

Arduino

A Beginner’s Guide to Arduino Programming

 © Rivercat Books LLC Copyright 2022 - All rights reserved.

 It is not legal to reproduce, duplicate, or transmit any part of

this document in either electronic means or in printed format.

Recording of this publication is strictly prohibited and any storage

of this document is not allowed unless with written permission

from the publisher except for the use of brief quotations in a

book review.

Table of Contents

––––––––

 Introduction
 Chapter One: Arduino Models

 Chapter Two: The Arduino Hardware

 Chapter Three: The Arduino Software
 Chapter Four: Coding Fundamentals

 Chapter Five: Arduino Data Types
 Chapter Six: Variables and Constants
 Chapter Seven: Arduino Operators

 Chapter Eight: Arduino Projects
 Chapter Nine: Troubleshooting and Fixing Arduino Issues

 Conclusion
 References

Introduction

We are living in an era of technological revolution where we

encounter new inventions and innovations each day. The average

number of people with technological literacy continues to rise as

more and more people become versed in the hardware and

software of this digital age.

 Whether you are a dabbling hobbyist or a professional engineer,

you may have heard of Arduino technology and have found an

interest in it for one reason or another. Perhaps you have heard

of the flexibility and ease of using it to build gadgets, or you may

have seen a variety of projects built with Arduino technologies.

And if that’s not the case, then you may have seen some gadgets

and wondered how they really worked. Remote control boats,

vending machines, and the systems that control elevators or

electronic toys all have foundations in Arduino.

 Regardless of the reason, if you have an interest or a passion
in knowing how Arduino technology operates and would love to

use it at some point to design interesting projects for pleasure or

for profit, you are in the right place. This book will help you do

just that. But before we dive deeper, let’s look at this Arduino

thing and how it started.

What exactly is Arduino?

Arduino is a open-source electronics platform based on easy-to-use

hardware and software used for building and controlling electronic

objects and interactive systems. All Arduino boards use a

microcontroller with additional electronic components to maintain

the availability and durability of the computing unit. It also

consists of an integrated development environment, IDE, where

one can write and run the programs.

 With Arduino, you can design and build devices that interact

with their environments. Arduino boards can read inputs—light on

a sensor, an object near a sensor, a finger on a button, or a

Twitter message—using their onboard microcontroller and convert

them into an output—activating a motor, ringing an alarm,

displaying information on an LCD, or publishing something online,

for example. However, in order for you to create this action, you

have to program the Arduino board, which I will explain later in

this book. Many developers and electricians can easily create

prototypes of products that make their ideas come to life using

Arduino boards. This has enabled these amazing boards to gain

considerable traction in both the hobby and professional markets.

A Brief History of Arduino

Many say that necessity is the mother of invention. Most of the

greatest inventions in the history of mankind were in response to

an existing problem or need that was lacking an easy solution.

That is exactly what happened with the invention of Arduino. In

the 2oth century, it was very complex and expensive to prototype

new electronics. This was an obstacle to many students in Italy

who couldn’t easily afford the BASIC Stamp microcontroller that

was going for $100 at the time. This posed a great challenge to

Massimo Banzi and his students at the Ivrea Interaction Design

Institute.

 So Banzi and his colleagues decided to come up with a

solution to the complexity and increased costs of building

electronics. Therefore in 2003, they worked on a project that had

been started by one of their students and they successfully made

an inexpensive and easier platform for building electronics.

Hernando Barragán’s wiring platform was his Master’s thesis

project. The goal of the project was to make simple, less

expensive tools for creating digital projects using a non-

engineering platform. The result was a wiring platform made from

just three parts: an IDE, a microcontroller, and a printed circuit

board. Banzi and his team developed the project further and

added support for the less expensive ATmega8 microcontroller,

which helped them hit their target price for the board that they

later named Arduino.

 Since that first board was built, lighter and cheaper versions
have been distributed through the open-source community. And by

May 2011, it is estimated that more than 300,000 Arduino boards

had been commercially produced.

Features of Arduino

● Arduino allows you to load your own code into your Arduino

IDE with a USB cable. You don’t need an extra piece of hardware

to load a new code into the board.

● Arduino is a cross-platform software. It can run on Windows,

Mac OS, and Linux while other microcontroller systems run on

Windows alone.

● Arduino only needs 5V to power up.

● You can control the board functions using its program (IDE).

● Arduino boards are able to read inputs using their onboard

microcontroller and convert them into outputs.

● It is easy to create and upload codes using Arduino IDE.

● Arduino also provides a standard form factor that breaks the

functions of the microcontroller down into more accessible

packages.

● It is open-source in both hardware and software.

● The Arduino IDE uses a simplified version of C++ with syntax

highlighting and other features that make it easier to learn how to

program.

Advantages of Arduino

● Open source and extensible The plans for Arduino boards are

published under a Creative Commons license; this permits

experienced circuit designers to build their own models based on

Arduino. These models might make changes and/or improve upon

the original design. Inexperienced users can also build the

breadboard version of the module so as to understand how it

works while saving some money.

● It is Compared to other microcontroller platforms, Arduino

boards are relatively cheap. You can get a pre-assembled Arduino

module for less than 40 USD. The least expensive ones are hand-

assembled.

● Open source and extensible Arduino also comes with an open-

supply software system feature that permits experienced

programmers to use the Arduino code with the prevailing

programming language libraries, which may be extended and

changed.

● It is simple and easy to Most beginners find using Arduino

Software (IDE) very simple. It is also flexible enough for advanced

users to take advantage of the benefits as well. Its processing

programming environment allows students to familiarize

themselves with how it works without any steep financial

commitment. In general, Arduino is as user-friendly as it gets and

can be operated by anyone, from beginners to experts.

● It is Most microcontroller systems can only be used on

Windows. Arduino’s IDE is among the very few software that

works on all kinds of operating systems. It works well on Linux,

Windows, Macintosh, etc.

● Wide variety. The Arduino platform has many variations, thus

giving you a chance to choose the one that best suits your

project. If you’re having space constraints, you can go for an

Arduino Nano which is only 43.18mm by 18.54mm. If you need

one with more memory space and processing power, Arduino

Mega would be your best choice.

Everything has a good side and a bad side. As many advantages

that Arduino has, it also has its downfalls:

● The board has a shield and libraries that make it hard to

connect to the internet. It is not impossible, but it isn’t easy.

● The Arduino IDE does not have a debugger; this makes it

hard to find errors in long codes.

● Arduino is not optimized for any specific use. It is meant to

fulfill the needs of multipurpose projects.

● As much as its user-friendliness is an advantage, it is also a

disadvantage. If you use it on electrical projects, it’s unlikely you’ll

gain a comprehension of the AVR microcontrollers.

● The Arduino doesn’t have a lot of processing power, so pretty

much any majorly intensive task is out of the question. So, there

can be scenarios where opting for a microprocessor, like Raspberry

Pi, is a better option over a microcontroller.

Real-Time Applications of Arduino

● Smart Home. We can control home activities using Arduino

boards. You may access control systems like motion sensors,

outlet control, temperature sensors, garage door control, airflow

control, etc.

● Industries. Arduino is used in many industries due to its easy

programming environment, signal types, and easy adaptation to

new setups. Arduino boards are the most flexible and affordable

alternatives to the industrial devices used to control and monitor

the functionality of small legacy industrial systems.

● Traffic Signal Nowadays, Arduino is often used to control

traffic lights. It can also be used in real-time to control systems

with programmable timings, like pedestrian lighting.

● Medical. An Arduino board can be used to make a heartbeat

monitor. This type of monitor counts the number of heartbeats in

one minute. It is designed in a way that a heartbeat sensor

module is attached in a way that when you put a finger on the

sensor, the heartbeat is detected. Arduino is also used to design

medical equipment like thermometers and breathalyzers.

● Arduino provides a useful platform in laboratories for

designing and learning circuit designing. The Arduino simulator

prevents any damage from occurring in the lab. In addition to

this, the students won’t need to spend money on hardware. It

also allows for faster circuit prototyping and no fuss with cabling

at all. The Arduino-based, automated, slide-movement microscope

is also a very cost-effective laboratory device.

● Defense. RADAR, Radio Detection and Ranging, is an Arduino

technology that uses radio waves to detect the range, altitude,

direction, and speed of objects. Radar has different sizes and

performance specifications, and it can be used to control air

traffic, long-range surveillance, and early warning systems in ships.

It is also used in war.

Chapter One: Arduino Models

There are different types of Arduino boards that use different

microcontrollers. These boards are distinguished by the different

features that they possess. Some Arduino boards have more input

and output pins than others, and some models are faster than

others, have higher operation voltage, or opt for an embedded

programming interface. Some can run directly from a 3.7V battery

while others need at least 5V. However, all Arduino boards are

programmed through the Arduino IDE. Let’s take a close look at

these boards.

Arduino UNO

Arduino UNO, also known as classic Arduino, is a great choice

for your first Arduino board experience. It is the most commonly

used board and has everything you need to get started. That’s

why it is the most recommended for beginners. The board has

14 digital input/output pins; 6 can be used as PWM output and

6 as analog inputs, a reset button, a power jack, a USB

connection, and more. Uno runs on an ATMega328 chip and uses

a USB, AC/DC adapter, or battery as a power source.

 With the help of Arduino shields, you can exchange information

over the internet using your Arduino board. You connect it to a

computer using a USB or you can power it with an AC-to-DC

adapter or battery, and you will be ready to go! The board

tolerates 12V power only. To avoid the risk of overheating, don’t

use higher currents than 12V. It also has a 5V pin that supports 5

volts of power and other lower voltages when running projects

that require lower currents.

Specs

● 8-bit CPU

● 2KB SRAM

● 32 KB flash memory

● 1 KB EEPROM

● 16MHz clock speed

● Form factor is 2.1 inches by 2.7 inches rectangular board

Advantages

● It has a simple circuitry that utilizes a small footprint; this

makes it the perfect Arduino for smaller projects.

● It is widely available and accessible.

● It is the cheapest Arduino board going for $30 or less.

● There are many projects shared online by UNO users. This

enables novice Arduino users to try out a variety of projects.

Disadvantages

● You can run out of pins, particularly if you fail to utilize an

external integrated circuit

● It doesn’t have a large memory; this keeps people from using

it for special projects.

Arduino Mega

This is Arduino UNO’s big brother. It is the next recommended

board for beginners after UNO. It is suitable for bigger projects.

The board itself has 54 digital input/output pins and 14 are used

as PWM outputs while 16 are used as analog inputs, USB

connection, a reset button, a power jack, and more. Just like

Arduino UNO, it has everything needed to support the

microcontroller. You only need to connect it to a computer using

a USB or power it with an AC-to-DC adapter or battery and you

will be ready to go.

Advantages of Arduino Mega

● It can hold a higher number of programs compared to Uno.

● Besides the massive number of input/output pins, Mega

comes in two variations that could meet a specific developer’s

requirements even further. The first variation is faster due to its

32-bit ARM. It also offers more resources to support advanced

projects and only runs at a 3.3V power. ADK is the second

variation designed for Android phones. If you want to explore

mobile computing, then this one is the best choice.

● It has a generous storage space and memory capacity for

coding and running programs.

● It can support several projects without needing an external

integrated circuit.

● There are a lot of projects online provided by individuals who

have been using Mega for a long time.

Disadvantages

● There is a need for modifying codes. The guides shared for

this Arduino always require users to make some slight changes to

the codes depending on the number of pins.

● It is more expensive than the Arduino UNO.

● There are high chances of beginners damaging the board while

in the middle of setting up a project.

● It is not as widely available as UNO. Therefore, it may be

challenging to find it together with the accessories needed to

execute a project, depending where you are purchasing it from.

Lily Pad Arduino

LilyPad was developed by Leah Buechley in 2006 as a wearable e-

textile technology. The LilyPad board also has its own family of

input, output, power, and sensor boards built specifically for e-

textile. You can even wash them! It differs from all other models

in shape. Unlike other models, which are rectangular in shape,

LilyPad comes in a round shape with a flower-like pattern.

Red Board

The Red Board is programmable on a USB Mini-B cable using

Arduino IDE. It can even be used on Windows 8 without

changing the security settings. This board is more stable due to

the USB/FTDI chip used. It is also completely flat on the back,

making it easy to embed in your projects.

Arduino Leonardo

This is the first Arduino board to use one microcontroller with a

built-in USB. This makes it cheaper and simpler. The board has

code libraries as it handles the USB directly. This allows it to

function as a computer keyboard or mouse.

Arduino Pro

Arduino Pro is mostly meant for experts and professional

developers. It shares some features with the UNO, like power

capacity and the lack of header pins. For connections to function,

they must be soldered onto the board. Therefore, Arduino Pro

requires expert or professional handling.

Chapter Two: The Arduino Hardware

The Arduino board is comparable to a regular computer

motherboard. Its parts work together in sending signals from

input to output channels, power distribution, and executing coded

functions. The parts of Arduino boards are located at different

places depending on the models, but the majority of Arduinos

have the same components. We are going to study the Arduino

UNO because it is the most popular and commonly used board

in the Arduino family.

Reset Button – It functions the same way as a gaming console’s

reset buttons. When you push it briefly, it connects to the reset

pin and restarts the codes that have been uploaded to the board.

This component is useful to people who use non-repetitive codes

but want to test them multiple times.

AREF – This stands for “Analog Reference.” Depending on the

project they are building, users may or may not use this pin. It is

used when you want to set an external reference voltage of 0-5

volts as the upper limit for the analog input pins.

Ground Pins – All Arduino boards have a few ground pins and all

of them function the same. They all serve as a reference point in

connecting components with varying voltage capacities. They set a

common ground that prevents a high voltage current from flowing

through a low voltage connection. Ground pins allow you to

install a 12V part to a 5V Arduino. Ground pins are always found

with analog and digital pin groups and their numbers vary from

model to model.

Digital Input and Output – Digital pins are located on the

topmost side of the board and lie across the analog pins. The

number of these pins vary from model to model; Arduino UNO

has 14 of them, for instance. They can either be arranged as

input pins with the ability to comprehend logic values or as

output pins that can power a module.

PWM – This stands for Pulse-Width Modulation. These are the

pins marked with the (~) symbol. PMW allows Arduino to carry

out sophisticated circuitry control like fading an LED light through

the simulation of an analog output.

USB Connection – Each Arduino board requires a connection to a

power source. You can power an Arduino UNO using a USB

cable connected to your computer or a wall power supply

terminated in a barrel jack. Just like in flash drives, a USB

connection distributes electricity throughout the board. The

Arduino board USB port size is just the same as those on your

computer. Not all Arduino boards have USB ports, however. So, if

you prefer using a USB connection as a power gateway, check the

power source online before purchasing an Arduino board. The

USB connection is also used to load codes onto the board. You

are required to write your code on your computer, then load it on

the board the same way you transfer files.

TX or RX – TX means transmit while RX means receive. They

appear in two places on the Arduino boards. One is at the digital

pins 0 and 1 indicating the pins responsible for serial

communication. The second one is located near the LEDs that

indicate TX and RX. The TX LEDs flash during the sending

process of the data serial. The RX on the other hand flashes

during the receiving process.

ATmega Microcontroller – This is the brain of an Arduino board.

This is where the programs are stored. Each board has its own

microcontroller, and the main integrated circuit on the Arduino

board varies slightly from model to model. The microcontrollers

are usually from the brand ATmega. It is important to know the

integrated circuit of your board before loading a new program

from the Arduino IDE.

Power LED Indicator – An Arduino board has one LED light that

serves as a power indicator. This LED lights up when the board is

connected to a power source. If it does not light up, then there

is something wrong with the connection.

Voltage Regulator – You may not interact with the voltage

regulator on your Arduino board. However, it is important to know

that it exists, and that it is very useful. Just as the name

suggests, the voltage regulator does exactly that — it controls the

amount of voltage going onto the Arduino board. It turns away

any extra voltage that might harm the circuit. Of course, it has

limits; experts recommend not plugging an Arduino into a power

source with over 20 volts.

DC Power Barrel Jack – Supplies your Arduino board with power.

You can power your Arduino board directly from the AC main’s

power supply by connecting it to the barrel jack.

3.3V Pin – This pin supplies your projects with 3.3 volts of power.

5V Pin – This pin supplies your projects with 5 volts of power.

Ground Pins – See number three above.

Analog Pins – If you are viewing the board with the power jack

on the lower left side, the set of analog pins is located at the

lower right corner. These pins differ in number depending on the

Arduino board model. Analog pins are used to convert signals

from analog sensors to digital values.

Other Components

An Arduino board is just a single part of a project. You need to

connect other components with it to ensure the project functions

as expected. Apart from Arduino PCB, you will need to verify the

following components and purchase them for your project:

● Shields. These are placed on top of the main Arduino board

to extend its capabilities. You can usually purchase the shields

together with Arduino PCB at the same shop. There are different

types of shields available that work well and vary for each type of

project. The most commonly used shields are:

❖ This serves as a wireless communication gateway in between

Arduino boards. It covers a distance of up to 100 feet when

indoors and 300 feet when used in an outdoor space.

❖ Motor This module lets users control and manipulate DC

motors and read their encoders.

❖ Custom Some developers prefer customizing their own shield

that is best suited to their project. Developers can create their

own shields by following the guidelines listed online.

● Wire. Wires are connectors that aid the flow of electricity or

data transfer. We have two types of wire used in Arduino: the

physical wire and the wire gauges. The physical wires are also

divided into two categories: solid and stranded. Solid wires are

ideal for projects when you don’t need them to bend, as stranded

wires have the tendency to bend excessively. However, they are

still a good choice for appliance cords or audio and video output

cables. Wire gauges are used together with breadboards, which

support the installation of gauge wires.

● The breadboard resembles a small white board with many

square holes. It is used for circuit construction and testing.

● Capacitor. This is a small component with two charging plates

and an additional material that controls electricity discharge. It

retains and releases the charge in a circuit connection.

● A resistor is a must-have component on PCBs that resists the

electricity flow, guaranteeing smooth electricity flow within the

system. It protects the boards in instances of power fluctuations,

which can affect the entire project.

● This allows the flow of current from one point to another.

Whether the third point is present or not, the current flow

happens.

● A diode is a device that allows the unidirectional flow of

electricity. We have several types of diodes, but LED, light-

emitting diodes, and photodiodes (which detect light) are the

most common.

Chapter Three: The Arduino Software

After learning the hardware part of Arduino, it is very important

to learn its software, because complex coding is needed to

generate the desired results in project development. Arduino

software is an open-source program that is used as a platform to

write the set of instructions that the Arduino needs to perform a

particular action. Arduino uses software known as an IDE,

Integrated Development Environment. This program is user-friendly

and can be downloaded, installed on your computer, and used to

write the codes that you need to load onto the Arduino board.

 There are different versions of the Arduino IDE available on the
market that are compatible with major operating systems. The

latest version is the IDE 2.0 beta which is faster and more

powerful than its predecessor, the 1.8.15 version. Arduino IDE

version 2.0 has other amazing features besides the modern editor

and a more responsive interface. It has autocompletion, a code

navigator, and a live debugger.

Installation Process

First, you have to install the Arduino software on your computer

before using the Arduino PCB. This is the general rule. The

installation procedure is as follows:

Step 1. You Must Choose Your Arduino Board First.

Do some research and select your favorite board and a USB

cable. Different Arduino models have their own types of

compatible USB cables. You will need a standard USB if you are

going to use Arduino UNO, Arduino Mega 2560, or Diecimila

boards. However, if you are going to use Arduino Nano, you will

need an A to Mini-B cable.

Step 2: Download Arduino IDE Software.

There are different versions of Arduino IDE available on the

download page of the official Arduino website. Select and

download the one that is compatible with your operating system—

Windows, IOS, or Linux. Unzip the file once it is done

downloading, and then extract and install the downloaded

program.

Step 3: Power Up Your Board.

Once the program is installed, plug the board into the computer

using the USB cable. Some Arduino boards like UNO, Mega, and

Nano automatically connect from the USB connection to the

computer or another external power supply. However, some

models, like Arduino Diecimila, require the proper configuration to

draw power from the USB connection. You need to select the

power source using a jumper; ensure that the jumper is on the

two pins closest to the USB port, then connect the Arduino board

to your computer using the USB cable. Remember, the power LED

should light up.

Step 4: Install Arduino Drivers.

Your computer’s operating system has to install Arduino’s driver

before it starts receiving codes. Arduino boards work like a plug-

and-play system. Once a new device is plugged in, the operating

system detects it and installs its drivers automatically. However, in

some circumstances, this procedure may fail and require you to

configure the driver manually.

 To install the drivers manually:

Open Device Manager and search for Ports (COM & LPT).

You will find your Arduino listed under this group as “Arduino

(Model) (COMxx).”

If it’s not listed, go to “Other Devices” and look for “Unknown

Device.” This means that the newly plugged-in device was detected

but was not identified correctly due to the lack of pre-installed

drivers.

Double click on the Arduino model and select “Update Driver

Software.” This will direct you to another dialog box.

Select “Browse my computer for driver software.”

Look for the Arduino installer and select the “Drivers” folder.

Select “Arduino.inf” to install.

 However, there are instances when “Arduino.inf” is missing.

This is more frequent in the Arduino IDE’s older versions. If this

is the case for you, look for the driver that has the Arduino’s

model name. For example, if you are using the UNO model,

search for the file “Arduino UNO.inf” and select it to install.

 Another thing that may also interfere with the installation

process is a difference in the operating system. The process is

instant with newer operating systems unlike with their

predecessors.

 The device should display the “Add New Hardware” dialog box

when plugged in. Select “Install from a list or specified location

(Advanced).” Click next to be directed to the next prompts, and

then check the “Search for the best driver in these locations” box

—and uncheck “Search removable media.” Also, select the

“Include this location in the search” option and search for the

drivers /FTDI in the USB Drivers directory.

 Visit the FTDI website and download the newer versions of the
driver as the available drivers may be outdated. Click next. The

system will report finding a “USB Serial Converter.” Click on it

and finish the installation process. You should be able to find the

newly installed hardware under Ports (COM & LPT).

Step 5: Open the Arduino Software to See Sample Codes.

Arduino IDE comes with preset codes that can be used as

references for beginners. Upon starting the program, you can

either create a new project or open an existing one. Click File >

Examples > Basics > Blink to open the blink project examples in

the program. You will see the code together with the description

of what the code should do for the project. The blink project

code indicates that the command will turn a LED on and off with

some delay time. You can select any project from the list to

practice, and if you want to create a new project, select File >

New.

Step 6: Load Example Codes to Arduino.

You must select the correct Arduino board name that matches

with the board connected to your computer to avoid errors while

uploading your code. To do this:

Go to Tools > Board

Check the box with your Arduino model

Select a port that corresponds to your Arduino board

Open the menu and look for the available ports if you are not

sure which is the right port for your board. Disconnect the board

then open the menu again. The port that is missing after

reopening the menu is the one assigned to your board. Reconnect

the board and select that port.

Once you’ve selected the port, click “Upload” to load the

programmed code.

You should see a light flashing on the board. This tells you that

the codes are being processed and uploaded.

Your computer will then display a dialogue box that says, “Done

uploading.” This shows that the code has been uploaded

successfully.

Step 7: Observe the Effects.

Once you are done wait for a few seconds and you should see

the board’s LED light blinking!

Chapter Four: Coding Fundamentals

The basic structure of Arduino programming runs in at least two

parts and is fairly simple. These parts enclose blocks of

statements. Here is the structure.

void setup()

{

statements;

}

void loop()

{

statements;

}

 Both the setup() and loop() functions are required for the
program to work. Setup() is the preparation while loop() is the

execution.

Arduino Functions

A function is a line of code used to define a task. A function

executes the task as described in the code when it is loaded.

Functions allow programmers to divide a specific code into

segments with each segment performing a specific task. You can

even use a single function to perform a task several times

throughout the length of a program.

Function Declaration

A function is declared as follows:

 int addNumbers(int y, int z)

 {
 int sum;

 sum = y + z;

 return sum;

 }

Function Return Data Type

This is the first thing to declare in a function. Returned data type

refers to the value returned after the code has been executed. If

there is a value to be returned, then the function should have

“int” for an integer. And if there is no value to be returned then

it should have “void” in place of “int”.

Function Name

After declaring the data type, the next thing is declaring the

function name. A function name refers to the action or task to be

done in the code. For example, the function name in this code is

“addNumbers”. Naming functions is done the same way as

naming variables. Here is the convention:

● You may use alphanumeric characters and an underscore (_)

● Function names may not start with a number

● Don’t use a name that is the same as the language keyword

or existing function

Function Parameters

Parameters refer to the special variables used to pass data onto a

function. In other words, it is the value of a function inherited. In

our example above, the parameters are int y and int z.

Return Statement

This is the type of data that matches the declaration. A return

statement in any code has the word “return” in it. That's why it

is very easy to recognize the statement in a code. In our example

above, the return statement is “Return sum;”.

Advantages of Using Functions

● Functions increase the readability of the code

● Functions reduce the chance of errors occurring

● Functions help you avoid statement or code repetitions

● Functions make the program compact and small

● Functions help programmers conceive and organize the

program

● Functions enable you to divide a complex code or program

into a simpler one

● Functions aid developers in spotting their needed codes

immediately

● Functions makes the modification of programs easier

Main Functions

● setup(). This function is called on at the beginning of the

program and runs only once after the initial startup or reset. It is

used to set pinMode or initialize serial communication.

● loop(). The loop function includes code that is to be executed

continuously. It reads inputs and then triggers output, over and

over again. This function requires the microcontroller to repeat a

function. You have to set a condition that stops the loop, or

power off the Arduino board to stop it. This function is the core

of all Arduino programs.

Arduino I/O functions

● pinMode(pin, This function is used to configure a specified pin

to behave either as an input (INPUT), input with a pull-up

resistor (INPUT_PULLUP), or an output (OUTPUT). Pins

configured as INPUT are said to be in a high-impedance state.

● This function is used to read the value from a specified digital

pin with the result being either HIGH or LOW. There are two

ways a pin can be defined: a variable or a constant. Arduino

UNO board, for example, has 14 digital pins numbered 0 to 13.

● digitalWrite(pin, value). This function outputs either logic level

HIGH or LOW at a specified digital pin. The pin can be specified

as either a variable or constant from 0-13 if you are using the

Arduino UNO model.

● analogRead(pin). This function works on analog pins 0-5 only.

It is used to read the value from a specified analog pin with a

10-bit resolution. The value can be specified as either a variable or

a constant and ranges from 0 to 1023. Note: Unlike digital pins,

analog pins don’t need to be declared first as INPUT or OUTPUT.

● analogWrite(pin, This function outputs a pseudo-analog value

using a hardware-enabled, pulse-width modulation to a pin marked

PMW. The resulting integer value can be a variable or constant

ranging from 0 to 255.

Time functions

● delay(ms). This function is used when you want to pause a

program for a specified amount of time in milliseconds.

● millis(). This function is used to determine the number of

milliseconds that pass with each function on the Arduino board.

Other Functions

● randomSeed(seed). This function is used to set a value, or

seed, as the starting point for the random() function. It allows

you to put a variable, constant, or other function into the random

function, thus generating more random numbers as Arduino can’t

create a truly random number.

● random(min, max). This function is used when you want to

return pseudo-random numbers with a range specified between a

determined min and max value. Remember to insert the

randomSeed() function first before inserting this function.

● Serial.begin(rate). This function opens a serial port and sets its

baud rate for serial-data transmission. The standard baud rate for

communicating with the computer is 9600. However, other speeds

are supported as well. Note: You can’t use digital pins 0 (RX) and

1 (TX) at the same time as serial communication.

● Serial.println(data). This function is used to print data to the

serial port, then carry out an automatic carriage and line feed.

SYNTAX

● ; (semicolon). This is used to end a statement. It functions

the same as period in the English language. Make sure that the

statement closed by the semicolon is complete for the code to

function properly. Forgetting to end a statement with a semicolon

will result in a compiler error.

● {} (curly These are used to determine where the function and

statement blocks begin and where they end. To avoid compiler

errors, if you insert an opening curly brace, you must follow it

with a closing curly brace. This keeps the braces balanced, which

is vital to getting your program working.

● // (single-line comment). This code should be used at the

beginning of a comment that reminds you or tells others

something about how your code functions. The comment should

take up one line only. This line, however, does not transfer to the

microcontroller’s processor; it will live in the code and act as a

reference to you and anyone reading the code manually.

● /* */ (multi-line comment). This type of comment spans more

than one line and it is opened by inserting /*. It cannot contain

another multi-line comment, but it can contain a single line

comment. Make sure that you close the comment with */. If you

fail to close it, all of your code following it will be considered a

comment and will not be implemented.

● #define. This is used when you want to define a certain

variable as a constant value. It gives a sort of shorthand name

for that value. This helps in conserving space as defined

variables don’t take up memory space on the chip. The compiler

replaces any instance of the constant as the value that is used to

define it once the code is compiled. The #define statement does

not require a semicolon at the end.

● #include. This is used when you want to include other libraries

in your sketch that would not otherwise be included. This

includes other words and coding languages like AVR C libraries.

Don’t add the semicolon at the end of this statement or you will

create an error. Exclude it the way you would do in #define a

Control Structures

Control structures tell us how an input will be received. They

determine how your data will be read and compiled. Popular

control structures in Arduino programming include:

● If statements. If statements are used to test whether a certain

condition has been met. This links an input to an output. If the

condition is met, a specific output or response of the

microcontroller occurs. If the condition is not met, the program

skips over this.

● If . . . else statements. This statement works like the “if”

conditional, but it allows you to create an “either-or” reaction. In

other words, it specifies another action that the microcontroller

will take if the condition for the first action is not met. This

enables you to perform two different actions in two different

circumstances using one piece of code.

● For loop. This statement is used when you intend to repeat a

block of statements enclosed in curly braces a specified number

of times. To increment and terminate the loop, use the increment

counter. The initialization of a local variable, or increment counter,

happens first and only once. The following condition is tested

each time throughout the loop until it becomes false.

● While loop. This loop continues infinitely until the expression

inside the parenthesis becomes false. This means that it performs

a certain function until a parameter is met and the condition

becomes false. You have to change the tested variable for the

while loop to exit. You may make changes to your code like

increment variables or external conditions, like testing a sensor.

● Do . . . while This loop works in the same manner as the

while loop, but it tests the condition at the end of the function

rather than at the beginning as it does with the while loop, so it

always runs at least once.

● Break. This code acts as an emergency exit of sorts from a

function of the microcontroller. It is used when you want to exit a

do, for, or while loop without going through the normal loop

condition. It is also used to exit from a switch statement.

● Return. This is a way of getting a value back from a function.

It is used at the end of a function to get back the value for

which the function was called for.

● Goto. This piece of code transfers the flow of the program to

a labeled point in the code. It instructs the microcontroller to

move to another place within the coded program. You can go to

any part of the code if a certain condition is met. Goto can be

used to create infinite loops, but its use is generally discouraged

by C language programmers.

Chapter Five: Arduino Data Types

The programming environment for Arduino is more like that of

C++. It defines a number of different data types that simplify the

coding process. A data type is an attribute of data used for

declaring functions and variables. A variable’s type determines its

storage space and how the bit pattern stored is interpreted. Below

are the data types used in Arduino:

 Note: Signed variables can represent both negative and positive

numbers while unsigned variables only represent zero and positive

numbers.

● Void. Void is a keyword used in function declaration only. It

refers to a data type that has no value. It is used when you don’t

want to return any value from calling the function.

● Boolean. This is a simple logical “true or false.” Each Boolean

variable occupies a memory of 8-bits.

● Int. This stands for integer. This data type is considered the

major storage for whole numbers. It occupies a memory of 2

bytes, which translates to a range of values from -32768 to 32767.

However, the size varies from board to board. On some boards

like Arduino Due, the int occupies a memory of 4 bytes with

values ranging from -2,147,483,648 to 2,147,483,647.

● Unsigned int. This is the same as integers. The only difference

is that they only represent positive numbers yielding a range of 0

to 65,535 for the 2-byte integer storage boards, and a range of 0

to 4,294,967,295 for boards like Due that have an integer memory

of 4 bytes (32 bit).

● Byte. It represents 8-bit, unsigned, whole numbers that range

from 0 to 255.

● Float. This data type is used to represent floating-point

numbers. It stores 32-bit, signed numbers that have decimal

points and range from -3.4028235E+38 to 3.4028235E+38. Floating

point numbers have a greater resolution than integers. However,

the Arduino’s floating point isn’t native; for it to work, the

compiler has to jump through hoops. You are advised to avoid it

if you can.

● Word. This represents a 16-bit, unsigned number ranging from

0 to 65535.

● Long. This data type represents extended-size, signed whole

numbers. They are stored in 32-bit and range from -2,147,483,648

to 2,147,483,647.

● Unsigned This data type represents extended-size, non-negative

integers. They occupy a storage of 32 bits and range from 0 to

4,294,967,295. It is commonly used to store the results of the

millis() function and returns the number of milliseconds that the

current code has been running.

● This is an integer data type that stores 2 bytes. The numbers

range from -32,768 to 32,767.

● Char. This data type represents 8-bit, signed numbers ranging

from -128 to 127. The compiler sometimes tries to analyze these

numbers as characters, which often leads to unanticipated

outcomes.

● Unsigned This is the same as byte; for clarity reasons, just

use “byte” instead of this when possible.

● Double. This data type is exactly the same as float but with

no gain in precision. A double-precision, floating-point number

occupies 4 bytes on the UNO and other ATMEGA based boards.

It occupies a storage space of 64-bits on the Arduino Due.

Chapter Six: Variables and Constants

Variables

Variables are storage places for numerical data that the program

plans to use at a later time. It consists of a type, name, and

value. Variables can be continually changed as opposed to

constants whose values never change. The code syntax is:

Type Variable = Value

Example:

 int pin = 7;

● int is the data type

● pin is the variable name

● 7 is the value initialized.

 The data type int is used to create a variable named pin that

stores the value

How to Change Variable Value in Arduino

In Arduino, the variable value can be changed using the

assignment operator “=”. However, before you assign a value to

your variable, you need to declare it first to avoid errors. For

example, if you directly specify the value as: pin=8; you will get

an error as that pin has not been declared. You can easily change

a variable by copying its value to another variable.

 Example:

void setup()

{

Serial.begin(9600);

int pinLED = 8;

Serial.println(pinLED); // will print value of 8

int pin1 = pinLED;

pinLED = 13;

Serial.println(pinLED); // value is now changed

// now, will print value 13

}

Variable Scope

Variables in Arduino programming have a property called scope. A

scope is a region of a program. It refers to the places or the

number of ways that variables can be declared. There are two

ways in which variables can be declared: local and global.

Local Variables

Local variables are declared inside a function or block. These

variables have a scope only within the function and can only be

used by statements that lie within that function.

Example:

void setup()

{

int pin = 14; // This is a local-variable declaration

pinMode(pin, OUTPUT);

digitalWrite(pin, High);

}

Global Variables

Global variables are defined outside the setup() and loop()

function. The variables hold their value throughout the program

and can be accessed anywhere in the program.

 Example:

int pin = 13; // This is a global-variable declaration

void setup()

{

pinMode(pin, OUTPUT);

}

void loop()

{

digitalWrite(pin, High)

}

Advantages of Variables

● You can use them several times in a program.

● They can represent different data types.

● Variables increase the flexibility of the program.

● You can easily modify them by changing their values.

● You can specify any name for a variable.

Constants

In Arduino constants are predefined expressions. Constants are

used to make the programs easy to read. The constants in

Arduino are grouped as:

● True or false. The true/false constant is the Boolean constant

that is used to define logic levels. False is defined as 0 while true

is defined as 1. However, true can also be anything else except 0.

In Boolean language, any integer that is non-zero is determined as

true. Therefore, -15 and -200 are also defined as true. The

true/false constants are typed in lowercase, unlike the other

constants.

● HIGH/LOW. These constants are used when defining pin levels

as either HIGH or LOW. They are used when reading or writing

digital pins. The HIGH value is provided by two types of voltage

pins: 5V pins and 3V or 3.3V pins. HIGH is also defined as logic

level 1 or ON. On the other hand, LOW is defined as logic level

0, OFF, or 0 volts. Example: digitalWrite(13, HIGH);

● INPUT/OUTPUT. In Arduino, we use the pinMode() function to

configure pins as INPUT or OUTPUT. Example: pinMode(13,

OUTPUT);

● LED_BUILTIN Constant. Most Arduino boards have a built-in

LED connected in series with a resistor. The LED_BUILTIN

constant defines the number of the pin that the on-board LED is

connected to. Most Arduino boards have this LED connected to

digital pin number 13.

Chapter Seven: Arduino Operators

Operators play a crucial role in every programming concept. In

Arduino programming, operators are widely used from basic to

advanced levels. An operator is a character that determines the

action that the compiler needs to take to solve a problem. The

types of operators that are used in Arduino programming include:

1. Arithmetic Operators

Arithmetic operators are responsible for performing mathematical

operations like addition, subtraction, and multiplication. They are

listed in the table below.

 Note: In the examples given in the tables, we assume that the

variable A holds a value of 10 while B holds a value of 20.

20.

20.

20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.

20. 20. 20. 20. 20.

20. 20. 20. 20. 20.

20. 20. 20. 20.

20. 20. 20. 20. 20.

2. Comparison Operators

Comparison operators are used to compare the value of two

operands. They return a Boolean value of true or false after the

comparison.

 Note: In the examples given in the table below, we assume

that the variable A holds a value of 10 while B holds a value of

20.

20.

20. 20. 20. 20. 20. 20. 20. 20.

20. 20. 20. 20. 20. 20. 20.

20. 20. 20. 20. 20. 20. 20. 20.

20. 20. 20. 20. 20. 20. 20.

20. 20. 20. 20. 20. 20. 20. 20.

20. 20. 20. 20. 20. 20. 20. 20.

3. The Boolean Operators

Boolean operators help make decisions depending on the

condition in instances where you have to combine the results of

two or more conditions. They are also known as logical operators.

They include:

 Note: In examples given in the tables, we assume that the

variable A holds a value of 10 while B holds a value of 20.

20.

20. 20. 20. 20. 20. 20. 20. 20. 20. 20.

20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.

20. 20. 20. 20. 20. 20. 20. 20. 20. 20. 20.

4. Bitwise Operators

Bitwise operators perform operations at the binary level and give

the result in a decimal representation. They include:

 Note: In these examples, we assume that A holds a value of

60 and variable B holds a value of 13.

13.

13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.

13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.

13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.

13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.

13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.

13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13. 13.

––––––––

5. Compound Operators

Note: In the examples given in the table below, we assume that

the variable C holds a value of 20 while D holds a value of 30.

30.

30. 30. 30. 30.

30. 30. 30.

30. 30. 30. 30. 30. 30. 30. 30. 30. 30.

30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30.

30. 30. 30. 30. 30. 30. 30. 30. 30.

30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30.

30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30.

30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30.

30. 30. 30. 30. 30. 30. 30. 30. 30. 30. 30.

Chapter Eight: Arduino Projects

Arduino is an all-encompassing device that enables you to

complete virtually any project. Some people, especially beginners,

are tempted to write a sketch for their project ideas immediately

after starting their first projects. But it is important to follow

through with some basic preparatory steps before you start writing

your own code. You should know that the Arduino board does not

read your mind; it requires precise instructions, and these

instructions must be correct. Even though the instructions may be

executed error-free, overlooking even a minor detail may not return

the results you expected.

 Whether it is a simple project that emulates the traffic lights or

a complex, automated project, a detailed plan is the foundation of

success in building any code. Below are the basic steps to take

when designing your Arduino projects:

Define your project goal. Determine what you want to achieve with

your project.

Write your algorithm. An algorithm is a set of instructions to

follow in order to complete a specific task. It lists what you

want to accomplish at the end of your project and how to do it.

Your algorithm lists the steps to be followed to achieve your

project’s goal.

Select your hardware. Ensure that you have all the hardware that

needs to be connected to the Arduino and determine how to set

it up correctly.

Wire it Connect your hardware, circuitry, and any other items to

the Arduino board. Ensure that everything is where it should be

because if you fail to connect everything correctly, your project will

not work.

Write your sketch. Pay attention to every detail when writing your

sketch. Create your initial program that instructs the Arduino what

to do. Make sure that all your variables and functions are

declared properly.

Test and debug. Before you upload your code to the Arduino

board, test and check for any errors. Identify the cause of any

error that may exist, be it hardware-related or in the algorithm.

Remove all the identified errors and test it again.

Project 1: Blinking LED

This is one of the simplest projects you can do with an Arduino

to see the physical output and performance of your Arduino

board. It is very basic and any enthusiastic developer or individual

who wants to start learning Arduino can succeed with this one.

This program makes an LED connected to the board blink within

a particular time interval. It is as simple as turning the lights on

and off.

Required Hardware

● Arduino UNO

● Breadboard

● LED

● Resistor

● Jumper Wires

The Algorithm

● Turn the LED on

● Wait for two seconds

● Turn the LED off

● Wait for two seconds

● Do it repeatedly

Procedure

Step 1: Wire the circuit and components. Connect the LED to a

digital output pin on the Arduino. Let the digital pin 7 on your

board go to a spot on your breadboard and then your resistor.

Connect the LED to the remaining side of the resistor. Remember,

LEDs are polarized, so you should be keen on ensuring that the

right leg goes to the right place on the resistor. Connect the

positive leg of the LED to the resistor and run a jumper wire

from the ground lead to a pin labeled GND on your Arduino

board.

 Step 2: Make the Arduino program. Write the code. The

Arduino board can be programmed to do almost anything you can

think of. The code for this project is quite simple.

 Begin by declaring and naming your variable. In this project,

we are going to assign a name to pin 7 so that we know what

we are controlling. Since we are controlling the LED, we will

assign the name led to pin 7. So, write:

int led = 7;

 This will assign the integer 7 the name “led.” So, Arduino will

be interpreting led as 7 anytime you write led in your code. After

you’ve declared your variable, write this:

void setup()

void loop()

 This means that the code within the void setup section is run

when you boot up or reset your Arduino. After that, the code in

the void loop sections gets run repeatedly until the Arduino is

disconnected from power.

 Now, you want to write a line of code that instructs the

Arduino to let it know that it should treat pin 7, or the led, as

an output. An output pin is assigned either HIGH or LOW to

indicate if it is either ON or OFF. So you will need to write this

line after the void setup():

pinMode(led, OUTPUT);

 This built-in function tells the Arduino that the led is the
output. Remember that it is very important to end each line in a

semicolon. Don’t forget it. It will help you avoid unnecessary

compiler errors.

 Next, we need a line of code for the actual controlling of the

LED. So after the void loop(), write this:

digitalWrite(led, HIGH);

 This commands or sets pin 7 asHIGH, meaning that it is

outputting volts. This code will light up the LED if you run it.

You may try if you want now to make sure it's working alright.

 Now, remember our goal is to have the LED turned on and

off. So, we will have to set the waiting time before it is switched

on and off. Therefore, on the next line write:

delay(2000);

 This will pause the Arduino, or rather the LED, for two
seconds. You can make it one second, half a second or anything

that you want. But if you try running the code, it will still not

blink. Write the following line of code on the line after that:

digitalWrite(led, LOW);

 This will turn your LED off after the two seconds you set in
the delay code line. However, if you run the code, you will notice

that the LED still doesn’t blink. Why? Is there something wrong in

our codes up there? No. Our code is not yet complete, keeping

in mind what the void loop function does.

 This means that it loops immediately until it reaches the line

that turns the LED off. In other words, there isn’t any time for it

to keep the LED off. The solution to this is to add another delay-

code line. So, write this under the digitalWrite(led, LOW);:

delay(2000);

The Final Code

int led = 7;

void setup()

{

pinMode(led, OUTPUT);

}

void loop()

{

digitalWrite(led, HIGH); // turn the LED on

delay(2000); // wait for two seconds (values are given in

milliseconds)

digitalWrite(led, LOW); // makes the voltage low, turning off the

LED

delay(2000); // wait for two seconds before going back

}

Once you run this you should see a blinking LED! The led turns

on for two seconds and off for another two seconds.

Project 2. Traffic Light Controller

This is a fun, simple project that uses an Arduino board and

some LEDs to replicate traffic lights.

Hardware required

● Arduino UNO board

● Jumper wires

● Breadboard

● Red, Yellow, and Green LED lights

● Arduino USB 2.0 Cable

● Resistors

Procedure

Step 1: Power your breadboard. Connect your jumper wire to the

board such that one end of the wire goes into GND while the

other end goes to the pin on the far-right top of the breadboard.

 Step 2: Add the LEDs. One end of the resistor should go in

the same column with your jumper wires and the other end to

any row on the breadboard. The same row should hold your

LEDs. The short end of your LEDs goes to the side where the

resistors are, while the other end goes to the other side of the

breadboard. Note: You must connect the LEDs correctly or else

the project will not work.

 Step 3: Complete the circuit. Place another jumper wire on the

row that has the LEDs. This is where the wires will go:

● Green LED connects to pin 8, on the digital PWM section

● Yellow LED connects to pin 9, on the digital PWM section

● Red LED connects to pin 10, on the digital PWM section

 This is how your circuit should look like after the connection:

Coding for Arduino Traffic-Light Controller

● First, you will have to declare the variables so that you

address the lights by name rather than a pin number. For

example, the GREEN variable in our project represents the pin the

green LED is connected to.

● Next, add the setup function that configures the LEDs to be

OUTPUTs. Here you may refer to the pins by names since you

have already defined your variables.

● The loop function creates a loop that the program will run

through such that any time you call a function, a light turns on,

and you set a delay so that it changes after a period of time

lapses.

● Create a function for each LED. For example in the code

below, the greenlight() function should turn on the green LED

while turning off the yellow and red LEDs.

The Final Code:

// variables

int greedledPin = 8; // the pin number the green LED is

connected to

int yellowledPin= 9; // the pin number the yellow LED is

connected to

int redledPin = 10; // the pin number the red LED is connected

to

void setup()

{

pinMode(greenledPin, OUTPUT); // define greenledPin as an

output

pinMode(yellowledPin, OUTPUT); // define yellowledPin as an

output

pinMode(redledPin, OUTPUT); // define redledPin as an output

}

void loop()

{

green_light();

delay(greenledPin, 5000); // the green LED will stay for five

seconds

yellow_light();

delay(yelloledPin, 5000); // the yellow LED will stay for five

seconds

red_light();

delay(redledPin, 5000); // the red LED will stay for five seconds

}

void green_light()

{

digitalWrite(greenledPin, HIGH); // turns on the green LED

digitalWrite(yellowledPin, LOW); // the yellow LED is turned off

digitalWrite(redledPin, LOW); // the red LED is turned off

}

void yellow_light()

{

digitalWrite(greenledPin, LOW); // the green LED is turned off

digitalWrite(yellowledPin, HIGH); // the yellow LED turns on

digitalWrite(redledPin, LOW); // the red LED is turned off

}

void red_light()

{

digitalWrite(greenledPin, LOW); // the green LED is turned off

digitalWrite(yellowledPin, LOW); // the yellow LED turned off

digitalWrite(redledPin, HIGH); // the red LED turns on

}

Once you are done writing your code, click the verify button to

test it before uploading it to the Arduino. The lights should start

blinking in the pattern defined in the function calls and the

delays.

Project 3: Fading LED

This project demonstrates the use of the analogWrite() function to

fade an LED on and off. Remember, this function has nothing to

do with analog pins on the Arduino boards.

 Most Arduino boards have 5 pins marked with ‘PWM’ next to

the pin number. Some boards, however, have these pins marked

with the “~” symbol. You can program these pins to quickly

modify the power being sent their way. We refer to this technique

as Pulse With Modulation (PWM). You can use this technique to

turn an LED connected to your board on and off rapidly with

different ratios in between to create a fading effect.

Hardware required

● Arduino UNO board

● Breadboard

● One LED of any color

● 220 Ohm resistor

● Two jumper wires

Procedure

Step 1: Wire up the circuit and components. Connect the longer

leg, which is the anode or positive side of the LED, to digital

output pin 5 on your board through the resistor. Take the shorter

leg of the LED and insert it directly into the GND pin.

 Step 2: Write your Code. As usual, the first thing we do when

writing our code is declare our variables. In our code, we are

going to declare three variables, the pin number, the current

brightness of the LED, and the rate at which the LED will

brighten and fade.

 The next thing is to tell the Arduino that pin 5 is going to be
an output using the pinMode() function in the setup() routine.

By now, you should know that the setup() functions run only

once. Therefore, the code within the curly braces under setup()

will be executed only once. The real action occurs in the loop().

 The next step involves writing a line of code for the actual
controlling of the LED. And here, we are going to use the

analogWrite() function. Remember that this function takes two

arguments: one tells the Arduino the pin number to write to, and

two indicates the value of PWM to write.

 Basically, Pulse Width Modulation (PWM) adjusts the power

output of the LED. So, you can regulate the amount of power—or

rather brightness of your LED. Just tell your Arduino the pin to

modulate and the amount of power to be applied using the

analogWrite() function. The scale ranges from 0 to 255 with 0

being the minimum and 255 the maximum.

 As per our code below, the first thing we’ve done in the loop
is that we’ve written a value to pin 5 where we have our LED

connected and we’ve set the value to be 255. This will keep our

LED bright to start with.

Things to Note About the analogWrite() Function

● It has got nothing to do with analog pins

● On most Arduino boards, it can be used with pins 3, 5, 6, 9,

10, and 11

● It adjusts power output using Pulse Width Modulation (PWM)

● It takes two arguments: pin number and value

The next line of code has the delay time. This indicates the time

the LED pauses to enable you to see the dimming effect.

 We will then write this code: brightness = brightness -

fadeAmount; to dim the LED. This instructs the Arduino to take

the current brightness value and subtract the fadeAmount from it

and then save the new value back to the brightness variable. Our

brightness variable will now hold a value of 252, thus reducing the

intensity.

 This will in turn make our LED dim. This is going to repeat

and every time the loop runs, we subtract 3 from our brightness

variable until we have a very dim LED. However, if this is to

continue, the brightness variable will quickly drop to 0. Therefore,

we need to set a condition that controls this, so that the LED

brightens again and turns on and off gradually. We use the

“while” statement to do that.

 To be able to see the dimming and brightening, you need to

slow it down using the delay function or else you won’t perceive

the rapid flashing.

The Final Code

// variables

 int led= 5; // the PMW pin the LED is connected to

 int brightness = 255; // how bright the LED is
 int fadeAmount =3; // the number of points to fade the LED

by

 void setup() // the setup function runs once when you press
reset or power the board

 {
 pinMode(led, OUTPUT); // initialize pin 5 as an output

 }
 void loop() // the loop function runs repeatedly
 {
 while(brightness != 0); //this loop is to decrease brightness
 {
 analogWrite(led, brightness);

 delay(2000); // wait for 2 seconds to see the dimming effect

 brightness = brightness - fadeAmount; // the brightness

decreases by 3 points

 }
 while((brightness <=255) && (brightness >= 0)); //increase
brightness

 {
 analogWrite(led, brightness);

 delay(2000); // wait for 2 seconds to see the LED bright up
again

 brightness= brightness + fadeAmount; // the brightness

increases by 3 points

 }
 }
 Your code should run with or without the descriptions included.
However, if you are a bit confused by the descriptions, below is

the clear code:

int led= 5;

int brightness = 255;

int fadeAmount =3;

void setup()

{

pinMode(led, OUTPUT);

}

void loop()

{

while(brightness != 0);

{

analogWrite(led, brightness);

delay(2000);

brightness = brightness - fadeAmount;

}

while((brightness <=255) && (brightness >= 0));

{

analogWrite(led, brightness);

delay(2000);

brightness= brightness + fadeAmount;

}

}

 Once you are done writing the code, upload it and watch the

effects. You should see the LED start by dimming then

brightening up again.

Project 4: Building a Trick or Smart Switch

In this project, we are going to demonstrate a switch. A switch is

an electrical component that either completes or breaks a circuit.

When you push it, the circuit works and when you release it, the

circuit is broken. We will be using a small push-button to control

an LED whereby each time you press the button, the LED is turned

on if it was off, or off it was on.

Required Hardware

● Arduino Uno Board

● Breadboard

● Jumper Wires

● USB Cable

● One LED

● A push-button switch

● Two resistors: One of a 10k Ohm and another one of a 220

Ohm.

Procedure

Step1: Wire Up Your Circuit and Components. Here are the steps:

● Connect your Arduino to the breadboard using a jumper wire.

The wire should run from the GND on the Arduino to the GND

rail on the breadboard.

● Connect another jumper wire between the GND rail on the

breadboard and somewhere else on the same breadboard (you could

put it at H19).

● Connect the red jumper wire so that it runs from the power rail

to H26.

● Connect another jumper wire, the green one, so that it runs

from pin 2 on the Arduino board to J24 on the breadboard.

● Put one leg of a 10k Ohm resistor at G19 on the breadboard

and the other leg at G24.

● Connect your pushbutton switch. The switch should be placed

into F24, into F26, into E24, and into E26.

● Connect the 220 Ohm resistor on the breadboard so that one

leg goes in D5 and the other in G5.

● Connect your LED to the breadboard so that the shorter leg

goes in the GND rail, and the longer leg goes in at B5.

● Connect another jumper wire (the black one) so that it runs

from pin 13 on the Arduino board to cell I5 on the breadboard.

● Run the red jumper wire from 5V on the Arduino board to the

power rail indicated by +.

● Lastly, use the USB cable to connect the Arduino board to your

computer.

 Step 2: Write your Sketch.

 // Constants
 const pushbuttonPin=2; // the pin number the pushbutton is

connected to

 const ledPin=13; // the pin number that the LED is connected

to

 //Variables

 Int pushbuttonState=0; // the current status of the
pushbutton

 Void setup () {
 PinMode (pushbuttonPin, INPUT); // define the push button as

an input

 PinMode (ledpin, OUTPUT); // define the LED as an output

 digitalWrite(led,LOW); //the LED should be turned off for just in

case

 }
 Void loop () {
 pushbuttonState= digitalRead (pushbuttonPin);// read the status of
the pushbutton value

 if (pushbuttonState == HIGH); // check if the pushbutton is

pressed

 // if it is, the pushbutton status is HIGH

 {

 digitalWrite(ledPin, HIGH); // turn on the LED

 }
 Else { // otherwise
 digitalWrite(ledPin, LOW); // turn LED off

 }
 delay(2000); // give the hardware two seconds to stabilize then
begin again

 }
 }
 Below is a clear sketch of the same code if the comments within

the code confuse you.

const pushbuttonPin=2;

const ledPin=13;

int pushbuttonState=0;

Void setup () {

PinMode (pushbuttonPin, INPUT);

PinMode (ledpin, OUTPUT);

digitalWrite(led,LOW);

}

Void loop () {

pushbuttonState= digitalRead (pushbuttonPin);

if (pushbuttonState == HIGH);

{

digitalWrite(ledPin, HIGH);

}

Else {

digitalWrite(ledPin, LOW);

}

delay(2000);

}

}

 Step 3: Upload the Sketch. Upload the code above and observe.
You should have a switch that turns on the LED when pressed and

off when released.

Project 5: Sunrise-Sunset Light Switch

It is quite easy to design and build new electronic devices when

you know the secret ingredients for rapid design. The trick behind

it is to take the already existing electronic devices and make a

slight change to them. For example, you can easily change the

smart-switch device to a noncontact one by simply adding a

sensor. In this case, you can build a sunrise-sunset light switch by

making a few changes to the smart or trick switch project above.

 The major change you are required to make is to use a

photocell instead of the mini pushbutton. A photocell is a resistor

that changes its resistance depending on the amount of light that

touches its surface. Any light falling on a photocell decreases its

value of resistance. The other change you will need to make is to

add a green LED to pin D 13 on the Arduino. Therefore, to build

this project, here are the things you will need:

Required Hardware

● 10K Ohm resistor

● 330 Ohm resistor

● Electrolytic capacitor (100uF)

● An Arduino board

● Full-size clear breadboard

● Photocell

● A green LED

● A red LED

● Connecting wires

Procedure

Step 1: Gather all the above parts and place them on your

workbench or laboratory tabletop.

 Step 2: Wire up your circuit and components using the fritzing

diagram below:

 Step 3: Write your sketch

 // constants won't change:
 const int photocellPin = 2; // the pin number the photocell is

connected to

 const int redledPin = 12; // the pin number the red LED is

connected to

 const int greenledPin = 13; // the pin number the onboard LED

and green LED is connected to

 // variables will change:
 int photocellStatus = 0; // the variable for reading the photocell
status

 void setup() {

 pinMode(redledPin, OUTPUT); // define the red LED as an

output

 pinMode(greenledPin, OUTPUT); // define the green LED as an

output

 pinMode(photocellPin, INPUT); // define the photocell sensor as

an input

 }
 void loop(){
 photocellStatus= digitalRead(photocellPin); // read the status of
the photocell value

 // check if the photocell/sensor is activated
 if (photocellStatus == HIGH); // if the sensor is activated, the

photocell status is HIGH

 {
 digitalWrite(redledPin, HIGH); // turn red LED on

 digitalWrite(greenledPin, LOW); // and turn off the green LED

 }
 else // otherwise...
 {
 digitalWrite(redledPin, LOW); // turn off the red LED

 digitalWrite(greenledPin, HIGH); // and turn on the green LED

 }
 }
 Step 4: Upload the sketch to the Arduino. The greed LED will
turn on.

 Step 5: Wave your hand over the photocell for a moment. The

red LED should turn on after a few seconds, then it will turn

back off, and the green LED will turn on.

Project 6: Wireless Doorbell

In most homes, a knock at the gate, or the door, works just as a

doorbell. The concept advanced further by shifting to wired

electronic doorbell devices that were being fixed in one place. As

we all know, technology is developing fast and the traditional

doorbell we had was replaced by modern, wireless doorbell

devices. Wireless doorbells can be placed anywhere; their position

is not fixed, and their installation is also pretty simple.

 In this project, we are going to build a simple, wireless

doorbell using the Arduino UNO board. The project demonstrates

the RF module’s implementation for wireless communication.

Required Hardware

● Arduino UNO board

● RF Transmitter Module (434 MHz)

● HT - 12D Decoder IC

● 33 KΩ Resistor

● Small Buzzer

● Breadboard

● HT - 12E Encoder IC

● Resistor (750 Ohm)

● Push Button

● Power Supply

● Connecting Wires

Procedure

Step 1: Wire up the transmitter and receiver circuits. Here is the

schematic diagram of how your circuits should look:

 Step 2: Write the sketch of your code

 // Constants
 const pushbuttonPin=2; // the pin number the pushbutton is

connected to

 const buzzerPin=13; // the pin number that the buzzer is

connected to

 //Variables
 int pushbuttonStatus=0; // the current status of the
pushbutton

 Void setup () {
 PinMode (pushbuttonPin, INPUT); // define the push button

as an input

 PinMode (buzzerPin, OUTPUT); // define the buzzer as an

output

 }
 Void loop () {
 pushbuttonState= digitalRead (pushbuttonPin); // read the status
of the pushbutton

 if (pushbuttonState == HIGH); // check if the pushbutton

is pressed

 // if it is, the pushbutton status is HIGH

 {
 digitalWrite(buzzerPin, HIGH); // the buzzer will produce

sound

 }
 Else { // otherwise
 digitalWrite(buzzerPin, LOW); // the buzzer will not produce

sound

 }
 delay(3000); // give the hardware three seconds to stabilize
then begin again

 }
 }
 Step 3: Upload your sketch to the Arduino. If you connected
the circuit properly and uploaded the correct sketch, the buzzer

on the receiving end should start making a sound whenever you

press the pushbutton at the transmitter end.

Advantages

● You can further extend this idea to a real-time, wireless

doorbell system

● Its range is considerably large compared to other wireless

technologies since it uses RF as the mode of communication.

● This project best suits homes, offices, garages, shops, and

hospitals.

Chapter Nine: Troubleshooting and Fixing Arduino Issues

There are instances when you will experience problems or issues

working with the Arduino program or hardware. The problem may

be caused by hardware or software issues that will likely result in

failure of proper functioning or the presence of errors. We are

going to discuss how to troubleshoot and solve some of the most

common Arduino software and hardware problems.

Having Issues Loading Programs on Arduino.

Once you have a sketch together, loading it on the board

shouldn’t be a problem. However, there are several things that

might get in the way of loading your codes into the system.

Some of these reasons include:

● Missing the right drivers or having outdated ones

● Missing the right Arduino board configuration

● Using the wrong port

● Problematic physical connection of your circuit

 Here are the solutions:

Solution 1: Check If Your Board Model Is the One Configured.

Double-checking the Arduino board that is configured should be

the first thing you do when you experience loading problems.

Sometimes you may select the wrong type of board on the

program unknowingly. Just check to make sure that you have the

right Arduino board configured and reload the code after

verification to see if it works.

 You also need to check the type of microcontroller on your

board. Don’t be confused, it is very simple. Check your board and

spot the type of microcontroller it has and then select it from the

device. The latest Arduino boards have an ATmega328

microcontroller.

 Another common problem that may fail to load programs is

missing drivers. Ensure that the board is connected to the

computer and check whether the driver was installed. Go to the

device manager in your computer and find out if there are some

marked or unidentified items. The marked driver should be the

one belonging to your Arduino board. The driver may not be

updated, so you may need to update or reinstall it.

Solution 2: Make Sure Your Arduino Is Functioning.

An Arduino board must be powered for it to be detected by a

computer. Ensure that the board is receiving electricity. Look at

the board’s LED, if it is not on then the system is not receiving

any electricity. Once you notice this, the first thing to do is to

check whether the power supply source is working. For those with

Arduino boards that have dual power options, check if the jumper

is able to get electricity from your desired source. If it doesn’t, try

disconnecting the device, then set the jumper to the power source

and plug it again.

Solution 3: Reset the Device.

All Arduino boards have a reset button. This button is very helpful

when you are experiencing problems while transferring your codes.

Simply press the button and wait for a few seconds. Reload the

program after the waiting time is up.

Solution 4: Diagnose the Physical Connection Problem.

Ensure that your board is on and connected to the computer.

Check if the green LED is on to confirm this. In most cases,

hardware connection is the prevalent cause of inconsistencies. A

code cannot be uploaded if the pathway itself is busted. To solve

this:

● Try a different USB cable; sometimes they just don’t work.

● Check whether the serial port that should be assigned to your

board is present or not.

● Ensure that the board is not touching anything conductive or

metallic.

● Try disconnecting the digital pins 0 and 1 while uploading the

program.

● Buy an original USB cable that is specifically meant for data

transmission.

● Try changing the USB ports. Use a different USB port and see

if it works. If it doesn’t, try connecting it to another computer. If

it works on another computer, then have your computer USB

ports inspected.

Arduino Software is Not Working

If you have software incompatibility issues, sometimes programs

don’t work as expected. An Arduino software that doesn’t load

properly is probably installed using a program version that is

incompatible with the operating system.

Solution 1: Uninstall the Program.

Download the newer version that is compatible with your

operating system, then reinstall.

Solution 2: Use a Third-Party Arduino Program.

Most third-party Arduino programs promoted by Arduino

developers work properly. Try downloading a new installer from the

third-party developer’s website. Make sure you uninstall the current

program first before downloading and installing a new one. If this

doesn’t work, download and install the actual Arduino program,

then load the program to see if it works.

Crashing and Freezing Arduino Software

When the Arduino software freezes, there usually are some devices

installed that are causing the issue.

Solution:

Load the MSConfig utility and disable startup services and

programs. Restart your computer, and then load the Arduino

program. If the software loads flawlessly, then one of your startup

programs may be causing the problem. To identify the service or

program with the issue, test each of them individually.

 Installed COM ports may confuse you and lead you to choose

the wrong one, which will end up meddling with the loading

process.

Other Solutions:

● Check and select the right COM port for your Arduino.

● Switch off your computer and unplug all other devices.

● Turn the computer on, then plug the device, and load the

program to see if it is working.

Bootloader Problem

The Arduino bootloader allows the microcontroller board to read a

program. This vital piece of code also enables you to make

changes to your codes and re-upload them. Your Arduino can’t

perform these two functions if the bootloader has a problem.

Solution:

To solve this you have to understand that the firmware (A.K.A.

the bootloader software) is no longer working. Therefore, the clear

solution is to replace the firmware. To do this, simply download

the Arduino bootloader file from the Arduino developer’s website

and upload it to the board.

Grounding Errors

It is very important to ensure correct grounding, as it saves your

project from unexpected power surges and damage. Any Arduino

grounding issue needs to be fixed as soon as it is noticed; if not,

your board may get fried.

Solution:

Use a voltmeter to check the GND pin voltage.

Helpful Tips for Beginners

● Don’t dispose or throw away damaged Arduino boards. If you

are a beginner, the chances of damaging your board are high.

Don’t fret because it is part of the learning process. Don’t throw

the board away if you do damage it. Instead, dismantle its parts

and get familiarized with them. Learn how each piece was

installed. This will help you avoid further damage in the future

and also will teach you how to create your own custom board.

● Take note of extra or missing code It is easy to add or leave

out some characters while coding. This mistake prevents the

system from generating the desired results. It is very important to

double-check the code and remove any extra characters or add any

missing ones before uploading it. Always remember to put a

semicolon at the end of each line of code as it is mandatory.

● Take advantage of the Serial.list() command. For Arduino code

to function, the program has to read the board from the right

port. The easiest way to verify your configuration is by typing the

Serial.list() command. This lists all of the available ports on your

board.

● Add notes on the codes if necessary. Adding notes on your

codes helps you remember the results they should generate. Write

a note beside a line of code by typing a space, then two slashes

(//), followed by the note. The slashes indicate that the next

characters are not part of the code. Therefore, the system will not

try to interpret your notes and meddle with your project results.

Here is an example: delay(2000); // wait for 2 seconds to see the

dimming effect

● Take precautionary measures while assembling. Arduino

installation requires safe handling; it’s easy to damage it or cause

an accident. Assembling your circuit can burn and wound your

hands and fingers. To avoid these unfortunate scenarios, follow

soldering and building guides closely.

Conclusion

The beauty of Arduino is in trying out different projects. The most

amazing thing about this type of program is that you can easily

get a simple project up and running, even if you don’t have any

knowledge or experience with electronics or programming. But now

that you have read the basics in this book, you have more than

what it takes to build your own Arduino projects. The next step is

to start making your own sketches.

 When you get ideas for the new projects you might want to try

from your local hobby store or from your friends, consider joining

a community. You might find robots interesting and decide to join

an online robotics community, for example. Building projects with

friends and comparing them to each other makes it more fun and

motivating. If you feel like you don’t know where to start, don’t

worry, because there are so many online sources that share coding

and techniques to improve your programming game. Arduino is so

famous and widely used that there are many online sites that

have dedicated forums that are specifically tailored to help people

learn Arduino programming and electronics.

 If you wish to start a project, but you are feeling strapped for
cash, don’t give up because there are still options for you. As I

said earlier, Arduino has been in place for quite a long time;

nowadays, it is widely manufactured and sometimes fabricated in

multiple versions by third-party manufacturers. This means that

there are fairly cheap modules for purchase. Inexpensive and even

free programming languages are also available for download on

Arduino sites. Learning these languages is pretty easy, and if you

know even one programming language, then you are good to go!

If you don’t know any, there are several ways that you can learn.

You can get free programming books at your local library, and if

you get stuck, you can go online and ask for help from other

developers who have worked with Arduino and know how to get

you started.

Key Takeaways

● The Arduino programming language is exactly like C++; it has

two major functions, or rather, sections: the setup () and loop ().

● The variables are initialized within the setup () function. The

loop () function on the other hand is where the magic happens;

it contains the blocks of code that run repeatedly.

● Arduino boards have different numbers of pins depending on

the model. Each of these pins has a unique number that

identifies them.

● When coding, you have to specify the pin number you are

working with.

● Once you get your Arduino board, you have to set up the

Arduino IDE on your computer.

● All your codes should be written on the IDE before they are

uploaded on to the board.

● You must power up the Arduino board before use. Some

board models need to be configured to allow power to be taken

from the computer.

● Plans for Arduino code are commonly known as sketches.

● You must upload your sketch to the board by clicking the

upload button for you to see its effects.

● The Arduino board has many sensors, so ensure you check

which one you would like to employ.

Arduinos are used in classrooms all over the world as a starter to

programming and electronics. They are very user-friendly and the

greatest part of owning one is that you get a chance to explore

ideas and experiment. You are not limited here. You can easily

come up with your own ways to make machines work; just start

with simple projects like blinking or fading an LED and see what

you can do from there.

 I have included some codes for simple projects for you to try

out and the steps to set them up, but I also recommend that

you go and find some of your own. There are many sources and

guides that can help, and you can also check out some more

advanced projects and concepts that we didn’t have a chance to

touch on here. The Arduino board is really incredible. There is a

lot you can do with it. Just pick a direction that interests you and

see how far you can take the board. I hope that having read this

book, you will go out there, try new things, and see the

capabilities of your sketch designing skills. Arduino boards are an

entertaining way to get started on your programming journey!

References

Arduino - Quick Tutorials Point. Arduino - Quick Guide

(tutorialspoint.com)

 Boxall, J. (2021). Arduino Workshop, 2nd Edition: A Hands-on

Introduction with 65 Projects (2nd ed.). No Starch Press.

 Dukish, B. (2018). Coding the Arduino: Building Fun Programs,

Games, and Electronic Projects (Technology in Action) (1st ed.).

Apress.

 G. (2021, February 11). Arduino Traffic Light Pi My Life Up.

https://pimylifeup.com/arduino-traffic-light-project/

 Géron, D. (2021). Arduino Programming: The Ultimate Guide for

Absolute Beginners with Steps to Learn Arduino Programming and

The Fundamental Electronic Tiger Gain Ltd.

 Getting Started with the Arduino GSM (2021). Arduino

Documentation. https://docs.arduino.cc/retired/getting-started-

guides/ArduinoGSMShield/

 Gold, S. (2017). Arduino: Taking The Next Step With Arduino:

The Ultimate Beginner’s Guide - Part 2 (Arduino 101, Arduino

sketches, Complete beginners guide, . . . c++, Ruby, html, php,

Programming CreateSpace Independent Publishing Platform.

 Instructables. (2017, October 8). Arduino - Blinking

https://www.instructables.com/Arduino-Blinking-LED/

 Instructables. (2020, July 21). How to Make Sunrise and Sunset

Light Switch https://www.instructables.com/How-to-Make-Sunrise-and-

Sunset-Light-Switch-Sensor/

 Kaswan, K. et. al. (2020, January). Role of Arduino in Real World

Applications. (Vol. 9, Issue 01). International Journal of Scientific &

Technology Research.

 Makerspaces.com. (2018, February 13). Simple Arduino Projects

For https://www.makerspaces.com/simple-arduino-projects-beginners/

 Monk, S. (2011). Arduino + Android Projects for the Evil Genius:

Control Arduino with Your Smartphone or Tablet (1st ed.). McGraw-

Hill Education TAB.

 Monk, S. (2016a). Programming Arduino: Getting Started with

Sketches, Second Edition (Tab) (2nd ed.). McGraw-Hill Education

TAB.

 Monk, S. (2016b). Programming Arduino: Getting Started with

Sketches, Second Edition (Tab) (2nd ed.). McGraw-Hill Education

TAB.

 Monk, S. (2018). Programming Arduino Next Steps: Going Further

with Sketches, Second Edition (2nd ed.). McGraw-Hill Education

TAB.

 Nicholas, S. (2020). Arduino Programming: A Comprehensive

Beginner’s Guide to learn the Realms of Arduino from Independently

published.

 Parker, D. (2020). Arduino Programming: The Ultimate Guide For

Making the Best of Your Arduino Programming New Begin Ltd.

 Ryan, T. (2019). Arduino Programming: The Ultimate Beginner’s

Guide to Learn Arduino Programming Step by nelly B.L. International

Consulting LTD.

 Wilcher, D. (n.d.). Make: Basic Arduino Projects: 26 Experiments

with Microcontrollers and Electronics (Chinese MARKER MEDIA.

 Wilcher, D. (2014). Basic Arduino Projects: 26 Experiments with

Microcontrollers and Electronics (Make: Technology on Your Time) (1st

ed.). Make Community, LLC.

––––––––

Image Credit: Shutterstock.com

	Start

