance count. Let's update the variable vpc_cidr_block with the

three CIDR block values she wants for development, uat, and

production. I'll update the type to a map of strings, and I will

remove the default value and make sure that we specify an

appropriate map value in our terraform.tfvars file. Speaking of

which, let's go ahead and open that up. In our terraform.tfvars

file, we will add a value for that variable. So let's go into mode

here.

We'll have terraform.tfvars open on the right and variables.tf open

on the left. I'll grab the variable name from the left side and

paste it , and it has to be set to a map. And we'll add three

map values , one for development, one for uat, and one for

production. We'll set Development to 10.0.0.0/16, UAT to

10.1.0.0/16, and Production to 10.2.0.0/16, just like Samantha

wanted us to. Now how do we make use of this in our

configuration? I'll go ahead and save the terraform.tfvars file and

exit out of mode, and let's open up the network.tf file. Within the

arguments for our VPC chapter, we now have to update the way

that we are getting a value out of our variable vpc_cidr_block.

And since it's now a map, all we have to do is add square

brackets at the end and set the value we want to retrieve to

terraform.workspace. Now Terraform will evaluate what workspace

it's currently in and select that value from the map that we have

stored in vpc_cidr_block. That means we have to make sure when

we create our workspaces, we name them to match the keys that

are in the map for the vpc_cidr_block. My challenge to you is to

update the other three variables and add values into

terraform.tfvars and update all the variable references in the

configuration to use terraform.workspace. Go ahead and try to

make those changes now, and when we come back we'll take a

look at my updated configuration. Let's see how you did.

In the variables file, the vpc_subnet_count should now be a map

of numbers, the instance_type should be a map of strings, and

the instance_count should be a map of numbers, and all of them

should have no default value.

In our terraform.tfvars file, you'll now have an entry for each of

those variables with the values set for each environment. Over in

our network, just to take a look at how the vpc chapter is

configured, we already updated the CIDR block, for the availability

zones we had to add the terraform.workspace to the

vpc_subnet_count, and then also add it for the public subnets for

the vpc_subnet_count and the vpc_cidr_block.

The easiest way to update everywhere is to do a simple find and

replace of all the instances of those variables with the appended

square brackets and terraform.workspace. Now that our

configuration is updated, it's time to make use of Terraform

workspaces. But before we do that, we have to talk a little bit

about dealing with sensitive data.

Chapter 13 How to Manage Sensitive Data

Credentials and other sensitive data is going to be part of your

Terraform configuration. The question is how to deal with that

information and keep it secure. One option is to store it in a

variables file that is not committed to source control. That is not

especially secure, but it sure is easy. The option we've selected for

our AWS credentials is to store them in environment variables,

and you can use that for any variable in your configuration. It's

not uncommon in a deployment pipeline to load sensitive values

from a secrets management service into environment variables on

the system running the deployment. That is definitely more secure.

You want to make sure to mark those variables as sensitive so

the values aren't displayed in clear text in your logs. The most

secure way is to directly integrate a secrets management service

as a data source or a resource in Terraform. When the

configuration is being deployed, Terraform can dynamically retrieve

the sensitive data and use it in the configuration without it ever

being stored even in environment variables. In each case, sensitive

data in variables should be marked as sensitive and state data

should be written to a secure location. State data will contain

sensitive information stored in clear text. Be sure to properly

store, secure, and encrypt that data as needed. Now let's head

back to the configuration and make use of workspaces. Back in

the configuration. Let's go ahead and open up the commands m9,

and before we do anything else, let's run terraform format. I'll go

ahead and open up the terminal and run terraform format.

Now all of our files are properly formatted. Next, we'll run

terraform validate to make sure our configuration is valid. Our

configuration is valid.

Now if you haven't already exported your environment variables for

your AWS access key and secret key, go ahead and do that now.

Scrolling down, we are going to create a new workspace called

development. The command is going to be terraform workspace

new Development.

Terraform not only created the new workspace development, it also

automatically switched us over to the Development workspace

context. If we look over to the left in our directory, there is a new

directory called terraform.tfstate.d. If we expand that directory, we

can see there is a Development folder in there, which will hold

our state once we've run a Terraform plan and apply. If we'd like

to get a list of all the existing workspaces, we can run terraform

workspace list, and here it shows the default workspace and our

Development workspace, and the asterisk shows which workspace

is currently selected.

With our Development workspace selected, let's go ahead and run

terraform plan and send the output to m9dev.tfplan. I'll go ahead

and copy this command and paste it down below. This is going

to be a deployment, so it's going to have to create all of the

resources we've defined in our configuration. It's a total of 24

resources that it is going to create.

Let's kick off the terraform apply, and obviously this is going to

take awhile, so we will resume once the environment has been

created.

Our deployment is successful, our development environment is up.

Before we check out that public DNS link, I do want to point out

that this is separate from your default deployment. If you still

have that up and running, you're probably going to want to switch

to the default workspace and destroy it so you're not paying for

those instances. You'll also need to add a default key to the

values in tfvars for the values that match what was deployed in

the default environment. We've created the Development workspace

and deployed our development environment. Now it's time to

create our UAT workspace and deploy it to the UAT environment.

First we have to create the Terraform workspace, so we'll run

terraform workspace new, and the name of the workspace will be

UAT. Terraform has created that new workspace and switched us

over to that workspace. If we expand the terraform.tfstate.d

directory, we can see there are development directory with a

terraform.tfstate file in it and a UAT directory that is currently

empty. Let's run a plan in our new UAT environment. We'll run

terraform plan and send the output to m9uat.tfplan.

Once again, this is a wholly new environment, so it's going to

have to create all of the resources for that environment. Now the

number of resources is different. It's 28 now, and that's because

we're using the UAT environment. Remember, if we look at the

tfvars file, for our UAT environment, we are deploying two

subnets, so that stays the same, we're deploying slightly bigger

instance types, t2.small, but now we're deploying four of those

instances to be distributed evenly across those two subnets. With

that in mind, let's go ahead and run the apply. Just like the

previous deployment, this is standing up all new infrastructure, so

this will take a little while. Our deployment is complete.

If we take a look at the EC2 Management Console, there are now

eight instances in the account. Two are from the default

workspace, two are from the development workspace, and four are

from the UAT workspace, and all of them are named in a way

that is very obvious.

If we select one of them and take a look at the tags associated

with it, we can see that environment is set to UAT. So we could

search on that tag within our account to find everything

associated with the UAT environment. If you would like to set up

and deploy the Production workspace, I invite you to do so now.

The last thing I want to show you is how to select and destroy

an environment so you can tear all of these environments down.

We currently have the UAT workspace selected. Let's see how we

select a different workspace. The command for that is terraform

workspace select, and then the name of the workspace. In this

case we'll select Development, and now we can destroy our

development deployment by running terraform destroy That will

tear down the development environment, if you'd like to repeat

that for the UAT environment, go ahead and do so, and you

should definitely do that for the default workspace as well. You

can also delete those workspaces with the delete command except

for the default workspace, which cannot be deleted. Now we can

tell Samantha we have successfully achieved her goal of multiple

environments with a single configuration and different input

values. In summary we leveraged a single configuration to deploy

and maintain multiple environments. This is one of the big

benefits of using infrastructure as code. One thing we had to

consider was the variances between the environments and make

sure our input variables gave us flexibility to manage those

variances with input values. We also looked into how we might

deal with sensitive data like credentials and secrets. Finally, we got

to use Terraform workspaces to manage our environments and

state data using the special value terraform.workspace to control

variable values. This is the final chapter in the book, and if I had

to summarize things, some of the key points that I would like to

bring forward are, number 1, it is so beneficial to build your

infrastructure automagically. Removing yourself from the manual

build process does a lot of great things for you. Most importantly,

it ensures your deployments are going to be consistent and

repeatable. Doing things manually leads to mistakes. We are

fallible creatures, and that's just the way it is. When you codify

your infrastructure, you're creating a way to consistently and

repeatedly deploy that infrastructure. You're also creating

configurations that are going to be reusable for different

applications, especially when you use modules to take common

patterns and abstract them to a shared resource that a bunch of

people can take advantage of. Removing manual configuration and

creating reusable configurations allows you to significantly boost

your productivity. You're no longer bogged down in these manual

processes. You're not troubleshooting these weird issues that were

caused by someone making a mistake, and the reusable patterns

means that you don't have to deploy the same thing over and

over. You can do work that is more interesting and more

challenging. Ultimately, it is about making your job better or,

failing that, finding yourself a better job, and that's really what

this book is all about. I want to help arm you with the skills to

make deploying infrastructure less of a chore. And if all else fails,

I want to help give you the skills to find the job that you want if

you don't have it today. If you're looking for the next step in the

world of Terraform, I would recommend checking out the other

books about Terraform. I'd also recommend checking out the other

HashiCorp products like Vault or Packer. Vault is a platform that

can help solve the question of what to do with sensitive data.

And Packer helps with creating gold images for use by something

like Terraform. I hope you found the content valuable, and I

welcome your feedback and comments.

BOOK 9

AUTOMATION WITH TERRAFORM

ADVANCED CONCEPTS AND FUNCTIONALITY

RICHIE MILLER

Introduction

In this book, you are going discover different ways that Terraform

can further integrate within your workflow and engage with other

toolsets that you have in your organization. First, we are going to

set the stage on what you should know already and what's

coming up in the rest of this book. But the first question you

have to ask yourself is, are you ready for this level of Terraform

integration? In order to successfully complete this book and really

get the most out of it, there's a few things you should already be

familiar with, and the first of those is the Terraform command

line. I'm assuming throughout this book that you're comfortable

with the Terraform command line and the various commands you

can issue such as plan, apply, and destroy. We are going to be

getting into some of the advanced commands, such as the import

command, but I do expect that you have a basic understanding of

the Terraform command line in general. The next thing I would

expect you to have familiarity with are variables and values. And,

variables within the Terraform configuration file hold information

that the configuration will use. And when I mention values, I'm

talking about the different types of values that a variable can hold,

such as a list, string, or an array. You should also be familiar

with the concept of providers and provisioners within Terraform,

providers being the thing that Terraform hooks into to provision

resources, provisioners being the action by which resources are

further provisioned once they are created. And finally, you should

have an understanding of some of the basic resources that exist

within Terraform. We're mostly going to be working in AWS, so

understanding some of the AWS resources will also be important.

And lastly, we're also going to be working with modules, so if

you're not comfortable with the concept of modules, you may

want to do a little bit of reading prior to this. Or, you could go

back to the modules section of my previous book to refresh

yourself about the world of modules and gain a firmer

understanding of what's involved there. We will also be integrating

some additional technologies in this process. The first one is

Amazon Web Services. That's the public cloud provider we're

going to be using for instantiating most of the resources in this

book. We're also going to be using Docker to spin up containers.

Specifically, we're going to spin up a container running Jenkins for

CI/CD pipelines, so we're going to need Docker to spin up that

Jenkins container so we can run it locally. We're also going to be

taking advantage of some software called Ansible for configuration

management. You don't have to be an expert in Ansible. Don't

worry about that; we're going to keep it pretty high level. And

then finally, we are going to be using another HashiCorp product

called Consul, for both the storage of remote state and the

storage of configuration data that gets pulled in as a data source

by Terraform. One of the technologies we will not be using in this

book is Terraform Cloud. I wanted to briefly explain what

Terraform Cloud is and why we're not including it in this book.

Terraform Cloud is software as a service that HashiCorp offers. It's

basically their Terraform enterprise product but repackaged as a

service, and it can do a bunch of interesting things, one of which

is holding remote state. So if you would like to store your state

data in a remote location, you can just select Terraform Cloud for

that integration, and it works really well. It also allows you to

remotely execute things from the command line, so rather than

your Terraform commands running locally to provision resources,

they are instead running in Terraform Cloud in a container or

virtual machine they spin up on demand. It also allows you to

store the values for your variables and your secrets, things like

AWS credentials, up in Terraform Cloud. And it integrates with

source control, so you can hook it into a repository running on

GitHub or in GitLab, and when you make a commit to that

repository, it could kick off a job from Terraform Cloud. Terraform

Cloud can do all of these things, and because it can do so many

different things, it really deserves its own book. For the purposes

of this book, we are going to focus on what's happening inside

the Terraform CLI and the way that it integrates with some other

tools that you might already be running. In this book, we're going

to be using our simulation with the ACME company. So if you've

the previous book, you will know that you were wildly successful

at deploying a new project at ACME using Terraform. You did that

project on your own from an administrative standpoint, but no

admin is an island and you have a team of admins you need to

work with in order to provide ongoing management of

infrastructure, and in fact, ACME is now asking you to use

Terraform across all of the infrastructure that they're deploying in

their public cloud. Also, the Terraform software lends itself to

CI/CD pipeline integration, so the technology leaders at ACME

would like you to integrate your Terraform configurations with their

development team. And finally, they want you to automate all the

things, meaning they would like to pack as much automation into

each deployment as possible. So the deployment of infrastructure,

the deployment of code, the testing of infrastructure, the testing

of code, and the ongoing configuration of that infrastructure on

day two and beyond needs to be automated as much as possible.

But how are we going to cover all of those goals from ACME

within the context of this book? Well, the first thing we're going

to do is import existing resources. As I said, ACME wants to use

Terraform for all of their infrastructure, but of course, they already

have infrastructure deployed, so how do you get that infrastructure

moved into Terraform? Once that infrastructure is moved into

Terraform, you're probably going to want to take a look at that

state file that holds all that information and perhaps move it to a

remote location. That's for two reasons, one if your local desktop

or laptop fails you don't want to lose that state data, and the

second reason is because you might want to coordinate with

other members of your team as they are making updates to the

overall configuration. The next thing we're going to take a look at

is data sources and templates, so we're going to see how you

can use data sources to pull in configuration data and have that

inform other resources, and how you can use templates to

streamline your configurations. Once you've got all those things

together, we're going to integrate the deployment with a CI/CD

pipeline, working across multiple environments. And then finally,

we are going to integrate our deployment with a configuration

manager to finish the configuration and deployment of an

application after Terraform has created the virtual machines, and

we're going to be doing that with Ansible software. So the first

question is, are you ready for the challenge? Are you ready to

learn more and deep dive into the world of Terraform? I hope

you're ready to go. The next step in the process is to start

preparing your environment, and that's what we're going to cover

in the next chapter. We're going to deploy a configuration and

import some resources. There's not a bunch of prerequisites you

have to set up, but I will step you through what you need to do.

And we're going to get a little DevOps about this. So you will be

introduced to concepts like CI/CD and source control. We are

going to keep it fairly high level, and if you want to dive deeper

into any of those topics, check out other books about DevOps

and CI/CD. The whole purpose of this is to take your Terraform

to the next level, and that's what we're going to do in this book.

So get ready; because we are going to see what happens when

you need to work with existing resources.

Chapter 1 How to Work with Existing Resources

There is a really good chance that when you're first deploying

Terraform, there is going to be existing resources out there that

you might want to bring into the management realm of Terraform

and that's what this chapter is going to be dealing with. What are

we going to cover in this chapter? Well, first of all, as I alluded

to in the introduction, Greenfield is really the exception when it

comes to introducing Terraform into an environment. There is a

pretty good chance that you're going to have some existing

infrastructure that needs to be fed back into Terraform so that's

what we're going to be focusing on in this chapter. Another

reason that you might have some infrastructure that needs to be

imported is sometimes you have admins that want to help, but

they don't necessarily know Terraform or how to use it or perhaps

they're working on a new project and they don't know that

Terraform is the standard you've adopted in the organization. So

they set up all this infrastructure for a developer and now that

needs to be brought under control. There are some important

caveats about importing resources and one of the things I want

to point out is that the import command assumes that you've

already created a configuration for the resources within your

Terraform config files. So if you have something running in AWS

and you want to import that into Terraform, you have to add it to

the configuration first. We'll talk a little bit more about that later.

But first, let's take a look at the ACME environment and what's

going on there. At ACME, they are using AWS for their main

cloud provider. They've looked at the other clouds and they've

decided, AWS is the one for us for now. They're also planning to

use Terraform for all of their network deployments, and that is in

a large part thanks to your good work that you did in the

previous book. You deployed out a whole environment for ACME,

and they said, we want to adopt this everywhere! One of the

things they really love about Terraform is the consistency and

security it brings to the network. Because everything's defined in

code, it's very easy to see that things are set up properly, and as

long as you're managing everything with Terraform, you know that

what's in the code should map to what's in the environment. They

also really want to set up tagging per company policies. So when

new resources are deployed within AWS, they should have the

standard tags that have been defined via company policy. Let's

take a look at what the current environment is that you've

deployed out with Terraform. The current environment is using a

VPC that's located in also known as North Virginia, and it has a

CIDR range of 10.0.0.0/16. As you may already know, a region in

AWS is broken up into multiple availability zones. Within the VPC,

we're going to be dealing with three of those availability zones,

1b, and 1c. Currently, you have subnets deployed in two of those

availability zones. You have two subnets that are using 10.0.1.0/24

and 10.0.2.0.0/24, and two private subnets, 10.0.10.0/24 and

10.0.11.0/24. This is the configuration that you've already set up

with Terraform. In reality, you probably don't have this stuff set up

in an environment in AWS, so the first thing that we're going to

do in this chapter is deploy out this environment using Terraform.

What are we going to do? Well, the first thing we're going to do

is examine our Terraform files. We'll get a feel for what's in our

existing configuration, and then we're going to deploy that

configuration to AWS, and then finally, we'll review the results of

our deployment. I'm hoping that you want to play along, and that

means you're going to need a few things to do that. Most

obvious, you're going to need an AWS account. Fortunately, it's

very easy to sign up for an AWS account, and it comes with a

free tier, so you don't have to worry about it costing you any

money. You'll also need the AWS CLI installed locally because

we're going to use that to cache our credentials rather than

putting them into the Terraform configuration. You're also going to

need the Terraform CLI, so you can download that from

HashiCorp's website. With that out of the way, I have one more

thing to mention just broadly about the entire book. For the most

part, I have done my best to keep the resources in the free tier

for AWS. So hopefully, it won't cost you any money, but I can't

guarantee that. So some of the resources deployed in AWS may

cost some small amount of money, and I just want you to know

that. You've been warned. We are in Visual Studio Code, that's my

preferred code editor, you can use whatever code editor works for

you. Some of these chapters do build on top of each other, but

other ones are fairly standalone, and I'll call out when something

is dependent on a previous chapter and when it's not. I have the

Terraform configuration broken up into variables, resources, and

outputs, and I also have a tterraform.tfvars file. If you have a

terraform.tfvars file in the same directory as your Terraform

configuration, it will automatically use that file for the values for

your variables so it's very helpful to have it there. If you're

following along, you won't have that file yet, you'll have the

terraform.tfvars.example file.

And if we take a look at that, it basically has all of the same

information that you're going to find in the terraform.tfvars, but

you may want to change some of this. So all you have to do is

copy this file and rename it terraform.tfvars and you can follow

along. Then we have a step by step files of what we're going to

be doing.

The first thing we need to do is configure an AWS profile with

proper credentials and we're going to be using that profile for the

remainder of the book. You're going to need an access key and

secret key so go to the AWS Management console, go into IAM,

and provision an access key and secret key for yourself. Then

we're going to run aws configure So we're creating a profile

named Go ahead and open up the command line down here and

I'm going to go ahead and copy this and paste it down in the

command line.

I have already entered credentials for this profile so it's showing

me an obscured portion of those credentials so I have my access

key, I have my secret access key, and I've set my default region to

You don't have to use but it's what I'm using for these examples.

And then finally, my default output format is set to nothing. Now

we have our credentials stored in the shared credentials file and

that's something Terraform can use for authentication when it's

trying to create resources in AWS. We're going to be running

some AWS CLI or AWS PowerShell commands later, and because

we want to specify this deep dive profile, you're going to need to

set the environment variable aws_profile to So if you're on Linux

or macOS, you can run the export command. If you're on

Windows running PowerShell, then you can set the environment

variable to using this command. Now we're getting into deploying

the current environment, but before we do that, we have to review

what's in the configuration. So we have set up our AWS

credentials in a profile called and now let's take a look at the

Terraform configuration. We are going to start with our variables.

So within our variables, we have a few things being set here. The

first one is the region, and it is set as a default of You can

submit a different value in your tfvars file if you want to use a

different region. I'm going to leave the default at For our

subnet_count, we have that defaulted to 2, so it should deploy 2

public_subnets and 2 private_subnets. For our variable cidr_block,

we're using the cidr_block 10.0.0.0/16 as our default value, and

then we have 2 more variables defining the private_subnets and

public_subnets. And we don't have a default value for those; we're

going to supply that through our tfvars file. Let's take a look at

our tfvars file.

Our tfvars file has a list for the private_subnets, and those values

are the two CIDR ranges we want to use for the private_subnets.

Then we do the same thing for the public_subnets, and we're

setting subnet_count equal to 2, which, if that was different than

the default value for subnet_count, would override what the

default value is. That's everything we have in tfvars right now.

Now let's take a look at resources.

What are we actually deploying here? First, we have our provider.

We are using the AWS provider because we're creating resources

within AWS. I have the version set to 2.something. There is a

version 3 that's coming out, or may already be out, depending on

when you're reading this, and it may have some breaking changes,

so I've pinned the version to the 2.x of AWS provider just to

avoid any potential breakages. And we're setting the region to the

value that's in our variable region. In data, we're pulling in some

information about our AWS environment.

We want to get the list of availability zones so we can deploy out

the VPC and some subnets. And then we are using a module to

deploy our networking, and this is the VPC chapter that you can

find in the public Terraform registry.

This is the one supported by AWS. And I have the version set to

2.44 because I know new versions are going to be coming out

that use that 3.0 provider, and I don't want things to get messed

up, so I'm pinning it to 2.44.0 because I know it works. We're

setting the name of our VPC to primary. We're setting the cidr to

the value stored in our cidr_block.

For availability zones, there's some interesting stuff happening here

with our function. So we're using a function called slice. Slice

takes a list and slices off a piece of that list for you to use. The

first thing that slice needs is a list to slice information off, and

we are getting a list of availability zone names, so these are the

names of all the availability zones in Then we're starting with the

first element, which is numbered o in that list, and then the last

value is where to cut off the list, Remember, our subnet_count is

2, so we will get the first and second element from the

availability zones list. Down in private_subnets we are passing it

the two private subnet IP ranges we want to use the. Same thing

for public_subnets. I have enable_nat_gateway set to false. Now in

a situation, you might have this enabled, but there's two things

about the NAT gateway. One, it takes a long time to spin up, and

two, it costs a lot of money. So I figured I would save you

money and also not delay the process by having it disabled. We

are not creating a database subnet group, so that's set to false.

And then finally, we are adding some tags to all the resources

that are created by this module. We're setting Environment =

"Production" and Team = "Network". So, that's everything in

resources. We can go over to outputs, and we can see there's no

outputs being generated by this whole process, so now we are

ready to deploy our Terraform configuration.

Chapter 2 How to Deploy the Network Configuration

We have reviewed our Terraform configuration, and now we're

ready to deploy it. So let's go ahead and pull up the command

prompt again. First we're going to run terraform init, and if you'll

remember, terraform init does a few things.

It downloads any chapters you're using, it downloads any provider

plugins you're using, and it initializes the back end to store your

state data.

Once that's complete, we can run terraform validate, and terraform

validate validates the syntax that's in your Terraform configuration.

You actually have to run init first because it validates the syntax

based off of what's in the provider, so it needs that provider

locally to evaluate the syntax and the resources from that provider.

It looks like everything is valid, so that's thumbs up, that's good.

Now we're going to do terraform plan and store our plan in

m3.tfplan. Now you don't have to do this, but it is best practice

to run plan first and send that to an out file, which you'll then

use with terraform apply.

When you run terraform apply using a tfplan file, Terraform will

check and make sure that that plan is still valid. That's really

important when you're running in a collaborative setting. We're

going to go ahead and run terraform apply and pass it that plan

file, and that's going to go out and provision the VPC in AWS.

That should happen pretty quickly because, we're not creating

those NAT gateways, and that's the thing that actually takes the

most time.

It added 14 resources. If we want to go over to the AWS Console,

we can review what has been created so far. Here we are in the

AWS VPC Management Console. And , we now have our primary

VPC, and it's using the CIDR range that we would expect.

If we go over to Subnets, we can filter on the VPC, and here are

our four subnets that we have created. We've got our two public

and our two private. So that's all deployed, and we are good to

go. Now that we have our basic environment set up, a request

has come in that we add a public and private subnet to the

availability zone. We decided to farm this workout to Johnny, our

junior admin. Now unfortunately, we didn't check with Johnny

ahead of time to let him know that Terraform is the thing we're

using, so he's just gone ahead and run a script to create the

public and private subnets in that availability zone. But that's not

good. Now we need to get those subnets under management of

Terraform. And the way that we're going to do that is by using

the import command. So let's talk about the import command.

Unfortunately, there's no automatic import. You have to update

your configuration within Terraform and then manually import the

resources you want Terraform to manage. That's just how it works

today. Step one in the process is to update your configuration to

include the resources you want to import, and we're going to see

how that works in a moment. Then, you have to match up the

identifiers from your provider with the identifiers within your

configuration, which that sounds a little confusing, but once you

see it, it'll make sense. And then you add those new resources or

the resources that you're bringing under management into your

state data. Let's take a look at the import command itself to get

an idea of what that flow looks like. So the import command

syntax simply goes terraform import, whatever options, the ADDR,

and the ID.

What's that ADDR and ID? What do those mean? so the address

is the configuration resource identifier. It's the way that Terraform

is identifying that resource inside its own configuration. So an

example is if we're using a module, there might be a resource

that is one of the subnets. And so the full address identifier for

that is module.vpc.aws_subnet.public[2] because it's the third

element in a list of subnets. That's the address. The ID is the

specific resource identifier for that resource type, and that's

something you can look up in the resource information in the

Terraform docs. You can go and see what is the actual identifier

for this resource if I want to import it. It's usually at the bottom

of the description of a resource. For example, in the world of

AWS and subnets, it's the unique identifier for that subnet. Once

you have those two pieces of information, you can now run the

import command, and that would be something along the lines of

terraform import. You can pass it the variable file for your

configuration, then that address of the resource inside your

configuration, and finally, the resource identifier of the actual

resource from the provider. So let's go back to our demonstration

environment. We're going to create that resource using the script,

and then we'll get it imported into our Terraform configuration.

Back in Visual Studio Code, the next step in our process is to

run the script that will manually create those two subnets. I have

two scripts here, one for Linux and macOS that uses the AWS

CLI, and the second one, which uses the AWS PowerShell module

to create those subnets.

So you can choose whichever script makes more sense for you.

Since I'm running on Windows, I'm going to use PowerShell. If

you don't already have the AWS PowerShell chapter installed,

assuming you're running PowerShell 7, you can install by running

AWSPowerShell.NetCore. And to avoid any issues with running in

an admin context, you can set the Scope to CurrentUser and it'll

just install it for you. It's a lot easier than opening an admin

window. And then you're simply going to run the

JuniorAdminIssue.ps1 script. So let's go ahead and open up our

PowerShell terminal, and we are going to run this

JuniorAdminIssue script. Remember that we set the environment

variable for the AWS profile to deep dive. So whether you're doing

this through macOS, Linux, or you're doing this through

PowerShell with Windows, it's going to know to use that profile as

the credentials for creating these resources in AWS.

It ran successfully. And it actually does a little bit more than

create those subnets. It actually creates the route table association

between the public subnet and the public route table, as well as

creating a new route table for the private subnet and creating a

route table association for that private subnet. And I've helpfully

dumped out the values that are the identifiers you'll need for the

import command. So if we go over to the AWS console and

refresh our view of the subnets, we can see there's two subnets

that weren't there before.

And because it was created manually with this script, they're also

not tagged appropriately with the correct naming. That's not good

but we can fix this. That's no problem. We are going to do that

by using the import command. So let's go back to Visual Studio

and get that process going. In order to add these subnets, and

route tables, and route table associations to our configuration, we

have to make some changes to our tfvars file. So let's go ahead

and open that first. And I already have the updated values . We're

going to uncomment these other values for private_subnets,

public_subnets, and subnet_count. So now we have the third

private and public subnet, and our subnet_count is set to 3, and

we'll go ahead and comment out the values that we had before.

So now our values have been updated to have three subnets. And

the next time we run terraform plan, it's going to plan to create

these resources. Let's go ahead and open up our terminal window,

and we're going to run terraform plan and specify the output,

m3.tfplan. The reason we're doing this is because we need to get

the address for these new resources so we can use it with the

import command. So we're not actually going to apply this plan.

We just needed the information in it. So, let me expand the

terminal all the way up, and we can scroll up and look at some

of the things it's added. And right here, we can see one of the

things it's adding is chapter.vpc.aws_subnet.public[2].

This is one of the new resources that's being created. So now we

know that address that's going to be used by Terraform, and we

can use that in the import command instead of applying this

plan. I went through the plan and grabbed all the addresses and

put them in an import command one by one. So if we look at

what we have here, we have terraform import, we have the

variable file being specified, and then we have the address of our

resource.

The other thing we need is the resource IDs that popped out

when we ran the script. So let's go ahead and scroll up here, and

here's the resources that we need, and they should be in the

same order that the commands are. So we've got our

privateRouteTable. So go ahead and take this privateRouteTable

value, and I'll paste it. The route table association is a resource

within Terraform, but it's not actually a separate object in the

world of AWS. So the workaround is that you have to create the

ID from the subnet and the route table. So the way that you do

that is first you grab the subnet, and we'll paste that , and then

you put a slash, and you grab the route table ID and put that .

And that's the identifier in AWS that matches to the resource

address that's in Terraform.

So now that we have that, we can paste in our private subnet

value here. And if we scroll down a little bit, we can get to our

publicRouteTableAssociation. And if you look at that, you see it's

the same thing. It's the public subnet, and then slash, and the

route table for the public subnets. And then finally, we're going to

grab the public subnet ID and paste it . So now we have all of

our import commands ready to go.

Let's go ahead and copy all of those import commands, and let

me expand this out so you can see what's happening, and I'm

going to go ahead and paste them in. So it's going to run the

terraform import command, and it's going to say Import prepared!

Now once these have all finished, we can go back and take a

look at what's actually in there. all of the import commands have

completed successfully. So if we look at what happened in one of

the import commands, it's basically saying I'm importing this ID

with the subnet, in this case. The import is prepared, and it

refreshes the state data with this new import information and lets

you know that the import is successful. So basically, within the

state data, it has this new resource, and it has matched it to this

new ID in AWS. Let's go back to our commands list, and if we

scroll down, we can see we have successfully run the import

commands in ImportCommands.txt, so the last thing to do is run

terraform plan and apply.

Let's see if there are any changes when we run terraform plan

again. We have run terraform plan again, and there are some

changes.

Nothing to be added, nothing to be destroyed, but there are a

few changes, and those changes are those tags. Because the

subnets were created without the proper tagging, Terraform is now

going to apply those tags in the consistent way that ACME was

expecting. That's exactly what we want, so we'll go ahead and run

terraform apply. And obviously that scrolled by very quickly

because all it's doing is updating some tags.

It doesn't have to do anything beyond that. If we go back to the

AWS Console and go ahead and refresh our view of the subnets,

we can now see that all of the subnets are appropriately named.

And if we select the public subnet in the 1c availability zone and

go to Tags, we can see it has all the appropriate tags applied to

it. So we have fixed Johnny's mistake, and we'll take him aside

and show him the wonderful ways of Terraform later. In summary,

this chapter was all about importing resources because Brownfield

is really the norm when it comes to Terraform. You're going to

walk into an environment that already has resources deployed and

we saw how we can fix that for just a few subnets. In a more

complicated situation, you're going to need a more robust

configuration and you might not want to create and run all of

those import commands manually. You might want to script out

that process. Import requires config work. We saw that. We had

to update our configuration before we could import things, and

for now, there is no automatic way to detect the resources, not

under management and bring them under management. The nice

thing about it is when you do have to create that configuration, it

gives you an opportunity to really learn what's in your

infrastructure because you may have made assumptions about

what's there or how things are set up. When you actually have to

map that all out in code, you end up learning a lot about how

your infrastructure is actually deployed. Coming up in the next

chapter, we are going to get into managing state data. We just

worked a bit with state data when it came to how we imported

resources, maybe it's time to take a deeper dive into what's

actually in that state data and how you manage it by yourself and

in a group.

Chapter 3 Terraform State Commands & Backends

What holds Terraform together is state. State data is what maps

what's inside your configuration to the resources that live in the

public cloud provider or whatever you're deploying your

infrastructure to. State is critical. So this chapter is going to be

all about managing state in Terraform. First, we're going to

explore state data, and we're going to use the command line to

do that state data exploration. What can you uncover about the

state and how can you interact with it without breaking it? Then

we're going to look at what are the options for storing your state

data? There is the default option, the local file, but it goes well

beyond that, and you probably shouldn't store your state data

locally if you really care about it. And finally, we'll look at the

process for migrating your state data from that local file to some

sort of remote back end, and the same process works if you're

moving from one remote back end to another. Before we get into

state data exploration, let's talk about what's going on at ACME.

At ACME, you are now going to be working with a larger team.

What does that mean? Well, you have your internal networking

team that you're already working with, but now they're coming on

board with your Terraform project. You need to collaborate with

that team. You're also going to be creating infrastructure for other

teams to consume. You're not just building VPCs for the fun of

it, you're doing this for application teams who have applications

and servers that they want to get deployed, so they need to be

able to share the information about the infrastructure that you're

creating. And we're going to enable this collaboration with your

team and the other teams through remote states, so we're going

to figure out how to get that implemented, but we don't want

them to be able to muck around with our remote state, especially

those application teams, they might mess up our networking so

we want to restrict the level of access for those teams to just

read only, you can read our state, but don't change it. So that's

what's going on at ACME. If you'll remember, the current

environment that we have deployed in is composed of 3

availability zones and each availability zone has a public and

private subnet in it. The public subnets are starting at 10.0.0.0/24

and incrementing up by 1 for each, and the private subnets are

starting at 10.0.10.0 and incrementing by 1 for those. Building out

this design, we did this all locally and we have a local state file,

that could present a problem for our collaboration ideal. So we

need to get to a point where our state data is living somewhere

else, but first, we need to understand what's going on in the

state data to begin with. Let's talk brass tacks here, what is

Terraform state? It's data that's stored in a JSON format, and it's

very important that you don't go into wherever your state is

stored and start messing around with the JSON. JSON is pretty

easy to break, and it's pretty easy to mess up what's going on in

that state data, because what's in that state data? Well, it's mostly

resource mappings. So if you remember from the previous chapter

where we dealt with importing something into state, you'll

remember we needed the ID of the object inside our configuration

and the address of that object in the real world. The state data is

a mapping between those two items, along with some additional

metadata. Some of that metadata is about the resource itself and

some of that metadata is about the configuration and the current

deployment. We can inspect the state data without messing it up

by doing it through the CLI, and we'll step through a few of the

commands in a moment. When you run certain operations, like

plan, apply or even refresh, it actually goes out and refreshes the

state based off the objects that the state represents. It will go out

to, say, AWS and just pull your VPC to see if what it has in the

state file still matches up to what's going on in the outside. It's

not going to add new resources, as we saw in the import chapter,

but it will update existing resources. But, where is this state data

stored? Well, it's stored in back ends. There's roughly two kinds of

back ends. There's standard and enhanced. The only enhanced

back ends are Terraform Cloud/Enterprise and the local file

enhanced back end, and what makes it enhanced is it not only

stores the state data, but it also runs the Terraform CLI

commands. Two other important distinctions are whether or not

the back end will support locking and workspaces. We'll see what

locking is a little bit later in this chapter, and there's a whole

separate chapter dealing with workspaces, but it's important to

note that not all back ends support these two features, and

they're very useful, so be on the watch for that. Now let's take a

look at what those terraform state commands are. There are a

bunch of terraform state commands, and they all start with

terraform state, so I'm going to skip that portion of the command

and just get to the subcommand.

The first one is list, and this simply lists and enumerates all the

objects that are stored in state data. This is all of your resources.

There's another one called show. Show will give you details about

a specific object. So a general workflow might be to run list first

to get the names of all of the different objects in your state data,

and then run show to get the properties about a specific object.

Another one is mv, which is short for move, and move allows you

to move an item or an object within the state data or to a

different state data. This could be if you wanted to rename the ID

of an object inside the configuration, you wanted to change the

name of it somehow. Normally that would require destroying and

recreating the object, but you can actually update your

configuration and then use move to simply change the name. It's

sort of like renaming a file. You can also use the command rm,

short for remove, to remove an item from state. So if you remove

something from the configuration, but you don't want that object

to be destroyed, you could run rm to remove it from state so

Terraform is no longer managing that item for whatever reason.

Another command is pull, and this simply will display the current

state data in its JSON format directly to stdout. So if you have

something else that typically consumes that state data for some

reason, maybe it has to go to an audit log or something, this is

a command to pull that information in a graceful way. And finally,

the last one is push. If, somehow, you wanted to push a local

copy of your state data up to remote state, you could do that.

There's not many occasions you would want to do this, but if you

needed to, if the remote state was somehow corrupt and you had

a good local copy of it, you could use push to overwrite the

remote state. So let’s jump over to Visual Studio Code and

investigate some of these different commands. In Visual Studio

Code, and I am going to expand m4 in our chapters, and I'm

going to open the m4_commands.txt file. So first, we're going to

try out some of our Terraform commands, so let's go ahead and

open up the command prompt. And I have already deployed the

VPC in the previous chapter and gone through the whole import

process, so my VPC matches what we saw in the earlier diagram.

So let's go into that directory, and the first command that we can

run is terraform state list. This will list out all the objects or

resources within our configuration.

We can see it's got things like the internet gateway, the route

tables, the route table associations, our various subnets, public

and private, and the VPC itself. That's what we would expect.

Those are the resources we have deployed. What if we wanted to

get more information about a particular item in this list? Well,

that's when we get to terraform state show. Tthen the ID of the

object that we're interested in. In this case, we're interested in the

VPC itself, so we can get that syntax from the list and then plug

it into here. Let's grab this command and it will now print out all

the information it has about our VPC that's stored inside that

state data.

So we can scroll up and see all the information. In case we

wanted to reference one of the attributes, here's where you can

also get all the attribute names about that resource in case you

needed to reference them. We can also pull all of the state data

by doing terraform state pull. This is going to be a lot of

information. This is the entire JSON file, not very useful for you

to try to parse through on your own, and that's why we have

these other commands, but it is available if you wanted to pump

this out to some sort of tool. You just don't want to parse

through this manually. All of this state data is stored locally. If we

expand m3 here, we can see there's a file, terraform.tfstate, and

I'm going to open it. This is the state data.

It has some relevant information at the top, the version, the

Terraform version that was used to create it, the serial number,

and the lineage, and that allows it to track some information

about what version of Terraform created this thing, and it won't

let you use an older version, and also what the lineage is. In

case you try to override it with an earlier lineage, it's going to say

no, your stuff is out of date, you need to refresh your stuff before

I would allow you to plan and apply something. but like I said,

Terraform state is delicate. Don't go in and edit it unless you

know exactly what you're doing. now we want to move this

Terraform state, so let's talk about back ends.

Backends are where state data is stored, that's all they are, that's

what they do. When you decide that you want to use a particular

backend, it must be initialized. If you'll remember when we run

terraform init at the beginning of a configuration, one of the

things it says is initializing the backend, and if you haven't

specified any particular backend, it's going to use the local file

backend by default. Since it doesn't need any more information, it

can go ahead and just configure that on its own. You don't have

to put a configuration block in. If you do want to put a

configuration block in, generally speaking, partial configurations are

recommended. Why do I say that? We'll see what the syntax is in

a moment, but basically, in order to write data to a remote

location, you usually need credentials, and those credentials should

not be hardcoded in the configuration. So you want to supply

those at runtime, and you do that by only giving the bare

minimum configuration to point it at the right location. Another

thing that is important to note is that interpolation is not

supported. What does that mean? It means you can't use

variables or local values in your backend configuration, and the

reason is Terraform hasn't even evaluated your variables and locals

when it initializes that backend. It doesn't have access to that

information. So the only way to give it dynamic information is to

supply it at runtime. Let's look at an example backend, and

hopefully this will become a little more clear.

A basic backend configuration would start like this. You have your

terraform block, that's how it starts out, and then within that

terraform block, you're going to have a nested block called

backend. And after the backend block type, you're going to put

the type of backend that you plan to use and then some

information about that backend to allow Terraform to connect to it

properly. Now what kinds of backends are there out there? There's

a bunch of them. There's Consul, which is a HashiCorp product,

AWS S3, which actually needs to be used in tandem with

DynamoDB to support locking in workspaces, there's Azure

Storage and Google Cloud Storage. So if you're using one of the

major public clouds, you can use that as a target for your remote

state. But what's ACME planning to do? They're planning to use

Consul. ACME, while they've completely invested in AWS for their

cloud, is not sure they want to pin themselves down using S3 as

the repository for their state data. Instead, they want to work with

another HashiCorp product called Consul. Consul can do a lot of

different things and one of those things is work as a key value

store, and since JSON data can be stored as a value with a key,

it can be used as a remote backend for Terraform. So the plan at

ACME is to add a path called networking in the Consul key value

store, and within that networking path, add a state path where we

will store all of our different state configurations as a key on that

path so networking state will be the path. But, how are you going

to interact with that? Well you're going to do this through your

local workstation. Consul supports access control and the way that

it enforces access control is through tokens. So we are going to

get a token and then supply that token as part of our

authentication to write and read data from Consul. We're also

going to apply some policies to Consul that restricts who's able

to read and write data at that networking state path. So let's go

back to Visual Studio Code and we'll walk through the process of

setting up Consul. We're back in Visual Studio Code, and it is

time to deploy our local Consul server node. We're going to be

running the Consul service locally rather than spinning up a

virtual machine or a container. It's pretty simple to do, and the

executable doesn't take up a whole lot of room. If you don't have

the Consul executable, you can simply go to consul.io/downloads

and download the correct version for your operating system. Once

you've done that and added it to your path, we can go into the

Consul folder and walk through the process of getting it deployed.

We can take a look at what's in the consul directory here.

We have a configuration directory, and that has the in HashiCorp

configuration language. Basically all the config is doing is setting

up access control and granting you access to the UI. So there's

an argument here, ui = true, that means enable the UI so we can

look at what's going on in Consul. We're setting the

bootstrap_expect to 1, so there's only one node in our Consul

cluster. We're setting the data directory to /data. That's where it's

going to store its key value data, as well as its other information.

And we're setting the ACL property to enabled. So we're enabling

ACLs for our deployment. There's a lot more to Consul than we're

going to talk about in this book. Let's go back to m4_commands

and we are in the consul subfolder. We're going to make that

data directory, so we've done that. Now that data directory exists

and we're going to launch a consul server instance with all of

these different arguments, basically giving it the as its

configuration and binding it to our local IP address.

When this launches, it launches in the foreground, so we're going

to have to open a separate terminal to execute the remainder of

our commands. Let's go ahead and open up this other terminal

window. And what's the next thing we need to do? Well, we

enabled ACLs on Consul, and we need to get sort of a root token

to be able to do anything. So, this command, consul acl

bootstrap, does exactly that. We can go ahead and grab that

command down here. And let's go back into the chapter 4

directory just to make sure we're in the right place.

And we're going to go ahead and run this command. so we ran

the command and it returned a bunch of information. The

important thing here is that SecretID. And we are going to set an

environment variable, CONSUL_HTTP_TOKEN, to that SecretID.

I'm going to go ahead and grab that out of the output and copy

it. And since I'm running in Windows, I'm going to paste it under

the Windows direction. If you're running macOS or Linux, you can

use the export command for this. Let's go ahead and copy this

and paste it.

Now that environment variable is set every time I use the Consul

command line, or if I use the Terraform Consul back end, it will

know to look for this environment variable and use the value

that's stored here. Now we need to set up some information

inside Consul so it can store our remote state, and we're going

to do that by using Terraform. So let's go ahead and open up

this main.tf file over here. This is the additional configuration

information we're going to use for Consul. So first, we have to

reference the Consul provider. And because we use the local

address, I've just hard coded it using the local loopback address

in port 8500.

That's the default port for Consul, and the default datacenter

name is dc1. Now we're going to create a few resources inside

Consul. We're going to create some key paths. So , I have a

resource called consul_keys, and all this does is create key paths

for us. The first path we want to create is

networking/configuration.

We will use that to hold configuration data in the next chapter.

Then, we're going to create networking/state, and that is where

our state data is going to be stored. Scrolling down a little bit

more, we're going to bring in the applications team on this game

at some point, so we're going to create the same paths for them,

applications/configuration and applications/state.

And scrolling down a little bit more, we are going to create ACL

policies for networking and applications.

The networking policy is going to grant write permissions to the

key prefix "networking" and also grant us access to the session

prefix. That allows us to establish a session with Consul and then

have write access to that networking key prefix, so anything

networking/, we have write access to. The second policy is for

applications, and it's a little bit different.

For the role, we're granting write access to the key_prefix

"applications", so that's basically the same. We're just doing

applications instead of networking. The second one is a little

more interesting. We're granting read access to the key_prefix

"networking/state". That means that the applications team, if they

have this policy, they'll have read access to the networking state

data. That will be useful later. And then we're also granting write

access to session_prefix so they can establish a session. And then

scrolling down a little bit more, we are going to create two ACL

tokens, one for our networking administrator, and one for our

applications person. So we are going to create a token for each.

And if we scroll down a little bit more, we get to the outputs.

We're going to output the accessor ID for both of those tokens,

and then we can use the Consul command line to retrieve the

secret ID that's associated with that accessor ID. It's a lot of

information, but it's pretty straightforward. We're creating some key

prefixes, we're creating some policies, and we're creating some

tokens. That's basically the view of what we're doing, so let's go

ahead and do that. We've reviewed our Terraform configuration for

Consul, so let's go ahead and make it a reality. First, we will go

into the Consul directory, since that is where are configuration is,

and go ahead and run terraform init. Terraform init executed

successfully.

Now we'll run terraform plan, and we'll output it to consul.tfplan,

and this should go very fast because this is all running locally.

And finally, we'll run terraform apply consul.tfplan to create all

these resources. And we got our two accessor IDs.

I would recommend grabbing one or both of these and pasting

them somewhere else, because we're going to need both of those

later. So I'm simply going to run Notepad here and paste that

accessor ID for offscreen. And now let's actually get the token

secret ID by pasting in that accessor ID for Mary, go ahead and

paste that , and we'll grab this whole command, consul acl token

read, and passing it that accessor ID, it's going to give us her

secret ID. So I'd recommend grabbing that secret ID and also

storing that in Notepad somewhere because we're going to use

that one later. Before we do anything else, let's take a look at the

Consul UI and just see what's going on there. So I just copied

the root token that we've been using.

Let's go over to a browser, and I'm going to open a new tab

here, and I'm going to go to 127.0.0.1:8500/ui/. And Consul

should load for you. Now, we have to log in to Consul by going

to the ACL and pasting in that secret ID for the root secret. And

now we can see all the access controls we put in place, including

the two tokens that have been issued. We can go to Policies and

see the two policies we created. We can go into Key/Value and

see the key/value pass for applications and networking. And if we

go into networking, we can see configuration and state. But of

course, there's nothing in there right now, because the next thing

we need to do is migrate our existing state from the local file to

this remote back end. Migrating Terraform State is remarkably

simple. It is not complicated at all. The first thing you need to

do is update your backend configuration. You have to tell it, as

we saw in the example, where to put the data in the new

backend, and once you've updated the configuration, you have to

rerun Terraform in it. You're reinitializing your configuration and it

will see, oh there is a new backend here, and what it's going to

do when it sees that new backend configuration is ask you, do

you want to migrate your existing state data to this new location?

And generally speaking, the answer is going to be yes. So we

simply have to confirm that state migration, it copies all the data

from local to remote and you're done. It is a little anticlimactic,

but that is how it works. So why don't we go back to Visual

Studio Code and walk through the process. In Visual Studio Code,

and we need to first update the backend configuration. So let's go

up one folder, and you'll note in the m4 folder, there is a

backend.tf file. We are going to copy that backend.tf file into the

chapter 3 folder to update things. So go ahead and run this copy

command. That file's now in m3, and let's move to the m3 folder.

And over here, I'm going to expand m3, and let's take a look at

what's in that backend.tf file.

This is the backend.tf file, and we have our terraform

configuration block, and within there we have our nested block for

the backend config. The backend type is consul, so we have

backend "consul". The address for the consul server is 127.0.0.1,

port 8500, and the scheme is http. HTTPS is supported, but we

didn't add that to our consul config.

That's all the information we're giving it, and we might not even

give it this much information if we were deploying to a

production scenario and we don't know that the address is always

going to stay the same. We could supply all of that information

at the command line when we run terraform init. Speaking of

which, now that we've copied that backend config in, we can go

back to m4 commands, and what are we going to do? We are

going to use secret ID to write this state data. We went through

all the trouble of setting up the ACLs and getting her a token, we

might as well use it. So I'm going to go ahead and copy the

secret ID that I grabbed earlier, and I'm going to paste it . And

all we're doing really is updating our environment variable from

the root token to token. If you're running Linux or macOS, use

the export command, but I'm running Windows, so I'm going to

set the environment variable via PowerShell. My token has now

been updated. Now we can initialize the backend config, and the

command for that, it's terraform init. And if you want to specify

backend config data during the initialization process, you can do

that with the argument and you can either supply a file that has

all the backend config settings in it, especially if you have a lot of

them, or you can just do pairs and you can specify this argument

a bunch of times. In our case, the only thing we need to specify

is the path that we want to use here, so we're setting the path

equal to networking/state/primary. primary will be the key where

our JSON data will be stored as the value. We don't have to

specify any authentication information because we're storing that

in our environment variable. Now let's scroll up a little bit and

see what it's saying. So it initialized modules. There's nothing new

to do there because we've already initialized our module, and then

it went to initializing backend, and it saw, hey, you're using a new

consul backend. That's exciting. Do you want to move the local

backend information to the consul backend? Because it didn't find

any existing state data already there. And all we have to do is

simply say yes, and it's going to copy that information over, and

that was really quick. Since we're copying locally, it's not going to

take very long to copy that state data. We can scroll up and you

can see it says successfully configured the backend "consul". And

it's going to automatically use this backend from here on out. If

we scroll up here in the left side and we take a look at what's

going on in terraform.tfstate file, there is nothing now because all

of our state data has been moved, so that file is now blank.

Where did that information go? It went to consul. So let's go

back to the browser, and if we refresh our view here, we'll see

there's now a primary key. And if we look at that key, here is all

of our state data in JSON stored as the value for that key.

So this is where our state data lives from now on. So we have

successfully migrated our state data from a local file to a remote

consul backend.

Technically it's local, but you could do this exact same process

with a consul cluster that's running in your data center or up in

the cloud. In summary we established that Terraform state, it's

kind of important, it's kind of a big deal. You do want to be

careful with it and you want to put it in a place that's protected

and accessible to other team members. We saw how we can

manage our state through the CLI. So you don't want to go in

and touch the JSON data. Do it through the CLI, because it

knows what it's doing. Generally speaking, storing your state data

remotely is preferred. It makes it safer, if your desktop or laptop

fails, you're not going to lose all your state data, and you can

collaborate with other people. Next, we are going to get into the

wonderful world of data sources and templates. We are going to

use console as a data source and not just for remote state data,

and we're going to see how we can use templates to streamline

our configurations a little bit.

Chapter 4 How to Use Data Sources & Templates

When you're using Terraform, you tend to focus on resources

because you're excited about creating cool infrastructure, but there

is another key component within your configuration and that is

data sources. So that is one of the things we're going to

investigate in this chapter and the other one is using templates to

streamline your configuration. In this chapter, we are going to

start out with talking about data sources types. There is a bunch

of different data source types out there and it's important to

understand the reason for using each one so we're going to get

into that a bit. We're also going to look at how we can use an

external source for our configuration data. Rather than using a

local tfvars file or specifying those variables at runtime, what if we

could reference an existing data source for that configuration data?

And finally, we'll talk about templates because they are something

that will help you write more efficient configurations. But, what's

going on over at ACME? Well, as we saw in the previous chapter,

more teams are getting on board with this Terraform thing and

let's talk about who those teams are. Well we've got our

information security team. What do they want out of Terraform?

They want to define roles, policies, and groups consistently within

AWS and also within Consul, so they are very interested in the

template aspect of thing and we're going to see how that applies

in a later chapter. The software development team also wants to

get involved because they want to deploy their applications on top

of all this awesome network infrastructure that you've been

deploying, so they want to be able to read your network

configuration for app deployment and that's something that we set

up in the previous chapter. They do have access to our remote

state data. Lastly, the change management team, they would like

you to store your configuration data centrally so they can quickly

reference that configuration data and go, does that match up to

what you said was going to be in the change from a week ago?

Good, it does. We have a record of what should be in the

configuration and what's actually been deployed. It's a whole

solution and change management loves it. How are we going to

accomplish what change management is doing? That's what we're

going to do in this chapter and we're going to do it through data

sources. What are data sources? Well, you can think of them as

the glue for multiple configurations and within configurations

themselves. We've already seen data sources being used to get

the list of availability zones for AWS, but there's much more to it

than just that. Resources can be thought of as data sources for

other resources inside the same configuration or within other

configurations. When you create a resource, it has a bunch of

attributes that can be referenced within your configuration, so you

can really think about those attributes that are exported as a data

source. Providers also have data sources and we saw this with

availability zones, but there's plenty of other really useful data

sources that exist in the provider, and if you look in the

documentation, the documentation now breaks up the provider as

data sources and resource types. Within those data sources, you

might have something like the AWS AMI for Ubuntu or for

Amazon Linux. If you needed to get that ID for the region you're

currently working in, data sources are going to be your friend.

There's also alternate data sources and that could be things like

templates. Templates are actually considered a data source. You

can also reference a website or web service that uses HTTP, so it

will make a request to a site and then get a response in text or

in JSON. You can also use an external data source, and this

basically runs a script, and that script has to return valid JSON to

the standard int. As long as it does that, Terraform doesn't really

care what that external data source is, so a lot of latitude there.

Another alternate data source and one that we're going to use in

this chapter is Consul. You can pull key information from Consul

and use that within your existing configuration. Let's take a look

at a few example data sources. We'll start with the HTTP data

source. An example of that would simply be first using the data

keyword. So data lets you know that you're creating a data source

within your configuration and the type is HTTP, and then you

have to give it a name label, in this case we'll call it my_ip.

Within the body of this configuration, you can specify the URL,

where should it go to make this HTTP request?

The example I have here, http:// ifconfig.me, will return just your

public IP address in the body of the response, so you can directly

use that response to get your public IP address for your

Terraform config, which is sometimes useful if you're trying to

create security rules. The way that you would reference that is by

doing data.http.my_ip and then the attribute is body, and this will

get the body of the response, which in our case would be just

our public IP address. What about the Consul data source, what

does that look like? There's more than one data source within

Consul.

You can get a key prefix, you can get individual keys, you can get

policies, you can get tokens, there's a lot of options here. In our

case, let's just look at Consul keys. So we want to get one or

more keys out of Consul and the value stored in those keys.

Within that data source, you'll have multiple nested blocks for

each key that you want to retrieve. So let's say we had a key at

the path networking/config/vpc/cidr_range. We can give it the

name vpc_cidr_range, and that's how we'll refer to it within our

Terraform configuration. If that value is not found, you can specify

a default value for this key, and in our case we could set it to

10.0.0.0/16. If you want to use the response from this data

source, you can reference this specific key by doing

data.consul_keys.networking.var, so var is what says I want to

reference one of the keys that was in my data source, and then

which key do you want, you give it the name of that key, which

in our case was vpc_cidr_range. And that's how you get the value

that's stored in that key, and that is exactly what we're going to

do for our configuration data for our VPC deployment. Let's look

at how that setup will go. If you'll recall our Consul setup from

the previous chapter, we had Consul set up and running locally,

and we've added some things to the key value store within

Consul. We added a networking path, and within that networking

path, we added a state path, and then added primary as a key in

there to hold our state data. Now we're going to add a second

path within networking called config, and that is where we're

going to store our configuration data. We also created an

applications path, and within an applications path, we also are

going to have a state path and a config path where we'll store

the applications state data and config data. Now we have our cast

of characters. The policies that we set up in the previous chapter

gave read/write access to the networking path and gave Samantha

read/write access to the applications path. It also gave Samantha

read access, but only to networking/state so that she could read

state data out of that networking and use it as a data source.

Let's go over to Visual Studio Code, and we're going to populate

the configuration data for our setup and migrate our configuration

over to use the config data that we're going to store in Consul.

In Visual Studio Code, let's go ahead and expand m5. How are

we going to start out here? The first thing we're going to do is

go into that consul subfolder. And what's in that consul subfolder?

We've got three JSON files here that have configuration data in

them. Before we take a look at that, we need to set up our

consul token environment variable so that we can interact with

Consul. And we can do that by either using the export command

if you're running Linux or macOS, or in Windows and PowerShell,

you can do $env: the name of the environment variable and then

the secret value. I have secret ID in a Notepad document, so I'll

go ahead and copy that data, and go ahead and paste it .

And now I'll copy this whole thing, and paste it. I still have

Consul running from the previous chapter. , and see it's still

running in the background. If you had to shut it down for some

reason, you can restart it with the same Consul command that

was in the chapter for commands. Now that I have my token set,

I should be able to run Consul commands and have them execute

successfully. What are we going to do? We're going to run two

Consul commands here, we're going to run consul kv put, so

we're putting a value to the KV store. We have to give it the path

where we want to put that data, so we're doing

networking/configuration/primary/net_info and then in order to

write all the data that's inside a file, you use the @ symbol and

then the name of the file. One important thing to note here, your

file cannot have an underscore in the file name or the command

doesn't quite work right. And we've successfully written that data

to that path. We're going to do the same thing again to a path

that's called and write the data that's stored in to it. We've

written the data to So let's take a look at what's in primary.json

first. We have JSON data that defines most of the information

that we had in our variables before.

We had the cidr_block for our VPC, that's . We had a list of

address ranges for our private and public subnets, and we had

our subnet count. That's all now stored in JSON and we can refer

to that within our configuration. The simply has a list of common

tags. So now your change management or your security group

could update to the list within Consul, and when you run an

update for your environment, those new tags will be added. So

now we need to update our configuration to take advantage of

this Consul config, let's take a look at how we do that. We've

written our configuration data to Consul, and we're ready to use

it, but first, we have to update our Terraform configuration. And I

have an updated configuration in the networking subfolder. So let's

go up one level and go into the networking subfolder. That's

where the configuration is. And for the moment, I'm going to

hide the terminal so we can take a look at what's in this

networking configuration.

I simply copied over the existing configuration that we were using

in chapter 3, but made some changes to it. First change I made

is in variables. So if we look at our variables here, instead of

having all the network data, now I have information about where

the Consul server is running and what ports and datacenter to

use. That's defined in the variables. I have the proper defaults,

but obviously, you could set this to wherever you happen to be

running your Consul server. The next big change is in resources.

So let's go ahead and look at the resource here.

I have a provider defined here for Consul that uses the variable

values that were in the variables file. So that is all set and ready

to go. If we scroll down a little bit, we get into the data sources,

and here, I've defined a data source. I'm using the data source,

consul_keys. I'm calling it networking, and then the path is the

path to my configuration data,

networking/configuration/primary/net_info. Now what am I going

to do with this information?

Because remember, it's stored in JSON. It has a bunch of data in

there. Well, if we scroll down a little bit further, I'm going to find

some local values to make use of this data. That makes it easier

to use locals where I was using variables before because I just

have to change var to local.

So I'm basically defining the variables I had before, but in my

local values. And the way that I'm doing that is first, the data is

in JSON, so I have to decode that JSON. How do I do that with

Terraform? Luckily, there's a function called jsondecode. So I'm

using that function, and I'm giving it the information that's stored

within the value for the key networking. So I'm doing

data.console_keys.networking.var.networking. Because the name that

I gave to refer to it was networking. And then because it's JSON

data and it's a map, essentially, I can refer to the key in the map

of the value I want, in this case, cidr_block, and then I do the

same thing for private_subnets, public_subnets, and subnet_count.

And Terraform will correctly interpret the JSON data as the

Terraform data types. So when it sees private_subnets and it sees

a list of private subnets, it's going to know that that is a list data

type and treat it as such. We've taken our configuration data, and

we've defined it as local values. If we scroll down into networking

and look at the cidr argument, now instead of var.cidr_block, I'm

using local.cidr_block.

In the availability zone definition, I'm using local.subnet_count,

and for the private and public subnets, I'm using the local.private

subnets and local.public subnets. So far, I haven't updated the

tags. I'm not quite ready to use that data yet. That is all the

changes that we've made for this particular configuration. So the

next thing to do is go through the Terraform initialization process.

We have gone through our configuration, now we are ready to use

our Terraform configuration, and what I'm going to do here is run

terraform init with the pointing at Consul. Run that down in my

terminal window. It's going to download the plugins and the

chapter and check for the backend, and because there's already

configuration data in that backend, we should be good to go. If

we want to verify that the proper state data is loaded, we can

borrow this command that we learned in the previous chapter,

terraform state list, and it'll list out all of the objects in our state

data, so we know that we're good, we're connected to that remote

state backend that's in Consul. Now we can run terraform plan,

and if everything goes smoothly, it's going to go ahead and tell

us there are no changes to be made for our configuration,

because we didn't actually change anything about the

configuration, we just changed where it's getting its configuration

data from.

No changes. Infrastructure is up to date. So that is exactly what

we were looking for. Now let's take a look at how we can use

templates to streamline our configuration a little bit more.

Templates are a way to work with strings within Terraform. There's

a lot of different ways to work with strings, and templates are

just one of those ways to do it. It's all about the manipulation of

strings. Templates are a bit of an overloaded term when it comes

to Terraform. What do I mean by that? Well, templates could refer

to quoted strings. It could refer to using heredoc syntax in your

config. It could be referring to the template provider, or it could

be referring to the template file function. When you say templates

in Terraform, you probably need to be a little bit more specific.

What is important about templates is that they enable

interpolation of values and also the use of directives. If you're not

sure what that means, let's expand on that a little bit. We'll start

with template strings. Template strings, you've already been using

these implicitly. When you do an interpolation, you're basically

using a template. They are expressed directly in the configuration.

You're not referring to an external template file for this. You're

doing the templating inside your own config. You can use heredoc

syntax for readability. And if you don't know what heredoc syntax

is, we will see that in a moment. What does a simple

interpolation look like? Well, you've probably used this already. It's

when you refer to a variable or a local value or something about

your resource attributes and you want to use that in a string. You

refer to it by using this interpolation syntax, the dollar sign, curly

braces, and then the reference to the attribute or variable that you

want to use. That's simple interpolation. You can also use a

conditional directive and statements to determine the value for a

particular string.

Let's say that you had a prefix variable and you wanted to append

that prefix to app, but only if that prefix has a value. So you

could do a directive statement that starts with the percent sign

and curly braces, saying if the prefix is not equal to the empty

string, set the string to the prefix.app, otherwise %{ else }, set it

to and then end your if statement. So that's a conditional

directive. You can also do a for loop with a directive where you

can loop through a number of different names, let's say you had

a list of local.names, and for each name in the list, you will

create a string that is So that's a way that you could use a for

loop. There's a bunch of other applications for it as well, but that

is one example of how you would do that, and that is heredoc

syntax, that less than, less than, some string in caps, and then

you end it with that same string, and that means you don't have

to use any escape characters within that body of text. Another way

to use templates is by doing the syntax with the template data

source. What does that look like?

If we're using the template_file data source we would start with

template_file and then give it a name label, in this case we'll use

example, and you can actually use the count meta argument

within the data source, which is pretty handy if you want to

create a number of these values. And then you have to define the

template you want to use and this can either be defined or it

could be defined as a separate file. If you're defining you have to

use the double dollar sign to indicate an interpolation of a nested

variable. Where is it getting the values for those nested variables?

In the variables map block. So you're specifying a map of

variables here, and you could specify some string for van, and

you can also reference the current count of the count loop that

you're in for this data source by setting current count equal to

count.index, and then this template would produce whatever is in

the variable, some_string - the current_count. So that is one

example of using an template, and we're going to use that in our

configuration in a moment, so you'll see exactly how this works.

In order to make use of the values stored inside the template,

you would refer to the rendered attribute of that template. You

can also define a template in a separate file, and this is especially

useful for really long bodies of text, say something like an AWS

IAM policy or role, those tend to be pretty verbose and long, and

they would kind of clutter up your Terraform configuration a little

bit.

So how does this work? It's a little bit different. In the template

configuration, you still have your data source template_file, but for

the template argument you use the file function and load what's

in the peer_policy.txt file. And then, just like we did before, we

have to specify any variables that we want to replace values within

that text. In this case we might want to use the arn of the VPC

to configure a peering policy that enables the actions

AcceptVpcPeeringConnections and DescribeVpcPeeringConnections.

If we look over in the body of that text, you'll see under Resource

we have ${vpc_arn}. Terraform will know that it has to use the

value in var.vpc_arn as an interpolation for what's in the vpc_arn

in the template file, and you will get the rendered template out of

that. There's also a templatefile function, so if you don't want to

use a data source, you just need that string, you can use the

function, templatefile, and you pass it the path to the templatefile

you want to use and then a map containing the variables you

want to submit as part of that template. It's a little more

streamlined and it means you don't have to use the template

provider. So let's go back to our configuration and we'll walk

through using templates to update our Terraform config. In Visual

Studio Code, we are ready to update our config data to use

templates, and we're going to update it to also use those default

tags that we created in Consul as config data. so how are we

going to do this? The first thing we're going to do is go into the

consul folder, and we're going to run one command to put some

new data in an existing key. We had our networking configuration

data stored in network info, we're now going to update what's

stored there by running consul kv put and referencing the file

Let's go ahead and grab this command, and we'll paste it down

here. We've now overwritten the data that was previously the value

for that key. What is in this file? There's a lot less than the

previous file. So if we look at the previous file, we had our

private_subnets and our public_subnets, our cidr_block, and our

subnet_count.

If we're looking at our new configuration data, we're just giving

the cidr_block and the subnet_count.

How are we going to get the rest of the information? Well, if

you've noticed the public and private_subnets are based off of the

subnet_count and the cidr_block, so we should be able to

calculate that ourselves using some functions and templates. This

sounds like a good idea, so let's close this out and we're going

to go into the networking2 subfolder, so we'll go up one and into

networking2. And in networking2, we have another configuration

that's very similar to the one that we already looked at, but again,

it's a little bit different, we have this templates.tf file.

Let's take a look at what's in there. Let me go ahead and hide

the terminal here, and in templates.tf, we have two template file

data sources here, one for the public_cidrsubnet, and one for the

private_cidrsubnet. The count for both is being set to the subnet

count. So we're creating three instances of the public_cidrsubnet

and three instances of the private_cidrsubnet. How are we

calculating what the value should be for each? We're using an

inline template for the value, and within there we're using the

function cidrsubnet. What cidrsubnet does is it takes a CIDR

range and then it adds whatever number comes in the second

argument to that CIDR range. So if we're doing a /16, we're

adding 8 to it and making it a /24. And then the last one is

which subnet out of that new range do you want to use? The

first time we run this the vpc_cidr is going to be 10.0.0.0/16,

we're adding 8 to make it 24, and the current_count will be 0, so

it's going to use 10.0.0.0/24. Where is it getting these values? It's

in this vars map. In the vars map, we specify the vpc_cidr, which

we're getting from our configuration data using that

local.cidr_block. And the current_count is coming from the count's

we're referencing the index attributes of that. So this is going to

run three times, it's going to create 10.0.0.0/24 and then

10.0.1.0/24 and then 10.0.2.0/24, exactly what we want for our

public_subnet. For our private_cidrsubnet, we do the same thing

except we have to add 10 to the values for our subnet ranges. So

if you look down in the vars map, you'll see current_count is

equal to count.index +10, so now we'll get the appropriate

10.0.10.0/24. etc. So we are calculating our subnets rather than

statically defining them in a configuration. And that makes things

a little more dynamic if you ever needed to change your core

CIDR range, you wouldn't have to redo the configuration data for

all of the subnets. That's kind of useful. But how is this working

with the resources? Let's go ahead and open up resources here,

and let's scroll down. And under consul_keys, you'll see we're now

pulling two keys, we're pulling the network info as one key called

networking, and we're grabbing the common tags values as a

separate key giving it the name common_tags.

If we go down into locals, we can see we're grabbing the

cidr_block and subnet_count from the map that's stored in the

networking data. And for common_tags, we're just getting the

entire value of common_tags, which is a map itself, it's a map of

common_tags.

Scrolling down to resources, if we look under private and

public_subnets, we can see how we are now using the

template_file data source. Under private_subnets, we're saying

data.template_file.private_cidrsubnet, and then we have this *

character. What does that thing do? Well, what that star does is

because we use the counts, we actually have three instances of

this data source, that star grabs all three.

And then we tell it we want the rendered attribute of each of

those three, and it will package it up in a list for us, which is

precisely what we need for and then we do the same thing for

public_subnets.

And then scrolling down a little bit more under tags, we've

replaced the tags that we had with local.common_tags, so we're

using the tag data that's stored in Consul. So let's go ahead and

get this configuration deployed. We have reviewed our

configuration and we are now ready to deploy that configuration.

Go ahead and pull up the terminal window, and if we scroll down

a little bit, we have our terraform initialization command. We are,

once again, initializing our Terraform config and we're using the

same Consul backend so it should just pull that state data in.

Once again, we can confirm that we have the proper state data

loaded by running Terraform state list and we should get a list of

all the resources. That's looking good. And now we can run our

plan and there is going to be quite a few changes here, not

because we're changing anything about our network configuration,

but because we're updating the tags for all of our existing

resources. So a lot of things are going to scroll by here and we

can just scroll up a little bit once it finishes.

So in this one resource, the little yellow tilde lets you know

what's being changed about a resource and we can see it's adding

a bunch of tags to the existing list of tags for that resource and

that's it. It's not making any other changes to that resource and

you'll see that every other resource in the list, it's simply changing

the tags. Our configurations worked out properly. If we scroll up a

little bit and take a look at one of the subnets, we can see that

the public subnet 10.0.2.0 hasn't changed at all, so our templates

worked exactly as we wanted them to.

We have abstracted some of our configuration and now our

tagging data is stored in Consul. That's pretty useful. So obviously,

the last thing to do is to run terraform apply config.tfplan and

we'll go out and update the tags for all of those resources, and

obviously, since that's all it's changing, it happens pretty quickly.

We have successfully used templates to abstract some of our

configuration and used a remote data source to hold our

configuration data. In summary, one of the things we talked about

is how templates enable code reuse. The way that we structured

our templates in our configuration means if we change the cidr

address that we want to use for a VPC, we don't have to change

all the subnet values. That's something that will just automatically

update, and that makes our configuration a little bit more

reusable. You can do the same thing with IAM policies or the

user data that you submit for EC2. There's lots of different

applications for templates. The next thing that we saw was that

data sources can glue configurations together. They can provide

the configuration data. And as we'll see in a future chapter, you

can use remote state as a data source for another configuration.

Finally, we saw that custom data sources are an option. You can

use external HTTP. You can use Consul. There are a bunch of

different data sources out there, and you're not just limited to the

existing providers and resources that you're using. Next, we are

going to talk about workspaces and collaboration. So we are going

to bring our applications team in and get multiple environments

set up to collaborate on.

Chapter 5 How to Use Workspaces & Collaboration

When you're first getting started with Terraform, you're probably

deploying something in a development type environment, but as

your configurations move to a production type scenario, you're

probably going to want to deploy multiple instances of your

configuration, as well as collaborate with other team members and

other teams. That's what we're going to explore in this chapter.

We're going to start with using workspaces to create different

environments to deploy the same configuration. And then, we're

going to get into the idea of using remote state as a

collaboration tool with other teams, and the way we're going to

do that is by using remote state as a data source so you can

pull information about another configuration's state data and use

that as a data source in your configuration. But first, let's talk

about the ACME environment. As we've discussed in previous

chapters, you've become somewhat of a Terraform guru at ACME.

And for that reason, you're going to be sharing your experience

with a larger team, allowing multiple team members to contribute

to creating configurations. That doesn't just mean your

infrastructure for yourself. You're going to be creating infrastructure

for other teams and enabling collaboration through the use of

remote state and finally restrict access for other teams. That last

part is key to what we're doing in this chapter. So in this chapter,

we are going to meet the application team and get them set up

to use our remote state data to deploy their application. What

does our current environment look like? If you'll recall, our current

environment configuration looks a little something like this. We

have three availability zones running in a VPC in AWS. And in

each availability zone, we've created a public and private subnet.

That's what we've got so far. And that was a good start to get

the configuration rolling. But now we need to support multiple

environments. How are we going to go about supporting multiple

environments with our single configuration? The way that we're

going to do that is through workspaces. So imagine what we've

got here. We've got our configuration that's spitting out

infrastructure into AWS. And going into that configuration are

values for different environments. We're going to create a

workspace for each environment and then use our configuration

data for each environment to spawn a development environment

first, and then we're going to spawn a QA and UAT environment,

and finally, spawn our production environment. We'll be doing this

all through workspaces, which begs the question, what are

Terraform workspaces? I am sure you'll be a little bit familiar with

Terraform workspaces, but I think it's important to review now.

Terraform workspaces let you take a common Terraform

configuration. However, the state data for that configuration is

stored in individual instances per workspace. It's the same

configuration, but as you switch to different workspaces, you're

actually switching which state data is being referenced, and that

allows you to support multiple environments. You can also

reference which workspace you're in by using the value

terraform.workspace within your configuration, and you can use

terraform.workspace to make decisions about the configuration

that's actually deployed. In order to support multiple instances of

our configuration, we are going to use Consul to store both the

state data and the configuration data. How are we going to go

about that? Well, we've got our Consul key value store, and within

that, we have the networking path. We're going to store the state

data in the state path, and Terraform has an easy way to append

the environment name to each instance of state data, so we don't

have to do anything else there. What we do have to do is

separate our configuration data by workspace. So we will add

workspace to the path for the configuration data to create that

separation. And then for the applications team, we're going to

take the exact same approach, storing the state data in the

applications path and then using workspace as part of the path

for our configuration data. So let's go ahead and set this up

using Visual Studio Code. If you don't already have Consul

running, you're going to need to get Consul up and running. So,

simply go back to m4/consul and fire it back up using the consul

agent command that we have on line 5. That'll get you up and

running. Then, you can open up a separate terminal window, and

we're going to go into the m6 folder and into the consul folder.

So I'm going to go ahead and open up my terminal now. And I

am in the main directory, so I will go into m6 and into consul.

And, now we are going to add more configuration data to our

Consul installation. First thing we're going to need to do is we're

making these changes. We're going to need to set our

environment variable, CONSUL_HTTP_TOKEN, to a token value. If

you don't already have a token value jotted down somewhere, we

can go back to the Consul UI. And in the Consul UI, I have

logged in using the bootstrap token that has access to everything.

So I can go ahead and click on the token for and click Copy

here, and now the token value is copied.

Go back to Visual Studio Code. And I'm going to go ahead and

paste the value here. And because I'm running PowerShell, I'm

going to store it using this command, but if you're using Linux or

macOS, you can use the export command. that is now my

CONSUL_HTTP_TOKEN. Now I can put the additional

configuration data from my workspaces into Consul. So I'm going

to use the command consul kv put and tell it the path I want to

put it into. So you'll see for networking it's

networking/configuration/primary/development, so that's the

workspace, and then net_info is the end of that path.

And then I'm going to place in there the information that's stored

in Before I do that, let's take a look at what's in So I'll go ahead

and open that, and you'll see there's two values here, the

cidr_block for our VPC and the number of subnets, which we've

dropped down to 2. So development only gets two subnets

because we don't really need more than that for our configuration.

Now that we've looked at that, we can run these three

commands, which place configuration data for development, QA,

and production. So I'll simply copy these three and paste them

down here, and now that information has been written to Consul

and it's ready to be used by our workspaces. The next step is to

create those workspaces. We've added our additional configuration

data to Consul. Now let's go through the process of creating a

development workspace for networking. So we're going to go into

the networking directory, and the next step is to initialize the

backend. You only have to initialize once and that covers all the

different workspaces, because each of them is going to write their

state data to this path with a slightly different key at the end,

which we'll see in a moment. So I'm going to go ahead and run

terraform and set the path to networking/state/primary. This is the

same thing that we did before. It'll download our chapters, our

provider plugins, and set up that state data backend for us. Once

that's complete, we are going to create our development

workspace. So we'll go ahead and run terraform workspace new

development. Go ahead and copy that there and paste it down

here. And you can see we have now switched to the workspace

development, it's a new workspace for us.

If you want to know all of the current workspaces that exist, we

can do terraform workspace list, , and we see there's the default

workspace, which is created when you initialize Terraform, so that

is always there and you cannot delete it, and then development,

which is the workspace we just created, and Terraform

automatically switches you over to that workspace when you create

it. so that is all set and ready to go.

The next step would be to run terraform plan, but before we do

that, let's take a look at the configuration to see what has

changed to take advantage of Terraform workspaces. we are going

to take a look at the configuration for networking, so let's go

ahead and shrink up consul and expand out networking. And I'm

going to go ahead and hide the terminal for now so that we have

a little more space to work, and the only change in our

networking configuration will be in the resources file. Let's go

ahead and open that up.

So if we scroll down, the first thing we'll see is when we're

initializing our data source for the consul_keys, under the path for

networking, we've got a conditional statement. So for the path

value, we are checking whether the terraform.workspace value is

equal to default. If it is set to default, then we are going to get

the information stored at the key,

networking/configuration/primary/net_info. If it's not equal to

default, which it's not right now ,it's set to development, then we

scroll over, we are getting the path

networking/configuration/primary/terraform.workspace, which will be

substituted into development /net_info. So that's how it knows to

get the net info that's stored in the workspace name, assuming

it's not default. So that's one configuration change. Let's take a

look at another configuration change. Before, in common_tags, we

were setting the environment as part of the configuration data,

but now that we're using Terraform workspaces, we can use that

as the value for the environment tag for our resources.

So what we're going to do under common_tags is use the merge

function to merge a map where environment is set to

terraform.workspace with the map that we're getting from our

common_tags data. Merge will merge those two maps together

into a single map, and that will be our common_tags that are

applied to all of the resources. So there is another place where

things change a little. Scrolling down a little bit more, we get into

our resources, and we can see that the name of the VPC is now

going to be whichever workspace we're in, in our case it will be

development. There is one other change that's in the networking

configuration and that is enable_nat_gateway. That's now set to

true, and the reason is that the application configuration we'll

deploy on top of this does require a nat_gateway, so that's now

been set to True. So those are all the changes in the networking

configuration. Let's go ahead and get this instance of the

configuration deployed. We've reviewed our configuration, and

we're ready to get it deployed. Let's go ahead and bring the

terminal up here, and I'm going to switch over to m6_commands.

The next command that we are going to run is terraform plan

dev.tfplan. Let's go ahead and grab that here and copy it, and

we'll run the plan down here. And this will take a few moments,

but we can see since it seems to be running successfully, it was

able to go out and get all of the configuration data it needed

from Consul. It looks like we're good.

Let's go ahead and run terraform apply dev.tfplan. So I've copied

that, and I will paste it down here. And because we are creating

NAT gateways as part of this configuration, it could take up to 10

minutes to deploy. I don't want to wait around for that whole

thing. So let's go over to the Consul UI and see what's going on

with our state data. We are in the Consul UI. Let's go over to

Key/Value, and we want to go into networking, and let's go into

state and see what's going on there. We have our primary state

data, which was from our original configuration. We have another

one called And when we create our QA workspace, it'll be :qa,

and production, so on and so forth. In case you're wondering why

it's env, the original command for workspaces was actually env for

environments, and then they changed it to workspaces later. We

also have a new path . Let's go ahead and open that up.

We're back in Visual Studio Code, and we're just going to run

through the same process again. We'll run terraform workspace

new qa. Go ahead and grab that. Now we're on the QA

workspace. We'll go ahead and run terraform plan qa.tfplan. Now

that's running. And lastly, once that plan is done, we can run

terraform apply qa.tfplan, the plan is done.

Let's go ahead and run the terraform apply command, and that's

going to go ahead and deploy our QA environment. And since

we're spinning up three subnets, in this case, it has to spin up

three NAT gateways. So that's going to take a little while. I leave

the creation of the production workspace to you as an exercise.

While this is deploying, why don't we find out what the

application team is planning to deploy on our infrastructure? Our

application team has an application they want to get deployed on

this infrastructure we've been creating. Let's see what they're

planning to deploy. Well, they want to set up a set of web

servers, at least one in each availability zone that's available, and

they want to add a load balancer to load balance traffic across

web servers. And then they'd like to stand up on MySQL RDS

instance in one of the availability zones and then a instance in

another availability zone. And they've told us that they only need

the instance in QA and in production so we don't have to deploy

that additional instance if we're running in development, that's

what they'd like to set up. But, how are they going to get all this

information about our network without having to keep bothering

us? Well, they can do that by reading our remote state. Remote

state can be a data source for other configurations and that's

pretty convenient, especially in this context. Just like any data

source, you use the data keyword and then the type is

terraform_remote_state.

And then finally, you have to give it a name by which to refer to

it. The first thing you have to specify about the remote state is

what type of backend you're using, and in our case, we're using

consul for the backend. Now, since we're using Consul, we also

have to provide configuration information about how to connect to

that instance of Consul. In the case of Consul, we have to

provide at least three arguments here, one is the path to get to

where the network state data is, the second is the address where

you can connect to the Consul server, and then finally, the

scheme determines if you're using HTTP or HTTPS. Let's go back

to Visual Studio Code, and we'll get our application deployment

ready. In Visual Studio Code, we successfully deployed the QA

environment as well as development, so those are ready to go as

targets for our application configuration.

The first thing we need to do, just as when we set up our

network environments, is add configuration data to Consul that

will be read. So we are going to use Samantha's token from

Consul to do that. So let's go over to the Consul UI, and from

the ACL, we are going to click on Samantha's token, and go

ahead and copy that token.

Before we go back, let's go ahead and look at the policy we've

assigned to Samantha, because it's pretty important. Scrolling

down, let's open up the policy here, and just as a reminder, we

have given Samantha access to write to the key prefix

applications, which means she can write configuration data and

state data. We've also given her read access to networking/state,

so she can read the state data from the networking group, but

she can't change it in any way. That's very important to be able

to read Terraform remote state as a data source. Now let's go

back and load our application configuration data.

We still have that token value for Samantha; let's go ahead and

paste it, and we'll grab this whole command and reset our

environment variable from using Samantha's token. Now that

that's done, let's go ahead and go into the Consul folder that has

our configuration data. And just like before, we are going to write

the configuration data for each environment to a path that

includes that workspace name, and we're going to be writing our

common tag information. Let's go ahead and see what's in one of

these configuration data JSON files. So we'll go ahead and expand

this out, and we'll take a look at the development environment

app settings. So we're setting instance sizes for our autoscale

group, and we're setting RDS settings.

That's basically what's in this configuration data, and it will make

a little more sense once we look at the configuration itself. We'll

go ahead and close that up and run these four commands to

populate our configuration data. I'll go ahead and paste that, and

we have successfully written all of our configuration data, which

tells me that our Consul token is working properly. Now let's go

into the applications folder, and now we are ready to review our

application configuration before we deploy it. Now it's time to

review our application configuration. There is a lot of different TF

files so it probably makes the most sense to start with variables.

In our variables, we've got our region that we need to set and

then the various settings for the Consul variables where we're

setting things like consul_address, port, and datacenter. And then

there are some application variables like setting the IP range

where different things can connect from.

Right now, it's set wide open and then also the username and

password for RDS. Obviously in a real world situation, you would

probably want to put this sensitive data in something like Vault,

but for right now, we're just going to fudge it a little bit and

put it in our variables. That's okay for this, but don't do this in

real life.

The next thing that we should probably take a look at is our data

sources. We'll go ahead and open up datasources here, and just

like in our network configuration, we are getting our Consul data

using the consul_keys data source. The first one is applications,

and just like we did for networking, we have a conditional

statement here that looks at one path if you're using the default

workspace and a different path if you're using a different

workspace. We're also getting our common tags from the

common_tags.

The more interesting data source, if we scroll down a little bit, is

the terraform_remote_state for networking. Just as we saw in the

presentation, the backend is set to Consul. For our configuration,

we've hardcoded the address to the 127.0.0.1 port 8500. The

scheme is set to HTTP, and then there is a conditional statement

for the path because, just like the configuration data, the path to

the remote state is conditional on which workspace you're in. If

you're in the default, it will be networking/state/primary if you're

using a workspace. And then as we saw earlier, it will now be the

name of the workspace. So Terraform needs to figure out which

workspace is being used and use that to access the state data for

networking. Scrolling back over, we get into another data source,

which is the AMI we want to use, which will get us the AMI in

the current region for aws_linux.

All we have to do is set most recent to true to get the most

recent version, set owners equal to amazon, and then there is a

number of filters that will get us the exact right AMI that we

want to use. That's everything that's in datasources so let's go

ahead and open up resources. Now this was based on work I

found in another GitHub repository.

We are defining two providers , our AWS provider and our Consul

provider. This is very similar to the network configuration. Down

in our locals, we're defining all of our local values and these are

all the values that we're getting from the configuration data stored

in Consul. We've seen this before. This isn't a surprise.

Scrolling down a little bit more, you see the common tags. Just

like we did with the networking configuration, we're getting the

environment value from Terraform workspace and merging that

with all the common tags we're getting from what's stored in

Consul.

Scrolling down some more, we get into resources. We're going to

create an aws_launch_configuration. So this is the launch

configuration that will be used for the autoscale group.

The name_prefix for the instances will be terraform.workspace We

have the image ID that we're getting from the data source, and

the instance type is from the configuration data in Consul, and

then we're applying three security groups for this instance. We're

also specifying some user data that's in templates/userdata.sh.

Let's see what's in that file real quick. In userdata.sh, all we're

doing here is updating yum, installing nginx, turning on nginx and

making sure it stays on after a reboot, that's it.

So when we go to this web server, all we'll get is the default

NGINX page, which we will replace in a future chapter so don't

worry about that. Let's go ahead and close that up and get back

to our resources.

Scrolling down some more, we are deploying an elastic load

balancer with the name and then the workspace. And for the

subnets, this is the first time we're using our remote state data

source. So for the subnets, it's

data.terraform_remote_state.networking.outputs.public_subnets. This

is an output from our networking configuration which means you

can only get information from the remote state data that's

exposed as an output. If it's not one of the outputs, you don't

have access to it. That's very important. You have to make sure

whoever is creating that other configuration exposes the proper

data for you in the form of outputs. Scrolling down a little bit

more, we get into the listener and the health_check, which is just

looking at port 80 and we're giving it a security group for

inbound traffic.

Scrolling down a little bit more, we get into our autoscale group.

For our autoscale group, we have to tell it which subnets it's

going to be using, we have to give it a name, and then we have

to set the minimum and maximum size, and when it should wait

for elastic load balancer capacity.

We give it the ID of the launch configuration that we created a

little bit earlier and the load balancer it should be using as well.

Scrolling down some more, we get down to our Database Config.

For our database config, we're creating a database subnet group

so these are the subnets where RDS can create the main

database server instance, as well as any copies. For that, we're

setting the subnet IDs to the private subnets in our VPC.

And then we're creating the actual RDS instance itself. Most of

the settings are defined by our configuration data. The last file is

security_groups and I'm not going to go through this in

painstaking detail.

It's basically security groups that allow communication to the

instances and to our load balancer and that's all there is to it.

That's our entire application config so let's go ahead and get it

deployed. We've reviewed our application configuration, and now

we're ready to get it deployed for development and QA. Let's go

over to m6_commands and go ahead and bring up our terminal.

We are in the applications folder. That's where we need to be.

We're going ahead and run terraform init. And you notice that the

path is a little different here, it's applications/state/primary. Let's

go ahead and grab that whole command, and we'll paste it down

here.

And it should successfully connect to that Consul back end and

get our plugins and chapters. Now we can create our first

workspace, the development workspace, for the application

configuration. Go ahead and copy terraform workspace new

development, and now we have created and switched over to our

development workspace.

Well now run terraform plan. Go ahead and grab that and paste

it down here, and this will generate the plan. It needs to

successfully connect to the remote state data for networking in

order to plan successfully. So since the plan ran successfully, we

know it was able to connect to that remote state data for

networking.

Next thing to do is run terraform apply "dev.tf plan". This is

going to take a while. It needs to create multiple EC2 instances.

It needs to create a load balancer, all of those security groups,

and lastly, it has to create the RDS instance. Our development

instance of the configuration has deployed successfully. Let's jump

over to the AWS console.

We're in the AWS console. We can see our EC2 instances

deployed. There's two of them because this is development, and I

only want two instances running. Checking the tags, it looks like

all the tags have applied appropriately, so we are good to go, and

it propagated those tags from the autoscale group, which was a

pretty important thing. So that is all set. If we go down to Load

Balancers , we've got one load balancer. That's our Elastic Load

Balancer for the development instance, and we can scroll down

here and get the DNS for it. Go ahead and copy that, and we'll

go ahead and drop that , and I should get the NGINX page.

There's the test page, and we can see in the address, this is the

development workspace. If we want to do the same thing for the

QA workspace, we can go back to Visual Studio Code, and we

can simply repeat it for the QA environment running terraform

workspace new qa terraform plan and terraform apply. One word

of caution. We have deployed an RDS instance, we've deployed

multiple EC2 instances, and we've deployed NAT gateways. Those

are not free. They will cost you money, so if you're planning to

step away and do something else before you move on to the next

chapter, I highly recommend destroying each environment so you

don't get charged for all of those resources. In summary we

covered using workspaces for multiple environments from the

same configuration, and that was pretty helpful. And then we got

into using remote state data for collaboration. We were able to

successfully use the network state data for our application

configuration, and that is also pretty darn useful. So be thoughtful

about what outputs you expose from your configuration, because

those are something that somebody else might want to consume.

Next, we're going to get into an interesting area, which is

troubleshooting when things go wrong with Terraform. In most of

the examples I've shown so far in the book, Terraform has worked

flawlessly, but I guarantee that's not always going to be the case,

so in the next chapter we are going to see how you deal with

when things go wrong.

Chapter 6 How to Troubleshoot Terraform

In a perfect world, the first time you write your Terraform

configuration, it would validate, plan and apply seamlessly, and

you can just keep trucking on deploying your infrastructure. But,

we do not live in a perfect world and Terraform is going to break.

In this chapter, we are going to explore the different ways it can

break. There's a lot of ways Terraform can break. We're going to

go through those. We'll start by validating our configurations

because the first time you write it, it's probably not going to be

correct. Then, we're going to look into the other ways that things

can break when you get into the plan and apply stage and we

will learn how to enable verbose logging to troubleshoot some of

the more difficult issues. Sometimes resources get created and

they are not created quite right, so we'll look at ways that we can

force the recreation of a resource using taints. And then finally,

sometimes Terraform crashes, and we'll look at how that crash log

is generated and what to do with it. But first, let's start by talking

about what's going on at ACME. At ACME, you've been furiously

working trying to help the infrastructure and applications team get

their infrastructure and apps deployed, and now the application

team has come to you with an update to what you've already

helped them deploy. They basically want to add an S3 bucket and

we'll look more at that in a moment. Now they have been

running into some issues as they try to develop that update and

get it deployed, so they would like your Terraform skills to

troubleshoot what's going on. And finally, they found a weird issue

they'd like you to take a look at, they were trying to do

something and it caused Terraform to crash, so, they're going to

need your help with that one as well. But what are they trying to

do to their application that's giving them so much trouble? Well

it's actually pretty simple. If we take a stripped down look at the

application, we essentially have public subnets and private subnets.

The web servers are sitting in the public subnet and the database

server and its copy are working in the private subnet. The web

servers are not currently logging their data to a centralized

location and the app team wants to change that. They'd like to

create an S3 bucket and write information from those web servers

to the S3 bucket. In order for those web servers to have

permissions to write to that bucket, they are going to need an

IAM role associated with each instance, and that's something we

can do by updating the launch configuration resource. That's what

they want to do. They are running into some issues, so let's talk

about the different types of errors that exist in Terraform. There

are broadly five different types of errors you're likely to encounter

when using Terraform. The first is a command error. So this is

simply an error that happens when you're using the command

line, and there are definitely ways to troubleshoot that error. Then

there's syntax validation, and this is the process by which

Terraform validates the HashiCorp configuration language that

you've laid out for your configuration, and also some of the logic

within that configuration, and we'll talk more about that in a

moment. There's also provider validation. When Terraform runs its

plan process, the provider has to agree with what's in that

configuration. Even if the provider agrees, when we get to the

apply stage, sometimes deployment errors happen, and that's

where we get into things like resource taints. Again, we'll talk

about that in a moment as well. Then finally, sometimes Terraform

just breaks. No application is perfect. Terraform is no exception.

Sometimes things happen and Terraform crashes. What can you

do when that happens? First, let's talk about command errors.

Command errors obviously happen at the command line when

you're using the CLI, and it's usually related to bad CLI syntax or

arguments. Something in what you typed out just doesn't agree

with Terraform. In order to figure out what part of that didn't

agree with Terraform, you can use the help argument along with

the command to see what options are available to you. If that

doesn't work or you need more information, you can always go

read the docs. Honestly, a lot of the time, the answers are in

there, and ultimately, if that all fails, you can go on Stack

Overflow and pose your question there. Let's take a look at the

configuration that the application team has created, and we'll walk

through a command error. In Visual Studio Code, I'm going to

hide the terminal window for the moment. And we'll open up

m7_commands. These are the commands we'll be running here.

In order to get through these exercises, you will need Consul up

and running. If you don't already have Consul up and running, go

ahead and open a separate terminal, go into the m4 consul

folder, and run the command, console agent. Before we run any

commands, let's go ahead and take a look at what's updated in

the application configuration. You can see that iam_instance_profile

is a new argument in there, and we are sending it to an

iam_instance_profile that we're creating in a separate .tf file.

That's really the only change here. So let's go over to this new

s3.tf file, and these are all the new resources that the applications

team has created. Basically, we're creating a bucket prefix. What

do we want the prefix of the bucket to be?

We're creating a random integer using the random provider, and

the reason is our bucket needs to be globally unique. Then, we're

storing the name of the bucket in a local value. Scrolling down a

little bit more, we are creating an S3 bucket and setting

force_destroy to true.

If you don't do that, Terraform won't be able to delete the bucket

if there's any files in it. Scrolling down some more, we're creating

an instance profile, and that profile needs to reference a role.

So below that profile, we're creating that role. And within that

role, we are adding a policy. And we're using the heredoc syntax

to put the policy directly inline.

If you've never worked with profiles and IAM roles before, this

might be a little bit confusing. Basically, the action that we're

granting this role is the ability to assume a role in the EC2

service. So this essentially says EC2 instances can assume this

role. That's important because we're going to give this role some

permissions, and that's what we do next. Scrolling down a little

bit more, we're creating a role policy that gets associated with a

specific role.

And in this policy, we're defining some permissions on S3. We're

specifically giving it permissions to run any action against the S3

bucket that we're creating above, and that's all the resources that

we are adding. We are adding a new provider, and this is our

configuration in a new folder, so we need to run terraform init.

And this is where the application team ran into their first issue.

So let's go ahead and run that command.

When you write your Terraform configuration, you're using

HashiCorp configuration language and sometimes you make

mistakes and that is where validation comes in very handy. Before

you run validation, you actually need to initialize Terraform first

and the reason is it's not just validating the syntax of HashiCorp

configuration language, it's actually validating some of the logic in

the providers you're using in your configuration and we'll see how

that works when we get back to Visual Studio. It basically checks

both the syntax and the logic, which is huge, that can save you a

lot of time from not having to troubleshoot problems. One thing

it doesn't do is check state, so it's not comparing your current

state against the configuration or anything that's going on in the

public cloud or whichever provider you're using, it's simply

checking the configuration itself, which is why you don't need a

state file to do it. The validation run can happen manually, you

can run terraform validate or it could be automatic as part of

another command. For instance, if you run terraform plan,

terraform apply, or even tried to change Terraform workspaces, all

of those will trigger a validation check and throw errors if the

validation doesn't come back clean. One place validation checks

are especially useful is in automation. I have seen many scenarios

where when someone wants to merge a pull request into the

master branch, it has to pass terraform validate cleanly before that

merge will be considered. So let's go back to Visual Studio Code

and validate our configuration. In Visual Studio Code, let's go

ahead and run the command. It's pretty simple, it's just terraform

validate. So I'll go ahead and copy that, and paste it down here.

We immediately ran into a validation issue on s3.tf line 3. Well

that's helpful, it tells me exactly where to look. Let's go back up

to the top of our file, and in line 3, type is set to strings. The

application team made a mistake there because strings is not a

valid type. So let's go ahead and comment out that line and we'll

uncomment the line below it, so now that is correct.

We'll go ahead and save the file and we're going to run terraform

validate again. Let's see what happens. Well, we have another

error.

That's get used to this, this is going to happen, it's just part of

debugging Terraform, and in this case on line 65 we have an

unsupported attribute. So in the first case it had nothing to do

with any providers, it was something that was native to HCL and

Terraform, but in this case it has something to do with the

provider itself. Let's scroll down to line 65, and we can see that

the role we're trying to reference for our role policy, we used the

attribute ids, or I should say the application team did, and

unfortunately ids is not an attribute of that resource.

Terraform knows that because we initialized, and when we

initialized, it got the provider plugins and it has access to that

information. So what we need to do is go ahead and comment

out this line and we'll uncomment the line below it and save it.

The proper attribute is id, and actually it suggests that down in

the error, maybe you meant id, which is nice. We'll go ahead and

run terraform validate one more time, and now it came back

clean.

That's fantastic. So now let's talk about provider validation and

deployment errors. Once your configuration has been validated and

you think it's ready to go, you're probably going to run terraform

plan, and you may get provider validation or deployment errors.

Those can happen during plan or apply. The provider validation

usually happens during plan, and then deployment errors, well,

those really only happen during apply. The most important thing,

and the best advice I can give you is read the error message,

then read it again, and then maybe read it a third time. I can't

tell you how many times I have gone down a rabbit hole because

I read the error message, made an assumption, went down the

line of that assumption, and then later figured out that the error

message was telling me something else. So maybe read it a few

times and make sure you understand it. Sometimes the error

message doesn't give you enough information. In that case, you

want to enable verbose logging at a level that's appropriate for

you to get the detail that you need. And finally, during

deployment, sometimes resources will be created that were not

created properly. Sometimes Terraform knows that and sometimes

it doesn't. If it doesn't, you can taint the resource manually to

force creation, and we'll talk more about tainting and logging in a

moment. Let's go back to Visual Studio Code and we'll run

terraform plan. We're back in VS Code, and we are ready to run

our terraform apply. But before we do that, we have to select the

correct workspace that we want to use. So we're going to go

ahead and run terraform workspace select development. So we

have successfully selected our development workspace. Let's go

over into commands, and we'll go ahead and run terraform plan

dev.tfplan. So we're trying to run that, and let's see if we run into

any errors. Looks like we didn't run into any errors in the plan

stage, so let's go ahead and try to run terraform apply and see

what happens.

So we're running terraform apply dev.tfplan. It's going to try to

create the resources that are in our updated version of the

configuration. It's going to be that S3 bucket, the role, the role

profile, the role policy, and it's going to update our launch

configuration with that IAM role.

But we did get an error here. Let's see what the error is. Scrolling

up, there's actually two errors. , the first one I understand.

It says InvalidBucketName: The specified bucket is not valid. let's

go ahead and take a look at what's in s3.tf, and I'm going to

shrink this terminal down just a little bit so we can look. And

we're going to scroll up to where we're creating our S3 bucket.

For the S3 bucket, we use the local value, local.bucket_name, and

if we look at the bucket name, what's the name? Well, it's the

bucket prefix and the random integer, but with an underscore. You

may not know this, but S3 bucket names can only have dashes,

numbers, and lowercase characters. They cannot include an

underscore, and that's why we got an error. Well, that solution is

obvious. We'll go ahead and fix that right now. Go ahead and

save it. We've got a dash instead of an underscore. Next, we can

look at the second error. Let's see, what does it say? It says Error

adding role aws_iam_role.asg.name to IAM instance profile,

NoSuchEntity. The role with the name aws_iam_role.asg.name

cannot be found. What does that mean? Well, it says on s3.tf line

32, there's an issue. Let's go ahead and look at that line.

So it's trying to create this instance profile. And under the role

assignments, I see what happened here. The reference to the IAM

role is in quotes, so it's treating it as a string and not as a

reference to another object in the configuration. Obviously, all we

have to do is comment this one out and uncomment that one,

which is the correct syntax for it. And you note, this is not

something that terraform validate picked up on because it

thought, you're referencing a role with a string. That's fine. It

didn't pick it up because it wasn't incorrect from a syntax

standpoint. It was incorrect once we actually tried to deploy it. In

theory, we have solved our two deployment errors. So let's go

ahead and run terraform plan once again.

Terraform plan came up with three to add, two to change, and

two to destroy, and that probably is because it needs to recreate

some objects based on what we did. We changed the IAM

instance profile on our launch configuration, so that has to be

replaced. We changed the bucket name, so the policy will be

updated that references that bucket. We changed the instance

profile because it was tainted, and so that has to be replaced,

and we'll talk about taints in a second. And then finally, the

autoscaling group that references the launch configuration, because

that launch configuration is being replaced, we have to update the

setting for this launch configuration, so that is updated in place.

We are all set. We'll go ahead and scroll down to the bottom,

and we're going to run the terraform apply for this, and hopefully,

it successfully creates all of the resources that we need. We get a

new error here that says, Error IAM instance profile already exists.

It did say it was going to destroy that one because it was tainted

and recreate it, so what's happening here? We might want to

enable more verbose logging to troubleshoot this particular error.

How do we do that? Errors that occur in Terraform can

sometimes be a little hard to track down based off of the

information that's in the error. So we can up the level of logging

that's happening. Turning on verbose logging basically means that

the actions that Terraform takes are being exposed at different

levels depending on what type of verbose logging you enable. The

way that you enable it is by setting the environment variable

TF__ LOG to one of a number of different settings. You can also

write this logging out to a file by setting the environment variable

TF_LOG_PATH, and that has to be the full path to a file, not just

a directory. That's where it will write the data from the logging.

As far as different levels of logging, the most verbose is called

trace, and then there's debug, info, warn, and error. Generally

speaking, you want to set it to something like info or warn

because trace and debug are incredibly verbose. So unless you're

really trying to dive down into the bowels of what Terraform is

doing, maybe you start with warn or info and then expand as

needed. One place that logging is especially useful is just like in

validation, if you're using Terraform in automation, you may want

a report of everything that Terraform did at a particular

information level. So you can set TF_LOG as part of your

automation process and set TF_LOG_PATH to store that

information in a file. Let's go back to Visual Studio Code and we

will enable verbose logging. We're back in Visual Studio Code, and

let's go ahead and turn on logging here. Now what level of

logging do we want to do? I'm going to go with info for this

one, and I'm going to use the environment variable TF_LOG to

do that. I'm setting it to info. If you set TF_LOG to nothing, then

it will stop the logging process. So sometimes if it's too verbose,

you don't need it anymore, just set it to nothing and you'll be

good. Once I do that, logging is now enabled. Let's go ahead and

run terraform plan again, because now my plan operation is out

of date. I did try to Run and Apply. Now you can see how much

more verbose this is, and everything in it was marked with what

level of information it's trying to give you.

Let's go ahead and scroll up and maybe get some more

information on what's going on here. And the problem we were

having was with the instance profile. So here's the instance

profile. Now one of the things that I know about this, because I

can see it right here, is that it's got a green +, a /, and then a

What that actually means is that it's going to create a new

instance of that resource and then delete this resource, which is a

problem because they both have the same name, and you can't

do that with an instance profile. So when it tries to replace it, it's

not going to work. That's something I happen to know from

troubleshooting this before, but you may not know that. So let's

go ahead and run terraform apply, we'll run through the apply

process, and it's going to show you in exhausting detail, every

action that it took, right up until it failed.

And if you looked through all of those logs, you would see that it

tried to create the new resource before deleting the existing

resource. Fortunately, the way that you handle that is by adding a

lifecycle block. Let me go ahead and shrink down the terminal for

a minute, because it'll be easier to see this. We'll go to our

resources, because I already have a block for this, and under our

resources, in the launch configuration, you can see the lifecycle

block there, and for that one, it's create_before_destroy set to

true. It would appear that our iam_instance_profile has the same

lifecycle, even though it's not explicitly stated.

So I'm going to go over to our instance profile, and I'm going to

go ahead and put a lifecycle block , except I'm going to set it to

false. It is not going to try to create a new instance of this

resource before it deletes this existing one.

Hopefully, that is going to take care of our error. So let's go

ahead and run terraform plan again. , we have our plan; let's go

ahead and try to apply it. , it looks like it has failed yet again. So

even with the lifecycle block, it didn't work.

It looks like we've actually run into a bug with Terraform. It

should be destroying that instance before it tries to create a new

one. Unfortunately, that is a bug that I'm going to log with

Terraform, but in the meantime, let's go ahead and update the

name of this ASG profile so it doesn't try to create one that

already exists, and we'll just call this _bug. We have a name for

this profile, we'll go ahead and run terraform plan again, and we'll

go ahead and run terraform apply. And it successfully applied our

configuration, which means it destroyed that instance profile, but

you can see that's the last thing it did was destroy that instance

profile.

So even though we put the lifecycle block in there and told it to

destroy it before it creates it, it looks like Terraform chose to

ignore that for some reason, which means there's probably a bug

in that AWS provider, and I'll need to file that bug later. So we

have successfully deployed our configuration. You'll remember, the

whole point of this was to create an S3 bucket and get that IAM

role applied. Did we successfully get that IAM role applied? Let's

go over to the AWS console and check it out. , here we are in

the AWS console looking at our instances, and each one should

have an IAM role configured.

So we'll go ahead and look at the first one and scroll down, and

there we see under IAM role, it is still blank. Why might that be?

Well, it's because even though we updated our launch

configuration, the autoscale group associated with that launch

configuration does not automatically delete instances and recreate

them, and that is how IAM roles are assigned.

How can we force the recreation of these instances? We can do

that through resource taints.

Chapter 7 Resource Taints & Crash Logs

Resource taints are a way to force the recreation of a resource. It

basically tells Terraform, recreate that resource for me because I

know something is wrong with it. Terraform will taint things

automatically if it knows they weren't created successfully. And we

just saw that when we tried to create that instance profile and it

had a bad attribute associated with it, Terraform tainted the

object. Now, of course, we had a little trouble recreating that

object because of the name, but we did see how Terraform will

taint something automatically. You can also taint something

manually and you identify that object by its address within

Terraform. The easiest way to get that address is by running

terraform state list and it'll list out all the resources in your

configuration. Resources can also be untainted. So if Terraform

marked something as tainted and you know it's actually fine, you

can untainted that resource so Terraform won't destroy and

recreate it. You also might just want to do something yourself as

opposed to having Terraform do it. But how does the taint

command work? Let's take a look. There's two commands here,

there's taint and untainted. They're very, very similar, so let's look

at taint first. The general syntax is terraform taint, any options,

and then the address of that particular resource you would like to

taint.

As an example, to taint a single resource, let's say it was an

aws_instance, we could do terraform taint aws_instance.example

and that would taint that resource. What if it's a collection of

resources or a resource and a module? You can do those as well,

you would just have to specify which object in the collection you

needed to taint, so aws_instance.collection and then [0] would get

you the first item in that collection. If it's a module, you just

need the full address including the module. Use terraform state

lists to figure out what the address is for that object. Untainting

is very, very similar, it's just terraform untaint and the address of

the resource that you want to untaint. For example, terraform

untaint aws_instance.example. So those are the taint and untaint

commands, let's go ahead and use them in practice. We're back

in Visual Studio Code, and we know that even though we added

an IAM instance role to our launch configuration, those EC2

instances aren't getting it yet. We could get the autoscale group

to add new instances and delete the existing instances, but that's

no fun. Why don't we do it by tainting the autoscale group itself

and that will force the recreation of the instances as well. Let's go

back over to m7_commands, and we'll scroll down here and go

ahead and run terraform state list and that gives us a listing of

all resources within our configuration. The one that we're most

interested is if we scale up, it's this

aws_autoscaling_group.webapp_asg.

The important thing to understand about tainting a resource is

that any dependent resources are not automatically tainted as well.

So you have to understand what the dependencies are in your

configuration, and if you need to recreate any of those associated

resources, taint those as well. In our case, the autoscaling policies

and CloudWatch metric alarms are both associated with that

autoscaling group so those need to be tainted and recreated as

well. Let's go ahead and run through that process now.

So we're running terraform taint and then the address of each of

those resources, I'll run those down here, and all of our resources

have now been successfully tainted. You may notice that I still

have verbose logging on, that's not very helpful. Let's go ahead

and turn that off, go ahead and copy this command here, and

I'm going to replace info with just blank. We won't have that

verbose logging kind of getting in the way. We have successfully

tainted those resources so Terraform is going to recreate them.

We'll go ahead and run terraform plan here, and once that's

complete, we'll go ahead and run terraform apply after that.

So it's going to add five resources and destroy five and those five

are the five resources that we tainted.

Let's go ahead and run terraform apply. Terraform apply is now

running, it's going to try to destroy those resources, and we get

an error, AutoScalingGroup AlreadyExists.

That sounds really familiar, that sounds like the instance profile.

Let's go look at what's going on with our autoscaling group. So I

go over to resources and go ahead and scroll down here to our

autoscaling group and oh create_before_destroy was set to true,

so it was trying to create the autoscale group before it destroyed

the tainted one.

It respects this lifecycle setting so I'm going to go ahead and set

that to false and save it. And now, let's go ahead and run

terraform plan again, and before we run terraform apply, we'll take

a look at what's in the plan.

Our terraform plan has completed, and we'll go ahead and scroll

up to our autoscaling group and you can see it has been tainted.

And then next to that resource, you can see it says and that's

how you know it's going to destroy a resource and then create

the replacement, which is what we want it to do, it's also what

we wanted our instance profile to do, but Terraform or the

provider decided it didn't want to play along.

So now let's go ahead and run terraform apply, and because we

change the lifecycle setting, it should now destroy it before it tries

to create a new one. And as you can see, it is destroying the

autoscale group so we know that we got the order right this time.

Now it's going to take a little while to recreate these resources so

I'm going to resume when it's completed creating all the

resources.

It finished our apply, five resources were added so that's autoscale

group and the dependent resources on that and one was

destroyed. Let's go back to the EC2 console and make sure that

our instances now have that IAM role. We're back in the console.

Let's go ahead and refresh this and we can see we've got two

instances that were terminated, those were our old instances. Let's

look at this instance and , under IAM role, it has the

development_asg_role.

This instance will now be able to write to the S3 bucket that was

created. We've fixed most of the application teams issues, but

they do have one more for us and that is a Terraform panic, so

let's talk about that.

Sometimes, Terraform crashes. All applications crash. It's generated

basically when Terraform panics, or at least that's the verbage they

use because Terraform is written in Go, and Go panics. It doesn't

crash. That's how they decided to do it. It's basically caused either

by Terraform, or it can actually be caused by a bug in one of the

providers associated with Terraform, maybe even the AWS provider.

It's similar to trace logging in the sense that the output from the

panic goes into a crash file that looks like what you would get if

you enabled trace logging in verbose logging. Generally, your only

rebook here is to open an issue on GitHub, unless you happen

to be a Go developer and really want to get entrenched in this.

There are other people that maintain these providers and people

that maintain Terraform. They're going to want you to log an

issue on GitHub and provide that crash log, as well as your

configuration that caused that crash. Let's take a look at how a

crash could get generated by the application team. The application

team has been messing around with the Terraform init command,

and they found this command called where you can take an

existing Terraform chapter and use it as a skeleton for a new

configuration. They got pretty interested in this, and then they ran

into a bug. So let's go into the folder where they have an

example ready for us.

Go ahead and paste that, and let's see what's in these files. So

we have a folder called toplevel, and in that, we have a main.tf

configuration, and that main.tf configuration invokes a chapter

that's in a subfolder. Let's go ahead and look at that module, and

all it has in there is an output block. It's a very simple

configuration, and this is the one that they want to use with the

command, and they're going to do that from this test folder here.

One thing to note is I'm running a specific version of Terraform

that has this bug. If you run terraform version, you'll see I'm on

12.24. This is an active bug on GitHub.

So if you have a newer version of Terraform, it may not throw

this if you're following along, but let's just go ahead and run the

command. The command is terraform init So we're using that

toplevel folder to initialize a configuration in the test folder. Go

ahead and run it, and, Terraform crashed.

So this is exactly what you'll see if Terraform crashes. And if you

look in the directory over here, there's now a crash.log. We can

take a look at that, and you'll see it looks very much like the

logging we were seeing before.

If you have a Terraform crash, then the best thing to do is go on

GitHub. It even helpfully provides the address to log an issue,

and go ahead and log that issue along with all the other

information that they're asking for. That's immensely helpful, and

it helps other people out who are running into the same issue.

That's basically what you can do if you run into a Terraform

crash. In Summary errors can and will happen. In fact, we just

ran into an error but we just rolled with the punches, and we

troubleshot it together, and we figured out what was going on,

and now I have a bug to go log. So, don't worry. Errors will

happen, and it's when you do get an error, make sure you read it

at least twice, and then think about it for a little bit. Try not to

make any big assumptions, but actually read what it's saying to

you. Also enable logs. If the error isn't giving you enough

information, go ahead and enable verbose logging and see what's

going on behind the scenes. Lastly, you can use taints to force

the recreation of resources, but make sure you're paying attention

to the lifecycle of those resources so that they are destroyed and

recreated in the proper order. Next, we're going to apply some of

this information that we've learned about automation to a CI/CD

pipeline. We are going to integrate Terraform with Jenkins and

enable automation for Terraform in a CI/CD pipeline.

Chapter 8 DevOps Terminology

When you think about the deployment of an application, laying

down the infrastructure is just one part of that process. Your

applications are going to be deployed upon that infrastructure

sometimes using something called a continuous integration and

continuous delivery pipeline. In order to reduce friction and

streamline the application deployment process, it makes a lot of

sense to add Terraform configurations to the pipeline and to

source control. Let's get Terraform integrated with that process. In

this chapter, we are going to add Terraform to a CI/CD pipeline.

Before we dive into the actual integration of Terraform, let's first

level set with some terminology. Once we're comfortable with our

terminology, we're going to look at how automation is going to be

used at ACME, and we'll walk through an example of how that

deployment pipeline could be set up. We're going to review

Jenkins, GitHub, and some of the supporting services behind that,

and then we'll also talk about some considerations when it comes

to implementing automation and CI/CD with Terraform. So let's

dive into some of that crazy terminology. In the introduction, one

of the things that you tend to integrate Terraform with is source

control management, and there are multiple different formats that

source control management can take and you're probably familiar

with at least one of these formats. There is Git, team foundation

version control, and subversion. Those are just a few examples of

the format that source control management could take. There is

also multiple platforms that take advantage of these formats.

You'll probably be familiar with ones like GitHub, but there is

others like BitBucket, GitLab, CodeCommit, and more. What source

control management does is a few different things. A big one is

enabling collaboration with a distributed team all working on the

same corpus of code together. You can create your own branch

and then merge your changes back into a central or main branch

and you can also have other people simultaneously working on

other branches and they won't conflict with the work that you're

doing, or if they do, you can resolve those conflicts before they're

merged into the main branch. Another thing that source control

management brings is version control. As your main branch

iterates or your individual branches iterate, you're going to have

multiple versions, and if something goes wrong, you can always

roll back to a previous version or pick out pieces of that previous

version to roll forward. It's very flexible and it gives you a high

degree of control of what's actually being deployed in production.

Something that goes with source control are CI/CD pipelines.

You've probably heard the term CI/CD and maybe you weren't

even sure what the CI and CD stand for. CI stands for continuous

integration and CD usually stands for continuous delivery. In a

similar fashion, there are multiple platforms to support CI/CD.

You've probably heard of some of these, things like Jenkins,

CodePipeline, or even Bamboo. What continuous integration does,

the CI, is when code is checked into a repository, continuous

integration is going to run some processes against that to check

that the code is valid and then potentially merge it into an

existing branch, it does some of the work for you. The continuous

delivery side of things is how new builds are created based off of

the code you're checking in and then delivered in preparation for

being deployed to a target environment. Sometimes people say

continuous deployment, which is actually an additional step upon

delivery, delivery just implies that you have the build artifacts

ready and you can deploy that build when necessary. Part of the

CI/CD process is usually some type of pipeline that does some

automated testing and validation of the code that you're

submitting before it makes its way to a production environment.

In that regard, pipelines tend to support multiple environments

and there is a flow between those environments, something that

goes to development and passes development can move its way

into QA or testing, which can then move its way to staging, and

finally, production. So those are CI/CD pipelines. It sounds scary,

but they're really not that scary, and we're going to build one in

this chapter to show you exactly how not scary they really are. At

ACME they have been using GitHub for their source control

management, and for their CI/CD pipelines, they have chosen to

go with Jenkins. It's a very common pipeline tool, and ACME feels

comfortable using it. And finally, as we've seen previously, all of

the configuration data for our Terraform builds will come from

Consul, so that is staying consistent from our previous chapters.

What does the pipeline look like in their build process? At ACME,

they are using Jenkins for their CI/CD pipeline, and they're

breaking it up into multiple pieces, which are usually called stages

in the world of Jenkins. So we're going to have multiple stages

that our pipeline advances through. The beginning of that process

is code check in. When new code is checked into Jenkins, it could

trigger this entire build process. The next step is a natural

evolution of what normally happens with Terraform, you move to

the initialization stage, so we've checked in our code, we've

initialized our Terraform configuration for a specific workspace.

Then after initialization, we want to validate that the configuration

that was submitted via SCM is in fact good, so we're going to

run terraform validate to make certain of that. If the validation

passes, now we can move on to terraform plan, and we're going

to run the plan command against our target environment. If our

plan runs successfully, we move to the approve stage, and in our

case, this is a manual approval process. The pipeline will wait for

someone to check the plan and say yes, this looks good, and give

it the approval, which will move it to the final stage, which is

apply, when it applies the actual configuration. In our particular

example, if you decline the plan, it actually destroys the

environment, and that's just an easy way to tear down this

environment when you're done with it. You probably would not do

that in a production environment, it's really just there for

convenience. So that is our automation setup that we will be

doing using Jenkins. But how are we going to get Jenkins

deployed? When it comes to setting up and installing Jenkins, you

have a number of different options. You could just install Jenkins

as a traditional app, it uses Java, you could run it on your local

desktop, but that's no fun and you have to have the right version

of Java running and we know that can be a pain. So what's

another viable option? Well, you could deploy Jenkins in a

container. The container is already going to have all the correct

versions of Java and the latest version of Jenkins, and it will

initialize the Jenkins configuration for you, so you just go straight

to the admin logon and move on from there. A final option is to

deploy Jenkins in the cloud, and this is actually useful if you're

deploying to say AWS or Azure exclusively, you can give the

instance that Jenkins is running on a role with permissions to

deploy infrastructure and it can use that role as it's running the

pipeline. So there's a bunch of different options for how you

could run it. For our purposes, we are going to use Docker to

deploy Jenkins in a container. So let's flip over to Visual Studio

Code and see how we're going to accomplish that. In Visual

Studio Code, we've got two folders , applications and networking,

that have our configurations waiting for us to use, and we've got

our m8_commands.txt. Let's go ahead and open that up. To

successfully work through this, you're going to need Consul

running in the background, and if you haven't already picked up

on this, you're going to have to go into chapter four and fire up

Consul with the command that's on the screen. So if you haven't

done that, go ahead and do that now. The next thing we're going

to do is create two tokens for Jenkins to use as it's going

through its CI/CD process because just like Samantha, Jenkins is

going to need access to Consul for the net configuration and the

app configuration. The first thing we're going to do is set our

route tokens so we can create additional tokens in Consul, so I'm

going to set my environment variable CONSUL_HTTP_TOKEN to

the root token, which I already have entered here. Go look at your

notes if you don't have it available, but I'm assuming you've

already got this part down pat.

So go ahead and open up the terminal here and whoa, that's a

little high, let's scroll that down. And I'm going to copy this

environment variable command, go ahead and paste it down here.

So now we have that stored in our environment variable, we can

run the Consul commands and it'll use that token in the

background. We're going to create two tokens here. The first one

creates a networking token with the description Jenkins networking.

We're assigning it the policy networking which is the same policy

we assigned so it will give access to the network state and the

network configurations. The second one has the description

Jenkins applications and it's getting the policy applications which

will grant it access to the application state and configuration

information, as well as access to the networking state. So let's go

ahead and run these two commands. We have created our two

tokens and I'm going to scroll up here so we can see what the

output was and we want the secret ID from both of these.

It looks like PowerShell garbled it a little bit, but this is the secret

ID for the networking token. I'll go ahead and grab that and

paste it off the screen in a Notepad. I have that one and I'll go

ahead and copy the secret ID for the application token. So I have

both of those stowed away for when we configure our Jenkins

installation to use these tokens. Now we're going to create our

Jenkins container. The first step in that is to pull a Jenkins image

from Docker Hub, and we want the Jenkins LTS image. That gives

us the Supported version of Jenkins. So I'm going to go ahead

and run docker pull jenkins/jenkins:lts. so that is running, and it

is downloading all the various components of that image.

It should only take a few moments because it's not a particularly

big image. Once it's completed downloading the image, we can

use docker run. Docker run starts up a container based off of an

image. And if we take a look at what's in this command, it's

saying docker run, so start a container. We want to expose port

8080 and port 50000 from the container to the container host.

Dash d lets it know that it should run in the background and not

in the foreground. Scrolling over, we want to give it a volume

where it should write its persistent data, and we're going to call

that volume jenkins_home, and it's going to be mounted on

var/jenkins_home. And if we scroll over a little bit more, we're

naming this container jenkins. And then finally, the image that

we're using for this container is jenkins/jenkins:lts. So I know

that's a lot to take in, especially if you've never used Docker.

Let's go ahead and grab this whole command, and we're going to

paste it. When the Jenkins container starts and finishes its

initialization process, in the logs it puts the administrator

password that we can use to further configure Jenkins. So if we

wait a few moments, we can then run docker logs. And what the

docker logs command does is you tell it which container you

want the logs from and it directs that to standard out. So let's go

ahead and paste that down. And it looks like it is still initializing.

And if we scroll up a little bit, Here is the admin user code that

we're going to put into the initial page for Jenkins. So let's go

ahead and grab that right now. Now we're going to open a

browser and start the process of configuring Jenkins to run our

pipeline.

Chapter 9 How to Add Terraform Plugin

We are at a browser and in order to get to Jenkins, we're going

to go http://localhost, and we'll go to localhost 8080 because

that's the port that we exposed it on.

It's asking us to unlock Jenkins and we already got the initial

admin password, but if you didn't have it, it gives you the

location where it is stored. Let's go ahead and paste that in now,

and the first thing it's going to do is ask us if we want to install

suggested plugins.

Generally speaking, you do, so I'm going to go ahead and click

on that and then we'll will walk through the process of installing

all of these initial suggested plugins.

When it's done, we'll walk through the process of preparing this

Jenkins installation to run Terraform. That plugin installation is

complete, let's go ahead and create a user for ourselves. Save and

Continue and then it's just letting us know we could change our

instance configuration if we want to, but we're going to leave it at

localhost, Save and Finish, and now Jenkins is ready for us to

use.

What do we need to do now that we're in Jenkins?

http://localhost

The first thing that we're going to do is we're going to install the

Terraform plugin because we're going to kind of need Terraform

available if we want to execute a pipeline with it. So let's go back

to the browser. We're back at the browser, we're going to go into

Manage Jenkins, and we want to Manage Plugins, and we're going

to search for the Terraform plugin under Available.

So we'll go ahead and click on the Available tab and search for

Terraform, and there should be only one result here. We'll check

the box here and Install without restart. This does not require a

restart, it's merely installing the plugin and then we'll tell it which

version of Terraform it should download and use.

So that has been successfully installed, let's go back to the main

Jenkins page, we'll click on Manage Jenkins, and go into the

Global Tool Configuration because the plugin is considered a

global tool. And within the Global Tool Configuration, we're going

to scroll all the way down to Terraform, and we want to add a

Terraform installation to be used. Go ahead and click on that

button, and we'll call this, very simply, terraform. If you had

multiple versions , like you're going to run 11 and 12 and 13, you

can create multiple Terraform installations to reference, but, let's

keep it simple we're just going to use almost the most recent

version of Terraform.

The most recent version is 13 because that literally just went to

GA, but we've been doing this all with 12, so I'm going to stick

with version 0.12 for the demonstration. Let's scroll down and get

the proper version. We want the linux amd64 since the container

in which Jenkins is running is a container, and that's it.

We'll go ahead and click on Save, and now that executable will be

available for us to use in our pipeline configurations. That's all

set. What else would we need as part of Jenkins when it comes

to running a pipeline? Well, we know we're going to need those

tokens for Consul access and we're going to be deploying things

to AWS, so we're going to need some credentials for AWS.

Generally speaking, you would create separate and new credentials

for your pipeline, we're just going to reuse the deep dive

credentials that we created at the beginning of this book, but

obviously that is up to you. So let's go into Manage Credentials,

that's the next stage here. We are now ready to configure the

credentials for our Jenkins Pipeline. We're going to go ahead and

go into the global section of the credentials, and we're going to

add four credentials here. So I'm going to click on Add

Credentials. The kind for all of these is going to be Secret text.

And there's two fields we're going to have to fill out, one is the

Secret value itself, and the second one is the ID by which we can

reference the secret in our pipeline configurations. Let's start by

doing the consul_tokens. So if we jump back to Visual Studio

Code, and scroll down a bit here, we have the names of all the

credentials that we need to create. The first one is the

networking_consul_token, so I'm going to go ahead and grab that

so I get the naming exactly right and paste it under ID. And then

for the token itself, remember I have that saved in a separate

Notepad file, so let me grab that text, and I'm going to go ahead

and paste that in the Secret, and click OK.

So now we have our first one, we're going to repeat the process

for the application token. We're going to grab the name from

Visual Studio Code and change the kind to Secret text, paste in

the ID, grab the secret for applications, and paste it under

Secret. That's our two consul_token secrets. The next two things

we need are the access key and secret key for our AWS

credentials. So let's go ahead and grab the ID for the first one.

And I'm going to add credentials here, go down, say Secret text,

paste in the ID, and I have my AWS credentials over in the same

Notepad document. So go ahead and paste that in, there is my

access key. And lastly, we're going to do the secret key. So I'll go

ahead and grab the ID of that, and go back to Jenkins, select

Secret text, put the ID, and lastly, paste in the secret key. And

click OK. So now all of our credentials are ready to go. The next

thing to do is go ahead and set up a pipeline, but before we do

that, let's take a look at some considerations when it comes to

using Terraform in automation.

Chapter 10 Terraform Automation Considerations

When you're running automation in Terraform, there are some

things you need to be aware of. The first is your plugins. Where

are you going to get your plugins from and do you care about

source controlling them? You can also specify the version of

plugins you want to use, but some companies really want to store

those plugins locally so they're not constantly downloading them

from the internet. So that is one thing to consider, especially

when you're running things in automation. Another thing you need

to consider is workspace usage. Workspaces are highly encouraged

when you're creating these types of pipelines. You're probably

going to be using the pipeline to deploy different environments

and workspaces are the perfect way of dealing with those different

environments. Workspaces let you separate out state, they allow

you to reference the environment within the context of a build

pipeline, and then it can also impact how each configuration is

rolled out. Will it be rolled out automatically or is there a manual

step that has to happen because it's going to production? In

terms of state control, really the only option here is remote state.

Could you do it with local state on the build server? Possibly, but

I really encourage against doing that sort of thing because you

want that state to be available if you replace that build server or

if something else needs to reference that state. So generally

speaking, you're going to be using a remote state. The only

question here is how do you initialize that remote state within the

context of the build pipeline? Another thing to think about is

output control. Terraform can be pretty chatty as we've seen and

I'm sure you've noticed as we've run plan, and apply, and

initialization, it produces a decent amount of output, and for the

most part, that's fine, but sometimes that can mess up

automation pipelines so there is an environment variable called

TF_IN_AUTOMATION that can help you reduce the amount of

output and the of Terraform by letting it know that there's not

going to be a human being watching this output. Another thing

to think about is what's the deployment pattern to follow when

you're using automation? And our pattern has mostly been to

initialize, plan, and apply. There are a couple of things to consider

when it comes to automation. Once the plan is generated, do you

want someone to manually review that plan before it's applied to

the environment? In production, I'd say you probably do. In

development, you might not, so you have to make the decision

about how each task folds into the next one. Another thing to

deal with is the fact that it's an automated process so there is no

user prompt for input if you missed a variable. The last thing is

error handling. How do you want to handle things if the process

errors out? Is that the end of the pipeline or does it continue on,

and if there is an error, how are you going to log it

appropriately? Jenkins is pretty good about capturing the Consul

output and logging it, but other automation platforms might not

be as good at doing that and you want to store your logs

somewhere else. Let's talk about some of the environment

variables that Terraform offers up to help you with this

automation process. Terraform supports a vast number of

environment variables. Sometimes it can get a little bit confusing.

Some of them are specific to automation and I wanted to

highlight those now. The first one I already mentioned, it's called

TF_IN_AUTOMATION, and if it's set to any value, it doesn't have

to be true, but I set it to true so it's clear, if you set it to any

value, it lets Terraform know it's working in an automation

context, so not to create any Consul output that might mess with

an automation framework. Another thing you're probably going to

want to do is up the logging of Terraform to something like info

or possibly even higher because if something does go wrong,

you're not there to see it. You want it to be caught in the Consul

logs of the pipeline that you're using. You could also, as I said

before, capture that log data in a path somewhere and I would

likely upend the month, date, year, and even timestamp to that

log so if it's run multiple times, you're not overriding your existing

logs because that's, that's bad. The next one is an environment

variable called TF_INPUT. If that's set to false, Terraform will not

prompt the end user for input, meaning if you run terraform

destroy and it prompts you for a yes or no, Terraform is not

going to do that, it's just going to cancel an error out at that

point. So if it encounters any situation where it does need user

input, it's actually just going to error out rather than waiting for

that user input. Another useful one, and this is not specific to

automation though, I do think it's helpful, is if you create an

environment variable called TF_VAR_ the name of the variable in

the Terraform configuration, Terraform will see that and use that

value in the configuration so it's a really easy way to pass a

variable value without adding it to the command line. The next

one is TF_CLI_ARGS and this is another way to cut down on

arguments in your command line actions. You can define

arguments through TF_CLI_ARGS and those arguments will be

applied to every time you run Terraform within the context of that

build. So those are a bunch of environment variables that are

helpful in automation and we are going to make use of those in

our Jenkins file. Speaking of which, let's go back to Visual Studio

Code and look at what's going to be driving our pipeline. It's time

to take a look at what is in networking. So let's go ahead and

expand that out. This is the same networking configuration that

we've been using pretty much all along with a few very light

changes. So I do want to highlight those changes and then we

can look at this weird thing called Jenkinsfile, what's that all

about? Let's start with the backend. The only difference here is

because we're running in a Docker container and it wants to talk

to consul, which is running on our main desktop, the address

changes a little bit.

Instead of being localhost or 127.0.0.1, instead, the address is

host.docker.internal, which will resolve to our desktop. So that's

how it's going to get to console. So that is one small change

here. The other big change is in our resources, when we initialize

our AWS provider, I've removed the profile here, and we'll see

that, we'll set two environment variables to pass our AWS

credentials during the build process.

So realistically, those are the only changes to our networking

config. Now let's open up this Jenkinsfile thing. The Jenkinsfile is

a way to declaratively define the pipeline that you want to run,

and you can store it with the code that you're going to be

running in the pipeline, which is, that's kind of convenient,

everything’s in one place and it's checked into source control.

So this is the pipeline definition format. It's using a format that's

defined by Groovy, which is a whole other topic that we're not

going to get into, but that is the format. It's pretty intuitive,

basically, we're defining a pipeline, and then we're putting the

pipeline information inside curly braces. Because multiple agents

can exist in your Jenkins environment, we are telling it to use any

available agent, and since there's only one, that's fine. Then in the

next block, we're telling it what tools are going to be available to

the pipeline. And remember when we installed Terraform and gave

it a name? Now we're referencing that tool, installation, and name

to be available to this pipeline. The next thing are any parameters

that you might specify to the build pipeline on build time. And

there are two things that we want to specify. One is the

CONSUL_STATE_PATH and the second one is the workspace we're

going to use. And we are giving a default value for both. We're

giving a default value for the location of the state, and then the

second one is a default value for which workspace we want to

use. So by default, unless we override it when we kick off a build,

it's going to deploy to development. So those are the two

parameters we're defining. Scrolling down a little bit, we have an

environment block, and these are environment variables. The first

thing is where is this Terraform executable?

And we do that by using the tool function and then telling it

which tool we want to reference, that will return the location of

that specific tool, and we'll store that in TF_HOME for a little bit

further down in our config. Then we are setting TF_INPUT = o to

let Terraform know, don't expect any user input here, then we're

setting TF_IN_AUTOMATION = TRUE, so it has a value, it's going

to make assumptions there. The next thing is

TF_VAR_consul_address. So this is an additional variable that

defines what the consul address is. In our case, it's going to

follow the same as the backend, it's going to be

host.docker.internal. For the log level, we're going to set that to

WARN, so it's going to show anything warn or error. For the

HTTP_TOKEN, this is where we put in the credentials before.

We're using the credentials function and we're asking for Jenkins

to return the networking_consul_token value and store it in this

environment variable. For our AWS access and secret key, we're

doing the same thing. These two environment variables work with

the AWS provider to provide this information without hard coding

it or submitting it through a variable. And then the very last

environment variable is updating our path variable to include

TF_HOME. So the pipeline will be able to run the Terraform

executable without giving it a full path to the location. so that's

all of our environment information. Let's scroll down into the

stages of our pipeline, and you'll remember we saw the stages in

the presentation, so now we're just being more explicit about

these stages. Each stage has a set of steps in it.

So there's a steps block defining the steps to take within the

stage. The first stage is called network initialization. So we're

going to run the Terraform init process. Within the step, we have

to tell it which directory it's going to be running this executable

within. So we're going to run this within chapter 8 networking

because that's where our config lives. First, we're going to output

the version of Terraform we're using because that's just good to

have in your console logs for future reference, and then we're

going to run terraform init, just like we always do, and specify a

argument, and we're setting the path to whatever stored in the

parameters up above for the console state path. And that's the

way that you reference one of the parameters that you've defined

for this pipeline. As we saw in the presentation, we want to

validate our configuration after it's been initialized. So once again,

we're running out of the chapter 8 networking directory, and we're

simply running terraform validate.

If this fails or the stage before it fails, it's going to fail the whole

build because we're not catching the error in any way. In the next

stage, we are going to catch an error, and for a very specific

reason. The next step is to plan, and we need to select which

workspace we're going to be running this plan in. Again, we're

using directory m8/networking, and then we're going to run a

script. And the script tries to run terraform workspace new, and

then the name of the workspace in our parameters. Now, as we

know, if we've already established, say the development workspace,

which we have, that's going to throw an error saying the

workspace already exists. That's if it does already exist, all we

want to do is select that workspace instead. So we have a catch

statement below the try, and if it does error out, that means the

workspace already exists, we'll run terraform workspace select, and

select the workspace. Once that's done, we'll run terraform plan

and then create a tfplan file. Now, what are we going to do with

that file because now we're moving to another stage? We can

stash that file by using the stash command, and it basically

squirrels it away for whenever you want to refer to this stash file

later.

So we're going to call it and say that it includes that file. so now

we move into the last stage of things which is NetworkApply.

The first thing that we're going to do within NetworkApply is

we're going to start a script block, and we're going to set a

variable apply = false. Here we get into the meat of whether or

not we're going to apply the configuration that was generated by

the plan. So we're going to create an input message asking the

end user to confirm the apply or cancel it. If they confirm the

apply, we'll set apply = true. If they cancel it, it will throw an

error, we'll set apply to false, and then within the context of the

directory m8/networking, we're going to run terraform destroy The

reason that I'm doing this is to make it simpler for cleaning up

afterwards. So when you've done all these exercises and you want

to tear all these environments down, you can just rerun the

pipeline and click on Cancel, and it'll delete everything for you.

That's pretty convenient. But generally speaking, we're going to

want to confirm the apply, which takes us down to if apply is

true, which it will be if we've confirmed applying the config,

within the context of directory m8/networking we'll unstash our

tfplan file and then we'll run terraform apply and that's the end of

our pipeline. So those are all the stages. So now that we've

reviewed our Jenkinsfile, the next step is to create this pipeline in

Jenkins.

Chapter 11 How to Create Networking Pipeline

We've reviewed our networking configuration, we've gone through

the Jenkins file, we're ready to set up our first pipeline. We are

going to go into New Item, and what are we going to call this

item? Why, let's call it In fact, that's already in my remembered

items. And the type of item we want to create is a pipeline.

We've given it a name, we've selected pipeline, we'll click OK. It

takes us to the configuration page.

So let's scroll down here, and there's a few things that we do

want to define here. Down under Pipeline, we have Definition, and

we're going to use a pipeline script, but where do we have that

script? We have that in source control. So let's go ahead and do

Pipeline script from SCM. And now it's going to ask us where's

this SCM, what type is it? Well, the SCM is Git.

So we're going to select Git here, and now it needs a little more

information from us. The first is the repository URL, where is this

Git repository located? Now if we go back to Visual Studio Code

and go into m8_commands, I have the URL of my repo that has

in it, so we can go ahead and select that as the repo. If you've

forked my repository and you have your own, feel free to

substitute your own URL here. Going back to Jenkins, we'll go

ahead and paste that. Because this is a public repository, we

don't need any credentials for it. Under Branches to build, it's

asking which branch do you want to build against? Now because

this is a redo of an existing book, I actually have a separate

branch I've been using, which is called v2 because this is version

two of the deep dive. Once I've committed everything and moved

it over it will be the master branch, but for right now, I'm using

v2. You might have a similar thing if you're messing around with

different potential configurations and you want to use a different

branch to build against. So I put in v2 there. And now if we go

into Script Path, where can it find this Jenkins file that you

wanted to use for the pipeline? So I'll jump back to Visual Studio

Code, and under our Script path, we know that it's called

Jenkinsfile. So go ahead and copy that value and paste it . And

the last thing is I uncheck Lightweight checkout because that has

caused some weird errors in the past. Your mileage might vary,

but I know that it works for me, so I uncheck it. Let's go ahead

and save this whole thing here, and now our pipeline is, well, it's

ready to go. What's the last thing to do? It's to run a build for

this pipeline and that is exactly what we're going to do next. At

this point, we have reviewed our configurations. We have prepared

our pipeline. The next thing to do is actually run a build. We're

going to click on Build Now and see what happens. So I just

clicked on Build Now, and we can see down at the bottom, we

can click on Console Output for build 1 and see what's actually

happening in real time. The first thing it has to do is get the

current repository and clone it down to where it's going to be

running this whole thing. So that's the first thing that it does.

Remember, that's what's in the pipeline, and then it actually starts

walking through our pipeline process. This is maybe a little hard

to follow because it's going to be a lot of text scrolling by, so

let's go back to And we can actually watch the various stages

here as it goes from one to the next the next. So right now, it's

in network initialization, which means that it's probably copying all

the chapters and plugins that it needs to use.

Now it's moved into NetworkValidate, so hopefully, our

configuration is valid, and it looks like it was. It jumped right to

NetworkPlan, so now it's running tfplan and planning out its

whole process. And then hopefully, it's going to stop right after

this on NetworkApply and wait for us to give some input. It looks

like it did. So now we're in NetworkApply. If we hover over that,

it tells us it's waiting for us to say Apply Config or Abort, but we

haven't looked at the plan yet. So let's scroll over, and we're

going to go back into the console output and kind of see what

happened here. Now if we scroll up, we can see in the output.

We have already deployed the development environment, and we

didn't make any changes to it, so there shouldn't be any changes

needed to be made by Terraform. So just looking at that, we

know that things have worked properly. So if we scroll down,

within this context, we can go ahead and click on Apply Config.

And because there's no changes, it's not actually going to do

anything when it applies. It'll just show us the outputs that are in

the configuration again and finish with success. If we go back to

deploy, we can see that all the stages have completed successfully.

The first time you set up a pipeline, it's not going to be all

green. There's going to be a lot of red. Don't let that get you

down. When I first started setting this up to get this

demonstration working, it was a sea of red. But what happens if

we want to build to a different workspace, if we wanted to do

this against QA? Well, you'll notice that Build has changed to

Build with Parameters. And when we click on that, it allows us to

update the parameters. The reason we didn't see that before is it

hadn't yet pulled down the Jenkins file from our repository, so it

didn't know what the parameters would be. That's a weird thing

about using a Jenkins file is the first time you run it, it's just

going with the defaults. Now if we wanted to set up QA, we

could simply change the WORKSPACE to qa, and click on Build,

and now it will kick off a new build using the QA workspace

instead. So we can watch it walk through this entire thing right

up to NetworkApply as well. And since we already deployed the

QA environment, there should be no changes for this one as well.

So it's gotten to NetworkApply, and it's pausing for

acknowledgement. I'll go ahead and click on Apply Config, and it

will go through the end of this process, and it’s done. It took 6

seconds.

So, it didn't deploy anything. It just made no changes, and the

same console output was there. So we have now successfully

gone through the networking process. The application team

probably wants to get in on this too, so let's walk through setting

up the application pipeline as well. We have successfully deployed

our networking pipeline and now it's time to set up the

application deployment pipeline. So let's go ahead and create a

new item here, and what are we going to call that new item?

We'll call it And, it's a Pipeline type, we'll click on OK here, and

if you're following along. This probably looks really familiar to you

because the process is basically the same.

We're going to be getting our Pipeline script from SCM, we're

going to select Git as the source control management type. Our

Repository URL we can go back to VS Code and grab it, we'll go

ahead and grab it here, copy it, go back, and paste it. We don't

need any credentials because it's a public repo, and I'll go ahead

and change the branch to v2. And finally, I'll go down to the

Script Path, and the script path for the application, if we scroll

down here, is going to be /applications/Jenkinsfile, so it is a

different Jenkins file that lives with the application configuration.

Go ahead and paste that script path and uncheck Lightweight

checkout, and click on Save, and that's it, we have created our

pipeline. Before we run this, there are a few changes to the

configuration, so why don't we review those changes very quickly.

We've set up our application pipeline using the Jenkins file that's

in the applications folder. Before we move any further, let's see

what's different about the application's configuration. Once again,

if we look at the backend, we can see that the address to Consul

has been updated as necessary. If we go into datasources, there

is a change . For our terraform_remote_state networking, we have

to give a different address for Consul just like we did for the

backend.

So that address has been updated as var.consul_address and

that's really the only changes. And if we go into resources just

like we did in the networking configuration, I've removed the

profile for providers so we can just provide that through AWS

access key and secret key.

One thing I do want to point out is if you wanted to use

different AWS credentials for your application deployment versus

your networking deployment, which you might want to do in a

production environment, the easiest way to do that is just to

create additional credentials within Jenkins, and then in the

Jenkins file under the AWS_ACCESS_KEY and secret key

environment variables, just reference those different credentials in

this applications Jenkins file and you'll be all good.

Speaking of this Jenkins file for the applications, it's basically

exactly the same as the networking one because all the steps are

basically the same so I didn't have to make a whole lot of

changes. , let's go back to Jenkins, and we'll go ahead and deploy

the development and QA versions of this application configuration.

We are ready to build our pipeline. We'll go ahead and click on

Build Now, and this should look very familiar because it's very

similar to how the networking pipeline worked. We'll go ahead

and click on the console output, and we can just follow along as

it goes through all the various steps of what it's doing here. So

it's downloading all the plugins for the various providers, and it

just ran terraform validate.

And let me just scroll up here, and you can see terraform validate

there. And if we scroll down a little bit, it's buried in all these

different error and warning messages. It says Success! The

configuration is valid. So good news, our app configuration is

valid. That didn't throw an error. Scrolling down some more, it

tried to create the new development environment, but we can see

a few lines down, workspace development already exists. So

instead, two lines down from that, we select the development

environment.

Scrolling down some more, we go ahead and run terraform plan

for the application environment. And if we scroll down all the way

to the bottom, you can see that we got No changes.

Infrastructure is and that's because we've already deployed the

development instance of our application configuration.

So we can go ahead and click on Apply Config. There's nothing

for it to do. It will give us the outputs of the configuration if

there are any and say Finished with SUCCESS. That was a little

bit boring. Let's go ahead and go back to and ah, now we have

Build with Parameters again. We can go ahead and click on that,

change our WORKSPACE to qa, and click on Build, and A second

build has kicked off, and this one is for the QA environment. We

know that the networking QA environment is ready to go, so now

our application QA environment can deploy on top of that. Now

this may take a few minutes for it to run through the whole

process.

So I will go back to the view of the stages, and we can watch as

it progresses through the various stages here. And we can see, if

we look at this, it has already made its way to ApplicationApply.

So that was pretty quick. Let's go ahead into Console Output and

see what's going on down there. Scrolling all the way down, we

can see here is the execution plan that's been generated, so it is

creating all the resources we would expect for a QA, and it is a

laundry list of resources. If I were the approver, I would go

through these and make sure it matches up to what I expect,

especially if I'm making changes to the environment.

And if everything looks good to me, I can scroll all the way down

to the bottom and click on Apply Config. And now it moves to

the apply stage where it will create all the resources that were

part of plan. This does take a while. It's creating an RDS

instance, and it's creating all the autoscale groups, etc. You

probably don't want to sit around and watch that whole process,

but I leave that as an exercise to you to go through that process.

And if you're really feeling like you want to, you could actually

deploy the production environments for networking and

applications as well. That would be pretty cool. In summary you're

thinking automation is hard. There is a lot of stuff to digest, and

you're not wrong. Automation is challenging. Automation is also

very rewarding, when it works, it's great, and the nice thing is,

once it works, it kind of just keeps working as long as you don't

change anything else, so automation in that regard is very

rewarding. Another thing is as you walk through automating your

environment, you will find all the assumptions you made about

that environment and have a better understanding of the

environment as a whole. Another thing is to focus on the

concepts that were introduced in this chapter around automating

with Terraform and not on the specific tools. Jenkins is great,

GitHub is great, but there's a lot of other options out there. The

concepts stay the same even when you move to different toolsets,

so keep that in mind. Next, we are going to get into the world of

configuration management because there is a lot of things that

Terraform is really good at. Configuration management is not one

of those, so how can we hand it off to something else? Well, we

could hand it off to Ansible and that's exactly what we're going to

do coming up in the next chapter.

Chapter 12 How to Integrate Configuration Managers

Terraform excels at deploying infrastructure, but when its job is

done, you might want a configuration management application to

take over and prepare the resource for code deployment. Working

in tandem, Terraform and a config manager like Chef, Ansible or

Salt can get the resource configured precisely as it should be and

control configuration drift over time. In this chapter, you will learn

how to add a configuration manager, Ansible, in this case, to your

Terraform configuration. What are we going to cover in this

chapter? Well, since we're going to be dealing with a configuration

manager, it would probably be useful to understand what a config

manager does and how it goes about doing what it needs to do.

Once we have a good grip on that, we're going to talk about

different deployment patterns that exist that may or may not

incorporate a configuration manager. And finally, we are going to

look at our ACME environment and figure out how we can

integrate a Config manager, in our case, Ansible, with the existing

configs that we have in Terraform. First, let's talk a little bit about

what configuration management software actually is. There's a lot

of different configuration management tools out there, but they all

should have some common elements among them. The first is

identification. How does a configuration management piece of

software identify which components will be managed? Usually,

that's defined somewhere in a configuration file or an inventory

file. I've got this list of servers and they're all supposed to be

web servers and this is the configuration I want to apply to them.

The next major thing is control. In order to properly apply a

configuration to a resource, the config management software has

to be able to control that resource. So the determination needs to

be made, how that resource is going to be managed. The third

component is accounting. I know I want a particular configuration

applied to a resource, but first I need to know what the current

state of that resource is before I make any changes. The

accounting portion of the config management software is what's

responsible for figuring out what the current state of an object is

and then comparing that to the desired state. The config

management software will then make the necessary changes. The

last thing that is important to config management is verification.

Once changes have been made, the config management software

needs to validate that the changes that it made line up with the

desired configuration that's stored wherever that configuration

might be. There's a bunch of tools out there that do configuration

management and all of them should share these components in

common. Now that you have a understanding of what

configuration management software should do, let's look at some

of the options to consider when you're deploying configuration

management. The first thing to consider is how does Terraform

pass off the baton to configuration management? It's set up your

infrastructure and now it's ready to say, I'm done, here

configuration management software, you go ahead and do your

thing. In the case of something like Chef or Salt, there's actually a

provisioner that already exists in Terraform you can take advantage

of to do that handoff. Other things like Puppet and Ansible,

you're going to have to write some sort of shell script or do

something similar to handoff from Terraform to the configuration

management software. The next deployment question is do you

push the configuration or do you pull the configuration? When I

say push the configuration, that means there's some sort of

centralized server that has the desired configuration and an

inventory of nodes to apply that configuration to and it goes out

and pushes against each node. Ansible is a good example of that

deployment methodology. When you run Ansible, you run it on a

local box, you give it a list of remote hosts, and a configuration

you want applied to those hosts, and it uses something like SSH

or WinRM to push that config to each node. A pull configuration

is a little bit different. In a pull configuration, you have a

centralized repository that has configurations in it, but each

individual node is responsible for pulling that configuration down

and applying it locally. Often that's done through some sort of

agent. So for instance, Puppet has an agent that you install on

each node and then you set that agent to run on specific

intervals to pull the current configuration from a Puppet Server.

The last thing to think about is sort of related to push versus

pull and that's whether to go with a centralized or distributed

configuration. So a centralized model would mean that there is a

centralized inventory and configuration server that holds all that

information, and often that works in tandem with some sort of

push configuration, though it could work with either. Alternatively,

you could have a decentralized or distributed configuration

management deployment. In that case, the configuration could be

stored in some sort of shared repository, but it's a distributed

repository and there's no centralized server that is forcing

configuration to happen on a certain cadence. In the case of a

distributed configuration, that scales much easier because you

don't have to rely on the bottleneck of a centralized server, but

you are giving up some of the control of that centralized server

when it comes to things like auditing and logging. Now that we

have a good idea of what configuration management software

does and how it does it, let's talk about some deployment

options. What are some ways that Terraform and config

management can work in tandem to deploy a config to a target

environment? In traditional provisioning, you would typically create

an image or use an existing image, and you can think of that

image as either an AMI in AWS or a template in VMware. It's the

base image that you work off when you deploy a new instance.

That instance is just going to be a basic configuration, probably

just the operating system patched up to a certain level. On top of

that instance, you're going to provision the application, and you're

either going to do that through Terraform, you could use the

provisioners that exist in there, or you could hand off that

deployment of the application to a configuration management

piece of software. That would do the initial provisioning of the

application and then continue to manage the configuration of that

app going forward. That is a fairly traditional pipeline. I did want

to bring up an alternative version of that provisioning pipeline

that may or may not include a config manager, and it's called

immutable deployment. Immutable deployment implies that once

something is deployed, it doesn't change. It's not mutable. You

don't make any changes to it. The pipeline for immutable

deployments starts out very similar. You create an image, and you

deploy an instance from that image. The main difference is that

image already has the operating system patched, and it has the

prerequisites for the application installed and the application itself.

All it needs is a little bit of configuration info to know where it

fits into your infrastructure, but basically, that instance is ready to

go from the moment it fires up, and that's very similar to a

deployment. You already have the application installed with some

config information. If you're deploying this with something like

Terraform, you might not need to hand it offto a config manager.

When it comes time to patch or update that application or the

underlying layers, you don't patch or update the instance. Instead,

you update the image. That image is the immutable truth of how

the deployment should be. The whole point of an immutable

deployment is that you never alter the instance once it's spun up.

Instead, you go back and update the image, and once the image

is updated, you redeploy the instance with the update. And

typically, you would do this through a rolling upgrade where you

take an instance out of service, destroy it, and create a new

version of the instance from the updated image. Those are two

different deployment pipeline patterns. The immutable deployment

is becoming more common because of containers in the way that

they are deployed, but the same principles can be applied to

virtual machines. Now let's take a look at how ACME is

approaching their application deployment pipeline. We've been very

active here at ACME getting things set up, we’ve got our

infrastructure setup. We've even got our EC2 instances deployed,

and what needs to happen beyond that? Well, we need to lay

down the application. So far, we have our infrastructure config,

and that covers both networking and application infrastructure, and

we've been using Terraform to deploy that configuration to the

cloud. One of the components in that infrastructure config is

what's called a launch configuration. This is the portion in AWS

that defines how to configure the EC2 instances when they're

spun up from an autoscale group. At ACME, what they want to

do is when an instance is spun up, it will use an Ansible

playbook to install the application. Where is it getting this Ansible

playbook from? The application developers have their application

code. They're putting it together inside of an Ansible playbook,

and they're pushing that up to a GitHub repository. When that

EC2 instance fires up, it knows the address of that GitHub

repository, and it's going to pull that playbook from the GitHub

repository and run it locally on that EC2 instance. So that is our

goal. That is how we're going to get an application deployed on

our instances using Ansible. So let's go over to Visual Studio

Code and get started.

Just as before, you will need Consul running in the background if

you're going to be walking through this with me. If I open up my

terminal window and I go to my first terminal, I already have

Consul running in the background, so I'm good. But if you don't,

go ahead and get that going right now. Now we'll go over to

terminal number 2, and we need to set our

CONSUL_HTTP_TOKEN. We're going to start with a token. So I'll

go ahead and grab that token from where I have it stored. Paste

it, and now I'll take this whole environment variable command,

copy it, and paste it down the terminal.

My CONSUL_HTTP_TOKEN is set. I can now initialize the back

end for the networking, so I'm going to go ahead and go into

the networking folder. And as far as our networking configuration

goes, it hasn't changed at all. It's exactly as it was before. So I'm

going to go ahead and initialize the back end so we can get

things started. Once the initialization is done, we are going to

select the development environment.

I already have my development environment deployed. If you don't

and you're following along, now is when you will deploy that

development environment. So I've selected the development

workspace. I'll go ahead and run a plan here. Paste that down

here. When the plan is finished calculating, it should say that no

changes are required because I already have this network

environment deployed, and nothing has changed about it since the

last time I used it. , great. My infrastructure is up to date.

If you haven't deployed this or you destroyed it earlier and you're

ready to redeploy it, go ahead and run the apply here, and you'll

be up to speed for the next step. The next step in our process is

to examine what's going on inside the application configuration,

and then we'll go ahead and get that application configuration

deployed. At this point, we have our networking configuration

deployed in the development workspace. We're good to go with

that. Now it's time to take a look at our application configuration

and see what's different about it. There's not a ton that has

changed, but let's go ahead and expand the applications directory,

and we'll take a look at a few entries here. It probably makes the

most sense to start out in datasources. We'll go ahead and open

up datasources here, and we'll scroll up to the top. And, there's a

new entry for a template file called userdata. Before, we were

simply installing NGINX and not doing anything else. But now,

we're doing a little bit more.

We are basically constructing the command to run the Ansible

playbook. So we're going to hand it a number of variables that go

into that Ansible playbook. Basically, we are deploying WordPress

for this example, though it really could be any application that can

use web servers in a database back end. We're passing it some

variables to construct a rendered template from userdata.sh. We're

passing it the hostname of the database, the name of the

database itself, the username to access that database, and the

password for that user, and then finally, where on GitHub can it

find the playbook repository where it's going to be pulling the

playbook from?

If we go over to the actual template that's in templates/userdata,

let's take a look at that. Go ahead and expand and open it, and

we have a few commands here. One thing to note is this

deployment actually uses Ubuntu instead of Amazon Linux

because it turns out it's actually easier to get WordPress installed

properly by using Ubuntu. The point is these are the instructions

that are in the userdata templates. And the first three instructions

are simply to run update and then install both Git and Ansible

because we're going to need those two tools. Then, we make a

directory where we want to store our playbooks that we pull from

the repository, and we use git clone to clone that repository to

that directory.

Now that we have those files, the last thing to do is run which

executes a playbook. We point it at the playbook.yaml file, and

then we have to give it a list of hosts to apply this playbook, too.

In our case, we're just applying the playbook to localhost. So in

the hosts file that I have referenced here,

/var/ansible_playbooks/hosts, it simply has localhost in there, and

it tells Ansible it's running locally on that host. Scrolling over a

little bit more, we have to pass it some variable values to use

inside that playbook, and these are the variable values that we

were passing to the template in the datasources file. So we're

passing it to the db_hostname, the db_name, the db_user, and

lastly, the db_password so that WordPress can go ahead and get

the WordPress database all set up.

So that's everything that's in userdata.sh. Go ahead and close that

and go back to datasources. If we scroll down to the data source

"aws_ami" "ububtu", this is where we're grabbing the AMI ID for

the Ubuntu image, depending on what region you're in.

And we're going to use this image instead of the Amazon Linux

image that we were using in previous configurations. Now that

we've looked at the datasources, the next thing to look at is

resources. We'll go ahead and open that, and all we have to do

is scroll down to our aws_launch_configuration.

This is where we're making the change to use the rendered

template as opposed to just giving it the user data file by itself.

So under userdata, we are now referencing the template file,

userdata.rendered. There's one more change, and that's under

variables because we need the URL of our Ansible playbook

repository. If we scroll down to the bottom here, there's the

variable defining our playbook_repository. And in terraform.tfvars, I

have that variable being defined. This is where you can find the

Ansible playbook repository. You can fork this if you want and

replace it with your own personal repository, or you can continue

to use mine. I'm not going to change it at all, so it should be

safe to continue using. So those are all of the configuration

changes that have been made for the application configuration.

Why don't we go ahead and deploy this? We have reviewed our

application configuration, we know that when the EC2 instance

comes up, it's going to run an Ansible playbook with values that

we are giving it from the Terraform configuration. Now, in order

to run it, we have to change our CONSUL_HTTP_TOKEN to

Samantha since she's the one who has access to the application

config data. So I'll go ahead and open up the terminal, and I'm

going to grab Samantha's token from my Notepad, and we'll go

ahead and paste it . That's Samantha's token, and now I'm going

to update that environment variable to Samantha's token.

Now let's go up into the application's directory, so that down

there, and we'll go ahead and initialize the back end as we

usually do. We'll go ahead and copy and paste. My state has had

a development workspace before. So rather than creating a

development workspace, I'm simply selecting one.

If you're somehow in a state where you've never created the

development workspace before, just change the command from

select to new and create the new workspace that you want to use.

Go ahead and copy this here and paste it down here, so I select

the development environment, and then we're following the

standard Terraform protocol. We're going to run terraform plan to

plan out all the changes. The plan is going to take a while to

calculate because there are a significant number of resources here.

It looks like it has finished.

It is ready to add 18 new resources. We'll go ahead and grab the

terraform apply command and paste it down here, and It is going

to run through its apply process. This is going to take a while

because it does have to spawn an RDS instance in all of these

EC2 instances. That's going to take a significant amount of time.

It looks like our application configuration has successfully

deployed.

You might be wondering what's in that Ansible playbook that we

just executed on those EC2 instances? Why don't we take a brief

look at that Ansible playbook. In the root directory, there's a

playbook.yml file, and this is kind of where it all starts. It's the

one that we're pointing at with our command. If we take a look

inside this file, it lists a number of hosts, so this is where the

configuration should be deployed, and we're calling those hosts

webservers.

And then under roles, were telling it what should be installed on

those hosts. So we're installing nginx, wordpress, php, and postfix.

Those are the four things that are being installed. Where do those

hosts come from? If you remember in the user data, we used the

command and specified a host file. Well, if we go back and open

up the hosts file, this is what it's going to be looking at. We're

defining a category of hosts called webservers, and we're saying

that the localhost is one of those webservers, and we're letting

Ansible know it doesn't have to SSH to that host, it is a local

connection.

So that's what's in the host file. Going back to the playbook, we

had those four roles, and the roles are defined inside the role

directory. Here are our four roles: nginx, php, postfix, and

wordpress. I'm not going to go through the contents of each of

these because this isn't an Ansible book, we're trying to learn

about Terraform and some integrations, but basically, if we take a

look here, each folder has handlers, tasks, and templates in it,

and the tasks really define what actions to take to get, in this

case, nginx installed on the server. Go back up a couple folders,

there's obviously a lot more. I would highly recommend going to

Ansible's site or going through some of the Ansible books to get

a better idea of how Ansible works. But in the meantime, why

don't we check out our deployment of the application

configuration? Now, let's jump over to the EC2 instances that we

have running in AWS. I'll go ahead and click on Running

instances, and I should have two instances . These are the two

EC2 instances that were spawned from that launch configuration.

Because this is a fresh install of WordPress, WordPress, if you go

to the main page, will redirect you to the configuration page. So

in order to get this going, what we actually have to do is go to

one of the instances directly. So what we're going to do is grab

this public IP address down here and we'll open up a new

browser window, and we have to go to http, that address, and

then we have to go to and this will take us to the installation

screen for WordPress.

Once you walk through the installation of WordPress and it's up

and ready to go, then the load balancer will see that both

instances are ready to accept traffic and you can go to the load

balancer URL instead. So we have done it, we have built our

networking with Terraform, we've built our application

infrastructure with Terraform, and we've handed off to Ansible to

deploy an application on top of all that infrastructure. In summary

we covered that Terraform, it doesn't do everything, it's not the

end all and be all, and it was never intended to be. Terraform is

for automating the deployment of infrastructure, that's what it's

for. It doesn't try to be more than that, and in fact, they've dialed

back the use of provisions for that reason. It's really better to

hand offto another tool. Configuration management is that other

tool. When Terraform is done, if there's additional things to do, or

you want to maintain configuration over a long time inside of a

virtual machine, that's what config management is for, and that's

why you should hand it off from Terraform to something like

Ansible. Ideally, you should just pick the best tool for the job

rather than trying to shoehorn a tool into a job that it was never

intended for, and we've seen that in this chapter. This is the last

chapter in the book, so rather than talk about what's coming up

in the next chapter, let's think about what you might want to

pursue next when you've finished this book. One of the things

that we didn't cover, and it's relatively new to the Terraform

family, is Terraform Cloud. That's their hosted version of Terraform

where you can remotely run Terraform commands, you can store

configuration variables, you can create workspaces, it's actually a

pretty cool and robust platform and it has a free tier, so you can

sign up for that now and explore what's going on in Terraform

Cloud. There's also now a Terraform Certified Associate

certification from HashiCorp, so you could start studying up for

that, there's some pretty good study guides out there, and get

your Terraform certification badge. If you're interested in examining

other products in the HashiCorp family, I'd recommend checking

out something like Vault, Consul, or Nomad. Combined with

Terraform, those sort of form the core of everything that

HashiCorp is about. If you want to venture outside of the

HashiCorp family, and it makes sense to do so, you can start

getting into some different DevOps tools. You could improve your

source control management with something like getting used to

using GitHub and Git. You could dive deeper down CI/CD and

get to know some of the different pipeline products a little bit

better. You could jump into the world of containers and reed a

Docker or Kubernetes book, or you could get deeper into this

config management world with Ansible or Puppet or Chef. The

sky's the limit when it comes to DevOps tools. Now let's review a

few key points from the book. Number one, Terraform is part of a

larger ecosystem, it's one tool amongst many. And we've gone

pretty deep on it, you may not need to go much deeper to make

good use of it within your environment. Speaking of ecosystems,

through our examples with ACME, you saw how a single IT

administrator is actually part of a much larger ecosystem, and she

had to interact with developers and other teams, and even her

own team. You are also part of a larger ecosystem, and Terraform

gives you tools and ways to collaborate with that larger

ecosystem. Another thing that we've learned throughout this book

is while we're learning a tool, we're learning Terraform really well,

it's more important to focus on the concepts behind Terraform

and behind configuration management and CI/CD pipelines

because those concepts are going to serve you well long after any

particular tool has exhausted its lifespan. And lastly, you want to

be passionate about the work you're doing, and I hope I've

inspired a passion for you to go out and start using Terraform to

build something remarkable.

BOOK 1O

TERRAFORM

CLOUD DEPLOYMENT

AUTOMATION, ORCHESTRATION, AND COLLABORATION

RICHIE MILLER

Introduction

In this first book, you are going to discover what is Terraform

Cloud is aall about. What are the components of Terraform Cloud?

What services does it offer? The first chapter will focus on getting

to know Terraform Cloud. We will start by going over the baseline

prerequisites you should have in place before embarking on this

book and some of the assumptions I am making about your level

of knowledge when it comes to Terraform and Infrastructure as

Code. This is not a book for complete beginners. This book is

focused on getting you up to speed with Terraform Cloud.

Speaking of which, next, we will dig into the core concepts behind

Terraform Cloud, including what services and features are available,

why you might choose to migrate to Terraform Cloud, and how

much this whole thing will cost you. We'll finish up the chapter

with the introduction of our scenario. You are going to be a

member of the ACME Cloud architecture team assisting with the

adoption of Terraform Cloud. We'll learn how to use Terraform

Cloud's services and features through that lens. Before you get

started on this book, I wanted to layout some required

prerequisites, nice to haves, and assumptions I am making about

your level of experience with cloud technologies, Terraform and

managing Infrastructure as Code. As I already mentioned, this is

not a book for the complete cloud novice. If you've never used

Terraform before, you'll find this book obtuse at best. I

recommend checking out my previous books on Terraform to

quickly get up to speed. I am going to assume you're already

familiar with the version of Terraform, including concepts like the

Terraform CLI workflow, Terraform syntax, modules, and

workspaces. We will be using AWS as our target for deployment

in the book. I do not expect you to be an AWS expert, but you

should at least know the common services in AWS including VPC

and networking, EC2 and other compute, and IAM roles and

policies. You should also be familiar with some basic concepts

around software development as they apply to managing

Infrastructure as Code. In this case, I am talking about version

control systems, Git operations like push and pull, and continuous

integration and delivery. Just like AWS, I don't expect you to be

an expert in these concepts, but you should at least be familiar

with them. I highly encourage you to follow along with the

demonstrations and exercises in this book. I've found I learned

best when I am with the technology and not just watching a

video or reading a book. In order to follow along, you'll need the

following prerequisites in place, a terraform cloud account. We'll

actually create this account together in the next chapter, so don't

worry about it for now. A GitHub account for creating and storing

code. A free account is perfect. You won't need any of the paid

features. An AWS account for creating infrastructure. I'd

recommend creating a new account for this book where you have

admin access. A code editor like Visual Studio Code, although you

can use whatever editor you prefer. With these assumptions and

prerequisites out of the way, let's dig into what Terraform Cloud

actually is.

Chapter 1 Terraform Cloud Fundamentals

What is Terraform Cloud? Terraform Cloud is a hosted service

provided by HashiCorp that expands on the core functionality of

Terraform open source by adding features such as storage, remote

operations, process automation, and more. Terraform Cloud was

born from HashiCorp's Terraform Enterprise product, which is

deployed rather than being hosted. For most intents and

purposes, Terraform Cloud and Enterprise are identical in nature.

We will dig into some of the subtle differences as we go through

the book. For now, let's take a closer look at the features and

services available in Terraform Cloud. Terraform open source

represents the CLI experience you are already used to. Terraform

Cloud expands on that experience by offering an opinionated

implementation of advanced workflows and operations. For

instance, Terraform Cloud provides data storage as part of the

platform. If you've had to set up your own data storage on

something like Amazon S3 or Azure Storage, you know that

managing and maintaining that storage is one more administrative

task you don't need in your life. Terraform Cloud provides a

managed location to store state data. In addition to storing state

data, Terraform Cloud can also execute remote CLI operations for

you using hosted agents. Once a Terraform configuration is set to

use Terraform Cloud, operations like plan and apply are executed

through Terraform Cloud on a hosted runner agent with the

results of the operation streamed back to your terminal. You also

have the option to host your own agents. HashiCorp's hosted

agents run on their infrastructure, which doesn't have access to

your internal network. If you're using Terraform to manage an

internal VMware or OpenStack deployment, Terraform Cloud agents

can be the link between Terraform Cloud and your data center.

The ability to run remote operations also empowers Terraform

Cloud to run operations outside of a typical workflow. Remote

operations can be triggered by an event in a version control

system or called through an API. Your Terraform operations can

be automated using a workflow that follows a GitOps pattern

through VCS or a custom pattern with the API. During the plan

and apply operations, you might want to check your deployment

to make sure it adheres to company policy. That is where

HashiCorp Sentinel comes in. Sentinel allows you to define policy

as code and evaluate your Terraform code against those policies.

You can check to make sure resources are tagged properly, that

SSH isn't open to the world, and that you aren't using a huge

VM that will cost $10,000 an hour. That would be bad. Speaking

of cost, Terraform Cloud can also look at the resources being

provisioned by your code and give you a cost estimation of

running that infrastructure. Although it cannot take into account

things like bandwidth usage and storage utilization, it can let you

know if a new deployment is going to cost you an arm and a

leg. As your adoption of Terraform becomes more advanced, you

may want to write and host your own chapters, as well as provide

guidance to your teams on preferred chapters and providers from

the Terraform public registry. The Terraform Cloud private registry

enables both of these patterns. Finally, HashiCorp has developed

integrations between Terraform Cloud and external providers,

including ServiceNow, Splunk, and Kubernetes. Improved

collaboration is one of the primary benefits of adopting Terraform

Cloud. Teams within an organization can collaborate on projects

together, leveraging remote state data and operations to keep

individuals in sync. Management of Terraform Cloud starts at the

organization level and is divided into workspaces. Each workspace

represents an instance of deployed infrastructure managed by

Terraform. Users and teams are assigned permissions to the

organization and workspaces within the organization. A system of

tags can be used to group together workspaces and check things

like policy. With all of the features I've listed out, you might be

wondering how much does all of this cost? Unsurprisingly, since

Terraform Cloud is Software as a Service, it follows a subscription

model. The good news is that there is a free tier which includes

the most popular features. Currently, you can have up to five

users, unlimited workspaces, remote operations and state data,

private chapter registry, API access, and VCS integration. That's

not bad for a free tier. The next step up from Free is the Team

plan, which adds in the roles and team management mentioned

in the previous section. You can create teams and assign

permissions at the organization and workspace levels. Moving up

from the Team plan, we have the Team & Governance plan, which

adds the Sentinel and workspace cost estimation features. Finally,

there is the Business plan, which includes Terraform Cloud Agents,

single audit logging, and additional run concurrency. In essence,

you can get started for free with up to five users, but the free

tier lacks the advanced features of the paid plans. Two important

caveats are worth mentioning here. First, Terraform Cloud is

constantly evolving, so I recommend checking out the Plans page

to see if anything new has been added to the tiers. Second, the

cost of Terraform Cloud does not include the cost of running the

actual infrastructure on your platform of choice. You still have to

pay Amazon for that NAT gateway you provisioned and forgot to

shut down. The primary difference between Terraform Cloud and

Terraform Enterprise is where the software is hosted and how

you're charged for it. When it comes to Terraform Cloud, the

software running Terraform Cloud is hosted and managed by

HashiCorp, and there are tiered plans that we just went over

available on a subscription basis. Anyone can easily sign up for

Terraform Cloud. Terraform Enterprise is and managed by you. You

will be running the software on servers in your data center or a

private cloud or wherever you want to run that software, but you

are responsible for managing it. There is also only one plan

available, and you'll have to talk to someone at HashiCorp to

purchase Terraform Enterprise. Aside from that, the features of the

two products are almost identical. What does it look like to have

a business adopt Terraform Cloud? Good question. Let's take a

look at a scenario.

In this book, you will be an employee of ACME, a global risk

assessment company. We will use this scenario to adopt and

evaluate features in Terraform Cloud. Welcome to ACME! You've

recently joined the company as a cloud architect. ACME has

started using Terraform for the deployment and management of

infrastructure supporting their primary risk assessment application.

They are pleased with the results and would like to expand the

use of Terraform to encompass other application development

teams. To support a collaborative environment, ACME would like

to adopt Terraform Cloud for new projects. Speaking of which, as

a new member to the company, you are joining a development

team focused on a new line of business application, Donovan.

ACME would like you to use Terraform Cloud for the deployment

of infrastructure to support the application. Once Donovan is

successfully ACME would like to migrate the existing Terraform

managed application, Donovan’s Team, to use Terraform Cloud as

well. You will support the Donovan’s Team in migrating from

Terraform to Terraform Cloud, including setting up teams and

permissions. As you progress in your adoption of Terraform Cloud,

ACME would also like to look into adopting some of the

additional features including Policy as Code with Sentinel,

workflows, and using the private registry. It's an exciting time to

be at ACME, and you get to help them with a project. Before we

move forward, let's quickly review what we covered so far. This is

not a beginner book for Terraform. You should have experience

with using Terraform open source before trying to adopt Terraform

Cloud. Terraform Cloud is a managed service from HashiCorp

meant to provide an opinionated experience that augments and

enhances Terraform open source. In this book, you will be helping

ACME adopt Terraform Cloud, first for the Donovan app team and

then for the larger organization. Next, we are going to get started

with setting up Donovan by signing up for a Terraform Cloud

account and configuring the organization and workspaces.

Terraform Cloud is a hosted service that helps you manage and

automate your Terraform code, but how exactly does it do that?

Before we start running our Terraform code, we first need to get

signed up to use Terraform Cloud and create an organization.

That is what we'll cover in this chapter. This chapter is going to

lay the groundwork for the rest of the book. We are going to dig

into the fundamental concepts and structures that underpin

Terraform Cloud, first starting with organizations. What is an

organization and how does it relate to Terraform Cloud? We will

cover the settings in an organization, access, and authentication,

and how users are related to an organization. Once we have a

firm grip on organizations, we will learn how to interact with

Terraform Cloud from the CLI. Your primary experience with

Terraform has been through the CLI, and you can continue to use

that experience to interact with Terraform Cloud. Without a user

account and organization, you cannot deploy any code with

Terraform Cloud. Let's take a closer look at both objects, starting

with a user account. When you sign up for an account with

Terraform Cloud, that account is associated with an email address

you specified during Your user account lives outside of any

particular organization, and it can be invited to be a member of

multiple organizations. Authentication is handled by the Terraform

Cloud service with a password and optional authentication.

Optional, but you should consider it to be required. After signing

up for a Terraform Cloud account, the next step is to either

create an organization or accept an invitation to join an

organization. What is contained within an organization? At its

most basic, an organization is composed of workspaces that run

instances of Terraform code, a private registry to house providers

and chapters, and integrations with other services like cost

estimation and Sentinel. The configuration options for an

organization span many categories, and here are a few important

ones to bear in mind. Teams and users allow you to invite new

users to the organization and assign them to teams. Each user

must be a member of at least one team. Teams can be assigned

permissions at the organization and workspace levels. If you want

to have access to more than just the owner's team, you'll need to

upgrade from the Free plan to at least the Teams billing plan. In

our example, we'll start a trial of the Teams & Governance plan,

giving us access to even more features. For instance, we'll be able

to apply Sentinel policy as code at both the organization and

workspace levels through policy sets. Workspaces in an

organization can be assigned tags, which are a way to organize

and label workspaces. Workspaces live in a flat hierarchy within

your organization. You can't organize them into folders or

organizational units to apply policies and permissions. Tags give

you a way to organize and group workspaces and perform actions

like filtering your view by tag or applying a policy set with

Sentinel. Since Terraform Cloud is often used programmatically,

you can generate API tokens for a user, organization or team.

We'll discuss the differences between those token types more in a

moment. Terraform Cloud performs authentication for users. The

Business level plan gives you access to use single from a source

like Okta to handle authentication. We won't cover that in this

book. Instead, we'll rely on usernames and passwords with the

possibility of adding authentication. If you plan to use Terraform

chapters that are stored on a private GIT repository, you can

provide SSH keys that have access to that repository. Each set of

keys will be available to workspaces for use when they run remote

operations. Finally, you can configure Terraform Cloud to connect

to various version control systems like GitHub or GitLab for a

VCS integrated workflow on a workspace. Why don't we sign up

for a Terraform Cloud account and create an organization for

ACME. As you'll recall, you are helping ACME adopt Terraform

Cloud, specifically for the Donovan application team. For the time

being, you're going to create a user account on Terraform Cloud

and create an organization for ACME. In this demo, we will sign

up for a Terraform Cloud user account using the ACME.xyz email

address. Then we will create an organization called If you'd like to

follow along, make sure you have an email address you can use

to sign up for Terraform Cloud. Let's start with setting up a

Terraform cloud user account. I recommend not using any

production Terraform Cloud accounts for this book.

To sign up, I went to app.terraform.io. And now I'll click on the

link to create a free account. On the next page, I need to give

myself a username, email, and password.

I'll go ahead and fill it all in and agree to all of the terms and

conditions, and click on Create account. Once the account is

created, it will send me a confirmation email, and I can go to the

email account, and go ahead and click on that confirmation link,

and now my account is all set. The next thing to do is create an

organization.

And since this is a user account without an invitation to join an

existing organization, Terraform Cloud will helpfully suggest that I

create a new organization, and that is what we'll do. I'll click on

Start from scratch and go ahead and enter the organization name.

We can create an organization called and my user will become the

owner of the account. The organization name needs to be globally

unique, so don't try to use if you're following along because it

will already be taken. I'll go ahead and click on Create

organization, and now the organization has been created. Before

we do anything else, let's go into my user account settings and

enable authentication.

I recommend you do this on any new account you create. So I'll

click on the account and go to User settings, click on Two Factor

Authentication, and in this case I will set it up using an

application and click on Enable 2FA.

I'll scan the QR code and enter the authentication code from my

authenticator application and click on Verify. And now

authentication has been set up for my account.

With our user account created and our organization created, it's

time to explore the Terraform Cloud UI and see where all the cool

settings are.

Chapter 2 How to Explore Organization Settings

It's time to take a stroll through the Terraform Cloud UI.

Fortunately, it's not that complex. Believe me, I've worked on

some UIs that hide stuff all over the place and you're never quite

sure where to go to find a setting or a toggle switch. Terraform

Cloud is straightforward by comparison. Before I dig too deep into

the UI, I do want to say that Terraform Cloud is a constantly

evolving product.

The UI in this book might differ slightly from what you see when

you log in. I wouldn't expect any major shifts, but just be aware

things might not line up Across the top, we have the where you

can select which organization you want to work in, followed by

three major sections, Workspaces, Registry, and Settings. We'll deal

with Workspaces and the private Registry in future chapters, so

let's skip straight to the Settings area. Settings are broken up into

the major categories of Organization settings, Integrations,

Security, and Version control.

For now, I just want to highlight things we are going to be

interacting with in this book. We'll start by visiting the Plan &

Billing section. Since we want to have access to cool features like

Teams and Sentinel, we are going to start a free trial of the

Teams & Governance plan. The trial is good for 30 days, after

which it reverts back to the Free tier.

You don't even have to provide a credit card or billing info, which

is pretty sweet. I'll go ahead and click on the link to get started.

It already selects the Trial Plan for me, so I can simply go down

and click on Start your free trial, and now I'm on the Teams &

Governance plan for the next 30 days. Below Plan & Billing is the

Tags area.

Tags are created and assigned at the Workspace level. You can

see Tags and delete them from Organization settings, but that's

about it. We are going to add Teams and Users later, so we will

skip those sections. Variable sets is something we'll discuss in the

Workspaces chapter. You can enable Cost estimation for all

workspaces, and once you start the trial, it is enabled by default.

We'll discuss cost estimation later in the book. Policies and Policy

sets are managed through VCS integration. We'll cover both in the

chapter on Sentinel. In the Security category under API tokens, we

can create organization tokens which have permissions to manage

organization settings, but not do anything with workspaces. It also

mentions user tokens and team tokens, which are exactly what

they sound like. A user token has the same permissions as the

user it is associated with and a team token has the same

permissions as the team it is associated with. Under

Authentication, we can configure some timeout information and

also require authentication.

That option will only be available if you've already enabled

authentication for your account. I'll go ahead and enable require

now. Scrolling down a bit under Version control, the only area of

interest for us is the Providers area. This is where we will go to

connect our organizations to a version control system like GitHub

or Bitbucket. When we enable a VCS workflow on the Donovan

workspace later in the book, this section will become pretty

important. This has been a nice tour of the UI, but you might be

wondering how you can interact with Terraform Cloud at the CLI.

That's a great question, and that is what we will cover next. We

need to get our CLI configured to talk to Terraform Cloud, which

means we have to authenticate to Terraform Cloud. How does the

CLI provide authentication to interact with Terraform Cloud? The

answer is API tokens. To get a token set up for your user

account, you can run the command terraform login. The command

will open up a browser window to procure a token from Terraform

Cloud for your user. Simply give the token a name and copy the

value produced.

The CLI will wait for you to paste the token, and then it will save

the token in a plaintext user file in your home directory. The full

path will depend on your operating system. The hostname

argument is for situations where you are using Terraform

Enterprise, otherwise the command assumes you are connecting to

app.terraform.io. If you would like to log out of Terraform Cloud,

the command terraform logout will remove the stored credentials.

Note, this does not revoke the token you used, it simply clears

out the credentials locally. You can go to your user account on

Terraform Cloud to delete the token generated during login. Time

to go set up our CLI in preparation for the next chapter. We will

log in to Terraform Cloud and generate a user token that

Terraform will store locally. For the demonstrations, I will be using

Visual Studio Code as my code editor of choice. On the left pane,

I have all the exercise files associated with this book. In the

center pane will be any code examples, and I can go ahead and

bring up the terminal window down at the bottom, which is what

we'll actually be using now. I'm going to run the command

terraform login without any arguments. Based on the output, you

can see that the API token will be requested from

app.terraform.io. I'll enter yes to proceed, and that will redirect us

to a browser.

Since I'm already logged into Terraform Cloud, the browser takes

me directly to a token generation dialog box. I like to name my

tokens after the system they will be used on. In this case, I will

name it and I'll click on Create API token. Now it will give us the

user API token that we will copy and paste into the Terraform

login prompt. I'll go ahead and copy it now and switch back to

the terminal and go ahead and paste it into the prompt down

below.

And if I expand the screen and scroll up a little bit, we can see

it retrieved a token for a user. It gave us a fun little graphic that

got cut off, and it gives us some helpful places where we can get

started. The value itself is written out to the credentials file in my

home directory, and now we are all set to work with Terraform

Cloud from the CLI. In this chapter, we got to know Terraform

Cloud a little better by focusing on users and organizations. A

user account is required to log into Terraform Cloud. A user can

be a member of one or more organizations. Organizations are

made up of workspaces, a private registry, teams, and integrations.

The user account that created the organization will be initially set

as the owner. To work with Terraform Cloud from the CLI, you'll

need to generate an API token and store it in your home

directory. Fortunately, the Terraform CLI has commands to manage

the process. With our organization set up, the next big thing to

do is set up a workspace for Donovan and deploy our application

using Terraform Cloud and the CLI workflow.

Chapter 3 Terraform Cloud Workspaces

Once you've got a user account, an organization set up on

Terraform Cloud, you're probably chomping at the bit to deploy

some infrastructure. To ease you into the process, we are going

to start with a familiar workflow that involves the CLI. Before we

can deploy code with Terraform Cloud, we first need to set up an

environment for the code to run in. That environment is going to

be a workspace. We will see how to create a new workspace and

configure its settings. Next, we are going to get some variable

values defined for our code, but how do we do that? Just like

Terraform open source, Terraform Cloud has a lot of possible

options, and we'll explore each one. Finally, we are going to

deploy the Donovan application infrastructure using the good old

CLI. We'll see how code is sent to Terraform Cloud, parsed by the

workspace, and used by a remote worker all from the comfort of

our terminal. First, why don't we learn a bit more about

workspaces? Workspaces are the workhorse of Terraform Cloud.

They are where all the action happens. Terraform Cloud

workspaces build on the Terraform workspace construct. Terraform

workspaces share a common set of configuration files, but each

workspace keeps a separate instance of state data. Terraform

Cloud takes this essential concept and adds more functionality to

the mix. A workspace contains three primary components, along

with a bunch of settings that we'll get to in a moment. The first

I already mentioned, which is state data. Each workspace stores

its state data in Terraform Cloud, meaning it is using Terraform

Cloud as a remote back end. This saves you from having to set

up an S3 bucket or an Azure storage account to hold your state

data. The state data in a workspace can also be shared with other

workspaces in the organization as a data source. That's helpful if

you decide to refactor your Terraform code into separate

workspaces, but you still need to pass information between them.

Each workspace also has its own set of variable values and

environment variables. You can still submit variable values using

the CLI or through specially named files, but it is nice to have

variable values stored securely in the workspace itself. Workspaces

can also make use of variable sets that are defined at the

organization level. The last component is the real power of

Terraform Cloud workspaces, remote operations and logs. Instead

of a Terraform operation like plan or apply being run on your

local machine, Terraform Cloud runs it on a hosted agent and

saves the results and logs to the workspace. This gives you a

standardized working environment for all Terraform runs and,

more importantly, a single place to go and inspect logs when

something inevitably goes wrong. When you create a new

workspace, Terraform Cloud will ask what type of workflow will be

used by the workspace. You will be presented with three options,

CLI, VCS, and API, The CLI option is the simplest and closest to

the way you would interact with Terraform open source. The

Terraform code will include a cloud block defining the workspace

as a remote back end and place to run operations. You can

control the Terraform workflow from the CLI with standard

Terraform commands like plan and apply. The VCS, or version

control system, workflow is the most common option, but it also

requires that you host your Terraform code in a version control

system repository. Events on the repository will trigger workflows

on Terraform Cloud. For instance, a commit to the default branch

could kick off plan and apply operations in Terraform Cloud. If

you need more customized automation and workflows than what

is available in Terraform Cloud, you can use an API workflow to

integrate Terraform Cloud into a larger automation pipeline. For

instance, if you are already using Jenkins or Azure DevOps

Pipelines to automate your Infrastructure as Code deployment, you

can hook Terraform Cloud in to handle Terraform actions. Let's

put this information to use by creating a workspace for the

Donovan application team. But before we do that, let's first talk

quickly about naming workspaces. A workspace name is very

important because it should tell you what that workspace is used

for. The name can be composed of alphanumeric characters,

dashes, and underscores. The recommended naming convention

from HashiCorp is the component, region, and environment.

Depending on the size of your organization, you might want to

preface it with the line of business or the application name.

Workspace names exist inside an organization, so they do not

have to be globally unique, only unique within the organization.

You can include more information about the workspace using tags.

The actual name should include what is unique about the

workspace to distinguish it from other workspaces in the

organization. For the Donovan application, we can use the naming

This lets us know that the workspace is the Donovan application

infrastructure running in and it is the development environment

for their application. It's time to go create a workspace, and we

will be creating a workspace for Donovan. This is our first foray

into Terraform Cloud, so we will go with the CLI workflow option

since it is the simplest and closest to our current process. Later

in the book, we will migrate to a VCS workflow. After the

workspace is set up, we will explore some of the settings and

make sure our workspace is ready for us to deploy our Donovan

application infrastructure. Creating a workspace is a simple affair.

In our organization, we are on the Workspaces tab, and we can

create a workspace by clicking on New workspace. I'll go ahead

and do that now.

The first thing it will ask you is to choose your workflow, and this

will determine the rest of the steps in creating the new

workspace. We are going to select the workflow, and now it will

prompt for a workspace name.

We will give it the name and we can give it a description of

Development environment for Donovan application in Finally, we

will click on Create workspace, and our workspace is now ready to

go. Let's take a look at some of the settings while we're here. In

addition to the three primary components and workflow styles,

Terraform Cloud workspaces have a ton of settings that you can

tweak. Why don't we look at some of the more common settings

you might want to configure? Clicking on Settings under the

General category, we've got some important settings that you may

want to change. Scrolling down, we get to Execution Mode.

Although workspaces will run your operations remotely by default,

you can turn that off by setting the execution mode to Local. This

essentially makes the workspace function as a remote back end

for state data. If you're not ready to take the plunge into remote

operations, this is a way to ease into things. When a remote plan

runs successfully, you may want to automatically run and apply as

well. This is turned off by default. I recommend being cautious

about turning it on for any production environments. You can set

the Terraform version for a workspace, and that is the version the

hosted agents will use for remote operations.

No longer do you have to wonder which version of Terraform you

need to stand up your infrastructure or make sure your whole

team is using the same version.

Workspaces make it easy to standardize and upgrade when the

time comes. Scrolling back up, we'll move over to the

Notifications category. When something happens with the

workspace, you can trigger a notification to be sent to an email

address, Slack channel, or webhook.

This is great if you want to be notified when a new plan needs

to be approved or when an apply went horribly wrong. Going into

the Settings again, we'll look at Team Access. Each workspace can

be configured with team access permissions.

The Team Access category allows you to define which teams have

access to the workspace and what level of access they have. There

are levels of access like read, plan, write, and admin, or you can

construct your own custom permission sets. Lastly, I want to

point to the Destruction and Deletion area.

This settings area is dedicated to running a Terraform destroy or

deleting the entire workspace. You can still destroy the

infrastructure at the CLI using terraform destroy, but if you switch

to a VCS workflow, this is the only way to trigger a terraform

destroy. Before we deploy our code through the Donovan

workspace, we will need to provide credentials to AWS and values

for the variables. Why don't we check out how we do that? When

you deployed Terraform code in the past, you probably defined

values for your variables using a tfvars file, command line

arguments or even environment variables, but that was when you

were running things locally. Now that Terraform Cloud is running

things remotely, you need a way to submit values. Let's take a

look at your options. You can still specify values for your variables

using local information on your workstation. You can either pass

variable values through the command line using the or arguments,

or you can set environment variables that start with TF_VAR, and

then the variable name. Passing values using the file named

terraform.tfvars will no longer work, but if you add .auto.tfvars to

the end of a file name, then values defined in that file will be

submitted to Terraform Cloud. At the workspace level, there is a

dedicated variables area where you can define both variable values

and environment variables. Both value types can be set to

sensitive, ensuring that the value is not shown in the UI and not

printed in the log data. This would be a good place to store your

AWS credentials. Variable sets are defined at the organization level

and can be shared with some or all workspaces in the

organization. A variable set defines one or more Terraform or

environment variables and their desired value. For variables that

are common across multiple configurations, variable sets are a

good option. You could potentially have the AWS account

credentials for each environment defined in a variable set and

presented to each workspace that needs them. With all these ways

to set a value for a variable, you might be wondering what

happens if a variable is defined in more than one place. A

general rule to follow is closest to the configuration wins.

Command line overrides workspace, workspace overrides variable

sets, and everything overrides the auto.tfvars files. For more

information, I recommend checking out the official Terraform

Cloud docs for workspace variables. They include a whole table of

precedence. Now that we know how to define variable values, let's

get our Donovan configuration prepped. We will start by reviewing

the Donovan code to see what variables are defined. Then we'll

use that information to define our variable values using both a

local.auto.tfvars file and the variable settings. In Visual Studio

Code, we will take a look at the Donovan application infrastructure

code by opening up the m4 directory, and within that, we have

our configuration. Let's take a look at the variables.tf file that

defines the variables will need for our configuration. Looking in

variables, we have a variable named prefix that's required, a

variable named project that is required, with the remainder of the

variables set as optional, each with its own default setting.

We want to set the prefix, which is a naming prefix for all the

resources that will be created, and we want to set the project

name for the application project. And right now we're defining

those in terraform.tfvars, as well as the environment name. So we

have a prefix of dd, a project named diamond_dogs, and an

environment equal to development. Using terraform.tfvars no

longer works when you move to Terraform Cloud, But what we

can do is make a copy of this file and rename it

terraform.auto.tfvars, and it will be submitted as part of our plan

and apply. We have our variable values set for the prefix, the

project, and the environment. The other thing we need to do is

set our AWS credentials, and we're going to do that over in the

variable settings. Let's go over to the browser and do that now.

Chapter 4 How to Configure Workspace Variable Values

To configure the variables for a workspace, we simply go to the

tab labeled Variables. So I'll do that now, and we will add some

variable values for the workspace. I'll go ahead and click Add

variable. And the variable type we want to add is actually an

environment variable to submit our credentials for AWS.

We're going to need to define two environment variables, so I'll

select Environment variable, and the key for this environment

variable is going to be AWS_ACCESS_KEY_ID. Now let me go

ahead and grab the value, and I'll paste it in the Value section

and click on Sensitive to mark this as a sensitive environment

variable, and then click on Save variable. And then I'll repeat the

same process for the AWS_SECRET_ACCESS_KEY, which is the

other environment variable we need to successfully authenticate to

AWS using the AWS provider for Terraform. I'll go ahead and grab

the actual value for the key, paste it in, and mark this one as

Sensitive as well, and save the variable. One thing to note is

once it's marked as Sensitive, we can write a new value to it, but

we cannot look at the current value.

If I click on it and say Edit, it will allow me to change the value,

but it will not show me the current value. I'll go ahead and click

on Cancel. And now all the variable values are in place to deploy

our infrastructure. The last thing to do is get our code ready to

deploy to this workspace. How do we let Terraform know to use a

Terraform Cloud workspace for code deployment? How does it

know which workspace to use? And what commands do we use

when working with Terraform Cloud? We'll start by checking out

the cloud configuration block. Prior to Terraform 1.1, you would

link up a Terraform Cloud workspace by adding a backend block

to your terraform configuration block. The backend type was

remote and the hostname for Terraform Cloud was

app.terraform.io. You would also need to include the organization

and the workspaces you wanted to use with the workspaces block.

You could specify a single workspace with the name argument or

a set of workspaces with the prefix argument. That prefix would

be applied to each workspace you created. In Terraform 1.1,

HashiCorp introduced a new configuration block type, the cloud

block, which is nested in the terraform configuration block.

Because Terraform Cloud is much more than a remote back end

for state data, HashiCorp felt they should give it a different

construct. The syntax of the cloud block is extremely similar with

the hostname, organization, and workspace arguments. The

hostname in this case is optional since Terraform will assume you

are using Terraform Cloud. The preferred method is to use the

cloud configuration block, although you may see the backend

remote block in older configurations. Both the backend remote

block and the cloud block support a single workspace or multiple

workspaces. The primary difference is how the Terraform

workspace commands interacted with Terraform Cloud. Since the

cloud block is the preferred method, let's look at how you would

configure a block to reference a single or multiple workspaces.

The nested workspaces block takes one of two arguments. The

name argument restricts the code to a single named workspace. If

the workspace doesn't yet exist in the organization, it will be

created when you run Terraform in it, but it will not have any

settings or variable values defined for that workspace. If you want

to use the same code with a different workspace, you will need to

make a copy of that code and change the workspace name. The

other option is the tags argument. When you initialize a Terraform

configuration with the tags argument, Terraform will prompt you

to select an existing workspace with matching tags or create a

new workspace. You can use the standard Terraform workspace

commands to manage workspaces with those tags. This option

allows you to use the same configuration files with multiple

workspaces without copying and pasting code. For either of the

two options, you will still need to run terraform init from the

command line after you add the cloud configuration block. For the

named workspace option, the init process will either select an

existing workspace by that name or create a new one.

For the tags workspace option, Terraform will allow you to select

an existing workspace with matching tags or create a new one.

When you use the tagging option, you can still use all the

standard Terraform workspace commands to interact with

Terraform Cloud. The workspace list will list all the existing

workspaces with matching tags. The Terraform workspace new

command will create a new workspace with the tags defined in

the cloud configuration block. Terraform workspace select will allow

you to switch between existing workspaces, and Terraform

workspace delete will delete a workspace from Terraform Cloud.

You might want to be careful with that one. One major

improvement with the introduction of the cloud block in Terraform

i.i was support for the terraform.workspace value. Previously,

Terraform Cloud would always use the default workspace on the

remote runner. The workspace name is used by the remote

runner, making it available for use in your code. After initialization

is complete, you should be ready to run, plan, and apply. Let's

take a look at that process. When you are getting ready to deploy

your Terraform configuration, the step after init is usually

terraform plan. In Terraform Cloud parlance, this is known as a

speculative plan. Terraform will zip up your configuration and

settings and send it to Terraform Cloud. Terraform Cloud will take

the file, combine it with any variable values and other settings,

and send it to a remote runner. The runner will execute the

terraform plan and stream the output back to your terminal. It

also saves the terminal output and logs to the workspace for

future reference. Terraform apply is virtually the same process,

except now Terraform Cloud will run a terraform plan and prompt

you to approve the plan changes before moving to the apply

phase. You can skip the approval step by using the flag, just like

you would locally. Let's go ahead and see this in action. We will

start by adding a cloud block to our code with the proper

organization and workspace. Then we will run through the

standard Terraform process of initialization, planning an application

to provision the Donovan environment. If we go back to the

Terraform Cloud UI and take a look at our workspace, on the

Overview tab for the workspace, it actually gives us some example

code we can copy and paste. I'll go ahead and hit the Copy

button now, and let's go back over to Visual Studio Code. And

I'm going to replace the contents here with what I just copied

and save the file, and now our configuration is all set and ready

to go.

The next step is to initialize our configuration. So I'll go ahead

and bring up the terminal, and I'm going to expand the view a

little bit here so we can see all the output. I'll go into the m4

directory and run terraform init. Once it has completed

initialization, we can take a look at the output that it gives us.

We can see it says Initializing Terraform Cloud, then it downloads

the provider plugins, and finally creates that lock file for the

providers and chapters that you're using in the configuration. It

tells us that Terraform Cloud has successfully been initialized, and

tells us that the next thing to do is run terraform plan, which is

exactly what we're going to do. Let's try running terraform plan.

This plan is actually running on a remote runner in Terraform

Cloud, but it's streaming the terminal output from that runner

back to our terminal here so we can see what's happening with

our plan. Once the plan command is complete, it tells us it's

going to add nine new resources, and it gives us a helpful cost

estimation of how much it will cost a month to run this

application, which is a huge $8.63. Let's scroll up and review

some of the other output from our terraform plan command.

Just below Preparing the remoteplan..., it tells us that if we want

to view the run in a browser, we can visit a URL. Let's go ahead

and click on that URL. And going over to the browser, it takes us

directly to the workspace and the Runs tab, and it shows us the

plan that was created. If we scroll down a little bit, in this run

we can see who triggered the run, what type of run it is, it's a

speculative plan from the CLI, we can view the output from the

remote runner, and we can see the cost estimation. Below that, it

lets us know that this is a speculative plan, so we cannot apply

the plan. If we wanted to apply the plan, we should run terraform

apply. Everything looks good to me, so let's go ahead and run

terraform apply from the CLI. I'm going to go ahead and run

terraform apply from here, and just like before, this is running

remotely, and if we wanted to we could click on the link that it

gives us to see the run in in the browser. Why don't we jump

over to the browser and view the run as it goes. Back in the

browser, let's scroll up and go to Runs, and we can see that in

our run list there is a run that is in the planning phase. This is

the one that we just kicked off. We can go ahead and click on

that run and it will give us more information about the run. We

can see that the plan phase has finished and the cost estimation

has finished. If we expand the plan, we can once again see what

it's planning to create.

And then it's saying that apply is pending. If we go back to the

terminal, it's also waiting at the terminal for us to approve the

changes. Whether we apply it from the browser or apply it at the

terminal, either one is fine.

Let's go ahead and type in yes at the terminal. This will approve

the apply, and if we go back to the browser, apply has now

moved into the Apply running phase, and it is going through the

process of building out the infrastructure that's in the Donovan

application.

That's not a very complicated application, it's simply spinning up

a VPC and an EC2 instance. If we give it a few moments, as part

of the output, it will give us a URL we can visit to confirm that

our application came up. Our apply is complete. It successfully

created the nine resources and gave us the outputs that we need,

including the URL to our new Donovan application.

If we go over to the terminal, the same information is also

available in the terminal. So from a CLI perspective, not a lot has

changed. We had to add a block to use the remote workspace

and we were able to use all the standard commands for the CLI.

If you want to tear down this infrastructure now, you can do that

by running terraform destroy, and it will run a plan and then

prompt you to approve that destroy. I'll leave that as an exercise

for you. In summary, workspaces are the workhorse of Terraform

Cloud. They are where the magic happens. There are three

workflow options for workspaces, CLI, VCS, and API. VCS is the

most common, while API is the most complex. The CLI workflow,

however, is the simplest and most familiar. With improvements

made in Terraform 1.1, the CLI experience still allows you freedom

to manage variable values and workspaces while providing you the

benefits of operations and logs. Next, we are going to shake

things up by moving to the VCS workflow on our Donovan dev

workspace. We'll see how to migrate from one workflow to

another, configure options for the VCS workflow, and how to use

the CLI for planning and testing.

Chapter 5 VCS and API Workflows

The CLI workflow in Terraform Cloud is certainly the most familiar,

but it misses out on the automation and collaboration that exists

in the more advanced workflows. Terraform is Infrastructure as

Code, after all. We might as well apply some software

development practices to it like source control and Git triggered

operations. To kick off this chapter, we will first do a little

refresher on what workflow options exist in Terraform Cloud, and

then we will take a closer look at the API and VCS workflows.

Since we will be adopting a VCS workflow, we will drill down into

the details of what a VCS workflow includes, how you might

migrate from a CLI workflow, and what you can still do at the

command line after migration. Of course, our Donovan application

is not meant for a single workspace. We need to support

development, staging, and production. We'll see how the VCS

workflow supports that scenario through a combination of

branches and Git operations. In the previous chapter, we covered

the CLI workflow extensively as a way to ease you into using

Terraform Cloud. Now it's time to investigate the other two

workflows. If you'll recall from the introduction of workspaces,

there are three workflow options available when you create a new

workspace. The CLI workflow is the simplest to set up and feels

familiar to folks who are used to running Terraform open source.

The VCS workflow is the most common selection in Terraform

Cloud because it adds the ability to link workspaces to source

control and automate operations. The API workflow is the most

difficult to implement, but it is also the most flexible. Why don't

we learn a little bit more about using the API workflow. The main

reason to adopt an API workflow is that the options available in

the CLI or the VCS workflow don't meet your needs. The API

workflow requires you to interact with Terraform Cloud using its

API. Libraries are available for Go, Python, Ruby, and .NET. When

you work with the API, you will need to handle authentication

using the appropriate API token for your actions, whether that's a

user token, team token, or organization token. Rather than running

a CLI command or using an integrated webhook, the API workflow

requires you to trigger remote operations through an external

system. Typically, this would be your continuous integration and

continuous delivery system. When you trigger a run with the API

workflow, you will need to bundle up your Terraform configuration

in a specific format and submit it to Terraform Cloud for

evaluation. The API workflow is complex to set up, but it is also

incredibly flexible. We won't be setting up a demo in this book,

but HashiCorp has some reference scripts in their documentation

if you want to experiment. Instead, we are going to focus on

adopting the most common workflow, the VCS workflow. Before

we dig into what the VCS workflow is, you might be wondering

why would I even move away from my current CLI workflow, it's

simple and familiar. What are the benefits of using a version

control system? If you are the only person working on a Terraform

configuration, there might be no reason to move to VCS, but as

soon as your configuration expands to include other team

members or you want to automate your process, you might find

some distinct benefits to VCS. For instance, the code for your

Terraform configuration is now stored in source control, which

means there is a centralized location everyone can go to to

access the latest version of that configuration. There is one source

of truth for your deployments much easier than passing around

files. Your team can collaborate on the code through mechanisms

on your VCS provider. Code review, suggested improvements, and

best practices can all be applied through things like commit

hooks, issues, and pull requests. You now also have access to a

formal approval process for deploying new versions of your

configuration and promoting the new version across multiple

environments, and because version control maintains previous

versions and allows you to track changes, it's a lot easier to roll

back a change if it breaks something. So while the VCS workflow

might seem like overkill in your solo CLI endeavor, the additional

effort is well worth it if you're in a collaborative environment or

you want to automate your deployment process. Let's check out

what's in the VCS workflow that enables all these benefits. VCS

stands for version control system, so it shouldn't be terribly

surprising that the VCS workflow requires that you put your

Terraform code in a repository hosted on a version control

system. Terraform can natively connect to several VCS providers,

including GitHub, GitLab, Bitbucket, and Azure DevOps. If you are

using the private version of any of those products, you will

probably need to supply Terraform Cloud with SSH keys for

access. If your VCS is not in this list, you can always go the API

workflow route. When you create a VCS connection and associate

it with a workspace, operations on the workspace will be triggered

by events in the repository. You can control which branch and

directory is monitored for changes. For instance, you may have

your Terraform code sitting in a subdirectory of your repository,

and you only want to trigger an evaluation when the content of

that subdirectory changes. The VCS workflow will ignore any back

end or cloud blocks defined in the code. That's because the VCS

workflow is triggered by a webhook on the selected repository. So

Terraform already knows it's using Terraform Cloud and which

workspace. The cloud block we added in the previous chapter

does not need to be removed, and in fact, we can use it to test

a plan at the CLI. Speaking of which, you might be wondering

what happens to the CLI interaction after we've migrated to the

VCS workflow. The most significant change is that you are no

longer able to trigger an apply operation on the workspace. All

apply operations must happen through the VCS workflow or at the

Terraform Cloud UI. You can, however, still execute speculative

plans to test out changes to your code before you commit them

to source control. What happens when you do commit to source

control? How does that trigger an apply operation? Well, let's

assume we've got a simple repository set up in GitHub with a

single default branch. That branch is associated with the

workspace. Locally, you will make changes to your code and then

commit and push those changes to the repository in GitHub.

Terraform Cloud will see a commit on the default branch and

assume that you want to update your infrastructure. It will trigger

a terraform apply operation on a remote runner and stream the

output back to the UI and the VCS service. The apply operation

first runs a plan and then waits for someone to approve the plan.

From the UI, you can review the plan and approve the changes. If

you're feeling extra confident, you can configure the workspace

apply method to auto apply on a successful plan, but I wouldn't

recommend that for production workspaces, at least not right

away. When you are working on your code locally, you might want

to see what the plan changes are without having to commit to

source control and log in to the UI to view the results.

Fortunately, you can still run a speculative plan through the CLI.

You will need to have the correct workspace selected and then

simply run a terraform plan from the command line. Terraform

Cloud will kick off a speculative plan on a remote runner and

stream the output back to your terminal. Since this is a

speculative plan, it cannot be saved and applied to the workspace,

but at least you'll see what changes would have been made based

on your code updates. If you like what you see, you can commit

the code and push it to GitHub, which will start the apply

process we just reviewed.

Chapter 6 How to Create Repository Branches

Workspaces allow you to use the same configuration for multiple

deployments by storing separate variables and state data. We are

now going to investigate how the VCS workflow supports multiple

workspaces from a single repository. We've already seen the

workflow for a single workspace, but how do you work with

multiple workspaces and a single repository? The mechanism used

by Terraform Cloud is branches or directories. In this example, we

will focus on using branches. We're going to use some software

development techniques here, so bear with me. On the top of the

screen we have our VCS provider, and on the bottom we have

Terraform Cloud. When a developer wants to introduce a change

or a feature to their software, typically, they will create a new

branch from the default branch and develop the code in the

feature branch. Once they are happy with the state of their

change, they will ask to merge that update into a testing or

development branch through a mechanism called a pull request,

sometimes called a merge request depending on your VCS.

Terraform Cloud can monitor for pull requests on a target branch,

like development, and run a speculative plan when a PR is

created or updated with new commits. The person who is

responsible for reviewing and approving the pull request can look

at the speculative plan to see if the change looks good. Once a

PR is approved and the code is merged, the result is a new

commit on the target branch triggering an apply operation in

Terraform Cloud. After the development environment update is

applied, there might be further testing or updates before the code

gets rolled to the next environment. The next step from the VCS

side is for a pull request to be submitted against the staging

branch, triggering a speculative execution in the staging workspace,

followed by a merge of the code to staging and applying the

changes to the staging workspace. Finally, after whatever testing is

necessary in staging, the same process is repeated for the

production branch, which is often the default branch for the

repository, a pull request and a speculative plan followed by a

merge and apply on the production workspace. This might seem a

little esoteric, so why don't we put it into practice for the

Donovan? Our goal in this demonstration is to set up the

workflow we just saw. To get started, we will create branches for

development and staging in the repository and update the

development workflow to track the development branch. Then we

will create two new workspaces for staging and production and

configure each workspace to use the VCS workflow and follow

their designated branch in the same repository. We'll also create a

variable set to be shared across the two workspaces and add our

AWS credentials to the variable set, avoiding the need to create

them for each workspace. Finally, we'll make an update in

development and walk it through the full update workflow from

development to staging to production. Our first step is to create

the branches that we will use in our repository. So I'll go ahead

and click the here, and we're going to create a new branch called

development. And then we'll create another branch called staging,

and we'll use the main branch as our production branch. Now

let's go over to the development workspace, and we'll go up to

Settings and click on Version Control. And in the Version Control

settings, we'll update the tracked branch to be development and

then click Update VCS settings. In this chapter, we may have

moved out of your Terraform comfort zone and into the world of

version control and software development, but don't worry, it's not

that scary, and Terraform Cloud makes it fairly easy. The VCS

workflow is controlled by events in your version control system

and can be associated with a specific branch and directory.

Although we lose the ability to run an apply action from the CLI

once we adopt a VCS workflow, we still have the ability to run

speculative plans and test changes to the code. Since the VCS

workflow can be associated with the branch, we can leverage a

single repository with multiple branches to support multiple

workspaces. We also saw how we can use variable sets to simplify

defining common variables across workspaces. If you find that the

VCS workflow doesn't provide enough flexibility for your

organization, you can always adopt an API workflow. Although it is

more complicated to implement, it is also the most flexible option

of all the workflows. Now that we have our code stored in

version control, we can take advantage of another feature in

Terraform Cloud, Sentinel, and applying policy as code. We will be

able to check for security issues and best practices in our code

before it is applied to the target environment.

Chapter 7 HashiCorp Sentinel Fundamentals

Our Terraform configuration deployment has been automated

through the wonder of the VCS workflow, and that opens the

opportunity to add other elements to the automation process.

Enter HashiCorp Sentinel, a policy as code solution we can

leverage in Terraform Cloud to validate best practices and

requirements for security, compliance, and engineering. In this

chapter, we'll apply policy as code using Sentinel. Before we start

using Sentinel, we should probably get to know a little bit about

what Sentinel is and how it is constructed. Once we have that

under our belts, we can get down to brass tacks, seeing how

Sentinel policies are applied to Terraform configurations and how

it informs Terraform Cloud operations. To apply the knowledge we

have gained about Sentinel and policy as code, we will review

some requirements from ACME and apply them to our Donovan

workspaces. But first, let's begin with an overview of Sentinel.

HashiCorp's Sentinel is a framework for implementing governance

policies as code in the same way that Terraform implements

infrastructure as code. Sentinel is embedded in HashiCorp's

enterprise products like Consul, Vault, and, of course, Terraform

Cloud and Terraform Enterprise. Since the policies are defined with

code, they can be managed in a VCS repository and developed

using common software development workflows. The policies use

Sentinel's native policy language, which is a balance between

configuration languages like YAML and JSON and languages like

Python. The intention is to make it flexible enough to accomplish

its goal while still approachable to The policies used by Sentinel

are as fine grained as you want and based on one or more

conditions. Information used to make a policy decision can come

from Terraform itself or from an external source. Any violations

found can result in an advisory, a soft rejection, or a hard full

stop rejection. Let's dig into the core components of Sentinel and

see how they are leveraged in the Terraform Cloud context. In the

context of Terraform Cloud, Sentinel policies are grouped into

policy sets. The policies and the policy sets are stored on a VCS

repository and linked to Terraform Cloud at the organization level.

You select the repository, branch, and path to the policy set

document. You can manage your Sentinel policies with the same

workflow we saw in the previous chapter. Policy sets in Terraform

Cloud are applied at the workspace level. Each policy set can be

applied globally to all workspaces or to a select set of workspaces.

The evaluation of a policy set occurs during a Terraform run after

the plan and cost estimation phases, but before the apply phase.

If the plan phase fails, the policy set will not be evaluated.

Placing the policy evaluation phase after plan and cost gives it

access to the plan data, cost information, and any information

stored in the workspace, like tags or state data. Sentinel can also

pull information from external sources as well, but let's focus on

Terraform Cloud. A policy can evaluate as passing or failing. If all

of the policies pass, the apply action will be available for

execution. When it fails, the policy definition in the policy set

determines what action Sentinel should take. An advisory action

simply adds a warning, but allows the process to continue. A soft

mandatory requires explicit approval before the apply stage can

start. A hard mandatory prevents the apply stage until the

underlying policy violation is remediated. You probably don't want

to run through the entire Terraform plan operation just to see if

your policies will pass or fail, especially when you are testing new

policies or tweaking existing ones. That's why the plan phase of a

workspace run has an option to download Sentinel mock data.

The mock data includes the configuration, plan data, and state

data, meaning it may have sensitive data contained within and

should be treated with care. Sentinel includes a CLI that allows

you to test and run policies. The mock data can be imported

using the Sentinel CLI and used to test those policies. Mock data

is produced as long as the plan phase passes, so you could use

it as a troubleshooting tool if the Sentinel policy phase fails. Let's

take a look at an example policy and policy set to get a feel for

how they are structured. Using Sentinel and the Sentinel language

could be an entire book on its own. We are simply going to

cover the basic syntax to get you started. If you're interested in

going deeper into writing Sentinel policies, HashiCorp has some

great examples posted on GitHub and good documentation for

both Sentinel itself and using Sentinel with Terraform Cloud. We'll

start with a basic policy, one that checks to make sure only the

proper instance sizes are being used by a configuration. Policies

will have the extension, .sentinel. First, we need information about

what is going to be deployed, and we can get that from the plan

data. The import keyword allows you to import data structures

and functions into your policy.

In this case, we are importing the plan information provided by

the plan phase of the Terraform run. Next, we can get all the EC2

instances from that plan data using the filter function. We are

looking at the resource_changes information stored in the plan

data and looking for any changes that are of type aws_instance

and mode managed. The list is being stored in a variable called

ec2_instances. we can test to make sure the instance sizes we

want are being created or updated. Each policy must have a main

role that resolves to true or false. This is the final determination

of whether a policy passes or fails. For our main role, we are

looking at all entries in our ec2_instances variable and checks to

see if the new value, aka, instance.change.after.instance_type, is in

the list of t2.micro or t2.small. If any of the instance types are

not in that list, then the rule evaluates to false, and the policy

fails.

The enforcement level for a policy is defined by the policy set.

Let's take a look at one now. Policy sets are a collection of

policies and chapters defined in an HCL file. Policies can be

sourced from the same directory as the policy set file or from a

relative or remote location. In this first policy, the name is and

the enforcement level is set to meaning the policy has to pass for

the Terraform run to move to the apply phase. Since we don't list

a source for the policy file, Sentinel will look for a file called in

the same directory as the policy set. The second policy is called

and this time, we are listing a source. The policy file is located in

a separate GitHub repository. The enforcement level is advisory,

meaning that if the policy fails, you will be notified, but the apply

phase will still be available. I mentioned modules briefly, so why

don't we expand on that? Sentinel supports the use of modules,

which are analogous to a library in other programming languages.

Modules bring additional functionality to policies, instead of having

to write a common function directly in each policy document. This

helps you practice the principle of dry or don't repeat yourself

software development and take advantage of other's efforts. In the

sentinel.hcl policy set, we are bringing in the module, As the

name implies, this chapter has a set of functions that make it

easier to work with tfplan data. Over in the file, we can import

the module, and give it the name plan. Now, instead of using the

longer filter function from earlier to get all EC2 instances, we can

invoke the find_resources function from plan and feed it the

resource type of AWS instance. That's pretty convenient. Armed

with this new knowledge, let's see how ACME plans to use

Sentinel in Terraform Cloud. The security and compliance teams at

ACME have some requirements they would love to see applied to

various workspaces. Starting at the organization level, in every

workspace, they would like to see the project and billable tags

applied to all resources that support tags. They also do not want

SSH open to the world since that seems like a bad thing. At the

development environment level, they would like to make sure that

only smaller instance types like t2.micro or t2.small are being

used. They are also trying to follow HashiCorp's recommendation

of not using provisioners by prohibiting the use of local and

provisioners. This prohibition will start at the development level

and eventually roll up to the rest of the workspaces. To fulfill

ACME' requests, we are going to need to create two policy sets,

one for all workspaces and a second for the development

workspaces only. Within each policy set, we'll need to reference a

couple of policies that satisfy their requirements. For the

demonstration, we are going to start by reviewing the contents of

the Sentinel policies we'll use for all workspaces and just the

development workspaces. After the review, we will create and apply

the global policy set for all workspaces and test the policy set by

running a plan operation on one of the workspaces. It's going to

fail the first time, so we'll remediate the issue and see that it

passes on the second try. Next, we will create and apply the

development policy to our Donovan development workspace and

test the policy by running a plan operation. Once again, things

will fail, but this time we can override it for the moment. Let's

head over to the demo environment to get started. Here are the

exercise files in Visual Studio Code, and we are working with the

files in M6, so I'll go ahead and expand that now, and we have

our policies grouped into the dev and global directories. Let's look

at the global policies first. We have two policies , and

Taking a look at the we can see that we are first importing as

planned, so we have access to all those extended functions, that's

pretty convenient, and we're setting two mandatory tags that

should be applied to all AWS instances. They are Project and

Billable.

Next, we will get all of the EC2 instances using that handy

function, find_resources of type aws_instance, and then we're

going to use another handy function,

filter_attribute_not_contains_list feeding it all of the EC2 instances

we just got looking in the field tags_all for our mandatory tags

and saying that those mandatory tags should exist, that's what the

true portion of that is.

And then finally, for our main rule, we're looking at the length of

the messages property for violating EC2 instances. If it's 0, then

there were no violations found. If it's anything else, then we need

to fail this because it didn't find a tag on one of those AWS

instances.

Taking a look at this one's a little more complicated, so we don't

necessarily need to go through the whole thing but essentially,

we're going to, again, import some tfplan information, import the

and then we're going to look for the forbidden CIDR, 0.0.0.0/0,

which is open to the world, and the forbidden_port 22, which is

what SSH uses.

And then it's going to scan through all the security group ingress

rules and see if any of those security group rules have a CIDR

block of 0.0.0.0/0 and the forbidden_port. If any of them do, and

we scroll all the way down to the bottom, like I said, this is a

little more complicated than the other one, and actually grab this

directly from the example files published by HashiCorp. If there

are any violations, then all the way at the bottom, we have our

main rule and it basically looks if validated is set to true.

If validated is true, then everything passes. If it's not, then there

was a violation in one of the security group rules and it needs to

fail. Looking in our sentinel.hcl policy set, we're importing the

chapter because we're going to use it in our policies.

We're adding the policy which is set to the enforcement level of

advisory, and the policy setting that to enforcement level of

Now let's take a look at the development policies. We've reviewed

the global policies. Now it's time to take a look at the dev

policies. I'll go ahead and expand the dev folder, and we've got

two policies, and

Let's take a look at those prohibited provisioners. Once again,

we're going to import some functions. This time it's the that

we're importing, and we're creating a prohibited_list for

provisioners of and

Then we're going to use this function, find_all_provisioners, that

looks through the config to find any provisioners. And then it's

going to look and see if any of those provisioners are in the

prohibited_list, and if it is, then in the main role we are going to

fail this policy if either of those prohibited provisioners are being

used in the configuration.

Looking over in the this time we are using the we're setting the

allowed_types to t2.micro and t2.small. Then we're going to get all

of the EC2 instances and check to see if any of the instance

types in those EC2 instances are not in the allowed_types. If

that's true, then the main rule will evaluate as false and the policy

will not pass. Looking at our sentinel.hcl file, we're importing two

different chapters here, the and the and then we have two

policies. The is set to and the is set to Now that we've looked at

our policies and policy sets, it's time to add those policy sets to

our Terraform Cloud organization.We are first going to add our

global policy set. To do that, we need to go into the Settings for

the organization. And in there, we will click on Policy sets. First,

we need to connect a new policy set, so go ahead and click on

that, and this will take us to a page where we can connect to a

version control provider.

I do want to change the name to If I go down to Policy Set

Source, because the policy set is not in the root of the repository,

we're going to have to give it a path. We are using the default

branch in our repository, so nothing needs to change there, and

we want this applied to all workspaces, so I can leave the Scope

of Policies selected as Policies enforced on all workspaces. Go

ahead and click the Connect policy set, and now that policy set

has been created and applied globally to all workspaces.

Let's go ahead and kick off a plan for our development workspace

and see what happens. I'll go into Workspaces and go into the

development workspace, and we'll go ahead and kick off a new

plan. We'll do Start new plan here, and we'll say new global

policy set. I'll go ahead and start the plan, and we can monitor

the run from here.

This will go through the plan phase first, then the cost

estimation, and then we have a new phase . It's the policy check.

That comes after plan and cost estimation. So let's wait until that

kicks off. our policy check has passed.

And if we look a little bit closer, we can see that Policies: 1

passed and 1 advisory failed. Before we look at that, I do want to

point out in the plan portion of the phase, there's an option to

Download Sentinel Mocks. So if you need that Sentinel mock data

to test your policies, you can get it from there. Let's go ahead

and expand the policy check, and we can see that the advisory

failed is our If we look at the View JSON Data and scroll down a

little bit, there is a print message. We can scroll over and see

that it is missing the required item, Billable, from the list Project

and Billable.

The Billable tag is not in there. So why don't we update the code

in our development branch to include that Billable tag? Our tags

policy failed with an advisory warning, which means we need to

add this additional billable tag to our configuration. First, make

sure that you've selected the development branch to check out

from the list of branches in your Donovan repository. Now we're

going to go into variables and create a new variable called

billable. We'll call the variable billable and set the type equal to

string.

We'll set the description equal to (Required) Billable code for

project. We need to add this as a tag in our main.tf file. I'll go

ahead and open that, and there are our default tags for the AWS

provider. So I can simply add a new tag called Billable and set it

to var.billable. I'll go ahead and save that and save the variables.

And then lastly, let's go into terraform.auto.tfvars, and we're going

to add a value for billable.

We have a value for billable. I'll go ahead and save that, and

we'll also add that into our terraform.tfvars file just so that they

are consistent. Now that I've made all of these changes, the next

thing to do would be to commit these changes and push them.

So I'll go into the source control portion, I'll go ahead and say

update tags as the commit message, commit the change to

source control, and push it up to the development branch. Going

back to Terraform Cloud, because there were no changes to the

infrastructure, there's no apply to run here.

Let's go back to the current runs, and a new run has started for

update tags because we made a commit to the development

branch. Wow, that's pretty convenient, isn't it? Let's go into update

tags and look at the process. Plan is currently running. It has

some changes to make, which is updating the tags associated

with all these different resources. The plan has finished. Let's

scroll down, and we can see that the policy check has passed

with 2 passing and 0 failed. That sounds great, so we'll go ahead

and confirm and apply this configuration, and now we'll go ahead

and apply those updated tags to our resources. In summary,

Sentinel could really be its own book. We've barely scratched the

surface of what it's capable of. Let's review a few key points. First,

Sentinel is a separate HashiCorp product that allows you to define

policies as code. The Sentinel policies and policy sets for

Terraform Cloud are stored and managed in a version control

system. Policy sets can be applied globally to all workspaces or

selectively. Policy sets are evaluated during the planning process,

after plan and cost estimation, but before apply. Depending on

the enforcement level, you may or may not be able to move

forward to the apply phase. So far, the Donovan adventure has

been a resounding success. Now it's time to expand your efforts

to include other teams. Next, we will set up some teams in

Terraform Cloud and see how we can use Teams to define

permissions on workspaces.

Chapter 8 How to Operate Terraform Cloud for Teams

Terraform Cloud is all about collaborating with teams, but so far,

we've only been collaborating with ourselves. The time has come

to bring in other users to help out at ACME. The central

organizing unit for users on Terraform Cloud is teams, and that is

what we'll focus on in this chapter. Permissions in Terraform

clouds are managed through teams. Users are granted those

permissions by being a member of one or more teams. We'll start

the chapter with a quick refresher on the relationship between

users, organizations, and teams. You might be wondering what

kind of permissions are available and how they are applied. There

are two categories of permissions. First, we'll look at the

permissions at the organization level, and we'll learn about the

special owners team that has permissions not available to any

other teams. Second, we will take a look at the permissions

available at the workspace level and how to associate a team with

a workspace and apply permissions. Then we will put it all into

practice by looking at the updated requirements from ACME As a

quick reminder of the relationship between users and

organizations, a user in Terraform Cloud exists independently of

any particular organization. A user can be a member of one or

more organizations with different permissions in each organization.

Inside of an organization, each user must be a member of at

least one team. When you invite a user to be part of your

organization, you also select a team they will be a member of. If

you are creating a new organization, then you are automatically a

member of the owners team for that organization. We'll talk more

about the owners team a bit later in the chapter. A user can be a

member of more than one team in the organization, and each

team will have a set of permissions assigned to it. There are two

types of permissions, permissions that include the ability to

manage workspaces and policies, and permissions that control

what a team can do in the context of a workspace. A team can

have workspace permissions assigned on multiple workspaces, and

the permissions assigned in each workspace do not have to be

the same. A developers team could have write access on the

development workspaces and on the production workspaces. A

team can have both organization and workspace permissions

associated with it. Some permissions imply permissions at the

workspace level. For instance, the organization permission, manage

workspaces, grants admin permissions on all the workspaces. Why

don't we zoom in on what permissions are available at the

organization level. A team can be granted permissions. As of this

recording, there are five permissions you can grant. Manage

policies grants the team the ability to create, edit, and delete

Sentinel policy sets, and it also implicitly grants the read runs

permission on all workspaces. Managed policy overrides grants the

team permissions to override soft mandatory policy violations. It

does not give the team permissions to alter assigned policies. So

if a policy fails with hard mandatory applied, they cannot override

that. Manage workspaces grants the team permissions to create

and administer all workspaces in the organization. As I mentioned

before, this implicitly gives them admin rights on all workspaces.

Manage private registry grants the team permissions to manage

public providers and modules associated with the private registry

and manage any private modules within the private registry.

Manage VCS settings grants the team permissions to manage the

VCS providers configured for an organization and any SSH keys

for use with those VCS providers. There's one more category of

permissions that I need to address, and that is permissions

implicitly granted from outside Terraform Cloud. As we've seen

with the VCS workflow for both workspaces and policy sets,

anyone with proper permissions to the VCS repositories can

initiate a change or run on Terraform Cloud, even if they don't

have direct permissions. The same thing goes for any API

integrations with external systems. Be mindful of how and when

you delegate access from external systems. You might have

noticed that things like changing billing or creating and managing

teams are not in this list of permissions. Those and some other

permissions are reserved for the owners group. In fact, let's

quickly review what only the owners team can do. The owners

team is a super special team created along with the organization.

When a user creates an organization, they are assigned to the

owners team. If the organization is on the Free tier billing plan,

the only team available will be the owners team. Owners have

permissions that are not available to other teams in the

organization, including the following: the ability to invite new users

to the organization and manage teams, including creation,

membership, and deletion; the ability to manage all organization

settings you see in the user interface, including setting the billing

plan for an organization and managing the payment information;

the owners team can also manage the lifecycle of Terraform Cloud

managed agents running on your internal environment; and finally,

owners can create an organization API token. This token can do

just about anything relating to the organization, but it cannot

perform workspace actions like running a plan, altering a config,

or overriding a policy check. You can only have one active

organization token at a time, and it should be treated with

extreme caution. The general guidance is to use an organization

token for initial setup and then replace it with a team token that

has more restricted permissions. Speaking of restricted

permissions, let's turn our attention from the organization to the

workspace.

Chapter 9 Workspace Permissions

The most common use for teams in Terraform Cloud is to grant

permissions on one or more workspaces. The permissions you

defined for a team in one workspace can differ from what you

assign in other workspaces. Terraform Cloud breaks workspace

permissions into four different categories. Let's take a look at

what's included in each of those categories. The four categories of

workspace permissions are run, Sentinel, variables, and state. The

run permissions control access to runs in the workspace and have

the levels of read, queue, and apply. That means a team could

have permissions to queue a run, but not actually apply the

resulting plan. There is also a permission to lock or unlock the

workspace, which will prevent runs from taking place while the

workspace is locked. The Sentinel category is very simple. It

controls whether or not the team can download Sentinel mock

data from the workspace runs. There can be sensitive data in

those mocks, so bear that in mind when granting access. The

variables category determines whether the team can view

workspace variables only or also edit those values. Values marked

as secret will not be visible regardless of permissions since those

can only be changed and not viewed. Lastly, the state category

has three types of access, read outputs only, read the state data

directly, and read and write the state data. Generally, Terraform

Cloud manages state data alteration. So you really only need write

access if you plan to execute your runs locally instead of using

the remote runners. That's a lot of permissions to configure.

Fortunately, Terraform Cloud makes it a bit easier for you by

providing four permission sets to use. Each set builds on the

permissions included in the previous one. Let's start with the read

permissions set. Read provides read access to all information in

the workspace, but you cannot edit anything. Plan adds the ability

to create runs, but not the ability to apply them. Write can read

and write data like variable values, approve runs, and control

workspace locking. Lastly, admin has permissions to configure all

settings in the workspace, including team access, execution mode,

VCS configuration, and deletion of the workspace itself. Basically, if

it's in the Settings menu of the UI, admins can alter it. Right

now, there's no way to save a custom permission set as

something like a role. So if you want to consistently apply a

permission set outside of these fixed options, I'd recommend

doing so programmatically with the API or Terraform Cloud

provider. Now that we're familiar with the teams and permissions

model in Terraform Cloud, let's see what ACME is looking to do

with their organization. ACME has a few requests for you to fulfill

in the Terraform Cloud organization. First, they want you to create

an admin team that has all available permissions. Then they'd like

you to invite a new user to the organization and assign them to

this newly created admin team. Next, we'll move on to teams.

ACME wants you to create the devs and managers teams that will

be assigned workspace level permissions. The Donovan Devs team

will receive the plan fixed permission set, allowing them to run

speculative plans from the CLI, but still forcing them to go

through the VCS workflow to apply changes. The managers will

get the read fixed permission set to review the status of a

workspace without being able to change any settings. These

permissions should be applied consistently across all existing

workspaces. Time to get some teams and permissions set up.

We'll start by creating the admin team with the appropriate

permissions. Then we'll invite new users Tricia McMillan to be a

member of the admin team in our organization. Next up, we will

create the Donovan devs and managers teams, and then we will

finish out by assigning permissions to the workspaces. Let's head

over to the demonstration environment and get started. From the

Terraform Cloud UI, we're going to go into the settings for the

organization and select Teams. This is where you create new

teams.

And we're going to create a new team called org_admins. I'll go

ahead and click on Create team, and now it will give us the

opportunity to select what level of organization access this team

will have. Remember that we want to select all available

permissions, so we'll go ahead and tick all of these boxes here.

And after you have selected all the boxes, you have to click on

the button below to update the team organization access. That's

what actually saves the permissions. Scrolling down a bit, we have

the ability to control the visibility of this team within the

organization. In this case, we're going to set it to Visible for

everyone and click the button to Update team visibility.

If we scroll down a little bit more, we can see there is the team

API token. If you generate an API token for the team, that has

the same effective permissions as anybody who is a member of

the team.

Scrolling down a bit more, we can see we have the ability to add

a new team member. This is for users who already exist in the

organization. And we have the ability to delete this team if we're

done with it. We have created our organization admins team, and

now it's time to invite a new user. Go ahead and click on the

Users here to start the process of inviting a new user, and then I

will click on Invite a user. It's going to ask for an email address

and what team to add this to. Remember, every user has to be a

member of at least one team. I'll go ahead and put in the email

address here, and then click the and select org_admins as the

team to add her to, and click on Invite user. This will send an

email to Tricia McMillan, inviting her to join the organization. I

have her email open in the other tab, so let's switch to that.

We'll copy the URL for this invitation. And now we have to open

up a separate private browse, because we're already logged in this

browser. So I'll go ahead and bring up a private window, and

we'll paste the invitation into here, and now we can create a new

user on Terraform Cloud. If already had a user account on

Terraform Cloud, it would simply add the organization to her

existing user account. We'll go ahead and put in a username for

her, and I'll paste in a password for her and agree to the terms

of use and the privacy policy, and click on Create account.

Now we can see the invitation to join the organization, I'll accept

the invitation. And because we have our organization set up to

require MFA, we first have to go into the user settings for and

set up authentication. I'll do that right now, and type in the

authentication code.

Now that we have enabled authentication, we're allowed to select

the organization. We'll accept the invitation again, and now we are

connected into the organization and a member of the org_admins

team. Now it's time to create the Donovan devs team and the

managers team. We're going to create two teams for workspace

level permissions. And even though we created a team called

org_admins and added to it, she doesn't have the necessary

permissions to create new teams. I'll click on Create team to

create the team. We're not going to be adding any organization

level access, so I'll scroll down and make this team visible to

everyone, and click on Update team visibility to update that

setting. And for now we're not going to add any team members,

so we're all done with this team. Let's go back to Teams and

create our managers team, and I'll click on Create team for that.

We have successfully created the managers team, and I'll set the

visibility for that also to be visible to all members of the

organization. Our two teams have been created. The next step is

to add them to Workspaces and assign them relevant permissions.

Let's start by going to Workspaces and clicking on the

development workspace. And within this workspace, we're going to

go into Settings and click on Team Access to configure the team

access for this workspace.

Next, we'll click on Add team and permissions, and we're going

to select the devs team. And if we wanted to assign them custom

permissions, we could toggle this radio button and it will give us

full access to all the different permissions settings. But we're

going to go with a fixed permissions set, so we'll scroll down and

assign permissions for the plan fixed permissions set. Now we'll

add the managers team. I'll select that team, and they will be

granted read permissions to this workspace. We have now

successfully created the managers and devs teams and assigned

them the appropriate permissions on the development Donovan

workspace. I leave it as an exercise to you to go into the other

workspaces and assign the appropriate level of permissions to the

teams. In summary we finally have some teams in our

organization. If you'd like to experiment some more, I encourage

you to invite some additional users and try out different

permissions. In this chapter, we learned that all users in an

organization must be a member of at least one team. The owners

team is a very special team with permissions that aren't available

to anyone else. The creator of an organization is a member of the

owners team by default. We learned that there are permissions at

the organization level and the workspace level. Some permissions

create implicit permissions on the workspaces. Terraform Cloud

offers fixed workspace permission sets to simplify administration,

but you do have the ability to create your own custom permission

sets. Next, we are going to onboard the Donovan’s Team to

Terraform Cloud. They have already been using Terraform open

source locally, so we need to get them set up as a team in

Terraform Cloud and migrate their existing deployment.

Chapter 10 How to Migrate to Terraform Cloud

When we were setting up the Donovan, we were starting from

scratch. They did not have any infrastructure deployed yet, but

that is not going to be the case for most organizations that are

already using Terraform open source. Instead, you will need to

migrate their existing deployments over to Terraform Cloud. That

is what we'll be looking at in this chapter. First, we are going to

take a view at the migration process for Terraform Cloud. The

good news is that it isn't terribly complicated. However, when any

new technology is introduced, folks in your organization will have

questions and concerns. We'll review some of the common

concerns, and I'll do my best to address them. Then, we will

meet the Donovan’s Teams team at ACME and help them migrate

to Terraform Cloud. First, let's talk about the migration process. If

you're currently using Terraform you're already using a back end to

store your state data. That state data is what we're migrating

when we move to Terraform Cloud. You may have added a block

to your configuration that points to a remote location to store

state data. For instance, an Amazon S3 bucket. The state data is

written out to that location. If you're using Terraform workspaces,

each workspace will have a separate set of state data in the same

location. Beyond the configuration and state data. You also have

the actual infrastructure created by your Terraform code. When you

migrate your state data from the current back end to Terraform

Cloud, all you need to do is remove the block and replace it with

a cloud block. If you're using the local back end without a block,

then you can simply add the cloud block to your Terraform code.

After changing your code, running terraform init will kick off the

migration process. Terraform will see that the back end has

changed and walk you through some prompts to complete the

migration. You'll notice that while the code and the state data are

changed, the deployed infrastructure remains exactly the same.

This process is not disruptive to the functioning of your

application infrastructure. Let's take a look at the actual steps

involved when migrating to Terraform Cloud. The first step I

already alluded to, and that is updating the configuration to use

Terraform Cloud. The exact settings you configure in the cloud

block will depend on how you are using Terraform today;

particularly, whether you are currently using or plan to use

multiple workspaces with the same configuration. The next step is

to run terraform init to kick off the actual migration process.

Terraform can see the current configuration in its local

configuration data and will use that in combination with the new

back end to perform the migration. You will be prompted to

provide input depending on the workspaces set up in Terraform

Cloud. After the migration, your work is not quite done. Assuming

you're going to use the remote agents to execute runs, you'll

probably need to set up some variable values in the workspace.

You might also want to change the workflow type for the

workspace or adjust other settings. Finally, you can run a

speculative plan to verify that no changes will be made to your

infrastructure. A successful plan with no changes shows that the

migration was successful and your deployed infrastructure will not

be impacted by the change. There are some common questions

and concerns folks have when migrating to Terraform Cloud. So

let's take a look at those. The single most common concern I

hear is that by migrating to Terraform Cloud you are now locked

in and cannot migrate off. Not to worry, you can always change

to a different back end and migrate your state off Terraform Cloud

should you decide it isn't right for you. Another concern is that

you won't be able to migrate from your existing back end to

Terraform Cloud or that it will require some tricky command line

operations. If you're on a supported type today, you should have

no problem migrating to Terraform Cloud. A lot of organizations

are using multiple Terraform workspaces against a single

configuration, and they might worry that workspaces won't migrate

properly. In older versions of Terraform that use the remote back

end instead of the cloud block, there could be some confusion

around workspace naming and the use of prefixes. The tags

argument in the cloud block helps alleviate those concerns. All

your workspaces can be migrated without issue. When workspaces

are provisioned on Terraform Cloud, you'll need to pick a workflow

type, but how do you do that? That decision will largely depend

on what your team is comfortable with and your future plans for

automation. As we've already seen, the CLI workflow is the most

familiar option, but the VCS workflow brings significant benefits

for automation and code management. A closely related question

is regarding automation. Many organizations already have in place

a CI/CD pipeline that orchestrates their Terraform deployments,

and they want to know if they can keep using that pipeline. Of

course you can. You could either keep the pipeline the same by

leveraging the CLI workflow with local execution or you could

update the pipeline to leverage the additional functionality in the

VCS or API workflows. Why don't we see what ACME is looking

to do and how it will inform their choice of a workflow. The

Donovan Team at ACME has been using Terraform open source

and a single default workspace to manage their application

infrastructure for quite some time now. They've heard about your

success at using Terraform Cloud and would like to join the party.

The code for the Donovan Team application and the state data

are stored locally on a deployment machine at ACME HQ. The

Donovan’s Team logs into the deployment machine and performs

updates through the Terraform CLI. They would like to maintain

that process for the moment. Your goal is to migrate the

Donovan’s Team Terraform configuration to Terraform Cloud

without disrupting their infrastructure or their current code

deployment process. That means migrating the state data from the

local machine at ACME HQ to Terraform Cloud by adding a cloud

block and running CLI commands. For the workspace, we will

leverage the CLI workflow for now since it most closely matches

their current deployment process. The Donovan’s Team will need

access to kickoff runs on the Donovan’s Team workspace, so we

will need to create a Donovan’s Team dev's team and grant them

write access to the workspace. Lastly, the Donovan’s Team would

like to include the Donovan application URL in their app and

keep it current if that URL changes. We can accomplish this by

granting the Donovan’s Team development workspace access to

the Donovan development workspace state data. Leveraging the

remote state data source, we can set up a run trigger from the

Donovan development workspace to the Donovan’s Team

development workspace to pull that application URL. Since we

don't already have a Donovan’s Team application deployed, we'll

start the demonstration by deploying the code from our files.

Then we will go through the migration process to move the state

data to Terraform Cloud. Once the migration is complete, we will

configure the workspace with proper variable values and team

access permissions and validate the migration was successful by

kicking off a planning run. Finally, we will add the remote_state

data source to the Donovan’s Team application, update the

settings in both workspaces, and verify that the remote_state data

access and run trigger work properly. In Visual Studio Code, I

have the Exercise files open on the left. That is what we're going

to be deploying to AWS. In the terminal below, I am already in

the directory, so all I have to do is run terraform init. To initialize

the configuration, this configuration is making use of a chapter

that's stored locally and one that is from the Terraform public

registry, which you can see in the initializing modules portion of

the output. That will be relevant when we move to the next

chapter in the book.

The next step to deploy the application is to run terraform apply,

and I will add to skip the approval prompt. This is going to use

the AWS credentials that I have stored locally from my AWS CLI

profile. If you don't have your AWS CLI profile set up, you can

store your credentials in environment variables in the same way

that we did for Donovan and then deploy the application. Our

deployment has completed successfully.

Our application has been deployed successfully, so the next step

is to migrate our application to Terraform Cloud. We have

successfully deployed our application, and the state for it is stored

locally. The next step is to update the backend.tf file to .2

Terraform Cloud. So I'll go ahead and open backend.tf, and I'll

start by removing the comment blocks here. All the comment

blocks are out, and now we need to fill out the organization, in

our case, it is And for the workspaces, instead of specifying a

single workspace, let's use the tags argument instead. So I'll start

with the argument tags, and I'll give it a value of two tags. The

first one will be apps, so it will have the tag apps, and the

second will be team. This means any workspaces created with this

configuration will have these two tags applied to them in

Terraform Cloud. I'll go ahead and save the back end, and then

the next step is to run terraform init. You can see it says

Initializing Terraform Cloud, so it found our cloud block. And now

it is asking us if we want to migrate to Terraform Cloud. Do we

want to migrate our existing state? We do, so I'll go ahead and

enter yes. Next, it sees that we're using the default workspace

locally.

But in Terraform Cloud, each workspace has to have an explicit

name. So it wants us to create a workspace that will replace the

existing default workspace. Since we do have a naming standard,

let's go ahead and use it. We'll give the workspace the name

because that matches our existing naming convention. I'll go

ahead and hit Enter, and it will create that workspace over in

Terraform Cloud and migrate our state data to that workspace.

Now we can see it has successfully initialized Terraform Cloud.

The last thing that we need to do locally is to delete the

terraform.tfstate file. If we don't do that, the next time we try to

run a terraform plan or terraform apply, it's going to say, I see

this local tfstate file. I'm not sure what to do, so I'm not going

to do anything. So I'll go ahead and delete that file and the

backup file. In this chapter, I hope you saw just how easy it is

to migrate to Terraform Cloud, at least it is simple from a

technical standpoint. As is so often the case, the real challenge is

dealing with people and process rather than technology. To that

end, it is critical to plan the migration process to match team

expectations and properly train teams on using Terraform Cloud.

Ideally you can pick a workflow to start out with that easily

integrates into their existing processes with a plan to potentially

standardize on a different workflow at some later date. Once

you've migrated to Terraform Cloud, your workspace can be linked

with others for data and runs. That creates an opportunity for

more sophisticated automation and decoupled architectures. In the

Donovan’s Team configuration, there are some chapters that might

be useful to the rest of ACME. We will take a look at how to

move those chapters to the ACME private registry and reference

them in our code.

Chapter 11 How to Use Private Registry

One of the main benefits of using Infrastructure as Code is the

ability to create reusable bits of code to deploy common

infrastructure patterns. Terraform delivers this functionality in the

form of modules. The public Terraform Registry allows people to

create and upload modules and providers to share with others.

Terraform Cloud includes a private version of the registry you can

use in your organization. That's what we're going to dig into in

this chapter. We will kick off our exploration of the private registry

with an overview of what the private registry is, how it compares

to the public registry, and the benefits that come from using a

private registry in your organization. Then we will get into the

details of how to actually use the private registry, including how

to add providers and modules and how to update your existing

configurations to use the private registry. Finally, we'll check in

with ACME who has some plans to use the private registry to

host modules and providers for internal use at the organization.

But first, let's dig into the private registry overall. The private

registry is a feature of Terraform Cloud available for any type of

billing plan. It is essentially a private instance of the public

Terraform registry dedicated to your organization. While the URL

of the private registry is publicly available, access to the private

registry on Terraform Cloud is restricted to members of the

organization only. If you aren't a member of a team in the

organization, you cannot access the registry. If you're running

Terraform Enterprise, then there is the ability to share private

modules from one organization to another inside the same

Terraform Enterprise deployment. That functionality is not currently

available to Terraform Cloud. Since the private registry is very

similar to the public registry, it supports things like versioning of

modules and providers and search functionality to discover

modules and providers that have been added to the registry. You

can browse documentation, look at examples, and even follow the

link to source code if you have access. You can add three types

of items to the private registry. The first two are public providers

and chapters. Adding one of these items creates a pointer in the

private registry that is linked to the public instance. You might

wonder why you would add publicly available items to a private

registry. I will address that in a moment. The third item type is a

private module. Private modules are sourced from a VCS

repository in the same way that you would add a chapter to the

public registry and are only available from the private registry. One

of the reasons to add public providers and modules to the private

registry is to control which modules and providers are being used

in your organization. You can enforce this restriction with Sentinel

policies that require all modules to exist in the private registry,

whether it's a pointer to a public module or a private module,

preventing folks in the organization from using unapproved

modules. Also contained in the private registry is a design

configuration utility. It's meant to be a simple drag and drop

experience for building Terraform configurations from the modules

and providers stored in the private registry. We're not going to get

into it in this book, but I thought I would mention it for

completeness. Now that you know what the private registry can

do, you might be wondering what the benefits are of using it.

HashiCorp does provide guidance on hosting your own registry if

you really want to. The Registry API spec is publicly available, and

there are a few reference implementations, but that means you'd

have to manage it yourself. The private registry in Terraform Cloud

is a managed service that you can leverage for your organization.

Adding both public and private items to the registry creates a

centralized location with a curated selection of modules and

providers that developers can visit to discover preferred items,

read documentation, and view examples. Even if you don't plan to

restrict what developers can use, having a central location for

discovery is fairly convenient. If you're using internally developed

modules today, there's a good chance they're stored in a

Terraform configuration or hanging out on a file share somewhere.

The private registry helps you move those modules into a VCS

repository and add versioning for consumers of the modules.

That's definitely a big help when you want to roll out a new

version of a module that might contain breaking changes. the

private registry is private in terms of access. If you have written

modules that you don't want to be available in the wild, but you

still would like to offer them to your internal teams, then the

private registry is the perfect solution. The alternative is to host

your own registry, but I'd recommend against doing that if you

don't have to. We've talked a lot about adding items to the

registry, so how exactly do you do that, and how do you reference

those items in your code? Well, there are two distinct things we

can dig into when it comes to using the private registry: adding

new items and then using those items in your code. Since you

can't use the items until they're added to the registry, let's start

by looking at how you add items in the first place. You can add

any providers or modules that exist in the public Terraform

registry to the private registry. The private registry houses a

pointer for the item referencing the public instance. The process

is very simple. First, you select to add a provider or module from

the Terraform Cloud UI and search for it in the public registry.

Then you click the button to add it to the private registry, and

that's it. That's the entire process. You can also add items via the

API if you prefer not to use the Terraform Cloud UI. Adding

private modules is a little more involved, and the process is

remarkably similar to adding a module to the public registry. First,

you need to create a VCS repository where you will store your

module and name it using HashiCorp's official guidance, which is

terraform, dash, the main provider used in the module, dash, the

main purpose or resource in the module. You can store multiple

modules in a single repository, but that's an advanced topic we

won't get into. Once you've added your module code to the

repository, you need to create a release tag with semantic

versioning like vi.o.o or 3.1.4. The private registry uses the release

tags to manage available versions of the module. Once the

module is added to the registry, it will automatically pick up on

new versions of the module when it sees a new release tag

added. The last thing to do is add the module to the private

registry through a VCS connection. An important note here is that

the private registry requires an VCS connection. So if you've used

the GitHub app to connect to GitHub from Terraform Cloud,

you'll need to create a new GitHub connection with OAuth. With

our items added to the private registr, it's time to use them.

Using the public providers and modules that have been added to

your private registry doesn't require you to change anything in

your code. You will reference them exactly the same way as you

have before. For instance, the typical way to reference a public

module is to configure the source and the version. The value for

the source argument will be something like the repository name it

came from, slash the primary resource type or purpose of the

module, slash the primary provider used by the module.

In the case of a private module, the only real difference is the

source argument. The updated form will be slash the primary

resource type or purpose of the module, slash the primary

provider type. Now don't worry about memorizing any of this.

The private registry will automatically generate a usage block you

can copy and add to your code. We now know how to add items

to the private registry and use them. In summary, a private

registry is created for each organization on Terraform Cloud, and

access is limited to members of that organization. That is what

makes it private, after all. The private registry stores pointers to

public providers and modules from the public Terraform registry

and private modules associated with VCS repositories. The registry

supports versioning for all item types and is searchable by

organization members. If you would like to limit users to only

items in the private registry, you may do so with Sentinel policies.

That does it for this book. But, I'd like to take a moment to

summarize the book as a whole and recommend some possible

next steps and resources for you as you continue your Terraform

journey. Terraform Cloud is a managed service offered by

HashiCorp that adds functionality not available in the version of

Terraform. Terraform Cloud is made up of users, organizations,

and workspaces in those organizations. The main benefits of using

Terraform Cloud are the increased ability to collaborate with teams

and implement automation for infrastructure deployment. One of

the key integrations of Terraform Cloud is Sentinel, a policy as

code engine that allows you to define policies and policy sets that

will be applied to workspaces running your Terraform code.

Terraform Cloud also includes a private registry where you can

host public providers and modules and private modules you

manage internally. That fairly sums up Terraform Cloud without

going into too much detail. Now what could you do next in the

world of Terraform? There are several other Terraform books

available. Chances are you've already read the first two books or

know the content, but there are also books that go deeper into

the world of Terraform and look at implementing it on AWS and

Azure. I'd also recommend checking out the learn site by

HashiCorp. They have a whole series of practical labs you can

follow to learn more about any Terraform topic. While you're

there, you could broaden your horizons by checking out other

popular HashiCorp products like Vault and Packer. I hope you

found it educational and entertaining. Good luck and go build

something great!

Conclusion

Congratulations on completing this book! I am sure you have

plenty on your belt, but please don’t forget to leave an honest

review. Furthermore, if you think this information was helpful to

you, please share anyone who you think would be interested of IT

as well.

About Richie Miller

Richie Miller has always loved teaching people Technology. He

graduated with a degree in radio production with a minor in

theatre in order to be a better communicator. While teaching at

the Miami Radio and Television Broadcasting Academy, Richie was

able to do voiceover work at a technical training company

specializing in live online classes in Microsoft, Cisco, and

CompTia technologies. Over the years, he became one of the top

virtual instructors at several training companies, while also

speaking at many tech and training conferences. Richie specializes

in Project Management and ITIL these days, while also doing his

best to be a good husband and father.

	COMPUTING PLAYBOOK

	RICHIE MILLER

	BOOK 8

	BOOK 9

	BOOK 10

	Table of Contents - Book 1

	Table of Contents - Book 2

	Table of Contents - Book 3

	Table of Contents - Book 4

	Table of Contents - Book 5

	Table of Contents - Book 6

	Table of Contents - Book 7

	Table of Contents - Book 8

	Table of Contents - Book 9

	Table of Contents - Book 10

	Introduction

	Chapter 1	Out-dated Data Centers

	Chapter 2	Cloud Computing Types & Scenarios

	Chapter 3	AWS Regions and Availability Zones

	Chapter 4	AWS Global Infrastructure

	Chapter 5	Cloud Economics

	Chapter 6	How to Organize and Optimize AWS Costs

	Chapter 7	How to Use the AWS Pricing Calculator

	Chapter 8	How to Review Costs with the Cost Explorer

	Chapter 9	How to Apply Cloud Economics

	Chapter 10	How to Support AWS Infrastructure

	Chapter 11	AWS Support Tools

	Chapter 12	Infrastructure Support Scenarios

	Chapter 13	How to Prepare for the Exam

	Introduction

	Chapter 2 How to Use the AWS CLI

	Chapter 3 Amazon Compute Services

	Chapter 4	Amazon EC2 Purchase Types

	Chapter 5	How to Launch EC2 Instances

	Chapter 6	AWS Elastic Beanstalk

	Chapter 7	AWS Lambda, VPC and Direct Connect

	Chapter 8	Amazon Route 53 & Elastic Load Balancing

	Chapter 9	File Storage Services & Hosting Amazon S3

	Chapter 10	Glacier Deep Archive & Elastic Block Store

	Chapter 11	Data Transfer with AWS Sball

	Chapter 12	Amazon DynamoDB, Elasticache and Redshift

	Chapter 13	AWS Messaging Services

	Introduction

	Chapter 1	AWS High-availability and Fault Tolerance

	Chapter 2	AWS Managing IAM Users

	Chapter 3	How to Enable Multi-factor Authentication

	Chapter 4	Amazon Cognito

	Chapter 5	How to Integrate On-premise Data & Data Processing

	Chapter 6	How to Integrate AI and Machine Learning

	Chapter 7	Disaster Recovery Architectures

	Chapter 8	Selecting a Disaster Recovery Architecture

	Chapter 9	How to Scale EC2 Infrastructure

	Chapter 10	How to Control Access to EC2 Instances

	Chapter 11	How to Deploy Pre-defined Solutions Using Developer Tools

	Chapter 12	How to Register & Study for the Exam

	Introduction

	Chapter 1 Installing Terraform & Using the CLI

	Chapter 2	Terraform Workflow & Deployment

	Chapter 3	Terraform Data Types

	Chapter 4	Output Values Syntax & Architecture Updates

	Chapter 5	How to Add New Resources

	Chapter 6	How to Add Load Balancer Resources

	Chapter 7	Terraform State Commands & Providers

	Chapter 8	How to Add Random Provider

	Chapter 9	How to Use Functions and Looping

	Chapter 10	How to Add Naming Prefix

	Chapter 11	Terraform modules

	Chapter 12	For Expressions

	Chapter 13	How to Manage Sensitive Data

	Chapter 1	How to Work with Existing Resources

	Chapter 2	How to Deploy the Network Configuration

	Chapter 3	Terraform State Commands & Backends

	Chapter 4	How to Use Data Sources & Templates

	Chapter 5	How to Use Workspaces & Collaboration

	Chapter 6	How to Troubleshoot Terraform

	Chapter 7	Resource Taints & Crash Logs

	Chapter 8	DevOps Terminology

	Chapter 9	How to Add Terraform Plugin

	Chapter 10	Terraform Automation Considerations

	Chapter 11	How to Create Networking Pipeline

	Chapter 12	How to Integrate Configuration Managers

	Introduction

	Chapter 1	Terraform Cloud Fundamentals

	Chapter 2	How to Explore Organization Settings

	Chapter 3	Terraform Cloud Workspaces

	Chapter 4	How to Configure Workspace Variable Values

	Chapter 5	VCS and API Workflows

	Chapter 6	How to Create Repository Branches

	Chapter 7	HashiCorp Sentinel Fundamentals

	Chapter 8	How to Operate Terraform Cloud for Teams

	Chapter 9	Workspace Permissions

	Chapter 10	How to Migrate to Terraform Cloud

	Chapter 11	How to Use Private Registry

	Conclusion

	About Richie Miller

