Imbalanced Classification
with Python

Choose Better Metrics, Balance
Skewed Classes, and Apply
Cost-Sensitive Learning

Jason Brownlee

MACHINE
LEARNING
MASTERY

4

Disclaimer

The information contained within this eBook is strictly for educational purposes. If you wish to apply
ideas contained in this eBook, you are taking full responsibility for your actions.

The author has made every effort to ensure the accuracy of the information within this book was
correct at time of publication. The author does not assume and hereby disclaims any liability to any
party for any loss, damage, or disruption caused by errors or omissions, whether such errors or
omissions result from accident, negligence, or any other cause.

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic or
mechanical, recording or by any information storage and retrieval system, without written permission
from the author.

Acknowledgements

Special thanks to my copy editor Sarah Martin and my technical editors Michael Sanderson and Arun
Koshy, Andrei Cheremskoy, and John Halfyard.

Copyright

Imbalanced Classification with Python
© Copyright 2020 Jason Brownlee. All Rights Reserved.

Edition: v1.2

Contents

Copyright

Contents

Preface

I Introduction

I Foundation

1 What is Imbalanced Classification

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8

Tutorial Overview e
Classification Predictive Modeling
Imbalanced Classification Problems
Causes of Class Imbalance
Challenge of Imbalanced Classification
Examples of Imbalanced Classification
Further Reading
SUMMATY . . . o v o v o o e e e e e e e

2 Intuition for Imbalanced Classification

2.1
2.2
2.3
2.4
2.5
2.6

Tutorial Overview
Create and Plot a Binary Classification Problem
Create Synthetic Dataset with a Class Distribution
Effect of Skewed Class Distributions
Further Reading
SUMMATY . . o v v v ot e e e e

3 Challenge of Imbalanced Classification

3.1
3.2
3.3
3.4
3.5
3.6

Tutorial Overview
Why Imbalanced Classification Is Hard
Compounding Effect of Dataset Size
Compounding Effect of Label Noise
Compounding Effect of Data Distribution
Further Reading

i

ii

iii

v

CONTENTS

3.7 Summary ... e

IIT Model Evaluation

4

Tour of Model Evaluation Metrics

4.1 Tutorial Overview
4.2 Challenge of Evaluation Metrics
4.3 Taxonomy of Classifier Evaluation Metrics
4.4 How to Choose an Evaluation Metric
4.5 Further Reading
4.6 SUMMATY o e e
The Failure of Accuracy

5.1 Tutorial Overview e
5.2 What Is Classification Accuracy?
5.3 Accuracy Fails for Imbalanced Classification
5.4 Example of Accuracy for Imbalanced Classification
5.5 Further Reading
5.6 SUMmMAry

Precision, Recall, and F-measure

6.1 Tutorial Overview
6.2 Precision Measure
6.3 Recall Measure e
6.4 Precision vs. Recall
6.5 F-measure
6.6 Further Reading
6.7 Summary . . .o .. e

ROC Curves and Precision-Recall Curves

7.1 Tutorial Overview e e e
7.2 ROC Curves and ROC AUC
7.3 Precision-Recall Curves and AUC
7.4 ROC and PR Curves With a Severe Imbalance
7.5 Further Reading
7.6 SUMMATY o oo e
Probability Scoring Methods

8.1 Tutorial Overview e
8.2 Probability Metricso
8.3 Log Loss Score
8.4 Brier Score
8.5 Further Reading

8.6 Summary

11

34

CONTENTS

9 Cross-Validation for Imbalanced Datasets

9.1
9.2
9.3
9.4
9.5
9.6

Tutorial Overview e
Challenge of Evaluating Classifiers
Failure of k-Fold Cross-Validation
Fix Cross-Validation for Imbalanced Classification
Further Reading o
SUMMATY o o

IV Data Sampling

10 Tour of Data Sampling Methods

10.1
10.2
10.3
10.4
10.5
10.6

Tutorial Overview e
Problem of an Imbalanced Class Distribution
Balance the Class Distribution With Sampling
Tour of Popular Data Sampling Methods
Further Reading
SUMMATY o o o o

11 Random Data Sampling

11.1
11.2
11.3
11.4
11.5
11.6

Tutorial Overview
Random Sampling
Random Oversampling
Random Undersampling L
Further Reading
SUMIMATY . . o o v e e e e e e e e

12 Oversampling Methods

12.1
12.2
12.3
12.4
12.5
12.6
12.7

Tutorial Overview
Synthetic Minority Oversampling Technique
SMOTE for Balancing Data
SMOTE for Classification
SMOTE With Selective Sample Generation
Further Reading
SUMMATY . . . o o o o e s e

13 Undersampling Methods

13.1
13.2
13.3
13.4
13.5
13.6
13.7

Tutorial Overview e
Undersampling for Imbalanced Classification
Methods that Select Examples to Keep
Methods that Select Examples to Delete
Combinations of Keep and Delete Methods
Further Reading
SUMMATY o o o e

v

96
96
97
97
100
101
102

CONTENTS v

14 Oversampling and Undersampling 163
14.1 Tutorial Overview e 163
14.2 Binary Test Problem and Decision Tree Model 164
14.3 Manually Combine Data Sampling Methods 166
14.4 Standard Combined Data Sampling Methods 170
14.5 Further Reading 174
14.6 Summary e e 175

V Cost-Sensitive 177

15 Cost-Sensitive Learning 178
15.1 Tutorial Overview 178
15.2 Not All Classification Errors Are Equal 179
15.3 Cost-Sensitive Learningo 180
15.4 Cost-Sensitive Imbalanced Classification 182
15.5 Cost-Sensitive Methods 184
15.6 Further Reading 187
15.7 Summary 188

16 Cost-Sensitive Logistic Regression 189
16.1 Tutorial Overview e 189
16.2 Imbalanced Classification Dataset 190
16.3 Logistic Regression for Imbalanced Classification 192
16.4 Weighted Logistic Regression with Scikit-Learn 193
16.5 Grid Search Weighted Logistic Regression 197
16.6 Further Reading 199
16.7 Summary 199

17 Cost-Sensitive Decision Trees 201
17.1 Tutorial Overview e 201
17.2 Imbalanced Classification Dataset 202
17.3 Decision Trees for Imbalanced Classification 205
17.4 Weighted Decision Tree With Scikit-Learn 206
17.5 Grid Search Weighted Decision Tree 207
17.6 Further Reading 209
17.7 Summary L 210

18 Cost-Sensitive Support Vector Machines 211
18.1 Tutorial Overview 211
18.2 Imbalanced Classification Dataset 212
18.3 SVM for Imbalanced Classification 215
18.4 Weighted SVM With Scikit-Learn 217
18.5 Grid Search Weighted SVM 218
18.6 Further Reading 220

187 Summary 221

CONTENTS

19 Cost-Sensitive Deep Learning in Keras
19.1 Tutorial Overview
19.2 Imbalanced Classification Dataset
19.3 Neural Network Model in Keras
19.4 Deep Learning for Imbalanced Classification
19.5 Weighted Neural Network With Keras
19.6 Further Reading
19.7 Summary e

20 Cost-Sensitive Gradient Boosting with XGBoost
20.1 Tutorial Overview e
20.2 Imbalanced Classification Dataset
20.3 XGBoost Model for Classification
20.4 Weighted XGBoost for Class Imbalance
20.5 Tune the Class Weighting Hyperparameter
20.6 Further Reading
20.7 SUmMmary

VI Advanced Algorithms

21 Probability Threshold Moving
21.1 Tutorial Overview
21.2 Converting Probabilities to Class Labels
21.3 Threshold-Moving for Imbalanced Classification
21.4 Optimal Threshold for ROC Curve
21.5 Optimal Threshold for Precision-Recall Curve
21.6 Optimal Threshold Tuning,
21.7 Further Reading
21.8 SUMMATY o v e

22 Probability Calibration
22.1 Tutorial Overview
22.2 Problem of Uncalibrated Probabilities
22.3 How to Calibrate Probabilities
22.4 SVM With Calibrated Probabilities
22.5 Decision Tree With Calibrated Probabilities
22.6 Grid Search Probability Calibration With KNN
22.7 Further Reading
22.8 SUMMATY . . . o v v et e e e e

23 Ensemble Algorithms
23.1 Tutorial Overview e
23.2 Bagging for Imbalanced Classification
23.3 Random Forest for Imbalanced Classification
23.4 Easy Ensemble for Imbalanced Classification
23.5 Further Reading

vi

223
223
224
225
228
229
231
232

233
233
234
235
237
240
242
243

CONTENTS vii

23.6 SUMMATY e 288
24 One-Class Classification 289
24.1 Tutorial Overview e 289
24.2 One-Class Classification for Imbalanced Data 290
24.3 Ome-Class Support Vector Machines 292
24.4 Isolation Forest e 295
24.5 Minimum Covariance Determinant 296
24.6 Local Outlier Factor e 298
24.7 Further Reading 300
24.8 SUMMATY . . . o v v v et e e e 302
VII Projects 303
25 Framework for Imbalanced Classification Projects 304
25.1 Tutorial Overview e e 304
25.2 What Algorithm To Use? 305
25.3 Use a Systematic Framework o oo 305
25.4 Detailed Framework for Imbalanced Classification 306
25.5 Further Reading 318
25.6 SUMMATY oo e e 318
26 Project: Haberman Breast Cancer Classification 319
26.1 Tutorial Overview e e 319
26.2 Haberman Breast Cancer Survival Dataset 320
26.3 Explore the Dataset 320
26.4 Model Test and Baseline Result 324
26.5 Evaluate Probabilistic Models 328
26.6 Make Prediction on New Data 339
26.7 Further Reading 340
26.8 SUMMATY o vt e 341
27 Project: Oil Spill Classification 342
27.1 Tutorial Overview 342
27.2 Oil Spill Dataset 343
27.3 Explore the Dataset 344
27.4 Model Test and Baseline Result 346
27.5 Evaluate Models 349
27.6 Make Prediction on New Data 361
27.7 Further Reading 364
27.8 SUMMATY . . . o v vt et e e e 365
28 Project: German Credit Classification 366
28.1 Tutorial Overview e e e 366
28.2 German Credit Dataset e 367

28.3 Explore the Dataset 368

CONTENTS viii

28.4 Model Test and Baseline Result 371
28.5 Evaluate Models e 376
28.6 Make Prediction on New Data 385
28.7 Further Reading 388
28.8 SUMMATY o o 389
29 Project: Microcalcification Classification 390
29.1 Tutorial Overview e 390
29.2 Mammography Dataseto 391
29.3 Explore the Dataset 392
29.4 Model Test and Baseline Result 396
29.5 Evaluate Models 399
29.6 Make Predictions on New Data 407
29.7 Further Reading 409
20.8 Summary e 410
30 Project: Phoneme Classification 411
30.1 Tutorial Overview e 411
30.2 Phoneme Dataset 412
30.3 Explore the Dataset 412
30.4 Model Test and Baseline Result 416
30.5 Evaluate Models e 419
30.6 Make Prediction on New Data 427
30.7 Further Reading 429
30.8 Summary . .o oL o. L e 430
VIII Appendix 431
A Getting Help 432
A.1 Imbalanced Classification Books 432
A.2 Machine Learning Books 432
A3 Python APIs o 432
A4 Ask Questions About Imbalanced Classification 433
A5 How to Ask Questions 433
A.6 Contact the Author 433
B How to Setup Python on Your Workstation 434
B.1 Tutorial Overview e 434
B.2 Download Anaconda 434
B.3 Install Anaconda 436
B.4 Start and Update Anaconda 438
B.5 Install the Imbalanced-Learn Library 441
B.6 Install the Deep Learning Libraries 441
B.7 Install the XGBoost Library L 442
B.8 Further Reading 443

B.9 Summary 443

CONTENTS ix

IX Conclusions 444

How Far You Have Come 445

Preface

Classification predictive modeling involves assigning a class label to an example. It may be
one of the most studied and used areas of machine learning. Nevertheless, the majority of the
models used to learn from classification data and the metrics used to evaluate those models
assume that the distribution of the examples across the class labels is equal. The field is focused
on the simplest form of classification problems, so-called balanced classification problems.

When the examples across classes are imbalanced, many machine learning algorithms fail
and metrics used to evaluate those models, such as classification accuracy, become dangerously
misleading. Many problems have a skew in the class distribution. For example, numerous tasks
where practitioners want to apply machine learning are examples of imbalanced classification,
including fraud detection, churn prediction, medical diagnosis, and many more. In fact, it may
be more common to have imbalanced classes than balanced classes.

Thankfully, there is a small but rapidly growing field of study dedicated to the problem
of imbalanced classification. This field includes modifications to existing algorithms to make
them useful for imbalanced classification, careful selection of performance metrics, and entirely
new data preparation techniques and modeling algorithms. This book was carefully designed to
help you bring the tools and techniques of imbalanced classification to your next project. The
tutorials were designed to teach you these techniques the fastest and most effective way that I
know how: to learn by doing, with executable code that you can run to develop the intuitions
required and that you can copy-and-paste into your project and immediately get a result.

Imbalanced classification is important to machine learning, and I believe that if it is taught at
the right level for practitioners, it can be a fascinating, fun, directly applicable, and immeasurably
useful toolbox of techniques. I hope that you agree.

Jason Brownlee
2020

Part 1

Introduction

X1

Welcome

Welcome to Imbalanced Classification with Python. Classification predictive modeling is the task
of assigning a label to an example. Imbalanced classification is those classification tasks where
the distribution of examples across the classes is not equal. Typically the class distribution is
severely skewed so that for each example in the minority class, there may be one hundred or
even one thousand examples in the majority class. Practical imbalanced classification requires
the use of a suite of specialized techniques, data preparation techniques, learning algorithms,
and performance metrics. I designed this book to teach you the techniques for imbalanced
classification step-by-step with concrete and executable examples in Python.

Who Is This Book For?

Before we get started, let’s make sure you are in the right place. This book is for developers that
may know some applied machine learning. Maybe you know how to work through a predictive
modeling problem end-to-end, or at least most of the main steps, with popular tools. The
lessons in this book do assume a few things about you, such as:

e You know your way around basic Python for programming.
e You may know some basic NumPy for array manipulation.

e You may know some basic scikit-learn for modeling.

This guide was written in the top-down and results-first machine learning style that you're
used to from Machine Learning Mastery.

About Your Outcomes

This book will teach you the techniques for imbalanced classification that you need to know as
a machine learning practitioner. After reading and working through this book, you will know:

e The challenge and intuitions for imbalanced classification datasets.

e How to choose an appropriate performance metric for evaluating models for imbalanced
classification.

e How to appropriately stratify an imbalanced dataset when splitting into train and test
sets and when using k-fold cross-validation.

x1i

Xlil

e How to use data sampling algorithms like SMOTE to transform the training dataset for
an imbalanced dataset when fitting a range of standard machine learning models.

e How algorithms from the field of cost-sensitive learning can be used for imbalanced
classification.

e How to use modified versions of standard algorithms like SVM and decision trees to take
the class weighting into account.

e How to tune the threshold when interpreting predicted probabilities as class labels.

e How to calibrate probabilities predicted by nonlinear algorithms that are not fit using a
probabilistic framework.

e How to use algorithms from the field of outlier detection and anomaly detection for
imbalanced classification.

e How to use modified ensemble algorithms that have been modified to take the class
distribution into account during training.

e How to systematically work through an imbalanced classification predictive modeling
project.

This book is not a substitute for an undergraduate course in imbalanced classification (if
such courses exist) or a textbook for such a course, although it could complement such materials.
For a good list of top papers, textbooks, and other resources on imbalanced classification, see
the Further Reading section at the end of each tutorial.

How to Read This Book

This book was written to be read linearly, from start to finish. That being said, if you know the
basics and need help with a specific method or type of problem, then you can flip straight to
that section and get started. This book was designed for you to read on your workstation, on
the screen, not on a tablet or eReader. My hope is that you have the book open right next to
your editor and run the examples as you read about them.

This book is not intended to be read passively or be placed in a folder as a reference text. It
is a playbook, a workbook, and a guidebook intended for you to learn by doing and then apply
your new understanding with working Python examples. To get the most out of the book, I
would recommend playing with the examples in each tutorial. Extend them, break them, then
fix them.

About the Book Structure

This book was designed around major imbalanced classification techniques that are directly
relevant to real-world problems. There are a lot of things you could learn about imbalanced
classification, from theory to abstract concepts to APIs. My goal is to take you straight to
developing an intuition for the elements you must understand with laser-focused tutorials.

Xiv

The tutorials were designed to focus on how to get results with imbalanced classification
methods. As such, the tutorials give you the tools to both rapidly understand and apply each
technique or operation. There is a mixture of both tutorial lessons and projects to both introduce
the methods and give plenty of examples and opportunities to practice using them.

Each of the tutorials is designed to take you about one hour to read through and complete,
excluding the extensions and further reading. You can choose to work through the lessons one
per day, one per week, or at your own pace. I think momentum is critically important, and
this book is intended to be read and used, not to sit idle. I recommend picking a schedule and
sticking to it. The tutorials are divided into six parts; they are:

e Part 1: Foundations. Discover a gentle introduction to the field of imbalanced classifi-
cation, the intuitions for skewed class distributions, and properties of datasets that make
these problems challenging.

e Part 2: Model Evaluation. Discover the failure of classification accuracy for skewed
class distributions and alternate performance metrics such as precision-recall, area under
ROC curves, and probability scoring methods.

e Part 3: Data Sampling. Discover techniques for transforming the training dataset to
balance the class distribution, including data oversampling, undersampling, and combina-
tions of these techniques.

e Part 4: Cost-Sensitive. Discover modified versions of machine learning algorithms
that allow different types of misclassification errors to have a different cost on model
performance.

e Part 5: Advanced Algorithms. Discover advanced algorithms for interpreting and
calibrating predicted probabilities for imbalanced classification, as well as the use of
ensemble algorithms and techniques from the field of anomaly detection.

e Part 6: Projects. Discover how to put the techniques from imbalanced classification into
practice with end-to-end projects on real datasets that have skewed class distributions.

Each part targets a specific learning outcome, and so does each tutorial within each part.
This acts as a filter to ensure you are only focused on the things you need to know to get to a
specific result and do not get bogged down in the math or near-infinite number of digressions.

The tutorials were not designed to teach you everything there is to know about each of the
methods. They were designed to give you an understanding of how they work, how to use them,
and how to interpret the results the fastest way I know how: to learn by doing.

About Python Code Examples

The code examples were carefully designed to demonstrate the purpose of a given lesson. For
this reason, the examples are highly targeted.

e Algorithms were demonstrated on synthetic datasets to give you the context and confidence
to bring the techniques to your own classification datasets.

XV

e Model configurations used were discovered through trial and error and are skillful, but
not optimized. This leaves the door open for you to explore new and possibly better
configurations.

e Code examples are complete and standalone. The code for each lesson will run as-is with
no code from prior lessons or third parties needed beyond the installation of the required
packages.

A complete working example is presented with each tutorial for you to inspect and copy-paste.
All source code is also provided with the book and I would recommend running the provided
files whenever possible to avoid any copy-paste issues. The provided code was developed in
a text editor and intended to be run on the command line. No special IDE or notebooks are
required. If you are using a more advanced development environment and are having trouble,
try running the example from the command line instead.

Machine learning algorithms are stochastic. This means that they will make different
predictions when the same model configuration is trained on the same training data. On top of
that, each experimental problem in this book is based around generating stochastic predictions.
As a result, this means you will not get exactly the same sample output presented in this book.
This is by design. I want you to get used to the stochastic nature of the machine learning
algorithms. If this bothers you, please note:

e You can re-run a given example a few times and your results should be close to the values
reported.

e You can make the output consistent by fixing the random number seed.

e You can develop a robust estimate of the skill of a model by fitting and evaluating it
multiple times and taking the average of the final skill score (highly recommended).

All code examples were tested on a POSIX-compatible machine with Python 3. All code
examples will run on modest and modern computer hardware. I am only human, and there
may be a bug in the sample code. If you discover a bug, please let me know so I can fix it and
correct the book (and you can request a free update any time).

About Further Reading

Each lesson includes a list of further reading resources. This may include:

Research papers.

Books and book chapters.

Webpages.

API documentation.

e Open source projects.

Xvi

Wherever possible, I have listed and linked to the relevant API documentation for key
objects and functions used in each lesson so you can learn more about them. When it comes to
research papers, I have listed those that are first to use a specific technique or first in a specific
problem domain. These are not required reading but can give you more technical details, theory,
and configuration details if you're looking for it. Wherever possible, I have tried to link to the
freely available version of the paper on arxiv.org. You can search for and download any of the
papers listed on Google Scholar Search scholar.google.com. Wherever possible, I have tried
to link to books on Amazon.

I don’t know everything, and if you discover a good resource related to a given lesson, please
let me know so I can update the book.

About Getting Help

You might need help along the way. Don’t worry; you are not alone.

e Help with a technique? If you need help with the technical aspects of a specific
operation or technique, see the Further Reading section at the end of each tutorial.

e Help with APIs? If you need help with using a Python library, see the list of resources
in the Further Reading section at the end of each lesson, and also see Appendiz A.

e Help with your workstation? If you need help setting up your environment, I would
recommend using Anaconda and following my tutorial in Appendiz B.

e Help in general? You can shoot me an email. My details are in Appendiz A.

Next

Are you ready? Let’s dive in! Next up you will discover the importance of imbalanced
classification problems.

Part 11

Foundation

Chapter 1

What is Imbalanced Classification

Classification predictive modeling involves predicting a class label for a given observation. An
imbalanced classification problem is an example of a classification problem where the distribution
of examples across the known classes is not equal. The distribution can vary from a slight bias
to a severe imbalance where there is one example in the minority class for hundreds, thousands,
or millions of examples in the majority class or classes.

Imbalanced classifications pose a challenge for predictive modeling as most of the machine
learning algorithms used for classification were designed around the assumption of an equal
number of examples for each class. This results in models that have poor predictive performance,
specifically for the minority class. This is a problem because typically, the minority class
is more important and therefore the problem is more sensitive to classification errors for the
minority class than the majority class. In this tutorial, you will discover imbalanced classification
predictive modeling. After completing this tutorial, you will know:

e Imbalanced classification is the problem of classification when there is an unequal distri-
bution of classes in the training dataset.

e The imbalance in the class distribution may vary, but a severe imbalance is more challenging
to model and may require specialized techniques.

e Many real-world classification problems have an imbalanced class distribution, such as
fraud detection, spam detection, and churn prediction.

Let’s get started.

1.1 Tutorial Overview

This tutorial is divided into five parts; they are:

1. Classification Predictive Modeling
Imbalanced Classification Problems
Causes of Class Imbalance

Challenge of Imbalanced Classification

A

Examples of Imbalanced Classification

1.2. Classification Predictive Modeling 3

1.2 Classification Predictive Modeling

Classification is a predictive modeling problem that involves assigning a class label to each
observation.

. classification models generate a predicted class, which comes in the form of a
discrete category. For most practical applications, a discrete category prediction is
required in order to make a decision.

— Page 248, Applied Predictive Modeling, 2013.
Each example is comprised of both the observations and a class label.
e Example: An observation from the domain (input) and an associated class label (output).

For example, we may collect measurements of a flower and classify the species of flower
(label) from the measurements. The number of classes for a predictive modeling problem is
typically fixed when the problem is framed or described, and typically, the number of classes
does not change. We may alternately choose to predict a probability of class membership instead
of a crisp class label. This allows a predictive model to share uncertainty in a prediction across
a range of options and allows the user to interpret the result in the context of the problem.

Like regression models, classification models produce a continuous valued prediction,
which is usually in the form of a probability (i.e., the predicted values of class
membership for any individual sample are between 0 and 1 and sum to 1).

— Page 248, Applied Predictive Modeling, 2013.

Using the previous example, given measurements of a flower (observation), we may predict
the likelihood (probability) of the flower being an example of each of twenty different species
of flower. The number of classes for a predictive modeling problem is typically fixed when the
problem is framed or described, and usually, the number of classes does not change.

A classification predictive modeling problem may have two class labels. This is the simplest
type of classification problem and is referred to as two-class classification or binary classification.
Alternately, the problem may have more than two classes, such as three, 10, or even hundreds
of classes. These types of problems are referred to as multiclass classification problems.

e Binary Classification Problem: A classification predictive modeling problem where
all examples belong to one of two classes.

e Multiclass Classification Problem: A classification predictive modeling problem where
all examples belong to one of three or more classes.

When working on classification predictive modeling problems, we must collect a training
dataset. A training dataset is a number of examples from the domain that include both the
input data (e.g. measurements) and the output data (e.g. class label).

e Training Dataset: A number of examples collected from the problem domain that
include the input observations and output class labels.

1.3. Imbalanced Classification Problems 4

Depending on the complexity of the problem and the types of models we may choose to
use, we may need tens, hundreds, thousands, or even millions of examples from the domain to
constitute a training dataset. The training dataset is used to better understand the input data
to help best prepare it for modeling. It is also used to evaluate a suite of different modeling
algorithms. It is used to tune the hyperparameters of a chosen model. And finally, the training
dataset is used to train a final model on all available data that we can use in the future to make
predictions for new examples from the problem domain.

Now that we are familiar with classification predictive modeling, let’s consider an imbalance
of classes in the training dataset.

1.3 Imbalanced Classification Problems

The number of examples that belong to each class may be referred to as the class distribution.
Imbalanced classification refers to a classification predictive modeling problem where the number
of examples in the training dataset for each class label is not balanced. Specifically, where the
class distribution is not equal or close to equal, and is instead biased or skewed.

e Imbalanced Classification: A classification predictive modeling problem where the
distribution of examples across the classes is not equal.

For example, we may collect measurements of flowers and have 80 examples of one flower
species and 20 examples of a second flower species, and only these examples comprise our
training dataset. This represents an example of an imbalanced classification problem.

An imbalance occurs when one or more classes have very low proportions in the
training data as compared to the other classes.

— Page 419, Applied Predictive Modeling, 2013.

We refer to these types of problems as imbalanced classification instead of unbalanced
classification. Unbalanced refers to a class distribution that was balanced and is now no longer
balanced, whereas imbalanced refers to a class distribution that is inherently not balanced.
There are other less general names that may be used to describe these types of classification
problems, such as:

e Rare event prediction.
e Extreme event prediction.

e Severe class imbalance.

The imbalance of a problem is defined by the distribution of classes in a specific training
dataset.

. class imbalance must be defined with respect to a particular dataset or distribution.
Since class labels are required in order to determine the degree of class imbalance,
class imbalance is typically gauged with respect to the training distribution.

1.4. Causes of Class Imbalance 5

— Page 16, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

It is common to describe the imbalance of classes in a dataset in terms of a ratio. For
example, an imbalanced binary classification problem with an imbalance of 1 to 100 (1:100)
means that for every one example in one class, there are 100 examples in the other class. Another
way to describe the imbalance of classes in a dataset is to summarize the class distribution
as percentages of the training dataset. For example, an imbalanced multiclass classification
problem may have 80 percent examples in the first class, 18 percent in the second class, and 2
percent in a third class.

Now that we are familiar with the definition of an imbalanced classification problem, let’s
look at some possible reasons as to why the classes may be imbalanced.

1.4 Causes of Class Imbalance

The imbalance of the class distribution in an imbalanced classification predictive modeling
problem may have many causes. There are perhaps two main groups of causes for the imbalance
we may want to consider; they are data sampling and properties of the domain. It is possible
that the imbalance in the examples across the classes was caused by the way the examples were
collected or sampled from the problem domain. This might involve biases introduced during
data collection, and errors made during data collection.

e Biased Sampling.
e Measurement Errors.

For example, perhaps examples were collected from a narrow geographical region, or slice
of time, and the distribution of classes may be quite different or perhaps even collected in a
different way. Errors may have been made when collecting the observations. One type of error
might have been applying the wrong class labels to many examples. Alternately, the processes
or systems from which examples were collected may have been damaged or impaired to cause
the imbalance.

Often in cases where the imbalance is caused by a sampling bias or measurement error, the
imbalance can be corrected by improved sampling methods, and/or correcting the measurement
error. This is because the training dataset is not a fair representation of the problem domain
that is being addressed.

The imbalance might be a property of the problem domain. For example, the natural
occurrence or presence of one class may dominate other classes. This may be because the process
that generates observations in one class is more expensive in time, cost, computation, or other
resources. As such, it is often infeasible or intractable to simply collect more samples from the
domain in order to improve the class distribution. Instead, a model is required to learn the
difference between the classes. Now that we are familiar with the possible causes of a class
imbalance, let’s consider why imbalanced classification problems are challenging.

1.5 Challenge of Imbalanced Classification

The imbalance of the class distribution will vary across problems. A classification problem may
be a little skewed, such as if there is a slight imbalance. Alternately, the classification problem

1.5. Challenge of Imbalanced Classification 6

may have a severe imbalance where there might be hundreds or thousands of examples in one
class and tens of examples in another class for a given training dataset.

e Slight Imbalance. An imbalanced classification problem where the distribution of
examples is uneven by a small amount in the training dataset (e.g. 4:6).

e Severe Imbalance. An imbalanced classification problem where the distribution of
examples is uneven by a large amount in the training dataset (e.g. 1:100 or more).

Most of the contemporary works in class imbalance concentrate on imbalance ratios
ranging from 1:4 up to 1:100. [...] In real-life applications such as fraud detection
or cheminformatics we may deal with problems with imbalance ratio ranging from
1:1000 up to 1:5000.

— Learning From Imbalanced Data: Open Challenges And Future Directions, 2016.

A slight imbalance is often not a concern, and the problem can often be treated like a normal
classification predictive modeling problem. A severe imbalance of the classes can be challenging
to model and may require the use of specialized techniques.

Any dataset with an unequal class distribution is technically imbalanced. However,
a dataset is said to be imbalanced when there is a significant, or in some cases
extreme, disproportion among the number of examples of each class of the problem.

— Page 19, Learning from Imbalanced Data Sets, 2018.

The class or classes with abundant examples are called the major or majority classes, whereas
the class with few examples (and there is typically just one) is called the minor or minority
class.

e Majority Class: The class (or classes) in an imbalanced classification predictive modeling
problem that has more examples.

e Minority Class: The class in an imbalanced classification predictive modeling problem
that has less examples.

When working with an imbalanced classification problem, the minority class is typically
of the most interest. This means that a model’s skill in correctly predicting the class label or
probability for the minority class is more important than the majority class or classes.

Developments in learning from imbalanced data have been mainly motivated by
numerous real-life applications in which we face the problem of uneven data repre-
sentation. In such cases the minority class is usually the more important one and
hence we require methods to improve its recognition rates.

— Learning From Imbalanced Data: Open Challenges And Future Directions, 2016.

1.6. Examples of Imbalanced Classification 7

The minority class is harder to predict because there are few examples of this class, by
definition. This means it is more challenging for a model to learn the characteristics of examples
from this class, and to differentiate examples from this class from the majority class (or classes).

The abundance of examples from the majority class (or classes) can swamp the minority
class. Most machine learning algorithms for classification predictive models are designed and
demonstrated on problems that assume an equal distribution of classes. This means that a naive
application of a model may focus on learning the characteristics of the abundant observations
only, neglecting the examples from the minority class that is, in fact, of more interest and whose
predictions are more valuable.

... the learning process of most classification algorithms is often biased toward the
majority class examples, so that minority ones are not well modeled into the final
system.

— Page vii, Learning from Imbalanced Data Sets, 2018.

Imbalanced classification is not solved. It remains an open problem generally, and practically
must be identified and addressed specifically for each training dataset. This is true even in the
face of more data, so-called big data, large neural network models, so-called deep learning, and
very impressive competition-winning models, so-called zgboost.

Despite intense works on imbalanced learning over the last two decades there are still
many shortcomings in existing methods and problems yet to be properly addressed.

— Learning From Imbalanced Data: Open Challenges And Future Directions, 2016.

Now that we are familiar with the challenge of imbalanced classification, let’s look at some
common examples.

1.6 Examples of Imbalanced Classification

Many of the classification predictive modeling problems that we are interested in solving in
practice are imbalanced. As such, it is surprising that imbalanced classification does not get
more attention than it does.

Imbalanced learning not only presents significant new challenges to the data research
community but also raises many critical questions in real-world data- intensive
applications, ranging from civilian applications such as financial and biomedical
data analysis to security- and defense-related applications such as surveillance and
military data analysis.

— Page 2, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

Below is a list of ten examples of problem domains where the class distribution of examples
is inherently imbalanced. Many classification problems may have a severe imbalance in the class
distribution; nevertheless, looking at common problem domains that are inherently imbalanced
will make the ideas and challenges of class imbalance concrete.

1.7. Further Reading 8

Fraud Detection.

Claim Prediction

e Default Prediction.
e Churn Prediction.
e Spam Detection.

e Anomaly Detection.
e Qutlier Detection.
e Intrusion Detection

e Conversion Prediction.

The list of examples sheds light on the nature of imbalanced classification predictive modeling.
Each of these problem domains represents an entire field of study, where specific problems
from each domain can be framed and explored as imbalanced classification predictive modeling.
This highlights the multidisciplinary nature of class imbalanced classification, and why it is
so important for a machine learning practitioner to be aware of the problem and skilled in
addressing it.

Imbalance can be present in any data set or application, and hence, the practitioner
should be aware of the implications of modeling this type of data.

— Page 419, Applied Predictive Modeling, 2013.

Notice that most, if not all, of the examples are likely binary classification problems. Notice
too that examples from the minority class are rare, extreme, abnormal, or unusual in some
way. Also notice that many of the domains are described as detection, highlighting the desire to
discover the minority class amongst the abundant examples of the majority class. We now have
a robust overview of imbalanced classification predictive modeling.

1.7 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

1.7.1 Papers

e Learning From Imbalanced Data: Open Challenges And Future Directions, 2016.
https://link.springer.com/article/10.1007/s13748-016-0094-0

https://link.springer.com/article/10.1007/s13748-016-0094-0

1.8. Summary 9

1.7.2 Books

e Chapter 16: Remedies for Severe Class Imbalance, Applied Predictive Modeling, 2013.
https://amzn.to/32M80ta

e [mbalanced Learning: Foundations, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

e Learning from Imbalanced Data Sets, 2018.
https://amzn.to/307X1lva

1.7.3 Articles

e Anomaly detection, Wikipedia.
https://en.wikipedia.org/wiki/Anomaly_detection

1.8 Summary

In this tutorial, you discovered imbalanced classification predictive modeling. Specifically, you
learned:

e Imbalanced classification is the problem of classification when there is an unequal distri-
bution of classes in the training dataset.

e The imbalance in the class distribution may vary, but a severe imbalance is more challenging
to model and may require specialized techniques.

e Many real-world classification problems have an imbalanced class distribution such as
fraud detection, spam detection, and churn prediction.

1.8.1 Next

In the next tutorial, you will discover how to develop an intuition for different skews in the class
distribution.

https://amzn.to/32M80ta
https://amzn.to/32K9K6d
https://amzn.to/307Xlva
https://en.wikipedia.org/wiki/Anomaly_detection

Chapter 2

Intuition for Imbalanced Classification

An imbalanced classification problem is a problem that involves predicting a class label where
the distribution of class labels in the training dataset is not equal. A challenge for beginners
working with imbalanced classification problems is what a specific skewed class distribution
means. For example, what is the difference and implication for a 1:10 vs. a 1:100 class ratio?

Differences in the class distribution for an imbalanced classification problem will influence
the choice of data preparation and modeling algorithms. Therefore it is critical that practitioners
develop an intuition for the implications for different class distributions. In this tutorial, you will
discover how to develop a practical intuition for imbalanced and highly skewed class distributions.
After completing this tutorial, you will know:

e How to create a synthetic dataset for binary classification and plot the examples by class.
e How to create synthetic classification datasets with any given class distribution.
e How different skewed class distributions actually look in practice.

Let’s get started.

2.1 Tutorial Overview

This tutorial is divided into three parts; they are:
1. Create and Plot a Binary Classification Problem
2. Create Synthetic Dataset With Class Distribution
3. Effect of Skewed Class Distributions

2.2 Create and Plot a Binary Classification Problem

The scikit-learn Python machine learning library provides functions for generating synthetic
datasets. The make blobs() function can be used to generate a specified number of examples
from a test classification problem with a specified number of classes. The function returns the
input and output parts of each example ready for modeling. For example, the snippet below will
generate 1,000 examples for a two-class (binary) classification problem with two input variables.
The class values have the values of 0 and 1.

10

2.2. Create and Plot a Binary Classification Problem 11

X, y = make_blobs(n_samples=1000, centers=2, n_features=2, random_state=1, cluster_std=3)

Listing 2.1: Example of creating a synthetic dataset.

Once generated, we can then plot the dataset to get an intuition for the spatial relationship
between the examples. Because there are only two input variables, we can create a scatter plot
to plot each example as a point. This can be achieved with the scatter () Matplotlib function.

The color of the points can then be varied based on the class values. This can be achieved
by first selecting the array indexes for the examples for a given class, then only plotting those
points, then repeating the select-and-plot process for the other class. The where() NumPy
function can be used to retrieve the array indexes that match a criterion, such as a class label
having a given value. For example:

create scatter plot for samples from each class
for class_value in range(2):
get row indexes for samples with this class
row_ix = where(y == class_value)
create scatter of these samples
pyplot.scatter (X[row_ix, 0], X[row_ix, 1])

Listing 2.2: Example of plotting data points by class label.

Tying this together, the complete example of creating a binary classification test dataset
and plotting the examples as a scatter plot is listed below.

generate binary classification dataset and plot
from numpy import where
from matplotlib import pyplot
from sklearn.datasets import make_blobs
generate dataset
X, y = make_blobs(n_samples=1000, centers=2, n_features=2, random_state=1, cluster_std=3)
create scatter plot for samples from each class
for class_value in range(2):
get row indexes for samples with this class
row_ix = where(y == class_value)
create scatter of these samples
pyplot.scatter (X[row_ix, 0], X[row_ix, 1])
show the plot
pyplot.show()

Listing 2.3: Example of creating and plotting a balanced dataset.

Running the example creates the dataset and scatter plot, showing the examples for each of
the two classes with different colors. We can see that there is an equal number of examples in
each class, in this case, 500, and that we can imagine drawing a line to reasonably separate the
classes, much like a classification predictive model might in learning how to discriminate the
examples.

2.3. Create Synthetic Dataset with a Class Distribution 12

Figure 2.1: Scatter Plot of Binary Classification Dataset.

Now that we know how to create a synthetic binary classification dataset and plot the
examples, let’s look at the example of class imbalances on the example.

2.3 Create Synthetic Dataset with a Class Distribution

The make_blobs () function will always create synthetic datasets with an equal class distribution.
Nevertheless, we can use this function to create synthetic classification datasets with arbitrary
class distributions with a few extra lines of code. A class distribution can be defined as a
dictionary where the key is the class value (e.g. 0 or 1) and the value is the number of randomly
generated examples to include in the dataset. For example, an equal class distribution with
5,000 examples in each class would be defined as:

define the class distribution
proportions = {0:5000, 1:5000%}

Listing 2.4: Example of defining the class distribution.

We can then enumerate through the different distributions and find the largest distribution,
then use the make blobs() function to create a dataset with that many examples for each of
the classes.

2.3. Create Synthetic Dataset with a Class Distribution 13

determine the number of classes

n_classes = len(proportions)

determine the number of examples to generate for each class
largest = max([v for k,v in proportions.items()])

n_samples = largest * n_classes

Listing 2.5: Example of locating the largest distribution.

This is a good starting point, but will give us more samples than are required for each
class label. We can then enumerate through the class labels and select the desired number of
examples for each class to comprise the dataset that will be returned.

collect the examples

X_list, y_list = list(), list()

for k,v in proportions.items():
row_ix = where(y == k) [0]
selected = row_ix[:v]
X_list.append(X[selected, :])
y_list.append(y[selected])

Listing 2.6: Example of selecting examples for each class label according to the proportions.

We can tie this together into a new function named get_dataset () that will take a class
distribution and return a synthetic dataset with that class distribution.

create a dataset with a given class distribution
def get_dataset(proportions):
determine the number of classes
n_classes = len(proportions)
determine the number of examples to generate for each class
largest = max([v for k,v in proportions.items()])
n_samples = largest * n_classes
create dataset
X, y= make_blobs(n_samples=n_samp1es, centers=n_classes, n_features=2, random_state=1,
cluster_std=3)
collect the examples
X_list, y_list = 1list(), 1list(Q)
for k,v in proportions.items():
row_ix = where(y == k) [0]
selected = row_ix[:v]
X_list.append(X[selected, :])
y_list.append(y[selected])
return vstack(X_list), hstack(y_list)

Listing 2.7: Example of a function for creating an imbalanced classification dataset.

The function can take any number of classes, although we will use it for simple binary
classification problems. Next, we can take the code from the previous section for creating a
scatter plot for a created dataset and place it in a helper function. Below is the plot_dataset ()
function that will plot the dataset and show a legend to indicate the mapping of colors to class
labels.

scatter plot of dataset, different color for each class
def plot_dataset(X, y):

2.3. Create Synthetic Dataset with a Class Distribution 14

create scatter plot for samples from each class
n_classes = len(unique(y))
for class_value in range(n_classes):
get row indexes for samples with this class
row_ix = where(y == class_value) [0]
create scatter of these samples
pyplot.scatter(X[row_ix, 0], X[row_ix, 1], label=str(class_value))
show a legend
pyplot.legend ()
show the plot
pyplot.show()

Listing 2.8: Example of a function for plotting a dataset colored by class label.

Finally, we can test these new functions. We will define a dataset with 5,000 examples for
each class (10,000 total examples), and plot the result. The complete example is listed below.

create and plot synthetic dataset with a given class distribution
from numpy import unique

from numpy import hstack

from numpy import vstack

from numpy import where

from matplotlib import pyplot

from sklearn.datasets import make_blobs

create a dataset with a given class distribution
def get_dataset(proportions):
determine the number of classes
n_classes = len(proportions)
determine the number of examples to generate for each class
largest = max([v for k,v in proportions.items()])
n_samples = largest * n_classes
create dataset
X, y = make_blobs(n_samples=n_samples, centers=n_classes, n_features=2, random_state=1,
cluster_std=3)
collect the examples
X_list, y_list = 1list(), 1list(Q)
for k,v in proportions.items():
row_ix = where(y == k) [0]
selected = row_ix[:v]
X_list.append(X[selected, :])
y_list.append(y[selected])
return vstack(X_list), hstack(y_list)

scatter plot of dataset, different color for each class
def plot_dataset(X, y):
create scatter plot for samples from each class
n_classes = len(unique(y))
for class_value in range(n_classes):
get row indexes for samples with this class
row_ix = where(y == class_value) [0]
create scatter of these samples
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(class_value))
show a legend
pyplot.legend ()
show the plot
pyplot.show()

2.4. Effect of Skewed Class Distributions 15

define the class distribution
proportions = {0:5000, 1:5000%}

generate dataset

X, y = get_dataset(proportions)
plot dataset

plot_dataset (X, y)

Listing 2.9: Example of creating and plotting a dataset with configurable class balance.

Running the example creates the dataset and plots the result as before, although this time
with our provided class distribution. In this case, we have many more examples for each class
and a helpful legend to indicate the mapping of plot colors to class labels.

Figure 2.2: Scatter Plot of Binary Classification Dataset With Provided Class Distribution.

Now that we have the tools to create and plot a synthetic dataset with arbitrary skewed
class distributions, let’s look at the effect of different distributions.

2.4 Effect of Skewed Class Distributions

It is important to develop an intuition for the spatial relationship for different class imbalances.
For example, what is the 1:1000 class distribution relationship like? It is an abstract relationship

2.4. Effect of Skewed Class Distributions 16

and we need to tie it to something concrete. We can generate synthetic test datasets with
different imbalanced class distributions and use that as a basis for developing an intuition for
different skewed distributions we might be likely to encounter in real datasets.

Reviewing scatter plots of different class distributions can give a rough feeling for the
relationship between the classes that can be useful when thinking about the selection of
techniques and evaluation of models when working with similar class distributions in the future.
They provide a point of reference. We have already seen a 1:1 relationship in the previous
section (e.g. 5000:5000).

Note that when working with binary classification problems, especially imbalanced problems,
it is important that the majority class is assigned to class 0 and the minority class is assigned
to class 1. This is because many evaluation metrics will assume this relationship. Therefore, we
can ensure our class distributions meet this practice by defining the majority then the minority
classes in the call to the get_dataset () function; for example:

define the class distribution
proportions = {0:10000, 1:10}

generate dataset

X, y = get_dataset (proportions)

Listing 2.10: Example of configuring the class distribution.

In this section, we can look at different skewed class distributions with the size of the minority
class increasing on a log scale, such as:

e 1:10
e 1:100
e 1:1000

Let’s take a closer look at each class distribution in turn.

2.4.1 1:10 Imbalanced Class Distribution

A 1:10 class distribution with 10,000 to 1,000 examples means that there will be 11,000 examples
in the dataset, with about 91 percent for class 0 and about 9 percent for class 1. The complete
code example is listed below.

create and plot synthetic dataset with a given class distribution
from numpy import unique

from numpy import hstack

from numpy import vstack

from numpy import where

from matplotlib import pyplot

from sklearn.datasets import make_blobs

create a dataset with a given class distribution
def get_dataset(proportions):
determine the number of classes
n_classes = len(proportions)
determine the number of examples to generate for each class

2.4. Effect of Skewed Class Distributions 17

largest = max([v for k,v in proportions.items()])
n_samples = largest * n_classes
create dataset
X, y = make_blobs(n_samples=n_samples, centers=n_classes, n_features=2, random_state=1,
cluster_std=3)
collect the examples
X_list, y_list = list(), list(Q)
for k,v in proportions.items():
row_ix = where(y == k) [0]
selected = row_ix[:v]
X_list.append(X[selected, :])
y_list.append(y[selected])
return vstack(X_list), hstack(y_list)

scatter plot of dataset, different color for each class
def plot_dataset(X, y):
create scatter plot for samples from each class
n_classes = len(unique(y))
for class_value in range(n_classes):
get row indexes for samples with this class
row_ix = where(y == class_value) [0]
create scatter of these samples
pyplot.scatter(X[row_ix, 0], X[row_ix, 1], label=str(class_value))
show a legend
pyplot.legend ()
show the plot
pyplot.show()

define the class distribution
proportions = {0:10000, 1:1000}
generate dataset

X, y = get_dataset(proportions)
plot dataset

plot_dataset (X, y)

Listing 2.11: Example of creating and plotting a dataset with a 1:10 class balance.

Running the example creates the dataset with the defined class distribution and plots the
result. Although the balance seems stark, the plot shows that about 10 percent of the points
in the minority class compared to the majority class is not as bad as we might think. The
relationship appears manageable, although if the classes overlapped significantly, we can imagine
a very different story.

2.4. Effect of Skewed Class Distributions 18

Figure 2.3: Scatter Plot of Binary Classification Dataset With a 1 to 10 Class Distribution.

2.4.2 1:100 Imbalanced Class Distribution

A 1:100 class distribution with 10,000 to 100 examples means that there will be 10,100 examples
in the dataset, with about 99 percent for class 0 and about 1 percent for class 1. The complete
code example is listed below.

create and plot synthetic dataset with a given class distribution
from numpy import unique

from numpy import hstack

from numpy import vstack

from numpy import where

from matplotlib import pyplot

from sklearn.datasets import make_blobs

create a dataset with a given class distribution
def get_dataset(proportions):
determine the number of classes
n_classes = len(proportions)
determine the number of examples to generate for each class
largest = max([v for k,v in proportions.items()])
n_samples = largest * n_classes
create dataset

2.4. Effect of Skewed Class Distributions 19

X, y= make_blobs(n_samples=n_samples, centers=n_classes, n_features=2, random_state=1,
cluster_std=3)
collect the examples
X_list, y_list = list(), 1list(Q)
for k,v in proportions.items():
row_ix = where(y == k) [0]
selected = row_ix[:v]
X_list.append(X[selected, :])
y_list.append(y[selected])
return vstack(X_list), hstack(y_list)

scatter plot of dataset, different color for each class
def plot_dataset(X, y):
create scatter plot for samples from each class
n_classes = len(unique(y))
for class_value in range(n_classes):
get row indexes for samples with this class
row_ix = where(y == class_value) [0]
create scatter of these samples
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(class_value))
show a legend
pyplot.legend()
show the plot
pyplot.show()

define the class distribution
proportions = {0:10000, 1:100}

generate dataset

X, y = get_dataset (proportions)
plot dataset

plot_dataset (X, y)

Listing 2.12: Example of creating and plotting a dataset with a 1:100 class balance.

Running the example creates the dataset with the defined class distribution and plots the
result. A 1 to 100 relationship is a large skew. The plot makes this clear with what feels like a
sprinkling of points compared to the enormous mass of the majority class. It is most likely that
a real-world dataset will fall somewhere on the line between a 1:10 and 1:100 class distribution
and the plot for 1:100 really highlights the need to carefully consider each point in the minority
class, both in terms of measurement errors (e.g. outliers) and in terms of prediction errors that
might be made by a model.

2.4. Effect of Skewed Class Distributions 20

15 4

10

10

Figure 2.4: Scatter Plot of Binary Classification Dataset With a 1 to 100 Class Distribution.

2.4.3 1:1000 Imbalanced Class Distribution

A 1:100 class distribution with 10,000 to 10 examples means that there will be 10,010 examples
in the dataset, with about 99.9 percent for class 0 and about 0.1 percent for class 1. The
complete code example is listed below.

create and plot synthetic dataset with a given class distribution
from numpy import unique

from numpy import hstack

from numpy import vstack

from numpy import where

from matplotlib import pyplot

from sklearn.datasets import make_blobs

create a dataset with a given class distribution
def get_dataset(proportions):
determine the number of classes
n_classes = len(proportions)
determine the number of examples to generate for each class
largest = max([v for k,v in proportions.items()])
n_samples = largest * n_classes
create dataset

2.4. Effect of Skewed Class Distributions 21

X, y= make_blobs(n_samples=n_samples, centers=n_classes, n_features=2, random_state=1,
cluster_std=3)
collect the examples
X_list, y_list = list(), 1list(Q)
for k,v in proportions.items():
row_ix = where(y == k) [0]
selected = row_ix[:v]
X_list.append(X[selected, :])
y_list.append(y[selected])
return vstack(X_list), hstack(y_list)

scatter plot of dataset, different color for each class
def plot_dataset(X, y):
create scatter plot for samples from each class
n_classes = len(unique(y))
for class_value in range(n_classes):
get row indexes for samples with this class
row_ix = where(y == class_value) [0]
create scatter of these samples
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(class_value))
show a legend
pyplot.legend()
show the plot
pyplot.show()

define the class distribution
proportions = {0:10000, 1:10}

generate dataset

X, y = get_dataset (proportions)
plot dataset

plot_dataset (X, y)

Listing 2.13: Example of creating and plotting a dataset with a 1:1000 class balance.

Running the example creates the dataset with the defined class distribution and plots the
result. As we might already suspect, a 1 to 1,000 relationship is aggressive. In our chosen
setup, just 10 examples of the minority class are present to 10,000 of the majority class. With
such a lack of data, we can see that on modeling problems with such a dramatic skew, that we
should probably spend a lot of time on the actual minority examples that are available and see
if domain knowledge can be used in some way. Automatic modeling methods will have a tough
challenge.

This example also highlights another important aspect orthogonal to the class distribution
and that is the number of examples. For example, although the dataset has a 1:1000 class
distribution, having only 10 examples of the minority class is very challenging. Although, if
we had the same class distribution with 1,000,000 of the majority class and 1,000 examples
of the minority class, the additional 990 minority class examples would likely be invaluable in
developing an effective model.

2.5. Further Reading 22

15 A

10 A

10

Figure 2.5: Scatter Plot of Binary Classification Dataset With a 1 to 1000 Class Distribution.

2.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

2.5.1 API

e sklearn.datasets.make blobs APIL
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.
html

e matplotlib.pyplot.scatter APL
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.scatter.html

e numpy.where API.
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html

https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://matplotlib.org/3.1.1/api/_as_gen/matplotlib.pyplot.scatter.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.where.html

2.6. Summary 23

2.6 Summary

In this tutorial, you discovered how to develop a practical intuition for imbalanced and highly
skewed class distributions. Specifically, you learned:

e How to create a synthetic dataset for binary classification and plot the examples by class.
e How to create synthetic classification datasets with any given class distribution.

e How different skewed class distributions actually look in practice.

2.6.1 Next

In the next tutorial, you will discover the properties of a classification task that make imbalanced
classification more challenging.

Chapter 3

Challenge of Imbalanced Classification

Imbalanced classification is primarily challenging as a predictive modeling task because of the
severely skewed class distribution. This is the cause for poor performance with traditional
machine learning models and evaluation metrics that assume a balanced class distribution.
Nevertheless, there are additional properties of a classification dataset that are not only
challenging for predictive modeling but also increase or compound the difficulty when modeling
imbalanced datasets. In this tutorial, you will discover data characteristics that compound the
challenge of imbalanced classification. After completing this tutorial, you will know:

e Imbalanced classification is specifically hard because of the severely skewed class distribu-
tion and the unequal misclassification costs.

e The difficulty of imbalanced classification is compounded by properties such as dataset
size, label noise, and data distribution.

e How to develop an intuition for the compounding effects on modeling difficulty posed by
different dataset properties.

Let’s get started.

3.1 Tutorial Overview

This tutorial is divided into four parts; they are:

1. Why Imbalanced Classification Is Hard
2. Compounding Effect of Dataset Size
3. Compounding Effect of Label Noise

4. Compounding Effect of Data Distribution

24

3.2. Why Imbalanced Classification Is Hard 25

3.2 Why Imbalanced Classification Is Hard

Imbalanced classification is defined by a dataset with a skewed class distribution. This is often
exemplified by a binary (two-class) classification task where most of the examples belong to
class 0 with only a few examples in class 1. The distribution may range in severity from 1:2,
1:10, 1:100, or even 1:1000.

Because the class distribution is not balanced, most machine learning algorithms will perform
poorly and require modification to avoid simply predicting the majority class in all cases.
Additionally, metrics like classification accuracy lose their meaning and alternate methods for
evaluating predictions on imbalanced examples are required, like ROC area under curve. This is
the foundational challenge of imbalanced classification.

An additional level of complexity comes from the problem domain from which the examples
were drawn. It is common for the majority class to represent a normal case in the domain,
whereas the minority class represents an abnormal case, such as a fault, fraud, outlier, anomaly,
disease state, and so on. As such, the interpretation of misclassification errors may differ across
the classes.

For example, misclassifying an example from the majority class as an example from the
minority class called a false positive is often not desired, but less critical than classifying an
example from the minority class as belonging to the majority class, a so-called false negative.
This is referred to as cost sensitivity of misclassification errors and is a second foundational
challenge of imbalanced classification.

These two aspects, the skewed class distribution and cost sensitivity, are typically referenced
when describing the difficulty of imbalanced classification. Nevertheless, there are other charac-
teristics of the classification problem that, when combined with these properties, compound
their effect. These are general characteristics of classification predictive modeling that magnify
the difficulty of the imbalanced classification task.

Class imbalance was widely acknowledged as a complicating factor for classification.
However, some studies also argue that the imbalance ratio is not the only cause of
performance degradation in learning from imbalanced data.

— Page 253, Learning from Imbalanced Data Sets, 2018.
There are many such characteristics, but perhaps three of the most common include:
e Dataset Size.

e Label Noise.

e Data Distribution.

It is important to not only acknowledge these properties but to also specifically develop an
intuition for their impact. This will allow you to select and develop techniques to address them
in your own predictive modeling projects.

Understanding these data intrinsic characteristics, as well as their relationship with
class imbalance, is crucial for applying existing and developing new techniques to
deal with imbalance data.

3.3. Compounding Effect of Dataset Size 26

— Pages 253-254, Learning from Imbalanced Data Sets, 2018.

In the following sections, we will take a closer look at each of these properties and their
impact on imbalanced classification.

3.3 Compounding Effect of Dataset Size

Dataset size simply refers to the number of examples collected from the domain to fit and
evaluate a predictive model. Typically, more data is better as it provides more coverage of
the domain, perhaps to a point of diminishing returns. Specifically, more data provides better
representation of combinations and variance of features in the feature space and their mapping to
class labels. From this, a model can better learn and generalize a class boundary to discriminate
new examples in the future.

If the ratio of examples in the majority class to the minority class is somewhat fixed, then
we would expect that we would have more examples in the minority class as the size of the
dataset is scaled up. This is good if we can collect more examples. It is a problem typically
because data is hard or expensive to collect and we often collect and work with a lot less data
than we might prefer. As such, this can dramatically impact our ability to gain a large enough
or representative sample of examples from the minority class.

A problem that often arises in classification is the small number of training instances.
This issue, often reported as data rarity or lack of data, is related to the “lack of
density” or “insufficiency of information”.

— Page 261, Learning from Imbalanced Data Sets, 2018.

For example, for a modest classification task with a balanced class distribution, we might
be satisfied with thousands or tens of thousands of examples in order to develop, evaluate,
and select a model. A balanced binary classification with 10,000 examples would have 5,000
examples of each class. An imbalanced dataset with a 1:100 distribution with the same number
of examples would only have 100 examples of the minority class.

As such, the size of the dataset dramatically impacts the imbalanced classification task, and
datasets that are thought large in general are, in fact, probably not large enough when working
with an imbalanced classification problem.

Without a sufficient large training set, a classifier may not generalize characteristics
of the data. Furthermore, the classifier could also overfit the training data, with a
poor performance in out-of-sample tests instances.

— Page 261, Learning from Imbalanced Data Sets, 2018.

To help, let’s make this concrete with a worked example. We can use the make classification()
scikit-learn function to create a dataset of a given size with a ratio of about 1:100 examples
(1 percent to 99 percent) in the minority class to the majority class. The class distribution is
specified via the weight argument that takes a list of percentages that must add to one (e.g.
[0.99, 0.01]). In the case of two classes, only the distribution of class 0 is required from which
the distribution of class 1 will be inferred (e.g. [0.99], and 0.01 inferred).

3.3. Compounding Effect of Dataset Size 27

create the dataset
X, y = make_classification(n_samples=1000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=1)

Listing 3.1: Example of defining a synthetic imbalanced binary classification dataset.

We can then create a scatter plot of the dataset and color the points for each class with a
separate color to get an idea of the spatial relationship for the examples.

scatter plot of examples by class label
for label, _ in counter.items():

row_ix = where(y == label) [0]

pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend()

Listing 3.2: Example of creating a scatter plot of the dataset and coloring points by class.

This process can then be repeated with different datasets sizes to show how the class
imbalance is impacted visually. We will compare datasets with 100, 1,000, 10,000, and 100,000
examples. The complete example is listed below.

vary the dataset size for a 1:100 imbalanced dataset
from collections import Counter
from sklearn.datasets import make_classification
from matplotlib import pyplot
from numpy import where
dataset sizes
sizes = [100, 1000, 10000, 100000]
create and plot a dataset with each size
for i in range(len(sizes)):
determine the dataset size
n = sizes[i]
create the dataset
X, y = make_classification(n_samples=n, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=1)
summarize class distribution
counter = Counter(y)
print('Size=Yd, Ratio=Ys' % (n, counter))
define subplot
pyplot.subplot(2, 2, 1+i)
pyplot.title('n=/d' % n)
pyplot.xticks([])
pyplot.yticks([])
scatter plot of examples by class label
for label, _ in counter.items():
row_ix = where(y == label) [0]
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend ()
show the figure
pyplot.show()

Listing 3.3: Example of creating differently sized datasets with the same class imbalance.

Running the example creates and plots the same dataset with a 1:100 class distribution
using four different sizes. First, the class distribution is displayed for each dataset size. We can

3.4. Compounding Effect of Label Noise 28

see that with a small dataset of 100 examples, we only get one example in the minority class as
we might expect. Even with 100,000 examples in the dataset, we only get 1,000 examples in the
minority class.

Size=100, Ratio=Counter({0: 99, 1: 1})
Size=1000, Ratio=Counter({0: 990, 1: 10})
Size=10000, Ratio=Counter({0: 9900, 1: 100})
Size=100000, Ratio=Counter({0: 99000, 1: 1000})

Listing 3.4: Example output from creating differently sized datasets with the same class
imbalance.

Scatter plots are created for each differently sized dataset. We can see that it is not until
very large sample sizes that the underlying structure of the class distributions becomes obvious.
These plots highlight the critical role that dataset size plays in imbalanced classification. It is
hard to see how a model given 990 examples of the majority class and 10 of the minority class
could hope to do well on the same problem depicted after 100,000 examples are drawn.

n=100 n=1000
e O ° .o.. o
[) 1 [] ®
°
g
°
(N °
° °
: o %e
o °
n=10000 n=100000

)

= O

Figure 3.1: Scatter Plots of an Imbalanced Classification Dataset With Different Dataset Sizes.

3.4 Compounding Effect of Label Noise

Label noise refers to examples that belong to one class that are labeled as another class. This
can make determining the class boundary in feature space problematic for most machine learning

3.4. Compounding Effect of Label Noise 29

algorithms, and this difficulty typically increases in proportion to the percentage of noise in the
labels.

Two types of noise are distinguished in the literature: feature (or attribute) and
class noise. Class noise is generally assumed to be more harmful than attribute noise
in ML [...] class noise somehow affects the observed class values (e.g., by somehow
flipping the label of a minority class instance to the majority class label).

— Page 264, Learning from Imbalanced Data Sets, 2018.

The cause is often inherent in the problem domain, such as ambiguous observations on the
class boundary or even errors in the data collection that could impact observations anywhere in
the feature space. For imbalanced classification, noisy labels have an even more dramatic effect.
Given that examples in the positive class are so few, losing some to noise reduces the amount of
information available about the minority class.

Additionally, having examples from the majority class incorrectly marked as belonging to
the minority class can cause a disjoint or fragmentation of the minority class that is already
sparse because of the lack of observations. We can imagine that if there are examples along the
class boundary that are ambiguous, we could identify and remove or correct them. Examples
marked for the minority class that are in areas of the feature space that are high density for the
majority class are also likely easy to identify and remove or correct.

It is the case where observations for both classes are sparse in the feature space where this
problem becomes particularly difficult in general, and especially for imbalanced classification. It
is these situations where unmodified machine learning algorithms will define the class boundary
in favor of the majority class at the expense of the minority class.

Mislabeled minority class instances will contribute to increase the perceived imbalance
ratio, as well as introduce mislabeled noisy instances inside the class region of the
minority class. On the other hand, mislabeled majority class instances may lead the
learning algorithm, or imbalanced treatment methods, to focus on wrong areas of
input space.

— Page 264, Learning from Imbalanced Data Sets, 2018.

We can develop an example to give a flavor of this challenge. We can hold the dataset size
constant as well as the 1:100 class ratio and vary the amount of label noise. This can be achieved
by setting the f1ip_y argument to the make classification() function which is a percentage
of the number of examples in each class to change or flip the label. We will explore varying this
from 0 percent, 1 percent, 5 percent, and 7 percent. The complete example is listed below.

vary the label noise for a 1:100 imbalanced dataset
from collections import Counter
from sklearn.datasets import make_classification
from matplotlib import pyplot
from numpy import where
label noise ratios
noise = [0, 0.01, 0.05, 0.07]
create and plot a dataset with different label noise
for i in range(len(noise)):
determine the label noise

3.4. Compounding Effect of Label Noise 30

n = noisel[i]
create the dataset
X, y = make_classification(n_samples=1000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=n, random_state=1)
summarize class distribution
counter = Counter(y)
print ('Noise=%d%%, Ratio=Ys' % (int(n*100), counter))
define subplot
pyplot.subplot(2, 2, 1+i)
pyplot.title('noise=%d%%"' % int(n*100))
pyplot.xticks([])
pyplot.yticks([]1)
scatter plot of examples by class label
for label, _ in counter.items():
row_ix = where(y == label) [0]
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend()
show the figure
pyplot.show()

Listing 3.5: Example of creating datasets with different amounts of label noise and the same
class imbalance.

Running the example creates and plots the same dataset with a 1:100 class distribution using
four different amounts of label noise. First, the class distribution is printed for each dataset with
differing amounts of label noise. We can see that, as we might expect, as the noise is increased,
the number of examples in the minority class is increased, most of which are incorrectly labeled.
We might expect these additional 31 examples in the minority class with 7 percent label noise
to be quite damaging to a model trying to define a crisp class boundary in the feature space.

Noise=0%, Ratio=Counter({0: 990, 1: 10})
Noise=1%, Ratio=Counter({0: 983, 1: 17})
Noise=5%, Ratio=Counter({0: 963, 1: 37})
Noise=7%, Ratio=Counter({0: 959, 1: 41})

Listing 3.6: Example output from creating datasets with different amounts of label noise and
the same class imbalance.

Scatter plots are created for each dataset with the differing label noise. In this specific case,
we don’t see many examples of confusion on the class boundary. Instead, we can see that as
the label noise is increased, the number of examples in the mass of the majority class (orange
points) increases, representing false positives that really should be identified and removed from
the dataset prior to modeling.

3.5. Compounding Effect of Data Distribution 31

noise=0% noise=1%

°
°
o]
e o ©
°
noise=7%

Figure 3.2: Scatter Plots of an Imbalanced Classification Dataset With Different Label Noise.

3.5 Compounding Effect of Data Distribution

Another important consideration is the distribution of examples in feature space. If we think
about feature space spatially, we might like all examples in one class to be located on one part
of the space, and those from the other class to appear in another part of the space. If this is
the case, we have good class separability and machine learning models can draw crisp class
boundaries and achieve good classification performance. This holds on datasets with a balanced
or imbalanced class distribution. This is rarely the case, and it is more likely that each class has
multiple concepts resulting in multiple different groups or clusters of examples in feature space.

.. it is common that the “concept” beneath a class is split into several sub-concepts,
spread over the input space.

— Page 255, Learning from Imbalanced Data Sets, 2018.

These groups are formally referred to as disjuncts, coming from a definition in the of rule-
based systems for a rule that covers a group of cases comprised of sub-concepts. A small disjunct
is one that relates or covers few examples in the training dataset.

3.5. Compounding Effect of Data Distribution 32

Systems that learn from examples do not usually succeed in creating a purely
conjunctive definition for each concept. Instead, they create a definition that consists
of several disjuncts, where each disjunct is a conjunctive definition of a subconcept
of the original concept.

— Concept Learning And The Problem Of Small Disjuncts, 19809.

This grouping makes class separability hard, requiring each group or cluster to be identified
and included in the definition of the class boundary, implicitly or explicitly. In the case of
imbalanced datasets, this is a particular problem if the minority class has multiple concepts or
clusters in the feature space. This is because the density of examples in this class is already
sparse and it is difficult to discern separate groupings with so few examples. It may look like
one large sparse grouping.

This lack of homogeneity is particularly problematic in algorithms based on the
strategy of dividing-and-conquering |...] where the sub-concepts lead to the creation
of small disjuncts.

— Page 255, Learning from Imbalanced Data Sets, 2018.

For example, we might consider data that describes whether a patient is healthy (majority
class) or sick (minority class). The data may capture many different types of illnesses, and there
may be groups of similar illnesses, but if there are so few cases, then any grouping or concepts
within the class may not be apparent and may look like a diffuse set mixed in with healthy
cases. To make this concrete, we can look at an example.

We can use the number of clusters in the dataset as a proxy for concepts and compare a dataset
with one cluster of examples per class to a second dataset with two clusters per class. This can
be achieved by varying the n_clusters _per_class argument for the make classification()
function used to create the dataset. We would expect that in an imbalanced dataset, such as a
1:100 class distribution, that the increase in the number of clusters is obvious for the majority
class, but not so for the minority class. The complete example is listed below.

vary the number of clusters for a 1:100 imbalanced dataset
from collections import Counter
from sklearn.datasets import make_classification
from matplotlib import pyplot
from numpy import where
number of clusters
clusters = [1, 2]
create and plot a dataset with different numbers of clusters
for i in range(len(clusters)):
¢ = clusters[i]
define dataset
X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=c, weights=[0.99], flip_y=0, random_state=1)
counter = Counter(y)
define subplot
pyplot.subplot(l, 2, 1+i)
pyplot.title('Clusters=%d' % c)
pyplot.xticks([])
pyplot.yticks([])

3.5. Compounding Effect of Data Distribution 33

scatter plot of examples by class label
for label, _ in counter.items():
row_ix = where(y == label) [0]
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend()
show the figure
pyplot.show()

Listing 3.7: Example of creating datasets with different numbers of clusters and the same class
imbalance.

Running the example creates and plots the same dataset with a 1:100 class distribution
using two different numbers of clusters. In the first scatter plot (left), we can see one cluster
per class. The majority class (blue) quite clearly has one cluster, whereas the structure of the
minority class (orange) is less obvious. In the second plot (right), we can clearly see that the
majority class has two clusters, and the structure of the minority class (orange) is diffuse and it
is not apparent that samples were drawn from two clusters.

This highlights the relationship between the size of the dataset and its ability to expose the
underlying density or distribution of examples in the minority class. With so few examples,
generalization by machine learning models is challenging, if not very problematic.

Clusters=1 Clusters=2

Figure 3.3: Scatter Plots of an Imbalanced Classification Dataset With Different Numbers of
Clusters.

3.6. Further Reading 34

3.6 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

3.6.1 Papers

e Concept Learning And The Problem Of Small Disjuncts, 19809.
https://dl.acm.org/citation.cfm?id=1623884

3.6.2 Books

e Learning from Imbalanced Data Sets, 2018.
https://amzn.to/307X1lva

e [mbalanced Learning: Foundations, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

3.6.3 APIs

e sklearn.datasets.make classification APL
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.
html

3.7 Summary

In this tutorial, you discovered data characteristics that compound the challenge of imbalanced
classification. Specifically, you learned:

e Imbalanced classification is specifically hard because of the severely skewed class distribu-
tion and the unequal misclassification costs.

e The difficulty of imbalanced classification is compounded by properties such as dataset
size, label noise, and data distribution.

e How to develop an intuition for the compounding effects on modeling difficulty posed by
different dataset properties.

3.7.1 Next

This was the final tutorial in this Part. In the next Part, you will discover the model performance
metrics you can use for imbalanced classification.

https://dl.acm.org/citation.cfm?id=1623884
https://amzn.to/307Xlva
https://amzn.to/32K9K6d
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html

Part 111

Model Evaluation

35

Chapter 4

Tour of Model Evaluation Metrics

A classifier is only as good as the metric used to evaluate it. If you choose the wrong metric to
evaluate your models, you are likely to choose a poor model, or in the worst case, be misled
about the expected performance of your model.

Choosing an appropriate metric is challenging generally in applied machine learning, but is
particularly difficult for imbalanced classification problems. Firstly, because most of the standard
metrics that are widely used assume a balanced class distribution, and because typically not
all classes, and therefore, not all prediction errors, are equal for imbalanced classification. In
this tutorial, you will discover metrics that you can use for imbalanced classification. After
completing this tutorial, you will know:

e About the challenge of choosing metrics for classification, and how it is particularly difficult
when there is a skewed class distribution.

e How there are three main types of metrics for evaluating classifier models, referred to as
rank, threshold, and probability.

e How to choose a metric for imbalanced classification if you don’t know where to start.

Let’s get started.

4.1 Tutorial Overview

This tutorial is divided into three parts; they are:

1. Challenge of Evaluation Metrics
2. Taxonomy of Classifier Evaluation Metrics

3. How to Choose an Evaluation Metric

4.2 Challenge of Evaluation Metrics

An evaluation metric quantifies the performance of a predictive model. This typically involves
training a model on a dataset, using the model to make predictions on a holdout dataset not

36

4.2. Challenge of Evaluation Metrics 37

used during training, then comparing the predictions to the expected values in the holdout
dataset.

For classification problems, metrics involve comparing the expected class label to the predicted
class label or interpreting the predicted probabilities for the class labels for the problem. Selecting
a model, and even the data preparation methods together are a search problem that is guided
by the evaluation metric. Experiments are performed with different models and the outcome of
each experiment is quantified with a metric.

Evaluation measures play a crucial role in both assessing the classification perfor-
mance and guiding the classifier modeling.

— Classification Of Imbalanced Data: A Review, 2009.

There are standard metrics that are widely used for evaluating classification predictive
models, such as classification accuracy or classification error. Standard metrics work well on
most problems, which is why they are widely adopted. But all metrics make assumptions about
the problem or about what is important in the problem. Therefore an evaluation metric must
be chosen that best captures what you or your project stakeholders believe is important about
the model or predictions, which makes choosing model evaluation metrics challenging.

This challenge is made even more difficult when there is a skew in the class distribution.
The reason for this is that many of the standard metrics become unreliable or even misleading
when classes are imbalanced, or severely imbalanced, such as 1:100 or 1:1000 ratio between a
minority and majority class.

In the case of class imbalances, the problem is even more acute because the default,
relatively robust procedures used for unskewed data can break down miserably when
the data is skewed.

— Page 187, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

For example, reporting classification accuracy for a severely imbalanced classification problem
could be dangerously misleading. This is the case if project stakeholders use the results to draw
conclusions or plan new projects.

In fact, the use of common metrics in imbalanced domains can lead to sub-optimal
classification models and might produce misleading conclusions since these measures
are insensitive to skewed domains.

— A Survey of Predictive Modelling under Imbalanced Distributions, 2015.

Importantly, different evaluation metrics are often required when working with imbalanced
classification.

Unlike standard evaluation metrics that treat all classes as equally important, imbalanced
classification problems typically rate classification errors with the minority class as more
important than those with the majority class. As such performance metrics may be needed that
focus on the minority class, which is made challenging because it is the minority class where we
lack observations required to train an effective model.

4.3. Taxonomy of Classifier Evaluation Metrics 38

The main problem of imbalanced data sets lies on the fact that they are often
associated with a user preference bias towards the performance on cases that are
poorly represented in the available data sample.

— A Survey of Predictive Modelling under Imbalanced Distributions, 2015.

Now that we are familiar with the challenge of choosing a model evaluation metric, let’s look
at some examples of different metrics from which we might choose.

4.3 Taxonomy of Classifier Evaluation Metrics

There are tens of metrics to choose from when evaluating classifier models, and perhaps hundreds,
if you consider all of the pet versions of metrics proposed by academics. In order to get a handle
on the metrics that you could choose from, we will use a taxonomy proposed by Cesar Ferri,
et al. in their 2008 paper titled An Fzperimental Comparison Of Performance Measures For

Classification. It was also adopted in the 2013 book titled Imbalanced Learning and I think
proves useful.

We can divide evaluation metrics into three useful groups; they are:
1. Threshold Metrics
2. Ranking Metrics

3. Probability Metrics.

This division is useful because the top metrics used by practitioners for classifiers generally,
and specifically imbalanced classification, fit into the taxonomy neatly.

Several machine learning researchers have identified three families of evaluation
metrics used in the context of classification. These are the threshold metrics (e.g.,
accuracy and F-measure), the ranking methods and metrics (e.g., receiver operating
characteristics (ROC) analysis and AUC), and the probabilistic metrics (e.g., root-
mean-squared error).

— Page 189, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

Let’s take a closer look at each group in turn.

4.3.1 Threshold Metrics for Imbalanced Classification

Threshold metrics are those that quantify the classification prediction errors. That is, they are
designed to summarize the fraction, ratio, or rate of when a predicted class does not match the
expected class in a holdout dataset.

Metrics based on a threshold and a qualitative understanding of error [...] These
measures are used when we want a model to minimise the number of errors.

— An Ezxperimental Comparison Of Performance Measures For Classification, 2008.

4.3. Taxonomy of Classifier Evaluation Metrics 39

Perhaps the most widely used threshold metric is classification accuracy.

Correct Predictions
Total Predictions
And the complement of classification accuracy called classification error.

(4.1)

Accuracy =

Incorrect Predictions
E = 4.2
ot Total Predictions (42)

Although widely used, classification accuracy is almost universally inappropriate for imbal-
anced classification. The reason is, a high accuracy (or low error) is achievable by a no skill
model that only predicts the majority class (for more on the failure of accuracy, see Chapter 5).
For imbalanced classification problems, the majority class is typically referred to as the negative
outcome (e.g. such as no change or negative test result), and the minority class is typically
referred to as the positive outcome (e.g. change or positive test result).

e Majority Class: Negative outcome, class 0.

e Minority Class: Positive outcome, class 1.

Most threshold metrics can be best understood by the terms used in a confusion matrix for
a binary (two-class) classification problem. This does not mean that the metrics are limited for
use on binary classification; it is just an easy way to quickly understand what is being measured.
The confusion matrix provides more insight into not only the performance of a predictive model
but also which classes are being predicted correctly, which incorrectly, and what type of errors
are being made. In this type of confusion matrix, each cell in the table has a specific and
well-understood name, summarized as follows:

| Positive Prediction | Negative Prediction
Positive Class | True Positive (TP) | False Negative (FN)
Negative Class | False Positive (FP) | True Negative (TN)

Listing 4.1: Binary Confusion Matrix.
There are two groups of metrics that may be useful for imbalanced classification because
they focus on one class; they are sensitivity-specificity and precision-recall.
Sensitivity-Specificity Metrics

Sensitivity refers to the true positive rate and summarizes how well the positive class was
predicted.

TruePositive

(4.3)

Sensitivity =
Y TruePositive + FalseNegative

Specificity is the complement to sensitivity, or the true negative rate, and summarises how
well the negative class was predicted.

TrueNegative

Specificity = (4.4)

FalsePositive 4+ TrueNegative

4.3. Taxonomy of Classifier Evaluation Metrics 40

For imbalanced classification, the sensitivity might be more interesting than the specificity.
Sensitivity and Specificity can be combined into a single score that balances both concerns,
called the G-mean.

G-mean = +/Sensitivity x Specificity (4.5)

Precision-Recall Metrics

Precision summarizes the fraction of examples assigned the positive class that belong to the
positive class.

Precisi TruePositive (4.6)

recision = :
TruePositive + FalsePositive

Recall summarizes how well the positive class was predicted and is the same calculation as

sensitivity.

TruePositive
Recall = 4.7
eea TruePositive + FalseNegative (47)

Precision and recall can be combined into a single score that seeks to balance both concerns,
called the F-score or the F-measure.

2 % Precision x Recall
F- = 4.8
fneasure Precision + Recall (4.8)

The F-measure is a popular metric for imbalanced classification. The Fbeta-measure (or
F — measure) measure is an abstraction of the F-measure where the balance of precision and
recall in the calculation of the harmonic mean is controlled by a coefficient called beta.

(1+ 8%) x Precision x Recall
B2 x Precision + Recall
For more on precision, recall, and the F-measure, see Chapter 6.

Fbeta-measure = (4.9)

Additional Threshold Metrics

These are probably the most popular metrics to consider, although many others do exist. To
give you a taste, these include Kappa, Macro-Average Accuracy, Mean-Class-Weighted Accuracy,
Optimized Precision, Adjusted Geometric Mean, Balanced Accuracy, and more. Threshold
metrics are easy to calculate and easy to understand. One limitation of these metrics is that they
assume that the class distribution observed in the training dataset will match the distribution
in the test set and in real data when the model is used to make predictions. This is often the
case, but when it is not the case, the performance can be quite misleading.

An important disadvantage of all the threshold metrics discussed in the previous
section is that they assume full knowledge of the conditions under which the classifier
will be deployed. In particular, they assume that the class imbalance present in the
training set is the one that will be encountered throughout the operating life of the
classifier

— Page 196, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

Ranking metrics don’t make any assumptions about class distributions.

4.3. Taxonomy of Classifier Evaluation Metrics 41

4.3.2 Ranking Metrics for Imbalanced Classification

Rank metrics are more concerned with evaluating classifiers based on how effective they are at
separating classes.

Metrics based on how well the model ranks the examples [...] These are important
for many applications [...| where classifiers are used to select the best n instances of
a set of data or when good class separation is crucial.

— An Experimental Comparison Of Performance Measures For Classification, 2008.

These metrics require that a classifier predicts a score or a probability of class membership.
From this score, different thresholds can be applied to test the effectiveness of classifiers. Those
models that maintain a good score across a range of thresholds will have good class separation
and will be ranked higher.

. consider a classifier that gives a numeric score for an instance to be classified in
the positive class. Therefore, instead of a simple positive or negative prediction, the
score introduces a level of granularity

— Page 53, Learning from Imbalanced Data Sets, 2018.

The most commonly used ranking metric is the ROC Curve or ROC Analysis. ROC is an
acronym that means Receiver Operating Characteristic and summarizes a field of study for
analyzing binary classifiers based on their ability to discriminate classes. A ROC curve is a
diagnostic plot for summarizing the behavior of a model by calculating the false positive rate
and true positive rate for a set of predictions by the model under different thresholds. The true
positive rate is the recall or sensitivity.

TruePositive
TruePositiveRate = 4.10
reosivenate TruePositive 4 FalseNegative ()

The false positive rate is calculated as:

FalsePositive
FalsePositiveRate = 4.11
alseliostiveniate FalsePositive + TrueNegative ()

Each threshold is a point on the plot and the points are connected to form a curve. A classifier
that has no skill (e.g. predicts the majority class under all thresholds) will be represented by a
diagonal line from the bottom left to the top right. Any points below this line have worse than
no skill. A perfect model will be a point in the top left of the plot.

4.3. Taxonomy of Classifier Evaluation Metrics 42

ROC Curve Plot

\)““-_‘_\
Perfect Skill
Classifier

\

ROC Curve ROC Curve
for a Skillful for a No Skill
Classifier - Classifier

.
’
P

True Positive Rate

i ™

Worse than
no skill

False Positive Rate

Figure 4.1: Depiction of a ROC Curve.

The ROC Curve is a helpful diagnostic for one model. The area under the ROC curve can
be calculated and provides a single score to summarize the plot that can be used to compare
models. A no skill classifier will have a score of 0.5, whereas a perfect classifier will have a score
of 1.0. For more on ROC Curves and ROC AUC, see Chapter 7.

Although generally effective, the ROC Curve and ROC AUC can be optimistic under a
severe class imbalance, especially when the number of examples in the minority class is small.
An alternative to the ROC Curve is the precision-recall curve that can be used in a similar way,
although focuses on the performance of the classifier on the minority class.

Again, different thresholds are used on a set of predictions by a model, and in this case,
the precision and recall are calculated. The points form a curve and classifiers that perform
better under a range of different thresholds will be ranked higher. A no-skill classifier will be
a horizontal line on the plot with a precision that is proportional to the number of positive
examples in the dataset. For a balanced dataset this will be 0.5. A perfect classifier is represented
by a point in the top right.

4.3. Taxonomy of Classifier Evaluation Metrics 43

Precision-Recall Curve Plot

Perfect Skill

- :
PR Cuive Classifier

for a Skillful
Classifier

PR Curve for a
No Skill Classifier

Precision

Worse than ()
no skill

Recall

Figure 4.2: Depiction of a Precision-Recall Curve.

Like the ROC Curve, the Precision-Recall Curve is a helpful diagnostic tool for evaluating
a single classifier but challenging for comparing classifiers. And like the ROC AUC, we can
calculate the area under the curve as a score and use that score to compare classifiers. In this
case, the focus on the minority class makes the Precision-Recall AUC more useful for imbalanced
classification problems. There are other ranking metrics that are less widely used, such as
modification to the ROC Curve for imbalanced classification and cost curves. For more on
Precision-Recall Curves and PR AUC, see Chapter 7.

4.3.3 Probabilistic Metrics for Imbalanced Classification

Probabilistic metrics are designed specifically to quantify the uncertainty in a classifier’s
predictions. These are useful for problems where we are less interested in incorrect vs. correct
class predictions and more interested in the uncertainty the model has in predictions and
penalizing those predictions that are wrong but highly confident.

Metrics based on a probabilistic understanding of error, i.e. measuring the deviation
from the true probability [...] These measures are especially useful when we want an
assessment of the reliability of the classifiers, not only measuring when they fail but
whether they have selected the wrong class with a high or low probability.

4.3. Taxonomy of Classifier Evaluation Metrics 44

— An FExperimental Comparison Of Performance Measures For Classification, 2008.

Evaluating a model based on the predicted probabilities requires that the probabilities are
calibrated. Some classifiers are trained using a probabilistic framework, such as maximum
likelihood estimation, meaning that their probabilities are already calibrated. An example
would be logistic regression. Many nonlinear classifiers are not trained under a probabilistic
framework and therefore require their probabilities to be calibrated against a dataset prior to
being evaluated via a probabilistic metric. Examples might include support vector machines
and k-nearest neighbors.

Perhaps the most common metric for evaluating predicted probabilities is log loss for binary
classification (or the negative log likelihood), or known more generally as cross-entropy. For a
binary classification dataset where the expected values are y and the predicted values are yhat,
this can be calculated as follows:

LogLoss = —((1 — y) x log(1 — yhat) + y x log(yhat)) (4.12)
The score can be generalized to multiple classes by simply adding the terms; for example:

ceC
LogLoss = — Z Yo X log(yhat.) (4.13)

The score summarizes the average difference between two probability distributions. A perfect
classifier has a log loss of 0.0, with worse values being positive up to infinity. For more on log
loss, see Chapter 8.

Another popular score for predicted probabilities is the Brier score. The benefit of the Brier
score is that it is focused on the positive class, which for imbalanced classification is the minority
class. This makes it more preferable than log loss, which is focused on the entire probability
distribution. The Brier score is calculated as the mean squared error between the expected
probabilities for the positive class (e.g. 1.0) and the predicted probabilities. Recall that the
mean squared error is the average of the squared differences between the values.

BrierScore = % X ;(yhati —y;)? (4.14)

A perfect classifier has a Brier score of 0.0. Although typically described in terms of binary
classification tasks, the Brier score can also be calculated for multiclass classification problems.
The differences in Brier score for different classifiers can be very small. In order to address
this problem, the score can be scaled against a reference score, such as the score from a no
skill classifier (e.g. predicting the probability distribution of the positive class in the training
dataset). Using the reference score, a Brier Skill Score, or BSS, can be calculated where 0.0
represents no skill, worse than no skill results are negative, and the perfect skill is represented
by a value of 1.0.

Bri
BrierSkillScore = 1 — M (4.15)
BrierScore,. s

For more on the Brier Score and Brier Skill Score, see Chapter 8. Although popular for
balanced classification problems, probability scoring methods are less widely used for classification
problems with a skewed class distribution.

4.4. How to Choose an Evaluation Metric 45

4.4 How to Choose an Evaluation Metric

There is an enormous number of model evaluation metrics to choose from. Given that choosing
an evaluation metric is so important and there are tens or perhaps hundreds of metrics to choose
from, what are you supposed to do?

The correct evaluation of learned models is one of the most important issues in
pattern recognition.

— An Ezxperimental Comparison Of Performance Measures For Classification, 2008.

Perhaps the best approach is to talk to project stakeholders and figure out what is important
about a model or set of predictions. Then select a few metrics that seem to capture what
is important, then test the metric with different scenarios. A scenario might be a mock set
of predictions for a test dataset with a skewed class distribution that matches your problem
domain. You can test what happens to the metric if a model predicts all the majority class, all
the minority class, does well, does poorly, and so on. A few small tests can rapidly help you get
a feeling for how the metric might perform.

Another approach might be to perform a literature review and discover what metrics are
most commonly used by other practitioners or academics working on the same general type of
problem. This can often be insightful, but be warned that some fields of study may fall into
groupthink and adopt a metric that might be excellent for comparing large numbers of models
at scale, but terrible for model selection in practice.

Still have no idea? Here are some first-order suggestions:

e Are you predicting probabilities?

— Do you need class labels?

x Is the positive class more important?
- Use Precision-Recall AUC
x Are both classes important?
- Use ROC AUC
— Do you need probabilities?

x Use Brier Score and Brier Skill Score
e Are you predicting class labels?

— Is the positive class more important?

x Are False Negatives and False Positives Equally Important?
- Use Fl-measure

x Are False Negatives More Important?
- Use F2-measure

x Are False Positives More Important?
- Use F0.5-measure

— Are both classes important?

4.5. Further Reading 46

* Do you have < 80%-90% Examples for the Majority Class?
- Use Accuracy

* Do you have > 80%-90% Examples for the Majority Class?
- Use G-mean

These suggestions take the important case into account where we might use models that
predict probabilities, but require crisp class labels. This is an important class of problems that
allow the operator or implementor to choose the threshold to trade-off misclassification errors.
In this scenario, error metrics are required that consider all reasonable thresholds, hence the use
of the area under curve metrics. We can transform these suggestions into a helpful template.

| What do you
want to
predict?

Class Labels

Probabilities

Are both] ' Is the positive | :] |]
' i ' | . Doyouneed 1 Doyouneed |
i classes equally ! i class more] i] |]
[i - i probabilities? ' class labels?
important? i important? ! : i !

Brier Score

1 Do<80-90%of ; | Are false

. |\ Arefalse || Arefalse || Istheposiive | Areboth |
: b;ﬁig?ﬁi o Fjg:t[')\;?“igg | | positives more | | negativesmore i class more ! classes equally |
. majoritf dass? | | equally costly? L costly? b costly? important? important?
‘ Accuracy ‘ ‘ F1 Score ‘ ‘ F0.5 Score ‘ ‘ F2 Score ‘ ‘ PR AUC ‘ ‘ ROC AUC ‘

Figure 4.3: How to Choose a Metric for Imbalanced Classification.

4.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

4.5.1 Papers

e An Experimental Comparison Of Performance Measures For Classification, 2008.
https://www.sciencedirect.com/science/article/abs/pii/S0167865508002687

e Classification Of Imbalanced Data: A Review, 2009.
https://www.worldscientific.com/doi/abs/10.1142/S0218001409007326

o A Survey of Predictive Modelling under Imbalanced Distributions, 2015.
https://arxiv.org/abs/1505.01658

https://www.sciencedirect.com/science/article/abs/pii/S0167865508002687
https://www.worldscientific.com/doi/abs/10.1142/S0218001409007326
https://arxiv.org/abs/1505.01658

4.6. Summary A7

4.5.2 Books

Chapter 8 Assessment Metrics For Imbalanced Learning, Imbalanced Learning: Founda-
tions, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

Chapter 3 Performance Measures, Learning from Imbalanced Data Sets, 2018.
https://amzn.to/307X1lva

4.5.3 Articles

Precision and recall, Wikipedia.
https://en.wikipedia.org/wiki/Precision_and_recall

Sensitivity and specificity, Wikipedia.
https://en.wikipedia.org/wiki/Sensitivity_and_specificity

Receiver operating characteristic, Wikipedia.
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

Cross entropy, Wikipedia.
https://en.wikipedia.org/wiki/Cross_entropy

Brier score, Wikipedia.
https://en.wikipedia.org/wiki/Brier_score

4.6 Summary

In this tutorial, you discovered metrics that you can use for imbalanced classification. Specifically,
you learned:

About the challenge of choosing metrics for classification, and how it is particularly difficult
when there is a skewed class distribution.

How there are three main types of metrics for evaluating classifier models, referred to as
rank, threshold, and probability.

How to choose a metric for imbalanced classification if you don’t know where to start.

4.6.1 Next

In the next tutorial, you will discover the failure of classification accuracy for imbalanced
classification.

https://amzn.to/32K9K6d
https://amzn.to/307Xlva
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/Sensitivity_and_specificity
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Cross_entropy
https://en.wikipedia.org/wiki/Brier_score

Chapter 5

The Failure of Accuracy

Classification accuracy is a metric that summarizes the performance of a classification model
as the number of correct predictions divided by the total number of predictions. It is easy to
calculate and intuitive to understand, making it the most common metric used for evaluating
classifier models. This intuition breaks down when the distribution of examples to classes is
severely skewed. Intuitions developed by practitioners on balanced datasets, such as 99 percent
representing a skillful model, can be incorrect and dangerously misleading on imbalanced
classification predictive modeling problems. In this tutorial, you will discover the failure of
classification accuracy for imbalanced classification problems. After completing this tutorial,
you will know:

e Accuracy and error rate are the de facto standard metrics for summarizing the performance
of classification models.

e Classification accuracy fails on classification problems with a skewed class distribution
because of the intuitions developed by practitioners on datasets with an equal class
distribution.

e Intuition for the failure of accuracy for skewed class distributions with a worked example.

Let’s get started.

5.1 Tutorial Overview

This tutorial is divided into three parts; they are:

1. What Is Classification Accuracy?
2. Accuracy Fails for Imbalanced Classification

3. Example of Accuracy for Imbalanced Classification

48

5.2. What Is Classification Accuracy? 49

5.2 What Is Classification Accuracy?

Classification predictive modeling involves predicting a class label given examples in a problem
domain. The most common metric used to evaluate the performance of a classification predictive
model is classification accuracy. Typically, the accuracy of a predictive model is good (above
90% accuracy), therefore it is also very common to summarize the performance of a model in
terms of the error rate of the model.

Accuracy and its complement error rate are the most frequently used metrics for
estimating the performance of learning systems in classification problems.

— A Survey of Predictive Modelling under Imbalanced Distributions, 2015.

Classification accuracy involves first using a classification model to make a prediction for
each example in a test dataset. The predictions are then compared to the known labels for
those examples in the test set. Accuracy is then calculated as the proportion of examples in the
test set that were predicted correctly, divided by all predictions that were made on the test set.

Correct Predictions
Total Predictions
Conversely, the error rate can be calculated as the total number of incorrect predictions
made on the test set divided by all predictions made on the test set.

Accuracy = (5.1)

Incorrect Predictions

Error Rate = Total Predictions (5:2)

The accuracy and error rate are complements of each other, meaning that we can always
calculate one from the other. For example:

Accuracy = 1 — Error Rate (5.3)
Error Rate = 1 — Accuracy '

Another valuable way to think about accuracy is in terms of the confusion matrix.

A confusion matrix is a summary of the predictions made by a classification model organized
into a table by class. Each row of the table indicates the actual class and each column represents
the predicted class. Each table cell value is a count of the number of predictions made for a
class that are actually for a given class. The cells on the diagonal represent correct predictions,
where a predicted and expected class align.

The most straightforward way to evaluate the performance of classifiers is based on
the confusion matrix analysis. [...] From such a matrix it is possible to extract a
number of widely used metrics for measuring the performance of learning systems,
such as Error Rate [...] and Accuracy ...

— A Study Of The Behavior Of Several Methods For Balancing Machine Learning Training
Data, 2004.

The confusion matrix provides more insight into not only the accuracy of a predictive model,
but also which classes are being predicted correctly, which incorrectly, and what type of errors
are being made. The simplest confusion matrix is for a two-class classification problem, with
negative (class 0) and positive (class 1) classes. In this type of confusion matrix, each cell in the
table has a specific and well-understood name, summarized as follows:

5.3. Accuracy Fails for Imbalanced Classification 50

| Positive Prediction | Negative Prediction
Positive Class | True Positive (TP) | False Negative (FN)
Negative Class | False Positive (FP) | True Negative (TN)

Listing 5.1: Binary Confusion Matrix.

The classification accuracy can be calculated from this confusion matrix as the sum of correct
cells in the table (true positives and true negatives) divided by all cells in the table.

TP+TN
TP+ FN+FP+TN

Similarly, the error rate can also be calculated from the confusion matrix as the sum of
incorrect cells of the table (false positives and false negatives) divided by all cells of the table.

Accuracy = (5.4)

FP+ FN
E _ .
rror Rate = oo o N T FP L TN (55)

Now that we are familiar with classification accuracy and its complement error rate, let’s
discover why they might be a bad idea to use for imbalanced classification problems.

5.3 Accuracy Fails for Imbalanced Classification

Classification accuracy is the most-used metric for evaluating classification models. The reason
for its wide use is because it is easy to calculate, easy to interpret, and is a single number to
summarize the model’s capability. As such, it is natural to use it on imbalanced classification
problems, where the distribution of examples in the training dataset across the classes is not
equal. This is the most common mistake made by beginners to imbalanced classification.

When the class distribution is slightly skewed, accuracy can still be a useful metric. When
the skew in the class distributions are severe, accuracy can become an unreliable measure of
model performance. The reason for this unreliability is centered around the average machine
learning practitioner and the intuitions for classification accuracy. Typically, classification
predictive modeling is practiced with small datasets where the class distribution is equal or very
close to equal. Therefore, most practitioners develop an intuition that large accuracy score (or
conversely small error rate scores) are good, and values above 90 percent are great.

Achieving 90 percent classification accuracy, or even 99 percent classification accuracy, may
be trivial on an imbalanced classification problem. This means that intuitions for classification
accuracy developed on balanced class distributions will be applied and will be wrong, misleading
the practitioner into thinking that a model has good or even excellent performance when it, in
fact, does not.

5.3.1 Accuracy Paradox

Consider the case of an imbalanced dataset with a 1:100 class imbalance. In this problem, each
example of the minority class (class 1) will have a corresponding 100 examples for the majority
class (class 0). In problems of this type, the majority class represents normal and the minority
class represents abnormal, such as a fault, a diagnosis, or a fraud. Good performance on the
minority class will be preferred over good performance on both classes.

5.4. Example of Accuracy for Imbalanced Classification 51

Considering a user preference bias towards the minority (positive) class examples,
accuracy is not suitable because the impact of the least represented, but more
important examples, is reduced when compared to that of the majority class.

— A Survey of Predictive Modelling under Imbalanced Distributions, 2015.

On this problem, a model that predicts the majority class (class 0) for all examples in the
test set will have a classification accuracy of 99 percent, mirroring the distribution of major and
minor examples expected in the test set on average. Many machine learning models are designed
around the assumption of balanced class distribution, and often learn simple rules (explicit or
otherwise) like always predict the majority class, causing them to achieve an accuracy of 99
percent, although in practice performing no better than an unskilled majority class classifier.

A beginner will see the performance of a sophisticated model achieving 99 percent on an
imbalanced dataset of this type and believe their work is done, when in fact, they have been
misled. This situation is so common that it has a name, referred to as the accuracy paradox.

. in the framework of imbalanced data-sets, accuracy is no longer a proper measure,
since it does not distinguish between the numbers of correctly classified examples of
different classes. Hence, it may lead to erroneous conclusions ...

— A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and
Hybrid-Based Approaches, 2011.

Strictly speaking, accuracy does report a correct result; it is only the practitioner’s intuition
of high accuracy scores that is the point of failure. Instead of correcting faulty intuitions, it is
common to use alternative metrics to summarize model performance for imbalanced classification
problems. Now that we are familiar with the idea that classification can be misleading, let’s
look at a worked example.

5.4 Example of Accuracy for Imbalanced Classification

Although the explanation of why accuracy is a bad idea for imbalanced classification has been
given, it is still an abstract idea. We can make the failure of accuracy concrete with a worked
example, and attempt to counter any intuitions for accuracy on balanced class distributions that
you may have developed, or more likely dissuade the use of accuracy for imbalanced datasets.
First, we can define a synthetic dataset with a 1:100 class distribution.

The make_classification() scikit-learn function can be used to create a synthetic binary
classification dataset. We will specify a weight argument of 0.99 with 10,000 examples, this
means there will be 9,900 examples for the negative class (class 0) and 100 examples for the

positive class (class 1) which is approximately a 1:100 ratio (e.g. 1oo05 X 100 is 1% and 755 < 100
is 99% or 1:99.)

define dataset
X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=4)

Listing 5.2: Example of defining an imbalanced classification dataset.

5.4. Example of Accuracy for Imbalanced Classification 52

Next, we can summarize the class distribution to confirm the data has the skew we expected.

summarize class distribution
counter = Counter (y)
print (counter)

Listing 5.3: Example of summarizing the class distribution.

Finally, we can create a scatter plot of the data points in the data set and color them by
class label. This provides a spatial intuition for the skewed class distribution.

scatter plot of examples by class label
for label, _ in counter.items():
row_ix = where(y == label) [0]
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend()
pyplot.show()

Listing 5.4: Example of creating a scatter plot of the dataset colored by class label.

Tying this all together, the complete example is listed below.

define an imbalanced dataset with a 1:100 class ratio
from collections import Counter
from sklearn.datasets import make_classification
from matplotlib import pyplot
from numpy import where
define dataset
X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=4)
summarize class distribution
counter = Counter(y)
print (counter)
scatter plot of examples by class label
for label, _ in counter.items():
row_ix = where(y == label) [0]
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend()
pyplot.show()

Listing 5.5: Example of creating and summarizing an imbalanced classification dataset.

Running the example first creates the dataset and prints the class distribution. We can see
that a little less than 10,000 examples belong to the majority class and 100 examples belong to
the minority class, as expected.

Counter ({0: 9900, 1: 100})

Listing 5.6: Example output from creating and summarizing an imbalanced classification dataset.

A plot of the dataset is created and we can see that there are many more examples for the
majority class and a helpful legend to indicate the mapping of plot colors to class labels.

5.4. Example of Accuracy for Imbalanced Classification 53

-2.5 -2.0 -1.5 -1.0 -0.5 0.0 0.5

Figure 5.1: Scatter Plot of a Binary Classification Dataset With a 1 to 100 Class Distribution.

Next, we can fit a naive classifier model that always predicts the majority class. We can
achieve this using the DummyClassifier from scikit-learn and use the ‘most_frequent’ strategy
that will always predict the class label that is most observed in the training dataset.

define model

model = DummyClassifier(strategy='most_frequent')

Listing 5.7: Example of defining a naive classification model.

We can then evaluate this model on the training dataset using repeated k-fold cross-validation.
It is important that we use stratified cross-validation to ensure that each split of the dataset
has the same class distribution as the training dataset. This can be achieved using the
RepeatedStratifiedKFold class (for more on stratified cross-validation, see Chapter 9). The
evaluate model () function below implements this and returns a list of classification accuracy
scores for each evaluation of the model.

evaluate a model using repeated k-fold cross-validation
def evaluate_model(X, y, model):
define the evaluation procedure
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
evaluate the model on the dataset
scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)

5.4. Example of Accuracy for Imbalanced Classification 54

return scores from each fold and each repeat
return scores

Listing 5.8: Example of a function for evaluating a naive classification model.

We can then evaluate the model and calculate the mean of the scores across each evaluation.
We would expect that the naive classifier would achieve a classification accuracy of about 99
percent, which we know because that is the distribution of the majority class in the training
dataset.

evaluate the model

scores = evaluate_model(X, y, model)

summarize performance

print ('Mean Accuracy: %.2f%%' % (mean(scores) * 100))

Listing 5.9: Example of reporting mean classification accuracy.

Tying this all together, the complete example of evaluating a naive classifier on the synthetic
dataset with a 1:100 class distribution is listed below.

evaluate a majority class classifier on an 1:100 imbalanced dataset
from numpy import mean

from sklearn.datasets import make_classification

from sklearn.dummy import DummyClassifier

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

evaluate a model using repeated k-fold cross-validation
def evaluate_model(X, y, model):
define the evaluation procedure
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
evaluate the model on the dataset
scores = cross_val_score(model, X, y, scoring='accuracy', cv=cv, n_jobs=-1)
return scores from each fold and each repeat
return scores

define dataset

X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=4)

define model

model = DummyClassifier(strategy='most_frequent')

evaluate the model

scores = evaluate_model(X, y, model)

summarize performance

print ('Mean Accuracy: %.2f%%' % (mean(scores) * 100))

Listing 5.10: Example of evaluating a naive model on an imbalanced classification dataset.

Running the example first reports the class distribution of the training dataset again. Then
the model is evaluated and the mean accuracy is reported. We can see that as expected, the
performance of the naive classifier matches the class distribution exactly. Normally, achieving
99 percent classification accuracy would be cause for celebration. Although, as we have seen,
because the class distribution is imbalanced, 99 percent is actually the lowest acceptable accuracy
for this dataset and the starting point from which more sophisticated models must improve.

5.5. Further Reading 55

Mean Accuracy: 99.00%

Listing 5.11: Example output from evaluating a naive model on an imbalanced classification
dataset.

5.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

5.5.1 Papers

e A Survey of Predictive Modelling under Imbalanced Distributions, 2015.
https://arxiv.org/abs/15605.01658

e A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and
Hybrid-Based Approaches, 2011.
https://ieeexplore.ieee.org/document/5978225

5.5.2 Books

e Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

e Learning from Imbalanced Data Sets, 2018.
https://amzn.to/307X1lva

5.5.3 APIs

e sklearn.datasets.make blobs API.
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.
html

e sklearn.dummy.DummyClassifier APIL.
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.
html

5.5.4 Articles

e Accuracy and precision, Wikipedia.
https://en.wikipedia.org/wiki/Accuracy_and_precision

e Accuracy paradox, Wikipedia.
https://en.wikipedia.org/wiki/Accuracy_paradox

https://arxiv.org/abs/1505.01658
https://ieeexplore.ieee.org/document/5978225
https://amzn.to/32K9K6d
https://amzn.to/307Xlva
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_blobs.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html
https://en.wikipedia.org/wiki/Accuracy_and_precision
https://en.wikipedia.org/wiki/Accuracy_paradox

5.6. Summary 56

5.6 Summary

In this tutorial, you discovered the failure of classification accuracy for imbalanced classification
problems. Specifically, you learned:

e Accuracy and error rate are the de facto standard metrics for summarizing the performance
of classification models.

e (lassification accuracy fails on classification problems with a skewed class distribution
because of the intuitions developed by practitioners on datasets with an equal class
distribution.

e Intuition for the failure of accuracy for skewed class distributions with a worked example.

5.6.1 Next

In the next tutorial, you will discover precision and recall metrics for evaluating models on
imbalanced classification problems.

Chapter 6

Precision, Recall, and F-measure

Classification accuracy is the total number of correct predictions divided by the total number
of predictions made for a dataset. As a performance measure, accuracy is inappropriate for
imbalanced classification problems. The main reason is that the overwhelming number of
examples from the majority class (or classes) will overwhelm the number of examples in the
minority class, meaning that even unskillful models can achieve accuracy scores of 90 percent,
or 99 percent, depending on how severe the class imbalance happens to be.

An alternative to using classification accuracy is to use precision and recall metrics. In this
tutorial, you will discover how to calculate and develop an intuition for precision and recall for
imbalanced classification. After completing this tutorial, you will know:

e Precision quantifies the number of positive class predictions that actually belong to the
positive class.

e Recall quantifies the number of correct positive class predictions made out of all positive
examples in the dataset.

e F-measure provides a single score that balances both the concerns of precision and recall
in one number.

Let’s get started.

6.1 Tutorial Overview

This tutorial is divided into four parts; they are:

1. Precision Measure
2. Recall Measure
3. Precision vs. Recall

4. F-measure

o7

6.2. Precision Measure 58

6.2 Precision Measure

Precision is a metric that quantifies the number of correct positive predictions made. Precision,
therefore, calculates the accuracy for the minority class. It is calculated as the ratio of correctly
predicted positive examples divided by the total number of positive examples that were predicted.

Precision evaluates the fraction of correct classified instances among the ones classified
as positive ...

— Page 52, Learning from Imbalanced Data Sets, 2018.

6.2.1 Precision for Binary Classification

In an imbalanced classification problem with two classes, precision is calculated as the number
of true positives divided by the total number of true positives and false positives.

Precisi TruePositive (6.1)
recision =)
TruePositive 4+ FalsePositive

The result is a value between 0.0 for no precision and 1.0 for full or perfect precision. The
intuition for precision is that it is not concerned with false negatives and it minimizes false
positives. Let’s make this calculation concrete with some examples. Consider a dataset with a
1:100 minority to majority ratio, with 100 minority examples and 10,000 majority class examples.
A model makes predictions and predicts 120 examples as belonging to the minority class, 90 of
which are correct, and 30 of which are incorrect. The precision for this model is calculated as:

TruePositive

Precision =
TruePositive + FalsePositive

90

~ 90+ 30 (6.2)
90

120

—0.75

The result is a precision of 0.75, which is a reasonable value but not outstanding. You can
see that precision is simply the ratio of correct positive predictions out of all positive predictions
made, or the accuracy of minority class predictions. Consider the same dataset, where a model
predicts 50 examples belonging to the minority class, 45 of which are true positives and five of
which are false positives. We can calculate the precision for this model as follows:

TruePositive

Precision =
TruePositive + FalsePositive

45

4545 (6.3)
45

T 50

=0.90

In this case, although the model predicted far fewer examples as belonging to the minority
class, the ratio of correct positive examples is much better. This highlights that although

6.2. Precision Measure 59

precision is useful, it does not tell the whole story. It does not comment on how many real
positive class examples were predicted as belonging to the negative class, so-called false negatives.

6.2.2 Precision for Multiclass Classification

Precision is not limited to binary classification problems. In an imbalanced classification problem
with more than two classes, precision is calculated as the sum of true positives across all classes
divided by the sum of true positives and false positives across all classes.

c ..
3 ¢““ TruePositives,

Precision = ——~ — —
> =" TruePositives, 4+ FalsePositives,

(6.4)

For example, we may have an imbalanced multiclass classification problem where the
majority class is the negative class, but there are two positive minority classes: class 1 and class
2. Precision can quantify the ratio of correct predictions across both positive classes. Consider
a dataset with a 1:1:100 minority to majority class ratio, that is a 1:1 ratio for each positive
class and a 1:100 ratio for the minority classes to the majority class, and we have 100 examples
in each minority class, and 10,000 examples in the majority class.

A model makes predictions and predicts 70 examples for the first minority class, where 50
are correct and 20 are incorrect. It predicts 150 for the second class with 99 correct and 51
incorrect. Precision can be calculated for this model as follows:

. TruePositives; + TruePositives,
Precision =

(TruePositives; + TruePositives,) + (FalsePositives; + FalsePositives,)
90 + 99

(50 + 99) + (20 + 51)
149 (6.5)

149 + 71
149

220
= 0.677

We can see that the precision metric calculation scales as we increase the number of minority
classes.

6.2.3 Calculate Precision With Scikit-Learn

The precision score can be calculated using the precision_score() scikit-learn function. For
example, we can use this function to calculate precision for the scenarios in the previous section.
First, the case where there are 100 positive to 10,000 negative examples, and a model predicts
90 true positives and 30 false positives. The complete example is listed below.

calculates precision for 1:100 dataset with 90 tp and 30 fp
from sklearn.metrics import precision_score

define actual

act_pos = [1 for _ in range(100)]

act_neg = [0 for _ in range(10000)]

y_true = act_pos + act_neg

6.3. Recall Measure 60

define predictions

pred_pos = [0 for _ in range(10)] + [1 for
pred_neg = [1 for _ in range(30)] + [0 for
y_pred = pred_pos + pred_neg

calculate prediction

precision = precision_score(y_true, y_pred, average='binary')
print ('Precision: %.3f' % precision)

in range(90)]
in range(9970)]

Listing 6.1: Example of calculating precision for a binary classification dataset.

Running the example calculates the precision, matching our manual calculation.

Precision: 0.750

Listing 6.2: Example output from calculating precision for a binary classification dataset.

Next, we can use the same function to calculate precision for the multiclass problem with
1:1:100, with 100 examples in each minority class and 10,000 in the majority class. A model
predicts 50 true positives and 20 false positives for class 1 and 99 true positives and 51 false
positives for class 2.

When using the precision score() function for multiclass classification, it is important
to specify the minority classes via the labels argument and to set the average argument to
‘micro’ to ensure the calculation is performed as we expect. The complete example is listed
below.

calculates precision for 1:1:100 dataset with 50tp,20fp, 99tp,51fp
from sklearn.metrics import precision_score

define actual

act_posl = [1 for _ in range(100)]

act_pos2 = [2 for _ in range(100)]

act_neg = [0 for _ in range(10000)]

y_true = act_posl + act_pos2 + act_neg

define predictions

pred_posl = [0 for _ in range(50)] + [1 for _ in range(50)]
pred_pos2 = [0 for _ in range(1)] + [2 for _ in range(99)]

pred_neg = [1 for _ in range(20)] + [2 for _ in range(51)] + [0 for
y_pred = pred_posl + pred_pos2 + pred_neg

calculate prediction

precision = precision_score(y_true, y_pred, labels=[1,2], average='micro')
print ('Precision: %.3f' % precision)

in range(9929)]

Listing 6.3: Example of calculating precision for a multiclass classification dataset.

Again, running the example calculates the precision for the multiclass example matching our
manual calculation.

Precision: 0.677

Listing 6.4: Example output from calculating precision for a multiclass classification dataset.

6.3 Recall Measure

Recall is a metric that quantifies the number of correct positive predictions made out of all
correct positive predictions that could have been made. Unlike precision that only comments

6.3. Recall Measure 61

on the correct positive predictions out of all positive predictions, recall provides an indication
of missed positive predictions. In this way, recall provides some notion of the coverage of the
positive class.

For imbalanced learning, recall is typically used to measure the coverage of the
minority class.

— Page 27, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

6.3.1 Recall for Binary Classification

In an imbalanced classification problem with two classes, recall is calculated as the number of
true positives divided by the total number of true positives and false negatives.

TruePositive
Recall = 6.6
eea TruePositive + FalseNegative (6.6)

The result is a value between 0.0 for no recall and 1.0 for full or perfect recall. The intuition
for recall is that it is not concerned with false positives and it minimizes false negatives. Let’s
make this calculation concrete with some examples. As in the previous section, consider a
dataset with 1:100 minority to majority ratio, with 100 minority examples and 10,000 majority
class examples. A model makes predictions and predicts 90 of the positive class predictions
correctly and 10 incorrectly. We can calculate the recall for this model as follows:

Recall = TruePositive

TruePositive + FalseNegative
90

T 90+ 10 (6.7)
_ 0
100
= 0.9

This model has a good recall.

6.3.2 Recall for Multiclass Classification

Recall is not limited to binary classification problems. In an imbalanced classification problem
with more than two classes, recall is calculated as the sum of true positives across all classes
divided by the sum of true positives and false negatives across all classes.

cC v .
> =" TruePositives,

S2°€¢ TruePositives, + FalseNegatives,

Recall = (6.8)

As in the previous section, consider a dataset with a 1:1:100 minority to majority class
ratio, that is a 1:1 ratio for each positive class and a 1:100 ratio for the minority classes to the
majority class, and we have 100 examples in each minority class, and 10,000 examples in the

6.3. Recall Measure 62

majority class. A model predicts 77 examples correctly and 23 incorrectly for class 1, and 95
correctly and five incorrectly for class 2. We can calculate recall for this model as follows:

TruePositives; + TruePositivess
(TruePositives; + TruePositivesy) + (FalseNegatives, + FalseNegatives,)
77+ 95
(774 95) + (23 4+ 5)
172 (6.9)

172 + 28
172

200
=0.86

Recall =

6.3.3 Calculate Recall With Scikit-Learn

The recall score can be calculated using the recall _score() scikit-learn function. For example,
we can use this function to calculate recall for the scenarios above. First, we can consider the
case of a 1:100 imbalance with 100 and 10,000 examples respectively, and a model predicts 90
true positives and 10 false negatives. The complete example is listed below.

calculates recall for 1:100 dataset with 90 tp and 10 fn
from sklearn.metrics import recall_score

define actual

act_pos = [1 for _ in range(100)]

act_neg = [0 for _ in range(10000)]

y_true = act_pos + act_neg

define predictions

pred_pos = [0 for _ in range(10)] + [1 for
pred_neg = [0 for _ in range(10000)]
y_pred = pred_pos + pred_neg

calculate recall

recall = recall_score(y_true, y_pred, average='binary')
print('Recall: %.3f' % recall)

in range(90)]

Listing 6.5: Example of calculating recall for a binary classification dataset.

Running the example, we can see that the score matches the manual calculation above.

Recall: 0.900

Listing 6.6: Example output from calculating recall for a binary classification dataset.

We can also use the recall score() for imbalanced multiclass classification problems. In
this case, the dataset has a 1:1:100 imbalance, with 100 in each minority class and 10,000 in the
majority class. A model predicts 77 true positives and 23 false negatives for class 1 and 95 true
positives and five false negatives for class 2. The complete example is listed below.

calculates recall for 1:1:100 dataset with 77tp,23fn and 95tp,5fn
from sklearn.metrics import recall_score

define actual

act_posl = [1 for _ in range(100)]

act_pos2 = [2 for _ in range(100)]

act_neg = [0 for _ in range(10000)]

6.4. Precision vs. Recall 63

y_true = act_posl + act_pos2 + act_neg

define predictions

pred_posl = [0 for _ in range(23)] + [1 for _ in range(77)]
pred_pos2 = [0 for _ in range(5)] + [2 for _ in range(95)]

pred_neg = [0 for _ in range(10000)]

y_pred = pred_posl + pred_pos2 + pred_neg

calculate recall

recall = recall_score(y_true, y_pred, labels=[1,2], average='micro')
print('Recall: %.3f' % recall)

Listing 6.7: Example of calculating recall for a multiclass classification dataset.

Again, running the example calculates the recall for the multiclass example matching our
manual calculation.

Recall: 0.860

Listing 6.8: Example output from calculating recall for a multiclass classification dataset.

6.4 Precision vs. Recall

You may decide to use precision or recall on your imbalanced classification problem. Maximizing
precision will minimize the number false positive errors, whereas maximizing the recall will
minimize the number of false negative errors. As such, precision may be more appropriate on
classification problems when false positives are more important. Alternately, recall may be more
appropriate on classification problems when false negatives are more important.

e Precision: Appropriate when minimizing false positives is the focus.

e Recall: Appropriate when minimizing false negatives is the focus.

Sometimes, we want excellent predictions of the positive class. We want high precision and
high recall. This can be challenging, as often increases in recall often come at the expense of
decreases in precision.

In imbalanced datasets, the goal is to improve recall without hurting precision.
These goals, however, are often conflicting, since in order to increase the TP for
the minority class, the number of FP is also often increased, resulting in reduced
precision.

— Page 55, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

Nevertheless, instead of picking one measure or the other, we can choose a new metric that
combines both precision and recall into one score.

6.5. F-measure 64

6.5 F-measure

Classification accuracy is widely used because it is one single measure used to summarize model
performance. F-measure provides a way to combine both precision and recall into a single
measure that captures both properties.

Alone, neither precision or recall tells the whole story. We can have excellent precision with
terrible recall, or alternately, terrible precision with excellent recall. F-measure provides a way
to express both concerns with a single score. Once precision and recall have been calculated for
a binary or multiclass classification problem, the two scores can be combined into the calculation
of the F-measure. The traditional F-measure is calculated as follows:

2 x Precision x Recall
F- = d
fneasure Precision + Recall (6.10)

This is the harmonic mean of the two fractions. This is sometimes called the F-score or the
Fl-measure and might be the most common metric used on imbalanced classification problems.
The intuition for F-measure is that both measures are balanced in importance and that only a
good precision and good recall together result in a good F-measure.

... the Fl-measure, which weights precision and recall equally, is the variant most
often used when learning from imbalanced data.

— Page 27, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

Like precision and recall, a poor F-measure score is 0.0 and a best or perfect F-measure score
is 1.0. For example, a perfect precision and recall score would result in a perfect F-measure
score:

2 x Precision x Recall
F-measure =

Precision + Recall
B 2x1.0x1.0

1.0+ 1.0 (6.11)
B 2x 1.0

2.0
=1.0

Let’s make this calculation concrete with a worked example. Consider a binary classification
dataset with 1:100 minority to majority ratio, with 100 minority examples and 10,000 majority
class examples. Consider a model that predicts 150 examples for the positive class, 95 are
correct (true positives), meaning five were missed (false negatives) and 55 are incorrect (false
positives). We can calculate the precision as follows:

TruePositive

Precision =
TruePositive 4 FalsePositive

_ 9% (6.12)
95 + 55
= 0.633

6.5. F-measure 65

We can calculate the recall as follows:

Recall — TruePositive
TruePositive + FalseNegative
9% (6.13)
S 95+5
=0.95

This shows that the model has poor precision, but excellent recall. Finally, we can calculate
the F-measure as follows:

2 x Precision x Recall

F-measure =
Precision + Recall

2% 0.633 x 0.95

0.633 4 0.95
2 x 0.601 (6.14)

1.583
1.202

1.583
=0.759

We can see that the good recall levels-out the poor precision, giving an okay or reasonable
F-measure score.

6.5.1 Calculate F-measure With Scikit-Learn

The F-measure score can be calculated using the £1_score() scikit-learn function. For example,
we use this function to calculate F-measure for the scenario above. This is the case of a 1:100
imbalance with 100 and 10,000 examples respectively, and a model predicts 95 true positives,
five false negatives, and 55 false positives. The complete example is listed below.

calculates f1 for 1:100 dataset with 95tp, 5fn, 55fp
from sklearn.metrics import fl_score

define actual

act_pos = [1 for _ in range(100)]

act_neg = [0 for _ in range(10000)]

y_true = act_pos + act_neg

define predictions

pred_pos = [0 for _ in range(5)] + [1 for
pred_neg = [1 for _ in range(55)] + [0 for
y_pred = pred_pos + pred_neg

calculate score

score = f1_score(y_true, y_pred, average='binary')
print ('F-measure: %.3f' % score)

in range(95)]
in range(9945)]

Listing 6.9: Example of calculating the F-measure for a binary classification dataset.

Running the example computes the F-measure, matching our manual calculation, within
some minor rounding errors.

F-measure: 0.760

Listing 6.10: Example output from calculating the F-measure for a binary classification dataset.

6.6. Further Reading 66

6.5.2 Fbeta-Measure

The F-measure balances the precision and recall. On some problems, we might be interested
in an F-measure with more attention put on precision, such as when false positives are more
important to minimize, but false negatives are still important. On other problems, we might be
interested in an F-measure with more attention put on recall, such as when false negatives are
more important to minimize, but false positives are still important.

The solution is the Fbeta-measure (FS-measure). The Fbeta-measure is an abstraction of
the F-measure where the balance of precision and recall in the calculation of the harmonic mean
is controlled by a coefficient called beta (5).

(1 + 3?) x Precision x Recall

FpB =
& 5% x Precision + Recall

(6.15)

The choice of the g parameter will be used in the name of the Fbeta-measure. For example,
a [value of 2 is referred to as F2-measure or F2-score. A [value of 1 is referred to as the
F1-measure or the Fl-score. Three common values for the beta parameter are as follows:

e F0.5-measure (5 = 0.5): More weight on precision, less weight on recall.
e Fl-measure (§ = 1): Balance the weight on precision and recall.

e F2-measure (§ = 2): Less weight on precision, more weight on recall.

The scikit-learn library provides the fbeta_score() for calculating the Fbeta-measure for a
set of predictions and accepts a beta argument that can be set to the common values of 0.5 or 2.

6.6 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

6.6.1 Papers

o A Systematic Analysis Of Performance Measures For Classification Tasks, 2009.
https://www.sciencedirect.com/science/article/abs/pii/S0306457309000259

6.6.2 Books

e Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

e Learning from Imbalanced Data Sets, 2018.
https://amzn.to/307X1lva

https://www.sciencedirect.com/science/article/abs/pii/S0306457309000259
https://amzn.to/32K9K6d
https://amzn.to/307Xlva

6.7. Summary 67

6.6.3 API

e sklearn.metrics.precision_score APIL.
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_
score.html

e sklearn.metrics.recall score APL
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.
html

e sklearn.metrics.fl score APIL
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.
html

e sklearn.metrics.fbeta_score API.
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.
html

6.6.4 Articles

e Confusion matrix, Wikipedia.
https://en.wikipedia.org/wiki/Confusion_matrix

e Precision and recall, Wikipedia.
https://en.wikipedia.org/wiki/Precision_and_recall

e F1 score, Wikipedia.
https://en.wikipedia.org/wiki/F1_score

6.7 Summary

In this tutorial, you discovered how to calculate and develop an intuition for precision and recall
for imbalanced classification. Specifically, you learned:

e Precision quantifies the number of positive class predictions that actually belong to the
positive class.

e Recall quantifies the number of correct positive class predictions made out of all positive
examples in the dataset.

e F-measure provides a single score that balances both the concerns of precision and recall
in one number.

6.7.1 Next

In the next tutorial, you will discover ROC curves and ROC AUC performance metrics for
evaluating models on imbalanced classification datasets.

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.fbeta_score.html
https://en.wikipedia.org/wiki/Confusion_matrix
https://en.wikipedia.org/wiki/Precision_and_recall
https://en.wikipedia.org/wiki/F1_score

Chapter 7

ROC Curves and Precision-Recall
Curves

Most imbalanced classification problems involve two classes: a negative case with the majority
of examples and a positive case with a minority of examples. Two diagnostic tools that help in
the interpretation of binary (two-class) classification predictive models are ROC Curves and
Precision-Recall curves.

Plots from the curves can be created and used to understand the trade-off in performance
for different threshold values when interpreting probabilistic predictions. Each plot can also
be summarized with an area under the curve score that can be used to directly compare
classification models. In this tutorial, you will discover ROC Curves and Precision-Recall Curves
for imbalanced classification. After completing this tutorial, you will know:

e ROC Curves and Precision-Recall Curves provide a diagnostic tool for binary classification
models.

e ROC AUC and Precision-Recall AUC provide scores that summarize the curves and can
be used to compare classifiers.

e ROC Curves and ROC AUC can be optimistic on severely imbalanced classification
problems with few samples of the minority class.

Let’s get started.

7.1 Tutorial Overview

This tutorial is divided into three parts; they are:

1. ROC Curves and ROC AUC
2. Precision-Recall Curves and AUC
3. ROC and PR Curves With a Severe Imbalance

68

7.2. ROC Curves and ROC AUC 69

7.2 ROC Curves and ROC AUC

An ROC curve (or receiver operating characteristic curve) is a plot that summarizes the
performance of a binary classification model on the positive class. The x-axis indicates the False
Positive Rate and the y-axis indicates the True Positive Rate.

e ROC Curve: Plot of False Positive Rate (z) vs. True Positive Rate (y).

The true positive rate is a fraction calculated as the total number of true positive predictions
divided by the sum of the true positives and the false negatives (e.g. all examples in the positive
class). The true positive rate is also referred to as the sensitivity or the recall.

TruePositive
TruePositiveRate = 7.1
TruePositive 4 FalseNegative (7.1)

The false positive rate is calculated as the total number of false positive predictions divided
by the sum of the false positives and true negatives (e.g. all examples in the negative class).

FalsePositive
FalsePositiveRate = 7.2
asselostiiveRate FalsePositive + TrueNegative (7.2)

We can think of the plot as the fraction of correct predictions for the positive class (y-axis)
versus the fraction of errors for the negative class (x-axis). Ideally, we want the fraction of
correct positive class predictions to be 1 (top of the plot) and the fraction of incorrect negative
class predictions to be 0 (left of the plot). This highlights that the best possible classifier that
achieves perfect skill is the top-left of the plot (coordinate 0,1).

e Perfect Skill: A point in the top left of the plot.

The threshold is applied to the cut-off point in probability between the positive and negative
classes, which by default for any classifier would be set at 0.5, halfway between each outcome
(0 and 1). A trade-off exists between the TruePositiveRate and FalsePositiveRate, such that
changing the threshold of classification will change the balance of predictions towards improving
the TruePositiveRate at the expense of FalsePositiveRate, or the reverse case.

By evaluating the true positive and false positives for different threshold values, a curve
can be constructed that stretches from the bottom left to top right and bows toward the top
left. This curve is called the ROC curve. A classifier that has no discriminative power between
positive and negative classes will form a diagonal line between a False Positive Rate of 0 and
a True Positive Rate of 0 (coordinate (0,0) or predict all negative class) to a False Positive
Rate of 1 and a True Positive Rate of 1 (coordinate (1,1) or predict all positive class). Models
represented by points below this line have worse than no skill.

The curve provides a convenient diagnostic tool to investigate one classifier with different
threshold values and the effect on the TruePositiveRate and FalsePositiveRate. One might
choose a threshold in order to bias the predictive behavior of a classification model. It is a
popular diagnostic tool for classifiers on balanced and imbalanced binary prediction problems
alike because it is not biased to the majority or minority class.

ROC analysis does not have any bias toward models that perform well on the
majority class at the expense of the minority class — a property that is quite
attractive when dealing with imbalanced data.

7.2. ROC Curves and ROC AUC 70

— Page 27, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

We can plot a ROC curve for a model in Python using the roc_curve () scikit-learn function.
The function takes both the true outcomes (0,1) from the test set and the predicted probabilities
for the 1 class. The function returns the false positive rates for each threshold, true positive
rates for each threshold and thresholds.

calculate roc curve for model
fpr, tpr, _ = roc_curve(testy, pos_probs)

Listing 7.1: Example of calculating the ROC curve.

Most scikit-learn models can predict probabilities by calling the predict_proba() function.
This will return the probabilities for each class, for each sample in a test set, e.g. two numbers
for each of the two classes in a binary classification problem. The probabilities for the positive
class can be retrieved as the second column in this array of probabilities.

predict probabilities

yhat = model.predict_proba(testX)

retrieve just the probabilities for the positive class
pos_probs = yhat[:, 1]

Listing 7.2: Example of predicting probabilities.

We can demonstrate this on a synthetic dataset and plot the ROC curve for a no skill
classifier and a Logistic Regression model.

The make_classification() function can be used to create synthetic classification problems.
In this case, we will create 1,000 examples for a binary classification problem (about 500 examples
per class). We will then split the dataset into a train and test sets of equal size in order to fit
and evaluate the model.

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, random_state=1)

split into train/test sets

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2)

Listing 7.3: Example of creating a dataset and splitting it into train and test sets.

A Logistic Regression model is a good model for demonstration because the predicted
probabilities are well-calibrated, as opposed to other machine learning models that are not
developed around a probabilistic model, in which case their probabilities may need to be
calibrated first (e.g. an SVM).

fit a model
model = LogisticRegression(solver='lbfgs')
model.fit(trainX, trainy)

Listing 7.4: Example of fitting a logistic regression model

The complete example is listed below.

7.2. ROC Curves and ROC AUC 71

example of a roc curve for a predictive model

from sklearn.datasets import make_classification

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import roc_curve

from matplotlib import pyplot

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, random_state=1)
split into train/test sets

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2)
fit a model

model = LogisticRegression(solver='lbfgs')

model.fit(trainX, trainy)

predict probabilities

yhat = model.predict_proba(testX)

retrieve just the probabilities for the positive class

pos_probs = yhat[:, 1]

plot no skill roc curve

pyplot.plot([0, 1], [0, 1], linestyle='--', label='No Skill')
calculate roc curve for model

fpr, tpr, _ = roc_curve(testy, pos_probs)

plot model roc curve

pyplot.plot(fpr, tpr, marker='.', label='Logistic')

axis labels

pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
show the legend

pyplot.legend()

show the plot

pyplot.show()

Listing 7.5: Example of plotting a ROC curve on a balanced dataset.

Running the example creates the synthetic dataset, splits into train and test sets, then fits a
Logistic Regression model on the training dataset and uses it to make a prediction on the test
set. The ROC Curve for the Logistic Regression model is shown (orange with dots). A no skill
classifier as a diagonal line (blue with dashes).

7.2. ROC Curves and ROC AUC 72

1.09 --- No skill 7
Logistic ot
R
//
0.8 i
//,
w z',
15 ,/’
© 0.6 1 R
[Ve
> ’
] ”
g ’,/
o P
qé) 0.4 ,,’
= //’
7’
/,’
0.2 - s
//
,/
//
R
0.0 r
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 7.1: ROC Curve of a Logistic Regression Model and a No Skill Classifier.

Now that we have seen the ROC Curve, let’s take a closer look at the ROC area under curve
score.

7.2.1 ROC Area Under Curve (AUC) Score

Although the ROC Curve is a helpful diagnostic tool, it can be challenging to compare two or
more classifiers based on their curves. Instead, the area under the curve can be calculated to
give a single score for a classifier model across all threshold values. This is called the ROC area
under curve or ROC AUC or sometimes ROCAUC. The score is a value between 0.0 and 1.0,
with 1.0 indicating a perfect classifier.

AUCROC can be interpreted as the probability that the scores given by a classifier
will rank a randomly chosen positive instance higher than a randomly chosen negative
one.

— Page 54, Learning from Imbalanced Data Sets, 2018.

This single score can be used to compare binary classifier models directly. As such, this score
might be the most commonly used for comparing classification models for imbalanced problems.

7.2. ROC Curves and ROC AUC 73

The most common metric involves receiver operation characteristics (ROC) analysis,
and the area under the ROC curve (AUC).

— Page 27, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

The AUC for the ROC can be calculated in scikit-learn using the roc_auc_score() function.
Like the roc_curve() function, the AUC function takes both the true outcomes (0,1) from the
test set and the predicted probabilities for the positive class.

calculate roc auc
roc_auc = roc_auc_score(testy, pos_probs)

Listing 7.6: Example of calculating the ROC AUC score.

We can demonstrate this the same synthetic dataset with a Logistic Regression model. The
complete example is listed below.

example of a roc auc for a predictive model

from sklearn.datasets import make_classification
from sklearn.dummy import DummyClassifier

from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_auc_score

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, random_state=1)
split into train/test sets

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2)
no skill model, stratified random class predictions
model = DummyClassifier(strategy='stratified')
model.fit(trainX, trainy)

yhat = model.predict_proba(testX)

pos_probs = yhat[:, 1]

calculate roc auc

roc_auc = roc_auc_score(testy, pos_probs)

print('No Skill ROC AUC %.3f' % roc_auc)

skilled model

model = LogisticRegression(solver='lbfgs')
model.fit(trainX, trainy)

yhat = model.predict_proba(testX)

pos_probs = yhat[:, 1]

calculate roc auc

roc_auc = roc_auc_score(testy, pos_probs)
print('Logistic ROC AUC %.3f' % roc_auc)

Listing 7.7: Example of calculating the ROC AUC on a balanced dataset.

Running the example creates and splits the synthetic dataset, fits the model, and uses the
fit model to predict probabilities on the test dataset. In this case, we can see that the ROC
AUC for the Logistic Regression model on the synthetic dataset is about 0.903, which is much
better than a no skill classifier with a score of about 0.5.

No Skill ROC AUC 0.509
Logistic ROC AUC 0.903

Listing 7.8: Example output from calculating the ROC AUC on a balanced dataset.

7.3. Precision-Recall Curves and AUC 74

Although widely used, the ROC AUC is not without problems. For imbalanced classification
with a severe skew and few examples of the minority class, the ROC AUC can be misleading.

This is because a small number of correct or incorrect predictions can result in a large change in
the ROC Curve or ROC AUC score.

Although ROC graphs are widely used to evaluate classifiers under presence of class
imbalance, it has a drawback: under class rarity, that is, when the problem of class
imbalance is associated to the presence of a low sample size of minority instances,
as the estimates can be unreliable.

— Page 55, Learning from Imbalanced Data Sets, 2018.

A common alternative is the precision-recall curve and area under curve.

7.3 Precision-Recall Curves and AUC

Precision is a metric that quantifies the number of correct positive predictions made. It is
calculated as the number of true positives divided by the total number of true positives and
false positives.

Procisi TruePositive (7 3)
recision =)
TruePositive + FalsePositive

The result is a value between 0.0 for no precision and 1.0 for full or perfect precision. Recall
is a metric that quantifies the number of correct positive predictions made out of all positive
predictions. It is calculated as the number of true positives divided by the total number of true
positives and false negatives (e.g. it is the true positive rate).

TruePositive
Recall = 7.4
eea TruePositive + FalseNegative (7.4)

The result is a value between 0.0 for no recall and 1.0 for full or perfect recall. Both the
precision and the recall are focused on the positive class (the minority class) and are unconcerned
with the true negatives (majority class).

... precision and recall make it possible to assess the performance of a classifier on
the minority class.

— Page 27, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

A precision-recall curve (or PR Curve) is a plot of the precision (y-axis) and the recall
(x-axis) for different probability thresholds.

e PR Curve: Plot of Recall (z) vs Precision (y).

A model with perfect skill is depicted as a point at a coordinate of (1,1). A skillful model
is represented by a curve that bows towards a coordinate of (1,1). A no-skill classifier will be
a horizontal line on the plot with a precision that is proportional to the number of positive
examples in the dataset. For a balanced dataset this will be 0.5. The focus of the PR curve on
the minority class makes it an effective diagnostic for imbalanced binary classification models.

7.3. Precision-Recall Curves and AUC 75

Precision-recall curves (PR curves) are recommended for highly skewed domains
where ROC curves may provide an excessively optimistic view of the performance.

— A Survey of Predictive Modelling under Imbalanced Distributions, 2015.

A precision-recall curve can be calculated in scikit-learn using the precision _recall _curve()
function that takes the class labels and predicted probabilities for the minority class and returns
the precision, recall, and thresholds.

calculate precision-recall curve
precision, recall, _ = precision_recall_curve(testy, pos_probs)

Listing 7.9: Example of calculating a precision-recall curve.

We can demonstrate this on a synthetic dataset for a predictive model. The complete
example is listed below.

example of a precision-recall curve for a predictive model

from sklearn.datasets import make_classification

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import precision_recall_curve

from matplotlib import pyplot

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, random_state=1)
split into train/test sets

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2)
fit a model

model = LogisticRegression(solver='lbfgs')

model.fit(trainX, trainy)

predict probabilities

yhat = model.predict_proba(testX)

retrieve just the probabilities for the positive class

pos_probs = yhat[:, 1]

calculate the no skill line as the proportion of the positive class
no_skill = len(y[y==1]1) / len(y)

plot the no skill precision-recall curve

pyplot.plot ([0, 1], [no_skill, no_skill], linestyle='--', label='No Skill')
calculate model precision-recall curve

precision, recall, _ = precision_recall_curve(testy, pos_probs)

plot the model precision-recall curve

pyplot.plot(recall, precision, marker='.', label='Logistic')

axis labels
pyplot.xlabel('Recall')
pyplot.ylabel('Precision')
show the legend
pyplot.legend ()

show the plot
pyplot.show()

Listing 7.10: Example of plotting a precision-recall curve on a balanced dataset.

Running the example creates the synthetic dataset, splits into train and test sets, then fits a
Logistic Regression model on the training dataset and uses it to make a prediction on the test

7.3. Precision-Recall Curves and AUC 76

set. The Precision-Recall Curve for the Logistic Regression model is shown (orange with dots).
A random or baseline classifier is shown as a horizontal line (blue with dashes).

1.0 —== No Skill
Logistic
0.9 -
- 0.8
°
0
(@]
o
% 0.7 1
0.6 1
059 ——————— - =
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 7.2: Precision-Recall Curve of a Logistic Regression Model and a No Skill Classifier.

Now that we have seen the Precision-Recall Curve, let’s take a closer look at the PR area
under curve score.

7.3.1 Precision-Recall Area Under Curve (AUC) Score

The Precision-Recall AUC is just like the ROC AUC, in that it summarizes the curve with a
range of threshold values as a single score. The score can then be used as a point of comparison
between different models on a binary classification problem where a score of 1.0 represents a
model with perfect skill. The Precision-Recall AUC score can be calculated using the auc()
function in scikit-learn, taking the precision and recall values as arguments.

calculate the precision-recall auc
auc_score = auc(recall, precision)

Listing 7.11: Example of the precision-recall area under curve.

Again, we can demonstrate calculating the Precision-Recall AUC for a Logistic Regression
on a synthetic dataset. The complete example is listed below.

7.4. ROC and PR Curves With a Severe Imbalance 77

example of a precision-recall auc for a predictive model
from sklearn.datasets import make_classification

from sklearn.dummy import DummyClassifier

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

from sklearn.metrics import precision_recall_curve

from sklearn.metrics import auc

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, random_state=1)
split into train/test sets

trainX, testX, trainy, testy = train_test_split (X, y, test_size=0.5, random_state=2)
no skill model, stratified random class predictions

model = DummyClassifier(strategy='stratified')
model.fit(trainX, trainy)

yhat = model.predict_proba(testX)

pos_probs = yhat[:, 1]

calculate the precision-recall auc

precision, recall, _ = precision_recall_curve(testy, pos_probs)
auc_score = auc(recall, precision)

print('No Skill PR AUC: %.3f' % auc_score)

fit a model

model = LogisticRegression(solver='lbfgs')

model.fit(trainX, trainy)

yhat = model.predict_proba(testX)

pos_probs = yhat[:, 1]

calculate the precision-recall auc

precision, recall, _ = precision_recall_curve(testy, pos_probs)
auc_score = auc(recall, precision)

print('Logistic PR AUC: %.3f' % auc_score)

Listing 7.12: Example of calculating the precision-recall area under curve on a balanced dataset.

Running the example creates and splits the synthetic dataset, fits the model, and uses
the fit model to predict probabilities on the test dataset. In this case, we can see that the
Precision-Recall AUC for the Logistic Regression model on the synthetic dataset is about 0.898,
which is much better than a no skill classifier that would achieve the score in this case of 0.632.

No Skill PR AUC: 0.632
Logistic PR AUC: 0.898

Listing 7.13: Example output from calculating the precision-recall area under curve on a balanced
dataset.

7.4 ROC and PR Curves With a Severe Imbalance

In this section, we will explore the case of using the ROC Curves and Precision-Recall curves
with a binary classification problem that has a severe class imbalance.

Firstly, we can use the make classification() function to create 1,000 examples for a
classification problem with about a 1:100 minority to majority class ratio. This can be achieved
by setting the weights argument and specifying the weighting of generated instances from each
class. We will use a 99 percent and 1 percent weighting with 1,000 total examples, meaning
there would be about 990 for class 0 and about 10 for class 1.

7.4. ROC and PR Curves With a Severe Imbalance 78

generate 2 class dataset
X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01],
random_state=1)

Listing 7.14: Example of defining an imbalanced binary classification dataset.

We can then split the dataset into training and test sets and ensure that both have the same
general class ratio by setting the stratify argument on the call to the train test_split()
function and setting it to the array of target variables.

split into train/test sets with same class ratio
trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2,
stratify=y)

Listing 7.15: Example of splitting the dataset into train and test sets.

Tying this together, the complete example of preparing the imbalanced dataset is listed
below.

create an imbalanced dataset

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01],
random_state=1)

split into train/test sets with same class ratio

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2,
stratify=y)

summarize dataset

print('Dataset: ClassO=%d, Classi=)d' % (len(y[y==0]), len(yl[y==11)))

print('Train: ClassO=)d, Classl=Yd' % (len(trainy[trainy==0]), len(trainy[trainy==1])))

print('Test: ClassO=}d, Classi=)d' % (len(testyl[testy==0]), len(testy[testy==11)))

Listing 7.16: Example of defining and summarizing the imbalanced dataset.

Running the example first summarizes the class ratio of the whole dataset, then the ratio
for each of the train and test sets, confirming the split of the dataset holds the same ratio.

Dataset: Class0=985, Class1=15
Train: Class0=492, Class1=8
Test: Class0=493, Class1=7

Listing 7.17: Example output from defining and summarizing the imbalanced dataset.

Next, we can develop a Logistic Regression model on the dataset and evaluate the performance
of the model using a ROC Curve and ROC AUC score, and compare the results to a no skill
classifier, as we did in a prior section. The complete example is listed below.

roc curve and roc auc on an imbalanced dataset
from sklearn.datasets import make_classification
from sklearn.linear_model import LogisticRegression
from sklearn.dummy import DummyClassifier

from sklearn.model_selection import train_test_split
from sklearn.metrics import roc_curve

from sklearn.metrics import roc_auc_score

7.4. ROC and PR Curves With a Severe Imbalance 79

from matplotlib import pyplot

plot no skill and model roc curves

def plot_roc_curve(test_y, naive_probs, model_probs):
plot naive skill roc curve
fpr, tpr, _ = roc_curve(test_y, naive_probs)
pyplot.plot(fpr, tpr, linestyle='--', label='No Skill')
plot model roc curve
fpr, tpr, _ = roc_curve(test_y, model_probs)
pyplot.plot(fpr, tpr, marker='.', label='Logistic')
axis labels
pyplot.xlabel('False Positive Rate')
pyplot.ylabel('True Positive Rate')
show the legend
pyplot.legend ()
show the plot
pyplot.show()

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01],
random_state=1)

split into train/test sets with same class ratio

trainX, testX, trainy, testy = train_test_split (X, y, test_size=0.5, random_state=2,
stratify=y)

no skill model, stratified random class predictions

model = DummyClassifier(strategy='stratified')

model.fit(trainX, trainy)

yhat = model.predict_proba(testX)

naive_probs = yhat[:, 1]

calculate roc auc

roc_auc = roc_auc_score(testy, naive_probs)

print('No Skill ROC AUC 7%.3f' % roc_auc)

skilled model

model = LogisticRegression(solver='lbfgs')

model.fit(trainX, trainy)

yhat = model.predict_proba(testX)

model_probs = yhat[:, 1]

calculate roc auc

roc_auc = roc_auc_score(testy, model_probs)

print ('Logistic ROC AUC %.3f' % roc_auc)

plot roc curves

plot_roc_curve(testy, naive_probs, model_probs)

Listing 7.18: Example of ROC curve and AUC for the imbalanced dataset.

Running the example creates the imbalanced binary classification dataset as before. Then
a logistic regression model is fit on the training dataset and evaluated on the test dataset. A
no skill classifier is evaluated alongside for reference. The ROC AUC scores for both classifiers
are reported, showing the no skill classifier achieving the lowest score of approximately 0.5 as
expected. The results for the logistic regression model suggest it has some skill with a score of
about 0.869.

No Skill ROC AUC 0.490
Logistic ROC AUC 0.869

Listing 7.19: Example output from calculating ROC AUC on the imbalanced dataset.

7.4. ROC and PR Curves With a Severe Imbalance 80

A ROC curve is also created for the model and the no skill classifier, showing not excellent
performance, but definitely skillful performance as compared to the diagonal no skill.

1.09 === No Skill 7
Logistic ot
PR
,/
0.8 A P
'
,/
’/
o o
@
e (0.6 e
) P
> 7’
] 7’
g ,,/
[P
g 0.4 N ,,,’
~ ,//
/,’
0.2 A Pid
’/
//
/l
,/
0.04 «
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 7.3: Plot of ROC Curve for Logistic Regression on Imbalanced Classification Dataset.

Next, we can perform an analysis of the same model fit and evaluated on the same data
using the precision-recall curve and AUC score. The complete example is listed below.

pr
from
from
from
from
from
from
from

curve and pr auc on an imbalanced dataset
sklearn.datasets import make_classification
sklearn.dummy import DummyClassifier
sklearn.linear_model import LogisticRegression
sklearn.model_selection import train_test_split
sklearn.metrics import precision_recall_curve
sklearn.metrics import auc

matplotlib import pyplot

plot no skill and model precision-recall curves

def plot_pr_curve(test_y, model_probs):
calculate the no skill line as the proportion of the positive class
no_skill = len(test_y[test_y==1]) / len(test_y)
plot the no skill precision-recall curve
pyplot.plot ([0, 1], [no_skill, no_skill], linestyle='--', label='No Skill')
plot model precision-recall curve
precision, recall, _ = precision_recall_curve(testy, model_probs)

7.4. ROC and PR Curves With a Severe Imbalance 81

pyplot.plot(recall, precision, marker='.', label='Logistic')
axis labels

pyplot.xlabel('Recall')

pyplot.ylabel('Precision')

show the legend

pyplot.legend()

show the plot

pyplot.show()

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01],
random_state=1)

split into train/test sets with same class ratio

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2,
stratify=y)

no skill model, stratified random class predictions

model = DummyClassifier(strategy='stratified')

model.fit(trainX, trainy)

yhat = model.predict_proba(testX)

naive_probs = yhat[:, 1]

calculate the precision-recall auc

precision, recall, _ = precision_recall_curve(testy, naive_probs)

auc_score = auc(recall, precision)

print('No Skill PR AUC: %.3f' % auc_score)

fit a model

model = LogisticRegression(solver='lbfgs')

model.fit(trainX, trainy)

yhat = model.predict_proba(testX)

model_probs = yhat[:, 1]

calculate the precision-recall auc

precision, recall, _ = precision_recall_curve(testy, model_probs)

auc_score = auc(recall, precision)

print('Logistic PR AUC: 7%.3f' % auc_score)

plot precision-recall curves

plot_pr_curve(testy, model_probs)

Listing 7.20: Example of precision-recall curve and AUC for the imbalanced dataset.

As before, running the example creates the imbalanced binary classification dataset. In this
case we can see that the Logistic Regression model achieves a PR AUC of about 0.228 and the
no skill model achieves a PR, AUC of about 0.007.

No Skill PR AUC: 0.007
Logistic PR AUC: 0.228

Listing 7.21: Example output from calculating precision-recall AUC on the imbalanced dataset.

A plot of the precision-recall curve is also created. We can see the horizontal line of the no
skill classifier as expected and in this case the zig-zag line of the logistic regression curve close
to the no skill line.

7.4. ROC and PR Curves With a Severe Imbalance 82

1.0 —==No Skill
Logistic
0.8
< 0.6 1
.2
.
(@]
[
a
0.4 1
0.2 1
00q ~TTTTTTTTTTTTT T T T T T T e e T
0.0 0.2 0.4 0.6 0.8 1.0
Recall

Figure 7.4: Plot of Precision-Recall Curve for Logistic Regression on Imbalanced Classification
Dataset.

To explain why the ROC and PR curves tell a different story, recall that the PR curve
focuses on the minority class, whereas the ROC curve covers both classes. If we use a threshold
of 0.5 and use the logistic regression model to make a prediction for all examples in the test
set, we see that it predicts class 0 or the majority class in all cases. This can be confirmed by
using the fit model to predict crisp class labels that will use the default threshold of 0.5. The
distribution of predicted class labels can then be summarized.

predict class labels

yhat = model.predict(testX)

summarize the distribution of class labels
print (Counter (yhat))

Listing 7.22: Example of predicting crisp class labels with the default threshold.

We can then create a histogram of the predicted probabilities of the positive class to confirm
that the mass of predicted probabilities is below 0.5, and therefore are mapped to class 0.

create a histogram of the predicted probabilities
pyplot.hist(pos_probs, bins=100)
pyplot.show()

7.4. ROC and PR Curves With a Severe Imbalance 83

Listing 7.23: Example of creating a histogram of predicted probabilities for the positive class.

Tying this together, the complete example is listed below.

summarize the distribution of predicted probabilities

from collections import Counter

from matplotlib import pyplot

from sklearn.datasets import make_classification

from sklearn.linear_model import LogisticRegression

from sklearn.model_selection import train_test_split

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01],
random_state=1)

split into train/test sets with same class ratio

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2,
stratify=y)

fit a model

model = LogisticRegression(solver='lbfgs')

model.fit(trainX, trainy)

predict probabilities

yhat = model.predict_proba(testX)

retrieve just the probabilities for the positive class

pos_probs = yhat[:, 1]

predict class labels

yhat = model.predict(testX)

summarize the distribution of class labels

print (Counter (yhat))

create a histogram of the predicted probabilities

pyplot.hist(pos_probs, bins=100)

pyplot.show()

Listing 7.24: Example of analyzing the predicted probabilities for the positive class.

Running the example first summarizes the distribution of predicted class labels. As we
expected, the majority class (class 0) is predicted for all examples in the test set.

Counter ({0: 5003})

Listing 7.25: Example output from summarizing the distribution of predicted probabilities.

A histogram plot of the predicted probabilities for class 1 is also created, showing the center
of mass (most predicted probabilities) is less than 0.5 and in fact is generally close to zero.

7.5. Further Reading 84

100

80

60

40 A

20 A

0_ B e ol - -

0.00 0.05 0.10 0.15 0.20

Figure 7.5: Histogram of Logistic Regression Predicted Probabilities for Class 1 for Imbalanced
(Classification.

This means, unless probability threshold is carefully chosen, any skillful nuance in the
predictions made by the model will be lost. Selecting thresholds used to interpret predicted
probabilities as crisp class labels is an important topic covered in Chapter 21.

7.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

7.5.1 Papers

e A Survey of Predictive Modelling under Imbalanced Distributions, 2015.
https://arxiv.org/abs/1505.01658

7.5.2 Books

e [mbalanced Learning: Foundations, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

https://arxiv.org/abs/1505.01658
https://amzn.to/32K9K6d

7.6. Summary 85

e Learning from Imbalanced Data Sets, 2018.
https://amzn.to/307X1lva

7.5.3 API

e sklearn.datasets.make classification APL
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.
html

e sklearn.metrics.roc_curve APIL
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.
html

e sklearn.metrics.roc_auc_score APL
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_
score.html

e sklearn.metrics.precision recall curve API.
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_
recall_curve.html

e sklearn.metrics.auc APIL
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.auc.html

7.5.4 Articles

e Receiver operating characteristic, Wikipedia.
https://en.wikipedia.org/wiki/Receiver_operating_characteristic

e Precision and recall, Wikipedia.
https://en.wikipedia.org/wiki/Precision_and_recall

7.6 Summary

In this tutorial, you discovered ROC Curves and Precision-Recall Curves for imbalanced
classification. Specifically, you learned:

e ROC Curves and Precision-Recall Curves provide a diagnostic tool for binary classification
models.

e ROC AUC and Precision-Recall AUC provide scores that summarize the curves and can
be used to compare classifiers.

e ROC Curves and ROC AUC can be optimistic on severely imbalanced classification
problems with few samples of the minority class.

7.6.1 Next

In the next tutorial, you will discover probabilistic performance metrics for evaluating models
on imbalanced classification datasets.

https://amzn.to/307Xlva
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_recall_curve.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.auc.html
https://en.wikipedia.org/wiki/Receiver_operating_characteristic
https://en.wikipedia.org/wiki/Precision_and_recall

Chapter 8

Probability Scoring Methods

Classification predictive modeling involves predicting a class label for examples, although some
problems require the prediction of a probability of class membership. For these problems, the
crisp class labels are not required, and instead, the likelihood that each example belonging to
each class is required and later interpreted. As such, small relative probabilities can carry a
lot of meaning and specialized metrics are required to quantify the predicted probabilities. In
this tutorial, you will discover metrics for evaluating probabilistic predictions for imbalanced
classification. After completing this tutorial, you will know:

e Probability predictions are required for some classification predictive modeling problems.

e Log loss quantifies the average difference between predicted and expected probability
distributions.

e Brier score quantifies the average difference between predicted and expected probabilities.

Let’s get started.

8.1 Tutorial Overview

This tutorial is divided into three parts; they are:
1. Probability Metrics

2. Log Loss Score

3. Brier Score

8.2 Probability Metrics

Classification predictive modeling involves predicting a class label for an example. On some
problems, a crisp class label is not required, and instead a probability of class membership is
preferred. The probability summarizes the likelihood (or uncertainty) of an example belonging
to each class label. Probabilities are more nuanced and can be interpreted by a human operator
or a system in decision making.

86

8.2. Probability Metrics 87

Probability metrics are those specifically designed to quantify the skill of a classifier model
using the predicted probabilities instead of crisp class labels. They are typically scores that
provide a single value that can be used to compare different models based on how well the
predicted probabilities match the expected class probabilities. In practice, a dataset will not
have target probabilities. Instead, it will have class labels.

For example, a two-class (binary) classification problem will have the class labels 0 for the
negative case and 1 for the positive case. When an example has the class label 0, then the
probability of the class labels 0 and 1 will be 1 and 0 respectively. When an example has the
class label 1, then the probability of class labels 0 and 1 will be 0 and 1 respectively.

e Example with Class = 0: P(class =0) =1, P(class = 1) = 0.

e Example with Class = 1: P(class =0) =0, P(class =1) = 1.

We can see how this would scale to three classes or more; for example:

e Example with Class = 0: P(class =0) =1, P(class = 1) =0, P(class = 2) = 0.
e Example with Class = 1: P(class =0) =0, P(class = 1) = 1, P(class = 2) = 0.
e Example with Class = 2: P(class =0) =0, P(class = 1) =0, P(class = 2) = 1.

In the case of binary classification problems, this representation can be simplified to just
focus on the positive class. That is, we only require the probability of an example belonging to
class 1 to represent the probabilities for binary classification (e.g. the Bernoulli distribution);
for example:

e Example with Class = 0: P(class =1) =0
e Example with Class = 1: P(class =1) =1

Probability metrics will summarize how well the predicted distribution of class membership
matches the known class probability distribution. This focus on predicted probabilities may
mean that the crisp class labels predicted by a model are ignored. This focus may mean that
a model that predicts probabilities may appear to have terrible performance when evaluated
according to its crisp class labels, such as using accuracy or a similar score. This is because
although the predicted probabilities may show skill, they must be interpreted with a threshold
prior to being converted into crisp class labels.

Additionally, the focus on predicted probabilities may also require that the probabilities
predicted by some nonlinear models to be calibrated prior to being used or evaluated. Some
models will learn calibrated probabilities as part of the training process (e.g. logistic regression),
but many will not and will require calibration (e.g. support vector machines, decision trees, and
neural networks). We will cover the topic of calibrating predicted probabilities in Chapter 22.
A given probability metric is typically calculated for each example, then averaged across all
examples in the training dataset. There are two popular metrics for evaluating predicted
probabilities; they are:

e Log Loss
e Brier Score

Let’s take a closer look at each in turn.

8.3. Log Loss Score 88

8.3 Log Loss Score

Logarithmic loss or log loss for short is a loss function known for training the logistic regression
classification algorithm. The log loss function calculates the negative log likelihood for probability
predictions made by the binary classification model. Most notably, this is logistic regression,
but this function can be used by other models, such as neural networks, and is known by other
names, such as cross-entropy. Generally, the log loss can be calculated using the expected
probabilities P for each class and the natural logarithm of the predicted probabilities @) for each
class; for example:

LogLoss = —(P(class = 0) x log(Q(class = 0)) + (P(class = 1)) x log(Q(class = 1))) (8.1)

The best possible log loss is 0.0, and values are positive to infinite for progressively worse
scores. If you are just predicting the probability for the positive class, then the log loss function
can be calculated for one binary classification prediction (yhat) compared to the expected
probability (y) as follows:

LogLoss = —((1 — y) x log(1 — yhat) + y x log(yhat)) (8.2)

For example, if the expected probability was 1.0 and the model predicted 0.8, the log loss
would be:

LogLoss = —((1 — y) x log(1 — yhat) + y x log(yhat))
= —((1-1.0) x log(1 — 0.8) + 1.0 x log(0.8))
= —(0.0+ —0.223)
= 0.223

(8.3)

This calculation can be scaled up for multiple classes by adding additional terms; for example:

ceC
LogLoss = —(Z Yo X log(yhat.)) (8.4)

This generalization is also known as cross-entropy and calculates the number of bits (if
log base-2 is used) or nats (if log base-e is used) by which two probability distributions differ.
Specifically, it builds upon the idea of entropy from information theory and calculates the average
number of bits required to represent or transmit an event from one distribution compared to
the other distribution.

... the cross entropy is the average number of bits needed to encode data coming
from a source with distribution p when we use model ¢ ...

— Page 57, Machine Learning: A Probabilistic Perspective, 2012.

The intuition for this definition comes if we consider a target or underlying probability
distribution P and an approximation of the target distribution @), then the cross-entropy of @)
from P is the number of additional bits to represent an event using () instead of P. We will
stick with log loss for now, as it is the term most commonly used when using this calculation as
an evaluation metric for classifier models. When calculating the log loss for a set of predictions

8.3. Log Loss Score 89

compared to a set of expected probabilities in a test dataset, the average of the log loss across
all samples is calculated and reported; for example:

N
AverageLogLoss = % X Z —((1 —y;) x log(1 — yhat;) + y; x log(yhat;)) (8.5)
i=1

The average log loss for a set of predictions on a training dataset is often simply referred
to as the log loss. We can demonstrate calculating log loss with a worked example. First,
let’s define a synthetic binary classification dataset. We will use the make classification()
function to create 1,000 examples, with 99% /1% split for the two classes. The complete example

of creating and summarizing the dataset is listed below.

create an imbalanced dataset
from numpy import unique
from sklearn.datasets import make_classification
generate 2 class dataset
X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99], flip_y=0,
random_state=1)
summarize dataset
classes = unique(y)
total = len(y)
for ¢ in classes:
n_examples = len(y[y==c])
percent = n_examples / total * 100
print('> Class=Yd : %d/%d (%.1£%%)' % (c, n_examples, total, percent))

Listing 8.1: Example of defining and summarizing the imbalanced dataset.

Running the example creates the dataset and reports the distribution of examples in each
class.

> Class=0 : 990/1000 (99.0%)
> Class=1 : 10/1000 (1.0%)

Listing 8.2: Example output from summarizing the imbalanced dataset.

Next, we will develop an intuition for naive predictions of probabilities. A naive prediction
strategy would be to predict certainty for the majority class, or P(class = 0) = 1. An alternative
strategy would be to predict the minority class, or P(class = 1) = 1. Log loss can be calculated
using the log_loss() scikit-learn function. It takes the predicted probability for each class as
input and returns the average log loss. Specifically, each example must have a prediction with one
probability per class, meaning a prediction for one example for a binary classification problem
must have a probability for class 0 and class 1. Therefore, predicting certain probabilities for
class 0 for all examples would be implemented as follows:

no skill prediction O

probabilities = [[1, 0] for _ in range(len(testy))]
avg_logloss = log_loss(testy, probabilities)

print ('P(class0=1): Log Loss=%.3f' % (avg_logloss))

Listing 8.3: Example of predicting certain probabilities.

We can do the same thing for P(classl) = 1. These two strategies are expected to perform
terribly. A better naive strategy would be to predict the class distribution for each example. For

8.3. Log Loss Score 90

example, because our dataset has a 99%/1% class distribution for the majority and minority
classes, this distribution can be predicted for each example to give a baseline for probability
predictions.

baseline probabilities

probabilities = [[0.99, 0.01] for _ in range(len(testy))]
avg_logloss = log_loss(testy, probabilities)
print('Baseline: Log Loss=}%.3f' % (avg_logloss))

Listing 8.4: Example of predicting naive probabilities.

Finally, we can also calculate the log loss for perfectly predicted probabilities by taking the
target values for the test set as predictions.

perfect probabilities
avg_logloss = log_loss(testy, testy)
print ('Perfect: Log Loss=%.3f' ¥ (avg_logloss))

Listing 8.5: Example of calculating log loss.

Tying this all together, the complete example is listed below.

log loss for naive probability predictions.

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

from sklearn.metrics import log_loss

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99], flip_y=0,
random_state=1)

split into train/test sets with same class ratio

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2,
stratify=y)

no skill prediction O

probabilities = [[1, 0] for _ in range(len(testy))]

avg_logloss = log_loss(testy, probabilities)

print ('P(class0=1): Log Loss=%.3f' % (avg_logloss))

no skill prediction 1

probabilities = [[0, 1] for _ in range(len(testy))]

avg_logloss = log_loss(testy, probabilities)

print('P(classl=1): Log Loss=}.3f' % (avg_logloss))

baseline probabilities

probabilities = [[0.99, 0.01] for _ in range(len(testy))]

avg_logloss = log_loss(testy, probabilities)

print('Baseline: Log Loss=%.3f' % (avg_logloss))

perfect probabilities

avg_logloss = log_loss(testy, testy)

print ('Perfect: Log Loss=%.3f' % (avg_logloss))

Listing 8.6: Example of calculating log loss for different naive prediction models.

Running the example reports the log loss for each naive strategy. As expected, predicting
certainty for each class label is punished with large log loss scores, with the case of being certain
for the minority class in all cases resulting in a much larger score. We can see that predicting
the distribution of examples in the dataset as the baseline results in a better score than either
of the other naive measures. This baseline represents the no skill classifier and log loss scores

8.4. Brier Score 91

below this strategy represent a model that has some skill. Finally, we can see that a log loss for
perfectly predicted probabilities is 0.0, indicating no difference between actual and predicted
probability distributions.

P(class0=1): Log Loss=0.345
P(class1=1): Log Loss=34.193
Baseline: Log Loss=0.056
Perfect: Log Loss=0.000

Listing 8.7: Example output from calculating log loss for different naive prediction models.

Now that we are familiar with log loss, let’s take a look at the Brier score.

8.4 Brier Score

The Brier score, named for Glenn Brier, calculates the mean squared error between predicted
probabilities and the expected values. The score summarizes the magnitude of the error in
the predicted probabilities and is designed for binary classification problems. It is focused on
evaluating the probabilities for the positive class. Nevertheless, it can be adapted for problems
with multiple classes. It is also an appropriate probabilistic metric for imbalanced classification
problems.

The evaluation of probabilistic scores is generally performed by means of the Brier
Score. The basic idea is to compute the mean squared error (MSE) between predicted
probability scores and the true class indicator, where the positive class is coded as 1,
and negative class 0.

— Page 57, Learning from Imbalanced Data Sets, 2018.

The error score is always between 0.0 and 1.0, where a model with perfect skill has a score
of 0.0. The Brier score can be calculated for positive predicted probabilities (yhat) compared to
the expected probabilities (y) as follows:

N
: 1 2
BrierScore = ae ;(yhati — i) (8.6)

For example, if a predicted positive class probability is 0.8 and the expected probability is
1.0, then the Brier score is calculated as:

BrierScore = (yhat; — y;)?
= (0.8 — 1.0)? (8.7)
=0.04

We can demonstrate calculating the Brier score with a worked example using the same
dataset and naive predictive models as were used in the previous section. The Brier score can
be calculated using the brier_score loss() scikit-learn function. It takes the probabilities
for the positive class only, and returns an average score. As in the previous section, we can
evaluate naive strategies of predicting the certainty for each class label. In this case, as the
score only considers the probability for the positive class, this will involve predicting 0.0 for
P(class = 1) = 0 and 1.0 for P(class = 1) = 1. For example:

8.4. Brier Score 92

no skill prediction O

probabilities = [0.0 for _ in range(len(testy))]
avg_brier = brier_score_loss(testy, probabilities)
print('P(class1=0): Brier Score=),.4f' % (avg_brier))
no skill prediction 1

probabilities = [1.0 for _ in range(len(testy))]
avg_brier = brier_score_loss(testy, probabilities)
print ('P(class1=1): Brier Score=}.4f' ¥, (avg_brier))

Listing 8.8: Example of naive models for Brier score.

We can also test the no skill classifier that predicts the ratio of positive examples in the
dataset, which in this case is 1 percent or 0.01.

baseline probabilities

probabilities = [0.01 for _ in range(len(testy))]

avg_brier = brier_score_loss(testy, probabilities)
print('Baseline: Brier Score=Y.4f' % (avg_brier))

Listing 8.9: Example of baseline model for Brier score.

Finally, we can also confirm the Brier score for perfectly predicted probabilities.

perfect probabilities
avg_brier = brier_score_loss(testy, testy)
print ('Perfect: Brier Score=),.4f' ¥ (avg_brier))

Listing 8.10: Example of perfect predictions for Brier score.

Tying this together, the complete example is listed below.

brier score for naive probability predictionms.

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

from sklearn.metrics import brier_score_loss

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99], flip_y=0,
random_state=1)

split into train/test sets with same class ratio

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2,
stratify=y)

no skill prediction O

probabilities = [0.0 for _ in range(len(testy))]

avg_brier = brier_score_loss(testy, probabilities)

print ('P(class1=0): Brier Score=}.4f' ¥, (avg_brier))

no skill prediction 1

probabilities = [1.0 for _ in range(len(testy))]

avg_brier = brier_score_loss(testy, probabilities)

print ('P(class1=1): Brier Score=}.4f' ¥ (avg_brier))

baseline probabilities

probabilities = [0.01 for _ in range(len(testy))]

avg_brier = brier_score_loss(testy, probabilities)

print('Baseline: Brier Score=Y.4f' % (avg_brier))

perfect probabilities

8.4. Brier Score 93

avg_brier = brier_score_loss(testy, testy)
print ('Perfect: Brier Score=}.4f' % (avg_brier))

Listing 8.11: Example of calculating Brier score for different naive prediction models.

Running the example, we can see the scores for the naive models and the baseline no skill
classifier. As we might expect, we can see that predicting a 0.0 for all examples results in a low
score, as the mean squared error between all 0.0 predictions and mostly 0 classes in the test set
results in a small value. Conversely, the error between 1.0 predictions and mostly 0 class values
results in a larger error score. Importantly, we can see that the default no skill classifier results
in a lower score than predicting all 0.0 values. Again, this represents the baseline score, below
which models will demonstrate skill.

P(class1=0): Brier Score=0.0100
P(classi=1): Brier Score=0.9900
Baseline: Brier Score=0.0099
Perfect: Brier Score=0.0000

Listing 8.12: Example output from calculating Brier score for different naive prediction models.

The Brier scores can become very small and the focus will be on fractions well below the
decimal point. For example, the difference in the above example between Baseline and Perfect
scores is slight at four decimal places. A common practice is to transform the score using a
reference score, such as the no skill classifier. This is called a Brier Skill Score, or BSS, and is
calculated as follows:

B
BrierSkillScore — 1 — —DHCIoCOre (8.8)

BrierScore,. s

We can see that if the reference score was evaluated, it would result in a BSS of 0.0. This
represents a no skill prediction. Values below this will be negative and represent worse than no
skill. Values above 0.0 represent skillful predictions with a perfect prediction value of 1.0. We
can demonstrate this by developing a function to calculate the Brier skill score listed below.

calculate the brier skill score
def brier_skill_score(y, yhat, brier_ref):
calculate the brier score
bs = brier_score_loss(y, yhat)
calculate skill score
return 1.0 - (bs / brier_ref)

Listing 8.13: Example function for calculating Brier Skill Score.

We can then calculate the BSS for each of the naive predictions, as well as for a perfect
prediction. The complete example is listed below.

brier skill score for naive probability predictionms.
from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split
from sklearn.metrics import brier_score_loss

calculate the brier skill score

def brier_skill_score(y, yhat, brier_ref):
calculate the brier score
bs = brier_score_loss(y, yhat)

8.5. Further Reading 94

calculate skill score
return 1.0 - (bs / brier_ref)

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99], flip_y=0,
random_state=1)

split into train/test sets with same class ratio

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2,
stratify=y)

calculate reference

probabilities = [0.01 for _ in range(len(testy))]

brier_ref = brier_score_loss(testy, probabilities)

print ('Reference: Brier Score=),.4f' % (brier_ref))

no skill prediction O

probabilities = [0.0 for _ in range(len(testy))]

bss = brier_skill_score(testy, probabilities, brier_ref)

print ('P(class1=0): BSS=Y.4f' % (bss))

no skill prediction 1

probabilities = [1.0 for _ in range(len(testy))]

bss = brier_skill_score(testy, probabilities, brier_ref)

print ('P(class1=1): BSS=),.4f' % (bss))

baseline probabilities

probabilities = [0.01 for _ in range(len(testy))]

bss = brier_skill_score(testy, probabilities, brier_ref)

print('Baseline: BSS=Y,.4f' ¥ (bss))

perfect probabilities

bss = brier_skill_score(testy, testy, brier_ref)

print ('Perfect: BSS=,.4f' % (bss))

Listing 8.14: Example of calculating Brier Skill Score for different naive prediction models.

Running the example first calculates the reference Brier score used in the BSS calculation.
We can then see that predicting certainty scores for each class results in a negative BSS score,
indicating that they are worse than no skill. Finally, we can see that evaluating the reference
forecast itself results in 0.0, indicating no skill and evaluating the true values as predictions results
in a perfect score of 1.0. As such, the Brier Skill Score is a best practice for evaluating probability
predictions and is widely used where probability classification prediction are evaluated routinely,
such as in weather forecasts (e.g. rain or not).

Reference: Brier Score=0.0099
P(class1=0): BSS=-0.0101
P(classi=1): BSS=-99.0000
Baseline: BSS=0.0000

Perfect: BSS=1.0000

Listing 8.15: Example output from calculating Brier Skill Score for different naive prediction
models.

8.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

8.6. Summary 95

8.5.1 Books

e Chapter 8 Assessment Metrics For Imbalanced Learning, Imbalanced Learning: Founda-
tions, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

e Chapter 3 Performance Measures, Learning from Imbalanced Data Sets, 2018.
https://amzn.to/307X1lva

8.5.2 API

e sklearn.datasets.make classification APL
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.
html

e sklearn.metrics.log loss APIL
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.
html

e sklearn.metrics.brier_score_ loss APIL
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_
loss.html

8.5.3 Articles

e Brier score, Wikipedia.
https://en.wikipedia.org/wiki/Brier_score

e Cross entropy, Wikipedia.
https://en.wikipedia.org/wiki/Cross_entropy

e Joint Working Group on Forecast Verification Research.
https://www.cawcr.gov.au/projects/verification/

8.6 Summary

In this tutorial, you discovered metrics for evaluating probabilistic predictions for imbalanced
classification. Specifically, you learned:

e Probability predictions are required for some classification predictive modeling problems.

e Log loss quantifies the average difference between predicted and expected probability
distributions.

e Brier score quantifies the average difference between predicted and expected probabilities.

8.6.1 Next

In the next tutorial, you will discover how to correctly use cross-validation and train-test sets
on imbalanced classification datasets.

https://amzn.to/32K9K6d
https://amzn.to/307Xlva
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.make_classification.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_loss.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.brier_score_loss.html
https://en.wikipedia.org/wiki/Brier_score
https://en.wikipedia.org/wiki/Cross_entropy
https://www.cawcr.gov.au/projects/verification/

Chapter 9

Cross-Validation for Imbalanced
Datasets

Model evaluation involves using the available dataset to fit a model and estimate its performance
when making predictions on unseen examples. It is a challenging problem as both the training
dataset used to fit the model and the test set used to evaluate it must be sufficiently large and
representative of the underlying problem so that the resulting estimate of model performance is
not too optimistic or pessimistic.

The two most common approaches used for model evaluation are the train/test split and the
k-fold cross-validation procedure. Both approaches can be very effective in general, although
they can result in misleading results and potentially fail when used on classification problems
with a severe class imbalance. In this tutorial, you will discover how to evaluate classifier models
on imbalanced datasets. After completing this tutorial, you will know:

e The challenge of evaluating classifiers on datasets using train/test splits and cross-
validation.

e How a naive application of k-fold cross-validation and train-test splits will fail when
evaluating classifiers on imbalanced datasets.

e How modified k-fold cross-validation and train-test splits can be used to preserve the class
distribution in the dataset.

Let’s get started.

9.1 Tutorial Overview
This tutorial is divided into three parts; they are:

1. Challenge of Evaluating Classifiers
2. Failure of k-Fold Cross-Validation

3. Fix Cross-Validation for Imbalanced Classification

96

9.2. Challenge of Evaluating Classifiers 97

9.2 Challenge of Evaluating Classifiers

Evaluating a classification model is challenging because we won’t know how good a model is
until it is used. Instead, we must estimate the performance of a model using available data where
we already have the target or outcome. Model evaluation involves more than just evaluating a
model; it includes testing different data preparation schemes, different learning algorithms, and
different hyperparameters for well-performing learning algorithms.

Model = Data Preparation + Learning Algorithm + Hyperparameters (9.1)

Ideally, the model construction procedure (data preparation, learning algorithm, and hy-
perparameters) with the best score (with your chosen metric) can be selected and used. The
simplest model evaluation procedure is to split a dataset into two parts and use one part for
training a model and the second part for testing the model. As such, the parts of the dataset
are named for their function, train set and test set respectively.

This is effective if your collected dataset is very large and representative of the problem.
The number of examples required will differ from problem to problem, but may be thousands,
hundreds of thousands, or millions of examples to be sufficient. A split of 50/50 for train and
test would be ideal, although more skewed splits are common, such as 67/33 or 80/20 for train
and test sets.

We rarely have enough data to get an unbiased estimate of performance using a train/test
split evaluation of a model. Instead, we often have a much smaller dataset than would be
preferred, and data sampling strategies must be used on this dataset. The most used model
evaluation scheme for classifiers is the 10-fold cross-validation procedure.

The k-fold cross-validation procedure involves splitting the training dataset into &k folds. The
first £ — 1 folds are used to train a model, and the holdout £ fold is used as the test set. This
process is repeated and each of the folds is given an opportunity to be used as the holdout test
set. A total of £ models are fit and evaluated, and the performance of the model is calculated
as the mean of these runs.

The procedure has been shown to give a less optimistic estimate of model performance on
small training datasets than a single train/test split. A value of k& = 10 has been shown to be
effective across a wide range of dataset sizes and model types.

9.3 Failure of k-Fold Cross-Validation

Sadly, k-fold cross-validation is not appropriate for evaluating imbalanced classifiers.

A 10-fold cross-validation, in particular, the most commonly used error-estimation
method in machine learning, can easily break down in the case of class imbalances,
even if the skew is less extreme than the one previously considered.

— Page 188, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

The reason is that the data is split into k-folds with a uniform probability distribution. This
might work fine for data with a balanced class distribution, but when the distribution is severely
skewed, it is likely that one or more folds will have few or no examples from the minority class.

9.3. Failure of k-Fold Cross-Validation 98

This means that some or perhaps many of the model evaluations will be misleading, as the
model need only predict the majority class correctly.

We can make this concrete with an example. First, we can define a dataset with a 1:100
minority to majority class distribution. This can be achieved using the make classification()
function for creating a synthetic dataset, specifying the number of examples (1,000), the number
of classes (2), and the weighting of each class (99% and 1%).

generate 2 class dataset
X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01], flip_y=0,
random_state=1)

Listing 9.1: Example of defining an imbalanced binary classification dataset.

The example below generates the synthetic binary classification dataset and summarizes the
class distribution.

create a binary classification dataset
from numpy import unique
from sklearn.datasets import make_classification
generate 2 class dataset
X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01], flip_y=0,
random_state=1)
summarize dataset
classes = unique(y)
total = len(y)
for ¢ in classes:
n_examples = len(yl[y==c])
percent = n_examples / total * 100
print('> Class=Yd : %d/%d (%.1£%%)' % (c, n_examples, total, percent))

Listing 9.2: Example of defining and summarizing the imbalanced dataset.

Running the example creates the dataset and summarizes the number of examples in each
class. By setting the random_state argument, it ensures that we get the same randomly
generated examples each time the code is run.

> Class=0 : 990/1000 (99.0%)
> Class=1 : 10/1000 (1.0%)

Listing 9.3: Example output from summarizing the imbalanced dataset.

A total of 10 examples in the minority class is not many. If we used 10-folds, we would
get one example in each fold in the ideal case, which is not enough to train a model. For
demonstration purposes, we will use 5-folds. In the ideal case, we would have 10/5 or two
examples in each fold, meaning 4 x 2 (8) folds worth of examples in a training dataset and 1 x 2
(2) folds in a given test dataset. First, we will use the KFold class to randomly split the dataset
into 5-folds and check the composition of each train and test set. The complete example is listed
below.

example of k-fold cross-validation with an imbalanced dataset

from sklearn.datasets import make_classification

from sklearn.model_selection import KFold

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01], flip_y=0,
random_state=1)

9.3. Failure of k-Fold Cross-Validation 99

kfold = KFold(n_splits=5, shuffle=True, random_state=1)
enumerate the splits and summarize the distributions
for train_ix, test_ix in kfold.split(X):
select rows
train_X, test_X X[train_ix], X[test_ix]
train_y, test_y = yltrain_ix], yl[test_ix]
summarize train and test composition
train_O, train_1 = len(train_y[train_y==0]), len(train_y[train_y==1])
test_0, test_1 = len(test_y[test_y==0]), len(test_yl[test_y==1])
print('>Train: 0=}d, 1=Y%d, Test: 0=Yd, 1=)d' % (train_O, train_1, test_0, test_1))

Listing 9.4: Example of naive cross-validation on the imbalanced dataset.

Running the example creates the same dataset and enumerates each split of the data, showing
the class distribution for both the train and test sets. We can see that in this case, there are
some splits that have the expected 8/2 split for train and test sets, and others that are much
worse, such as 6/4 (optimistic) and 10/0 (pessimistic). Evaluating a model on these splits of
the data would not give a reliable estimate of performance.

>Train: 0=791, 1=9, Test: 0=199, 1=1
>Train: 0=793, 1=7, Test: 0=197, 1=3
>Train: 0=794, 1=6, Test: 0=196, 1=4
>Train: 0=790, 1=10, Test: 0=200, 1=0
>Train: 0=792, 1=8, Test: 0=198, 1=2

Listing 9.5: Example output from naive cross-validation on the imbalanced dataset.

We can demonstrate that a similar issue exists if we use a simple train/test split of the
dataset, although the issue is less severe. We can use the train test_split() function to
create a 50/50 split of the dataset and, on average, we would expect five examples from the
minority class to appear in each dataset if we performed this split many times. The complete
example is listed below.

example of train/test split with an imbalanced dataset

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01], flip_y=0,
random_state=1)

split into train/test sets with same class ratio

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2)

summarize

train_0, train_1 = len(trainy[trainy==0]), len(trainy[trainy==1])

test_0, test_1 = len(testy[testy==0]), len(testy[testy==1])

print ('>Train: 0=}d, 1=%d, Test: 0=Yd, 1=)d' % (train_O, train_1, test_0, test_1))

Listing 9.6: Example of naive train-test split on the imbalanced dataset.

Running the example creates the same dataset as before and splits it into a random train
and test split. In this case, we can see only three examples of the minority class are present in
the training set, with seven in the test set. Evaluating models on this split would not give them
enough examples to learn from, too many to be evaluated on, and likely give poor performance.
You can imagine how the situation could be worse with an even more severe random split.

>Train: 0=497, 1=3, Test: 0=493, 1=7

Listing 9.7: Example output from naive train-test split on the imbalanced dataset.

9.4. Fix Cross-Validation for Imbalanced Classification 100

9.4 Fix Cross-Validation for Imbalanced Classification

The solution is to not split the data randomly when using k-fold cross-validation or a train-test
split. Specifically, we can split a dataset randomly, although in such a way that maintains the
same class distribution in each subset. This is called stratification or stratified sampling and
the target variable (y), the class, is used to control the sampling process. For example, we can
use a version of k-fold cross-validation that preserves the imbalanced class distribution in each
fold. It is called stratified k-fold cross-validation and will enforce the class distribution in each
split of the data to match the distribution in the complete training dataset.

. it is common, in the case of class imbalances in particular, to use stratified 10-fold
cross-validation, which ensures that the proportion of positive to negative examples
found in the original distribution is respected in all the folds.

— Page 205, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

We can make this concrete with an example. We can stratify the splits using the StratifiedKFold
class that supports stratified k-fold cross-validation as its name suggests. Below is the same
dataset and the same example with the stratified version of cross-validation.

example of stratified k-fold cross-validation with an imbalanced dataset
from sklearn.datasets import make_classification
from sklearn.model_selection import StratifiedKFold
generate 2 class dataset
X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01], flip_y=0,
random_state=1)
kfold = StratifiedKFold(n_splits=5, shuffle=True, random_state=1)
enumerate the splits and summarize the distributions
for train_ix, test_ix in kfold.split(X, y):
select rows
train_X, test_X = X[train_ix], X[test_ix]
train_y, test_y = yltrain_ix], y[test_ix]
summarize train and test composition
train_0, train_1 = len(train_y[train_y==0]), len(train_y[train_y==1])
test_0, test_1 = len(test_y[test_y==0]), len(test_yl[test_y==1])
print('>Train: 0=%d, 1=%d, Test: 0=Jd, 1=/d' % (train_O, train_1, test_O, test_1))

Listing 9.8: Example of stratified cross-validation on the imbalanced dataset.

Running the example generates the dataset as before and summarizes the class distribution
for the train and test sets for each split. In this case, we can see that each split matches what we
expected in the ideal case. Each of the examples in the minority class is given one opportunity
to be used in a test set, and each train and test set for each split of the data has the same class
distribution.

>Train: 0=792, , Test: 0=198, 1=
>Train: 0=792, , Test: 0=198,

1=8 1
1=8 1
>Train: 0=792, 1=8, Test: 0=198, 1
1=8 1
1=8 1

Il
NN NDNDDN

>Train: 0=792, , Test: 0=198,
>Train: 0=792, , Test: 0=198,

Listing 9.9: Example output from stratified cross-validation on the imbalanced dataset.

9.5. Further Reading 101

This example highlights the need to first select a value of k for k-fold cross-validation to
ensure that there are a sufficient number of examples in the train and test sets to fit and evaluate
a model (two examples from the minority class in the test set is probably too few for a test set).

It also highlights the requirement to use stratified k-fold cross-validation with imbalanced
datasets to preserve the class distribution in the train and test sets for each evaluation of a
given model. We can also use a stratified version of a train/test split. This can be achieved
by setting the stratify argument on the call to train_test_split() and setting it to the y
variable containing the target variable from the dataset. From this, the function will determine
the desired class distribution and ensure that the train and test sets both have this distribution.
We can demonstrate this with a worked example, listed below.

example of stratified train/test split with an imbalanced dataset

from sklearn.datasets import make_classification

from sklearn.model_selection import train_test_split

generate 2 class dataset

X, y = make_classification(n_samples=1000, n_classes=2, weights=[0.99, 0.01], flip_y=0,
random_state=1)

split into train/test sets with same class ratio

trainX, testX, trainy, testy = train_test_split(X, y, test_size=0.5, random_state=2,
stratify=y)

summarize

train_0, train_1 = len(trainy[trainy==0]), len(trainy[trainy==1])

test_0, test_1 = len(testy[testy==0]), len(testyl[testy==1])

print ('>Train: 0=}d, 1=%d, Test: 0=Yd, 1=)d' % (train_O, train_1, test_0, test_1))

Listing 9.10: Example of stratified train-test split on the imbalanced dataset.

Running the example creates a random split of the dataset into training and test sets,
ensuring that the class distribution is preserved, in this case leaving five examples in each
dataset.

>Train: 0=495, 1=5, Test: 0=495, 1=5

Listing 9.11: Example output from stratified train-test split on the imbalanced dataset.

9.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

9.5.1 Books

e Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

9.5.2 API

e sklearn.model selection.KFold API.
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.
html

https://amzn.to/32K9K6d
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.KFold.html

9.6. Summary 102

e sklearn.model selection.StratifiedKFold API.
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.Stratifie

html

e sklearn.model selection.train test_split APL
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_

test_split.html

9.6 Summary

In this tutorial, you discovered how to evaluate classifier models on imbalanced datasets.
Specifically, you learned:

e The challenge of evaluating classifiers on datasets using train/test splits and cross-

validation.

e How a naive application of k-fold cross-validation and train-test splits will fail when
evaluating classifiers on imbalanced datasets.

e How modified k-fold cross-validation and train-test splits can be used to preserve the class
distribution in the dataset.

9.6.1 Next

This was the final tutorial in this Part. In the next Part, you will discover the data sampling
methods that you can use for imbalanced classification.

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html

Part 1V

Data Sampling

103

Chapter 10

Tour of Data Sampling Methods

Machine learning techniques often fail or give misleadingly optimistic performance on classifica-
tion datasets with an imbalanced class distribution. The reason is that many machine learning
algorithms are designed to operate on classification data with an equal number of observations
for each class. When this is not the case, algorithms can learn that the very few minority class
examples are not important and can be ignored in order to achieve good performance.

Data sampling provides a collection of techniques that transform a training dataset in
order to balance or better balance the class distribution. Once balanced, standard machine
learning algorithms can be trained directly on the transformed dataset without any modification.
This allows the challenge of imbalanced classification, even with severely imbalanced class
distributions, to be addressed with a data preparation method.

There are many different types of data sampling methods that can be used, and there is no
single best method to use on all classification problems and with all classification models. Like
choosing a predictive model, careful experimentation is required to discover what works best for
your project. In this tutorial, you will discover a suite of data sampling techniques that can be
used to balance an imbalanced classification dataset. After completing this tutorial, you will
know:

e The challenge of machine learning with imbalanced classification datasets.
e The balancing of skewed class distributions using data sampling techniques.

e Tour of data sampling methods for oversampling, undersampling, and combinations of
methods.

Let’s get started.

10.1 Tutorial Overview

This tutorial is divided into three parts; they are:

1. Problem of an Imbalanced Class Distribution
2. Balance the Class Distribution With Sampling

3. Tour of Popular Data Sampling Methods

104

10.2. Problem of an Imbalanced Class Distribution 105

10.2 Problem of an Imbalanced Class Distribution

Imbalanced classification involves a dataset where the class distribution is not equal. This
means that the number of examples that belong to each class in the training dataset varies,
often widely. It is not uncommon to have a severe skew in the class distribution, such as 1:10,
1:1000 or even 1:1000 ratio of examples in the minority class to those in the majority class.

. we define imbalanced learning as the learning process for data representation
and information extraction with severe data distribution skews to develop effective
decision boundaries to support the decision-making process.

— Page 1, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

Although often described in terms of two-class classification problems, class imbalance also
affects those datasets with more than two classes that may have multiple minority classes
or multiple majority classes. A chief problem with imbalanced classification datasets is that
standard machine learning algorithms do not perform well on them. Many machine learning
algorithms rely upon the class distribution in the training dataset to gauge the likelihood of
observing examples in each class when the model will be used to make predictions. As such,
many machine learning algorithms, like decision trees, k-nearest neighbors, and neural networks,
will therefore learn that the minority class is not as important as the majority class and put
more attention and perform better on the majority class.

The hitch with imbalanced datasets is that standard classification learning algorithms
are often biased towards the majority classes (known as “negative”) and therefore
there is a higher misclassification rate in the minority class instances (called the
“positive” class).

— Page 79, Learning from Imbalanced Data Sets, 2018.

This is a problem because the minority class is exactly the class that we care most about
in imbalanced classification problems. The reason for this is because the majority class often
reflects a normal case, whereas the minority class represents a positive case for a diagnostic,
fault, fraud, or other types of exceptional circumstance.

10.3 Balance the Class Distribution With Sampling

The most popular solution to an imbalanced classification problem is to change the composition
of the training dataset. Techniques designed to change the class distribution in the training
dataset are generally referred to as sampling methods as we are sampling an existing data
sample.

Sampling methods seem to be the dominant type of approach in the community as
they tackle imbalanced learning in a straightforward manner.

— Page 3, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

10.3. Balance the Class Distribution With Sampling 106

The reason that sampling methods are so common is because they are simple to understand
and implement, and because once applied to transform the training dataset, a suite of standard
machine learning algorithms can then be used directly. This means that any from tens or hundreds
of machine learning algorithms developed for balanced (or mostly balanced) classification can
then be fit on the training dataset without any modification adapting them for the imbalance in
observations.

Basically, instead of having the model deal with the imbalance, we can attempt
to balance the class frequencies. Taking this approach eliminates the fundamental
imbalance issue that plagues model training.

— Page 427, Applied Predictive Modeling, 2013.

Machine learning algorithms like the Naive Bayes Classifier learn the likelihood of observing
examples from each class from the training dataset. By fitting these models on a sampled
training dataset with an artificially more equal class distribution, it allows them to learn a less
biased prior probability and instead focus on the specifics (or evidence) from each input variable
to discriminate the classes.

Some models use prior probabilities, such as naive Bayes and discriminant analysis
classifiers. Unless specified manually, these models typically derive the value of the
priors from the training data. Using more balanced priors or a balanced training set
may help deal with a class imbalance.

— Page 426, Applied Predictive Modeling, 2013.

Sampling is only performed on the training dataset, the dataset used by an algorithm to
learn a model. It is not performed on the holdout test or validation dataset. The reason is
that the intent is not to remove the class bias from the model fit but to continue to evaluate
the resulting model on data that is both real and representative of the target problem domain.
As such, we can think of data sampling methods as addressing the problem of relative class
imbalanced in the training dataset, and ignoring the underlying cause of the imbalance in the
problem domain. This is the difference between so-called relative and absolute rarity of examples
in a minority class.

Sampling methods are a very popular method for dealing with imbalanced data.
These methods are primarily employed to address the problem with relative rarity
but do not address the issue of absolute rarity.

— Page 29, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

Evaluating a model on a transformed dataset with examples deleted or synthesized would
likely provide a misleading and perhaps optimistic estimation of performance. There are two
main types of data sampling used on the training dataset: oversampling and undersampling. In
the next section, we will take a tour of popular methods from each type, as well as methods
that combine multiple approaches.

10.4. Tour of Popular Data Sampling Methods 107

10.4 Tour of Popular Data Sampling Methods

There are tens, if not hundreds, of data sampling methods to choose from in order to adjust
the class distribution of the training dataset. There is no best data sampling method, just like
there is no best machine learning algorithm. The methods behave differently depending on the
choice of learning algorithm and on the density and composition of the training dataset.

.. in many cases, sampling can mitigate the issues caused by an imbalance, but there
is no clear winner among the various approaches. Also, many modeling techniques
react differently to sampling, further complicating the idea of a simple guideline for
which procedure to use.

— Page 429, Applied Predictive Modeling, 2013.

As such, it is important to carefully design experiments to test and evaluate a suite of
different methods and different configurations for some methods in order to discover what
works best for your specific project. Although there are many techniques to choose from, there
are perhaps a dozen that are more popular and perhaps more successful on average. In this
section, we will take a tour of these methods organized into a rough taxonomy of oversampling,
undersampling, and combined methods.

Representative work in this area includes random oversampling, random undersam-
pling, synthetic sampling with data generation, cluster-based sampling methods,
and integration of sampling and boosting.

— Page 3, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

The following sections review some of the more popular methods, described in the context
of binary (two-class) classification problems, which is a common practice, although most can be
used directly or adapted for imbalanced classification with more than two classes. The list here
is based mostly on the approaches available in the scikit-learn friendly library, called imbalanced-
learn. For a longer list of data sampling methods, see Chapter 5 Data Level Preprocessing
Methods in the 2018 book Learning from Imbalanced Data Sets.

10.4.1 Oversampling Techniques

Oversampling methods duplicate examples in the minority class or synthesize new examples
from the examples in the minority class. Some of the more widely used and implemented
oversampling methods include:

e Random Oversampling

Synthetic Minority Oversampling Technique (SMOTE)
Borderline-SMOTE

Borderline Oversampling with SVM
Adaptive Synthetic Sampling (ADASYN)

10.4. Tour of Popular Data Sampling Methods 108

Let’s take a closer look at these methods. The simplest oversampling method involves
randomly duplicating examples from the minority class in the training dataset, referred to as
Random Oversampling. The most popular and perhaps most successful oversampling method is
SMOTE; that is an acronym for Synthetic Minority Oversampling Technique. SMOTE works
by selecting examples that are close in the feature space, drawing a line between the examples
in the feature space and drawing a new sample as a point along that line.

There are many extensions to the SMOTE method that aim to be more selective for the
types of examples in the minority class that are synthesized. Borderline-SMOTE involves
selecting those instances of the minority class that are misclassified, such as with a k-nearest
neighbor classification model, and only generating synthetic samples that are difficult to classify.
Borderline Oversampling is an extension to SMOTE that fits an SVM to the dataset and uses
the decision boundary as defined by the support vectors as the basis for generating synthetic
examples, again based on the idea that the decision boundary is the area where more minority
examples are required.

Adaptive Synthetic Sampling (ADASYN) is another extension to SMOTE that generates
synthetic samples inversely proportional to the density of the examples in the minority class. It
is designed to create synthetic examples in regions of the feature space where the density of
minority examples is low, and fewer or none where the density is high. For more on oversampling
methods, see Chapter 12.

10.4.2 Undersampling Techniques

Undersampling methods delete or select a subset of examples from the majority class. Some of
the more widely used and implemented undersampling methods include:

e Random Undersampling

Condensed Nearest Neighbor Rule (CNN)

Near Miss Undersampling

Tomek Links Undersampling

Edited Nearest Neighbors Rule (ENN)

One-Sided Selection (OSS)

Neighborhood Cleaning Rule (NCR)

Let’s take a closer look at these methods. The simplest undersampling method involves
randomly deleting examples from the majority class in the training dataset, referred to as
random undersampling. One group of techniques involves selecting a robust and representative
subset of the examples in the majority class. The Condensed Nearest Neighbors rule, or CNN
for short, was designed for reducing the memory required for the k-nearest neighbors algorithm.
It works by enumerating the examples in the dataset and adding them to the store only if they
cannot be classified correctly by the current contents of the store, and can be applied to reduce
the number of examples in the majority class after all examples in the minority class have been
added to the store.

10.4. Tour of Popular Data Sampling Methods 109

Near Miss refers to a family of methods that use KNN to select examples from the majority
class. NearMiss-1 selects examples from the majority class that have the smallest average
distance to the three closest examples from the minority class. NearMiss-2 selects examples from
the majority class that have the smallest average distance to the three furthest examples from
the minority class. NearMiss-3 involves selecting a given number of majority class examples for
each example in the minority class that are closest.

Another group of techniques involves selecting examples from the majority class to delete.
These approaches typically involve identifying those examples that are challenging to classify
and therefore add ambiguity to the decision boundary. Perhaps the most widely known deletion
undersampling approach is referred to as Tomek Links, originally developed as part of an
extension to the Condensed Nearest Neighbors rule. A Tomek Link refers to a pair of examples
in the training dataset that are both nearest neighbors (have the minimum distance in feature
space) and belong to different classes. Tomek Links are often misclassified examples found along
the class boundary and the examples in the majority class are deleted.

The Edited Nearest Neighbors rule, or ENN for short, is another method for selecting
examples for deletion. This rule involves using k = 3 nearest neighbors to locate those examples
in a dataset that are misclassified and deleting them. The ENN procedure can be repeated
multiple times on the same dataset, better refining the selection of examples in the majority
class. This extension is referred to initially as unlimited editing although it is more commonly
referred to as Repeatedly Edited Nearest Neighbors. Staying with the select to keep vs. select to
delete families of undersampling methods, there are also undersampling methods that combine
both approaches.

One-Sided Selection, or OSS for short, is an undersampling technique combines Tomek Links
and the Condensed Nearest Neighbor (CNN) Rule. The Tomek Links method is used to remove
noisy examples on the class boundary, whereas CNN is used to remove redundant examples
from the interior of the density of the majority class. The Neighborhood Cleaning Rule, or NCR
for short, is another combination undersampling technique that combines both the Condensed
Nearest Neighbor (CNN) Rule to remove redundant examples and the Edited Nearest Neighbors
(ENN) Rule to remove noisy or ambiguous examples. For more on oversampling methods, see
Chapter 13.

10.4.3 Combinations of Techniques

Although an oversampling or undersampling method when used alone on a training dataset can
be effective, experiments have shown that applying both types of techniques together can often
result in better overall performance of a model fit on the resulting transformed dataset. Some
of the more widely used and implemented combinations of data sampling methods include:

e SMOTE and Random Undersampling
e SMOTE and Tomek Links

e SMOTE and Edited Nearest Neighbors Rule

Let’s take a closer look at these methods. SMOTE is perhaps the most popular and widely
used oversampling technique. It is common to pair SMOTE with an undersampling method
that selects examples from the dataset to delete, and the procedure is applied to the dataset

10.5. Further Reading 110

after SMOTE, allowing the editing step to be applied to both the minority and majority class.
The intent is to remove noisy points along the class boundary from both classes, which seems to
have the effect of the better performance of classifiers fit on the transformed dataset.

Two popular examples involve using SMOTE followed by the deletion of Tomek Links, and
SMOTE followed by the deletion of those examples misclassified via a KNN model, the so-
called Edited Nearest Neighbors rule. For more on combining oversampling and undersampling
methods, see Chapter 14.

10.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

10.5.1 Papers

e SMOTE: Synthetic Minority Over-sampling Technique, 2011.
https://arxiv.org/abs/1106.1813

e A Study of the Behavior of Several Methods for Balancing Machine Learning Training
Data, 2004.
https://dl.acm.org/citation.cfm?id=1007735

10.5.2 Books

e Applied Predictive Modeling, 2013.
https://amzn.to/2VRASxV

e Learning from Imbalanced Data Sets, 2018.
https://amzn.to/307X1lva

e [mbalanced Learning: Foundations, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

10.5.3 Articles

e Oversampling and undersampling in data analysis, Wikipedia.
https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis

10.6 Summary

In this tutorial, you discovered a suite of data sampling techniques that can be used to balance
an imbalanced classification dataset. Specifically, you learned:

e The challenge of machine learning with imbalanced classification datasets.
e The balancing of skewed class distributions using data sampling techniques.

e Tour of popular data sampling methods for oversampling, undersampling, and combinations
of methods.

https://arxiv.org/abs/1106.1813
https://dl.acm.org/citation.cfm?id=1007735
https://amzn.to/2VRASxV
https://amzn.to/307Xlva
https://amzn.to/32K9K6d
https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis

10.6. Summary 111

10.6.1 Next

In the next tutorial, you will discover how to use random undersampling and random oversampling
to change the class distribution of training datasets.

Chapter 11

Random Data Sampling

Imbalanced datasets are those where there is a severe skew in the class distribution, such as
1:100 or 1:1000 examples in the minority class to the majority class. This bias in the training
dataset can influence many machine learning algorithms, leading some to ignore the minority
class entirely. This is a problem as it is typically the minority class on which predictions are
most important.

One approach to addressing the problem of class imbalance is to randomly sample the
training dataset. The two main approaches to randomly sampling an imbalanced dataset are to
delete examples from the majority class, called undersampling, and to duplicate examples from
the minority class, called oversampling. In this tutorial, you will discover random oversampling
and undersampling for imbalanced classification After completing this tutorial, you will know:

e Random sampling provides a naive technique for rebalancing the class distribution for an
imbalanced dataset.

e Random oversampling duplicates examples from the minority class in the training dataset
and can result in overfitting for some models.

e Random undersampling deletes examples from the majority class and can result in losing
information invaluable to a model.

Let’s get started.

Note: This chapter makes use of the imbalanced-learn library. See Appendix B for installation
instructions, if needed.

11.1 Tutorial Overview
This tutorial is divided into three parts; they are:

1. Random Sampling
2. Random Oversampling

3. Random Undersampling

112

11.2. Random Sampling 113

11.2 Random Sampling

Data sampling involves creating a new transformed version of the training dataset in which the
selected examples have a different class distribution. This is a simple and effective strategy for
imbalanced classification problems.

Applying re-sampling strategies to obtain a more balanced data distribution is an
effective solution to the imbalance problem

— A Survey of Predictive Modelling under Imbalanced Distributions, 2015.

The simplest strategy is to choose examples for the transformed dataset randomly, called ran-
dom sampling. There are two main approaches to random sampling for imbalanced classification;
they are oversampling and undersampling.

¢ Random Oversampling: Randomly duplicate examples in the minority class.

e Random Undersampling: Randomly delete examples in the majority class.

Random oversampling involves randomly selecting examples from the minority class, with
replacement, and adding them to the training dataset. Random undersampling involves randomly
selecting examples from the majority class and deleting them from the training dataset.

In the random under-sampling, the majority class instances are discarded at random
until a more balanced distribution is reached.

— Page 45, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

Both approaches can be repeated until the desired class distribution is achieved in the
training dataset, such as an equal split across the classes. They are referred to as naive sampling
methods because they assume nothing about the data and no heuristics are used. This makes
them simple to implement and fast to execute, which is desirable for very large and complex
datasets.

Both techniques can be used for two-class (binary) classification problems and multiclass
classification problems with one or more majority or minority classes. Importantly, the change
to the class distribution is only applied to the training dataset. The intent is to influence the fit
of the models. The sampling is not applied to the test or holdout dataset used to evaluate the
performance of a model.

Generally, these naive methods can be effective, although that depends on the specifics of
the dataset and models involved. Let’s take a closer look at each method and how to use them
in practice.

11.3 Random Oversampling

Random oversampling involves randomly duplicating examples from the minority class and
adding them to the training dataset. Examples from the training dataset are selected randomly
with replacement. This means that examples from the minority class can be chosen and added
to the new more balanced training dataset multiple times; they are selected from the original

11.3. Random Oversampling 114

training dataset, added to the new training dataset, and then returned or replaced in the original
dataset, allowing them to be selected again.

This technique can be effective for those machine learning algorithms that are affected by a
skewed distribution and where multiple duplicate examples for a given class can influence the
fit of the model. This might include algorithms that iteratively learn coefficients, like artificial
neural networks that use stochastic gradient descent. It can also affect models that seek good
splits of the data, such as support vector machines and decision trees.

It might be useful to tune the target class distribution. In some cases, seeking a balanced
distribution for a severely imbalanced dataset can cause affected algorithms to overfit the
minority class, leading to increased generalization error. The effect can be better performance
on the training dataset, but worse performance on the holdout or test dataset.

. the random oversampling may increase the likelihood of occurring overfitting,
since it makes exact copies of the minority class examples. In this way, a symbolic
classifier, for instance, might construct rules that are apparently accurate, but
actually cover one replicated example.

— Page 83, Learning from Imbalanced Data Sets, 2018.

As such, to gain insight into the impact of the method, it is a good idea to monitor the
performance on both train and test datasets after oversampling and compare the results to
the same algorithm on the original dataset. The increase in the number of examples for the
minority class, especially if the class skew was severe, can also result in a marked increase in
the computational cost when fitting the model, especially considering the model is seeing the
same examples in the training dataset again and again.

. in random over-sampling, a random set of copies of minority class examples is
added to the data. This may increase the likelihood of overfitting, specially for
higher over-sampling rates. Moreover, it may decrease the classifier performance
and increase the computational effort.

— A Survey of Predictive Modelling under Imbalanced Distributions, 2015.

Random oversampling can be implemented using the RandomOverSampler class. The class
can be defined and takes a sampling strategy argument that can be set to ‘minority’ to
automatically balance the minority class with majority class or classes. For example:

define oversampling strategy
oversample = RandomOverSampler (sampling_strategy='minority')

Listing 11.1: Example of defining the random oversampling strategy.

This means that if the majority class had 1,000 examples and the minority class had 100,
this strategy would oversampling the minority class so that it has 1,000 examples. A floating
point value can be specified to indicate the desired ratio of minority to majority class examples
in the transformed dataset. For example:

11.3. Random Oversampling 115

define oversampling strategy
oversample = RandomOverSampler (sampling_strategy=0.5)

Listing 11.2: Example of defining the random oversampling strategy to balanced to 50% of the
majority class.

This would ensure that the minority class was oversampled to have half the number of
examples as the majority class, for binary classification problems. This means that if the
majority class had 1,000 examples and the minority class had 100, the transformed dataset
would have 500 examples of the minority class. The class is like a scikit-learn transform object
in that it is fit on a dataset, then used to generate a new or transformed dataset. Unlike the
scikit-learn transforms, it will change the number of examples in the dataset, not just the values
(like a scaler) or number of features (like a projection). For example, it can be fit and applied in
one step by calling the fit_sample() function:

fit and apply the transform
X_over, y_over = oversample.fit_resample(X, y)

Listing 11.3: Example of fitting the oversampling strategy.

We can demonstrate this on a simple synthetic binary classification problem with a 1:100
class imbalance.

define dataset
X, y = make_classification(n_samples=10000, weights=[0.99], flip_y=0)

Listing 11.4: Example of defining an imbalanced classification dataset.

The complete example of defining the dataset and performing random oversampling to
balance the class distribution is listed below.

example of random oversampling to balance the class distribution
from collections import Counter

from sklearn.datasets import make_classification

from imblearn.over_sampling import RandomOverSampler

define dataset

X, y = make_classification(n_samples=10000, weights=[0.99], flip_y=0)
summarize class distribution

print (Counter (y))

define oversampling strategy

oversample = RandomOverSampler(sampling_strategy='minority')

fit and apply the transform

X_over, y_over = oversample.fit_resample(X, y)

summarize class distribution

print (Counter(y_over))

Listing 11.5: Example of random oversampling the minority class.

Running the example first creates the dataset, then summarizes the class distribution. We
can see that there are nearly 10K examples in the majority class and 100 examples in the
minority class. Then the random oversample transform is defined to balance the minority class,
then fit and applied to the dataset. The class distribution for the transformed dataset is reported
showing that now the minority class has the same number of examples as the majority class.

11.3. Random Oversampling 116

Counter ({0: 9900, 1: 100})
Counter ({0: 9900, 1: 9900})

Listing 11.6: Example output from random oversampling the minority class.

This transform can be used as part of a Pipeline to ensure that it is only applied to the
training dataset as part of each split in a k-fold cross-validation. A traditional scikit-learn
Pipeline cannot be used; instead, a Pipeline from the imbalanced-learn library can be used.
For example:

pipeline
steps = [('over', RandomOverSampler()), ('model', DecisionTreeClassifier())]
pipeline = Pipeline(steps=steps)

Listing 11.7: Example of defining a Pipeline with oversampling and a model.

The example below provides a complete example of evaluating a decision tree on an imbal-
anced dataset with a 1:100 class distribution. The model is evaluated using repeated 10-fold
cross-validation with three repeats, and the oversampling is performed on the training dataset
within each fold separately, ensuring that there is no data leakage as might occur if the over-
sampling was performed prior to the cross-validation. Data leakage refers to using information
from the test dataset when fitting the model and can result in an optimistically biased estimate
of model performance.

example of evaluating a decision tree with random oversampling

from numpy import mean

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.tree import DecisionTreeClassifier

from imblearn.pipeline import Pipeline

from imblearn.over_sampling import RandomOverSampler

define dataset

X, y = make_classification(n_samples=10000, weights=[0.99], flip_y=0)

define pipeline

steps = [('over', RandomOverSampler()), ('model', DecisionTreeClassifier())]
pipeline = Pipeline(steps=steps)

evaluate pipeline

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
scores = cross_val_score(pipeline, X, y, scoring='fl_micro', cv=cv, n_jobs=-1)
score = mean(scores)

print ('F-measure: %.3f' ¥ score)

Listing 11.8: Example of random oversampling during model evaluation.

Running the example evaluates the decision tree model on the imbalanced dataset with
oversampling. The chosen model and sampling configuration are arbitrary, designed to provide a
template that you can use to test oversampling with your dataset and learning algorithm, rather
than optimally solve the synthetic dataset. The default oversampling strategy is used, which
balances the minority classes with the majority class. The F-measure averaged across each fold
and each repeat is reported. Your specific results may differ given the stochastic nature of the
dataset and the sampling strategy.

11.4. Random Undersampling 117

F-measure: 0.990

Listing 11.9: Example output from random oversampling during model evaluation.

Now that we are familiar with oversampling, let’s take a look at undersampling.

11.4 Random Undersampling

Random undersampling involves randomly selecting examples from the majority class to delete
from the training dataset. This has the effect of reducing the number of examples in the majority
class in the transformed version of the training dataset. This process can be repeated until the
desired class distribution is achieved, such as an equal number of examples for each class.

This approach may be more suitable for those datasets where there is a class imbalance
although still a sufficient number of examples in the minority class, such that a useful model
can be fit. A limitation of undersampling is that examples from the majority class are deleted
that may be useful, important, or perhaps critical to fitting a robust decision boundary. Given
that examples are deleted randomly, there is no way to detect or preserve good or more
information-rich examples from the majority class.

. in random under-sampling (potentially), vast quantities of data are discarded.
...] This can be highly problematic, as the loss of such data can make the decision
boundary between minority and majority instances harder to learn, resulting in a
loss in classification performance.

— Page 45, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

The random undersampling technique can be implemented using the RandomUnderSampler
imbalanced-learn class. The class can be used just like the RandomOverSampler class in the
previous section, except the strategies impact the majority class instead of the minority class.
For example, setting the sampling strategy argument to ‘majority’ will undersample the
majority class determined by the class with the largest number of examples.

define undersample strategy
undersample = RandomUnderSampler (sampling_strategy='majority')

Listing 11.10: Example of defining the random undersampling strategy.

For example, a dataset with 1,000 examples in the majority class and 100 examples in the
minority class will be undersampled such that both classes would have 100 examples in the
transformed training dataset. We can also set the sampling strategy argument to a floating
point value which will be a percentage relative to the minority class, specifically the number
of examples in the minority class divided by the number of examples in the majority class. If
we set sampling strategy to 0.5 in an imbalanced data dataset with 1,000 examples in the
majority class and 100 examples in the minority class, then there would be 200 examples for

the majority class in the transformed dataset (or ;—88 = 0.5).

define undersample strategy
undersample = RandomUnderSampler (sampling_strategy=0.5)

11.4. Random Undersampling 118

1

Listing 11.11: Example of defining the random undersampling strategy to be larger than the
minority class.

This might be preferred to ensure that the resulting dataset is both large enough to fit a
reasonable model, and that not too much useful information from the majority class is discarded.
The transform can then be fit and applied to a dataset in one step by calling the fit_resample()
function and passing the untransformed dataset as arguments.

fit and apply the transform
X_over, y_over = undersample.fit_resample(X, y)

Listing 11.12: Example of fitting the undersampling strategy.

We can demonstrate this on a dataset with a 1:100 class imbalance. The complete example
is listed below.

example of random undersampling to balance the class distribution
from collections import Counter

from sklearn.datasets import make_classification

from imblearn.under_sampling import RandomUnderSampler

define dataset

X, y = make_classification(n_samples=10000, weights=[0.99], flip_y=0)
summarize class distribution

print (Counter(y))

define undersample strategy

undersample = RandomUnderSampler (sampling_strategy='majority')

fit and apply the transform

X_over, y_over = undersample.fit_resample(X, y)

summarize class distribution

print (Counter (y_over))

Listing 11.13: Example of random undersampling the majority class.

Running the example first creates the dataset and reports the imbalanced class distribution.
The transform is fit and applied on the dataset and the new class distribution is reported.
We can see that majority class is undersampled to have the same number of examples as the
minority class. Judgment and empirical results will have to be used as to whether a training
dataset with just 200 examples would be sufficient to train a model.

Counter ({0: 9900, 1: 100})
Counter ({0: 100, 1: 100})

Listing 11.14: Example output from random undersampling the majority class.

This undersampling transform can also be used in a Pipeline, like in the oversampling
transform from the previous section. This allows the transform to be applied to the training
dataset only using evaluation schemes such as k-fold cross-validation, avoiding any data leakage
in the evaluation of a model.

define pipeline
steps = [('under', RandomUnderSampler()), ('model', DecisionTreeClassifier())]
pipeline = Pipeline(steps=steps)

Listing 11.15: Example of defining a Pipeline with undersampling and a model.

11.5. Further Reading 119

We can define an example of fitting a decision tree on an imbalanced classification dataset
with the undersampling transform applied to the training dataset on each split of a repeated
10-fold cross-validation. The complete example is listed below.

example of evaluating a decision tree with random undersampling

from numpy import mean

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.tree import DecisionTreeClassifier

from imblearn.pipeline import Pipeline

from imblearn.under_sampling import RandomUnderSampler

define dataset

X, y = make_classification(n_samples=10000, weights=[0.99], flip_y=0)

define pipeline

steps = [('under', RandomUnderSampler()), ('model', DecisionTreeClassifier())]
pipeline = Pipeline(steps=steps)

evaluate pipeline

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

scores = cross_val_score(pipeline, X, y, scoring='fl_micro', cv=cv, n_jobs=-1)
score = mean(scores)

print ('F-measure: %.3f' % score)

Listing 11.16: Example of random undersampling during model evaluation.

Running the example evaluates the decision tree model on the imbalanced dataset with
undersampling. The chosen model and sampling configuration are arbitrary, designed to provide
a template that you can use to test undersampling with your dataset and learning algorithm
rather than optimally solve the synthetic dataset. The default undersampling strategy is used,
which balances the majority classes with the minority class. The F-measure averaged across
each fold and each repeat is reported. Your specific results may differ given the stochastic nature
of the dataset and the sampling strategy.

F-measure: 0.889

Listing 11.17: Example output from random undersampling during model evaluation.

11.5 Further Reading

This section provides more resources on the topic if you are looking to go deeper.

11.5.1 Papers

o A Study Of The Behavior Of Several Methods For Balancing Machine Learning Training
Data, 2004.
https://dl.acm.org/citation.cfm?id=1007735

o A Survey of Predictive Modelling under Imbalanced Distributions, 2015.
https://arxiv.org/abs/1505.01658

https://dl.acm.org/citation.cfm?id=1007735
https://arxiv.org/abs/1505.01658

11.6. Summary 120

11.5.2 Books

e Chapter 5 Data Level Preprocessing Methods, Learning from Imbalanced Data Sets, 2018.
https://amzn.to/307X1lva

e Chapter 3 Imbalanced Datasets: From Sampling to Classifiers, Imbalanced Learning:
Foundations, Algorithms, and Applications, 2013.
https://amzn.to/32K9K6d

11.5.3 API

e Imbalanced-Learn Documentation.
https://imbalanced-learn.readthedocs.io/en/stable/index.html

e imbalanced-learn, GitHub.
https://github.com/scikit-learn-contrib/imbalanced-learn

e imblearn.over_sampling.RandomOverSampler API.
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_
sampling.RandomOverSampler.html

e imblearn.under_sampling.RandomUnderSampler API.
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_
sampling.RandomUnderSampler.html

11.5.4 Articles

e Oversampling and undersampling in data analysis, Wikipedia.
https://en.wikipedia.org/wiki/Oversampling_and_undersampling_ in_data_analysis

11.6 Summary

In this tutorial, you discovered random oversampling and undersampling for imbalanced classifi-
cation. Specifically, you learned:

e Random sampling provides a naive technique for rebalancing the class distribution for an
imbalanced dataset.

e Random oversampling duplicates examples from the minority class in the training dataset
and can result in overfitting for some models.

e Random undersampling deletes examples from the majority class and can result in losing
information invaluable to a model.

11.6.1 Next

In the next tutorial, you will discover how to use SMOTE oversampling to change the class
distribution of training datasets.

https://amzn.to/307Xlva
https://amzn.to/32K9K6d
https://imbalanced-learn.readthedocs.io/en/stable/index.html
https://github.com/scikit-learn-contrib/imbalanced-learn
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.RandomOverSampler.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.over_sampling.RandomOverSampler.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html
https://imbalanced-learn.readthedocs.io/en/stable/generated/imblearn.under_sampling.RandomUnderSampler.html
https://en.wikipedia.org/wiki/Oversampling_and_undersampling_in_data_analysis

Chapter 12

Oversampling Methods

Imbalanced classification involves developing predictive models on classification datasets that
have a severe class imbalance. The challenge of working with imbalanced datasets is that most
machine learning techniques will ignore, and in turn have poor performance on, the minority
class, although typically it is performance on the minority class that is most important.

One approach to addressing imbalanced datasets is to oversample the minority class. The
simplest approach involves duplicating examples in the minority class, although these examples
don’t add any new information to the model. Instead, new examples can be synthesized from
the existing examples. This is a type of data augmentation for the minority class and is referred
to as the Synthetic Minority Oversampling Technique, or SMOTE for short. In this tutorial, you
will discover the SMOTE for oversampling imbalanced classification datasets. After completing
this tutorial, you will know:

e How the SMOTE synthesizes new examples for the minority class.

e How to correctly fit and evaluate machine learning models on SMOTE-transformed training
datasets.

e How to use extensions of the SMOTE that generate synthetic examples along the class
decision boundary.

Let’s get started.

Note: This chapter makes use of the imbalanced-learn library. See Appendix B for installation
instructions, if needed.

12.1 Tutorial Overview

This tutorial is divided into four parts; they are:
1. Synthetic Minority Oversampling Technique
2. SMOTE for Balancing Data

. SMOTE for Classification

= W

. SMOTE With Selective Sample Generation

121

12.2. Synthetic Minority Oversampling Technique 122

12.2 Synthetic Minority Oversampling Technique

A problem with imbalanced classification is that there are too few examples of the minority
class for a model to effectively learn the decision boundary. One way to solve this problem is
to oversample the examples in the minority class. This can be achieved by simply duplicating
examples from the minority class in the training dataset prior to fitting a model. This can
balance the class distribution but does not provide any additional information to the model.
An improvement on duplicating examples from the minority class is to synthesize new examples
from the minority class. This is a type of data augmentation for tabular data and can be very
effective.

Perhaps the most widely used approach to synthesizing new examples is called the Synthetic
Minority Oversampling TEchnique, or SMOTE for short. This technique was described by
Nitesh Chawla, et al. in their 2002 paper named for the technique titled SMOTE: Synthetic
Minority Over-sampling Technique. SMOTE works by selecting examples that are close in the
feature space, drawing a line between the examples in the feature space and drawing a new
sample at a point along that line.

Specifically, a random example from the minority class is first chosen. Then k of the nearest
neighbors for that example are found (typically k& = 5). A randomly selected neighbor is chosen
and a synthetic example is created at a randomly selected point between the two examples in
feature space.

... SMOTE first selects a minority class instance a at random and finds its k£ nearest
minority class neighbors. The synthetic instance is then created by choosing one of
the k nearest neighbors b at random and connecting a and b to form a line segment
in the feature space. The synthetic instances are generated as a convex combination
of the two chosen instances a and b.

— Page 47, Imbalanced Learning: Foundations, Algorithms, and Applications, 2013.

This procedure can be used to create as many synthetic examples for the minority class as
are required. As described in the paper, it suggests first using random undersampling to trim
the number of examples in the majority class, then use SMOTE to oversample the minority
class to balance the class distribution.

The combination of SMOTE and under-sampling performs better than plain under-
sampling.

— SMOTE: Synthetic Minority Over-sampling Technique, 2011.

The approach is effective because new synthetic examples from the minority class are created
that are plausible, that is, are relatively close in feature space to existing examples from the
minority class.

Our method of synthetic over-sampling works to cause the classifier to build larger
decision regions that contain nearby minority class points.

— SMOTE: Synthetic Minority Quer-sampling Technique, 2011.

A general downside of the approach is that synthetic examples are created without considering
the majority class, possibly resulting in ambiguous examples if there is a strong overlap for the
classes. Now that we are familiar with the technique, let’s look at a worked example for an
imbalanced classification problem.

12.3. SMOTE for Balancing Data 123

12.3 SMOTE for Balancing Data

In this section, we will develop an intuition for the SMOTE by applying it to an imbalanced binary
classification problem. First, we can use the make_classification() scikit-learn function to
create a synthetic binary classification dataset with 10,000 examples and a 1:100 class distribution.

define dataset
X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=1)

Listing 12.1: Example of defining an imbalanced binary classification problem.

We can use the Counter object to summarize the number of examples in each class to
confirm the dataset was created correctly.

summarize class distribution
counter = Counter(y)
print (counter)

Listing 12.2: Example of summarizing the class distribution.

Finally, we can create a scatter plot of the dataset and color the examples for each class a
different color to clearly see the spatial nature of the class imbalance.

scatter plot of examples by class label
for label, _ in counter.items():
row_ix = where(y == label) [0]
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend ()
pyplot.show()

Listing 12.3: Example of creating a scatter plot with dots colored by class label.

Tying this all together, the complete example of generating and plotting a synthetic binary
classification problem is listed below.

Generate and plot a synthetic imbalanced classification dataset
from collections import Counter
from sklearn.datasets import make_classification
from matplotlib import pyplot
from numpy import where
define dataset
X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=1)
summarize class distribution
counter = Counter(y)
print (counter)
scatter plot of examples by class label
for label, _ in counter.items():
row_ix = where(y == label) [0]
pyplot.scatter(X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend()
pyplot.show()

Listing 12.4: Example of defining and summarizing an imbalanced classification dataset.

12.3. SMOTE for Balancing Data 124

Running the example first summarizes the class distribution, confirms the 1:100 ratio, in
this case with 9,900 examples in the majority class and 100 in the minority class.

Counter ({0: 9900, 1: 100})

Listing 12.5: Example output from defining and summarizing an imbalanced classification
dataset.

A scatter plot of the dataset is created showing the large mass of points that belong to the
majority class (blue) and a small number of points spread out for the minority class (orange).
We can see some measure of overlap between the two classes.

Figure 12.1: Scatter Plot of Imbalanced Binary Classification Problem.

Next, we can oversample the minority class using SMOTE and plot the transformed dataset.
We can use the SMOTE implementation provided by the imbalanced-learn Python library in
the SMOTE class. The SMOTE class acts like a data transform object from scikit-learn in that
it must be defined and configured, fit on a dataset, then applied to create a new transformed
version of the dataset. For example, we can define a SMOTE instance with default parameters
that will balance the minority class and then fit and apply it in one step to create a transformed
version of our dataset.

transform the dataset

12.3. SMOTE for Balancing Data 125

oversample = SMOTE()
X, y = oversample.fit_resample(X, y)

Listing 12.6: Example of defining and fitting SMOTE on a dataset.

Once transformed, we can summarize the class distribution of the new transformed dataset,
which would expect to now be balanced through the creation of many new synthetic examples
in the minority class.

summarize the new class distribution
counter = Counter(y)
print (counter)

Listing 12.7: Example of summarizing the class distribution.

A scatter plot of the transformed dataset can also be created and we would expect to see
many more examples for the minority class on lines between the original examples in the minority
class. Tying this together, the complete examples of applying SMOTE to the synthetic dataset
and then summarizing and plotting the transformed result is listed below.

Oversample and plot imbalanced dataset with SMOTE
from collections import Counter
from sklearn.datasets import make_classification
from imblearn.over_sampling import SMOTE
from matplotlib import pyplot
from numpy import where
define dataset
X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=1)
summarize class distribution
counter = Counter (y)
print (counter)
transform the dataset
oversample = SMOTE()
X, y = oversample.fit_resample(X, y)
summarize the new class distribution
counter = Counter (y)
print (counter)
scatter plot of examples by class label
for label, _ in counter.items():
row_ix = where(y == label) [0]
pyplot.scatter (X[row_ix, 0], X[row_ix, 1], label=str(label))
pyplot.legend ()
pyplot.show()

Listing 12.8: Example of applying SMOTE to an imbalanced classification dataset.

Running the example first creates the dataset and summarizes the class distribution, showing
the 1:100 ratio. Then the dataset is transformed using the SMOTE and the new class distribution
is summarized, showing a balanced distribution now with 9,900 examples in the minority class.

Counter ({0: 9900, 1: 100})
Counter ({0: 9900, 1: 9900})

Listing 12.9: Example output from applying SMOTE to an imbalanced classification dataset.

12.4. SMOTE for Classification 126

Finally, a scatter plot of the transformed dataset is created. It shows many more examples
in the minority class created along the lines between the original examples in the minority class.

Figure 12.2: Scatter Plot of Imbalanced Binary Classification Problem Transformed by SMOTE.

Now that we are familiar with transforming imbalanced datasets, let’s look at using SMOTE
when fitting and evaluating classification models.

12.4 SMOTE for Classification

In this section, we will look at how we can use SMOTE as a data preparation method when
fitting and evaluating machine learning algorithms in scikit-learn. First, we use our binary
classification dataset from the previous section then fit and evaluate a decision tree algorithm.
The algorithm is defined with any required hyperparameters (we will use the defaults), then
we will use repeated stratified k-fold cross-validation to evaluate the model. We will use three
repeats of 10-fold cross-validation, meaning that 10-fold cross-validation is applied three times
fitting and evaluating 30 models on the dataset.

The dataset is stratified, meaning that each fold of the cross-validation split will have the
same class distribution as the original dataset, in this case, a 1:100 ratio. We will evaluate
the model using the ROC area under curve (AUC) metric. This can be optimistic for severely
imbalanced datasets but will still show a relative change with better performing models.

12.4. SMOTE for Classification 127

define model

model = DecisionTreeClassifier()

evaluate pipeline

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
scores = cross_val_score(model, X, y, scoring='roc_auc', cv=cv, n_jobs=-1)

Listing 12.10: Example defining a model and model evaluation procedure.

Once fit, we can calculate and report the mean of the scores across the folds and repeats.

print('Mean ROC AUC: %.3f' % mean(scores))

Listing 12.11: Example of summarizing model performance.

We would not expect a decision tree fit on the raw imbalanced dataset to perform very well.
Tying this together, the complete example is listed below.

decision tree evaluated on imbalanced dataset

from numpy import mean

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.tree import DecisionTreeClassifier

define dataset

X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=1)

define model

model = DecisionTreeClassifier()

evaluate pipeline

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

scores = cross_val_score(model, X, y, scoring='roc_auc', cv=cv, n_jobs=-1)

print ('Mean ROC AUC: %.3f' % mean(scores))

Listing 12.12: Example of evaluating a model on the imbalanced classification dataset.

Running the example evaluates the model and reports the mean ROC AUC.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see that a ROC AUC of about 0.77 is reported.

Mean ROC AUC: 0.769

Listing 12.13: Example output from evaluating a model on the imbalanced classification dataset.

Now, we can try the same model and the same evaluation method, although use a SMOTE
transformed version of the dataset. The correct application of oversampling during k-fold
cross-validation is to apply the method to the training dataset only, then evaluate the model on
the stratified but non-transformed test set. This can be achieved by defining a Pipeline that
first transforms the training dataset with SMOTE then fits the model.

define pipeline
steps = [('over', SMOTE()), ('model', DecisionTreeClassifier())]

12.4. SMOTE for Classification 128

’pipeline = Pipeline(steps=steps)

Listing 12.14: Example of defining a Pipeline with SMOTE and a model.

This pipeline can then be evaluated using repeated k-fold cross-validation. Tying this
together, the complete example of evaluating a decision tree with SMOTE oversampling on the
training dataset is listed below.

decision tree evaluated on imbalanced dataset with SMOTE oversampling

from numpy import mean

from sklearn.datasets import make_classification

from sklearn.model_selection import cross_val_score

from sklearn.model_selection import RepeatedStratifiedKFold

from sklearn.tree import DecisionTreeClassifier

from imblearn.pipeline import Pipeline

from imblearn.over_sampling import SMOTE

define dataset

X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=1)

define pipeline

steps = [('over', SMOTE()), ('model', DecisionTreeClassifier())]

pipeline = Pipeline(steps=steps)

evaluate pipeline

cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)

scores = cross_val_score(pipeline, X, y, scoring='roc_auc', cv=cv, n_jobs=-1)

print('Mean ROC AUC: %.3f' % mean(scores))

Listing 12.15: Example of evaluating a model with SMOTE on the imbalanced classification
dataset.

Running the example evaluates the model and reports the mean ROC AUC score across the
multiple folds and repeats.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, we can see a modest improvement in performance from a ROC AUC of about
0.77 to about 0.83.

Mean ROC AUC: 0.826

Listing 12.16: Example output from evaluating a model with SMOTE on the imbalanced
classification dataset.

You could explore testing different ratios of the minority class and majority class (e.g.
changing the sampling strategy argument) to see if a further lift in performance is possible.
Another area to explore would be to test different values of the k-nearest neighbors selected
in the SMOTE procedure when each new synthetic example is created. The default is & = 5,
although larger or smaller values will influence the types of examples created, and in turn, may
impact the performance of the model. For example, we could grid search a range of values of k,
such as values from 1 to 7, and evaluate the pipeline for each value.

values to evaluate
k_values = [1, 2, 3, 4, 5, 6, 7]

12.4. SMOTE for Classification 129

for k in k_values:
define pipeline

Listing 12.17: Example of grid searching different k-values for SMOTE.

The complete example is listed below.

grid search k value for SMOTE oversampling for imbalanced classification
from numpy import mean
from sklearn.datasets import make_classification
from sklearn.model_selection import cross_val_score
from sklearn.model_selection import RepeatedStratifiedKFold
from sklearn.tree import DecisionTreeClassifier
from imblearn.pipeline import Pipeline
from imblearn.over_sampling import SMOTE
define dataset
X, y = make_classification(n_samples=10000, n_features=2, n_redundant=0,
n_clusters_per_class=1, weights=[0.99], flip_y=0, random_state=1)
values to evaluate
k_values = [1, 2, 3, 4, 5, 6, 7]
for k in k_values:
define pipeline
model = DecisionTreeClassifier()
over = SMOTE(sampling_strategy=0.1, k_neighbors=k)
pipeline = Pipeline(steps=[('over', over), ('model', model)])
evaluate pipeline
cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3, random_state=1)
scores = cross_val_score(pipeline, X, y, scoring='roc_auc', cv=cv, n_jobs=—1)
score = mean(scores)
print('> k=Jd, Mean ROC AUC: %.3f' % (k, score))

Listing 12.18: Example of grid searching k-values for SMOTE.

Running the example will perform SMOTE oversampling with different £ values for the
KNN used in the procedure, followed by fitting a decision tree on the resulting training dataset.
The mean ROC AUC is reported for each configuration.

Note: Your specific results may vary given the stochastic nature of the learning algorithm.
Consider running the example a few times and compare the average performance.

In this case, the results suggest that a k = 5 might be good with a ROC AUC of about 0.81,
and k = 7 might also be good with a ROC AUC of about 0.82. This highlights that both the
amount of oversampling and undersampling performed (sampling strategy argument) and the
number of examples selected from which a neighbor is chosen to create a synthetic example
(k_neighbors) may be important parameters to select and tune for your dataset.

> k=1, Mean ROC AU