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Preface

The special theory of relativity is a fascinating topic. It predicts effects that are
blatantly counterintuitive and which have puzzled people since Einstein created the
theory in 1905. Relativity contains a wealth of interesting physics for a cheap price:
the mathematics needed to understand this physics is relatively easy. And relativity is
a very well-tested pillar of modern physics. Without Einstein’s theory, we would not
be able to understand large parts of physics, not to mention important technologies
like the Global Satellite Navigation System.

Our approach. Consequently, there are many books featuring an introducing to
the special theory of relativity.Most of them put toomuch emphasis onmathematical
formulation. To understand the physics behind the theory, however, is much more
fruitful. Therefore, this book goes a long way towards making the reader understand
the physics of this wonderful theory. The book also includes the historical perspective
wherever it eases understanding and explains the situation before Einstein cut the
Gordian knot in 1905.

There are several things that we do differently from most other authors. For
instance, you will not find the concept of rest mass in this book. By the mass of
an object, we always mean the mass m of the object at rest, and therefore, we can
do without the attribute “rest”. The “relativistic mass” mrel = γm (or “mass of a
moving body”) will not be used. There are several reasons for this. First, because
of E = mrelc2 = γmc2, the relativistic mass would be nothing but the energy of
the object. Occam’s razor finds it dispensable and tosses the relativistic mass on the
garbage heap of relativistic physics. Thus, the relativisticmasswould not transformas
a tensor in Lorentz transformations and therefore has no place in a modern covariant
formulation of the special theory of relativity. This, eventually, was also Einstein’s
point of view.1

1 Einstein himself writes (the author’s translation): “It is not good to speak of the mass mrel = γm
of a moving body, since no clear definition can be given for mrel. It is better to restrict oneself to
the rest mass m. In addition, one can use the expression of momentum and energy if one wants to
indicate the inertial behaviour of rapidly moving bodies.” [in a letter from Einstein to L. Barnett,
from 19.06.1948, cited in L. B. Okun, Physics Today 43, 31 (1989)].
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Our access to energy and momentum in the special theory of relativity is via
the conservation laws.2 In this vein, in Sect. 13.1, we present Einstein’s original
derivation of the relativistic energy, and in Sect. 13.3, the derivation of the relativistic
momentumgiven byLewis and Tolman in 1909 [LewisTolman09]. These derivations
are relatively easy, conceptually clear and carried out by discussing carefully crafted
Gedanken experiments.

Eventually, we will require a word about the adjective “relativistic”. A theory
is relativistic if it obeys the principle of relativity. This is true for both, classical
mechanics (via the Galilei transformation) and Einstein’s special theory of relativity
(via the Lorentz transformation). Only Einstein’s theory, however, is also correct for
large velocities, aswell as electromagnetic phenomena. Therefore, if we occasionally
write “relativistic mechanics”, we indeed refer to Einstein’s theory.

Structure and target group. This book is not intended for a linear read. It can be
seen as consisting of two large parts. The first part, up to and including Chap. 11, is
comparatively easy and does not require a lot of previous knowledge in physics and
mathematics.

The second part, starting around Chap. 12 en large, is more challenging and
requires solid college physics and mathematics.

In addition to that, the whole part is interwoven with sections marked as digres-
sions. In these sections, we dig deeper, addressing material that is more sophisticated
and sometimes using concepts that are only introduced in the basic text later. For
beginners, it makes sense to first read the book from beginning to end without the
digressions and then go back and read the latter.

The book covers all traditional material on special relativity, which is mostly
about a century old, but there are also several modern sections, in particular, on the
measurement of the speed of light (Sect. 6.3.5), on atomic clocks (Sect. 9.4) and on
satellite navigation (Sect. 9.11.3).

An important limitation of special relativity is that it does not cover gravitation.
And there is no easy way to extend it. Einstein had to develop a considerably more
comprehensive theory, the general theory of relativity, to include gravitation. For
the case of small gravitational fields, general relativity becomes special relativity, so
learning special relativity is not a waste of time. On the contrary, learning general
relativity requires a mastery of special relativity. In Chap. 15, the last chapter of this
book, we sketch the first steps towards general relativity.

Recommended literature. There are many expositions of the special theory of
relativity. Most textbook series on theoretical physics include a chapter on relativity.
Usually, the presentations are very theoretical and concentrated and therefore not
suitable for obtaining a deeper understanding of relativity. Examples are as follows:

• R. P. Feynman, The Feynman Lectures, Vol. 1, Chap. 15 (Addison-Wesley
Longman, 1970).

2 Alternatives would be the ugly Ansatz prel = mrelv for the relativistic momentum pr and its
manifest generalization prel = mu, where u is the relativistic velocity, which is not very intuitive.
Also, the relativistic generalization of the force is surprisingly subtle (see, e.g. Thorsten Fließbach,
“Die relativistische Masse” (Springer 2018), which unfortunately is available only in German).
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• L. D. Landau and E. M. Lifshitz, “The Classical Theory of Fields”, Chaps. 1–3
(Pergamon Press, 1971).

• W. Nolting, “Theoretical Physics 4: Special Theory of Relativity” (Springer,
2017).

• and many more.

Special expositions of special relativity that are particularly recommendable are
as follows:

• N. D. Mermin, “It’s about time” (Princeton University Press, 2009). A very nice
book that uses a geometrical approach similar to that used in our book.

• W. Rindler, “Relativity” (Oxford University Press, 2006). Very concise, and well
explained.

• B. Russell, “ABC of relativity” (Allen &Unwin, 1925). This is very fundamental,
with a penchant for the philosophical.

• W. Pauli, “Theory of relativity” (Dover, 1958). A reprint of the famous Mathe-
matical Encyclopedia article.

• E. F. Taylor and J. A. Wheeler, “Spacetime physics” (Freeman and Company,
1992).

• A. P. French, “Special relativity” (WWNorton & Company, 1968). A very well-
written book with a good selection of material and profound explanations. In
concept, this book is similar to ours.

• G. Barton, “Introduction to the Relativity Principle” (Wiley, 1999). A very
complete book with a considerable amount of detail.

Concepts, Terms, Notation. A few comments are regarding the nomenclature
used. For events, you will find both notations, (x, t) and (t, x). In different books,
you will find different notations, each with its own advantages and disadvantages.
Instead of trying to unify them, it is better to get used to both.

By classical mechanics, we mean mechanics before the advent of special rela-
tivity, which uses theGalilei transformationwhen changing inertial frames.Classical
physics denotes classical mechanics and electrodynamics, but with the luminiferous
aether. Eventually, wewill use the termmodern physics for the physics that emerged
from the modernization of classical physics by special relativity and, occasionally,
quantum physics.

Explaining the effect of aberration in classical physics is a challenge. And that’s
not really becausewehave to consider themedium (luminiferous aether). The fact that
the phase velocity and the group velocity transfer in different ways when changing
from one (inertial) reference frame to another is difficult to deal with. Furthermore,
there is a dangerous trap: the similar-looking Doppler effect is an effect between the
wave’s source and the observer, while aberration is an effect between two different
observers.



x Preface

With these words, we want to liberate the reader and hope that he/she enjoys this
book. This will help a lot in understanding the wonderful physics of special relativity.

Asperg, Germany
March 2022

Thomas Strohm
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Chapter 1
Introduction

Measured by the standards of the classical physics of around 1900, the special theory
of relativity is counterintuitive and, in this perspective, revolutionary.1

We will demonstrate that classical mechanics (or Newtonian mechanics), as you
learned it, fails if very large velocities are involved. It fails because its predictions
become false. When explaining the motion of particles in particle accelerators, clas-
sical mechanics is no longer applicable. We will see this in Chap. 3 in the discussion
of a particular experiment. As a consequence, we have to replace classical mechanics
with a new theory, relativistic mechanics. This relativistic mechanics was worked
out by Albert Einstein in the context of his special theory of relativity (SR) (or
special relativity). His achievement was made “on the shoulders” of colleagues like
Hendrik Antoon Lorentz, Henri Poincaré, and others who laid substantial ground-
work.But onlyEinsteinwas able to cut aGordian knot and reshape a very complicated
and intricate theory so that it would take the crystal clear form of the special theory
of relativity. The book at hand is about this relativistic physics.2

Starting with Chap. 7, we will develop Einstein’s special theory of relativity,
which was published in a seminal paper in the Annalen der Physik under the title
“Zur Elektrodynamik bewegter Körper” [Einstein05a].3

The need for Einstein’s theory can be seen rather easily. Imagine Alice and Bob
(see Fig. 1.1). Alice has a lamp that emits a light beam (or a light pulse). Bob has a
spaceship and flies by Alice and the lamp with a large velocity v. Then, both Alice
and Bob independently measure the velocity of the light beam (using the same type

1 This is also the same time when quantum theory was in the making, an even weirder idea.
2 Relativity also plays an important role in classicalmechanics.Wewill discussGalilei’s principle of
relativity in Chap. 3. In special relativity, however, the principle of relativity has much more power.
Therefore, the literature sometimes refers to classical mechanics with the term non-relativistic
mechanics—although it is, in a sense, a relativistic theory.
3 This paper is freely available on the Internet. Have a look at it!.
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2 1 Introduction

Fig. 1.1 Alice measures the
speed of a light beam emitted
by a lamp next to her. Bob is
in his spaceship, which
rapidly flies by Alice and the
lamp. He also measures the
speed of light of the same
light beam emitted by the
lamp

v

of measurement device). Believe it or not, both get the same velocity, the speed4

of light c = 299,792,458m/s (sometimes referred to as light speed). How is this
possible? If you aren’t puzzled by this result, think again as to what Alice and Bob
should get as measurement results.

By the way: the fact that the speed of light is “absolute” (independent of the
observer) is built into the Global Positioning System (GPS). If the speed of light
depended on the observer, that is, if Alice and Bob measured different velocities,
navigation with GPS would not be possible (see Sect. 9.11.3). Note that the speed of
light is huge. To travel the distance from the Earth to the Moon, a light pulse needs
only a little bit more than a second!

Our argument above involving Alice and Bob is what is know as a Gedanken
experiment. In Sect. 2.1, we discuss an experiment that actually has been conducted
and that also shows that classical mechanics is no longer applicable for very large
velocities.

4 In English, the term velocity means a direction and a magnitude, e. g., “5 km/h to the west”. The
term speed, however, refers only to the magnitude of a velocity. We will use the term speed only in
the established term “speed of light” (and the like) and will otherwise talk about the magnitude of
the velocity.



Chapter 2
The Limits of Classical Mechanics

No doubt, you are used to the central elements of classical mechanics and know
that it describes many aspects of Nature very well. Adjacent to classical mechan-
ics is electrodynamics, which describes electromagnetic phenomena. Light is a
phenomenon of wave optics, a special case of electrodynamics.

In this chapter, we will show that there are mechanical phenomena that classi-
cal mechanics cannot describe correctly. We will shortly present a very instructive
experiment. It shows that classicalmechanics is no longer applicablewhen “large”
velocities are involved.

By small velocities v, in this book, we denote velocities that are much smaller
than the speed of light c. For such velocities, v � c or v/c � 1 holds.

We will find out later that matter cannot be moved faster than the speed of light.1

And by large velocities, we mean velocities that are in the order of the speed of
light. This, depending on the situation, can be 1% of the speed of light or more.
Remember that the speed of light is huge! What we understand to be large velocities
in our everyday world (for instance, the velocity of a rocket) would be, according to
our definition, significantly “small” velocities indeed.

Now, we present the promised famous experiment that clearly shows that classical
mechanics no longer applies when large velocities are involved. It yields incorrect
results, results that fail to describe the outcome of experiments like that put forth in
the next section.

1 This formulation is a little bit sloppy. In Chaps. 7.8.1 and 13.1.3, we will look at these issues in
detail.
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Fig. 2.1 Principle of the Bertozzi experiment

2.1 The Bertozzi Experiment

2.1.1 Introduction

Classical mechanics tells us that an object can be brought (accelerated) to arbitrary
large velocities. One just needs a force that acts on the object for a sufficiently long
amount of time. Take an object of mass m that is initially at rest and upon which a
force F0 acts for a period�t of time. After this period, the object has the velocity v =
a�t = (F0/m)�t , wherea is the acceleration.According to classicalmechanics, one
can achieve arbitrary velocities by making the period of acceleration �t sufficiently
large. The formula shows: the larger the force, the smaller the mass, and the longer
the acceleration, the better for the final velocity.

Classical mechanics also tells us that the kinetic energy Ekin of the object is
quadratic in the velocity v: Ekin = mv2/2. This relation between energy and veloc-
ity has been checked for large velocities in several experiments. The first experi-
ments in this direction were carried out by Walter Kaufmann and others starting
in 1901, several years before Einstein developed his special theory of relativity. A
more modern and, for didactic purposes, more suitable experiment for checking the
formula for the kinetic energy was performed by William Bertozzi in 1964 at MIT
in Boston [Bertozzi64].2 This is the experiment that we present now.

2.1.2 Principle

The principle of the Bertozzi experiment is pretty easy (see Fig. 2.1). Exactly as
described above, an object is accelerated. In the Bertozzi experiment, the object is
an electron and we denote its mass byme. This electron is located in a homogeneous
electric field |E0| of an accelerator between two charged plates P1 and P2, which
are separated by the distance s. Between the plates, there is a voltage U , which

2 At http://education.jlab.org/scienceseries/ultimate_speed.html, there is a small film that you
should have a look at.

http://education.jlab.org/scienceseries/ultimate_speed.html
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implies an electric field of magnitude |E0| = U/s in the space between the plates.
Therefore, a force F0 = qe|E0| acts on the electron, where qe = −e0 is the charge
of the electron and e0 > 0 the elementary charge. The electron is created at the left
plate P1 (extracted from the plate) and accelerated approximately from rest until it
arrives at plate P2. In the center of plate P2, there is a small hole. The electron flies
through this hole3 and, when it passes, the time of flight t0 is measured. Then, the
electron continues its motion, now without any acting force, and after a distance l
at time t1, it hits another plate P3. Between the plates P2 and P3, the velocity of the
electron is constant and given by v = l/(t1 − t0).

The acceleration voltages used by Bertozzi were on the order of 1MV, causing
a very large force to be applied to the electron. Together with the small mass of the
electron, this implied huge accelerations on the order of 1016 times the gravitational
acceleration at the surface of the Earth!

As mentioned, we want to check the formula for the kinetic energy. The mass
of the electron and its velocity (after the acceleration phase) are known to us. What
about the kinetic energy?

Bertozzi has determined the electron’s kinetic energy with two different methods.
The first method is based on the known acceleration voltage U . With W = qeU , we
can calculate the work performed by the electric field on the electron. Because the
electron was at rest at the beginning, this work is equal to the kinetic energy of the
electron at the end of the acceleration phase.

The second method makes use of the fact that the plate P3 heats up when the
electron hits it. Then, the electron transfers its kinetic energy in the form of heat
to the plate. This causes the plate to experience a temperature increase, which can
be measured.4 Using the heat capacity of the plate, the transferred energy can be
calculated. The comparison of both methods gave the same results, up to a small
measurement error. In this way, the kinetic energy of the electron is determined and
the formula for the kinetic energy can be checked.

2.1.3 More Details

The devil is in the details, and the experiment is a little bit more difficult as described
above (see Fig. 2.2). First, it is not carried out with a single electron, but with a
small cloud of electrons. This cloud is produced and accelerated in a van de Graff
generator. The production happens with an electron gun (in the figure on the left)
and the acceleration with a series of charged plates with a total voltage of 0.5MV,
1.0MV or 1.5MV. When the electrons leave the van de Graff generator, they enter
a linear accelerator (“linac”), which is an 8.4m long evacuated tube. With the linear
accelerator, the electrons can be further accelerated. At the entrance of the linear
accelerator, the electrons fly through a small metallic tube (corresponding to the

3 We won’t consider electrons that hit plate P2.
4 This is not possible with one electron; there need to be a lot of electrons hitting the plate.
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Fig. 2.2 Composition of the Bertozzi experiment (from Bertozzi’s original publication)

plate P2). Some electrons stick there and produce a small voltage signal. This signal
is used to determine the time t0 when the cloud enters the linear accelerator. At the end
of the linear accelerator, 8.4m after the small tube, the electrons hit a small aluminum
disk,where they are stopped.Here, the time t1 is determined, again, by a small voltage
signal caused by the charging of the aluminum disk. The time difference, together
with the distance traveled yields the final velocity of the electrons.

If the electrons experience a further acceleration in the linac, this has to be taken
into account when the final velocity is calculated (see Exercise 1). The energy of
the electrons as described above was determined with two different methods. In the
secondmethod, the temperature increase of the aluminum disk when the electrons hit
it is measured. To be able to calculate the kinetic energy of one electron, the number
of electrons in the cloud has to be determined. This can be done by measuring the
charge deposited on the disk by the electrons.

2.1.4 Result

The result of the experiment is shown in Fig. 2.3. Instead of displaying the measured
kinetic energy Ekin as a function of the measured velocity v, Bertozzi has drawn
the quantity v2/c2 as a function of Ekin/mec2, i. e., the square of the measured
velocity v in units of the speed of light versus the energy transferred to the electron
in the acceleration phase in units of the constant mec2. This looks complicated,
but actually is very useful. Both axes then are without units (comparing this with
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Fig. 2.3 Result of the
Bertozzi experiment. Ekin is
the kinetic energy. The
straight blue line is the
prediction of classical
physics and the blue dashed
line is what is expected
according to special
relativity. The blue dots are
Bertozzi’s measurement
results
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the formula for the kinetic energy shows immediately that mec2 has the unit of an
energy). According to classical mechanics, one expects Ekin = mev

2/2, which is
equal to (v/c)2 = 2 · Ekin/mec2. This is a line through the origin with slope 2.

The points in the diagram represent the measurement values (the fifth measure-
ment value with Ekin/mec2 = 30 is far outside of the diagram). Obviously, for large
velocities, the points lie far from the expectations given by the steep line. Classical
mechanics fails. According to Einstein’s theory, for the relation between the kinetic
energy and the velocity (which we will derive in Sect. 13.1), one expects the dashed
line, which fits the measurement result very well.

A look at the diagram shows that the electrons do not become faster than light.
Bertozzi’s experiment cannot prove this, but does indicate it. In Sect. 7.8, we will
see that the special theory of relativity requires this: electrons can never move faster
than light (this also holds for other objects).

2.1.5 Discussion

Though the electrons in Bertozzi’s experiment, according to classical mechanics,
should move much faster than light, this is never observed. For large velocities,
classical mechanics makes completely incorrect predictions: neither do the electrons
become arbitrarily fast nor does the relation Ekin = mv2/2 hold for large velocities
anymore. Classical mechanics cannot be applied if large velocities are involved.

Consequence of Bertozzi’s experiment: Classical mechanics is no longer
valid if large velocities are involved.
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Note that, apart fromBertozzi’s experiment, there aremany other experiments that
also demonstrate that classical mechanics fails for large velocities. The excuse that
classical mechanics is fine but there was something wrong in Bertozzi’s experiment
is definitely not tenable.

Now, one could still argue that only the expression Ekin = (m/2)v2 of classical
mechanics is wrong, but not classical mechanics as a whole. This position is also
not sustainable, because it is possible to discuss the experiment without using the
concept of energy, but only the force.

To rebut a further objection, we remark that (non-relativistic) quantum theory
does not come to a rescue either. The fact that an electron cannot move faster than
light doesn’t have anything to do with it being a quantum object and not a particle.

For more than two centuries, classical mechanics was the measure of all things in
physics. But at the beginning of the 20th century, the limits of classical mechanics
were demonstrated twice. The first time was by quantum theory, which shows that
classical mechanics fails in the world of very small dimensions. Around the same
time, Einstein’s relativity showed that classical mechanics is not valid if large veloci-
ties play a role (or large gravitational fields). But this does not derogate the usefulness
of classical mechanics. This theory (as do all others as well) has a particular limited
scope of application and, under this restriction, describes the physics perfectly. A
physical theory is not right or wrong; it is useful or not. And it is not useful if it gives
incorrect predictions. Moreover, a physical theory is always only an approximation
of Nature (although it may be a very precise approximation).

Thus, classical mechanics is not usable for large velocities. In the next chapters,
we will investigate in detail how this failure comes about and see that it is necessary
to replace classical mechanics with a new relativistic mechanics. This, as already
mentioned, was achieved by Einstein in 1905 with his special theory of relativity.
We will follow his footsteps.

Exercise 1: An electron is accelerated from restwith a voltage of 1MV.Calculate
the velocity of the electron according to classical mechanics and compare it to
the speed of light.

Exercise 2: In Fig. 2.3, the relativistically correct relation between the kinetic
energy and the velocity of an object with mass m is shown:

(v

c

)2 = 1 −
(

mc2

mc2 + Ekin

)2

.

Explain why, according to this formula, the velocity of an object cannot become
larger than the speed of light c.

Exercise 3: In Bertozzi’s experiment, electrons are produced with an electron
gun. Find out how such a device works.
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Exercise 4: Why is it possible, just on the basis of the results of Bertozzi’s
experiment, to claim that classicalmechanics no longerworks for large velocities?
Why isn’t it possible to deduce that objects cannot be accelerated to velocities
larger than the speed of light?



Chapter 3
The Relativity Principle of Classical
Mechanics

In the last chapter, we have seen that classical mechanics no longer works if large
velocities are involved. It must be replaced with a theory that is also able to explain
experimental results if objects move very quickly. Beginning with Chap. 6, we will
show that Einstein’s special relativity fulfills this need. But before working out this
theory bit by bit, we must lay the ground and understand some indispensable foun-
dations of classical mechanics.

3.1 Reference Frames

If we measure positions, velocities or the like, we always have to state what we refer
to. The speedometer in a car displays a velocity relative to (or with respect to) the
street, this is obvious. In the case of an airplane, it is already a bit more complicated.
Is the airplane’s velocity meant to be relative to the Earth’s surface or relative to the
surrounding air?

The system, that we refer to, is the reference frame. In particular, the velocity
that one measures always depends on the reference frame.

If a ship has amaximum velocity of 20 knots, this is meant relative to the reference
frame in which the water is at rest. If we stand on the bank of a fast flowing river and
measure the velocity of a ship that drives down the river relative to the river bank,
we obviously can get a velocity which is larger than the maximum velocity of the
ship because latter is meant to be understood relative to the resting water.

Exercise 5: How could an airplane measure its velocity relative to the Earth’s
surface or relative to the air that surrounds it? Discuss.

We imagine a reference frame that is always equipped with a coordinate system,
and, in particular with a cartesian one: three coordinates x , y, and z whose axes
are mutually perpendicular have the same scale and meet at the origin where all
coordinates are zero. Suppose we have a rod 1m in length and make it coincide with
the x-axis. Then, the difference of the x-coordinates of both ends of the rod is 1m.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
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12 3 The Relativity Principle of Classical Mechanics

And if wemake it coincidewith another of the axes, the same holds. Alternatively, we
can also place an arbitrary large sphere with its center at the origin of the coordinate
system. Then, the sphere must intersect all the axes at the same coordinate.

The position of the origin of the coordinate system, as well as its orientation,
can be freely chosen in the reference frame, a beneficial situation because it can
often considerably ease the calculations. However, it is important that the coordinate
system is at rest relative to the reference frame.

Many physical quantities have to be understood relative to a particular ref-
erence frame: velocity, kinetic energy, etc.1

One special reference frame is the rest frame of an observer or an object in which
said observer or object is at rest. Another one is the center-of-mass frame, in which
the center of mass of a system is at rest. The most important class of reference frames
is that of inertial frames, which we will discuss in a minute.

Exercise 6: How do the Earth and the Moon move in their common center-of-
mass frame? Where is the center of mass located?

3.2 Newton’s Laws

Newton’s laws, developedby IsaacNewtonandpublished in1687 in thePhilosophiae
Naturalis Principia Mathematica, form the core of classical mechanics. These laws
deal with themotion of objects and of forces that act upon these objects. An important
idealization is the mass point, which is an object without any extension whose only
property is its mass. Working with such mass points, one does not have to concern
oneself with rotations, internal energy, etc., and its position can be given by a single
point in space, i. e., three numbers.

Newton’s first law is the law of inertia. This law states that an object upon which
no force acts, moves uniformly. Uniform motion means that the object moves along
a (straight) line2 with the magnitude of its velocity being constant (or it is at rest,
which is the special case of moving with zero velocity). The law is valid only within
the already mentioned inertial frame. We will come back to this in much more detail
later.

Newton’s second law is the force law, which relates changes of the motion state
of objects to forces that act upon these objects. A force F acting upon an object
causes an acceleration a = F/m in it.

1 Counterexamples are the mass and the charge.
2 Note that a line, by definition, is always straight. Otherwise, it is a curve. Nevertheless, we will
usually use the pleonasm “(straight) line”, just to avoid any possible confusion.
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Newton’s third law, the action-reaction law, states that if two objects A and B
are interacting and A exerts a force (action) on B, then B exerts a force (reaction) of
the same magnitude, but in the opposite direction, to A. This law is nothing but the
statement that momentum is conserved.

Newton’s first and third laws are valid only in an inertial frame. The second law,
however, can be modified by the addition of fictitious forces so as to also make it
valid in some non-inertial frames.

3.3 Inertial Frames

3.3.1 Fictitious Forces

Some reference frames are better suited than others for the description of the motion
of objects. Let us go to the fair and consider a chairoplane (see Fig. 3.1). Seats are
attached to a rotating rim with chains hanging down. People sit in these seats. If the
rim is at rest, the chains hang vertically. This is expected because of gravity. But if
the rim rotates, the seats on their chains no longer hang vertically, but are slanted
outwards. How do we explain this?

The observer next to the chairoplane (which rests relative to the Earth’s sur-
face) explains what she sees as follows (see Fig. 3.1, left side): the persons in the
chairoplane move along a circle with a velocity of constant magnitude. For this to
be possible, it is necessary to have a force that points to the center of the circle.

Fc

F ′
g = Fc,v

Fg

Fcp = Fc,h

Fc

F ′
g = Fc,v

Fg

Fc,hF ∗
cf

Fig. 3.1 Forces in a chairoplane. Left: For the observer at rest relative to the Earth’s surface. Right:
For the observer rotating with the chairoplane
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This force is the centripetal force3 Fcp. The centripetal force is an abstract force
named after its function. It needs a real force that plays its role, and this force is given
by the horizontal component Fc,h of the chain force Fc, the force with which the
chain pulls at the seat. The vertical component Fc,v is the counterforce F′

g to the
gravitational force Fg (without this counterforce, the seat would fall down to Earth).
The angle α under which the chain deviates from the vertical adjusts such that the
horizontal component of the chain force plays the role of the centripetal force. The
larger this angle, the larger the horizontal component Fc,h of the chain force. This
agrees with our observations, because the faster the rotation, the larger the centripetal
force must be. With the horizontal component of the chain force, there is a real force
that causes the trajectory of the people in the chairoplane. We also feel this force
when we hold an oscillating pendulum.

The observer that rotates with the chairoplane (“in the rotating reference
frame”) explains the effect in a different way (see Fig. 3.1, right side): there is a
horizontal force that acts on the person in the seat, namely, the horizontal compo-
nent Fc,h of the chainforce Fc. The person should therefore move toward the rotation
axis of the chairoplane, but this does not happen. For this reason, this force must be
compensated by a counterforce, which is the centrifugal force4 F∗

cf. The centrifugal
force is a fictitious force that was invented simply and solely to explain the observa-
tions (this is indicated by the star in the notation of the force). A reason for this force
cannot be given. Fictitious forces also violate Newton’s third law. Fictitious forces
do not have counterforces.5

Exercise 7: Consider an object on the rear window shelf of your car. If the
car moves straight ahead, the object stays in its place. But if the car makes a
curve, the object flies toward the exterior direction of the curve. How is this
observation explained? Discuss this in the reference frame of the Earth (observer
at the roadside) and in the reference frame of the car. In which reference frame
are fictitious forces needed?

3.3.2 Inertial Frames

If no force acts on an object, it moves uniformly. This is Newton’s law of inertia.
In the cases above, we have seen that an object without an acting force has changed
its state of motion. We remedied the problem by introducing a fictitious force. But
the description in the reference frame without fictitious forces is always easier and
clearer.

3 From the Latin centrum, for “center”, and petere, for “to strive for”, “to seek”. The centripetal
force “strives for the center” of the particle’s trajectory.
4 From the Latin fugare, which means “to drive away” or “to chase away”. The centrifugal force
therefore is the force that chases an object away from the center.
5 In the end, this is related to the fact that, in non-inertial frames, momentum conservation does not
hold.
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Reference frames in which the law of inertia holds, are called inertial frames
(sometimes also inertial reference frames or inertial systems). In such reference
frames, no fictitious forces are needed to describe themotion of objects. The observer
that stands next to the chairoplane or the observer at the roadside are at rest in an
inertial frame, while the observer rotating with the chairoplane or that sitting in the
car are not.

Once we have found one inertial frame, we know all of them. Why? Take two
inertial frames I and I ′. An object upon which no force acts moves in both inertial
frames uniformly (but with a different velocity). This is exactly the definition of
an inertial frame. Thus, the inertial frames relative to each other also must move
uniformly. The reverse conclusion also holds. Take an inertial frame I and a reference
frame B that relative to I moves uniformly.An object uponwhich no force actsmoves
uniformly in I . But then, in B, the same holds, and therefore B is also an inertial
frame. Eventually, we have the following conclusion: Given an inertial frame I, all
reference frames that move uniformly relative to I are also inertial frames, and this
exhausts the set of inertial frames.6

A car that moves accelerated on the Earth’s surface is not an inertial frame. Is
the Earth’s surface an inertial frame? Almost, but not really. If it were an inertial
frame, the oscillation plane of a Foucault pendulum would not rotate. To explain
the Foucault pendulum and similar effects, we have to introduce fictitious forces:
the centrifugal force and the Coriolis force. Due to the small rotational velocity of
the Earth, these forces are also very small. For typical experiments in your physics
course, the deviation of the Earth’s surface from an inertial frame is insignificant:
the Earth’s surface in these cases is, to a very good approximation, an inertial frame.

Exercise 8: Inform yourself about the Coriolis force. How does it come about? Is
it a “real” force or a fictitious force? What effect does it have on the atmospheric
circulation?

An inertial frame is a reference frame in which Newton’s law of inertia holds.
Two different inertial frames move relative to each other uniformly.

We will describe most of the experiments in this book in the context of an iner-
tial frame and will often refer to an inertial observer. This observer describes the
experiment from an inertial frame.

Relative and absolute. The adjective relative in special relativity always means
that a quantity depends on the reference frame (usually an inertial frame). The state-
ment “the object is at rest” is relative. On the other hand, absolute means that a
quantity is independent of the reference frame. In general, one restricts oneself to
inertial frames. The statement “the charge is an absolute quantity” means that the
charge of an object has the same value in all inertial frames.

6 The equivalence relation “two reference frames move uniformly relative to each other” causes
equivalence classes that partition the set of all reference frames. One of these classes is the inertial
frames.
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3.4 The Galilean Principle of Relativity

3.4.1 Introduction

For sure, in a train on a straight track, youwill have already observed that, with closed
eyes and covered ears, you hardly notice that the train moves. And most likely, you
considered this to be trivial or self-evident. If this is the case, you have been pretty
wrong. This observation expresses an important symmetry of Nature that restricts
the set of possible laws of Nature considerably.7 If one takes this observation really
seriously, it almost leads to special relativity all by itself.8

We start with a Gedanken experiment and imagine that Alice and Bob are both
in an inertial frame. Alice stands on a railway embankment and Bob sits in a train
that moves uniformly with velocity v relative to Alice.

Alice, standing on the railway embankment, conducts experiments and investi-
gates the free fall and the trajectories of thrown objects. She also conducts exper-
iments in which gases are compressed, as well as other experiments using spring
scales, and realizes that the results of all these experiments can be described with
classical mechanics—without needing any fictitious force.9

Bob, sitting inside the moving train, conducts the same experiments as Alice. He
also finds that classical mechanics is suitable for describing the results.

This important observation is formulated as a principle10:

Galilean principle of relativity (GPR): Mechanical processes in all inertial
frames happen in the same way.

“Happen in the same way” means that they can be described with the same laws
of classical mechanics (without fictitious forces). If Galilei’s principle was wrong,
Alice’s experimentswould behave according to classicalmechanics, but Bob’s exper-
iments would involve fictitious forces or require completely different laws. Galilei’s
principle also means that, with mechanical experiments, two different inertial frames
cannot be distinguished.

This is not true if one of the observers is not in an inertial frame. If Bob sits on
the seat in the chairoplane, a relinquished object does not fall vertically down to the
Earth. To describe the observed trajectory, he can still use classical mechanics but

7 By laws of Nature, we refer to physical laws that describe Nature.
8 The only missing piece is the fact that there is an absolute and finite velocity. This is the speed of
light.
9 The last statement is actually trivial, because the key property of inertial frames is that there are
no fictitious forces.
10 This principle was described first by Galileo Galilei in his epoch-making book Dialogue Con-
cerning the Two Chief World Systems.
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needs a fictitious force, the centrifugal force. This is how Bob notices that he is not
in an inertial frame.

Focus again on Bob in the train. We stated that, by means of mechanical experi-
ments, he cannot determine that he is in a uniformly moving train. Is this really true?
He just has to look out of the window to see that he sits in a moving train! Isn’t it easy
to distinguish inertial frames? No. Remember that the idea is that Bob can describe
his experimental finding using classical mechanics and without the need for fictitious
forces. As we said, this is true in the case at hand, and the radiation from outside
(which conveys the image of the outside of the train) is too small to influence the
mechanical experiments. Alternatively, we can imagine that Alice and Bob conduct
their experiments in an opaque box (but still in the railway embankment and train
reference frames, respectively).

Because two inertial frames are equivalent, we can no longer tell if two events
happen at the same location. The ticks of the clock located next to Bob in the moving
train happen at the same location for Bob, but not for Alice, who stands on the railway
embankment.

Exercise 9: Alice and Bob are in two different trains, but each is at rest in some
inertial frame. How do these trains move relative to each other? Claire is in a
third train that moves accelerated relative to the other trains. If Alice lets loose an
object, in her reference frame, it falls vertically down to Earth. The same holds for
Bob if he lets loose an object and describes its motion in his inertial frame. What
happens, if Claire relinquishes an object in her train? In her reference frame? In
Alice’s or Bob’s inertial frame?

Exercise 10: The velocity of an object always has to be given relative to a
reference frame (or relative to another object, which defines a reference frame).
In the case of acceleration, the reference frame often is omitted. Why is this
possible and relative to which reference frame is the acceleration then meant to
be understood?

3.4.2 Quantitative Description and Galilei Transformation

So far, our discussion of the experiments carried out by Alice and Bob has been
purely qualitative. Now, we lay eyes on the quantitative description.

Coordinate systems. In order to do this, Alice and Bobmust introduce coordinates
(see Fig. 3.2). Imagine that Alice has a coordinate system with the coordinates x, z
whose x-axis coincides with Bob’s direction of motion (i. e., in the direction of the
railway tracks) and her z-axis points vertically upward. Bob has a coordinate system
with coordinates x ′, z′. His x ′-axis coincides with Alice’s x-axis and his z′-axis also
points vertically upward. The origins of the coordinate systems are at Alice or Bob,
respectively.
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z′
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B

Fig. 3.2 Free fall in the train

Motion from the point of view of Alice and Bob. Now, Bob carries out a free-fall
experiment. He describes the trajectory by

x ′(t) = 0 and z′(t) = z0 − 1

2
gt2 (3.1)

(with the time t thatBob, for instance, reads from the railway station clock). ForAlice,
Bob’s free fall looks as if Bob had thrown the objects horizontally. She describes
Bob’s experiment with the trajectory

x(t) = vt and z(t) = z0 − 1

2
gt2 . (3.2)

The trajectories obviously are different. For Bob, it is a vertical (straight) line, and for
Alice, half of a parabola. But there is only one object and one trajectory from different
points of view, thus there must be a formula that calculates Alice’s form of the
trajectory fromBob’s trajectory, or vice versa. The question is the following: suppose
you have Alice’s coordinates of a point P . How can we calculate Bob’s coordinates
of the same point? It is obvious that x ′ = x − vt and z′ = z is the wanted formula.

And what about the time? In classical mechanics, the time is the same for both,
Alice and Bob. There is only one time. This is called Newton’s absolute time. But
we can introduce a separate time t ′ for Bob for later use. Then, however, we always
have t ′ = t . Just as Alice and Bob have different space coordinates, we also use
different time coordinates.

Galilei transformation. Calculating the coordinates of an arbitrary point P in one
coordinate system from the given coordinates in another coordinate system is called
a coordinate transformation. The coordinate system under discussion here is the
Galilei transformation:
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Fig. 3.3 Alice, Bob and the Galilei transformation. Left: t drawn over x ; Right: x drawn over t

Galilei transformation (GT): Given the trajectory of an object with coordi-
nates x, y, z and time t in coordinate system A, the coordinates x ′, y′, z′ and
the time t ′ in coordinate system B are then given by

x ′ = x − vt

y′ = y , z′ = z

t ′ = t .

(3.3)

Here, coordinate system B is equally oriented as coordinate system A and
moves with velocity v in the x-direction relative to A.

Figure3.3 clarifies the circumstances. On the left side, the time t is drawn as
a function of the space coordinate x . Alice stands at x = 0 and Bob’s train moves
according to x = vt away fromAlice. Bob’s position in his coordinate system is x ′ =
0, and x ′ = x − vt holds. Because there’s only one absolute time, we have t ′ = t .

We call a point in the x-t diagram an event. An event occurs at a fixed location in
space and a fixed time.

With the Galilei transformation, Alice’s coordinates of an event are transformed
into Bob’s coordinates, or vice versa. Consider the event E1 in which Alice claps
her hands. It is E1 : (t1, x1 = 0). According to the Galilei transformation (3.3), for
Bob, it is E1 : (t ′1, x ′

1 = x1 − vt1 = −vt ′1). For the event E2, in which Bob blinks his
eyes, we have E1 : (t ′2, x ′

2 = 0). Again, with the Galilei transformation, but this time
solved for (t, x, y, z), we get E2 : (t2, x2 = x ′

2 + vt ′2 = vt2).
A further remark about Fig. 3.3. In the literature one special relativity, on mostly

finds diagrams, in which the time is drawn over the position (as on the left side of the
figure). But we will follow the practice in classical mechanics, in which the position
is drawn over the time (right side of the figure).
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So far, we have described the trajectory of a object from the point of view of
Alice and that of Bob. Now, if the trajectory for one of them follows from Newton’s
laws, it must also hold for the other one. Otherwise, the inertial frames would be
distinguishable and Galilei’s principle of relativity would be violated.

Form-invariance of Newton’s laws. Now, we derive the trajectory from both
observer’s points of view and show that Newton’s force law

Fx = mẍ(t)

Fz = mz̈(t)

is fulfilled in both cases.
For Bob, from (3.1), it follows that ẋ ′(t) = 0 and ẍ ′(t) = 0, which means that,

according to the law of motion, there must be no force in the x-direction on the
falling object. This is consistent with our expectation, because the only acting force
is the gravitational force, which has no component in the x-direction. Furthermore,
ż′(t) = −gt and z̈′(t) = −g. According to the force law, a force with magnitudem ′g
must act in the vertical direction downward (m ′ is the mass of the falling object for
Bob). This is exactly the gravitational force.

From Alice’s point of view, the task is even easier. For her, from (3.2) it also
follows that ẋ(t) = 0 and ẍ(t) = 0, which again means that, according to the force
law, there is no force in the x-direction. Furthermore, ż(t) = −gt and z̈(t) = −g.
According to the force law, a force of magnitude mg acts vertically downward (m is
the mass of the falling object for Alice). This is again the same gravitational force.
Now, we assume that the mass of the object is the same for Alice and Bob, i. e.,
m = m ′. Then, for both observers, the magnitude of the gravitational force must be
the same: Fz = F ′

z′ = Fg .
Therefore, in this particular case, Newton’s force law has the same form for Alice

and for Bob. This property is called form-invariance.11 An equation is called form-
invariant if it keeps its form when subjected to a transformation, here, a Galilei
transformation.

Initial condition. For both Alice and Bob, the trajectory of the object fulfills
Newton’s force law. Still, the trajectories are different: for Alice, the object was
thrown horizontally, and for Bob, it is in a free fall. How can that be? The secret is
the initial condition. This is different for Alice and Bob: the initial position of the
object is the same for Alice and Bob, but the initial velocity is different. For Bob,
the object is at rest initially, and for Alice, it moves horizontally with ẋ(0) = v. And
Newton’s force law yields different trajectories for different initial conditions. But
it is not possible to distinguish different inertial frames because Alice could equally

11 Invariance may sound complicated, but is not. Variance, from the Latin variantia, means that
something changes. The prefix in produces the contrary. An object is invariant with respect to
a transformation, if it does not change with the transformation. A circle is invariant regarding a
rotation by an arbitrary angle around the center of the circle. And the function z = xy is invariant
regarding exchanging the coordinates x and y.
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conduct the free-fall experiment, which, for Bob, would look like a horizontally
thrown object. In all experiments, Alice and Bob can be interchanged; this is required
by Galilei’s principle of relativity.

Conclusion. What havewe achieved so far? For a special trajectory, we have shown
that if the trajectory in Alice’s experiment fulfills Newton’s law of motion and Bob’s
trajectory can be calculated from Alice’s trajectory by a Galilei transformation, then
Bob’s trajectory also fulfills Newton’s force law.

It is also easily possible to show generally that Newton’s force law is form-
invariant upon a Galilei transformation. To do that, we start with Bob’s “version” of
Newton’s force law, i. e., F ′

x ′ = mẍ ′(t ′), and carry out aGalilei transformation. Forces
andmasses stay the same, so F ′

x ′ = Fx andm ′ = m, and therefore Fx = mẍ ′(t ′). Only
the second derivation of the x ′-coordinate of the trajectory with respect to the time is
left. First, we have t ′ = t , then we must differentiate x ′(t) = x(t) − vt twice. From
that, it follows that ẍ ′(t) = ẍ(t), and thus Fx = mẍ(t) and we have reached our goal.

If an arbitrary trajectory of an object’s motion fulfills Newton’s force law Fx =
mẍ(t) for the inertial observer Alice, the trajectory of the same motion also
fulfillsNewton’s lawofmotion Fx ′ = mẍ ′(t ′) for another inertial observerBob.
The coordinates of the trajectories are related by the Galilei transformation.

One says: Newton’s force law is form-invariant regarding the Galilei
transformation12 (it does not change its form if one subjects it to a Galilei
transformation).

Newton’s first law (lawof inertia) in this context can be considered a special case of
Newton’s third law. And due to the fact that forces do not change upon aGalilei trans-
formation, Newton’s third law (action-reaction law) is also form-invariant regarding
the Galilei transformation. Therefore, all Newton’s laws are form-invariant regarding
the Galilei transformation.

Exercise 11: From astronomy, you know that the description of the motion of the
planets is much easier in the heliocentric reference frame than in the geocentric
one. This was determined by Nicolaus Kopernikus. In the heliocentric reference
frame, the planets, according to Johannes Kepler, move along elliptic orbits, with
the Sun in one of the focal points of the ellipse. For most planets (including the
Earth), the ellipse almost has the form of a circle. Which form does a planet’s
trajectory have when described in the geocentric reference frame?

Exercise 12: Alice stands on the Earth’s surface. As she does so, Bob and Claire
both jump out of an airplane with parachutes at the same time. Describe the
trajectory of Claire, once from Alice’s reference frame and once from Bob’s
reference frame. Neglect the air resistance.

12 We consider the transformation rules F′ = F and m′ = m as part of the Galilei transformation.
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3.4.3 Summary

We started with the observation that mechanical processes happen in the same way
in all inertial frames. Otherwise, one would be able to distinguish two inertial frames
with mechanical experiments; they would not be equivalent. This means that New-
ton’s lawsmust “look equal” for all inertial frames. In particular, there are no fictitious
forces in any of the inertial frames.

Then, we determined the following: if Newton’s force law holds for Alice, then
it holds automatically for Bob, provided that the transformation of the coordinates
(or of the physical quantities in general) from Alice’s to Bob’s reference frame
is performed with the Galilei transformation. One can say that the equations of
classical mechanics are form-invariant regarding the Galilei transformation. This
means simply that when transforming the equations of classical mechanics from
Alice’s to Bob’s coordinate system with the Galilei transformation, they do not
change their form. The equation F = mẍ(t) transforms to F ′ = m ′ ẍ ′(t ′), and not
to F ′ = m ′ ẍ ′ + qẋ ′ + 5 or something else. The laws of classical mechanics and the
Galilei transformation are tightly related.

FromGalilei’s principle of relativity (GPR) and the formof the laws of classical
mechanics follows the Galilei transformation (GT). If the Galilei transforma-
tion would not hold, either Galilei’s principle of relativity or the equations of
classical mechanics would be wrong. As a boolean formula:

Classical mechanics AND GPR ⇒ GT. (3.4)

3.5 Addition of Velocities

One surprisingly fruitful topic is the addition of velocities. To dive in, we imagine
a railway embankment with two parallel tracks (see Fig. 3.4). Alice stands on the
embankment. A (slow) regional train, in which Bob sits, passes by. At the same time,
a (fast) long-distance train passes by, in which Claire sits. Now, Alice measures
the velocity of the regional train and gets vBA. The first index (here: B) denotes
the object whose velocity is measured and the second index (here: A) denotes the
reference frame, in which the velocity measurement is made. Alice also measures
the velocity of the long-distance train and gets vCA. Not only does Alice perform
velocitymeasurements, but Bob does aswell. He gets vCB for the velocity of the long-
distance train. We also know that, for Alice, the velocity vCA of the long-distance
train is given by the velocity vBA of the regional train plus the velocity vCB of the
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Fig. 3.4 Example for the
addition of small velocities
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long-distance train, as measured by Bob13:

vCA = vCB + vBA . (3.5)

This type of addition of velocities is called theGalilean addition of velocities (GAV).
It is a vector addition. And the reason for the name is that it results from the Galilei
transformation.

One thing is very important: here, the velocities that are added are measured in
different reference frames (vBA was measured by Alice and vCB by Bob)! And this
is why the statement (3.5) is not as trivial as it seems on first sight.14

From the formula (3.5), one recognizes that the choice of the notation is useful:
on the right side of the equation, we have the indices (CB)(BA), i. e., equal indices
“meet and cancel” and the indices (CA) of the left side of the equation are left over.
You see that a clever choice of the notations helps us to remember equations and to
uncover errors in calculations.

A special case of (3.5) is given when C = A. Then, it reads as vAA = vAB + vBA.
But because vAA = 0,we conclude that vAB = −vBA. Thismeans that Bob’s velocity,
as measured by Alice, is equal up to a sign to Alice’s velocity, as measured by Bob.

Youmay think: ok, fine. But there’s nothing surprising about Equation (3.5). Why
this fuss? As stated, the equation is not trivial. To the contrary: (3.5) is no longer
valid for large velocities! We will see later why this is the case. To prepare, we derive
the addition formula from the Galilei transformation.

13 Note that we have broken away from our usual habit of denoting the physical quantities of Alice,
Bob and Claire without primes, with one prime and with two primes, respectively. This is done for
the purpose of improving the readability here.
14 Strictly speaking, this is about the following: you get from one to the other coordinate systemwith
a coordinate transformation that depends on the relative velocity of both coordinate systems. Instead
of transforming directly with the coordinate transformation associated with vCA from Alice’s to
Claire’s coordinate system, one can first perform a coordinate transformation with velocity vBA to
Bob’s coordinate system, and then with a coordinate transformation with velocity vCB from Bob’s
to Claire’s coordinate system. The sequence of two coordinate transformations is equal to one
combined coordinate transformation, and this defines an operation on vBA and vCB that yields vCA.
And this operation becomes a simple vector addition only in the case of the Galilean addition of
velocities.
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Fig. 3.5 To the derivation of
the Galilean addition of
velocities from the Galilei
transformation
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Derivation. Now, we come to the derivation of (3.5) from the Galilei transforma-
tion. We restrict ourselves to the case in which all velocity vectors lie on the same
line and show that vCB + vBA = vCA. We start by giving coordinate systems to our
observers: Alice gets (t, x), Bob gets (t ′, x ′), and Claire gets (t ′′, x ′′) (see Fig. 3.5).
The three x-axes coincide and, at the time t = t ′ = t ′′ = 0, all three observers meet
in x = x ′ = x ′′ = 0. In addition, we assume that the three velocities in (3.5) all point
in the positive x-direction. Thus, the Galilei transformation to transform Alice’s to
Bob’s coordinates yields

x ′ = x − vBAt , t ′ = t . (3.6)

The location of the regional train is given by x ′ = 0, i. e., x = vBAt , for Alice. The
Galilei transformation from Bob’s to Claire’s coordinates is

x ′′ = x ′ − vCBt
′ , t ′′ = t ′ . (3.7)

For the long-distance train, we have x ′′ = 0, i. e., x ′ = vCBt ′, for Bob.
Finally, the Galilei transformation to transform Alice’s to Claire’s coordinates is

x ′′ = x − vCAt , t ′′ = t . (3.8)

And, as already stated, the location of the long-distance train is x ′′ = 0, i. e., x = vCAt ,
for Alice.

Equation (3.8) can be derived from Equations (3.6) and (3.7). To do so, we just
put (3.7) into (3.6) and get

x ′′ = x ′ − vCBt
′ = (x − vBAt) − vCBt = x − (vBA + vCB)t , t ′′ = t .

This must be equal to (3.8), which is exactly the case if vCA = vCB + vBA holds. The
formula (3.5) therefore is a consequence of the Galilei transformation, which brings
us to an importance conclusion:
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Fig. 3.6 A falling raindrop,
from the perspective of
running Alice
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The Galilean addition of velocities (GAV) follows from the Galilei transfor-
mation. As a boolean formula,

GT ⇒ GAV . (3.9)

If the Galilean addition (3.5) of velocities (e. g., for large velocities) is violated,
then the Galilei transformation cannot be valid.

But more about that later.

Example: running in the rain. Imagine that Alice is standing in the rain with her
umbrella open. To protect herself from the rain, the umbrella is directly above her, as
the rain comes straight down (there is no wind). Now, she starts running. As a result,
she has to tilt her umbrella in order to stay dry.

Let us take a closer look at this effect (see Fig. 3.6). In the rest frame of the Earth’s
surface (E), the rain drops (R) fall exactly vertically,with a velocity of vRE = 30 km/h,
which is a typical velocity for falling raindrops. Let us assume that Alice (A) is
running with a velocity of vAE = 6 km/h. Then, the velocity of the raindrop in the
reference frame where she is at rest is vRA = vRE − vAE, which follows from vRE =
vRA + vAE.

Because of tan α = vRE/vAE = 5, we have α ≈ 78.7◦. The raindrop, fromAlice’s
point of view, comes from a direction of 78.7◦ above the horizon. The apparent
location of an object (or its apparent origin), here, the source of the raindrops, is
shifted relative to its true location (or its true origin) in the direction of the observer’s
motion.

A similar effect exists for light, in which case it is called an aberration and this
will not be the last time you hear about it in this book.
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3.6 Summary

In this chapter, we learned that the description of Nature is always relative to a
reference frame. There are particular reference frames; these are the inertial frames
in which the law of inertia holds. Inertial frames are also special because, in inertial
frames, the laws of classical mechanics take their most simple form (i. e., without
fictitious forces). The form of these laws is the same in all inertial frames. This is the
content of the Galilean principle of relativity. It also means that, with mechanical
experiments, two inertial frames cannot be distinguished. The transformation of
physical quantities in classical mechanics from one inertial frame to another one is
performedwith theGalilei transformation. An important consequence of theGalilei
transformation is the Galilean addition of velocities. If the Galilei transformation
should be wrong, then either Galilei’s principle of relativity or the laws of classical
mechanics are wrong. And if the Galileian addition of velocities should be wrong,
necessarily, the Galilei transformation is wrong.



Chapter 4
Waves and Light

4.1 Introduction

Light plays a central role in special relativity. The reason for this will become clear
in the course of this book. According to electrodynamics, light is an electromagnetic
wave. Therefore, we dedicate ourselves to waves in this chapter.1

In the second part of the 17th century, two different theories of light were devel-
oped. One was the wave theory of light (or wave optics) of the Dutchman Christian
Huygens and the other was Isaac Newton’s corpuscular theory of light. According
to Huygens, light is a wave phenomenon, similar to a surface wave in (shallow) water
or a sound wave in the atmosphere. And for Newton, light consisted of small light
particles (“corpuscles”).

It is not obvious that light should be a wave. Think about the beam that emanates
from a laser pointer. This beam propagates along a (straight) line. A water wave,
however, behaves completely differently. It propagates in all directions. Huygens
was able to show, with his principle of superposition of elementary waves, that a
light wave in the absence of obstacles may indeed propagate on (straight) lines. On
the other side, Newton had a difficult time trying to explain light phenomena like
light diffraction in a prism. Nevertheless, Huygens’ theory was not taken seriously,
and the reason for this was mainly Newton’s authority. With his mechanics, he had
acquired such an esteemed reputation that most of his contemporaries simply could
not imagine that he could be wrong with his corpuscular theory of light.2

An important milestone on the path toward acceptance of the wave theory of light
is dated to the year 1802. In that year, Thomas Young carried out his famous double
slit experiment (you might possibly know it from quantum theory). The result was
easily explained with the wave theory of light, something that the corpuscular theory

1 Quantum theory is irrelevant for special relativity and will not be touched upon here.
2 Possibly, you have heard that, according to quantum theory, light consists of photons, which
share many properties with particles but others with waves. Photons do not behave like Newton’s
corpuscles. To say that Newton was right after all, would be quite absurd.
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Fig. 4.1 Poisson spot. Left: A wave coming from the left hits a disk (black vertical bar). Far behind
the disc, the indicated intensity distribution with the Poisson spot in the middle can be observed
(orange). Right: Photography of the shadow behind the disc. The diffraction rings and the very
small Poisson spot in the center can clearly be seen

was not able to do. Nevertheless, the critics of the wave theory still had the upper
hand.

But it is an interesting story as to how that changed. In 1818, during a competition
in Paris, Siméon Poisson made fun of the wave theory while studying a paper by
Augustin Fresnel. He pointed out that, according to the wave theory, there should be
a bright spot exactly in the center of the shadow behind a uniformly illuminated disc,
which would be absurd [Lipson+]. François Arago, however, later actually demon-
strated the Poisson spot (see Fig. 4.1). It results from the fact that the elementary
waves emanating from the edge of the disk have the same path length to the center
of the shadow, and therefore interfere constructively there. With this, the critics of
the wave theory of light were finally silenced and wave optics established.

In the years 1861–1864, James Clerk Maxwell published the basic equations
of electrodynamics, which were named after him.3 These basic equations predict
the existence of electromagnetic waves, which were experimentally discovered by
the German Heinrich Hertz in 1886. As a special case, Maxwell’s equations include
wave optics and show that light is an electromagnetic wave.

We will dedicate ourselves in Sect. 4.2 to waves in classical mechanics and in
Sect. 4.3 to light waves.

3 Maxwell combined existing laws (Gauss’s law, Faraday’s law of induction, Ampére’s circuital
law), completed them with a new phenomenon, the displacement current, and formulated them
with Faraday’s idea of fields.
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Fig. 4.2 A harmonic wave
(sinusoidal wave) that moves
in one dimension from left to
right
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4.2 Waves in Media

In the next section, Sect. 4.3, we will discuss light waves. To prepare for that, we
start with a discussion of mechanical waves, because they are easier to grasp than
light waves.

We start by discussing the main ideas about waves and then consider waves from
different reference frames. Here, we encounter two fundamental effects, theDoppler
effect and aberration of waves, which we subsequently discuss in more detail.

4.2.1 What Are Waves in Media?

Examples of waves in media. As examples of mechanical waves, we choose
surface waves in (shallow) water. The effects that we observe in this system are
transferable to other mechanical waves, e.g., sound waves in the atmosphere. The
only important difference is that surface waves only propagate on a surface (in two
dimensions) while sound waves clearly propagate in all directions in space (three
dimensions).

Looking at a certain location in a wave, one observes that the value of a certain
physical quantity oscillates in time. In the case of the surface wave in (shallow)
water, the physical quantity is the height of the water compared to the average height,
and in the case of sound waves, it is the pressure (or density) in comparison to the
average pressure. In each space location in a wave, such oscillations occur. These
oscillations at different locations are “coordinated” (or correlated) and form the wave
in space.

The water and the atmosphere are the medium in which the wave phenomena
occur. Initially, we assume that the medium is at rest in the inertial frame of the
observer. In other words: stationary water and no wind.

Wave phenomena can be very complex. We consider only linear waves. This
means that a sum (of the amplitudes) of two waves yields a new possible wave. The
“sum” in the context of waves is also called superposition. For surface waves in
(shallow) water and sound waves in the atmosphere, linearity is given if the ampli-
tudes of the waves are not too large. Light waves in vacuum are strictly linear.
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Fig. 4.3 A harmonic wave
(sinusoidal wave) in the
x-t-diagram. It travels in the
positive x-direction

Waves in one dimension. Figure 4.2 shows a wave in one dimension, which
propagates to the right at a certain moment.4 It could be a water wave in a tight
channel, a sound wave in a tight tube or even a wave on an infinitely long guitar
string.

In the linear case, each such wave can be decomposed into elementary waves of
the form

A(x, t) = A0 sin[2π · (x/λ − νt) + ϕ0], (4.1)

that is an object which “lives” in the x-t-diagram, as shown in Fig. 4.3.
Here, A is the physical quantity that oscillates and A0 the wave’s amplitude.

Further, ν is the frequency of the elementary wave, T = 1/ν its period and λ the
wavelength. Often, the angular frequencyω = 2πν is used instead of the frequency
and the wave number k = 2π/λ instead of the wavelength. The frequency ν, the
angular frequency ω and the period T are always positive.

The advantage of usingω and k instead of ν and λ is that we get rid of the factor 2π
in the expression for A(x, t) and can write

A(x, t) = A0 sin(kx − ωt + ϕ0). (4.2)

If there are no possiblemisunderstandings, the angular frequencyω is often simply
called “the frequency ω”.5

Furthermore,ϕ0 is a phase shift, which is important in the decomposition ofwaves
into elementary waves. Here, it plays no role, thus we ignore it and set ϕ0 = 0. The
expression ϕ = kx − ωt is the phase of the wave (see Fig. 4.2). Locations of the

4 We only consider propagating (traveling) waves. One example of a non-propagating wave would
be if you were to pluck a guitar string. This is a standing wave.
5 In order to avoid misunderstandings, the difference between the frequency and the angular fre-
quency is usually made clear by a consistent choice of the symbols. The letters ν or f stand for the
frequency and ω stands for the angular frequency.
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wave with ϕ = 0 or ϕ = π are called wave nodes. Furthermore, at ϕ = π/2, there
is a wave crest and at ϕ = 3π/2 a wave trough.

As the decomposition of general (linear) waves into elementary waves is possible
for all waves, elementary waves are often the only ones discussed.

Because of
ϕ = kx − ωt = k

(
x − ω

k
t
)

,

we see that the elementary waves depend on position and time only via the combi-
nation

ϕ = k
(

x − ω

k
t
)

= k
(
x − vpt

)
,

the amplitude for fixed x − vpt being constant. The elementary wave as a whole
moves to the right with the phase velocity vp. We have

vp = ω

k
= λν. (4.3)

The phase velocity vp is the velocity of points with a fixed phase.
In the case of sound waves in the atmosphere, the phase velocity depends on the

air pressure, and in the case of a guitar string, it depends on the thickness and the
elasticity of the string. We assume that the air pressure is the same everywhere the
wave moves6 and that the guitar string has the same uniform thickness and elasticity.
Then, one would say that the medium is homogeneous.7 We will additionally call
the phase velocity the wave velocity or the propagation velocity of the wave and
refer to it with cW (the c refers to the Latin “celeritas”, which means speed).

If the phase velocity is different for elementary waves of different frequencies,
this is called dispersion. Then, the relation between ω and k, the dispersion rela-
tion ω(k), is no longer linear. In this case, waves that are composed of elementary
waves of different frequencies do not retain their shape, but rather diffuse in space.
We consider only waves that show no dispersion (dispersionless waves).8

The fact that we can communicate by talking shows that sound waves in the
atmosphere and in the range of frequencies that we use for spoken communication
are practically dispersionless. Otherwise, the sound waves that carry what is said to
the listener would be deformed strongly on their way and the words could no longer
be understood. Sound waves in the atmosphere can therefore be thought of as rigid
waves of fixed shape moving at the speed of sound. Fig. 4.4a shows the shape of the
sound wave corresponding to the spoken word “wave”.

6 This is clearly not the case in the vertical direction in the atmosphere. For our purposes, however,
this approximation is fine.
7 “Homogeneous” comes from the Greek and means “unique” of “of uniform structure” (homios =
same, genos = kind).
8 While light waves in vacuum show no dispersion, they do so in matter. This is the reason why a
prism splits a white light beam into its colored constituents and the sky is blue and the sunset red.
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(a) (b)

Fig. 4.4 a Left: A sound wave corresponding to the spoken word “wave”; b Right: A wave packet.
The sound corresponds very roughly to a bang

Fig. 4.5 Two elementary
waves added (or superposed
or interfered) yields a beat
pattern

A bang clearly is no elementary wave, but very roughly looks like the wave
depicted in Fig 4.4b. This is a wave packet, which is composed of many elementary
waves, all of them with a frequency close to a central frequency ν0. A wave packet
travels with the group velocity vg, which, for dispersionless waves, is equal to the
phasevelocityvp (the differencebetween thephase and thegroupvelocity is somehow
subtle and the statement holds only for the case of one dimension; see Sect. 4.5.3).
In the case of sound waves in the atmosphere, both velocities are equal to the speed
of sound cS. In dry air at a temperature of 20 ◦C, the speed of sound is cS = 343m/s
and practically does not depend on the air pressure. This velocity is relative to the
medium (the air) at rest.

In case of dispersion, the group velocity becomes different from the phase velocity
(usually smaller) and the wave packet becomes broader in time, it diffuses.

This can already be seen with a simple example. Take two elementary waves
with the same amplitude and slightly different frequencies ω1, ω2, as well as wave
numbers k1, k2, and add them. This yields

sin(k1x − ω1t) + sin(k2x − ω2t) = 2 sin

(
�k

2
x − �ω

2
t

)
sin(k̄x − ω̄t),
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Fig. 4.6 Wavefronts and the
propagation direction of a
radially propagating wave

where�ω = ω2 − ω1,�k = k2 − k1 are the differences of the frequencies and wave
numbers, respectively, and ω̄ = (ω1 + ω2)/2 and k̄ = (k1 + k2)/2 are the average
frequency and wave number, respectively. The resulting wave at a certain moment
looks like the example in Fig. 4.5 and is called a beat pattern. One recognizes a fast
oscillation that corresponds to the factor sin(k̄x − ω̄t) and describes that the wave
nodes move with the phase velocity vp = ω̄/k̄ and an “overall shape” or envelope of
the wave that corresponds to the factor sin

(
�k
2 x − �ω

2 t
)
and moves with the group

velocity vg = �ω/�k. If the dispersion relation is linear, the shape of this wave
prevails in time; otherwise, it will smoothen out.

Waves in two or three dimensions. In two or three dimensions, in addition to the
propagation velocity, the wave also has a propagation direction. Figure 4.6 shows
a water wave. The black curves are lines of constant phase (wave crest, wave trough,
wave node, or the like). Such curves are called wavefronts. In three dimensions,
wavefronts are surfaces.

The propagation direction of a wave (i.e., the phase velocity vector) is always perpendicular
to the wavefronts.

The propagation velocity can depend not only on the location, but also on the
direction in which the wave moves. If this is not the case, we speak of an isotropic
medium.9 The water that uniformly flows down a river is homogeneous for an
observer resting on the riverbank, but not isotropic, because a wave traveling down
the river is faster for this observer than a wave traveling up the river.

We assume that the medium of our waves is homogeneous and isotropic in the
rest frame of its medium. Strictly speaking, for sound waves in the atmosphere, this
is not the case (see Footnote 6). In the vertical direction, the air density (or pressure)
changes according to the barometric formula. Directly above a dark surface (street

9 “Isotropic” comes from the Greek and means “having the same properties in all directions” (isos
= equal, tropos = direction, turn).
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O

Fig. 4.7 A radially propagatingwave. Left: Source is at rest relative tomedium and observer. Right:
Source moves relative to medium and observer

pavement) and for direct solar irradiation, these pressure differences are relatively
large and, e.g., lead to a fata morgana.

The propagation velocity of the wave (magnitude and direction) as a vector is
denoted by cW. As mentioned, in a homogeneous and isotropic medium, it does not
depend on the location or the direction.

For elementary waves in two or three dimensions, one usually chooses plane
waves. Plane waves are very special waves, whose wavefronts are planes. Therefore,
the propagation direction of plane waves is the same everywhere in the wave. For
plane waves, the propagation velocity cW does not depend on the location. This
statement is equivalent to that that wavefronts are lines or planes.

4.2.2 Waves in Moving Media: Qualitative Discussion I

Consider a medium that is homogeneous and isotropic in its rest frame and in which
a wave propagates. We discuss three cases in which the source and the observer are
at rest relative to the medium or the source or the observer move relative to it. All
relative motions are uniform, accelerations play no role, and the scenery that we use
is the inertial frame of the medium. We describe all phenomena from the point of
view of the medium, which is at rest, by definition.

Source and observer are at rest. The easiest case is when both, the source and
the observer are at rest. Under the assumption made above:

The magnitude of the propagation velocity cW is independent of the location and the
direction.

How does this look for a water wave? Imagine Alice, who is at rest relative to the
water, dipping a pen (the source) periodically into the water (see Fig. 4.7 on the
left side). This creates circular wave crests and troughs (wavefronts), which spread
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Fig. 4.8 Fire truck with a water jet pipe and a signal horn

concentrically around the source, and confirms the statement above regarding the
propagation velocity.

Now, wherever the observer O sits, she measures a fixed frequency ν and a fixed
wavelength λ = cW/ν for the wave. The wavelength is the shortest distance between
two wavefronts with ϕ = 0 and ϕ = 2π , respectively (or, more generally, with a
phase difference of 2π ). Furthermore, the velocity of the wave points away from the
source.

Source moves, observer is at rest. The second case that we consider is when the
source moves (relative to the medium). The observer is still at rest.

Velocity of the wave. Imagine that Alice walks with constant velocity along a straight
bridge over the water and periodically dips her pen into the water. The wavefronts
are still circular, but, as a family of circles, are no longer concentric (see Fig. 4.7 on
the right side). The fact that they are circular and their center is the location where
they have been created shows, that relative to the water’s surface, the waves still
propagate with the same velocity cW in all directions. Therefore:

The velocity of the wave (relative to the medium), which is created by a moving source,
does not depend on the velocity of the source!

No matter how fast the source moves relative to the water’s surface, the wave always
moves with the velocity cW relative to the that surface. The medium determines the
velocity of a wave, not the source.

Wave velocity vs. particle velocity. Obviously, this statement is specific to waves in
media. An example may help to clarify this. Consider a fire truck (see Fig. 4.8)
with a water jet pipe and a signal horn. Initially, the truck is at rest relative to the
observer Alice (and to the street). The signal horn is switched on and sends an
alarm signal with a frequency of 440Hz and a wave velocity equal to the speed of
sound cS. In addition, the water jet pipe is active and emits a water jet with a velocity
of vW = 20m/s = 72 km/h (this is the muzzle velocity relative to the street). Then,
the fire truck moves slowly with a velocity of v = 36 km/h directly toward Alice,
with the signal horn and the water jet pipe active.

What doesAlice observe? First, thewater jet, for her, has a velocity larger than vW,
because vW is the velocity of the water jet relative to the water tube and, because of
the Galilean addition of velocities, the velocity v of the fire truck has to be added
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to that of the water jet. Therefore, the water jet’s velocity relative to Alice is v′
W =

vW + v = 30m/s. For the velocity of the sound wave, however, nothing changes.
The wave’s velocity cS is relative to the medium (the atmosphere):

For particles (the water drops of the water jet), the velocity is always relative to the source,
while for waves, it is relative to the medium.

Doppler effect. There is, however, another effect in the case of waves. If Alice mea-
sures the frequency of the signal as the fire truck moves with velocity v toward her,
she gets 495Hz, which is considerably higher than the 440Hz emitted by the signal
horn. This is the Doppler effect,10 which is a consequence of the motion of the
source (or, as we will see, the observer) relative to the medium.

In Fig. 4.7 on the right side, one recognizes the Doppler effect immediately: first,
the distance between two wave crests (i.e., the wavelength λ) depends on the prop-
agation direction of the wave and the velocity of the source. Now, the wavelength λ

and the frequency ν of a wave depend, via νλ = cW, on the propagation velocity.
Due to the fact that the propagation velocity cW relative to the water is independent
of the direction, the frequency ν of the wave (at a location fixed relative to the water)
must depend on the velocity of the source and the propagation direction of the wave.
We will return to the Doppler effect in Sect. 4.2.4.

Retardation. Another interesting effect for moving sources is that the direction of the
wave’s velocity (at the location of the observer) and the direction, in which the source
is located, are different in general. This is shown in Fig. 4.9. At t1, the observer O
sees a wavefront and uses it to determine the wave’s velocity cW. This wavefront
has been emitted by the source at time t0 = t1 − TAO when it was at location A. The
traveling time TAO and the distance dAO between O and A is given by dAO = cWTAO .
Since the creation of the wave crest, the source has moved, and at time t1, it is at
location B. The source is not where you see it! This effect is called retardation.

The direction in which the observer sees the source (the apparent direction) and the true
direction of the source in general are different.

Source is at rest, observer moves. Now, we consider the situation when the
observer moves relative to the medium and the source is at rest.

Velocity of the wave. In Sect. 3.5, we have discussed the aberration of raindrops.
It rains. In the rest frame of the Earth’s surface,11 the raindrops fall vertically with
a velocity of vRE. Alice, however, runs, and she has to tilt the umbrella in order to
stay dry. If Alice’s velocity (relative to the Earth’s surface) is vAE, the velocity of
the raindrops in the reference frame of the running person is vRA = vRE − vAE (see
Fig. 3.6). This follows from the Galilean addition of velocities. The direction from
which the raindrops come shows aberration: different observers see the raindrops
coming from different directions.

Consider a similar casewithwaves inmedia.A long swimmingpool (seeFig. 4.10)
is full of water at rest. At one end of the pool, Alice creates a wave that travels through

10 Named after the Austrian physicist Christian Doppler (1803–1853).
11 Or, to be more precise, to the atmosphere.
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Fig. 4.9 Retardation. The direction AO from which the light comes and the direction BO of the
source’s location do not coincide
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Fig. 4.10 To the aberration of waves in media

the pool with the velocity cW for Alice. At some distance from Alice is Bob, who
stands on a bridge that crosses the pool in a perpendicular manner. Bob determines
the velocity cW′ of the wave. He recognizes that the wavefronts are orthogonal to the
pool, concludes that the propagation velocity points in the direction of the pool and
deduces that cW′ = cW. Now, Bob walks with velocity v perpendicular to cW along
the bridge and again determines the propagation velocity of the water wave. The
wavefront is parallel to his path, and therefore the propagation velocity of the wave
is again perpendicular to his path and the bridge. The observer Bob at rest relative
to the pool sees the wave coming from the same direction as the observer Bob who
moves perpendicular to the pool. This is completely different from the case of the
raindrops. The propagation velocity of the wave shows no aberration. The reason for
this is that the wavefront is a geometric quantity:

Wavefronts (in classical physics) show no aberration.

For a vector to be a velocity, we demand that, on occasion of a reference frame
change, it transfers according to the Galilean addition of velocities. The phase veloc-
ity does not do so. Therefore, in this sense, the phase velocity is not a velocity.
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Suppose that Bob now walks with velocity v along the edge of the pool toward
Alice. If he measures the wavelength, he gets the same result as Alice. But if he
measures the period of the wave, he gets a value smaller than T . Therefore, the phase
velocity cW′ = λν = λ/T is larger for him. He gets cW′ = cW − v. In the direction
perpendicular to the wave, the phase velocity indeed depends on whether he moves
or not.

Doppler effect. This is straightforward now. In the case when the source moves and
the observer is at rest (relative to the medium), we have seen that, for the case when
the source moves towards the observer, the wavelength is smaller and the frequency
higher for the observer.

Imagine now again the situation in Fig. 4.10 with Bob walking toward Alice. Bob
travels towards the wavefronts, and therefore the wavefronts arrive more frequently
at his location, which means that the frequency is again larger.

4.2.3 Waves in Moving Media: Qualitative Discussion II

Aberration and the Doppler effect. When discussing the person walking in the
rain,wehavefirst encountered the aberration phenomena.There is a source, the cloud,
which sends particles (raindrops) toward an observer. We found that the direction
from which the particles come depends on the velocity of the observer. We can
describe this in a different way, with two observers. In the example of the raindrops,
one observer would be at rest relative to the Earth’s surface while the other would
move with a velocity v relative to it. Then, the aberration phenomenon would be
that the two observers see the raindrops coming from different directions. In the
explanation given for the raindrops, the difference in directions (or aberration angle)
would be a result of the Galilean addition of velocities.

Aberration is very different from the Doppler effect – and not only because aber-
ration is about direction and the Doppler effect about frequency. In the case of the
Doppler effect, the velocity of the source and the velocity of the observer both matter
(both relative to the medium). The Doppler effect is an effect “between” the source
and the observer (and of their velocities relative to the medium).

In the case of the aberration, the velocity of the source relative to the medium
plays no role. Here, it is the difference between the velocities of the two observers
(and their velocities relative to the medium) that matters. Aberration is an effect
“between” two observers.

Aberration for wave packets. Unfortunately, we have seen that the phase velocity
shows no aberration, or, to be more precise: it shows a different type of aberration
than do particles (i.e., the raindrops). This is a problem, because we will see later
(in Sect. 4.4), that the aberration of light from stars cannot be explained with the
aberration effect of the phase velocity and that the aberration of raindrops works
much better, although not perfectly, to explain the aberration of starlight. But light
is a wave, and this means that we need a different explanation for the aberration of
waves.
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Fig. 4.11 Wave packets in
moving media. Left: Vector
addition of group velocities;
Right: Direction-dependency
of the group velocity
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The key is wave packets. We have seen that there are not only extended (or non-
localized) waves (e.g., the elementary waves), but also wave packets that may be
relatively well localized and almost resemble particles.

It turns out the the velocity of wave packets (i.e., the group velocity) transfers
according to the Galilean addition of velocities if the inertial frame is changed. This
is the same as for raindrops. There is one important difference, however. In the rest
frame of the medium, the group velocity is independent of direction and location.

Suppose that Alice is at rest relative to the medium. Then, the velocity of a wave
packet traveling in the direction e is given by vg = vge, with a fixed magnitude vg.

Now, let Bob move with velocity −v relative to the medium and Alice. From
Bob’s perspective, Alice and the medium move with velocity v relative to him. The
wave packet that, for Alice, travels in the direction e, for him, has the velocity

v′
g = vg + v = vge + v, (4.4)

which is visualized in Fig. 4.11 on the left side. In the figure on the right side, starting
from the center of the circle, the propagation velocity vg is drawn. It does not depend
on the direction; the tip of the vector lies on a circle. The vector of the propagation
velocity v′

g for Alice has its tail at a point that is shifted by the vector v from the center
of the circle. Its tip also lies on the circle, and therefore the magnitude (length) v′

g of
this vector depends on its direction.

In the reference frame that moves (uniformly) relative to the medium, the magnitude of the
group velocity depends on the direction.

Again, the magnitude of the propagation velocity of a wave is independent of its
direction only in a special inertial frame,12 which is the inertial frame in which the
homogeneous and isotropicmedium is at rest.A theory that states that the propagation
velocity of the waves does not depend on the direction, can only be valid in a special
inertial frame. This is because of the Galilean addition of velocities. The statement
“the sound velocity (at normal conditions) is 343m/s” can hold only in this special
inertial frame, which is the rest frame of the medium. A “relativity principle” similar
to that in classical mechanics cannot exist for such a theory.

From (4.4), we also see that the direction of the velocity of a wave packet from
Alice’s point of view is a different one than in the rest frame of the medium. This

12 We presume that the medium is not accelerated.



40 4 Waves and Light

νA
v

νB

Fig. 4.12 Changeof the frequency for afixed source and amovingobserver (relative to themedium).
The curves are wavefronts

is the aberration of waves. The difference δ = ϕ′ − ϕ of the angles ϕ′ and ϕ (see
Fig. 4.11) is the aberration angle.

We will see that, with wave packets, we can gain a first understanding of the
aberration of starlight. But the situation with waves in media is unsatisfying. We
have elementary waves that move with the phase velocity and wave packets that
move with the group velocity. And these velocities transform in different ways: one
does transform according to the Galilean addition of velocities, the other one does
not. If both velocities point in the same direction in one reference frame, they won’t
necessarily do so in a different reference frame.

The special theory of relativity will resolve this problem, and we discuss this
in detail in Sect. 12.5. Insofar, we will assume in this book that the propagation
velocities for the considered waves show aberration (as wave packets do) and behave
according to the Galilean addition of velocities. Therefore, (4.4) holds, and we will
now understand the wave velocity cW to be the group velocity of a wave packet.

4.2.4 Doppler Effect

Overview. In Sect. 4.2.2, we have considered the situation when the observer
is at rest relative to the wave’s medium but the source moves. The observer then
measures a frequency different from that created by the source (which also depends
on his position relative to the source and its motion), and we have encountered the
same effect when the source is at rest and the observermoves.We now investigate this
Doppler effect more systematically using the example of sound waves that propagate
in the resting atmosphere with the speed of sound cS.

As you would expect, our actors Alice and Bob will be with us. Alice drives the
source and Bob is the observer.

Moving observer. We start with the case of a moving observer. In Fig. 4.12, you see
Alice with the source A, which is at rest relative to the medium. Furthermore, there
is Bob, the observer B. The source produces a sound wave with the frequency νA.
Once in the time interval�tA = 1/νA (the wave’s period), the amplitude crosses zero
from negative to positive values. This is indicated by the wavefronts in the figure.
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The question is which frequency νB the observer Bob measures. If he does not
move relative to the medium, the wavefronts arrive at his location with period�tB =
�tA and therefore νB = νA.

If Bob moves toward the source, he runs into the wavefronts. The period �tB

between two subsequent wavefronts then is smaller than �tA, and the frequency νB

measured by the observer is therefore larger than νA. If Bob moves away from the
source (this means vA < 0), the frequency νB is smaller than νA.Wewill demonstrate
in a minute that

νB = νA · cS − vB

cS
, (4.5)

where vB is the velocity of the observer Bob B relative to the medium (the sign of vB

is negative if the observer B moves toward the source A and positive in the other
case) and cS the speed of sound.13

Moving source. Instead of having the observer moving relative to the source, we can
also move the source and have the observer be at rest (both relative to the medium).
Figure 4.7, right side, shows what happens then. If the source at a particular location
(in the reference frame of the medium) creates a wave, then the wavefronts propagate
radially. But due to the fact that the source moves, the next wavefront starts from a
different location than the former. The wavefronts are not concentric anymore. If the
source moves toward the observer Bob, the latter measures a frequency νB that is
larger than νA. And if the source moves away from the observer B, the frequency νB

is smaller than νA. We have

νB = νA · cS
cS − vA

(4.6)

(the sign of vA is positive if the source A moves toward the observer B and negative
in the other case).

Derivation and the general case. It is time now to derive the formula for the
general case, in which both, the source Alice and the observer Bob move relative to
themedium.We describe the situation in the rest frame of themedium (see Fig. 4.13).
Alice and Bob move away from each other in opposite directions. The trajectory of
the observer Bob is given by

xB(t) = xB,0 + vBt,

and that of Alice with the source is

xA(t) = xA,0 + vAt.

Here, we assume that xB,0 > xA,0. In the figure, we have additionally assumed
that vA < 0 < vB , which is not necessary for the derivation.

13 We suppose that |vB | < cS . For vB = cS , Eq. (4.5) is still correct. νB = 0 then means that the
wavefronts for Bob do no longer move. For vB > cS , we get νB < 0. The frequency in this case,
however, is still larger than zero, but the traveling direction of the wave changes.
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Fig. 4.13 For the derivation
of the Doppler effect. The
blue line represents the
source and the green line the
observer. The red lines show
the motion of the wavefronts
of the wave produced by the
source
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The source emits a wave. At time tA,1, the wavefront W1 with phase ϕ = 0 leaves
the source. The next wavefront W2 with ϕ = 2π leaves the source at time tA,2. For
the source, the frequency of the wave is given by

νA = 1

tA,2 − tA,1
.

The wavefronts move toward the observer Bob. They arrive there at tB,1 and tB,2,
respectively. Bob measures the frequency

νB = 1

tB,2 − tB,1
.

To determine this frequency, we have to express the times tB,1 and tB,2 of the
observer as a function of the times tA,1 and tA,2 of the source.

The wavefront W1 has the trajectory

x(t) = cS · (t − tA,1) + xA,1

= cS · (t − tA,1) + xA,0 + vAtA,1

= cSt + xA,0 + (vA − cS)tA,1.

We determine the t-coordinate tB,1 of the intersection point of this trajectory with
that of Bob:

xB,0 + vBtB,1 = cStB,1 + xA,0 + (vA − cS)tA,1

=⇒ xB,0 + (vB − cS)tB,1 = xA,0 + (vA − cS)tA,1.
(4.7)
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We perform the same for the wavefront W2 and get

xB,0 + (vB − cS)tB,2 = xA,0 + (vA − cS)tA,2. (4.8)

Now, we only have to subtract (4.8) from (4.7), which yields

(cS − vB)(tB,2 − tB,1) = (cS − vA)(tA,2 − tA,1).

For the ratio of the frequencies νB/νA = (tA,2 − tA,1)/(tB,2 − tB,1), we immediately
get

νB

νA
= cS − vB

cS − vA
(for xA,0 < xB,0) (4.9)

for the ratio of the frequency νA emitted by the source and the frequency νB measured
by the observer Bob. This is the general formula for the Doppler effect (in one
dimension). One easily recognizes the special cases (4.5) and (4.6).

In the derivation,we have assumed that xA,0 < xB,0. In the other case, xB,0 < xA,0,
the source has to send the wave in the negative x-direction. We can take this into
consideration in formula (4.9) simply by replacing cS with −cS. The result then is

νB

νA
= cS + vB

cS + vA
(for xB,0 < xA,0). (4.10)

The whole derivation only works if |vB | and |vA| are smaller than cS. Observer
and source must not move faster than the wave in the medium.

There is still an important point to mention concerning formulas (4.9) and (4.10).
The frequency shift (or change) depends explicitly on the two velocities vA of Alice
with the source and vB of the observer Bob (both relative to the medium) and not
just on their difference vB − vA. We will see in Chap. 5 that, for electromagnetic
waves (for instance, for light), there is actually no such medium. In this case, the
Doppler effect can depend only on the difference vB − vA of the velocities of source
and observer.14 If both, vB and vA are much smaller than cS, we get, from (4.9), using
the approximation 1/(1 + δ) ≈ 1 − δ, which is valid for |δ| � 1,

νB

νA
≈ 1 − vB − vA

cS
(for vB, vA � cS and xA,0 < xB,0).

Therefore, even in the presence of a medium, the frequency shift in the case of small
velocities depends only on the relative velocity (difference) of observer and source.

Exercise 13: Explain why the derivation above no longer works for |vB | > cS.
What happens if |vA| is larger than cS? How is this related to the sonic boom of
an airplane?

14 One should be more precise: the Doppler effect can depend only on the difference vB − vA of
the velocity vA of the source when the wave was emitted and the velocity vB of the observer when
the wave was observed.
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Fig. 4.14 Alice (A) produces spherical waveswithwave velocity vp. Bob (B)moveswith velocity v
and determines the wave velocity v′

p

Exercise 14: Construct the following 2 · 2 · 2 = 8 cases:

• Source at rest or observer at rest (relative to medium);
• Observer to the right of the source or to its left;
• Velocity of the source positive or negative.

An example is the case when (a) the observer is at rest (relative to the medium),
(b) is located to the left of the source, and (c) the source’s velocity is positive.
For all these cases, check that the formulas (4.9) and (4.10) correctly predict an
increase or a decrease of the frequency νB (relative to νA).

4.2.5 Aberration

The behavior of the wave velocity (a. k. a. phase velocity). Now, we consider the
propagation velocity vp of a wave for a moving observer (remember again that, for
a moving source, the source velocity does not depend on the velocity of the source).

To measure the wave’s velocity, the observer does two things. First, she measures
the wavelength λ′, i.e., the distance from one wave crest to the next in the direction
perpendicular to thewavefront. Shegetsλ, thewavelength of thewave in the reference
frame of the medium: the lengths that she measures do not depend on her velocity
relative to the medium. Then, she measures the time T ′ that elapses from one wave
crest passing by her until the nextwave crest. This is thewave’s period in her reference
frame. Then, she calculates the magnitude of the wave velocity vp = λ′/ν ′.

To determine the behavior of the wave velocity, she changes the reference frame;
we consider the situation in Fig. 4.14, left side. Alice, who is at rest relative to the
medium, creates a spherical wave (with wavefronts that are concentric circles). Bob,
the observer, at t = 0 is located at B and moves with uniform velocity v relative to
the medium. We introduce an x-y-coordinate system with the origin in B and with
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the x-axis pointing in the direction of v. The situation is shown again in Fig. 4.14 on
the right, where we assume that Bob is far from Alice, and therefore the wavefronts
next to him are almost straight lines.

At time t = 0, Bob is at the origin of the coordinate system and the first wavefront
(with a phase difference of 2π relative to the first one) arrives at his location. When
does the second wavefront arrive?

The observer moves with velocity v = (vx , 0) and the x-coordinate of his position
is x = vx t . The second wavefront moves according to x = vpt − λ. The wave’s
period T ′, as measured by Bob, is then given by vx T ′ = vpT ′ − λ or T ′ = λ/(vp −
vx ). For the wave’s velocity, this yields

v′
p = λ/T ′ = vp − vx .

We can write this as a vector equation, which eases the comparison to the Galilean
addition of velocities (3.5). To do so, we note that the unit vector ek , which is
perpendicular to the wavefront, is equal to the unit vector ex in the x-direction.
Therefore, we have vx = vek . Thus, we know that the phase velocity is perpendicular
to the wavefront, and therefore v′

p = v′
pek = (vp − vx )ek and, eventually,

v′
p = vp − (vek)ek .

The second term (vek)ek is the projection of the velocity v onto ek , the direction
perpendicular to the wavefront.

The special cases discussed in Sect. 4.2.2 can easily be seen. When Bob walks
perpendicular to the wave’s velocity, we have v ⊥ ek , and therefore v′

p = vp −
(v pek)ek = vp. If he walks parallel to the wave’s velocity, we have v ‖ ek , and there-
fore v′

p = vp − (v pek)ek = vp − v. We confirm that the velocity does not behave
(transform) as a velocity. If it did, it would transform according to v′

p = vp − v

(wrong!), but this is not the case.
Following all of our discussions on the phase and the group velocity, from here

on, we will use cW for the group velocity. This means, in particular, that we can use
the Galilean addition of velocities for the transformation of cW.

Direction change with aberration. Let us focus on the aberration angle now, i.e.,
the difference of the angles under which the different observers see a wave source.

Imagine a wave that, in the rest frame S of its medium, propagates with the veloc-
ity cW = cWe, where e is a unit vector that represents the propagation direction.
Using (4.4), we calculate the velocity cW′ of the wave for Bob, who moves relative
to the medium with the velocity −v (for Bob, the medium moves with the veloc-
ity v relative to him). To do so, we introduce the unit vector e′, which points in the
direction of the velocity cW′, and the direction-dependent magnitude cW′(e′), and
write cW′(e′) = cW′(e′)e′.

Next, we choose the coordinate systems in the reference frames of the medium
and of Bob such that like coordinate axes are parallel and v points in the direction
of the x- and x ′-axes. By ϕ, we denote the angle between the x-axis and e, and
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by ϕ′, that between the x ′-axis and e′ (see Fig. 4.11 on the right side). Then, we get,
from (4.4),

cW
′
(
cosϕ′
sin ϕ′

)
=

(
v

0

)
+ cW

(
cosϕ

sin ϕ

)
=

(
cW cosϕ + v

cW sin ϕ

)
. (4.11)

To determine cW′, we eliminate ϕ′ by adding the squares of the components of the
vector equation. It follows that15

cW
′ 2 = (cW cosϕ + v)2 + cW

2 sin2 ϕ

= cW
2 + 2vcW cosϕ + v2

= cW
2

(
1 + 2

v

cW
cosϕ + v2

cW2

)

= cW
2
(
1 + 2βW cosϕ + β2

W

)

with the abbreviation βW = v/cW, and therefore

cW
′(ϕ) = cW

√
1 + 2βW cosϕ + β2

W. (4.12)

If cW and v point in the same direction, we have cosϕ = 1 and, consequently, cW′ =
cW + v. If the vectors point in opposite directions, we have cW′ = cW − v. For all
other directions, cW′ lies between cW − v and cW + v. This can also be inferred easily
from Fig. 4.11 (right side).

To get an equation for the angle ϕ′ as a function of ϕ, one can divide the y-
component of (4.11) by the x-component. This yields

tan ϕ′ = cW sin ϕ

cW cosϕ + v
= sin ϕ

cosϕ + βW
, (4.13)

as shown in Fig. 4.15.
For small anglesϕ, in (4.13),we canuse the approximations sin ϕ ≈ ϕ and cos ϕ ≈

1 and get tan ϕ′ ≈ ϕ/(1 + βW). If ϕ is small, so is ϕ/(1 + βW) and tan ϕ′. Thus,
tan ϕ′ ≈ ϕ′ holds, and we have ϕ′ ≈ ϕ/(1 + βW). From Fig. 4.15, one sees that this
is a good approximation that holds for angles smaller than roughly 3π/4.

In the extreme case of ϕ = π , when e and v point in opposite directions, we
get tan ϕ′ = 0 or ϕ′ = π (if βW 	= 1).

Another special case is given for βW = 1; in that case, with the help of the rela-
tion sin ϕ/(cosϕ + 1) = tan(ϕ/2), we get ϕ′ = ϕ/2.

Fig. 4.15 shows that the most noticeable aberration happens in the region
between ϕ ≈ π/2 and ϕ ≈ 3π/4.

15 The same can be derived more directly by taking the square of (4.4). We choose the longer way
because we will also need the equation for the y-component.
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Fig. 4.15 Aberration of the propagation direction of a wave. The angles ϕ and ϕ′ are defined in
Fig. 4.11 on the right side

The boat crossing the river. Everybody has a natural feeling for the change of
speed and direction that occurs when the (inertial) reference frame is changed for
another one. We experience this, for instance, when we row a boat across a flowing
river. Before entering the river, we look at the situation standing on the river bank.
The goal is clear: we want to cross the river by the shortest path, which is that
perpendicular to the river. Once we are in the river, at rest relative to the river, the
situation is different. If we row perpendicular to the river, the flowing water drives
us away and we will not cross it by the shortest path.

Let the water flow down the river with velocity v. Furthermore, S is the rest
frame of the water and S′ the rest frame of the river bank. Let the boat move with
velocity vBoat in the rest frame S of thewater (see Fig. 4.16). Then, in the rest frame S′
of the river bank, the boat moves with velocity v′

Boat = vBoat + v.
We discuss two cases. In the first case, as shown in Fig. 4.16a, the boat moves in S

perpendicular to the river bank, vBoat ⊥ v. Thus, ϕ = π/2, and therefore tan ϕ′ =
vBoat/v. Note that this is consistent with (4.13). For vBoat 
 v, hence, we have ϕ′ ≈
π/2, and for vBoat = v, we get ϕ′ = π/4, which is expected.

In the second case, illustrated in Fig. 4.16b, the boat moves such that it reaches
the opposite side of the river bank. Then, ϕ′ = π/2, and from the figure, we
get sin(ϕ − π/2) = v/vBoat or cosϕ = −v/vBoat. To see that this is consistent
with (4.13), wewrite this formula in the inverted form: cot ϕ′ = (cosϕ + βW)/ sin ϕ.
In our case, cot ϕ′ = 0. Provided that sin ϕ 	= 0, this requires that cosϕ′ = −βW,
which is consistent with our finding from the figure. The equation cosϕ = −v/vBoat
only has a solution if v ≤ vBoat. If the boat’s velocity relative to the water is smaller
than the velocity of the river relative to the river bank, it’s impossible for the boat to
cross the river by the shortest path.
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Fig. 4.16 aLeft: The boatmoves in the rest frame of thewater, perpendicular to the river’s direction.
b Right: The boat moves such that it reaches the opposite side of the river bank

Note the very loose connection to our discussion on the aberration of waves in
media. We assumed (see the discussion in Sect. 4.2.3) that the wavefronts transform
as velocity vectors, and therefore reduce our investigation of the effect of aberration
to scrutinizing the vector addition formula. In the situation with the moving boat
in the river, the description is also based on the velocity vectors addition formula.
The fact that there are possibly water waves in the river is not related at all to our
investigation of waves.

4.2.6 Waves in Media and the Relativity Principle

An observer who is at rest relative to a homogeneous and isotropic medium uses
different laws of Nature than a moving observer. For the former, the propagation
velocity of waves in media is independent of the direction, but for the latter, it is
not. But this does not imply that the Galilean principle of relativity would not hold
for waves in media. The important point here is that the observer and the medium
have to be transformed to the other inertial frame. This requirement, however, is not
a new one. If I move my equipment that I use to make free-fall experiments, to the
Moon, it will also yield different results. The Galilean principle of relativity still
holds because, if I take the equipment to a different location in space, I also have to
take the Earth with me. The Earth is an essential part of my experiment.
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4.3 Light as a Wave and the Supposed Luminiferous Aether

4.3.1 Light is a Wave

Light is an electromagnetic wave and is described byMaxwell’s equations of elec-
trodynamics. From these, the wave equation16

∂2

∂ r2
φ(r, t) − 1

c2
∂2

∂t2
φ(r, t) = 0 (4.14)

for light in vacuum follows. In an electromagnetic wave, the electric and magnetic
fields oscillate. The quantity φ represents one of the components of these fields. The
equation above expresses that the propagation velocity of electromagnetic waves
is the same at each location and in all directions. The “medium”, therefore, is
homogeneous and isotropic. The velocity c is the speed of light, which has the
value c = 299,792,458m/s.

You are not expected to understand the wave equation. Just remember that
it describes the behavior of the electric and magnetic fields in electromagnetic
waves, and that light is an electromagnetic wave. The differential quotients ∂2/∂t2

and ∂2/∂ r2 simply denote the second derivatives of the wave function φ(r, t)
with respect to the time and space coordinates, respectively. If you like, plug the
wave φ(x, t) = φ0 sin(kx − ωt) into the one-dimensional version of the wave equa-
tion φ′′(x, t) − φ̈(x, t)/c2 = 0 (the two primes indicate the second derivative with
respect to the x-coordinate and the two dots with respect to time) and check what
results.17

Between classical mechanics and electrodynamics, there is an important differ-
ence that is essential for the special theory of relativity. Directly in the fundamental
equations of electrodynamics, a (fixed) velocity appears, the speed of light c. There
is no such thing in Newton’s laws.

4.3.2 The Medium of the Light Wave?

We have seen that the equations of classical mechanics (Newton’s laws) are valid
in all inertial frames and, in particular, that they have the same form in all these
reference frames. This is what the Galilean principle of relativity says. The relation

16 Actually, one should say “the wave equation of electrodynamics” of “the wave equation of light”,
because there are many other wave equations, such as, for instance, that for sound waves. This
chapter, however, is about light, so we can simply keep saying “wave equation” without creating
any confusion.
17 If you made no mistake in the calculation, you will have learned that the wave φ(x, t) =
φ0 sin(kx − ωt) is a solution to the wave equation provided that ω/k = c, which is the disper-
sion relation for light in vacuum.
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between the values of a physical quantity in different inertial frames then is given by
the Galilei transformation.

What about the wave equation (4.14) (or Maxwell’s equations of electrodynam-
ics)? In which reference frame does it hold? In just one special reference frame or in
all inertial frames? This was one of the central questions of physics that ultimately
led to the special theory of relativity.

Before Einstein, physicists thought that, in analogy to waves in media, there
would also be a medium in which light waves propagate. Exactly as we discussed in
Sect. 4.2. And they called this hypothetical medium for electromagnetic waves (or
light) the luminiferous18 aether. What water is for water waves and the atmosphere
for sound waves in the atmosphere, the luminiferous aether would be for light waves.
Often, the luminiferous aether was called just the aether.19

We will not use the concept of the luminiferous aether here. It is no different from
saying that the wave equation is only valid in a special inertial frame and that it has
a different form in other reference frames (also in other inertial frames).20 We call
this (hypothetical) special inertial frame the special inertial frame of electrodynam-
ics.21 It plays the same role as the luminiferous aether and is the reference frame in
which (4.14) holds. But do not get used to this special inertial frame, because, in a
few pages, we will see that there is no luminiferous aether (or special inertial frame).
Light does not need a medium to exist! But until then, we will keep following the
line of thought of classical physics.

We have seen in Sect. 3.4.2 on the Galilei transformation what Bob has to do in
order to describe these experiments. He must apply the wave equation in the special
inertial frame (which is Alice’s reference frame) and then transform the results to his
reference frame. Alternatively, he can transform the wave equation to his reference
frame and then solve it. Hewould get awave equation,where the propagation velocity
depends on the direction.

That electrodynamics should be valid in the same form in all inertial frames was
an absurd idea to physicists before Einstein. If electrodynamics (and, in consequence,
the wave equation) were to hold in all inertial frames in the same way that classical

18 luminiferous: This word comes from the Latin. It is composed of lumen, which means “light”
and -ferous, which comes from the Latin ferre and means “to bear, carry, support”. So, luminiferous
means “light-carrying”.
19 In chemistry, “ethers” is a widely used name for a class of organic compounds. They have nothing
to dowith the luminiferous aether. Theword comes from the Latin aeternus, whichmeans “eternal”.
Aeternus, on the other hand, comes from the Greek αιθήρ, which stands for the blue heaven. So, it
means something like “everlasting” or “perpetual”.
20 There is one difference between the luminiferous aether and a special inertial frame, and this
difference played a historical role. The medium of a wave – here, the luminiferous aether – does not
necessarily have to be rigid. It could be non-homogeneous and/or non-isotropic, and these properties
also could depend on time. For the atmosphere, this is exactly the case and leads to effects like the
afterglow or the fata morgana, as we explained already. An inertial frame per definition is always
rigid. If the luminiferous aether, however, were not rigid, the wave equation (4.14) could not be
strictly valid.
21 The interplay of classical mechanics and electrodynamics shows that this special reference frame
indeed has to be an inertial frame.
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mechanics does, there would be no special inertial frame and Alice and Bob would
get the same velocity c for the same light wave. Fig. 1.1 makes this statement clear.
Alice is in a inertial frame. Bob moves relative to her with the constant velocity v.
Now, Alice sends a light beam in Bob’s direction. She measures the velocity of the
light beam and gets the speed of light c. The light beam passes by Bob, who then
measures its velocity as well. Were wave equation (4.14) to be valid in the same form
for Bob, he would also get the speed of light c. But this is in contradiction to the
Galilean addition of velocities (and, consequently, to the Galilei transformation).

According to the Galilean addition of velocities, the speed of light for Bob should
depend on the direction (in the situation shown in Fig. 1.1, he should get c − v for
the speed of light). For physicists before Einstein, the wave equation could not be
valid for all inertial frames. There was a need for a special inertial frame in which
the wave equation is valid in the form of (4.14).

If the wave equation were valid in each inertial frame, then one and the same
light beam would have the same velocity c in inertial frames moving relative
to each other. This contradicts the Galilean addition of velocities.

4.4 Stellar Aberration

4.4.1 Bradley’s Discovery

As an interesting practical example for the aberration of light, we discuss stellar
aberration. The result that we will work out in this section, however, is not yet
completely correct. Later, in Sect. 12.5.3, we will see that the special theory of
relativity yields important corrections to the result.

Bradley’s discovery: stellar aberration. When observing stars, one finds an aber-
ration effect. This phenomenon was discovered in 1725 by James Bradley22 and is
called stellar aberration: if you measure the position of a star, you will find that, in
the course of a year, it changes and draws a small ellipse in the heavens.

Clearly, this statement is uselesswithout giving the coordinate system inwhich the
measurements are described. The first thing to note is that the position of a star here
is described by the direction in which we see it. Its distance is irrelevant. The same
situation prevails when specifying a location on the Earth’s surface. One also gives
just the direction of the location, as seen from the center of the Earth. In practice,
one places an orthogonal coordinate system, the geographic coordinate system, with
its origin at the center of the Earth in such a way that the z-axis corresponds to the
rotation axis of the Earth. The orientation of the coordination system is then fixed by

22 English physicist, 1692–1762.
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Fig. 4.17 The historic prime meridian, as marked at the Royal Observatory in Greenwich, London

N

S
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S

Fig. 4.18 Definition of the ecliptic geocentric coordinate system

defining a point on the Earth that lies on the half plane y = 0, x > 0. This point is
given by the marking of the prime meridian at the Royal Observatory in Greenwich,
London (see Fig. 4.17). To specify the location of an arbitrary point P on the Earth’s
surface, one uses the polar angle ϑ , which is the angle between the line segment O P
and the z-axis and corresponds to the geographic latitude, and the azimuthal angle ϕ,
which is the angle between the projection of O P to the x-y-plane and the x-axis and
corresponds to the geographic longitude.

To specify the location of a star, one can use the ecliptic geocentric coordinate
system (egcs). Its origin is at the center of the Earth (that’s why it is called “geo-
centric”), and consequently it moves together with the Earth around the Sun (see
Fig. 4.18). The z-axis of the egcs, however, does not coincide with the rotation axis
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Fig. 4.19 Aberration
ellipses

1 2

34 Earth
orbit

Ecliptics

of the Earth, but is perpendicular to the orbital plane upon which the center of the
Earth moves on its annual journey around the Sun. This orbital plane is called the
ecliptic (see Fig. 4.19), which explains the other adjective in the name of the egcs.
The apparent orbit, which the Sun, as seen from the Earth, described in front of the
fixed star sky in the course of a year, thus lies on the x-y-plane of the egcs. The
direction of the x-axis is given by the intersection of the equatorial plane of the Earth
and the x-y-plane of the egcs and is called the spring equinox.23 The Earth, on
March 20, is usually in the position of the spring equinox.24

Similar to the geographic coordinate system, the direction of a star is determined
by means of two angles. These are the ecliptic longitude λ, which corresponds to the
geographic longitude, and the ecliptic latitudeβ,which corresponds to the geographic
latitude. Due to the way we fixed the x-axis, the coordinate system does not rotate
with the Earth around itself. The effect of the Earth’s rotation is compensated for in
this coordinate system (but not the effect of the orbital motion of the Earth around
the Sun, which eventually leads to stellar aberration).25

Now, if one measures the direction of stars in the course of a year and plots
their coordinates in the egcs, one gets small ellipses, the aberration ellipses (see
Fig. 4.19). At the poles of the ecliptic, the ellipses become circles, and on the ecliptic,
they become line segments. The semi-major axis of the ellipses has the same size
of 20.5′′ for all stars (1′′ is an arc second and is equal to 1/3600th of an angular
degree, so 1′′ = 0.000278◦).26 A coin, seen from a distance of 10 km, has a similar

23 The term “spring equinox” is actually confusing, because it occurs at the beginning of fall for
the southern hemisphere. Therefore, it is better to use the term “March equinox”.
24 In some years, it can already be so on March 19 or may not get there until March 21.
25 The ecliptic is defined by the orbital momentum of the Sun-Earth system and is very stable. The
spring equinox is defined by this concept, along with the orbital momentum of the Earth (i.e., the
equatorial plane). This is less stable and shows precession and nutation, which is mainly due to the
fact that the Earth exchanges orbital momentum with the Sun and the Moon. The influence of these
effects on the determination of the stellar aberration, however, is negligible.
26 There is an effect with similar consequences as stellar aberration, the stellar parallax. In that,
we also have ellipses, but the size of them depends on the distance of the star from the Earth. The



54 4 Waves and Light

xS

yS

Earth

Sun

Earth
orbit

vES

ϕ
vRS

xE

yE

Earth

Sun

−δ
vRS vRE

−vES

ϕ ϕ′

−vES

Fig. 4.20 Regarding the discussion of stellar aberration. Left: As seen from the Sun. Right: As
seen from the Earth

size. In comparison, the apparent diameter of the Moon in the heavens amounts to
about 1860′′. Note that stellar aberration can only be observed because it changes in
the course of a year! A constant stellar aberration would not be visible.

As indicated in Fig. 4.19 by the digits and the color of the points, the aberration
ellipses are not in phase with the position of the Earth in its orbit around the Sun
but are rather 90◦ ahead. This is remarkable, and it shows that the stellar aberration
cannot depend on the position of theEarth, but only on its velocity.HowcanBradley’s
observation be explained?

4.4.2 Bradley’s Explanation

The explanation for the stellar aberration is based on the idea that it is a consequence
of the orbital motion of the Earth around the Sun, and therefore, the direction of the
light coming from the star, according to (3.5), is different in the respective reference
frames of the Earth and the Sun—or the Earth in different positions.27 The difference
in direction, or aberration angle δ, only depends on the relative velocity between
the observers, i.e., Earth and Sun or the Earth in different positions, and the angle

stellar parallax here is negligible. Even the star closest to the Earth (not considering the Sun), which
has the largest stellar parallax, draws an ellipse that is not even 1′′ in size.
27 Note that, while the Doppler effect is an effect between the source and the observer and depends
on their relative velocity, stellar aberration is an effect between two observers (the Earth and the
Sun or the Earth in different positions) and depends only on the relative velocity of these different
observers.
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between the direction from which the star light comes28 and the direction of the
relative velocity between the observers.

We will discuss the details now, starting with the perspective of the Sun for which
we use the ecliptic heliocentric coordinate system(ehcs). Once this is done, we switch
to the perspective of the Earth, for which the ecliptic geocentric coordinate system
(egcs) is useful. The coordinate axes of both coordinate systems are parallel. The
only difference between the egcs and the ehcs is that the origin of the former is in
the center of the Earth while the origin of the latter is in the center of the Sun.

Perspective of the Sun. Here is the perspective of the Sun. Consider the star R
whose light, as seen from the Sun, comes from a direction that lies in the ecliptic,
and therefore β = 0 (its ecliptic latitude vanishes) and has an ecliptic longitude λR .
The Earth’s velocity points towards ecliptic longitude λE . The angle ϕ between
the direction of the Earth’s velocity and the direction from which the star’s light
comes and which is the relevant angle to describe stellar aberration is then given
by ϕ = λR − λE .

In Fig. 4.20 on the left side, we show this for the moment when the Earth’s
velocity points in the x-direction, the direction of the spring equinox (λ = 0). Then,
the angle ϕ is just the angle between the direction which the Star’s light comes from
and the x-direction. In this case, the Earth’s velocity is given by

vE S = vE

(
1
0

)
,

where vE is the magnitude of the orbital velocity of the Earth.29 The light from the
star, relative to the Sun, has the velocity

vRS = −c

(
cosϕ

sin ϕ

)
.

We assume that the Sun is at rest relative to the aether, so the velocity of light c is
the same in all directions.

Perspective of the Earth. Next, we take the perspective of the Earth and transform
the velocities to the egcs. To do so, we use the Galilean addition of velocities (3.5),
where we identify Alice, Bob, and Claire with the Sun, the Earth, and the star,
respectively. Then, vRS = vRE + vE S , and therefore

28 The light coming from the star takes a lot of time to travel to the Sun. Therefore, when the Sun
sees the star in a certain direction, the star is possibly already at a position in a completely different
direction. The actual direction of the star plays no role.
29 For simplicity, and because it does not have an effect on stellar aberration, we assume that the
Earth’s orbit is a circle around the Sun and that the magnitude of the Earth’s velocity is constant.
Then, the direction of the Earth’s position and the Earth’s velocity (both relative to the Sun) are
perpendicular.
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vRE = vRS − vE S =
(−c cosϕ − vE

−c sin ϕ

)
. (4.15)

If we subtract the velocity vE S of the Earth from all velocities in Fig. 4.20 on the
left side, we get the situation in Fig. 4.20 on the right side. From the perspective of
the Earth, the Sun and the star have an angular distance of π − ϕ′. The direction,
from which the starlight comes, encloses an angle of ϕ′ with the x-axis.30 From

vRE = −c′
(
cosϕ′
sin ϕ′

)
,

we have

tan ϕ′ = vE R,y

vE R,x
= sin ϕ

cosϕ + βE
, (4.16)

where βE = vE/c′ (see also (4.13), where we talked about general waves in media).
The orbital velocity of the Earth is about 30 km/s and the speed of light31 close
to 300.000 km/s, and therefore we have βE = vE/c′ ≈ 10−4. This shows that the
effect is small.

If we assume that the Sun is at rest relative to the aether, then the Earth won’t be
and the light velocity c′ will depend on the direction, as shown in Fig. 4.11 on the
right side.

The aberration angle for the direction of the star as seen by the Sun and the Earth,
respectively, is given by δ = ϕ′ − ϕ, and we have

tan(ϕ + δ) = sin ϕ

cosϕ + βE
. (4.17)

Using the angle sum formula for the tangent, and after some manipulations, we get
a formula for the aberration angle δ:

tan δ = −βE sin ϕ

1 + βE cosϕ
.

If, from the perspective of the Sun, the Earth and the star are in the same direction,
we have ϕ = −π/2 and the orbital velocity of the Earth is exactly perpendicular to
the direction of the star. This corresponds to the Earth positions 2 or 4 in Fig. 4.19.
The stellar aberration then amounts to

30 In principle, we carried out this calculation already in Sect. 4.2.5. It makes sense, however, to
repeat it here. Note that we use a different definition of ϕ here.
31 From (4.12), we know that c′ = c′(ϕ) =

√
c2 + 2vE c cosϕ + v2E =

c
√
1 + 2(vE/c) cosϕ + (vE/c)2 ≈ c · (1 + βE cosϕ), and therefore, in the expression vE/c′,

the difference between c′ and c is negligible. This means that we can relax and use vE/c instead
of vE/c′.
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Fig. 4.21 Velocity of the
Earth (green vector) and
direction (red vectors), in
which an observer on Earth
sees the light from the star
(orange vectors), for
different positions of the
Earth along its orbit around
the Sun x

y

ϕ = 0

ϕ = π/2

ϕ = π

ϕ = 3π/2

tan δ = βE or δ ≈ βE , (4.18)

is maximal for all possible angles ϕ and corresponds to the semi-major axis of
the ellipses in Fig. 4.19. With the orbital velocity of the Earth, one gets a value
of about ϕ′ = 10−4 = 5.7 × 10−3◦ = 20.5′′, which is about one hundredth of the
apparent diameter of the Moon – exactly as Bradley measured.

Fig. 4.21 shows how δ changes with ϕ in the course of a year. If the Earth and the
star, as seen from the Sun, have an angular distance of 90◦, we have ϕ = 0 and the
orbital velocity of the Earth is parallel to the direction of the star (Earth position 1
or 3 in Fig. 4.19). Then, δ = 0. If the Earth, as seen from the Sun, is in the direction
of the spring equinox, we have ϕ = 3π/2, the Earth’s velocity is perpendicular to the
direction from which the Sun’s light comes and the aberration angle δ is maximal.

Digression: Sun moves uniformly relative to the aether. In the derivation
of (4.18), we assumed that the Sun is at rest relative to the aether. What changes
if this is not the case?

Suppose the Sun moves uniformly with βSL relative to the aether (L stands for
luminiferous aether) and ϕ′ is the angle under which the star appears for the Sun.

Then, from vRS = vRL − vSL , we get

c′

c

(
cosϕ′
sin ϕ′

)
=

(
cosϕ

sin ϕ

)
+

(
βSL

0

)
,

where c′ = |vRS|, or
cot ϕ′ = cosϕ + βSL

sin ϕ
.

We consider the case of ϕ′ = π/2, which implies that cot ϕ′ = 0 or cosϕ = −βSL .
The Earth moves relative to the aether with the velocity βE L and the star appears

in the direction ϕ′′.



58 4 Waves and Light

Then, from vRE = vRL − vE L , we get

c′′

c

(
cosϕ′′
sin ϕ′′

)
=

(
cosϕ

sin ϕ

)
+

(
βE L

0

)
,

where c′ = |vRE |, or

cot ϕ′′ = cosϕ + βE L

sin ϕ
= βE L − βSL√

1 − cos2 ϕ
= βE S√

1 − β2
SL

.

For the aberration angle δ := ϕ′′ − ϕ′, we have

cot(ϕ′ + δ) = tan δ = βE S√
1 − β2

SL

or

δ ≈ βE S

(
1 + 1

2
β2

SL

)
.

As long as βSL � 1, this is a very small correction, and in a good approximation, the
aberration angle δ resulting from the Earth’s motion around the Sun does not depend
on the velocity of the Sun relative to the aether.

Digression: Star is outside of the ecliptic. In the explanation of the stellar aberra-
tion above, we have assumed that the considered star lies on the ecliptic. We extend
our consideration now to the general case. For the calculation, we use the ehcs and
rotate the x-y-plane around the z-axis such that the star lies in the x-z-plane. The
new coordinates are (x ′, y′, z). Let β0 be the altitude of the star over the ecliptic.
Then, in the new coordinate system,

vRS = −c

⎛
⎝
cosβ0

0
sin β0

⎞
⎠ ,

and the vector of the orbital velocity of the Earth is

vE S = vE

⎛
⎝

cosϕ

− sin ϕ

0

⎞
⎠ .

We rotate the coordinate system around the y-axis such that the star becomes located
on the ecliptic. This happens by multiplying the vectors with the rotation matrix
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R̂y(−β0) =
⎛
⎝

cosβ0 0 sin β0

0 1 0
− sin β0 0 cosβ0

⎞
⎠

and yields

vRS = −c

⎛
⎝
1
0
0

⎞
⎠ , vE S = vE

⎛
⎝

− cosβ0 sin ϕ

cosϕ

sin β0 sin ϕ

⎞
⎠ .

The projection of vRE = vRS − vE S onto the sphere then gives us

vRE,⊥ = βE

⎛
⎝

0
cosϕ

sin β0 sin ϕ

⎞
⎠ .

On the sphere, this corresponds to an ellipse with the semi-major axis βE in the
horizontal direction and the semi-minor axis βE sin β0 in the vertical direction. These
are exactly the aberration ellipses shown in Fig. 4.19.

4.4.3 Justification of the Explanation

Bradley’s explanation, which well describes the experimental findings, is based on
Equation (4.15), the Galilean addition of velocities. He applied it to the velocity of
the light ray coming from the star and to the velocity of the Earth relative to the Sun.
The challenge now is to justify this explanation.

Particles. Suppose that the light ray consisted of particles (“light particles”) that
behaved according to classical mechanics, like the raindrops in Fig. 3.6. Then, if we
were to observe a binary star, the two stars would have different velocities relative
to the Earth and, accordingly, the light rays also would have different velocities (we
will dive deeper into this in Sect. 5.3.3). This is neither observed nor included in
Bradley’s explanation. Therefore, an explanation with particles does not work.

Waves in amedium. On the other hand, if the light raywere awave in amedium,
the velocities of the light ray coming from the stars would be the same, because the
velocity of a wave does not depend on the velocity of the source.

Due to the large distance of the star from the Sun, the wave, however, would
be a plane wave, and we had to use the phase velocity (there is no wave packet).
The phase velocity, however, does not transform as a velocity, in contradiction to
Bradley’s explanation. If itwere awave and the groupvelocitywas relevant,Bradley’s
explanation would be fine. But it is difficult to justify the use of the group velocity.
People tried many different explanations but, none really worked.

Another point is the question of the aether. We assumed that the Sun is at rest
in the aether. Why should this be the case? If the Sun moves uniformly relative to
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the aether, we could still explain the found ellipses, but if this velocity were larger,
comparable to the speed of light, the predictions would significantly deviate from
the observed ellipses.

Enter relativity. These challenges worried physicists for centuries and were even-
tually resolved by Einstein’s relativity. Within the framework of special relativity,
both explanations work, that with light particles and that with waves.

The explanation with the light particles works because, in relativity, light particles
always travel at the speed of light, which is independent of both the observer and the
velocity of the source. This “repairs” the challenge with the binary stars.

And the explanation with the wave works because there will no longer be a
difference between the phase and the group velocity. In relativity, the phase velocity
of light in vacuum becomes equal to the group velocity and transforms correctly as
a velocity. This is due to the fact that simultaneity is no longer absolute in relativity.
We will discuss this later.

4.5 Digression: The Transformation of Waves

4.5.1 Transformation of Frequency and Wavevector

What happens with waves when we conduct a Galilei transformation?
Consider the elementary wave (4.1), which, for Alice (and in three dimensions),

has the form
A(r, t) = A0 sin(kr − ωt). (4.19)

For Bob, Alice’s wave is still a wave and has the form32

A(r ′, t ′) = A0 sin(k′r ′ − ω′t ′),

where r ′ and t ′ are given by the Galilei transformation and k′ and ω′ have to be
determined.

We can rephrase our question: what is the transformation that, given k and ω,
leads us to k′ and ω′?

One thing is clear: at a fixed point P in space and a fixed time t , the wave has
a fixed value, and this value is the same for Alice and for Bob. For this reason, we
need to have

A(r, t) = A(r ′, t ′)

(where (r, t) are Alice’s coordinates of P and (r ′, t ′) are the likes for Bob). This is
fulfilled if and only if

k′r ′ − ω′t ′ = kr − ωt,

i.e., the phase ϕ = kr − ωt has to be invariant.

32 We assume that A is a scalar and does not change in the transformation.
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The remainder is easy. Using the Galilei transformation, we get

k′r ′ − ω′t ′ = k′(r − vt) − ω′t = k′r − (ω′ + k′v)t != kr − ωt.

For this to hold, we need

k′ = k, (4.20)

ω′ = ω − kv, (4.21)

which is the Galilei transformation of the frequency and the wavevector of an
elementary wave.

The transformation equation (4.20) for thewave vector is obvious. Thewavevector
is perpendicular to thewavefronts, and these do not changewhen changing the inertial
frame.We have concluded this already in the discussion of Fig. 4.10. This alsomeans
that the wave’s wavelength is the same for Alice and Bob.

To understand (4.21), we first restrict ourselves to one dimension.33 Then,
(4.21) becomes ω′ = ω − kv. For waves in which the angular frequency ω and
the wavevector k are directly proportional, ω = vpk (see (4.3)). Using this, (4.21)
yieldsω′ = ω − kv = ω · (1 − v/vp), which is nothing but theDoppler relation (4.9)
for the case in which Alice (the source) does not move relative to the medium. In
three dimensions, (4.21) is the generalization of the Doppler relation for the case
when Alice’s velocity relative to the medium and the traveling direction of the wave
are not parallel anymore.

4.5.2 The Dispersion Relation

When investigating wave phenomena, it is usually easiest to consider waves as linear
combinations of elementary waves (4.19).

Such an elementarywave, however, only fulfills thewave equation (i.e., is actually
a wave) if the frequency ω and the wavevector k are in a certain relationship to each
other. This relationship is the dispersion relation

ω = ω(k).

In isotropicmedia (including the vaccum), the dispersion relationmust not depend
on the direction. Using k = |k|, we have

ω(k) = ω(k)

33 Note that k can be positive or negative and indicates the traveling direction of the wave, whereas
the angular frequencyω is always positive.As a consequence, vp can also be positive or negative. The
speed of light c, however, is positive. Therefore, in one dimension, for a lightwave,wehave vp = ±c.
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and can plot the dispersion relation in this case in a two-dimensional ω-k-diagram.
The very special dispersion relation of the form

ω(k) = vpk

(with constant vp) is called linear. It is a linear function of the magnitude k of k,
but not of k itself. An example of a wave with a linear dispersion relation is an
electromagnetic wave (including, of course, light) in vacuum. In this case, vp is the
speed of light.

Consider an isotropic medium in uniform motion. Its dispersion relation is given
by (4.20) and (4.21), and is no longer linear:

ω(k) = ω0(k) − vk. (4.22)

Here, ω0(k) is the medium’s dispersion relation in its rest frame. In the one-
dimensional case with a linear dispersion relation ω0(k) = vp|k|, we have34

ω(k) =
{

−(vp + v)k for k < 0 (waves traveling to the left)

(vp − v)k for k > 0 (waves traveling to the right),

which shows that the phase velocity is different in different directions.
The dispersion relation is an important concept and, for instance, allows us to

calculate the velocity of the wave.

4.5.3 The Velocity of a Wave

What is the velocity of a wave? As we have seen, there are two different definitions.
We will not go into details here, but we will explain the consequences.

The phase velocity. We already encountered the phase velocity in one space
dimension in (4.3). It is basically the velocity with which a wave node moves.
Take the wave A(x, t) = A0 sin(kx − ωt), whose phase can be written as kx − ωt =
k(x − vpt) with vp = ω/k. Here, x − vpt = 0 or x = vpt is the equation of motion
of a wave node.

The phase velocity in three dimensions is defined by35

v p := ωk

|k| ek (4.23)

34 Note that we have two different definitions of k here. In the two- or three-dimensional case, we
use k := |k|, while here, in one dimension, we interpret k as the x-component of k – which can be
negative.
35 The two requirements vp ‖ ek and k(r − vpt) = kr − ωt lead to (4.23).
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and always points in the same direction as k. In other words, the vector of the phase
velocity is always perpendicular to the wavefronts.

Due to the fact that k′ = k when we go from Alice’s to Bob’s inertial frame,
the direction of the phase velocity stays the same for a Galilei transformation. The
magnitude of the phase velocity, however, changes.

Using (4.20) and (4.21) (in the form ω′(k′) = ω(k) − vk), we can determine the
transformation law for the phase velocity:

v′
p ≡ ω′(k′)

k ′ ek ′ = ω(k) − vk
k

ek = vpek + (vek)ek,

which is clearly parallel to k′ = k. Furthermore, its magnitude is v′
p = vp + (vek)

and depends on the direction.
Now, (vek)ek = v‖ is the component of v parallel to the wavevector k, and we

can write this as
v′
p = vp − v‖.

Therefore, the phase velocity does not transform according to the Galileian addition
of velocities, and thus the phase velocity is, strictly speaking, not a velocity.

The group velocity. In Sect. 4.4, when we explained the stellar aberration, we
implicitly assumed that the velocity of a wave transforms according to the Galileian
addition of velocities. Here, we see that, if we take the phase velocity as the velocity
of a wave, this is not correct. Fortunately, two circumstances come to our rescue. The
first is that there is a further different definition of the velocity of waves, the group
velocity, and this velocity indeed transforms according to the Galileian addition of
velocities. And later, in special relativity, the conundrum disappears completely,
because the phase velocity of a light wave in special relativity transforms exactly as
a velocity (and, again for light, becomes equal to the group velocity).

The group velocity is defined by

vg = ∂ωk

∂k
. (4.24)

In isotropic media, this becomes

vg = dω(k)

dk
ek, (4.25)

which is equal to the phase velocity (4.23) for the special case of linear dispersion
relations of the form ω(k) = vp|k|.

The group velocity arises when one forms a wave packet (see Fig. 4.4(b)) by
taking a lot of elementary waves of almost the same frequency. Then, one obtains
such a wave packet, and this moves with the group velocity, although its constituting
elementary waves move with the phase velocity.
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An example in which the phase and group velocities are not equal is given by
deep water waves. If the amplitude of such waves is much smaller than the wave-
length and is in the rest frame of the water, these waves have a non-linear dispersion
relation ω(k) = √

gk (g is the standard acceleration due to gravity). We get

vg = dω

dk
ek = 1

2

√
g

k
ek,

vp = ω

k
ek =

√
g

k
ek,

so vg = vp/2, meaning the group velocity is half as large as the phase velocity.
Again from (4.20) and (4.21) (in the formω′(k′) = ω(k) − vk), we can determine

the transformation law for the group velocity:

v′
g ≡ ∂ω′(k′)

∂k′ = ∂ω(k)

∂k
− ∂vk

∂k
= vg − v.

This is the transformation law of velocities (the Galileian addition of velocities).
The group velocity indeed transforms as a velocity. Therefore, when we interpret the
light waves in the explanation of stellar aberration as wave packets, our arguments
in Sect. 4.4 hold even in classical physics.

Both velocities, the phase velocity and the group velocity of a wave, can be
determined in experiments. One could argue that the different transformation laws for
the twovelocities gives one thepossibility to distinguishdifferent inertial frames.This
would violate the Galilean principle of relativity. But this is not the case, because, in
classical mechanics, waves always need amedium.And if we go to a different inertial
frame without taking the medium with us (as is the case here), we are considering a
different physical system. This is analogous to the fact that experiments on the Earth’s
surface have different results as the same experiments on the Moon’s surface. Free-
falling objects on the Earth are accelerated six times stronger than on the Moon.



Chapter 5
The Unsuccessful Hunt for the Special
Inertial Frame

5.1 First Reflections

According to our argumentation in Sect. 4.3, there should be a special inertial frame
in which wave optics is valid and, in particular, in which the light speed in vacuum
is the same in all directions. Now, we are interested in the velocity with which we
(i.e., the Earth) move relative to this special inertial frame. We will show how this
velocity could be measured.

Suppose we can measure this velocity and that the Sun stays at rest regarding the
special inertial frame. Then, we could measure our velocity relative to the Sun. We
would expect the orbital velocity vE ≈ 30 km/s of the Earth moving around the Sun.

We know already that the speed of light in an inertial frame should depend on
both the wave’s propagation direction and the velocity v of the inertial frame relative
to the special inertial frame. Consequently, to determine our velocity relative to the
special inertial frame, we have to measure the speed of light in different directions.
We determine the speed of light via the time that a light pulse needs to travel a certain
distance. We could do this with a stop watch, but it would be insufficiently sensitive
by far. Much better is an interferometric measurement. With an interferometer, one
does not measure the length of one certain distance (or the time needed for light to
travel this distance), but compares the times that light needs to travel two different
distances, which typically have almost the same length.

This exact thing has been carried out by Albert A.Michelson, with the subsequent
support ofEdwardW.Morley. TheMichelson-Morley experiment is one of themost
famous experiments in physics. We will discuss it now.
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Fig. 5.1 Scheme of the
interferometer used by
Michelson and Morley (see
footnote 1)
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5.2 The Experiment by Michelson and Morley and Its
Consequences

5.2.1 How It Works

It the preceding chapters, we have learned the tools necessary to put into practice the
method discussed in Sect. 5.1 to measure our velocity of us (i.e., that of the Earth)
relative to the special inertial frame of wave optics. For this purpose, Michelson and
Morley built the device shown in Fig. 5.1, the Michelson-Morley interferometer.

The beam path. In this device, a light source produces a monochromatic light
beam with the wavelength λ. This light beam impinges on a beam splitter BS (e.g.,
a semitransparent mirror) and becomes split into two partial beams with the same
intensity (that’s why this particular beam splitter is called a 50–50 beam splitter).
One of the partial beams travels along path P1 to mirror M1, becomes reflected back
to the beam splitter, is transmitted there, and arrives at detector D. The other partial
beam travels along path P2, is reflected at mirror M2, is further reflected at the beam
splitter, and arrives at detector D.1 The paths P1 and P2 are the interferometer arms.

Interference. On the path between the beam splitter and the detector, both partial
beams interfere. Because both partial beams have the same frequency, wavelength,
intensity, and polarization, in front of the detector, we have the situation shown in
Fig. 5.2 on the left side.

If one of the partial beams is given by φ1 = a sin(kx − ωt) and the other by φ2 =
a sin(kx − ωt + �ϕ), where �ϕ is the phase difference, the detector measures the
wave

1 Half of the light beam coming from mirror M1 is reflected at the beam splitter and travels back
to the light source. In the same way, half of the light beam coming from mirror M2 is transmitted
at the beam splitter. This is not relevant to us, as we are interested only in the light arriving at the
detector.
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Fig. 5.2 Interference of the partial beams. Left: Situation in front of the detector. Right: Amplitude
of the wave in front of the detector in dependence of the phase difference �ϕ

Fig. 5.3 Principle of
measuring the relative
velocity of the Earth relative
to the special inertial frame

P2

P1
P1
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vsif

φ = φ1 + φ2 = 2a cos(�ϕ/2) sin(kx − ωt + �ϕ/2)

with the amplitude 2a cos(�ϕ/2) (see Fig. 5.2, right side) and the intensity propor-
tional to 2a2 cos2(�ϕ/2). From the intensity measurement,�ϕ can be reconstructed
up to a multiple of π . The detector signal is maximal, and one has perfect construc-
tive interference for �ϕ = 2nπ . For �ϕ = (2n + 1)π , however, the detector signal
vanishes, and one has perfect destructive interference. In both cases, n is an arbitrary
integer number.

Let us assume that both paths have the same length, i.e., the distance from the
beam splitter tomirrorM1 is L and the distance from the beam splitter tomirrorM2 is
as well. This is the interferometer’s arm length. A phase difference�ϕ can only then
arise from different velocities of the partial beams. Suppose T1 is the time needed by
the light signal to travel along path P1 (there and back) and T2 that for path P2 (also
there and back). Then,

�ϕ = ω�T,

where �T = T1 − T2 is the difference in travel time for both partial beams.

Principle of measurement. Using the device ofMichelson andMorley, one “mea-
sures the interference” in form of the phase difference �ϕ of both partial beams and
in this way also the difference�T of their traveling times. And how do we determine
our velocity relative to the special inertial frame? Suppose, as already mentioned,
we knew the velocity vsif of the special inertial frame relative to us.

Then, we would orient the interferometer such that the path P2 is parallel to the
velocity vsif (see Fig. 5.3, left side) and the special inertial frame moves away from
the light source of the interferometer. What would the device measure?
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The speed of light in the rest frame of the interferometer is

c′ = ce + vsif (5.1)

if vsif denotes the velocity of the supposed special inertial frame relative to the
interferometer [see (4.4)].

First, take path P2, for which c′ is parallel to vsif. If the beam travels from the
beam splitter BS to the mirror M1, we have c′

‖+ = c + vsif (the index ‖ refers to the
fact that the path is parallel to the velocity of the supposed special inertial frame and
the plus sign indicates the fact that the beam travels outwards). On the return path,
we have c′

‖− = c − vsif. In total, for the traveling time, we get

T‖ = L

c′
‖+

+ L

c′
‖−

= L

(
1

c + vsif
+ 1

c − vsif

)
= 2L

c
· 1

1 − βsif
2 , βsif = vsif/c.

(5.2)
If vsif = 0, we get T‖ = 2L/c, as expected, and for a moving interferometer

with vsif �= 0, T‖ is always larger than 2L/c. Note that we introduced the abbre-
viation βsif for vsif/c. We will use this abbreviation quite often, as it is very common
in relativity. In the theory of relativity, for large velocities, these velocities, in general,
are only relevant in proportion to the speed of light. This means that, in the formulas,
instead of vsif, vsif/c usually appears.

Now, we look at path P1, for which c′ is perpendicular to vsif. These two vectors
are the catheti of a right triangle, with c being the hypotenuse. Therefore, the speed
of light c′

⊥ on path P1 is c′2
⊥ = c2 − v2

sif, equal for both the outwards path and the
inwards path. In total, for the traveling time, we get

T⊥ = 2L

c′
⊥

= 2L

c
· 1√

1 − βsif
2
. (5.3)

If vsif = 0, one gets T⊥ = 2L/c, as expected. And again, for an interferometer
with vsif �= 0, T⊥ is always larger than 2L/c.

One sees that, for vsif �= 0, the light for the path parallel to vsif takes longer than
for the path perpendicular to vsif. The travel time difference is

�T = T‖ − T⊥ = 2L

c

(
1

1 − βsif
2 − 1√

1 − βsif
2

)
. (5.4)

Using the approximate formulas 1/(1 − x) ≈ 1 + x , and 1/
√
1 − x ≈ 1 + x/2,

which are valid for 0 ≤ x 	 1 one gets the important approximation

�T = 2L

c

(
1

1 − βsif
2 − 1√

1 − βsif
2

)
≈ L

c

(vsif

c

)2
. (5.5)
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So, the effect is quadratic in vsif/c. In many experiments, the velocities are small.
Thus, vsif/c is small and (vsif/c)2 even smaller, by a lot. In the equation above, one
sees that the time difference vanishes for vsif = 0—again, as expected.

After themeasurement of�T , we rotate the device by 90◦. Then, path P1 is parallel
to vsif and path P2 perpendicular to it. The quantity�T has the same absolute value as
in (5.4), but with a negative sign. Therefore, by rotating the device by 90◦, the phase
difference is doubled.The interferometer, however, has to bevery stablemechanically
and located in an environment very much free of shocks. Rapid oscillations that
change the interferometer’s arm length for more than a tenth part of the wavelength
(this means less than about 100 nm) already destroy the interference pattern.

A more detailed inspection shows that�T in (5.4), for all possible orientations of
the interferometer, is that with the largest absolute value if one of the interferometer
arms is parallel to vsif. If one measures the traveling time difference �T for other
angles, one approximately gets a cosine for the dependence of�T on the orientation
angle.

Now, we calculate �ϕ for the concrete parameter values in the experiment by
Michelson and Morley. The arm length was L = 11m, and the gentlemen used the
yellow light of a sodium vapor lamp; therefore, λ ≈ 590 nm. Then,

�ϕ = ω�T = 2πc

λ

L

c

(v

c

)2 = 2π
L

λ

(v

c

)2 ≈ 2π · 1.86 × 10−7 ·
(v

c

)2
.

Suppose now that the Earth travels with its orbital velocity vE ≈ 30 km/s relative
to the special inertial frame. Then, vE/c ≈ 10−4, and therefore �ϕ ≈ 0.75 · π . So,
there is an almost complete shift from the constructive to the destructive interference.
This would be easily detectable.

A final comment: maybe you noticed that, contrary to what we announced in
Sect. 5.1, the Michelson-Morley interferometer does not compare the speed of light
in two differentmutually orthogonal directions, but rather averages of the “outwards”
and the “inwards” speeds of light in these different directions. These averages are
called the two-way speed of light, in contrast with the one-way speed of light.

5.2.2 Result

Michelson carried out the experiment for the first time in 1881 (still without the
cooperation ofMorley) at the Telegraphenberg in Potsdam, Germany, with the device
shown in Fig. 5.4. To his considerable surprise, he was not able to provide evidence
for any motion of the Earth relative to the supposed special inertial frame. With an
arm length of about 1m, this first device was about ten times less sensitive than the
device that he used later. The expected signal was at the detection limit of the device,
and therefore, Michelson was not able to convince the experts.
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Fig. 5.4 Reconstruction of
Michelson’s first
interferometer, used in
Potsdam

Michelson writes [Michelson81]:

The apparatus […] was placed on a stone pier in the Physical Institute, Berlin. The first
observation showed, however, that owing to the extreme sensitiveness of the instrument to
vibrations, the work could not be carried on during the day. The experiment was next tried at
night. When the mirrors were placed half-way on the arms the fringes were visible, but their
position could not be measured till after twelve o’clock, and then only at intervals. When the
mirrors were moved out to the ends of the arms, the fringes were only occasionally visible.

It thus appeared that the experiments could not be performed in Berlin, and the apparatus
was accordingly removed to the Astrophysicalisches Observatorium in Potsdam. Even here
the ordinary stone piers did not suffice, and the apparatus was again transferred, this time to
a cellar whose circular walls formed the foundation for the pier of the equatorial.

Here, the fringes under ordinary circumstances were sufficiently quiet to measure, but so
extraordinarily sensitive was the instrument that the stamping of the pavement, about 100
meters from the observatory, made the fringes disappear entirely!

When somebody stamps on the floor, even 100m from the device, the device
oscillates, and with it the arm lengths. This also causes the interference pattern to
oscillate, which smears it out. A photograph of the interference pattern with an
exposure time much smaller than the oscillation’s period would still show it. But in
that case, one would have a problem with the very low light intensity.

Michelson repeated the experiment in 1889, together with Morley, in Cleveland,
Ohio, with an improved interferometer. This device, shown in Fig. 5.5, left side,
was much more sensitive than the first one. It had an arm length of 11m (Michelson
achieved the larger arm length by reflecting the light beam several times, see Fig. 5.5,
right side). But even the second experiment yielded a null result. The result from the
original publication [MM87] is shown in Fig. 5.6. On the x-axis, the orientation of
the device is drawn, while on the y-axis, the traveling distance difference for the
two interfering paths (in units of the wavelength) is represented. The solid line is
the measurement result. For comparison, the dashed line shows the result that was
expected for a relative velocity of v = 30 km/s, but scaled down 8 times! So, the
second experiment has confirmed the result of the first one. Michelson and Morley
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Fig. 5.5 The improved interferometer of Michelson and Morley, as used in Cleveland, Ohio. Left:
View from the side. Right: View from above, with the beam path

Fig. 5.6 Result of Michelson and Morley’s experiment. The path length difference is shown as a
function of the orientation. The solid line shows the measurement, while the dashed line shows the
expected result divided by 8

were not able to measure any velocity of the supposed special inertial frame (or
the aether). Within the measurement precision, Michelson and Morley obtained a
direction-independent speed of light, exactly as wave optics predicts for the supposed
special inertial frame.
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Fig. 5.7 Determination of
the light traveling times in
the Michelson
interferometer, as seen from
the special inertial frame
(aether reference frame). See
Exercise 15 and note that the
“red” light pulse and the
“orange” light pulse do not
arrive at the same time at the
respective outer mirrors

L

v

The Michelson-Morley experiment yields a null result. No velocity of the
interferometer relative to the supposed special inertial frame can be measured.

A final word: we have already stated that theMM interferometer does not measure
the light speed, but rather compares the light speed in the two directions. But even
if it were to measure the time that the light pulses need from the beam splitter via
the mirrors back to the beam splitter, it would not determine the speed of light, but
rather the average of the speed from the beam splitter to the respective mirror and
that from the mirror back to the beam splitter. This is called the two-way speed of
light. We go deeper into this topic in Sect. 7.7.

Exercise 15: Derive the formula (5.5) for the traveling time difference�T in the
Michelson interferometer. In contrast to the derivation in the text, do not argue
from the point of view of the interferometer’s rest frame, but from the special
inertial frame. Assume that the interferometer moves with the velocity v such
that the direction of the velocity and the direction of the light beam that leaves
the light source in the Michelson interferometer coincide. See Fig. 5.7.

5.2.3 Digression: Arbitrary Orientation of the Interferometer

In the discussion of the Michelson-Morley experiment, we have assumed that one
of the interferometer arms is parallel to the velocity of the supposed special inertial
frame (relative to the interferometer’s rest frame). This assumption is unrealistic,
because we do not know said velocity. So, we have to extend our discussion to the
general case of an arbitrary orientation of the interferometer.
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Fig. 5.8 Light velocities in
the Michelson-Morley
experiment for an arbitrary
interferometer orientation vsifϕifm

P2
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c′
vsif

Suppose that the observer (together with the experiment) moves with velocity vsif
relative to the supposed special inertial frame and that the interferometer is oriented
such that the direction of path P2 from the beam splitter to mirror M2 of the interfer-
ometer and the velocity vsif makes an angle of ϕifm (see Fig. 5.8, left side).

The velocity c′ of the light waves relative to the observer in a direction given by the
angle ϕ′ between the given direction and vsif then follows by squaring c′ = c+ vsif
[see (5.1) and the right side of Fig. 5.8] while using c′vsif = c′vsif cosϕ′. This gives
us the quadratic equation

c′2 + 2vsif cosϕ′ · c′ + (v2 − c2) = 0

with the solution2

c′(ϕ′) = −vsif cosϕ′ +
√

c2 − v2
sif sin

2 ϕ′.

The negative sign of the square root is not of interest to us, because it would yield a
negative c′. For the angles ϕ′ = 0 and ϕ′ = π , one gets the minimum and maximum
velocities c − vsif and c + vsif, respectively.

If the interferometer is rotated by the angle ϕifm relative to the direction of the
motion of the supposed special inertial frame, one gets

�T = T (ϕifm) − T (ϕifm + π/2)

as a generalization of (5.4).
The time T (ϕ′) needed to travel a distance of length L which is oriented in the

direction given by ϕ′ relative to vsif, is

2 Note that we carried out a very similar calculation when we discussed aberration [see (4.11) and
the calculation below it].
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T (ϕ′) = L

(
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− 1

c′(ϕ′ + π)

)

= L

⎛
⎝ 1
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c2 − v2
sif sin

2 ϕ′
+ 1
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⎞
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2
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Eventually, we get

�T = T (ϕifm) − T (ϕifm + π/2)

= 2L

c2 − v2
sif

(√
c2 − v2

sif sin
2 ϕifm −

√
c2 − v2

sif cos
2 ϕifm

)
.

(5.6)

The expression in parentheses is ≈ c · (v2
sif/2c2) cos(2ϕifm). We also use 1/(c2 −

v2
sif) ≈ 1/c2. Thus, we get

�T ≈ L

c

v2
sif

c2
cos(2ϕifm).

This is exactly the dashed line in Fig. 5.6. Additionally, for ϕifm = 0, one gets the
expression (5.5), as expected.

Exercise 16: Show that (5.6) in the special case ϕifm = 0 is identical to (5.4).

5.3 Explanation Possibilities

TheMichelson-Morley experiment was not able to provide any evidence for amotion
of the interferometer relative to the presumed special inertial frame of wave optics—
although it was sufficiently sensitive to achieve this easily.

How can we explain this?
We present five possibilities and argue why they would explain the null result.

The first three possibilities can be refuted because they cannot explain other impor-
tant experiments. The fourth can be disregarded for another reason. And the fifth
possibility is Einstein’s solution to the problem. This solution, detailed in the next
chapter, brings us directly to the special theory of relativity.
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An important fact to keep in mind: the focus here is on the Michelson-Morley
experiment, and so we look for ideas (or theories) that would explain this important
experiment. However, it was not only the Michelson-Morley experiment that was
unable to bring the aether to light: there were many other experiments, none of
which was able to measure the speed of the supposed special inertial frame. So, if
we find an idea that can explain the result of the Michelson-Morley experiment, this
idea must also explain the results of all these other experiments.

5.3.1 Possibility 1: We Are in the Special Inertial Frame

It could happen that we are in the special inertial frame. This could be the case by
chance or the Earth could “drag” the special inertial frame in a certain way. In this
case, the speed of light would be the same in all directions at all times and the null
result of the Michelson-Morley experiment would be obvious.

Naturally, one has to ask why, in particular, the Earth should rest in the special
inertial frame or drag it. Other celestial objects that move with a certain velocity
relative to the Earth then should also drag the special inertial frame. And the times
when we granted a special role to the Earth are long gone, at least as far back as
Copernicus.

In addition to this rational argument, stellar aberration, as discussed in Sect. 4.4,
and, in particular, the aberration ellipses in Fig. 4.19 would not be comprehensible
if the Earth were at rest relative to the special inertial frame.

Why? The only reason for stellar aberration is the motion of the observer relative
to the special inertial frame (or the aether). The apparent direction from which a
wave comes from changes only if the observer changes its velocity relative to the
special inertial frame. This does not happen if we are in the special inertial frame,
so no stellar aberration is expected.3 In other words: if the Earth were in the special
inertial frame, stellar aberration could not be explained. And if the Earth were to
move uniformly relative to the special inertial frame, the stellar aberration would not
change, and therefore would not be observable.

3 Actually, in the special inertial frame, the star would move on a circle that compensates the
Earth’s motion around the Sun and the observer on Earth would see the stellar parallax. This is also
perceived as an ellipse, but one much smaller than that for stellar aberration. The stellar parallax
has an angle of ≈DES/DS (DES is the distance from Earth to the Sun and DS that of the star, being
largest for the nearest star when it has a semi-major axis of 0.77′′). The stellar aberration, however,
is the same for all stars and has a semi-major axis of 20.5′′—much larger. Another difference
between the apparent movement of a star due to stellar parallax and the stellar aberration is that
both movements are not in phase.
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5.3.2 Possibility 2: A Non-homogeneous Luminiferous
Aether

In Sect. 4.3.2,we searched for themedium inwhich light propagates, drew an analogy
to the role of water for water waves or that of the atmosphere for sound waves and
introduced the luminiferous aether. Then, we concentrated on a rigid luminiferous
aether, which is similar to sound waves in a solid, and identified this with a special
inertial frame.

We can also think of the luminiferous aether as a liquid or a gas that can be non-
homogeneous, non-isotropic, locally moving (flow), or non-stationary (i.e., change
its properties with time) or have all these properties at the same time. In this case,
even when the medium is locally at rest (no flow), the propagation velocity of light
would depend on the direction and the location. The wave would not necessarily
propagate on a (straight) line, and among the effects that would then occur is the
bending of light rays, as in the fata morgana.

If the luminiferous aether were non-homogeneous and Possibility 2 correct, then,
necessarily, wave optics (and thereforeMaxwell’s electrodynamics)would bewrong,
because, according to wave optics, there is a reference frame where light in vacuum
propagates on (straight) lines and has the same speed in all directions. If the properties
of the luminiferous aether were to be almost homogeneous and isotropic and change
only for large distances, this failure of wave optics, however, would possibly be very
difficult to detect.

In the 19th century, several aether models were developed. All of them have been
ruled out, because they were incapable of explaining the experimental results. Two
of these theories are particularly prominent, the aether theory of Augustin Fresnel,
developed in 1818, and that of George Stokes, developed in 1844.

Arago’s experimental finding and Fresnel’s aether drag model. We start with
Fresnel’s aether model. It assumes that the luminiferous aether is rigid in the vacuum,
where this does not matter. Now, the question is: what happens to the luminiferous
aether in a dense medium? Would the luminiferous aether flow unperturbed through
the medium, as if the medium were not there?

Let us consider a concrete example: a small glass cube (the dense medium) at
rest in the luminiferous aether. What would happen to a light ray that impinges
perpendicular on the glass cube, which moves relative to the luminiferous aether
with velocity v, as shown in Fig. 5.9a? Let us assume that the luminiferous aether
moves freely through the dense medium.

If we go to the rest frame of the glass cube (see Fig. 5.9b), we have aberration
in the vacuum outside of said cube where the luminiferous aether now moves with
velocity −v in the horizontal direction. According to our assumption, the luminif-
erous aether inside the glass cube also moves with velocity −v in the horizontal
direction. Then, due to the fact that the vertical component of the light ray’s velocity
would be smaller inside the glass cube than outside (the speed of light in vacuum
divided by the index of refraction n), we would see a deflection of the light ray away
from the vertical.
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Fig. 5.9 Arago’s finding and Fresnel’s aether drag coefficient. a What happens to a light ray
impinging perpendicular to a dense medium that moves with velocity v relative to the luminiferous
aether? b Assumption: luminiferous aether moves freely through a dense medium. c What Arago
actually found is consistent with the law of refraction. d The luminiferous aether is dragged with
velocity vdrag by the glass cube that moves with velocity v

François Arago performed an experiment to verify this idea. He took the light
of a particular star and carried out the experiment several times a year to make
sure that he really captured the situation that the glass cube moves relative to the
supposed luminiferous aether. However, he did not observe what was expected when
the luminiferous aether moved freely through the glass cube. Instead, he found that,
on all occasions, the light ray, upon entering the glass cube, was deflected toward the
vertical and that it always fulfilled the law of refraction (Snell’s law) (see Fig. 5.9c).

How to explain this? If we take the situation with the resting glass cube and the
refraction and go back to the system where the luminiferous aether outside the glass
cube is at rest and the glass cube moves, we find the situation in Fig. 5.9d. The
answer to the question as to what happens to the luminiferous aether inside of the
moving glass cube is that the luminiferous aether is partially dragged by the glass
cube. Instead of the horizontal velocity v, it has the velocity vdrag = αnv relative to
the resting glass cube, where

αn = 1 − 1

n2
(5.7)

is Fresnel’s aether drag coefficient. The glass tube, moving with velocity v would
drag the luminiferous aether along with itself, with a velocity αnv. If the glass cube
were vacuum, we would have n = 1 and αn = 0 and there would be no dragging.
But the “denser” the optical medium (glass), the larger n and the closer αn comes
to 1. For the limiting case of an infinitely dense medium, we have αn = 1, and the
luminiferous aether would be completely dragged and fixed to the dense medium.

Fresnel’s formula is fine. In Sect. 10.3, we will calculate the speed of light in
moving densemedia on the basis of special relativity and show that Fresnel’s formula
is a good approximation to the relativistically correct formula.
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The interpretation with the luminiferous aether, however, is problematic. Due to
the fact that the index of refraction n in optically dense media usually depends on the
frequency of the light (that’s why you see colors in a prism or a rainbow), Fresnel’s
formula (which is confirmed by Arago’s and other experiments) would predict that
the velocity with which the glass cube drags the luminiferous aether actually depends
on the frequency of the light that impinges on the glass cube. So, there would be
a different luminiferous aether for each light frequency and these aethers would be
dragged with a different velocity. This was considered highly unlikely and, together
with other reasons, this observation led to the luminiferous aether being abandoned.

Stokes’ aethermodel. About a quarter of a century after Fresnel, Stokes developed
a different aether model. In his model, the Earth moves through the luminiferous
aether and completely drags it. What then happens at the Earth’s surface is very
similar to what you observe on a river bank. The water flows down the river, but very
close to the river bank, there is a boundary layer, and the closer the water is to the
river bank, themore slowly it flows relative to it. The water clings to the river bank. In
the same way, the luminiferous aether, which, far from the Earth’s surface, is at rest
in the universe (for instance, relative to the Milky Way) clings to the Earth’s surface.
With this model and the known laws of refraction, Stokes was able to explain stellar
aberration. Some years later, however, Lorentz was able to show that Stokes’ model
contained an untenable assumption. In the end, Stokes’ model fell from grace.

5.3.3 Possibility 3: The Speed of Light is Relative to the
Emitter

If light was not a wave but consisted of particles, the null result would not be partic-
ularly surprising (see the example with the firefighters’ truck in Sect. 4.2.2). Then,
light would not move relative to the special inertial frame with the speed of light,
but relative to the emitter. In the Michelson-Morley experiment, the light would have
the velocity c relative to the interferometer. Then, it would need the same time for
the two interferometer arms (supposing that they have the same length) and the null
result would also be obvious. This idea is called the emitter theory.

Indeed, the emitter theory is wrong: the speed of light is neither relative to the
emitter nor does it depend on the velocity of the emitter. This has been demonstrated
with various experiments. Here are two of them.

Alväger experiment. The first generally accepted experiment in this vein was
carried out in 1964 by Torsten Alväger and colleagues [Alväger+64] at the European
Organization for Nuclear Research (CERN) in Geneva.4 The physicists shot protons
at almost the speed of light through Beryllium nuclei (see Fig. 5.10). In this way,
elementary particles called neutral pions (π0) are produced. These neutral pions

4 D. Sadeh had already conducted a similar experiment in 1963, but his conclusion was not com-
pletely convincing and was not widely accepted by the experts.
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Fig. 5.10 Decaying neutral
pions in the Alväger
experiment
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Fig. 5.11 Situation at the
binary star. The light ray sent
out earlier by the receding
star arrives at the observer’s
location later than the light
ray sent out later by the
approaching star
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have a very large velocity of about v = 0.99975 · c (relative to the laboratory). The
important point is that these pions decay into two photons (light particles), which fly
approximately in the same direction as the neutral pion. The velocity of the photons,
measured in the rest frame of the experiment, within the measurement’s precision,
was equal to the speed of light c. If the velocity of the photons were to depend on
the velocity of the emitter, one would expect them to have almost twice this velocity.
Therefore, the Alväger experiment convincingly refuted the idea that the velocity of
the light’s “corpuscles” depends on the velocity of the emitter.

Brecher’s analysis of binary stars. Another argument against the emitter theory
is an astronomical one. Imagine a binary star system in which a lighter star orbits a
much heavier one (see Fig. 5.11).5 Let the binary star’s orbit be such that the Earth
is in its orbital plane. Then, at a certain time t0, the lighter star will move with a
velocity v away from the Earth and, half an orbit later at time t1, it will move with a
velocity v0 toward the Earth. At time t0, the light ray that propagates toward the Earth
would have the velocity c − v, and at time t1, the velocity c + v. The faster light ray
would arrive at the Earth earlier than the slower one and the image of the orbit would
be distorted or would no longer be recognizable as such. Kenneth Brecher carried
out a very detailed analysis of observations of the X-ray binary stars Hercules S-1,
Centaurus X-3 and SMC X-1, but noticed no such effect [Brecher77].

5 To be more precise, both orbit around their common center of mass.



80 5 The Unsuccessful Hunt for the Special Inertial Frame

5.3.4 Possibility 4: Lorentz-FitzGerald Contraction and
Lorentz’s Ether Theory

In the last decade of the 19th century, a not exactly obvious solution to the problem of
the null-result of the Michelson-Morley experiment was presented. It was developed
in a qualitative way in 1889 by George FitzGerald, and a bit later by Hendrik Antoon
Lorentz and Joseph Larmor, quantitatively.

Their hypothesis, called the Lorentz-FitzGerald contraction, states that all
objects contract in the direction of their motion relative to the special inertial frame
by a factor of α(v) = √

1 − v2/c2. For classical mechanics, this would not imply
any observable change, because all objects and measurement rods would contract in
the same way. Measuring the length of an object with a meter stick, one would get
the same result as without the Lorentz-FitzGerald contraction. But light would not
be subject to the contraction. For the case of the Michelson-Morley interferometer,
instead of (5.2), with L ′ = α(v)L = L · √

1 − β2, one would get

T‖ = 2L ′

c

1

1 − β2
= 2

c
· (L

√
1 − β2)

1

1 − β2
= 2L

c

1√
1 − β2

= T⊥

and the phase difference �ϕ in the interferometer would be always zero. Based on
that, we would expect a null result in the Michelson-Morley experiment. We discuss
this in more detail in Sect. 12.6.

So, the result of the Michelson-Morley experiment could be explained with the
aether and the hypothesis of FitzGerald and Lorentz. But other effects, like stellar
aberration (see Sect. 4.4), the (relativistic) Doppler effect (see Sect. 9.6) or the result
of the Fizeau experiment (see Sect. 10.3), cannot be explained on this basis.

Lorentz, however, succeeded in making further modifications, which form
Lorentz’s ether theory. This theory is able to explain all these experiments. One
of these modifications is the introduction of an apparent time (called local time for
inertial frames that are different from the aether, the special inertial frame), in addi-
tion to the true time shown by clocks that rest relative to the aether. An interesting
conclusion from Lorentz’s ether theory was that, by construction, the aether could
never be discovered. So, the theory introduces a physical concept just to prove later
that there’s no way to discover it!

Einstein’s theory is also able to explain all these experiments. But due to the fact
that Einstein’s theory, from a logical point of view, ismuch easier than Lorentz’s ether
theory, the former has come to be preferred. This follows a principle of the philosophy
of science called Occam’s razor. It states that, out of two alternative explanations
of a certain phenomenon, one should prefer that that has fewer hypotheses and is
conceptually easier.

Nevertheless, this shows that Einstein, to use Newton’s words, stood on the shoul-
ders of giants. Of these giants, Henri Poincaré was the onewho, in 1905, came closest
to the special theory of relativity (see Sect. 6.1). The relevance of the principle of
relativity was clear to him, and he stated that there was no possibility of identifying
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the aether, the special inertial frame. But even he never abandoned the aether. And he
thought that only the clocks that rest relative to the aether show the “true time”. The
clocks that move uniformly relative to the aether, however, according to him, show
an “apparent time”, which would depend on the applied synchronization method.

Einstein then carried out the revolution and got rid of the aether. He took the
principle of relativity quite seriously and showed that, solely from this principle and
the principle of the absolute speed of light, the special theory of relativity follows.
While Lorentz’s ether theory in its final form also can explain the physics at large
velocities, it is conceptually more complicated and, in particular, must live with the
claim that the aether exists but that we, by construction, never will be able to prove
this. This is very unsatisfactory.

5.3.5 Possibility 5: There Is No Special Inertial Frame

This is Einstein’s solution to the puzzle. Einstein made the hypothesis that there is
no special inertial frame (and, therefore, no luminiferous aether). All inertial frames
are equal and light in each inertial frame travels at the speed of light c. Wave optics
(or electrodynamics) is valid in all inertial frames. This hypothesis not only explains
the null result in the Michelson-Morley experiment, it also makes things much more
simple. The effect is similar to that which occurred when the geocentric model with
the Earth at the center of the Universe, with all of its complications, such as the
epicycles, which were needed to describe the motion of the planets, was replaced by
Copernicus’ heliocentric model.

But more of this will be addressed in the remainder of the book.

5.4 Summary

In Sect. 4.3, we argued that there should be a special inertial frame in which wave
optics is valid and in which the light propagates in all directions with the same
velocity. It is an obvious goal to identify this special inertial frame by measuring
its velocity relative to the observer. This was performed by Michelson and Morley,
and ended in a null result—although the interferometer was well designed to find
the answer to this quest. We discussed several possibilities to explain this null result.
Three have been ruled out by further experiments and a fourth one (Lorentz’s ether
theory) has been discarded because of its conceptual complexity. The fifth one, by
Einstein, states that there is no special inertial frame (or aether) and leads directly to
his special theory of relativity.



Chapter 6
Einstein’s Solution: The Special Theory
of Relativity (SR)

As an explanation for the unexpected result of a non-identifiable special inertial
frame in the Michelson-Morley experiment, we discussed Einstein’s solution: there
is no special inertial frame! (see Sect. 5.3.5). But before going into detail with this
idea, we go one step back.

6.1 Einstein’s Two Principles and Their Consequences

Einstein originally argued from a different point of view, as did we in Sect. 5.3.5.
He started with the observation that classical mechanics in the same form is valid
in all inertial frames. We discussed this property of classical mechanics in Sect. 3.4
and called it Galilei’s principle of relativity. It states that, with experiments that are
described by classical mechanics, you cannot distinguish two inertial frames. Ein-
stein noticed that this is a very elegant and useful property of Nature. But he asked
himself why this only holds for classical mechanics and not for electrodynamics
(which is the mother of wave optics). According to his opinion, the principle of
relativity should hold for electrodynamics as well. Two inertial frames should be
indistinguishable with mechanical and electrodynamical experiments. This exten-
sion of Galilei’s principle of relativity, postulated by Einstein, is commonly called
Einstein’s principle of relativity1 and is often referred to simply as the principle of
relativity.2

1 We use the abbreviation EPR for Einstein’s principle of relativity, advising the reader that EPR
usually stands for the Einstein-Podolsky-Rosen paradox, which is a completely different thing. It
contains, in some sense, the essentials of quantum physics.
2 Note that this does not entail that classical mechanics was correct. It just says that a correct
mechanics must have the property of having the same form in all inertial frames. The same applies
to electrodynamics and other physical theories.
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Einstein’s principle of relativity (EPR): Bothmechanical and electrodynam-
ical phenomena3 appear in the same way in all inertial frames.

What are the consequences of Einstein’s principle of relativity? First, there would
be no special inertial frame for electrodynamics (or wave optics). In Sect. 4.3, we
argued that, in the special inertial frame (and only there), light propagates in the same
way in all directions. According to Einstein’s principle of relativity, this statement
would hold in all inertial frames. In all inertial frames, light would have the same
velocity c in all directions. Einstein’s principle of relativity explains the zero-result
of the Michelson-Morley experiment without any hassle. We formulate the essence
of this idea as a principle:

Principle of the absolute speed of light (PASL): Independently of the inertial
frame, light propagates (in vacuum) in all directions with the same velocity,
the absolute4 speed of light c.

The principle of the absolute speed of light elevates the speed of light in vacuum c
to a fundamental physical constant.5,6

As already mentioned, with the PASL in place, the explanation of the zero-result
of the Michelson-Morley experiment comes without any cost. But it also has a side
that seems ugly at first sight. In Sect. 4.3, we argued that there should be a special
inertial frame for wave optics. The reason was the Galilean addition of velocities.

Let us recall the circumstances of Einstein’s principle of relativity (see Fig. 1.1).
The inertial observers Alice and Bob move relative to each other with the velocity v.
A light pulse passes by both. If wave optics is valid for both, Alice measures exactly
the same velocity of the light pulse as Bob, the absolute speed of light. It is this
observation that is confirmed by the zero-result in theMichelson-Morley experiment.

Again due to the discussion in Sect. 4.3, this can only be correct if the Galilean
addition of velocities does not hold anymore (at least for large velocities). Theremust
be a new law for the addition of velocities, which, being inspired by (3.5), should
have the form

vAC = vAB ⊕ vBC.

3 Electrodynamical phenomena include light phenomena.
4 The adjective absolute brings to our attention that the speed of light does not depend on the inertial
frame. In other words: it is not relative (to the inertial frame).
5 Actually, Einstein formulated the principle of the absolute speed of light in a different way, namely
that (in the observer’s inertial frame) the speed of light is independent of the velocity of the light
source. Together with the principle of relativity, this is tantamount to our formulation.
6 The principle of the absolute speed of light depends in a sophisticated way, on the way in which
clocks are synchronized (see Sect. 7.7).
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We will find out the exact meaning of the binary operation ⊕ in Chap. 10 and call
it the Lorentzian addition of velocities. We already have two hints: due to the fact
that the Galilean addition of velocities is correct for small velocities, the operation⊕
should become a simple addition within this limit. Additionally, the discussion above
(see Fig. 1.1) has shown that, when adding an arbitrary velocity v and the speed of
light c, the speed of light must result: v ⊕ c = c.

TheGalilean addition of velocities becomeswrong for large velocities. According
to (3.9), the exact same then holds for the Galilei transformation. The consequence is
that, according to (3.4), classical mechanics is no longer applicable for large veloc-
ities. Exactly as we have seen in the Bertozzi experiment (Chap. 2). To summarize:
due to Einstein’s two principles, the GAV cannot be valid anymore. Consequently,
the GT is wrong as well (at least, for the considered large velocities). And this implies
that either the GPR or classical mechanics is wrong. As the GPR is a special case of
the EPR, it is classical mechanics that must be wrong.

As a consequence, we have to replace classical mechanics with a relativistic
mechanics. This was done by Einstein in 1905 [Einstein05a]. Relativistic mechanics
is a part of his special theory of relativity (SR). This theory, in particular, must
yield the correct law for the addition of velocities, even at large velocities.

Einstein has shown that, to understand the consequences of relativistic physics to
space and time (the “kinematics”), nothing more than the two above principles are
needed: Einstein’s principle of relativity and the principle of the absolute speed
of light. This is not sufficient, however, to construct the relativistic replacement for
Newton’s laws (the “dynamics”). To be able to achieve this, one additionally has to
require that the relativistic laws for small velocities become identical to the laws of
classical mechanics.

6.2 The Relevance of the Principle of Relativity

Einstein’s principle of relativity looks innocent, but actually, it is quite powerful and
has ample consequences for physics. There are symmetry principles7 with similar
far-reaching consequences:

• No matter where one carries out an experiment, the result is always the same. This
is called the homogeneity of space.

• No matter when one carries out an experiment, the result is always the same. This
is called the homogeneity of time.

• No matter in which direction one carries out an experiment, the result is always
the same. This is called the isotropy of space.

7 An object is symmetric regarding a set of operations if these operations leave the object
unchanged or invariant. A circle is invariant regarding rotations about its center. An equilateral
triangle is invariant regarding rotations of a multiple of 120◦ around its center. The distance d =√

(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2 of two points P1 = (x1, y1, z1) and P2 = (x2, y2, z2) in
Euclidean space is invariant regarding arbitrary rotations and translations.
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These principles are important because of their consequences. From the homogeneity
of space8 follows the conservation of momentum (i.e., Newton’s third law). From
the homogeneity of time follows the conservation of energy. And from the isotropy
of space follows the conservation of angular momentum. Symmetry principles and
conservation laws are very closely related.

The principle of relativity extends this list:

• No matter in which inertial frame one carries out an experiment, the result is
always the same. This is Einstein’s principle of relativity.

From the independence of the particular inertial frame follows the conservation
of a quantity related to the center-of-mass motion.

But now, let’s roll up our sleeves. We have to work out Einstein’s theory, and will
do so after a short digression on the measurement of the speed of light.

6.3 Digression: Measuring the Speed of Light

Measuring the speed of light has always been an important task in physics. The first
measurements were carried out by Galilei in about 1620. Due to the fact that light’s
speed is so fast, Galilei could only give a lower boundary to it. During the following
centuries, light’s speed was measured many times, with different methods, and an
ever increasing precision.

In 1905, when Einstein’s principle of the absolute speed of light elevated the
speed of light to the rank of a fundamental physical constant, the determination of
its value became even more important. Nowadays, the value of the speed of light is
fixed, because the meter is defined via the second. The precision of the speed-of-light
measurement needed to allow for this definition, however, was only achieved in 1973
at the National Bureau of Standards (NBS)9 (see Sect. 6.3.5). So, the measurement
of the speed of light has kept physicists busy for 350 years! We will mark some of
the milestones along this path.

The first value that was roughly correct was measured by Ole Rømer in 1676,
using observations of the orbital period of Jupiter’s moons. To be able to carry out his
method, one needs to know the difference between the maximum and the minimum
distance between Jupiter and the Earth, in other words, the diameter of the Earth’s
orbit around the Sun. Therefore, we start by discussing how some astronomical
quantities of the solar system are determined.

8 And an additional assumption about the form of physical theories. The relation between this type
of symmetry (continuous symmetries) and conservation laws is called Noether’s theorem.
9 Since 1988, theNBShas been called theNational Institute for Standards and Technologies (NIST).
It is located in Boulder, Colorado, USA. This institute in the US has similar tasks as the Physikalisch
Technische Bundesanstalt (PTB) in Braunschweig, Germany.
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Fig. 6.1 Determination of
the Earth’s circumference
according to Eratosthenes.
W indicates the water well in
Syene (Assuan) and T the
tower in Alexandria
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6.3.1 Determining Distances and Sizes in the Solar System

Earth’s radius. To determine the diameter of the Earth’s orbit (i.e., twice the
average distance DES between the Earth and the Sun), which is needed in Rømer’s
method to measure the speed of light, we start with the Earth’s radius RE. This
quantity had already been determined by Eratosthenes in about 200BCE.Hismethod
(see Fig. 6.1) is based on the observation that, on a certain day of the year at noon, the
Sunlight falls exactly vertically into awaterwellW in theCity of Syene (nowAssuan)
in Egypt. On the same day in Alexandria, also at noon, the Sun is about 7.2◦ away
from the vertical position, marked by the tower T. This means that the difference in
geographic latitude of both cities is exactly this value.10 Both cities have roughly the
same longitude. Therefore, the distance between the cities corresponds to about a
fiftieth (= 7.2◦/360◦) of the Earth’s circumference. Measuring the distance between
the cities, Eratosthenes got 5000 stadia, therefore, the circumference of the Earth
would be 250,000 stadia. Unfortunately, the exact length of a stadion is not known,
but taking the actual distance between the cities of 835 km, one gets 41,750 km for
the Earth’s circumference. This is impressively close to the actual value of 40,075 km
at the equator. The modern value11 for the circumference is 40.030 km and the radius
is RE = 6.371 km.

The next steps onway to the distance DES between the Earth and the Sunwere car-
ried out in about 250 BCE by Aristarchus of Samos. With his method, one gets DES,
but also several other distances in the solar system.12 And this is only possible by
combining the results of several observations.

10 Here, one has to assume that the Sun is far away from the Earth. Much farther than the distance
between the two cities.
11 The Earth is not a sphere, therefore, the definition of its radius and circumference is, to some
degree, arbitrary.
12 Aristarchus got all these quantities in relation to the Earth’s radius RE. The latter was not yet
know at this time, as Eratosthenes’ discovery didn’t come about until 50 years later.
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Apparent size of the Sun and Moon. We start with the first observation, which is
relatively simple: the apparent size of the Sun and the Moon in the heavens is almost
equal. This can best be seen during a solar eclipse, when theMoon almost completely
covers the Sun. Figure 6.2 shows the situation, and one easily sees the relation (RE

is less than 2% of DEM, so it usually neglected in DEM − RE and in DES − RE)

RS

DES
= RM

DEM
, (6.1)

RS

DES
= tan

α

2
, (6.2)

which holds to a very good approximation and where α is the apparent size, which
is measured to be about α = 0.53◦.

Angle between the Sun and Moon at half moon. Aristarchus used an interesting
method to get a relation between the distance DES from the Earth to the Sun and
that DEM to the Moon. In Fig. 6.2, right side, the constellation of the Sun, the Earth,
and the Moon is shown at new moon, half moon, and full moon. At new moon, the
Moon is in between the Sun and the Earth (usually only approximately, otherwise a
solar eclipse would result). At full moon, the Moon again lies on the same line as
the Earth and the Sun. This time, however, the Earth is sitting in the middle (again
approximately, otherwise a lunar eclipse results). At half moon, the Moon, as seen
from the Earth, is not exactly 90◦ away from the new-moon position, but a little bit
less: the Earth-Moon-Sun angle must be a right angle.

Measured from newmoon, the position of theMoon is therefore smaller than 90◦.
Let us call the difference β. This angle can be determined by comparing the duration
from new moon to half moon to that from half moon to full moon. The differ-
ence between these durations is only half an hour, therefore, β = 0.5 h/(1month) ≈
1/390. The angle β is also the angle between the direction of the Earth and theMoon
at half moon and as seen from the Sun. Therefore, we have

DEM

DES
= sin β ≈ 1

390
. (6.3)

The Sun is almost 400 times farther from the Earth than the Moon! Because of (6.1),
we also have

RM

RS
= DEM

DES
≈ 1

390
. (6.4)

The weakness of Aristarchus’ method is that the angle β is very difficult to deter-
mine. Aristarchus got about 3◦, which is far too large. The consequence was a far too
low estimate of the size of the Sun: Aristarchus inferred that the Sun was between 18
and 20 times farther away from the Earth than the Moon. The actual factor is 390!
Nevertheless, Aristarchus’ method is correct.

Now, we have the four unknowns RS, DES, RM, DEM (RE is known) and three
Eqs. (6.1)–(6.3). Too little to determine the unknowns.
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Fig. 6.2 Top: Solar eclipse and apparent sizes of the Sun and Moon. Bottom: Determination of the
ratio between the distance DES from the Earth to the Sun and DEM from the Earth to the Moon via
the lunar phases

The lunar eclipse. The last needed piece of information comes from the obser-
vation of a lunar eclipse. Figure 6.3, top left, shows the situation. The Earth, in the
sunlight, produces a shadow. First, there is a total shadow, the umbra. Looking from
any point in the umbra, the Sun is completely covered by the Earth. Then, there is
a partial shadow, the penumbra, in which the Sun is partially visible. If you move
within the shadow of the Earth from A to B (see Fig. 6.3, top right), it is completely
dark. At B, the Sun starts to appear, and it becomes lighter. On the way from B to C,
it becomes gradually lighter until, at C, you see the full Sun.

The idea now is that the ratio between the Moon’s radius RM and the radius RU

of the umbra can be determined by observing the Moon moving through the umbra.
To do so, one can measure the time TDE that the Moon takes from point D (top right
of Fig. 6.3) to point E, where it covers a distance of 2RM, to the time TDF from D
to F, where it covers 2RU, and obtain RU/RM = TAC/TAB. Measurement yields

RU

RM
≈ 2.65. (6.5)
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Fig. 6.3 Situation in a lunar eclipse

Aristarchus related the radius of the umbra to the other quantities. Regarding the
sketch in Fig. 6.3, bottom left, one gets

RS − RE

DES
= RE − RU

DEM
. (6.6)

Although the observation of the lunar eclipse gave us one new unknown, RU, it also
gave us two new equations, (6.5) and (6.6). We now have five unknowns and five
equations and can determine the unknowns.

The remainder is a matter of playing with the equations. From (6.6) and (6.1)
follows

RS − RE

RS
= RE − RU

RM
,

and from that,13

RM = 1 + RM
RS

1 + RU
RM

RE.

13 The intermediate calculation steps, in case you are interested, are

RS − RE

RS
= RE − RU

RE
,

1 − RE

RS
= RE

RM
− RU

RM
,

1 − RE

RM

RM

RS
= RE

RM
− RU

RM
,

RE

RM

(
1 + RM

RS

)
= 1 + RU

RM
.
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The quantities on the right side are known from (6.4) and (6.5). We get

RM = 1 + 1/390

1 + 2.6
RE = 0.27RE.

6.3.2 Rømer’s Method

In 1672, Ole Rømer performed measurements of the orbital period of Jupiter’s
moons.14 The basic idea of these measurements (see Fig. 6.4) is that eachmoon, once
per orbit, enters Jupiter’s shadow and becomes eclipsed. Depending on the moon,
this eclipse happens every few days and can be seen while the Earth is between the
positions A and B in its orbit. The eclipse, in good approximation, happens once
per moon orbit (see Exercise 17). If the orbital period of a moon is known, using
multiples of it, a “timetable” with future eclipses can be compiled (for the timetable
of the moon Io, see Table 6.1, column “Prediction”). Already in 1668, Cassini had
found that there are systematic deviations between the predicted times and the actual

14 Copernicus had introduced Heliocentrism in his book “De revolutionibus orbium coelestium” in
1543. So, when Rømer performed his experiment, it was already well established that the planets
orbit around the Sun.
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Table 6.1 Calculated timetable for Io (“Prediction”) and the difference from actually observed
eclipse times. Remarks: (a) conjunction, (b) entry point outshined by the Sun, (c) entry point
covered by Jupiter

times (see column “Difference”). These deviations have a period of almost 400 days,
which corresponds exactly to the time between two Jupiter oppositions (i.e., when
the Earth lies in between the Sun and Jupiter). Rømer linked the effect to the fact
that the distance between Earth and Jupiter during these 400 days changes by the
diameter of the Earth’s orbit, i.e., by about 300mio. km. If the Earth were to stay
at a fixed position relative to Jupiter, the prediction would be correct. The Earth,
however, moves, and the distance between it and Jupiter changes. If the Earth is in
position A, the light from Jupiter has to traverse more than the Earth orbit’s radius, in
addition to the distance when the Earth is in position B. In this way, Rømer was able
to relate the duration that the light needs to traverse the diameter of the Earth’s orbit
to the deviations between the predicted eclipses of Jupiter’s moons and the actually
observed eclipses, and thus to estimate the speed of light. His goal was only to show
that the speed of light is finite. For this reason, he did not optimize his method for
precision. Notwithstanding, he obtained an acceptable value of 213,000 km/s.

Note that Rømer’s method is very similar to the Doppler effect (see Sect. 4.2.4).
Jupiter and its moon Io are the clock (which “ticks” when Io disappears in Jupiter’s
shadow) and the Earth is the observer, which sometimes approaches the clock and
sometimes moves away from it.

Exercise 17: The time needed by the Jupiter moon Io from one eclipse to the next
is a little bit larger than its orbital period. The reason is that, during Io’s orbit,
Jupiter moves a little bit forward on its own orbit around the Sun. Hence, the
direction of the shadow changes slightly. Calculate the difference�T between the
duration from one eclipse to the next and the moon’s orbital period and compare
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Fig. 6.5 Principle of the
method of the rotating
mirror. See the text
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the result to the time needed by a light ray to traverse the Earth orbit’s diameter.
Use the following data: orbital period of Io: TIo = 1.769 days; orbital period of
Jupiter: TJup = 11.86 years.

6.3.3 Bradley and Stellar Aberration

In Sect. 4.4.2, we explained the physics of stellar aberration. In the course of a year,
a star close to the north pole of the ecliptic geocentric coordinate system describes
a small circle with a radius of δ = 20.5′′. Theory gives us (4.18), where βE = vE/c
with the orbital velocity vE of the Earth. We know the distance DES of the Earth
and the Sun, and therefore the Earth’s orbital velocity, and can determine the speed
of light from c = vE/ tan δ. Bradley did this in 1725 and got the very good value
of 295,000 km/s for the speed of light—only 1.6% off from the modern value.

6.3.4 The Method of the Rotating Mirror

Ameasurement approach that can be performed in a laboratory is the method of the
rotating mirror. It was proposed by François Arago in 1838, and carried out for the
first time by Léon Foucault in 1850/51, and again, with a more sophisticated setup,
in 1862 [Foucault62].

In this method (see Fig. 6.5), light from a lamp passes an aperture A and then
hits a mirror R that rotates with a large angular velocity ω. At a particular mirror
position, the reflected light traverses the distance LM, hits another mirror M and
becomes reflected back to the rotating mirror R. For the whole path from the rotating
mirror R to the mirror M and back, the light needs the time �t = 2LM/c. During
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this time, the rotating mirror R has been rotated by the angle α = ω�t = 2LMω/c.
After reflection, the light will no longer pass the aperture, but will hit the aperture
stop next to it at a point P, the distance d from the aperture A. If the aperture has
the distance LA from the rotating mirror, we have d = LA tan(2α). Then, using the
approximation tan x ≈ x for small x , we get d = 4LALMω/c and, eventually, for
the speed of light,

c = 4LALMω

d
.

Foucault had in his experiment LM ≈ 20m and LA ≈ 1m. His rotating mirror
was running at 400 revolutions per second (ν = 400Hz) and he determined the shift
of the spot on the aperture to be d ≈ 0.7mm.

With the exact numbers, he got the very good value of 298,000 km/s for the speed
of light. This value deviates by only 0.26% from today’s value.

6.3.5 Modern Measurement and Definition of the Value

Definition of the speed of light. The value of the speed of light depends, of
course, on the choice and definition of the units. If the second and the meter were
respectively defined by a reference clock and a reference rod, the best measured
value for the speed of light would be made its “official” value. Since the velocity
represents the relationship between the units of time and length, with an absolute
velocity, we have the opportunity to define the unit of time by the unit of length, or
vice versa. Since, nowadays, times can be measured more precisely than lengths, the
second alternative has been chosen, and in 1983, the meter was defined by the 17th
Conférence Générale des Poids et Mesures (CGPM) via the second15:

Definition of the meter: The meter is the length of the path traveled by light
in vacuum during a time interval of 1/299,792,458 of a second.

With this definition, the speed of light is defined to be exactly c = 299,792,458m/s.
Usually, one uses the very good approximation of c ≈ 300,000 km/s = 3 × 108 m/s
in calculations. In three nanoseconds, light in vacuum covers about one meter.16 In
one second, it travels 7.5 times around the Earth or almost reaches the Moon. And
in 8.5mins., it covers the path to the Sun. Many satellites are in the geosynchronous
orbit. If such a satellite is exactly above us (in the zenith), it has a distance of a little
bit more than 35,000 km and light would take about 0.2 s to reach it.

15 We will discuss the definition of the second in Sect. 9.4.
16 The USA is exceptionally lucky here with their outdated system of units: light travels pretty much
exactly one foot per nanosecond!
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Note that this definition of the meter only makes sense because the principle of
the absolute speed of light holds. Otherwise, the length unit would depend on the
chosen reference system!

Modern measurement of the speed of light. Lasers have made it possible to
determine the speed of light to a very high precision. The idea is simple. Take a
monochromatic electromagnetic wave (light beam) of the form sin(2π(x/λ − νt))
in vacuum, measure the wavelength λ and the frequency ν and calculate the speed of
light from c = λν. The first challenge is to find a stable wave, because the frequency
(or, equivalently, the wavelength) of a laser usually changes by a minuscule amount
in time. The remedy is to stabilize the laser’s frequency by coupling it to a much
more stable absorption line in the spectrum of an atom or molecule. It turns out
that a particular laser, the helium-neon laser, and methane molecules make a perfect
fit. One of the possible emission frequencies of this laser and an absorption line of
methane, which can be used for the stabilization of the laser, both lie at a wavelength
of 3.39µm (this is infrared light).

Investigators around K. M. Evenson at the NBS Boulder at the beginning of the
1970s succeeded in stabilizing their helium-neon laser in this manner and measured
the wavelength and the frequency with high precision [Evenson+72]. Measuring
the wavelength meant comparing it to the wavelength of a particular line in the
spectrum of krypton-86, which, at that time, was used to define the meter. And
measuring the frequencymeant comparing it to the frequency of a so-called hyperfine
transition in caesium-133, which defines the second (see Sect. 9.11.2). Evenson et
al. got ν = (88.376181627 ± 0.000000050)THz for the frequency of the stabilized
laser and λ = (3.392231376 ± 0.000000012)µm for its wavelength. Multiplying
then yields a value of c = (299,792,456.2 ± 1.1)m/s for the speed of light.

Other groups of investigators made similar experiments and, eventually, the 17th
CGPM, in 1983, made its decision on the definition of the meter.



Chapter 7
Relativity of Simultaneity

7.1 Introduction

After all the preparations in the last six chapters, we can finally deal with the first
of the various very surprising effects of the special theory of relativity: the relativity
of simultaneity. Along the way, we introduce the spacetime diagram. This diagram
allows us to understand the (kinematic) effects of the special theory of relativity
using only geometry and without too much mathematical hassle. In Sect. 7.3, we ask
ourselves what simultaneity actually means, only to come to the point in Sect. 7.5 and
realize that events that are simultaneous for Alice are not necessarily simultaneous
for Bob. In Sect. 7.8, we learn why velocities faster than light are impossible (at least,
in regards to the velocity of a transport of energy or information).

7.2 The Spacetime Diagram I

In the remainder of this book, we frequently will use diagrams that are similar to that
in Fig. 7.1. They are called spacetime diagrams (STD) or Minkowski diagrams
after their inventor, Hermann Minkowski. In principle, these are the x-t-diagrams
known from classical mechanics.

The difference is that, in classical mechanics, the time is an absolute quantity. All
observers (including Alice and Bob) have the same time. The time does not depend
on the reference frame. This can easily be seen from the Galilei transformation (see
Sect. 3.4.2). In classical mechanics, time is often considered as a parameter and the x-
t-diagram is considered as one space dimension that is plotted against the parameter
“time”.

Relativity of simultaneity (which we will discuss in a jiffy) implies that, in special
relativity, the time depends on the observer. Space and time in special relativity are
considered on the same footing; one no longer speaks of a three-dimensional space
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Fig. 7.1 Spacetime diagram
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and a separate dimension of time, but rather of four-dimensional spacetime.1 The
spacetime diagram is a representation of spacetime. On a piece of paper, however, we
can draw either one space dimension and the time dimension in a two-dimensional
spacetime diagram or, two space dimensions and the time dimension in a three-
dimensional spacetime diagram, in perspective drawing.

The trajectory of an object (this can be a massive object or a light pulse) in the
spacetime diagram is plotted in the same way as in the x-t-diagram. A point in
spacetime is called an event. An event E0 = (t0, x0) has a position x0 (here, it is
one-dimensional, but it could also be a vector in three-dimensional space) and a time
t0. The coordinates of an event (such as those of points in space) depend on the
chosen coordinate system.

Frequently, one uses the time coordinate ct , the time multiplied by the speed of
light. This has two advantages: (1) The time axis has the same unit as the space axes.
Time is measured in meters and corresponds to the distance that light in vacuum
travels in this time (30 cm correspond to about 1 ns and 300,000m correspond to
about 1 s). (2) The slope of the trajectory x = ct of a light beam that travels in the
positive x-direction is exactly one.When using ct as a time coordinate, the light pulse
that travels through the origin of the spacetime diagram becomes the bisecting line
of the coordinate axes. In Fig. 7.1, the light beam traveling in the positive x-direction
is denoted by L+ and that traveling in the negative x-direction is denoted by L−.

Instead of the trajectory of an object, in the context of the spacetime diagram,
one speaks of the object’s world line. We will see later2 that no object can move

1 Sometimes, one talks about “3 + 1 dimensions” (or “1 + 1 dimensions”) to make clear that 3 (or
1) space dimensions plus the time dimension are considered.
2 In Sects. 7.8.1 and 13.1.3.
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Fig. 7.2 The clock park in
Düsseldorf’s Volksgarten

faster than light. As the slope of the trajectory is the instantaneous velocity, the slope
of an object’s world line never can be larger than 1 (or smaller than −1).

If Bob moves relative to Alice with a constant velocity v in the x-direction and
bothmeet in the origin of the spacetime diagram, Bob’s trajectory is given by x = vt .
At the same time, this is his time coordinate axis ct ′, which is defined by x ′ = 0.

7.3 Simultaneity and Synchronous Clocks

When are two events simultaneous? The concept of simultaneity is not as trivial as
it seems on first sight. The naive approach does not work:

Let’s say, in jest, that you observe with your telescope a bag of rice toppling over
on the surface of Mars. You hold a clock in your hand. When you see the sack falling
over, you read the clock. Suppose you read “one o’clock in the afternoon”. In that
situation, it would be wrong to say that the sack of rice fell over at one o’clock in the
afternoon, because the light from Mars needed a certain amount of time to travel to
the Earth. So, the sack fell over several minutes before one o’clock in the afternoon.
The correction of the measured time that is necessary due to finite signal traveling
times is called retardation. This correction must not be forgotten. But this is only
the smallest problem associated with simultaneity.

Exercise 18: Determine the distance of Mars from the Earth when both are on
the same ray (half-line) starting at the Sun. Calculate the traveling time of light
from Mars to the Earth.

How can we demonstrate that, in a given inertial frame, two distant events are
simultaneous? One could place a clock next to both events (as in the Volksgarten in
Düsseldorf, see Fig. 7.2) and read the time at which an event occurs from the clock
adjacent to where the event happens. If the times are the same for two events, the
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Fig. 7.3 Synchronization of clocks. Left: A lamp, two clocks and a measuring rod in space. Right:
Illustration of the method in the spacetime diagram

events happen simultaneously. But then, one has to synchronize these clocks. How
can that be achieved? One method is to synchronize the clocks at a common position
and, after that, to place the clocks in their final positions.3 We will use a different
method (see Fig. 7.3). First, we place a lamp in the exact middle spot between the
clocks.We can use a measuring rod to determine where this middle position is. Then,
we switch on the lamp. Each clock will be reset to zero time when the lamp’s light
arrives at the clock. Both clocks will then show the same time, because the light
needs the same traveling time to reach each clock. And the reasons for this are,
first, the equal distances, and second, more importantly, the equal speed of light, as
guaranteed by the principle of the absolute speed of light. Because of this principle,
we know that this synchronization method works in each inertial frame.

The synchronization method is illustrated in the spacetime diagram in Fig. 7.3
on the right side. The lamp is at the location x = 0 and the clocks at the locations
x = ±l. The event E0 stands for the switching on of the lamp and, at E1 and E2, the
light arrives at the respective clocks. In an alternative method, the clocks at events
E ′
1 and E ′

2 send a light pulse to x = 0. If the light pulses arrive there at the same
time, the events E ′

1 and E ′
2 are simultaneous.4

Clock synchronization: When a light pulse in an inertial frame is sent from
the location that is in the exact middle spot between two clocks and the clocks
show the same time when the pulse arrives, then the clocks are synchronized.

Alternatively: Two clocks are synchronized when they send a light pulse
at the same clock time in the direction of the other clock and the light pulses
meet exactly in the middle between the clocks.

3 This works, but only if the transport of the clocks is very slow. We will see the reason for this in
Sect. 9.10.
4 Note that, to define when two events at different locations are simultaneous, we need to know
when two events at the same location are simultaneous.
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Fig. 7.4 Equivalence of
Einstein synchronization and
symmetric synchronization.
See solution to Exercise 19
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Ourmethodworks verywell for determiningwhether two clocks are synchronous,
and also for synchronizing two clocks. Sometimes, two clocks A and B have to be
sychronized without changing the clock time of one of the two—say, clock A. In that
case, one speaks of synchronizing clock B according to clock A. This is possible with
our method and works as follows: the light pulse starts at the middle spot between
the clocks. When it arrives at clock A, this clock’s time is not changed. But the time
tA that the clock shows upon arrival of the light pulse is communicated to the other
clock. When the light pulse arrives at clock B, this clock is first set to zero. Once the
information from clock A arrives at clock B, the time tA when the light pulse arrived
at clock A is added to the clock time of clock B. Then, both clocks are synchronous.

It is easier, however, when clock A sends a light pulse to clock B. As soon as this
pulse arrives at clock B, that clock’s time is set to tA + D/c, where D is the distance
of the clocks (or the length of the path traveled by the light pulse).

In his original article on special relativity, Einstein gave a different method. Using
Einstein synchronization,5 clock A sends a light pulse to clock B at time t0, which
clock B immediately sends back to clock A. Suppose the light pulse arrives at clock
A at time t1. Then, clock B has to be adjusted such that, upon arrival of the light pulse,
the clock time was (t1 − t0)/2. In inertial frames (and under the assumption that the
principle of the absolute speed of light holds), all these methods are equivalent.

And again: Maybe you wonder why we used light pulses (or light signals) for the
synchronization. The reason is that, due to the principle of the absolute speed of light,
the synchronization methods become particularly easy. It is, however, also possible
to use signals with other velocities. But this requires a different synchronization
method (see Exercise 45).

5 Actually, this synchronization method should be called Einstein-Poincaré synchronization,
because Poincaré had already used it five years before Einstein.
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Exercise 19: Show that our synchronization method with the two light pulses
emitted simultaneously at the middle point between two clocks (which we will
call “symmetrical synchronization”) and Einstein synchronization are equivalent.
To do so, place a semitransparent mirror exactly halfway between the clocks and
perform an Einstein synchronization (Fig. 7.4).

7.4 Alice and Bob in Space

In the following chapters, we will conduct some Gedanken experiments from which
we deduce important consequences of the special theory of relativity. The actors in
these Gedanken experiments are Alice and Bob, representing inertial frames.6 One
would say that Alice and Bob are inertial observers. Each has their own coordinate
system. We usually assign the “unprimed” coordinates (x, y, z) and time t to Alice
and the “primed” coordinates (x ′, y′, z′) and time t ′ to Bob (see Fig. 7.5).

Usually, Bob will travel relative to Alice with the velocity v. We orient the two
coordinate systems such that Alice’s x-axis and Bob’s x ′-axis coincide. Furthermore,
the y- and y′-axes are parallel, as are the z- and the z′-axes. Bob will move on Alice’s
x-axis and bothmeet at t = 0, as measured byAlice, and t ′ = 0, as measured by Bob.
FromAlice’s perspective, Bob is located at x = vt , and fromBob’s perspective,Alice
is located at x ′ = −vt ′. This constellation is called the standard configuration.7

In the special theory of relativity, Alice and Bob do not travel on trains (as they
do in classical physics, see Sect. 3.4), but on spaceships in space. Alice sometimes
stands on the platform of the space station and sometimes she travels with her rocket.
Bob always travels with his rocket, which is of the same type as Alice’s. In particular,
the rockets have the same size.8

7.5 Simultaneity Is Relative!

The two central principles of SR, Einstein’s principle of relativity and the princi-
ple of the absolute speed of light, have surprising consequences for the concept of
simultaneity.

6 If, in exceptional cases, they represent accelerated reference frames, this circumstance will be
explicitly noted.
7 This concept is taken from W. Rindler, “Relativity” (Oxford University Press, 2006), the book
mentioned in the Preface.
8 O tempora, o mores!: In Galileo’s and Newton’s time, there were, of course, neither trains nor
rockets. That’s why Alice was standing on the pier at that time and Bob passed her in a ship. In
Einstein’s times, Alice already had replaced the ship with a train and the pier with a train station.
These days, Alice sits in a rocket and travels through outer space.
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Fig. 7.5 The coordinate systems of Alice and Bob, in standard configuration

7.5.1 Gedanken Experiment

To understand these consequences, we imagine that Alice stands in a space station
and Bob flies by with his rocket, having the velocity v relative to the space station
(see Fig. 7.6).

Bob has fixed clocks at both ends of his rocket, the front end and the rear end (in
the following, we assume that all clocks are perfectly precise).We call them the front
clock and the rear clock. To synchronize these clocks as described in Sect. 7.3, Bob
places himself in the center of the rocket (and, therefore, exactlymidway between the
clocks). Then, he switches on a lamp, also midway between the clocks, which sends
light pulses in the directions of both clocks at the exact same time (see Fig. 7.6, left
side). Upon arrival of the light signals, each clock is reset. Due to the fact that both
clocks stand at the same distance from the lamp, the light pulses reach both clocks
“simultaneously”. After the procedure, the clocks run synchronously. Suppose now
that Bob switched on the lamp at the exact moment that he passed by Alice.

How does Alice interpret the synchronization procedure? From her point of view,
Bob is sitting in the center of his rocket (and the lamp is exactly midway between the
clocks). She observes how Bob switches on his lamp and sees the light pulses (see
Fig. 7.6, right side). Alice now measures the velocity of both light pulses emitted
by Bob’s lamp. For both, she gets c, the speed of light, exactly according to the
principle of the absolute value of the speed of light. Due to the principle of relativity,
this principle is valid in the same way for both Alice and Bob.

From Alice’s point of view, Bob’s rear clock moves toward her while the front
clock moves away from her. For this reason, and again from Alice’s point of view,
the light pulse emitted by the lamp arrives at Bob’s rear clock before it arrives at
Bob’s front clock. From Alice’s point of view, Bob’s clocks are not simultaneously
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Fig. 7.6 The concept of simultaneity. Left: As seen from Bob’s rocket. Right: As seen from Alice
at the space station

reset. Simultaneity for Bob is not equivalent to simultaneity for Alice. This is exactly
what the relativity of simultaneity means. The relativity of simultaneity is a fun-
damental insight of SR and strongly contradicts the concept of space and time in
classical mechanics. Simultaneity is no longer absolute, it is relative! Events that are
simultaneous in one inertial frame are not so in other inertial frames (in general). It
makes no sense to speak about simultaneity without specifying the inertial frame for
which it holds, in the same way as it makes no sense to talk about a velocity without
specifying relative to which reference system it holds.

Relativity of simultaneity is the central effect of special relativity. Make sure
that you understand the effect and, in particular, why it necessarily follows from the
two principles of SR. All other (kinematic) effects of SR build upon the relativity of
simultaneity.

Relativity of simultaneity: The simultaneity of two events is relative. Events
that are simultaneous in a given inertial frame, in general, are not simultaneous
in another inertial frame.

One could speculate that simultaneity, as defined by our synchronization method,
is only relative because our synchronization procedure is deficient. Is there another
synchronization procedure that yields an absolute simultaneity? We will discuss this
and related questions in Sect. 7.7.
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Fig. 7.7 The concept of simultaneity, represented in the spacetime diagram. Left: Bob’s point of
view. Right: Alice’s point of view

7.5.2 The Difference from Classical Physics

Howwould the discussion of the Gedanken experiments in Fig. 7.6 differ in classical
physics? When measuring the speed of the light pulses in Bob’s rocket, Alice would
not get the speed of light. Instead, the light pulse traveling to the rear clock would
have the velocity c − v, while the light pulse traveling to the front clock would have
the velocity c + v. This difference in velocities would specifically cancel the fact
that, for Alice, the light pulses have to travel different distances before arriving at
the clocks. Also, Alice would find that the light pulses arrive at both clocks at the
same time (see Exercise 45).

This synchronization procedure, however, is not the same in all inertial frames.
It breaks Einstein’s principle of relativity, and thus we cannot use it. In classical
physics, instead of the light pulse, we could use a signal that is infinitely fast. Only
the special theory of relativity, however, has shown that such a signal cannot exist.

7.5.3 Spacetime Diagram

We now discuss the situation using a spacetime diagram. First, we take Bob’s point
of view (see Fig. 7.7, left side). His coordinates are (t ′, x ′). The center of the rocket
is located at x ′ = 0. F and R are the respective world lines (trajectories) of the front
and rear ends of the rocket. At time t ′ = 0, Bob, at location x ′ = 0 sends a light
pulse in both directions of the x ′-axis. At event EF, the light pulse arrives at the front
end of the rocket, and at event ER, at its rear end. Both events, by definition, are
simultaneous for Bob and the line between the events is parallel to the x ′-axis.

Next, we take Alice’s point of view (see Fig. 7.7, right side). Suppose that Bob’s
rocket, for Alice, has the length L . (In Chap. 8, we will see that the lengths of objects
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at large velocities depend on the reference system. Therefore, we have to specify for
whom this length holds. This, however, is not an issue here.) The front end and the rear
end of Bob’s rocket, for Alice, have the respective coordinates xF(t) = L/2 + vt and
xR(t) = −L/2 + vt (see Fig. 7.7). At time t = 0, Bob’s lamp emits the light pulse at
x = 0. According to the principle of the absolute speed of light, for Alice, the light
pulses also travel with velocity c in both directions of the rocket and arrive at the
events EF and ER at the ends of the rocket.

For Alice, the forward-directed light pulse moves according to x = ct and the
backwards-directed one according to x = −ct . Because the back of the rocket moves
toward the light pulse, the backwards-directed pulse first arrives at the rear clock.
Call this arrival time tE, then, from−ctE = −L/2 + vtE follows tE = (L/2)/(c + v).
A little bit later, the forward-directed light pulse arrives at the front clock, and the
arrival time is tA = (L/2)/(c − v). It is immediately clear that tA �= tE. The two
events “light pulse arrives at rear clock” and “light pulse arrives at front clock” are
simultaneous for Bob (according to our definition of simultaneity), but not for Alice!

With the relativity of simultaneity, space and time became much more similar than
they are in classical physics. The following observation already holds in classical
physics, and we consider it to be trivial:

Events that, for Alice, happen at the same location (meaning that they have the same coor-
dinate values) do not, in general, do the same for Bob.

Consider a car being driven. The car emits a banging noise, and then stops. For the
driver, the bang and the car stopping happen at the same location, namely, in the car.
For the observer at the roadside, the bang does not happen where the car stops. We
could speak of the relativity of equilocality.

In special relativity, there is the following additional observation:

Events that, for Alice, happen at the same time do not, in general, do the same for Bob.

This is an exact statement of the relativity of simultaneity. Space and time appear in
an analogous way in both statements above.

7.6 The Spacetime Diagram II: Simultaneity

We again have a look at the spacetime diagram in Fig. 7.7, right side. There, we have
drawn the x-axis of Alice. All events on this axis are simultaneous for Alice (i. e.,
for Alice, they happen at the same time), because for all events E on the x-axis, we
have tE = 0. For events that are on a parallel line to the x-axis, the same is true: all
of these events happen simultaneously for Alice. Now, let us look at the t-axis. All
events on this axis happen at the same position for Alice, namely, x = 0. The same
applies to a parallel line.

What about Bob’s coordinate system? For Alice, Bob travels on the line x = ct ,
and all events on this line happen at the same place for Bob, namely, his own position.
So, this line is Bob’s time axis, the t ′-axis.What about Bob’s “axis of simultaneity”,
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Fig. 7.8 Left: construction of the axes of Bob’s coordinate system (green), as seen by Alice (black).
The red line L represents a light pulse emitted by Alice in the positive x-direction. Right: the same,
as seen by Bob

the x ′-axis? In classical physics, Bob’s x ′-axis and Alice’s x-axis would coincide,
because, there, simultaneity is absolute (independent of the inertial frame). In special
relativity, this is not true. As we learned in the last chapter, the events EF and ER in
Fig. 7.7, right side, are simultaneous for Bob. His x ′-axis must be parallel to the line
through these two events, the green line in the figure (see Exercise 20). In Fig. 7.8,
left side, we have drawn Bob’s x ′-axis. One recognizes immediately that the light
pulse L bisects the angle between the x ′- and the t ′-axis. This must be the case,
because, for Bob, the world line of the light pulse must be given by x ′ = ct ′.

Note how the coordinates for a particular event are read from the coordinate axes.
The event E in Alice’s coordinate system has the coordinates (tE , xE ), while in Bob’s
coordinate system, it has the coordinate (t ′

E , x ′
E ). To read the latter, one has to draw

lines that are parallel to the coordinate axes and that pass through the event E .
Bob would draw his coordinate axes x ′ and t ′ perpendicular to each other (see

Fig. 7.8, right side). For Bob, Alice travels on the world line x ′ = −vt ′. Her “axis
of simultaneity”, the x-axis, must be such that the trajectory L of the light pulse is
again the angle bisector of the t- and the x-axis.

Nowwe know how to drawBob’s coordinate axes into Alice’s spacetime diagram.
What is missing still is the scale of Bob’s axes. It would be wrong to transfer the
scale of Alice’s axes with a compass to Bob’s axes. The reason for this is the fact
that, while space may be Euclidean, this is not the case for spacetime.9 We will see
later what this exactly means. For the moment, it is sufficient to memorize the fact
that angles and lengths in the spacetime diagram must not be measured with a rod!

9 If the term “space” occurs in the expression “Euclidean space” or something similar then “space”
is meant in the mathematical sense. Otherwise, “space” refers to the three-dimensional physical
space.
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Fig. 7.9 To Exercise 20
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Exercise 20: Show that, from Alice’s perspective, all events on Bob’s x ′-axis
are simultaneous for Bob.

To do so, take two arbitrary events E1 and E2 on the x ′-axis that, for Bob, have
the coordinates E1 = (0, x ′

1) and E2 = (0, x ′
2) and, forAlice, have the coordinates

E1 = (t1, x1) and E2 = (t2, x2), respectively. Show that light pulses emitted in
these events and toward each other meet exactly in the middle: x ′

M = (x ′
2 + x ′

1)/2
(see Fig. 7.9).

1. Express the coordinates of the events E1 and E2 as functions of t1 and t2.
2. Calculate Alice’s coordinates of the intersection event EI of the light lines

through E1 and E2 (i.e., xI and tI as functions of t1 and t2).
3. Determine the line through EI, which is parallel to Bob’s time axis, and then

Alice’s coordinates (tM, xM) of the intersection EM of this line with Bob’s
space axis. Express tM as a function of t1 and t2.

4. If you made no mistake, you got tM = (t1 + t2)/2 and xM = (x1 + x2)/2, so
the event EM lies exactly midway between E1 and E2.

Therefore, the events E1 and E2 are simultaneous for Bob, because EI happens
exactly midway between them. These arguments hold for all event pairs E1 and
E2 on the line x = (c2/v)t , which, for this reason, is a space axis for Bob.

Exercise 21: Draw a spacetime diagram with Alice and Bob. Now, Bob moves
in the negative x-direction. Keep the convention that Alice’s coordinate axes are
perpendicular to each other.
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7.7 Digression: Further Thoughts on Simultaneity

7.7.1 Introduction

Conventionality of simultaneity. Einstein synchronization looks somehow arbi-
trary. Is it the only method for synchronization? We show that, indeed, using it is
convention, and that there are other possible methods for clock synchronization.
These alternatives, however, do not lead to different physics, but they do lead to a
different notion of simultaneity. This is what is meant by the term “conventionality
of simultaneity”. What makes these alternatives less interesting is that they produce
theories that are much more complicated than special relativity.

One-way and two-way speed of light. Let us start our digression with a look
at the principle of the absolute speed of light. It states that the speed of light is
independent of the direction. To be able to make practical use of this principle, we
have to be able to determine the velocity of a light pulse that travels from a location
A to another one B (which are all at rest relative to the observer). This requires
measuring the distance �AB between A and B and the time �tAB that the light pulse
needs to travel this distance. For the latter, one needs a clock at A and another one
at B, and these clocks must be synchronized. Then, c = �AB/�tAB . This velocity is
called the one-way speed of light.

Without a synchronization method, the concept of the one-way speed of light is
meaningless, and with it, the principle of the absolute speed of light, which refers to
the one-way speed of light, is pointless.10

Indeed, determining any velocity requires a method for clock synchronization,
which is convention.Differentmethods for clock synchronization yield different one-
way velocities. Recall Einstein’s synchronization method: there are two locations
A and B, each of which has a clock and each of which is at rest relative to the other
and the observer. A light pulse is sent from A to B and immediately back to A.
The light pulse is emitted at t1 (as measured by the clock at A), arrives at B at t2
(as measured by the clock at B), where it is reflected and eventually arrives back at
A at t3 (as again measured by the clock at A). Then, Einstein synchronization sets
t2 = t1 + (t3 − t1)/2.

10 Therefore, before introducing the principle of the absolute speedof light in Sect. 6.1, froma logical
point of view, we should have presented Einstein’s synchronization method. The synchronization
method without the principle of the absolute speed of light is useful, while the principle without the
synchronization method is not. On the other hand, the principle suggests a synchronization method:
At tA = 0, send a light pulse to B, and when it arrives, set the time of clock B to tB = �/c. Indeed,
Einstein in his epoch-making paper on special relativity, first defined simultaneity [Einstein05a]:
“Die letztere Zeit [gemeinsame „Zeit“] kann nun definiert werden, indem man durch Definition
festsetzt, dass die „Zeit“, welche das Licht braucht, um von A nach B zu gelangen, gleich ist der
„Zeit“, welche es braucht, um von B nach A zu gelangen.” and in English: “The latter time [common
“time”] can now be defined by stating by definition that the “time” which the light needs to get from
A to B is equal to the “time” it takes to get from B to A.”
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Einstein’s method for clock synchronization implies that the one-way speed of
light from A to B is equal to that from B to A. Let us imagine that we are located at
A and send the light pulse to B, where is gets reflected back to A, and use c+ for the
one-way speed of light from A to B (“forward one-way speed of light”) and c− for
the one-way speed of light from B to A (“backward one-way speed of light”). Then,
Einstein synchronization makes the forward and backward one-way velocities equal:

c+ := �AB

t2 − t1
= �AB

t1 + (t3 − t1)/2 − t1
= 2�AB

t3 − t1
,

c− := �AB

t3 − t2
= �AB

t3 − t1 − (t3 − t1)/2
= 2�AB

t3 − t1
.

Now, if we send a light pulse from A to B and back to A to measure the average
speed along this path, we do not need a clock at B and there’s no need to synchronize.
The clock at A is sufficient. This average of the velocity from A to B and that back
from B to A is called the two-way speed of light. The two-way speed of light can
be determined without a synchronization method. It is not convention.

Experiment, or: the objective physical world. One can show that there is no
way to measure a (one-way) velocity without synchronizing clocks, i. e., choosing a
particular synchronization method.11 And the value of the (one-way) velocity will
depend on this convention, i. e., the chosen synchronization method. One can also
show that any experiment in which the light follows a closed path, such as the
Michelson-Morley experiment, measures the two-way speed of light.

The Michelson-Morley experiment, in combination with two other experiments
(the Ives-Stilwell and Kennedy-Thorndike experiments, see Sects. 9.7 and 9.8),
shows that the two-way speed of light is independent of direction and inertial frame
(see Sect. 11.4). Therefore, without choosing a synchronization method, one can
show that the two-way speed of light is independent of the direction and the inertial
frame.

The principle of the absolute speed of light in special relativity refers to the one-
way speed of light that follows from the constancy of the two-way speed of light plus
the Einstein synchronization. The fact that we cannot measure the one-way speed
of light without a convention shows that this principle is stronger than needed. We
will show that weakening the principle of the absolute speed of light to turn into
the principle of the absolute two-way speed of light allows for a whole family of
alternative theories with different synchronization methods. Lorentz’s ether theory
is among these theories. But all of these theories predict the same physics as special
relativity. Of these theories, special relativity by far is the most simple and most
elegant one. Therefore, people prefer this theory to others.

11 Although some physicists are still arguing, and propositions tomeasure one-way velocities some-
times appear, this seems to be the consensus in the community. But if, indeed, we could measure
one-way velocities, this would imply that only a particular one of the synchronization methods
would be correct. However, for the effects predicted by special relativity, this would not change
anything.
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Although the one-way speed of light cannot bemeasured (without the convention),
one can show that the one-way speed of light is independent of the velocity of the light
source. Brecher did this, as we explained in Sect. 5.3.3. Suppose there’s a moving
source and a source at rest at A. Both emit light at the same time. At B, we find that
these light pulses arrive at the same time. Here, we don’t need synchronized clocks.

Alternative synchronization methods. What are these different synchronization
methods that are different from Einstein’s method?

Reichenbach [Reichenbach58] introduced the whole family of different synchro-
nization methods, and Einstein synchronization is one of these. Synchronization
methods different fromEinstein’s not only yield direction-dependent one-way speeds
of light, but also imply different Lorentz transformations, the generalized Lorentz
transformations [Anderson+98]. The relativistic effects like length contraction, time
dilation, and so on, however, also result from these generalized transformations,
which we will derive in a minute.

Reichenbach synchronization. The generalization of Einstein’s synchronization
method is the Reichenbach synchronization. Reichenbach uses the same experiment
as Einstein, but instead of t2 = t1 + (t3 − t1)/2, he sets

t2 = t1 + ε · (t3 − t1) (7.1)

for a particular fixed ε. The synchronization parameter ε must obey 0 < ε < 1, oth-
erwise signals would arrive before they have been sent, which contradicts causality.
The choice of ε = 1/2 for all inertial frames amounts to Einstein synchronization.12

With this synchronization method, the one-way speed of light depends on the
direction. Suppose that �AB is the distance between A and B. Then, the speed of
light c+ from A to B becomes

c+ = �AB

t2 − t1
= �AB

ε · (t3 − t1)
= c

2ε
,

where c := 2�AB/(t3 − t1) is the two-way speed of light. In the same way, one gets

c− = c

2(1 − ε)

for the speed of light from B to A.13 Furthermore, we have

2

c
= 1

c+
+ 1

c−
,

which says that c is the harmonic mean of c+ and c−.

12 In Reichenbach synchronization, each inertial frame could have its own ε.
13 Note that, for ε = 0 or ε = 1, one of the two velocities c± would become infinity.



112 7 Relativity of Simultaneity

ct

x

ct′

x′

L

E1

E2

E3

E4,0

κ = 0

E5
x′
5

E4,−β

κ = −β

[x = mx′ t]

[x = mt′ t]

Fig. 7.10 For the construction of the generalized Lorentz transformation

7.7.2 Generalized Lorentz Transformation

We derive now the generalized Lorentz transformations, which are induced by the
different synchronization methods.

Synchronizationmethods and the axis of simultaneity. Themain physical ideas
can be seen in 1+1 dimensions, therefore, we restrict ourselves to this situation. Then,
we introduce Alice’s reference frame � with coordinates (t, x), in which we assume
that the speed of light is isotropic (independent of the direction). This implies that
Alice uses Einstein’s synchronization method to synchronize clocks.14 Then, we
have a second reference frame � with coordinates (t ′, x ′), which is Bob’s and the
origin of which moves according to x = vt in �′.

To synchronize clocks, at event E1, Bob sends a light signal to a mirror, where it
is reflected in E2 and arrives back at Bob in E3 (see Fig. 7.10). The mirror’s world
line is x = L + vt . Next to the mirror is a clock of the same type as Bob’s clock,
and the task now is to synchronize this clock. To synchronize it means to relate its
time to one of the points on the ct ′-axis between E1 and E3 and, in the moment
when the light signal is reflected, set it to this time. We can use the parameter ε

introduced by Reichenbach and write the time to which the clock at the mirror is set,
as t2 = t1 + ε · (t3 − t1), but we prefer to use the alternative parameter κ (possibly
introduced in [Anderson+98]), where

t2 = 1 − κ

2
t1 + 1 + κ

2
t3,

14 Remember that the isotropy of the speed of light and the Einstein synchronization method are
intertwined.
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and which interpolates linearly from t2 = t1 for κ = −1 to t2 = t3 for κ = +1. Ein-
stein synchronization corresponds to the case in which κ = 0. For reasons of causal-
ity, we restrict κ to −1 < κ < +1. The relation to ε is given by ε = (1 + κ)/2 or
κ = 2ε − 1.

For each −1 < κ < +1, we have a different synchronization method. Different
synchronization methods imply different notions of simultaneity and a different x ′-
axis. The next step that we perform is to determine the x ′-axis, for a given κ .

To determine the slope of the x ′-axis as Alice sees it, we have to determine Alice’s
coordinates of the events E1, E2, E3 (in Fig. 7.10). For E1, which is the origin, this is
trivial. For E2, we have to determine the intersection of the mirror’s world line with
the light cone. This gives us

E2 : (t2, x2) =
(

L/c

1 − β
,

L

1 − β

)
.

Event E3 is the intersection of the light cone starting at E2 and traveling in the
negative x-direction with Bob’s world line, i. e., of x = −c(t − t2) + x2 with x = vt .
This yields

E3 : (t3, x3) = (2Lγ 2/c, 2Lγ 2β).

The event E4,κ , which depends on κ , is defined by the synchonization method and
given by

E4,κ : (t4,κ , x4,κ ) =
(
1 + κ

2
t3,

1 + κ

2
x3

)
= (L(1 + κ)γ 2/c, L(1 + κ)γ 2β).

The slope mx ′ of the x ′-axis is then

mx ′ = x2 − x4,κ
t2 − t4,κ

= c
1

1−β
− (κ + 1)γ 2β

1
1−β

− (κ + 1)γ 2
= c

1 + κβ

κ + β
.

For Einstein synchronization (κ = 0), we get mx ′ = c/β = c2/v, a fact that we
already know.

But an absolute simultaneity is also possible. If we choose t4,κ = t2, then the
x ′-axis is parallel to the x-axis and events that, for Alice, are simultaneous are also
simultaneous for Bob. The condition t4,κ = t2 is satisfied for κ = −β. We refer to
the associated synchronization method as absolute synchronization.

From a physical point of view, there is a large difference between Einstein’s syn-
chronization method and absolute synchronization. Einstein synchronization is an
internal synchronization method. To carry it out, only the rest frame of the observer
is relevant and no reference to any other inertial frame is needed. Absolute synchro-
nization, however, singles out one inertial frame, the aether frame, and synchronizes
all other inertial frames in such a way that there is absolute simultaneity. This can
only be performed if the aether frame is known. Absolute synchronization is an
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external synchronization method and the parameter β in absolute synchronization is
the velocity of the inertial frame relative to the aether.

So, from all the different synchonisation methods for −1 < κ < 1, the two that
interest us most are Einstein synchronization with κ = 0 and absolute synchroniza-
tion with κ = −β.

Generalized Lorentz transformation. Now, we look for the most general linear
transformation, which maps the t-axis to the t ′-axis and the x-axis to the x ′-axis.
We know already that the t ′-axis, for Alice, is given by x = vt and the x ′-axis by
x = mx ′ t . If we write the general linear transformation in the form

(
ct ′
x ′

)
=

(
a b
d e

) (
ct
x

)

with parameters a, b, c, d that may depend on κ and β, these conditions yield

ct ′ = act + bx = 0 � x = −a

b
ct � − a

b
= mx ′ ,

x ′ = dct + ex = 0 � x = −d

e
ct � − d

e
= β

and the following form for the general Lorentz transformation:

(
ct ′
x ′

)
= T̂κ

(
ct
x

)
with T̂κ =

(
a −a κ+β

1+κβ

−eβ e

)
,

where a and e still have to be determined.

Two-way speed of light. We determine the parameters a and e by requiring that
the two-way speed of light be independent of the reference frame. We know that
the two-way velocity is not convention, and the Michelson-Morley experiment has
demonstrated that, indeed, it is independent of the inertial frame.

For Bob, this means that the time t ′
3 that the light needs to travel to the mirror and

back must be equal to the total distance traveled (to-and-fro) divided by c:

t ′
3

!= 2L ′

c
.

We start calculating t ′
3, proceeding as follows:

ct ′
3 = a

(
ct3 + κ + β

1 + κβ
x3

)
= a

(
1 − β

κ + β

1 + κβ

)
ct3

= aγ −2 1

1 + κβ
ct3 = aγ −2 1

1 + κβ
2Lγ 2

= 2aL
1

1 + κβ
.
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To determine L ′, which is equal to Bob’s x ′-coordinate x ′
5 of the event E5, we

first calculate ct5 from the intersection of the mirror’s world line with the x ′-axis

L + βct5 = 1 + κβ

κ + β
ct5,

from which follows
ct5 = γ 2 · (κ + β)L

and

x5 = 1 + κβ

κ + β
ct5 = γ 2 · (κ + β)L ,

and eventually, by applying the transformation T̂κ ,

L ′ = x ′
5 = e · (x5 − βct5) = eγ 2 L((1 + κβ) − β(κ + β)) = eL .

With all these preparations, from ct ′
3 = 2L ′, we finally get

2aL
1

1 + κβ
= 2eL or

a

e
= 1 + κβ.

Therefore, the generalized Lorentz transformation becomes

T̂κ = e

(
1 + κβ −(κ + β)

−β 1

)

and only the parameter e is left. To determine it, consider Bob’s clock at x = vt .
For this clock, ct ′ = e((1 + κβ)ct − (κ + β)βct) = (e/γ 2)ct . This describes time
dilation, and from the experiment (e. g., Ives-Stilwell experiment), we know that
�t ′ = γ −1�t . Therefore, we have e = γ and

T̂κ = γ

(
1 + κβ −(κ + β)

−β 1

)
(7.2)

as the final form of the generalized Lorentz transformation.
For Einstein synchronization (κ = 0), this becomes

L̂ = T̂0 = γ

(
1 −β

−β 1

)
,

which is the Lorentz transformation L̂ , and for absolute synchronization (κ = −β),
we get

T̂as := T̂−β =
(
1/γ 0
−γβ γ

)
,
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or t ′ = γ −1t , which clearly leads to absolute simultaneity.
Independently of κ , and, in particular, for the two considered cases, we get the

same results for time dilation and length contraction, aswell as the derived effects like
the relativistic Doppler effect, the correct formula for aberration, the twin paradox,
and so on.

“Time shift”. Indeed, all T̂κ for the same β are very similar. This can be seen if
we write a general Lorentz transformation as a Lorentz transformation and a further
transformation Ŝκ , i. e., T̂κ = Ŝκ T̂0. Then, Ŝκ is given by

Ŝκ = T̂κ T̂ −1
0 = γ

(
1 + κβ −(κ + β)

−β 1

)
γ

(
1 β

β 1

)
=

(
1 −κ

0 1

)
.

In other words: the general Lorentz transformation (ct, x) → (ct ′′, x ′′) can be seen
as first conducting a Lorentz transformation (ct, x) → (ct ′, x ′) and then the trans-
formation

ct ′′ = ct ′ − κx ′

x ′′ = x ′,
(7.3)

which is nothing but a shift of the time scale by an amount that is dependent on x ′.

7.7.3 Lorentz’s Ether Theory Versus Einstein’s Special
Relativity

Based on the idea of a motionless luminiferous aether (which is nothing but a special
inertial frame) and the validity of Maxwell’s electrodynamics, Lorentz, in 1892,
began to develop a theory of electrodynamics for inertial frames that move relative to
the aether. He called this the “theory of electrons”, and later on, it became Lorentz’s
ether theory (LET). Very consistent with the aether, this theory is based on an
absolute time (or true time), which, in all inertial frames, is the same as in the aether
system. This corresponds to what we called absolute synchronization. Lorentz, in
addition to the absolute time, in 1892, already had introduced the local time (exactly
by (7.3)). Lorentz needed local time to explain the findings in experiments like stellar
aberration and Fizeau’s, as well as the Doppler effect, but he never believed it was
the true time. Poincaré later noticed that local time results from what today we call
Einstein synchronization (and therefore, we often speak about Poincaré-Einstein
synchronization) and is the time concept used in special relativity. To be able also to
explain the result of the Michelson-Morley experiment, Lorentz had to introduce the
Lorentz-FitzGerald contraction into his theory. Based on the groundwork of others,
Lorentz then derived what Poincaré, in 1905, called the Lorentz transformations
(Lorentz did not yet have the prefactor γ ; this was accomplished by Poincaré). In
that same year, Poincaré also showed that Maxwell’s equations were fully form-
invariant when subjected to a Lorentz transformation. He further demonstrated that
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the “mechanisms” of Lorentz’s ether theory (local time with time dilation and length
contraction) conspired in a way that it would never be possible to detect the aether:
Lorentz’s ether theory builds upon the fundament of the luminiferous aether, but then
proves that this aether never can be detected.

In the end, Lorentz’s ether theory makes the same physical predictions as special
relativity. The key differences are:

• The fact that the principle of relativity does not hold. The reason for this is the
assumption of the luminiferous aether. The theory, however, is form-invariant
with respect to Lorentz transformations, and it actually does not do any harm
to remove the aether. With this modification, Lorentz’s ether theory obeys the
relativity principle.

• The focus on absolute time. The needed ingredients, including the local time, have
been part of Lorentz’s ether theory from the beginning on. Putting the local time
instead of the absolute time at center stage makes Lorentz’s ether theory equal
to special relativity in this aspect. Absolute time, by its definition, is tied to the
existence of the aether.

• The law for velocity addition is not symmetric in Lorentz’s ether theory (not even
in one dimension). This is due to the fact that velocities are defined on the basis of
absolute time, which renders the formulamore complicated, as in special relativity.
The Lorentzian addition of velocities in special relativity is a lot simpler and based
on the definition of velocities with what is the local time in Lorentz’s ether theory
(it is funny that the velocity addition formula in special relativity carries Lorentz’s
name, despite the fact that, in his own theory, the velocity addition formula is
different).

• There is no unification of space and time in Lorentz’s theory. This unification is
only possible if one takes Lorentz’s local time seriously.

To sharpen these findings: on the basis of the existence of the luminiferous aether,
Lorentz’s ether theory comes to the conclusion that the aether is never observable.
Just by removing the aether from this theory and performing the small necessary
conceptual changes in the edifice, it becomes equal to Einstein’s special relativity.

This concludes our digression on the conventionality of simultaneity.15

15 Most of this wisdom comes from the three papers by Mansouri and Sexl [MansouriSexl77a,
MansouriSexl77b, MansouriSexl77c], who performed a similar derivation of the Lorentz trans-
formation from experimental findings as Robertson [Robertson49]. Robertson, however, took Ein-
stein’s synchronization method for granted, and Mansouri and Sexl also considered other syn-
chronization schemes. The conventionality of simultaneity was pointed out earlier by Reichenbach
[Reichenbach58]. Anderson et al. [Anderson+98] extended Mansouri and Sexl’s analysis consider-
ably, illuminated the effects on physics and contributed strongly to a convergence of different opin-
ions. Selleri [Selleri94] then formulated the derivation that we followed here. Rizzi et al. [Rizzi+08]
disputed and proved wrong several of the physical implications stated by Selleri (but not his deriva-
tion). A nice and readable summary was written by de Abreu and Guerra [deAbreuGuerra15].
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Fig. 7.11 The casino fraud

7.8 Causality and Faster-than-Light Velocity

7.8.1 The Casino Fraud

Alice and Bob have found a method that will allow them to always win in roulette.
Alice is situated in the casino and Bob travels very fast relative to her. Both are in an
inertial frame (see Fig. 7.11). Alice places bets. Then, the croupier spins the wheel
and throws the ball into the wheel. Once the ball falls into the wheel, the croupier
sweeps away the losing chips and makes the payouts.

Suppose that, at the event E0, the croupier says “rien ne va plus” and no bets can
be placed anymore. The ball is thrown into the roulette, and at event E1, it comes to
a rest in one of the pockets and the outcome is defined.

At the event E2, just after the outcome is defined, Alice sends a message, which,
for her, is faster than light, to Bob. The message arrives at Bob at event E3. For Bob,
the message travels backwards in time!16 The comparison of the line segment E2E3

with Bob’s x ′-axis shows that t ′
3 < t ′

2.
Now, Bob sends the message back to Alice (for him, faster than light), where it

arrives at event E4.17 For Bob, we have t ′
3 < t ′

4, but for Alice, Bob’s message travels
backward in time, because t4 < t3. As a whole, Alice and Bob have achieved that the
message emitted at E2 arrives at Alice’s location at E4. This is remarkable because
E4 chronologically comes before E2. To make the fraud possible, Alice and Bob

16 Whatever that may mean …
17 The dotted red half-line L would be a message with light speed and the dashed black line S a
“line of simultaneity” for Bob. Each half-line that starts at E3 and passes between L and S in the
negative x-direction is, for Bob, faster than light.
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can adapt the method such that E4 happens before E0 (the “rien ne va plus”). Then,
already before placing the bets, Alice knows where the ball will stop in the wheel.

Even more dramatic is the following thought. Alice sends a message to a long-
time friend of her father, back into the past (in the same sense as in the casino
fraud). The message contains the plea to prevents her parents from meeting. In this
way, Alice could prevent her proper existence. But if she does not exist, she cannot
send a message to her father’s friend. Obviously, sending a message into the past is
nonsense.

Sending messages faster than light stands in contradiction to the principle of
causality. This principle on cause and effect states that an effect is always the
consequence of some cause and the former always happens after the latter: first the
cause, then the effect.

In our example above, the event E2 (Alice sends a message to Bob) is cause to
the event E3 (Bob receives the message from Alice and sends a message back to
her), while E3 is the effect to E2. The event E3, on the other hand is cause to the
event E4 (Alice receives the message from Bob), while E4 is the effect to E3. We
have the causal chain E2 → E3 → E4. As we have seen, for Alice, t4 < t2 < t3, so
the message from Bob to Alice violates the principle of causality for her. For Bob,
t ′
3 < t ′

4 < t ′
2, so for Bob, the message from Alice violates said principle for him.

The possibility to send messages faster than light contradicts the principle of
causality. For that reason, the speed of light is the maximum velocity for messages
(or signals). Instead of sending a signal, Alice and Bob could transmit the message
with a messenger. For that reason, messengers (and all other observers) are also
prohibited from traveling faster than light.

Speed of light as the upper limit on velocities18: The speed of light is the
maximum velocity of a signal. Two inertial observers (or objects) relative to
each other cannot move faster than light.

This “speed limit” does not imply that velocities larger than the speed of light
are not possible in general. Suppose that Alice and Bob are standing on the Moon,
distant from each other, and observe Claire, who is on the Earth. Claire has a laser
and points to the surface of the Moon. She can move this point from Alice to Bob
easily with a velocity larger than the speed of light. The important point here is that,
in this case, the principle of causality cannot be violated, because, in this way, no
causal connection between the event when the point passes Alice and that when it
passes Bob can be constructed. Another example is when Alice sends a light pulse
in the positive x-direction and another one in the negative x-direction. Then, the
difference velocity of these pulses is 2c. But relative to an inertial frame, an object
can never move faster than light.

18 The relative velocity between two inertial observers must be smaller than the speed of light. It
can be arbitrarily close to the speed of light, but cannot reach it. See also Sect. 13.4.
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Fig. 7.12 The light cone L
divides spacetime into
different sectors with events
that (I) lie in the past of the
event EO, (III) represent the
future of EO, and (II) are
simultaneous to the event in
the origin for certain inertial
frames
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7.8.2 Past, Present and Future

We come back to the two-dimensional spacetime diagram. Alice has the coordinate
system (t, x) and Bob, as usual, travels relative to Alice with the constant velocity v

and Bob with the coordinate system (t ′, x ′).
Consider a light signal that travels from the origin O in both directions in space.

If we extend the rays (half-lines) of the light signal to negative times, we can divide
spacetime into three sectors (see Fig. 7.12):

• Sector I, for which t < 0 and |x | ≤ −ct holds;
• Sector II, for which |x | > c|t | or x = t = 0 holds;
• Sector III, for which t > 0 and |x | ≤ ct holds.

The light lines belong to the sectors I or III (with exception of the origin EO, x =
t = 0, which belongs to sector II). There is no overlap of the sectors.

What do Bob’s possible coordinate systems look like (in dependence of his veloc-
ity relative to Alice)? We know that, for his velocity, −c < v < c must hold.

It is clear that, independent of Bob’s velocity, his t ′-axis always comes from sector
I, passes through the origin EO, and continues into sector III. For all observers, the
events in sector I lie in time before the origin event EO. Therefore, sector I is called
the (absolute) past of EO. In the same way, for all observers, the events in sector III
happen after the origin event EO. Sector III is the (absolute) future of EO.

The x ′-axis that belongs to the t ′-axis is constructed by reflecting the t ′-axis at the
line x = ct . All possible x ′-axes therefore start in sector II with x < 0 and continue in
sector III with x > 0. Bob’s three possible coordinate systems are drawn in Fig. 7.13.
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Fig. 7.13 Possible
coordinate systems of
moving observers
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For each event E in sector II, one can find an observer, for whom the line passing
through EO and E is the x ′-axis. For this observer, EO and E are simultaneous. Sector
II, for this reason, is the (potential) present of EO.

In the language of causality, each event in sector I can be the cause for an
effect in EO. The event EO, on the other hand, can only be cause for effects in
sector III. The event EO can neither influence an event in sector II nor can it be
influenced by those events, because the speed of light is the maximum velocity for
signals (or information). The possibility that two events can be causally independent
(i. e., they cannot influence each other) only exists in special relativity. In classical
mechanics, there is no maximum signal velocity, and for two given events (if they
are not absolutely simultaneous), one of them can always influence the other.

So far, we have taken only one space dimension into account and, accordingly,
sent the light signal only in the positive and negative x-directions. If we consider
two space dimensions, the light signal spreads circularly around the origin. If we add
the time dimension, we end up with a spacetime diagram like that in Fig. 7.14. The
world line of the light signal becomes the surface of a cone (see Fig. 7.14). This is
where the term light cone comes from. It is also used in a two- or four-dimensional
spacetime.

If we consider all three space dimensions, the light signal spreads spherically
around the origin in all space directions.

The division of spacetime into past, present, and future also works in three- or
four-dimensional space time. In three spacetime dimensions, past and future are the
cones (interior and surface). The present is everything outside the cones (plus the
origin). The case for four spacetime dimensions is difficult to illustrate.
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Fig. 7.14 Light cone in
three-dimensional spacetime

7.9 Digression: Rotating Reference Frames

7.9.1 Again: Synchronization of Clocks

In Sect. 7.3, we have given a procedure for synchronizing a clock B according to
another clock A. Let the distance between the clocks be D. Then, when clock A
shows time tA, we send a light pulse to the other clock. Once this clock receives the
light pulse, we set it to the time tA + D/c.

Such a procedure only makes sense if it is free from contradictions. For this
to be the case, it has to fulfill certain requirements. One of these requirements is
called transitivity. Suppose we have three clocks and we want to synchronize two
of them, B and C , according to clock A. To achieve this, we first synchronize clock
B according to clock A, and then clock C according to clock A. Thus, we expect that
clocks B and C are automatically synchronized. If this is not the case, the clocks,
either with our procedure or even in general, cannot be synchronized. In inertial
frames, clock synchronization with the given procedure is always feasible and no
contradictions arise.19

However, in non-inertial frames, a clock synchronization in general is not possible,
and the following example (see Fig. 7.15, left side) demonstrates this.

Our task is to synchronize a clock B according to a clock A. Both are located
on the equator, clock A at location PA and clock B at location PB . The locations
are antipodal regarding the center of the Earth. In order for us to be able to use our
standard synchronization procedure, there is one fiberglass cable going from clock
A westwards along the equator to clock B and another one going eastwards. Both
fiberglass cables have the same length l = π RE (RE is the Earth’s radius). In this
way, we have two possibilities to synchronize the clocks: westwards or eastwards
from clock A to clock B.20

19 We assume that the influence of gravitation can be neglected.
20 As we already mentioned, for the standard synchronization procedure, we assume that the light
pulse travels with the speed of light. This is not true in fiberglass, for which the speed of light in an
inertial frame typically is about 2/3 of the speed of light in vacuum. For our discussion, this is not
a problem, as we could use mirrors to keep the light pulse going around the Earth.
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Fig. 7.15 Applying the synchronization procedure to two clocks A and B that are located on the
equator

To describe the synchronization, we use an inertial frame in which the Earth’s
center ofmass rests and that does not rotatewith theEarth (e. g., the ecliptic geocentric
coordinate system, egcs, see Sect. 4.4). In this inertial frame, the Earth rotates around
its axis approximately once in a day (see Fig. 7.15, right side).

First, we use the fiber going eastwards (counterclockwise in the figure) from clock
A to clock B. At time tA, we emit a light pulse at PA into the fiber. The light pulse
travels along the equator to clock B. But due to the Earth’s rotation, clock B moves
away from the light pulse and, when the light pulse arrives, will not be at PB anymore,
but at another location P ′

B . The light pulse has to travel the additional distance �l. It
arrives at clock B at tB = tA + l/c + �l/c. Our synchronization procedure requires
that we set clock B to tA + l/c, because the light travels through a fiber of length l.
As a consequence, clock B, in the inertial frame, is slow by the time �l/c.

Now, we synchronize with the fiber going westwards (clockwise in the figure).
Again, at tA, we emit a light pulse into the fiber. This time, however, clock B travels
toward the light pulse and, to reach clock B, has to travel the distance �l, less than
half of the Earth’s circumference l. Our synchronization procedure now causes the
synchronized clock B to be fast by the time �l/c.

Depending on the path that we use to synchronize the clocks, we get different
results. The synchronization procedure in rotating reference frames is not free from
contradictions. In the case above, we could still synchronize the clocks in the inertial
frame, which works fine. If there is an additional gravitational field, however, this,
in general, is not possible anymore.

The time difference for clock B and the two synchronization paths is �tB =
2�l/c. Now,�l is the distance that a point on the equatormoveswhile the light travels
halfway around the equator. We have �l = vER · l/c, where vER = 2π RE/1 day ≈
0.46 km/s is the rotation velocity of the Earth at the equator. Therefore, �tB =
2�l/c = 4π2R2

E/(c
2 · 86,400 s) ≈ 200 ns. Whether we synchronize westwards or

eastwards makes a time difference of about 200 ns. In this time, light travels about
60m.
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Fig. 7.16 Structure of a
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7.9.2 The Sagnac Interferometer

From the observations in Sect. 7.9.1, it also follows that the time needed by the light
pulse to travel a closed path in a rotating reference frame, in general, depends on
the direction of travel. This is the Sagnac effect. In the Sagnac interferometer, this
effect is used to measure angular velocities of rotations.

The structure of a Sagnac interferometer in the easiest case is shown in Fig. 7.16.
A laser L introduces a light beam into an optical waveguide, typically fiberglass.
The light beam is split into two partial beams in a fiber coupler C, exactly as in
a beam splitter (see Fig. 5.1). One partial beam travels clockwise and the other
counterclockwise through the closed fiber loop with radius R and length l = 2π R.
Each of the partial beams, after a certain time, arrives again at the fiber coupler only
to become split into two further partial beams, leading to four partial beams. Two
of them travel back to the laser; we are not interested in those (see Footnote 1 in
Sect 5.2.1). The other two travel to the detector D. On the way to the detector, these
two partial beams, which traveled through the fiberglass loop in different directions,
interfere with each other. The intensity that is measured by the detector then depends
on the phase difference �ϕ of the two partial beams.

Suppose that the whole setup, described from an inertial frame, rotates with an
angular velocity � counterclockwise around an axis that is perpendicular to the fiber
loop and passes through its center. Then, as seen from the inertial frame, the light
waves travel different lengths, and this leads to a change in the phase difference �ϕ.
If we measure this phase difference, we can determine the angular velocity �. The
Sagnac interferometer is a device for measuring the angular velocity.

How exactly does the phase difference depend on the angular velocity? Consider
first the light wave that travels counterclockwise through the fiber loop. During the
time �t = l/c = 2π R/c that a light signal needs to travel though the loop, the loop
rotates by an angle of ��t . For this reason, the light wave, before arriving at the
fiber coupler, has to travel an additional distance �l = R��t = 2π R2�/c. Using
the area A = π R2, this can be written in the form �l = 2A�/c. For a wavelength
λ (in the fiber), this implies a phase difference of �ϕCW = 2π · �l/λ, or

�ϕCW = 4π

c

A

λ
�. (7.4)



7.9 Digression: Rotating Reference Frames 125

While the light wave traveling counterclockwise has to travel a distance of l + �l,
the light wave traveling clockwise only has to travel a distance of l − �l, making
for a phase shift of �ϕCCW = −�ϕCW. In total, we have a phase shift of �ϕ =
�ϕCW − �ϕCCW = 8π A�/(cλ).

At the detector, the two waves a sin(ωt + �ϕCW) and a sin(ωt + �ϕCCW) inter-
fere with each other. This yields a total amplitude of 2a cos(�ϕ/2) sin(ωt). The
detector sees an averaged intensity of Ī = 2a2 cos(�ϕ/2). Therefore, with an inten-
sity measurement, one can determine the phase shift �ϕ (up to a multiple of 2π ).
From the phase shift via (7.4), the angular velocity � follows.

A Sagnac interferometer with a high sensitivity obviously needs a large area A
and a small wavelength λ. One can multiply the area by using a fiberglass solenoid
instead of a single loop. In the case of a solenoid with N windings, we have to
replace the area A with N · A in the formula above and the sensitivity of the Sagnac
interferometer is increased by a factor of N .

Exercise 22: You plan to travel to the north pole tomeasure the angular velocity�

of the Earth’s rotation using a Sagnac interferometer. To get a good resolution, the
interference pattern should move by π/10, i. e., a tenth part of the wavelength.21

Suppose the wavelength is 650 nm. What is the needed product N · A of the
winding number and the area of the Sagnac interferometer?

Exercise 23: Approximately five minutes after one o’clock, the hour and minute
hands of a clock point in exactly the same directions. Calculate the exact time
when this happens. Discuss how this relates to the explanation of how the Sagnac
interferometer works. What is the exact value of the length �l for the Sagnac
interferometer?

21 To determine the phase shift, one can measure it first in an inertial frame and then in the rotating
reference frame. For the problem at hand, it is not possible to stop the Earth’s rotation. But we can
“reverse” the Earth’s rotation by just reversing the Sagnac interferometer.



Chapter 8
Length Contraction

8.1 Introduction

If the relativity of simultaneity was already surprising, length contraction is even
more so.

In this chapter, we will come to the conclusion that the length of an object (for a
given observer) depends on its velocity: fast moving objects are shorter than objects
at rest. This is a direct consequence of the relativity of simultaneity. As application,
we discuss cosmic particles that enter the atmosphere much deeper than expected
and ladders that are longer than a garage, but fit into it anyhow.

8.2 Derivation

8.2.1 Length Measurement

In the last chapter, on relativity of simultaneity, it was of central importance to define
what “simultaneous” exactly means and how distant clocks are synchronized. It is
now equally important to define exactly how lengths are measured. In this way, we
start by clarifying what the notion of the “length” of a moved object really means.

Thus: how is the length of a moving object measured? Take a rod that moves
along a coordinate axis (or along a scale) and is also oriented along it. Obviously,
to measure its length, we have to determine where the front end and the rear end of
the rod are on the coordinate axis (or on the scale) at the same time. Note that, for
objects at rest, the condition “at the same time” is not required.
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Fig. 8.1 Alice’s cameras.
The red arrows represent
light pulses emitted by the
cameras and for use by Bob

Alice ”kcilc“”kcilc“

Bob

v

Rule for measuring the length of moving objects: To measure the length of
a moving object, its front and rear ends are marked at the same time (for the
measuring observer at rest) on a scale at rest.

Note that we do not move the scale with the object! The scale rests in the inertial
frame of the observer.

8.2.2 Length Contraction in the Direction of Motion

Gedanken experiment. To demonstrate length contraction, we imagine Alice in
the space station. At some point, Bob, who is sitting in the middle of his rocket, will
fly by the space station with the velocity v relative to Alice, at which point Alice
decides that she wants to measure the length of the rocket. To prepare for this, at
each location of the space station, she places a device that consists of a camera, a
clock and a light source (see Fig. 8.1). Then, she synchronizes the clocks of all these
devices using the rule from Sect. 7.3. During measurement, the camera of each of
these devices is triggered when the related clock shows a particular time. Thus, the
cameras of all of these devices take a photograph at the same time as far as Alice is
concerned. The devices are also able to process the photos immediately and to emit
a light pulse when either the front end or the rear end of a rocket is displayed in a
photograph. The camera that detects the rear end of the rocket sends a light pulse in
the direction that the rocket is traveling and the camera that detects the front end of
the rocket sends a light pulse contrary to the direction in which the rocket is traveling.
Both Alice and Bob see the light pulses.

It is easy for Alice to determine the length of the rocket. She identifies the devices
that detected the front end and the rear end of the rocket and measures their distance.

What about Bob?Bob is astonished that the light pulses emitted byAlice’s devices
do not arrive at his location at the same time. We also wonder, but know the reason:
Bob moves toward one light pulse and away from the other. Because the front end
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and the rear end of the rocket are at the same distance from him, Bob concludes
that the light pulses have not been emitted simultaneously (this is nothing but the
relativity of simultaneity). He further observes that the camera at the rocket’s front
end took its photo earlier than the camera at the rocket’s rear end. Bob understands
that Alice, when measuring the length of the rocket, got a value that is too small,
because the rear end of the rocket continued moving between the moments when the
photos were taken. When Bob asks Alice what the length of his rocket is, he will
indeed find that she gives a value that is too small. For Alice, the moving rocket is
shorter than it is for Bob. Suppose Alice has the same rocket as Bob, but at rest. If
she measures the length of this rocket, she will get exactly the same length as Bob
provided her for the length of his rocket.

Alice now enters her rocket, which is the same model as Bob’s rocket. Both fly
by each other, Bob with the velocity v relative to Alice, as usual. We already know
that, for Alice, Bob’s rocket is shorter than it is for him. Because of the principle
of relativity, the inertial frames of both are equivalent. For Bob, Alice’s rocket must
also be shorter than it is for Alice.

Even though Alice and Bob own the same rocket, Bob’s rocket, for Alice, is
shorter than her own rocket. Conversely, Alice’s rocket, for Bob, is shorter than
his own rocket. This may seem paradoxical (or even contradictory) to you, but is
a necessary conclusion of the principles of special relativity. Space is relative! If
the contraction were only to happen for one of the observers and a stretching the
other, the principle of relativity would be violated. But the principle of relativity has
been put to the acid test many times and has always passed it. The same holds for
length contraction: it has been checked many times directly with experiments (see
e.g., Sect. 8.3.1). There is no reason to doubt it. Length contraction is a real effect
and not a kind of “optical illusion”.

Due to the fact that the length of an object depends on its velocity, one should talk
about the proper length of an object, which is the length of the object measured in
its rest frame.

Graphical derivation. How much shorter is the moving rocket? Have a look at
the spacetime diagram in Fig. 8.2. Alice and Bob now sit at the rear ends of their
rockets. The spacetime diagram shows the trajectories of the front end and the rear
end (t-axis) of Alice’s rocket (in blue) and the trajectories of the front end and the
rear end (t ′-axis) of Bob’s rocket (in green).

At time t = 0,Alicemeasures the length of her rocket and gets l0 = OEA (O is the
origin of the coordinate system), which is the rocket’s proper length. Furthermore,
using our well-known rule, she measures the length of Bob’s rocket and gets l =
OEB . We know already that Bob’s rocket, for Alice, is shorter than her own rocket,
and therefore l < l0. But we do not know how much shorter it is. For this reason, we
have drawn the trajectory of the front end of Bob’s rocket just such that it intersects
the x-axis at a value l, which is little bit smaller than l0. This “little bit smaller” has
to be determined now.

Bob also measures the length of the rocket, namely, at time t ′ = 0. Remember
that he has to measure the position of both ends of the rocket at the same time for
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Fig. 8.2 On length contraction (see text) (Right: Enlarged section)

him. At time t ′ = 0, the rear ends of both rockets are at the origin of the coordinate
system. The front end of Alice’s rocket is at E ′

A and that of his own rocket at E ′
B .

Thus, for him, the length of Alice’s rocket is OE ′
A and that of his own rocket OE ′

B .
Because Bob has the same rocket as Alice, when measuring the length of his rocket,
he gets the same result as Alice, when she measures the length of her rocket. Bob
gets l0 = OE ′

B for the length of his rocket, which corresponds to the x ′-coordinate
of E ′

B .
One notices already that lengths must not be transferred from Alice’s to Bob’s

space axes (e. g., with a compass). The same holds for the time axes. Bob’s axes have
a different scaling than Alice’s axes.

For Alice, Bob’s rocket is shorter than her own. Because of the principle of
relativity, for Bob, Alice’s rocket must be shorter than his own by exactly the same
factor. In other words: for Alice, Bob’s rocket has the same length as Alice’s rocket
does for Bob. Therefore, we have OE ′

A = l. And consequently,1

l0
l

= OEA

OEB
= OE ′

B

OE ′
A

.

Because of the theorem on intersecting lines, we have

OE ′
B

OE ′
A

= x(E ′
B)

l0
,

1 As mentioned, Bob’s coordinate axes have a different scaling than those of Alice. Lengths must
not be compared directly in the spacetime diagram. What, however, can be compared are ratios of
lengths or time intervals. This is because, in ratios, the scaling factors cancel each other out. Note
that we assume that the coordinate transformations are linear.
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Fig. 8.3 The relativistic
factor γ (v) (red) and its
inverse (green)

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1
v/c

γ(v)

γ(v)−1

where x(E ′
B) denotes the x-coordinate of the event E ′

B . In total, we infer that

l0
l

= x(E ′
B)

l0
or x(E ′

B) = l20/ l. (8.1)

Now, we determine x(E ′
B) via the intersection of the trajectory of the front end of

Bob’s rocket with the x ′-axis. Equating x = l + vt and x = (c2/v)t and elementary
transformations yields

x(E ′
B) = 1

1 − v2/c2
l.

Equating this again with (8.1) yields

l = l0 ·
√
1 − v2/c2. (8.2)

The γ -factor. We will encounter the factor with the square root quite often, there-
fore, we call it the γ -factor and write

γv = 1
√
1 − v2/c2

. (8.3)

The index v reminds us that this quantity depends on the relative velocity v. Some-
times, we more correctly write γ (v), but the notation γv has the advantage of being
short and the formulas keep being clear. Sometimes, we suppress the dependency on
v completely and write simply γ instead of γ (v).

What does the function γ (v) look like? In Fig. 8.3, γ (v) is drawn as a function of
the velocity of the rest frame of the considered object. First, for |v| < c, we always
have 0 ≤ v2/c2 < 1, and therefore 0 < γ −1

v ≤ 1. For the inverse, γv ≥ 1 holds. For
v/c � 1, γ (v) barely deviates from1. This is the region inwhich classicalmechanics
is a very good approximation to special relativity, because, in classical mechanics,
l = l0, and therefore, necessarily, γ (v) = 1. If v comes close to the speed of light,
γ (v) raises strongly and eventually diverges at v = c.
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Fig. 8.4 To length
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Conclusion. Equation (8.3) thus means that a moving object in the direction of
motion is shorter when it is at rest and that the larger its velocity is, the shorter it is:

Length contraction: A moving object in the direction of motion is shorter by
a factor of

γ −1
v =

√

1 − v2

c2
< 1.

than when it is at rest.
Or: An object that moves with velocity v and that has a proper length l0 (in

the direction of motion) has the length

l = l0/γv. (8.4)

For velocities v that are small in comparison to the speed of light, the length
contraction is negligible. The larger the velocity v gets in comparison with the speed
of light, the larger γv is and the smaller its length l = l0/γv becomes.

Discussion. We summarize the effect using Fig. 8.4. Bob travels with velocity v

relative to Alice, and the standard configuration prevails. Bob has a rod2 that rests in
his inertial frame (red line in the figure) and has a proper length of l0. The rod lies
parallel to the x ′-axis.

Now, Alice measures the length of the rod. According to the rule for measuring
the length of moving objects, she measures the length of the orange line in the figure
and gets the contracted length l = l0/γv .

Exercise 24: Calculate γ (v) for v/c = 0.5, 0.95, 0.995, 0.9995, 0.99995.

2 Here, we use a rod instead of a rocket. This is more down-to-Earth, in a double sense.
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Fig. 8.5 Both Alice and Bob
use a piece of pipe to
investigate a possible length
change transversal to the
relative velocity
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8.2.3 Digression: Length Change Transversal to the
Direction of Motion?

Our previous investigations show that there is a contraction of moving objects in the
direction of motion. Is there also a length change transversal to the direction of
motion? This question can be answered with an easy Gedanken experiment. Imagine
two short pieces of pipe with the same dimensions and an infinitely thin wall. One
piece of pipe stays with Alice, the other one accompanies Bob on his travels. At
some point, Bob reaches his traveling velocity and flies by Alice with the velocity v.
Both have oriented their pieces of pipe in the direction of the relative velocity.

We know that Bob’s piece of pipe, as seen fromAlice’s perspective, is shorter than
her own piece of pipe by a factor of γ −1. What about the diameter of the pieces of
pipe? Suppose that it also changes, for instance, it contracts by a factor of 0 < α < 1
(see Fig. 8.5).We staywithAlice. She discovers that Bob’s piece of pipe has a smaller
diameter than her own piece of pipe. From her point of view, Bob’s piece of pipe
can fly perfectly through her own piece of pipe. What does Bob have to say? For
him, Alice’s piece of pipe has a smaller diameter than his own piece of pipe. From
his point of view, Alice’s piece of pipe can fly perfectly through his own piece of
pipe. And herein lies the contradiction. The statement as to whether or not a piece
of pipe can pass through another one and which one is smaller is a statement that
cannot depend on the observer. Alice and Bob must come to the same conclusion in
this case. For this reason, there cannot be a length change transversal to the direction
of motion.

Remember the length contraction in the direction of motion. There, we said that,
for each of the observers Alice and Bob, the other one’s rocket is shorter than their
own—and this despite the act that both own the same rocket. Here, we have a similar
situation: each observer’s piece of pipe is potentially smaller than the other’s—and
this despite the fact that both observers own the same piece of pipe. The relevant
difference is that, in the latter case, we can compare the pieces of pipe directly.
The statement that one of the pieces of pipe fits into the other one is not a relative
observation but rather an absolute observation, i. e., equally valid for Alice and Bob.
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Length contraction (continuation): A moving object does not change its
length transversal to the direction of motion.

We will undertake a (failed) attempt to construct a situation in which two appar-
ently comparable objects change their lengths in a different way in Sect. 8.3.2. And
you will find a further reason why there is no length change (or contraction) transver-
sal to the direction of motion in Exercise 32.

8.3 Examples

8.3.1 Muons

Cosmic radiation contains protons of very high energy. If these enter the upper
layers of the atmosphere, they collide with nitrogen and oxygen atoms. As in particle
accelerators, this causes showers of new particles, amongst them muons. Muons are
elementary particles that are very similar to electrons, but heavier. However, muons
are not stable. They decay with an half-life of about tH = 1.5µs into electrons and
electron neutrinos.3 One knows that these muons are produced at an altitude of about
10 km. Now, assume that the muons move at almost the speed of light relative to
the surface of the Earth. Thus, after a flight distance of about ctH = 660m, or at an
altitude of more than 9 km, we should find only half as many muons. However, most
of the muons still arrive at the surface of the Earth. How can this be explained?

The first experiment with cosmic muons was carried out by the American physi-
cists Rossi andHall in 1940 in the state of Colorado.Amuchmore precise experiment
of the same type was performed by the another set of American physicists, Frisch
and Smith, in 1963 in the state of NewHampshire [FrischSmith63].4 We will discuss
the latter experiment. Frisch and Smith measured the number of muons that flow
through a horizontal area per unit of time (see Fig. 8.6, left side). They performed the
measurement twice: once at the top of Mount Washington and once in Cambridge
(Boston) at sea level. On the mountain-top, they counted N1 = 563 muons (within a
certain time), and at sea level, N2 = 408 muons (see Fig. 8.6, left side). The differ-
ence in altitude was l = 1907m. Moreover, they measured the average velocity of
the muons and got 0.995 · c.5

3 This means that, if, at t = 0, you have a large number of myons that decay, then at t = tH, half of
them will have decayed.
4 At the time of publication, muons were called μ-mesons.
5 Actually, their detector was built to detect only muons with a velocity between 0.9950 · c and
0.9955 · c. For the detection at sea level, they also had to consider that the atmosphere slows down
the muons.
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Fig. 8.6 Relativistic muons. Right: The principle of the experiment by Frisch and Smith. Left: The
decay law with the half-life tH

Let us take a look at the exponential decay (see Fig. 8.6, right side). Suppose
that, at t = 0, in total, N0 unstable particles at rest are given. In the course of time,
particles decay such that, at time t ,

N (t) = N0e
−t/tM

particles are left. The quantity tM is the average lifetime of the particles. The average
lifetime is related to the half-life via tM = tH/ ln 2. For themuons,weget tM = 2.2µs.

Weneglect the relativistic effects for themoment. Suppose the particles are created
at t = 0 at the altitude of h0 = 10 km and travel perpendicular to and toward the
surface of the Earth with the velocity v. Then, the instantaneous altitude is given by
h(t) = h0 − vt . At time t1, N1 muons have arrived at altitude h1 = h0 − vt1, and at
time t2, N2 muons have arrived at altitude h2 = h0 − vt2. For the ratio N2/N1, one
gets

N2

N1
= e−(t2−t1)/tM = e−(h1−h2)/(vtM) = e−l0/(vtM) (non-relativistic), (8.5)

where l0 := h1 − h0 is the height of Mount Washington. In the experiment by Frisch
and Smith, N2/N1 = 408/563 = 0.725, therefore, 72.5% of the muons that flew by
Mount Washington arrive at sea level. According to (8.5), we expect

exp

(
− l0

vtM

)
= exp

(
− 1907m

0.995 · c · 2.2µs
)

= 0.055,

i.e., only 5.5% of the muons that pass by Mount Washington should arrive at sea
level.

This is a huge gap. But it is also clear that, because of v ≈ c, we have to take into
account the effects of special relativity.

Let us put ourselves in the place of the muon that rushes toward the surface of
the Earth. Then, Mount Washington rushes toward us with a velocity of v = 0.995 c.
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The distance of 1907m from the top of Mount Washington to sea level is length
contracted. Therefore, in formula (8.5), we have to replace l0 with the contracted
length l0/γ . This yields

N2

N1
= exp

(
− l0

γvvtM

)
. (8.6)

Because of v = 0.995 c, we have γv ≈ 10, and therefore N2/N1 = 0.748. Thus, the
measured value for N2/N1 and the prediction using the decay formula while taking
into account the length contraction agree to about 3%. In view of the difficulties of
the experiment, this is a very good agreement. Taking into account the relativistic
effect of length contraction, we can explain the result that Frisch and Smith got!

The observer on the surface of the Earth, however, cannot explain the experiment
in this way, because, from his point of view, the distance from the location of the
collision high up in the atmosphere to the top of Mount Washington (or sea level) is
not contracted. Therefore, theremust be another relativistic effect, which the observer
on the surface of the Earth can invoke. This effect is the time dilation, and it is the
topic of the next chapter. Time dilation obviously is needed, otherwise it would not
be possible to explain the muon experiment from the point of view of both observers.
Length contraction and time dilation are inseparable twins.

Exercise 25: What percentage of the muons that are produced at an altitude of
10 km actually reach sea level?

Exercise 26: Which value dowe get from (8.6) with the slightly different velocity
of v = 0.993 · c?

8.3.2 Ladder Paradox

Next, we discuss a paradox of length contraction. It is a nice example of the intricacies
related to the effects of special relativity and shows that a superficial consideration
of special relativity may lead to apparent contradictions that vanish upon closer
inspection.

Alice owns a garage (see Fig. 8.7, left side) which has a gate at each of the two
opposite sides. The distance between the gates is the length of the garage. Alice also
owns a ladder, which is a little bit longer than the garage. Now, Alice wants to place
the ladder inside the garage. On first sight, this is not possible. But she remembers
length contraction and accelerates her ladder to a velocity so high that it becomes
shorter than the garage (see Fig. 8.7, center). She opens the gates and moves the
ladder toward the garage. Once the ladder is in the garage, she rapidly closes the
gates. Thus, at least for a moment, the ladder is in the garage, with the gates closed.

You already know what comes next. We take Bob’s point of view, as he moves
with the ladder. For him, the ladder is not length contracted, but the garage is, because
it moves with the velocity−v relative to Bob. For Bob, the ladder is definitely longer
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Fig. 8.8 Transit of the ladder through the garage. Left: Spacetime diagram. Center: Alice’s point
of view. Right: Bob’s point of view

than the garage. From his point of view, it is completely impossible to place the
ladder into the garage. Not even for a very small moment can both gates be closed
simultaneously.

Who is right? Is there a moment at which the ladder is completely inside of the
garage or not? In other words: does the moving ladder fit into the garage?

A look at the spacetime diagram in Fig. 8.8, left side, clarifies the matter. For
Alice, the garage is at rest and has the proper length lG, while the moving ladder
has the length γ −1

v lL, which, due to the length contraction, is smaller than the proper
length lL of the ladder. The proper length of the ladder, however, is longer than the
proper length of the garage, lL > lG. Now, the ladder moves toward the garage with
a velocity v large enough that γ −1

v lL < lG and enters it (see Fig. 8.8, center). In event
El, the rear end of the ladder passes the left gate of the garage, and at event Er,
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the front end of the ladder passes the right gate of the garage. For Alice, event El

happens before event Er, i. e., there is a small time interval in which, for Alice, the
ladder is completely inside the garage. From Alice’s point of view, the ladder fits
into the garage.

For Bob (see Fig. 8.8, right side), the sequence of events is exactly the reverse.
The front end of the ladder passes the right gate of the garage before the rear end of
the ladder arrives at the left gate. For Bob, event El happens after event Er, thus, for
him, the ladder is never completely inside the garage.

The fact that the statement “the ladder fits into the garage” seems to be inde-
pendent of the inertial frame (and therefore invariant), but is not, is responsible for
the paradox. What does it mean that the ladder fits into the garage? It means that,
when the ladder is in the garage, both gates can be closed simultaneously. In this
definition, we encounter “simultaneity”, a concept that is relative, as we have known
since Chap. 7.

8.4 Digression: Hyperbolic Motion

8.4.1 Motion with Constant Acceleration

In our discussion of the ladder paradox in Sect. 8.3.2, there is a situation in which
Alice can close the garage doorswith themoving ladder completely inside the garage.
What would happen if the ladder were then brought to rest? It must expand, but how?

This question brings us to accelerated motion, and we will discuss, in particular,
the case of constant acceleration. Tokeep the discussion simple,we restrict ourselves,
to one dimension, i.e., consider rectilinear motion only.

Let us start with the case of constant acceleration in classical physics. The acceler-
ation of a moving body is invariant under Galilei transformations. If a particle moves
with an acceleration a = du/dt in one inertial frame, it has the same acceleration
a′ = a in any other inertial frames. This follows directly from differentiation of the
Galilean addition of velocities (which gives us the transformation of the velocity)
with respect to time and the fact that t = t ′.

In special relativity, this is no longer the case, and the acceleration of a particle
is different in different inertial frames. The reasons for this are that the Lorentzian
addition of velocities is no longer linear in the particle’s velocity and that the time
also transforms when changing inertial frames (see Exercise 28).

In classical physics, motion with constant acceleration is given by x(t) = at2/2
and v(t) = at and has the velocity increasing with time without limits. This is not
possible in relativity, in which the speed of light is the limit velocity for particles
and cannot be exceeded (or reached). For a fixed observer, there is no motion with
strictly constant acceleration and that lasts forever. Therefore, we try to define a type
of motion in special relativity that is similar in idea to the motion with constant
acceleration in classical physics.
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Suppose a particle starts in the regime of small velocities according to x(t) =
at2/2. Then, we can always go to the inertial frame in which the particle is momen-
tarily at rest, the instantaneous rest frame of the particle, and apply a force to the
particle that causes a constant acceleration. The acceleration of a particle in the
instantaneous rest frame is called the proper acceleration α of it. If a box with
a person inside is accelerated with a constant proper acceleration, then this person
always feels the same acceleration and the person’s accelerometer always shows the
same acceleration value.

As we discussed, in classical physics, the acceleration of a particle is the same
in all inertial frames and it does not make sense to define a proper acceleration.
In special relativity, however, the proper acceleration α of a particle, in general, is
different from the acceleration of the particle in other inertial frames.

The motion with constant proper acceleration in special relativity (for a fixed
observer) is given by

x2 − c2t2 = c4

α2
or x(t) = c

√

t2 + c2

α2
, (8.7)

which describes a hyperbola and is shown in Fig. 8.9, together with the coordinate
system of the instantaneous rest frame of the particle.6 This type of motion is called
hyperbolic motion.

The transformation of (8.7) to a different inertial frame is rather easy. In Sect. 9.5,
we will learn that the expression c2t2 − x2 is an invariant regarding Lorentz trans-
formations. Therefore, from (8.7), it follows directly that x ′2 − c2t ′2 = c2/α2. This
tells us that the hyperbola looks exactly the same in all inertial frames, and this
ensures that the proper acceleration, the acceleration in the instantaneous rest frame,
is always the same for a particle moving according to (8.7).

6 Note that this is for the initial condition x(0) = c2/α and v(0) = ẋ(0) = 0.
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It is easy to see that the velocity of the motion with constant acceleration never
becomes equal to or larger than the speed of light, and for a fixed observer Alice, the
acceleration decreases with time.

Exercise 27: Show that, for αt � c, (8.7) becomes

x(t) = α

2
t2 + c2

α
.

Exercise 28:

• Differentiate the Galilean addition of velocities (3.5). With a = du/dt and
a′ = du′/dt ′, you get a′ = a. In classical physics, the acceleration of a particle
is the same in all inertial frames.

• Differentiate the Lorentzian addition of velocities (10.3). Show that, with
dt ′/dt = γv · (1 − uv/c2), you get

du′

dt ′
= 1

γ 3
v · (1 − uv/c2)3

du

dt
.

This says that, if, in a coordinate system S with coordinates (t, x), a particle
has the velocity u and the acceleration du/dt , then, in the coordinate system
S′ with coordinates (t ′, x ′), the particle has the velocity u′ = u � v (according
to the Lorentzian addition of velocities) and the acceleration du′/dt ′ given by
the formula above.

• Go to the instantaneous rest frame by using the Lorentz transformation with
v = u. Show that the acceleration in this IS is given by

α := du′

dt ′

∣∣∣∣
rest frame

= γ 3
v

du

dt
.

Exercise 29: An object in Smoves according to the hyperbola x2 − c2t2 = c4/α2

and is instantaneously at rest at t = 0. Transfer the trajectory to the instantaneous
rest frame I with coordinates (t ′, x ′), of the object at t0.

8.4.2 The Accelerated Rod

Suppose a rod (or our ladder) moves along the x-axis of Alice’s coordinate system
in the positive x-direction and is oriented parallel to this axis. The motion is such
that each point of the rod is accelerated with the same acceleration a for Alice.
Imagine that the rod is a measuring rod and each of its markings moves according
to x(t) = at2/2 + x0, where x0 is the initial position of the marking. For Alice, the
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Fig. 8.10 The accelerated rod. Left: With constant acceleration a for Alice; Right: With constant
proper acceleration α. Orange lines: Length is the same in all instantaneous rest frames. Magenta
lines: Length becomes increasingly contracted for Alice

measuring rod then always has the same length. If xL and xR are the initial positions
of the left and the right ends, respectively, of the measuring rod, then its length at
time t is xR(t) − xL(t) = xR − xL which is constant.

On the other hand, according to length contraction, the length of the moving rod
should shrink! What will happen? Will the rod break?7

Yes, it breaks, and this can be seen in the following way. Take one marking on the
moving rod, for instance, the middle marking, which initially is at position xM , and
go to the instantaneous rest frame I with coordinates (t ′, x ′) of this marking at some
time t0 (see Fig. 8.10 on the left). If we determine the velocity of the left and right
ends of the rod in I , respectively, we see that both ends move away from the middle
marking. The reason for this is the relativity of simultaneity. The left and right ends
of the rod always have the same velocity at the same time for Alice. This is not the
case in the instantaneous rest frame of the middle marking of the rod (neither is it for
all other inertial frames that are not at rest relative to Alice). So, in the instantaneous
rest frame I of the middle marking, the ends of the rod move away from the middle
marking, the rod is stretched and will eventually break.

The interesting question now is: what kind of accelerated motion would keep the
rod intact, without tension? Scrutinizing hyperbolic motion gives us the answer. In
Fig. 8.10 on the right, we show the case where each of the rod’s markings moves on
a hyperbola of the form (8.7). Due to the fact that lengths are transferred from the
x-axis of one inertial frame to the x ′-axis of another one (see Sect. 9.5), the length
of the rod in the instantaneous rest frame is always the same as the length of the rod

7 The distinguished physicist John S. Bell, who is reponsible for one of the most important discov-
eries in quantum physics, made this Gedanken experiment famous. In his example, two rockets, at
a certain mutual distance, were initially at rest in Alice’s inertial frame and connected with a tight
string. Then, the rockets were accelerated with an acceleration that was constant for Alice.
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Fig. 8.11 Left: The length-contracted cyclist in Gamov’s “Mr Tompkins in Wonderland”. Right:
Alice and her die

for Alice when it still was at rest for her. If each of the rod’s markings moves on a
hyperbola, the rod keeps its length and is not put under tension.

For Alice, however, the velocity and the acceleration of the right end of the rod
are smaller than those of the left end of the rod. Again, this is to contract the rod’s
length in consistence with length contraction.

What does this mean for our initial question, bringing the moving ladder to a rest
without breaking it? The answer is that each point of the ladder has to move on a
hyperbola, which implies that it expands without tension to its rest length. While
doing so, it will break open the garage’s doors.

8.5 Visibility of Length Contraction8

Objects that fly by an inertial observer with a velocity v are contracted by a factor of
γ −1

v in the direction of motion while the dimensions transversal to the direction of
motion stay the same. This we learned in Sects. 8.2.2 and 8.2.3, and this is exactly
what the physicist George Gamov seems to depict in the illustrations in his popular
science book “Mr Tompkins in Wonderland”, published in 1940 (see Fig. 8.11, left
side).

This depiction, however, is not completely correct, because there is a difference
betweenwhatwe get as a result whenmeasuring the dimensions of an object andwhat

8 This chapter was inspired by publications of the group led by H. Ruder from the University of
Tübingen, Germany. A nice account is that by U. Kraus [Kraus+02]. In fact, the discovery that
length contraction is invisible at not too high velocities because (under some circumstances) it is
equal to a rotation was already demonstrated by J. Terrell in 1959 [Terrell59] and popularized by
R. Penrose in the same year [Penrose59].
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Fig. 8.12 Top: Normally
oriented cube; Bottom:
Rotated cube; Left: Top
view; Right: Side view
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we see when we look at it. The reason for this is the finite speed of light. Remember
the comment about the bag of rice toppling over on the surface of Mars made at the
beginning of Sect. 7.3? This is retardation! Indeed, a moving object does not appear
contracted to the observer, but rather rotated and, in general, also distorted.

We discuss this effect by means of a cube with edge length l, which is oriented
such that its center moves according to x = vt in Alice’s coordinate system and the
edges are parallel to the coordinate axes (see Fig. 8.11, right side). The corners of
the cube are denoted by A, . . . , H . Alice herself is located far away from the cube
(such that effects of perspective play no role) and on the negative y-axis.

First,wemeasure the cube and use ameasurement device very similar to that used
in Sect. 8.2.1: on a plane z = const just below the cube is a matrix of cameras with
(for Alice) synchronized clocks. The cameras are all triggered at the same moment.
Then, we seek the cameras that took photos of the lower corners A, B, E, F of the
cube. We will see that the cameras that took photos of A and B (or E and F) are
a distance l/γv apart, while those that took photos of A and E (or B and F) are a
distance l apart. Indeed, the cube is contracted by a factor of γ −1

v in the direction of
motion, while it is unaltered in the transversal direction.

Then, we think about how the moving cube would look for the observer Alice,
namely, at the time t = 0.

We consider first the cube at rest. In Fig. 8.12, top, on the left, the top view of the
cube is shown and on the right, Alice’s view is shown. If one rotates the cube by the
angle ϕ around the x-axis, one gets the top view in Fig. 8.12, bottom left, and Alice’s
view in the same figure, bottom right. For Alice, the “apparent width” of the cube is
l · (sin ϕ + cosϕ) = √

2l cos(ϕ − π/4), which is larger than l if ϕ is not a multiple
of π/2. Thus, the rotated cube, as seen by Alice, covers an area larger than l2.

If Alice sees something like in Fig. 8.12, bottom right, and assumes that this is
the projection of a rotated cube, she can calculate the rotation angle ϕ and the edge
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Fig. 8.13 Fast moving cube, taking into account retardation, but not length contraction
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Fig. 8.14 Fast moving cube, taking into account retardation and length contraction

length l̃ of the cube in the following way: Alice lets l1 = AB and l2 = E A, and thus

the rotation angle is given by tan ϕ = l2/ l1 and the cube’s edge length by
√
l21 + l22 .

In Fig. 8.12, bottom right, l1 = l sin ϕ and l2 = l cosϕ, and it is easy to see that this
is consistent with our prescription above.

If the cube moves with a high velocity, we have to take into account the signal
traveling times (or the retardation). In the first step, we ignore the length contraction.
Figure8.13 on the left side shows the top view of the cube. The position of the
cube at t = 0 is indicated with dashed lines. The events corresponding to the cube
corners are named C0, D0,G0, and H0. A time �t = l/c later, the cube has moved
by a distance of l · (v/c), its new position is indicated with full lines and the events
corresponding to the cube’s corners are named C1, D1,G1, and H1. Now, the corner
H is by a distance of l farther from Alice than the corner D. The light signal from
H therefore needs the time l/c longer to arrive at Alice than that from D. Suppose a
light signal from H and another one from D arrives at Alice’s location at the same
time. Then, the signal coming from H must have started at the time l/c earlier than
the signal coming from D. During this time, the cube has moved by a distance of
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Fig. 8.15 Cube moving at 70% of the speed of light, as seen by a resting inertial observer

Fig. 8.16 Die that moves at
96% of the speed of light
relative to the observer and a
row of dice at rest

l · (v/c). Therefore, the signal from event H0 arrives at Alice’s location at the same
time as the signal from event D1. The signal from event C1 also arrives at the same
time. As a consequence, Alice does not see the corners H and D of the cube as
being one exactly behind the other, but rather as shifted by a distance of l · (v/c)
in the direction of motion of the cube. Thus, the cube, for Alice, looks as it does in
Fig. 8.13, right side. The narrow green surface on the left side of the image is the left
side of the cube, and it is not visible for Alice when the cube is at rest (or slowly
moving).

The cube looks as if it had been rotated, but, upon a closer look, Alice finds that
the edge length of the rotated cube would be

√
l2 · (v/c)2 + l2 = l

√
1 + (v/c)2 > l.

What Alice would see if only the projection were in place but there was no length
contraction would not be consistent with a rotated cube of edge length l.

Now only the length contraction is missing. To include it, we just have to com-
press the width of the cube in Fig. 8.13, left side, by a factor of γ −1

v to l/γv (as we
did in Fig. 8.14 on the left side). The length contraction only acts in the direction of
motion, while the lengths of the lateral sides in the y- and z-directions stay the same.
Alice’s view is shown in Fig. 8.14, right side.

For the apparent widths of the surfaces, we have (l · (v/c))2 + (l/γv)
2 = l2, so,

considering both the retardation and the length contraction, the image of the cube
is consistent with that of a rotated cube with edge length l. The rotation angle is
tan ϕ = l · (v/c)/(l/γv) = γv · (v/c). For small rotation anglesϕ, we have tan ϕ ≈ ϕ

andγv · (v/c) ≈ v/c, or, in total,ϕ ≈ v/c. So, even for not very highvelocities (“non-
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relativistic velocities”), the rotation angle is unequal to zero. For velocities close to
the speed of light, we have γv · (v/c) → ∞, and therefore ϕ → π/2. If the velocity
of the cube approaches the speed of light, the rotation angle approaches 90◦.

Figure8.15 shows how, for an inertial observer not infinitely distant from the cube,
itwould look as if itweremoving at a relative velocity of v = 0.7c (perspective effects
are taken into account). First, while the cube is approaching, one sees the front and
the right side of the cube. Then, when the cube is closest, one sees the front side and,
very clearly, the left side. Somewhat later, one sees less of the left side. The reason
for this is that the cube’s velocity component perpendicular to the observer decreases
very quickly.

In Fig. 8.16, the observer is approximately at the same altitude as a row of dice
that rest relative to the observer. Above them, an equally oriented die moves with
0.95 c. One mainly sees the side with the value four, which is hidden on the other
dice, and the cube is very distorted. The cause of these distortions is that the die is
close to the observer and our approximation of the infinitely distant die does not hold
anymore.



Chapter 9
Time Dilation

9.1 Introduction

It is not only the lengths of rapidly moving objects that change. For such objects,
time also proceeds more slowly. We will find this out by sending two clocks out on a
journey. Thereafter, we will learn why your twin, after returning from a long journey,
is younger than you are. As applications, we will again discuss muons, but this time
from a different point of view, and then satellite navigation.

9.2 Derivation

For moving objects, it is not only their length in the direction of the motion that is
contracted. There is another effect: from the observer’s point of view, time passes
more slowly for moving objects than for objects at rest.

This effect is not completely unexpected. We have seen in recent chapters that,
in special relativity, space and time share many more properties than in classical
physics. At the end of Sect. 7.5.3, we discussed the fact that different events that
happen at the same location for Alice don’t do the same for Bob. And that, in special
relativity, different events that happen at the same time for Alice don’t do the same
for Bob (relativity of simultaneity). For this reason, it seems likely that, in addition to
the “space effect” of length contraction, there could be a concomitant “time effect”,
which concerns a change in the course of time.

We show now that this is indeed the case.

Time dilation. But first, a step back: what does it mean that time passes more
slowly for moving objects than for objects at rest? Remember the synchronized
clocks in the Volksgarten in Düsseldorf (in Sect. 7.3). Let Alice be at rest relative to
this grid of clocks. Bob initially stands next to one of these clocks and carries a clock
of the same type with him. His clock operates synchronously with the other clocks.
Now, Bob moves with his clock rapidly towards a different clock within the clock
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Fig. 9.1 Right: time dilation. Alice and her two synchronized clocks are at rest. Bob and his clock,
which initially was synchronized with Alice’s left clock, move relative to Alice. Left: Principle of a
light clock. A sender/receiver (bottom) sends a light pulse upward. This light pulse is permanently
reflected between the upper and lower sides of the clock. At the lower side, it is detected if it passes.
The detection pulse is the ticking of the clock

grid. When he compares the time that his clock shows with the time of the clock next
to him, he notes that his clock shows a slightly earlier time (the difference in time
depends essentially on his speed, and in this case, it may be so small that the best
atomic clocks would be needed to notice the difference). For Bob, the time passed
more slowly on his journey from one clock to another in the Volksgarten. With this,
we are talking about time dilation.1

Measuring the time. To measure the time, we use an (imaginary) light clock
(see Fig. 9.1, right side).2 A light clock consists of a hollow cylinder of length l, the
two parallel planes of which are metalized on the inside. A light pulse, which travels
along the cylinder axis, is then reflected permanently back and forth. Two reflections
at one of the parallel planes happen with a period of 2l/c. If one counts the number
of reflections, one has a clock.

The light clock defines a unit of time as the time needed for a light pulse to
travel a unit distance. This method works well for a clock, because, independently
of the inertial frame and the location and direction, the speed of light is the same,
and therefore the time needed for the light pulse to travel the unit distance l is
always t = l/c. This is the statement of the absolute speed of light, and it was
confirmed by the Michelson-Morley experiment. So, the location of the light clock
and its orientation do not have an influence on its frequency.

Actually, however, the time is defined in a different way. Imagine you had a
real light clock, a hollow cylinder of length l. The problem is that any material
would change its length with temperature, and consequently the time measured by
the light clock also would depend on the clock’s temperature. As we will see in
Sect. 9.3, in reality, periodic processes in atoms are used for time measurement. But
conceptually, the light clock is a perfect fit for our purposes here, and Einstein’s

1 From the Latin dilatare, which means “enlarge” or “stretch”.
2 Note again that a light clock only makes sense in special relativity, because it has the same click
frequency in all IS and for all directions. This is stated by the principle of the absolute speed of light
and demonstrated by the Michelson-Morley experiment. In an aether theory, would not be true.
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Fig. 9.2 To the derivation of time dilation (see text)

principle of relativity guarantees that an ideal light clock (with a fixed length, etc.)
measures the same time as an atomic clock. Otherwise, comparing the pace of the
two clock types, we could distinguish different inertial frames, in contradiction to
Einstein’s principle of relativity.

Graphical derivation. Alice and Bob again enter the scene. Bob moves with the
velocity v relative to Alice. Both are inertial observers. And both carry a light clock,
which they orient in the direction of their relative motion (i. e., the light pulse in the
clocks travels parallel to the relative motion of Alice and Bob).3 In the spacetime
diagram (Fig. 9.2), the trajectories of Alice’s light clock (the rear end corresponds to
the t-axis and the front end to the blue line) and Bob’s light clock (rear end = t ′-axis,
front end = green line) are shown. Both light clocks have the proper length l0 (i. e.,
this is their length in the inertial frame in which they are at rest). We know already
that, from Alice’s point of view, Bob’s light clock is length contracted by a factor
of γv . Therefore, we put the front end of Bob’s light clock on the x-axis at l0/γv . For
Bob, the situation with Alice’s light clock is analogous.

Both light clocks start at the common origin O of the coordinate systems (t =
t ′ = 0, x = x ′ = 0), where the rear ends of the clocks meet. In Alice’s (Bob’s) light
clock, the light pulse is reflected at event P (P ′), and at event Q (Q′), it has completed
one period. Therefore, at event Q, Bob’s light clock shows the same time as Alice’s
light clock at event Q′.

3 Due to the fact that, in an inertial frame, the speed of light is independent of the direction, the
orientation of the light clocks does not matter. We choose the direction such that the derivation at
hand is as easy as possible.
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The important observation is that, for Alice, Q′ happens after Q (see the lines of
simultaneity G Q and G Q′). For Alice, Bob’s light clock runs more slowly than her
own, because, if, on her own clock, one period has passed, Bob’s clock will not yet
have completed a period.

For Bob, however, the event Q happens after Q′ (see the lines of simultaneity G ′
Q

and G ′
Q′). For Bob, Alice’s light clock runs more slowly than his own, because, if, on

his own, one period has passed, Alice’s clock will not yet have completed a period.
The effect is reciprocal, exactly as it must be according to the relativity principle,

because both Alice and Bob reside in an inertial frame, and therefore are on an equal
footing.

By how much does the time of a moving object run more slowly? This is now rel-
atively easy to find out.We only need to determine the ratio of the time intervals from
the origin to tQ′ and from the origin to tQ , respectively. We use Alice’s coordinates.
The latter is easy: tQ = 2l/c.

Now, we turn to tQ′ . At event P ′, the green line and the light line intersect,
therefore, l/γv + vtP ′ = ctP ′ . It follows that tP ′ = (l/c)

√
(1 + v/c)/

√
(1 − v/c)

and xP ′ = ctP ′ . At event Q′, the line from P ′ to Q′ and the t ′-axis intersect, there-
fore, xP ′ − c(tQ′ − tP ′) = vtQ′ . It follows that tQ′ = 2tP ′/(1 + v/c) and, finally,
tQ′ = (2l/c)γv = tQγv . Suppose that tQ = 1 s.For Alice, Bob’s clock shows one time
unit only at tQ′ > tQ . Thus, again, for Alice, Bob’s runs more slowly than her own.

Therefore, we reach the conclusion (see Fig. 9.3):

Time dilation: For an inertial observer, the time of a moving object runs more
slowly by a factor of

γ −1
v =

√
1 − v2

c2
< 1

as if it was at rest.
While, for the observer, the time�t0 has passed, for the object moving with

velocity v, only the time

�t ′
0 = γ −1

v �t0 < �t0 (9.1)

has passed.

Discussion. In our graphical derivation, we have shown that, for Alice, Bob’s
clock runs more slowly than her own clock. In the first moment, one may not be
terribly disturbed by this finding, because one automatically hesitates to carry this
over to other processes that occur from Alice’s point of view in Bob’s inertial frame.
But because of the relativity principle, if the clock runs more slowly, then all other
processes in Bob’s inertial frame also must run more slowly. This includes that, from
Alice’s point of view, Bob ages more slowly than she does. Time dilation is a real
effect and not a kind of illusion.
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Fig. 9.3 To time dilation
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Time dilation is an effect between two different inertial observers. From Alice’s
point of view, Bob ages more slowly. Bob, however, does not notice this. All of the
processes, including his aging and the period of his clock, proceed in the same way:
there is no reference relative to which Bob could conclude that something in his
inertial frame proceeds more slowly or more quickly than anything else.

The effect is completely symmetric. This is also a consequence of the fact that
all inertial frames are on the same footing. There are no preferred or special inertial
frames. Therefore, if Bob looks at Alice’s clocks, he will find that they run more
slowly than his own clocks and hewill also conclude that Alice agesmore slowly than
he does. This is not a contradiction, because Alice and Bob rest in different inertial
frames, and this means that they possibly meet once in their lives, but never again.
Therefore, they cannot directly compare their ages. We will change this situation in
the discussion on the twin paradox in Sect. 9.9.

Notwithstanding the fact that the effect is symmetric, we have used different
methods to derive the length contraction in Sect. 8.2.2 and the time dilation here.
For the length contraction, we applied Einstein’s principle of relativity and needed
both perspectives, that of Alice and that of Bob, as the construction in Fig. 8.2 on
the right side shows. In the derivation of time dilation, however, Alice’s perspective
was sufficient and we needed the light clock. But this was just for practical reasons.
We could perform the derivation of the time dilation with the same method that we
used for the length contraction.

Exercise 30: Adapt the method that was used to derive length contraction to time
dilation.

Exercise 31: An airplane flies with a velocity of 1,000 km/h once around the
Earth (whose circumference is 40,000 km). How much time has passed at the
airport where the airplane started and landed? And how much time has passed
for the airplane?

Two remarks: First, note that the airplane, strictly speaking, does not rest in
an inertial frame, because it changes the direction of its velocity. This does not
matter here. (See also the discussion in Sect. 9.10.) Second, in Sect. 9.11.2, you
will see that gravity also has an influence on how fast the time passes. Here, you
only have to take into account the dilation of time due to the relative velocity.
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Fig. 9.4 Regarding Exercise 32. Left: Light clock oriented parallel to the direction of motion (in
the longitudinal direction) and perpendicular to it (in the transversal direction). Right: Trajectory
of the light pulse in the transversally oriented light clock. Caution: this is an x-y-diagram and not
a spacetime diagram!

Exercise 32: Transversal and longitudinal light clock. In the derivation of time
dilation, Bob’s light clockwas oriented parallel to his direction ofmotion (relative
to Alice). Consider a light clock that is oriented perpendicular to the direction of
motion (see Fig. 9.4, left side). Both light clocks must show the same time (argue
why this is proved by the Michelson-Morley experiment). On the basis of this
observation, argue that lengths are not contracted perpendicular to the direction
of motion.

9.3 Digression: Time Measurement

Time measurement. The basis of time measurement is frequency measurement.
You need something that oscillates at a fixed known frequency, the oscillator fre-
quency, and then you count its cycles and convert them into seconds. A quartz crystal
in a wristwatch, e. g., typically oscillates at a frequency of 32,768Hz. The quartz
clock counts the cycles (or periods) and, after 32,768 of these, one second has passed.

One of the first oscillators used for time measurement in modern history was the
pendulum. You remember these pendulum wall clocks, like that in Fig. 9.5 on the
left? The pendulum has a weight at the bottom whose distance to the axis of the
pendulum can be changed and, in this way, the frequency of the pendulum can be
adjusted to, e. g., one oscillation per second. For a wristwatch, the pendulum was not
useful. Therefore, a spring-mass system was developed, the balance-spring&wheel
clock (see Fig. 9.5 in the middle). These oscillators are still used in mechanical
wristwatches.

All these oscillators have the same problem. The oscillation is damped and, at
some point, it ceases to exist. Therefore, the oscillators have to be driven “from
outside” to sustain the oscillation. In the case of a pendulum wall clock, this is a
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Fig. 9.5 Different types of clock oscillator. Left: Pendulum;Middle: Balance spring&wheel; Right:
Quartz oscillator

weight fixed on a small chain (the pendulum clock in Fig. 9.5 has three of these). In
the course of a day or so, the weight moves from its top to its bottom position and
the pendulum clock has to be wound. This may be a minor nuisance, but it is related
to a larger challenge. An oscillator that is damped necessarily also has frequency
noise; its oscillation frequency is not fixed, but fluctuates statistically around the
fixed oscillator frequency: sometimes it is a little bit larger, sometimes a little bit
smaller. This means that a clock whose construction is based on a driven damped
oscillator always has some error. And the larger the error is, the larger the damping
is. The Q factor (quality factor) is a characteristic number of an oscillator that is
inversely proportional to the damping on the one hand (the larger the damping, the
smaller the Q factor) and to the frequency noise of the oscillator on the other. The
higher the Q factor, the more precise the clock.4

There is a further source of errors. The oscillator frequency of such oscillators
always depends on several external parameters. The most important one is usually
the temperature. For instance, the balance wheel in a balance-spring clock, if not
made with a very small thermal expansion coefficient, will change its size with the
temperature, and this causes the clock to have a different oscillator frequency. Then
the clock systematically runs too quickly or too slowly andwill no longer be accurate.

Typical Q factors of good pendulum wall clocks or very good balance-spring
clocks lie between 102 and 103. A big leap forward has been made with the intro-
duction of the oscillating quartz crystals (see Fig. 9.5 on the right) used in quartz
clocks. These have typical Q factors between 104 and 106.

4 The two notions precision and accuracy are used to quantify measurement errors in general, as
well as those of clocks. If all “seconds” of the clock have the same length, the clock is perfectly
precise—even if the “seconds” are too long—but not accurate. And if the “seconds” all have a
slightly different length but, on average, are exactly one second long, the clock is perfectly accurate
but not very precise. Instead of precision, in the context of clocks, one also talks about their stability.
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Much better Q factors can be achieved if we use atoms as natural oscillators.

Atomic clocks. Atomic clocks are our most precise time measurement devices.
There are several reasons for this. First, some selected oscillations in an atom have
a very low damping. Together with the fact that the oscillation frequencies usually
are very high, this allows for a very precise frequency measurement. Furthermore,
these oscillations in an atom are very robustly resistant to external influences, which
leads to a very high accuracy of the clocks.

We will describe a typical atomic clock, the caesium beam atomic clock, in some
detail in the next section. Basically, the caesium atom has two microscopic bar
magnets, an electron and anucleus, and these “rotate” about eachother. The frequency
of this rotation is very stable and accurate and has been used to define the second.

Definition of the second. The French Bureau International des Poids et Mesures
is responsible for the International System of Units (SI). There, in 1967, the second
was defined as:

Definition of the second: A second is the duration of 9,192,631,770 periods of
the radiation corresponding to the transition between the two hyperfine levels
of the ground state of the caesium-133 atom.

By the transition between the two hyperfine levels of the ground state of the
caesium-133 atom, we mean the frequency of the mentioned rotation. In the clock,
a microwave with a frequency of about 9,192,631,770Hz interacts with caesium
atoms and, if the frequency exactly corresponds to the rotation of said microscopic
bar magnets, one gets a resonance effect. Then, we are “only” left with counting
the 9,192,631,770 periods per second of this microwave and one knows that exactly
one second has passed. This counting is performed with electronic counters.

Such an atomic clock is the caesium beam atomic clock CS2, located at the
Physikalisch-Technische Bundesanstalt (PTB) in Braunschweig, Germany. Together
with three further clocks,5 the CS2 defines the official time for Germany. The clock
has a precision of about 10−15, i. e., in 100 millions of years, it accumulates, at most,
3 s of error. The clock is shown in Fig. 9.6. You can retrieve the current time via the
Internet.6

Optical atomic clocks. Even better than an oscillator with its frequency in the
microwave domain is one in the optical domain, and the reason for this is basically
that the frequency of the transition is larger (in the case at hand, by a factor of
several thousand). Thus, an even more precise timemeasurement is possible. Typical
precisions are of more than 10−17, which corresponds to a maximum error of 3 s
in 10 billion years (for comparison: the Universe has an age of roughly 14 billion
years). The fact that almost all atomic clocks these days still use oscillators with their

5 Another caesium beam atomic clock CS1 and two caesium fountain atom clocks CSF1 and CSF2.
6 See http://www.ptb.de/de/zeit/uhrzeit.html.

http://www.ptb.de/de/zeit/uhrzeit.html
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Fig. 9.6 The atomic clock CS2 of the Physikalisch-Technische Bundesanstalt (PTB) in Braun-
schweig, Germany

frequency in the microwave regime is for technical reasons. One of these reasons
has been touched upon already: in the microwave domain, electronic counters can
be used to count the clock’s periods. In the optical domain, due to the high optical
frequencies, this is not possible. One needs very complex frequency combs to divide
the optical frequencies down into a regime that is accessible for electronic counters.

Using such an optical atomic clock, in 2010, the group led by David Wineland
(one of the Nobel laureates of 2012) showed the time dilation for a relative velocity
of only 10m/s [Chou+10].7 At this relative velocity, the difference between the clock
rates of the resting and moving clocks is only about 5.6 × 10−16. To demonstrate
this, Wineland and colleagues compared this to the clock rates of a resting and a
moving atomic clock and got a very good agreement with the predictions of special
relativity.

Exercise 33: Show that the difference between the clock rates of a resting clock
and a clock moving with a velocity of 10m/s is 5.6 × 10−16.

Exercise 34: What least amount of precision would an atomic clock need to have
if its error must not exceed 1s since the Big Bang?

7 Time dilationwas shown for the first timewith an atomic clock in 1971 in a very famous experiment
by Hafele and Keating, which we will discuss in Sect. 9.11.2. The two physicists flew together with
four atomic clocks in an airliner around the Earth, and thereafter compared the displayed time with
that of four further atomics clocks that had been left behind on the Earth’s surface. See Sect. 9.11.2.
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Fig. 9.7 Schematic view of a caesium beam atomic clock

9.4 Digression: Atomic Clocks

9.4.1 Overview

Figure9.7 shows the composition of a caesium (Cs) beam atomic clock.8 On the
left side is a small Cs oven where caesium is vaporized. The caesium atoms then
fly through a polarizer magnet (a) where the state of the Cs atoms is prepared. The
atoms in the correct state then cross a first microwave cavity (b), fly freely for some
distance (c), cross a secondmicrowave cavity (d), and eventually the state of the atoms
is measured in a combination of an analyzer magnet (e) and a detector. The green
boxes represent an electronic feedback loop where, depending on the measurement
outcome, the frequency of the microwave radiation in the microwave cavity (Ramsey
cavity) is adjusted. If the measurement signal is maximal, the frequency corresponds
to the Cs frequency standard and 9.192.631.770 cycles of it take exactly one second.

9.4.2 The Caesium Atom and Spin

For our purpose of understanding the Cs beam atomic clock, the Cs atom can be
thought of as having one electron.9 Furthermore, there is the nucleus of the Cs atom.
In the stable isotope of Cs, which is what we consider here, this nucleus consists of

8 For much more in-depth information on time standards and atomic clocks, see e. g., [Riehle04].
9 Actually, the Cs atom has 55 electrons, but 54 of them are “paired” and have no influence on what
we are discussing now.
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133 nucleons (protons, neutrons) and is abbreviated by Cs-133. Both the electron and
the nucleus have amagnetic moment: they act like two small bar magnets and dance
around each other. This can also be described in an alternative way: the magnetic
moment μe of the electron creates a magnetic field Be and the magnetic nucleus
precesses in this magnetic field. Or: the magnetic moment μn of the nucleus creates
a magnetic field Bn and the magnetic electron precesses in this magnetic field. All
of these are valid means to describe what happens.

Now, in the description of the physics of this system, we enter the strange world of
quantum physics with superposition, entanglement, the weird effects of measure-
ment and the like, but fortunately, for the pas de deux of the electron and the nucleus,
there is a description that, on the one hand is exact (actually, it is the description
according to quantum theory) and, on the other hand, is “minimally invasive” for our
concepts of the world as digested from our day-to-day experience with the classical
world. This description is that with the Bloch vector, which we present now.

Both the electron and the nucleus are electrically charged, and the reason for
their magnetic moment is that they rotate around themselves and have an angular
momentum like a spinning top. This angular momentum is called the spin.

The magnitude of the angular momentum (or spin) of both the electron and the
nucleus is constant: they always rotate with the same angular velocity, but the rotation
axis can change. Now, in quantum physics, we find the smallest non-vanishing spin,
which is given by half of the fundamental physical constant �, the Planck constant,
which is very tiny.10 The electron has this minimum angular momentum—it cannot
rotate any more slowly—and particles with this minimum spin are called spin-1/2
particles. The nucleus of Cs-133 has a larger spin with value 7/2 (times �).

We will, however, treat our nucleus as a spin-1/2 particle. Then, the description
becomesmuch easier without changing the physics, at least for the case of explaining
how the Cs beam atomic clock works.

The spin state of a spin-1/2 particle (electron, proton) in quantum theory can be
described exactly by a unit vector eS, the Bloch vector, which can be considered as
the particle’s rotation axis. The unit vector also can be described by a point on the
surface of the unit sphere, the Bloch sphere. Then, eS points from the center of the
sphere to this point. So, the spin state of an electron or of a proton can be described
by a point on the Bloch sphere. In this spin state, it rotates around the axis, going
through the center of the Bloch sphere and this point.

10 The German physicist Max Planck showed, in 1900, that to explain the spectrum of so-called
black-body light, one needs to assume that energy is quantized. This was the discovery that triggered
the development of quantum theory. The energy of a photon with frequency ν is given by E = hν,
where h := 6.62607015 × 10−34 J/Hz is the Planck constant. For practical reasons, � := h/(2π)

was introduced, and is also called the Planck constant. Thus, we can write �ω instead of hν. In
addition, spins are always multiples of �/2.
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9.4.3 Measuring the Spin

Enter the concept of measurement in quantum theory. As we stated, the electron (or
the proton) can rotate around an arbitrary axis, given by the unit vector eS. The weird
thing now is that we cannot determine this axis, but we still can know it! The reason
for this is not that we do not have a suitable measurement device for determining
the rotation axis, but rather that there is a general limit that Nature imposes.11 What
does this mean?

The prototypical spin measurement device is the Stern-Gerlach (SG) device (see
Fig. 9.8). Central to the device is a strong inhomogeneousmagnetic field produced by
a magnetic pole pair. The objects whose magnetic moment is being detected (silver
atoms in the original experiment by Stern andGerlach, produced in a furnace) are sent
through this magnetic field, where they are deflected depending on their magnetic
moment and finally impinge on a detector screen (see Fig. 9.8, left side). The position
where they are detected tells us about their magnetic moment.12

Little bar magnets. Suppose we have a very small bar magnet with magnetic
moment μ, so small that we can barely see it, but too small to see in which direction
its magnetic moment points. Then, we shoot this small bar magnet through the region
with a strong inhomogeneousmagnetic field B of theSGdevice (seeFig. 9.8,middle).

Let us orient the coordinate system such that the z-axis points in the direction
in which this field changes maximally. Then, the force that the small bar magnet
experiences is proportional to μz d B/dz, the component of its magnetic moment in
the direction of the (inhomogeneous) magnetic field, and the change in the magnetic
field. This is equal to μ d B/dz cosϕ, where ϕ is the angle between μ and the
z-axis and can take any value between −μ d B/dz and +μ d B/dz. Accordingly,
there is a line of possible locations where the bar magnet impinges on the detector

11 You may have heard about Heisenberg’s undeterminacy relation. This is what we are talking
about.
12 To be precise: about the component of μ in the direction of the magnetic field.
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screen. If we send many small bar magnets with random directions of the magnetic
moment through the Stern-Gerlach device,wefind this line on the screen (see Fig. 9.8,
“Classical prediction”).

Electrons. Let us turn from little bar magnets to electrons. If we send electrons
through the Stern-Gerlach device,13 something unexpected happens (see Fig. 9.8).
Instead of a line, we see only two points on the screen (see Fig. 9.8, “Observation
for silver atoms”)!14 The electron is only found either deflected upward or down-
ward, there are no intermediate deflection directions. This effect cannot be explained
classically; it is a pure quantum effect. If the electron has been deflected upward, we
say it has spin up with respect to the SG device’s measurement direction (i. e., the
direction of the magnetic field inhomogeneity) and its rotation direction is parallel to
the measurement direction, eS = ez , and if it has been deflected downward, we say it
has spin down and its rotation direction is antiparallel to the measurement direction,
eS = −ez .

Nevertheless, we know (from interference experiments like that presented here)
that the electron spin can point in any direction.

If we take the electrons that leave the SG device at its spin-up exit and pass them
through a further SG device with the same orientation (or measurement direction),
we always also find them leaving the second SG device at the spin-up exit and never
at the spin-down exit. This means that all electrons leaving the SG device at the
spin-up exit, independently of their earlier spin state eS, have spin up (analogously
for spin down), and consequently the act of measuring in general changes the spin
state of the electrons.

In this way, the SGdevice can also be used toprepare the spin state15 of particles,
and this is performed by the polarizer magnet in the Cs beam atomic clock (Fig. 9.7),
which is nothing but an SG device. If the spin state eS of the Cs atoms leaving the
oven is random, then half of the atoms will leave the polarizer magnet at the upper
exit with spin up (with respect to to themeasurement direction) andwill be discarded.
The other half will leave the polarizer magnet at the lower exit with spin down and
are used in the Cs beam atomic clock.

Measurementdistributionandquantumrandomness. Supposeweprepare elec-
trons to have their spin up with respect to the y-axis by sending them through a SG
device with the magnetic field inhomogeneity oriented in the y-direction and then
selecting them. Next, we take these electrons and send them through an SG device

13 This experimentwould be challenging, because the charged electrons reactmuchmore strongly to
stray electric fields than to the inhomogeneousmagnetic field in the Stern-Gerlach device. Instead of
electrons, Stern and Gerlach used (electrically neutral) silver atoms. These atoms have 47 electrons
and, similar to the case of caesium, all of those but one are “paired”. Therefore, the silver atom
(without its nucleus) is also a spin-1/2 particle.
14 In special cases, one of the two points may be absent. We will see later.
15 This should resolve the puzzle introduced by the phrase, “The weird thing now is that we cannot
determine this axis, but we still can know it!” If we don’t know the electron’s spin, we cannot find
it out, because the measurement will change it in general. But after carrying out a measurement,
we know the electron’s spin state.
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whose magnetic field inhomogeneity is oriented in the z-direction. We will find half
of the electrons leaving the SG device at the upper exit and the other half at the
lower exit. Whether a given electron leaves the SG device at one or the other exit is
completely random,16 but the probabilities of getting one or the other result (in this
case, fifty-fifty) are fixed by the direction of the magnetic moment of the measured
particles.

You could come upwith the idea that, before themeasurement, the state is actually
always either spin up (with respect to the measurement direction) or spin down, but
we just don’t know. But this view is untenable, because, as discussed, we can prepare
the spin to e. g., point in the y-direction and then measure it in the z-direction and
will find 50% of the cases with spin up and the other 50% with spin down. But if we
were to measure in the y-direction, we would always find it with spin up.

9.4.4 The Compound Particle

Compound spin. So far, we have learned how quantum theory describes a spin-
1/2 particle like the electron or the proton. Actually, our Cs atom (with the fictitious
spin-1/2 nucleus) contains two spin-1/2 particles, the electron and the nucleus, and
both are relevant to the operation of the Cs beam atomic clock. Everything that we
do with magnetic fields in the Cs beam atomic clock will act equally on the two
spins. Fortunately, for our purposes, we can replace the two spin-1/2 particles with
one artificial compound particle that can be described as a spin-1/2 particle with the
Bloch vector een (“en” for “compound particle made of an electron and a nucleus”).
In this picture, the spin of the electron and that of the nucleus are always antiparallel
to each other. If we want, we can interpret een as the spin of the electron and −een as
that of the nucleus. This interpretation, however, is actually not correct, because the
spins of the electron and the nucleus are usually entangled which means that only
the whole composite particle has a spin while the constituents do not anymore.

Energy and free precession. Due to the magnetic interaction of the electron and
the nucleus, the composite particle has a certain energy that depends on the state of
its composite spin, i. e., in the direction of een.17 There is a certain direction een,0 with
maximum energy E1, thus −een,0 has the minimum energy E0. If the composite spin
takes one of these values and wemeasure the energy, we will always get the indicated
value. In all other spin states, similar to the spin measurement, we will either get the
maximum or the minimum energy, with certain probabilities.

16 We talk about quantum randomness. Even Nature itself, which knows everything about the world
before the measurement takes place and everything about the intricacies of the measurement device,
is not able to predict the measurement outcome.
17 Here, the picture of having one spin pointing in the direction een and the other in the opposite
direction fails again, because the energy thenwould always be the same, independent of the direction.
Due to the state superposition (or entanglement), this is not the case here. Remember that our
description is exact; only the idea that we make out of it to “understand” it fails.
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Fig. 9.9 (1) The Bloch sphere for compound spin; (2a) Free precession of the Bloch vector een
around A0 in the laboratory frame and (2b) of the Bloch vector e′

en around A′
0 in the rotating frame

The difference EHFS = E1 − E0 between the maximum and the minimum energy
is called the hyperfine-splitting18 (HFS) energy in the ground state of Cs and,
according to the definition of the second, is given exactly by the Planck constant h
times the 9.192.631.770Hz.

We introduce a coordinate system such that een,0 points in the z-direction (see
Fig. 9.9(1)). As for a spinning top that precesses, the spin een of the composite par-
ticle is not static, but it rotates (precesses) around the direction given by een,0 (see
Fig. 9.9(2a)). This is called free precession (because there is no external force acting
on the composite particle). The angular velocity of this free precession is called the
Larmor frequency ωL. It is independent of the initial direction of een and given
exactly by EHFS/�. Hence, the Larmor frequency of the compound spin defines the
second.

The two states een = e↑↓ = ex and een = e↓↑ = −ex also play a particular role.
In the first state, the electron spin is up and the nucleus state down. In the second
state, both directions are reversed. These two states are the only states in which both
the electron and the nucleus have their own spin value. All other states on the Bloch
sphere, including the states with themaximum andminimum energy, een,0 and−een,0,
respectively, are entangled states, which only exist in quantum theory.

Rotating frame. To ease the description of the motion of een, we first multiply
it with the Larmor frequency ωL and write A0 := ωLeen,0. Then, the Bloch vector
of the compound spin rotates around A0, with the angular velocity given by the
magnitude |A0| = ωL of this vector, according to the equation19

18 If, in quantum theory, two states like the spin-up and the spin-down states happen to have the
same energy, they are called degenerate. With additional interactions, the energies can become
different. This is called energy splitting and is caused, e. g., by the interaction between our two
spins. Relativistic effects on the atom lead to the fine structure in the energy spectrum, and when the
nucleus is involved, we talk about hyperfine-structure effects. So, hyperfine splitting is the splitting
of the degeneration of the two states ±een,0.
19 This is the equation of motion for Larmor precession, the precession of a magnetic moment in
an external magnetic field.
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d

dt
een(t) = A0 × een(t).

Because of een · (A0 × een) = 0, the tip of the vector always lies on a plane perpen-
dicular to A0.

We can use a coordinate system that rotates with the angular velocityω around ez .
In this coordinate system, the angular velocity of the Bloch vector e′

en is given
by δω := ωL − ω, and we have to use A′

0 = (ωL − ω)e′
en,0 = δω · een,0 instead of A0

(see Fig. 9.9(2b)). In this rotating coordinate system, the Bloch vector e′
en rotates with

angular velocity δω. For the special case ω = ωL, A′
0 = 0 and the Bloch vector e′

en
becomes static.

If you know about nuclear magnetic resonance (NMR), you will notice that our
quantum description of the Cs compound spin corresponds exactly to the classical
description of the nuclear spin in NMR, where A0 here corresponds to the static
external magnetic field B0 in NMR.

9.4.5 Acting on the Compound Spin

So far, we have considered the free precession of the compound spin. But we can
alsomanipulate the spinwith an electromagnetic wave. The electric field of such an
electromagnetic wave does not interact with the compound spin, because our com-
pound particle does not have an electric dipole moment. Therefore, we can ignore the
electric field of the electromagnetic wave. The magnetic field of the electromagnetic
wave, however, does interact with the magnetic moment of our compound particle
(or, if you want, independently with the magnetic moments of the electron and the
nucleus).

The direction of the magnetic field in an electromagnetic wave is perpendicular
to the traveling direction of said wave. In our case, we must restrict ourselves to
electromagnetic waves with the magnetic field pointing in the direction of een,0.
Magnetic fields with other directions entail that the electron and the nucleus spin
no longer be parallel, and this breaks our description of the compound particle as a
spin-1/2 particle.

We use a monochrome electromagnetic wave

B(t) = B0ex cos(ωmwt)

with a frequency ωmw close to the Larmor frequency ωL of the compound particle;
this is an electromagnetic wave in the microwave regime (which motivates the index
“mw”).20 The frequency deviation is given by δω = ωL − ωmw.

The effect of this microwave on the spin of the compound particle is most simply
described in the frame rotatingwith the angular frequencyωmw of the electromagnetic

20 A microwave oven operates at 2.45GHz. This is not very far from the 9.19GHz of the Cs beam
atomic clock.
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Fig. 9.10 Rotation of the Bloch vector by the magnetic field of the microwave: a moving from the
laboratory frame with A0 to the frame rotating with angular velocity ωmw with A′

0 (without the
electromagnetic wave); b in the rotating frame for the resonance case; c in the rotating frame for
the off-resonance case

wave (see Fig. 9.10a, this is still without the electromagnetic field). To include the
magnetic field of the electromagnetic wave in this description, we have to add the
vector−γenBex (γen is the gyromagnetic ratio of the compound particle and indicates
how strongly it reacts to a magnetic field) to our vector A′

0, so the Bloch vector now
will rotate around the vector A′ := A′

0 − γenBex . Note that this vector does not point
in the z-direction anymore, and therefore the Bloch vector een does not rotate around
the z-axis anymore.

In the special case when ωmw = ωL (the microwave frequency is in resonance
with the Larmor frequency of the compound spin), we have A′ = −γenBex and the
Bloch vector rotates with the Rabi frequency ωR = γenB around the (negative) x-
axis (see Fig. 9.10b). Of practical importance are short microwave pulses that rotate
the Bloch vector by a certain angle. A microwave pulse that rotates the Bloch vector
by π/2, for instance, is called a π/2-pulse.

If, however, the microwave frequency is not in resonance with the Larmor fre-
quency and therefore δω = ωL − ωmw �= 0, the vector A′ no longer lies in the x-
y-plane. Therefore, the Bloch vector −een,0 is rotated along the circle shown in
Fig. 9.10c, and, in particular, cannot be rotated into een,0.

9.4.6 The Caesium Beam Atomic Clock

The Ramsey experiment. Now, we have all the ingredients that we need to under-
stand how the Cs beam atomic clock works. The basis of the Cs beam atomic clock
is a Ramsey experiment, which is very similar to an interference experiment with a
photon in a Mach-Zehnder interferometer (MZI). In the case of an MZI, in between
the first and the second beam splitters, the photon is in a superposition of traveling
one way and traveling the other way. At the second beam splitter, these possibilities
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Fig. 9.11 Evolution of the compound spin of Cs in the Ramsey experiment of the Cs beam atomic
clock. The coordinate system is the frame rotating with angular velocity ω. (1) In resonance; (2)
off-resonance. Steps: a first π/2-pulse; b after free propagation for time T ; c second π/2-pulse

interfere and in the case of a symmetric MZI (equal path lengths), the photon will
emerge from the second beam splitter with certainty at one particular exit. In the
Ramsey experiment, the Cs atoms cross a first microwave cavity, where their spin
state is changed into the superposition een = −ey of the two states een,0 and −een,0,
after which it travels freely until it crosses a second microwave cavity, where the spin
is changed into een,0 and, if ωmw = ωL, a measurement yields spin up with certainty.

Let us discuss step by step what happens to a Cs atom (see Fig. 9.7). First, the Cs
atom travels through the preparation magnet, a SG device. Suppose it leaves it at
the spin-down exit. Then, its state is given by −een,0, as shown in Fig. 9.11(1a). The
Cs atom then crosses the first microwave cavity. If the microwave frequency ωmw is
exactly equal to the Larmor frequency ωL, the compound spin state will be rotated
by exactly π/2 around the (negative) x-axis and will then point in the negative y-
direction (see Fig. 9.11(1b)). After leaving the cavity, the compound spin evolves
freely for some time T and, in the resonance case and the rotating frame, this means
that it does not change the compound spin’s direction (see Fig. 9.11(1c)). Then, the
atom again crosses a microwave cavity and, in the resonance case, gets rotated again
by π/2. In total, the spin gets rotated by π , and consequently then points in the
direction of een,0 (see Fig. 9.11(1d)). When its spin in the z-direction is measured in
the analyzing magnet, it always leaves this device at the spin-up exit.

Suppose now that the microwave frequency ωmw is slightly different from the
Larmor frequency. Then, in the first microwave cavity, the rotation of the Bloch
vector is still close to π/2 and the Bloch vector still ends up approximately in the
(negative) x-direction as long as we are close to resonance (|ωmw − ωL| � ωR),
which is the relevant case. However, while the Cs atom travels, its Bloch vector
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Fig. 9.12 Detector signal
(relative number of spin-up
measurement results) as a
function of the microwave
frequency ωmw

I

ωωL ωL + π/T

Ramsey fringe

rotates slowly with the angular velocity δω = ωL − ωmw around the z-axis (in the
frame rotating with angular velocity ωmw) and, after the time T , it is rotated by
the angle δω · T . When it crosses the second microwave cavity, the Bloch vector,
in general, is not rotated in the z-direction and therefore, in the analyzing magnet,
there will be spin-down detections. These spin-down detections indicate that the
microwave frequency and the Larmor frequency (which defines the second) are not
in resonance.

The measured signal (or the probability of detecting spin-up) as a function of the
microwave frequency ω is shown in Fig. 9.12. For ωmw = ωL, the signal is maxi-
mal; around ω = ωL, we see an interference pattern, and the peaks are called Ram-
sey fringes. What the feedback electronics now does is to continuously vary the
microwave frequency a bit around ωL and to adapt the microwave frequency such
that the detector signal is kept maximal. In this way, the microwave frequency ωmw

is kept equal to the Larmor frequency ωL and the microwave cycles can be counted
and divided by 9.192.631.770 such that the resulting signal can be used to drive the
clock.

The microwave frequency is typically generated by a voltage-controlled crystal
oscillator (VCXO) (see Fig. 9.7),which can be a highly temperature-stabilized quartz
crystal whose frequency can be changed in a small interval by applying a voltage
across it.

Precision of the Cs beam atomic clock. How stable (precise) and accurate is a
Cs beam atomic clock? The stability of the clock is mainly given by the precision of
the measurement of the deviation δω of the microwave frequency from the Larmor
frequency. To get a good stability, one needs a narrow central Ramsey fringe. The
width of a Ramsey fringe is given by π divided by the flight time T of the atoms.
This width must be as small as possible, therefore, one desires long flight times.
The average velocity of the atoms is given by their temperature, and typically is
on the order of magnitude of 100m/s, and the separation of the Ramsey zones is
about 1m. Therefore, T ∼ 100ms, which gives a linewidth of about π/T ≈ 50Hz.
To reach a fractional uncertainty of about 1014 (as in the case of the CS2), one needs
to resolve the fringe to one part in a million or to 5 × 10−5 Hz. This gives a stability
of 5 × 10−5 Hz/9.2GHz ≈ 10−14 and requires a signal-to-noise ratio on the order
of magnitude of 106, which is only possible if the flux of atoms is pretty large. A
higher flow of atoms, however, makes it more likely that there will be intra-beam
collisions, which are a source of errors and limit the separation of the Ramsey zones,
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Fig. 9.13 Scaling of the
axes of Bob
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and therefore of T . This limits the precision of the measurement or the stability of
the clock.

There are several effects that limit the clock’s accuracy. Among these are the
influence of magnetic fields on the Larmor frequency of the hyperfine-split ground
state, the (relativistic) Doppler effect, which also changes the resonance frequency
because of time dilation of the moving atoms, and several more.

9.5 The Spacetime Diagram III: Scales

The scaling in spacetime transformations. Now, we continue with the discussion
on time dilation that we started in Sects. 7.2 and 7.6. There, we introduced the
spacetime diagram and learned how Alice, in her spacetime diagram, has to draw the
space and time axes of Bob. The question on the scale, however, is still open: where
on Bob’s axes does Alice have to put the length “1m” and the time “1 s”?

As always, we take Bob to move with the velocity v relative to Alice, on the
trajectory x = vt .

We start with the scale of the t ′-axis (see Fig. 9.13) and ask where on the t ′-axis
Bob’s “1 s”-tick is, i. e., where on the t ′-axis is the event Es at which Bob’s clock
shows t ′

s = 1 s? Let E0 = (t0, 0) denote the event at which Alice’s clock shows 1 s.
Due to time dilation, the event Es is simultaneous for Alice with her event with t =
γvt0 on the t-axis. So, we mark t0 and ts = γvt0 on the t-axis and, by drawing a
line of simultaneity for Alice, we locate the event Es, which, for Alice, has the
coordinates ts = γvt0 and xs = vts, or Es = (γvt0, vγvt0).

Now, we imagine “many Bobs”, all inertial observers, who fly by Alice with
different relative velocities v and follow the trajectories x = vt , respectively. The
events Es of these “Bobs” (the events obviously depend on v) yield a curve H in the
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spacetime diagram. By plugging in the coordinates of the events Es, one sees easily
that this curve is given by

c2t2 − x2 = c2t20 .

This curve is a hyperbola, which is symmetrical to Alice’s time axis and intersects
this axis in the event (t = t0, x = 0).

Exercise 35: The hyperbola in Fig. 9.13 intersects the t-axis perpendicularly, i. e.,
parallel to the x-axis. Show that the hyperbola also intersects the t ′-axis parallel
to the x ′-axis.

The question on the scale of the t ′-axis has now been answered. To find out where

“1 s” is located on the t ′-axis, we draw a hyperbola x(t) = ±c
√

t2 − t20 , which is
located symmetrical to Alice’s time axis and intersects it at t0 = 1 s. This hyperbola
then intersects Bob’s time axis where 1 s has passed for Bob.

The scale of the space axis is determined analogously: to find out where “1m” is

on the x ′-axis, we draw a hyperbola x(t) = +
√

x2
0 + c2t2, symmetrically to Alice’s

x-axis, such that it intersects the axis at x0 = 1m.The hyperbola then intersectsBob’s
x ′-axis where “1m” is for Bob. To prove this, one applies the length contraction in
the same way as the time dilation above.

Scale transfer: The hyperbola c2t2 − x2 = c2t20 intersects the t-axis at t = t0
and the t ′-axis at t ′ = t0 and is used to transfer the time scale from Alice’s to
Bob’s coordinate system.

The hyperbola x2 − c2t2 = x2
0 intersects the x-axis at x = x0 and the x ′-

axis at x ′ = t0 and is used to transfer the time scale from Alice’s to Bob’s
coordinate system.

Fig. 9.14 Procedure for
transferring units from one
inertial reference frame to
another
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Fig. 9.15 Regarding
Exercise 36. One corner of
the square R (the
rhombus R′) lies on the
intersection of the t-axis
(t ′-axis) with the
hyperbola c2t2 − x2 = 1
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To determine rapidly the units of Bob’s coordinate system in a drawing, one can
use the construction in Fig. 9.14 (remember that γ −1 < 1 < γ for v �= 0):

• One starts on the t-axis at t = 1 and draws a line parallel to the x-axis; the latter
intersects the t ′-axis at t ′ = γ −1.

• One draws a line parallel to the x ′-axis and ends up at intersecting the t ′-axis
at t = γ .

• The likewise holds for Bob. Starting on the x ′-axis at t ′ = 1, one draws a line
parallel to the x ′-axis. This line intersects the t-axis at t = γ −1

v . And if one draws
a line parallel to the x-axis, one ends up at t = γv .

Exercise 36: Calculate the area of the rhombus R′ (see Fig. 9.15) in Alice’s
measurement units:

1. Determine the t-coordinate of the event E with (t ′ = 1, x ′ = 0). (e. g., by using
the hyperbola c2t2 − x2 = 1).

2. Calculate from the t-coordinate above the length l of the line segment O E (in
Alice’s coordinates!).

3. The area of a rhombus is given by A = l2 sin α, where l is the length of an
edge and α one of the inner angles. Express the angle α via the angle δ, and
this one in turn by v/c.

4. Now, the formula cos(2δ) = (1 − tan2 δ)/(1 + tan2 δ) could be helpful.

The result shows that a rhombus with two edges coinciding with Bob’s coordinate
axes and that, in Bob’s coordinate system, has an edge length of l (as given above)
has the area 1 in Alice’s coordinate system. In this way, Alice can determine the
length and time units of Bob (as an alternative to the hyperbola method).

The spacetime distance. In Euclidean geometry, in the two-dimensional plane, the
distance d = √

(�x)2 + (�y)2 between two points P1 = (x1, y1) and P2 = (x2, y2),
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Fig. 9.16 Proof
that s2 = (ct)2 − x2 is
invariant
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where �x = x2 − x1 and �y = y2 − y1, is independent of the orientation of the
coordinate system (and how it is rotated). The distance is an invariant with respect
to rotations. In the same way, the quantity

s =
√

(c�t)2 − (�x)2 ,

which is associated with two events E = (tE , xE ) and F = (tF , xF ) in spacetime, is
invariant when changing from one inertial frame to another. The invariant s is the
spacetime distance of two events.21 We now proof the invariance of the spacetime
distance.

To do this, we have drawn a hyperbola (ct)2 − x2 = const. into Fig. 9.16. This
hyperbola passes through the event E , which, in Alice’s coordinate system, has the
coordinates (tE , xE ). On the x-axis, we have x = 0, and therefore, the hyperbola
intersects the t-axis at

sE =
√

(ctE )2 − x2
E .

From Bob’s point of view, the curve is also a hyperbola, which is symmetric to his
t ′-axis and passes through E . For him, the event E has the coordinates (t ′

E , x ′
E ). The

hyperbola intersects his t ′-axis at

s ′
E =

√
(ct ′

E )2 − x ′2
E .

21 The change from one inertial frame to another is called a Lorentz transformation (see Chap. 11).
The Euclidean distance d of two points in the two-dimensional plane has the same relation to the
rotation as the spacetime distance s of two events in spacetime to the Lorentz transformation.
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Because the hyperbola defines the scale of the axis, we have sE = s ′
E , and therefore

(ctE )2 − x2
E = (ct ′

E )2 − x ′2
E (9.2)

for the coordinates of an event E from the point of view of two arbitrary inertial
observers.

This is also valid for the coordinate differences. Take an additional event F
with the coordinates (tF , xF ) in Alice’s and (t ′

F , x ′
F ) in Bob’s coordinate sys-

tem. Now we move the coordinate system such that the event F is the new ori-
gin and apply (9.2). Then, with the abbreviations �t = tE − tF , �x = xE − xF ,
�t ′ = t ′

E − t ′
F and �x ′ = x ′

E − x ′
F , it follows that

(c�t)2 − (�x)2 = (c�t ′)2 − (�x ′)2.

The spacetime distance between two events is the same for all inertial observers.
This is a very important relation, and we will show later that length contraction and
time dilation can be derived directly from it. With differentials, we can write it as

ds2 = c2 dt2 − dx2. (9.3)

9.6 The Relativistic Doppler Effect

9.6.1 Longitudinal Doppler Effect

We discussed the classical Doppler effect for the special case of one space dimension
in considerable detail in Sect. 4.2.4 and got the general result (4.9) for the change of
the frequency.We already pointed out there that it is not the relative velocity of source
and observer that appears in the formula, but the velocities of both the source and the
observer, relative to the medium. This is clearly not possible for light waves, as there
is no medium. Equation (4.9), however, has one more defect. The derivation used
the Galilean addition of velocities, which, for large velocities, is no longer correct.
Another way to say this is through time dilation, which causes the clock of the source
to move slowly from the point of view of the observer. These considerations must
have consequences on theDoppler effect. As a remedy, we investigate the relativistic
Doppler effect.

Longitudinal Doppler effect. The situation that we will discuss now is outlined
in Fig. 9.17. Bob moves relative to Alice with the velocity v > 0 in the positive x-
direction and carries the source, whereas Alice is the observer. Now let the source
emit a wave with a well-defined frequency and have the node with phase ϕ = 0 be
at the common origin of Alice’s and Bob’s coordinate system. Let the node with
phase ϕ = 2π of the wave be located at the event ES.
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Fig. 9.17 Derivation of the
relativistic formula for the
longitudinal Doppler effect
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For Bob (or the source, respectively), the period of the emitted signal is given
by the time elapsed between the origin and the event ES. This is exactly the t ′-
coordinate t ′

S of ES. The second node moves with the speed of light from event ES to
Alice and arrives there at event E0. For Alice, the period of the light wave is therefore
given by the time elapsed between the origin and the event E0, which is t0.

To get hold of the relation between t ′
S and t0, we first calculate the time tS at which

the event ES happens for Alice. Then, we are only left with finding the trajectory of
the node traveling from ES to E0.

Because of time dilation, tS = γvt ′
S. Thus, the node’s trajectory is given by x(t) =

−c(t − tS) + vtS. This intersects the t-axis at t0 = (1 + v/c)tS = γv · (1 + v/c)t ′
S.

The ratio between the frequencies νS of the source and νO of the observer is equal to
the inverse of the ratio of the periods, νO/νS = t ′

S/t0. Therefore, the formula for the
longitudinal Doppler effect is

νO

νS
= 1

γv · (1 + v/c)
=

√
1 − v/c

1 + v/c
. (9.4)

This is called the longitudinal Doppler effect, as it describes the case when the source
moves radially away (v > 0) or toward (v < 0) the observer.22

Note that 1 − (v/c)2 = (1 − v)(1 + v), and therefore the product of γv and 1 +
v/c is equal to

√
(1 + v/c)/(1 − v/c). For the source moving away from the

observer, v > 0 and νO < νS. There is a frequency shift to lower frequencies.
In Exercise 37, we show how this becomes equal to the classical Eq. (4.9) in the

case of small velocities.

Exercise 37: Show that Eq. (9.4) for the relativistic Doppler effect for small
velocities (v/c � 1) yields the same results as Formula (4.9) for the classical
Doppler effect. You will need the following approximation, valid for x � 1:
1/(1 + x) ≈ 1 − x .

22 “Longitudinal” means “in the lengthwise direction”.
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Exercise 38: We performed the derivation of (9.4) from the perspective of the
inertial frame where the observer is at rest. Show that any inertial frame could
have been used. To do so, assume that Einstein is at rest in an inertial frame and
restrict oneself to one dimension where Einstein is located at the origin. Alice,
who holds the source, is located at xA > 0 and moves relative to Einstein with the
velocity u > 0 away from him. Bob, the observer, is located at xB < 0 and moves
relative to Einstein with the velocity w > 0 toward him. The source radiates with
the frequency νS and the observer measures the frequency νO.

Show the following:

1. For Einstein, the source radiates with the frequency

νE = νS

√
1 − u/c

1 + u/c
.

2. Bob could consider Einstein, who moves with velocity −w relative to Bob, as
the source. Then, he would measure the frequency

νO = νE

√
1 + w/c

1 − w/c
.

3. Now show that, by combining these two formulas, Bob gets

νO = νS

√
1 − v/c

1 + v/c
,

where
v = u 
 w = u − w

1 − uw/c2
.

9.6.2 Transversal Doppler Effect and the General Formula

Retarded location and velocity of the source. The longitudinal Doppler effect,
with its radial (or longitudinal) motion, is always in one space dimension. In two (or
three) dimensions, the situation with the Doppler effect becomes considerably more
difficult. Due to retardation, the wave that the observer measures was emitted by the
source some time ago,when the source had a different location and, possibly, velocity.
Therefore, for the Doppler effect, the direction e of the source and its velocity v at
the retarded time (i. e., when the wave was emitted) is relevant. Both the direction
and the velocity of the source are relative to the observer. The direction of the source
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Fig. 9.18 Derivation of the relativistic formula for the transversal Doppler effect

at the retarded time is parallel to the wave vector at the location of the observer. The
notion of simultaneity here is that of the observer.

Transversal Doppler effect. As we mentioned already, (9.4) describes the longi-
tudinal Doppler effect. What happens when the source passes the observer?

Suppose that, as shown in Fig. 9.18 on the left, the source moves on the tra-
jectory x(t) = vt , y(t) = y0 and the observer is located at the coordinate system’s
origin. Then, the frequency change of a wave becomes dependent on the position of
the source when the wave was emitted.

To find the general formula, we start with another special case, the case when the
velocity of the source is exactly perpendicular to the line passing through the source
and the observer.23 This is called the transversal Doppler effect. Then, suppose
that the emitted wave had the phase ϕ = −π, 0, π when the source was at x = x+ =
−x0, x = 0, x = x− = x0, respectively. We have to determine the times when the
wavefronts corresponding to the nodes ϕ = −π,+π arrive at the observer’s location.
As long as both wavefronts have to travel the same distance, the coordinate y0 does
not matter (which is why we have chosen them to be at x+ = −x−). We can even
choose y0 = 0 and get the situation shown in Fig. 9.18 on the right. The nodes are
emitted at times t ′− = −T ′/2 and t ′+ = +T ′/2 in the reference frame of the source.
The arrival times at the observer’s location can now be calculated with the formula
for the longitudinal Doppler effect. We get

t± = ±
√
1 ± β

1 ∓ β

T ′

2
.

The difference T = t+ − t−, which is the wave period for the observer, becomes

23 As pointed out, this means the retarded position and velocity.
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T = 1

2

(√
1 − β

1 + β
+

√
1 + β

1 − β

)
T ′ = γ T ′.

Taking into consideration νO/νS = T ′/T , for the transversal Doppler effect, we get

νO

νS
= 1

γv

. (9.5)

For the observer, the frequency of the source is smaller than it actually is. Note that,
classically, there is no transversal Doppler effect.

General formula for the Doppler effect. Comparing the Formula (9.4) for the
longitudinal and Formula (9.5) for the transversal Doppler effect, we recognize that,
in both cases, the time dilation of the moving source contributes to the Doppler
effect. For the longitudinal Doppler effect, we have an additional contribution from
the fact that the source moves toward the observer or away from it and the changing
traveling time for the signal has to be considered. This shows that, in the general
case, we must take into account the time dilation and the radial component of the
source’s velocity v, because this determines the change of the traveling time. If e is
the unit vector pointing from the observer to the source, this radial component vr of
the source’s velocity is given by vr = ev. Therefore, in general, for the relativistic
Doppler effect, we have

νO

νS
= 1

γv · (1 + ev/c)
. (9.6)

Note that while, in the factor 1 + ev, only the radial component of the source’s
velocity appears, the γ -factor still features the magnitude of the full velocity of the
source. For the time dilation, it does not matter in which direction the source moves.

9.7 The Experiment by Ives and Stilwell

For the transversal Doppler effect, the ratio between the observed frequency νO and
the frequency νS of the signal as seen by the source, according to (9.5), is given
directly by the γ -factor and, as we stated, the reason is time dilation for the moving
source. This gives a direct way to measure time dilation, and the Americans Ives and
Stilwell, in 1938,were the first to perform this important experiment [IvesStilwell38].

The basic idea is to use an atom as a source. Atoms in excited states emit light
at well-konwn discrete frequencies that correspond to transitions from one state
to another and can be seen as a clock. If the atoms move, the observer measures
frequencies that are modified according to the Doppler effect.

Ives and Stilwell used a discharge tube filled with hydrogen gas at a very low
pressure (see Fig. 9.19). Hydrogen gas consists of hydrogen molecules, most are
diatomic hydrogen H2, some triatomic hydrogen H3. By natural processes (like
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Fig. 9.19 Setup of the Ives-Stilwell experiment. For the description, see the text

radioactivity), there are always some of these molecules that are ionized. A strong
electric field between an anode and a cathode nowbrings ions and electrons separately
and accelerates them to high velocities. Some ions H+

2 and H+
3 fly through the

perforated cathode and travel with constant velocity in the tube (the turquoise beam
in the figure). At some point, they catch a free electron and recombine by emitting
light of well-known frequencies (Balmer lines) in all directions (the blue dot in the
figure). A part of the radiation directly reaches the detector, which sees the emitting
hydrogen molecule as approaching it, while another part arrives at the mirror, gets
reflected and then reaches the detector, which sees the emitting hydrogen molecule
as receding from it. Due to the longitudinal Doppler effect, these rays experience
different frequency shifts.

This experiment is very challenging and the reason is the following. If ϑ is the
angle between the direction e of the source and the velocity24 v of the source relative
to the observer, we have ev = v cosϑ and, from (9.6), we get25

λO

λS
= γv · (1 + β cosϑ). (9.7)

Forϑ = π/2, this is the transversalDoppler effect,which, because ofγv ≈ 1 − β2/2,
is an effect that is quadratic in β, a second-order effect. Due to the fact that β in
experiments is usually very small, a second-order effect is minuscule.

If ϑ is not exactly π/2, then the term linear in β in the second factor on the right
side of (9.7) does not vanish. This linear term comes from the longitudinal Doppler
effect, which is a first-order effect and is much larger than a second-order effect.

Let ϑ = π/2 + δ, with a small angle δ. Then,

λO

λS
= γv · (1 − β sin δ) ≈ (1 + β2/2)(1 − βδ) ≈ 1 − βδ + β2/2. (9.8)

As soon as δ becomes comparable to β, the first-order longitudinal Doppler effect
completely wipes out the second-order transversal Doppler effect and it is no longer

24 Both the direction e and the velocity v of the source are meant in the moment when the source
emitted the wave, where the notion of simultaneity is that of the observer.
25 We use wavelengths instead of frequencies because the formulas become considerably easier and
because, in the experiment, wavelengths are measured, not frequencies.
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the time dilation that is measured. In the experiment by Ives and Stilwell, β was
several times smaller than 1/100, so a deviation of only 0.5◦ from the direction ϑ =
π/2 would already completely ruin the experiment.

The ingenious idea of Ives and Stilwell was to measure in two opposite direc-
tions by using a mirror and to add the two wavelengths (see Fig. 9.19). Take the
directions ϑ1 and ϑ2 = ϑ1 + π , then, the two measured wavelengths are

λO,1 = λSγv · (1 + β cosϑ1) and λO,2 = λSγv · (1 − β cosϑ1)

and
λO,1 + λO,2

λS
= 2γv. (9.9)

If there is a small deviation and we have ϑ2 = ϑ1 + π + δ, we get, instead
of cosϑ1 + cosϑ2,

cosϑ1 + cosϑ2 = cosϑ1 − [cosϑ1 cos δ − sin ϑ1 sin δ]
= cosϑ1(1 − cos δ) + sin ϑ1 sin δ

≈ cosϑ1(δ
2/2) + sin ϑ1δ.

In the ideal case, we would choose ϑ1 = 0, because the larger linear term then
vanishes. This is not possible in the Ives-Stilwell experiment, although they did
choose ϑ1 as small as possible.

In total, one gets

λO,1 + λO,2

λS
= γv

(
2 + β · (cosϑ1 · (δ2/2) + sin ϑ1 · δ)

)
≈ 2 + β · (cosϑ1 · (δ2/2) + sin ϑ1 · δ) + β2/2 ,

which is a lot better than the direct transversal measurement. Ives and Stilwell
had ϑ1 = 7◦ ≈ 0.12, which gives us sin ϑ1 ≈ 0.12. Therefore, the measurement
method chosen by Ives and Stilwell is almost ten times less susceptible to errors
in the angle than the direct transversal measurement.

A helpful additional property is that, if we take the difference of the twomeasured
wavelengths, we get

λO,1 − λO,2

λS
= 2γv · β cosϑ1 ≈ 2β , (9.10)

which allows us to determinate the velocity of the atoms.
Ives and Stilwell measured �λ and �′λ, defined by
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Fig. 9.20 Result of the
Ives-Stilwell experiment.
The blue dots are the
measured values and the grey
dashed curve the expectation
from theory
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�′λ = (λO,1 − λS) + (λO,2 − λS)

2
,

�λ = λO,1 − λO,2

2
,

which, according to (9.9) and (9.10), gives us

�′λ = λS(γv − 1) ≈ 1

2
λSβ

2 ,

�λ = λSβγ ≈ βλS ,

and therefore

�′λ = (�λ)2

2λS
.

By plotting�′λ over�λ, they got the graph in Fig. 9.20, which is a nice confirmation
of time dilation.

The Ives-Stilwell experiment confirms the formulas for the transversal relativistic
Doppler effect and the time dilation.

9.8 The Experiment by Kennedy and Thorndike

In Sect. 5.2, we discussed the Michelson-Morley experiment and concluded that it
can be explained with length contraction alone (as FitzGerald and Lorentz did) and
that no time dilation is needed.

A relatively smallmodification of the experimentmakes itmore impactful, and this
is what the Americans Kennedy and Thorndike did in 1932 [KennedyThorndike32]
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in the Kennedy-Thorndike experiment. They used an interferometer similar to
that of Michelson and Morley, but with different lengths for the two interferometer
arms.26 To see what happens, we repeat the discussion in Sect. 5.2.1 with different
arm lengths.

Let L1 and L2 be the lengths of the first and second interferometer arms, respec-
tively. Let us further consider two orientations. In orientation 1, the motion of the
interferometer relative to the supposed luminiferous aether is parallel to arm 1 while
in orientation 2, the motion is parallel to arm 2.

In orientation 1, the traveling times are

T1,1 = 2L1

c

1

1 − β2
,

T2,1 = 2L2

c

1√
1 − β2

,

and in orientation 2, we have

T1,2 = 2L1

c

1√
1 − β2

,

T2,2 = 2L2

c

1

1 − β2
.

This leads to the following travel time differences when we rotate the apparatus
by 90◦:

�T1 = T1,1 − T2,1 = 2

c

(
L1

1 − β2
− L2√

1 − β2

)
,

�T2 = T1,2 − T2,2 = 2

c

(
L1√
1 − β2

− L2

1 − β2

)
.

In the Michelson-Morley experiment, the interference pattern does not change if
one changes the interferometer’s orientation, i. e., �T1 = �T2. This is the case, if
one assumes that there is length contraction in the traveling direction (Lorentz-
FitzGerald length contraction), i. e., in the traveling times T1,1 and T2,2, where the
length contraction leads to replacing the denominator 1 − β with

√
1 − β2. With

length contraction, i. e., L1,0 = L1/
√
1 − β2 and L2,0 = L2 in orientation 1 and

L1,0 = L1 and L2,0 = L2/
√
1 − β2 in orientation 2, we have

26 The challenge with interferometer arms of different lengths is that wave trains emitted at different
times from the light source must be able to interfere. This is only possible if the time difference is
shorter than the coherence time of the light. For the emission radiation used from the mercury line
at 546.1 nm, this corresponds to a maximum interferometer arm length difference of about 16 cm.
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�T1 = 2

c

L1,0 − L2,0√
1 − β2

= �T2.

In the case of the Michelson-Morley experiment, this vanishes, and the Lorentz-
FitzGerald length contraction explains the absence of changes in the interference pat-
tern when the measurement apparatus’ orientation is changed.27 Even if the lengths
are not equal (although we still assume FitzGerald’s length contraction), the interfer-
ence pattern is the same for orientation 1 and orientation 2. The interference pattern
does not depend on the direction.

Kennedy and Thorndike did not rotate their interferometer, it was firmly mounted
on the floor, and they consequently onlymeasured one traveling time difference (and,
hence, interference pattern)28

�T = 2

c

�L√
1 − β2

.

The key point is that, for different arm lengths �L = L1,0 − L2,0 �= 0 (with
Lorentz-FitzGerald length contraction taken into account), this traveling time dif-
ference depends via γv on the magnitude of the velocity of the apparatus relative
to the supposed aether. Kennedy and Thorndike observed the interference pattern
for a very long time, more than a year. Assuming that the Sun moves with a certain
velocity in the aether, due to its orbital motion around the Sun, the Earth’s velocity
relative to the aether must change by twice the Earth’s orbital velocity in the course of
a year. Kennedy and Thorndike have shown that such a motion would be detectable
with their apparatus, but they did not observe any change in the interference pattern.
Therefore, �T does not depend on v and the Lorentz-FitzGerald length contraction,
which is able to explain the result of the Michelson-Morley experiment in the con-
text of an aether theory, cannot accomodate the result of the Kennedy-Thorndike
experiment.

The only concept that can rescue the aether theory at this stage is an ad hoc
introduced time dilation �T0 = �T/

√
1 − β2, which yields �T0 = 2�L/c for the

traveling time difference in the interferometer. This time dilation was introduced by
Lorentz into the aether theory, although for other reasons and many years before the
Kennedy-Thorndike experiment.

27 The Lorentz-FitzGerald contraction, however, is ad hoc. It “repairs” the problem, but does not
really explain what goes on.
28 If one takes the result of the Michelson-Morley experiment for granted, i. e., the speed of light
does not depend on the direction, then one sees that the two interferometer arms in the Kennedy-
Thorndike experiment do not have to be perpendicular to each other. They could even be parallel.
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Albert Bert Albert Bert

before after

Fig. 9.21 The twins Albert (standing in here for Alice) and Bert (standing in here for Bob) just
before the beginning and just after the end of Bert’s space travel. Bert has aged more slowly (has
stayed younger) than Albert, who remained in an inertial frame

9.9 Twin Paradox

As long as Alice and Bob move away from each other, time dilation cannot demon-
strate how spectacular it is, because Alice and Bob can no longer meet to compare
their clocks on site. But what happens when Bob, at some point, reverses his traveling
direction and comes back to Alice? Exactly what you thought: when, after the return,
both stand next to each other, they will discover that, for Bob, less time has passed
than for Alice. Bob will have aged less! This effect is called the twin paradox (see
Fig. 9.21).

The reason for this can easily be seen inFig. 9.22.Albert29 is an inertial observer. In
the event O , hemeetswith his twinBert and both synchronize their clocks. Then, Bert
travels away from Albert with the constant velocity v and on the trajectory x = vt
or x ′ = 0 (as usual, we denote Bert’s coordinates by x ′ and t ′). At event P , Bert
suddenly changes his traveling direction and, after traveling back, meets Albert again
at event Q. By changing his traveling direction, Bert changed his inertial frame. For
reasons of convenience, we use a new coordinate system for Bert and denote his
coordinates by x ′′ and t ′′. The origin of this coordinate system coincides with Q.

Now, from O to E1, the same time passes for Albert as for Bert on his journey
from O to P . And from E2 to Q, the same time passes for Albert as for Bert for
his journey from P to Q, back to Albert. Both facts can be easily seen with our
hyperbola construction.

So, the time between their encounters is longer for Albert than it is for Bert. The
difference is exactly the time between E1 and E2. Let t1 and t2 be the time at which
the events E1 and E2 occur, respectively. Then, by the time �t = t2 − t1, Albert

29 In the discussion on the twin paradox, we replace Alice with Albert and Bob with Bert so as to
have a clearer situation with twins of the same gender.
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Fig. 9.22 To the twin
paradox. See the text
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will be older than Bert when they meet again. If you move the event P in Fig. 9.22
upward, Bert travels faster and E1 moves closer to O . Furthermore, E2 moves closer
to Q and �t , the age difference, becomes larger. In Exercise 39, we will determine
the age difference.

In our model, Bert reverses his motion suddenly. In reality, this is, of course, not
possible, because the acceleration would need to be infinite. But as an idealization,
we can assume it. In Sect. 9.10, we will show what happens if Bert slowly reverses
his motion.

Now, you may think: ok, Bert’s clock runs more slowly than Albert’s. But since
Bert agesmore slowly, this is not possible. Nevertheless, this is the case.All processes
(including aging processes) in our body are based on similar physical principles as
the clock. If the clock runs more slowly, atomic processes are also more slowly. And
if atomic processes are more slowly, a human will age more slowly. Otherwise, we
would be in contradiction with the principle of relativity, because certain inertial
frames would be “more special” than the others.

One could arrive at the argument that Bert also could say that Albert has aged
more slowly on his journey. This conclusion, however, is not tenable. In comparison
to the situation when discussing length contraction and time dilation, Albert here
is always in an inertial frame. Bert, however, is not. At some point, he changes his
direction of motion and, indeed, feels it. For this reason, the principle of relativity is
not applicable for his point of view.

9.10 Digression: Proper Time

Elaborating on the twin paradox, we now deal with the general case in which Bob
moves on an arbitrary trajectory xB(t) relative to the inertial observer Alice30 (see

30 We don’t need twins anymore.
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Fig. 9.23 Bob’s trajectory
and proper time
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Fig. 9.23). The trajectory starts at event Q and ends at R. Obviously, the velocity at
every moment always has to be smaller than the speed of light, i. e.,−c < vB(t) < c,
where vB(t) = dxB(t)/dt is the instantaneous velocity at time t .

How does the time pass for Bob? Suppose that, at Q, Alice’s clock shows the
time tQ and Bob’s clock shows t ′

Q . Which time is shown by the clocks at event R?
Consider a small section of the trajectory that starts at event P and ends at event P ′

and that is sufficiently small to be able to consider Bob’s velocity as constant, i. e.,
vB(t) = vB,P . For Alice, this interval lasts from tP to tP ′ , while, for Bob, it lasts
from t ′

P to t ′
P ′ . Again for Alice, the interval has the length �tP = tP ′ − tP (the

index P indicates the fact that the interval starts at event P), while, for Bob, it has
the length�t ′

P = t ′
P ′ − t ′

P . Then,we know that, in this time interval, as a consequence
of time dilation, and from Alice’s point of view, for Bob, the time

�t ′
P = γ −1(vB(tP)) · �tP =

√
1 − v2

B(tP)/c2 · �tP (9.11)

has passed.
The remainder is a simple integration exercise. For all of Alice’s time intervals

between tQ and tR , we must sum up the time that has passed for Bob (again, from
Alice’s point of view) in each of these time intervals. The sum corresponds to the
time t ′

R − t ′
Q that has passed for Bob on the trajectory from Q to R:

t ′
R = t ′

Q +
tR∫

tQ

dt ′

= t ′
Q +

tR∫
tQ

√
1 − v2

B(t)/c2 dt.
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Fig. 9.24 Relativistic
factor γ −1(v(t)) of Bob (as
seen by Alice) during his
journey
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Here, we have used dt ′ =
√
1 − v2

B(t)/c2 dt , which is (9.11) for an infinitesimal
small interval length �tP .

If we render the interval end tR variable, the integral yields the time t ′(t) that
Bob’s clock shows when Alice’s clock shows the time t , simultaneous for Alice (for
this sake, we have replaced the integration parameter t with τ ):

t ′(t) = t ′
Q +

t∫
tQ

√
1 − v2

B(τ )/c2 dτ. (9.12)

To recognize the importance of the time t ′ associated with (9.12) to Bob’s trajec-
tory, let us come back to (9.11). The length �t ′

P of the interval from P to P ′ is (from
Alice’s point of view) given by (9.11) for Bob. By squaring and multiplying with c2,
one gets

(
c�t ′

P

)2 = (
c2 − v2

B(tP)
)
(�tP)2 = (c�tP)2 − (vB(tP)�tP)2.

The expression �x := vB(tP)�t corresponds exactly to the difference of the x-
coordinates of P and P ′. Therefore, we can write

(
c�t ′

P

)2 = (c�tP)2 − (�xP)2 ≡ (�s)2.

From Sect. 9.5, we know that the right side of this equation is an invariant, namely,
the spacetime distance of the events P and P ′. For other inertial observers, therefore,
the quantity (�s)2 has the same value as for Alice. Therefore, the time period given
by (9.12) is independent of Alice. If another inertial observer were to carry out this
procedure (the integral), he would assign the same times t ′ to the events on Bob’s
trajectory. The time t ′ associated in this way with Bob’s trajectory is called Bob’s
proper time. It is the time that a clock carried by Bob shows (and therefore also
Bob’s age). Note that many authors use the Greek letter τ for the proper time and,
e. g., write τ(t) in (9.12). The reason for doing so is that t ′ is not a coordinate of an
inertial frame.



184 9 Time Dilation

Now, we come back to the twin paradox and to Albert and Bert. Let Bert’s
trajectory start at Albert’s location and also end there. Therefore, xB(tQ) = xB(tR) =
0. What is the time that passed for Bert on his journey? The answer follows directly
from (9.12):

�t ′ = t ′
R − t ′

Q =
tR∫

tQ

√
1 − v2

B(t)/c2 dt. (9.13)

The integrand is shown in Fig. 9.24. The relation γ −1(vB(t)) =
√
1 − v2

B(t)/c2 ≤ 1
is valid in the whole time interval, whereas the equal sign is valid only if vB(t) = 0.
But this cannot hold in the whole interval, otherwise, Bert would not move away
from Albert. The area under the curve in Fig. 9.24 therefore is smaller than tR − tQ ,
i. e.,

�t ′ < tR − tQ ≡ �t.

Independent of the form of his trajectory, for Bert, less time passes on his journey
than for Albert. Bert ages more slowly than Albert.

Exercise 39: Calculate the proper time (9.13) for Bert if

vB(t) =
{

+v if tQ ≤ t < (tQ + tR)/2

−v if (tQ + tR)/2 ≤ t ≤ tR

and discuss the result in view of the twin paradox.

9.11 Examples

9.11.1 Again: Muons

In the chapter on length contraction, we explained the experimental results of Frisch
and Smith using the point of view of the muons and applied the length contraction
to the trajectory traveled by them. How does an observer resting in the inertial frame
attached to the Earth’s surface explain the experiment there? There will be no length
contraction, because themuon’s trajectory rests relative to the experimenters. Indeed,
the time dilation comes into play here. Suppose the muon carries a clock. Then, we
know that the muon’s time—from the observer’s point of view—passes more slowly
than for the muons themselves. The time dilation factor is given by γ −1

v < 1. The
average lifetime of the muon (for the observer) becomes larger than that of a resting
muon. Therefore, we have to multiply the half-life tM in (8.5) with γ and get exactly
the same result as in (8.6).
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We summarize: to explain the findings of Frisch and Smith, depending on the
used inertial frame, we have to apply either length contraction or time dilation:

• Point of view of the muon

– Flight distance: l/γ (because of length contraction)
– Average lifetime of the muon: tM
– Factor in the e-function: −l/(γ vtM)

• Point of view of the observer resting on the Earth

– Flight distance: l
– Average lifetime of the muon: γ tM (because of time dilation)
– Factor in the e-function: −l/(γ vtM).

It is also possible to describe the experiment from the point of view of an inertial
observer that moves relative to the Earth and the muon. However, this would be
quite inconvenient, because both—length contraction and time dilation—have to be
applied. But in the end, the result would be the same.

One sees again that the effects of special relativity are spacetime effects that, from
one point of view, may be pure length contraction and, from another one, pure time
dilation. In general, both effects will contribute, however.

9.11.2 The Experiment by Hafele and Keating

Introduction. To demonstrate time dilation, the physicist Joseph C. Hafele and the
astronomer Richard E. Keating, in 1971, flew in an airliner around the world, once
eastwards and once westwards, carrying a caesium atomic clock with them, a clock
like that described in Sect. 9.4. After landing, the American scientists compared the
clock’s time with the time of another atomic clock of the same type that had been
left back on Earth (Fig. 9.25).31

Hafele and Keating expected two effects to influence the operation of their
clocks [HafeleKeating72a]. One is obvious: it is the time dilation due to relative
motion, as discussed in Sect. 9.2. The time dilation, however, cannot be calculated
directly from (9.2), because, in Hafele and Keating’s experiment, the Earth’s sur-
face cannot be considered as an inertial frame. We will come back to this point in a
minute. The other effect is time dilation due to the gravitational field, which also
has an influence on the clocks. This effect, however, cannot be explained within the
framework of special relativity, we have to borrow it from Einstein’s general theory
of relativity (GR).

Description of motion. In the calculations that we have made so far, the surface of
the Earthwas sufficiently close to an inertial frame. Now, this is not the case anymore.

31 The scientists actually carried four atomic clocks with them and left four further ones back for
comparison. The reason for this was to reduce systematic error by averaging them out.
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Fig. 9.25 Hafele (right) and
Keating (left) carrying out
their experiment with their
atomic clocks

But we can still consider the center of mass of the Earth as moving uniformly in an
inertial frame. We choose the coordinate system such that its origin coincides with
the Earth’s center of mass and the coordinate axes point in directions that are fixed
with respect to the starry sky (therefore, the coordinate system does not follow the
rotation of the Earth). For our purpose, this reference frame is sufficiently close to
an inertial frame. We will refer to it as the inertial frame and use the Earth-centered
inertial (ECI) coordinate system. It has its origin in the mass center of the Earth and
uses the equatorial plane as its reference plane. The ECI is the only inertial frame in
this discussion, and we describe all effects from the point of view of this coordinate
system.

For practical reasons, we introduce a further reference frame with the Earth-
centered Earth-fixed (ECEF) coordinate system, which shares its origin and refer-
ence plane with the ECI, but which rotates with the Earth. In the ECEF, one uses the
latitude, longitude and altitude to specify the location of a point. The ECEF is not an
inertial frame.

We start by describing the motion of the observer and the planes in the inertial
frame and suppose that everything happens on the Earth’s equator. The observer is
located on the equator and the planes fly along the equator. In the ECEF, the motion
is simple and is shown in Fig. 9.26 on the left side. In the ECI, the planes and the
observer all move in the eastwards direction, because the velocity of the observer
due to the Earth’s rotation is larger than that of the planes. The motion is shown in
Fig. 9.26 on the right side. The red line in the figure shows the location where the
planes land after flying around the Earth.

To make this quantitative, let ϕO be the angular position of the observer and ωE

the angular velocity of the Earth in the ECI. Furthermore, let ωp = vp/RE be the
angular velocity of the plane relative to the observer, where vp is the plane’s velocity
and RE the radius of the Earth. Let us take vp = 900 km/h = 0.25m/s.
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NN

ωE

Fig. 9.26 Motion of the observer and the planes in the Earth-centeredEarth-fixed coordinate system
(left figure) and in the Earth-centered inertial coordinate system (right figure). We are looking along
the Earth’s rotation axis, from north to south, and the blue circle is the equator

In the ECI, the observer (or a clock at rest on the Earth’s surface), due to the
rotation of the Earth, has a velocity of about vO ≈ 40,000 km/24 h = 0.46 km/s.32

We will denote this clock in the following as the observer’s clock. Remember that
the observer’s reference frame is not an inertial frame.

Finally, let ϕ+ and ϕ− be the angular position of the eastwards and the westwards
flying plane, respectively. Then, in the inertial frame, we have

ϕO(t) = ωEt ,

ϕ±(t) = (ωE ± ωp)t.

After having departed at t = 0 at the location ϕO = 0 of the observer, when do the
planes arrive at the observer’s location again? This is easy to see in the rotating frame
(theECEF coordinate system)where the observer is at rest. The traveling time t0 is the
same for the eastwards and the westwards flying planes and given by t0 = 2π RE/vp.
Plugging in numbers, we get t0 = 40,000 km/0.25 km/s = 160,000 s = 44.4 h, and
the Earth rotates almost twice while the planes are flying.

For the angular positions at t = t0, in the inertial frame, we have

ϕ±(t0) = (ωE ± ωp)
2π RE

vp
= ϕO(t0) ± 2π ,

which shows that the observer and the planes indeed meet at t = t0.

32 Actually, one rotation of the Earth takes a sidereal day, which is about 4min less than a day. We
take 24 h because this small difference is irrelevant to our calculation.
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Proper time and time differences. At t = 0, the observer and the planes syn-
chronize their clocks, which is easy because they are at the same location and we
do not have to argue about the inertial frame in which the clocks are synchronous.
Then the planes start their journey and accumulate proper time τ (see Sect. 9.10).
At t = t0, they meet again and compare their clock settings. We will consider the
time differences

τ+ − τO =
{
reading of clock of plane that traveled eastwards minus
reading of observer’s clock

,

τ− − τO =
{
reading of clock of plane that traveled westwards minus
reading of observer’s clock.

The effects of relative motion and of gravitation can be considered independently.

Time dilation due to relative motion. First, we deal with the effect of relative
motion of special relativity.

According to (9.13), we have

τO = γ (vO)−1t0

τ± = γ (vO ± vp)
−1t0.

All three clocks (that of the observer and those on the planes) run more slowly than
the inertial clock. This is nothing but the twin paradox. The faster the clock, the more
slowly it runs, therefore, we have τ+ < τO < τ−.

For the results of the clock comparisons, using the approximation γ (v)−1 ≈ 1 −
v2/2c2, which is valid for small velocities, we get

τ± − τO = (
γ (vO ± vp)

−1 − γ (vO)−1
)

t0

≈ [(
1 − (vO ± vp)

2/2c2
) − (

1 − v2
O/2c2

)]
t0

= 1

2c2
(
v2
O − (vO ± vp)

)
t0

= 1

2c2

(
∓2vOvp − v2

p

)
t0

= ∓ 1

2c2
(
2vO ± vp

)
vpt0.

Plugging in the numbers (velocities in km/s), we get

τ± − τO = ∓ (2vO ± vp)vp

2c2
t0 = ∓ (2 · 0.46 ± 0.25) · 0.25

1.8 × 1011
· 1.6 × 105 s

or
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Fig. 9.27 Left: Frequency increase of a photon traveling down a gravitational field. Right: Clock
period of one clock at height z2 on the Earth (green, “tock”) and another clock of the same type in
a plane at height z1 (blue, “tick”), as seen from the Earth. For the observer on Earth, 1 s as given by
clock 1 takes less time than 1 s given by the local clock 2. Note that the plane here does not move
relative to the observer on Earth

τ+ − τO = −260 ns ,

τ− − τO = 149 ns.

For the observer, the clock on the eastwards-flying plane runs slow, whereas that
on the westwards-flying plane runs fast. The latter fact may seem strange, as the
clock in the eastwards-flying plane also moves relative to the observer. The reason
for this is that the observer is not at rest in an inertial frame.

The values calculated for the actual flight trajectories are given in column “Pre-
diction/Relative motion” in Table 9.1. The considerable deviations from our values
are due to the fact that the planes did not travel on the equator.

Time dilation due to gravitation. Next, we deal with the time dilation caused by
gravitation. Special relativity can only describe gravitation in an approximation that
corresponds to the treatment of gravitation in classical mechanics. Actually, grav-
itation is a much more complicated physical phenomenon. The currently accepted
theory of gravitation is Einstein’s general theory of relativity (GR) from the year
1915. This theory has been spectacularly confirmed several times, for instance, with
the motion of Mercury’s perihelion, the bending of light rays that pass near massive
objects (gravitational lenses), the time dilation due to the gravitational field (as dis-
cussed in the last section and this one), and, most impressively, by the detection of
gravity waves.

According to general relativity, the “deeper” a clock is placed in a gravitational
field, the more slowly the clock runs—even if the clocks are at rest relative to each
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other.33 A clock on the Earth’s surface runs more slowly than a clock on the Moon’s
surface, and a clock on the Sun’s surface runs even more slowly than a clock on the
Earth’s surface. If, at the location P1 of clock 1, the gravitational potential has the
value U1 and, at the location P2 of clock 2, there’s a gravitational potential U2, then
the difference in the clock rates is given by the formula

�t1
�t2

= 1 + U1 − U2

c2
. (9.14)

If clock 2 is “deeper” in the gravitational field than clock 1, then U1 − U2 > 0 and,
therefore, according to the formula above, �t1 > �t2 which means that, while the
time �t1 passes on clock 1, only the time �t2 < �t1 passes on clock 2. In other
words: clock 2 runs more slowly than clock 1.

If the locations P1 and P2 are close to the Earth (this includes the flying plane)
and P1 is higher than P2 by a height difference of �z = z1 − z2, we have U1 −
U2 = g�z, with g being the gravitational acceleration at the Earth’s surface, which
is g ≈ 9.81m/s2; for simplicity, we will use the value of 10m/s2 in our calculations.

Note that the difference in clock speed here is not symmetric in the observer.
The clock “deep” in the gravitational field sees the clock that is “less deep” in the
gravitational field run faster while the latter sees the former run more slowly.

The derivation of (9.14) is performed within the framework of general relativity,
but we can also motivate it without knowing this theory. The arguably easiest reason-
ing uses the concept of photons. As Einstein found out in 1905 when he investigated
the photoelectric effect,34 a monochromatic wave with a frequency ν in some way
consists of light particles, later called photons, with an energy given by E = hν,
where h is the Planck constant.

Now, for the gravitational time dilation, we suppose that such a photon travels
from a location P1 at height z1 downward to the Earth’s surface at height z2, within
the gravitational field (see Fig. 9.27 on the left side). Suppose further that, at P1, it has
the frequency ν1, and therefore the energy E1 = hν1. Traveling down to location P2

at height z2, it gains the potential energy mg�z from the gravitational field. Here, the
mass is the relativistic inertial mass of the photon and is given by Einstein’s famous
formula E = mc2, which we will discuss in detail in Sect. 13.1. When the photon
arrives at location P2, it has the energy E2 and frequency ν2 = E2/h, given by

E2 = E1 + mg�z = hν1 + (hν1/c2)g�z = hν2.

Now, g�z is the difference of the gravitational potential, g�z = U1 − U2, and there-
fore

ν2 = ν1 + ν1
U1 − U2

c2
= ν1

(
1 + U1 − U2

c2

)
. (9.15)

33 The “deeper” one is within a gravitational field, the smaller the gravitational potential U is. The
latter is comparable to the potential energy.
34 This is the work for which he actually received the Nobel price, not the theory of relativity.
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Table 9.1 The experiment by Hafele and Keating: predictions and measured values for the differ-
ence in the clocks’ rates

Direction Prediction Measurement

Relative motion Gravitation Total

Eastwards (ns) −184 ± 18 144 ± 14 −40 ± 23 −59 ± 10

Westwards (ns) 96 ± 10 179 ± 18 275 ± 21 273 ± 7

A positive value means that the clock transported in the airplane runs faster than the clock left at
the airport. Source Loc. cited Science article by Hafele and Keating

Now, �t1 = 1/ν1 and �t1 = 1/ν1 are the clock periods and we recover (9.14).
For the actual case with our planes, we take �z = 10 km and get

τ± − τO = U (z1) − U (z2)

c2
τO

≈ g�z

c2
t0

= 105 m2/s2

9 × 1018 m2/s2
· 1.6 × 105 s = 1.78 × 10−7 s

= 178 ns.

The effect is the same for the westwards- and the eastwards-flying planes.
Thus, in our case, the clock in the airplane (which we imagine not moving rel-

ative to the Earth’s surface) runs faster than that left behind at the airport. The
values calculated for the actual flight trajectories35 are given in the column “Predic-
tion/Gravitation” in Table9.1.

In the column “Predication/total”, one finds the values for the complete time dila-
tion effect, and in the column “Measurement”, the experimentally measured values.
Considering the error bar, the predicted values fit pretty well with the measured val-
ues (the measured values are from the original publication [HafeleKeating72b]). The
experiment by Hafele and Keating is an impressive confirmation of the influences
of relative motion in special relativity and of gravitation in general relativity to the
“speed” of a clock.

Clock accuracy. The accuracy of atomic clocks has improved considerably over
the years. In 1972, Hafele and Keating used Hewlett-Packard HP-5061A clocks,
the successor model to HP’s first commercial atomic clock. These clocks had an
accuracy of about 10−11 (i. e., a maximum of 10−11 s of error in 1 s or 1 s of error
in 1011 s ≈ 3179 years). Around the year 2000, the clocks used in the GPS satellites
(also caesium beam clocks, like those used by Hafele and Keating) already had an
accuracy, a 200-fold improvement, of about 5 × 10−14. At this time, there already
existed a much better design for caesium clocks, the caesium fountain clocks (which,

35 The planes had different trajectories, and for this reason, the effect of gravitation is different for
the two planes.
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however, use free-falling atoms and do not work within a satellite in space). In the
year 2007, the primary caesium clock of the American NIST, the NIST-F1, reached
an accuracy of about 4 × 10−16, 25,000 times better than the clocks of Hafele and
Keating, and also likely representing the physical limits of this design. Soon after,
laboratory versions of a completely new design, the optical atomic clock, became
functional. These clocks are not based on microwave transitions in atoms (as in
caesium), but on optical transitions. Around 2010, the NIST operated such a clock
with an accuracy of 10−17, onemillion timesmore accurate thanHafele andKeating’s
clock. With this clock, the Wineland group [Chou+10] at NIST was able to detect
the time dilation with velocities as low as 10m/s and height differences of just 1m,
confirming Einstein’s theories. And the improvement of these clocks is still ongoing.

9.11.3 Satellite Navigation

An application that many people use each day is satellite navigation. Navigation
systems in automobiles use satellite navigation, as do almost all smartphones. The
most conversant satellite navigation system is theGlobal Positioning System (GPS).36

How it works. A satellite navigation system consists of a number of satellites
in well-defined orbits around the Earth that send signals down to us. An electronic
receiver on Earth receives signals from several of these satellites and is able to
determine its own position from these signals. In the case of GPS, the receiver needs
signals from at least four satellites to determine its position. GPS currently consists
of almost 30 satellites that orbit the Earth twice a day, each satellite traveling along
one of six different orbital planes. This configuration is chosen in such a way that,
at each point on the Earth and at any moment, there are at least four satellites higher
than 15◦ (called the elevation mask angle) over the horizon. In this way, it is ensured
that the signals can be received with good quality, provided that the satellites are not
blocked by buildings or the like. Actually, for most of the time, at least nine satellites
are visible.

How does the determination of the position work with satellites? Let us first
assume that the Earth-centered Earth-fixed (ECEF) system could be considered an
inertial frame. This assumption is actually not appropriate, and we will correct this
later.

Imagine a satellite S1, which knows its exact position and the current time, in an
orbit around the Earth. This satellite regularly37 sends a data packet to Earth. This
data packet contains the satellite’s position rS,1 at the time tS,1 when the data packet
was sent, as well as this time itself. The receiver includes a clock that is synchronized
with the clocks in the satellites, “synchronized” meaning relative to the considered
inertial frame.

36 The correct term is Navigational Satellite Timing and Ranging—Global Positioning System
(NAVSTAR GPS).
37 In GPS, this happens once every 30 s.
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Fig. 9.28 Position
determination with three
satellites and synchronized
clocks. Two spheres, in
general, intersect at a circle
(green) and three spheres, in
general, intersect at two
points (one of those is drawn
in red)
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When the receiver gets the data packet, it records the time of arrival tR and can
calculate the traveling time tR − tS,1 of the signal. Because of the principle of the
absolute speed of light, from the traveling time, the distance D1 = (tR − tS,1)/c of
the satellite S1 follows. Because the receiver is informed about the position rS,1 of
the satellite, the receiver then knows that it is located on a sphere K1 with radius D1

around the satellite S1 (see Fig. 9.28). Now imagine a second satellite S2 of the
same type. The receiver handles this one in the same way as the first satellite, and
thus knows the position rS,2 of S2 and the distance D2 between the satellite and the
receiver, and eventually a further sphere K2 where the receiver resides. In total, the
receiver then knows that it is located on the intersection of both spheres, which is the
circle L12 (see Fig. 9.28).We take a third satellite S3 and a sphere K3, which intersects
the circle L12 at two points. One of these points is usually on the Earth’s surface or
close to it (imagine a receiver in a plane) and the other point is very far from it. This
allows the receiver to exclude one of the two intersection points. To conclude: by
receiving the position and the sending time of the signal of three different satellites,
the receiver with a synchronized clock can determine its position.

One of our assumptions is actually not true for satellite navigation systems.
Receivers of satellite navigation systems do not have a clock that is sufficiently
precise to be synchronized well with the satellites’ clocks. To overcome this prob-
lem, one uses a further satellite. The solution then follows from a method that is
basically the same as that above. But instead of the intersection of three spheres in
three-dimensional space, the intersection of four “hyperspheres” in four-dimensional
spacetime is used. Put differently, if rS,1, . . . , rS,4 are the positions of the four satel-
lites at the times tS,1, . . . , tS,4 when the signals that arrive simultaneously at the
receiver were sent, then we have four equations

c(tS,i − tR) = ∣∣rS,i − rR
∣∣ where i = 1, . . . , 4. (9.16)
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From these, the position rR of the receiver and the time tR of the arrival of the signals
follows.38

If the receiver gets signals from more than four satellites, the additional data is
used to improve the precision of the determined position of the receiver.

The role of relativity. Without the consideration of the effects of relativity, satel-
lite navigation would not work.39 First, to calculate the distance of the satellites
using (9.16), the principle of the absolute speed of light (which is valid only in iner-
tial frames) is explicitly used. The light travels from the satellite to the receiver with
a velocity of c = 299,792,458m/s, independent of the velocities of the satellite and
the receiver.40 Second, the influence of relative motion and gravitation on the clocks
has to be taken into account as well, exactly as discussed in the Hafele-Keating
experiment in Sect. 9.11.2. This is what we will do now.

Inertial frame and clock synchronization. But let us first correct the faulty
assumption that the ECEF system was an inertial frame. At the end of Sect. 7.9.1, we
saw that this assumption causes synchronization errors that, indeed, would render
the GPS useless.

The good news is that we still can perform this synchronization using clocks
resting on the Earth’s surface (in the ECEF system). If we know the locations and
velocities of amaster clock on theEarth and of the satellitewhose clockwewant to set
according to the master clock, we can send a pulse from the master clock to the satel-
lite at t0. The clock on the satellite then has to be set to t0 + (signal traveling time).
The signal traveling time, however, will not be given by the distance between the
master clock and the satellite, divided by the speed of light. The reason for this is that,
in the accelerated ECEF system, the principle of the absolute speed of light does not
hold and the speed of light will not be c. But this is not a problem, because we can
perform the calculation of the signal traveling time (as “experienced” in the ECEF
system) in an inertial frame, for instance, the Earth-centered inertial (ECI) frame
discussed in Sect. 9.11.2 on the Hafele-Keating experiment. In the inertial frame, the
principle of the absolute speed of light holds.

Influence of gravitation. In the discussion of the Hafele-Keating experiment, we
learned that a clock “deeper” in the gravitational field runs more slowly than a clock
that is not as “deep” in the field.We calculate this effect for the clocks on the satellites
and that on the Earth.

The fraction of the clocks’ speeds according to (9.14) amounts to �tS/�tE =
1 + (U (RS) − U (RE))/c2. Here,�tS is the amount of time that passes on the satellite
clock located at a distance RS from themass center of theEarth,while time�tE passes
on the clock located at the Earth’s surface, at a distance RE from the mass center of
the Earth.

38 Here, we assume that the signals arrive at the same time. In reality, this is not the case, and
therefore the receiver has to perform an additional mathematical correction on the result.
39 The consequences of the relativistic effects for the GPS are very nicely discussed in [Ashby03].
40 Indeed, the signal moves a little bit more slowly in the atmosphere, an effect that is taken into
account in satellite navigation.
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Now, our approximation U2 − U1 = g�z no longer works for a satellite, because
the gravitational acceleration at the location of the satellite approximately 20,000 km
above the surface of the Earth differs considerably from g. The gravitational
potential U in a distance r ≥ RE from the center of mass of the Earth is given
by U (r) = −G ME/r , where ME is the Earth’s mass and G Newton’s gravitational
constant.

To express G ME with quantities accessible on the Earth’s surface, we notice
that the gravitational force acting on a test mass m at the Earth’s surface is FG =
−mU ′(RE) = G MEm/R2

E. Because this must be equal tomg, we have G ME = gR2
E.

Therefore, we can write the gravitational potential in the form U (r) = −gR2
E/r .

In total, the relative difference in the clocks’ rates caused by gravitation is

α =
(

�tS
�tE

− 1

)
= U (RS) − U (RE)

c2

= gR2
E

c2

(
1

RE
− 1

RS

)
= gRE

c2

(
RS − RE

RS

)

= 10m/s · 6,378 km
(3 × 105 km/s)2

· 20,000 km
26,378 km

≈ 5 × 10−10.

Amore detailed inspection yields the value α = 4.4647 × 10−10. This difference
in the clocks’ rates has to be corrected, otherwise, the clocks would already be off
by 4 × 10−10 s after only one second. This seems small, but in this time, the light
travels 12 cm. Just one second after synchronizing the clocks, the error in the position
determination with satellites would already be on this order!

So, the goal is to keep the clocks on the satellite and those on Earth running
at the same “speed”, and one achieves this by using satellite clocks that are a bit
miscalibrated. The atomic clocks left on the Earth tick with a frequency of νE =
10.23MHz (this is not the frequency of the atomic transition used in the clock,
but a derived frequency), while the satellite clocks on the Earth must tick with
a frequency of νS = (1 − 4.4647 × 10−10) · 10.23MHz = 10.229 999 995 43MHz.
On the Earth, these modified clocks run slow but once in the satellite’s orbit and as
seen from the Earth, they run perfectly in sync with the clocks left on the Earth.

Exercise 40: Suppose the frequency of the satellite clockswaswrong by one deci-
mal in the last digit of the frequency νS , i. e., νS = . . . 995 44 instead of . . . 995 43.
How much time would it take until the accumulated error corresponds to an error
in distance of 1m?



Chapter 10
Lorentzian Addition of Velocities

10.1 Introduction

In Sect. 3.5, we have shown how velocities are added in classical mechanics. By
adding velocities, we mean the following: there are three inertial observers Alice,
Bob and Claire. Bob moves with velocity vBA relative to Alice and Claire moves
with velocity vCB relative to Bob (both move in the same direction). Then, we want
to know the velocity vCA of Claire relative to Alice. In classical physics, this addition
is just a plain algebraic addition. In special relativity, this can no longer be correct,
because, for example, for vBA = vCB = 2c/3, we would get vCA = 4c/3, which is
larger than the speed of light, and therefore impossible. The basic ingredient for
the derivation of the Galilean addition of velocities was the Galilei transformation,
which gives us an indication of what we have to do differently.

In this chapter, we will use a graphical method to derive the relativistic addition
of velocities. A nice application is the Fizeau experiment, where the speed of light
in moving liquids is measured.

10.2 Addition of Velocities

Let us now fulfill the promise given in Sect. 6.1 and derive how velocities are added
in special relativity. To differentiate from the Galilean addition of velocities, we will
talk about the Lorentzian addition of velocities (LAV).1

For the derivation, we imagine three inertial observers Alice, Bob and Claire. In
Alice’s coordinate system, Bob moves according to xB(t) = vBAt and Claire accord-

1 In the literature, the notion the velocity-addition formula is usually used.
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Fig. 10.1 For the derivation
of the Lorentzian addition of
velocities
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ing to xC(t) = vCAt (see Fig. 10.1). Bobuses the primed andClaire the double-primed
coordinate variables.

What we need now is the velocity vCB of Claire in Bob’s coordinate system. For
small velocities, we simply have vCB = vCA − vBA, but we will also allow for large
velocities here.

Take an event P on Claire’s time axis. The coordinates of this event, for Alice,
are P = (tP , xP). As mentioned, from Alice’s point of view, Claire has the velocity

vCA = xP
tP

. (10.1)

For Bob, the coordinates of P are given by P = (t ′P , x ′
P). Bob determines Claire’s

velocity to be vCB = x ′
P/t ′P . As shown in Fig. 10.1, through P , we draw Bob’s lines

of “equal position” G1 and simultaneity G2. These lines intersect Alice’s coordinate
axes at x0 and t0. Because of t ′P = γBAt0 and x ′

P = γBAx0 (where γBA := γ (vBA)),
we also have

vCB = x ′
P

t ′P
= x0

t0
. (10.2)

Now, we express the coordinates xP , tP as functions of x0, t0. Then, using (10.1)
and (10.2), we can construct a relation between the relative velocities vCA and vCB.

The equations of the lines G1 and G2 are

G1 : x = x0 + vBAt ,

G2 : x = c2

vBA
(t − t0).
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They intersect at the event (tP , xP), for which the following holds:

xP − vBAtP = x0 ,

vBA

c2
xP − tP = −t0.

Solving for xP and tP yields, for this event,

xP = α · (x0 + vBAt0) ,

tP = α ·
(vBA

c2
x0 + t0

)
,

with α = c2/(v2
BA − c2). Because of (10.1) and (10.2), this results in

vCA = xP
tP

= c2
vCB + vBA

c2 + vCBvBA
= vCB + vBA

1 + vCBvBA

c2

.

Lorentzian addition of velocities: If Bob moves with velocity vBA relative to
Alice and Claire with velocity vCB relative to Bob, then Claire moves relative
to Alice with the velocity vCA, given by

vCA = vCB ⊕ vBA := vCB + vBA

1 + vCBvBA

c2

. (10.3)

One immediately recognizes the limit of classical mechanics: if vCB � c and
vAB � c, then the denominator is approximately equal to one and one gets the
Galilean addition of velocities. (Here, only for velocities that point in the same
direction. The general relativistic case is more complicated.)

If one of the velocities, e.g., vCB, is equal to the speed of light, we get

vCA = c ⊕ vBA = c + vBA

1 + cvBA
c2

= c.

Altogether, we have

vCA = vCB ⊕ vBA ≈ vCB + vBA if vCB, vBA � c,

vCA = c ⊕ vBA = c ,

vCA = c ⊕ c = c.
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Exercise 41: Show that, resolving (10.3) for vCB, corresponds to exchanging vCB
forvCA, andmaking the replacementvBA → −vBA.This is the sameas exchanging
Alice for Bob.

Exercise 42: Show that, for x, y ∈ I and I = [0, 1], the quantity z = (x +
y)/(1 + xy) also lies in the interval I . The easiest way to do this is to calcu-
late z − 1, expand it to one fraction and recognize a complete square in the
nominator. Show in this way that, for 0 ≤ vCB, vBA ≤ c, the relation 0 ≤ vCA ≤ c
holds. By adding two velocities that are not larger than c, one cannot get a velocity
larger than c.

Exercise 43: The relativistic formula for adding velocities defines a binary oper-
ation (a, b) 	→ a ⊕ b with a ⊕ b := (a + b)/(1 + ab). Show that this operation
has the following properties:

• Commutativity2: a ⊕ b = b ⊕ a
• Associativity: (a ⊕ b) ⊕ c = a ⊕ (b ⊕ c)
• Unique existence of an inverse element: a ⊕ b = 0 implies b = −a.

Exercise 44: To describe relative motion, instead of the velocity, one can also
use the rapidity θ = atanh(v/c). For small velocities, θ ≈ v/c, while for large
velocities v → c, the rapidity goes to infinity.

Show that, while one has to use (10.3) to add velocities, the rapidities can
just be algebraically added. If Bob moves with rapidity θBA relative to Alice and
Claire with rapidity θCB relative to Bob, then Claire moves relative to Alice with
rapidity

θCA = θCB + θBA.

Exercise 45: Show that, even with signals that do not move with the speed of
light, one can synchronize clocks.

If one uses the classical formula for the addition of velocities, one finds a result
that is consistent with the absolute simultaneity of Newton. But if one uses the
relativistic formula for the addition of velocities, one arrives at the relativity of
simultaneity, exactly like when we were synchronizing clocks with light pulses.

10.3 Digression: The Fizeau Experiment

The experiment. In optics, we are told that light in a medium moves more slowly
than in vacuum. This, in the end, is the reason for the diffraction of light at interfaces.

2 The Lorentz transformation is only commutative if the velocities that are added are parallel.
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Fig. 10.2 Design of the
Fizeau experiment. For an
explanation, see the text
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In an important class of media,3 the speed of light c′, as in vacuum, is independent
of position and direction. In such media, the speed of light is given by c′ = c/n. The
index of refraction n usually depends on the frequency ω of the light, which is why
you see colors if you send white light into a prism and why there is such a thing as a
rainbow. The relation c′ = c/n was verified by the Frenchman Hippolyte Fizeau in
1849 for light in water. For light in water, n lies between 1.32 (for red light) and 1.35
(for blue light), corresponding to a light velocity of about 227,000 km/s (red) and
about 222,000 km/s (blue).

But we now deal with another of the Frenchman’s experiment, the Fizeau exper-
iment, which he used in 1851 to measure the speed of light in moving water. His
experiment is similar to that that Michelson and Morley carried out 30 years later.
In both, light from the same source travels different paths and is then brought to
interference. From the change of the interference pattern, the change of the phase
difference of the interfering waves can be deduced. The change of the phase differ-
ence then gives us length differences in fractions of the wavelength of the used light
(these are length differences on the order of 100 nm, which is 10,000 times smaller
than a millimeter!), or, eventually, velocity differences.

The design of the experiment is shown in Fig. 10.2. A liquid medium (here, water)
is flowing in glass tubes and has the flow velocity v. Light, by means of mirrors, is
guided in different directions through this moving medium.

The monochromatic light wave of frequency ν emitted by the light source S falls
onto a semitransparent mirror BS (which acts as a beam splitter), where it is split
into two partial waves of equal intensity.

One partial wave is transmitted towards the semitransparent mirror, first traveling
from mirror M1 to mirror M2 against the direction of flow through the medium,
and then between mirror M3 and the semitransparent mirror afterwards. It is then
transmitted at the semitransparent mirror and travels to the detector D.

The other partial beam, after leaving the source, is reflected at the semitransparent
mirrorBSandmoves on theway tomirrorM3 in theflowdirection through themoving
medium. On the way from mirror M2 to M1, it does the same again. Having arrived

3 Such media in optics often are called homogeneous media. In theoretical physics, they would
be called homogeneous and isotropic, because their properties are independent of position and
direction. You see: even in physics, not everything is consistent :-).
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at the semitransparent mirror, the partial beam is reflected and interferes with the
other partial beam on the way to the detector.4 If the moving medium actually is at
rest, one gets a certain interference pattern, and this pattern changes if one alters the
flow velocity. Via the change of the interference pattern (actually the intensity at the
detector), the phase difference of the partial beams is measured.

Explanation with special relativity. Both beams pass along a path of length L
through the moving medium. The number of wavelengths that fit into this distance
is L/λ′ and the phase change between entry and exit is 2πL/λ′. The wavelength λ′
in the medium is related to the (fixed) light frequency ν via the light velocity c′ in the
medium through λ′ν = c′. The phase change accumulated while traveling through
the moving medium is related to the light velocity c′ by 2πνL/c′.

Let c′+ be the velocity of the light in the moving medium in the direction of flow
and c′− that against the direction of flow. Further, let 	ϕ+ = 2πνL/c′+ and 	ϕ− =
2πνL/c′− be the respective phase changes (which, via the light velocity, depends
on the water’s flow velocity). The phase difference 	ϕ relevant for the interference
depends on the light velocity in the medium via

	ϕ = 	ϕ− − 	ϕ+ = 2πνL

(
1

c′−
− 1

c′+

)
.

If the medium is at rest, we have c′+ = c′− = c′, and therefore 	ϕ = 0.
What do we expect for the light velocity in the moving medium? For an observer

moving with the medium, the light propagates with the velocity c′ = c/n. This
observer moves relative to the experiment with the velocity v � c′. Therefore, we
only have to add the velocities. Classically, we have c′+ = c′ + v and c′− = c′ − v.
Relativistically, we use the Lorentzian addition of velocities and get

c′
+ = c′ + v

1 + c′v/c2
≈ c′

(
1 + v

c′
) (

1 − c′v
c2

)

= c′
(
1 + v

c′ − c′v
c2

− v2

c2

)
= c′

(
1 +

(
1 − c′2

c2

)
v

c′ − v2

c2

)
.

The second term in the parenthesis is of order v/c and the third is proportional
to (v/c)2. We neglect the third one and get

c′
+ ≈ c′ +

(
1 − c′2

c2

)
v = c′ +

(
1 − 1

n2

)
v ,

instead of the classical result c′+ = c′ + v. If the light travels against the direction of
flow of the water, one gets, in the same way,

4 Note that, at the detector D, only half of the intensity of the light wave arrives. When the partial
beams come back to the semitransparent mirror BS, each of them is again split into two partial
beams. Two of the resulting four partial beams travel to the detector and the remaining two go back
to the light source. See also Footnote 1 in Sect. 5.2.1
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c′
− = c′ − v

1 − c′v/c2
≈ c′ −

(
1 − 1

n2

)
v.

The results can be summarized by

c′
± = c′ ± αnv ,

where αn = 1 − 1/n2 is Fresnel’s drag coefficient (which is a historical designa-
tion, see also (5.7)). In the case of the Fizeau experiment, when one adds a large
velocity c/n < c and a small one v � c, the Lorentzian addition of velocities looks
similar to the Galilean addition of velocities if one takes the flow velocity v of the
medium only with a factor of αn < 1 into account. Note that, whereas special rela-
tivity yields αn = 1 + 1/n2, classical physics gives us αn = 1.

The expected phase difference then becomes

	ϕ = 2πνL

(
1

c′−
− 1

c′+

)

= 2πνL

c′

(
1

1 − αnv/c′ − 1

1 + αnv/c′

)

≈ 2πνL

c′
((
1 + αnv/c′) − (

1 − αnv/c′))

= 4πνLαn
v

c′2 .

Using the wavelength λ0 = c/ν in vacuum, we can write

	ϕ = 4π
L

λ0

v

c
n2αn = 4π

L

λ0

v

c
·
{
n2 in the classical case

n2 − 1 in the relativistic case.
(10.4)

We recognize the following: the larger the path length L and the higher the velocity
of flow v of the medium, the larger the phase difference of the two partial beams.

Fizeau’s finding. Fizeau, in his experiment, confirmed the Formula (10.4). His
result is consistent with the relativistic prediction and in contradiction to the classical
one. He has shown that the “naive” Galilean addition of velocities is wrong for the
calculation of the velocity of light in moving media. His result confirms special
relativity.

Exercise 46: We carry out the Fizeau experiment with the light of the (vacuum)
wavelight λ0 = 589 nm (the yellow of a sodium lamp). Then, the index of refrac-
tion ofwater is n = 1.33.And if	ϕ = 2π/100 is the detection limit and L = 1m,
the water must move at least with the velocity v ≈ 1.15m/s, otherwise, the effect
is too small for detection. Show this.



Chapter 11
The Lorentz Transformation: Derivation

In Sect. 3.4.2, we discussed the Galilei transformation and determined that it cannot
be valid anymore for large velocities. The necessary consequence is that classical
mechanics must be replaced with Einstein’s relativistic mechanics (i. e., the special
theory of relativity) and the Galilei transformation with theLorentz transformation
(LT) . In the same way as the Galilei transformation leaves the equations of classical
mechanics form-invariant,1 the Lorentz transformation leaves the equations of rela-
tivistic mechanics form-invariant and, in addition, does the same for the equations
of electrodynamics.

This chapter is exclusively dedicated to the derivation of the Lorentz transfor-
mation. In Sect. 11.1, we derive the Lorentz transformation with our geometrical
methods. For an even deeper understanding, in Sect. 11.3, we present an alternative
and purely algebraic derivation.

In the next chapter, we will demonstrate the power of the Lorentz transforma-
tion and, using our new tool over a few lines, derive the effects of the relativity of
simultaneity, time dilation, and length contraction.

11.1 Graphical Derivation of the Lorentz Transformation

TheLorentz transformation is the link between the coordinates of an arbitrary event E
in both Alice’s and Bob’s coordinate systems. It includes all of the relativistic effects
that we have discussed so far (as we will see in Sect. 12.1).

With the experience that we gained with geometric constructions in themeantime,
it is easy to derive the Lorentz transformations. We consider two inertial observers
Alice and Bobwith their coordinate systems in standard configuration and an event E

1 Form-invariant means that the equations keep their form when transformed.
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Fig. 11.1 Geometric
derivation of the Lorentz
transformation
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(see Fig. 11.1). FromAlice’s point of view, this event has the coordinates (tE , xE ), and
for Bob, (t ′E , x ′

E ).Wewant to calculate Bob’s coordinates of the event E fromAlice’s
coordinates of it. This amounts to finding the functions f and g in x ′

E = f (tE , xE )

and t ′E = g(tE , xE ).
To achieve this, we draw a line B through event E parallel to Bob’s t ′-axis. This

line intersects Alice’s x-axis at x̄E . In the sameway, the line A through E and parallel
to Bob’s x ′-axis intersects Alice’s t-axis in t̄E (note that t̄E , x̄E are not coordinates
of E!). We know already from Sect. 9.5 (see e. g., Fig. 9.14) that the barred variables
are related to Bob’s coordinates of E via t ′E = γv t̄E and x ′

E = γv x̄E . Now, we must
find out how t̄E and x̄E depend on Alice’s coordinates of E .

The line A is given by (x − xE ) = (c2/v)(t − tE ). With x = 0, we get t̄E =
tE − (v/c2)xE . The line B is givenby (x − xE ) = v(t − tE ).With t = 0,weget x̄E =
xE − vtE . Now, we use the relations between the barred quantities to t ′E and x ′

E
discussed in the last paragraph and get the Lorentz transformation

t ′ = γv

(
t − v

c2
x
)

,

x ′ = γv (x − vt) .

(11.1)

Here, we dropped the index E because the event is arbitrary.
The Lorentz transformation is a generalization of the Galilei transformation (3)

where the former also works for large velocities. Therefore, it must be equal (or close
to equal) for small velocities, where the Galilei transformation (3) is correct. This
limiting case is easy to see. Using v/c → 0, we get γv = 1 and v/c2 = 0, and the
Lorentz transformation (11.1) indeed becomes equal to theGalilei transformation (3).

Exercise 47: Show, using the Lorentz transformation (11.1), that c2t ′2 − x ′2 =
c2t2 − x2 holds. Therefore, the hyperbola is independent of the coordinate system.
It is an invariant of the Lorentz transformation.
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Fig. 11.2 To the derivation
of the rotation in Euclidean
space (see text)
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11.2 Digression: The Lorentz Transformation
in Matrix Form

Rotations in Euclidean space. We start by considering rotations in Euclidean
space.

A rotation in a plane always leaves exactly one point fixed. We identify this point
with the origin of our (orthonormal) coordinate system K with the coordinates x
and y. In addition to this, we consider a further coordinate system K ′ with the
coordinates x ′ and y′ that shares its origin with K . Let K ′ be rotated in the pos-
itive mathematical direction (counterclockwise) by the angle φ relative to K (see
Fig. 11.2).

Our tasknow is to calculate the coordinates (x ′, y′)of an arbitrary point P , given its
coordinates (x, y) in coordinate system K . If the line segment OP has the length r
and encloses an angle ψ with the x-axis, we can give the unprimed coordinates
immediately: x = r cosψ and y = r sinψ . The primed coordinates follow in the
same way: letψ ′ be the angle enclosed by the line segment OP and the x ′-axis, then,
x ′ = r cosψ ′ and y′ = r sinψ ′. Now, the relation between the angles isψ ′ = ψ − φ,
and from the angle sum and difference identities of trigonometry, it follows that

cosψ ′ = cos(ψ − φ) = cosψ · cosφ + sinψ · sin φ ,

sinψ ′ = sin(ψ − φ) = sinψ · cosφ − cosψ · sin φ ,

the left sides of these equations being exactly x ′/r and y′/r . We can multiply the
equations with r and, on the right sides, put the expressions for x and y. This implies
that

x ′ = x cosφ + y sin φ ,

y′ = −x sin φ + y cosφ
(11.2)
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or, written in matrix notation,

(
x ′
y′

)
=

(
cosφ sin φ

− sin φ cosφ

) (
x
y

)
.

This is how the coordinates (x, y) of an arbitrary point P transform when the coor-
dinate system is rotated by an angle φ.

All pairs of physical quantities (p, q) that transform like x and y in (11.2) (or the
generalization to all three space dimensions) are called vectors .

The distance of point P from the origin obviously has to be the same in both
coordinate systems. Therefore,

r ′2 = x ′2 + y′2 = x2 + y2 = r2 . (11.3)

For this particular reason, the quantity r2 = x2 + y2 is called an invariant of the
rotation. Invariant because, in a rotation, its value is unchanged.

Exercise 48: Prove (11.3) by substituting x ′, y′ from the expression for the
rotation (11.2) into the expression x ′2 + y′2.

Exercise 49: Which geometric figure does not change in a rotation? One says
that is in invariant under rotation.

The Lorentz transformation. Now, it is easy to see that the Lorentz transforma-
tion (11.1), in matrix notation, looks like

(
t ′
x ′

)
= γv

(
1 −v/c2

−v 1

)(
t
x

)
.

The matrix is actually symmetric when we “reflect” it at the diagonal line built by
the two matrix entries “1”. This can be seen if, instead of the time t , we use the
quantity ct , which has the same unit as x . Then,

(
ct ′
x ′

)
= γv

(
1 −v/c

−v/c 1

) (
ct
x

)
.

The invariant of the Lorentz transformation that corresponds to the radius in
Euclidean rotations (see (11.3)) is already known to us from Sect. 9.5. It is the
spacetime distance (9.2).

All pairs of physical quantities (p, q) that transform like ct and x in (11.1) (or
the generalization to all four spacetime dimensions) are called four-vectors (or 4-
vectors ). And for each of these four-vectors (p, q), the quantity p2 − q2 is invariant
in a Lorentz transformation.
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11.3 Digression: Analytic Derivation of the Lorentz
Transformation

We now give a purely analytical derivation of the Lorentz transformation. It shows
very nicely the inputs that lead to the Lorentz transformation. Be warned that the
derivation is a bit lengthy, but, on the other hand, the logic is clear and the calculations
are simple.

In contrast to the geometric derivation, we consider all four spacetime dimen-
sions now. As usual, we use the unprimed variables (t, x, y, z) for Alice’s coordinate
system and the primed ones (t ′, x ′, y′, z′) for Bob’s coordinate system. The Lorentz
transformation determines the coordinates (t ′, x ′, y′, z′) of an event E in Bob’s coor-
dinate systemwhen its coordinates (t, x, y, z) in Alice’s coordinate system are given.

We choose the coordinates in standard configuration, i. e., the x- and x ′-axis coin-
cide and the y- and y′-axis are mutually parallel, as are the z- and the z′-axis. Fur-
thermore, we shift the axes such that, at t = t ′ = 0, both spatial coordinate systems
coincide.

First of all, Bob’s coordinates could be arbitrary functions of Alice’s coordi-
nates, e. g., x ′ = f (x, y, z, t), y′ = g(x, y, z, t), etc. These functions, however, can
be quickly and considerably simplified.

The important argument here is that, according toNewton’s lawof inertia, particles
upon which no force acts move with constant velocity vector in inertial frames, and
thus its world line is a (straight) line. The Lorentz transformation, therefore, has to
map lines to lines,2 and thus, it has to be linear, i. e.,

t ′ = L00t + L01x + L02y + L03z ,

x ′ = L10t + L11x + L12y + L13z ,

y′ = L20t + L21x + L22y + L23z ,

z′ = L30t + L31x + L32y + L33z .

Thus, with this argument, we have simplified the four arbitrary functions to four
linear functions. The coefficients Li j (with i, j = 0, 1, 2, 3) may still depend on the
velocity, but not on the coordinates.

Incorporating the choice of coordinates. The choice of the coordinates (stan-
dard configuration) simplifies the transformation considerably. First, y = 0 must
imply y′ = 0, for arbitrary values of t, x, z. This means that L20 = L21 = L23 = 0,
and therefore y′ = L22y. The analogous observation holds for the z-coordinate. Next,
the plane x = vt must map to x ′ = 0 for arbitrary values of y, z. Therefore, y and z
must not appear in the equations for t ′ and x ′, i. e., L02 = L03 = L12 = L13 = 0.

Furthermore, Bob moves with velocity v relative to Alice, i. e., x = vt must
imply x ′ = 0, and vice versa. For all events with x = vt , we get, from the equations

2 Actually, it only has to be affine, and it can include a shift in addition to the linear transformation.
This, however, is irrelevant, because we assume that the origin of the coordinate system can be
chosen arbitrarily (spacetime is homogeneous).
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above, x ′ = L10t + L11vt = (L10 + vL11)t
!= 0. This is the case if L10 = −vL11,

and therefore x ′ = L11(x − vt).
In this way, we arrive at

t ′ = L00t + L01x ,

x ′ = L11(x − vt) ,

y′ = L22y ,

z′ = L33z .

In addition to what we have discovered so far, we also know that the constants L00,
L11, L22, and L33 all must be larger than zero. The reason for this is the relative
orientation of the coordinate axes: the x ′-axis points in the same direction as the
x-axis and not in the opposite direction. And the same holds for the other three pairs
of axes.

Now, we have to determine the remaining five coefficients.

Transversal direction. As a next step, we focus on how the directions transversal
(perpendicular) to the relative velocity transform. For this purpose, let us consider a
transformation, called an xz-reversal, which does the following:

x ↔ −x ′ , y ↔ y′ , z ↔ −z′ , t ↔ t ′ .

This amounts to exchanging Alice and Bob and rotating their coordinate systems
by an angle of 180◦ around the y- or y′-axis, respectively. Then, according to the
relativity principle, the Lorentz transformation must be the same. The xz-reversal
applied to y = L22y′ produces y′ = L22y (note that the dependency of L22 on the
velocity is not a problem, as the relative velocity is the same after the xz-reversal),
and therefore L2

22 = 1. For v → 0, the transformation must become equal to the
Galilei transformation, i. e., y′ = y, and therefore L22 = +1.

In the same way, we can analyze the xy-reversal and find L33 = 1. Then, only the
coefficients L00, L01 and L11 are left to determine.

Longitudinal direction: scale factor/inversion. In the next step, we analyze the
transformation in the direction of the relative velocity. But first, we introduce the
easier coefficients

ᾱ(v) := L00(v) , β̄(v) := −L01(v)/L00(v) , γ̄ (v) := L11(v) ,

which brings us to
t ′ = ᾱ(v)(t − β̄(v)x) ,

x ′ = γ̄ (v)(x − vt) .
(11.4)

To determine the remaining coefficients, the inverse coordinate transformation
plays a central role (this is the transformation that Alice uses to calculate her coordi-
nates (t, x) fromBob’s coordinates (t ′, x ′)of an event). There are twoways to come to
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this transformation. The first one is just to invert (11.4), and the second one is via the
v-reversal: replace−v in (11.4) with v and the primed coordinates with the unprimed
ones. Both, because of the relativity principle, must yield the same result. From that,
the unknown coefficients are determined. We can ease the formulas a little bit by first
considering a special case. Alice’s location, given by x = 0, in Bob’s coordinates,
must be given by x ′ = −vt ′. But setting x = 0 in (11.4) yields x ′ = −(γ̄ /ᾱ)vt ′, and
therefore we need ᾱ(v) = γ̄ (v) and (11.4) becomes

t ′ = γ̄ (v)(t − β̄(v)x) ,

x ′ = γ̄ (v)(x − vt) .
(11.5)

Next, we carry out the program sketched above. First, we invert (11.5), which
yields

t = 1

γ̄ (v) · (1 − vβ̄(v))

(
t ′ + β̄(v)x ′) ,

x = 1

γ̄ (v) · (1 − vβ̄(v))

(
x ′ + vt ′

)
.

(11.6)

And second, we perform the v-reversal. This yields

t = γ̄ (−v)(t ′ − β̄(−v)x ′) ,

x = γ̄ (−v)(x ′ + vt ′) .
(11.7)

Both transformations have to be equal. This is the case if

β̄(−v) = −β̄(v) ,

γ̄ (v)γ̄ (−v) = 1

1 − vβ̄(v)
.

By virtue of the inversion symmetry, the prefactor γ̄ (v) must be an even function
in v. If we exchange left and right by replacing x → −x and x ′ → −x ′, we also
have to change the sign of the velocity: v → −v. Then, the second formula of (11.4)
becomes x ′ = γ̄ (v) · (x − vt). This must be invariant, and therefore we have the
result that γ̄ (−v) = γ̄ (v), i. e., γ̄ (v) is an even function in v, and γ̄ (v)γ̄ (−v) =
γ̄ (v)2. Basically, this says that a rod that moves with velocity v relative to Alice
experiences the same length contraction as a rod that moves with velocity−v. Length
contraction does not depend on the direction in which the rod moves. It depends only
on the magnitude of its velocity.

Therefore, we arrive at

t ′ = γ̄ · (t − β̄(v)x) ,

x ′ = γ̄ · (x − vt) ,

γ̄ (v) = 1√
1 − vβ̄(v)

.

(11.8)
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So far, the requirements made are also valid for the Galilei transformation. And
we recognize that, for β̄(v) = 0, our transformation indeed becomes the Galilei
transformation. Therefore, the essential step to arrive at the Lorentz transformation
is still missing.

Longitudinal direction: light cone. This essential step that makes the difference
between the Galilei and Lorentz transformations is the requirement that light world
lines map to light world lines: Light pulses must be transformed to light pulses. A
light pulse emitted by Alice at (x = 0, t = 0) is described by x = ±ct . The Lorentz
transformation must map the trajectory x = ct to the trajectory x ′ = ct ′.The same
holds for x = −ct and x ′ = −ct ′.

Putting x = ct in the transformation (11.8) above, we get

t ′ = γ̄ · (1 − cβ̄(v))t ,

x ′ = γ̄ · (c − v)t ,

whichmust result in x ′ = ct ′, and thereforeweneed β̄ = v/c2,whichgives us γ̄ (v) =
1/

√
1 − v2/c2. This leads us to the Lorentz transformation

t ′ = γv ·
(
t − v

c2
x
)

x ′ = γv · (x − vt)

γv = 1√
1 − (v/c)2

,

where we replaced γ̄ with the usual γv .
That’s it! We can conclude:

The Lorentz transformation (in usual units) and for the standard configura-
tion is given by

t ′ = γv ·
(
t − v

c2
x
)

,

x ′ = γv · (x − vt) ,

y′ = y , z′ = z ,

(11.9)

where

γv = 1√
1 − v2/c2

.

Again, notice the surprising symmetry between space and time. While the rota-
tion in Euclidean space only “mixes” space dimensions, the Lorentz transformation
“mixes” space and time. Hermann Minkowski expressed this circumstance with the
following impressive words, directed to the 80th Assembly of German Natural Sci-
entists and Physicians in 1908 [Minkowski08]:
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The views of space and time which I wish to lay before you have sprung from the soil of
experimental physics, and therein lies their strength. They are radical. Henceforth, space by
itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of
union of the two will preserve an independent reality.

Exercise 50: Show that, for two arbitrary four-vectors (a0, a) and (b0, b), the
“scalar product” a0b0 − ab is invariant.

11.4 Digression: The Lorentz Transformation
from Empirics

In a well-known paper [Robertson49], Robertson deduces the Lorentz transforma-
tions mostly from experimental results. Three cornerstone experiments are needed,
theMichelson-Morley experiment, theKennedy-Thorndyke experiment and the Ives-
Stilwell experiment. We show the main steps of his derivation here.

Robertson assumes that there is one preferred reference frame � in which
light in vacuum propagates rectilinarly and isotropically with a constant speed c. He
introduces a coordinate system with time τ and space coordinates ξ , η, ζ , and the
clocks are synchronized via the constancy of the speed of light: the master clock at
time τ0 sends a light pulse to another clock at a distance � from the master clock and,
upon arrival, is set to the time τ0 + �/c.

Next, he introduces a further reference frame S with coordinates t and x , y, z
that is moving with a constant velocity v with |v| < c, relative to �. We choose the
x-axis to coincide with the ξ -axis. Hence, we have ξ = vτ .

Robertson makes no assumptions as to the speed of light or the laws of physics
in S and, in particular, does not assume the relativity principle. These properties must
follow from the arguments at hand and the three cited experiments.

Starting with the most general linear transformation T , which maps (t, x, y, z)
to (τ, ξ, η, ζ ), Robertson uses a smart choice of the directions of the coordinate axes
and some symmetry arguments and incorporates the velocity v, which leads to

τ = at + dx,

ξ = avt + bx,

η = gy, ζ = gz,

where a(v), b(v), d(v) and g(v) are functions of v. The core of his paper is to
determine these functions from the said experiments, along with the definition of
simultaneity.

The first step is to incorporate Einstein synchronization in S. We send a light
signal from the origin event (x = 0, t = 0) to the location with x-coordinate xE > 0,
where it arrives at tE and is reflected back to x = 0, where it arrives at t = t0. Einstein
synchronization then defines tE = t0/2.

The light world line starting at the origin event is given by ξ = cτ or
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a(c − v)t = (b − dc)x .

Theworld line back to the t-axis,which intersects it at t = t0, is given by τ − τ0 = −ξ

(where τ0 is determined by the intersection) or

a(c + v)(t − t0) = −(b + dc)x .

The two world lines must intersect at t = t0/2. Solving the two equations above
for x , equating them and setting t = t0/2 yields

a(c − v)

b − dc
= a(c + v)

b + dc

and, eventually,
d = bv/c2 .

Thus, the implementation of Einstein synchronization brings us to

τ = at + bvx/c2 ,

ξ = avt + bx ,

η = gy , ζ = gz .

(11.10)

In the second step, we incorporate the result of the Michelson-Morley experi-
ment.

The time needed for a light pulse to travel from the origin event O to some
point (ξ, η, ζ ) at distance � from the origin is given by

τ = 1

c

√
ξ 2 + η2 + ζ 2 = �

c

or, after using the transformation (11.10) and solving for t ,

t = �

ac

√
b2

x2

�2
+ g2γ 2

y2 + z2

�
,

= �

ac

√
b2 cos2 ϑ + g2γ 2 sin2 ϑ ,

where ϑ is the angle between the x-axis and the direction of the light ray or the
orientation of the Michelson-Morley interferometer,3 and

3 Note that the forward and backward velocities must be the same, because we imposed Einstein
synchronization. Furthermore, without length contraction, we would have b = g = 1, and therefore
the velocity would depend on the direction.
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γ (v) = 1√
1 − v2

c2

is our well-known γ -factor.
The experiment shows that, if the orientation of the interferometer is changed, the

traveling time stays constant. Therefore, the expression above must be independent
of ϑ . This requires

b = gγ

and leads us to

τ = at + γ gvx/c2 ,

ξ = avt + γ gx ,

η = gy , ζ = gz .

Physically, this says that a slab that is parallel to the ξ -axis and moves in the ξ -
direction with velocity v for the observer in � is length-contracted by the factor gγ ,
while a slab that is perpendicular to the ξ -axis but moves with the same velocity in
the ξ -direction is length-contracted by the factor g. The relative length contraction
of these two directions is given by γ .4

The third step is about the result of theKennedy-Thorndike experiment, which
is basically equal to theMichelson-Morley experiment, with the exception that one of
the interferometer arms is longer than the other one by �� and the light must cover
this additional distance. The result of the experiment indicated that the time �t
needed for that is independent of v. If the distance lies in the x-direction, this means
that

�t = ��

c

b

a
= ��

c

gγ

a

must be independent of v. For v → 0, we must have �t = ��/c, and there-
fore gγ /a = 1 or

gγ = a .

This leads us to

τ = a · (t + vx/c2) ,

ξ = a · (vt + x) ,

η = a

γ
y , ζ = a

γ
z .

Remember that a and γ are functions of v.

4 FitzGerald and Lorentz assumed g = 1 and b = γ = 1/
√
1 − (v/c)2, which is the Lorentz-

FitzGerald contraction.
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Fig. 11.3 To exercise 51

Physically, a is related to the time dilation and gγ to the length contraction.
Therefore, the Kennedy-Thorndike experiment fixes the relation between these two
effects. The length of a faster moving object is contracted more than that of a slower
object. To compensate, the time of the faster moving object is also dilated more than
that of a slower object.

The only free parameter that is still to be determined is a(v), the time dilation
factor.

In the fourth and final step, we include the result of the Ives-Stilwell experiment,
which has shown that the factor for the frequency change in the transversal Dopper
effect, which is the same as the time dilation factor, has the value γ (v). On the other
hand, according to our transformation, this is a(v). Therefore, a = γ , and we arrive
at the Lorentz transformation

τ = γ (v)(t + vx/c2) ,

ξ = γ (v)(vt + x) ,

η = y , ζ = z .
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The transformation for the transition from the preferred reference frame to another
reference frame that moves uniformly relative to the former is therefore the Lorentz
transformation. In particular, from the Lorentz transformation, it follows that

c2τ 2 − (ξ 2 + η2 + ζ 2) = c2t2 − (x2 + y2 + z2) ,

which implies that light in vacuum propagates rectilinearly and isotropically with
constant speed c in all reference frames that move uniformly relative to the preferred
reference frame.

Applying the Lorentz transformation to Maxwell’s electrodynamics shows us
that this theory is form-invariant, it has the same form in both reference frames.
Therefore, for this theory, the relativity principle holds.

Classical mechanics, however, is not form-invariant. Experiments show that
mechanics must respect the relativity principle as well. Therefore, a new mechanics
is needed that is form-invariant with respect to the Lorentz transformations and that
becomes classical mechanics for small relative velocities. This is special relativity.

Exercise 51: Suppose there is a preferred reference frame � with coordinate
system (τ, ξ) (we consider only 1 + 1 dimensions). Furthermore, there is another
coordinate system S with coordinates (t, x) whose axes are parallel to the related
ones in � and whose origin in � moves according to ξ = vτ .

(a) Show that the coordinate transformation is given by

t = a(τ − dξ) ,

x = b(ξ − vτ) ,
(11.11)

where a, b and d are functions of v. In special relativity, we have a = b =
γ (v) and d = v/c2 (the Lorentz transformation), and in classical mechanics,
we have a = b = 1 and d = 0 (the Galilei transformation).

(b) How does a moving observer experience a rod that is at rest in �? See
Fig. 11.3, top left.

(c) How does a moving observer experience a clock that is at rest in �? See
Fig. 11.3, top right.

(d) How does an observer at rest in � experience a rod that is at rest in S? See
Fig. 11.3, bottom left.

(e) How does an observer at rest in � experience a clock that is at rest in S? See
Fig. 11.3, bottom right.

What does the result demonstrate?



Chapter 12
The Lorentz Transformation:
Applications

12.1 Again: The Effects of Special Relativity

In possession of the Lorentz transformation, we can derive the discussed relativistic
effects easily.

Relativity of simultaneity. First, the relativity of simultaneity. For Alice, two
events A and B are simultaneous if tA = tB . According to the Lorentz transformation,
for Bob, t ′A − t ′B = γv[(tA − tB) − (v/c2)(xA − xB)] = −γv · (v/c2)(xA − xB) then
holds. Provided that v �= 0, this expression vanishes only if both events happen for
Alice at the same place, but then A and B are the same event. Simultaneity for Alice
is therefore different than simultaneity for Bob.

Time dilation. Then, time dilation (which is easier to demonstrate than length
contraction). Consider Fig. 12.1, left side.1 Alice and Bob carry clocks that have
been synchronized and that reset when they meet in the origin. At event E0, Bob’s
clock then shows the time t ′0,which is the clock’s proper time.What doesAlice’s clock
show?We draw a line of simultaneity (for Alice), which intersects Alice’s t-axis at t0.
Because of the Lorentz transformation, t0 = γv(t ′0 + (v/c2)x ′

0). As for Bob’s clock,
x ′
0 = 0, and thus we have t0 = γvt ′0. Alternatively, using the time intervals starting
at the origin, �t = γv�t0. This is the expression for time dilation (see (9.1)).

Length contraction. Last, length contraction. We regard Fig. 12.1, right side. A
rod with proper length l0 moves with the velocity v relative to Alice and rests for
Bob. The proper length is given by the distance from the origin to the event E0 in
Bob’s coordinates. Alice measures the length l, given by the distance from the origin
to the event E1 in her coordinates (according to the rule for measuring lengths in
Sect. 8.2.1, Alice must simultaneously determine the position of the front and rear
ends of the rod, which corresponds to the distance from the origin to E1).

1 Note that our notation here differs from that in Sect. 9.2. This is meant to ease the comparison
with length contraction.
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Fig. 12.1 To the derivation of time dilation (left side) and length contraction (right side) using the
Lorentz transformation

We start the calculation with E1 = (0, l) in Alice’s coordinates. E0 then follows
from x = vt + l (green line through E1) and Bob’s time axis x = (c2/v)t . This
gives us x0 = γ 2

v l, t0 = (v/c2)x0 and x0 − vt0 = x0γ −2
v = l. Plugging this into the

Lorentz transformation, we get x ′
0 = γv(x0 − vt0) = γvl. With x ′

0 = l0, it follows
that l = l0/γv , which is the expression (8.4) for length contraction.2

Comparison of length contraction and time dilation. You have surely already
noticed that the result is not really symmetrical. Lengths become contracted, and
thus shorter. The equation for this is l = γ −1

v l0 (l0 is the proper length of the moving
rod). Time intervals, however, are expanded, and thus longer. The equation for this
is�t = γv�t0 (�t0 is the proper time of themoving clock).3 In one case, the factor γv

appears, and in the other case, its inverse. What is the reason for this? Haven’t we
always stressed that space and time are symmetric in special relativity?

The reason for this is the different measurement rules. Look again at Fig. 12.1. In
both cases, it is about an interval for Bob (in red in the figure): one is a time interval
of length �t0 (the proper time indicated by the clock traveling with Bob) and one is
a space interval of length l0 (the proper length of the rod traveling with Bob).

In time dilation, simultaneity for Alice is relevant, and therefore a projection
of E0 along Alice’s x-axis onto Alice’s t-axis is performed (blue dashed line in the
figure on the left side), yielding the time interval �t (in orange in the figure). If the
measurement rules were symmetrical, for the length contraction, the same location
for Alice would be relevant and one would project E0 along Alice’s t-axis onto
Alice’s x-axis (indicated with a black dash-dotted line in the figure on the right side).
But the measurement rules are different, and Alice performs the length measurement

2 Note that, by plugging x0 − vt0 = l into the Galilei transformation, l = l0 follows—as expected.
3 The “contraction” refers to the fact that the length of a moving object is shorter than it was when
it rested. The “dilation” (see footnote 1 in Sect. 9.2) refers to the fact that the stationary clock runs
faster than the moving one and, thus, the time on the moving clock is stretched.
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of Bob’s rod simultaneously for herself. This implies that she projects the event E0

along Bob’s t ′-axis onto her x-axis (indicated with a blue dashed line in the figure
on the right side). This yields the length l (in orange in the figure).

The terms time dilation and length contraction seem to imply that, in both cases,
something becomes shorter. However, the perspective is different: in time dilation,
for Bob, less time passes than for Alice, while in length contraction, for Alice, the
rod is shorter than for Bob.

There’s another source of confusion. In length contraction, there is only one rod, a
rod that rests in Bob’s frame and is the reference object. Therefore, length contraction
says: “Bob’s rod is shorter for Alice”: l = γ −1

v l0 < l0.
In time dilation, both Alice and Bob have a clock, and we can use either clock

as a reference. If we choose Bob’s clock as the reference clock, time dilation says:
“When Bob’s clock shows one second, Alice’s clock will already show a later time.
Alice’s clock runs fast for Bob”: �t0 = γv�t ′0 > �t ′0. If we choose Alice’s clock as
the reference, we have: “When Alice’s clock shows one second, Bob’s clock shows
less than a second. Bob’s clock runs slow for Alice”: �t ′0 = γ −1

v �t0 < �t0. The
conclusion, however, is always: Bob’s clock runs slow for Alice (the situation is
described from Alice’s perspective).

A final point. If the Lorentz transformation were given by (11.4) with the actual
equation β̄ = v/c2 but ᾱ �= γ̄ , then, according to our derivations of time dilation
and length contraction above, the factor ᾱ would determine the time dilation and the
factor γ̄ the length contraction.

Lorentzian addition of velocities. For the derivation of the Lorentzian addition
of velocities, we consider our initial observers Alice and Bob with the unprimed
and primed coordinate systems, respectively, in the standard configuration. Let v be
Bob’s velocity relative to Alice.

Furthermore, there is an object O that moves uniformly relative to Alice and Bob
(see Fig. 12.2). If xO(tO) is the space trajectory of the object for Alice and x ′

O(t ′O)

that for Bob, the object has the velocity

Fig. 12.2 For the derivation
of the formula for Lorentzian
addition of velocities
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u = �xO
�tO

with �xO := xF − xE and �tO := tF − tE

for Alice and

u′ = �x ′
O

�t ′O
with �x ′

O := x ′
F − x ′

E and �t ′O := t ′F − t ′E

for Bob. Here, E and F are two different events on the object’s trajectory.
The Galileian addition of velocities would then be u′ = u − v. From the Lorentz

transformation of the object’s position, however, we get

�x ′
O = γv(�xO − v�tO) = γv

(
�xO
�tO

− v

)
�tO = γv (u − v) �tO,

�t ′O = γv

(
�tO − v

c2
�xO

)
= γv

(
1 − v

c2
�xO
�tO

)
�tO = γv

(
1 − uv

c2

)
�tO.

Through division, we immediately get

u′ = u − v

1 − uv

c2

. (12.1)

This is exactly the same as (77). We just have to replace vBA → v, vCA → u
and vCB → u′ in (77) and resolve for u′ (which can be done by exchanging u for u′
and replacing v with −v in the formula, see Exercise 41).

We note that the Lorentzian addition of velocities is nothing but the Lorentz
transformation of velocities. And that this transformation is not as simple as that
of space or time coordinates because, in the definition of the velocity, both, the
nominator �x and the denominator �t transform.

In the following Exercise 52, we show an alternative derivation of the Lorentzian
addition of velocities. And in the next section, Sect. 12.2, wewill take amore in-depth
look at the transformation behavior of the velocity.

Exercise 52: We deal with three inertial observers, Alice, Bob and Claire. As
usual, Alice uses the non-primed, Bob the primed and Claire the double-primed
coordinates (x ′′, t ′′). Bob moves with the velocity v relative to Alice and Claire
with the velocity u relative to Bob.4

• Write down theLorentz transformation (x, t) → (x ′, t ′)with the relative veloc-
ity v.

• Write down the Lorentz transformation (x ′, t ′) → (x ′′, t ′′) that is used to cal-
culate Claire’s coordinates fromBob’s coordinates. Use the relative velocity v′.

• Express Claire’s coordinates (x ′′, t ′′) according to those of Alice (x, t) and
bring the formula to the usual form of the Lorentz transformation with relative
velocity u. Show that the addition formula (77)
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u = v ⊕ v′ = v + v′

1 + vv′

c2

results and, at the same time,

γvγv′ = γv⊕v′

1 + vv′

c2

(12.2)

holds.
• If you are still motivated, prove that, with (8.3), (12.2) indeed holds. This
is required because, otherwise, performing one Lorentz transformation after
another would not result in a Lorentz transformation. This is a longer calcula-
tion. Probably the shortest method is to take both sides of (12.2) to the power
of (−2) and show that both sides are equal.

12.2 Digression: The Velocity Four-Vector

Comparison to the Lorentz transformation of space and time. The position x ,
together with the time t , transform in a Lorentz transformation into x ′ and t ′, and
thus (t, x) is a four-vector. Can we fit u into this scheme, i. e., can we find a “partner”
for u such that, together, they transform as a four-vector? What would this partner
be?

First of all, in 3 + 1 dimensions, x and u are both (space) vectors, and therefore u
would correspond to x in a four-vector. What is the accompanying quantity?

If we replace x with u in the Lorentz transformation, we get

u′ = γv(u − vt). (wrong attempt)

So, u′ is proportional to u − vt , but, according to (12.1), it should be proportional
to u − v. Therefore, the partner of u is the constant 1. Replacing x with u and t with 1
in the Lorentz transformation (11.1) yields

u′ = γv · (u − v),

1 = γv · (1 − (v/c2)u).
(wrong attempt)

Both equations are clearly wrong. Let us try to repair this defect by making the
following replacement in the Lorentz transformation (11.1):

x → f (u) · u,

t → g(u) · 1.
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This yields

f (u′)u′ = γv( f (u)u − vg(u)),

g(u′) = γv(g(u) − (v/c2) f (u)).

The first equation must become equal to (12.1). Therefore, we need g(u) = f (u)

and
f (u′)u′ = f (u)γv(u − v).

This, together with u′ = u ⊕ (−v), determines f (u).
Finding f (u) is easier than was possibly expected. We can set u = 0, which

implies that u′ = −v, and we get f (−v) · (−v) = f (0)γv · (−v), and then, tak-
ing γ−v = γv into account, f (v) = f (0)γv . For small velocities, f (u)u must be
equal to u, therefore, we need f (0) = 1, and hence f (u) = g(u) = γu .

The four-vector of the velocity eventually becomes

(γuc, γuu) (12.3)

(remember that, in a four-vector, the first component is always the time component,
while the second is the space component). The invariant (analogous to (9.2)) related
to the velocity four-vector is just

γ 2
u (c2 − u2) = c2.

The Lorentz transformation for velocities then reads as

γu′u′ = γv(γuu − (v/c)γuc),

γu′c = γv(γuc − (v/c)γuu).
(12.4)

For later use, we write these two equations in a slightly different form and call
them γ -formulas (note that the second of these formulas equals (12.2)):

γu′u′ = γvγu(u − v),

γu′ = γvγu(1 − uv/c2).
(12.5)

The γ -formulas are nothing but the Lorentz transformation of velocities. And note
again that dividing the first of these equations by the second one directly yields the
Lorentzian addition of velocities.

Equation (12.4) tell us that the Lorentz transformation (11.9) of the velocity four-
vector (12.3) corresponds exactly to the Lorentzian addition of velocities u′ = u � v:
dividing the first equation of (12.4) by the second one yields u′ = (u − v)/(1 −
uv/c2).

Relation to the proper time. From (12.1), it becomes clear that the cumber-
some denominator (1 − uv/c2) in the transformation of the velocity comes from the
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Lorentz transformation of the denominator �t ′ in the expression u′ = �x ′/�t ′ for
the velocity. We could get rid of this problem by replacing �t ′ with another time
difference that is invariant in a Lorentz transformation. And, indeed, we know such
a quantity: it is the proper time from Sect. 9.10. Denote the proper time by τ and go
from differences to differentials, after which we scrutinize the quantity

dx

dτ
= dx

dt

dt

dτ
= uγu,

which is exactly the space component of the velocity four-vector, while c dt/dτ is the
time component. Therefore, we can conclude that the velocity four-vector is given
by (

c
dt

dτ
,
dx

dτ

)
= γu(c, u).

Therefore, in relativity, we have two definitions of the velocity:

• The “usual” velocity u = dx/dt , which transforms according to the Lorentzian
addition of velocities.We also say: it transforms like a (relativistic) velocity (which
is different from how the position vector x transforms).

• The quantity dx/dτ = γuu, which transforms as the space-component of a four-
vector.

12.3 Digression: Addition of Non-parallel Velocities

To derive the formula for the addition of non-parallel velocities, we consider the
exact same case as in Sect. 12.1, but this time, in three space dimensions.

Then, the object O, which moves uniformly relative to Alice and Bob, has the
space trajectory xO(tO) for Alice and x′

O(t ′O) for Bob. The object’s velocity is

u = �xO
�tO

with �xO := xF − xE and �tO := tF − tE

for Alice and

u′ = �x′
O

�t ′O

for Bob.
The Galileian addition of velocities then would be

u′
x = ux − v,

u′
y = uy , u′

z = uz .

From the Lorentz transformation (11.9) of the object’s position, however, we get
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�x ′
O = γv(�xO − v�tO) = γv

(
�xO
�tO

− v

)
�tO = γv (ux − v) �tO,

�y′
O = �yO , �z′

O = �zO,

�t ′O = γv

(
�tO − v

c2
�xO

)
= γv

(
1 − v

c2
�xO
�tO

)
�tO = γv

(
1 − uxv

c2

)
�tO.

By division, we immediately arrive at the Lorentzian addition for non-parallel
velocities

u′
x = ux − v

1 − uxv

c2

,

u′
y = 1

γv

1

1 − uxv

c2

· uy,

u′
z = 1

γv

1

1 − uxv

c2

· uz,

(12.6)

which corresponds to the addition u′ = u ⊕ (−v), provided that the coordinate sys-
tem is chosen such that v points in the x-direction.

An important observation here is that the γ -factor cancels out in the equation
for ux , but not in those for uy and uz (the transversal components). The denomina-
tor 1 − uxv/c2 is always the same, because it originates from the transformation of
the time.

Note also that the direction of the perpendicular component stays the same,
because u′

y/u
′
z = uy/uz , as required by the principle of relativity.

When both velocities are parallel, we have ux = u and uy = uz = 0, and get,
from (12.6), the already known addition formula (12.1).

If v and u, however, are orthogonal, we have ux = 0, and therefore

u′
x = −v,

u′
y = uy

γv

,

u′
z = uz

γv

.

The reason for the factor γv in the denominator is that the velocities uy , uz were
measured by Bob, and Bob’s clocks, from Alice’s point of view, run more slowly
than her own clocks. Alice therefore thinks that Bob obtained a velocity of the
observed object that is too large, and this is corrected by said factor.

Note that u ⊕ v �= v ⊕ u for non-parallel velocities. This is different from the
Galilei transformation and is cause for some new effects. One of these is the Thomas
precession.
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Exercise 53: Show that, independent of v, from |u| = c, it follows that
∣∣u′∣∣ = c.

The speed of light is the same in all inertial frames. Show also that |u| ≤ c implies
that

∣∣u′∣∣ ≤ c.

12.4 Relativistic Stellar Aberration

12.4.1 Including Relativistic Effects

The explanation of the stellar aberration in Sect. 4.4 has two defects. The first is that
we assumed the existence of a luminiferous aether, which does not exist. The second
is that we have used the Galilean addition of velocities. This is also not completely
correct. We repair these defects now (it was not possible to perform this correction
earlier, because we need the Lorentzian addition of non-parallel velocities to do so).

Abolishing the aether is easy. It just means that we can use whatever inertial frame
we like to perform the calculation – including the inertial frame in which the Sun is
at rest. Therefore, getting rid of the aether does not imply a change in the calculation.
In the next section, we show that the aberration angle is indeed independent of the
inertial frame used to perform the calculation.

So, what is left for us to change is to use the Lorentzian addition of velocities
instead of the Galilean.

Consider again the situation in Fig. 4.20, left side. As in Sect. 4.4, vRS is the
velocity of the star relative to the Sun, vES the velocity of the Earth relative to the
Sun, and, finally, vRE the velocity of the star relative to the Earth.

As in Sect. 4.4, we use the coordinate system in such a way that

vES = vE

(
1
0

)
and vRS = −c ·

(
cosϕ

sin ϕ

)
, (12.7)

where vE > 0.
To become relativistically correct, instead of the Galileian addition of veloci-

ties vRS = vRE + vES (see (4.15)), we have to use the Lorentzian addition of veloci-
ties vRS = vRE ⊕ vES or

vRE = vRS ⊕ (−vES).

Therefore, if we make the identification vRE → u′, vRS → u, and vES → v, where
v → −vE, we can directly use (12.6) and get

vRE,x = vRS,x − vE

1 − vRS,xvE/c2
,

vRE,y = 1

γ (vE)

vRS,y

1 − vRS,xvE/c2
.

Using (12.7) then yields
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vRE,x = −c cosϕ − vE

1 + (vE/c) cos ϕ
,

vRE,y = −c sin ϕ

γE · (1 + (vE/c) cos ϕ)
,

(12.8)

where γE = γ (vE) = γ (−vE).
With the definition of the angle ϕ′, in (4.16) it finally results in the relativistic

aberration formula

tan ϕ′ = vRE,y

vRE,x
= sin ϕ

γE(cosϕ + βE)
. (12.9)

The result, up to the relativistic factor γE, is the same as in (4.16). This factor, because
of vE � c, deviates only slightly from one.

In his paper [Einstein05b], Einstein has given a formula that is different from
(12.9), but equivalent to it. From vRE,x = −c cosϕ′ and the first equation of (12.8),
one gets

cosϕ′ = cosϕ + βE

1 + βE cosϕ
. (12.10)

Still, one question has to be clarified: is it correct to apply the transformation
law for velocities (Galileian or Lorentzian addition of velocities) to the velocity of
waves? This question is subtle, the answer not so easy. In Sect. 4.5.3, we will see that
the group velocity of a wave transforms like the velocity of an object, a (relativistic)
velocity. The phase velocity, however, does not. In Sect. 12.5, then, we will show that
this problem disappears completely in special relativity. But both the phase and the
group velocity of light waves (in vacuum) transform as (relativistic) velocities.

12.4.2 Digression: Clarifications Regarding Stellar
Aberration

Independence of the aberration angle δ from the inertial frame. We show now
that the aberration angle δ is independent of the inertial frame used to calculate it.
Suppose that standard conditions prevail and, in particular, Bob moves relative to
Alice with the velocity v = βc in the positive x-direction. If ϕA is the angle under
which Alice sees a particular star, the angle ϕB under which Bob sees it is given
by (12.10), i. e.,

cosϕB = cosϕA + β

1 + β cosϕA
. (12.11)

To show that this formula is independent of the inertial frame, we introduce a further
inertial frame S0. Relative to this inertial frame, Alice and Bob move with the veloc-
ities vA0 = βA0c and vB0 = βB0c, respectively. The coordinate axes x0, y0, z0 of S0



12.4 Relativistic Stellar Aberration 229

are parallel to the corresponding ones of Alice and Bob and the latter two move on
the x0-axis. If ϕ0 is the angle under which the observer at rest in S0 sees the star, we
have

cosϕA = cosϕ0 + βA0

1 + βA0 cosϕ0
, (12.12)

cosϕB = cosϕ0 + βB0

1 + βB0 cosϕ0
. (12.13)

The independence of the description on the inertial frame is shown if these two for-
mulas imply (12.11). To demonstrate this is rather easy, we just have to invert (12.12)
and plug it into (12.13). Inversion is rather straightforward and gives us

cosϕ0 = cosϕA − βA0

1 − βA0 cosϕA
.

From this, we get

cosϕB = cosϕ0 + βB0

1 + βB0 cosϕ0

= (cosϕA − βA0) + βB0(1 − βA0 cosϕA)

(1 − βA0 cosϕA) + βB0(cosϕA − βA0)

= cosϕA(1 − βA0βB0) + (βB0 − βA0)

(1 − βA0βB0) + (βB0 − βA0) cosϕA

= cosϕA + (βB0 � βA0)

1 + (βB0 � βA0) cosϕA

with

βB0 � βA0 = βB0 − βA0

1 − βA0βB0
,

which is equal to β and which is what we had to show.

Wrong arguments. Since the inception of special relativity, there have been people
who claim that stellar aberration proved it wrong. This incorrect claim is based on a
false understanding of the physics of stellar aberration.

Remember that, when discussing the Doppler effect of light, we concluded that
only the velocities of the source and the observer relative to the luminiferous aether
matter. In special relativity, there is no longer any aether and, likewise, no velocities



230 12 The Lorentz Transformation: Applications

relative to the aether. Only the velocity of the observer relative to the source is left,
and the Doppler effect only depends on this relative velocity.5

In a similar vein, some people claim that, according to special relativity, stellar
aberration can only depend on the relative velocity of the observer and the star.
Thus, they continue, this is not consistent with the experimental findings, because
observations show that stellar aberration does not depend on the motion of a star.

Suppose that the velocity vE in the formula (4.18) for the aberration angle δ in
stellar aberrationwere the velocity of the Earth relative to the star (and not the relative
velocity between two positions of the Earth, as is correctly the case). Now consider
two different stars. The first is at rest relative to the Sun. Thus, the velocity of the
Earth vE,1 relative to this first star is equal to the velocity of the Earth relative to
the Sun, and we can apply what we learned in Sect. 4.4.2. For the perspective of the
Earth, we get an aberration ellipse with a semi-major axis of vE/c = 20.5′′. Let the
second star move with a large velocity vS relative to the Sun, much larger than the
velocity of the Earth, relative to the Sun. Then, the velocity of the Earth relative to
this second star would be vE,2 ≈ vS and we would get an aberration angle vS/cmuch
larger than 20.5′′. This is not observed, as all stars perform ellipses with a semi-major
axis of 20.5′′.

Indeed, special relativity is not wrong, but these arguments are. We have seen that
aberration cannot depend on the relative velocity between the observer and the star
because the direction of the light wave of the star’s light at the location of the observer
only depends on the location where the star was when the wave was emitted. The
velocity of the star when the wave was emitted and the true location of the star when
the wave was detected are completely irrelevant. Aberration is not an effect between
a source and an observer, but rather between two observers.

What we have to show is that the aberration angle is independent of the inertial
frame. We can calculate the observation angle ϕB of Bob from that of Alice and
determine δ from these, or we can go to a different inertial frame, for instance, that
in which the star is at rest, calculate ϕB and ϕA and determine δ from the latter,
whereupon we must get the same result. This is what we showed at the beginning of
this section.

5 This statement has to be made with more precision. If a source emits a wave and the observer
measures the frequency of this wave, then the observer’s finding can only depend on the wave
around the observer. This is in accordance with the principle of locality, which states that an object
can be directly influenced only by its immediate surroundings, and is, on the other hand, required by
the fact that information cannot be transmitted with a velocity faster than light. In the moment when
the observer measures the frequency, the source could already no longer exist. Another possibility
is to say that the Doppler effect can depend only on the difference of the velocity of the source when
the wave was emitted and the velocity of the observer when the wave was observed, as we stated
in Footnote 14. Note also that special relativity does not directly refer to relative velocities. Special
relativity claims that Einstein’s principle of relativity holds and that the Doppler effect cannot
depend on the inertial frame used to describe (or measure) it. Therefore, only relative velocities
can count, and these velocities can only be taken at events that are on the same light cone. The
difference between two velocities “taken at the same time” would be observer-dependent.
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12.5 Lorentz Transformation of Waves

In Sect. 9.6, we have seen that the frequency ν of a wave transforms differently
in special relativity than in classical mechanics: the Doppler formula acquires an
additional factor of γv . To describe completely the transformation of a wave, we still
have to find out what happens to the wavevector k.

12.5.1 Invariance of the Phase and Transformation of a Wave

As shown in Sect. 4.5, the Lorentz transformation must leave the wave’s phase kr −
ωt invariant: the phase ϕ at an event E must be independent of the coordinate system.
Otherwise, the phase of a wave would provide a means to distinguish between two
inertial frames – in contradiction to the principle of relativity.

We start with one space dimension. If (t, x) and (t ′, x ′) are Alice’s and Bob’s
coordinates of an arbitrary event E , respectively, and ϕ(x, t) and ϕ′(x ′, t ′) are the
phase of the wave, the relation

ϕ(x, t) = ϕ′(x ′, t ′)

must be satisfied. In other words, we need

kx − ωt = k ′x ′ − ω′t ′

to be fulfilled.
Hence, for the Lorentz transformation

x = γv · (
x ′ + vt ′

)
,

t = γv ·
(
t ′ + v

c2
x ′

)
,

we need

kx − ωt = kγv · (x ′ + vt ′) − ωγv ·
(
t ′ + v

c2
x ′

)

= γv ·
(
k − v

c2
ω

)
x ′ − γv(ω − vk)t ′

!= k ′x ′ − ω′t ′.

The direct consequence is that the wavevector k and the angular frequency ω, under
Lorentz transformations, must transform as follows:
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k ′ = γv ·
(
k − v

c2
ω

)
,

ω′ = γv · (ω − vk).
(12.14)

This is the Lorentz transformation for k and ω.
If we go to three space dimensions, kx − ωt is replaced with kx − ωt and, in

the same way as above, we get (remember that the relative velocity v points in the
x-direction)

k ′
x = γv ·

(
kx − v

c2
ω

)
, k ′

y = ky , k ′
z = kz,

ω′ = γv · (ω − vkx ).
(12.15)

Just like the transversal components y and z of the position vector, the transversal
components ky and kz of thewavevector do not transform in aLorentz transformation.

If we replace kwith r andω/cwith ct , this becomes the Lorentz transformation of
space and time. Therefore, (ω/c, k) is a four-vector. It is called the four-wavevector
or wave four-vector .

The relativistic invariant related to the four-wavevector is

ω2 − c2k2. (12.16)

For light in vacuum and in an inertial frame, we have ω = c|k|, and therefore ω2 =
c2k2. Then, according to (12.16), in any other inertial frame, we have ω′2 = c2k′2
or ω′ = c

∣∣k′∣∣. This is nothing but a manifestation of the principle of the absolute
speed of light. Note that, in the classical case (Galilei transformation), according
to (4.22), we would have ω′(k′) = c|k| − vk.

12.5.2 The Doppler Effect and Aberration for Light Waves

Now that we know how to Lorentz transform a general wavevector, we can easily
derive the formulas for the Doppler effect and aberration.

We have already treated aberration several times. First in Sects. 4.2.5 and 4.4
under the assumption of a luminiferous aether and without taking the effects of
special relativity into consideration. Then, in Sect. 12.4, this time relativistically. But
in all these discussions, we, strictly speaking, considered velocities instead of waves.
The Doppler effect was already treated classically in Sect. 4.2.4 and relativistically
in Sect. 9.6. We repeat the discussions here, but in a different setting. This time,
we make use of our knowledge on how the four-wavevector (ω/c, k) transforms.
This implies a different setting. In the former sections, either Alice and Bob carried
the source and the other was the observer. Now, we only refer to the wave that was
emitted at some time by the source, and the observers Alice and Bob.

Let Alice and Bob be in standard configuration, i. e., Bob moves relative to Alice
with the velocity v = vex .
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Fig. 12.3 For the derivation
of the formulas for the
relativistic Doppler effect
and aberration

x

y

v

ϕ

k

If k is the wave vector of the wave, −k points to the location where the source
was when it emitted the wave. In the following, we use the unit vector e−k := −k/k,
which points in the direction from which the wave comes.

Now let ϕ with cosϕ = e−kex be the angle between−k and the direction of Bob’s
velocity relative toAlice, which is the x-direction. Then, the plane light wavemoving
with the phase velocity c has the four-wavevector

(ω/c, kx , ky, kz) = ω

c
(1,− cos ϕ,− sin ϕ, 0).

ALorentz transformation (12.15) nowyields the four-wavevector (ω′/c, k ′
x , k

′
y, k

′
z)

= (ω′/c)(1,− cos ϕ′,− sin ϕ′, 0) for Bob:

ω′ = γv(ω − vkx ) = γvω
(
1 + v

c
cosϕ

)
,

k ′
x = γv

(
kx − v

c2
ω

)
= −γv

ω

c

(
cosϕ + v

c

)
!= −ω′

c
cosϕ′,

k ′
y = ky = −ω

c
sin ϕ

!= −ω′

c
sin ϕ′,

k ′
z = 0 .

The first equation is the relativistic Doppler effect for an arbitrary direction of
motion of the source. If Bob travels in the exact direction from which the wave
comes, we have ev = e−k and the formula becomes that for the longitudinal Doppler
effect (9.4). If, however, Bob travels exactly perpendicular to the direction from
which the wave comes (for Alice), we have ev ⊥ e−k and recover the formula for the
transversal Doppler effect (9.5).

The remaining equations contain the relativistic aberration. Dividing these yields
the relativistic aberration formula

tan ϕ′ = 1

γv

sin ϕ

cosϕ + β



234 12 The Lorentz Transformation: Applications

with β = v/c, which is equal to (12.9).
A word of caution. In one space dimension, one has to pay attention to the signs.

Let us choose v > 0 and consider the second equation of (12.14). If the wave comes
from Bob’s right, then k = −ω/c has to be used, because the wave with k > 0 does
not arrive at Bob’s location. In this case,

ω′ = γvω · (1 + v/c) > ω (12.17)

and the wave frequency is larger for Bob than for Alice. If, however, the wave comes
from Bob’s left then k = +ω/c. In this case,

ω′ = γvω · (1 − v/c) < ω (12.18)

and the wave frequency is smaller for Bob.

12.5.3 The Transformation of the Wavevector in Classical
and Relativistic Physics

Let us compare the Galilei transformation (left side, see also (4.20)) with the Lorentz
transformation (right side, see also (12.14)) of the angular frequency ω and the wave
number k of a wave:

ω′ = ω − vk, ω′ = γv · (ω − vk),

k ′ = k, k ′ = γv ·
(
k − v

c2
ω

)
.

The transformation of the frequencyω is basically theDoppler formula. For example,
if we deal with a wave with phase velocity cW in the unprimed inertial frame, we just
have to set ω = cWk in the transformation formulas for ω (this means that there is a
medium and it is at rest in the unprimed reference frame) and get the classical Doppler
formula ω′ = ω · (1 − v/cW) or the relativistic one ω′ = ω · γv · (1 − v/cW), the
difference between the two being merely just the additional factor γv .

For the wavevector k, the situation is very different. In the Galilei transformation,
it does not transform at all, while, in the Lorentz transformation, it transforms like
the space component of a four-vector. The ultimate reason for this is that time is
absolute in the Galilei and relative in the Lorentz transformation.

Why? Consider the situation in three space dimensions. The wave vector k is
perpendicular to the wavefront and points in the direction of an increasing phase (for
fixed time). The length of k is given by 2π divided by the wavelength λ. The latter
is the minimal distance between two wavefronts to the same phase.
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A wavefront (which is a plane for plane waves) is the set of all points that have
the same phase at the same time. Different concepts of simultaneity lead to different
wavefronts. This is the reason why k is absolute in classical physics and relative in
special relativity.

We will now demonstrate geometrically that a wavefront is different for different
inertial observers.

Why the wavevector transforms. To this end, we need at least two space dimen-
sions, and therefore our explanation uses (2+1)-dimensional spacetime.6 In two space
dimensions, wavefronts are lines (instead of planes, as in three space dimensions) and
a wavefront in (2+1)-dimensional spacetime traces a two-dimensional world plane7

(in the same way as an event traces a world line).
Suppose that a plane light wave (ω = ck) moves in the positive y-direction (see

Fig. 12.4).8 The figure on the left shows the world plane of the wavefront given
by y = 0, t = 0 in red. Theworld plane of thewavefront is saidwavefront’s trajectory.
The spacial form of the wavefront at a fixed time t is the line that results from
intersecting the world plane with a plane of fixed time t . And due to the fact that
the planes of simultaneity are different for different inertial observers, the spacial
form of the wavefront is also different for different inertial observers. This is what it
means when we say that the wave number vector k transforms.

Now, what do the wavefronts look like for our inertial observers? From Alice’s
point of view, we intersect the world plane of the wavefront with a plane of fixed t ,
and therefore with a plane parallel to the x-y-plane, and get one of the blue lines in
Fig. 12.4 on the left and the middle. For Alice, the wave vector k is perpendicular to
it, and therefore parallel to the y-axis: k = (0, ky).

Bob moves relative to Alice with the velocity v in the direction of the negative
x-axis, v = (−v, 0), which is perpendicular to the wavevector k (for Alice). Bob’s
coordinate system has the coordinates x ′ and y′, which are related to Alice’s coordi-
nates via a Lorentz transformation (11.9) (with v replaced with −v). To determine
the world line of the wavefront for Bob, we again have to take the world plane of the
wavefront for a fixed time t ′ (i. e., for Bob) and intersect it with a plane parallel to
the x ′-y′-plane. The lines that we get in this way are depicted in green in the figure
on the left and on the right and are not parallel to the x ′-axis. For this reason, the
wavevector k′ is not parallel to the y′-axis: k′ = (k ′

x , k
′
y) with k

′
x �= 0.

Determination of the change of k from the spacetime transformation. Let us
geometrically determine this effect from the Lorentz transformation of spacetime
and Fig. 12.4. The Lorentz transformation is given by

6 For an extensive discussion of aberration and the transformation of the wavevector, see, for
instance, [LiebscherBrosche98].
7 This term is non-standard. Sometimes, the term world sheet is used for the surfaces that strings
are tracing in spacetime. Here, we have a special string: a line.
8 Actually, there is no reason to restrict these considerations to a light wave. The argument works
equally well for waves with a phase velocity vp < c.
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ct

ct′

y, y′

x

x′

k
x

y

k′

x′

y′

Fig. 12.4 Transformation of a wavefront or a wavevector k, respectively

x ′ = γv · (x + vt), y′ = y,

t ′ = γv ·
(
t + v

c2
x
)

and the wavefront by y = ct . What do the wavefronts in space quantitatively look
like?

For Alice, at t = 0, the wavefront is simply given by y = 0. The wave vec-
tor k is proportional to the unit vector ek = (0, 1). For Bob, we take t ′ = 0.
From y′ = y = ct = cγv · (t ′ − (v/c2)x ′) follows y′ = −γv · (v/c)x ′ for the wave-
front at t ′ = 0. The wavevector k must be perpendicular to the wavefront, and there-
fore is proportional to (γv · v/c, 1), i. e., parallel to the unit vector ek ′ = (v/c, γ −1

v ).
Therefore, the wavefronts (or the wavevector) rotate (or are sheared, to be more
precise). The reason for this is the relativity of simultaneity.

Direct Lorentz transformation of the four-wavevector. Let us directly transform
the four-wavevector, which is k = k0 · (0, 1) and ω = ck0 for Alice. For Bob, we get

k ′
x = γv ·

(
kx + v

c2
ω

)
= γv · v

c
k0,

k ′
y = ky = k0,

ω′ = γv · (ω + vkx ) = γvω = γv · ck0.

Therefore, the wavevector is k′ = k0 · (γv · v/c, 1) for Bob. The associated unit vec-
tor is ek ′ = (v/c, γ −1

v ), exactly as determined above geometrically.
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For the magnitude of the wavevector in the primed reference frame, we get

∣∣k′∣∣ = k0 ·
√
1 + γ 2

v

v2

c2
= γvk0,

which is larger than k0. This is clear because the y-component stays the same and
a non-vanishing x-component appears. Note also that ω′ = c

∣∣k′∣∣, which is required
by the principle of the absolute speed of light.

From this, for the wavelength, we get

λ′ = λ0/γv,

and therefore the wavelength is smaller for Bob. Note that this is not directly explain-
able with length contraction. As the relative motion of Alice and Bob is in the x-
direction, there is only a length contraction in the x-direction. However, the wave,
as seen by Alice, travels in the y-direction. The fact that, for Bob, the x-component
does not vanish causes the wavelength to shrink, and the shrinking factor is γv due
to an interplay between both coordinate directions.

12.5.4 Again: The Velocity of a Wave

In this section, we investigate how the phase and group velocity of a wave transform.
We consider waves in general, not only light waves.

Light waves. To discuss (12.14), we first consider light waves (waves with a phase
velocity of c). For these, ω = ck and the Lorentz transformation of the angular
frequency becomes nothing but the relativistic Doppler effect that we discussed in
Sect. 9.6 (here, for v > 0, source and observer move toward each other) and demon-
strated in Sect. 12.5.3. Remember that the difference between the classical and the
relativistic Doppler effect, the factor γv , is due to time dilation. The transformation
of the wave number becomes

k ′ = γv ·
(
1 − v

c

)
k,

which is the same formula again as for the relativistic Doppler effect when ω′ = ck ′.
But the latter relation must be satisfied, as the speed of light is the same in all inertial
frames. Hence, for light, the transformation of k is not very surprising.

We show now that the phase velocity, the group velocity, and the unit vector ek :=
k/k of the wavevector are all equal for a wave with speed c and that this is true for
all inertial observers.

As we have shown already (for instance, in (12.16)), for light, the dispersion
relation in the unprimed reference frame is ωk = c|k|, while, in the primed reference
frame, it is ω′

k′ = c
∣∣k′∣∣. Therefore, it has the same form in both inertial frames, and

this is required because of the principle of the absolute speed of light.
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The phase velocity vp and the group velocity vg are defined by (4.23) and (4.24),
respectively. They are equal for dispersion relations of the form ωk = vp|k| and
we have vg = cek and vg = cek ′ for light. Both are directly proportional to the unit
vector ek (or ek ′) of the wave number. To show that all three quantities transform as
(relativistic) velocities, we have to prove this only for one of them, and we select c
times ek , the unit vector of the wavevector k.

Let us choose the standard configuration, so that the relative velocity between the
two inertial frames v points in the positive x-direction. Furthermore, if we denote
the components of the phase velocity by vp,i , where i = x, y, z, we have

vp,i = c
ki
k

,

where ki is the i-component of thewavevector and k := |k| its magnitude.We deduce
the transformation behavior of the vp,i from that of the ki and k.

The quantity (ω/c, k) is a four-vector,whichmeans that it transforms as in (12.15).
For light, we have ωk = c|k| = ck and ω′

k′ = c
∣∣k′∣∣ = ck ′, and therefore

k ′ = γv ·
(
k − v

c
kx

)
= γv ·

(
1 − v

c

kx
k

)
k = γv ·

(
1 − vvp,x

c2

)
k

from the Lorentz transformation of ω. On the other hand, the Lorentz transformation
of kx gives us

k ′
x = γv ·

(
kx − v

c
k
)

= γv ·
(

vp,x − v

c

)
k.

The components of the phase velocity vp (or wavevector’s unit vector ek) therefore
transform as

vp,x = c
k ′
x

k ′ = γv · (vp,x − v)k

γv ·
(
1−vvp,x

c2

)
k

= vp,x − v

1 − vvp,x

c2
,

vp,y = c
k ′
y

k ′ = ky

γv ·
(
1−vvp,x

c2

)
k

= 1

γv

1

1 − vvp,x

c2
· vp,y,

vp,z = c
k ′
z

k ′ = kz

γv ·
(
1−vvp,x

c2

)
k

= 1

γv

1

1 − vvp,x

c2
· vp,z .

Comparison with (12.6) shows that the phase velocity transforms exactly as a (rel-
ativistic) velocity. Therefore, the phase velocity of light waves is a (relativistic)
velocity, as are the group velocity and the unit vector of the wavevector.

We summarize: for light waves,

vg = vp = cek

and all these quantities transform as (relativistic) velocities.
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“Slow” waves. Second, we look at slow waves with ω = uk and u < c. In this
case, (12.14) yields

k ′ = γv ·
(
k − v

c2
ω

)
= γv ·

(
1 − uv

c2

)
k,

ω′ = γv · (ω − vk) = γv · (u − v)k,

and therefore
ω′

k ′ = u − v

1 − uv
c2

.

Because vp = ω/k = u is the phase velocity, this means that the phase velocity of a
wave transforms like a relativistic velocity. This, however, is only true if the phase
velocity is parallel to the relative velocity v of the observers. Otherwise, for “slow”
velocities, the phase velocity no longer transforms like a (relativistic) velocity. In
other words: the phase velocity of “slow” waves is no longer a (relativistic) velocity.
The group velocity of “slow” waves, however, still transforms as a velocity. There-
fore, when we talk about the velocity of a “slow” wave, we should have its group
velocity in mind.

We summarize: for “slow” waves, in general,

vg �= vp .

The group velocity vg transforms as a (relativistic) velocity. The phase velocity vp
transform as a (relativistic) velocity only if it is parallel to the relative velocity v of
the observers.

Note that the fact that the phase and the group velocity transform differently
for u < c is not a contradiction of the principle of relativity. For waves with u < c,
a medium is always needed, and the rest frame of this medium is a special reference
frame. If we put the observer in a different inertial frame, but not the medium, the
principle of relativity does not apply.

12.6 The Michelson-Morley Experiment Revisited

In Sect. 5.2,we tried to describe theMichelson-Morley experiment under the assump-
tions (a) that there is a special inertial frame (the “aether”) in which the light moves
with the speed c in all directions and (b) that the speed of light in other inertial frames
is given by the Galileian addition of velocities.

Then, if the interferometer moves with the velocity vsif relative to the supposed
special inertial frame, for the light pulse in the interferometer arm, we get a traveling
time (5.2) for the interferometer arm parallel to the direction of movement. This is
different from (5.3), the traveling time for the interferometer arm perpendicular to
the direction of movement. The experiment, however, shows that this is wrong, and
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one actually gets the same traveling time for both interferometer arms (provided that
both have the same rest length).

What happens according to special relativity? There is no special inertial frame.
We consider the following situation: both Alice and Bob are in an inertial frame.
Bob’s inertial frame moves with velocity v relative to Alice’s inertial frame. And
Bob carries the Michelson-Morley interferometer with him (see Fig. 12.5 on the
left).

We describe the experiment first from Bob’s and then from Alice’s perspective.
The lengths and time differences measured by Alice are denoted by L and T , respec-
tively, and those measured by Bob are marked with a subscript 0, because these are
the quantities measured at rest: L0 is the rest length of the interferometer arms, which
is considered to be the same for both arms.

Bob’s perspective. Bob’s description of the experiment is trivial. For him, the two
interferometer arms are equal in length and the speed of light is absolute and equal
in all directions. Therefore, the total traveling time for the light pulse (from the beam
splitter to the mirror and back) is the same in both interferometer arms: T0 = 2L0/c.
For the speed of light, Bob gets 2L0/T0 = c.

Alice’s description. For Alice, light moves with speed c in her inertial frame, and
she uses her clock and her meter stick to measure times and lengths. We use the
following times and lengths in the discussion:

L‖ length of the parallel interferometer arm

T‖+ time needed from beam splitter to mirror M‖
T‖− time needed from mirror M‖ to beam splitter

T‖ time needed from beam splitter to mirror M‖ and back

L⊥ length of the perpendicular interferometer arm

T⊥+ = T⊥− time needed from beam splitter to mirror M⊥ or back

T⊥ time needed from beam splitter to mirror M⊥ and back

and have

T‖ = T‖+ + T‖−,

T⊥ = T⊥+ + T⊥− = 2T⊥+ = 2T⊥−.

In (5.2) and (5.3), we calculated the time that light pulses need to pass through
the interferometer arm parallel to the traveling direction of the interferometer and
perpendicular to it, respectively. There, we assumed that the interferometer moves
relative to a special inertial frame in which the speed of light is the same in all
directions. Here, the interferometer moves relative to Alice’s inertial frame and, for
Alice, of course, the principle of the absolute speed of light holds. Therefore, the
results (5.2) and (5.3) for the traveling time in the parallel and the perpendicular arm,
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Fig. 12.5 Amoving Michelson-Morley interferometer, from Alice’s perspective (green coordinate
axes with coordinates x, y, t). Left: In space. Right: In spacetime. The beam splitter is located on
the t ′-axis and M‖ and M⊥ denote the locations of the mirrors. The gray triangle is perpendicular
to the x-y-plane

respectively, of the interferometer still hold.We just have to replace the velocity of the
interferometer relative to the special inertial frame with the velocity relative to Alice.

There is one difference, however. The length of the parallel interferometer arm,
for her, is contracted, L‖ = L0/γv . From (5.2), she gets the total traveling time T‖ =
(2L‖/c)γ 2

v = 2γvL0/c. For the arm perpendicular to the traveling direction, she
can directly use (5.3). The length of the interferometer arm is not contracted for
her and she gets T⊥ = 2γvL0/c. So, Alice gets equal traveling times T‖ = T⊥ =
2γvL0/c. From her perspective, the effect of the moving interferometer arms on the
traveling times of the light pulse is compensated by the Lorentz contraction of the
interferometer arm lengths.

Indeed, length contraction is sufficient to explain the results of the experiment by
Michelson and Morley, and this is what was done by FitzGerald and Lorentz (see
Sect. 5.3.4). To demonstrate time dilation, other experiments are needed.

Light trajectories. We now follow the path of a light pulse in the Michelson-
Morley interferometer (see Fig. 12.5, right side). The light pulse comes from the
light source and gets split into two partial pulses at event E0 in the beam splitter.
First, we follow the partial pulse through the parallel interferometer arm. It gets
reflected at the mirror at event E‖,1 and is back to the beam splitter at E‖,2, where
it interferes with the other partial pulse. Second, we follow the other partial pulse
through the perpendicular interferometer arm. It gets reflected back at the mirror
at event E⊥,1 and is back to the beam splitter at E⊥,2, where it interferes with the
other partial pulse. The events E‖,2 and E⊥,2 must be equal (same location, same
time), otherwise, there would be no constructive interference. This is true for Bob,
and therefore, it must also be true for Alice.
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Let the interferometer arms have the rest length L0. We denote Bob’s coordi-
nates with a prime and Alice’s coordinates without a prime and use the standard
configuration. Then, the Lorentz transformation is

t = γv ·
(
t ′ + v

c2
x ′

)
,

x = γv · (x ′ + vt ′),
y = y′

with v > 0. From this, we get, for the events:

Event Bob (t ′, x ′, y′) Alice (t, x, y)
E0 (0, 0, 0) (0, 0, 0)
E‖,1 (1, c, 0) · L0/c (1, c, 0) · γv · (1 + v/c)L0/c
E‖,2 (1, 0, 0) · 2L0/c (1, v, 0) · 2γvL0/c
E⊥,1 (1, 0, c) · L0/c (γv, γvv, c) · L0/c
E⊥,2 (1, 0, 0) · 2L0/c (1, v, 0) · 2γvL0/c .

Note that E‖,2 = E⊥,2; we will also refer to this event as E2.
Directly from the Lorentz transformation, for Alice, in the traveling times in

parallel direction are

T‖+ = γv · (1 + v/c)L0/c,

T‖− = T‖ − T‖+ = 2γvL0/c − γv · (1 + v/c)L0/c = γv · (1 − v/c)L0/c,

T⊥ = γvL0/c,

and with the contracted length L‖ = L0/γv and L⊥ = L0, we can write

T‖± = γv · (1 ± v/c)L0/c = γ 2
v · (1 ± v/c)L‖/c = 1

c ∓ v
L‖,

T⊥ = γv

L⊥
c

,

which is exactly the same as the classical result (see (5.2) and (5.3)). Therefore,
the γv-factors that appear here for Alice are not related to time dilation. For Alice,
the interferometer moves and the light pulse has to travel a distance that is longer
than L0. In the perpendicular direction, the distance that the light travels from E0

to E2 is 2γvL0 = 2γ 2
v L‖. In the parallel direction, the distance must be the same for

Alice and Bob, otherwise, the light pulses would not meet at E2.

Interference pattern. In the Michelson-Morley experiment, the experimenter
actually does not measure the traveling time of light pulses in the two interferometer
arms, but rather observes an interference pattern. And this interference patternmust
not depend on the motion of the Michelson-Morley interferometer, i. e., it must not
depend on the inertial frame. But this is clear, and the reason for this is that the two
partial light rays meet at the same event E2 – independent of the observer.
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Why is this the case? The point is that the plane wave along the light ray has a
constant phase. To demonstrate this, we take a plane wave with wavevector k that
has the phase velocity vp = cek and a light ray given by r(t) = vpt + r0, which
yields r − ekct = r0. If we multiply this with k, we get kr − ckt − kr0 = 0 or kr −
ωt = kr0 ≡ ϕ0. Therefore, the phase of a plane wave on the light ray in spacetime
is constant.



Chapter 13
Energy and Momentum

Our investigations into special relativity so far have been centered around space and
time. Next, we consider energy and momentum.

We will find out that the definitions of the kinetic energy Ekin = mv2/2 and the
momentum p = mv from classical mechanics do not satisfy the demands of special
relativity and must be modified. In special relativity, we have other formulas for
the energy and the momentum, and we sometimes refer to them as the relativistic
kinetic energy and the relativistic momentum. The relativistic energy is the “cor-
rect” energy and the classical expression is just an approximation of it. The sameholds
for the momentum. For this reason, we will identify the classical expressions with a
subscript “cl” and, when referring to them, we will explicitly talk about the classical
energy or momentum. In other words, we have pcl = mv and Ecl,kin = mv2/2. The
names E , Ekin, p, etc., from now on, will be associated with the relativistically cor-
rect quantities for energy and momentum.Wewill consequently call them the energy
and the momentum, and only sporadically, for clarity, add the adjective “relativistic”.

In the subsequent sections, we derive the expressions for the relativistic energy
and momentum. We start in Sect. 13.1 with the (relativistic) energy and present Ein-
stein’s original derivation [Einstein05b] from the year 1905. This is a very short
and ingenious derivation that, in Sect. 13.2, we complement with a discussion on
what the mysterious “conversion of mass into energy” means. For the case of the
(relativistic) momentum, a similar derivation was developed by Lewis and Tol-
man [LewisTolman09] and published in 1909. We present it in Sect. 13.3. After
deriving the expression for the (relativistic) energy and the (relativistic) momentum,
we illuminate their interplay in Sect. 13.4 and show that the energy and the momen-
tum together form a four-vector. Finally, in Sect. 13.5, we illuminate the role of the
conservation laws, which play a central role in physics.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
T. Strohm, Special Relativity for the Enthusiast,
https://doi.org/10.1007/978-3-031-21924-5_13

245

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21924-5_13&domain=pdf
https://doi.org/10.1007/978-3-031-21924-5_13


246 13 Energy and Momentum

S0

S1

h̄ω0 h̄ω0

S0

S1

v

h̄ω− h̄ω+

Fig. 13.1 To the equivalence of mass and energy. Left: Alice’s perspective, atom at rest. Right:
Bob’s perspective, atom moves with velocity v to the right

13.1 The Relativistic Energy

The most popular formula of physics is probably Einstein’s E = mc2. We dedicate
this section to it.

13.1.1 Gedanken Experiment

To introduce the topic, we follow Einstein’s steps in his original publication
[Einstein05b] and consider the following experiment.

When we measure the energy of an atom, we cannot get an arbitrary value, but
just one out of a discrete set of values—this is directly reflected in the lines of an
emission spectrum of a gas. In this vein, Einstein, in his derivation, considered an
idealized atom that can only be in one of two possible (internal) states, the ground
state S0 (the state with the lowest energy) or the excited state S1. He further supposed
that, when the atom is in the excited state, it can “jump” into the ground state while
simultaneously emitting twophotons (light particles) of the same frequency in exactly
opposite directions (see Fig. 13.1, left). For this reason,when the atom is at rest before
the emission, it is also at rest after the emission: when emitted, the photons push the
atom with the same force in opposite directions, and therefore the total force on the
atom vanishes.1

We proceed by discussing the emission event from two different points of view:
once in Alice’s inertial frame, where the atom is at rest, and once in Bob’s inertial
frame, where the atom moves with velocity v > 0 in the direction of the emission
of the right photon (therefore, Bob moves with velocity −v relative to Alice). The
central finding will be that, for Bob, the photons take more energy away from the
atom than for Alice. In both inertial frames, however, the total energy is conserved.
Therefore, from Bob’s point of view, the atom looses more energy in the emission
event than for Alice. We will see that the classical kinetic energy Ecl,kin = mv2/2 is
not consistent with this behavior.

1 Some years later, quantum theory, would confirm Einstein’s idea of how atoms and light interact.
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Alice’s perspective. First, we consider the emission event from Alice’s point of
view, i. e., in the rest frame of the atom. The energy of the resting atom in the ground
state S0 will be denoted by E0(0) and that in the excited state S1 by E1(0), respectively
(in parenthesis, we put the velocity of the atom, which, for Alice, vanishes). The
difference is�E(0). The frequency of the photons isω0. In quantum theory, we learn
that a photon of this frequency has an energy of �ω0, where � is the Planck constant,
the fundamental physical constant, which is of utmost importance in quantum theory.
Before the emission event, the total energy was E1(0), and after it, the total energy
is composed of the energy of the atom and the energies of the two photons and is
E0(0) + 2�ω0. Therefore, we have the energy balance

�E(0) = E1(0) − E0(0) = 2�ω0. (13.1)

Bob’s perspective. Now, we discuss the moving atom. To describe the atom’s
state, we now need to specify whether it is in (internal) state S0 or S1 and its velocity.
The energy of the atom will now depend on both. That’s why we call the state Si of
the atom the internal state and use the term state for its internal state plus its velocity.

After this clarification, we consider the emission event from Bob’s point of view.
The atom before the emission event is in the excited state S1 and moves with veloc-
ity v.We denote its energy by E1(v). Then, it emits the two photons, and subsequently
enters into the ground state S0 and has the same velocity v as before,2 along with
the energy E0(v). Let �E(v) again denote the difference between these energies.
Because of the (longitudinal) Doppler effect (9.4), the two photons (fromBob’s point
of view) now have frequencies that are different from ω0, and also differ mutually.
The energy balance becomes

�E(v) = E1(v) − E0(v) = �ω− + �ω+

= �

√
1 − v/c

1 + v/c
ω0 + �

√
1 + v/c

1 − v/c
ω0

= 2γv�ω0.

(13.2)

As the factor γv is larger than 1 for v �= 0, we have�E(0) < �E(v). In other words:
described in a systemwhere the atommoves, the photons “extract” more energy from
the atom than from the resting atom! And this in spite of the same change of the
atom’s internal state. We conclude that the difference of the atom’s energy in the
internal states S1 and S0 depends on its velocity.

Why did Einstein choose this exact Gedanken experiment to derive the relativistic
formula for the energy? One ingredient of the Gedanken experiment is to describe an
experiment fromdifferent inertial frames. This is nothing newhere, we have done this
in almost all derivations so far. The reason for this is that this allows us to implement
Einstein’s principle of relativity. A challenge that Einstein had in his derivation is

2 If it changed its velocity for Bob, it could not stay at rest for Alice.
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Fig. 13.2 States and transitions of the atom in Einstein’s Gedanken experiment

that, at that point, he was only in possession of the relativistic kinematics: how space
and time behave. But there was no obvious relation of the energy to the results up to
that point. The trick that he used was to relate the energy to a kinematic quantity:
the frequency of the emitted photons. The transformation behavior of frequencies
was clear, and he related this to the concept of energy via the equation E = �ω from
quantum theory. Also essential to his Gedanken experiment was the fact that the
system (atom) has a discrete energy spectrum, because energy differences are then
easy to identify.

13.1.2 The Relativistic Energy

Now, we need to find the concrete expression for the energy Ei (v), which must
fulfill the requirements that emerged from our Gedanken experiment and which are
summarized in Fig. 13.2.

Let us start by repeating the gist of the findings from Einstein’s Gedanken exper-
iment. In Fig. 13.2, the four bullets represent the states of the atom: the atom at rest
corresponds to the two bullets on the left and the moving atom corresponds to the
two bullets on the right. The lower two bullets correspond to the ground state S0 and
the upper two bullets to the exited state S1. Next to each state/bullet is its energy.
The downward arrows indicate a transition from the excited state to the ground state
(without changing the velocity v), and next to them is the transition energy.

The energy Ei (0) with i = 0, 1 is the rest energy of the atom and depends on the
internal state. We define the (relativistic) kinetic energy Ekin,i of the atom in the
internal state i as the difference between the energy and the rest energy:

Ekin,i (v) := Ei (v) − Ei (0).

It depends on both, the velocity and the internal state.
To summarize, we have to find the function Ei (v) that obeys the following con-

ditions3:

3 Note that this is a purely mathematical problem, there’s no physics in it. Condition 1 is a linear
system of two equations, and even if we consider E0(0) as given, it has three unknowns (E1(0),
E0(v), E1(v)), and therefore does not have a unique solution. Condition 2 is absolutely essential.
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1. The two relations
E1(0) − E0(0) = 2�ω0,

E1(v) − E0(v) = 2γv�ω0
(13.3)

hold.
2. For small velocities, Ei,kin(v) = Ei (v) − Ei (0) becomes equal to the classical

expression mv2/2.

First try. To find the expression for Ei (v), we can first try the obvious thing:
an ansatz that is similar to that in classical physics and is composed of the rest
energy Ei (0) of the object that only depends on its internal state plus a kinetic
energy Ekin(v) that only depends on the velocity v of the object, but not on its
internal state:

Ei (v) = Ei (0) + Ekin(v). (this is just a try)

From this follows

�E(v) = E1(v) − E0(v) = E1(0) − E0(0) = �E(0),

which is in contradiction to the fact in (13.3) that, at different velocities, the photons
extract different amounts of energy from the atom (see Fig. 13.2).

Second try. Therefore, the dependence of the energy on the internal state Si and
the velocity v cannot be separated additively. We make the multiplicative ansatz

Ei (v) = Ei (0) · f (v), (13.4)

where f (v) is a continuous function of v and, according to our condition 2, has
to fulfill limv→0 f (v) = f (0) = 1. Note that the arrows pointing to the right in the
diagram in Fig. 13.2 now indicate a multiplication with f (v).

Then, as the diagram nicely shows, E1(v) can be calculated from E0(0) in two
different ways, namely,

E1(v) = (E0(0) + �E(0)) · f (v),

E1(v) = E0(0) · f (v) + γv�E(0).

From this, we get f (v) = γv , and eventually

Ei (v) = γv Ei (0). (13.5)

This is the sought-for expression for the energy of the atom when it is in the internal
state i and moving with velocity v. We discuss several aspects of this formula now.

Size of rest energy and zero point of the energy. In classical physics, the total
energy of an object is only defined up to an additive constant; there is no fixed zero
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point on the energy scale. Often, the total energy of an object is divided into different
types of energy. Usually, this is the internal energy (which, e. g., may depend on the
temperature of the object), the potential energy (which depends on the location of the
object in a force field, like the gravitational field or the electromagnetic field) and the
kinetic energy (which depends only on the object’s velocity).While the kinetic energy
has a zero point (it vanishes for v = 0), the other energy types do not. The potential
energy of an object in a gravitational field at a certain location is not defined, only
the difference between the potential energies of an object at two different location is.

The Eq. (13.5), however, fixes the zero point for the energy scale and is not
invariant upon a scale shift. If we substitute E → E + C , where C is an arbitrary
constant, we get Ei (v) = γv Ei (0) + (γv − 1)C , which has this extra term (γv − 1)C ,
and is therefore different from (13.5).

Where is this zero point located? Consider the atom in internal state S0. For our
ansatz, its typical kinetic energy is given by

Ekin,0(v) = E0(v) − E0(0) = (γv − 1)E0(0).

For small velocities, this becomes

Ekin,0(v) ≈ E0(0)
v2

2c2
. (13.6)

We can now compare the rest energy E0(0) with a “typical” kinetic energy and get

Ekin,0(v)

E0(0)
≈ v2

2c2
.

Because of v � c, v2/(2c2) is very small, and therefore the rest energy E0(0) of
an object is much larger than its kinetic energy. The kinetic energy of an object that
moves with v = 108 km/h = 30m/s is 2c2/v2 = 2 · 1014 times smaller than its rest
energy! Its rest energy is huge!

Relation between mass and energy. So far, we have not used the mass, therefore,
we have to introduce it somehow. But this is easy now. We already saw, in (13.6),
what the expression of the relativistic kinetic energy for small velocities looks like.
Clearly, this must be the same as the well-known expression Ecl,kin = mv2/2 for the
kinetic energy from classical mechanics. Comparing these two expressions yields

E0(0) = mc2,

which is Einstein’s famous formula. It says that the mass of an object is nothing
but its rest energy divided by the constant c2.

Remember that, in the derivation of (13.6), we assumed the atom to be in internal
state S0. To get rid of this restriction, we now define the mass as the rest energy
divided by c2, which makes the mass of the atom depend on the internal state Si of
the atom:
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mi := Ei (0)/c2. (13.7)

The mass, by definition, does not depend on the velocity v of the atom. Moreover,
the dependency on the internal state is very small and usually plays no role. This is
why classical physics can live with a mass that does not depend on the internal state.

To demonstrate that the change of the mass �m = �E(0)/c2 due to a change of
the internal state of an object is much smaller than the mass m = E(0)/c2 itself, we
calculate the ratio

�m

m
= �E(0)

E(0)

for the hydrogen atom.
The rest energy of the hydrogen atom is4

E(0) = mpc
2 + mec

2 = (938.272 + 0.511)MeV = 938.783MeV,

and is given here in electronvolts (eV), which is the energy unit typically used in
atomic and nuclear physics.

On the other side, the maximal change of the rest energy by a change of the
internal state while still not wresting away the electron from the hydrogen nucleus is
the hydrogen atom’s ionization energy with the value of Eioniz = 13.6 eV. Therefore,
we get

�E(0)

E(0)
= Eioniz

E(0)
= 1.45 · 10−8.

So, the ratio of a possible mass change to the mass itself is very small. The mass of
an object, for all practical purposes, does not change when the object’s internal state
changes (e. g., through heating).

The dependence of the (relativistic) energy of an object on its mass now is easy
to derive. We just have to plug the definition of mass (13.7) into (13.5) and drop the
index i .

An object of mass m that moves with velocity v has the (velocity-dependent)
(relativistic) energy

E = γvmc2. (13.8)

Here, m is themass that depends on the internal state of the object but, not on
its velocity.

With the (relativistic) kinetic energy defined by

Ekin = (γv − 1)mc2,

4 As the rest energy depends on the internal state, we should specify the latter: the given energy
corresponds to the state in which the electron is very far from the proton and at rest.
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we can write E = mc2 + Ekin.
Einstein’s famous formula

E = mc2

refers to the rest energy of the object, and the mass m depends on the internal
state of the object.

Keep in mind that, in (13.8), v < c must hold. For objects that move with the
speed of light, this equation is not valid!

13.1.3 Again: Speed of Light as Maximum Velocity

Remember again the plot of the factor γv versus the velocity v (see Fig. 8.3). The the
larger the factor becomes, the closer v approaches c and eventually goes to infinity.
This is also valid for the energy of a moving object. The closer its velocity gets to c,
the faster its energy increases. The speed of light itself cannot be reached by an object
with non-vanishing mass, otherwise it would have an infinitely large energy.

This brings us back to the Bertozzi experiment (Sect. 2.1), and now we are
able to derive the relativistic formula given in Fig. 2.3 and Exercise 2. We start
with E = γvmc2. Reordering and squaring yields γ −2

v = (mc2/E)2 or (v/c)2 =
1 − (mc2/E)2. Now, we put E = mc2 + Ekin for the energy and substitute the mass
with the electron mass me, eventually arriving at the formula.

In Sect. 13.4, we will show that massive particles (with m > 0) can come arbitrar-
ily close to the speed of light, but never can reach it, so v < c in this case. Massless
particles (with m = 0), however, can only exist with v = c. The most important
massless particle is the photon.

Exercise 54: In the final configuration level of the Large Hadron Collider (LHC)
at CERN in Geneva, protons are accelerated to a velocity of 99.9999991% of the
speed of light. Calculate the ratio between their energy and their rest energy.

Exercise 55: Show the rightmost equation sign in (13.2).

Exercise 56: Consider an ideal gas consisting of NA ≈ 6 · 1023 point-like parti-
cles with the mass m. As James Clerk Maxwell discovered (you know him from
theMaxwell equations), at the temperature T , the particles have an average kinetic
energy of Ekin = 1

2m〈v2〉 = 3
2kBT . Here, 〈v2〉 is the average of the squares of the

individual velocities and kB is the Boltzmann constant, a fundamental physical
constant named after Ludwig Boltzmann. Determine the dependency of the mass
of the gas on the temperature.
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13.1.4 The Discussion About the “Relativistic Mass”

In his original publication, Einstein writes (see [Einstein05b], the notation was
adapted): „Die Masse eines Körpers ist ein Mass für dessen Energieinhalt; ändert
sich die Energie um �E , so ändert sich die Masse in demselben Sinne um �E/c2

…“.5 Thus, Einstein understood the mass of an object to be a variable quantity that
depends on the energy and therefore changes its value with the velocity (and not only
with the internal state). His relativistic mass mrel is what, in this book, we denote
by E/c2 or γvm. Together with the relativistic mass, one also uses the concept of rest
mass m0, which corresponds to our concept of an (invariant) mass m (which needs
no subscript).6

There are several factors that speak against using the (velocity-dependent) rela-
tivistic mass. First, because of E = mrelc2 = γvmc2, the relativistic mass would be
nothing but the energy of the object, and one might wonder whether two quanti-
ties are needed for one and the same property of an object. Occam’s razor suggests
disposing of one of the concepts. A second reason is that, in the mathematical for-
mulation of special relativity, the language of tensors is used (this is an advanced
concept that we do not use). In this language, there are only a few classes of different
quantities and they are defined with respect to their transformation behavior under a
Lorentz transformation. These classes are scalars (which are invariant), four-vectors
like (ct, x), (ω/c, k), (E/c, p), second-rank tensors, etc. A variable relativistic mass
has no place here. If one abandons the relativistic (velocity-dependent) mass, that
only leaves the rest mass m0, which, without danger of confusion, can be called
the mass m. One could argue that the particular mathematical formalism (tensors)
used to describe physical phenomena must not have any implication for the physical
concepts. This is true, but the tensors originate from a very physical concept, which
is the space and time symmetries.

In later years, Einstein himself rejected the concept of the relativistic (velocity-
dependent) mass. On June 19, 1948, he writes in a letter to Lincoln Barnett (his
mass M corresponds to mrel)7: “It is not good to introduce the concept of the
mass M = m/(1 − v2/c2)1/2 of a moving body for which no clear definition can
be given. It is better to introduce no other mass concept than the ‘rest mass’ m.
Instead of introducing M it is better to mention the expression for the momentum and
the energy of a body in motion.”

5 “The mass of an object is a measure for its energy content; if the energy changes by �E , then the
mass changes in the same sense by �E/c2…”.
6 The (invariant) mass of an object, by definition, does not depend on the velocity of the object.
It does, however, depend on the internal energy of the object. If we heat the object, its (invariant)
mass increases.
7 Cited in [Okun1989]. The author L. B. Okun notes: “Einstein wrote in German; the letter was
typed and sent in English.”.
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Fig. 13.3 Collision
experiment to demonstrate
the mass defect

mi

v

mi

v

mf

13.2 “Conversion” of Mass into Energy: Mass Defect

In special relativity, the energy of an object in an inertial frame via E = γvmc2

depends on its mass m and its velocity v. A consequence of this is that, in a collision,
the total energy is conserved but the sum of the masses no longer is. This can be seen
in a very nice way in the perfectly inelastic collision. Two equal particles with the
same initial mass m i and the same magnitude of velocity move on one (straight) line
toward each other and collide8 (see Fig. 13.3).

The energy before the collision is

Ei = Ei,1 + Ei,2 = 2γvm ic
2.

After the collision, the resulting merged object is at rest and has the mass mf, and
therefore the energy

Ef = mfc
2.

From the energy conservation Ei = Ef, it follows that

mf = 2γvm i > 2m i.

Therefore, the mass of the merged object after the collision is larger than the sum of
the masses of the individual particles before the collision. The kinetic energy has
been converted completely into mass. In the logic of Sect. 13.1, the kinetic energy
has been converted into excitations of the merged object (it became hotter, etc.), and
therefore its mass is now larger.

Another example is the energy release in the Sun, where, according to the reac-
tion equation

4 1
1H −→ 4

2He + 2e+ + 2νe + 2γ (13.9)

via several intermediate steps, four hydrogen nuclei (11H) are converted into one
helium nucleus (42He), two positrons (e

+), two neutrinos (νe) and light.9 The mass10

8 The indices “i” and “f” stand for “initial” and “final” and refer to the situation before and after
the collision, respectively.
9 In particle physics, photons are denoted by γ . This has nothing to do with our factor γv .
10 1 u = 1.6605 · 10−27 kg is the atomic mass unit. You will certainly have already learned this in
an atomic physics course or in chemistry.
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of a hydrogen nucleus is m(11H) = 1.0078 u, that of a helium atom is m(42He) =
4.00260 u and the positron mass is m(e+) = 0.0005 u. The mass of the neutrinos is
insignificant. Therefore, the mass balance is

m i = 4m(11H) = 4.0312 u,

mf = m(42He) + 2m(e+) = 4.0036 u.

Hence, in the reaction (13.9), the mass difference of �m = 0.0276 u is converted
into (kinetic) energy (thus, heat) and radiation.

If one mole of hydrogen (with about a gram of mass) is converted into helium, an
amount of

�E = NA · �mc2 = 0.0276 g · c2 ≈ 2.5TJ

of energy in the form of heat and radiation is released (NA is the Avogadro constant,
which is NA · 1 u = 1 g).

Exercise 57: Germany has a primary energy consumption of about 15 PJ (1 PJ =
1015 J), with the private sector’s share being about 25%. Howmuch is the primary
energy consumption of the private sector per capita (Germanyhas about 83million
residents)? Howmany residents could be provided with energy for one year from
the nuclear fusion of 1mol of hydrogen? For how long could the whole primary
energy consumption of Germany be covered? (The numbers are approximate and
for the year 2000.)

Exercise 58: To release 2.5TJ by burning coal, one needs about 85 tons of it.
Show that this is true. (According to Wikipedia,11 by burning 1 ton of coal, an
energy of 29.3GJ is released.)

13.3 The Relativistic Momentum

Now, we derive an expression for the (relativistic) momentum. Consider the colli-
sion of two particles 1 and 2 (see Fig. 13.4, left side).12 The particles are “equal”, in
particular, they have the same mass. We assume that they move toward each other
and have the same magnitude of velocity. Therefore, the total momentum vanishes.
The inertial frame in which it vanishes is called the center-of-mass frame S. After
the collision, the particles may travel in different directions, but these must be oppo-
site directions and the velocities of the particles must have the same magnitude
again. Otherwise, the total momentum after the collision would not vanish and the

12 In the literature, one finds different derivations of the relativistic momentum. The presumably
clearest one froma logical point of view,which, at the same time, is also the simplest, is that presented
here and also used by Richard P. Feynman in his famous Lectures on Physics. It originates from
Gilbert N. Lewis and Richard C. Tolman [LewisTolman09].
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Fig. 13.4 Collision of two equal particles in the center-of-mass frame (with the same magnitude
of the velocity). Right: The same as on the left, but with rotated coordinate systems

momentum conservation would be violated.We denote the scattering angle by ϑ (see
Fig. 13.4, left side).

To ease our task, we rotate the coordinate system in such away that the trajectories
of each particle before and after the collision result from a reflection at the y-axis and
the trajectories of particles 1 and 2 (but inverted) result from a reflection at the x-axis.
In this coordinate system, the x-component of the momentum of particle 1 before
and after the collision is the same (this also holds for particle 2). The y-component
of the momentum, however, changes its sign at the collision (the same also holds
here for particle 2).

The relation between the (relativistic)momentum and the velocity is still unknown
to us. In classical mechanics, pcl = mv. For the relativistic momentum, we make
a similar ansatz,

p = f (v)mv, (13.10)

as for the relativistic energy (for symmetry reasons, the relativistic momentum must
be parallel to the velocity). Here, v is the magnitude of the velocity. Because the
relativistic momentum for small velocities must agree with the classical momentum,
f (v) → 1 for v/c → 0 is necessary.
In the inertial frame S, the center-of-mass frame, that we have used so far, it is

obvious that, due to the existing symmetries, the momentum is conserved. Now, we
go to a different inertial frame and describe the collision from this new point of view
(in the derivation of the relativistic energy in Sect. 13.1, we did exactly the same
thing). Momentum conservation must also hold in the new inertial frame, otherwise,
the relativity principle would be violated. This requirement will lead us to f (v).

Let the inertial frame S′ with its coordinate axes x ′ and y′ be such that the x- and
the x ′-axis coincide, the y- and the y′-axis are parallel and the x-component of the
velocity of particle 1 vanishes. In this inertial frame, the collision appears as shown
in Fig. 13.5 on the left side. Let the velocity of particle 1 in S′ be w. Furthermore,
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Fig. 13.5 The same collision as in Fig. 13.4. Left: In the inertial frame S′, where the x-component
of the velocity of particle 1 vanishes. Right: In the inertial frame S′′, where the x-component of the
velocity of particle 2 vanishes

we denote the magnitude of the velocity of particle 2 in S′ by v, its x ′-component
by u and the angle between its direction of motion and the x ′-axis by α. Then,
the y′-component of the velocity of particle 2 is given by u tan α.13 The velocity
components u, v and w are defined such that they are positive.

Now,we applymomentumconservation for the y′-component of themomentum.
The change of the momentum of particle 1, according to our ansatz (13.10), is given
only by �p1,y′ = 2 f (w)mw and that of particle 2 by �p2,y′ = 2 f (v)mu tan α (note
that according to our ansatz, the velocity magnitude appears in the argument of
function f , and not the velocity component u tan α). Momentum conservation then
requires that �p1,y′ = �p2,y′ , or

f (w)w = f (v)u tan α. (13.11)

To determine u tan α, we change to another inertial frame S′′, which moves with the
velocity u relative to S′ (again, the x ′- and the x ′′-axis coincide and the y′- and the
y′′-axis are parallel) (see Fig. 13.5, right side). Therefore, the x ′′-component of the
particle 2 vanishes. Because both particles before the collision had the same velocity,
the y′′-component of the velocity of particle 2 must be w.

Next comes the key step in the derivation. We have to relate u tan α and w. In
classical physics, these would be equal, but in relativistic physics, they are not, and
the reason is time dilation.

We need to consider only particle 2 to find this relation. In S′′, the y′′-component
of particle 2 isw. What is the y′-component of its velocity in S′? The lengths perpen-
dicular to the relative motion of S′ and S′′ are the same. But for an observer resting
in S′, the time of particle 2 passes more slowly by the factor γv than its own time.

13 In the case of small velocities, p = mv and, because of the conservation of the y′-components
of the momentum, we had w = u tan α. This is no longer correct for large velocities.
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In total, the velocity of the particle in the y′-direction and measured in S′ must be
smaller by a factor of γ −1

u than in S′′. For that reason,

u tan α = γ −1
u w.

Eq. (13.11) then becomes f (w)w = f (v)γ −1
u w or

f (v) = γu f (w).

From this relation, we determine the function f (v), and, to achieve this, we must get
rid of one occurrence of the function. We do this by letting its argument go to 0, after
which the function’s value goes to 1. But in doing so, we have to take into account
that the velocities u, w, v are mutually dependent. Putting v → 0 is not sensible,
because w also then goes to 0 and f vanishes completely in the equation above. But
we can put w → 0 without having v disappear. The only thing we have to do is to
fix u. For u fixed andw → 0, because of u tan α = γ −1

u w, we have u tan α → 0 and,
finally, α → 0. But if α goes to zero, v goes to u, and therefore f (v) goes to f (u)

and we have the solution: f (u) = γu . Together with (13.10), we arrive at:

The (relativistic) momentum of an object with mass m, which moves with
velocity v relative to an inertial observer, is given by

p = γvmv. (13.12)

For small velocities v � c, we have γv ≈ 1 and (13.12) becomes the momen-
tum pcl = mv of classical mechanics.

Note that, in (13.12), v < c must hold. For objects that move with the speed of
light, the equation is not applicable anymore.

We discuss again the logic of the derivation. If, in a physical process described
from a particular inertial frame, the momentum is conserved, then it must be con-
served in all inertial frames, otherwise, we would be able to distinguish the inertial
frames, in contradiction to the principle of relativity. In the case of a collision of
two particles, the total momentum is simply given by the sum of the momenta of
the particles. Thus, the expression for the momentum must be such that, when it is
transformed to another inertial frame, it must be conserved there as well. It must be
form-invariant under coordinate transformations. In classical mechanics, one uses
the Galilei transformation and, with respect to it, the expression p = mv is indeed
form-invariant. In special relativity, however, we must use the Lorentz transforma-
tion. Then, the expression p = mv is not form-invariant anymore. We must find
another expression. It is of great help that this expression for the relativistic momen-
tum for small velocities must become equal to the classical momentum. With the
construction above, we have seen that (13.12) is the correct generalization of the
classical momentum to special relativity.
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Note that this has nothing to dowith the question as towhether the totalmomentum
is conserved or not. If the classical momentum were conserved for large velocities,
we would indeed have a problem. In that case, the relativistic momentum would
not be conserved and either the principle of momentum conservation or special
relativity would be wrong. Fortunately, the relativistic momentum is conserved. This
is demonstrated day by day in millions of particle collisions in particle accelerators.

We will come back to this in Sect. 13.5.

13.4 Interplay of Energy and Momentum

Suppose an object moves with velocity u relative to the inertial observer Alice.
Thus, (for Alice), it has the energy E = γumc2 and the momentum p = γumu. Bob
moves with velocity v relative to Alice. Thus, the object moves relative to Bob
with the velocity u′ = u ⊕ (−v) and (again for Bob) has the energy E ′ = γu′mc2

and the momentum p′ = γu′mu′. How can the energy and momentum of an object
in one inertial frame be directly transformed to the related quantities in another
inertial frame? In other words: what are the Lorentz transformations for energy and
momentum?

This question has a surprisingly simple answer. We need the γ -formulas (12.5)
(which, as you remember, are nothing but the Lorentz transformation of the velocity).
Multiplying the first of these formulas on both sides with m, one gets p′ = γv ·
(γumu − vγum). The first term in parenthesis is equal to p and the second one
to vE/c2. In total, we have p′ = γv · (p − vE/c2). Now, we multiply the second of
the formulas above with mc2 and get E ′ = γv · (E − vp). We arrive at:

The Lorentz transformation for the energy and the momentum is given by

p′ = γv · (p − v

c2
E),

E ′ = γv · (E − vp).

(13.13)

These are the sought-for transformation formulas for the (relativistic) energy and
momentum. If you compare them to the Lorentz transformation (11.9), you see
that, indeed, in the Lorentz transformation, one simply has to perform the replace-
ments t → E/c2 and x → p to get the transformation for energy and momentum.
This means that (E/c, p) is a four-vector, and we have

(
E/c
p

)
= m

(
c
u

)
.
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The energy-momentum four-vector is just the mass m times the velocity four-
vector.

Remember that the invariant c2t2 − x2 follows directly from the Lorentz transfor-
mation. In the same way, we see that the expression (E/c)2 − p2 is invariant. In the
rest frame of an object, E = mc2 and p = 0, so the invariant has the value (mc2)2.
From that follows:

Energy-momentumrelation: The relativistic energy E of an object ofmassm
is related to the relativistic momentum p via

E2 = m2c4 + p2c2. (13.14)

This expression, in comparison to our previous formulas for the relativistic energy
(13.8) and the relativisticmomentum (13.12), has the big advantage that it is valid also
for v = c and even for objects with vanishing mass, i. e., for the case m = 0. Then,
E = | p|c. In this case, objects necessarily move with the speed of light.14 Objects
with m = 0 and v < c are forbidden in special relativity. Photons are (quantum)
objects with m = 0 and, therefore, v = c.

Then, we see that there are two types of object:

(Rest) mass Velocity Energy-momentum relation Term
m > 0 v < c E( p) = √

m2c4 + p2c2 massive
m = 0 v = c E( p) = | p|c massless

Suppose that m > 0. Then, E( p) = √
m2c4 + p2c2 (see Fig. 13.6). For p = 0,

thise becomes equal to the rest energy E(0) and, in the case of very large momenta,
(13.14) becomes E = | p|c. The energy then grows linearly with the momentum.

Based on our findings, we can adaptMinkowski’s words from the end of Sect. 11.3
and say:

The views of energy and momentum which I wish to lay before you have sprung from the
soil of experimental physics, and therein lies their strength. They are radical. Henceforth,
energy by itself, and momentum by itself, are doomed to fade away into mere shadows, and
only a kind of union of the two will preserve an independent reality.

14 To show this, we need a concept that you have yet to learn: one gets the velocity of an
object by deriving the energy-momentum relation E( p) with respect to the momentum. We
restrict our discussion to one dimension. In classical mechanics, the (kinetic) energy is (m/2)v2 =
p2/(2m) or Ecl,kin(p) = p2/(2m). Calculating the derivative of this gives us d E(p)/dp = p/m,
which is the velocity. If we, however, differentiate the relativistic relation, we get d E/dp =
pc2/

√
m2c4 + p2c2, which, for m = 0, becomes d E/dp = ±c. Therefore, massless objects move

with the speed of light.
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Fig. 13.6 Energy-
momentum relation for an
object with m �= 0 (“massive
particle”) (blue) and a
massless object (green)
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Exercise 59: From Einstein’s arguments, we learned that the energy as a function
of the velocity is given by

E(v) = E(0) + (γv − 1)mc2, (13.15)

where the rest energy E(0) could be an arbitrary constant. Show that E(0)must be
equal to mc2 if the expression (13.15) has to fulfill the following transformation
(see (13.13)):

p′ = γv ·
(

p − v

c2
E

)
,

E ′ = γv · (E − vp) .

(13.16)

You can proceed as follows: consider an object that is at rest for Alice. What
is its energy according to (13.15)? What is its momentum (we don’t have to
know the expression for the (relativistic) momentum to answer this question)?
By using (13.16), transform the quantities to Bob’s inertial frame, which moves
with velocity v relative to Alice. E ′ is the energy of the object for Bob. On the
other hand, instead of making the transformation (13.16), Bob can simply use the
expression (13.15) to determine the energy. What follows from that?

13.5 Energy and Momentum Conservation Laws

Einstein, in his original derivation of the expression for the (relativistic) energy
(see Sect. 13.1), and Lewis and Tolman, in their derivation of the expression for the
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Fig. 13.7 Scheme of a collision of two particles. Right and left side represent the situation as seen
from different inertial frames

(relativistic) momentum (see Sect. 13.3), achieved their goals in a similar way: they
have constructed simple Gedanken experiments and used three ingredients15:

1. the principles that energy and momentum are conserved,
2. the principle of relativity and the consequence that, if energy and momentum

are conserved in one inertial frame, they must also be conserved in any other
inertial frame, and

3. the requirement that the expression for the (relativistic) momentum and energy
must become equal to the expressions for the classical momentum and energy,
respectively, in the limiting case of small velocities.

In this section, we show again how these ingredients work together and illuminate
the prominent role of the conservation laws.

The system that we are considering is a system of two point-like particles upon
which no forces from the outside act and that collide at some point (see Fig. 13.7).
The system is the same as that considered in the derivation by Lewis and Tolman, but
here, we allow for different masses. We will describe this experiment from Alice’s
point of view (left side of the figure) and from Bob’s point of view (right side).
Momentum, (kinetic) energy, and mass are labeled with the number of the particle
to which they refer and whether they apply to before the collision (index “i” for
“initial”) or after it (index “f” for “final”).

13.5.1 Conservation Laws

The conservation laws are included in the basic equations of a theory. Let us go back
to classical mechanics and show that, indeed, the conservation laws for the classical
energy and momentum follow from Newton’s laws.

15 Strictly speaking, the first ingredient is not really needed. But we have to assume that, if the
conservation law is fulfilled in one inertial frame, it also will have to be fulfilled in any other inertial
frame.
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For the derivation of the conservation laws formomentum and energy, we assume
that the two particles, long before they collide, do not interact at all. Then, there will
be a time period when they interact. Only in this time period do forces act on these
particles. After this time period, the particles do not interact anymore.

Momentum conservation. This is pretty straightforward. If, in an inertial frame,
the two particles 1 and 2 interact, then, according to Newton’s third law (“action
equals reaction”), the force on particle 2 has the same magnitude as the force on
particle 1 but points exactly in the opposite direction: F1 = −F2. We now consider a
very short time interval �t in which the force can be assumed to be constant. Then,
the changes of the momenta due to the forces are

� p1 = F1�t and � p2 = F2�t = −� p1 .

Adding both equations yields �( p1 + p2) = 0, the momentum conservation for the
considered short time interval �t . As the whole collision process can be partitioned
into small time intervals,momentum conservation has been proved for the considered
case of two-particle collisions.

Energy conservation. This is a bit more tricky.16

Suppose a particle moves on its trajectory r(t) and a force F(t) acts on it (see
Fig. 13.8, left). Then, in the short time interval from t1 to t2, the particle moves
along the short trajectory element from r1 = r(t1) to r2 = r(t2). Suppose that the
force F(t) is close to constant on this small trajectory element and let �r = r2 − r1
and�t = t2 − t1. Then, the force F performs thework�W = F · �r on the particle
(the scalar product says that only the force component parallel to the trajectory
performs work, while the component perpendicular to it plays no role).

Now, we can write�W = F · (�r/�t) · �t . For small�t , the fraction becomes
the particle’s velocity, so �W = F · v · �t . Using Newton’s second law F =
m dv/dt , we then have �W = mv̇v�t , and this can be written as

�W = d

dt

(m

2
v(t)2

)
�t = d Ekin

dt
�t ≈ �Ekin

(for small time intervals �t). Therefore, the work �W performed by the force F on
the particle increases the kinetic energy by exactly the same amount.

Next, we consider a trajectory r(t) from ti to tf and ri = r(ti) and rf = r(tf), which
is not necessarily small (the indices i and f refer to initial and final, respectively).
Then, the change of the kinetic energy of the particle due to the work performed by
the force F(t), while it moved on the trajectory, is given by

�Ekin = Ekin,2 − Ekin,1 =
∫

F(r) d r,

16 The reason for this is that we want to avoid introducing the potential energy.
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Fig. 13.8 Left: Particle moves on trajectory r(t) and force F(t) acts on it. Middle: Two partices
collide. Right: Relative coordinate (scaled down by a factor of 2)

where the integral is a curve integral that sums up all the work �W performed on
the particle during its whole movement from ri to rf.

Now suppose that two particles 1 and 2 are colliding and Fi (r) (i = 1, 2) is the
force on particle i (see Fig. 13.8, middle). If we add the work performed on particle 1
and that on particle 2, we get

�Ekin,1 + �Ekin,2 =
∫

F1(r1) d r1 +
∫

F2(r2) d r2.

For the forces F1 and F2, Newton’s third law holds. The force F1 exerted by particle 2
on particle 1 is equal inmagitude and points in the opposite direction than the force F2

exerted by particle 1 on particle 2: F1 = −F2. Furthermore, we use the relative
coordinate r = r1 − r2, which points from particle 2 to particle 1, and F := F1.
Thus,

�Ekin,1 + �Ekin,2 =
∫

F d r.

This is again a curve integral and is taken along the relative path r(t) (see Fig. 13.8,
right). Now, the important point is that, for a large class of force fields, called conser-
vative forces, this integral vanishes. We can take the integral from some time ti way
before the interaction starts until some time tf way after it ends and then extend the
integral over the curve to an integral over a closed curve in a region of space where
the particles do not interact. The definition of conservative forces is that all the curve
integrals of F d r along closed curves vanish.

Therefore, for conservative force fields, we have

Ekin,1,i + Ekin,2,i = Ekin,1,i + Ekin,2,f,
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so the total kinetic energy

Ekin,total = Ekin,1 + Ekin,2

is conserved in this case: the kinetic energy way before and way after the collision
is the same. Collisions during which the kinetic energy is conserved are also called
elastic collisions.

We see that momentum conservation is very general and corresponds directly
to Newton’s third law. The conservation of the kinetic energy in a collision of the
considered type, however, requires that the force field be conservative. The force
fields of the gravity force and electric forces are conservative. Therefore, if the
forces F1 and F2 are gravity or electric forces, the total kinetic energy way before
and way after the collision are the same. There are, however, a lot of situations when
the force field is not conservative and, therefore, the kinetic energy is not conserved.
Examples are:

• if there is dissipation in the collision, i. e., when the particles heat up or even stick
together (as in Fig. 13.3), or

• if some other motions are caused by the collision, like a rotation or an oscillation
of a particle, or

• if the particle is charged and magnetic forces act on it.

Note also that, during the collision, the kinetic energy is not conserved. If two
particles of the same mass approach each other on the same line and with the same
velocity magnitude, at some point, they will come to rest before they start mov-
ing away from each other. In this moment, the kinetic energy is zero. Total energy,
however, is always conserved. In the case at hand, the kinetic energy of the parti-
cles far from the collision during the collision is converted into potential energy or
deformation energy of the particles before it is converted into kinetic energy again.

13.5.2 Principle of Relativity

If a conservation law were to hold in one inertial frame and not hold in another
one, the principle of relativity would be violated. Therefore, a conservation lawmust
either hold in all inertial frames or in none.

Alice. We first consider the momentum. Before the collision, the momentum of
particle 1 is given by p1i and the momentum of particle 2 is given by p2i. The
total momentum before the collision is then pi = p1i + p2i. After the collision, the
particles have themomenta p1f and p2f, respectively, and the total momentum is pf =
p1f + p2f. The conservation of the total momentum means that

pi = pf or p1i + p2i = p1f + p2f . (13.17)
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The analogous statement holds for the energy. The conservation of the total energy
means that

Ei = Ef or E1i + E2i = E1f + E2f.

Bob. As we mentioned earlier: if a quantity is conserved in one inertial frame, then
it must also be conserved in any other inertial frame (though it has a different value
in a different inertial frame). Otherwise, the principle of relativity would be violated,
because certain inertial frames would be special due to the fact that the conservation
of total energy and momentum holds in them. If the conservation of total energy
and momentum holds for Alice, it must also hold for another inertial observer Bob.
Due to the fact that the individual particles have a different velocity for Bob than for
Alice, energy and momentum are also different for both. If we denote the quantities
for Bob by a prime, the conservation of the total momentum for Bob is

p′
i = p′

f or p′
1i + p′

2i = p′
1f + p′

2f, (13.18)

and the conservation of the total energy for Bob reads as

E ′
i = E ′

f or E ′
1i + E ′

2i = E ′
1f + E ′

2f. (13.19)

If the transformation is such that (13.17) holds exactly when (13.18) is true,
then we say that (13.17) (or (13.18), respectively) is consistent with the principle
of relativity. The law of conservation of momentum, as well as that for energy must
therefore be consistent with the Lorentz transformation.

Therefore, we have to show now that, if momentum conservation holds for Bob,
then also holds for Alice. And thus the same for the energy. To do so, we need the
transformation laws for the momentum and the energy that we already determined
in the last section. If we did not have these transformation laws, we could determine
them from the requirement that they have to make the conservation laws invariant—
exactly as Lewis and Tolman did.

13.5.3 Classical Mechanics

First, we make sure that, in classical mechanics, (13.17) is compatible with the
principle of relativity. Note: in this Sect. 13.5.3, the quantities p and E refer to the
classical momentum and energy, respectively.

Momentum. In classical mechanics, the momentum of a particle is given by
p = mu, where u is the velocity of the particle. The mass m of a particle is an
invariant (it has the same value for Alice and Bob). The transformation of the veloc-
ity is easy. If the particle has velocity u inAlice’s inertial frame andBob has velocity v
relative to Alice, then the particle has velocity u′ = u − v relative to Bob. For the
momentum, one gets immediately
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p′ = mu′ = mu − mv,

the transformation law for the momentum therefore is

p′ = p − mv . (13.20)

With this transformation law, (13.17) follows from (13.18), and vice versa.
From (13.18), using (13.20), we get

( p1i − m1iv) + ( p2i − m2iv) = ( p1f − m1fv) + ( p2f − m2fv),

thus,
( p1i + p2i) − (m1i + m2i)v︸ ︷︷ ︸

Ai

= ( p1f + p2f) − (m1f + m2f)v︸ ︷︷ ︸
Af

.

This is equivalent to (13.17) if and only if Ai = Af or

m1i + m2i = m1f + m2f.

This is the conservation of the total mass. We see that, for the conservation of total
momentum, the masses of the particles in the collision are allowed to change, but
the sum of the masses must stay the same. So, one could imagine that, during the
collision, a part of particle 1 breaks off and sticks to particle 2. Mass and momentum
would still be conserved.

Altogether, we have:

From the fact that, in classical mechanics,
• the momentum is given by p = mv,
• the Galilei transformation holds, and
• the total mass in a collision is conserved,
it follows that, if the totalmomentum in a collision is conserved in one inertial
frame, it is also conserved in any other inertial frame.

Energy. For the energy, a similar statement holds. We restrict ourselves to elastic
collisions in which the sum of the kinetic energies of the colliding particles (i. e.,
the total kinetic energy) before the collision is the same as after the collision. For
a particle with mass m and velocity v, in classical mechanics, the kinetic energy is
given by Ekin = mv2/2. During the collision proper, the kinetic energy changes, and
may even vanish completely in one moment.

For Bob (in the primed reference frame), the conservation of the total kinetic
energy reads as (with a notation analogous as that used with the momentum)

E ′
kin,i = E ′

kin,f or E ′
kin,1i + E ′

kin,2i = E ′
kin,1f + E ′

kin,2f (13.21)
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or m1i

2
(u′

1i)
2 + m2i

2
(u′

2i)
2 = m1f

2
(u′

1f)
2 + m2f

2
(u′

2f)
2.

Using u′ = u − v in E ′
kin = mu′2/2, one gets the transformation law for thekinetic

energy

E ′
kin = m

2
(u − v)2 = m

2
u2 − muv + m

2
v2 = Ekin − pv + m

2
v2.

Therefore, from (13.21), it follows that

Ekin,1i + Ekin,2i − ( p1i + p2i) v︸ ︷︷ ︸
Ai

+ 1

2
(m1i + m2i) v

2

︸ ︷︷ ︸
Bi

= Ekin,1f + Ekin,2f − ( p1f + p2f) v︸ ︷︷ ︸
Af

+ 1

2
(m1f + m2f) v

2

︸ ︷︷ ︸
Bf

.

Because of momentum conservation, we have Ai = Af, and because of the mass
conservation, Bi = Bf. The corresponding expressions cancel each other out, and we
are left with the conservation of the total kinetic energy for Alice (in the non-primed
reference frame):

Ekin,1i + Ekin,2i = Ekin,1f + Ekin,2f.

Therefore, we can conclude:

From the fact that, for elastic collisions, in classical mechanics
• the kinetic energy is given by Ekin = mv2/2,
• the Galilei transformation holds,
• the total mass in a collision is conserved,
• and the total momentum in a collision is conserved,
it follows that, for elastic collisions, if the total kinetic energy is conserved
in one inertial frame, it is also conserved in any other inertial frame.

As stated, the conservation of the total kinetic energy, however, only holds in
the special case of an elastic collision. Another extreme case is the collision of two
particles 1 and 2 with velocities v1 = −v2 that directly collide and stick together (as
in Fig. 13.3). Here, the total kinetic energy obviously is not conserved; it is larger than
zero before the collision and zero thereafter. The total mass and the total momentum,
however, are conserved (the total momentum before and after the collision is zero).

We have shown the consistency of the conservation laws with the relativity prin-
ciple only for the collision of two particles. The conservation of total mass and total
momentum, however, holds for collisions of an arbitrary number of particles. The
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conservation of the total kinetic energy only holds for a particular class of collisions,
namely, elastic collisions (here, also, for an arbitrary number of particles).

Bear in mind the delicate interplay of the conservation laws and the principle of
relativity. A conservation law only makes sense if it holds in any inertial frame. But
this is possible for the total momentum only if the total mass is conserved as well.
For the conservation law of the total kinetic energy in the case of elastic collisions,
this only holds if the total momentum and the total mass are conserved.

13.5.4 Theory of Relativity with Classical Momentum

We come back to special relativity, in which the Lorentz transformation plays the
role of the Galilei transformation.

How does the classical momentum pcl = mu transform in this case? The addition
of velocities is now given by the Lorentzian addition of velocities (10.3). As in the
preceding chapter, we suppose that the mass is invariant, i. e., the mass of a particle
is the same in all inertial frames.

Let us restrict our discussion to one dimension. Thus, for the transformation law
of the classical momentum, we get

p′
cl = mu′ = m

u − v

1 − uv/c2
= pcl − mv

1 − pclv/(mc2)
,

which cannot be written nicely with the classical momentum pcl in the unprimed
reference frame.

Suppose again that momentum conservation (13.18) holds for Bob (in primed
coordinates). With the transformation of the classical momentum, we get

m1i
u1i − v

1 − u1iv/c2
+ m2i

u2i − v

1 − u2iv/c2
= m1f

u1f − v

1 − u1fv/c2
+ m2f

u2f − v

1 − u2fv/c2
.

(13.22)
This formula cannot be cast into the form of amomentum conservation law for Alice.
We have failed (for the time being). The momentum in special relativity cannot be
given by pcl = mu. The reason for this, ultimately, is the relativistic addition of
velocities, which causes the different denominators in the formula above.

13.5.5 Theory of Relativity

Now, we use the correct relativistic expressions for the energy E (see (13.8)), the
momentum p (see (13.12)), and the respective Lorentz transformation (13.13).
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Then, starting from the conservation of momentum for Bob (13.18), we get

p1i + p2i − v

c2
(E1i + E2i) = p1f + p2f − v

c2
(E1f + E2f) .

In other words: if momentum and energy are conserved for Alice, then momentum
is conserved for Bob.

Now, we start from the conservation of energy for Bob (13.19) and get

E1i + E2i − v ( p1i + p2i) = E1f + E2f − v ( p1f + p2f) .

In other words: if momentum and energy are conserved for Alice, then energy is
conserved for Bob.

If we combine these two findings and also take into account that, instead of having
started with the conservation laws for Bob, we can also start with Alice, we get:

If, in special relativity, for a collision of two point-like particles, energy and
momentum are conserved for Alice, these quantities are also conserved for
Bob.

We have made the calculations above for the special case of a collision between
two particles. Indeed, the observation above is much more general. Note that, in
special relativity, we do not have a separate conservation of momentum anymore.
This is included in the conservation of energy and momentum

13.6 The Compton Effect

We finish this chapter with an interesting application of the relativistic energy and
momentum, an experiment that was an important cornerstone in the development of
special relativity, but also of quantum theory.

Introduction. In 1922,ArthurH.Compton investigated the scatteringofmonochro-
matic electromagnetic waves with a high energy (X-rays17) from free electrons at
rest. Among other things, he observed that the frequency of the scattered wave was
smaller that that of the incoming wave. The wave experienced a change of frequency,
in which the amount of change depends on the direction of scattering.

This Compton effect is not comprehensible through the combination of electro-
dynamics and classical mechanics, because, according to these theories, the incom-
ing wave would force the free electron to oscillate with the exact frequency of the
incoming wave. The acceleration of the electron would then cause an emission of an

17 X-rays, also known as Röntgen rays, after their discoverer, the first ever Nobel laureate, Wilhelm
Conrad Röntgen.
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Fig. 13.9 Regarding the
Compton effect

ω

Photon

ω′

ϑ

Electron

electromagneticwavewith exactly the same frequency as its oscillation. The scattered
(or emitted) wave would therefore have exactly the same frequency as the incoming
wave. In other words: The scattering would be elastic. This kind of scattering is
called Thomson scattering.

To explain the Compton effect, we have to assume that light consists of a kind of
particle, called a photon.18 The Compton effect, in addition, is a relativistic effect.
Using classical mechanics, one can derive a formula for the Compton effect. But
this formula only works at relatively low photon frequencies. A formula that is in
agreement with the experimental findings in the case of high frequencies can only
be derived within the framework of the special theory of relativity. The Compton
effect therefore breaks completely with classical physics: it needs quantum physics
and special relativity for its explanation.

Setup and conservation laws. Figure13.9 schematically shows the experiment. A
photon from the beam of a monochromatic wave with frequency ω collides with an
electron at rest.After the collision, the photonhas the frequencyω′ and, in comparison
to earlier, its propagation direction is changed by an angle ϑ .

In the scattering process, the (relativistic) energy and the (relativistic) momentum
must be conserved. Consider first the energy conservation and denote the energy
of the photon before the scattering event with Ep and that of the electron with Ee.
The related quantities after the scattering event are E ′

p and E ′
e, respectively. Energy

conservation means that
Ep + Ee = E ′

p + E ′
e. (13.23)

For the momentum, we denote the quantities in an analogous way. Momentum con-
servation means that

pp + pe = p′
p + p′

e. (13.24)

The relation between the energies and momenta is given by the energy-momentum
relation (13.14). In general, we have

18 Photons (“light quanta”) were introduced by Einstein, also in his annus mirabilis 1905, to explain
the photoelectric effect, in which electrons are emitted by a solid when it is illuminated with light.
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E2 = p2c2 + m2c4.

The mass of the photon vanishes, therefore, E2
p = p2pc2 or Ep = c

∣∣ pp∣∣. For the elec-
tron, we have E2

e = p2ec2 + m2
ec4, where me is the mass of the electron.

We choose the inertial frame such that the electron is at rest before the scatter-
ing event, so that pe = 0. All other momenta lie in a plane, which, by appropriate
orientation of the coordinate system, is the xy-plane, and we can neglect the z-
components of the momenta in what comes. We furthermore orient the x-axis such
that the momentum of the incoming photon lies on the x-axis and both point in the
same direction.

Energy and momentum of the photon. How do the energy and momentum of
the photon after the scattering event depend on its frequency ω? For the energy, we
already know the answer (see Sect. 13.1). Einstein’s analysis of the photoelectric
effect has shown that a photon that is part of a monochromatic light beam of fre-
quency ω has an energy of E = �ω. The expression for the photon’s momentum
now follows from the energy-momentum relation E = c| p|. We have | p| = Ep/c =
�ω/c. Because of ω = c|k|, this can be written as | p| = �|k|. The momentum of the
photon points in the same direction as thewavevector, and therefore we have p = �k.
To summarize, we have the following situation:

“particle picture” Relation “Wave picture”

E = c| p|
{

p
E

p = �k
E = �ω

k
ω

}
ω = c|k|

The photon after the scattering event. It follows that

pp = �ω

c

(
1
0

)
, p′

p = �ω′

c

(
cosϑ

sin ϑ

)
,

pe = 0, p′
e = unknown.

The momentum of the electron after the collision can be eliminated from the equa-
tions, as it is not of interest for us and is usually not accessible in the experiment.
For the energies, by means of the energy-momentum relation, we have

Ep = c
∣∣ pp∣∣, E ′

p = c
∣∣∣ p′

p

∣∣∣,
E2
e = p2ec2 + m2

ec4 = m2
ec4, E ′2

e = p′2
e c2 + m2

ec4.
(13.25)

The equation at the bottom right mutually relates the unknown energy and the
unknown momentum of the electron after the collision and is the starting point for
eliminating these quantities. We solve the conservation Eqs. (13.23) and (13.24)
for E ′

e and p′
e (note that pe = 0) and plug the result into the equation at the bottom

left of (13.25). This results in
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(Ep + Ee − E ′
p)

2 − ( pp − p′
p)

2c2 = m2
ec4.

Next, we calculate the squares of the expressions in parenthesis and get

(E2
p + E2

e + E ′2
p + 2EpEe − 2EpE ′

p − 2EeE ′
p) − ( p2p − 2 pp p′

p + p′2
p )c2 = m2

ec4.

With (13.25) and E2
e = m2

ec4, this immediately becomes

EpEe − EpE ′
p − EeE ′

p + pp p′
pc2 = 0.

Now, we only have to plug in the expressions for the energies and the momenta. In
particular, pp p′

p = (�/c)2ωω′ cosϑ (see Fig. 13.9). Then,

mec
2
�ω − �

2ωω′ − mec
2
�ω′ + �

2ωω′ cosϑ = 0.

Rearranging and dividing by mec2� brings us to

ω − ω′ = �

mec2
ωω′(1 − cosϑ) = ωω′

ωC
(1 − cosϑ), (13.26)

where ωC = mec2/� is the Compton frequency.19 This is the result that we were
looking for. To bring it into the usual form, we multiply it with 2πc/(ωω′) and
note that, for the wavelength, λ = 2πc/ω holds. This finally brings us to the famous
Compton formula

λ′ − λ = λC · (1 − cosϑ), (13.27)

which gives us the change of the photon’s wavelength due to the scattering event.
Here, λC = h/(mec) is the Compton wavelength of the electron and the funda-

mental physical constant h is the Planck constant.

Energy/frequency change. We will discuss this result now, and the discussion
will be based on frequencies, not wavelengths. Therefore, we have to rearrange
Compton’s formula again.We are interested in E ′

p/Ep = ω′/ω, the energy/frequency
of the photon after the scattering event in relation to its energy/frequency before the
scattering event. Rearranging (13.26) gives us the energy/frequency change

E ′
p

Ep
= ω′

ω
= 1

1 + ω
ωC

(1 − cosϑ)
. (13.28)

19 The energy of a photon with the Compton frequency ωC is �ωC = mec2, i. e., equal to the rest
energy of the electron. The Compton frequency is very large, about a million times larger than
frequencies of electromagnetic waves in the visible region, and lies in the region between hard
X-rays and γ -rays.
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p

Fig. 13.10 Energy/frequency change ω′/ω of the photon for Compton scattering. The diagram is
a polar diagram. The orange vectors, as an example, show an incoming photon with momentum pp
and energy ω, which is scattered into an angle ϑ and ends up with momentum p′

p and energy ω′

The value on the right side lies always in the interval (0, 1]. This is expected, because
the electron gains energy from the collision. Therefore, the photon must lose energy,
and this means that its frequency becomes smaller. For ω′ = ω, we recover the
classical limit, Thomson’s result, when the energy of the photon does not change due
to the scattering event.

Discussion. We discuss two special cases. For ϑ = 0, the photon is not scattered
at all. This is called forward scattering. Then, according to (13.28), ω′ = ω, i. e., the
photon’s frequency does not change. For ϑ = π/2, the photon is scattered back into
the direction from which it came. This is called backscattering. Then, from (13.28),
we have

ω′

ω
= 1

1 + 2 ω
ωC

.

In this case, ω′/ω is always smaller than one (except in the classical limit ω → 0).
The photon loses energy. The higher its frequency, the larger the amount of energy
it loses. If the initial photon energy is equal to the electron’s mass, we have ω = ωC

and get ω′/ω = 1/3, so the photon loses 2/3 of its energy.
In the polar diagram in Fig. 13.10, the relative energyω′/ω of the scattered photon

as a function of the scattering angle ϑ is shown for three different photon energies
and the classical limit (ω = 0, black curve). The red curve is for ω = ωC/20, the
green curve forω = ωC and the blue curve forω = 20ωC. Independent of its energy,
the photon does not lose energy in forward scattering. Thus, the larger the scattering
angle ϑ , the smaller the energy after the scattering (or the larger the energy loss).
Due to the fact that ω = c

∣∣ pp∣∣, the magnitude of the momentum is proportional to
the frequency. Therefore, we can directly plot the momentum of the photon before
and after the scattering into the polar diagram.
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Fig. 13.11 Definition of the
impact parameter b. The
“target” is at rest before the
collision

b

Forω = ωC/20, the photon loses very little energy— independent of the scattering
direction. The case ω � ωC is the limiting case in which Thomson’s result (black
curve) is valid. For ω = ωC, one sees the energy loss of 2/3 in backward scattering.
And for ω = 20ωC, the photon for scattering angles of ϑ > 20◦ loses almost all of
its energy.

Differential scattering cross section. In addition to the energy/frequency change
as a function of the scattering direction in (13.28), the differential scattering cross
section is an important quantity.

Consider two billiard balls: one is at rest and the othermoves uniformly toward the
first one,whereupon they collide (see Fig. 13.11).20 Then, the directions inwhich both
billiard balls move after the collision are uniquely given by the impact parameter b
before the collision. This is the nearest distance of the line along which the center of
mass of the moving ball moves, from the center of mass of the billiard ball at rest. In
the case at hand, the scattering angle of the photon would be a function of the impact
parameter: ϑ = ϑ(b), and we have ϑ(0) = π , because, if the moving billiard ball
moves exactly toward the resting billiard ball, the former will be backscattered.

In quantum theory, the situation is different. If the billiard balls were quantum
objects,21 then, even if the moving billiard ball were to move exactly toward the cen-
ter of the resting billiard ball, all scattering angles ϑ would be possible. Indeed, in an
exact repetition of the scattering experiment, we would find all different scattering
angles. The probability distribution of the scattering angle (i. e., how often the dif-
ferent angles would be found in the repeated experiment), however, would be fixed.
And this probability distribution is called the differential scattering cross section.
The differential scattering cross section is a function of the scattering angle ϑ and
gives us the probability that the photon is scattered in the direction ϑ .

In 1904, Joseph J. Thomson, the discoverer of the electron, calculated this scat-
tering cross section for the scattering of a monochromatic wave at an electron at
rest—exactly the case that we consider here. At that time, there was neither the
special theory of relativity nor quantum theory, and his calculation was based on
classical physics. For the scattering cross section, he got a direction dependence
of 1 + cos2 ϑ . Forward scattering (ϑ = 0) and backscattering (ϑ = π ) are equally
probable in classical physics and more probable than the scattering in any other
direction. The function is shown for arbitrary ϑ by the peanut-shaped black curve of
Fig. 13.12. For photon frequencies within the range of the Compton frequency and
above, this scattering cross section, however, is no longer correct.

20 The balls do not rotate before the scattering event.
21 They would have to be much much lighter to require quantum theory for a description.
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dσ
dΩ

ω = 0
ω = ωC/20
ω = ωC

ω = 20 · ωC

ϑ

Fig. 13.12 Klein-Nishina differential scattering cross section for different photon energies �ω. The
photon comes from the left. The diagram is a polar diagram and the angle ϑ the scattering angle. For
instance, the probability that a photon with frequency ω = ωC becomes scattered in the direction ϑ

is given by the black dot

Oskar Klein and Yoshio Nishina, in 1929, carried out the analogous (but much
more difficult) calculation on the basis of quantum electrodynamics.22 The result
holds for all photon frequencies. In Fig. 13.12, the direction dependence of the dif-
ferential scattering cross section for different frequencies ω is shown. The black
curve (ω = 0) is Thomson’s result, the classical limit.

For small energies (red curve), the Klein-Nishina result is still very similar to
Thomson’s result and forward scattering and backscattering are of almost equal
size. For larger energies (blue curve, ω = ωC), forward scattering becomes more
important. For very large energies (green curve), forward scattering predominates
and the scattering almost exclusively goes into a small cone pointing in the forward
direction.23

22 Quantum electrodynamics is the “quantum version” of the special theory of relativity and elec-
trodynamics.
23 You may counter that the area inside of the objects that are created by rotating the curves in
Fig. 13.12 around the axis should be one, otherwise, it cannot be interpreted as a probability density.
The point here is that the missing probability corresponds to the cases in which no scattering at all
happens.



Chapter 14
Electrodynamics

14.1 Transformation of Charges and Fields

At the end of this book about special relativity, we will take a short excursion into
electrodynamics. You already know that electrodynamics “per construction” keeps
its shape (is form-invariant) under a Lorentz transformation, so it is also correct at
large velocities. Due to the fact that, in mechanics, upon a change from one inertial
frame to another, quantities like the energy and the momentum transform, we also
have to reckon with the central quantities of electrodynamics: the charge, the current
and the electric and magnetic fields. But the transformation laws for these quantities
can be found without much thinking. One must apply the Lorentz transformation
to the laws of electrodynamics (the so-called Maxwell equations) and then bring
them back to the standard form. The transformation equations for the quantities of
electrodynamics can then be read off. This procedure is conceptually simple, but the
calculations are tedious.Moreover, one does not learnmuch about physics. Therefore,
we go a different way here.

Electric charge. We start with the charge. The charge remains invariant upon
a Lorentz transformation, which is q ′ = q. This can be seen by the fact that atoms
and molecules are neutral, even though the charged carriers in these systems have
very different velocities, which also are comparable with the speed of light. If one
excites, e. g., an atom, then the electron gets a higher velocity. If this were to change
its charge, the electron’s charge could no longer exactly compensate the charge of
the atomic nucleus and the atom would suddenly no longer be neutral.

Another example is a solid metallic body in which ions oscillate around their
equilibrium positions while the “conduction electrons” move freely. From thermo-
dynamics, you know that the average kinetic energy m

2

〈
v2

〉
of a particle equals 3

2kBT
(kB is Boltzmann’s constant and T the absolute temperature). If you increase the
temperature, the average velocity of the electrons will grow much faster than that of
the ions, because the latter have amuch larger mass. Therefore, a temperature change
also would cause the charge neutrality to disappear. None of this is observed, so we
conclude that the electric charge is invariant.
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Fig. 14.1 An induction experiment

Electric and magnetic field. Next, we discuss the fields. Einstein starts his paper
[Einstein05a], which introduces the special theory of relativity, with the words1:

It is known that Maxwell’s electrodynamics—as usually understood at the present time—
when applied to moving bodies, leads to asymmetries that do not appear to be inherent in
the phenomena. Take, for example, the reciprocal electromagnetic action of a magnet and
a conductor. The observable phenomenon here depends only on the relative motion of the
conductor and the magnet, whereas the customary view draws a sharp distinction between
the two cases in which either that or the other of these bodies is in motion. For if the magnet
is in motion and the conductor at rest, there arises in the neighborhood of the magnet an
electric field with a certain definite energy, producing a current at the places where parts of
the conductor are situated. But if the magnet is stationary and the conductor in motion, no
electric field arises in the neighborhood of the magnet. In the conductor, however, we find
an electromotive force, to which in itself there is no corresponding energy, but which gives
rise – assuming equality of relative motion in the two cases discussed – to electric currents
of the same path and intensity as those produced by the electric forces in the former case.2

We see that Einstein, in particular, by analyzing the following induction phe-
nomenon, developed the central idea behind the special theory of relativity (see
Fig. 14.1). Two fixed conducting metal rods are arranged parallel to each other, along
the x-direction, with a mutual distance l. The metal rods are connected. A further
metal rod lies on the other two, along the y-direction, and can be moved freely in
the x-direction. Between the fixed metal rods, there is a homogeneous magnetic
field B = (0, 0, B0) with B0 > 0. The movable metal rod is moved with constant
velocity v = (v, 0, 0), v > 0, over the fixed metal rods. Then, there is a (magnetic)
Lorentz force3 Fmag = qv × B = −e0v × B, or Fmag = (0, F0, 0) with F0 = e0vB0

(e0 > 0 is the elementary charge), acting on the free electrons in the movable metal
rod. The magnetic force causes an electric current to flow through the circuit formed

1 The text is the author’s translation of the original German text.
2 By “electromotive force”, Einstein refers to the Lorentz force.
3 The term Lorentz force in literature is not used in a unique way. The Lorentz force is a force that
acts on a moving charge. Some authors use the term for the force caused by the magnetic field, some
others for the force caused by the magnetic and the electric field. We write “(magnetic) Lorentz
force” and restrict it to the influence of the magnetic field. Note that neither is the space component
of a four-vector.
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by the metal rods. The metal rods stay electrically neutral, so there is no electric field
in the experiment (in the stationary case).

Suppose that we described the experiment in Alice’s inertial frame, where the
movable metal rod moves with the velocity v (we assume that the standard configu-
ration prevails). Now, we change to Bob’s inertial frame, where the same metal rod
is at rest. How does Bob explain the experiment? Also for him, there is an electric
current flowing through the metal rod (the metal becomes warm). But what is the
reason for this current? The electrons in themetal rod do not move in the x ′-direction,
therefore, there is no (magnetic) Lorentz force. The only possible cause of the current
would be an electric field. For Bob, there must be an electric field that acts on the
electrons in the metal rod.

Lorentz transformation of the fields. If Einstein’s principle of relativity holds
and one requires that the Maxwell equations be form-invariant upon Lorentz trans-
formations, the electric and magnetic fields transform when we go from Alice’s to
Bob’s inertial frame. For the standard configuration (Bob’s coordinates for Alice are:
x = vt , y = z = 0), the transformation law is

E ′
x ′ = Ex , B ′

x = Bx ,

E ′
y′ = γv(Ey − vBz) , B ′

y′ = γv(By + v

c2
Ez) ,

E ′
z′ = γv(Ez + vBy) , B ′

z′ = γv(Bz − v

c2
Ey) .

(14.1)

Here, E = (Ex , Ey, Ez) and B = (Bx , By, Bz) are the fields for Alice and E′ =
(E ′

x ′ , E ′
y′ , E ′

z′) and B′ = (B ′
x ′ , B ′

y′ , B ′
z′) those for Bob. The field components parallel

to the relative velocities of Bob and Alice are the same for both, but the components
perpendicular to it are different.4 We won’t derive these formulas here (above, we
mentioned how the derivation is performed), but we will discuss special cases in
Sect. 14.2.

Remember the invariants of spacetime (9.2), the four-wavevector (12.16) and
energy and momentum (121)? These are due to the Lorentz transformation and,
therefore, we have an invariant here as well. Actually, we even have two invariants,5

which are
E2 − c2B2 and E · B .

The first invariant tells us that, if, in one inertial frame, |E| > c|B|, this is also the
case in all other inertial frames. And the second tells us that the angle between E
and B is the same in all inertial frames. If E ⊥ B in one inertial frame, this is also
the case in all other inertial frames.

4 Note that we have exactly the reverse situation with length contraction, which is only present in
the longitudinal but not in the transversal direction.
5 To satisfy your curiosity: this is due to the fact that the electric and the magnetic field vectors
together form a kind of two-dimensional four-vector, a so-called second rank four-tensor.
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But let us come back to the Lorentz transformation. In the situation at hand
(Fig. 14.1), the fields for Alice are

E = 0 , B = (0, 0, B0) with B0 > 0 .

Those for Bob, according to (14.1), become

E′ = (0,−γvvB0, 0) , B′ = (0, 0, γvB0) .

From Bob’s perspective, there is indeed an electric field. For small velocities v

with γv ≈ 1, it causes the electric force Fel = qE = −e0E ≈ e0vB0 on the electrons
in the metal rod. For Bob, this electric force Fel for small velocities has the same
magnitude and the same cause as the (magnetic) Lorentz force Fm for Alice.

Electromagnetic field. Equation (14.1) shows that, upon change of the inertial
frame, one can transform electric fields into magnetic fields, and vice versa (at least
partly). For this reason, it makes sense to talk about the electromagnetic field,
and not separately about the electric and the magnetic fields. There is only one
field, the electromagnetic field, which presents itself in a different way in different
inertial frames. Note that, with the same argument, one also should include the
action of the magnetic and the electric fields in the Lorentz force, which becomes
F = q(E + v × B).

We again can adapt Minkowski’s words from the end of Sect. 11.3 and say:

The views of the electric and themagnetic fields that Iwish to lay before youhave sprung from
the soil of experimental physics, and therein lies their strength. They are radical. Henceforth,
the electric field by itself, and the magnetic field by itself, are doomed to fade away into
mere shadows, and only a kind of union of the two, the electromagnetic field will preserve
an independent reality.

14.2 Electrodynamics and Spacetime Effects

In this section, we discuss two Gedanken experiments that show that the electromag-
netic field must transform under a Lorentz transformation. Otherwise, it would not
be consistent with the kinematic effects of the special theory of relativity (relativity
of simultaneity, length contraction, time dilation).

14.2.1 The Charged Capacitor

The first Gedanken experiment deals with a vary large charged capacitor (a parallel-
plate capacitor; see Fig. 14.2). In Alice’s inertial frame, the capacitor is at rest. It is
charged with the surface charge density σ (in Coulombs per square meter), and,
therefore, in its interior, a homogeneous electric field
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Fig. 14.2 A charged capacitor, moving with velocity v

E0 = 1

ε0
|σ | (14.2)

perpendicular to the plates. Here, ε0 is the vacuum permittivity, a fundamental phys-
ical constant.6 Bob moves relative to Alice and in parallel to the capacitor with
velocity v. For Bob, the capacitor plates move, and therefore they are shorter by
a factor of γ −1

v than they are for Alice. But the charge is an invariant, therefore,
the surface charge density σ ′ must be larger than for Alice: it is σ ′ = γvσ . For that
reason, the electric field must also be larger for Bob than for Alice: E ′ = γvE0. The
exact same result that we got from (14.1).

Exercise 60: For the situation in Fig. 14.2, and using (14.1), from the electric
field E in Alice’s inertial frame, derive the magnetic field B that exists in Bob’s
inertial frame.

14.2.2 The Current-Carrying Wire

Consider ametal wire with free electrons (that move freely in the wire) and fixed pos-
itive charges (which are at rest relative to the wire). Tomake the following arguments
as simple as possible, we will make the assumption that all electrons are equidistant
and the same holds for the positive charges. This implies that all electrons move with
the same velocity, as the positive charges do. Obviously this assumption is unreal-
istic. Still, it is not against the laws of physics, and therefore it can be used as a
Gedanken experiment to draw valid conclusions.

Alice’s point of view. First, we describe the situation in Alice’s inertial frame,
where the wire and the positive charges are at rest (see Fig. 14.3 on the left side).

6 By the way: there are different unit systems in electrodynamics. Depending on the unit system,
the formulas have different prefactors. We use the SI system.
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Fig. 14.3 Alice’s perspective: current-carryingwire at rest, accompanied by resting positive charges
and moving electrons. Furthermore, a resting test charge

Let le be the average distance between the electrons and lp that between the
positive charges. With e0 > 0 being the elementary charge, we then have the (one-
dimensional) charge densities ρQ,e = −e0/ le and ρQ,p = e0/ lp.

The wire, for Alice, has to be neutral, therefore, ρQ,p + ρQ,e = 0; and from this,
it follows that le = lp. There is no electric field outside the wire. We will use the
density ρQ,0 := ρQ,p = −ρQ,e > 0 of the positive charges in the resting wire as a
reference to compare charge densities.

Now, suppose that the electrons move to the right, with an average velocity v > 0
(see Fig. 14.3 on the right side). Then, there is an electric current. An electric current
is always given by the charge density times the velocity of the charged particles,
I = ρQv. Here, the electric current is caused by the moving electrons, pointing in
the negative x-direction, and is given by

I0 = ρQ,ev = −ρQ,0v .

This electric current causes a magnetic field outside the wire. The form of this
field is calculated in high school lessons in electricity. The field lines are concentric
circles around the wire. The x-component and the radial component of the magnetic
field vanish completely. Only the tangential component does not vanish, and its
magnitude depends on the distance r from the wire: the farther away from the wire,
the smaller it is. The tangential component is given by

B = μ0

2π

I

r
. (14.3)

Here, μ0 is the vacuum permeability, another fundamental physical constant. It is
related to the vacuum permittivity ε0 via ε0μ0 = 1/c2, and therefore only two of the
three fundamental physical constants c, ε0 and μ0 are independent.

In the case at hand, we have
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Fig. 14.4 Bob’s perspective: moving current-carrying wire with comoving positive charges and
electrons at rest. Furthermore, a test charge comoving with the wire

B = μ0

2π

I0
r

= 1

2πε0

1

c2
I0
r

= 1

2πε0

ρQ,0

r

v

c2
. (14.4)

Bob’s point of view. Now, we go to Bob’s inertial frame, where the electrons are at
rest and the positive charges move with velocity −v < 0 in the negative x ′-direction
(see Fig. 14.4 on the left side).

Due to the fact that the positive chargesmove, the distance between them is length-
contracted, and Bob measures a charge density of ρ ′

Q,p = e0/ l ′p, where l ′p = lp/γv .
So,

ρ ′
Q,p = γvρQ,p = γvρQ,0 . (14.5)

The charge density of the positive charges is larger for Bob than for Alice. The
contrary holds for the charge density of the electrons, because the distance between
these is length-contracted for Alice. Therefore, l ′e = γvle and

ρ ′
Q,e = γ −1

v ρQ,e = −γ −1
v ρQ,0 .

The charge density of the negative charges is smaller in magnitude for Bob than for
Alice.

As a consequence, for Bob, the wire is not electrically neutral anymore: it has a
positive charge density of

ρ ′
Q = ρ ′

Q,p + ρ ′
Q,e = (γv − γ −1

v )ρQ,0 = γv

v2

c2
· ρQ,0 > 0 .

Again, usually already in high school, we learn that a straight charged wire with a
(linear) charge density of ρQ (in Coulombs per meter) creates an electric field in the
radial direction which points away or toward the wire if the charge density is positive
or negative, respectively, and which has the magnitude

E = 1

2πε0

ρQ

r
. (14.6)
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Hence, due to the non-vanishing (net) charge ρ ′
Q, for Bob, there is an electric field

outside the wire, with a radial component given by

E ′ = 1

2πε0

ρ ′
Q

r ′ = γv

v2

c2
· 1

2πε0

ρQ,0

r ′ . (14.7)

Here, we used r ′ = r , because the radial direction is perpendicular to the relative
motion of Alice and Bob, and therefore there is no length contraction for the radial
direction. The charge density for Bob is positive, therefore, the electric field points
away from the wire.

In Bob’s inertial frame, the electrons do not move, but the positive charges do.
These cause an electric current

I ′ = ρ ′
Q,pv = γvρQ,0v = γv I0

in the negative x ′-direction. Therefore, the electric current is larger for Bob than for
Alice. According to (14.3), this current causes a magnetic field of strength

B ′ = 1

2πε0

1

c2
I ′

r ′ = γv

1

2πε0

1

c2
I

r
= γvB (14.8)

outside the wire.

Lorentz transformation. If we compare (14.4) to (14.7), we see that

E ′ = γvvB and B ′ = γvB .

This confirms (14.1) for the special case at hand. For instance, for Alice, on the
x-y-plane for y < 0, the fields are

Ex = 0 , Bx = 0 ,

Ey = 0 , By = 0 ,

Ez = 0 , Bz = B .

where B > 0. According to (14.1), Bob then has

E ′
x ′ = 0 , B ′

x ′ = 0 ,

E ′
y′ = −γvvBz = −γvvB , B ′

y′ = 0 ,

E ′
z′ = 0 , B ′

z′ = γvB ,

exactly as expected from our example with the current-carrying wire.

Lorentz force. Consider again Alice’s inertial frame (see Fig. 14.3). Suppose that,
outside of the wire, there is a test charge q > 0 at rest. Because the test charge is
at rest, there can be no (magnetic) Lorentz force acting on it, and because of the
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neutrality of the wire, there is also no electric field. Therefore, the electromagnetic
field exerts no force on the test charge.

For Bob, in his inertial frame, the test charge moves with velocity v in the negative
x ′-direction (exactly as the electrons in the wire do). The electric field E ′ in Bob’s
inertial frame causes an electric force F ′

el = qE ′ on the test charge in the radial
direction, away from thewire. There is also a (magnetic) Lorentz force because of the
non-vanishing magnetic field and the fact that the test charge moves. Hence, we have
the force F ′

mag = qvB ′, which also points in the radial direction, towards the wire.
Due to the fact that, for Alice, the test charge does not move, it must also not move
in the radial direction for Bob. Therefore, for Bob, the electric and the (magnetic)
Lorentz forces on the test charge must compensate exactly. For this reason, in the
expression for the force, only the combination E ′ + vB ′ must appear (or, with
vectors, E′ + v × B′).7

Conclusion. Let us go back one step. What did we do in this section? First, (for a
special case), we determined the transformation of charge and current between two
inertial frames. We needed the invariance of the charge and the length contraction
for that. Then, we were able to calculate the electric and magnetic fields in both iner-
tial frames. Only the formulas B = (μ0/2π)(I/r) and E = (1/2πε0)(ρQ/r) were
needed. These follow directly from Maxwell’s equations and are valid in all inertial
frames. Comparison of the fields then gave us a confirmation of the transformation
law (14.1). Therefore, this transformation law and the Lorentz transformation for
space and time are consistent (at least, for the considered example).

14.2.3 The Four-Vector of the Current Density

In Sect. 14.2.2, using the simple example of equally spaced electric charges, we have
seen that a charge density ρ that is at rest for Alice, according to (14.5), becomes
the charge density ρ ′ = γvρ for Bob. Here, Bob moves with velocity v relative to
Alice and so do the charges relative to Bob (but in the opposite direction). The charge
density due to the moving charges is higher than for the same charges at rest. The
simple reason for this is length contraction.

The current density j associated with a charge density ρ moving with velocity v

is defined, in general, by j = vρ. Therefore, Bob, as a consequence of the moving
charges, sees an electric current with the current density j ′ = vρ ′.

Suppose now that the charge density ρ ′ and the current density j ′ = ρ ′ for Bob
are given and we want to calculate the respective values for Alice. The charges are
at rest for Alice, and therefore, there is no current for her, hence, j = 0. We can
get this by combining ρ ′ and j ′ = vρ ′ in the form j = α( j ′ − vρ ′), where α is to be
determined. But this looks like a Lorentz transformation, with j ′ playing the role of x ′
and ρ ′ that of t ′ (the other way around is not possible, because, in three dimensions,

7 Only the combination γvq(E + v × B) transforms like the space component of a four-vector, so,
in special relativity, it is actually this combination that we should call the Lorentz force.
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the current density is a vector while the charge density is not). If this were true, we
would have α = γv and

ρ = γv · (ρ ′ − (v/c2) j ′) ,

j = γv · ( j ′ − vρ ′) .
(14.9)

Indeed, from ρ ′ = γvρ and j ′ = vρ ′, we get ρ and j = 0. We conclude that

(cρ, j)

is the four-vector of the current density.
It is a pleasure for us one again to give the stage to Herrmann Minkowski (see

end of Sect. 11.3) and ask him for a statement. He says:

The views of electric current and electric density that I wish to lay before you have sprung
from the soil of experimental physics, and therein lies their strength. They are radical.
Henceforth, electric current by itself, and electric density by itself, are doomed to fade away
into mere shadows, and only a kind of union of the two will preserve an independent reality.

14.3 Electromagnetic Field of a Moving Point Charge

Transformation of fields. In an electromagnetic field, the quantities E and B
depend, in general, on location and time. Suppose that, fromAlice’s point of view, we
have the fields E(x, y, z, t) and B(x, y, z, t). What do these fields look like for Bob?
To answer this question, it is not sufficient to just plug these quantities into (14.1),
because this only transforms the vectors E and B, but not the position and time of
these vectors (i. e., the coordinates of the events where these vectors are pinned in
spacetime). Equation (14.1) transforms the function E(x, y, z, t) into E′(x, y, z, t),
but Bob needs E′(x ′, y′, z′, t ′).

The Lorentz transformation (14.1) holds for electromagnetic field vectors at the
same event in spacetime and this event has different spacetime coordinates for Alice
and Bob.

Let E be a certain event8 in spacetime. Suppose that E(E) and B(E) are electric
and magnetic field, respectively, at E for Alice. Further assume that the standard con-
figuration prevails, which means that the Lorentz transformation of the coordinates
is given by (11.9). Then, the electric E′(E) and the magnetic field B′(E) at E , for
Bob, are given by (14.1):

8 We use the calligraphic E in order to be able to distinguish the event E from the magnitude E of
the electric field.
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Fig. 14.5 Transformation of an electric field of a point charge at rest to a moving inertial frame.
Left: The red vector is the electric field for Alice. Right: Step 1 in the transformation transforms the
coordinates of the event E to Bob’s coordinates. This moves the electric field vector to these new
coordinates, but leaves the field vector untouched, resulting in the blue vector. Step 2, the Lorentz
transformation of the fields, eventually leads to the green vector, the electric field for Bob. Note that
the figure shows projections of the event E into the shown plane

E ′
x (E) = Ex (E) , B ′

x (E) = Bx (E) ,

E ′
y(E) = γv

[
Ey(E) − vBz(E)

]
, B ′

y(E) = γv

[
By(E) + v

c2
Ez(E)

]
,

E ′
z(E) = γv

[
Ez(E) + vBy(E)

]
, B ′

z(E) = γv

[
Bz(E) − v

c2
Ey(E)

]
.

If we have an expression E(x, y, z, t) for a field for Alice, the coordinates (x, y,
z, t) represent a particular event E . The coordinates (x ′, y′, z′, t ′) of this event E , for
Bob, are given by the Lorentz transformation (11.9). This results in the following
general recipe for the transformation of the fields (see Fig. 14.5 for the special case
of the field of a point charge).

Suppose the electric and the magnetic field

E(r, t) =
⎛

⎝
Ex (x, y, z, t)
Ey(x, y, z, t)
Ez(x, y, z, t)

⎞

⎠ , B(r, t) =
⎛

⎝
Bx (x, y, z, t)
By(x, y, z, t)
Bz(x, y, z, t)

⎞

⎠

are given for Alice. To get the respective fields for Bob, we have to carry out two
steps:

• Step 1: Apply the Lorentz transformation to the coordinates, i. e., perform the
replacement x → x = γv · (x ′ + vt ′), etc., in the expressions for E(r, t) and
B(r, t). This gives the functions E(x ′, y′, z′, t ′) and B(x ′, y′, z′, t ′).

• Step 2: Then, plug these functions into the Lorentz transformation for the electro-
magnetic field (14.1). This yields the final result
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Fig. 14.6 Inertial point charge and the electromagnetic field caused by it. Left: For Alice, in the
rest frame of the test charge. The red arrows are the electric field vectors on the dotted circle. Right:
For Bob. Again, the red arrows are the electric field vectors on the dotted circle. On the dashed
curve, the electric field has constant magnitude. The green arrows are the magnetic field on the
line (x, 1, 1)

E′(r′, t ′) =
⎛

⎝
E ′
x ′(x ′, y′, z′, t ′)

E ′
y′(x ′, y′, z′, t ′)

E ′
z′(x ′, y′, z′, t ′)

⎞

⎠ , B′(r′, t ′) =
⎛

⎝
B ′
x ′(x ′, y′, z′, t ′)

B ′
y′(x ′, y′, z′, t ′)

B ′
z′(x ′, y′, z′, t ′)

⎞

⎠ .

The order of the two steps (Lorentz transformation of coordinates and Lorentz trans-
formation of field vectors) does not matter.

Electromagnetic field of a point charge. As an example, we take the electric field
of a point charge that is at rest for Alice (see Fig. 14.6). This field is time-independent
for Alice and given by Coulomb’s law

E(r) = 1

4πε0

Q

r3
r . (14.10)

The red vector in Fig. 14.5 shows this field at a particular event E . Note that the vector
points away from the charge.

The replacement prescribed in Step 1 is

x → γv · (x ′ + vt ′) , y → y′ , z → z′
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(the time t does not appear in (14.10)), and this implies that

r =
⎛

⎝
x
y
z

⎞

⎠ →
⎛

⎝
γv · (x ′ + vt ′)

y′
z′

⎞

⎠

r =
√
x2 + y2 + z2 → r̃ ′ :=

√
γ 2

v · (x ′ + vt ′)2 + y′2 + z′2 .

Note that r̃ ′ is not the length of the vector r′, but the length of r. That is why we put
the tilde on top of the r ′.

The charge sits at x ′ = −vt ′, y′ = z′ = 0 and moves to the left. We restrict our-
selves to t ′ = 0.9 Bob is only interested in the field at t ′ = 0, because the field does
not change with time. It moves as a whole to the left, together with the charge. Then,

r =
⎛

⎝
x
y
z

⎞

⎠ → r̃ =
⎛

⎝
γvx ′
y′
z′

⎞

⎠ ,

r =
√
x2 + y2 + z2 → r̃ ′ :=

√
γ 2

v x
′2 + y′2 + z′2 ,

and we get

E(r′) = 1

4πε0

Q

r̃ ′3

⎛

⎝
γvx ′
y′
z′

⎞

⎠ . (14.11)

The vectors E(r) and E(r′) := E(r(r′)) are identical and both sit at E . Only the
coordinates of E are different for Alice and Bob.

Let us take such an event E in Alice’s coordinate system. The electric field vector
at this event is shown in Fig. 14.5 in the left diagram. The effect of Step 1 of the
transformation of the field is shown in the right diagram of Fig. 14.5. The electric
field vector for Alice (dashed red vector) is moved from the coordinates (x, y, z) to
the coordinates (x ′, y′, z′) of E . The position vector r is now r̃′ = (γvx ′, y′, z′) and
still has the same direction and the same length as for Alice. Due to the fact that the
factor γv only appears with the x ′-component, this electric field vector does not lie on
a (straight) line from the location of the point charge. The straight line is given by the
vector r′ = (x ′, y′, z′), while the electric field vector is parallel to r̃′ = (γvx ′, y′, z′).
Therefore, the field E(r′) is not a valid electric field, it is not a solution of Maxwell’s
equations. But that’s not a problem, as Step 2 of the transformation is still missing.

Note again that the Lorentz transformation of the coordinates does not move the
electric field vectors. They stay at the same event and only the coordinates change.
These coordinates, however, are determined with rods and clocks, and this is what
the observer sees. Therefore, the distance from the charge to the event E is different
for different observers.

9 This means that Bob is interested in events E with t ′ = 0! Such events, in general, do not lie on
Alice’s t = 0 plane, but they have the t-coordinate t = γ (t ′ + (v/c2)x ′) = γ (v/c2)x ′ = (v/c2)x .
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Step 2, the Lorentz transformation of the field vectors according to (14.1) then
gives us (note that B = 0 for Alice)

E ′
x (x

′, y′, z′) = Ex (x
′, y′, z′) = 1

4πε0

Q

r̃ ′3 γvx
′ ,

E ′
y(x

′, y′, z′) = γvEy(x
′, y′, z′) = γv

1

4πε0

Q

r̃ ′3 y
′ ,

E ′
z(x

′, y′, z′) = γvEz(x
′, y′, z′) = γv

1

4πε0

Q

r̃ ′3 z
′ ,

andwe see that the other two components (y′ and z′) nowalso get a factor γv andE′(r′)
is eventually proportional to the position vector r′ (and therefore lies on a (straight)
line through the point charge):

E′(r′) = γv

1

4πε0

Q

r̃ ′3 r
′

= γv

1

4πε0

Q

(γ 2
v x

′2 + y′2 + z′2)3/2

⎛

⎝
x ′
y′
z′

⎞

⎠ .

(14.12)

This field is shown in Fig. 14.6 on the right side and is the electric field caused by a
uniformly moving electric point charge.

It is instructive to calculate the curves of constant magnitude of the electric
field (14.12). To do so, we choose y′ = 0 (which is not a restriction to generality,
because the field has rotation symmetry around the x ′-axis). With z′ = r ′ sin ϑ (see
Fig. 14.6 right), we get

γ 2
v x

′2 + z′2 = γ 2
v r

′2
(
x ′2

r ′2 + z′2

γ 2
v r

′2

)

= γ 2
v r

′2
(
x ′2

r ′2 + z′2

r ′2 +
(

1

γ 2
− 1

)
z′2

r ′2

)

= γ 2
v r

′2 (
1 − β2 sin2 ϑ

)
.

The electric field then reads as

E′(r′) = γv

Q

4πε0

1

(γ 2
v x

′2 + y′2 + z′2)3/2
r′

= γv

Q

4πε0

1

γ 3
v r

′3 (
1 − β2 sin2 ϑ

)3/2 r
′

= Q

4πε0

1 − β2

(
1 − β2 sin2 ϑ

)3/2
r′

r ′3 .
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The magnitude is then

∣∣E′(r′)
∣∣ = Q

4πε0

1 − β2

(
1 − β2 sin2 ϑ

)3/2
1

r ′2 .

In total, in comparison to the electric field of a resting charge (14.10), the addi-
tional factor (1 − β2)/(1 − β2 sin2 ϑ)3/2 appears. For the special case ϑ = 0, one
gets 1/γ 2

v ≤ 1, and for ϑ = π/2, one gets γv ≥ 1. Therefore, the electric field of a
moving charge in comparison to a charge at rest in the direction of motion becomes
smaller, while, in the direction orthogonal to it, it becomes larger.

A magnetic field also appears now. According to (14.1), it is given by

B ′
x = Bx = 0 ,

B ′
y = γv(By + v

c2
Ez) = γv

v

c2
Ez ,

B ′
z = γv(Bz − v

c2
Ey) = −γv

v

c2
Ey ,

or, with (14.11),

B′(r′) = γv

v

c2

⎛

⎝
0

Ez(r′)
−Ey(r′)

⎞

⎠ = γv

1

4πε0

Q

r̃ ′3
v

c2

⎛

⎝
0
z′

−y′

⎞

⎠ .

Scalar multiplication of B′ with v = (v, 0, 0) and with E′(r′) shows that B′ is per-
pendicular to the velocity (or the x ′-axis) and to the electric field E′. In Fig. 14.6 on
the right side, the green vectors show the magnetic field on the line (x, 1, 1). The
magnetic field has rotational symmetry around the x-axis, similar to the case shown
in Fig. 14.3.



Chapter 15
Towards General Relativity

15.1 The Need for a More General Theory

The natural next step nowwould be to make Newton’s theory of gravitation compati-
ble with special relativity. Contrary to Maxwell’s electrodynamics, Newton’s theory
is not already in line with special relativity. The reason is the “action-at-a-distance”
in Newton’s theory. If the Sun were to vanish, according to Newton’s theory, the
Earth immediately would cease to follow its orbit around the Sun and move along
a (straight) line. In special relativity, however, the information that the Sun is not
there anymore would travel with the speed of light to the Earth and take a bit more
than 8min to cover this distance. Until the information arrives at the location of the
Earth, it would continue following its movement along the orbit around the no longer
existing Sun.

We have seen that Newton’s mechanics was also inadequate for large velocities
and we successfully twirked it to become compatible with special relativity. This,
however, is not possible with Newton’s gravity. Many attempts have been made and
all of them failed.

Einstein had further reasons to look for a more general theory.
We have seen that, according to the relativity principle, physics has to be the same

in all inertial systems. The equations of physics must be invariant under Lorentz
transformations. If we change from an inertial system to an accelerated reference
frame, however, fictitious forces appear (see Sect. 3.3.1). Einstein did not like that
inertial systems were preferred reference frames. In his opinion, all reference frames
should be equal and the equations of physics should look the same.

And there was a further observation by Einstein that eventually led him towards
his theory of gravitation: the fact that the mass plays a double role in physics.

First, the mass of an object appears in Newton’s force law: A force F acting on
an object causes an acceleration a = F/m in it. We call this the inertial mass mI.
It is the resistance with which an object opposes the force. For the same force, the
larger the inertial mass, the smaller the acceleration.
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Second, in a gravitational field g(r), an object is exposed to a force, the grav-
itational force FG. This force is proportional to the gravitational mass mG of the
object: FG = mGg.

Suppose now that an object is released from rest in a constant gravitational field
and starts to fall freely. By “fall freely”, we refer to the fact that only gravitation,
but no other forces, acts on the object. The object’s trajectory is z(t) = z0 − 1

2at2,
where a is its acceleration. This acceleration is given by combining the two equations
above, which yields

a = mG

mI
g.

A plethora of experiments, starting with Galilei’s Pisa experiments and ranging to
contemporary examples, with increasing precision, have shown that, independent of
the type of object, its inertial and the gravitational mass are always the same:

mG = mI. (15.1)

This implies a = g, or that, subject only to the gravitational force, all objects fall in
the same way. If, in the vacuum close to the Moon’s surface, we release a steel ball
and a feather from the same height and at the same time, both arrive at the surface at
the same time.

For Einstein, this was too much of a coincidence and required an explanation.
Interestingly, with his general theory of relativity (short: general relativity,

GR), Einstein reached all these objectives: it is a theory of gravitation, it does not
single out special reference frames and it explains why the inertial and the gravita-
tional mass of an object are equal.

15.2 Recap of Newton’s Theory of Gravitation

Newton’s theory of gravitation says that two point masses m1 and m2 at a distance
r , attract each other by a force along the line intersecting the two point masses and
with a strength of

FG = G
m1m2

r2
.

The force is proportional to each mass and decreases by an inverse-square law with
the distance. G is Newton’s gravitational constant.

If one of the two masses M (e. g., the Earth) is much larger than the other one m
(e. g., a satellite), one usually uses a picture in which M creates a gravitational field
g(r). If M is located at the origin of the coordinate system, the gravitational field is
given by

g(r) = −G
M

r2
er ,
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where er is the unit vector that points from M to the point given by r . The other mass
m in the gravitational field at r then experiences a force given by

FG(r) = mg(r).

The gravitational field in Newton’s theory has the property that one can introduce a
gravitational potential �(r) such that

g(r) = −∇�(r), (15.2)

i.e., the gravitational field points in the direction of steepest descent of �(r). For the
point mass M , the gravitational potential is given by

�(r) = −G
M

r
. (15.3)

We can always add a constant to the gravitational potential �(r); only differences
of this quantity are physically meaningful. Often, this constant is chosen such that
the gravitational potential far away from masses becomes zero [as we do in (15.3)].

The gravitational field caused by the Earth on the Earth’s surface is given by

g := |g(RE )| = G
ME

R2
E

≈ 10m/s2,

with ME being the Earth’s mass and RE its radius. The gravitational field points
vertically downwards.1

The gravitational potential at a height z over the Earth’s surface, and normalized
such that it vanishes at z = 0, is

�(z) = −G ME

(
1

RE + z
− 1

RE

)
≈ G

ME

R2
E

z = gz,

and the approximation is valid as long as z � RE .
With a theorem fromvector calculus (the divergence theoremorGauss’s theorem),

Newton’s law of gravitation can be reformulated such that it is valid for gravitational
fields created not by point masses but by mass distributions and described by mass
density fields. This alternative formulation is usually called Gauss’s law for gravity,
but we prefer the term Newton’s field equation for our purpose. Here it is:

��(r) = 4πGρ(r). (15.4)

1 Actually, the direction of the field defines the meaning of “vertically downwards”.
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The operator � is the Laplace operator, which performs the second derivative in
space. Newton’s field equation yields the gravitational potential �(r) for a given
mass density ρ(r).

15.3 The Equivalence Principle

15.3.1 The Equivalence Principle

Einstein referred to it as the happiest thought of his life, and indeed it served him as
a guide on his way to general relativity.

His thought was based on the experimentally confirmed equality of inertial and
gravitational mass. In a free falling cabin, an observer will not be able to detect a
gravitational effect on the movement of objects in the cabin because the cabin and
all objects in it fall in the same way. In other words: for the observer in the cabin,
there is no gravitational field. It is “transformed away” by the acceleration caused
by the gravitational field. The equivalence of inertial and gravitational mass tells us
that this is true for the movement of objects, but it does not make a statement about
other possible influences of the gravitational field on the physics in the cabin.

And here, Einstein generalized the observation to all physical effects. In his equiv-
alence principle (EP),2 he stipulated that, in general, the physics in an accelerated
cabin that freely falls in a gravitational field is the same as physics in an inertial
frame without gravity. This implies that we can use what we learned in the preceding
sections of this book to describe physics in a gravitational field but have to replace
the inertial system with a freely falling system.

The acceleration of an object in a large accelerated cabin is independent of the
position of the object in the cabin. Therefore, the “accelerationfield” is homogeneous.
A gravitational field, however, is never constant in a larger region of space. Therefore,
the accelerated cabin can compensate the gravitational field only locally. That is why
the cabin should be small and why the reference frame of the cabin provides a local
inertial frame (LIF).

Figure 15.1 illustrates this. The objects A, B, and C in a large cabin E fall freely
in the gravitational field of the Earth. The cabin falls such that B is exactly at rest
in it. The objects, however, fall in slightly different directions (left figure), which
results in A and C approaching B in the cabin frame. The forces that make A and
C approach B in the cabin frame are called tidal forces. A local inertial frame is
sufficiently small enough to render the tidal forces negligible.

2 Sometimes, mG = mI is referred to as the weak equivalence principle, while the generalization to
all physics is called the strong equivalence principle.
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Fig. 15.1 Tidal forces and the extent of local inertial frames. Left: cabin E and objects A, B, C
fall freely. Right: in the rest frame of the cabin E , where B is at rest, the objects A and C move
toward B

C
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Δz = 1
2gΔt2
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Fig. 15.2 Free-falling elevator in the elevator shaft. Left: with a light ray sent vertically from A to
B. Right: with a light ray sent horizontally from A to B

15.3.2 Consequences from the Equivalence Principle

Gravitational frequency shift. Suppose at time t = 0, an elevator cabin is released
from rest and starts falling freely in its shaft (see Fig. 15.2, left). At the same time, a
source A at the ceiling of the elevator sends a light ray with frequency ωA vertically
downwards. Let h be the height of the elevator cabin; then, the light ray will arrive
approximately at time tB = h/c at the detector B, which sits on the floor of the cabin.
Due to the fact that the cabin forms a local inertial frame, the detector measures the
frequency ωB = ωA, i. e., the same frequency as emitted by A.
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Incidentally, at tB, the cabin floor passes by a door in the elevator shaft, where a
further detectorC is placed. At tB, the cabin has the velocity v = gtB = gh/c relative
to the elevator shaft and C . Therefore, in the local inertial frame, C moves with this
velocity relative to detector B and the light ray and, according to the Doppler effect,
the detector C measures the higher frequency3

ωC ≈ ωA ·
(
1 + v

c

)
.

With the frequency shift �ω := ωC − ωA and the potential difference �� = �C −
�A = −gh, we arrive at

�ω

ωA
= v

c
= gh

c2
= −��

c2
.

This is the gravitational frequency shift. It is proportional to the potential difference.
Note that this agrees with (9.15) in our discussion of the influence of gravitation in
the experiment by Hafele and Keating.

When the source A sent the light ray, it was at rest relative to C . Therefore, we
can conclude that a light wave, which travels along the direction of the gravitational
field, downwards to lower gravitational potentials, increases its frequency. It becomes
blueshifted.4 We can reverse our Gedanken experiment with the falling elevator and
will find out that a light wave that travels along the direction of the gravitational
field upwards to higher gravitation potentials, decreases its frequency. It becomes
redshifted.

For the “usual” gravitational fields, the effect is very tiny. A light ray sent from
the Earth’s surface to a place in the Universe far from matter experiences a redshift
of �ω/ω = −��/c2 = (G ME/RE )/c2 ≈ 10−9.

The experiment of Pound and Rebka. There is a famous experiment, carried out
in 1959 by the US-physicist Robert Pound and his graduate student Glen Rebka, in
which the gravitational frequency shift was demonstrated for the first time.

The basic idea of the Pound-Rebka experiment is simple. Inside of a tower,
electromagnetic radiation (photons) of a particular frequency was emitted from a
source at the top of the tower and sent to the bottom of the tower, where it was
received by a detector that was located 22.5m below the emitter. As discussed above,
general relativity predicts a tiny shift toward a higher frequency (blueshift) of

�ω

ω
= gh

c2
= 2.5 × 10−15.

3 We only make an approximate calculation here, therefore it is fine to use the classical formula for
the Doppler effect.
4 Blue light has a higher frequency than red light. Therefore: blueshifted (redshifted) refers to a
shift toward higher (lower) frequencies.
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To be able to detect such a small shift, photons of high frequency are in order. Pound
and Rebka used gamma photons with an energy of 14.4 keV. Visible light has an
energy of about 1.5 eV (red) to 3 eV (blue), so the gamma photons had a frequency
of about 10.000 times larger than that of red light.

In the domain of visible light, the photons emitted by an atom via a particular
state transition from an excited state to the ground state can be detected by the
same type of atom, which, if the frequency of the photons is correct, is excited from
the ground state and scatters the photons intensely in all directions. This is called
resonance fluorescence. But if the emitter is not at the same gravitational potential
as the detector, the photons from the emitter will no longer be in exact resonance
with the detector. In order to be able to continue using the detector, it will need
to be moved. Then, depending on the detector’s velocity, the Doppler effect will
compensate for the frequency shift of the photons.

For high-energy radiation, this method does not work as is. The reason is that
when an atom emits a high-energy photon, the atom becomes recoiled into a more
or less random direction. And this recoil, again by the Doppler effect, changes the
frequency of the emitted photon by a small random value. This leads to the fact that,
even when the detector is off in frequency, it still will detect photons, making the
experiment useless.

To the rescue came a discovery, made just two years prior to Pound’s and Rebka’s
experiment by the German physicist Rudolf Mössbauer, who discovered how this
recoil effect can be rendered harmless: by cooling the crystal, formed by the emitting
atoms, down to very low temperatures. The explanation is that, in this case, the
emitting atom can no longer move independently of the crystal; only the crystal as a
whole can move. For that reason, the recoil is absorbed not just by the atom, but by
the much more massive crystal. This leads to neglectably low recoil velocities and
the frequencies of the emitted photons do not spread over a broad band.

To conclude, in Pound’s and Rebka’s experiment, on the top of the tower, an emit-
ter at very low temperature emits photons of an energy of 14.4 keV that travel down
the tower and experience a blueshift. The detector, which is also cooled, is moved
away from the photon. The velocity of the detector is changed until the absorption
is maximal. Then, the detector’s velocity, via the Doppler effect, exactly compen-
sates the gravitational blueshift of the photons. Pound and Rebka found the optimal
detector velocity to have the very small value of 7.5 × 10−7 m/s, in accordance with
the predictions of general relativity.

Gravitational time dilation. In Sect. 9.4, we saw that an atomic clock is nothing
but a device that counts the periods of oscillations of certain atoms. Suppose that our
clock can also emit electromagnetic radiation with this frequency, which would be
microwave radiation.5 Suppose further that our clock can also measure the frequency
of received microwave radiation.

5 We could, in principle, also use visible light, but counting the very fast oscillations of an atom
emitting light is very difficult.
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Fig. 15.3 Gravitational time dilation

Take a location A close to the Earth’s surface and another one B vertically above
it such that there is a height difference h (see Fig. 15.3). Both locations are fixed
relative to the Earth, their mutual distance does not change and there is no time
dilation from special relativity.

Suppose that, at A, we have two clocks of the same type. Then, we move one
clock up to location B. Let the periods of the respective clocks (measured next to the
clock) be�tA and�tB . Due to the fact that the clocks are equal, we have�tA = �tB .

Now, clock A sends microwaves to clock B. The world lines of two subsequent
wave nodes (with phase ϕ = 0) are drawn in Fig. 15.3. If there was no gravitational
field, the world lines would be (straight) lines at 45◦ to the t- and z-axes. But there is a
gravitational field, which somehowwill influence the radiation’s world line.We have
drawn the lines with a somewhat arbitrary form, as we do not know this influence
yet. What we do know, however, is that the gravitational field is static (independent
of time), and therefore both world lines must be “parallel”.

The frequency of the microwave emitted by clock A at A is ωA. On its way to
location B, this microwave experiences a redshift, its frequency ωA,B , measured
by clock B, is a bit smaller than ωA. For one wave period, we have ω�t = 2π .
Therefore, the period �tA,B of the wave emitted by A and measured by B is

�tA,B = ωA

ωA,B
�tA =

(
1 + �A − �B

c2

)−1

�tB > �tB .

For B, the clock at A runs more slowly.
But is this really the case? Imagine you are at B and see the light coming from the

clock at A redshifted. Then, you could argue that clock A runs at the same pace as
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clock B but, due to the redshift, the microwave carries the wrong information to you.
However, this argument can easily be refuted. Suppose both clocks are synchronized
at B and you bring one clock down to location A. This transport can be done in a
way that it does not influence the clock’s time by much. Then, you wait a long time.
While your clock B ticks many times, you receive fewer ticks from the other clock at
A (due to the redshift). Now, you bring the clock back to B, again with only a small
influence on its time. You will notice that, on clock B, less time will have passed
than on the clock that has been left at A. Therefore, gravitational time dilation is real.
The clock at A runs more slowly than the one at B.

Gravitational frequency shift implies curved spacetime. We have seen already
that the idea that clocks at higher gravitational potential go faster is real, and it has
been shown in the experiment of Hafele and Keating. Without taking gravitational
time dilation into account, satellite navigation would not work.

Let us again have a look at the spacetime diagram in Fig. 15.3. We see that the
figure F − G − H − K forms a kind of a parallelogram, and therefore the distances
FG and K H should be equal. This is not true, however, because, from event K to
H , more time passes (for the observer at B) than from event F to G (for observer
A). Therefore, spacetime must necessarily be curved.

Hence: the gravitational frequency shift (which has been observed in the experi-
ment of Pound and Rebka and many others and is also essential for the functioning
of GPS) implies that spacetime is curved.

Local bending of light. Let us go back to the free-falling elevator (see Fig. 15.2,
right). This time, in the elevator, Alice sends a light ray from A to B, horizontally
through the elevator. The light travels on a (straight) line because the elevator forms
a local inertial frame.

Bob, who is at rest relative to the elevator shaft, sees something different. The
light ray leaves location A and, due to the fact that the light ray needs the finite time
�T = w/c, where w is the distance from A to B, it arrives at location C . For Bob,
the light ray follows a parabola

z(x) = g

2c2
x2,

which has the curvature κ = g/(2c2) at x = 0 (Fig. 15.4).

Bending of light passing by the Sun and gravitational lenses. Two consequences
of this bending of light rays in the gravitational field were among the first confirma-
tions of general relativity.

One is the bending of light that passes by large massive objects in the universe.
Einstein, in 1915, had predicted that a light ray that passes by the Sun, almost grazing
its surface, would be deflected by an angle of about 1.75′′.6 This is a very small angle,

6 An initial calculation by Einstein, made in 1911 and considering only the equivalence principle as
we did above, predicted awrong value of half of the correct one. The reason is that both the curvature
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gA B Δϕ

Fig. 15.4 Trajectory of a light ray from A to B in a uniform gravitational field pointing in the nega-
tive z-direction. Left: the light ray follows a geodesic and is bent in the direction of the gravitational
field. Right: in Newton’s gravity, a light mass point orbiting a very heavy central mass point draws
an ellipse around the central mass. In Einstein’s gravity, the very small deflection of light causes
the axes of the ellipse to rotate very slowly

but the British astronomer Arthur Eddington was able to confirm this in a famous
experiment conducted during a total solar eclipse in 1919.

Heavier masses like galaxies, or clusters of galaxies, have a much larger influ-
ence on the trajectory of light, which resembles that of optical lenses.Gravitational
lenses were first observed in 1979.

Anomalous perihelion precession of Mercury. There is another effect of space-
time curvature that is directly observable in the solar system and that was also an
early confirmation of general relativity.

According to Newton’s gravity, a planet moves on an ellipse, with the Sun being
located in one of the foci. The major axis of the ellipse connects to points on the
planet’s orbit, the perihelion, which is the point closest to the Sun, and the aphelion,
which is the most distant one. According to Newton’s theory, this major axis is fixed
in space. Observations made as early as in the 19th century, however, showed that the
perihelion actually rotates. This rotation is calledMercury’s perihelion precession.
A large part of this precession could be attributed to the effect of other planets on
Mercury’s orbit, but there was a remainder of about 43′′ per century left. In 1915,
with his new theory, Einstein calculated the effect of curved spacetime on Mercury’s
orbit and got the experimentally determined value.

15.4 Curved Surfaces

The basis of general relativity is curved (orwarped) four-dimensional spacetime. This
is difficult to imagine, because our imagination ends with three dimensions, and the

in time and the curvature in space contribute to the bending in the same way. The equivalence
principle is able to capture the curvature in time, but not the one in space. To do so, Einstein’s full
theory of gravitation is necessary.
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Fig. 15.5 A triangle on the plane and another one on the sphere

fact that spacetime is curved makes this even worse. Fortunately, many of the con-
cepts used in general relativity can be learned simply by studying two-dimensional
surfaces. The main contributor to the mathematics of two-dimensional surfaces was
Carl Friedrich Gauss. Gauss’s student Bernhard Riemann later generalized differen-
tial geometry to arbitrary dimensions.

15.4.1 The Geometry of Curved Surfaces

In classical physics (including special relativity), it is assumed that space is flat (and
geometry is Euclidean). This means, e. g., that the angle sum of any triangle is 180◦
(or π ). In particular, on a flat surface (a plane), the angle sum of a triangle is 180◦.

This is not the case for general curved surfaces. Consider creatures that live on
a sphere and that only experience the two dimensions of the sphere. We humans
also live on the surface of a sphere (the surface of the Earth), but this surface is
“embedded” in three-dimensional space, and we can leave the surface “upward”
with a ladder, a plane or a rocket or “downward” with a spade. Our creatures cannot
do this.

Suppose that the creatures draw a triangle, three (straight) lines on the surface. The
obvious first question that arises is: what is a “(straight) line” on a curved surface?
The generalization of a (straight) line between two points on a flat surface to a curved
surface is the shortest curve on the curved surface between these two points. Such
curves are called geodesics. If one of our creatures walks on the surface and always
“follows its nose”, it automatically treads a geodesic.

For the triangle (see Fig. 15.5), we draw one (straight) line from the North pole
N to point P0 at 0◦ longitude on the equator, the second again from the North pole
to point P1 at 90◦ longitude on the equator, and eventually the third on the equator
from P0 to P1. The three lines form a triangle, and at each of the three points, the two
lines enclose an angle of 90◦ (π/2). Therefore, the sum of the angles of this triangle
is 270◦ (3π/2), and not 180◦ as in flat space. Geometry on the sphere is different
from Euclidean geometry on the plane!
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Carl Friedrich Gauss, who was probably the most important mathematician of
the modern age, has shown that the geometry on a two-dimensional surface is com-
pletely characterized by specifying the curvature at each point P on the surface.
This curvature can be determined by drawing a (small) triangle around the point P ,
determining its area σ and the excess angle ε := α + β + γ − π , where α, β, γ are
the triangle’s angles, and making the triangle smaller and smaller. In the limit of a
vanishingly small triangle, the curvature is given by κ := ε/σ and it is completely
independent of the type of triangles that you use to determine κ .

On the sphere, the curvature κ is the same at each point. To determine κ , we can
therefore use the large triangle constructed by our creatures above with the excess
angle ε = 3 · π/2 − π = π/2 and the surface area σ = π R2/2 (R is the radius of
the sphere; the surface of the triangle is 1/8 of the surface of the sphere), which gives
us κ = 1/R2. As R > 0, the curvature of a sphere is positive. And, as intuitively
expected, the smaller the sphere, the larger the curvature. The Earth is huge, and this
is why, in all but the most minute way, it seems flat to us.

We humans experience the Earth’s surface as a two-dimensional surface that is
embedded in three-dimensional space, and we have another method to determine
the curvature of a surface. Take a general two-dimensional surface (see Fig. 15.6),
with a point P on it. Then, there is a well-defined plane, which is tangent to the
surface at P , the tangent plane, and a vector, the surface normal, which is normal to
the plane in P . Consider a normal plane, which is a plane that contains the surface
normal. The intersection of this plane with the surface is a curve through P . We can
determine the curvature of this curve at P , which is the radius of the circle, which
fits the curve at P . We can do the same for different normal planes (all of which
include the surface normal) and will find out that there is a maximal curvature r1
and a minimal curvature r2. These are the principal curvatures of the surface at P .
The related normal planes are mutually perpendicular and are called the planes of
principal curvature. In Fig. 15.6, we have r1 > 0 and r2 < 0.

We see that, if we consider the surface embedded in three-dimensional space,
we need two curvatures r1 and r2 to describe it. Our creatures, however, need only
one curvature κ . Gauss has shown, in his theorema egregium, that the Gaussian
curvature κ is given by κ = 1/(r1r2) and that it completely describes the geometry
on the surface. The individual principal curvatures are not needed to describe the
geometry on the surface. In the case of the sphere,we have r1 = r2 = R, and therefore
κ = 1/R2.

Why are the individual radii not needed for the description of the surface? Take
a plane surface. You can draw a triangle and notice that the angle sum is π , and
therefore, as expected, the curvature vanishes. If you roll the sheet into a cylinder
surface, the edges of the triangle are still (straight) lines (geodesics), and the angles
at the triangle’s vertices do not change. Therefore, the Gaussian curvature κ stays
the same. Triangles on a cylinder have an angle sum of π and the cylinder’s curva-
ture vanishes. This is consistent with Gauss’ formula κ = 1/(r1r2) connecting the
principal curvatures with the Gaussian curvature. In the case of the cylinder surface,
one of the two planes of principal curvature through a point P on the surface is per-
pendicular to the axis of the cylinder and the other one contains this axis. The curve
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Fig. 15.6 Acurved surfacewith the tangent plane, the surface normal and the twoplanes of principal
curvature at P

given by the intersection of the cylinder surface and the plane containing the cylinder
axis is a line and has no curvature. Therefore, the maximal curvature r1 is infinitely
large. The curve given by the intersection of the plane perpendicular to the cylinder
axis and the cylinder surface is a circle and the minimal curvature r2 corresponds to
the radius of the cylinder. In the end, the Gaussian curvature becomes zero.

The Gaussian curvature is also called the internal curvature of the surface, and
this is indeed the only curvature that can be determined by our two-dimensional
creatures. Locally, they see no difference between a flat surface (plane) and the
cylinder surface. Globally, however, there is a difference. If the creatures start at a
point P on the cylinder surface and walk in an appropriate direction, after some time,
they will return to point P . This is not possible on a plane. The two curvatures r1
and r2 are external curvatures that only exist if the surface is embedded in a three-
dimensional space, and this external curvature even locally distinguishes between
the plane and the cylinder surface.

Besides the triangles, parallel lines or circles are other practical indicators of a
curved surface (see Fig. 15.7). On planes, parallel lines never meet. The situation
is different for curved surfaces. All the meridian lines in the geographic coordinate
system (the lines connecting theNorth polewith theSouth pole) on theEarth’s surface
are parallel at the equator. Nevertheless, these parallel lines meet at the North and at
the South pole.

Instead of a triangle, you can also draw a circle with a certain radius on the
surface. This also allows the creatures to determine the Gaussian curvature. Take a
circle of latitude on the Earth’s surface, which is a circle around the North pole. The
circumference of such a circle of latitude with latitude ϕ is

S(ϕ) = 2π RE sin ϕ,
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Fig. 15.7 Surfaces of different curvature and indicators for the curvature. Left: surfacewith positive
curvature; Middle: flat surface; Right: surface with negative curvature

where RE is the radius of the Earth. Additionally, the radius of the circle is equal to
the distance from the North pole to the circle of latitude (as measured on the Earth’s
surface) and is r(ϕ) = ϕRE, and therefore

S(r) = 2π RE sin(r/RE).

Gauss has shown that the curvature κ is given by the excess circumference 2πr −
S(r) divided by r3, in the limit of vanishing radius r , i. e.,

κ = 3

π
lim
r→0

2πr − S(r)

r3
.

For the considered sphere, this yields (with x = r/RE )

κ = 3

π
lim
r→0

2πr − 2π RE sin(r/RE)

r3

= 6

R2
E

lim
x→0

x − sin x

x3
= 6

R2
E

lim
x→0

x − (x − x3/6 + · · · )
x3

= 1

R2
E

.

Flat surfaces yield Euclidean geometry and surfaces with positive curvature, as the
sphere discussed above, yield elliptic geometry. In contrast, surfaces with negative
curvature yield hyperbolic geometry. In hyperbolic geometry, triangles have an angle
sum of less than π , circles have a circumference larger than 2π times their radius,
and there exist lines that are not parallel and, nevertheless, intersect nowhere (see
Fig. 15.7).

As the sphere is the surface with constant positive curvature, the pseudosphere is
the surface with constant negative curvature. The pseudosphere cannot be embedded
in three-dimensional space, but the tractricoid (which results from revolving a tractrix
about its asymptote), shown in Fig. 15.8, is very close to it. Its curvature is constant
everywhere, with exception of its equator.
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Fig. 15.8 The surface shown is a tractricoid. It is the closest surface to a pseudosphere that is
embeddable in three-dimensional space

Fig. 15.9 The distance of P
and Q on the curved surface
becomes its distance in the
three-dimensional
embedding space if P and Q
are infinitesimally close

P

Q

15.4.2 Quantitative Description of Curved Surfaces

Gauss coordinates. We turn our discussion of curved surfaces towards a more
quantitative topic now. To describe a surface, each point of the surface is identified
by a coordinate pair (u, v) in such a way that the coordinate pairs lie continuously
on the surface. Such coordinates are called Gauss coordinates. An example for a
plane could be the cartesian coordinates (x, y) or the polar coordinates (r, ϕ) and an
example for the surface of the unit sphere is the spherical coordinates (ϕ, ϑ) with
the azimuthal and polar angles.

A surface7 is specified by giving the location of each of the surface points in
three-dimensional space, i. e.,

x(u, v), y(u, v), z(u, v). (15.5)

The metric tensor. The distance between two infinitesimally close points P =
(u, v) and Q = (u + du, v + dv) on the surface (i. e., the length of the shortest line
connecting P and Q on the surface) is then given by the distance of the points in 3D
space (see Fig. 15.9). The square ds2 of this distance ds is

7 Provided that it can be embedded into three-dimensional space.



308 15 Towards General Relativity

ds2 = dx2 + dy2 + dz2.

Using the notation xu := ∂x/∂u etc. for the partial derivatives of (15.5), one gets

dx = xu du + xv dv, etc.

Therefore, ds2 can be written as

ds2 = (x2
u + y2u + z2u) du2 + (xu xv + yu yv + zuzv) du dv + (x2

v + y2v + z2v) du2

or
ds2 = guu du2 + 2guv du dv + gvv dv2 (15.6)

and is sometimes called the first fundamental form. The quantities guu , guv , gvv and
gvu := guv are the metric tensor (in guu etc., the indices refer to the components of
g, not to partial derivatives). Given the metric tensor, the geometry on the surface is
fully specified. This includes all distances on the surface and all angles. We can write
the metric tensor in matrix form

Ĝ =
(

guu guv

gvu gvv

)
(15.7)

and the first fundamental form becomes

ds2 = (
du dv

)
Ĝ

(
du
dv

)
.

As a first example, we use a plane (flat surface). With cartesian coordinates, the first
fundamental reads as

ds2 = dx2 + dy2,

while, in the case of polar coordinates, we have

ds2 = dr2 + r2 dϕ2.

In both cases, there is no “mixed term” du dv, i. e., guv = gvu = 0, and the metric
tensor is diagonal. This means that the coordinate lines are always mutually perpen-
dicular. If the metric tensor is equal to the unit matrix, we have cartesian coordinates.

In the case of the polar coordinates, the metric tensors depend on the position,
although the surface is flat. This indicates that it cannot be read easily from the
metric tensor whether or not the surface is flat—although the metric tensor contains
this information. For the same surface, different coordinates result in different metric
tensors.

As a second example, we take the sphere of (fixed) radius R. Using spherical
coordinates (ϕ, ϑ), the sphere is given by
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Fig. 15.10 Curve on a
surface. The tangent vector
t P , the principal normal nP
and the osculating plane to
the curve at P are shown

nP

tP
P QR

x(ϕ, ϑ) = R sin ϑ cosϕ,

y(ϕ, ϑ) = R sin ϑ sin ϕ,

z(ϕ, ϑ) = R cosϑ.

From this, the first fundamental form

ds2 = R2(dϑ2 + sin2 ϑ dϕ2)

follows. Close to the equator, we have ϑ ≈ π/2 and the first fundamental form
becomesds2 = R2(dϑ2 + dϕ2), which shows that themetric tensor is approximately
constant and the coordinates are approximately cartesian.

Curvature. Gauss has shown, in his theorema egregium, that the curvature κ is
indeed independent of the used coordinates and has given a formula that yields κ as
(a rather complicated) function of the first and second partial derivatives of themetric
tensor. A change of coordinates changes the metric tensor but leaves the curvature
invariant.

For the sphere, Gauss’s formula yields κ = 1/R2.

Geodesics. Take an arbitrary curve

r(s) = (x(s), y(s), z(s))

with the curve parameter s chosen such that it measures the length of the curve (see
Fig. 15.10). The first derivative ṙ(s) at the point P is a unit vector (that’s because
we chose the curve length as parameter) that is tangent to the curve and called the
curve’s tangent vector t P at P . The second derivative r̈(s) is the curvature vector
kP at P . It vanishes if the curve is straight in P . Otherwise, it is perpendicular to
the tangent vector and its length is equal to the curvature κ of the curve at P . The
curvature vector is usually written as kP = κnP , the product of the curvature and
the principal normal nP . The two vectors t P and nP span the osculating plane at P ,
which has the property that, at P , the curve lies within it. If we take two points Q
and R on the curve before and after P , but infinitesimally close to it, all three points
lie in the osculating plane.

If the curvature vector kP of the curve at each point P on the curve coincides with
the surface normal at P , the curvature of the curve is always perpendicular to the
surface and the projection of the curvature vector to the tangent plane vanishes. For
the creatures that live on the surface, the curve then is straight. Such a curve is called
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a geodesic. Geodesic curves are the closest to (straight) lines on curved surfaces.
On the sphere, the geodesics are the intersections of planes through the origin of the
sphere with the sphere (great circles).

Through each pointP on a surface, there is exactly one geodesic for each direction
in the tangent plane of the surface. A point P on the surface and a tangent vector
uniquely determine a geodesic.

We already mentioned that a geodesic can also be characterized by the fact that it
is the shortest curve connecting two points on the surface.

Suppose that the shortest curve from A to B is given by

(u(λ), v(λ)),

where λ ∈ [0, 1] and λ = 0 corresponds to A while λ = 1 corresponds to B.
Then, the length s of this curve C, given by

s =
∫
C

ds =
1∫

0

√(
du

dλ

)2

+
(

dv

dλ

)2

dλ,

must be the shortest for all curves from A to B. This is a minimum principle and a
standard problem inmathematics. It leads to theEuler-Lagrange differential equation,
which, in the case at hand, is

d2u

dλ2
+ �1

11

(
du

dλ

)
+ 2�1

12
du

dλ

dv

dλ
+ �1

22

(
dv

dλ

)
= 0, (15.8)

d2v

dλ2
+ �2

11

(
du

dλ

)
+ 2�2

12
du

dλ

dv

dλ
+ �2

22

(
dv

dλ

)
= 0. (15.9)

These differential equations together are called the geodesic equation. Given the
metric tensor gi j of a curved surface, the Christoffel symbols �k

i j , which are a combi-
nation of the metric tensor with its derivatives, can be calculated. Then, the geodesics
follow from the geodesic equation.

15.5 Curved Spacetime and General Relativity

15.5.1 Curved Surfaces Versus Curved Spacetime

In general relativity, space and time form a four-dimensional space (space here in
the mathematical sense) called spacetime, which is curved (warped) through the
presence of masses and energies. The obvious difference from curved surfaces is the
two additional dimensions, which complicate matters a lot. We have seen that, in
curved surfaces, one number is sufficient to specify the curvature at a point P . In
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four-dimensional spacetime, however, 20 numbers are needed. But there is a more
important difference in the case of curved surfaces. In our discussion on surfaces,
the non-curved case is given by the metrics ds2 = dx2 + dy2, which corresponds to
Euclidean geometry on the plane. In curved spacetime, the non-curved case is given
by special relativity and (in two-dimensional spacetime) the metrics (see 9.3)

ds2 = c2 dt2 − dx2.

This is called the Minkowski metrics and it is the metrics for spacetime without a
gravitational field or masses and energies. It is the starting point for general relativity.

In general relativity, the trajectory taken by a free-falling object upon which
gravity, but no other forces, acts is given by a geodesic in spacetime. For example,
the path of an object that we throw upwards and that falls down to Earth must be a
geodesic in curved spacetime.

To demonstrate how Einstein’s general relativity accomplishes this, we first stay
in classical mechanics and discuss a more unusual way of determining trajectories
of objects.

15.5.2 The Principle of Stationary Action and Geodesics

Canwe construct a non-Euclidean spacetime (x, t) such that the trajectory of a freely
falling object is a geodesic? Yes, that’s possible, as Einstein has demonstrated. We
cannot prove this here, butwe can explain the idea. It is possible to knead the principle
of stationary action into a statement about geodesics.

If, in classical mechanics, you want to determine the trajectory r(t) of a particle
that is subject to a certain force F, you solve Newton’s force law, which reads as
r̈(t) = F/m. This gives you two integration constants, which you use to accomodate
for the initial conditions, the position r0 and the velocity v0 of the particle at t0.

There’s an alternative way to determine the trajectory of a particle. Here, two
points P0 and P1 in spacetime are given and one determines the trajectory that passes
through these two points.

Let’s restrict ourselves to one space dimension, measured by the z-coordinate,
and consider the two-dimensional z-t-spacetime (see Fig. 15.11, left). Then, the two
points will be P0 = (z0, t0) and P1 = (z1, t1) and we seek for the particle trajectory
that goes through these two points.

To make this idea clearer, let’s consider the trajectory

z(t) = −1

2
g(t − t0)

2 + v0(t − t0) + z0,

which is that of a particle falling freely (initially thrown upwards) in a uniform
gravitational field g and that has the position z0 and velocity v0 at time t0. At some
later fixed time t1, it is at z1 = −g(t1 − t0)2/2 + v0(t1 − t0) + z0, i. e., at point P1.
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Suppose that we knew only the two points P0 and P1; with this information, we could
still recover the trajectory.

This task is carried out with the calculus of variations, here with the principle of
stationary action. The idea is that one considers all possible smooth trajectories z(t)
(whether real or not) that connect P0 = (z0, t0) and P1 = (z1, t1) and determines the
sought-after one through a stationary principle.

To do so, one needs theLagrange functionL, which associates a given trajectory
z(t) with a function L(t) of time that depends on the trajectory z(t) and its first time
derivative ż(t):

L(t) = L(z(t), ż(t)).

Using this function, we can associate a number with each trajectory. This number is
the action

S[z(t)] :=
t1∫

t0

L(z(t), ż(t)) dt, (15.10)

which is nothing more than the time integral ofL(t). The brackets in S[z(t)] indicate
that S associates a number with the trajectory z(t) and not with the number z(t). For
this reason, S is sometimes called a functional.

Now, the principle of stationary action says:

The trajectory z(t) taken by a particle between (z0, t0) and (z1, t1) is the one for which the
action S[z(t)] is stationary.8

The solution to this problem can then be given by a differential equation, called
the Euler-Lagrange equation:

L
z

− d

dt

L
ż

= 0.

So far, the formalism used is very general. One can use it in optics to find the tra-
jectory of a light ray when it passes through a material with non-constant refractive
index (as in the fata morgana) or in mechanics to find the form that a chain assumes
when it hangs freely in a uniform gravitational field (catenary). Two further applica-
tions are: determining trajectories of mass points that move in force fields (as above)
or finding geodesics in curved space.

Particle in the gravitational field. The Lagrange function L of a particle of mass
m in classicalmechanics is given by9 L = T − V , where T is its kinetic energy and V
the potential energy. In one dimension, the kinetic energy associated with the particle
moving on the trajectory z(t) is given by T = (m/2)ż2 and, in the gravitational field,

8 Stationary means that a small change of z(t) does not change the action S[z(t)]. This includes the
cases when it is extremal, either maximal or minimal.
9 The force field must be conservative, which is the case for the gravitational field in classical
mechanics.
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the potential energy is given by V = m�, where �(z) is the gravitational potential.
Therefore,

L(t) = m

2
ż(t)2 − m�(z(t)), �(z) = gz. (15.11)

From that, we have

L
z

= −m�′(z) and

d

dt

L
ż

= d

dt
(mż) = mz̈

and the Euler-Lagrange equation gives us

mz̈(t) = −m�′(z) or z̈(t) = −�′(z) = −g,

which is nothing other than Newton’s force law (equation of motion).
Therefore: the trajectory of a mass point in the gravitational potential can

be described by making the action integral (15.10) over the Lagrange function
L(t) = T − V stationary.

From the principle of stationary action to geodesics. Can we construct a curved
spacetime (z, t) whose geodesics are equal to the trajectories of particles that fall
freely in the gravitational field?

Remember that the distance between two close points (z0, t0) and (z1, t1) in non-
curved spacetime (special relativity) is given by

�s2 = c2�t2 − �z2,

which is also written in the form

�s2 = g00c2�t2 + g11�z2

with the metrics g00 = 1, g11 = −1.
In our case, spacetime is almost flat, and we make the Ansatz g00 = 1 + �, g11 =

−1 for our curved spacetime. The geodesic zg(t) between P0 = (z0, t0) and P1 =
(z1, t1) is the shortest curve z(t) between these two points. Its length is

s =
P1∫

P0

ds

=
P1∫

P0

√
g00c2dt2 − dz2
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=
t1∫

t0

√
g00c2 − ż2(t) dt

=
t1∫

t0

√
(1 + �)c2 − ż2 dt

=
t1∫

t0

c
√
1 + � − ż2/c2 dt.

Now, ż2/c2 � 1, and we will also see that � � 1. Therefore, we have

s =
∫

c
√
1 + � − ż2/c2 dt ≈ c

∫ (
1 + � − ż2/c2

2

)
dt,

which must become stationary. Now, the additive constant does not matter; it leads
to a constant. We can instead make s − c(t1 − t0) stationary. Furthermore, a mul-
tiplicative constant also does not matter. We multiply s − c(t1 − t0) by −mc and
get

s̄ =
t1∫

t0

(
m

2
ż2 − mc2

2
�(z)

)
dt.

If we compare this to (15.10) with (15.11), we see that the identification

�(z) = 2�(z)

c2

implies that the trajectory of our mass point in classical mechanics is equal to the
geodesic resulting from the calculation at hand.

Therefore: the free motion of a mass point in a curved spacetime with metrics

g00(z) = 1 + 2�(z)

c2
, g11(z) = −1

is equivalent to the motion of the mass point in non-curved spacetime under the
effect of a uniform gravitational field. In the description with curved spacetime, the
gravitation as a force has vanished.

Note that g00(z) is very close to 1, so it can only lead to a very small curvature
and trajectories that only slightly deviate from (straight) lines. If we look at the z-ct-
diagram (Fig. 15.11, right), we see that the trajectory is indeed very close to a line.
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Fig. 15.11 Trajectory of an object in a uniform gravitational field pointing in the negative z-
direction. Left: the usual diagram, as drawn in a classical mechanics course. Right: the equivalent
diagram with curved spacetime in general relativity. The t-axis is expanded by the factor c

15.5.3 The Complete Picture

In general relativity, all free-falling objects followgeodesics. The effect of gravitation
is woven into the geometry of curved spacetime and gravitation as a force disappears.

The metrics is a kind of a gravitational potential. We have shown, how objects
move in a given curved spacetime. But how do we come to the curved spacetime (the
metric tensor) in the general case?

This task is achieved by Einstein’s field equation. This is actually a set of 10
couplednon-linear differential equations10 (i. e., extraordinarily complicated),which,
in tensor form, read as

Rμν − 1

2
Rgμν = 8πG

c4
Tμν. (15.12)

To get an idea about how this equation works, look again at Newton’s field equation
(15.4)

��(r) = 4πGρ(r).

Here, on the right side, is the source of the gravitational field, the mass distribution
(or density) ρ(r). On the left side is a kind of second derivative of the gravitational
potential. Given ρ(r), with (15.4), we can determine �(r) and then, via (15.2), get
the gravitational field g. The trajectory of a particle in this field is then described by
Newton’s force law, giving us r̈ = g.

In Einstein’s field equation (15.12), we have the energy-momentum tensor Tμν

on the right side. It describes the energy and momentum of mass (or energy) distri-
butions. Not only does the mass distribution ρ(r) have an influence on spacetime but
so does its dynamics. For instance, a rotating sphere generates a different spacetime
than a sphere at rest. Something similar occurs in electrodynamics. There, the charge

10 The indices μ and ν range from 0 to 3. Due to the fact that the tensors are symmetric (i. e.,
Tμν = Tνμ), they have only 10 instead of 4 · 4 = 16 independent components.
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density and the charge’s velocity (current) also influence the electromagnetic field.
The energy-momentum tensor Tμν is a generalization of ρ.

On the right side of Einstein’s field equation is theEinstein tensor Gμν := Rμν −
1
2 Rgμν , which is a function of themetric tensor gμν and its first and secondderivatives.

Then, the situation in Newton’s and Einstein’s gravity becomes similar: In New-
ton’s gravity, the mass density ρ determines the gravitational potential �, and the
gravitational field g follows as a derivative from it. Newton’s force law r̈ = g then
determines the trajectory of an object. In Einstein’s gravity, the energy-momentum
tensor Tμν determines, via the field equation, the metric tensor gμν , and the Christof-
fel symbols �λ

μν follow as derivatives from it (the superscript λ is an index, not an
exponent). The geodesic equation (the generalization of (15.8) to four-dimensional
spacetime) then determines the trajectory of an object.

But there are also large differences. An obvious one is that the formalism of Ein-
stein’s gravity ismuchmore difficult than its Newtonian counterpart (this complexity,
however, is required and reflects the multitude of facets of gravitation).

Another more conceptual one is that, in Newton’s case, space and time exist
per se. We can construct a coordinate system, and describe everything with it. In
general relativity, however, spacetime is curved, a result of the presence of matter
and energy. When we describe the energy-momentum tensor, we do not know how
rods and clocks work in curved spacetime, because only the metric tensor gμν tells
us that. For this reason, we have to start with “unphysical” coordinates, which do not
correspond to real distances and time differences, but just serve to identify events in
spacetime. Solving Einstein’s field equation then gives us the metric tensor, which
allows us to measure distances and time differences. In most non-trivial cases, this
implies an interactive process for solving Einstein’s field equations.

15.6 Example: Curved Spacetime Caused by a Large
Spherically Symmetric Source

15.6.1 Schwarzschild Metrics

We give a final example, which was the first exact solution to Einstein’s field equa-
tions,worked out in 1915 byKarl Schwarzschild. It is the gravitational field generated
by a mass point of mass M , i. e., about spherically symmetric space. In Newton’s
gravity, this mass point (imagine the Sun) creates a field with the spherically sym-
metric gravitational potential given by �(r) = −G M/r , which is independent of
time.

In general relativity, to determine the metric tensor (which, as we said, is the
potential’s counterpart), we first incorporate all symmetries of the problem. Using
spherical coordinates, (t, r, ϕ, ϑ), the first fundamental form with the needed sym-
metries is
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ds2 = g00(r, t)c2 dt2 + grr (r, t) dr2 − r2(dϑ2 + sin2 ϑ dϕ2).

Note that the metric tensor can only depend on the radial coordinate r and the
time t . To calculate the tensor components g00(r, t) and grr (r, t), Einstein’s field
equations have to be solved. To be able to do this, we would need a great deal of more
mathematics thanwe are using here.We quote the result, which is the Schwarzschild
metrics:

g00(r) =
(
1 − rS

r

)
,

grr (r) = −g−1
00 (r, t) = −

(
1 − rS

r

)−1
.

(15.13)

Here, rS = 2G M/c2 is the Schwarzschild radius, which, for the Earth, would be
9mm and, for the Sun, 3 km, i. e., it is very small. Note that the metric tensor does
not depend on the time coordinate.

If the mass point is actually not a point, but rather a spherically symmetric object
with a radius rM , the curved spacetime that it generates outside of the object is equal
to that for a mass point. Inside the object, it will be different and, for a fixed r < rM ,
given by the mass inside of a sphere with radius r .

It is important to remember that the (t, r, ϕ, ϑ) in Schwarzschild’s solution are
only Gaussian coordinates and �r and/or �t are not real distance or time intervals.
Only if M = 0, i. e., rS = 0, do the coordinates refer to real distances and time inter-
vals. The coordinates also become spherical coordinates for very large r , because,
for r → ∞, g00 → 1 and grr → −1.

The local time at a fixed coordinate r0 is given by dr = dϕ = dϑ = 0, i. e.,

dτ = √
g00(r) dt =

√
1 − rS

r
dt =

√
1 + 2

c2
�(r) dt,

where �(r) is Newton’s gravitational potential. This is exactly in line with what we
got from the Gedanken experiment of the free-falling elevator.

In comparisonwith the clock at r = ∞ (referring to “very far away from the central
mass”), which proceeds according to coordinate time t , the local time proceeds more
slowly. At r = rS , the metrics has a singularity. The closer the clock at r > rS comes
to r = rS , the more slowly it proceeds (in comparison to the clock at r = ∞), and, at
r = rS , it comes to a rest. This means that objects (massive objects, light) at r ≤ rS

can never reach locations with r > rS . The hypersurface r = rS is called the event
horizon, and if the central object with mass M has a radius smaller than rS , it is a
black hole.

A person that freely falls in a cabin will not notice when the cabin crosses the
event horizon. All experiments in the cabin will work as expected and ameasurement
of the speed of light will yield c.

Local distances at a fixed time and in the radial direction have dt = dϕ = dϑ =
0, and therefore
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dl =
√

−ds2 = √−grr (r) dr =
√
1 − rS

r

−1

dr =
√

r

r − rS
dr.

In comparison to distances at r = ∞, where they are given by coordinate differences,
local distances are larger. The closer to the event horizon, the larger the distances.
Note again the singularity in grr at r = rS .

For an observer at r = ∞, a light ray at (r, t) has the velocity

c(r) = dr

dt
=

√
g00√−grr

= g00 · c =
√
1 − r

rS
· c.

The closer the light ray is to r = rS , the more slowly it proceeds.

15.6.2 The Embedding Diagram

There is a nice procedure for visualizing two-dimensional curved spaces in three-
dimensional flat space, which we can apply to the Schwarzschild metrics (15.13).
First, we have to reduce the Schwarzschild metrics to two dimensions. Due to the
fact that the metrics is independent of the time, we can just set t = 0, which removes
the time dimension. Furthermore, the metrics has rotational symmetry and, without
any loss, we can choose the subspace (r, ϕ) by setting ϑ = π/2. This leaves us with
the two-dimensional curved space with the metrics

− ds2 = −grr (r) dr2 + r2 dϕ2. (15.14)

Now, we add a third dimension with coordinate z that is perpendicular to the (r, ϕ)-
plane and get cylinder coordinates as Gaussian coordinates. We construct a surface
with the property that the distance from (r, ϕ) to (r + dr, ϕ + dϕ) in the curved space
(15.14) is equal to the distance between the two points (r, ϕ, z) and (r + dr, ϕ +
dϕ, z + dz), where z = z(r, ϕ) and z + dz = z(r + dr, ϕ + dϕ), on the surface in
the three-dimensional embedding space (Fig. 15.12).

This means that we have to construct a surface z(r, ϕ) in our three-dimensional
flat space with cylinder coordinates such that

−ds2 = dz2 + dr2 + r2 dϕ2

=
[(

dz

dr

)2

+ 1

]
dr2 + r2 dϕ2.

This requires (
dz

dr

)2

+ 1 = −grr (r) =
(
1 − rS

r

)−1
,
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Fig. 15.12 Embedding a two-dimensional curved subspace of spacetime with Schwarzschild met-
rics into three-dimensional flat space

from which we get

dz

dr
= ±

√
rS

r − rS
and z(r) = ±2

√
rS(r − rS).

We can turn this around and have r(z) = z2/(4rS) + rS , which is a parabola (called
Flamm’s paraboloid) rotated around the z-axis. The distance when we want to
go from point P1 = (r1, ϕ1) to point P2 = (r2, ϕ2) in curved two-dimensional
Schwarzschild space is equal to the distance from Q1 = (r1, ϕ1, z1) with z1 = z(r1)
to Q2 = (r2, ϕ2, z2) with z2 = z(r2) on the curved surface in flat three-dimensional
space.



Chapter 16
Summary

The central pillars of special relativity are its two principles:

• Einstein’s principle of relativity: all inertial frames are on an equal footing.
• Principle of the absolute speed of light: light propagates with the same universal
speed c in all directions and all inertial frames.

Einstein synchronization also plays an important role, and, arguably, one could
adopt a different synchronization scheme. The main effects predicted by the theory,
however, would be the same with a different synchronization scheme.1

Out of the two principles, the relativity principle is that with the more drastic
consequences. It implies that either classical mechanics or electrodynamics cannot
be exactly correct.

No more than the two principles are needed to derive the “kinetic effects”: rel-
ativity of simultaneity, length contraction and time dilation. These are real effects,
probed innumerable times in experiments. Along with these effects, we must use the
Lorentzian addition of velocities, the usual addition of velocities being insufficient.

The transformation that mediates between two inertial frames is the Lorentz trans-
formation. All kinematic effects that are also a consequence of the two principles
follow from the Lorentz transformation.

The laws of classical mechanics cannot be used anymore because they are not
form-invariant under Lorentz transformation and, if correct, would predict differ-
ences between inertial frames and contradict Einstein’s principle of relativity. There
must be a new mechanics that is (a) form-invariant under Lorentz transformation and
(b) become classical mechanics within the limit of small velocities. This is Einstein’s
mechanics, a part of special relativity.

These requirements lead to the definition of the (relativistic) energy and the (rela-
tivistic) momentum. The (relativistic) energy involves the famous formula E = mc2:

1 An example is Lorentz’s ether theory, which could be seen as a theory that is very similar to
Einstein’s theory, with the exception that it uses an absolute time.
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the rest energy and the mass of an object are the same. Conservation laws for the (rel-
ativistic) energy andmomentum are form-invariant under LT, which is again required
by Einstein’s principle of relativity.

Maxwell’s electrodynamics as is is form-invariant under Lorentz transformations;
there’s no need to adapt it to fit with the principles of special relativity. Contrary
to what the fathers of electrodynamics thought, it is valid in the same form in each
inertial frame and there is no luminiferous aether. The electromagnetic fields transfer
into each other when changing from one to another inertial frame.

Special relativity has ample relevance for our daily life: satellite navigation would
not work without Einstein’s theories of relativity.

Einstein’s achievement was made “on the shoulders” of colleagues. But, in the
end, it was his genius that understood the profound consequences and that carried
out the inevitable revolution.

As Darrigol [Darrigol05] put it:

“Most of the components of Einstein’s paper appeared in others’ anterior works on the
electrodynamics ofmoving bodies. Poincaré andAlfredBucherer had the relativity principle.
Lorentz and Larmor had most of the Lorentz transformations, Poincaré had them all. Cohn
and Bucherer rejected the ether. Poincaré, Cohn, and Abraham had a physical interpretation
of Lorentz’s local time. Larmor and Cohn alluded to the dilation of time. Lorentz and
Poincaré had the relativistic dynamics of the electron. None of these authors, however, dared
to reform the concepts of space and time. None of them imagined a new kinematics based
on two postulates. None of them derived the Lorentz transformations on this basis. None of
them fully understood the physical implications of these transformations. It all was Einstein’s
unique feat.”



Appendix
Useful Formulas

A.1 Frequently Used Approximations

For |x | � 1, the following approximations are useful:

1

1 ± x
≈ 1 ∓ x,

√
1 − x ≈ 1 − 1

2
x,

1√
1 − x

≈ 1 + 1

2
x,

sin x ≈ x (x in radians),

tan x ≈ x (x in radians).

For γ (u) from (8.3), for the case |u| � c, the following holds:

γ −1(u) ≈ 1 − u2

2c2
, γ (u) ≈ 1 + u2

2c2
.

A.2 From Special Relativity

A.2.1 The Doppler Effect

νO

νS
= 1

γv · (1 + ve/c)
.
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Here: v is the velocity of the light source and e its direction, both at the moment
when the light pulse was emitted and in the observer’s frame. See (9.6).

A.2.2 Aberration

Suppose Bobmoves relative to Alice with velocity v in the direction of their common
x-axis. Alice sees the light of a star coming from the direction ϕ, measured from the
x-axis. Then, Bob sees the light from this star coming from the direction ϕ′, where

tan ϕ′ = 1

γv

sin ϕ

cosϕ + v/c

(see 12.9). Or, alternatively, as in (12.10),

cosϕ′ = cosϕ + v/c

1 + (v/c) cos ϕ
.

A.2.3 Lorentzian Addition of Velocities

From (12.6), it follows that

u′
‖ = 1

1 − uv
c2

(u‖ − v)

u′
⊥ = γ −1

v

1

1 − uv
c2
u⊥.

If v = vev and we denote with P̂ev
the projector on ev , we can write:

u′ = u 	 v = (P̂ev
u − v) + γ −1

v (u − P̂ev
u)

1 − uv/c2
= (P̂‖

ev
u − v) + γ −1

v (P̂⊥
ev
u)

1 − uv/c2
.

A.2.4 Others

Decomposition of a vector r into a component r‖ parallel to a unit vector e and
another component r⊥ perpendicular to e:
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r = r‖ + r⊥ :
r‖ = (re)e

r⊥ = r − (re)e = −(r × e) × e.

γ -formulas (see 12.5):

γu′u′ = γvγu(u − v)

γu′ = γvγu(1 − uv/c2).
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Solution to Exercises

Solution to Exercise 15: We start with the direction perpendicular to the relative
motion. Let T⊥ be the time light needs to travel from the beam splitter to the mirror.
During this time, the interferometer has moved by vT⊥, and for the length l⊥ of the
trajectory, we have l2⊥ = L2 + (vT⊥)2 = L2 + (v/c)2l2⊥. Therefore,

T⊥ = 2l⊥
c

= 2L

c

1
√
1 − β2

,

which is the same as (5.3).
Now, we come to the direction parallel to the relative motion. Let T‖+ be the time

the light needs for the trajectory from the beam splitter to the mirror. During this
time, the mirror moves away by the distance vT‖+, so the actual traveling distance
is l‖+ = L + vT‖+ and the time needed is T‖+ = l‖+/c or

T‖+ = L

c

1

1 − β
.

When the light comes back, the beam splitter moves toward it, and with the same
arguments, we get

T‖− = L

c

1

1 + β
.

This leads to (5.2), and eventually to (5.4).

Solution to Exercise 17: Suppose TEcl is the time between two eclipses of Io. In
this time, Io performs a complete orbit around Jupiter, plus a small angle α. In the
same time, Jupiter moves forward by this small angle α on its orbit around the Sun.
We have

TEcl =
(
1 + α

2π

)
TIo = α

2π
TJup.

From this, we get
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α = 2π · TIo
TJup − TIo

= 2π · 1.769

365.2425 · 11.86 − 1.769
= 2.567 × 10−3

and
�T = TEcl − TIo = α

2π
TIo = 63.4 s.

The mean distance between the Earth and the Sun is about 150 million kilometers,
therefore, light needs 2 × 1.5 × 108/(3 × 105) s = 1000 s.

In Exercise 23 at the end of Sect. 7.9.2, you find a very similar problem.

Solution to Exercise 19: Let a light pulse start at clock A at tA,0 (see Fig. 7.4). It
will arrive at the semitransparent mirror M , where it is split. The reflected pulse then
arrives at clock A at tA,1 and the transmitted one at clock B at tB,1. The latter clock
sends the pulse immediately back to clock A, where it arrives at tA,2 (we neglect the
semitransparent mirror now).

Suppose that Einstein synchronization has been performed. Then, by definition,
tB,1 = (tA,0 + tA,2)/2 or tB,1 = tA,0 + �t with �t = (tA,2 − tA,0)/2. Therefore, the
light pulse needs the time �t to travel from clock B back to clock A. Due to the fact
that the semitransparentmirror is halfway between the clocks, the light pulse from the
semitransparent mirror to clock A will take �t/2, exactly the same as the light pulse
from the semitransparent mirror to clock B. Therefore, if two clocks are Einstein
synchronized, they are also synchronized according to symmetric synchronization.

Suppose now that the symmetric synchronization procedure has been carried out
in the following slightly modified way. The light pulse starts at A at tA,0 and is split
at M at tM , where the actual synchronization starts. The times at which the split
pulses arrive at A and B are tA,1 and tB,1, respectively. Let us set �t = tA,1 − tA,0.
Now, due to the fact that the path from clock A to clock B is twice as long as the
path from clock A to the semitransparent mirror, tA,2 is given by tA,2 = tA,0 + 2�t ,
and we get (tA,2 + tA,0)/2 = tA,0 + �t = tA,1. On the other hand, this must be tB,1

according to Einstein synchronization. Therefore, if two clocks are synchronized
according to symmetric synchronization, they are also Einstein synchronized.

This completes the proof that symmetric synchonization is equivalent to Einstein
synchronization.



Solution to Exercises 331

Solution to Exercise 20: The coordinates of the “flash” events are:

E1:
(
t1, x1 = c2

v
t1

)
, E2:

(
t2, x2 = c2

v
t2

)
.

Suppose that t2 > t1.
For the world lines of the light pulses, we get

L1: (x − x1) = +c(t − t1)

x = +ct − ct1 + x1 = +ct +
(
c2

v
− c

)
t1,

L2: (x − x2) = −c(t − t2)

x = −ct + ct2 + x2 = −ct +
(
c2

v
+ c

)
t2.

The intersection event EI is given by EI = L1 ∩ L2. Therefore,

ctI +
(
c2

v
− c

)
t1 = −ctI +

(
c2

v
+ c

)
t2,

2ctI = c(t1 + t2) + c2

v
(t2 − t1),

tI = t1 + t2
2

+ c

v

t2 − t1
2

.

EI lies on L1, and therefore

xI = c(tI − t1) + x1

= c
t1 + t2

2
+ c2

v

t2 − t1
2

− ct1 + c2

v
t1

= c
t2 − t1

2
+ c2

v

t1 + t2
2

.

The line through EI and parallel to the x ′-axis is given by

x − xI = v(t − tI)

x = vt − vtI + xI

= vt +
(
c2

v
− v

)
t1 + t2

2
.

The intersection EM = (tM, xM) with Bob’s x ′-axis, given by x = (c2/v)t , is
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c2

v
tM = vtM +

(
c2

v
− v

)
t1 + t2

2
=⇒ tM = t1 + t2

2
.

Furthermore,

xM = c2

v
tM = c2

v

t1 + t2
2

= x2 + x1
2

.

The event EM in the spacetime diagram is in the middle between E1 and E2, and
therefore, for Bob, the light pulses from E1 and E2 that were emitted at t ′ = 0 at x ′

1
and x ′

2, respectively, meet at x ′
M = (x ′

1 + x ′
2)/2.

Solution to Exercise 23: We give two methods.
In the first method, we calculate the position of the clock’s hands at time t

and require these to be equal. Measured from the vertical, the clockwise measured
angle ϕS of the hour hand is given by ϕS(t) = 2π(t/12 h − nS), where nS is the num-
ber of complete laps. For the minute hand, we have ϕM(t) = 2π(t/1 h − nM). When
the clock hands coincide for the first time, we have nS = 0 and nM = 1. From that,

we have t/12 h
!= t/1 h − 1 or t · (1 − 1/12) = 1 h, and therefore t = (12/11) h =

1 h 5min 27.27 s.
The second method is much easier: the clock’s hands coincide exactly 11 times

in 12 h. Therefore, this happens every (11/12) h.
In the discussion of the Sagnac interferometer, we have given the time �t by l/c.

This is only approximately correct, because, while the light traveled the distance
from l to l + �l, the Earth has kept rotating. So, to be really exact, we have to
write �t = l/(c − 	R), but due to the fact that the velocity vR = 	R of the loop
usually is much smaller than the speed of light, one can neglect this.

Solution to Exercise 29: We start with the velocity v0 of the object at t = t0. Deriva-
tion of the hyperbola yields x(t)ẋ(t) = c2t , and therefore v0 = ẋ(t0) = c2t0/x(t0) =
c2t0/x0. Therefore, the t ′-axis is given by x = v0t and the x ′-axis by x = (c2/v0)t .
Consequently, the event (t0, x0) lies on the x ′-axis; in other words, at t ′ = 0, the
object’s velocity vanishes.

The Lorentz transformation is x = γ (v0)(x ′ + v0t ′), t = γ (v0)(t ′ + (v/c2)x ′).
Plugging this into the formula of the hyperbola yields x ′2 − c2t ′2 = c4/α2. Therefore,
the acceleration in all instantaneous rest frames of the object is the same, or, to put
it another way, the proper acceleration of the object is constant.

Solution to Exercise 32: We describe the process from the point of view of Alice.
Let l0 be the proper length of the light clock. If said clock is oriented inBob’s direction
of motion, for Alice, it is contracted and has the length lA,‖ = l0/γv . Thus, one
clock period for Alice takes t0 = t‖ = (2lA,‖/c)/(1 − v2/c2) = 2γ 2

v lA,‖/c (compare
to 5.2).

If the clock is oriented perpendicular to the direction of motion, for Alice, it has
the (so far unknown) length lA,⊥. The period again must be t0. Thus, for Alice, the

light pulse in the clock must cover a distance of 2
√

(vt0/2)2 + l2A,⊥. Consequently,

we have (ct0/2)2 = (vt0/2)2 + l2A,⊥ or t0 = (2lA,⊥/c)/
√
1 − v2/c2 (compare to 5.3).
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Equating both expressions yields lA,⊥ = γvlA,‖ = γv(l0/γv) = l0. Therefore, dimen-
sions perpendicular to the direction of motion are not contracted!

Solution to Exercise 35: Deriving the hyperbola c2t2 − x2 = 1 with respect to the
time yields ẋ = c2t/x . Inserting x = vt then yields the slope of the t ′-axis.

Solution to Exercise 37: For the relativistic Doppler effect, we have

νO

νS
=

√
1 − v/c

1 + v/c
≈

√(
1 − v

c

)2 = 1 − v

c
,

while, for the classical Doppler effect, one gets

νO

νS
= 1 − vO/c

1 − vS/c
≈ (1 − vO/c)(1 + vS/c) ≈ (1 − (vS − vO)/c) = 1 − v/c.

Here, v = vS − vO is the velocity of the source relative to the observer.

Solution to Exercise 39: This is easy. Under the integral, only the square of the
velocity appears, and this is constant. Therefore, from (9.13), we have

�t ′ =
tR∫

tQ

√
1 − v2

B(t)/c2 dt = γ −1
v

tR∫

tQ

dt = γ −1
v �t.

Solution to Exercise 40: Light covers a distance of 1m in about 3 ns. The relative
errorwould be approximately 10−12. Therefore, it would take only about 300 s, or five
minutes. For this reason, it is necessary that satellite clocks be corrected regularly
through the use of commands sent by control stations on the Earth. Taking into
account this regular correction, the satellite clocks stay synchronized with the clocks
on the Earth.

Solution to Exercise 44: This follows directly from the relation

tanh(α + β) = tanh α + tanh β

1 + tanh α tanh β
.

Solution to Exercise 45: Let Alice and Bob be inertial observers. Bob moves with
velocity v in the x-direction relative to Alice. There are two clocks at equal distances
in front of and behind him, both of which have to be synchronized (for Bob). At
time t = t ′ = 0, Bob sends a signal with velocity u toward the clocks. When the
signals arrive at the clocks, those are set to zero. Then, Bob assumes these clocks to
be synchronized.

How does Alice describe this experiment? For Alice, Bob moves on the trajec-
tory x = vt , while the trajectories of the clocks are given by x = vt ± L/2. The
signals obviously have different velocities for Alice than for Bob. Let x = u+t be
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the trajectory of the light pulse traveling to the front clock and x = u−t the one
traveling to the rear clock. In the case of classical mechanics, u± = v ± u, whereas,
in special relativity, (10.3) holds, and we therefore have u± = (v ± u)/(1 ± uv/c2).

At event E+, the light signal arrives at the front clock, and at event E−, it arrives
at the rear clock. We calculate Alice’s coordinates at these events. The time coordi-
nates t± follow from the intersection of x = u±t and x = vt ± L/2. This yields

t± = ±L

2(u± − v)
.

In the case of classical mechanics, u± − v = ±u, and therefore t± = L/(2u). The
events therefore are also simultaneous for Alice. This is what we expected, because,
in classical physics, simultaneity is absolute. Events, that are simultaneous for Bob,
are also simultaneous for Alice.

In the case of special relativity, the time coordinates of the two events are different.
Bob’s axis of simultaneity goes through both events. We calculate the slope of the
line connecting these events.

First, we have x± = vt± ± L/2. From that,

�x

�t
= x+ − x−

t+ − t−
= v(t+ − t−) + L

t+ − t−
= v + L

t+ − t−

follows. The denominator in the expression for the time coordinates is

u± − v = v ± u

1 ± uv/c2
= ±u(1 − v2)

1 ± uv/c2
.

From that,

�t = t+ − t− = L

2

(
1

u+ − v
− 1

u− − v

)
= L

2

(1 + uv/c2) − (1 − uv/c2)

u(1 − v2)

= L

2

2uv

u(1 − v2)c2
= L · v

(1 − v2)c2

and
�x

�t
= v + L

t+ − t−
= v + c2

1 − v2

v
= c2

v

follows.
Here, the signal velocities u+, u− do not appear anymore. The velocity of the

signals used to synchronize events does not matter as long as one pays attention to
the relativistic addition of velocities. The result is the same: events that, for Alice,
lie on a line with slope c2/v are simultaneous for Bob. For signals with the speed of
light, however, the synchronization procedure is much easier.

Solution to Exercise 50: That (a0, a) is a four-vector means that, in the case of a
Lorentz transformation (11.9), it transforms as
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a′
0 = γv(a0 − (v/c)ax ), a′

x = γv(ax − (v/c)a0), a′
y = ay, a′

z = az .

The same holds for (b0, b). Now it’s just a matter of plugging these formulas
into a′

0b
′
0 − a′b′ and showing that this is equal to a0b0 − ab. We leave the details

to the reader.

Solution to Exercise 51:

(b) Suppose the rod in 
 has length ξ0. Then, its length in S, which is to be deter-
mined, is x0. This is the x-coordinate of event E0. Its t-coordinate is t0 = 0, and
from that follows τ0 = dξ0. Now, we plug (τ0, ξ) into the transformation (11.11)
and get

x0 = b · (1 − dv)ξ0.

In special relativity, this gives us x0 = ξ0/γ , which is length contraction. For the
moving observer, the rod at rest in 
 is shorter than for the observer at rest in 
.

(c) We need to apply simultaneity for S. The t-coordinate of E0 must be equal to
the t-coordinate of (τ0, 0), therefore, t0 = a · (τ0 − d · 0) or

t0 = aτ0.

In special relativity, we have t0 = γ τ0, which means time dilation. The moving
observer sees the clock at rest in 
 run slow.

(d) The front end of the rod is at x = x0. From (11.11), this gives us ξ = vτ + x0/b,
and for τ = 0, finally,

ξ0 = x0/b.

In special relativity, we have ξ0 = x0/γ , which is is length contraction again.
The observer at rest in 
 sees the moving rod contracted.

(e) From the transformation, we directly get t0 = a · (τ0 − dξ0) = a · (1 − dv)τ0 or

τ0 = 1

a · (1 − dv)
t0.

In special relativity, this gives us τ0 = γ t0, i. e., for the observer in 
, their own
clock runs faster than the moving clock. This again is time dilation.

This shows that a or 1/(a · (1 − dv)), respectively, is responsible for time dilation.
Furthermore, 1/b or b(1 − dv), respectively, is responsible for length contraction.

If the relativity principle holds, time dilation must be the same in both reference
frames, and therefore a2 = 1/(1 − dv). The same holds for length contraction, and
therefore b2 = 1/(1 − dv) = a2.

Solution to Exercise 52: We use matrix notation and set c = 1. Then,

(
t ′
x ′

)
= L̂(v)

(
t
x

)
,

(
t ′′
x ′′

)
= L̂(v′)

(
t ′
x ′

)
with L̂(v) = γv

(
1 −v

−v 1

)
.
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If we transform first from Alice’s coordinates to Bob’s coordinates and then from
Bob’s coordinates to Claire’s coordinates, we get

(
t ′′
x ′′

)
= L̂(v′)L̂(v)

(
t
x

)
.

We can also transform directly from Alice’s coordinates to Claire’s coordinates,
which is (

t ′′
x ′′

)
= L̂(v ⊕ v′)

(
t
x

)
.

and has to be the same. Therefore, the following matrix equation must hold:

L̂(v ⊕ v′) = L̂(v′)L̂(v).

Performing the multiplication gives us

L̂(v′)L̂(v) = γv′

(
1 −v′

−v′ 1

)
γv

(
1 −v

−v 1

)
= γv′γv

(
1 + v′v −(v′ + v)

−(v′ + v) 1 + v′v

)
.

Hence, we need

γv⊕v′

(
1 −(v ⊕ v′)

−(v ⊕ v′) 1

)
= γv′γv

(
1 + v′v −(v′ + v)

−(v′ + v) 1 + v′v

)
.

Comparing coefficients yields the relations

γv⊕v′ = γv′γv · (1 + v′v),

γv⊕v′ · (v ⊕ v′) = γv′γv · (v′ + v).

Dividing the second of these formulas by the first gives us the addition formula:

v ⊕ v′ = v + v′

1 + vv′ .

As for the second part of the exercise, we have
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γ −2
v γ −2

v′ = γ −2
v⊕v′(1 + vv′)2,

(1 − v2)(1 − v′2) = [1 − (v ⊕ v′)2](1 + vv′)2,

1 − v2 − v′2 + v2v′2 = 1 + 2vv′ + v2v′2 − (v ⊕ v′)2(1 + vv′)2,

v2 + 2vv′ + v′2 = (v ⊕ v′)2(1 + vv′)2,

(v + v′)2

(1 + vv′)2
= (v ⊕ v′)2,

v ⊕ v′ = v + v′

1 + vv′ .

Therefore, (12.2) is fulfilled with (8.3).

Solution to Exercise 53: We use c = 1 and the abbreviation α = (1 − uxv)−1.
With γ −2

v = 1 − v2, we have, from (12.6),

∣∣u′2∣∣ = u′2
x + u′2

y + u′2
z

= α2[(ux − v)2 + (1 − v2)(u2y + u2z )]
= α2[(ux − v)2 − (1 − v2)u2x + (1 − v2)|u|2]
= α2[(1 − uxv)2 − (1 − v2) + (1 − v2)|u|2]
= 1 + α2 · (1 − v2) · (|u|2 − 1).

Setting |u| = 1 yields
∣∣u′∣∣ = 1. From α2 ≥ 1, 1 − v2 ≥ 0 and |u|2 ≤ 1, it further-

more follows that
∣∣u′∣∣2 ≤ 1.

Solution to Exercise 56: The rest energy of one particle is mc2 (remember that the
mass is meant to be the mass of the resting particle) and its total energy is approx-
imately mc2 + mv2/2. Summing over all particles gives us a total energy of E =
NA · (mc2 + 1

2m〈v2〉) = NA · (mc2 + 3
2kBT ). At room temperature TR = 300K, the

ratio between the average kinetic energy and the rest energy for the particular case
when the particles are helium atoms is

3
2kBT

mHec2
= 1.04 × 10−11.

In other words: for “normal temperatures”, the kinetic energy of the Helium atom is
completely insignificant in comparison to the rest energy.

Solution to Exercise 59: For Alice, p = 0 and E = E(0) holds. According to
the mentioned transformation, Bob gets E ′ = γvE(0) for the energy of the object.
Obviously, E ′ = E(v)must hold, because, for Bob, the object moves with velocity v.
This requires that E(0) + (γv − 1)mc2 = γ E(0) and is fulfilled only for E(0) =
mc2.
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